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Preface

The 34th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2009, was held in Nový Smokovec, High Tatras (Slovakia) during
August 24–28, 2009. This volume contains 7 invited and 56 contributed papers
presented at the symposium. The contributed papers were selected by the Pro-
gram Committee out of a total of 148 submissions.

MFCS 2009 was organized by the Slovak Society for Computer Science and
the Faculty of Mathematics, Physics and Informatics of the Comenius Univer-
sity in Bratislava. It was supported by the European Association for Theoretical
Computer Science. We acknowledge with gratitude the support of all these in-
stitutions.

The series of MFCS symposia has a well-established tradition dating back
to 1972. The aim is to encourage high-quality research in all branches of theo-
retical computer science, and to bring together researchers who do not usually
meet at specialized conferences. The symposium is organized on a rotating ba-
sis in Poland, Czech Republic, and Slovakia. The previous meetings took place
in Jab�lonna 1972, Štrbské Pleso 1973, Jadwisin 1974, Mariánske Lázně 1975,
Gdańsk 1976, Tatranská Lomnica 1977, Zakopane 1978, Olomouc 1979, Ry-
dzyna 1980, Štrbské Pleso 1981, Prague 1984, Bratislava 1986, Karlovy Vary
1988, Pora̧bka-Kozubnik 1989, Banská Bystrica 1990, Kazimierz Dolny 1991,
Prague 1992, Gdańsk 1993, Košice 1994, Prague 1995, Kraków 1996, Bratislava
1997, Brno 1998, Szklarska Porȩba 1999, Bratislava 2000, Mariánske Lázně 2001,
Warsaw 2002, Bratislava 2003, Prague 2004, Gdańsk 2005, Stará Lesná 2006,
Český Krumlov 2007, Toruń 2008.

The 2009 meeting added a new page to this history, which was possible due
to the effort of many people.

We would like to thank the invited speakers Albert Atserias, Didier Caucal,
Javier Esparza, Thomas Henzinger, Muthu Muthukrishnan, Pavlos Spirakis, and
Peter Widmayer, for presenting their work to the audience of MFCS 2009. The
papers provided by the invited speakers appear at the front of this volume.
We thank all authors who have submitted their papers for consideration. Many
thanks go to the Program Committee, and to all external referees, for their hard
work in evaluating the papers. The work of the PC was carried out using the
EasyChair system, and we gratefully acknowledge this contribution.

Special thanks are due to the Organizing Committee led by Vanda Hamálková
and Dana Pardubská.

June 2009 Rastislav Královič
Damian Niwiński
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Four Subareas of the Theory of Constraints,
and Their Links

Albert Atserias

Universitat Politècnica de Catalunya, Barcelona, Spain

Let V = {x1, . . . , xn} be a set of variables that range over a set of values D =
{d1, . . . , dq}. A constraint is an expression of the type R(xi1 , . . . , xir ), where
R ⊆ Dr is a relation on the domain set D and xi1 , . . . , xir are variables in V .
The space of assignments, or configurations, is the set of all mappings σ : V → D.
We say that σ satisfies the constraint R(xi1 , . . . , xir ) if (σ(xi1 ), . . . , σ(xir )) ∈ R.
Otherwise we say that it falsifies it. On a given system of constraints we face a
number of important computational problems. Here is a small sample:

1. Is it satisfiable? That is, is there an assignment that satisfies all constraints?
If it is satisfiable, can we find a satisfying assignment? If it is unsatisfiable,
does it have a small and efficiently checkable proof of unsatisfiability? Can
we find it?

2. If it is not satisfiable, what is the maximum number of constraints that can
be satisfied simultaneously by some assignment? Knowing that we can satisfy
a 1 − ε fraction of the constraints simultaneously for some small ε > 0, can
we find an assignment that satisfies more than, say, a 1−√ε fraction?

3. How many satisfying assignment does the system have? If we can’t count it
exactly, can we approximate the number of satisfying assignments up to a con-
stant approximation factor? Can we sample a satisfying assignment uniformly
or approximately uniformly at random? More generally, if we write H(σ) for
the number of constraints that are falsified by σ, can we sample an assignment
σ with probability proportional to e−βH(σ) where β is a given inverse temper-
ature parameter? Can we compute, exactly or approximately, the so-called
partition function of the system, defined as Z(β) =

∑
σ e

−βH(σ)?
4. Knowing that the system has been generated randomly by choosing each R

uniformly at random from a fixed set of relations Γ and by choosing each
(x1, . . . , xr) uniformly at random in V r, can we analyze and exploit the
typical structure of the assignment space and the constraint system to solve
any of the problems above?

These are fundamental problems that can be roughly classified into the following
four categories: logic and proof complexity, optimization and approximation,
counting and sampling, and analysis of randomly generated instances. Perhaps
surprisingly, these four areas of the theory of constraints have been approached
through rather different techniques by groups of researchers with small pairwise
intersections. However, recent work has shown that these areas might be more
related than this state of affairs seems to indicate. We overview these connections
with emphasis on the open problems that have the potential of making the
connections even tighter.

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Synchronization of Regular Automata

Didier Caucal

IGM–CNRS, Université Paris-Est
caucal@univ-mlv.fr

Abstract. Functional graph grammars are finite devices which generate
the class of regular automata. We recall the notion of synchronization by
grammars, and for any given grammar we consider the class of languages
recognized by automata generated by all its synchronized grammars.
The synchronization is an automaton-related notion: all grammars gen-
erating the same automaton synchronize the same languages. When the
synchronizing automaton is unambiguous, the class of its synchronized
languages forms an effective boolean algebra lying between the classes
of regular languages and unambiguous context-free languages. We addi-
tionally provide sufficient conditions for such classes to be closed under
concatenation and its iteration.

1 Introduction

An automaton over some alphabet can simply be seen as a finite or countable
set of labelled arcs together with two sets of initial and final vertices. Such an
automaton recognizes the language of all words labelling an accepting path,
i.e. a path leading from an initial to a final vertex. It is well-known that fi-
nite automata recognize the regular languages. By applying basic constructions
to finite automata, we obtain the nice closure properties of regular languages,
namely their closure under boolean operations, concatenation and its iteration.
For instance the synchronization product and the determinization of finite au-
tomata respectively yield the closure of regular languages under intersection and
under complement.

This idea can be extended to more general classes of automata. In this paper,
we will be interested in the class of regular automata, which recognize context-
free languages and are defined as the (generally infinite) automata generated by
functional graph grammars [Ca 07]. Regular automata of finite degree are also
precisely those automata which can be finitely decomposed by distance, as well
as the regular restrictions of transition graphs of pushdown automata [MS 85],
[Ca 07]. Even though the class of context-free languages does not enjoy the same
closure properties as regular languages, one can define subclasses of context-free
languages which do, using the notion of synchronization.

The notion of synchronization was first defined between grammars [CH 08].
A grammar S is synchronized by a grammar R if for any accepting path μ of
(the graph generated by) S, there exists an accepting path λ of R with the same
label u such that λ and μ are synchronized: for every prefix v of u, the prefixes

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 2–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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of λ and μ labelled by v lead to vertices of the same level (where the level of
a vertex is the minimal number of rewriting steps necessary for the grammar
to produce it). A language is synchronized by a grammar R if it is recognized
by an automaton generated by a grammar synchronized by R. A fundamental
result is that two grammars generating the same automaton yield the same class
of synchronized languages [Ca 08]. This way, the notion of synchronization can
be transferred to the level of automata: for a regular automaton G, the family
Sync(G) is the set of languages synchronized by any grammar generating G.

By extending the above-mentioned constructions from finite automata to
grammars, one can establish several closure properties of these families of syn-
chronized languages. The sum of two grammars and the synchronization product
of a grammar with a finite automaton respectively entail the closure of Sync(G)
under union and under intersection with a regular language for any regular au-
tomaton G. The (level preserving) synchronization product of two grammars
yields the closure under intersection of Sync(G) when G is unambiguous i.e.
when any two accepting paths of G have distinct labels. Normalizing of grammar
into a grammar only containing arcs and then determinizing it yields, for any
unambiguous automaton G, the closure of Sync(G) under complement relative
to L(G). This normalization also allows us to express Sync(G) in the case of an
infinite degree graph G, by performing the e-closure of Sync(H) for some finite
degree automaton H using an extra label e. A final useful normalization only
allows the presence of initial and final vertices at level 0. It yields sufficient con-
ditions for the closure of classes of synchronized languages under concatenation
and its iteration.

In Section 2, we recall the definition of regular automata. In the next section,
we summarize known results on the synchronization of regular automata [Ca 06],
[NS 07], [CH 08], [Ca 08]. In the last section, we present a simpler construction
for the closure under complement of Sync(G) for unambiguous G [Ca 08] and
present new results, especially sufficient conditions for the closure of Sync(G)
under concatenation and its iteration.

2 Regular Automata

An automaton is a labelled oriented simple graph with input and output vertices.
It recognizes the set of words labelling the paths from an input to an output.
Finite automata are automata having a finite number of vertices, they recognize
the class of regular languages. Regular automata are the automata generated by
functional graph grammars, they recognize the class of context-free languages. A
key result, originally due to Muller and Schupp, identifies the regular automata
of finite degree with the automata finitely generated by distance.

An automaton over an alphabet (finite set of symbols) T of terminals is just a
set of arcs labelled over T (a simple labelled oriented graph) with initial and final
vertices. We use two symbols ι and o to mark respectively the initial and final
vertices. More precisely an automaton G is defined by G ⊆ T×V ×V ∪ {ι, o}×V
where V is an arbitrary set such that the set of vertices
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VG = { s ∈ V | ∃ a ∈ T ∃ t ∈ V (a, s, t) ∈ G ∨ (a, t, s) ∈ G }

of G is finite or countable. Any triple (a, s, t) ∈ G is an arc labelled by a from
source s to goal t ; it is identified with the labelled transition s a−→

G
t or directly

s
a−→ t if G is understood. Any pair (c, s) ∈ G is a coloured vertex s by c ∈ {ι, o}

also written c s. A vertex is initial (resp. final) if it is coloured by ι (resp. o) i.e.
ι s ∈ G (resp. o s ∈ G). An example of an automaton is given by

G = { n
a−→ n + 1 | n ≥ 0 } ∪ { n

b−→ xn | n > 0 } ∪ { n
b−→ y2n | n > 0 }

∪ { xn+1 b−→ xn | n > 0 } ∪ { yn+1 b−→ yn | n > 0 }
∪ {ι 0 , o y} ∪ { o xn | n > 0 } ∪ { ι y2n+1 | n ≥ 0 }

and is represented (up to isomorphism) below.

bbbbb

a a a

bbb

b b

bbb

b

b

o

ι

o

ι

o

ι
o

o

ι

ι

Fig. 1. An automaton

An automaton G is thus a simple vertex- and arc-labelled graph. G has fi-
nite degree if for any vertex s, the set { t | ∃ a (s a−→ t ∨ t

a−→ s) } of
its adjacent vertices is finite. Recall that (s0, a1, s1, . . ., an, sn) for n ≥ 0 and
s0

a1−→
G

s1 . . . sn−1
an−→
G

sn is a path from s0 to sn labelled by u = a1. . .an ;

we write s0
u=⇒
G

sn or directly s0
u=⇒ sn if G is understood. An accepting path

is a path from an initial vertex to a final vertex. An automaton is unambiguous
if two accepting paths have distinct labels. The automaton of Figure 1 is un-
ambiguous. The language recognized by an automaton G is the set L(G) of all
labels of its accepting paths: L(G) = { u ∈ T ∗ | ∃ s, t (s u=⇒

G
t ∧ ι s , o t ∈ G) }.

Note that ε ∈ L(G) if there exists a vertex s which is initial and final: ι s , o s ∈
G.

The automaton G of Figure 1 recognizes the language

L(G) = { ambn | 0 < n ≤ m } ∪ { anb2n | n > 0 } ∪ { b2n | n ≥ 0 }.

The languages recognized by finite automata are the regular languages over
T . We generalize finite automata to regular automata using functional graph
grammars. To define a graph grammar, we need to extend an arc (resp. a graph)
to a hyperarc (resp. a hypergraph). Although such an extension is natural, this
may explain why functional graph grammars are not very widespread at the
moment. But we will see in the last section that for our purpose, we can restrict
to grammars using only arcs.
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Let F be a set of symbols ranked by a mapping 	 : F −→ IN associating to
each f ∈ F its arity 	(f) ≥ 0 such that Fn = { f ∈ F | 	(f) = n } is countable
for every n ≥ 0 with T ⊂ F2 and ι, o ∈ F1 .

A hypergraph G is a subset of
⋃

n≥0 Fn×V n where V is an arbitrary set. Any
tuple (f, s1, . . ., s�(f)) ∈ G, also written fs1. . .s�(f) , is a hyperarc of label f and
of successive vertices s1, . . ., s�(f) . We add the condition that the set of vertices
VG is finite or countable, and the set of labels FG is finite. An arc is a hyperarc
fst labelled by f ∈ F2 and is also denoted by s

f−→ t. For n ≥ 2, a hyperarc
fs1. . .sn is depicted as an arrow labelled f and successively linking s1, . . ., sn.
For n = 1 and n = 0, it is respectively depicted as a label f (called a colour) on
vertex s1 and as an isolated label f called a constant. This is illustrated in the
next figures. For instance the following hypergraph:

G = {4 b−→ 1 , 5 b−→ 1 , 2 a−→ 5 , 5 b−→ 3 , 6 b−→ 3 , ι 4 , o 6 , A456}
with a, b ∈ F2 and A ∈ F3 , is represented below.

A

b

b

a

b

b

4

5

6

1

2

3

ι

o

Fig. 2. A finite hypergraph

A (coloured) graph G is a hypergraph whose labels are only of arity 1 or 2 :
FG ⊂ F1 ∪ F2 . An automaton G over the alphabet T is a graph with a set of
labels FG ⊆ T ∪ {ι, o}. We can now introduce functional graph grammars to
generate regular automata.

A graph grammar R is a finite set of rules of the form fx1. . .x�(f) −→ H
where fx1. . .x�(f) is a hyperarc of label f called non-terminal joining pairwise
distinct vertices x1 = . . . = x�(f) and H is a finite hypergraph.

We denote by NR the set of non-terminals of R i.e. the labels of the left hand
sides, by TR = { f ∈ F −NR | ∃ H ∈ Im(R), f ∈ FH } the terminals of R i.e.
the labels of R which are not non-terminals, and by FR = NR ∪ TR the labels
of R.

We use grammars to generate automata hence in the following, we may assume
that TR ⊆ T ∪ {ι, o}. Similarly to context-free grammars (on words), a graph
grammar has an axiom: an initial finite hypergraph. To indicate this axiom, we
assume that any grammar R has a constant non-terminal Z ∈ NR ∩ F0 which
is not a label of any right hand side; the axiom of R is the right hand side H of
the rule of Z : Z −→ H ∧ Z ∈ FK for any K ∈ Im(R).

Starting from the axiom, we want R to generate a unique automaton up to
isomorphism. So we finally assume that any grammar R is functional meaning
that there is only one rule per non-terminal: if (X,H) , (Y,K) ∈ R with X(1) =
Y (1) then (X,H) = (Y,K).

For any rule fx1. . .x�(f) −→ H , we say that x1, . . ., x�(f) are the inputs of
f , and VH−[H] is the set of outputs of f .
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To work with these grammars, it is simpler to assume that any grammar R
is terminal-outside [Ca 07]: any terminal arc or colour in a right hand side links
to at least one non input vertex: H ∩ (TR×VX×VX ∪ TR×VX) = ∅ for any rule
(X,H) ∈ R.

We will use upper-case letters A,B,C, . . . for non-terminals and lower-case let-
ters a, b, c . . . for terminals. Here is an example of a (functional graph) grammar
R :

; ;AZ A B B A

b b

o

o

ι

ι

o

ι

b
a

b

b

1

2

3

1

2

3

1

2

3

1

2

3

Fig. 3. A (functional graph) grammar

For the previous grammar R, we have NR = {Z,A,B} with Z the axiom and
	(A) = 	(B) = 3, TR = {a, b, ι, o} and 1, 2, 3 are the inputs of A and B.

Given a grammar R, the rewriting relation −→
R

is the binary relation between
hypergraphs defined as follows: M rewrites into N , written M−→

R
N , if we can

choose a non-terminal hyperarcX = As1. . .sp inM and a rule Ax1. . .xp −→H in
R such that N can be obtained by replacing X by H in M : N = (M−X)∪h(H)
for some function h mapping each xi to si, and the other vertices of H injectively
to vertices outside of M ; this rewriting is denoted by M−→

R, X
N . The rewriting −→

R, X

of a hyperarc X is extended in an obvious way to the rewriting −→
R, E

of any set E

of non-terminal hyperarcs. The complete parallel rewriting =⇒
R

is a simultaneous
rewriting according to the set of all non-terminal hyperarcs: M=⇒

R
N if M−→

R, E
N

where E is the set of all non-terminal hyperarcs of M . We depict below the first
three steps of the parallel derivation of the previous grammar from its constant
non-terminal Z:

=⇒ =⇒ =⇒BAZ

b

A

b

a

b

b

bb

o
ι

o

o
ι

o

o
ι

o

ι

o

ι ι ι

Fig. 4. Parallel derivation for the grammar of Figure 3

Given a grammar R, we restrict any hypergraph H to the automaton [H ] of
its terminal arcs and coloured vertices:[H ] = H ∩ (T×VH×VH ∪ {ι, o}×VH).

An automaton G is generated by R (from its axiom) if G belongs to the fol-
lowing set Rω of isomorphic automata:
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Rω = {
⋃

n≥0[Hn] | Z −→
R

H0 =⇒
R

. . . Hn =⇒
R

Hn+1 . . . }.

Note that in all generality, we need to consider hypergraphs with multiplici-
ties. However using an appropriate normal form, this technicality can be safely
omitted [Ca 07].

For instance the automaton of Figure 1 is generated by the grammar of
Figure 3. A regular automaton is an automaton generated by a (functional graph)
grammar. Note that a regular automaton has a finite number of non-isomorphic
connected components, and has a finite number of distinct vertex degrees.

Another example is given by the following grammar:

;Z AA c

a

a

b

b

A A c

1

2

1

2

ι

o

which generates the following automaton:

a

a b

c
c c

a b

a

b

ba

c
cc

a b

b

o

ι

recognizing the language { ucũ | u ∈ {a, b}+ } where ũ is the mirror of u.
The language recognized by a grammar R is the language L(R) recognized

by its generated automaton: L(R) = L(G) for (any) G ∈ Rω. This language is
well-defined since all automata generated by a given grammar are isomorphic.
A grammar R is an unambiguous grammar if the automaton it generates is
unambiguous.

There is a canonical way to generate the regular automata of finite degree
which allows to characterize these automata without the explicit use of gram-
mars. This is the finite decomposition by distance.

The inverse G−1 of an automaton G is the automaton obtained from G by
reversing its arcs and by exchanging initial and final vertices:

G−1 = { t a−→ s | s a−→
G

t } ∪ { ι s | o s ∈ G } ∪ { o s | ι s ∈ G }.

So G−1 recognizes the mirror of the words recognized by G. The restriction G|I
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of G to a subset I of vertices is the subgraph of G induced by I :

G|I = G ∩ (T×I×I ∪ {ι, o}×I).
The distance dI(s) of a vertex s to I is the minimal length of the undirected paths
between s and I : dI(s) = min{ |u| | ∃ r ∈ I, r u=⇒

G ∪ G−1
s } with min(∅) = +∞.

We take a new colour # ∈ F1 − {ι, o} and define for any integer n ≥ 0,

Dec#n(G, I) = G|{ s | dI(s)≥n } ∪ { # s | dI(s) = n }
In particular Dec#0 (G, I) = G ∪ { # s | s ∈ I }. We say that an automaton G is
finitely decomposable by distance if for each connected component C of G there
exists a finite non empty set I of vertices such that

⋃
n≥0Dec

#
n(C, I) has a finite

number of non-isomorphic connected components. Such a definition allows the
characterization of the class of all automata of finite degree which are regular.

Theorem 1. An automaton of finite degree is regular if and only if it is finitely
decomposable by distance and it has only a finite number of non isomorphic
connected components.

The proof is given in [Ca 07] and is a slight extension of [MS 85] (but without
using pushdown automata). Regular automata of finite degree are also the tran-
sition graphs of pushdown automata restricted to regular sets of configurations
and with regular sets of initial and final configurations. In particular, regular
automata of finite degree recognize the same languages as pushdown automata.

Proposition 1. The (resp. unambiguous) regular automata recognize exactly
the (resp. unambiguous) context-free languages.

This proposition remains true if we restrict to automata of finite degree. We now
use grammars to extend the family of regular languages to boolean algebras of
unambiguous context-free languages.

3 Synchronization of Regular Automata

We introduce the idea of synchronization between grammars. The class of lan-
guages synchronized by a grammar R are the languages recognized by grammars
synchronized by R. We show that these families of languages are closed under
union by applying the sum of grammars, are closed under intersection with a
regular language by defining the synchronization product of a grammar with a
finite automaton, and are closed under intersection (in the case of grammars
generating unambiguous automata) by performing the synchronization product
of grammars. Finally we show that all grammars generating the same automaton
synchronize the same languages.

To each vertex s of an automaton G ∈ Rω generated by a grammar R, we
associate a non negative integer 
(s) which is the minimal number of rewritings
applied from the axiom necessary to reach s. More precisely for G =

⋃
n≥0[Hn]
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with Z−→
R
H0=⇒

R
. . .Hn=⇒

R
Hn+1. . ., the level 
(s) of s ∈ VG , also written 
RG(s)

to specify G and R, is 
(s) = min{ n | s ∈ VHn }.
We depict below the levels of some vertices of the regular automaton of

Figure 1 generated by the grammar of Figure 3. This automaton is represented
by vertices of increasing level: vertices at a same level are aligned vertically.

bbbbb

a a a

bbb

bbb

b

o

ι

o

ι

o

ι
o

o

ι

ι

0 1 2 3 4 5 6

Fig. 5. Vertex levels with the grammar of Figure 3

We say that a grammar S is synchronized by a grammar R written S � R,
or equivalently that R synchronizes S written R � S, if for any accepting path
μ label by u of the automaton generated by S, there is an accepting path λ
label by u of the automaton generated by R such that for every prefix v of u,
the prefixes of λ and μ labelled by v lead to vertices of the same level: for (any)
G ∈ Rω and (any) H ∈ Sω and for any t0

a1−→
H

t1 . . .
an−→
H

tn with ι t0 , o tn ∈ H ,
there exists

s0
a1−→
G

s1 . . .
an−→
G

sn with ι s0 , o sn ∈ G and 
RG(si) = 
SH(ti) ∀ i ∈ [0, n].

For instance the grammar of Figure 3 synchronizes the following grammar:

; ;BAZ A

a

Ab

b

B

1

22

11

2

1

2

ι

o o

Fig. 6. A grammar synchronized by the grammar of Figure 3

In particular for S � R, we have L(S) ⊆ L(R). Note that the empty grammar
{(Z, ∅)} is synchronized by any grammar. The synchronization relation � is a
reflexive and transitive relation. We denote �� the bi-synchronization relation:
R �� S if R � S and S � R. Note that bi-synchronized grammars R �� S
may generate distinct automata: Rω = Sω. For any grammar R, the image of R
by � is the family �(R) = { S | S � R } of grammars synchronized by R and
Sync(R) = { L(S) | S � R } is the family of languages synchronized by R.

Note that Sync(R) is a family of languages included in L(R) and containing
the empty language and L(R). Note also that Sync(R) = Sync(S) for R �� S.

Standard operations on finite automata are extended to grammars in order to
obtain closure properties of Sync(R). For instance the synchronization product
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of finite automata is extended to arbitrary automata G and H by

G×H = { (s, p) a−→ (t, q) | s a−→
G

t ∧ p
a−→
H

q }
∪ { ι(s, p) | ι s ∈ G ∧ ι p ∈ H } ∪ { o(s, p) | o s ∈ G ∧ o p ∈ H }

which recognizes L(G×H) = L(G) ∩ L(H).
This allows us to define the synchronization product R×K of a grammar R

with a finite automaton K [CH 08]. Let {q1, . . ., qn} be the vertex set of K. To
each A ∈ NR, we associate a new symbol (A, n) of arity 	(A)×n except that
(Z, 0) = Z, and to each hyperarc Ar1. . .rm with m = 	(A), we associate the
hyperarc (Ar1. . .rm)K = (A, n)(r1, q1). . .(r1, qn). . .(rm, q1). . .(rm, qn).

The grammar R×K associates to each rule (X,H) ∈ R the following rule:

XK −→ [H ]×K ∪ { (BY )K | BY ∈ H ∧ B ∈ NR } .

Example 1. Let us consider the following grammar R :

;Z
a

b

A A Aι
o s

1 1 t

generating the following (regular) automaton G :

o

a a a

bbb

ι

and recognizing the restricted Dyck language D′∗
1 over the pair (a, b) [Be 79] :

L(R) = L(G) = D′∗
1 . We consider the following finite automaton K :

bb

a

a

ι
o qp

recognizing the set of words over {a, b} having an even number of a.
So R×K is the following grammar:

; (A, 2)

(1,p)

(1,q)

Z (A, 2)

(s,p)

(s,q)

(A, 2)

(t,p)

(t,q)

b

b
(1,p)

(1,q)

a

a

ι
o

generating the automaton G×K :

o
ι

b

b

a

a

b

b

a

a

b

b

a

a

which recognizes D′∗
1 restricted to the words with an even number of a. ��

The synchronization product of a grammar R with a finite automaton K is
synchronized by R i.e. R×K � R and recognizes L(R×K) = L(R) ∩ L(K).

Proposition 2. For any grammar R, the family Sync(R) is closed under in-
tersection with a regular language.
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Propositions 1 and 2 imply the well-known closure property of the family of
context-free languages under intersection with a regular language. As R×K is
unambiguous for R unambiguous and K deterministic, it also follows Theo-
rem 6.4.1 of [Ha 78] : the family of unambiguous context-free languages is closed
under intersection with a regular language.

Another basic operation on finite automata is the disjoint union. This oper-
ation is extended to any grammars R1 and R2 . For any i ∈ {1, 2}, we denote
R′

i = Ri ×
(
{ i a−→ i | a ∈ T } ∪ {ι i , o i}

)
in order to distinguish the vertices of

R1 and R2. For (Z,H1) ∈ R′
1 and (Z,H2) ∈ R′

2 , the sum of R1 and R2 is the
grammar

R1 +R2 = {(Z , H1 ∪ H2)} ∪ (R′
1 − {(Z,H1)}) ∪ (R′

2 − {(Z,H2)}) .

So (R1 +R2)ω = { G1 ∪ G2 | G1 ∈ Rω
1 ∧ G2 ∈ Rω

2 ∧ VG1 ∩ VG2 = ∅ } hence
L(R1 + R2) = L(R1) ∪ L(R2). In particular if S1 � R1 and S2 � R2 then
S1 + S2 � R1 +R2 .

Proposition 3. For any grammar R, Sync(R) is closed under union.

The synchronization product of regular automata can be non regular. Further-
more for the regular automaton G :

a

a, b a, b a, b

a, b a, b a, boι

the languages { ambman | m,n ≥ 0 } and { ambnan | m,n ≥ 0 } are in Sync(G)
but their intersection { anbnan | n ≥ 0 } is not a context-free language.

The synchronization product of a grammar with a finite automaton is ex-
tended for two grammars R and S for generating the level synchronization
product G×�H of their generated automata G ∈ Rω and H ∈ Sω which is
the restriction of G×H to pairs of vertices with same level: G×�H = (G×H)|P
for P = { (s, p) ∈ VG×VH | 
RG(s) = 
SH(p) }. This product can be gener-
ated by a grammar R×�S that we define. Let (A,B) ∈ NR×NS be any pair
of non-terminals and E ⊆ [1, 	(A)]×[1, 	(B)] be a binary relation over inputs
such that for all i, j ∈ [1, 	(A)], if E(i) ∩ E(j) = ∅ then E(i) = E(j), where
E(i) = {j | (i, j) ∈ E} denotes the image of i ∈ [1, 	(A)] by E. Intuitively for
a pair (A,B) ∈ NR×NS of non-terminals, a relation E ⊆ [1, 	(A)]×[1, 	(B)] is
used to memorize which entries of A and B are being synchronized.

To any such A, B and E, we associate a new symbol [A,B,E] of arity |E|
(where [Z,Z, ∅] is assimilated to Z). To each non-terminal hyperarc Ar1. . .rm
of R (A ∈ NR and m = 	(A)) and each non-terminal hyperarc Bs1. . .sn of S
(B ∈ NS and n = 	(B)), we associate the hyperarc

[Ar1. . .rm, Bs1. . .sn, E]=[A,B,E](r1, s1)
E
. . . (r1, sn)

E
. . . (rm, s1)

E
. . . (rm, sn)

E

with (ri, sj)
E

= (ri, sj) if (i, j) ∈ E, and ε otherwise. The grammar R×�S is
then defined by associating to each (AX,P ) ∈ R, each (BY,Q) ∈ S, and each
E ⊆ [	(A)]×[	(B)], the rule of left hand side [AX,BY,E] and of right hand side
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[P ]×[Q]

)
|E ∪ {[CU,DV,E′] | CU ∈ P ∧C ∈ NR ∧DV ∈ Q ∧D ∈ NS}

with E = { (X(i), Y (j)) | (i, j) ∈ E } ∪
(
VP − VX

)
×
(
VQ − VY

)
and

E′ = { (i, j) ∈ [	(C)]×[	(D)] | (U(i), V (j)) ∈ E }.
Note that R×�S is synchronized by R and S, and is bi-synchrnonized with S for
S �R. Furthermore R×�S generates G×�H for G ∈ Rω and H ∈ Sω hence rec-
ognizes a subset of L(R) ∩ L(S). However for grammars S and S′ synchronized
by an unambiguous grammar R, we have L(S×�S

′) = L(S) ∩ L(S′).

Proposition 4. For any unambiguous grammar R, the family Sync(R) is closed
under intersection.

By extending basic operations on finite automata to grammars, it appears that
graph grammars are to context-free languages what finite automata are to reg-
ular languages. We will continue these extensions in the next section. Let us
present a fundamental result concerning grammar synchronization, which states
that Sync(R) is independent of the way the automaton Rω is generated.

Theorem 2. For any grammars R and S such that Rω = Sω, we have

Sync(R) = Sync(S).

Proof sketch

By symmetry of R and S, it is sufficient to show that Sync(R) ⊆ Sync(S).
Let R′ � R. We want to show that L(R′) ∈ Sync(S).
We have to show the existence of S′ � S such that L(S′) = L(R′).
Note that it is possible that there is no grammar S′ synchronized by S and

generating the same automaton as R′ (i.e. S′ � S and S′ω = R′ω).
Let G ∈ Rω = Sω. Any vertex s of G has a level 
RG(s) according to R and a

level 
SG(s) according to S.
Let H ∈ R′ω and let K = (G×�H)|P be the automaton obtained by level

synchronization product of G with H and restricted to the set P of vertices
accessible from ι and co-accessible from o .

The restriction by accessibility from ι and co-accessibility from o can de done
by a bi-synchronized grammar [Ca 08]. By definition of R×�R

′, the automaton
K can be generated by a grammar R′′ bi-synchronized to R′ with


R
′′

K (s, p) = 
RG(s) = 
R
′

H (p) for every (s, p) ∈ VK .

In particular L(K) = L(R′).
Let us show that K is generated by a grammar synchronized by S.
We give the proof for Rω of finite degree. In that case and for ‖ 	 ‖ =∑
A∈NR

	(A),

|
RG(s)− 
RG(t)| ≤ ‖ 	 ‖.dG(s, t) for every s, t ∈ VG .

Furthermore K is also of finite degree.
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We show that K is finitely decomposable not by distance but according to

SK(s) for the vertices (s, p) of K.

Let n ≥ 0 and C be a connected component of K|{ (s,p)∈VK | �S
G(s)≥n }.

So C is fully determined by

its frontier : FrK(C) = VC ∩ VK−C

its interface : IntK(C) = { s a−→
C

t | {s, t} ∩ FrK(C) = ∅ } .

Let (s0, p0) ∈ FrK(C) and D be the connected component of G{ s | �S
G(s)≥n }

containing s0. It remains to find a bound b independent of n such that

|
R′′
K (s, p)− 
R′′

K (t, q)| ≤ b for every (s, p) , (t, q) ∈ FrK(C).

For any (s, p) , (t, q) ∈ FrK(C), we have s, t ∈ FrG(D) hence dD(s, t) is bounded
by the integer

c = max{ dSω(A)(i, j) < +∞ | A ∈ NS ∧ i, j ∈ [1, 	(A)] }
whose Sω(A) = {

⋃
n≥0[Hn] | A1. . .	(A) = H0 =⇒

S
. . . Hn =⇒

S
Hn+1 . . . }

thus it follows that

|
R′′
K (s, p)− 
R′′

K (t, q)| = |
RG(s)− 
RG(t)| ≤ ‖ 	 ‖dG(s, t) ≤ ‖ 	 ‖dD(s, t) ≤ ‖ 	 ‖c .

For G of infinite degree and by Proposition 8, we can express Sync(G) as an
ε-closure of Sync(H) for some regular automaton H of finite degree using ε-
transitions. ��
Theorem 2 allows to transfer the concept of grammar synchronization to the
level of regular automata: for any regular automaton G, we can define

Sync(G) = Sync(R) for (any) R such that G ∈ Rω.

Let us illustrate these ideas by presenting some examples of well-known sub-
families of context-free languages obtained by synchronization.

Example 2. For any finite automaton G, Sync(G) is the family of regular lan-
guages included in L(G).

Example 3. For the following regular automaton G :
cc c c

a

b

a

b

a

boι o o o

Sync(G) is the family of input-driven languages [Me 80] with a pushing, b pop-
ping and c internal. As the initial vertex is not source of an arc labelled by b,
Sync(G) does not contain all the regular languages.

Example 4. We complete the previous automaton by adding an b-loop on the
initial vertex to obtain the following automaton G :

cc c

a

b

a

b

a

boι o o o

b, c



14 D. Caucal

The set Sync(G) is the family of visibly pushdown languages [AM 04] with a
pushing, b popping and c internal.

Example 5. For the following regular automaton G :

c c

a b
cc

a b
c

b
a b

a

c
a

a
b

b
cc

a b
cc

a b
c

b
a b

a

c
a

a
b

b
cc

b

b

a

a

ι

o

the set Sync(G) is the family of balanced languages [BB 02] with a, b pushing
with their corresponding popping letters a, b, and c is internal.

Example 6. For the grammar R of Figure 6, Sync(R) is the family of languages
generated by the following linear contex-free grammars:

I = P + amA(b+ . . .+ bm) with m ≥ 0 and P ⊆ { aibj |1 ≤ j ≤ i ≤ m }
A = Q + anA(b+ . . .+ bn) with n > 0 and Q ⊆ { aibj |1 ≤ j ≤ i ≤ n } .

For each regular automaton G among the previous examples, Sync(G) is a
boolean algebra according to L(G) and, except for the last two examples, is
also closed under concatenation and its iteration. We now consider new closure
properties of synchronized languages for regular automata.

4 Closure Properties

We have seen that the family Sync(G) of languages synchronized by a regu-
lar automaton G is closed under union and under intersection with a regular
language, and under intersection when G is unambiguous. In this section, we
consider the closure of Sync(G) under complement relative to L(G) and un-
der concatenation and its transitive closure. To obtain these closure properties,
we first apply grammar normalizations preserving the synchronized languages.
These normalizations also allow us to add ε-arcs to any regular automaton to
get a regular automaton of finite degree with the same synchronized languages.

First we put any grammar in an equivalent normal form with the same set of
synchronized languages. As in the case of finite automata, we transform any
automaton G into the pointed automaton G�

⊥ which is language equivalent
L(G�

⊥) = L(G), with a unique initial vertex � ∈ VG which is goal of no arc
and can be final, and with a unique non initial and final vertex ⊥ ∈ VG which is
source of no arc:

G�
⊥ = (G− {ι, o}×VG) ∪ {ι� , o⊥} ∪ { o� | ∃ s (ι s , o s ∈ G) }
∪ { � a−→ t | ∃ s (s a−→

G
t ∧ ι s ∈ G) }

∪ { s a−→ ⊥ | ∃ t (s a−→
G

t ∧ o t ∈ G) }
∪ { � a−→ ⊥ | ∃ s, t (s a−→

G
t ∧ ι s , o t ∈ G) } .
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For instance, the finite degree regular automaton G of Figure 1 is transformed
into the following infinite degree regular automaton G�

⊥ :

bbbbbb

a a a

bbb

b b b

bbb

b

b
b

o

o

b

a

ι

b

b

Fig. 7. A pointed regular automaton

Note that if G is unambiguous, G�
⊥ remains unambiguous. The pointed trans-

formation of a regular automaton remains a regular automaton which can be
generated by an 0-grammar : only the axiom has initial and final vertices. Let
R be any grammar and �,⊥ be two symbols which are not vertices of R. Let
G ∈ Rω with �,⊥ ∈ VG . We define an 0-grammar R�

⊥ generating G�
⊥ and

preserving the synchronized languages: Sync(R�
⊥) = Sync(R).

First we transform R into a grammar R̂ in which we memorize in the non-
terminals the input vertices which are linked to initial or final vertices of the
generated automaton. More precisely to any A ∈ NR and I, J ⊆ [1, 	(A)], we
associate a new symbol AI,J of arity 	(A) with Z = Z∅,∅. We define the grammar
R̂ assciating to each (AX,H) ∈ R and I, J ⊆ [1, 	(A)] the following rule:

AI,JX −→ [H ] ∪ { BI′,J′Y | BY ∈ H ∧ B ∈ NR }
with I ′ = { i | Y (i) ∈ I ∨ ι Y (i) ∈ H } and J ′ = { j | Y (j) ∈ J ∨ o Y (j) ∈ H }
and we restrict the rules of R̂ to the non-terminals accessible from Z.

Note that the set L(R) ∩ T of letters recognized by R can be determined as

{ a | ∃ (AI,JX,H) ∈ R̂ (∃ i ∈ I ∃ t, X(i) a−→
[H]

t ∧ o t ∈ H)

∨ (∃ j ∈ J ∃ s, s a−→
[H]

X(j) ∧ ι s ∈ H) ∨ (∃ s, t, s a−→
[H]

t ∧ ι s , o t ∈ H) }

and ε ∈ L(R) ⇐⇒ ∃H ∈ Im(R̂) ∃ s (ι s , o s ∈ H).

To any A ∈ NR−{Z} and any I, J ⊆ [1, 	(A)], we associate a new symbol A′
I,J

of arity 	(A) + 2, and we define the grammar R�
⊥ containing the axiom rule

Z −→ H∅,∅ ∪ {ι� , o⊥} ∪ { o� | ε ∈ L(R) } ∪ { � a−→ ⊥ | a ∈ L(R) ∩ T }

for (Z,H) ∈ R̂, and for any (AI,JX,H) ∈ R̂ with A = Z, we take in R�
⊥ the rule

A′
I,J�X⊥ −→ HI,J such that HI,J is the following hypergraph:
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HI,J = ([H ]− {ι, o})×VH) ∪ { B′
P,Q�X⊥ | BP,QX ∈ H ∧ BP,Q ∈ NR̂ }

∪ { � a−→ t | ∃ i ∈ I (X(i) a−→
[H]

t) ∨ ∃ s (ι s ∈ H ∧ s
a−→

[H]
t) }

∪ { s a−→ ⊥ | ∃ j ∈ J (s a−→
[H]

X(j)) ∨ ∃ t (o t ∈ H ∧ s
a−→

[H]
t) }

and we put R�
⊥ into a terminal-outside form [Ca 07].

Example 7. Let us consider the following grammar R :

;

;

Z
A

11

A B

a

b

C

11

B a

b11

C
A

ι
o

o
ι
o

generating the following automaton G (with levels of some vertices):

o

ι a

b

a

b

a

b

a

bo o o o

ι ι

0 2 3 5 6

First this grammar is transformed into the following grammar R̂ :

;

;

Z

11

A1,1 B1,1

a

b11

a

b11

B1,1 C∅,1 C∅,1 A1,1

ι
o

ι
o

A1,1

o

In particular ε, a, b ∈ L(R). Then R̂ is transformed into the grammar R�
⊥ :

;

;

1

�

⊥

A′
1,1 B′

1,11

�

⊥

1

�

⊥

C′
∅,1

A′
1,1

�

⊥

ι

o

o

�

⊥

1
a

a
a

b
b

C′
∅,1

�

⊥

1
a

b
b

A′
1,1

a

b

a, bZ

B′
1,11

�

⊥

that we put in a terminal-outside form:

;

;

1

�

⊥

A′
1,1 B′

1,11

�

⊥

1

�

⊥

C′
∅,1

�

⊥

1
a

b
A′

1,1

A′
1,1

�

⊥

ι

o

o

�

⊥

1
a

b
C′
∅,1

a

Z

B′
1,11

�

⊥

a, b

a, b

a, b a, b

So R�
⊥ generates G�

⊥ :



Synchronization of Regular Automata 17

a

b

a

b

a

b

a

b

o

o

ι

a, b

a a, b a, b a, b

a, b a, b

��

The grammars R and R�
⊥ synchronize the same languages.

Proposition 5. For any regular automaton G with �,⊥ ∈ VG , the pointed
automaton G�

⊥ remains regular and Sync(G�
⊥) = Sync(G).

It follows that, in order to define families of languages by synchronization by
a regular automaton G, we can restrict to pointed automata G. A stronger
normalization is to transform any grammar R into a grammar S such that
Sync(S) = Sync(R) and S is an arc-grammar in the following sense: S is an
0-grammar whose any non-terminal A ∈ NS −{Z} is of arity 2, and for any non
axiom rule Ast −→ H , there is no arc in H of goal s or of source t : for any
p

a−→
H

q, we have p = t and q = s.
We can transformed any 0-grammar R into a bi-synchronized arc-grammar

≺R�.
We assume that each rule of R is of the form A1. . .	(A) −→ HA for any

A ∈ NR . We take a new symbol 0 (not a vertex of R) and a new label Ai,j of
arity 2 for each A ∈ NR and each i, j ∈ [1, 	(A)] in order to generate paths from
i to j in Rω(A1. . .	(A)). We define the splitting ≺G� of any FR-hypergraph G
without vertex 0 as being the graph:

≺G� = [G] ∪ { X(i)
Ai,j−→ X(j) | AX ∈ G ∧ A ∈ NR ∧ i, j ∈ [	(A)] }

and for p, q ∈ VG and P ⊆ VG with 0 ∈ VG , we define

Gp,P,q =
(
{ s a−→

≺G�
t | t = p ∧ s = q ∧ s, t ∈ P }

)
|I for p = q

Gp,P,p =
(
{ s a−→

≺G�
t | t = p ∧ s, t ∈ P } ∪ { s a−→ 0 | s a−→

≺G�
p }
)
|J

with I = { s | p=⇒ s =⇒ q } and J = { s | p =⇒ s =⇒ 0 }.

This allows to define the splitting ≺R� of R as being the following arc-grammar:

Z −→ ≺HZ�
Ai,j12 −→ hi,j

(
(HA)i,[�(A)]−{i,j},j

)
for each A ∈ NR and i, j ∈ [1, 	(A)]

where hi,j is the vertex renaming defined by

hi,j(i) = 1 , hi,j(j) = 2 , hi,j(x) = x otherwise, for i = j

hi,i(i) = 1 , hi,i(0) = 2 , hi,i(x) = x otherwise.
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Thus R and ≺R� are bi-synchronized, and ≺R� is unambiguous when R is
unambiguous. Note that we can put ≺R� into a reduced form by removing any
non-terminal Ai,j such that ≺R�ω(Ai,j)12 is without path from 1 to 2.

Example 8. The following 0-grammar R :

; ;Z A A

1 1

2 2

ι

o

a

B

b
1

2

3

1

2

3
A

ad B

generates the following automaton G :

a

d d

aa

b

a

b

a

b

a

d

ι

o

The splitting ≺R� of R is the following grammar:

;

;

;Z A1,2

A1,1

1

2

1

2

a
1

2

1

2

a
A1,1

A1,2 B2,3

1

2

1

2

A1,1

a
1

2

1

2

a

B2,1

A1,1

B2,3

ι

o

b

d

B2,1

A1,2

generating the following automaton:

a

d d

aaa a

d

ι

o

a

ab

a

ab

a

b

As R �� ≺R�, we have Sync(R) = Sync(≺R�). ��

To study closure properties of Sync(R) for any grammar R, we can work with its
normal form ≺R�

⊥� which is an arc-grammar generating a pointed automaton.
This normalization is really useful to study the closure property of Sync(R)
under complement relative to L(R), under concatenation and its iteration.

We have seen that Sync(R) is not closed in general under intersection, hence
it is not closed under complement according to L(R) since for any L,M ⊆ L(R),
L ∩ M = L(R)− [(L(R)− L) ∪ (L(R)−M)]. For R unambiguous, Sync(R) is
closed under intersection, and this remains true under complement according to
L(R) [Ca 08]. We give here a simpler construction.
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As ≺R�
⊥� remains unambiguous, we can assume that R is an arc-grammar.

Let S � R. We want to show that L(R) − L(S) ∈ Sync(R). So S is an 0-
grammar and S is level-unambiguous as defined in [Ca 08]. Thus ≺S� is a level-
unambiguous arc-grammar. We take a new colour c ∈ F1 − {ι, o} and for any
grammar S′, we denote S′

c (resp. S′
c) the grammar obtained from S′ by replacing

the final colour o by c (resp. c by o). So R+≺S�c is an arc-grammar and (R+
≺S�c)c is level-unambiguous. It remains to apply the grammar determinization
in [Ca 08] to get the grammar R/S = Det(R + ≺S�c) such that (R/S)c is
unambiguous and bi-synchronized to (R+≺S�c)c . Finally we keep in R/S the
final vertices which are not coloured by c to obtain a grammar synchronized by
R and recognizing L(R)− L(S).

Theorem 3. For any unambiguous regular automaton G, the set Sync(G) is an
effective boolean algebra according to L(G), containing all the regular languages
included in L(G).

So we can decide the inclusion L(S) ⊆ L(S′) for two grammars S and S′ synchro-
nized by a common unambiguous grammar. Furthermore for grammars R1 and
R2 such that R1 +R2 is level-unambiguous, Sync(R1 +R2) = { L1 ∪ L2 | L1 ∈
Sync(R1) ∧ L2 ∈ Sync(R2) } is a boolean algebra included in L(R1) ∪ L(R2),
containing Sync(R1) and Sync(R2).

The automata of Examples 2 to 6 are unambiguous hence their families of
synchronized languages are boolean algebra. This regular automaton G:

a

a

b

b

b

b

a ab

a

a

b

a

a

a

o

oo

o

ι

is 2-ambiguous: there are two accepting paths for the words anbnan with n > 0
and a unique accepting path for the other accepted words. But Sync(G) is not
closed under intersection since { ambman | m,n ≥ 0 } and { ambnan | m,n ≥ 0 }
are languages synchronized by G.

For any regular automaton G, the closure of Sync(G) under concatenation
· (resp. under its transitive closure +) does not require the unambiguity of G.
As L(G) ∈ Sync(G), a necessary condition is to have L(G).L(G) ∈ Sync(G)
(resp. L(G)+ ∈ Sync(G)). Note that this necessary condition implies that L(G)
is closed under · (resp. +). In particular Sync(G) is not closed under · and + for
the automata of Examples 5 and 6. But this necessary condition is not sufficient
since the following regular automaton G :

b

b

a a

b

b

a

b

b

a, b

o

o

ι
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recognizes L(G) = ε+M(a+ b)∗ for M = { anbn | n > 0 }, hence L(G).L(G) =
L(G) = L(G)+ but M ∈ Sync(G) and M.M,M+ ∈ Sync(G).

Let us give a simple and general condition on a grammar R such that Sync(R)
is closed under · and +. We say that a grammar is iterative if any initial vertex
is in the axiom and for (any) G ∈ Rω and any accepting path s0

a1−→
G
s1 . . .

an−→
G
sn

with ι s0 , o sn ∈ G and for any final vertex t i.e. o t ∈ G, there exists a path
t

a1−→
G

t1 . . .
an−→
G

tn with o tn ∈ G such that 
(ti) = 
(t) + 
(si) for all i ∈ [1, n].
For instance the automaton of Example 3 can be generated by an iterative

grammar. And any 0-grammar generating a regular automaton having a unique
initial vertex which is the unique final vertex, is iterative. Standard constructions
on finite automata for the concatenation and its iteration can be extended to
iterative grammars.

Proposition 6. For any iterative grammar R, the family Sync(R) is closed
under concatenation and its transitive closure.

However the automaton G of Example 4 cannot be generated by an iterated
grammar but Sync(G) is closed under · and +. We can also obtain families of
synchronized languages which are closed under · and + by saturating grammars.
The saturation G+ of an automaton G is the automaton

G+ = G ∪ { s a−→ r | ι r ∈ G ∧ ∃ t (s a−→
G

t ∧ o t ∈ G) }
recognizing L(G+) = (L(G))+.

Note that ifG is regular with infinite sets of initial and final vertices,G+ can be
non regular (but is always prefix-recognizable). IfG is generated by an 0-grammar
R, its saturationG+ can be generated by a grammarR+ that we define.

Let (Z,H) be the axiom rule of R and r1, . . . , rp be the initial vertices of
H ; we can assume that r1, . . ., rp are not vertices of R − {(Z,H)}. To each
A ∈ NR−{Z} and I ⊆ [1, 	(A)], we associate a new symbol AI of arity 	(A)+p
and we define R+ with the following rules:

Z −→ [H ]+ ∪ { A{ i | o X(i)∈H }Xr1. . .rp | AX ∈ H ∧ A ∈ NR }
AIXr1. . .rp −→ KI for each (AX,K) ∈ R and A = Z and I ⊆ [1, 	(A)]

whose KI is the automaton obtained from K as follows:

KI = [K] ∪ { s a−→ rj | j ∈ [p] ∧ ∃ i ∈ I (s a−→
K

X(i)) }
∪ { B{ j | ∃ i∈I, Y (j)=X(i) }Y r1. . .rp | BY ∈ K ∧ B ∈ NR } .

So R is synchronized by R+ and G+ ∈ (R+)ω for G ∈ Rω.
To characterize Sync(R+) from Sync(R), we define the regular closureReg(E)

of any language family E as being the smallest family of languages containing
E and closed under ∪ , · , + .

Proposition 7. For any 0-grammar R, Sync(R+) = Reg(Sync(R)).

By Propositions 5, 6 and 7, the following regular automaton G :
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cc c

a a

b

a

b

a, b, c

a, b, c

a, b, c

a, c

ι
o

has the same synchronized languages than the automaton of Example 3 :
Sync(G) is the family of input-driven languages (for a pushing, b popping and
c internal). By adding an b-loop on the initial (and final) vertex of G, we obtain
an automaton H such that Sync(H) is the family of visibly pushdown languages
hence by Proposition 7, is closed under · and +.

Example 9. A natural extension of the visibly pushdown languages is to add
reset letters. For a pushing, b popping and c internal, we add a reset letter d to
define the following regular automaton G :

cc c

a a

b

a

bb, d

b, c, d

d

d

ι
o o o o

Any language of Sync(G) is a visibly pushdown language taking d as an internal
letter, but not the converse: { andbn | n ≥ 0 } ∈ Sync(G). By Theorem 3,
Sync(G) is a boolean algebra. Furthermore the following automaton H :

cc c

a a

b

a

ba, b, c, d

a, b, c, d

a, b, c, d

a, b, c, d

ι
o

satisfies Sync(H) = Sync(G) and H+ = H hence by Proposition 7, Sync(G)
is also closed under · and +. ��
Note that the automata of the previous example have infinite degree. Further-
more for any automaton G of finite degree having an infinite set of initial or
final vertices, the pointed automaton G�

⊥ is of infinite degree. However any reg-
ular automaton of infinite degree (in fact any prefix-recognizable automaton)
can be obtained by ε-closure from a regular automaton of finite degree using
ε-transitions. For instance let us take a new letter e ∈ T (instead of the empty
word) and let us denote πe the morphism erasing e in the words over T ∪ {e} :
πe(a) = a for any a ∈ T and πe(e) = ε, that we extend by union to any language
L ⊆ (T ∪ {e})∗ : πe(L) = { πe(u) | u ∈ L }, and by powerset to any family P of
languages: πe(P ) = { πe(L) | L ∈ P }. The following regular automaton K :

cc c

a a

b

a

bb, d

b, c, d

e d

e

d

e

ι
o o o o



22 D. Caucal

is of finite degree and satisfies πe(Sync(K)) = Sync(G) for the automaton G of
Example 9. Let us give a simple transformation of any grammar R to a grammar
Re such that Rω

e is of finite degree and πe(Sync(Re)) = Sync(R).
As Sync(R)=Sync(≺R�

⊥�), we restrict this transformation to arc-grammars.
Let R be an arc-grammar. We define Re to be an arc-grammar obtained from R
by replacing each non axiom rule Ast −→ H by the rule:

Ast −→
(
[H ] ∪ {s e−→ se , te

e−→ t} ∪ h(H − [H ])
)
|P

with se, te be new vertices and h the vertex mapping defined for any r ∈ VH

by h(r) = r if r ∈ {s, t}, h(s) = se and h(t) = te, and P is the set of vertices
accessible from s and co-accessible from t. For instance the arc-grammar R

;Z A A

A

A

a

b

1 1

2 2

ι

o

is transformed into the following arc-grammar Re :

;Z A A

e

A

A

e

a

b

1

2

1

2

ι

o

For any rule of Re, the inputs are separated from the outputs (by e-transitions),
hence Rω

e is of finite degree. Furthermore this transformation preserves the syn-
chronized languages.

Proposition 8. For any arc-grammar R, Sync(R) = πe(Sync(Re)).

So for any R, Sync(R) = πe(Sync(≺R�
⊥�e)) and (≺R�

⊥�e)ω is of finite degree.

All the constructions given in this paper are natural generalizations of usual
transformations on finite automata to graph grammars. In this way, basic closure
properties could be lifted to sub-families of context-free languages.

5 Conclusion

The synchronization of regular automata is defined through devices generating
these automata, namely functional graph grammars. It can also be defined us-
ing pushdown automata with ε-transitions [NS 07] because Theorem 2 asserts
that the family of languages synchronized by a regular automaton is indepen-
dent of the way the automaton is generated; it is a graph-related notion. This
paper shows that the mechanism of functional graph grammars provides natural
constructions on regular automata generalizing usual constructions on finite au-
tomata. This paper is also an invitation to extend the notion of synchronization
to more general sub-families of automata.
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Stochastic Process Creation

Javier Esparza

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany

In many areas of computer science entities can “reproduce”, “replicate”, or “cre-
ate new instances”. Paramount examples are threads in multithreaded programs,
processes in operating systems, and computer viruses, but many others exist:
procedure calls create new incarnations of the callees, web crawlers discover new
pages to be explored (and so “create” new tasks), divide-and-conquer procedures
split a problem into subproblems, and leaves of tree-based data structures be-
come internal nodes with children. For lack of a better name, I use the generic
term systems with process creation to refer to all these entities.

In the last months, Tomáš Brázdil, Stefan Kiefer, Michael Luttenberger and
myself have started to investigate the behaviour of systems with stochastic pro-
cess creation [3]. We assume that the probability with which an entity will create
a new one is known or has been estimated, e.g. as the result of statistical sam-
pling. Using these probabilities we model the reproductive behaviour of the sys-
tem as a stochastic process, and study the distribution and moments of several
random variables. In particular, we are interested in random variables modelling
the computational resources needed to completely execute the system, i.e., to
execute the initial process and all of its descendants.

Stochastic process creation has been studied by mathematicians for decades
under the name branching (stochastic) processes [7,1], and so my coauthors and
I initially thought that we would find the answers to all basic questions in the
literature. Interestingly, this is by no means so. Work on branching processes has
been motivated by applications to biology (study of animal populations), physics
(study of particle cascades) or chemistry (study of chemical reactions). From a
computer scientist’s point of view, in these scenarios no process ever waits to
be executed, because there is no separation between processes (software) and
processor (hardware); for instance, in biology scenarios each individual animal
is both a process and the processor executing it, and both are created at the
same time. So, in computer science terms, probability theorists have studied
systems with an unbounded number of processors, in which every new process is
immediately assigned an idle processor. The model in which one single processor
or, more generally, a fixed number of processors, execute a possibly much larger
number of processes, seems to have received little attention. To be more precise,
some urn models of the literature are equivalent to it [8,11], but they have not
been studied through the eyes of a computer scientist, and questions about
computational resources have not been addressed.

In this note I rephrase and interpret some results of the theory of branching
processes for a computer science audience, and informally present some results
of our ongoing work on the single processor case. We have not addressed the

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 24–33, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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k-processor case so far, because we are only starting to understand it. I avoid
formal notations as much as possible, and give no proofs.

1 Some Preliminaries

A system consists initially of exactly one process awaiting execution. We describe
systems using a notation similar to that of stochastic grammars. Processes can
be of different types. The execution of a process generates new processes with
fixed and known probabilities. For instance

X
0.2
↪−−→ 〈X,X〉 X

0.3
↪−−→ 〈X,Y 〉 X

0.5
↪−−→ ∅

Y
0.7
↪−−→ 〈X〉 Y

0.3
↪−−→ 〈Y 〉

denotes a system with two types of processes, X and Y . Processes of type X can
generate 2 processes of type X , one process of each type, or zero processes with
probabilities 0.2, 0.3, and 0.5, respectively (angular brackets denote multisets).
Processes of type Y can generate one process, of typeX or Y , with probability 0.7
and 0.3. W.l.o.g. we assume that a process “dies” when it generates its children
(systems in which processes continue to exist after spawning children can be
simulated by assuming that one of the generated children is the continuation
of the parent process). An implicit constraint introduced by our notation is the
existence of an upper bound in the possible number of children a process can
generate at a point in time, i.e., we assume there is a number k such that for every
n ≥ k the probability that the process has n children is 0. This is a reasonable
assumption for most computer science applications, and simplifies many results.

For the sake of clarity, from this moment on we assume that systems only have
one type of processes; while most results can be generalised to the multitype case,
their formulation is more complicated and difficult to understand. However, in
Section 4.2 we will take this assumption back, since there we present some results
which are only meaningful for the multitype case.

In the one-type case a system is completely determined by the probabilities
pd, d ∈ N, that a process generates d child processes. As running example for
the paper we consider the system with p0 = 0.6, p1 = 0.1, p2 = 0.2, p3 = 0.1 and
pd = 0 for every d ≥ 4.

The probability generating function (pgf) of a system is the formal power series
f(x) =

∑∞
i=0 pix

i. For our running example we get

f(x) = 0.6 + 0.1x+ 0.2x2 + 0.1x3

Notice that the pgf is a polynomial with nonnegative coefficients, and so in
particular a monotonic function over the nonnegative reals.

The execution history of the initial process can be visualized by means of
family trees. Instead of a formal definition, we just present a family tree of
our running example in Figure 1. In this tree, the initial process creates three
“children”, which in turn have two, nil, and two “grandchildren”, respectively.
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Fig. 1. A family tree

All grandchildren create no further processes with the exception of the second,
which has one child; this child terminates without creating any process.

The rest of the note is structured as follows. In Section 2 we briefly discuss
the probability that a system terminates. Then, in Sections 3 and 4 we consider
the cases of an unbounded number of processors and one processor, respectively.

2 Completion Probability

The completion probability of a system is the probability that the initial process
will be completely executed, i.e., that eventually a point will be reached at which
the process itself and all its descendants have terminated. The following theorem
was essentially proved by Watson about 150 years ago, and we will sketch a proof
a little later:

Theorem 1 ([7]). The completion probability is the least nonnegative fixed point
of the system of pgfs.

It is not difficult to see that the least nonnegative fixed point of the exam-
ple above, i.e., the least number a such that f(a) = a, is 1. So the initial
process is completed with probability 1. But not every system has this prop-
erty. For instance, the least nonnegative fixed point of the system with pgf
f(x) = 2/3 x2 + 1/3 is only 1/2.

Critical and subcritical systems. In the rest of the paper we only consider systems
with completion probability 1. In particular, this means that the set of all infinite
family trees have probability 0, and so infinite family trees can be safely ignored.
We can then assign to a system a discrete probability space whose elementary
events are the finite family trees; the probability of a tree is the product of
the probabilities with which each process in the tree generates its children. For
instance, the probability of the family tree of Figure 1 is (0.6)5 · 0.1 · (0.2)2 · 0.1.

Systems with completion probability 1 can be divided into critical and sub-
critical. A system is critical (subcritical) if the average number of children of a
process is equal to (strictly smaller than) 1. For our running example the average
number of children is 0 · 0.6 + 1 · 0.1 + 2 · 0.2 + 3 · 0.1 = 0.8, and so the system
is subcritical.
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3 Unbounded Number of Processors

A family tree specifies which processes will be executed, but not in which order
or with which degree of concurrency. This is determined, among other factors, by
the number of available processors. In this section we study the case in which this
number is unbounded, and every newly created process is immediately assigned
a free processor. (Recall that, as discussed in the introduction, these are the
branching processes of stochastic theory.) In this model family trees are executed
in layers or generations: all processes with distance t to the root (the processes
of the t-th generation) are executed exactly at time t.

3.1 Completion Time

The completion time is the random variable T that assigns to a family tree τ
its number T (τ) of generations or, in other words, the depth of the tree. The
completion time of the tree of Figure 1 is 4.

The main property of the distribution of the completion time T can also be illus-
trated with our running example. Recall we have f(x) = 0.6+0.1x+0.2x2+0.1x3.
Let Pt denote the probability that a process is completely executed in time at
most t, i.e., after at most t generations. If the process generates, say, two children,
then it completely executes in at most t time units iff both children completely
execute in at most t − 1 units. Since we assume that children are executed in-
dependently, we get that in this case the probability is equal to P 2

t−1. So we get
Pt = 0.6 + 0.1Pt−1 + 0.2P 2

t−1 + 0.1P 3
t−1 or, in terms of the pgf, Pt = f(Pt−1) for

every t ≥ 1. If we denote by f t(x) the result of iteratively applying t times the
function f to x, we obtain the following well-known result [7]:

Theorem 2. For every t ∈ N: Pt = f t(0).

Since a process becomes completely executed after a possibly large but finite num-
ber of generations, the sequence {Pt}t≥0 converges to the completion probability.
By Theorem 2, so does the sequence {f t(0)}t≥0. But the function f is monotonic,
and so, by Kleene’s theorem, {f t(0)}t≥0 converges to the least nonnegative fixed
point of f . So, in fact, Theorem 1 is an easy corollary of Theorem 2.

The following peculiarity is interesting. Solving fixed point equations is a
very common task in computer science, and usually the interest of the sequence
{f t(0)}k≥0 is that, by Kleene’s theorem, it provides increasingly accurate ap-
proximations to the least nonnegative fixed point. (For this reason, the elements
of the sequence are sometimes called the Kleene approximants.) In our case it
is the other way round: we already know that the least fixed point is 1, and so
we are not interested in computing it; it is the approximants themselves we care
for! We will come back to this point in Section 4.

3.2 Process Number

The other variable measuring the consumption of resources is the processor num-
ber N : the minimal number of processors needed to execute the tree if no process
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must ever wait. Clearly, the processor number N(τ) of a family tree τ is equal
to the size of the largest generation. The process number of the tree of Figure 1
is 4, determined by the size of the third generation.

Determining the distribution of N is harder than for the completion time T ,
and the problem has been much studied in the literature on stochastic branch-
ing processes. We only present here two results for subcritical systems, due to
Lindvall and Nerman, that have particular relevance from a computer science
point of view. The pgf of a subcritical system has exactly two nonnegative fixed
points1. The least one gives the completion probability, and is therefore less
than or equal to 1. The greatest one is strictly larger than 1, and, surprisingly,
it carries important information:

Theorem 3 ([10,12]). Let a > 1 be the greatest nonnegative fixed point of the
pgf of a subcritical system. Then

Pr[N > n] <
a− 1
an − 1

for every n ≥ 1 and Pr[N > n] ∈ Θ
(

1
nan

)
.

In our running example we have a ≈ 1.3722, and so, for instance, we get
Pr[N > n] < 0.01 for n ≥ 12.

4 Single Processor

In the single processor case, the processor repeatedly selects a process from a pool
of processes awaiting execution, executes it, and puts the generated processes (if
any) back into the pool. The pool initially contains one process, and the next
process to be executed is chosen by a scheduler.

We investigate the random variables modelling the time and space needed to
completely execute the initial process for different classes of schedulers. Notice
that in this case space is a resource, because the local states of the processes
in the pool must be stored in memory. For simplicity we assume that storing
a process takes a unit of memory. As before, we also assume that executing a
process takes one time unit.

The completion time T (τ) of a family tree τ is given by the total number of
executed processes, i.e., by the number of nodes of the tree. Observe that for a
fixed tree the completion time is independent of the scheduler: the scheduler de-
termines the order of execution of the processes, but not the number of processes
that are executed (this is solely determined by the stochastic choices).

The completion space S(τ) is the maximal size of the pool during the execution
of the family tree. The same family tree can be executed in different ways,
depending on the order in which the scheduler selects the processes. Consider
the family tree of Figure 1. A scheduler that executes all internal nodes before
executing any leaves leads to a completion space of 5. Better schedulings can

1 Strictly speaking, this only holds if pd > 0 for some d ≥ 2, but the systems that do
not satisfy this condition do not exhibit process creation.



Stochastic Process Creation 29

be achieved, for instance by completely executing the second child of the initial
process, then the first, and then the third; this leads to completion space 3, the
pool never contains more than 3 processes.

In the rest of the section we present some results on the distribution and
moments of the random variables T and S.

4.1 Completion Time

The expected value and variance of T are easy to compute. We illustrate this
with the expected value. In our example, the initial process generates two chil-
dren with probability 0.2. The expected value conditioned to this first step is
1 + E[T + T ] (1 for the step just carried, plus the expected value of executing
two children). We get for our example the linear equation

E[T ] = 0.6 + 0.1(1 + E[T ]) + 0.2(1 + 2E[T ]) + 0.1(1 + 3E[T ]) = 1 + 0.8E[T ]

and so E[T ] = 5.

Theorem 4. The expected value and variance of T can be computed by solving
a linear equation.

Notice, however, that the expected completion time can be infinite, even if the
completion probability is 1. The standard example is the system with pgf f(x) =
1/2x2 + 1/2.

The completion time T has also a natural interpretation in the model with
an unbounded number of processors; it corresponds to the total work done by
all processors during the execution. Probably for this reason it has also been
investigated by branching process theorists. The following theorem about the
distribution of T , due to Dwass, reduces the computation of Pr[T = j] to a
rather standard combinatorial problem.

Theorem 5 ([4]). If p0 > 0 then

Pr[T = j] =
1
j
pj,j−1

for every j ≥ 0, where pj,j−1 denotes the probability that a generation has j − 1
processes under the condition that the parent generation has j processes.

Observe that if we are only interested in the value of T then the stochastic
process of the system can be embedded in a Markov chain having the different
numbers of processes as states. This shows that determining Pr[T = j] is similar
to solving a Gambler’s Ruin problem.

4.2 Completion Space

The completion space does not seem to have been studied in the literature. We
report on ongoing work [3]. As in the competitive analysis of online algorithms,
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we have studied the performance of online schedulers, and compared it with
the performance of an optimal offline scheduler. Intuitively, at every point in
the computation an online scheduler only knows the part of the family tree
containing the processes that have already been executed. On the contrary, the
optimal offline scheduler knows in advance which family tree is going to be
executed. Consider for instance a scenario in which processes are threads of a
deterministic program, but we do not have access to the program code. The
only information we have (obtained e.g. through sampling) is the pgf of the
threads. While the future of each thread is completely determined by the code
and the input values, with the information at our disposal we can only produce a
stochastic model of the system, and we can only design online schedulers. Now,
assume that we are granted access to the program code, and that by inspecting
the code of the initial thread we are able to determine how many threads it and
its descendants will generate. Using this information we can now schedule the
threads optimally. Of course, in most applications the optimal offline scheduler
cannot be implemented (in our scenario, if we allow arbitrary programs then we
must solve the halting problem), or has prohibitive computational complexity.
This fact does not raise any conceptual problem, because we are interested in
the optimal scheduler as a reference against which to compare the performance
of other schedulers.

Optimal offline schedulers. Our first results concern the distribution of the
completion space Sop of an optimal offline scheduler op on a fixed but arbitrary
system with f(x) as pgf. The optimal offline scheduler is the one that assigns to
each family tree the completion space of the space-optimal execution. With this
scheduler, the completion space of the family tree of Figure 1 is 3.

Recall how in Theorem 2 we obtained a nice connection between the distri-
bution of the completion time and the Kleene approximants to the least non-
negative fixed point of the pgf. We have obtained a very surprising result: the
same connection exists between the distribution of the completion space for the
optimal scheduler and the Newton approximants. The Newton approximants of
a pgf are the sequence of values obtained by applying Newton’s iterative method
for approximating a zero of a differentiable function to the function f(x) − x,
with 0 as first approximant. Notice that a zero of f(x) − x is always a fixed
point of f(x). More precisely, the sequence of Newton approximants is defined
as follows

ν(0) = 0 and ν(k+1) = ν(k) +
f(ν(k))− ν(k)

1− f ′(ν(k))

where f ′(ν(k)) denotes the derivative of f evaluated at ν(k). We have:

Theorem 6. Pr[Sop ≤ n] = ν(n) for every n ∈ N.

This connection allows to efficiently compute values of the distribution of Sop .
Moreover, applying recent results on the behaviour and convergence speed of
Newton’s method [6,9,5], it also leads to the following tail bounds:
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Theorem 7. If a system is subcritical (critical), there are real numbers c > 0
and 0 < d < 1 such that Pr[Sop ≥ k] ≤ c · d2k

( Pr[Sop ≥ k] ≤ c · dk ) for every
k ∈ N.

Online schedulers. Recall that online schedulers only know the past of the
computation, i.e., they ignore how future stochastic choices will be resolved.
We have studied the distribution of Sσ for an arbitrary online scheduler σ. It
turns out that the techniques of Theorem 3 can be adapted, and we obtain the
following result2:

Theorem 8. Let a > 1 be the greatest nonnegative fixed point of the pgf of a
subcritical system (in a certain normal form). Then

Pr[Sσ ≥ n] =
a− 1
an − 1

for every online scheduler σ and for every n ≥ 1.

In particular, this theorem proves that all online schedulers have the same distri-
bution. This is intuitively plausible, since online schedulers do not know which
process in the pool will have how many descendants. However, this is a par-
ticularity of the one-type case. In a multitype system some types can be very
prolific in average, while others may quickly disappear from the pool with high
probability, and so not all online schedulers are equivalent. Intuitively, a good
online scheduler gives priority to process types whose execution “requires less
space”. This notion, however, is difficult to make mathematically precise, be-
cause the space consumed by a process is precisely what we wish to compute!
In [3] we generalize Theorem 8 to the multitype case, and the proof suggests a
way of assigning weights to process types reflecting how “heavy” or “light” their
memory consumption is.

Notice that Theorem 8 also proves a gap between any online and the opti-
mal offline scheduler: limn→∞(Pr[Sσ ≥ n] /Pr[Sop ≥ n]) = ∞ for every online
scheduler σ. The gap also exists in the multitype case.

Depth-first schedulers. So far we have assumed that there are no dependen-
cies between processes requiring a process to be executed before another. We
now study a different case, especially important for multithreaded programming
scenarios. We assume that when a process creates more than one child, one of
the children is in fact the continuation of the parent process, while the other
children are spawned processes. We consider the case in which a process can ter-
minate only after all the processes it spawns have terminated. Papers studying
space-efficient scheduling of multithreaded programs usually call these computa-
tions strict (see e.g. [2]). The optimal scheduler of a strict computation in which
a thread creates new threads one at a time (i.e., a step of the parent process

2 See [3] for a precise formulation.
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can create at most one child process) is easy to determine: it proceeds “depth-
first”, completely executing the child process before proceeding to execute the
continuation of its parent. This results in the familiar stack-based execution.

We have been able to determine the exact asymptotic performance of the
depth-first scheduler:

Theorem 9. For any subcritical, one-at-a-time system and for the depth-first
scheduler σ there is 0 < ρ < 1 such that Pr[Sσ ≤ n] ∈ Θ(ρn) for every n ≥ 1.
Moreover, ρ can be efficiently approximated (see [3] for a precise formulation).

Notice that in the one-type case all online schedulers are equivalent, and since
the depth-first scheduler is online, Theorem 9 is directly implied by Theorem 8.
In the multitype case, however, Theorem 8 does not hold, only a weaker version
can be shown providing lower and upper bounds for the probability Pr[Sσ ≥ n]
of an arbitrary online scheduler σ. In this case Theorem 9 does provide additional
information, it determines the exact asymptotic performance of the depth-first
scheduler.

Expected completion space. We have also investigated the expected com-
pletion space. Using results on the convergence speed of Newton’s method we
can show that an optimal offline scheduler always has finite expected comple-
tion space, even for critical systems. Further, we have proved that, while in a
subcritical system every online scheduler has finite expected completion space
(an easy result), in a critical system every online scheduler has infinite expected
completion space (this is harder). Combining these results we obtain the follow-
ing interesting dichotomy for critical systems: all optimal offline schedulers have
finite expected completion space, but all online schedulers have infinite expected
completion space. So a finite expected value can only be obtained by schedulers
that, loosely speaking, have access to the code.

5 Conclusions

We have analyzed the behaviour of systems with stochastic process creation. We
have shown that the distinction made in computer science between processes
and processors introduces new models that have not been studied so far. We
have surveyed some basic results about the models that have been studied by
mathematicians as part of the theory of stochastic branching processes, and we
have reported on our ongoing work on the new models.

The potential applications of our results are in the design of hardware and
software systems. Using them we can determine the memory size a system must
have in order to accommodate a computation with only a given probability of a
memory overflow. However, in order to make the results useful we must consider
models in which different process types require different storage and processes
are executed by a fixed number of processors. This is where we are currently
placing our efforts.
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Abstract. The synthesis of a reactive system with respect to an ω-
regular specification requires the solution of a graph game. Such games
have been extended in two natural ways. First, a game graph can be
equipped with probabilistic choices between alternative transitions, thus
allowing the modeling of uncertain behavior. These are called stochastic
games. Second, a liveness specification can be strengthened to require
satisfaction within an unknown but bounded amount of time. These are
called finitary objectives. We study, for the first time, the combination
of stochastic games and finitary objectives. We characterize the require-
ments on optimal strategies and provide algorithms for computing the
maximal achievable probability of winning stochastic games with fini-
tary parity or Streett objectives. Most notably, the set of states from
which a player can win with probability 1 for a finitary parity objective
can be computed in polynomial time, even though no polynomial-time
algorithm is known in the nonfinitary case.

1 Introduction

The safety and liveness of reactive systems are usually specified by ω-regular
sets of infinite words. Then the reactive synthesis problem asks for constructing
a winning strategy in a graph game with two players and ω-regular objectives:
a player that represents the system and tries to satisfy the specification; and a
player that represents the environment and tries to violate the specification. In
the presence of uncertain or probabilistic behavior, the graph game is stochastic.
Such a stochastic game is played on a graph with three kinds of vertices: in player-
1 vertices, the first player chooses a successor vertex; in player-2 vertices, the
second player chooses a successor vertex; and in probabilistic vertices, a successor
vertex is chosen according to a given probability distribution. The result of
playing the game ad infinitum is a random walk through the graph. If player 1
has an ω-regular objective φ, then she tries to maximize the probability that the
infinite path that results from the random walk lies inside the set φ. Conversely,
player 2 tries to minimize that probability. Since the stochastic games are Borel
determined [15], and the ω-regular languages are Borel sets, these games have
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a unique value, i.e., there is a real v ∈ [0, 1] such that player 1 can ensure φ
with probability arbitrarily close to v, and at the same time, player 2 can ensure
¬φ with probability arbitrarily close to 1 − v. The computation of v is referred
to as the quantitative value problem for stochastic games; the decision problem
of whether v = 1 is referred to as the qualitative value problem. In the case of
parity objectives, both value problems lie in NP ∩ coNP [6], but no polynomial-
time solutions are known even if there are no probabilistic vertices. The NP ∩
coNP characterization results from the existence of pure (i.e., nonrandomized)
positional (i.e., memoryless) optimal strategies for both players. In the case of
Streett objectives, optimal player-1 strategies may require memory, and both
value problems are coNP-complete [3], which is again the same in the absence
of probabilistic vertices.

The specification of liveness for a reactive system by ω-regular sets such as
parity or Streett languages has the drawback that, while the synthesized system
is guaranteed to be live, we cannot put any bound on its liveness behavior. For
example, the liveness objective �(r → �q) ensures that every request r issued
by the environment is eventually followed by a response q of the synthesized
system, but the delay between each request and corresponding response may
grow without bound from one request to the next. This is an undesirable behav-
ior, especially in synthesis, where one controls the system to be built and where
one would like stronger guarantees. At the same time, it may be impossible to
put a fixed bound on the desired response time, because the achievable bound
usually is not known. For this reason, the time-scale independent notion of fini-
tary objectives was introduced [1]. The finitary version of the liveness objective
�(r → �q) requires that there exists an unknown bound b such that every re-
quest r is followed by a response q within b steps. The synthesized system can
have any response time, but its response time will not grow from one request to
the next without bound. Finitary versions can be defined for both parity and
Streett (strong fairness) objectives [4]. It should be noted that finitary objectives
are not ω-regular. While in games with ω-regular objectives, both players have
finite-memory strategies, to violate a finitary objective, player 2 may require in-
finite memory even if there are no probabilistic vertices [4]. Nonetheless, finitary
objectives are Borel sets, and thus have well-defined values in stochastic games.

Nonstochastic games with finitary parity and Streett objectives were first
studied in [4], and the results of [4] were later significantly improved upon by [12].
This work showed that finitary objectives are not only more desirable for synthe-
sis, but also can be far less costly than their infinitary counterparts. In particular,
nonstochastic games with finitary parity objectives can be solved in polynomial
time. In the present paper, we study for the first time stochastic games with
finitary objectives. As main results, we show that the qualitative value problem
for finitary parity objectives remains polynomial in the stochastic case, and the
quantitative value problem can be solved in NP ∩ coNP. For stochastic games
with finitary Streett objectives, we compute values in exponential time. Yet also
here we achieve a significant improvement by solving the qualitative value prob-
lem with an exponential term of 2d (where d is the number of Streett pairs)
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instead of nd · d! (where n is the number of vertices), which characterizes the
best known algorithm for nonstochastic games with infinitary Streett objectives.
Our results follow the pattern of extending properties of stochastic games with
infinitary parity and Streett objectives to stochastic games with finitary parity
and Streett objectives. However, in the finitary case, the proof techniques are
more complicated, because we need to consider infinite-memory strategies.

We now summarize our results in more detail and draw precise comparisons
with the two simpler cases of (i) stochastic games with infinitary (rather than
finitary) objectives and (ii) nonstochastic (rather than stochastic) games with
finitary objectives.

Comparison of finitary and infinitary parity objectives. In case of par-
ity objectives, pure memoryless optimal strategies exist for both players in
both nonstochastic (2-player) game graphs [9] and stochastic (21/2-player) game
graphs [6,17]. For finitary parity objectives on 2-player game graphs, a pure
memoryless optimal strategy exists for the player with the finitary parity ob-
jective, while the optimal strategy of the other player (with the complementary
objective) in general requires infinite memory [5]. We show in this work that
the same class of strategies that suffices in 2-player game graphs also suffices
for optimality in 21/2-player game graphs for finitary parity objectives and their
complements. The best known complexity bound for 2- and 21/2-player games
with parity objectives is NP ∩ coNP [9,6]. In case of 21/2-player games, the best
known complexity bound for the qualitative analysis is also NP ∩ coNP. The
solution of 2-player game graphs with finitary parity objectives can be achieved
in polynomial time (in O(n2 ·m) time [12,5] for game graphs with n states and m
edges). In this work we show that the quantitative analysis of 21/2-player game
graphs with finitary parity objectives lies in NP ∩ coNP, and the qualitative
analysis can be done in O(n4 ·m) time. To obtain a polynomial time solution for
the quantitative analysis of 21/2-player game graphs with finitary parity objec-
tives, one must obtain a polynomial-time solution for the quantitative analysis of
21/2-player game graphs with Büchi objectives (which is a major open problem).

Comparison of finitary and infinitary Streett objectives. In case of
Streett objectives with d pairs, strategies with d! memory is necessary and suf-
ficient for both 2-player game graphs and 21/2-player game graphs, and for the
complementary player pure memoryless optimal strategies exist [8,11,3]. For fini-
tary Streett objectives on 2-player game graphs, an optimal strategy with d · 2d

memory exists for the player with the finitary Streett objective, while the optimal
strategy of the other player (with the complementary objective) in general re-
quires infinite memory [5]. We show that the same class of strategies that suffices
for 2-player game graphs also suffices for optimality in 21/2-player game graphs
for finitary Streett objectives and their complements. The decision problems for
2- and 21/2-player games with Streett objectives are coNP-complete. The solution
of 2-player game graphs with finitary Streett objectives can be achieved in EXP-
TIME. In this work we show that both the qualitative and quantitative analysis
of 21/2-player game graphs with finitary Streett objectives can be achieved in
EXPTIME. The best known algorithm for 2-player game graphs with Streett
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objectives is O(nd · d!) [16], where as in case of 21/2-player game graphs with
finitary Streett objectives, we show that the qualitative analysis can be achieved
in time O(n4 · m · d · 2d). For the quantitative analysis, we present our results
for the more general class of tail (i.e., prefix-independent) objectives, and obtain
the results for finitary parity and Streett objectives as a special case.

2 Definitions

We consider several classes of turn-based games, namely, two-player turn-based
probabilistic games (21/2-player games), two-player turn-based deterministic
games (2-player games), and Markov decision processes (11/2-player games).

Notation. For a finite set A, a probability distribution on A is a function δ : A→
[0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probability distributions on

A by D(A). Given a distribution δ ∈ D(A), we denote by Supp(δ) = {x ∈ A |
δ(x) > 0} the support of δ.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S,E), (S1, S2, S©), δ) consists of a directed graph (S,E), a partition (S1,
S2, S©) of the finite set S of states, and a probabilistic transition function δ:
S© → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in S© are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ S© and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S,E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set {t ∈ S | (s, t) ∈ E} of possible successors. The size
of a game graph G = ((S,E), (S1, S2, S©), δ) is

|G| = |S|+ |E|+
∑
t∈S

∑
s∈S©

|δ(s)(t)|;

where |δ(s)(t)| denotes the space to represent the transition probability δ(s)(t)
in binary.

A set U ⊆ S of states is called δ-closed if for every probabilistic state
u ∈ U ∩ S©, if (u, t) ∈ E, then t ∈ U . The set U is called δ-live if for ev-
ery nonprobabilistic state s ∈ U ∩ (S1 ∪ S2), there is a state t ∈ U such that
(s, t) ∈ E. A δ-closed and δ-live subset U of S induces a subgame graph of G,
indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are the spe-
cial case of the 21/2-player game graphs with S© = ∅. The Markov decision
processes (11/2-player game graphs) are the special case of the 21/2-player game
graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1
MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.
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Plays and strategies. An infinite path, or play, of the game graph G is an
infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all
k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we write
Ωs ⊆ Ω for the set of plays that start from the state s.

A strategy for player 1 is a function σ: S∗·S1 → D(S) that assigns a probability
distribution to all finite sequences w ∈ S∗ ·S1 of states ending in a player-1 state
(the sequence represents a prefix of a play). Player 1 follows the strategy σ if in
each player-1 move, given that the current history of the game is w ∈ S∗ ·S1, she
chooses the next state according to the probability distribution σ(w). A strategy
must prescribe only available moves, i.e., for all w ∈ S∗, and s ∈ S1 we have
Supp(σ(w · s)) ⊆ E(s). The strategies for player 2 are defined analogously. We
denote by Σ and Π the set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,π

s for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths. Given strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three
conditions hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then
σ(s0, s1, . . . , sk)(sk+1) > 0; and (3) if sk ∈ S2 then π(s0, s1, . . . , sk)(sk+1) > 0.
Given two strategies σ ∈ Σ and π ∈ Π , and a state s ∈ S, we denote by
Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that start from s given strategies
σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,π

s (A) for the
probability that a path belongs to A if the game starts from the state s and
the players follow the strategies σ and π, respectively. In the context of player-1
MDPs we often omit the argument π, because Π is a singleton set.

We classify strategies according to their use of randomization and memory.
The strategies that do not use randomization are called pure. A player-1 strat-
egy σ is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that
σ(w · s)(t) = 1. We denote by ΣP ⊆ Σ the set of pure strategies for player 1. A
strategy that is not necessarily pure is called randomized. Let M be a set called
memory, that is, M is a set of memory elements. A player-1 strategy σ can be
described as a pair of functions σ = (σu, σm): a memory-update function σu:
S×M→ M and a next-move function σm: S1×M→ D(S). We can think of strate-
gies with memory as input/output automaton computing the strategies (see [8]
for details). A strategy σ = (σu, σm) is finite-memory if the memory M is finite,
and then the size of the strategy σ, denoted as |σ|, is the size of its memory M,
i.e., |σ| = |M|. We denote by ΣF the set of finite-memory strategies for player 1,
and by ΣPF the set of pure finite-memory strategies; that is, ΣPF = ΣP ∩ΣF .
The strategy (σu, σm) is memoryless if |M| = 1; that is, the next move does not
depend on the history of the play but only on the current state. A memory-
less player-1 strategy can be represented as a function σ: S1 → D(S). A pure
memoryless strategy is a pure strategy that is memoryless. A pure memoryless
strategy for player 1 can be represented as a function σ: S1 → S. We denote by
ΣM the set of memoryless strategies for player 1, and by ΣPM the set of pure
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memoryless strategies; that is, ΣPM = ΣP ∩ ΣM . Analogously we define the
corresponding strategy families ΠP , ΠF , ΠPF , ΠM , and ΠPM for player 2.

Counting strategies. We call an infinite memory strategy σ finite-memory
counting if there is a finite-memory strategy σ′ such that for all j ≥ 0 there
exists k ≤ j such that the following condition hold: for all w ∈ S∗ such that
|w| = j and for all s ∈ S1 we have σ(w · s) = σ′(suffix(w, k) · s), where for
w ∈ S∗ of length j and k ≤ j we denote by suffix(w, k) the suffix of w of length
k. In other words, the strategy σ repeatedly plays the finite-memory strategy
σ′ in different segments of the play and the switch of the strategy in different
segments only depends on the length of the play. We denote by nocount(|σ|) the
size of the memory of the finite-memory strategy σ′ (the memory that is used
not for counting), i.e., nocount(|σ|) = |σ′|. We use similar notations for player 2
strategies.

Objectives. An objective for a player consists of a Borel set of winning plays
Φ ⊆ Ω. In this paper we consider ω-regular objectives, and finitary parity and
finitary Streett objectives (all the objectives we consider in this paper are Borel
objectives).

Classical ω-regular objectives. We first present the definitions of various
canonical forms of ω-regular objectives and sub-classes of ω-regular objec-
tives. For a play ω = 〈s0, s1, s2, . . .〉, let Inf(ω) be the set {s ∈ S |
s = sk for infinitely many k ≥ 0} of states that appear infinitely often in ω.

1. Reachability and safety objectives. Given a set F ⊆ S of states, the reachabil-
ity objective Reach(F ) requires that some state in F be visited, and dually,
the safety objective Safe(F ) requires that only states in F be visited. For-
mally, the sets of winning plays are Reach(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥
0. sk ∈ F} and Safe(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∀k ≥ 0. sk ∈ F}.

2. Büchi and co-Büchi objectives. Given a set F ⊆ S of states, the Büchi objec-
tive Buchi(F ) requires that some state in F be visited infinitely often, and
dually, the co-Büchi objective coBuchi(F ) requires that only states in F be
visited infinitely often. Thus, the sets of winning plays are Buchi(F ) = {ω ∈
Ω | Inf(ω) ∩ F = ∅} and coBuchi(F ) = {ω ∈ Ω | Inf(ω) ⊆ F}.

3. Rabin and Streett objectives. Given a set P = {(E1, F1), . . . , (Ed, Fd)} of
pairs of sets of states (i.e, for all 1 ≤ j ≤ d, both Ej ⊆ S and Fj ⊆ S), the
Rabin objective Rabin(P ) requires that for some pair 1 ≤ j ≤ d, all states in
Ej be visited finitely often, and some state in Fj be visited infinitely often.
Hence, the winning plays are Rabin(P ) = {ω ∈ Ω | ∃1 ≤ j ≤ d. (Inf(ω) ∩
Ej = ∅ and Inf(ω) ∩ Fj = ∅)}. Dually, given P = {(E1, F1), . . . , (Ed, Fd)},
the Streett objective Streett(P ) requires that for all pairs 1 ≤ j ≤ d, if
some state in Fj is visited infinitely often, then some state in Ej be visited
infinitely often, i.e., Streett(P ) = {ω ∈ Ω | ∀1 ≤ j ≤ d. (Inf(ω) ∩ Ej =
∅ or Inf(ω) ∩ Fj = ∅)}.

4. Parity objectives. Given a function p: S → {0, 1, 2, . . . , d−1} that maps every
state to an integer priority, the parity objective Parity(p) requires that of the
states that are visited infinitely often, the least priority be even. Formally,
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the set of winning plays is Parity(p) = {ω ∈ Ω | min{p(Inf(ω))} is even}.
The dual, co-parity objective has the set coParity(p) = {ω ∈ Ω |
min{p(Inf(ω))} is odd} of winning plays. Parity objectives are closed un-
der complementation: given a function p : S → {0, 1, . . . , d−1}, consider the
function p+1 : S → {1, 2, . . . , d} defined as p+1(s) = p(s)+1, for all s ∈ S,
and then we have Parity(p+ 1) = coParity(p).

Every parity objective is both a Rabin objective and a Streett objective. The
Büchi and co-Büchi objectives are special cases of parity objectives with two
priorities, namely, p: S → {0, 1} for Büchi objectives with F = p−1(0), and p:
S → {1, 2} for co-Büchi objectives with F = p−1(2). The reachability and safety
objectives can be turned into Büchi and co-Büchi objectives, respectively, on
slightly modified game graphs.

Finitary objectives. We now define a stronger notion of winning, namely,
finitary winning, in games with parity and Streett objectives.

Finitary winning for parity objectives. For parity objectives, the finitary winning
notion requires that for each visit to an odd priority that is visited infinitely
often, the distance to a stronger (i.e., lower) even priority be bounded. To define
the winning plays formally, we need the concept of a distance sequence.

Distance sequences for parity objectives. Given a play ω = 〈s0, s1, s2, . . .〉 and
a priority function p: S → {0, 1, . . . , d − 1}, we define a sequence of distances
distk(ω, p), for all k ≥ 0, as follows:

distk(ω, p) =

{
0 if p(sk) is even;
inf{k′ ≥ k | p(sk′ ) is even and p(sk′) < p(sk)} if p(sk) is odd.

Intuitively, the distance for a position k in a play with an odd priority at position
k, denotes the shortest distance to a stronger even priority in the play. We assume
the standard convention that the infimum of the empty set is ∞.

Finitary parity objectives. The finitary parity objective finParity(p) for a priority
function p requires that the sequence of distances for the positions with odd pri-
orities that occur infinitely often be bounded. This is equivalent to requiring that
the sequence of all distances be bounded in the limit, and captures the notion
that the “good” (even) priorities that appear infinitely often do not appear in-
finitely rarely. Formally, the sets of winning plays for the finitary parity objective
and its complement are finParity(p) = {ω ∈ Ω | lim supk→∞ distk(ω, p) < ∞}
and cofinParity(p) = {ω ∈ Ω | lim supk→∞ distk(ω, p) = ∞}, respectively. Ob-
serve that if a play ω is winning for a co-parity objective, then the lim sup of
the distance sequence for ω is ∞, that is, coParity(p) ⊆ cofinParity(p). How-
ever, if a play ω is winning for a (classical) parity objective, then the lim sup
of the distance sequence for ω can be ∞ (as shown in Example 1), that is,
finParity(p) � Parity(p).

Example 1. Consider the game shown in Figure 1. The square-shaped states are
player 1 states, where player 1 chooses the successor state, and the diamond-
shaped states are player 2 states (we will follow this convention throughout this
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Fig. 1. A simple game graph

paper). The priorities of states are shown next to each state in the figure. If
player 1 follows a memoryless strategy σ that chooses the successor s2 at state
s0, this ensures that against all strategies π for player 2, the minimum priority
of the states that are visited infinitely often is even (either state s3 is visited
infinitely often, or both states s0 and s1 are visited finitely often). However,
consider the strategy πw for player 2: the strategy πw is played in rounds, and
in round k ≥ 0, whenever player 1 chooses the successor s2 at state s0, player 2
stays in state s2 for k transitions, and then goes to state s3 and proceeds to
round k+1. The strategy πw ensures that for all strategies σ for player 1, either
the minimum priority visited infinitely often is 1 (i.e., both states s0 and s1 are
visited infinitely often and state s3 is visited finitely often); or states of priority 1
are visited infinitely often, and the distances between visits to states of priority 1
and subsequent visits to states of priority 0 increase without bound (i.e., the limit
of the distances is ∞). Hence it follows that in this game, although player 1 can
win for the parity objective, she cannot win for the finitary parity objective.

Finitary winning for Streett objectives. The notion of distance sequence for parity
objectives has a natural extension to Streett objectives.

Distance sequences for Streett objectives. Given a play ω = 〈s0, s1, s2, . . .〉 and a
set P = {(E1, F1), . . . , (Ed, Fd)} of Streett pairs of state sets, the d sequences of
distances dist j

k(ω, P ), for all k ≥ 0 and 1 ≤ j ≤ d, are defined as follows:

dist j
k(ω, P ) =

{
0 if sk ∈ Fj ;
inf{k′ ≥ k | sk′ ∈ Ej} if sk ∈ Fj .

Let distk(ω, P ) = max{dist j
k(ω, P ) | 1 ≤ j ≤ d} for all k ≥ 0.

Finitary Streett objectives. The finitary Streett objective finStreett(P ) for
a set P of Streett pairs requires that the distance sequence be bounded
in the limit, i.e., the winning plays are finStreett(P ) = {ω ∈ Ω |
lim supk→∞ distk(ω, P ) < ∞}. We use the following notations for the comple-
mentary objective: cofinStreett(P ) = Ω \ finStreett(P ).

Tail objectives. An objective Φ is a tail objective if the objective is independent
of finite prefixes. Formally, an objective Φ is a tail objective if for all ω ∈ Ω, we
have ω ∈ Φ iff for all ω′ obtained by adding or deleting a finite prefix with ω we
have ω′ ∈ Φ (see [2] for details). The parity, Streett, finitary parity and finitary
Streett are independent of finite prefixes and are all tail objectives. Since tail
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objectives are closed under complementation, it follows that the complementary
objectives to finitary parity and Streett are tail objectives as well.

Sure, almost-sure, positive winning, and optimality. Given a player-1
objective Φ, a strategy σ ∈ Σ is sure winning for player 1 from a state s ∈ S if
for every strategy π ∈ Π for player 2, we have Outcome(s, σ, π) ⊆ Φ. A strategy
σ is almost-sure winning for player 1 from the state s for the objective Φ if for
every player-2 strategy π, we have Prσ,π

s (Φ) = 1. A strategy σ is positive winning
for player 1 from the state s for the objective Φ if for every player-2 strategy π,
we have Prσ,π

s (Φ) > 0. The sure, almost-sure and positive winning strategies
for player 2 are defined analogously. Given an objective Φ, the sure winning set
〈〈1〉〉sure(Φ) for player 1 is the set of states from which player 1 has a sure winning
strategy. Similarly, the almost-sure winning set 〈〈1〉〉almost (Φ) and the positive
winning set 〈〈1〉〉pos (Φ) for player 1 is the set of states from which player 1 has
an almost-sure winning and a positive winning strategy, respectively. The sure
winning set 〈〈2〉〉sure(Ω\Φ), the almost-sure winning set 〈〈2〉〉almost (Ω\Φ), and the
positive winning set 〈〈2〉〉pos(Ω\Φ) for player 2 are defined analogously. It follows
from the definitions that for all 21/2-player game graphs and all objectives Φ, we
have 〈〈1〉〉sure(Φ) ⊆ 〈〈1〉〉almost (Φ) ⊆ 〈〈1〉〉pos(Φ). Computing sure, almost-sure and
positive winning sets and strategies is referred to as the qualitative analysis of
21/2-player games [7].

Given objectives Φ ⊆ Ω for player 1 and Ω \ Φ for player 2, we define the
value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively, as the
following functions from the state space S to the interval [0, 1] of reals: for all
states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,π

s (Φ) and 〈〈2〉〉val (Ω \Φ)(s) =
supπ∈Π infσ∈Σ Prσ,π

s (Ω \ Φ). In other words, the value 〈〈1〉〉val (Φ)(s) gives the
maximal probability with which player 1 can achieve her objective Φ from state s,
and analogously for player 2. The strategies that achieve the value are called
optimal: a strategy σ for player 1 is optimal from the state s for the objective
Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ). The optimal strategies for player 2 are
defined analogously. Computing values and optimal strategies is referred to as
the quantitative analysis of 21/2-player games. The set of states with value 1 is
called the limit-sure winning set [7]. For 21/2-player game graphs with ω-regular
objectives the almost-sure and limit-sure winning sets coincide [3].

Let C ∈ {P,M,F,PM ,PF} and consider the family ΣC ⊆ Σ of special strate-
gies for player 1. We say that the family ΣC suffices with respect to a player-1
objective Φ on a class G of game graphs for sure winning if for every game graph
G ∈ G and state s ∈ 〈〈1〉〉sure(Φ), there is a player-1 strategy σ ∈ ΣC such that
for every player-2 strategy π ∈ Π , we have Outcome(s, σ, π) ⊆ Φ. Similarly,
the family ΣC suffices with respect to the objective Φ on the class G of game
graphs for (a) almost-sure winning if for every game graph G ∈ G and state
s ∈ 〈〈1〉〉almost (Φ), there is a player-1 strategy σ ∈ ΣC such that for every player-
2 strategy π ∈ Π , we have Prσ,π

s (Φ) = 1; (b) positive winning if for every game
graph G ∈ G and state s ∈ 〈〈1〉〉pos (Φ), there is a player-1 strategy σ ∈ ΣC such
that for every player-2 strategy π ∈ Π , we have Prσ,π

s (Φ) > 0; and (c) optimality
if for every game graph G ∈ G and state s ∈ S, there is a player-1 strategy
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σ ∈ ΣC such that 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π
s (Φ). The notion of sufficiency for

size of finite-memory strategies is obtained by referring to the size of the memory
M of the strategies. The notions of sufficiency of strategies for player 2 is defined
analogously.

Determinacy. For sure winning, the 11/2-player and 21/2-player games coin-
cide with 2-player (deterministic) games where the random player (who chooses
the successor at the probabilistic states) is interpreted as an adversary, i.e.,
as player 2. We present the result formally as a Lemma. We use the fol-
lowing notation: given a 21/2-player game graph G = ((S,E), (S1, S2, S©), δ),
we denote by Ĝ = Tr2(G) the 2-player game graph defined as follows: Ĝ =
((S,E), (S1, S2 ∪ S©)).

Lemma 1. For all 21/2-player game graphs, for all Borel objectives Φ, the sure
winning sets for objective Φ for player 1 in the game graphs G and Tr2(G)
coincide.

Theorem 1 and Theorem 2 state the classical determinacy results for 2-player
and 21/2-player game graphs with Borel objectives. It follows from Theorem 2
that for all Borel objectives Φ, for all ε > 0, there exists an ε-optimal strategy σε

for player 1 such that for all π and all s ∈ S we have Prσ,π
s (Φ) ≥ 〈〈1〉〉val (Φ)(s)−ε.

Theorem 1 (Qualitative determinacy). The following assertions hold.

1. For all 2-player game graphs with state set S, and for all Borel objectives Φ,
we have 〈〈1〉〉sure(Φ) = S \ 〈〈2〉〉sure(Φ), i.e., the sure winning sets for the two
players form a partition of the state space [14].

2. The family of pure memoryless strategies suffices for sure winning with re-
spect to Rabin objectives for 2-player game graphs [9]; and the family of
pure finite-memory strategies suffices for sure winning with respect to Streett
objectives for 21/2-player game graphs [10], and sure winning strategies for
Streett objectives in general require memory.

Theorem 2 (Quantitative determinacy). The following assertions hold.

1. For all 21/2-player game graphs, for all Borel objectives Φ, and for all states
s, we have 〈〈1〉〉val (Φ)(s) + 〈〈2〉〉val (Φ)(s) = 1 [15].

2. The family of pure memoryless strategies suffices for optimality with respect
to Rabin objectives for 21/2-player game graphs [3]; and the family of pure
finite-memory strategies suffices for optimality with respect to Streett ob-
jectives for 21/2-player game graphs [3], and optimal strategies for Streett
objectives in general require memory.

We now present the main results of 2-player games with finitary parity and
Streett objectives.

Theorem 3 (Finitary parity games [12,5]). For all 2-player game graphs
with n states and m edges, and all priority functions p the following assertions
hold.
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1. The family of pure memoryless strategies suffices for sure winning with respect
to finitary parity objectives. There exist infinite-memory winning strategies π
for player 2 for the objective cofinParity(p) such that π is finite-memory count-
ing with nocount(|π|) = 2. In general no finite-memory winning strategies exist
for player 2 for the objective cofinParity(p).

2. The sure winning sets 〈〈1〉〉sure(finParity(p)) and 〈〈2〉〉sure(cofinParity(p)) can
be computed in O(n2 ·m) time.

Theorem 4 (Finitary Streett games [12,5]). For all 2-player game graphs
with n states and m edges, and for all sets P = {(E1, F1), . . . , (Ed, Fd)} with d
Streett pairs, the following assertions hold.

1. There exist finite-memory winning strategies σ for player 1 for the objective
finStreett(P ) such that |σ| = d ·2d. In general winning strategies for player 1
for the objective finStreett(P ) require 2

d
2 � memory. There exist infinite-

memory winning strategies π for player 2 for the objective cofinStreett(P )
such that π is finite-memory counting with nocount(|π|) = d · 2d. In gen-
eral no finite-memory winning strategies exist for player 2 for the objective
cofinStreett(P ).

2. The sure winning sets 〈〈1〉〉sure(finStreett(P )) and 〈〈2〉〉sure(cofinStreett(P ))
can be computed in O(n2 ·m · d2 · 4d) time.

Remark 1. Recall that Büchi and co-Büchi objectives correspond to parity ob-
jectives with two priorities. A finitary Büchi objective is in general a strict
subset of the corresponding classical Büchi objective; a finitary co-Büchi ob-
jective coincides with the corresponding classical co-Büchi objective. However,
it can be shown that for parity objectives with two priorities, the value func-
tions for the classical parity objectives and the finitary parity objectives are
the same; that is, for all 21/2-player game graphs G and all priority func-
tions p with two priorities, we have 〈〈1〉〉val (finParity(p)) = 〈〈1〉〉val (Parity(p))
and 〈〈2〉〉val (cofinParity(p)) = 〈〈2〉〉val (coParity(p)). Note that in Example 1, we
have s0 ∈ 〈〈1〉〉sure(Parity(p)) and s0 ∈ 〈〈1〉〉sure(finParity(p)). This shows that
for priority functions with three or more priorities, the sure winning set for
a finitary parity objective can be a strict subset of the sure winning set for
the corresponding classical parity objective on 2-player game graphs, that is,
〈〈1〉〉sure(finParity(p)) � 〈〈1〉〉sure(Parity(p)), and in general for 21/2-player game
graphs we have 〈〈1〉〉val (finParity(p)) ≤ 〈〈1〉〉val (Parity(p)).

3 Qualitative Analysis of Stochastic Finitary Games

In this section we present algorithms for qualitative analysis of 21/2-player games
with finitary parity and finitary Streett objectives. We first present a few key
lemmas that would be useful to prove the correctness of the algorithms.

Lemma 2. Let G be a 21/2-player game graph with the set S of states,
and let P = {(E1, F1), (E2, F2), . . . , (Ed, Fd)} be a set of d Streett pairs. If
〈〈1〉〉sure(finStreett(F )) = ∅, then the following assertions hold:
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1. 〈〈2〉〉almost (cofinStreett(F )) = S; and
2. there is an almost-sure winning strategy π for player 2 with nocount(|π|) =

d · 2d.

Proof. Let Ĝ = Tr2(G) be the 2-player game graph obtained from
G. If 〈〈1〉〉sure(finStreett(F )) = ∅ in G, then by Lemma 1 it fol-
lows that 〈〈1〉〉sure(finStreett(F )) = ∅ in Ĝ, and then by Theorem 1
we have 〈〈2〉〉sure(cofinStreett(F )) = S for the game graph Ĝ. If
〈〈2〉〉sure(cofinStreett(F )) = S in Ĝ, then it follows from the results of [5] that
there is a pure strategy π̂ in Ĝ that satisfies the following conditions.

1. For every integer b ≥ 0, for every strategy σ̂ of player 1 in Ĝ, and from
all states s, the play from s given strategies π̂ and σ̂ satisfies the following
condition: there exists position k and 1 ≤ j ≤ d, such that the state sk at the
k-th position is in Fj , and for all k ≤ k′ < k + b the state in k′-th position
does not belong to Ej , and k + b ≤ |S| · d · 2d · (b+ 1).

2. nocount(|π̂|) = d · 2d.

We obtain an almost-sure winning strategy π∗ for player 2 in G as follows: set
b = 1, the strategy π∗ is played in rounds, and in round b the strategy is played
according to the following rule:

1. (Step 1). Start play according to π̂
(a) if at any random state the chosen successor is different from π̂, then go

to the start of step 1 (i.e., start playing like the beginning of round b);
(b) if for |S| · d · 2d · (b + 1) steps at all random states the chosen successor

matches π̂, then increment b and proceed to beginning of round b+ 1.

We argue that the strategy π∗ is almost-sure winning. Observe that since π∗

follows π̂ in round b unless there is a deviation at a random state, it follows that
if the strategy proceeds from round b to b + 1, then at round b, there exists a
position where the distance is at least b. Hence if the strategy π∗ proceeds for
infinitely many rounds, then cofinStreett(F ) is satisfied. To complete the proof
we argue that π∗ proceeds through infinitely many rounds with probability 1.
For a fixed b, the probability that step 1.(b). succeeds at a given trial is at least(

1
δmin

)|S|·d·2d·(b+1)
> 0, where δmin = min{δ(s)(t) | s ∈ S©, t ∈ E(s)} > 0. Hence

it follows that the probability that the strategy gets stuck in step 1.(a). for a
fixed b is zero. Since the probability of a countable union of measure zero set is
zero, it follows that the probability that the strategy gets stuck in step 1.(a). of
any round b is zero. Hence with probability 1 the strategy π∗ proceeds through
infinitely many rounds, and the desired result follows.

Lemma 2 states that for a finitary Streett objective if the sure winning set for
player 1 is empty, then player 2 wins almost-surely everywhere in the game
graph. Since parity objectives and finitary parity objectives are a special case of
Streett and finitary Streett objectives, respectively, the result of Lemma 2 also
holds for finitary parity objectives. This is formalized as the following lemma.



46 K. Chatterjee, T.A. Henzinger, and F. Horn

Lemma 3. Let G be a 21/2-player game graph with the set S of states, and let p
be a priority function. If 〈〈1〉〉sure(finParity(p)) = ∅, then the following assertions
hold:

1. 〈〈2〉〉almost (cofinParity(p)) = S; and
2. there is an almost-sure winning strategy π for player 2 with nocount(|π|) = 2.

We now present the notions of attractors in 21/2-player games and the basic
properties of such attractors.

Definition 1 (Attractors). Given a 21/2-player game graph G and a set U ⊆ S
of states, such that G � U is a subgame, and T ⊆ S we define Attr1,©(T, U) as
follows:

T0 = T ∩ U ; and for j ≥ 0 we define Tj+1 from Tj as

Tj+1 = Tj ∪ {s ∈ (S1 ∪ S©) ∩ U | E(s) ∩ Tj �= ∅} ∪ {s ∈ S2 ∩ U | E(s) ∩ U ⊆ Tj}.

and A = Attr1,©(T, U) =
⋃

j≥0 Tj. We obtain Attr2,©(T, U) by exchanging
the roles of player 1 and player 2. A pure memoryless attractor strategy σA :
(A \ T ) ∩ S1 → S for player 1 on A to T is as follows: for i > 0 and a state
s ∈ (Ti \Ti−1)∩S1, the strategy σA(s) ∈ Ti−1 chooses a successor in Ti−1 (which
exists by definition).

Lemma 4 (Attractor properties). Let G be a 21/2-player game graph and
U ⊆ S be a set of states such that G � U is a subgame. For a set T ⊆ S of states,
let Z = Attr1,©(T, U). Then the following assertions hold.

1. G � (U \ Z) is a subgame.
2. Let σZ be a pure memoryless attractor strategy for player 1. There exists a

constant c > 0, such that for all strategies π for player 2 in the subgame
G � U and for all states s ∈ U
(a) We have PrσZ ,π

s (Reach(T )) ≥ c · PrσZ ,π
s (Reach(Z)); and

(b) if PrσZ ,π
s (Buchi(Z)) > 0, then PrσZ ,π

s (Buchi(T ) | Buchi(Z)) = 1.

We now present the second key lemma for the algorithms for the qualitative
analysis of 21/2-player finitary parity and finitary Streett games.

Lemma 5. Let G be a 21/2-player game graph with the set S of states, and let Φ
be a finitary parity or a finitary Streett objective with d pairs. If 〈〈1〉〉pos (Φ) = S,
then the following assertions hold:

1. 〈〈1〉〉almost (Φ) = S;
2. if Φ is a finitary parity objective, then memoryless almost-sure winning

strategies exist; and if Φ is a finitary Streett objective, then an almost-sure
winning strategy with memory d · 2d exists.

Proof. The proof proceeds by iteratively removing sure winning sets, and the
corresponding attractors from the graphs. Let G0 = G, and S0 = S. For i ≥ 0,
let Gi and Si be the game graph and the set of states at the i-th iteration. Let
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Zi = 〈〈1〉〉sure(Φ) in Gi, and Ai = Attr1,©(Zi, S
i). Let Gi+1 = G � (Si \ Ai),

and Xi =
⋃

j≤i Ai. We continue this process unless for some k we have Xk = S.
If for some game graph Gi we have Zi = ∅ (i.e., 〈〈1〉〉sure(Φ) = ∅ in Gi), then
by Lemma 5 we have that 〈〈2〉〉almost (Φ) = Si, where Φ is the complementary
objective to Φ. This would contradict that 〈〈1〉〉pos (Φ) = S. It follows that for
some k we would have Xk = S. The almost-sure winning strategy σ∗ for player 1
is defined as follows: in Zi play a sure winning strategy for Φ in Gi, and in
Ai \ Zi play a pure memoryless attractor strategy to reach Zi. The strategy
σ∗ ensures the following: (a) from Zi either the game stays in Zi and satisfies
Φ, or reaches Xi−1 (this follows since a sure winning strategy is followed in
Gi, and player 2 may choose to escape only to Xi−1); and (b) if Ai is visited
infinitely often, then Xi−1 ∪ Zi is reached with probability 1 (this follows from
the attractor properties, i.e., Lemma 4). It follows from the above two facts that
with probability 1 the game settles in some Zi, i.e., for all strategies π and all
states s we have Prσ∗,π

s (
⋃

i≤k coBuchi(Zi)) = 1. It follows that for all strategies
π and all states s we have Prσ∗,π

s (Φ) = 1. By choosing sure winning strategies in
Zi that satisfy the memory requirements (which is possible by Theorem 3 and
Theorem 4) we obtain the desired result.

Computation of positive winning set. Given a 21/2-player game graph G
and a finitary parity or a finitary Streett objective Φ, the set 〈〈1〉〉pos(Φ) in G can
be computed as follows. Let G0 = G, and S0 = S. For i ≥ 0, let Gi and Si be
the game graph and the set of states at the i-th iteration. Let Zi = 〈〈1〉〉sure(Φ)
in Gi, and Ai = Attr1,©(Zi, S

i). Let Gi+1 = G � (Si \Ai), and Xi =
⋃

j≤i Ai. If
Zi = ∅, then Si = 〈〈2〉〉almost (Φ) and S \Si = 〈〈1〉〉pos(Φ). The correctness follows
from Lemma 2.
Computation of almost-sure winning set. Given a 21/2-player game graph
G and a finitary parity or a finitary Streett objective Φ, the set 〈〈1〉〉almost (Φ)
in G can be computed as follows. Let G0 = G, and S0 = S. For i ≥ 0, let
Gi and Si be the game graph and the set of states at the i-th iteration. Let
Zi = 〈〈2〉〉almost (Φ) in Gi, and Ai = Attr2,©(Zi, S

i). Let Gi+1 = G � (Si \ Ai),
and Xi =

⋃
j≤i Ai. In other words, the almost-sure winning set for player 2 and

its attractor are iteratively removed from the game graph. If Zi = ∅, then in Gi

we have 〈〈1〉〉pos(Φ) = Si, and by Lemma 5 we obtain that 〈〈1〉〉almost (Φ) = Si.
That is we have Si = 〈〈1〉〉almost (Φ) and S \ Si = 〈〈2〉〉pos (Φ). We have the
following theorem summarizing the qualitative complexity of 21/2-player games
with finitary parity and finitary Streett objectives.

Theorem 5. Given a 21/2-player game graph G = ((S,E), (S1, S2, S©), δ)) with
n states and m edges, and given a finitary parity or a finitary Streett objective
Φ, the following assertions hold.

1. 〈〈1〉〉almost (Φ) = S \ 〈〈2〉〉pos (Φ) and 〈〈1〉〉pos(Φ) = S \ 〈〈2〉〉almost (Φ).
2. The family of pure memoryless strategies suffices for almost-sure and pos-

itive winning with respect to finitary parity objectives on 21/2-player game
graphs. If Φ is a finitary parity objective, then there exist infinite-memory
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almost-sure and positive winning strategies π for player 2 for the comple-
mentary infinitary parity objective Φ such that π is finite-memory counting
with nocount(|π|) = 2. In general no finite-memory almost-sure and positive
winning strategies exist for player 2 for Φ.

3. If Φ is a finitary Streett objective with d pairs, then there exists a finite-
memory almost-sure and positive winning strategy σ for player 1 such that
|σ| = d·2d. In general almost-sure and positive winning strategies for player 1
for the objective Φ require 2

d
2 � memory. There exist infinite-memory almost-

sure and positive winning strategies π for player 2 for the complementary
objective Φ such that π is finite-memory counting with nocount(|π|) = d · 2d.
In general no finite-memory almost-sure and positive winning strategies exist
for player 2 for Φ.

4. If Φ is a finitary parity objective, then the winning sets 〈〈1〉〉pos(Φ) and
〈〈2〉〉almost (Φ) can be computed in time O(n3 ·m), and the sets 〈〈1〉〉almost (Φ)
and 〈〈2〉〉pos (Φ) can be computed in time O(n4 ·m).

5. If Φ is a finitary Streett objective with d pairs, then the winning sets
〈〈1〉〉pos (Φ) and 〈〈2〉〉almost (Φ) can be computed in time O(n3·m·d2·4d), and the
sets 〈〈1〉〉almost (Φ) and 〈〈2〉〉pos(Φ) can be computed in time O(n4 ·m · d2 · 4d).

4 Quantitative Analysis of Stochastic Finitary Games

In this section we consider the quantitative analysis of 21/2-player games with
finitary parity and finitary Streett objectives. We start with notion of value
classes.

Definition 2 (Value classes). Given a finitary objective Φ, for every real
r ∈ [0, 1] the value class with value r is VC(Φ, r) = {s ∈ S | 〈〈1〉〉val (Φ)(s) = r}
is the set of states with value r for player 1. For r ∈ [0, 1] we denote by
VC(Φ,> r) =

⋃
q>r VC(Φ, q) the value classes greater than r and by VC(Φ,<

r) =
⋃

q<r VC(Φ, q) the value classes smaller than r.

Definition 3 (Boundary probabilistic states). Given a set U of states, a
state s ∈ U ∩ S© is a boundary probabilistic state for U if E(s) ∩ (S \ U) = ∅,
i.e., the probabilistic state has an edge out of the set U . We denote by Bnd(U) the
set of boundary probabilistic states for U . For a value class VC(Φ, r) we denote
by Bnd(Φ, r) the set of boundary probabilistic states of value class r.

Observation. For a state s ∈ Bnd(Φ, r) we have E(s) ∩ VC(Φ,> r) = ∅ and
E(s) ∩ VC(Φ,< r) = ∅, i.e., the boundary probabilistic states have edges to
higher and lower value classes.

Reduction of a value class. Given a set U of states, such that U is δ-live, let
Bnd(U) be the set boundary probabilistic states for U . We denote by GBnd(U)

the subgame graphG � U where every state in Bnd(U) is converted to an absorb-
ing state (state with a self-loop). Since U is δ-live, we have GBnd(U) is a subgame
graph. We denote by GBnd(Φ,r) the subgame graph where every boundary proba-
bilistic state in Bnd(Φ, r) is converted to an absorbing state. For a tail objective
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Φ, we denote by GΦ,r = GBnd(Φ,r) � VC(Φ, r): this is a subgame graph since for a
tail objective Φ every value class is δ-live, and δ-closed as all states in Bnd(Φ, r)
are converted to absorbing states. We now present a property of tail objectives
and we present our results that use the property. Since tail objectives subsume
finitary parity and finitary Streett objectives, the desired results would follow
for finitary parity and finitary Streett objectives.

Almost-limit property for tail objectives. An objective Φ satisfies the
almost-limit property if for all 21/2-player game graphs and for all F,R ⊆ S
the following equalities hold:

{s ∈ S | 〈〈1〉〉val (Φ ∩ Safe(F )) = 1} = 〈〈1〉〉almost (Φ ∩ Safe(F ));

{s ∈ S | 〈〈1〉〉val (Φ ∪ Reach(R)) = 1} = 〈〈1〉〉almost (Φ ∪ Reach(R));

{s ∈ S | 〈〈2〉〉val (Φ ∩ Safe(F )) = 1} = 〈〈2〉〉almost (Φ ∩ Safe(F ));

{s ∈ S | 〈〈2〉〉val (Φ ∪ Reach(R)) = 1} = 〈〈2〉〉almost (Φ ∪ Reach(R)).

If Φ is a tail objective, then the objective Φ ∩ Safe(F ) can be interpreted as a
tail objective Φ ∩ coBuchi(F ) by transforming every state in S \ F as a loosing
absorbing state. Similarly, if Φ is a tail objective, then the objective Φ∪Reach(R)
can be interpreted as a tail objective Φ ∪ Buchi(R) by transforming every state
in R as winning absorbing state. From the results of [13] (Chapter 3) it follows
that for all tail objectives Φ we have

{s ∈ S | 〈〈1〉〉val (Φ)(s) = 1} = 〈〈1〉〉almost (Φ);

{s ∈ S | 〈〈2〉〉val (Φ)(s) = 1} = 〈〈2〉〉almost (Φ).

Hence it follows that all tail objective satisfy the almost-limit property. We
now present a lemma, that extends a property of 21/2-player games with ω-
regular objectives to tail objectives (that subsumes finitary parity and Streett
objectives).

Lemma 6 (Almost-sure reduction). Let G be a 21/2-player game graph and
Φ be a tail objective. For 0 < r < 1, the following assertions hold.

1. Player 1 wins almost-surely for objective Φ∪Reach(Bnd(Φ, r)) from all states
in GΦ,r, i.e., 〈〈1〉〉almost (Φ ∪ Reach(Bnd(Φ, r))) = VC(Φ, r) in the subgame
graph GΦ,r.

2. Player 2 wins almost-surely for objective Φ∪Reach(Bnd(Φ, r)) from all states
in GΦ,r, i.e., 〈〈2〉〉almost (Φ ∪ Reach(Bnd(Φ, r))) = VC(Φ, r) in the subgame
graph GΦ,r.

Proof. We prove the first part and the second part follows from symmetric ar-
guments. The result is obtained through an argument by contradiction. Let
0 < r < 1, and let

q = max{〈〈1〉〉val (Φ)(t) | t ∈ E(s) \VC(Φ, r), s ∈ VC(Φ, r) ∩ S1},
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that is, q is the maximum value a successor state t of a player 1 state s ∈ VC(Φ, r)
such that the successor state t is not in VC(Φ, r). We must have q < r. Hence
if player 1 chooses to escape the value class VC(Φ, r), then player 1 gets to
see a state with value at most q < r. We consider the subgame graph GΦ,r.
Let U = VC(Φ, r) and Z = Bnd(Φ, r). Assume towards contradiction, there
exists a state s ∈ U such that s ∈ 〈〈1〉〉almost (Φ ∪ Reach(Z)). Then we have
s ∈ (U \ Z); and since Φ is a tail objective satisfying the almost-limit property
and s ∈ 〈〈1〉〉almost (Φ ∪ Reach(Z)) we have 〈〈2〉〉val (Φ ∩ Safe(U \ Z))(s) > 0.
Observe that in GΦ,r we have all states in Z are absorbing states, and hence the
objective Φ∩Safe(U \Z) is equivalent to the objective Φ∩coBuchi(U \Z), which
can be considered as a tail objective. Since 〈〈2〉〉val (Φ ∩ Safe(U \ Z))(s) > 0,
for some state s, it follows from Theorem 1 of [2] that there exists a state
s1 ∈ (U\Z) such that 〈〈2〉〉val (Φ∩Safe(U\Z)) = 1. Then, since Φ is a tail objective
satisfying the almost-limit property, it follows that there exists a strategy π̂ for
player 2 in GΦ,r such that for all strategies σ̂ for player 1 in GΦ,r we have
Prσ̂,π̂

s1
(Φ ∩ Safe(U \ Z)) = 1. We will now construct a strategy π∗ for player 2

as a combination of the strategy π̂ and a strategy in the original game G. By
Martin’s determinacy result (Theorem 2), for all ε > 0, there exists an ε-optimal
strategy πε for player 2 in G such that for all s ∈ S and for all strategies σ for
player 1 we have

Prσ,πε
s (Φ) ≥ 〈〈2〉〉val (Φ)(s) − ε.

Let r − q = α > 0, and let ε = α
2 and consider an ε-optimal strategy πε for

player 2 in G. The strategy π∗ in G is constructed as follows: for a history w
that remains in U , player 2 follows π̂; and if the history reaches (S \ U), then
player 2 follows the strategy πε. Formally, for a history w = 〈s1, s2, . . . , sk〉 we
have

π∗(w) =

{
π̂(w) if for all 1 ≤ j ≤ k. sj ∈ U ;
πε(sj , sj+1, . . . , sk) where j = min{i | si ∈ U}

We consider the case when the play starts at s1. The strategy π∗ ensures the
following: if the game stays in U , then the strategy π̂ is followed, and given the
play stays in U , the strategy π̂ ensures with probability 1 that Φ is satisfied and
Bnd(Φ, r) is not reached. Hence if the game escapes U (i.e., player 1 chooses to
escape U), then it reaches a state with value at most q for player 1. We consider
an arbitrary strategy σ for player 1 and consider the following cases.

1. If Prσ,π∗
s1

(Safe(U)) = 1, then we have Prσ,π∗
s1

(Φ ∩ Safe(U)) = Prσ,π̂
s1

(Φ ∩
Safe(U)) = 1. Hence we also have Prσ,π̂

s1
(Φ) = 1, i.e., we have Prσ,π∗

s1
(Φ) = 0.

2. If Prσ,π∗
s1

(Reach(S \ U)) = 1, then the play reaches a state with value for
player 1 at most q and the strategy πε ensures that Prσ,π∗

s1
(Φ) ≤ q + ε.

3. If Prσ,π∗
s1

(Safe(U)) > 0 and Prσ,π∗
s1

(Reach(S \ U)) > 0, then we condition on
both these events and have the following:
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Prσ,π∗
s1

(Φ) = Prσ,π∗
s1

(Φ | Safe(U)) · Prσ,π∗
s1

(Safe(U))

+ Prσ,π∗
s1

(Φ | Reach(S \ U)) · Prσ,π∗
s1

(Reach(S \ U))

≤ 0 + (q + ε) · Prσ,π∗
s1

(Reach(S \ U))

≤ q + ε.

The above inequalities are obtained as follows: given the event Safe(U), the
strategy π∗ follows π̂ and ensures that Φ is satisfied with probability 1 (i.e., Φ
is satisfied with probability 0); else the game reaches states where the value
for player 1 is at most q, and then the analysis is similar to the previous
case.

Hence for all strategies σ we have

Prσ,π∗
s1

(Φ) ≤ q + ε = q +
α

2
= r − α

2
.

Hence we must have 〈〈1〉〉val (Φ)(s1) ≤ r− α
2 . Since α > 0 and s1 ∈ VC(Φ, r) (i.e.,

〈〈1〉〉val (Φ)(s1) = r), we have a contradiction. The desired result follows.

Lemma 7 (Almost-sure to optimality). Let G be a 21/2-player game graph
and Φ be a tail objective. Let σ be a strategy such that

– σ is an almost-sure winning strategy from the almost-sure winning states
(〈〈1〉〉almost (Φ) in G); and

– σ is an almost-sure winning strategy for objective Φ ∪ Reach(Bnd(Φ, r)) in
the game GΦ,r, for all 0 < r < 1.

Then σ is an optimal strategy. Analogous result holds for player 2 strategies.

Proof. (Sketch). Consider a strategy σ satisfying the conditions of the lemma,
a starting state s, and a counter strategy π. If the play settles in a value-
class with r > 0, i.e., satisfies coBuchi(VC(Φ, r)), for some r > 0, then the
play satisfies Φ almost-surely. From a value class the play can leave the value
class if player 2 chooses to leave to a greater value class, or by reaching the
boundary probabilistic states such that average value of the successor states
is the value of the value class. Hence it follows that (a) either the event⋃

r>0 coBuchi(VC(Φ, r)) holds, and then Φ holds almost-surely; (b) else the event
Reach(〈〈1〉〉almost (Φ)∪ 〈〈2〉〉almost (Φ)) holds, and by the conditions on leaving the
value class it follows that Prσ,π

s (Reach(〈〈1〉〉almost (Φ)) | Reach(〈〈1〉〉almost (Φ) ∪
〈〈2〉〉almost (Φ))) ≥ 〈〈1〉〉val (Φ)(s). It follows that for all s ∈ S and all strategies π
we have Prσ,π

s (Φ) ≥ 〈〈1〉〉val (Φ)(s). The desired result follows.

It follows from Lemma 6 that for tail objectives, strategies satisfying the con-
ditions of Lemma 7 exist. It follows from Lemma 7 that optimal strategies for
player 1 for tail objectives (and hence for finitary parity and Streett objectives),
and optimal strategies for player 2 for the corresponding complementary objec-
tives is no more complex than the respective almost-sure winning strategies.



52 K. Chatterjee, T.A. Henzinger, and F. Horn

Lemma 8. Let G = ((S,E), (S1, S2, S©), δ) be a 21/2-player game with a tail
objective Φ. Let P = (V0, V1, . . . , Vk) be a partition of the state space S, and let
r0 > r1 > r2 > . . . > rk be k-real values such that the following conditions hold:

1. V0 = 〈〈1〉〉almost (Φ) and Vk = 〈〈2〉〉almost (Φ);
2. r0 = 1 and rk = 0;
3. for all 1 ≤ i ≤ k − 1 we have Bnd(Vi) = ∅ and Vi is δ-live;
4. for all 1 ≤ i ≤ k − 1 and all s ∈ S2 ∩ Vi we have E(s) ⊆

⋃
j≤i Vj;

5. for all 1 ≤ i ≤ k − 1 we have Vi = 〈〈1〉〉almost (Φ ∪ Reach(Bnd(Vi))) in
GBnd(Vi);

6. let xs = ri, for s ∈ Vi, and for all s ∈ S©, let xs satisfy xs =
∑

t∈E(s) xt ·
δ(s)(t).

Then we have 〈〈1〉〉val (Φ)(s) ≥ xs for all s ∈ S. Analogous result holds for
player 2.

Proof. (Sketch). We fix a strategy σ such that σ is almost-sure winning from
〈〈1〉〉almost (Φ), and in every Vi, for 1 ≤ i ≤ k − 1, it is almost-sure winning for
the objective Φ ∪ Reach(Bnd(Vi)). Arguments similar to Lemma 7 shows that
for s ∈ S and for all π we have Prσ,π

s (Φ)(s) ≥ xs.

Algorithm for quantitative analysis. We now present an algorithm for quan-
titative analysis for 21/2-player games with tail objectives. The algorithm is a NP
algorithm with an oracle access to the qualitative algorithms. The algorithm is
based on Lemma 8. Given a 21/2-player game G = ((S,E), (S1, S2, S©), δ) with
a finitary parity or a finitary Streett objective Φ, a state s and a rational number
r, the following assertion hold: if 〈〈1〉〉val (Φ)(s) ≥ r, then there exists a partition
P = (V0, V1, V2, . . . , Vk) of S and rational values r0 > r1 > r2 > . . . > rk, such
that ri = pi

qi
with pi, qi ≤ δ

4·|E|
u , where δu = max{q | δ(s)(t) = p

q for p, q ∈
N, s ∈ S© and δ(s)(t) > 0}, such that conditions of Lemma 8 are satisfied,
and s ∈ Vi with ri ≥ r. The witness P is the value class partition and the
rational values represent the values of the value classes, and the precision of
the values can also be proved (we omit details due to lack of space). From the
above observation we obtain the algorithm for quantitative analysis as follows:
given a 21/2-player game graph G = ((S,E), (S1, S2, S©), δ) with a finitary par-
ity or a finitary Streett objective Φ, a state s and a rational r, to verify that
〈〈1〉〉val (Φ)(s) ≥ r, the algorithm guesses a partition P = (V0, V1, V2, . . . , Vk) of S
and rational values r0 > r1 > r2 > . . . > rk, such that ri = pi

qi
with pi, qi ≤ δ

4·|E|
u ,

and then verifies that all the conditions of Lemma 8 are satisfied, and s ∈ Vi with
ri ≥ r. Observe that since the guesses of the rational values can be made with
O(|G| · |S| · |E|) bits, the guess is polynomial in size of the game. The condition 1
and the condition 5 of Lemma 8 can be verified by any qualitative algorithms,
and all the other conditions can be checked in polynomial time. We now summa-
rize the results on quantitative analysis of 21/2-player games with tail objectives,
and then present the results for finitary parity and finitary Streett objectives.

Theorem 6. Given a 21/2-player game graph and a tail objective Φ, the follow-
ing assertions hold.
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1. If a family ΣC of strategies suffices for almost-sure winning for Φ, then the
family ΣC of strategies also suffices for optimality for Φ.

2. Given a rational number r and a state s, whether 〈〈1〉〉val (Φ)(s) ≥ r can be
decided in NPA, where A is an oracle for the qualitative analysis of Φ on
21/2-player game graphs.

Theorem 7. Given a 21/2-player game graph and a finitary parity or a finitary
Streett objective Φ, the following assertions hold.

1. The family of pure memoryless strategies suffices for optimality with respect
to finitary parity objectives on 21/2-player game graphs. If Φ is a finitary
parity objective, then there exist infinite-memory optimal strategies π for
player 2 for the complementary infinitary parity objective Φ such that π is
finite-memory counting with nocount(|π|) = 2. In general no finite-memory
optimal strategies exist for player 2 for Φ.

2. If Φ is a finitary Streett objective with d pairs, then there exists a finite-
memory optimal strategy σ for player 1 such that |σ| = d · 2d. In general
optimal strategies for player 1 for the objective Φ require 2

d
2 � memory. There

exist infinite-memory optimal strategies π for player 2 for the complementary
objective Φ such that π is finite-memory counting with nocount(|π|) = d · 2d.
In general no finite-memory optimal strategy exists for player 2 for Φ.

3. If Φ is a finitary parity objective, then given a rational r and a state s,
whether 〈〈1〉〉val (Φ)(s) ≥ r can be decided in NP ∩ coNP.

4. If Φ is a finitary Streett objective, then given a rational r and a state s,
whether 〈〈1〉〉val (Φ)(s) ≥ r can be decided in EXPTIME.

Remark 2. For 21/2-player games with finitary objectives, the qualitative anal-
ysis can be achieved in polynomial time, however, we only prove a NP ∩ coNP
bound for the quantitative analysis. It may be noted that for 21/2-player game
graphs, the quantitative analysis for finitary and nonfinitary Büchi objectives co-
incide. The best known bound for quantitative analysis of 21/2-player games with
Büchi objectives is NP ∩ coNP, and obtaining a polynomial time algorithm is a
major open problem. Hence obtaining a polynomial time algorithm for quanti-
tative analysis of 21/2-player games with finitary parity objectives would require
the solution of a major open problem.

References

1. Alur, R., Henzinger, T.A.: Finitary fairness. In: LICS 1994, pp. 52–61. IEEE, Los
Alamitos (1994)

2. Chatterjee, K.: Concurrent games with tail objectives. Theoretical Computer Sci-
ence 388, 181–198 (2007)

3. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of stochastic Rabin
and Streett games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 878–890. Springer, Heidelberg
(2005)



54 K. Chatterjee, T.A. Henzinger, and F. Horn

4. Chatterjee, K., Henzinger, T.A.: Finitary winning in ω-regular games. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 257–271.
Springer, Heidelberg (2006)

5. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in ω-regular games.
Technical Report: UCB/EECS-2007-120 (2007)
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Stochastic Data Streams

S. Muthukrishnan
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The classical data stream problems are now greatly understood [1]. This talk will
focus on problems with stochastic (rather than deterministic) streams where
the underlying physical phenomenon generates probabilistic data or data dis-
tributions. While basic streaming problems are now getting reexamined with
stochastic streams [2,3], we will focus on a few novel problems.

1. Estimating tails. Each item in the data stream random variableXi, 1 ≤ i ≤ n,
Xi{0, 1}, identically distributed such that E(Xi) = 0, E(X2

i ) = σ2 > 0 but
bounded. The query is to estimate Pr[

∑
Xi ≤ c]. This is a special case of more

general probabilistic streams where each Xi may be drawn from a different dis-
tribution, and we wish to answer this query using sublinear space. We provide an
algorithm using the well known result below (joint work with Krzysztof Onak).

Theorem 1. (Berry-Esseen Theorem) Let X1, X2, ..., Xn be i.i.d. random vari-
ables with E(Xi) = 0, E(X2

i ) = σ2 > 0, and E(|Xi|3) = ρ < ∞. Also, let
Yn =

∑
iXi/n with Fn the cdf of Yn

√
n/σ, and Φ the cdf of the standard normal

distribution. Then there exists a positive constant C such that for all x and n,
|Fn(x)− Φ(x)| ≤ Cρ

σ3√n
.

2. Max Triggering. The data stream is a sequence of independent random vari-
ables x1, x2 . . .. The problem is to determine a point τ and trigger an alarm
based on xτ . The goal is to trigger the alarm when xτ is the maximum possible
over a length n. Define M = E(maxi=n

i=1xi), the expected value of the maximum.
This is target for any streaming algorithm. We will be able to show simply that
there exists a streaming algorithm that finds xτ such that E(xτ ) ≥ M/2. Our
algorithm will be a suitable implementation of the stopping rule that gives the
well known Prophet inequalities [4].
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Abstract. The population protocol model (PP) proposed by Angluin et
al. [2] describes sensor networks consisting of passively mobile finite-state
agents. The agents sense their environment and communicate in pairs to
carry out some computation on the sensed values. The mediated popula-
tion protocol model (MPP) [13] extended the PP model by communication
links equipped with a constant size buffer. The MPP model was proved in
[13] to be stronger than the PP model. However, its most important con-
tribution is that it provides us with the ability to devise optimizing proto-
cols, approximation protocols and protocols that decide properties of the
communication graph on which they run. The latter case, suggests a sim-
plified model, the GDM model, that was formally defined and studied in
[11]. GDM is a special case of MPP that captures MPP’s ability to decide
properties of the communication graph. Here we survey recent advances
in the area initiated by the proposal of the PP model and at the same time
we provide new protocols, novel ideas and results.

1 Introduction

Most recent advances in microprocessor, wireless communication and
sensor/actuator-technologies envision a whole new era of computing, popularly
referred to as pervasive computing. Autonomous, ad-hoc networked, wirelessly
communicating and spontaneously interacting computing devices of small size
appearing in great number, and embedded into environments, appliances and
objects of everyday use will deliver services adapted to the person, the time, the
place, or the context of their use. The nature and appearance of devices will
change to be hidden in the fabric of everyday life, invisibly networked, and will
be augmenting everyday environments to form a pervasive computing landscape,
in which the physical world becomes merged with a “digital world”.

In a seminal work, Angluin et al. [2] (also [3]) considered systems consisting of
very small resource limited sensor nodes that are passively mobile. Such nodes,
also called agents, have no control over their own movement and interact in
pairs, via a local low-power wireless communication mechanism, when they are
� This work has been partially supported by the ICT Programme of the European

Union under contract number ICT-2008-215270 (FRONTS).
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sufficiently close to each other. The agents form a (usually huge) population
that together with the agent’s permissible interactions form a communication
graph G = (V,E), where V is a population of |V | = n agents and E is the
set of permissible (directed) interactions of cardinality denoted by m. In their
model, finite-state, and complex behavior of the system as a whole emerges from
simple rules governing pairwise interaction of the agents. The most important
innovations of the model are inarguably the constant memory constraint imposed
to the agents and the nondeterminism inherent to the interaction pattern. These
assumptions provide us with a concrete and realistic model for future systems.
Their model is called Population Protocol model and is discussed in Section 2.

The initial goal of the model was to study the computational limitations of co-
operative systems consisting of many limited devices (agents), imposed to passive
(but fair) communication by some scheduler. Much work showed that there ex-
ists an exact characterization of the computable predicates: they are precisely the
semilinear predicates or equivalently the predicates definable by first-order logical
formulas in Presburger arithmetic [2,3,5,6,7]. More recent work has concentrated
on performance, supported by a random scheduling assumption. [12] proposed a
collection of fair schedulers and examined the performance of various protocols.
[9,10] considered a huge population hypothesis (population going to infinity), and
studied the dynamics, stability and computational power of probabilistic popula-
tion protocols by exploiting the tools of continuous nonlinear dynamics. In [9] it
was also proven that there is a strong relation between classical finite population
protocols and models given by ordinary differential equations.

There exist a few extensions of the basic model in the relevant literature to
more accurately reflect the requirements of practical systems. In [1] they stud-
ied what properties of restricted communication graphs are stably computable,
gave protocols for some of them, and proposed the model extension with sta-
bilizing inputs. The results of [5] show that again the semilinear predicates are
all that can be computed by this model. Finally, some works incorporated agent
failures [14] and gave to some agents slightly increased computational power [8]
(heterogeneous systems). For an excellent introduction to most of the preceding
subjects see [7].

In [13] the Population Protocol model was extended in a natural way. Es-
sentially the model was augmented to include a Mediator, i.e., a global storage
capable of storing very limited information for each communication arc (the
state of the arc). When pairs of agents interact, they can read and update the
state of the link (arc). Interestingly, although anonymity and uniformity (for the
definition of those notions the reader is referred to Section 3) are preserved in the
extended model, the presence of a mediator provides us with significantly more
computational power and gives birth to a new collection of interesting problems
in the area of tiny networked and possibly moving artefacts; we can now build
systems with the ability of computing subgraphs and solve optimization prob-
lems concerning the communication graph. In [13] it was shown that the new
model is capable of computing non-semilinear predicates and that any stably
computable predicate belongs to NSPACE(m), where m denotes the number
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of edges of the interaction graph. The extended model is called Mediated Pop-
ulation Protocol model and we present it in Section 3.

One of the most interesting and applicable capabilities of the Mediated Pop-
ulation Protocol model is its ability to decide graph properties. To understand
properties of the communication graph is an important step in almost any dis-
tributed system. In particular, in [11] the authors temporarily disregarded the
input notion of the population and assumed that all agents simply start from a
unique initial state (and the same holds for the edges). The obtained model is
called GDM. The authors focused on protocols of the GDM model that, when
executed fairly on any communication graph G, after a finite number of steps
stabilize to a configuration where all agents give 1 as output if G belongs to
a graph language L, and 0 otherwise. This is motivated by the idea of hav-
ing protocols that eventually accept all communication graphs (on which they
run) that satisfy a specific property, and eventually reject all remaining commu-
nication graphs. The motivation for the proposal of a simplified version of the
Mediated Population Protocol model was that it enables us to study what graph
properties are stably computable by the mediated model without the need to
keep in mind its remaining parameters (which, as a matter of fact, are a lot).
The GDM model is discussed in Section 4. Finally, in Section 5 we discuss some
future research directions.

2 The Population Protocol Model

2.1 Formal Definition

Definition 1. A population protocol (PP) is a 6-tuple (X,Y,Q, I,O, δ), where
X, Y , and Q are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of states,
4. I : X → Q is the input function,
5. O : Q→ Y is the output function, and
6. δ : Q×Q→ Q×Q is the transition function.

If δ(a, b) = (a′, b′), we call (a, b)→ (a′, b′) a transition and we define δ1(a, b) = a′

and δ2(a, b) = b′.

A population protocol A = (X,Y,Q, I,O, δ) runs on a communication graph
G = (V,E). Initially, all agents (i.e. the elements of V ) receive a global start
signal, sense their environment and each one receives an input symbol from X .
All agents are initially in a special empty state � /∈ Q. When an agent receives
an input symbol σ, applies the input function to it and goes to its initial state
I(σ) ∈ Q. An adversary scheduler selects in each step a directed pair of agents
(u, υ) ∈ E, where u, υ ∈ V and u = υ, to interact. The interaction happens only
if both agents are not in the empty state (they must both have been initialized).
Assume that the scheduler selects the pair (u, υ), that the current states of u and
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υ are a, b ∈ Q, respectively, and that δ(a, b) = (a′, b′). Agent u plays the role of
the initiator in the interaction (u, υ) and υ that of the responder. During their
interaction u and υ apply the transition function to their directed pair of states,
and, as a result, u goes to a′ and υ to b′ (both update their states according to
δ, and specifically, the initiator applies δ1 while the responder δ2).

A configuration is a snapshot of the population states. Formally, a configura-
tion is a mapping C : V → Q specifying the state of each agent in the population.
C0 is the initial configuration (for simplicity we assume that all agents apply the
input function at the same time, which is one step before C0, so in C0 all empty
states have been already replaced, and that’ s the reason why we have chosen not
to include � in the model definition) and, for all u ∈ V , C0(u) = I(x(u)), where
x(u) is the input symbol sensed by agent u. Let C and C′ be configurations, and
let u, υ be distinct agents. We say that C goes to C′ via encounter e = (u, υ),
denoted C e→ C′, if

C′(u) = δ1(C(u), C(υ)),
C′(υ) = δ2(C(u), C(υ)), and
C′(w) = C(w) for all w ∈ V − {u, υ},

that is, C′ is the result of the interaction of the pair (u, υ) under configuration C
and is the same as C except for the fact that the states of u, υ have been updated
according to δ1 and δ2, respectively. We say that C can go to C′ in one step,
denoted C → C′, if C e→ C′ for some encounter e ∈ E. We write C ∗→ C′ if there
is a sequence of configurations C = C0, C1, . . . , Ct = C′, such that Ci → Ci+1

for all i, 0 ≤ i < t, in which case we say that C′ is reachable from C.
An execution is a finite or infinite sequence of configurations C0, C1, C2, . . .,

where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. We have
both finite and infinite kinds of executions since the scheduler may stop in a
finite number of steps or continue selecting pairs for ever. Moreover, note that,
according to the preceding definitions, a scheduler may partition the agents into
non-communicating clusters. If that’s the case, then it is easy to see that no
meaningful computation is possible. To avoid this unpleasant scenario, a strong
global fairness condition is imposed on the scheduler to ensure the protocol
makes progress. An infinite execution is fair if for every pair of configurations C
and C′ such that C → C′, if C occurs infinitely often in the execution, then C′

also occurs infinitely often in the execution. A scheduler is fair if it always leads
to fair executions. A computation is an infinite fair execution.

The following are two critical properties of population protocols:

1. Uniformity: Population protocols are uniform. This means that any proto-
col’s description is independent of the population size. Since we assume that
the agents have finite storage capacity, and independent of the population
size, uniformity enables us to store the protocol code in each agent of the
population.

2. Anonymity: Population protocols are anonymous. The set of states is finite
and does not depend on the size of the population. This impies that there is
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no room in the state of an agent to store a unique identifier, and, thus, all
agents are treated in the same way by the transition function.

2.2 Stable Computation

Assume a fair scheduler that keeps working forever and a protocol A that runs
on a communication graph G = (V,E). Initially, each agent receives an input
symbol from X . An input assignment x : V → X is a mapping specifying the
input symbol of each agent in the population. Let X = XV be the set of all
possible input assignments, given the population V and the input alphabet X
of A. Population protocols, when controlled by infinitely working schedulers, do
not halt. Instead of halting we require any computation of a protocol to stabilize.
An output assignment y : V → Y is a mapping specifying the output symbol of
each agent in the population. Any configuration C ∈ C = QV is associated with
an output assignment yC = O ◦C. A configuration C is said to be output-stable
if for any configuration C′ such that C ∗→ C′ (any configuration reachable from
C) yC′ = yC . In words, a configuration C is output-stable if all agents maintain
the output symbol that have under C in all subsequent steps, no matter how
the scheduler proceeds thereafter. A computation C0, C1, C2, . . . is stable if it
contains an output-stable configuration Ci, where i is finite.

Definition 2. A population protocol A running on a communication graph G =
(V,E) stably computes a predicate p : X → {0, 1}, if, for any x ∈ X , every
computation of A on G beginning in C0 = I ◦ x reaches in a finite number
of steps an output-stable configuration Cstable such that yCstable

(u) = p(x) for
all u ∈ V . A predicate is stably computable if some population protocol stably
computes it.

Assume that a computation of A on G begins in the configuration corresponding
to an input assignment x. Assume, also, that p(x) = 1. If A stably computes p,
then we know that after a finite number of steps (if, of course, the scheduler is
fair) all agents will give 1 as output, and will continue doing so for ever. This
means, that if we wait for a sufficient, but finite, number of steps we can obtain
the correct answer of p with input x by querying any agent in the population.

Definition 3. The basic population protocol model (or standard) assumes that
the communication graph G is always directed and complete.

Semilinear predicates are predicates whose support is a semilinear set. A semi-
linear set is the finite union of linear sets. A set of vectors in INk is linear if it
is of the form

{b + l1a1 + l2a2 + · · ·+ lmam | li ∈ IN},

where b is a base vector, ai are basis vectors, and li are non-negative integer
coefficients. Moreover, semilinear predicates are precisely those predicates that
can be defined by first-order logical formulas in Presburger arithmetic, as was
proven by Ginsburg and Spanier in [15].
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In [2] and [3] it was proven that any semilinear predicate is stably computable
by the basic population protocol model and in [5] that any stably computable
predicate, by the same model, is semilinear, thus together providing an exact
characterization of the class of stably computable predicates:

Theorem 1. A predicate is stably computable by the basic population protocol
model iff it is semilinear.

An immediate observation is that predicates like “the number of c’s is the product
of the number of a’s and the number of b’s (in the input assignment)” and “the
number of 1’s is a power of 2” are not stably computable by the basic model.

A graph family, or graph universe, is any set of communication graphs. Let
G be a graph family. For any G ∈ G and given that X is the input alphabet
of some protocol A, there exists a set of all input assignments appropriate for
G, denoted XG = XV (G). Let now XG =

⋃
G∈G(XG × {G}) or, equivalently,

XG = {(x,G) | G ∈ G and x is an input assignment appropriate for G}. Then
we have the following definition:

Definition 4. A population protocol A stably computes a predicate p : XG →
{0, 1} in a family of communication graphs G, if, for any G ∈ G and any x ∈ XG,
every computation of A on G beginning in C0 = I ◦ x reaches in a finite number
of steps an output-stable configuration Cstable such that yCstable

(u) = p(x,G) for
all u ∈ V (G).

Moreover, if p is a mapping from G to {0, 1}, that is, a graph property, then we
say that A stably computes property p.

Note that we can also consider undirected communication graphs. In the case
of an undirected graph we only require that E is symmetric, but we keep the
initiator-responder assumption. The latter is important to ensure deterministic
transitions, since otherwise we would not be able to now which agent applies/gets
the result of δ1 and which that of δ2.

2.3 An Example

Let us illustrate what we have seen so far by an example.

Problem 1. (Undirected Star) Given a communication graph G = (V,E) from
the unrestricted family of undirected graphs (any possible connected and undi-
rected simple graph), find whether the topology is an undirected star.

We devise a protocol, named UndirectedStar, that stably computes property
Undirected Star, that is, it eventually decides whether the underlying commu-
nication graph G = (V,E) taken from the unrestricted family of graphs is an
undirected star.

UndirectedStar

– X = {0, 1}, Y = {0, 1},
– Q = {(i, j) | i ∈ {0, 1, 2} and j ∈ {0, 1, 2}2} ∪ {z},
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– I(x) = (0, (0, 0)), for all x ∈ X ,
– O(z) = 0 and O(q) = 1, for all q ∈ Q− {z},
– δ:

((0, (0, 0)), (0, (0, 0))) → ((1, (1, 1)), (2, (0, 0)))

((1, (i, j)), (0, (0, 0))) → ((1, (0, 0)), (2, (i, j + 1))),

if i ∈ {0, 1} and j ∈ {0, 1} or i = 2 and j = 0

→ ((1, (0, 0)), (2, (i, j))), if i = 1 and j = 2

→ (z, z), if i = 2 and j = 1

((2, (l, k)), (0, (0, 0))) → ((2, (0, 0)), (1, (l + 1, k))),

if k ∈ {0, 1} and l ∈ {0, 1} or k = 2 and l = 0

→ ((2, (0, 0)), (1, (l, k))), if k = 1 and l = 2

→ (z, z), if k = 2 and l = 1

((1, (i, j)), (2, (l, k))) → ((1, (2, j + k)), (2, (0, 0))), if j + k < 2 and i + l ≥ 2

→ ((1, (i + l, 2)), (2, (0, 0))), if i + l < 2 and j + k ≥ 2

→ ((1, (i + l, j + k)), (2, (0, 0))), if i + l < 2 and j + k < 2

→ (z, z), if i + l ≥ 2 and j + k ≥ 2

((1, (i, j)), (2, (0, 0))) → ((1, (0, 0)), (2, (i, j)))

((1, (0, 0)), (2, (l, k))) → ((1, (l, k)), (2, (0, 0)))

((1, (i, j)), (1, (l, k))) → (z, z)

((2, (i, j)), (2, (l, k))) → (z, z)

(z, x) → (z, z)

Note that in the transition δ((1, (i, j)), (2, (l, k))) we assume that (i, j) = (0, 0)
and (l, k) = (0, 0).

Definition 5. An undirected star of order n (“n-star”) is a tree on n vertices
with one vertex having degree n− 1 and n− 1 vertices having degree 1.

Lemma 1. A connected undirected graph G = (V,E), with |V | = n ≥ 3, is an
undirected star if and only if there is at most one u ∈ V where d(u) ≥ 2 (i.e. at
most one vertex of degree at least 2).

Proof. For the only if part, Definition 5 states that an undirected star has only
one vertex of degree at least 2. For the other direction, first we note that since G
is connected it must have at least n− 1 edges. Any cycle should contain at least
two vertices of degree 2, so G is acyclic. Since G is acyclic and connected it is a
tree and therefore it has exactly n− 1 edges. The latter, together with the fact
that each υ ∈ V has d(υ) ≥ 1, but at most one u ∈ V has d(u) ≥ 2 implies that
d(u) = n− 1 and d(υ) = 1, for all υ ∈ V − {u}, and, according to Definition 5,
this completes the proof. ��
Corollary 1. A connected undirected graph G = (V,E), with |V | = n ≥ 3, is
not an undirected star if and only if there are at least two vertices u, υ ∈ V where
d(u) ≥ 2 and d(υ) ≥ 2 (i.e. at least two vertices of degree at least 2).
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So, generally speaking, an algorithm that decides if a connected graph is an
undirected star could only check if there is at most one vertex of degree at least
2 (if n ≥ 3).

Remark 1. Any simple connected graph with only two vertices is an undirected
star.

This remark fills the gap of the assumption in Lemma 1 that n ≥ 3. Note that
n = 1 is meaningless, since in a graph with a unique vertex no computation can
take place (there is not even a single pair of agents to interact).

We can think of states (i, j) ∈ Q as consisting of two components i and j. We
will call i the basic component and j the counter component. If the interacting
pair consists of two agents in the initial state, the protocol assigns basic com-
ponent 1 to one agent and basic component 2 to the other. Moreover, an agent
in basic component 1 gives an agent that is in the initial state basic component
2 and an agent in basic component 2 gives an agent that is in the initial state
basic component 1, while the pairs (1,2) and (2,1) do nothing w.r.t. the basic
components. Clearly, if the topology is a star and if w.l.o.g. the central vertex
(vertex of degree n− 1) gets basic component 2, then all peripheral vertices will
eventually get basic component 1 and the protocol will output that the topology
is a star.

If the topology is not a star, then the protocol must detect that at least two
vertices are of degree at least 2. Note, also, that the agents never change their
basic component except for the case when they get the reject state z.

Lemma 2. If G is not a star, then protocol UndirectedStar will eventually
create one of the following two situations:

– Two neighboring agents with the same basic component, or
– at least two agents in basic component 1 and at least two agents in basic

component 2.

Proof. Assume that it won’t. Then any neighboring agents will have different
basic components and at most one of the basic components 1 and 2 will appear
in at least two different agents. So w.l.o.g. n − 1 agents will be in component
1 and only one in component 2, since both components always exist in any
computation (except before the first interaction and sometime after rejection).
But since G is connected it must have at least n−1 edges. In fact, if it has more
than n−1 edges it will contain a cycle with at least two vertices (agents) in basic
component 1 which will violate the fact that any neighboring vertices will have
different basic components and thus G must have exactly n− 1 edges. But the
latter implies that the n−1 vertices in basic component 1 are directly connected
to the unique vertex in basic component 2, which in turn implies that G must be
an undirected star, a fact that contradicts the fundamental assumption of the
lemma. We could also have proven the statement by contradicting the fact that
G not being an undirected star must have at least two vertices u, υ ∈ V , where
d(u) ≥ 2 and d(υ) ≥ 2. ��
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In fact, the protocol always rejects if it finds two neighboring agents in the same
basic component and the same does if it finds out that there are at the same
time at least two agents in basic component 1 and at least two agents in basic
component 2 in the population. The latter is done by the counter component of
the states. Thus, according to the preceding lemma, the protocol will eventually
reject if G is not a star, because it will provably fall in a situation that leads it
to rejection.

Theorem 2. UndirectedStar stably computes property Undirected Star.

Proof. The correctness of the statement should be clear after the above discussion.
The protocol always reaches an output-stable configuration and at that point any
agent outputs the correct answer for the property Undirected Star. ��

3 The Mediated Population Protocol Model

In [13] the authors considered the following question: “Is there a way to extend
the population protocol model and obtain a stronger model, without violating
the uniformity and anonymity properties”? As we shall, in this section, see, the
answer to this question is “Yes”. Although the idea is simple, it provides us with
a model with significantly more computational power and extra capabilities in
comparison to the population protocol model. The main modification is to allow
the edges of the communication graph to store states from a finite set, whose
cardinality is independent of the population size. Two interacting agents read
the corresponding edge’s state and update it, according to a global transition
function, by also taking into account their own states.

3.1 Formal Definition

Definition 6. A mediated population protocol (MPP) is a 12-tuple (X,
Y,Q, I,O, S, ι, ω, r,K, c, δ), where X, Y , Q, S, and K are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of agent states,
4. I : X → Q is the agent input function,
5. O : Q→ Y is the agent output function,
6. S is the set of edge states,
7. ι : X → S is the edge input function,
8. ω : S → Y is the edge output function,
9. r is the output instruction (informing the output-viewer how to interpret the

output of the protocol),
10. K is the totally ordered cost set,
11. c : E → K is the cost function
12. δ : Q×Q×K × S → Q×Q×K × S is the transition function.
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We assume that the cost remains the same after applying δ and so we omit
specifying an output cost. If δ(qi, qj , x, s) = (q′i, q

′
j , s

′) (which, according to our
assumption, is equivalent to δ(qi, qj , x, s) = (q′i, q

′
j , x, s

′)), we call (qi, qj , x, s) →
(q′i, q

′
j , s

′) a transition, and we define δ1(qi, qj , x, s) = q′i, δ2(qi, qj , x, s) = q′j
and δ3(qi, qj , x, s) = s′. We call δ1 the initiator’s acquisition, δ2 the responder’s
acquisition, and δ3 the edge acquisition (after the corresponding interaction).

In most cases we assume that K ⊂ ZZ+ and that cmax = maxw∈K {w} = O(1).
Generally, if cmax = maxw∈K {|w|} = O(1) then any agent is capable of storing
at most k cumulative costs (at most the value kcmax), for some k = O(1), and
we say that the cost function is useful (note that a cost range that depends
on the population size could make the agents incapable for even a single cost
storage and any kind of optimization would be impossible).

A network configuration is a mapping C : V ∪ E → Q ∪ S specifying the
agent state of each agent in the population and the edge state of each edge in
the communication graph. Let C and C′ be network configurations, and let u, υ
be distinct agents. We say that C goes to C′ via encounter e = (u, υ), denoted
C

e→ C′, if

C′(u) = δ1(C(u), C(υ), x, C(e))
C′(υ) = δ2(C(u), C(υ), x, C(e))
C′(e) = δ3(C(u), C(υ), x, C(e))
C′(z) = C(z), for all z ∈ (V − {u, υ}) ∪ (E − e).

The definitions of execution and computation are the same as in the population
protocol model but concern network configurations. Note that the mediated
population protocol model preserves both uniformity and anonymity properties.
As a result, any MPP’s code is of constant size and, thus, can be stored in each
agent (device) of the population.

A configuration C is called r-stable if one of the following conditions holds:

– If the problem concerns a subgraph to be found, then C should fix a subgraph
that will not change in any C′ reachable from C.

– If the problem concerns a function to be computed by the agents, then an
r-stable configuration drops down to an output-stable configuration.

We say that a protocol A stably solves a problem Π , if for every instance I of Π
and every computation of A on I, the network reaches an r-stable configuration
C that gives the correct solution for I if interpreted according to the output
instruction r. If instead of a problem Π we have a function f to be computed,
we say that A stably computes f .

In the special case where Π is an optimization problem, a protocol that stably
solves Π is called an optimizing population protocol for problem Π .

3.2 An Optimizing Population Protocol

We now give an optimizing population protocol, named SRLpath, for the prob-
lem of finding the shortest path connecting the root of a directed arborescence
to one of its leaves. Formally the problem is the following.
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Problem 2. (Shortest Root-Leaf Path) Given that the communication graph G =
(V,E) is a directed arborescence and a useful cost function c : E → K on the set
of edges, design a protocol that finds the minimum cost path of the (nonempty)
set P = {p | p is a path from the root to a leaf and c(p) = O(1)}, where c(p) is
simply another way to write

∑
e∈p c(e).

We assume that the greatest value that any agent is capable of storing is kcmax,
where both k and cmax = maxe∈Ec(e), are fixed and independent of the size
of the population |V | = n, given a nonnegative integer-valued cost function
c : E → K (i.e. K ⊂ ZZ+).

If there is at least one path p where c(p) =
∑

e∈P c(e) < kcmax (c(p) denotes
the path length or the total cost of the path), then SRLpath will eventually
return the shortest path connecting the root to one of the leaves, otherwise it
will just return one of the paths with cost at least kcmax (one of all root-leaf
paths), without guaranteeing that it will be the shortest one, but the output of
the root will be 0 indicating that there was no such path.

SRLpath

– X = {0, 1},
– Y = {0, 1} ∪Q,
– Q = {q0, qs} ∪ {(i, j) | i ∈ {q1, q2, q3, qs} and j ∈ {0, 1, 2, . . . , kcmax},
– I(x) = q0, for all x ∈ X ,
– O(q1, kcmax) = 0, O(q) = q, for all q ∈ Q− {(q1, kcmax)},
– S = {0, 1},
– ι(x) = 0, for all x ∈ X ,
– ω(s) = s, for all s ∈ S,
– r: “If the root outputs 0, fail, else start from the root and follow every edge

with output 1, until you reach a leaf ”,
– δ:

(q0, q0, c, 0)→ ((q1, c), q0, 1)
(q0, (q1, c1), c, 0)→ ((q1, kcmax), (q1, c1), 1), if c1 + c > kcmax

→ ((q1, c1 + c), (q1, c1), 1), otherwise
((q1, c1), (q1, c2), c, 1)→ ((q1, kcmax), (q1, c2), 1), if c2 + c > kcmax

→ ((q1, c2 + c), (q1, c2), 1), otherwise
((q1, c1), (q1, c2), c, 0)→ ((q2, c2 + c), (qs, c2), 1), if c2 + c < c1

((q2, c1), (qi, c2), c, 1)→ ((q3, c1), (qi, c2), 0), for i ∈ {1, 2, 3}
((q3, c1), (qs, c2), c, 1)→ ((q1, c1), (q1, c2), 1)

((q1, c1), q0, c, 0)→ ((q2, c), qs, 1), if c < c1

((q2, c1), q0, c, 1)→ ((q3, c1), q0, 0)
((q3, c1), qs, c, 1)→ ((q1, c1), q0, 1)
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Theorem 3. If there is at least one root-leaf path p, where c(p) < kcmax, then
SRLpath is an optimizing population protocol for Problem 2. Otherwise, the root
outputs 0, indicating that there is no such path.

Proof. The proof is by induction on the number of nodes of the directed arbores-
cence T . Let Ti = {T | T is a directed arborescence of i nodes}, i.e. the family
of all directed arborescences of i nodes. There is only one directed arborescence
in T1, and only one in T2, the one that consists of two nodes connected by a
directed edge. Obviously, SRLpath always finds the shortest root-leaf path for
every directed arborescence of at most 2 nodes (finds it trivially). Assume that
for every directed arborescence of at most n nodes, SRLpath always finds the
shortest root-leaf path. Let Tn+1 be any directed arborescence of (n+ 1) nodes.
By ignoring the root of Tn+1 and the corresponding edges we get at least one
directed arborescence of at most n nodes. On any such subtree we know by
the inductive hypothesis that SRLpath always finds the shortest root-leaf path.
Moreover, it is easy to see that the protocol always keeps in the root of the tree
the cost of the selected root-leaf path. Let, u be the removed root, and υj , where
j = {1, 2, . . . , t}, its t children. Each child υj has eventually marked the shortest
root-leaf path in the subtree in which υj is the root and eventually contains the
cost of this path in its state, c(pj). So, eventually u will select the child υj , for
which minυj{c(pj) + c(u, υj)} holds, which will be the shortest root-leaf path of
Tn+1. Note that if minυj{c(pj) + c(u, υj)} < kcmax, then at least one such path
can be selected by the root (which will never give 0 as output). On the other
hand, if there is no such path, then minυj{c(pj) + c(u, υj)} ≥ kcmax and u can
only store kcmax which combined with q1 gives always output 0, indicating that
no such path exists. ��

3.3 Approximation Protocols

Consider now the following problem:

Problem 3. (Maximal matching) Given an undirected communication graphG =
(V,E), find a maximal matching, i.e., a set E′ ⊆ E such that no two members of
E′ share a common end point in V and, moreover, there is no e ∈ E − E′ such
that e shares no common end point with every member of E′.

A simple protocol to solve this problem is the following: Initially all agents are
in state q0 and all edges in state s0. When two agents in q0 interact via an edge
in s0, they both go to q1 to indicate that they are endpoints of an edge that
belongs to the matching formed so far, and the edge goes to s1 to indicate that it
has been put in the matching. All the other transitions have no effect. It is easy
to see that eventually the edges in s1 will form a maximal matching. Moreover,
ω(s1) = O(q1) = 1 and ω(s0) = O(q0) = 0. An appropriate instruction r could
be: “Get each e ∈ E for which ω(se) = 1 (where se is the state of e)”, which
simply informs the user how to interpret the output of the protocol to get the
correct answer (i.e. which edges form the matching).
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Definition 7. Let Π be a minimization problem, and let δ be a positive real
number, δ ≥ 1. A protocol A is said to be a δ factor approximation protocol for
Π if for each instance I of Π, and every computation of A on I, the network
reaches an r-stable configuration C, that, if interpreted according to the output
instruction r of A, gives a feasible solution s for I such that

fΠ(I, s) ≤ δ ·OPT(I),

where fΠ(I, s) denotes the objective function value of solution s of instance
I, and OPT(I) denotes the objective function value of an optimal solution of
instance I.

Now, consider the well-known minimum vertex cover problem defined as fol-
lows:

Problem 4. (Minimum vertex cover) Given an undirected communication graph
G = (V,E), find a minimum cardinality vertex cover, i.e., a set V ′ ⊆ V such
that every edge has at least one end point incident at V ′.

Let V ertexCover be a MPP that agrees on everything to the one already de-
scribed for Maximal matching, except for the output instruction r, which is now
r: “Get each υ ∈ V for which O(qυ) = 1 (where qυ is the state of υ)”. Intuitively,
we now collect all agents incident to an edge in the maximal mathcing M (for
all e ∈M we collect the end points of e).

Theorem 4. V ertexCover is a 2 approximation protocol for the minimum ver-
tex cover problem.

Proof. According to the previous discussion, the edges collected form a maximal
matching on G. Moreover, the set C formed by the end points of the edges of M
is a minimum vertex cover where |C| ≤ 2 ·OPT , according to the analysis in the
introductory chapter of [16]. Thus, V ertexCover is a 2 approximation protocol
for the minimum vertex cover problem. ��

3.4 Computational Power

It is easy to see that the population protocol model is a special case of the
mediated population protocol model. In [13] it was proven that there exists a
MPP protocol that stably computes the non-semilinear predicate Nc = Na ·Nb.
In words, it eventually decides whether the number of c’s in the input assignment
is equal to the product of the number of a’s and the number of b’s. To do so,
the authors stated a composition theorem, that simplifies the proof of existence
of MPP protocols. Here we also provide a complete proof of that theorem.

Definition 8. A MPP A has stabilizing states if in any computation of A, after
a finite number of interactions, the states of all agents stop changing.

Definition 9. We say that a predicate is strongly stably computable by the
MPP model, if it is stably computable with the predicate output convention, that
is, all agents eventually agree on the correct output value.
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Theorem 5. Any mediated population protocol A, that stably computes a predi-
cate p with stabilizing states in some family of directed and connected communi-
cation graphs G, containing an instruction r that defines a semilinear predicate
t on multisets of A’s agent states, can be composed with a provably existing
mediated population protocol B, that strongly stably computes t with stabilizing
inputs in G, to give a new mediated population protocol C satisfying the following
properties:

– C is formed by the composition of A and B,
– its input is A’s input,
– its output is B’s output, and
– C strongly stably computes p (i.e. all agents agree on the correct output) in
G.

Proof. Protocol A has stabilizing states and an instruction r that defines a
semilinear predicate t on multisets of A’s states. Let XA be the input alphabet
of A, QA the set of A’s states, δA the transition function of A, and similarly for
any other component ofA. We will use the indexes B and C, for the corresponding
components of the other two protocols.

Since predicate t is semilinear, according to a result in [1], there is a population
protocol B′ that stably computes t with stabilizing inputs in the unrestricted
family of graphs (denoted by Gd

Unr , and consisting of all possible directed and
connected communication graphs). Note that G is a subset of Gd

Unr (G ⊆ Gd
Unr),

so any predicate stably computable (both with or without stabilizing inputs)
in Gd

Unr is also stably computable in G, since it is stably computable in any
possible communication graph. So, B′ stably computes t with stabilizing inputs
in G. Moreover, there also exists a mediated population protocol B (the one
that is the same as B′ but simply ignores the additional components of the new
model) that strongly stably computes t with stabilizing inputs in G. Note that
the input alphabet of B is XB = QA, and its transition function is of the form
δB : (QA ×QB)× (QA ×QB) → QB ×QB, since there is no need to specify edge
states (formally we should, but the protocol ignores them). QA is the set of A’s
agent states and B’s inputs that eventually stabilize.

We define a mediated population protocol C as follows: XC = XA, YC = YB =
{0, 1}, QC = QA × QB, IC : XA → QC defined as IC(x) = (IA(x), iB), for all
x ∈ QC where iB ∈ QB is the initial state of protocol B, SC = SA, ιC : XC → SC ,
that is, ιC(x) = ιA(x), for all x ∈ XC , OC(a, b) = OB(b), for all q = (a, b) ∈ QC ,
and finally its transition function δC : QC ×QC × SC → QC ×QC × SC (we omit
specifying costs since there is no need for them) is defined as

δC((a, b), (a′, b′), s) = ((δA1(a, a
′, s), δB1((a, b), (a

′, b′))),
(δA2(a, a

′, s), δB2((a, b), (a
′, b′))),

δA3(a, a
′, s)),

where for δA(x, y, z) = (x′, y′, z′) (in A’s transition function), we have that
δA1(x, y, z) = x′, δA2(x, y, z) = y′, δA3(x, y, z) = z′, and similarly for δB.
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Intuitively, C consists ofA andB running in parallel. The state of each agent is a
pair c = (a, b), wherea ∈ QA, b ∈ QB, and the state of each edge is a member ofSA.
Initially each agent senses an input x fromXA and this is transformed according to
IC to such a pair, wherea = IA(x) and b is always a specialB’s initial state iB ∈ QB.
When two agents in states (a, b) and (a′, b′) interact through an edge in state s, then
protocolA updates the first components of the agent states, i.e. a and a′, and the
edge state s, as if B didn’t exist. On the other hand, protocolB updates the second
components by taking into account the first components that represent its separate
input ports at which the current input symbol of each agent is available at every
interaction (B takesA’s states for agent input symbols that may change arbitrarily
between any two computation steps, but the truth is that they change due to A’s
computation). Since the first components of C’s agent states eventually stabilize
as a result of A’s stabilizing states, protocol B will eventually obtain stabilizing
inputs, consequently will operate correctly, and will strongly stably compute t as
if it had began computing onA’s final (output) configuration. But, since t provides
the correct answer for p if applied on A’s final configuration, it is obvious that C
must strongly stably compute p in G, and the theorem follows. ��
Since MPP strongly stably computes a non-semilinear predicate and PP is a
special case of MPP, it follows that the class of stably computable predicates by
MPP is a proper superset of the class of stably computable predicates by PP. In
other words, the MPP model is computationally stronger than the PP model.

In [13] the authors also proved the following result: “Any predicate that is
stably computable by the MPP model in any family of communication graphs
belongs to the space complexity class NSPACE(m)”. The idea is simple: By
using the MPP that stably computes the predicate we construct a nondetermin-
istic Turing machine that guesses in each step the next selection of the scheduler
(thus the next configuration). The machine always replaces the current config-
uration with a new legal one, and, since any configuration can be represented
explicitly with O(m) space, any branch uses O(m) space. The machine accepts
if some branch reaches a configuration C that satisfies instruction r of the proto-
col, and if, moreover, no configuration reachable from C violates r (i.e. C must
also be r-stable).

4 The GDM Model

In [13] MPP’s ability to decide graph languages was implicitly observed. In fact,
the authors made a similar observation: “MPPs are able to locate subgraphs”.
Based on this observation, in [11] the authors considered a special case of the
mediated population protocol model, the graph decision mediated population
protocol model, or simply GDM. The purpose of GDM was to simplify the study
of decidability capabilities of the MPP model.

4.1 Formal Definition

Definition 10. A GDM is an 8-tuple (Y,Q,O, S, r, δ, q0, s0), where Y , Q, and
S are all finite sets and
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1. Y = {0, 1} is the binary output alphabet,
2. Q is the set of agent states,
3. O : Q→ Y is the agent output function,
4. S is the set of edge states,
5. r is the output instruction,
6. δ : Q×Q× S → Q×Q× S is the transition function,
7. q0 ∈ Q is the initial agent state, and
8. s0 ∈ S is the initial edge state.

If δ(a, b, s) = (a′, b′, s′), we call (a, b, s) → (a′, b′, s′) a transition and we define
δ1(a, b, s) = a′, δ2(a, b, s) = b′, and δ3(a, b, s) = s′.

Let U be a graph universe. A graph language L is a subset of U containing com-
munication graphs that share some common property. For example, a common
graph universe is the set of all possible directed and weakly connected communi-
cation graphs, denoted by G, and L = {G ∈ G | G has an even number of edges}
is a possible graph language w.r.t. G.

A GDM protocol may run on any graph from a specified graph universe. The
graph on which the protocol runs is considered as the input graph of the protocol.
Note that GDM protocols have no sensed input. Instead, we require each agent
in the population to be initially in the initial agent state q0 and each edge of the
communication graph to be initially in the initial edge state s0. In other words,
the initial network configuration, C0, of any GDM is defined as C0(u) = q0, for
all u ∈ V , and C0(e) = s0, for all e ∈ E, and any input graph G = (V,E).

We say that a GDM A accepts an input graph G if in any computation of A
on G after finitely many interactions all agents output the value 1 and continue
doing so in all subsequent (infinite) computational steps. By replacing 1 with 0
we get the definition of the reject case.

Definition 11. We say that a GDM A decides a graph language L ⊆ U if it
accepts any G ∈ L and rejects any G /∈ L.

Definition 12. A graph language is said to be decidable if some GDM decides it.

4.2 Weakly Connected Graphs

Decidability
The most meaningful graph universe is G containing all possible directed and
weakly connected communication graphs, without self-loops or multiple edges,
of any finite number of nodes greater or equal to 2 (we do not allow the empty
graph, the graph with a unique node and we neither allow infinite graphs). Here
the graph universe is G and, thus, a graph language can only be a subset of G
(moreover, its elements must share some common property).

In [11] it was proven that the class of decidable graph languages is closed
under complement, union and intersection operations. Moreover, the authors
provided protocols (and proved their correctness) that decide the following graph
languages:
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1. Neven = {G ∈ G | |V (G)| is even},
2. Eeven = {G ∈ G | |E(G)| is even},
3. Nout

k = {G ∈ G | G has some node with at least k outgoing neighbors} for
any k = O(1),

4. Kout
k = {G ∈ G | Any node in G has at least k outgoing neighbors} for any

k = O(1),
5. Mout = {G ∈ G | G has some node with more outgoing than incoming

neighbors}, and
6. Pk = {G ∈ G | G has at least one directed path of at least k edges} for any
k = O(1).

So, all the above languages are decidable by the GDM model, and, by closure under
complement, the same holds for their complements. For example, N

out

k contains
all graphs that have no node with at least k = O(1) outgoing neighbors, and is
decidable. In other words, GDM can decide if all nodes have less than k outgoing
edges, which is simply the well-known bounded by k out-degree predicate.

To illustrate the formal description of GDM protocols we provide the
code of the protocol DirPath that was proven in [11] to decide the language
Pk = {G ∈ G | G has at least one directed path of at least k edges} for any
k = O(1).

DirPath

– Q = {q0, q1, 1, . . . , k}, S = {0, 1},
– O(k) = 1, O(q) = 0, for all q ∈ Q− {k},
– r: “Get any u ∈ V and read its output”,
– δ:

(q0, q0, 0)→ (q1, 1, 1)
(q1, x, 1)→ (x− 1, q0, 0), if x ≥ 2

→ (q0, q0, 0), if x = 1
(x, q0, 0)→ (q1, x+ 1, 1), if x+ 1 < k

→ (k, k, 0), if x+ 1 = k

(k, ·, ·)→ (k, k, ·)
(·, k, ·)→ (k, k, ·)

Undecidability
If we allow only GDMs with stabilizing states, i.e. GDMs that in any computation
after finitely many interactions stop changing their states, then we can prove that
a specific graph language w.r.t. G is undecidable. In particular, we can prove that
there exists no GDM with stabilizing states to decide the graph language

2C = {G ∈ G | G has at least two nodes u, υ s.t. both (u, υ), (υ, u)
∈ E(G) (in other words, G has at least one 2-cycle)}.

The proof is based on the following lemma.
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(a) Graph G (b) Graph G′

Fig. 1. G ∈ 2C and G′ /∈ 2C

Lemma 3. For any GDM A and any computation C0, C1, C2, . . . of A on G
(Figure 1(a)) there exists a computation C′

0, C
′
1, C

′
2, . . . , C

′
i, . . . of A on G′ (Fig-

ure 1(b)) s.t.

Ci(υ1) = C′
2i(u1) = C′

2i(u3)
Ci(υ2) = C′

2i(u2) = C′
2i(u4)

Ci(e1) = C′
2i(t1) = C′

2i(t3)
Ci(e2) = C′

2i(t2) = C′
2i(t4)

for any finite i ≥ 0.

Proof. The proof is by induction on i.

Lemma 3 shows that if a GDM A with stabilizing states could decide 2C then
there would exist a computation of A on G′ forcing all agents to output incor-
rectly the value 1 in finitely many steps. But G′ does not belong to 2C, and,
since A decides 2C, all agents must correct their states to eventually output 0.
By taking into account the fact that A has stabilizing states it is easy to reach
a contradiction and prove that no GDM with stabilizing states can decide 2C.
Whether the graph language 2C is undecidable by the GDM model in the gen-
eral case (not only by GDMs with stabilizing states) remains an interesting open
problem.

4.3 All Possible Directed Graphs

In [11] it was, also, proven that if we allow the graph universe, H, to contain
also disconnected communication graphs, then in this case the GDM model is
incapable of deciding even a single nontrivial graph language (we call a graph
language L nontrivial if L = ∅ and L = H). Here we assume the graph universe
H consisting of all possible directed communication graphs, without self-loops or
multiple edges of any finite number of nodes greater or equal to 2 (we now also
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allow graphs that are not even weakly connected). So, now, a graph language can
only be a subset of H. We will give the proof idea of that general impossibility
result.

First we show that for any nontrivial graph language L, there exists some
disconnected graph G in L where at least one component of G does not belong to
L or there exists some disconnected graph G′ in L where at least one component
of G′ does not belong to L (or both). If the statement does not hold then any
disconnected graph in L has all its components in L and any disconnected graph
in L has all its components in L.

1. All connected graphs belong to L. Then L contains at least one disconnected
graph (since it is nontrivial) that has all its components in L, which con-
tradicts the fact that the components of any disconnected graph in L also
belong to L.

2. All connected graphs belong to L. The contradiction is symmetric to the
previous case.

3. L and L contain connected graphs G and G′, respectively. Their disjoint
union U = (V ∪V ′, E ∪E′) is disconnected, belongs to L or L but one of its
components belongs to L and the other to L. The latter contradicts the fact
that both components should belong to the same language.

To obtain the impossibility result the reader should use the fact that the class of
decidable graph languages is closed under complement and, also, simply notice
that GDMs have no way to transmit data between agents of different components
when run on disconnected graphs (in fact, it is trivial to see that, when run on
disconnected graphs, those protocols essentially run individually on the different
components of those graphs).

5 Further Research Directions

Since the Mediated Population Protocol model was proposed very recently, many
important questions concerning it remain open and many directions emerging
from it are yet unexplored. The first question that comes to one’s mind is if
there exists some achievable architecture that implements the proposed models.
Is there some other notion of fairness (probably weaker) that would be more
suitable for real-life applications? Can we give an exact characterization of the
stably computable predicates by the Mediated Population Protocol model like
the one already given for the Population Protocol model? If we ignore the sens-
ing capabilities of the MPP model and focus on the GDM model, can we give an
exact characterization of the class of decidable graph languages? Is there a gen-
eral method for proving impossibility results that best suits the GDM model? In
other words, can we avoid ad-hoc proofs of impossibility results and borrow or
modify techniques from classical distributed computing by also taking into ac-
count the fact that our systems are uniform, anonymous, have constant protocol
descriptions, and have some nondeterminism inherent in the interaction pattern?
Can we devise some reliable simulation platform or testbed to extensively test
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or/and verify our protocols before running them in real application scenarios?
Since sensor networks are most of the time used in critical environments (fire
detection is a classical example), it is reasonable to wonder whether there exists
a unified theoretical framework for fast and reliable protocol verification. Since
such protocols are usually small we are hoping for the existence of some fast
verification process. Assuming a unique leader in the system has been always
helpful in distributed computing (to get an idea of its usefulness in population
protocols the reader is referred to [4]). It seems that in the models under consid-
eration assuming a leader in the initial configuration is more helpful than letting
the protocol elect one. In particular, it seems that an assumed leader provides us
with even more computational power, especially in the case where the goal is the
construction of some subgraph or the decision of some specific property of the
communication graph. Finally, we believe that it is not so bad to assume that
some or all agents have O(log n) storage capacity (note that if the population
consists of 1 billion agents, i.e. n = 109, then only about 30 bits of memory are
required in each agent!), then it is possible to assume unique identifiers, popula-
tion protocols are no longer anonymous, and it is of great interest studying this
realizable scenario.
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Abstract. We study lower bounds for circuit and branching program size over
monomial algebras both in the noncommutative and commutative setting. Our
main tool is automata theory and the main results are:

– An extension of Nisan’s noncommutative algebraic branching program size
lower bounds [N91] over the free noncommutative ring F〈x1, x2, · · · , xn〉
to similar lower bounds over the noncommutative monomial algebras
F〈x1, x2, · · · , xn〉/I for a monomial ideal I generated by subexponential
number of monomials.

– An extension of the exponential size lower bounds for monotone commuta-
tive circuits [JS82] computing the Permanent in Q[x11, x12, · · · , xnn] to an
exponential lower bound for monotone commutative circuits computing the
Permanent in any monomial algebra Q[x11, x12, · · · , xnn]/I such that the
monomial ideal I is generated by o(n/ log n) monomials.

1 Introduction

Lower bounds for noncommutative computation were studied in the pioneering paper
of Nisan [N91]; he studied noncommutative arithmetic circuits, formulas and alge-
braic branching programs. Using a rank argument Nisan has shown that the permanent
and determinant polynomials in the free noncommutative ring F{x11, · · · , xnn} require
exponential size noncommutative formulas (and noncommutative algebraic branching
programs). Chien and Sinclair [CS04] explore the same question over other noncom-
mutative algebras. They refine Nisan’s rank argument to show exponential size lower
bounds for formulas computing the permanent or determinant over the algebra of 2× 2
matrices over F, the quaternion algebra, and several other interesting examples.

We study arithmetic circuit lower bounds for noncommutative monomial algebras.
Recall that an ideal I (more precisely, a 2-sided ideal) of the noncommutative poly-
nomial ring F〈X〉 is a subring that is closed under both left and right multiplication
by the ring elements. Our aim is to show arithmetic circuit lower bounds and identity
testing in the quotient algebra F〈X〉/I for different classes of ideals I given by gener-
ating sets of polynomials. The circuit size of the polynomial f in the algebra F〈X〉/I
is CI(f) = ming∈I C(f + g). Relatedly, we also study polynomial identity testing in
monomial algebras F〈X〉/I .

It turns out that the structure of monomial algebras is intimately connected with
automata theory. We start with a basic definition. Suppose X = {x1, x2, · · · , xn} is
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a set of n noncommuting variables. The free monoid X∗ consists of all words over
these variables. Let F〈x1, x2, · · · , xn〉 denote the free noncommutative polynomial ring
generated by the variables in X over a field F. The polynomials in this algebra are
F-linear combinations of words over X . We denote this noncommutative algebra by
F〈X〉. Similarly, if X = {x1, . . . , xn} is set of commuting variables then F[X ] =
F[x1, . . . , xn] denotes the commutative ring of polynomials in the variables X over
field F. For a polynomial f ∈ F〈X〉, let mon(f) = {m ∈ X∗ | m is a nonzero
monomial in f} denote the monomial set of f . The monomial set mon(f) for f ∈ F[X ]
is defined analogously.

Definition 1. Let f ∈ F〈X〉 be a polynomial andA be a finite automaton (determinis-
tic or nondeterministic) accepting a subset of X∗. The intersection of f =

∑
cmm by

A is the polynomial fA =
∑

m∈mon(f)∩L(A) cmm.
Let f(mod A) denote the polynomial f − fA. We refer to f(mod A) as the quo-

tient of f by A. Thus, the automaton A splits the polynomial f into two parts as
f = f(mod A) + fA.

Given an arithmetic circuit C (or an ABP P ) computing a polynomial in F〈X〉 and a
deterministic finite automaton A (a DFA or an NFA) we can talk of the polynomials
CA, C(modA), PA and P (modA). We show polynomial bounds on the circuit size
(respectively, ABP size) of these polynomials in the sizes of C (or P ) and A.

If I is a finitely generated monomial ideal of F〈X〉, we can design a polynomial-size
“pattern matching” DFAA that accepts precisely the monomials in I . Using this we can
reduce the problem of proving lower bounds (and polynomial identity testing) for the
monomial algebra F〈X〉/I to the free noncommutative ring F〈X〉. Applying this idea,
we show that the Permanent (and Determinant) in the quotient algebra F〈X〉/I still re-
quires exponential size ABPs. Hence, we can extend Nisan’s lower bound argument to
noncommutative monomial algebras. Furthermore, the Raz-Shpilka deterministic iden-
tity test for noncommutative ABPs [RS05] also carry over to F〈X〉/I .

In the commutative setting, Jerrum and Snir [JS82] have shown a 2Ω(n) size lower
bound for monotone arithmetic circuits computing the n × n Permanent. We exam-
ine the size of monotone arithmetic circuits for any commutative monomial algebra
Q[x11, x12, · · · , xnn]/I where I is a monomial ideal. Our main result here is a 2Ω(n)

lower bound for the n×n Permanent over Q[x11, x12, · · · , xnn]/I , where the monomial
ideal I is generated by o(n/ logn) monomials.

Next, we study the Monomial Search Problem. This is a natural search version of
polynomial identity testing: Given a polynomial f ∈ F〈X〉 (or, in the commutative
case f ∈ F[X ]) of total degree d by an arithmetic circuit C or an ABP, the problem is
to find a nonzero monomial of the polynomial f . Applying our results on intersection
of noncommutative ABPs over F with a DFA, we give a randomized NC2 algorithm for
finding a nonzero monomial and its coefficient. We note that in [AM08, AMS08] there
is a similar application of automata theory to isolate a term of the polynomial computed
by a given arithmetic circuit. However, the purpose in [AMS08, AM08] is only identity
testing and not finding a nonzero monomial. The automata used in [AM08, AMS08] es-
sentially assign random weights to variables to isolate a nonzero monomial. Our notion
of intersection and quotienting with automata builds on ideas used in [AM08, AMS08].
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We also obtain randomized NC2 Monomial search algorithm for commutative ABPs.
For general arithmetic circuits we obtain a randomized NC reduction from Monomial
search to identity testing.

We start with some definitions. An arithmetic circuit computing a polynomial in the
ring F[x1, · · · , xn] is a directed acyclic graph. Each node if in-degree zero is labelled
by a variable xi or a field element. Each internal node of the circuit has in-degree
2 and is either a + (addition gate) or a ∗ (multiplication gate). The circuit has one
special node designated the output gate which computes a polynomial in F[x1, · · · , xn].
A noncommutative arithmetic circuit is defined as above except that the inputs to each
multiplication gate of the circuit are ordered as left and right (to capture the fact that ∗
is noncommutative). Clearly, such an arithmetic circuit computes a polynomial in the
noncommutative ring F〈x1, . . . xn〉.

Definition 2. [N91, RS05] An algebraic branching program (ABP) is a layered directed
acyclic graph with one source vertex of in-degree zero and one sink vertex of out-degree
zero. The vertices of the graph are partitioned into layers numbered 0, 1, · · · , d. Edges
may only go from layer i to i + 1 for i ∈ {0, · · · , d − 1}. The source is the only
vertex at layer 0 and the sink is the only vertex at layer d. Each edge is labeled with a
homogeneous linear form in the input variables. The size of the ABP is the number of
vertices.

We now recall definitions of some complexity classes. Fix a finite input alphabet Σ. A
language L ⊆ Σ∗ is in the class logspace (denoted L) if there is a deterministic Turing
machine with a read-only input tape and an O(log n) space-bounded work tape that
accepts the language L.

Definition 3. The complexity class GapL is the class of functions f : Σ∗ → Z, for
which there is a logspace bounded nondeterministic Turing machine M such that on
any input x ∈ Σ∗, we have f(x) = accM (x) − rejM (x), where accM (x) and rejM (x)
denote the number of accepting and rejecting computation paths of M on input x re-
spectively.

A languageL is in randomized NC2 if there is a logspace uniform boolean circuit family
{Cn}n≥1 of polynomial size and log2 n depth with gates of constant-fanin such that for
x ∈ Σn we have Prw[Cn(x,w) = χL(x)] ≥ 2/3, where χL is the characteristic
function for L.

2 Intersecting and Quotienting by Automata

In this section we focus on the circuit and ABP size complexities of f(mod A) and
fA, in terms of the circuit (resp. ABP) complexity of f and the size of the automaton
A, in the case when A is a deterministic finite automaton. The bounds we obtain are
constructive: we will efficiently compute a circuit (resp. ABP) for f(mod A) and fA
from the given circuit (resp. ABP) for f and A.

We first recall the following complexity measures for a polynomial f ∈ F〈X〉 from
Nisan [N91].
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Definition 4. [N91] For f ∈ F〈X〉, we denote its formula complexity by F (f), its
circuit complexity by C(f), and the algebraic branching program complexity by B(f).
For F = R and a polynomial f ∈ F〈X〉 with positive coefficients, its monotone circuit
complexity is denoted by C+(f),

We have following theorem relating the complexity of f(mod A) and fA to the com-
plexity of f .

Theorem 1. Let f ∈ F〈X〉 andA be a DFA with s states accepting some subset ofX∗.
Then, for g ∈ {f(modA), fA} we have

1. C(g) ≤ C(f) · (ns)O(1).
2. C+(g) ≤ C+(f) · (ns)O(1).
3. B(g) ≤ B(f) · (ns)O(1).

Furthermore, the circuit (ABP) of the size given above for polynomial g can be com-
puted in deterministic logspace (hence in NC2) on input a circuit (resp. ABP) for f and
the DFA A.

Proof. We first describe a circuit construction that proves parts 1 and 2 of the theorem.

Let A = (Q,X, δ, q0, F ) be the quintuple describing the given DFA with s states. We
can extend the transition function δ to words (i.e. monomials) inX∗ as usual: δ(a,m) =
b for states a, b ∈ Q and a monomial m if the DFA goes from state a to b on the
monomial m. In particular, we note that δ(a, ε) = a for each state a. As in automata
theory, this is a useful convention because when we write a polynomial f ∈ F〈X〉 as∑
cmm, where cm is the coefficient of the monomialm in f , we can allow for ε as the

monomial corresponding to the constant term in f .
Let C be the given circuit computing polynomial f . For each gate g of C, let fg de-

note the polynomial computed by C at the gate g. In the new circuit C′ we will have s2

gates 〈g, a, b〉, a, b ∈ Q corresponding to each gate g of C. Recall that mon(f) is the set
of monomials of f . LetMab = {m ∈ X∗ | δ(a,m) = b} for states a, b ∈ Q. At the gate
〈g, a, b〉 the circuit C′ will compute the polynomial fa,b

g =
∑

m∈Mab∩mon(fg) cmm,
where fg =

∑
cmm.

The input-output connections between the gates of C′ are now easy to define. If g is
a + gate with input gates h and k so that fg = fh + fk, we have fa,b

g = fa,b
h + fa,b

k ,
implying that 〈h, a, b〉 and 〈k, a, b〉 are the inputs to the + gate 〈g, a, b〉. If g is a× gate,
with inputs h and k so that fg = fh · fk, we have fa,b

g =
∑

c∈Q f
a,c
h · f c,b

k .
This simple formula can be easily computed by a small subcircuit withO(s) many +

gates and × gates. Finally, let out denote the output gate of circuit C, so that fout = f .
It follows from the definitions that f(modA) =

∑
a�∈F f

q0,a
out and fA =

∑
a∈F f

q0,a
out .

Hence, by introducing a small formula for this computation with suitably designated
output gate, we can easily get the circuit C′ to compute f(modA) or fA.

The correctness of our construction is immediate. Furthermore, size(C′) satisfies the
claimed bound. Note that C′ will remain a monotone circuit if the given circuit C is
monotone. This completes the proof of the first two parts.

Now we prove part 3 of the statement. Let P be an ABP computing polynomial f
and A be a given DFA. The idea for the construction of ABPs that compute f(mod A)
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and fA is quite similar to the construction described for part 1. Consider for instance
the ABP P ′ for f(mod A). Consider the directed acyclic layered graph underlying the
ABP P . In the new ABP P ′ we will have exactly the same number of layers as for
P . However, for each node b in the ith layer of ABP P we will have nodes 〈b, q〉 for
each state q of the DFA A. Now, let fb denote the polynomial that is computed at the
node b by the ABP P . The property that the construction of P ′ can easily ensure is
fb =

∑
q f〈b,q〉, where f〈b,q〉 is the polynomial computed at node 〈b, q〉 by the ABP P ′.

More precisely, let Mq be the set of all nonzero monomials m of fb such that on input
m the DFAA goes from start state to state q. Then the polynomial f〈b,q〉 will be actually
the sum of all the terms of the polynomial fb corresponding to the monomials in Mq.
This construction can now be easily used to obtain ABPs for each of f(modA) and fA,
and the size of the ABP will satisfy the claimed bound. We omit the easy details of the
construction of the ABPs.

A careful inspection of the constructions shows that for a given circuit C and DFA
A we can construct the circuits that compute C(mod A) and C(div A) in deterministic
logspace (and hence in NC2). Likewise, the construction of the ABPs for P (mod A)
and P (div A) for a given ABP P can also be computed in deterministic logspace.

The following is an immediate corollary of Theorem 1 by using known results in
[RS05],[BW05].

Corollary 1. 1. Given a noncommutative ABP P computing a polynomial f ∈ F〈X〉
and a deterministic finite automatonA we can test in deterministic polynomial time
whether f(mod A) is identically zero.

2. Given a noncommutative poly-degree circuit C computing f ∈ F〈X〉 and a DFAA
then we can test whether f(mod A) is identically zero in randomized polynomial
time (ifC is a monotone circuit then we can test if f(modA) is zero in deterministic
polynomial time).

In contrast to Corollary 1, in case of NFA’s we have:

Theorem 2. Given a noncommutative formula F computing a polynomial f ∈ Q〈Z〉
and an NFA A accepting language L(A) ⊆ Z∗ then the problem of testing whether the
polynomial f(mod A) is identically zero is coNP-hard.

Proof. We give a reduction from 3CNF-SAT to the complement of the problem. Let
S = C1 ∧ C2 ∧ . . . ∧ Ct be a 3CNF formula where Ci = ci1 ∨ ci2 ∨ ci3 for 1 ≤ i ≤ t,
and Cij ’s are from {w1, . . . , wn} ∪ {¬w1, . . . ,¬wn}. Let f =

∏t
i=1

∑3
j=1 zij where

zij = xl if cij = wl and zij = yl if cij = ¬wl for 1 ≤ l ≤ n, 1 ≤ j ≤ 3. Clearly,
there is an O(t) size formula F over indeterminates Z = {x1, . . . , xn} ∪ {y1, . . . , yn}
for the polynomial f .

Let L ⊆ Z∗ be the set of all words of the form m = uxivyiw or m = uyivxiw for
some 1 ≤ i ≤ n. Clearly, there is an O(n) size NFA A such that L = L(A). Notice
that the 3CNF formula S is satisfiable if and only if the polynomial f(mod A) is not
identically zero. Hence the given problem is coNP-hard.

We now prove a similar result for commutative ABPs. However, we need to be careful
to consider the right kind of DFAs that capture commutativity so that the constructions
of Theorem 1 are meaningful and go through.
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Definition 5 (Commutative Automata). Let w ∈ Xd be any string of length d over
the alphabet X = {x1, · · · , xn}. Let Cw ⊂ Xd denote the set of all words w′ obtained
by shuffling the letters of w.

A DFA (or NFA)A over the alphabetX = {x1, · · · , xn} is said to be commutative if
for every word w ∈ X∗, w is accepted byA if and only if every word in Cw is accepted
by A.

The following theorem is the analogue of Theorem 1 for intersecting and quotient-
ing commutative circuits and commutative ABPs by commutative DFAs. We omit the
proofs as the constructions are identical to those in the proof of Theorem 1. It can be
easily seen from Definition 1 and the proof of Theorem 1 that in the commutative case
the constructions are meaningful and work correctly when the DFAs considered are
commutative.

Theorem 3. Let f ∈ F[x1, x2, · · · , xn] andA be a commutative DFA with s states over
alphabetX = {x1, · · · , xn}. Then, for g ∈ {f(modA), fA} we have

1. C(g) ≤ C(f) · (ns)O(1).
2. C+(g) ≤ C+(f) · (ns)O(1).
3. B(g) ≤ B(f) · (ns)O(1).

Furthermore, the commutative circuit (ABP) for polynomial g meeting the above size
bounds are computable in deterministic logspace (hence in NC2) on input a circuit
(resp. ABP) for f and DFA A.

3 Monomial Algebras and Automata

Definition 6. A two-sided ideal I = 〈m1,m2, · · · ,mr〉 of the noncommutative ring
F〈X〉 generated by a finite set of monomials m1, · · · ,mr is a finitely generated mono-
mial ideal of F〈X〉. The quotient algebra F〈X〉/I is a finitely generated monomial
algebra.

For a polynomial f given by a circuit (or ABP) and a monomial ideal I given by a
generating set we are interested in the circuit (resp. ABP) complexity of the polynomial
f(mod I). The corresponding identity testing problem is the Ideal Membership problem
whether the polynomial f ∈ I . First we consider the noncommutative setting.

Theorem 4. Let I = 〈m1, · · · ,mr〉 be a monomial ideal in F〈X〉. Let P (resp. C)
be a noncommutative ABP (resp. a polynomial degree monotone circuit) computing a
polynomial f ∈ F〈X〉. Then there is a deterministic polynomial-time algorithm to test
if the polynomial f(mod I) is identically zero.

Proof. Consider monomials mi as strings over alphabet {x1, . . . , xn}. Let d =
maxi{length(mi)}. Using the Aho-Corasick pattern matching automaton [AC75] we
construct a DFA A with O(dr) states which on input a string s ∈ X∗ accepts s if
s contains mi as a substring for some i. Now using Theorem 1 we obtain an ABP
P ′ (resp. a monotone circuit C′) of size poly(n, d, r) which computes the polynomial
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g = f(mod A). Clearly, f ∈ I iff g ≡ 0. Now we can invoke Corollary 1 to complete
the proof.

By constructing a pattern matching automaton as in the proof of Theorem 1, we have
an immediate lower bound observation for the Permanent.

Corollary 2. Let I = 〈m1, · · · ,mr〉 be a monomial ideal and C be a noncommutative
ABP (or a polynomial degree noncommutative monotone circuit) over indeterminates
{xij | 1 ≤ i, j ≤ n}. If C = Permn(mod I) then either size(C) or the number of
generating monomials r for I is 2Ω(n).

3.1 Commutative Monomial Algebras

In this subsection we examine the same problem in the commutative case. Let I =
〈m1, · · · ,mk〉 be a monomial ideal contained in F[x1, · · · , xn]. As before f(mod I) is
a meaningful polynomial in F[x1, · · · , xn] for f ∈ F[x1, · · · , xn].

We consider the problem for monotone circuits. It is useful to understand the con-
nection between monotone noncommutative circuits and context-free grammars. For
basics of language theory we refer to [HMU].

Definition 7. We call a context-free grammar in Chomsky normal form G =
(V, T, P, S) an acyclic CFG if for any nonterminal A ∈ V there does not exist any
derivation of the form A⇒∗ uAw.

The size size(G) of CFG G = (V, T, P, S) in defined as the total number of symbols
(in V, T, S) used in the production rules in P , where V , T , and P are the sets of vari-
ables, terminals, and production rules. It is clear that an acyclic CFG generates a finite
language.We note the following easy proposition that relates acyclic CFGs to monotone
noncommutative circuits overX .

Proposition 1. For a monotone circuit C of size s computing a polynomial f ∈ Q〈X〉
let mon(f) denote the set of nonzero monomials of f . Then there is an acyclic CFG
G for mon(f) with size(G) = O(s). Conversely, if G is an acyclic CFG of size s
computing some finite setL ⊂ X∗ of monomials overX , there exists a monotone circuit
of size O(s) that computes a polynomial

∑
m∈L amm ∈ Q〈X〉, where the positive

integer am is the number of derivation trees for m in the grammar G.

Proof. First we prove the forward direction by constructing an acyclic CFG G =
(V, T, P, S) for mon(f). Let V = {Ag| g is a gate of circuit C} be the set of nonter-
minals of G. We include a production in P for each gate of the circuit C. If g is an
input gate with input xi, 1 ≤ i ≤ n include the production Ag → xi in P . If the input
is a nonzero field element then add the production Ag → ε.1 Let fg denote the poly-
nomial computed at gate g of C. If g is a × gate with fg = fh × fk then include the
productionAg → AhAk and if it is + gate with fg = fh + fk include the productions
Ag → Ah | Ak. Let the start symbol S = Ag , where g is the output gate of C. It is easy

1 If the circuit takes as input 0, we can first propagate it through the circuit and eliminate it.
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to see from the above construction that G is acyclic moreover size(G) = O(s) and it
generates the finite language mon(f). The converse direction is similar.

We need Lemma 1 to prove monotone circuit lower bound over commutative monomial
algebras.

Lemma 1. Let C be a monotone circuit computing a homogeneous polynomial f ∈
Q[x1, x2, · · · , xn] of degree d and let A be a commutative NFA of size s com-
puting language L(A) ⊆ Xd. There is a deterministic polynomial (in size(C), s)
time algorithm to construct a monotone circuit C′ which computes polynomial g ∈
Q[x1, x2, · · · , xn] such that mon(fA) = mon(g).

Proof. For the given monotone circuitC we can consider it as a noncommutative circuit
computing a polynomialf ′ in Q〈X〉. Notice that f ′ is weakly equivalent to f in the sense
of Nisan [N91]: I.e. a monomialm occurs in mon(f ′) if and only if some shuffling ofm
occurs in mon(f). Applying Proposition 1 we can obtain an acyclic context-free gram-
mar G that generates precisely the finite set mon(f ′) of monomials of f ′. The context-
free grammarG is in Chomsky normal form. We can convert it into a Greibach normal
form grammar G′ in polynomial time, where the size of G′ is size(G)4 [R67, KB97].

Now, we have a Greibach normal form grammar G′ and NFA A. We can apply the
standard conversion of a Greibach normal form grammar to a pushdown automaton,
to obtain a PDA M that accepts the same set that is generated by G′. The PDA M
will encode each symbol of the grammar G′ into binary strings of length O(log |G′|).
Hence the PDA M will require an O(log |G′|) size worktape to simulate the transitions
of the PDA apart from an unbounded stack. Now, it is easy to construct a new PDA
M ′ that will simultaneously run the NFA A on the given input as well as the first PDA
M so that M ′ accepts if and only if both the simulations accept. Clearly, M ′ will also
require an O(log |G′|) size worktape to carry out this simulation. We can convert the
PDA M ′ back into an acyclic grammar G′′ in Chomsky normal form in polynomial
time using a standard algorithm. From this acyclic CFG G′′ we can obtain a monotone
circuit C′′, where the gates correspond to nonterminals. By construction it follows that
C′′ computes a polynomial f ′′ in Q〈X〉 such that mon(f ′′) = mon(f ′) ∩ L(A). At
this point we invoke the fact that A is a commutative NFA. Hence, we can view C′′ as
a commutative monotone circuit. Let g ∈ Q[x1, . . . , xn] is a polynomial computed by
C′′. So it follows that mon(g) = mon(fA) which proves the lemma.

Theorem 5. Let I = 〈m1, . . . ,mk〉 be a commutative monomial ideal in
Q[x11, . . . , xnn], generated by k = o( n

lg n ) many monomials, such that degree(mi) ≤
nc for a constant c. Suppose C is a monotone circuit computing a polynomial f in
Q[x11, . . . , xnn] such that the permanent Permn = f(mod I) then C+(f) = 2Ω(n).

Proof. Let X denote the set of variables {x11, . . . , xnn}. For each monomial mt, 1 ≤
t ≤ k in the generating set for I write mt =

∏
ij x

eijt

ij , where eijt are nonnegative
integers for 1 ≤ i, j ≤ n, 1 ≤ t ≤ k.

Consider the language L ⊂ X∗ containing all strings m such that for each t, 1 ≤
t ≤ k there exist i, j ∈ [n] such that the number of occurrences of xij in m is strictly
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less that eijt. Notice that L is preciselyX∗ \ I . Clearly, the languageL is commutative:
if m ∈ L then so is every reordering of the word m. It is easy to see that there is
a commutative NFA A with nO(k) = 2o(n) states such that L = L(A) (the NFA is
designed using counters for each t and guessed i, j, note that eijt ≤ nc, for 1 ≤ t ≤
k, 1 ≤ i, j ≤ n). So we have Permn = fA.

Suppose the polynomial f can be computed by a monotone circuitC of size 2o(n). By
Lemma 1 there is a monotone circuit of size 2o(n) computing a polynomial g such that
mon(g) = mon(fA) = mon(Permn). We observe that the 2Ω(n) size lower bound proof
for commutative circuits computing the permanent (specifically, the Jerrum-Snir work
[JS82]) also imply the same lower bound for the polynomial g, because the coefficients
do not play a role and mon(g) = mon(Permn). This completes the proof.

Corollary 3. Let C be a commutative monotone arithmetic circuit computing polyno-
mial f ∈ Q[x1, . . . , xn] and let I = 〈m1, . . . ,mk〉 be a commutative monomial ideal
generated by k = o(n/ logn) monomials, such that for 1 ≤ t ≤ k, degree(mt) ≤ nc

for a constant c. Then the problem of testing whether f ∈ I can be solved in determin-
istic 2o(n) · poly(size(C)) time.

Proof. Let X = {x1, . . . , xn}. As in the proof of Theorem 5 we can construct an NFA
A of size 2o(n) such that L(A) = X∗ \ I . By Lemma 1 we can construct a monotone
commutative circuit C′ of size 2o(n) ·poly(size(C)) computing polynomial g such that
mon(g) = mon(fA). It is clear that f ∈ I iff fA is identically zero iff g is identically
zero. We can test if g is identically zero using standard algorithms.

Given an ABP (or monotone circuit) of size s computing some polynomial f ∈
Q〈x1, . . . , xn〉 and a noncommutative monomial ideal I = 〈m1, . . . ,mk〉 we can test
if f ∈ I in deterministic time 2o(n)sO(1) even when the number of monomials k gener-
ating I is k = 2o(n). On the other hand, in the commutative setting we are able to show
a similar result (Corollary 3) only for k = o(n/ logn). Nevertheless, it appears diffi-
cult to prove a significantly stronger result. We can show that strengthening Corollary 3
to k = n

2 would imply that 3CNF-SAT has a 2o(n) time algorithm contradicting the
exponential-time hypothesis [IPZ01]. We make this statement precise in the next result
(whose proof is similar to that of Theorem 2).

Theorem 6. Given a commutative monotone circuit C of size s computing a polyno-
mial f ∈ Q[Z] in 2n variables and a commutative monomial ideal I = 〈m1, . . . ,mk〉,
k ≥ n then the problem of testing if f ∈ I is coNP-hard. Specifically, for k = n the
problem of testing if f ∈ I does not have a 2o(n)sO(1) time algorithm assuming the
exponential-time hypothesis.

In contrast to Theorem 5, we observe that Permn can be computed by a small mono-
tone formula modulo a monomial ideal generated by O(n3) many monomials.

Theorem 7. There is a monomial ideal I = 〈m1, · · · ,mt〉 of F[X ], where X = {xij |
1 ≤ i, j ≤ n},t = O(n3) and a polynomial-sized commutative monotone formula
F (x11, · · · , xnn) such that Permn = F (mod I).
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Proof. Let F =
∏n

i=1(xi1 + xi2 + · · · + xin) and I be the monomial ideal generated
by the set of monomials {xikxjk | 1 ≤ i, j, k ≤ n}. Clearly, Permn = F (mod I).

4 Monomial Search Problem

We now consider the monomial search problem for ABPs in both commutative and
noncommutative setting. The problem is to find a nonzero monomial of the polynomial
computed by a given ABP. We apply Theorem 1 to prove these results.

Theorem 8. Given a noncommutative ABP P computing a polynomial f in F〈X〉 there
is a randomized NC2 algorithm that computes a nonzero monomial of f . More precisely,

the algorithm is a randomized FLGapL algorithm.

Proof. We can assume wlog that the given ABP P computes a homogeneous degree d
polynomial. The proof is by an application of the isolation lemma of [MVV87]. Define
the universe U = {xij | 1 ≤ i ≤ n, 1 ≤ j ≤ d}, where the element xij stands
for the occurrence of xi in the jth position in a monomial. With this encoding every
degree d monomial m over X can be encoded as a subset Sm of size d in U , where
Sm = {xij | xi occurs in jth position in m}. Following the isolation lemma, we pick a
random weight assignment w : U −→ [4dn]. The weight of a monomial m is defined
as w(m) = w(Sm) =

∑
xij∈Sm

w(xij), and with probability 1/2 there is a unique
minimum weight monomial.

Construction of weight-checking DFA: For any weight value a such that 1 ≤ a ≤ 4nd2,
we can easily construct a DFA Ma

w that accepts a monomial m ∈ X∗ iff m ∈ Xd and
w(m) = a. This DFA will have O(4nd3) many states. Furthermore, we can compute
this DFA in deterministic logspace. Next, by Theorem 1 we can compute an ABP P a

w

that computes the polynomial P (div Ma
w) for each of 1 ≤ a ≤ 4nd3. With probability

1/2 we know that one of P (div Ma
w) accepts precisely one monomial of the original

polynomial f (with the same coefficient).
In order to find each variable occurring in that unique monomial accepted by, say,

P a
w we will design another DFAAij which will accept a monomialm ∈ Xd if and only

if xi occurs in the jth position. Again by Theorem 1 we can compute an ABP Bi,j,a,w

that accepts precisely P a
w(div Aij). Now, the ABP Bi,j,a,w either computes the zero

polynomial (if xi does not occur in the jth position of the unique monomial of P a
w) or it

computes that unique monomial of P a
w. In order to test which is the case, notice that we

can deterministically assign the values xi = 1 for each variable xi. Crucially, since P a
w

has a unique monomial it will be nonzero even for this deterministic and commutative
evaluation. Since the evaluation of an ABP is for commuting values (scalar values), we

can carry it out in NC2 in fact, in FLGapL for any fixed finite field or over Q, (see e.g.
[T91], [V91], [MV97]).

Let m be the monomial that is finally constructed. We can construct a DFA Am that
accepts only m and no other strings. By Theorem 1 we can compute an ABP P ′ for
the polynomial P (div Am) and again check if P ′ is zero or nonzero by substituting
all xi = 1 and evaluating. This will make the algorithm actually a zero-error NC2

algorithm. The success probability can be boosted by parallel repetition.
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Next we describe a randomized NC2 algorithm for the Monomial search problem for
commutative ABPs. This is the best we can currently hope for, since deterministic
polynomial-time identity testing for commutative ABPs is a major open problem. Our
monomial search algorithm is based on a generalized isolation lemma [KS01].

Lemma 2. [KS01, Lemma 4] Let L be a collection of linear forms over variables
z1, . . . , zn with integer coefficients in {0, 1, . . . ,K}. If each zi is picked independently
and uniformly at random from {0, 1, . . . , 2Kn} then with probability at least 1

2 there is
a unique linear form in L which attains minimum value at (z1, z2, . . . , zn).

Theorem 9. The monomial search problem for commutative algebraic branching pro-

grams is in randomized NC2 (more precisely, it is in randomized FLGapL).

Proof. Let P be a commutative algebraic branching program computing a polynomial
f ∈ F[x1, x2, . . . , xn]. We can assume, without loss of generality, that f is homoge-
neous of degree d. First, pick a random weight function w : {x1, · · · , xn} −→ [2dn].
Next, for each number a such that 0 ≤ a ≤ 2d2n we construct a DFA Aa

w which will
accept a monomialm ∈ X∗ iffm ∈ Xd andw(m) = a, wherew(m) =

∑
i w(xi) ·αi,

and xi occurs exactly αi times in m. Crucially, notice that Aa
w is a commutative DFA.

Hence, applying Theorem 3, for each number a we can obtain an ABP P a
w in determin-

istic logspace.
By Lemma 2 with probability at least 1/2 one of the ABPs P a

w accepts a unique
monomial m = xα1

1 xα2
2 . . . xαn

n of f . Suppose that value of a is u. Let c = 0 denote
the coefficient of the unique monomial m in f computed by the ABP Pu

w . We need to
compute each αi. We evaluate the ABP Pu

w by setting xj = 1 for all j = i to obtain
cxαi

i . Evaluating the ABPs P a
w, for each a, on the inputs (1, · · · , 1, xi, 1, · · · , 1) can

be done in NC2. Indeed, it can be done in FLGapL, since we only need determinant
computation over the field F. This completes the proof sketch.

Theorem 10. There is a deterministic polynomial time algorithm for the monomial
search problem for noncommutative algebraic branching programs.

Proof. W.l.o.g. assume that the input noncommutative ABP P computes a degree d
homogeneous polynomial f =

∑
m amm. The monomial search algorithm is a simple

prefix search guided by the Raz-Shpilka deterministic identity test [RS05]. Starting with
w = ε, we successively compute ABPs Pε, Pw1 , · · · , Pwd

, where |wk| = k and wk is a
prefix of wk+1 for each k. Each Pwk

is an ABP that computes f(div Dwk
) where Dwk

is a DFA that accepts all the words with prefix w. The prefix search sets wk+1 = wkxi

for the first indeterminate xi such that Pwk+1 computes a nonzero polynomial (to check
this we use the Raz-Shpilka identity test on Pwk+1 [RS05]). Since f(div Dwk

) = 0
for some indeterminate xi the polynomial f(div Dwk+1) is nonzero. Hence the prefix
search will successfully continue. The output of the monomial search will be wd.

Finally, our technique of isolating a monomial using DFAs along with intersecting cir-
cuits with DFAs can be applied to get a randomized NC reduction from monomial
search for noncommutative (or commutative) circuits to noncommutative (resp. com-
mutative) polynomial identity testing.
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Theorem 11. Monomial search for noncommutative (commutative) circuits is random-
ized NC reducible to noncommutative (resp. commutative) polynomial identity testing.
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SSF has several applications in the problem of aligning multiple genomic se-
quences [22], in the comparison of phylogenetic trees [5], and in the diversity
problem in the automobile industry [1]. As a combinatorial optimization prob-
lem, SSF has been considered in [8,22]. Nguyen et al. [22] prove that the problem
is APX-hard by presenting an explicit inapproximability bound of 259/260 and
present a combinatorial 0.6-approximation algorithm. Optimal polynomial-time
algorithms are presented for special graph classes such as planar graphs and
trees. Chen et al. [8] present a better algorithm with approximation ratio 0.71.
The main idea is to run both the algorithm of [22], as well as an algorithm
that is based on linear programming and randomized rounding and, then, take
the best solution. The linear programming relaxation used in [22] has an inte-
grality gap of (at most) 3/4. Interesting generalizations include node-weighted
and edge-weighted versions of SSF. [8,22] present approximation algorithms and
APX-hardness results for these problems as well. Stronger inapproximability
results for these problems recently appeared in [7].

The minimum dominating set problem is a special case of set cover. In set
cover, we are given a collection S of sets over a set U of n elements and the objec-
tive is to select a minimum-size subcollection T of sets that contain all elements.
The problem is well known to be hard to approximate within a logarithmic fac-
tor [13] while the greedy algorithm that iteratively includes in the cover the set
that contains the maximum number of uncovered elements achieves a matching
upper bound of Hn [19,21]. The same algorithm has an approximation ratio of
Hk when the collection is closed under subsets and each set contains at most k
elements; this special case of the problem is known as k-set cover. Slightly better
results are also known for k-set cover [2,11,14,20]. The most interesting idea that
yields these improvements is semi-local optimization [11] which applies to 3-set
cover. Semi-local optimization is a local search algorithm. The main idea behind
it is to start with an empty 3-set covering and augment it by performing local
improvements. Note that once the (disjoint) sets of size 3 have been selected,
computing the minimum number of sets of size 2 and 1 in order to complete
the cover can be done in polynomial time by a maximum matching computa-
tion. So, a semi-local (s, t)-improvement step for 3-set cover consists of (i) the
deletion of up to t sets of size 3 from the current covering and (ii) the insertion
of up to s disjoint sets of size 3 and the minimum number of necessary sets of
smaller size that complete the cover, so that the number of sets in the cover
decreases; in case of ties, covers with fewer sets of size 1 are preferable. The
analysis of [11] shows that the best choice of the parameters (s, t) is (2, 1) and
that, somehow surprisingly, larger values for these parameters do not yield any
further improvements.

As the complement of minimum dominating set, SSF is a special case of com-
plementary set cover (in a sense that is explained in detail in Section 2). In
complementary set cover, the objective is to maximize the quantity n−|T |. The
approximation ratio of a solution for complementary set cover can be thought of
as comparing the “distance” of a solution for set cover from the worst possible
solution (i.e., the one that uses n sets to cover the elements) to the distance of the
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best solution of the worst possible one. This yields an alternative performance
measure for the analysis of approximation algorithms; such measures have been
considered for many combinatorial optimization problems in the context of differ-
ential approximation algorithms [10,9] or z-approximations [16] (see also [3,4]).
Duh and Fürer [11] also consider the application of their algorithm on instances
of complementary set cover in which the collection of sets is not given explicitly.
Among them, the most interesting case is when the elements correspond to the
nodes of a graph and the sets in the collection are all the independent sets of the
graph. In this case, set cover is equivalent to graph coloring (i.e., the problem
of coloring the nodes of a graph so that no two adjacent nodes are assigned
the same color and the number of colors is minimized). Complementary graph
coloring is also known as color saving.

In this paper, we take advantage of the fact that SSF is a complementary
set cover problem in which the collection of sets is closed under subsets and
we use the approximation algorithm of Duh and Fürer [11] to solve its instances
(Section 2). We obtain an approximation ratio of 193/240 ≈ 0.804 improving the
previously best known bound of 0.71 from [8] and beating the integrality gap of
the linear programming relaxation used in [8]. Our analysis is tight, it does not
exploit the particular structure of SSF, and essentially holds for the more general
complementary set cover and color saving problems as well (see Section 3). The
result of [11] is a lower bound of 289/360 ≈ 0.803 on the approximation ratio
of the same algorithm on general instances of color saving (and complementary
set cover). Although our improvement on the approximation ratio is marginal,
our proof technique is very interesting and, conceptually, it could be applicable
to other contexts. The proof in [11] is based on a detailed accounting of the
performance of the algorithm by a case analysis of the different possible ways the
elements of the sets in the optimal solution are covered by the algorithm; among
the several different cases, only a few are presented in that paper. Our proof is
much different in spirit, it is simpler, and does not require any case analysis; it is
based on proving feasibility of a linear program. We note that analysis of purely
combinatorial algorithms using linear programs whose objective value reveals
the approximation factor (in a different way than in the current paper) has also
been used for k-set cover [2], wavelength management in optical networks [6], and
facility location [18]. The definition of the linear program in this paper follows
the terminology of [2] but the resulting linear program is significantly smaller
and our analysis is different. In particular, we show that if the algorithm obtains
an at most f -approximate solution for some instance, then an appropriately
defined linear program that has f as a parameter and its constraints capture
the properties of the instance and the way the algorithm is applied on it is
feasible. This is stated as a parameterized LP Lemma. So, the lower bound on the
approximation ratio follows by proving that the corresponding linear program is
infeasible for values of f smaller than 193/240.

Furthermore, motivated by well-known set packing heuristics [14,17], we con-
sider a natural family of local search algorithms for SSF. Such an algorithm starts
with an initial spanning star forest and repeatedly performs local improvements
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until this is not possible any more. The resulting solution is a local optimum for
the particular algorithm and the question is whether local optima are efficient
solutions for SSF as well. We prove that this is not the case for any local search
algorithm that belongs to the family and runs in polynomial time. In the proof,
we construct almost 1/2-approximate spanning star forests on appropriately de-
fined graphs that are local optima for such algorithms (Section 4).

2 Algorithm Description

In this section, we describe how to exploit the relation of the problem to set cover
in order to solve it using a well-known algorithm of Duh and Fürer [11]. We first
transform an SSF instance consisting of a graph G = (V,E) into an instance
(V,S) of set cover over the nodes. The collection S consists of star sets. A star
set is a set of nodes with a common neighbor (assuming that a node neighbors
on itself). We distinguish between two types of star sets: A and B. The nodes of
a star set s of type A have a node in s as a common neighbor; all other star sets
are of type B. Observe that the collection S that is defined in this way is closed
under subsets. We use the term star set cover in order to refer to the particular
set cover instance and the term i-star set cover when the collection consists of
star sets of size at most i.

We use the algorithm of Duh and Fürer [11] in order to solve the resulting
star set cover instance and obtain a disjoint collection of star sets that contain
all nodes in V . We refer to star sets of size i as i-star sets. The algorithm first
greedily includes disjoint 6-star sets in the solution until no other 6-star set can
be included. We use the term maximal to refer to such collections of disjoint sets.
After this phase, the nodes that remain uncovered and the star sets that consist
only of such nodes form an instance of 5-star set cover. Then, the algorithm
executes a restricted phase in order to pick a maximal collection of disjoint 5-
star sets and guarantees that the number of 1-star sets in the final solution is
not larger than the number of 1-star sets in the optimal solution of the 5-star
set cover instance at the beginning of this restricted phase. Then, it applies a
similar restricted phase for 4-star sets. After this phase, an instance of 3-star
set cover remains to be solved in order to complete the star set covering; the
algorithm applies a semi-local optimization phase on it. We use integers 6, 5, 4, 3
to refer to the phases of the algorithm according to the size of the star sets they
consider. In summary, the algorithm can be described as follows.

Phase 6: Choose a maximal collection of disjoint 6-star sets.
Phase 5: Choose a maximal collection of disjoint 5-star sets so that the

choice of these star sets does not increase the number of 1-star sets
in the final solution.

Phase 4: Choose a maximal collection of disjoint 4-star sets so that the
choice of these star sets does not increase the number of 1-star sets
in the final solution.

Phase 3: Run the semi-local optimization algorithm on the remaining
instance of 3-star set cover.
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The output of the algorithm is a disjoint set T ⊆ S of star sets. We transform
this solution to a spanning star forest as follows. We first consider star sets of
T of type A. For each such set s, we set the common neighbor u of the nodes
in s as center and connect the remaining nodes of s to u. Then, we consider the
star sets of type B. For each such set s in T , we select a common neighbor u
of the nodes in s. If u is already the center of another star, we simply connect
the nodes of s that have not been used as centers so far to it. If u is already the
leaf of another star, we remove it from that star and connect the nodes of s that
have not been used as centers so far to it.

Notice that, once a node has been used as a center, it remains one until the
end of the algorithm and each leaf is connected to some center. Since the star
sets include all nodes of V , each node is either a center or a leaf of some star
and, hence, the solution is indeed a spanning star forest of G. Furthermore, when
considering a star set, we increase the number of centers by at most 1. Hence,
the total number of leaves is at least |V | − |T |.

3 Analysis

Our main argument for the analysis of the algorithm can be described as follows.
We first show that if there is an instance on which the algorithm computes an
at most f -approximate solution, then an appropriately defined linear program
LP(f) is feasible. Then, we show that LP(f) is infeasible for f < 193/240,
implying that the approximation ratio of the algorithm is at least 193/240 ≈
0.804. We consider only non-trivial instances of the problem in which the input
graph has at least one edge since any algorithm is optimal for trivial ones.

3.1 The Parameterized LP Lemma

Consider a non-trivial SSF instance I that consists of a graph G = (V,E) on
which the algorithm computes an at most f -approximate solution. Let (V,S)
be the corresponding star set cover instance. For i = 5, 4, 3, denote by (Vi, Si)
the instance of the i-star set cover problem that has to be solved just before
entering phase i. Here, Vi contains the nodes in V that have not been covered in
previous phases and Si contains the star sets of S which consist only of nodes in
Vi. Si contains star sets of the original collection of size at most i. Denote by Oi

an optimal solution of instance (Vi, Si); we also denote the optimal solution of
(V,S) by O. Since S is closed under subsets, without loss of generality, we may
assume that Oi contains disjoint sets. Furthermore, it is clear that |Oi−1| ≤ |Oi|
for i = 3, 4, 5 and |Oi| ≤ |O|.

Set θ = |V |
|V |−1 . We denote by T the ratio |V |/|O|. Since the instance is non-

trivial, there exists an optimal star cover with at most |V | − 1 star sets (i.e.,
|O| ≤ |V | − 1). Hence,

T ≥ θ. (1)
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For the phase i of the algorithm with i = 3, 4, 5, we denote by ai,j the ratio
of the number of j-star sets in Oi over the number |O| of sets in the optimal
solution of (V,S). Since |Oi| ≤ |O| and |Oi| = |O|

∑i
j=1 ai,j , we obtain that

i∑
j=1

ai,j ≤ 1. (2)

Also, observe that |V | = T |O| and |V5| = |O|
∑5

j=1 ja5,j . Since V5 ⊆ V , we have

T ≥
5∑

j=1

ja5,j . (3)

During the phase i with i = 3, 4, 5, the algorithm selects a maximal set of
i-star sets. This means that any i-star set selected intersects some of the i-star
sets of the optimal star set covering of the instance (Vi, Si) and may intersect
with at most i such i-star sets. Since there are ai,i|O| such star sets in the
optimal star set covering of (Vi, Si), the number |Vi\Vi−1|/i of i-star sets selected
during phase i is at least ai,i|O|/i. Equivalently, |Vi \ Vi−1| ≥ ai,i|O|. Since

|Vi \ Vi−1| =
(∑i

j=1 jai,j −
∑i−1

j=1 jai−1,j

)
|O|, we obtain that

i∑
j=1

jai,j −
i−1∑
j=1

jai−1,j ≥ ai,i. (4)

Phase 3 imposes several extra constraints. Denote by b3, b2, b1 the number of
3-, 2-, and 1-star sets computed by the semi-local optimization phase divided by
|O|. We use the main result of the analysis of Duh and Fürer [11] expressed in
our notation.

Theorem 1 (Duh and Fürer[11]). b1 ≤ α3,1 and b2 + b1 ≤ α3,3 +α3,2 +α3,1.

In addition, the restricted phase i (with i = 4, 5) imposes the constraint that
the number of the 1-sets in the final solution does not increase compared to the
number of 1-sets in the optimal star set covering of (Vi, Si). Taking into account
the first inequality of Theorem 1, we have

b1 ≤ ai,1, for i = 3, 4, 5. (5)

Up to now, we have expressed all the properties of the instance (V,S) as well
as the behavior of the algorithm on it, besides the fact that the star set covering
obtained implies an at most f -approximate solution for the corresponding SSF
instance. We express the benefit of the algorithm in terms of our variables as
follows. We denote by ti the number of star sets computed during the phase i.
For phase 6, we have

t6 =
1
6
|V \ V5| =

1
6

⎛⎝T − 5∑
j=1

ja5,j

⎞⎠ |O|. (6)
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For the phase i with i = 4, 5, we have

ti =
1
i
|Vi \ Vi−1| =

1
i

⎛⎝ i∑
j=1

jai,j −
i−1∑
j=1

jai−1,j

⎞⎠ |O|. (7)

Also, for the semi-local optimization phase, we have

t3 = (b3 + b2 + b1)|O| =
(
b1
3

+
b2 + b1

3
+

3b3 + 2b2 + b1
3

)
|O|

≤
(
b1
3

+
a3,3 + a3,2 + a3,1

3
+

3a3,3 + 2a3,2 + a3,1

3

)
|O|

=
(

1
3
b1 +

4
3
a3,3 + a3,2 +

2
3
a3,1

)
|O|. (8)

The inequality follows by Theorem 1 and since (3b3 + 2b2 + b1)|O| = (3a3,3 +
2a3,2 + a3,1)|O| = |V3|.

By the discussion in Section 2, the solution obtained by the algorithm on the
SSF instance I has benefit ALG(I) at least |V | −

∑6
i=3 ti. Consider an optimal

spanning star forest of the graph G of instance I and let OPT (I) be its benefit.
This naturally corresponds to a star set cover O′ for (V,S) that consists of
disjoint star sets of type A. Clearly, OPT (I) = |V |− |O′| and |O| ≤ |O′|. Hence,
OPT (I) ≤ |V | − |O|. Since the solution obtained by the algorithm is at most f -
approximate (i.e., ALG(I) ≤ f ·OPT (I)), we have |V |−

∑6
i=3 ti ≤ f (|V | − |O|)

and, equivalently,

(f − 1)|V |+
6∑

i=3

ti ≥ f |O|. (9)

We use (6), (7), and (8) to upper-bound the left side of inequality (9). We have

(f − 1)|V |+
6∑

i=3

ti

≤ (f − 1)T |O|+ 1
6

⎛⎝T − 5∑
j=1

ja5,j

⎞⎠ |O|+ 1
5

⎛⎝ 5∑
j=1

ja5,j −
4∑

j=1

ja4,j

⎞⎠ |O|
+

1
4

⎛⎝ 4∑
j=1

ja4,j −
3∑

j=1

ja3,j

⎞⎠ |O|+ (1
3
b1 +

4
3
a3,3 + a3,2 +

2
3
a3,1

)
|O|

=
((

f − 5
6

)
T +

1
6
a5,5 +

2
15
a5,4 +

1
10
a5,3 +

1
15
a5,2 +

1
30
a5,1 +

1
5
a4,4

+
3
20
a4,3 +

1
10
a4,2 +

1
20
a4,1 +

7
12
a3,3 +

1
2
a3,2 +

5
12
a3,1 +

1
3
b1

)
|O|. (10)
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By (9) and (10), we obtain

(f − 5
6
)T +

1
6
a5,5 +

2
15
a5,4 +

1
10
a5,3 +

1
15
a5,2 +

1
30
a5,1 +

1
5
a4,4

+
3
20
a4,3 +

1
10
a4,2 +

1
20
a4,1 +

7
12
a3,3 +

1
2
a3,2 +

5
12
a3,1 +

1
3
b1 ≥ f. (11)

By expressing inequalities (1)-(5) and (11) in standard form, we obtain our
parameterized LP lemma.

Lemma 1. If there exists an instance I of SSF for which the algorithm computes
a solution of benefit ALG(I) ≤ f ·OPT (I) for some f ∈ [0, 1], then the following
linear program LP(f) has a feasible solution for some θ > 1.

T ≥ θ

−
i∑

j=1

ai,j ≥ −1, for i = 3, 4, 5

T −
5∑

j=1

ja5,j ≥ 0

(i− 1)ai,i +
i−1∑
j=1

jai,j −
i−1∑
j=1

jai−1,j ≥ 0, for i = 4, 5

ai,1 − b1 ≥ 0, for i = 3, 4, 5

(f − 5
6
)T +

1
6
a5,5 +

2
15
a5,4 +

1
10
a5,3 +

1
15
a5,2 +

1
30
a5,1 +

1
5
a4,4

+
3
20
a4,3 +

1
10
a4,2 +

1
20
a4,1 +

7
12
a3,3 +

1
2
a3,2 +

5
12
a3,1 +

1
3
b1 ≥ f

ai,j ≥ 0, for i = 3, 4, 5 and j = 1, ..., i
b1 ≥ 0

3.2 Proof of the Approximation Bound

The proof of the approximation bound is based on the following lemma.

Lemma 2. For every f < 193/240, LP(f) has no feasible solution.

Proof. We can assume that LP(f) is a minimization linear program with objec-
tive 0. By duality, if it were feasible, then the optimal objective value of the dual
maximization linear program should be 0 as well. We show that this is not the
case and that the dual has a solution with strictly positive objective value. This
implies the lemma.

In the dual LP, we use the eleven variables η, β3, β4, β5, γ4, γ5, γ6, δ3, δ4,
δ5 and ζ corresponding to the constraints of LP(f). Variable η corresponds to
the first constraint of LP(f), βi correspond to the second set of constraints, γ6

corresponds to the third constraint, γ4 and γ5 correspond to the fourth set of
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constraints, δi correspond to the fifth set of constraints, and ζ corresponds to
the last constraint. So, the dual of LP(f) is

maximize θη − β3 − β4 − β5 + fζ

subject to η + γ6 + (f − 5/6)ζ ≤ 0
−δ3 − δ4 − δ5 + ζ/3 ≤ 0
−β3 − γ4 + δ3 + 5ζ/12 ≤ 0
−β3 − 2γ4 + ζ/2 ≤ 0
−β3 − 3γ4 + 7ζ/12 ≤ 0
−β4 + γ4 − γ5 + δ4 + ζ/20 ≤ 0
−β4 + 2γ4 − 2γ5 + ζ/10 ≤ 0
−β4 + 3γ4 − 3γ5 + 3ζ/20 ≤ 0
−β4 + 3γ4 − 4γ5 + ζ/5 ≤ 0
−β5 + γ5 − γ6 + δ5 + ζ/30 ≤ 0
−β5 + 2γ5 − 2γ6 + ζ/15 ≤ 0
−β5 + 3γ5 − 3γ6 + ζ/10 ≤ 0
−β5 + 4γ5 − 4γ6 + 2ζ/15 ≤ 0
−β5 + 4γ5 − 5γ6 + ζ/6 ≤ 0
βi, δi ≥ 0, for i = 3, 4, 5
γi ≥ 0, for i = 4, 5, 6
ζ, η ≥ 0

The solution η = 193/240− f , β3 = 39/72, β4 = 11/72, β5 = 79/720, γ4 = 1/72,
γ5 = 1/45, γ6 = 7/240, δ3 = 5/36, δ4 = 1/9, δ5 = 1/12, and ζ = 1 satisfies all
the constraints. Observe that η−β3−β4−β5 +fζ = 0 and, hence, the objective
value is (θ − 1)η = (θ − 1)(193/240− f) > 0. The lemma follows. ��

Theorem 2. The approximation ratio of the algorithm is at least 193/240.

Proof. By Lemmas 1 and 2, we have that for any f < 193/240 and for any
instance I of SSF, the algorithm computes a solution of benefit ALG(I) > f ·
OPT (I). Hence, its approximation ratio is at least 193/240. ��

3.3 A Note for Color Saving

We point out that neither the algorithm nor the analysis makes use of the fact
that the star sets actually correspond to stars in the graph. Hence, the algorithm
applies to the more general complementary set cover problem where the sets are
given explicitly. Also, since the algorithm considers sets of constant size, it also
applies to color saving. What is required is to replace the term “star set” by the
term “independent set”. Although computing an independent set of a given size
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on a graph is a classical NP-hard problem, computing independent sets of size
up to 6 as the algorithm requires can be done easily in polynomial time. Our
analysis is tight; the lower bound construction is omitted.

4 A Lower Bound for Natural Local Search SSF
Algorithms

In this section we consider a natural family of local search algorithms for SSF.
We consider solutions of instances of SSF as assignments of values 0 and 1 to the
nodes of the input graph where 0 or 1 at a node means that the node is a center
or leaf, respectively. Such an assignment corresponds to a feasible solution of
SSF when each node that has been assigned value 1 is adjacent to at least one
node that has been assigned value 0. The benefit of a feasible assignment is then
the number of nodes that have been assigned value 1.

Local search can be used as follows. Starting with any feasible assignment
(e.g., with 0 to each node), a local search algorithm repeatedly performs k-
changes (for some constant integer k) while this is possible. Performing a k-
change means to alter the assignment of t ≤ k nodes originally having value 1 to
0 and the assignment of t+1 nodes originally assigned value 0 to 1. The algorithm
terminates when a local optimum assignment is reached, i.e., one from which no
k-change is possible. Note that since k is constant and the benefit increases by
1 at each step, the algorithm terminates in polynomial time. The algorithm is
efficient if all local optima have high benefit.

The local search algorithm that performs 0-changes may have very poor ap-
proximation ratio. Indeed, consider the instance that consists of two nodes u and
v that are assigned the value 1 and n− 2 nodes u1, ..., un−2 that are connected
to both u and v and are all assigned the value 0. This assignment has a benefit
of 2 and is a local optimum since no 0-change is possible, while the solution
that assigns 1 to nodes u1, ..., un−2 and 0 to nodes u and v is feasible and has
a benefit of n − 2. Furthermore, we can show that the local search algorithm
that performs 1-changes always computes an 1/2-approximate assignment. This
could indicate that better bounds can be obtained by considering k-changes with
higher constant values of k. Unfortunately, this is not the case as the following
theorem states.

Theorem 3. For every integer k ≥ 0 and every ε ∈
(
0, 1

2(k+2)

]
, the local-search

algorithm that performs k−changes has an (1/2 + ε)-approximate solution as a
local optimum.

Proof. The proof uses a result of Erdös and Sachs [12] stating that, for every
integer d, g > 0, there exists a d-regular graph of girth at least g.

Our starting point is a d-regular graph G of girth at least g, where d = 2!1/2ε"
and g = k+2. Given G, consider the graph G′ that is obtained by replacing each
edge (u, v) of G by a path of size 3 (henceforth called a 3-path) 〈u, Z1

uv, Z
2
uv, v〉.

So, the graph G has two additional nodes Z1
uv and Z2

uv for each edge (u, v) in
G. We refer to these nodes as edge-nodes.
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We define an assignment on the nodes of G′ which has (asymptotically) half
the optimal benefit and which cannot be improved by a k-change. In order
to construct this assignment, we make use of the fact that a connected graph
has an Euler circuit when all its nodes have even degree. We consider such a
directed Euler circuit in G′ and assign value 1 to the first node of each 3-path
the Euler circuit comes across and value 0 to the other node of the 3-path.
Furthermore, we assign value 1 to every non-edge-node. We notice that this is
a feasible assignment since every edge-node with value 1 is connected to the
other edge-node of the same 3-path having value 0, and every non-edge-node
has exactly d/2 = !1/2ε" ≥ k + 2 neighbors with value 0.

We use proof by contradiction. Suppose the aforementioned bad assignment is
not a local optimum and consider another neighboring feasible assignment (that
is obtained by applying a k−change to the original one). In more detail, assume
that the improved assignment is obtained if we assign value 1 to t+1 edge-nodes
having value 0 originally, as well as change the value of s ≤ t edge-nodes and of
t− s non-edge-nodes from 1 to 0.

Consider the intermediate assignment, where only the changes on the values
of the edge-nodes have been applied. We notice that the constraints regarding
the non-edge-nodes are not violated since each such node originally had at least
k + 2 neighbors being assigned value 0 and at most k + 1 changes from 0 to 1
have been applied. Regarding the edge-nodes, the only ones whose constraint
is unsatisfied in the intermediate assignment belong to 3-paths in which both
edge-nodes have value 1. The number of such 3-paths is at least t+ 1− s and at
most k + 1. We consider the edge-induced graph H consisting of the edges of G
that correspond to these 3-paths. Since H has at most k+1 edges and the girth
of G is at least k+2, H is a forest. In addition, the nodes of graph H correspond
to the t − s non-edge-nodes of G′ whose value is 0 at the final assignment. As
we have already mentioned, graph H has at least t+ 1− s edges, which implies
that it contains a cycle. Furthermore H has at most k + 1 edges, therefore its
girth is at most k + 1, which contradicts the original assumption.

We conclude that no k−change can be applied to the bad assignment above
and it is a local optimum with benefit n(1+d/2) while the benefit of the optimal
assignment on G′ is dn, which is achieved when only non-edge-nodes are assigned
value 0. Hence, the approximation ratio is at most 1/2 + 1/d ≤ 1/2 + ε. ��
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14. Halldórsson, M.M.: Approximating discrete collections via local improvements. In:
Proceedings of the 6th Annual ACM/SIAM Symposium on Discrete Algorithms
(SODA 1995), pp. 160–169 (1995)
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Abstract. We study communication problems in wireless networks sup-
porting multiple interfaces. In such networks, two nodes can communi-
cate if they are close and share a common interface. The activation of
each interface has a cost reflecting the energy consumed when a node uses
this interface. We distinguish between the symmetric and non-symmetric
case, depending on whether all nodes have the same activation cost for
each interface or not. For the symmetric case, we present a (3/2 + ε)–
approximation algorithm for the problem of achieving connectivity with
minimum activation cost, improving a previous bound of 2. For the non-
symmetric case, we show that the connectivity problem is not approx-
imable within a sublogarithmic factor in the number of nodes and present
a logarithmic approximation algorithm for a more general problem that
models group communication.

1 Introduction

Wirelessnetworks have received significant attention during the recent years.They
support a wide range of popular applications and usually constitute parts of larger,
global networks, and the Internet. Wireless networks are in general heterogeneous
in the sense that they are composed of wireless devices of different characteris-
tics like computational power, energy consumption, radio interfaces, supported
communication protocols, etc. Modern wireless devices are equipped with multi-
ple radio interfaces (like most commonly wireless interfaces in use today such as
Bluetooth, WiFi and GPRS) and can switch between different communication net-
works according to connectivity requirements and quality of service constraints
(see Fig. 1). Selecting the best radio interfaces for specific connections depends
on several factors, like for example, availability of an interface at a particular de-
vice, interference constraints, the necessary communication bandwidth, the energy
consumed by an active interface and its lifetime, the interfaces available in some
neighborhood, topological properties of the network, etc.
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Fig. 1. Modern wireless devices are equipped with multiple radio interfaces and can
switch between different communication networks

We study communication problems in wireless networks supporting multiple
interfaces. The nodes of such networks are wireless devices equipped with some
wireless interfaces. Communication between two such nodes can be established
if (i) they are sufficiently close to each other and (ii) both share a common inter-
face. If these requirements are met, then communication is established at a cost
equal to the cost of activating a particular interface which is common in both
nodes. The activation cost of an interface reflects the energy consumed when a
node uses this interface. Our objective is to activate interfaces at the network
nodes so that some connectivity property is preserved and the total cost of acti-
vated interfaces is minimized. Depending on the required connectivity property,
several communication problems in multi-interface wireless networks arise. We
consider two such problems: ConMI and GroupMI. In ConMI, we require that
the communication is established among all network nodes. In GroupMI, com-
munication must be established among groups of nodes (that do not necessarily
include all nodes of the network). ConMI is a special case of GroupMI. We dis-
tinguish between two cases. The more general one is when the activation cost for
some interface is not the same at all network nodes; this is the non-symmetric
case. In the symmetric case of the problem, the cost of activating a particular
interface is the same at all network nodes.

Related work. Multi-interface wireless networks have recently attracted research
interest since they have emerged as a de facto communication infrastructure
and can support a wide range of important and popular applications. In this
setting, many basic problems already studied for “traditional” wired and wireless
networks have been restated [2], especially those related to network connectivity
[5,8] and routing [6] issues. However, the energy efficiency requirements increase
the complexity of these problems and pose new challenges.

A combinatorial problem that falls within the general class of communication
problems in multi-interface wireless networks has been studied in [11]. In that
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paper, a graph with desired connections between network nodes is given and the
objective is to activate interfaces of minimum total cost at the network nodes so
that all the edges in this graph are established. Several variations of the problem
are considered depending on the topology of the input graph (e.g., complete
graphs, trees, planar graphs, bounded-degree graphs, general graphs) and on
whether the number of interfaces is part of the input or a fixed constant. The
paper considers both unit-cost interfaces and more general symmetric instances.

ConMI has been introduced in [12] which studies symmetric instances of the
problem. ConMI is proved to be APX-hard even when the graph modeling the
network has a very special structure and the number of available interfaces is
small (e.g., 2). On the positive side, [12] presents a 2-approximation algorithm
by exploiting the relation of ConMI on symmetric instances with the minimum
spanning tree on an appropriately defined edge-weighted graph. Better approx-
imation bounds are obtained for special cases of ConMI such as the case of
unit-cost interfaces.

Our results. We distinguish between the symmetric and non-symmetric case,
depending on whether all nodes have the same activation cost for an interface or
not. For the symmetric case, we present a (3/2+ ε)–approximation algorithm for
ConMI, improving the previously best known bound of 2 from [12]. The main
idea of the algorithm is to use an almost minimum spanning tree (MST) in an
appropriately defined hypergraph and transform it to an efficient solution for
ConMI. We also consider GroupMI for symmetric instances where we obtain a
4-approximation algorithm; here, we transform instances of the problem to in-
stances of Steiner Forest in a similar way [12] transforms ConMI to MST. For the
non-symmetric case, we show that the connectivity problem is not approximable
within a sublogarithmic factor in the number of nodes through a reduction from
Set Cover, and present a logarithmic approximation algorithm for the more gen-
eral GroupMI problem. Here, we transform instances of the problem to instance
of Node-Weighted Steiner Forest and exploit approximation algorithms of Guha
and Khuller [10] (see also [1]) for Node-Weighted Steiner Forest. We remark that
techniques for the Node-Weighted Steiner Forest have also been applied either
implicitly [3] or explicitly [4] to minimum energy communication problems in
ad hoc wireless networks. To the best of our knowledge, neither GroupMI nor
non-symmetric instances of multi-interface wireless networks have been studied
before.

The rest of the paper is structured as follows. We present some preliminary
technical definitions and our notation in Section 2. The upper bound for sym-
metric instances of ConMI appears in Section 3. The algorithm for GroupMI is
presented in Section 4. The results for non-symmetric instances of GroupMI are
presented in Section 5.

2 Definitions and Notation

The wireless network is modelled by a graph G in which nodes correspond to
network nodes and edges represent potential direct connections between pairs
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of network nodes. We denote by I the set of available interfaces. Each node
u supports a set Iu ⊆ I of interfaces. Two nodes u and v can communicate
when they have the same interface activated provided that there exists an edge
between them in G. Given a set of activated interfaces Su ⊆ Iu at each node u,
we define the communication graph GS that has the same set of nodes with G
and an edge e = (u, v) of G belongs to GS if Su ∩ Sv = ∅. Activating interface g
at node u has a non-negative cost cu,g. Our objective is to activate interfaces at
the nodes of G so that the induced communication graph has some connectivity
property and the total cost of activated interfaces is minimized. Depending on
the required connectivity property, several communication problems in multi-
interface wireless networks arise. We consider two such problems: ConMI and
GroupMI. In ConMI, we require that the communication graph is connected and
spans all nodes of G. In GroupMI, we are additionally given a set of terminal
nodes D ⊆ V partitioned into p disjoint subsets D1, D2, ..., Dp. Here, for i =
1, ..., p, we require the communication graph to connect the terminal nodes of
Di. Clearly, ConMI is a special case of GroupMI. We distinguish between two
cases. The more general one described above is the non-symmetric case. In the
symmetric case of the problem, the cost of activating interface g at each node is
the same and equal to cg.

In the following we usually refer to well-known combinatorial optimization
problems such as the Steiner Forest and the Node-Weighted Steiner Forest. In
both problems, the input consists of a graph G = (V,E) and a set of terminals
D ⊆ V partitioned in p disjoint subsets as in GroupMI, and the objective is to
compute a forest of minimum total cost (weight) so that the terminals in the
subset Di belong to the same tree of the forest. In Steiner Forest, each edge e of
G has an associated non-negative weight we; in Node-Weighted Steiner Forest,
the edges are unweighted and each node u has a weight wu.

3 A ConMI Algorithm for the Symmetric Case

We present a (3/2+ε)–approximation algorithm for the symmetric case of ConMI
improving the previously known upper bound of 2.

Our algorithm works as follows. Consider an input instance J , a set of avail-
able interfaces I and sets Iu of interfaces supported at each node u. First, we
transform the graph G into an instance of the problem of computing a minimum
spanning tree (MST) in an appropriately defined hypergraph H . Then, we solve
almost exactly the MST problem in H using a polynomial-time approximation
scheme of Prömel and Steger [13]. We use the resulting tree to determine the
interfaces to activate in the nodes of G so that the corresponding communica-
tion graph is a connected spanning subgraph of G. This is the output of our
algorithm. We show that the algorithm obtains an approximation guarantee of
3/2 + ε, where ε is the approximation guarantee of the MST algorithm in the
hypergraph H .

The hypergraph H = (V, F ) has the same set of nodes as the graph G. We
define the set of edges F of H as follows. We consider all triplets of nodes
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vi, vj , vk so that Ivi ∩ Ivj ∩ Ivk
= ∅ which are connected with at least two edges

among them in G. We insert the triplet (vi, vj , vk) as a hyperedge f of F . We
denote by s(f) the interface in Ivi ∩ Ivj ∩ Ivk

of minimum cost; we call s(f) the
interface associated with hyperedge f . We assign to f a weight of 3cs(f). This
corresponds to the fact that by activating interface s(f) at nodes vi, vj , vk, the
edges connecting them are contained in the corresponding communication graph
at a cost of 3cs(f).

We consider all pairs of nodes vi, vj so that Ivi ∩ Ivj = ∅ which are connected
with an edge in G. We insert the pair (vi, vj) as a hyperedge f of F . Again, we
denote by s(f) the interface in Ivi∩Ivj of minimum cost. We assign to f a weight
of 2cs(f). This corresponds to the fact that by activating s(f) at nodes vi, vj , the
edge connecting them is contained in the corresponding communication graph
at a cost of 2cs(f).

Since the edges of the hypergraph H consist of at most 3 nodes, we use the
polynomial-time approximation scheme of [13] to obtain a spanning tree T of H .
For each edge f of T , we activate interface s(f) at the nodes of G that belong to
f . In this way, in the corresponding communication graph the nodes belonging
to the same hyperedge of T are connected and since T is connected and spans
all nodes of V , the whole communication graph is a spanning subgraph of G, as
well.

We denote by cost(J) the total cost of the solution obtained by our algorithm,
by opt(J) the cost of the optimal solution, by mst(H) the cost of the minimum
spanning tree of H and by st(H) the cost of the spanning tree T . We prove the
following two lemmas.

Lemma 1. cost(J) ≤ st(H).

Proof. Since the set Su of interfaces activated at each node u consists of interfaces
associated with the hyperedges of T that contain u, it holds:

cost(J) =
∑
u∈V

∑
g∈Su

cg ≤
∑
u∈V

∑
f∈T :u∈f

cs(f) =
∑
f∈T

w(f) = st(H). ��

Lemma 2. mst(H) ≤ 3
2opt(J).

Proof. Consider an optimal solution to ConMI for instance J that consists of
sets of interfaces Su activated at each node u of G. We denote by S the set
of all activated interfaces and by GS the corresponding communication graph.
We decompose GS into different subgraphs; there is one such subgraph for each
interface of S. We denote by Gg the subgraph of G consisting of the set of nodes
Vg which have interface g activated in the optimal solution and of the set of
edges Eg connecting nodes of Vg in G. Clearly, opt(J) =

∑
g∈S cg|Vg|. For each

g ∈ S, we compute a minimum spanning tree on each connected component of
Gg; the minimum spanning trees on the connected components of Gg form a
forest Tg.

We decompose the edges of Tg into special substructures that we call forks; a
fork is either a set of two edges incident to the same node or a single edge. In each
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connected component of Tg with m nodes, the procedure that decomposes its
edges into forks is the following. If there are two leaves u and v with a common
parent, we include the edges incident to u and v in a fork. We remove u, v, and
their incident edges from the tree. If no two leaves have a common parent, then
some leaf u has a node v of degree 2 as a parent or there is only one remaining
edge between two nodes u and v. In the first case, we include the edges incident
to u and v in a fork and remove u, v, and their incident edges from the tree.
In the second case, we simply include the edge between u and v in a fork and
remove it from the tree. We repeat the procedure above until all edges of the tree
are included in forks. In each step (possibly besides the last one), 2 among the at
most m− 1 edges of the tree are included in a fork. Hence, the number of forks
is at most m/2. By repeating this decomposition for each connected component
of Tg, we obtain a decomposition of the edges of Tg into at most |Vg|/2 forks.
The endpoints of each fork of Tg correspond to a hyperedge in H with weight at
most 3cg. The union of all these hyperedges is a connected spanning subgraph
of H (since the union of the Tg’s yields GS). The cost of the minimum spanning
tree of H is upper-bounded by the total cost of the hyperedges in this spanning
subgraph, i.e.,

mst(H) ≤
∑
g∈S

3cg
|Vg|
2

=
3
2
opt(J). ��

By Lemmas 1 and 2 and since st(H) ≤ (1 + ε)mst(H), we obtain the following:

Theorem 1. For any constant ε > 0, there exists a polynomial-time (3/2 + ε)–
approximation algorithm for ConMI.

4 Group Communication in the Symmetric Case

In this section, we present an algorithm for symmetric instances of GroupMI
that has a constant approximation ratio. The main idea of the algorithm is
similar to the algorithm of Kosowski et al. [12] for ConMI but instead of using
a polynomial-time algorithm for MST, we use the 2-approximation algorithm of
Goemans and Williamson [9] for the Steiner Forest problem.

Consider an instance J of GroupMI with a graph G = (V,E) with n nodes, a
set of terminal nodes D ⊆ V partitioned into p disjoint subsets D1, ..., Dp and
sets Iu of interfaces supported by each node u ∈ V . We construct an instance
JSF of Steiner Forest consisting of a graph H = (V,A) and the set of terminals
D partitioned into the same p disjoint subsets of terminals. The set of edges A
contains all edges (u, v) of E such that Iu ∩ Iv = ∅. Consider an edge e = (u, v)
of A and let s(e) be the interface of minimum cost in Iu ∩ Iv. Then, the weight
we of e is equal to 2cs(e).

We use the algorithm of [9] to solve Steiner Forest for the instance JSF and
obtain a forest F which preserves connectivity among the nodes of each terminal
set Di. We obtain the solution to the original instance J as follows. For each
interface edge e in F , we activate interface s(e) at the endpoints of e. Clearly, in
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this way the edges of G that correspond to F are contained in the corresponding
communication graph and the required connectivity requirements for instance J
are satisfied.

The upper bound on the approximation ratio of the algorithm is given in the
following statement. The proof is obtained by extending the arguments used
in [12].

Theorem 2. There exist a 4-approximation algorithm for symmetric instances
of GroupMI.

Proof. Omitted. ��

5 Group Communication in the Non-symmetric Case

In this section, we consider the problem GroupMI for non-symmetric instances.
In this case, even the simpler problem ConMI does not have constant approxi-
mation algorithms as the following statement indicates.

Theorem 3. Non-symmetric ConMI in networks with n nodes is hard to ap-
proximate within o(lnn).

Proof. We use a simple reduction from Set Cover. Consider an instance of Set
Cover with a ground set U of m elements and a collection T of subsets of U .
The size of the collection T is polynomial in m. We construct an instance of
ConMI as follows. The set of interfaces I has two interfaces 0 and 1. The graph
G has a root node r, nodes u1, ..., u|T | corresponding to the sets of T , and nodes
v1, ..., vm corresponding to the elements of U . Node r supports only interface 0
(i.e., Ir = {0}) with an activation cost 0. Nodes u1, ..., u|T | support interfaces
0 and 1 (i.e., Iui = {0, 1}) with activation costs 0 for interface 0 and 1 for
interface 1. For i = 1, ...,m, node vi supports only interface 1 (Ivi = {1}) with
an activation cost 0. For each set Ti of T , node ui is connected through an edge
with each node vj so that element j belongs to the set Ti. The root node r has
edges to each node ui, for i = 1, ..., |T |.

We can easily show that any cover of U with C sets from T yields a solution
to ConMI with cost at most C and vice versa. Indeed, consider a solution to the
Set Cover instance that consists of a subset of T ′ of T . By activating interface
0 at nodes r, u1, ..., uT and interface 1 at nodes v1, ..., vm and nodes ui, such
that i ∈ T ′, we obtain a solution to the ConMI instance of cost |T ′|. Also, given
a solution to the ConMI instance, we obtain a cover of U of the same cost by
picking the sets of T that correspond to the nodes ui which have interface 1
activated. Using well-known inapproximability results for Set Cover [7,14], we
obtain an inapproximability bound of τ lnm. Since the number of nodes n in the
instance of ConMI is polynomial in m, we obtain the desired result. ��

Next, we present an O(lnn)–approximation algorithm for non-symmetric
GroupMI by reducing the problem to instances of Node-Weighted Steiner For-
est. The reduction is similar to reductions for minimum energy communication
problems in ad hoc wireless networks [4].
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Consider an instance J of GroupMI with a graph G = (V,E) with n nodes, a
set of terminal nodes D ⊆ V partitioned into p disjoint subsets D1, ..., Dp and
sets Iu of interfaces supported by each node u ∈ V . We construct an instance
of Node-Weighted Steiner Forest consisting of a graph H = (U,A) and a set
of terminals D′ ⊆ U partitioned into p disjoint subsets D′

1, ..., D
′
p. The graph

H is defined as follows. The set of nodes U consists of n disjoint sets of nodes
called supernodes. Each supernode corresponds to a node of V . The supernode
Zu corresponding to node u ∈ V has the following |Iu| + 1 nodes: a hub node
Zu,0 and |Iu| bridge nodes Zu,g for each interface g ∈ Iu. For each pair of nodes
u, v ∈ V and each interface g ∈ Iu ∩ Iv, the set A of edges contains an edge
between the bridge nodes Zu,g and Zv,g. Also, for each node u ∈ V , A contains
an edge between the hub node Zu,0 and each bridge node Zu,g, for g ∈ Iu. Each
hub node has weight 0. A bridge node Zu,g corresponding to node u ∈ V and
interface g ∈ Iu has weight equal to the activation cost cu,g of interface g at node
u. The set of terminals D′ consists of all the hub nodes. For i = 1, ..., p, the set
D′

i in the partition of D′ consists of the hub nodes Zu,0 for each node u ∈ Di.
We denote by JNWSF the resulting instance of Node-Weighted Steiner Forest.

We use a known algorithm for solving Node-Weighted Steiner Forest for the
instance JNWSF and obtain a forest F which is a subgraph of H without isolated
nodes and which preserves connectivity among the nodes of each terminal set
Di. We obtain the solution S to the original instance J as follows. For each
interface g in Iu, we include g in Su iff Zu,g is a node of F .

The next lemma captures the main property of the reduction.

Lemma 3. If F is a ρ–approximate solution to JNWSF , then S is a ρ–
approximate solution to J .

Proof. Let u, v be nodes belonging to the same terminal set Di. Then, the
hub nodes Zu,0 and Zv,0 belong to the set D′

i and there exists a path q from
Zu,0 to Zv,0 in F . The edges of q are either edges connecting a hub node with a
bridge node in the same supernode or bridge nodes between different supernodes.
Consider the edges of q that connect bridge nodes of different supernodes in the
order we visit them by following path q from Zu,0 to Zv,0. For each such edge
(Zx,g, Zy,g) the edge (x, y) belongs to G and all of them define a path q′ from
u to v in G. Since Zx,g and Zy,g belong to F , nodes x and y have interface g
activated and hence the edges of q′ belong to the induced communication graph.

In the following we show that the total activation cost cost(J) of our solution
equals the cost cost(JNWSF ) of F and that the optimal activation cost opt(J)
is lower-bounded by the cost opt(JNWSF ) of the optimal solution for JNWSF .
In this way, we obtain that

cost(J) = cost(JNWSF ) ≤ ρ · opt(JNWSF ) ≤ ρ · opt(J).

Indeed, interface g is activated at node u only if the bridge node Zu,g belongs
to F . Since, w(Zu,g) = cu,g, we have that the total activation cost of our solution
for J is equal to the cost of F .

Now, consider an optimal solution to J consisting of sets Su of activated
interfaces at each node u of G. We construct a subgraph F ′ of H as follows.
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For each edge (u, v) in the communication graph GS , and for each interface
g belonging to Su ∩ Sv, we add edge (Zu,g, Zv,g) to F ′. For each node u and
each interface g ∈ Su, we add edge (Zu,0, Zu,g) to F ′. Using similar reasoning
as above, we obtain that F ′ maintains the connectivity requirement between
nodes of the same terminal set D′

i and the total weight of its nodes equals the
total activation cost in the optimal solution of J . Hence, the cost of the optimal
solution of JNWSF is not higher than the cost of F ′. ��

In [10], Guha and Khuller present a 1.61 lnk–approximation algorithm for Node-
Weighted Steiner Forest, where k is the number of terminals in the graph. We
use this algorithm to solve JNWSF , and following the discussion above we obtain
a solution of J which is within 1.61 ln |D| of optimal. Thus, we have:

Theorem 4. There exists a 1.61 ln |D|–approximation algorithm for non-
symmetric GroupMI, where D is the set of terminals.

Moreover, if J is an instance of ConMI, then p = 1 and the instance JNWSF is
actually an instance of Node-Weighted Steiner Tree which can be approximated
within 1.35 lnk.

Theorem 5. There exists a 1.35 lnn–approximation algorithm for non-
symmetric ConMI with n network nodes.
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Abstract. Algorithmic mechanism design considers distributed settings
where the participants, termed agents, cannot be assumed to follow the
protocol but rather their own interests. The protocol can be regarded as
an algorithm augmented with a suitable payment rule and the desired
condition is termed truthfulness, meaning that it is never convenient for
an agent to report false information.

Motivated by the applications, we extend the usual one-parameter
and multi-parameter settings by considering agents with private capac-
ities: each agent can misreport her cost for “executing” a single unit of
work and the maximum amount of work that each agent can actually ex-
ecute (i.e., the capacity of the agent). We show that truthfulness in this
setting is equivalent to a simple condition on the underlying algorithm.
By applying this result to various problems considered in the literature
(e.g., makespan minimization on related machines) we show that only
some of the existing approaches to the case “without capacities” can be
adapted to the case with private capacities. This poses new interesting
algorithmic challenges.

1 Introduction

Algorithmic mechanism design considers distributed settings where the partici-
pants, termed agents, cannot be assumed to follow the protocol but rather their
own interests. The designer must ensure in advance that it is in the agents’ inter-
est to behave correctly. The protocol can be regarded as an algorithm augmented
with a suitable payment rule and the desired condition is termed truthfulness,
meaning that it is never convenient for an agent to report false information. We
begin with an illustrative example:

Example 1 (scheduling related machines [2]). We have two jobs of size, say, 1
and 2 to be scheduled on two machines. Each allocation specifies the amount of
work that is allocated to each machine (the sum of the jobs sizes). Each machine
has a type ti which is the time (cost) for processing one unit of work; that is, the
type is the inverse of the machine’s speed. An allocation, x, assigns an amount
of work wi(x) to machine i and thus its completion time (cost) is equal to

wi(x) · ti. (1)
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The goal is to compute an allocation that minimizes the “overall” cost

max{w1(x) · t1, w2(x) · t2} (2)

that is the so called makespan. The type of each machine is only known to its
owner (agent) who incurs a cost equal to the completion time of her machine
(the quantity in Equation 1). Each agent may find it convenient to misreport her
type so to induce the underlying algorithm to assign less work to her machine.

This is a typical one-parameter mechanism design problem, meaning that each
agent has a private type representing the cost for executing one unit of work.
The goal is to compute a solution minimizing some “global” cost function which
depends on the types of all agents (in the above example, the quantity in Equa-
tion 2). The underlying algorithm is then augmented with a suitable payment
function so that each agent finds it convenient to report her type truthfully.
This important requirement is commonly termed truthfulness of the resulting
mechanism (“algorithm + payments”). Truthful mechanisms guarantee that the
underlying algorithm receives the “correct” input because no agent has a reason
to misreport her type.

In this work we introduce and study the natural extension of the one-parameter
setting in which agents have private capacities and thus can “refuse” allocations
that assign them amounts of work above a certain value (see Section 1.1 for the for-
mal model). This setting is naturally motivated by various applications in which
agents are not capable or willing to execute arbitrary amounts of work:

– A router can forward packets at a certain rate (per-packet cost), but an
amount of traffic exceeding the capacity of the router will “block” the router
itself.

– In wireless networks, each node acts as a router and the energy consump-
tion determines the per-packet-cost of the node. The battery capacity of
each node determines the maximum amount of packets (work) that can be
forwarded.

– Agents can produce identical goods at some cost (per unit) and their ca-
pacities represent the maximum amount of goods that each of them can
produce.

Truthful mechanisms for the case without capacities need not remain truthful in
this new setting. We show that a simple “monotonicity” condition characterizes
truthfulness for the case of one-parameter agents with private capacities (Theo-
rem 3). This translates into an algorithmic condition on the underlying algorithm
(Corollary 1). We apply this result to the various problems previously consid-
ered in the literature to see which of the existing techniques/results extend to
our setting. Roughly, all mechanisms for one-parameter settings (without capac-
ities) that are based on “lexicographically optimal” algorithms remain truthful
(for the case with capacities) as they satisfy the above monotonicity condition
(Section 3.1). This is not true for other mechanisms because the underlying
algorithm is no longer monotone when capacities are introduced (Section 3.3).



114 V. Auletta, P. Penna, and G. Persiano

We then move to multidimensional domains which provide a more powerful
and general framework. By considering differend “kind” of work and a capacity
for each of them one can easily model rather complex problems like, for instance,
scheduling with restricted assignment on unrelated machines (i.e., each machine
can execute only certain jobs and the execution times change arbitrarily from
machine to machine). Here we observe that there is no “simple” monotonicity
condition that characterizes truthfulness, even when the problem without capac-
ities has a domain which does have such simple characterization (Section 4).

Connections with existing work. Algorithmic mechanism design questions have
been raised in the seminal work by Nisan and Ronen [13]. Mechanism design is a
central topic in game theory, with the celebrated Vickrey-Clarke-Groves [17,5,7]
mechanisms been probably the most general positive result. These mechanisms
work for arbitrary domains, but require the problems’ objective to be the so
called (weighted) social welfare: essentially, to minimize the (weighted) sum of all
agents’ costs. Roberts’ theorem [14] says that these are the only possible truthful
mechanisms for domains that allow for arbitrary valuations. Therefore, most
of the research has been focused on specific (restricted) domains and to other
global cost functions like, for instance, the makespan in scheduling problems
[13,2,1,11,10] or other min-max functions.

Rochet’s [15] is able to characterize truthfulness in terms of the so-called
“cycle monotonicity” property. In this paper, we refer to the interpretation of
cycle monotonicity given by Gui et al [8] in terms of graph cycles which gives us a
simple way for computing the payments. However, cycle monotonicity is difficult
to interpret and to use. To our knowledge, the work by Lavi and Swamy [10]
is the first (and only) one to obtain truthful mechanisms for certain two-values
scheduling domains directly from Rochet’s cycle monotonicity [15].

Bikhchandani et al [4] propose the simpler two-cycle monotonicity property
(also known as weak-monotonicity) and showed that it characterizes truthfulness
for rather general domains. We refer to domains for which two-cycle monotonic-
ity characterizes truthfulness as monotonicity domains. Monotonicity domains
turn out to be extremely important because there the construction of the mecha-
nism (essentially) reduces to ensuring that the algorithm obeys relatively simple
(two-cycle monotonicity) conditions. Saks and Yu [16] showed that every convex
domain is a monotonicity domain. Our main result is that also one-parameter
domains with private capacities are monotonicity domains. The resulting char-
acterization generalizes prior results by Myerson [12] and by Archer and Tardos
[2] when the set of possible solutions is finite. We remark that domains obtained
by adding private capacities are not convex and our result for the two-parameter
case implies that the characterization by Saks and Yu [16] cannot be used here.
Dobzinski et al [6] studied auctions with budget-constrained bidders. Also these
domains are different from ours because they put a bound on the payment ca-
pability of the agents, while in our problems bounds are put on the assignment
of the algorithm. Our positive results on min-max objective functions use ideas
by Archer and Tardos [2], Andelman et al [1], Mu’alem and Shapira [11], and
they extend some results therein to the case with private capacities.
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1.1 Agents with Private Capacities

We are given a finite set of feasible solutions. In the one-parameter setting, every
solution x assigns an amount of work wi(x) to agent i. Agent i has a monetary
cost equal to costi(ti, x) = wi(x) · ti where ti ∈ #+ is a private number called
the type of the agent. This is the cost per unit of work and the value is known
only to agent i. We extend the one-parameter setting by introducing capacities
for the agents. An agent will incur an infinite cost whenever she gets an amount
of work exceeding her capacity ci ∈ #+, that is

costi(ti, ci, x) =
{
wi(x) · ti if wi(x) ≤ ci
∞ otherwise

Each agent makes a bid consisting of a type-capacity pair bi = (t′i, c
′
i), possibly

different from the true ones. An algorithm A must pick a solution on input the
bids b = (b1, . . . , bn) of all agents, and a suitable payment function P assigns a
payment Pi(b) to every agent i. Thus, the utility of this agent is

utilityi(ti, ci, b) := Pi(b)− costi(ti, ci, A(b)).

Truthtelling is a dominant strategy with respect to both types and capacities
if the utility of each agent is maximized when she reports truthfully her type
and capacity, no matter how we fix the types and the capacities reported by the
other agents. Formally, for every i, for every ti and ci, and for every b as above

utilityi(ti, ci, (ti, ci, b−i)) ≥ utilityi(ti, ci, b)

where (ti, ci, b−i) := (b1, . . . , bi−1, (ti, ci), bi+1, . . . , bn) is the n-vector obtained
by replacing bi = (t′i, c

′
i) with (ti, ci).

Definition 1. An algorithm A is truthful for one-parameter agents with pri-
vate capacities if there exists a payment function P such that truthtelling is a
dominant strategy with respect to both types and capacities.

We consider only algorithms that produce an allocation which respects the capac-
ities (no agent gets more work than her reported capacity). A simple (standard)
argument reduces truthfulness of A to the truthfulness of the work functions of
the single agents (see Section 1.1).

Multidimensional settings. In the multidimensional or k-parameter setting each
type, capacity, and work is a vector of length k. Agent i has a type ti =
(t1i , . . . , t

k
i ), a capacity ci = (c1i , . . . , c

k
i ), and she is assigned some amount of

work wi = (w1
i , . . . , w

k
i ). The resulting cost is

wi · ti =
∑

j

wj
i · t

j
i

provided the j-th amount of work wj
i does not exceed the corresponding capacity

cji for all j (wi ≤ ci component-wise). The cost is instead ∞ if some capacity is
violated (wi ≤ ci).
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Example 2 (agents with several related machines). Each agent i owns two related
machines whose processing times are t1i and t2i . Every job allocation x assigns an
amount of work w1

i (x) and w2
i (x) to these machines, respectively. The cost for

the agent is the sum of the costs of her machines, that is, w1
i (x) · t1i +w2

i (x) · t2i .

Example 3 (unrelated machines [13]). Each machine corresponds to an agent.
The corresponding type is a vector ti = (t1i , . . . , t

k
i ), where tji is the processing

time of job j on machine i and k is the number of jobs that need to be scheduled.
Each job allocation x specifies a binary vector wi(x) with wj

i (x) = 1 iff job j
is allocated to machine i. The cost for agent i is the completion time of her
machine, that is wi(x) · ti =

∑
j w

j
i (x) · t

j
i . The variant in which machines can

execute only certain jobs (restricted assignment) can be modelled with binary
capacity vectors ci: machine i can execute jobs j iff cji = 1.

A simple reduction to the single-agent case. In this section we present a
simple (standard) reduction that allows us to study truthfulness for the case of a
single agent. The truthfulness of an algorithm A can be reduced to a condition on
what we call below its single agent work functions: That is, the amount of work
that A assigns to a fixed agent i, depending on her reported type and capacity,
and having fixed the types and the capacities of all other agents. Each agent
receives an amount of work and a payment according to some work function f
and a suitable payment function p. Recall that the algorithm (and thus f) will
always assign an amount of work that does not exceed the reported capacity.
Hence, infinite costs occur only when the agent misreports her capacity. In the
following definition, we consider t′ and c′ as the type and capacity reported by
the agent, and t and c are the true ones.

Definition 2. A work function f is truthful for a one-parameter agent with
private capacity if there exist a payment function p such that, for every types t
and t′ and capacities c and c′,

p(t, c)− f(t, c) · t ≥ p(t′, c′)−
{
f(t′, c′) · t if f(t′, c′) ≤ c
∞ otherwise

For every i and for every fixed sub-vector b−i = (bi, . . . , bi−1, bi+1, . . . , bn), agent
i receives an amount of work

wA
i (t′i, c

′
i, b−i) := wi(A(b1, . . . , bi−1, (t′i, c

′
i), bi+1, . . . , bn)

where t′i and c′i are the type and the capacity reported by i. Dominant strategies
are equivalent to the fact that i’s utility is maximized when she is truthtelling,
no matter how we have fixed i and b−i. Since the utility of i is given by the
work function f(·) = wA

i (·, b−i) and by the payment function p(·) = Pi(·, b−i),
we have

Fact 1. An algorithm A is truthful if and only if every single agent work function
f(·) = wA

i (·, b−i) is truthful.
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Cycle monotonicity and truthfulness. The material in this section is based
on the cycle monotonicity approach by Rochet [15] and its recent interpretation
by Gui et al [8] in terms of graph cycles. Because of the reduction in the previous
subsection, we consider the case of a single agent and its work function f . We
shall see that f is truthful if and only if a suitable weighted graph associated to
f contains no negative cycles [15,8]. The graph in question is defined as follows.
Since the set of feasible solutions is finite, the amount of work that can be
allocated to this agent must belong to some finite set W = {. . . , w, . . . , w′, . . .}.
We associate to f the following complete directed graph over |W | nodes, one for
each possible workload. The length of an edge w→ w′ is

δww′ := inf{t · (w′ − w)| t ∈ #+ and there exists c ≥ w′ such that f(t, c) = w}

where inf ∅ = ∞. The length of a cycle in this graph is the sum of the lengths
of its edges.

Remark 1. Intuitively speaking, we think of w as the work when reporting the
“true” type and capacity (t and c) and w′ being the work when reporting some
“false” type and capacity (t′ and c′). Since every “lie” leading to a work exceeding
the true capacity cannot be beneficial, we need to consider only the case w′ ≤ c.
Then the condition for being truthful can be rewritten as pw +δww′ ≥ pw′ , where
pw and pw′ are the payments received in the two cases, respectively. When there
is no “lie” that is potentially beneficial for the agent, we set δww′ =∞ which is
mathematically equivalent to the fact that we do not add any constraint between
these two payments.

The length of a cycle in this graph is the sum of the lengths of its edges.

Definition 3 (monotone [15,8]). A function f is monotone if its associated
graph contains no cycle of negative length.

Rochet [15] showed that the above condition characterizes truthfulness. In par-
ticular, the weaker condition that every two-cycle has nonnegative length is
always necessary. We restate the latter (necessary) condition for our setting and
Rochet’s theorem below.

Definition 4 (two-cycle monotone). A function f is two-cycle monotone if
for every (t, c) and (t′, c′) it holds that

(t− t′) · (w′ − w) ≥ 0 or c ≥ w′ or c′ ≥ w

where w = f(t, c) and w′ = f(t′, c′).

Theorem 2 ([15]). Every truthful function must be two-cycle monotone. Every
monotone function is truthful.

While the above result has been originally stated for finite valuations/costs, it
can be easily extended to our setting (where “unfeasible” solutions are modelled
by means of infinite costs) using the arguments in [8] (the proof is given in the
full version of this work [3]).

Remark 2. The above result applies also to the multidimensional case.
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2 Characterizations for One-Parameter Agents

We show that two-cyclemonotonicity characterizes truthfulness forone-parameter
agents with private capacities. In particular, this necessary condition is also suffi-
cient:

Theorem 3. A function is truthful for one-parameter agents with private ca-
pacities if and only if it is two-cycle monotone.

Proof. Since two-cycle monotonicity is a necessary condition (see Theorem 2),
we only need to show that it is also sufficient. We prove that every two-cycle
monotone function, for one-parameter agents with private capacities, is mono-
tone (and thus truthful because of Theorem 2).

We consider only cycles whose edges have finite length (because otherwise the
total length is obviously non-negative). We show that for any cycle with at least
three edges, there exists another cycle with fewer edges and whose length is not
larger. This fact, combined with the two-cycle monotonicity, implies that there
is no cycle of negative length.

Given an arbitrary cycle of three or more edges, we consider the node with
maximal work ŵ in the cycle. We thus have three consecutive edges in the path,
say w → ŵ → w′ with

ŵ > w and ŵ > w′.

If nodes w and w′ coincide, then the path w → ŵ → w′ is actually a two-
cycle. The two-cycle monotonicity says that δwŵ + δŵw ≥ 0. If we remove these
two edges we obtain a cycle with fewer edges and whose length is not larger
compared to the original cycle.

Otherwise, we show that a shorter cycle can be obtained by replacing the path
w → ŵ→ w′ with edge w → w′. Towards this end, we show that

δww′ ≤ δwŵ + δŵw′ . (3)

For every ε > 0 and for every w(1) and w(2) such that δw(1)w(2) <∞, there exist
t(1) and c(1) ≥ w(2) such that w(1) = f(t(1), c(1)) and

t(1) · (w(2) − w(1)) = δw(1)w(2) + ε∗

for some ε∗ satisfying 0 ≤ ε∗ ≤ ε. In particular, since δwŵ and δŵw′ are both
different from ∞, we can find t, c ≥ ŵ and t̂, ĉ ≥ w′ such that

t · (ŵ − w) + t̂ · (w′ − ŵ) = δwŵ + δŵw′ + ε∗

where ε∗ satisfies 0 ≤ ε∗ ≤ ε. Observe that ĉ ≥ ŵ > w and thus the two-cycle
monotonicity

(t− t̂)(ŵ − w) ≥ 0

implies t̂ ≤ t. This and ŵ > w′ imply that

t · (ŵ − w) + t̂ · (w′ − ŵ) ≥ t · (w′ − w).
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Since c ≥ ŵ > w′, we have

δww′ ≤ t · (w′ − w).

By putting things together we obtain

δww′ ≤ δwŵ + δŵw′ + ε

for every ε > 0. This implies Equation 3. Hence, by replacing the two edges
w → ŵ → w′ with edge w → w′ we obtain a cycle with fewer edges and whose
length is not larger than the length of the original cycle.

The two-cycle monotonicity condition can be expressed in a more convenient form:

Fact 4. A function f is two-cycle monotone if and only if for every (t, c) and
(t′, c′) with t′ > t it holds that w′ ≤ w or w′ > c, where w = f(t, c) and
w′ = f(t′, c′).

We thus obtain a simple algorithmic condition:

Corollary 1. An algorithm A is truthful for one-parameter agents with private
capacities if and only if every work function is two-cycle monotone. That is, for
every i and for every b−i the following holds. For any two capacities ci, and c′i,
and for any two types ti and t′i with t′i > ti, it holds that

wA
i ((t′i, c

′
i), b−i) ≤ wA

i ((ti, ci), b−i) or wA
i ((t′i, c

′
i), b−i) > ci.

For fixed capacities, this condition boils down to the usual monotonicity of
one-parameter agents [2].

3 Applications to Min-max Problems

In this section we apply the characterization result on one-parameter agents with
capacities to several optimization problems. We show that exact solutions are
possible for min-max objectives (e.g., makespan) and that some (though not all)
known techniques for obtaining approximation mechanisms for scheduling can
be adapted to the case with private capacities.

3.1 Exact Mechanisms Are Possible

Theorem 5. Every min-max problem for one-parameter agents (with private
capacities) admits an exact truthful mechanism.

Proof. We show that the optimal lexicographically minimal algorithm is mono-
tone. We prove the theorem for the case of two agents since the proof can be
generalized to any number of agents in a straightforward manner. Fix and agent
i, and a type t̄ and capacity c̄ for the other agent. Also let wother and w′

other

denote the work assigned to the other agent when agent i gets assigned work w
and w′, respectively (these two values are defined below).
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By contradiction, assume that the function associated to this agent is not
monotone. By virtue of Theorem 2 and from Fact 4 this means that t′ > t,
w′ > w, and c ≥ w′. The latter inequality says that w′ is feasible for capacity c
and thus the optimality of the algorithm implies

max{w · t, wother · t̄} ≤ max{w′ · t, w′
other · t̄}. (4)

Similarly, we have c′ ≥ w′ because w′ must be feasible for c′. Thus w′ > w
implies that w is feasible for c′ and the optimality of the algorithm yields

max{w′ · t′, w′
other · t̄} ≤ max{w · t′, wother · t̄}. (5)

We consider two cases:

1. (w · t′ > wother · t̄.) Since w′ > w, we have max{w′ · t′, w′
other · t̄} ≥ w′ · t′ >

w · t′ = max{w · t′, wother · t̄}, thus contradicting Inequality (5).
2. (w·t′ ≤ wother ·t̄.) Since t < t′, we have w′·t ≤ w′·t′ thus implying that we can

chain the inequality in (4) with the one in (5). This and w·t ≤ w·t′ ≤ wother ·t̄
imply that

max{w · t, wother · t̄} = max{w · t′, wother · t̄}.

Hence, both the inequalities in (4) and (5) hold with ‘=’. This will contradict
the fact that the algorithm picks the lexicographically minimal solution. On
input t and c assigning work w′ is feasible and gives the same cost as assigning
work w. Since the algorithm picks w, instead of w′, we have that w precedes
lexicographically w′. Similarly, on input t′ and c′, the work w is also feasible
and has the same cost as w′. This implies that w′ precedes lexicographically
w, which is a contradiction.

We conclude that each function associated to some agent must be monotone.

3.2 Makespan on Related Machines in Polynomial Time

Andelman et al [1] have obtained a truthful polynomial-time approximation
scheme for a constant number of machines. Their idea is that one precomputes,
in polynomial-time, a set of allocations and then obtains (1 + ε)-approximation
by picking the best solution out of a precomputed set. We can use the very same
idea and pick the solution in a lexicographically minimal fashion as we did to
prove Theorem 5 and obtain the following:

Corollary 2. There exists a polynomial-time (1 + ε)-approximation truthful
mechanism for scheduling selfish machines with private capacities, for any con-
stant number of machines and any ε > 0.

Proof. All we need to show is that we can also compute the payments in poly-
nomial time. Using the characterization by Gui et al [8] the payments can be
computed as the shortest path in the graph defined in Section 1.1 (for each agent
we fix the bids of the others and consider the resulting graph). Notice that the
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graph has size polynomial because we have precomputed a polynomial number
of feasible solutions [1]. The length of each edge corresponds to some breakpoint
in which the work assigned to the machine (agent) under consideration reduces
from w to some w′ < w. The breakpoint is the value α for which

max(α · w,M(w)) = max(α · w′,M(w′))

where M(z) is the minimum makespan, over all solutions assigning work z to the
machine under consideration and ignoring the completion time of this machine
(i.e., the makespan with respect to the other machines).

3.3 Limitations of the Greedy Algorithm

We show that the monotone 3-approximation algorithm by Kovacs [9] cannot
be extended in the “natural” way to the case with private capacities. This algo-
rithm is the greedy LPT algorithm which processes jobs in decreasing order of
their sizes; the current job is assigned to the machine resulting in the smallest
completion time (ties are broken in a fixed order).

The modified version of the greedy algorithm simply assigns a job under con-
sideration to the “best” machine among those for which adding this job does not
exceed the corresponding capacity. It turns out that this modified greedy algo-
rithm is not monotone, for the case with private capacities, even if we restrict
to speeds (processing times) that are power of any constant γ > 1. (Kovacs [9]
proved the monotonicity for γ = 2 and obtained a 3-approximation by simply
rounding the speeds.)

Theorem 6. The modified greedy algorithm is not truthful, even for fixed ca-
pacities and when restricting to speeds that are power of any γ > 1.

Proof. There are three jobs of size 10, 6, and 5, and two machines both having
capacity 11. The processing time of the second machine is γ > 1. We show that
the work function corresponding to the first machine is not two-cycle monotone
(the theorem then follows from Corollary 1).

6

5

1010
6

5

γγ2processing times γ1

capacities

Fig. 1. The proof of Theorem 6

When the first machine has processing time t1 = 1, the algorithm produces the
allocation in Figure 1(left) because after the first job is allocated to the fastest
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machine, the other two jobs must go to the other machine because of the capacity.
Now observe that when the first machine has processing time t′1 = γ2 > t1, the
algorithm simply “swaps” the previous allocation and assigns jobs as shown in
Figure 1(right). It is easy to see that this violates the (two-cycle monotonicity)
condition of Corollary 1 because

10 = wA
1 ((1, 11), (γ, 11)) < wA

1 ((γ2, 11), (γ, 11)) = 11 = c1 = c′1.

This concludes the proof.

4 Multidimensional Domains

In this section we show that two-cycle monotonicity does not characterize truth-
ful mechanisms for the multidimensional case. We prove the result even for the
case of two-parameter domains where each agent gets two amounts of different
kind of work.

Theorem 7. Two-cycle monotonicity does not characterize truthfulness for
two-parameter agents with private capacities.

Proof. We show that there exists a function over a domain with three elements
such that the associated graph is like in Figure 2 (for the moment ignore the
numbers associated to the nodes). Thus the function is two-cycle monotone but
not monotone (there exists a cycle with three edges and negative length).

Each node corresponds to some work which is given in output for the type
and the capacity shown above this node: for example, w = (0, 2) = f(t, c) where
t = (1, 1) and c = (∞,∞).

Observe that edge w′ ← w′′ has length ∞ because work w′
1 = 1 exceeds the

capacity c′′1 = 0. The length of every other edge wa → wb is given by the formula

δwawb = ta · (wb − wa) = ta1 · (wb
1 − wa

1 ) + ta2 · (wb
2 − wa

2 ).

It is easy to check that the length of each edge is the one shown in Figure 2.
This example can be easily extended to a convex domain (details in [3]).

∞

capacities:

work:
1

0 -3

2

(0, 2) (1, 1) (0, 0)
w w′ w′′

types: t′ = (1, 2) t′′ = (1, 1)
c = (∞,∞) c′ = (∞,∞) c′′ = (0,∞)

-2

t = (1, 1)

Fig. 2. Proof of Theorem 7
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Abstract. To make a joint decision, agents (or voters) are often required to pro-
vide their preferences as linear orders. To determine a winner, the given linear
orders can be aggregated according to a voting protocol. However, in realistic
settings, the voters may often only provide partial orders. This directly leads to
the POSSIBLE WINNER problem that asks, given a set of partial votes, if a dis-
tinguished candidate can still become a winner. In this work, we consider the
computational complexity of POSSIBLE WINNER for the broad class of voting
protocols defined by scoring rules. A scoring rule provides a score value for ev-
ery position which a candidate can have in a linear order. Prominent examples
include plurality, k-approval, and Borda. Generalizing previous NP-hardness re-
sults for some special cases and providing new many-one reductions, we settle
the computational complexity for all but one scoring rule. More precisely, for an
unbounded number of candidates and unweighted voters, we show that POSSI-
BLE WINNER is NP-complete for all pure scoring rules except plurality, veto, and
the scoring rule defined by the scoring vector (2, 1, . . . , 1, 0), while it is solvable
in polynomial time for plurality and veto.

1 Introduction

Voting scenarios arise whenever the preferences of different parties (voters) have to be
aggregated to form a joint decision. This is what happens in political elections, group
decisions, web site rankings, or multiagent systems. Often, the voting process is ex-
ecuted in the following way: each voter provides his preference as a ranking (linear
order) of all the possible alternatives (candidates). Given these rankings as an input,
a voting rule produces a subset of the candidates (winners) as an output. However, in
realistic settings, the voters may often only provide partial orders instead of linear ones:
For example, it might be impossible for the voters to provide a complete preference list
because the set of candidates is too large. In addition, not all voters might have given
their preferences yet during the aggregation process, or new candidates might be intro-
duced after some voters already have given their rankings. Moreover, one often has to
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deal with partial votes due to incomparabilities: for some voters it might not be pos-
sible to compare two candidates or certain groups of candidates, be it because of lack
of information or due to personal reasons. Hence, the study of partial voting profiles
is natural and essential. One question that immediately comes to mind is whether any
information on a possible outcome of the voting process can be given in the case of
incomplete votes. More specifically, in this paper, we study the POSSIBLE WINNER

problem: Given a partial order for each of the voters, can a distinguished candidate c
win for at least one extension of the partial orders into linear ones?

Of course, the answer to this question depends on the voting rule that is used. In this
work, we will stick to the broad class of voting protocols defined by scoring rules. A
scoring rule provides a score value for every position that a candidate can take within
a linear order. The scores of the candidates are then added up and the candidates with
the highest score win. Many well-known voting protocols, including plurality, veto, and
Borda, are realized by scoring rules. Other examples are the Formula 1 scoring, which
uses the scoring rule defined by the vector (10, 8, 6, 5, 4, 3, 2, 1, 0, ...), or k-approval,
which is used in many political elections whenever the voters can express their prefer-
ence for k candidates within the set of all candidates.

The POSSIBLE WINNER problem was introduced by Konczak and Lang [6] and
has been further investigated since then for many types of voting systems [1,7,8,9,10].
Note that the related NECESSARY WINNER problem can be solved in polynomial time
for all scoring rules [10]. A prominent special case of POSSIBLE WINNER is MANIP-
ULATION (see e.g. [2,5,11,12]). Here, the given set of partial orders consists of two
subsets; one subset contains linearly ordered votes and the other one completely un-
ordered votes. Clearly, all NP-hardness results would carry over from MANIPULATION

to POSSIBLE WINNER. However, whereas the case of weighted voters is settled by
a full dichotomy [5] for MANIPULATION for scoring rules, we are not aware of any
NP-hardness results for scoring rules in the unweighted voter case.

Let us briefly summarize known results for POSSIBLE WINNER for scoring rules.
Correcting Konczak and Lang [6] who claimed polynomial-time solvability for all scor-
ing rules, Xia and Conitzer [10] provided NP-completeness results for a class of scoring
rules, more specifically, for all scoring rules that have four “equally decreasing score
values” followed by another “strictly decreasing score value”; we will provide a more
detailed discussion later. Betzler et al. [1] studied the parameterized complexity of POS-
SIBLE WINNER and, among other results obtained NP-hardness for k-approval in case
of two partial orders. However, this NP-hardness result holds only if k is part of the
input, and it does not carry over for fixed values of k. Further, due to the restriction to
two partial votes, the construction is completely different from the constructions used
in this work.

Until now, the computational complexity of POSSIBLE WINNER was still open for
a large number of naturally appearing scoring rules. We mention k-approval for small
values of k as an example: Assume that one may vote for a board that consists of five
members by awarding one point each to five of the candidates (5-approval). Surpris-
ingly, POSSIBLE WINNER turns out to be NP-hard even for 2-approval. Another exam-
ple is given by voting systems in which each voter is allowed to specify a (small) group
of favorites and a (small) group of most disliked candidates.
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In this work, we settle the computational complexity of POSSIBLE WINNER for
all pure scoring rules except the scoring rule defined by (2, 1, . . . , 1, 0).1 For plural-
ity and veto, we provide polynomial-time algorithms. The basic idea to show the NP-
completeness for all remaining pure scoring rules can be described as follows. Every
scoring vector of unbounded length must either have an unbounded number of positions
with different score values or must have an unbounded number of positions with equal
score values (or both). Hence, we give many-one reductions covering these two types
and then combine them to work for all considered scoring rules. Scoring rules having
an unbounded number of positions with different score values are treated in Section 2,
where we generalize results from [10]. Scoring rules having an unbounded number of
positions with equal score values are investigated in Section 3. Here, we consider two
subcases. In one subcase, we consider scoring rules of the form (α1, α2, . . . , α2, 0),
which we deal with in Section 3.2. In the other subcase, we consider all remaining scor-
ing rules with an unbounded number of candidates (Section 3.1). Finally, we combine
the obtained results in the main theorem (Section 4).

Preliminaries. Let C = {c1, . . . , cm} be the set of candidates. A vote is a linear order
(i.e., a transitive, antisymmetric, and total relation) on C. An n-voter profile P on C
consists of n votes (v1, . . . , vn) on C. A voting rule r is a function from the set of all
profiles on C to the power set of C. (Positional) scoring rules are defined by scoring
vectors −→α = (α1, α2, . . . , αm) with integers α1 ≥ α2 ≥ · · · ≥ αm, the score values.
More specifically, we define that a scoring rule r consists of a sequence of scoring
vectors s1, s2, . . . such that for any i ∈ � there is a scoring vector for i candidates
which can be computed in time polynomial in i.2 Here, we restrict our results to pure
scoring rules, that is for every i, the scoring vector for i candidates can be obtained
from the scoring vector for i− 1 candidates by inserting an additional score value at an
arbitrary position (respecting the described monotonicity). This definition includes all
of the common protocols like Borda or k-approval.3 We further assume that αm = 0 and
that there is no integer that divides all score values. This does not constitute a restriction
since for every other voting system there must be an equivalent one that fulfills these
constraints [5, Observation 2.2]. Moreover, we only consider non-trivial scoring rules,
that is, scoring rules with α1 = 0 for a scoring vector of unbounded length.

For a vote v ∈ P and a candidate c ∈ C, let the score s(v, c) := αj where j is
the position of c in v. For any profile P = {v1, . . . , vn}, let s(P, c) :=

∑n
i=1 s(vi, c).

Whenever it is clear from the context which P we refer to, we will just write s(c).
The scoring rule will select all candidates c as winners for which s(P, c) is maximized.
Famous examples of scoring rules are Borda, that is, (m − 1,m − 2, . . . , 0), and k-
approval, that is, (1, . . . , 1, 0, . . . , 0) starting with k ones. Two relevant special cases of
k-approval are plurality, that is (1, 0, . . . , 0), and veto, that is, (1, . . . , 1, 0).

1 The class of pure voting rules still covers all of the common scoring rules. We only consti-
tute some restrictions in the sense that for different numbers of candidates the corresponding
scoring vectors can not be chosen completely independently (see Preliminaries).

2 For scoring rules that are defined for any fixed number of candidates the considered problem
can be decided in polynomial time, see [2,9].

3 Our results can also be extended to broad classes of “non-pure” (hybrid) scoring rules. Due to
the lack of space, we defer the related considerations to the full version of this paper.
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A partial order on C is a reflexive, transitive, and antisymmetric relation on C. We
use > to denote the relation given between candidates in a linear order and� to denote
the relation given between candidates in a partial order. Sometimes, we specify a whole
subset of candidates in a partial order, e.g., e � D. This notation means that e � d
for all d ∈ D and there is no specified order among the candidates in D. In contrast,
writing e > D in a linear order means that the candidates of D have an arbitrary
but fixed order. A linear order vl extends a partial order vp if vp ⊆ vl, that is, for
any i, j ≤ m, from ci � cj in vp it follows that ci > cj in vl. Given a profile of
partial orders P = (vp

1 , . . . , v
p
n) on C, a candidate c ∈ C is a possible winner if there

exists an extension V = (v1, . . . , vn) such that each vi extends vp
i and c ∈ r(V ). The

corresponding decision problem is defined as follows.

POSSIBLE WINNER

Given: A set of candidates C, a profile of partial orders P = (vp
1 , . . . , v

p
n)

on C, and a distinguished candidate c ∈ C.
Question: Is there an extension profile V = (v1, . . . , vn) such that each vi

extends vp
i and c ∈ r(V ) ?

This definition allows that multiple candidates obtain the maximal score and we end up
with a whole set of winners. If the possible winner c has to be unique, one speaks of a
possible unique winner, and the corresponding decision problem is defined analogously.
As discussed in the following paragraph, all our results hold for both cases.

In all many-one reductions given in this work, one constructs a partial profile P
consisting of a set of linear orders V l and another set of partial votes V p. Typically, the
positions of the distinguished candidate c are already determined in all votes from V p,
that is, s(P, c) is fixed. The “interesting” part of the reductions is formed by the partial
orders of V p in combination with upper bounds for the scores of the non-distinguished
candidates. For every candidate c′ ∈ C\{c}, the maximum partial score smax

p (c′) is the
maximum number of points c′ can make in V p without beating c in P . The maximum
partial scores can be adapted for the unique and for the winner case since beating c in the
winner case just means that a candidate makes strictly more points than c and beating c
in the unique winner case means that a candidate makes as least as many points as c.
Since all reductions only rely on the maximum partial scores, all results hold for both
cases. For all reductions given in this work, one can generate an appropriate set of linear
votes that implement the required maximum partial scores for each candidate. A general
construction scheme of these votes can be found in a long version of this work. For this
paper, we will refer to this construction scheme as Construction 1.

Several of our NP-hardness proofs rely on reductions from the NP-complete EXACT

3-COVER (X3C) problem. Given a set of elements E = {e1, . . . , eq}, a family of
subsets S = {S1, . . . , St} with |Si| = 3 and Si ⊆ E for 1 ≤ i ≤ t, it asks whether
there is a subset S′ ⊆ S such that for every element ej ∈ E there is exactly one Si ∈ S′

with ej ∈ Si.
Due to the lack of space, several proofs and details had to be deferred to a full version

of this paper.
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2 An Unbounded Number of Positions with Different Score Values

Xia and Conitzer [10] showed that POSSIBLE WINNER is NP-complete for any scor-
ing rule which contains four consecutive, equally decreasing score values, followed by
another strictly decreasing score value. They gave reductions from X3C. Using some
non-straightforward gadgetry, we extend their proof to work for scoring rules with an
unbounded number of different, not necessarily equally decreasing score values.

We start by describing the basic idea given in [10] (using a slightly modified con-
struction). Given an X3C-instance (E,S), construct a partial profile P := V l∪V p on a
set of candidates C where V l denotes a set of linear orders and V p a set of t partial or-
ders. To describe the basic idea, we assume that there is an integer b ≥ 1 such that αb >
αb+1 and the difference between the score of the four following score values is equally
decreasing, that is, αb−αb+1 = αb+1−αb+2 = · · · = αb+3−αb+4, for a scoring
vector of appropriate size. Then, C := {c, x, w} ∪ E′ ∪ B where E′ := {e | e ∈ E}
and B contains b − 1 dummy candidates. The distinguished candidate is c. The candi-
dates whose element counterparts belong to the set Si are denoted by ei1, ei2, ei3. For
every i ∈ {1, . . . , t}, the partial vote vp

i is given by B � x � ei1 � ei2 � ei3 � C′,
B � w � C′. Note that in vp

i , the positions of all candidates except w, x, ei1, ei2, ei3

are fixed. More precisely,w has to be inserted between positions b and b+4 maintaining
the partial order x � ei1 � ei2 � ei3. The maximum partial scores are set such that the
following three conditions are fulfilled. First, regarding an element candidate e ∈ E′,
inserting w behind e in two partial orders has the effect that e would beat c, whereas
when w is inserted behind e in at most one partial order, c still beats e (Condition 1).
Note that e may occur in several votes at different positions, e.g. e might be identi-
cal with ei1 and ej3 for i = j. However, due to the condition of “equally decreasing”
scores, “shifting” e increases its score by the same value in all of the votes. Second, the
partial score of x is set such that w can be inserted behind x at most q/3 times (Condi-
tion 2). Finally, we set smax

p (w) = (t− q/3) · αb +q/3 · αb+4. This implies that if w is
inserted before x in t− q/3 votes, then it must be inserted at the last possible position,
that is, position b+ 4, in all remaining votes (Condition 3).

Now, having an exact 3-cover for (E,S), it is easy to verify that setting w to posi-
tion b+4 in the partial votes that correspond to the exact 3-cover and to position b in all
remaining votes leads to an extension in which c wins. In a yes-instance for (C,P, c), it
follows directly from Condition 1 and 2 thatw must have the last possible position b+4
in exactly q/3 votes and position b in all remaining partial votes. Since |E| = q and
there are q/3 partial votes such that three element candidates are shifted in each of them,
due to Condition 1, every element candidate must appear in exactly one of these votes.
Hence, c is a possible winner in P if and only if there exists an exact 3-cover of E.

In the remainder of this section, we show how to extend the reduction to scoring rules
with strictly, but not equally decreasing scoring values. The problem we encounter is the
following: By sending candidate w to the last possible position in the partial vote vp

i ,
each of the candidates ei1, ei2, ei3 improves by one position and therefore improves
its score by the difference given between the corresponding positions. In [10], these
differences all had the same value, but now, we have to deal with varying differences.
Since the same candidate e ∈ E′ may appear in several votes at different positions,
e.g. e might be identical with ei1 and ej3 for i = j, it is not clear how to set the
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maximum partial score of e. In order to cope with this situation, we add two copies vp′
i

and vp′′
i of every partial vote vp

i , and permute the positions of candidates ei1, ei2, ei3 in

these two copies such that each of them takes a different position in vp
i , vp′

i , vp′′
i . In this

way, if the candidate w is sent to the last possible position in a partial vote and its two
copies, each of the candidates ei1, ei2, ei3 improves its score by the same value (which
is “added” to the maximum partial score). We only have to guarantee that whenever w
is sent back in the partial vote vp

i , then it has to be sent back in the two copies vp′
i

and vp′′
i as well. We describe how this can be realized using a gadget construction.

More precisely, we give a gadget for pairs of partial votes. The case of three votes just
uses this scheme for two pairs within the three partial votes.

Given a copy vp′
i for each partial vote vp

i , we want to force w to take the last possible

position in vp
i if and only if w takes the last possible position in vp′

i . We extend the set
of candidates C by 2t additional candidatesD := {d1, . . . , dt, h1, . . . , ht}. The set V p

consists of 2t partial votes vp
1 , v

p′
1 , . . . , v

p
t , v

p′
t with

vp
i : B � x � Si � d1 � · · · � di � hi+1 � · · · � ht � C′

i, B � w � C′
i

vp′
i : B � x � Si � h1 � · · · � hi � di+1 � · · · � dt � C′′

i , B � w � C′′
i ,

for all 1 ≤ i ≤ t, with C′
i and C′′

i containing the remaining candidates, respectively.
Again, the maximum partial scores are defined such that w can be inserted behind x in
at most 2q/3 votes and must be inserted behind dt or ht in at least 2q/3 votes. Further,
for every candidate of D, the maximum partial score is set such that it can be shifted to
a better position at most q times in a yes-instance. The candidate set E′ is not relevant
for the description of the gadget and thus we can assume that each candidate of E′ can
never beat c. We denote this construction as Gadget 1. Using some pigeonhole principle
argument, one can show that Gadget 1 works correctly (proof omitted). Combining the
construction of [10] with Gadget 1 and by using some further simple padding, one
arrives at the following theorem.

Theorem 1. POSSIBLE WINNER is NP-complete for a scoring rule if, for every pos-
itive integer x, there is a number m that is a polynomial function of x and, for the
scoring vector of size m, it holds that |{i | 1 ≤ i ≤ m− 1 and αi > αi+1}| ≥ x.

3 An Unbounded Number of Positions with Equal Score Values

In the previous section, we showed NP-hardness for scoring rules with an unbounded
number of different score values. In this section, we discuss scoring rules with an un-
bounded number of positions with equal score value. In the first subsection, we show
NP-hardness for POSSIBLE WINNER for scoring rules with an unbounded number of
“non-border” positions with the same score. That is, either before or after the group of
equal positions, there must be at least two positions with a different score value. In the
second subsection, we consider the special type that α1 > α2 = · · · = αm−1 > 0.
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3.1 An Unbounded Number of Non-border Positions with Equal Score Values

Here, we discuss scoring rules with non-border equal positions. For example, a scoring
rules, such that, for every positive integer x, there is a scoring vector of size m such
that there is an i, with i < m − 2, and αi−x = αi. This property can be used to
construct a basic “logical” tool used in the many-one reductions of this subsection:
For two candidates c, c′, having c � c′ in a vote implies that setting c such that it
makes less than αi points implies that also c′ makes less than αi points whereas all
candidates placed in the range between i − x and i make exactly αi points. This can
be used to model some implication of the type “c ⇒ c′” in a vote. For example, for
(m − 2)-approval this condition means that c only has the possibility to make zero
points in a vote if also c′ makes zero points in this vote whereas other all candidates
make one point. Most of the reductions of this subsection are from the NP-complete
MULTICOLORED CLIQUE (MC) problem [4]:

Given: An undirected graph G = (X1 ∪X2 ∪ · · · ∪Xk, E) with Xi ∩Xj = ∅
for 1 ≤ i < j ≤ k and the vertices of Xi induce an independent set for 1 ≤ i ≤ k.
Question: Is there a clique of size k?

Here, 1, . . . , k are considered as different colors. Then, the problem is equivalent to ask
for a multicolored clique, that is, a clique that contains one vertex for every color. To
ease the presentation, for any 1 ≤ i = j ≤ k, we interpret the vertices of Xi as red
vertices and write r ∈ Xi, and the vertices of Xj as green vertices and write g ∈ Xj .

Reductions from MC are often used to show parameterized hardness results [4]. The
general idea is to construct different types of gadgets. Here, the partial votes realize four
kinds of gadgets. First, gadgets that choose a vertex of every color (vertex selection).
Second, gadgets that choose an edge of every ordered pair of colors, for example, one
edge from green to red and one edge from red to green (edge selection). Third, gadgets
that check the consistency of two selected ordered edges, e.g. does the chosen red-green
candidate refer to the same edge as the choice of the green-red candidate (edge-edge
match)? At last, gadgets that check if all edges starting from the same color start from
the same vertex (vertex-edge match).

We start by giving a reduction from MC that settles the NP-hardness of POSSIBLE

WINNER for (m− 2)-approval.

Lemma 1. POSSIBLE WINNER is NP-hard for (m− 2)-approval.

Proof. Given an MC-instance G = (X,E) with X = X1 ∪X2 ∪ · · · ∪Xk. Let E(i, j)
denote all edges from E between Xi and Xj . W.l.o.g. we can assume that there are
integers s and t such that |Xi| = s for 1 ≤ i ≤ k, |E(i, j)| = t for all i, j, and that k is
odd. We construct a partial profile P on a set C of candidates such that a distinguished
candidate c ∈ C is a possible winner if and only if there is a size-k clique in G. The
set of candidates C := {c} % CX % CE %D, where % denotes the disjunctive union, is
specified as follows:

– For i ∈ {1, . . . , k}, let Ci
X := {r1, . . . , rk−1 | r ∈ Xi} and CX :=

⋃
i C

i
X .

– For i, j ∈ {1, . . . , k}, i = j, let Ci,j := {rg | {r, g} ∈ E(i, j)} and C′
i,j :=

{rg′ | {r, g} ∈ E(i, j)}. Then, CE := (
⋃

i�=j Ci,j) % (
⋃

i�=j C
′
i,j), i.e., for every

edge {r, g} ∈ E(i, j), the set CE contains the four candidates rg, rg′, gr, gr′.
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– The set D := DX % D1 % D2 is defined as follows. For i ∈ {1, . . . , k}, Di
X :=

{cr1, . . . , crk−2 | r ∈ Xi} and DX :=
⋃

i D
i
X . For i ∈ {1, . . . , k}, one has Di

1 :=
{di

1, . . . , d
i
k−2} and D1 :=

⋃
iD

i
1. The set D2 is defined as D2 := {di | i =

1, . . . , k}.

We refer to the candidates ofCX as vertex-candidates, to the candidates of CE as edge-
candidates, and to the vertices of D as dummy-candidates.

The partial profile P consists of a set of linear votes V l and a set of partial votes V p.
In each extension of P , the distinguished candidate c gets one point in every partial vote
(see definition below). Thus, by using Construction 1, we can set the maximum partial
scores as follows. For every candidate di ∈ D2, smax

p (di) = |V p| − s + 1, that is, di

must get zero points (take a zero position) in at least s−1 of the partial votes. For every
remaining candidate c′ ∈ C\({c} ∪D2), smax

p (c′) = |V p| − 1, that is, c′ must get zero
points in at least one of the partial votes.

In the following, we define V p := V1 ∪ V2 ∪ V3 ∪ V4. For all our gadgets only
the last positions of the votes are relevant. Hence, in the partial votes it is sufficient
to explicitly specify the “relevant candidates”. More precisely, we define for all partial
votes that each candidate that does not appear explicitly in the description of a partial
vote is positioned before all candidates that appear in this vote.

The partial votes of V1 realize the edge selection gadgets. Selecting an ordered
edge (r, g) with {r, g} ∈ E means to select the corresponding pair of edge-
candidates rg and rg′. The candidate rg is used for the vertex-edge match check and rg′

for the edge-edge match check. For every ordered color pair (i, j), i = j, V1 has t − 1
copies of the partial vote {rg � rg′ | {r, g} ∈ E(i, j)}, that is, one of the partial votes
has the constraint rg � rg′ for each {r, g} ∈ E(i, j). The idea of this gadget is as
follows. For every ordered color pair we have t edges and t − 1 corresponding votes.
Within one vote, one pair of edge-candidates can get the two available zero positions.
Thus, it is possible to set all but one, namely the selected pair of edge-candidates to
zero positions.

The partial votes of V2 realize the vertex selection gadgets. Here, we need k − 1
candidates corresponding to a selected vertex to do the vertex-edge match for all edges
that are incident in a multicolored clique. To realize this, V2 := V a

2 ∪ V b
2 . In V a

2 we
select a vertex and in V b

2 , by a cascading effect, we achieve that all k − 1 candidates
that correspond to this vertex are selected. In V a

2 , for every color i, we have s − 1
copies of the partial vote {r1 � cr1 | r ∈ Xi}. In V b

2 , for every color i and for every
vertex r ∈ Xi, we have the following k − 2 votes.

For all odd z ∈ {1, . . . , k − 4}, vr,i
z : {crz � crz+1, rz+1 � rz+2}.

For all even z ∈ {2, . . . , k − 3}, vr,i
z : {crz � crz+1, d

i
z−1 � di

z}.
vr,i

k−2 : {crk−2 � di
k−2, r

i
k−1 � di}.

The partial votes of V3 realize the vertex-edge match gadgets. For i, j ∈ {1, . . . , k},
for j < i, V3 contains the vote {rg � rj | {r, g} ∈ E, r ∈ Xi, and g ∈ Xj} and,
for j > i, V3 contains the vote {rg � rj−1 | {r, g} ∈ E, r ∈ Xi, and g ∈ Xj}.

The partial votes of V4 realize the edge-edge match gadgets. For every unordered
color pair {i, j}, i = j there is the partial vote {rg′ � gr′ | r ∈ Xi, g ∈ Xj}.
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V1 : · · · > rg > rg′ for i, j ∈ {1, . . . , k}, i �= j, r ∈ Xi\Q, and g ∈ Xj\Q
V a

2 : · · · > r1 > cr
1 for 1 ≤ i ≤ k and r ∈ Xi\Q

V b
2 : vr,i

z · · · > rz+1 > rz+2 for 1 ≤ i ≤ k, r ∈ Xi\Q for all z ∈ {1, 3, 5, . . . , k − 4}
vr,i

z · · · > cz > cz+1 for 1 ≤ i ≤ k, r ∈ Xi\Q for all z ∈ {2, 4, 6, . . . , k − 3}
vr,i

k−2 · · · > rk−1 > di for 1 ≤ i ≤ k, r ∈ Xi\Q
vr,i

z · · · > cr
z > cr

z+1 for 1 ≤ i ≤ k, r ∈ Xi ∩ Q for all z ∈ {1, 3, 5, . . . , k − 4}
vr,i

z · · · > di
z−1 > di

z for 1 ≤ i ≤ k, r ∈ Xi ∩ Q for all z ∈ {2, 4, 6, . . . , k − 3}
vr,i

k−2 · · · > cr
k−2 > di

k−2 for 1 ≤ i ≤ k, r ∈ Xi ∩ Q
V3 : · · · > rg > rj for i, j ∈ {1, . . . , k}, j < i, r ∈ Xi ∩ Q, and g ∈ Xj ∩ Q

· · · > rg > rj−1 for i, j ∈ {1, . . . , k}, j > i, r ∈ Xi ∩ Q, and g ∈ Xj ∩ Q
V4 : · · · > rg′ > gr′ for i, j ∈ {1, . . . , k}, i �= j, r ∈ Xi ∩ Q, g ∈ Xj ∩ Q

Fig. 1. Extension of the partial votes for the MC-instance. We highlight extensions in which
candidates that do not correspond to the solution set Q take the zero positions.

This completes the description of the partial profile. By counting, one can verify a
property of the construction that is crucial to see the correctness: In total, the number of
zero positions available in the partial votes is exactly equal to the sum of the minimum
number of zero position the candidates of C\{c} must take such that c is a winner.
We denote this property of the construction as tightness. It directly follows that if there
is a candidate that takes more zero positions than desired, then c cannot win in this
extension since then at least one zero position must be “missing” for another candidate.

Claim: The graph G has a clique of size k if and only if c is a possible winner in P .

“⇒” Given a multicolored cliqueQ ofG of size k. Then, extend the partial profile P as
given in Figure 1. One can verify that in the given extension every candidate takes the
required number of zero positions.

“⇐” Given an extension of P in which c is a winner, we show that the “selected” can-
didates must correspond to a size-k clique. Recall that the number of zero positions that
each candidate must take is “tight” in the sense that if one candidate gets an unnecessary
zero position, then for another candidate there are not enough zero positions left.

First (edge selection), for i, j ∈ {1, . . . , k}, i = j, we consider the candidates
of Ci,j . The candidates of Ci,j can take zero positions in one vote of V3 and in t − 1
votes of V1. Since |Ci,j | = t and in the considered votes at most one candidate of Ci,j

can take a zero position, every candidate of Ci,j must take one zero position in one of
these votes. We refer to a candidate that takes the zero position in V3 as solution candi-
date rgsol. For every non-solution candidate rg ∈ Ci,j\{rgsol}, its placement in V1 also
implies that rg′ gets a zero position, whereas rg′sol still needs to take one zero position
(what is only possible in V4).

Second, we consider the vertex selection gadgets. Here, analogously to the edge
selection, for every color i, we can argue that in V a

2 , out of the set {r1 | r ∈ Xi}, we
have to set all but one candidate to a zero position. The corresponding solution vertex
is denoted as rsol. For every vertex r ∈ Xi\{rsol}, this implies that the corresponding
dummy-candidate cr1 also takes a zero position in V a

2 . Now, we show that in V b
2 we

have to set all candidates that correspond to non-solution vertices to a zero position
whereas all candidates corresponding to rsol must appear only at one-positions. Since
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for every vertex r ∈ Xi\{rsol}, the vertex cr1 has already a zero position in V a
2 , it cannot

take a zero position within V b
2 anymore without violating the tightness. In contrast, for

the selected solution candidate rsol, the corresponding candidates crsol
1 and rsol1 still

need to take one zero position. The only possibility for crsol
1 to take a zero position is

within vote vrsol,i
1 by setting crsol

1 and crsol
2 to the last two positions. Thus, one cannot

set rsol2 and rsol3 to a zero position within V2. Hence, the only remaining possibility
for rsol2 and rsol3 to get zero points remains within the corresponding votes in V3. This
implies for every non-solution vertex r that r2 and r3 cannot get zero points in V3 and,
thus, we have to choose to put them on zero positions in the vote vr,i

1 from V b
2 . The

same principle leads to a cascading effect in the following votes of V b
2 : One cannot

choose to set the candidates crsol
p for p ∈ {1, . . . , k − 2} to zero positions in votes

of V b
2 with even index z and, thus, has to improve upon them in the votes with odd

index z. This implies that all vertex-candidates belonging to rsol only appear in one-
positions within V b

2 and that all dummy candidates di
p for p ∈ {1, . . . , k − 2} are set

to one zero position. In contrast, for every non-solution vertex r, one has to set the
candidates crp, p ∈ {2, . . . , k − 2}, to zero positions in the votes with even index z,
and, thus, in the votes with odd index z, one has to set all vertex-candidates belonging
to r to zero positions. This further implies that for every non-solution vertex in the last
vote of V b

2 one has to set di to a zero position and, since there are exactly s − 1 non-
solution vertices, di takes the required number of zero positions. Altogether, all vertex-
candidates belonging to a solution vertex still need to be placed at a zero position in
the remaining votes V3 ∪ V4, whereas all dummy candidates of D and the candidates
corresponding to the other vertices have already taken enough zero positions.

Third, consider the vertex-edge match realized in V3. For i, j ∈ {1, . . . , k}, i = j,
there is only one remaining vote in which rgsol with r ∈ Xi and g ∈ Xj can take
a zero position. Hence, rgsol must take this zero-position. This does imply that the
corresponding incident vertex x is also set to a zero-position in this vote. If x = rsoli ,
then x has already a zero-position in V2. Hence, this would contradict the tightness and
rgsol and the corresponding vertex must “match”. Further, the construction ensures that
each of the k − 1 candidates corresponding to one vertex appears exactly in one vote
of V3 (for each of the k − 1 candidates, the vote corresponds to edges from different
colors). Hence, c can only be possible winner if a selected vertex matches with all
selected incident edges.

Finally, we discuss the edge-edge match gadgets. In V4, for i, j ∈ {1, . . . , k}, i = j,
one still need to set the solution candidates from Ci,j to zero positions. We show that
this can only be done if the two “opposite” selected edge-candidates match each other.
For two such edges rgsol and grsol, r ∈ Xi, g ∈ Xj , there is only one vote in V4 in
which they can get a zero position. If rgsol and grsol refer to different edges, then in
this vote only one of them can get zero points, and, thus, the other one still beats c.
Altogether, if c is a possible winner, then the selected vertices and edges correspond to
a multicolored clique of size k. ��
By generalizing the reduction used for Lemma 1, one can show the following.

Theorem 2. POSSIBLE WINNER is NP-complete for a scoring rule r if, for every pos-
itive integer x, there is a number m that is a polynomial function of x and, for the
scoring vector of size m, there is an i ≤ m− 1 such that αi−x = · · · = αi−1 > αi.
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The following theorem is based on further extensions of the MC-reduction used to prove
Lemma 1 and some additional reductions from X3C.

Theorem 3. POSSIBLE WINNER is NP-complete for a scoring rule r if, for every pos-
itive integer x, there is a number m that is a polynomial function of x and, for the
scoring vector of size m, there is an i ≥ 2 such that αi > αi+1 = · · · = αi+x.

3.2 Scoring Rules of the Form (α1, α2, . . . , α2, 0)

The following theorem can be shown by using another type of reductions from X3C.

Theorem 4. POSSIBLE WINNER is NP-complete for all scoring rules such that there
is a constant z and for everym ≥ z, the scoring vector of sizem satisfies the conditions
α1 > α2 = αm−1 > αm = 0 and α1 = 2 · α2.

4 Main Theorem

To state our main theorem, we still need the results for plurality and veto:

Proposition 1. POSSIBLE WINNER can be solved in polynomial time for plurality and
veto.

The proof of Proposition 1 can be obtained by using some flow computations very
similar to [1, Theorem 6].4 Finally, we prove our main theorem.

Theorem 5. POSSIBLE WINNER is NP-complete for all non-trivial pure scoring rules
except plurality, veto, and scoring rules with size-m-scoring vector (2, 1, . . . , 1, 0) for
every m ≥ z for a constant z. For plurality and veto it is solvable in polynomial time.

Proof. (Sketch) Plurality and veto are polynomial-time solvable due to Proposition 1.
Let r denote a scoring rule as specified in the first part of the theorem. Having any scor-
ing vector different from (1, 0, . . . ), (1, . . . , 1, 0), and (2, 1, . . . , 1, 0) form candidates,
it is not possible to obtain a scoring vector of one of these three types for m′ > m by
inserting scoring values. Hence, since we only consider pure scoring rules, there must
be a constant z such that r does not produce a scoring vector of type plurality, veto,
or (2, 1, . . . , 1, 0) for all m ≥ z. Now, we give a reduction from X3C (restricted to
instances of size greater than z) to POSSIBLE WINNER for r that combines the reduc-
tions used to show Theorems 1 – 4. Let I with |I| > z denote an X3C-instance. If
there is a constant z′ such that for all m ≥ z′ the scoring vector corresponding to r
is (α1, α2, . . . , α2, 0), then we can directly apply the reduction used to show Theo-
rem 4. Otherwise, to make use of the MC-reductions, we apply the following strat-
egy. Since EXACT 3-COVER and MULTICOLORED CLIQUE are NP-complete, there
is a polynomial-time reduction from X3C to MC. Hence, let I ′ denote an MC-instance
whose size is polynomial in |I| and that is a yes-instance if and only if I is a yes-instance.

4 We also refer to Faliszewski [3] for further examples showing the usefulness of employing
network flows for voting problems.
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Basically, the problem we encounter by showing the NP-hardness for POSSIBLE

WINNER for r by using one specific many-one reduction from the previous sections
is that such a reduction produces a POSSIBLE WINNER-instance with a certain num-
ber m of candidates. Thus, according to the properties of the reductions described in
the previous sections, one would need to ensure that the corresponding scoring vector
of size m provides a sufficient number of positions with equal/different scores. This
seems not to be possible in general. However, for every specific instance I or I ′, it is
not hard to compute a (polynomial) number of positions with equal/different scores that
is sufficient for I or I ′. For example, for the X3C-reduction used to show Theorem 1,
for an instance (E,S), it would be clearly sufficient to have (|E|+ |S|)2 positions with
equal score since this is a trivial upper bound for the number of candidates used to
“encode” (E,S) into an POSSIBLE WINNER-instance. Having computed a sufficient
number for all types of reductions either for I or I ′ (details omitted), we can set x to be
the maximum of all these numbers.

Then, we can make use of the following observation (proof omitted). For r, there is
a scoring vector whose size is polynomial in x such that either |{i | αi > αi+1}| ≥ x
or such that αi = · · · = αi+x for some i. Now, we can distinguish two cases. If αi =
· · · = αi+x for some i, applying one of the reductions to I ′ or I given in Theorem 2 or
Theorem 3 results in a POSSIBLE WINNER-instance that is a yes-instance (if and only
if I ′ is a yes-instance and, thus, also) if and only if I is a yes-instance. Otherwise, we
can apply the reductions given in the proof of Theorem 1 to I resulting in a POSSIBLE

WINNER instance that is a yes-instance if and only if I is a yes-instance. Since the NP-
membership is obvious, the main theorem follows. ��

Acknowledgments. We thank Johannes Uhlmann, Rolf Niedermeier, and the referees of
MFCS for constructive feedback that helped to improve this work.
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Abstract. An edge cover C of an undirected graph is a set of edges such
that every vertex has an adjacent edge in C. We show that a Glauber
dynamics Markov chain for edge covers mixes rapidly for graphs with
degrees at most three. Glauber dynamics have been studied extensively
in the statistical physics community, with special emphasis on lattice
graphs. Our results apply, for example, to the hexagonal lattice. Our
proof of rapid mixing introduces a new cycle/path decomposition for the
canonical flow argument.

1 Introduction

An edge cover of an undirected graph is a subset of its edges such that every
vertex has an adjacent edge in the edge cover (i. e., each vertex is “covered”). We
initiate the study of sampling (and the related question of counting) of all edge
covers of a graph. Our main motivation for this work is to develop new insights
that might help with understanding other related combinatorial problems such
as matchings and contingency tables.

Glauber dynamics Markov chains on lattice graphs have been studied exten-
sively in both the computer science and statistical physics communities. These
single-site-update Markov chains tend to be natural to design but difficult to an-
alyze, even though they are often believed to mix rapidly. Examples of successful
theoretical analysis include the works of Randall and Tetali [1] and Vigoda [2].
Randall and Tetali, building on the result of Diaconis and Saloff-Coste [3], proved
rapid mixing of Glauber dynamics Markov chains for domino tilings on the grid
graph and lozenge tilings on the triangular lattice (these problems can be viewed
as perfect matchings on the grid graph and the hexagonal lattice, respectively).
Vigoda showed O(n logn) mixing time of a Glauber dynamics Markov chain for
independent sets of graphs with maximum degree 4.

Edge covers are related to matchings in a similar way as vertex covers are re-
lated to independent sets. A vertex cover is a set of vertices such that every edge
has an end-point in the set. The complement of a vertex cover is an independent
set, i. e., a set of vertices that do not share any edges between them. The relation-
ship between edge covers and matchings is not as straightforwardbut it is still easy
to phrase: the size of the maximum matching plus the size of the minimum edge
cover equals the number of vertices of the graph. While there is an obvious rela-
tionship between the counts of independent sets and vertex covers, no relationship

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 137–148, 2009.
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is known between the respective counts of edge covers and matchings. The prob-
lem of sampling and counting of matchings received a lot of attention [4,5,6,1,7],
however, the problem remains unsolved for perfect matchings of arbitrary (i. e.,
non-bipartite) graphs. A perfect matching can be interpreted as an edge cover
where every vertex is covered by exactly one edge. Hence, edge covers may be seen
as a natural variation on perfect matchings. Jerrum and Sinclair [5] gave an fpras
(fully polynomial randomized approximation scheme) for the problem of sampling
all matchings (including matchings that are not perfect) of any graph (bipartite
or not); however, the problem of sampling all edge covers appears more challeng-
ing due to its similarity to the problem of sampling subgraphs with a given degree
sequence. The subgraph problem with bipartite input is also known as the binary,
or 0/1, contingency tables.

Technical issues arise once vertices are allowed to have degrees larger than 1. In
the matching problem, every vertex has degree one (or at most one) and this prop-
erty helps with applying the canonical path argument for rapid mixing: namely,
one needs to define a way of getting from any matching to any other matching
using the transitions of the Markov chain (and this needs to be done so that no
transition is “overloaded”). The symmetric difference of any two matchings forms
a set of alternating cycles and paths (i. e., the edges strictly alternate between
the two matchings). This property helps with transforming one matching into the
other matching by handling the cycles and paths one by one. With subgraphs that
satisfy a given degree sequence, this becomes more challenging but a fairly natural
decomposition into cycles and paths is still possible due to the fact that at every
vertex, the two subgraphs have the same degree and thus, the edges from the first
subgraph can be paired with the edges of the second subgraph. The pairing notion
was introduced by Cooper, Dyer, and Greenhill [8] who were building on ideas by
Jerrum and Goldberg, and Kannan, Tetali, and Vempala [9].

In contrast, two different edge covers can have different degrees at the same
vertex. In this paper we overcome this problem for graphs with degrees up to 3.
Our cycle/path decomposition has some interesting characteristics the previous
works did not have. We overcome the disproportionateness of the degrees by
allowing pairing of edges from the same edge cover. Thus, the components of
our decomposition might be non-alternating – they could consist of arbitrary
sequences of edges from the two edge covers, including the possibility of all
edges coming from the same edge cover. The alternating property is used to
keep the intermediate configurations on a canonical path within the state space.
Thus, our non-alternating decomposition needs to be done carefully so that the
configurations that arise during the process of changing one edge cover into the
other edge cover are edge covers as well.

While our restriction on the degrees is rather weak, we hope that the ideas
in this work will bring new perspective to other related problems. For example,
the results extend to so-called 1-2-edge covers (where every vertex is covered
by one or two edges) for certain classes of graphs with arbitrary degrees; these
edge covers can be viewed as close relatives of perfect matchings. We defer this
extension to the journal version of this paper.
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Our main result is:

Theorem 1. Let G be an undirected graph with n vertices and degrees upper
bounded by 3 and let Ω be the set of all its edge covers. Then, there exists
a Markov chain with uniform stationary distribution over Ω with polynomial
mixing time. More precisely,

τ(δ) = O(n6(n+ log δ−1)),

where τ(δ) is the mixing time of the chain1 and δ > 0 is the sampling error.

2 Preliminaries

Problem definition. Given is an undirected graph G = (VG, EG). An edge
cover of G is a set of edges C ⊆ EG such that for every vertex u ∈ VG, there
exists (u, v) ∈ C for some v ∈ VG. The sampling edge covers problem asks for
a randomized polynomial-time algorithm that outputs a uniformly random edge
cover of G. The output of the counting version of the problem is the number
of all edge covers of G.

Markov chain Monte Carlo. In this section we give a very brief overview of
the basic Markov chain terminology.

Let (Ω,P ) be a Markov chain with state space Ω and transition matrix P =
(pi,j)|Ω|×|Ω| denoting the probability of going from state i ∈ Ω to state j ∈ Ω. A
distribution σ on Ω is called stationary if ωP = ω. A Markov chain is ergodic
if it is irreducible (it is possible to get from every state to every other state
with nonzero probability) and aperiodic (for every state i, the numbers of steps
one can use to get from i to i have greatest common divisor equal to 1). It is
well known that for ergodic Markov chains the stationary distribution is unique.

A Markov chain is reversible if π(i)pi,j = π(j)pj,i for every i, j ∈ Ω and
stationary distribution π. It is not difficult to verify that for an ergodic Markov
chain with a symmetric transition matrix P , the stationary distribution is uni-
form.

The total variation distance between two distributions μ, ν on Ω is given
by

dtv(μ, ν) =
1
2

∑
x∈Ω

|μ(x)− ν(x)|.

The mixing time τx(δ) of the chain starting at state x ∈ Ω is defined as

τx(δ) = min{t ≥ 0 | dtv(P t(x, ·), π) ≤ δ},

where P t(x, ·) denotes the distribution after t steps of the chain, starting at the
state x ∈ Ω. Moreover, τ(δ) = maxx∈Ω τx(δ).

1 We opted for clarity of presentation over the best possible running time estimate.
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One of the techniques for bounding mixing time is called the canonical
path/flow technique. The canonical path technique requires, for every pair
of states I, F ∈ Ω, to define a path between I and F through other states such
that the probability of moving between adjacent states is nonzero, i. e., we define
I = ω1, ω2, . . . , ωk = F such that pωi,ωi+1 > 0 for every i ∈ {1, . . . , k − 1}. In
the canonical flow technique instead of constructing a single path from I to F ,
we can define a flow from I to F , i. e., we have the option of defining a set of
paths PI,F from I to F , and for every path p ∈ PI,F we set its weight g(p) so
that

∑
p∈PI,F

g(p) = 1. Whenever the volume of paths going through any given
transition is not too large, the chain mixes in polynomial time. This notion is
formalized as follows, see [10,11] for details. Let us consider all possible paths
between any pair of states and let g be the weights (flow values) of a concrete
canonical flow instance (i. e., whenever a path is not used by the flow, its weight
is set to 0). Moreover, let π be the stationary distribution of the chain. The
congestion through a transition T = (M,M ′), pM,M ′ > 0 is defined as

ρg(T ) =
1

π(M)pM,M ′

∑
p�T

π(Ip)π(Fp)g(p)
(g),

where the sum ranges through all paths that use T , the path p starts at Ip and
ends at Fp, and 
(g) is the maximum length of any path of nonzero weight in g.
Then, the overall congestion is

ρg = max
T=(M,M ′):pM,M′>0

ρg(T )

and the mixing time is bounded by

τx(δ) ≤ ρg(log π(x)−1 + log δ−1).

3 Results

In this section we prove the main theorem of the paper.

3.1 A Markov Chain on Edge Covers

Let G = (V,E) be a graph and let Ω be the set of all of its edge covers. Let
Xi ∈ Ω be the current state of the Markov chain. The next state is the result of
a simple Glauber dynamics-type move:

1. With probability 1/2, let Xi+1 = Xi.
2. Otherwise, choose an edge e ∈ EG uniformly at random.
3. If e ∈ Xi, let Xi+1 = Xi ∪ {e}.
4. Else, if Xi \ {e} is an edge cover of G, let Xi+1 = Xi \ {e}.
5. Else, let Xi+1 = Xi.
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In words, the Markov chain chooses a random edge and if it is not in the edge
cover, it adds it. If it is already in the edge cover, it removes it if it can (if the
result is still a valid edge cover). This Markov chain is symmetric and thus its
stationary distribution π is the uniform distribution on Ω. The lazy step (step
1. of the chain) ensures that the chain is aperiodic, and its irreducibility will
follow from the definition of the canonical flow. Thus, the chain is ergodic and
its stationary distribution is unique.

3.2 Canonical Flow for This Markov Chain

We will define canonical flow between every pair of states I, F ∈ Ω. Let I ⊕ F
be the symmetric difference of I and F . We will gradually change the I-edges
in I ⊕ F into the F -edges (we will leave the edges shared by both I and F , i. e.,
the edges in I ∩ F , unchanged).

Cycle/path decomposition. We will first decompose I⊕F into a set of cycles
and paths. Proofs of rapid mixing for matchings and subgraphs with prescribed
degree sequence (in the bipartite case known also as binary contingency tables)
use decomposition into alternating cycles and paths. Our decomposition will
not necessarily contain only alternating cycles and paths.

Let v ∈ V be a vertex and let cI and cF be the numbers of I-edges and F -
edges, respectively, incident to v in I⊕F . For 3-regular graphs we have cI , cF ≤ 3.
We will construct a pairing of the edges in I⊕F at v as follows. Without loss
of generality assume that cI ≤ cF . We will pair all the I-edges with the same
number of F -edges. Then, we will pair the remaining F edges with other F edges
(hence, the pairing will not be alternating). More precisely, for every I-edge eI

incident to v we select an F -edge eF incident to v and pair them together. We
will be left with cF−cI edges (all F -edges) and, if cF−cI = 2, we will take two of
these edges and pair them with each other. If cF −cI = 1, we leave the remaining
F -edge unpaired. (Notice that for 3-regular graphs, |cF − cI | ≤ 2. This follows
from the fact that I and F are valid edge covers: suppose that |cF − cI | = 3,
then either F contains all edges incident to v and I contains none, or vice versa.
However, either case contradicts the assumption that both I and F are edge
covers.) We denote the set of all pairings of the edges in I ⊕ F at v by ΨI,F (v).

A pairing of I ⊕ F is a set of valid pairings at every vertex v ∈ V . We will
denote the set of all (possible) pairings of I ⊕ F by ΨI,F .

The cycle/path decomposition of I⊕F with respect to a pairing from
ΨI,F is defined as follows. We take an arbitrary edge in I ⊕ F , let it be (u0, u1).
We find the edge (u0, u1) is paired at u1 with, let it be (u1, u2); similarly, we
find the edge (u−1, u0) that is paired with (u0, u1) at u0 (if these edges exist –
it might also be that (u0, u1) does not have a paired edge at u0, or u1, or both).
Next, we find the edge (u2, u3) paired with (u1, u2) at u2, etc. Continuing this
process, we either find a path or a cycle. More precisely, if we find a path, it
will be u−k1 , u−k1+1, . . . , u−1, u0, u1, u2, u3 . . . , uk2 such that (ui−1, ui) is paired
with (ui, ui+1) at ui for every i ∈ {−k1 + 1, . . . , k2 − 1}, and there is no edge
paired with (u−k1 , u−k1+1) at u−k1 , and there is no edge paired with (uk2−1, uk2)
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at uk2 . If we find a cycle, it will be u0, u1, u2, u3 . . . , uk such that (ui−1, ui) is
paired with (ui, ui+1) at ui for every i ∈ {1, . . . , k − 1}, and (u0, u1) is paired
with (uk−1, uk) at u0 = uk. Notice that this path or cycle might repeat vertices2

We continue finding paths or cycles that use edges that have not yet been used
in other paths or cycles.

Definition of the canonical flow. Let I, F ∈ Ω be two states and let ψ ∈ ΨI,F

be a pairing of I ⊕ F . We first define a canonical order of cycles/paths in
the cycle/path decomposition of I ⊕ F with respect to ψ. Suppose the edges
of G are numbered 1, 2, . . . , |EG|, and this numbering is independent of I and
F and the pairing ψ. Then we assign a number to every cycle/path identical
to its lowest numbered edge, and we order the cycles/paths according to these
numbers.

Then, we process each cycle/path following the canonical order, i. e., all the
cycles and paths ordered before the current cycle/path have been already pro-
cessed, and all the cycles and paths ordered after the current cycle/path have
not been processed yet. In this context the word “process” means to change the
I-edges into the F -edges. Thus, we start at I and after processing every cycle
and path, we end up with F .

Processing paths. Let u1, u2, . . . , uk be a path from the decomposition, and,
without loss of generality suppose that (u1, u2) is a lower-numbered edge than
(uk−1, uk). We will gradually remove I-edges and add F -edges by dealing with
edges (ui, ui+1) roughly in the order of increasing i. We occasionally need to skip
over some i’s and come back to them to guarantee that all vertices are always
covered (this problem can also be overcome by designing an additional move
of the Markov chain corresponding to swapping one edge for another; however,
since our goal is to analyze the Glauber dynamics Markov chain, we opted for
this small complication in the canonical flow definition). The exact algorithm is
described below (and Lemma 1 will show that at any given time all vertices are
covered).

1. Let i = 1.
2. While i < k do
3. If (ui, ui+1) is in F , then
4. Use the “add” transition of the Markov chain to add the edge (ui, ui+1).
5. Else (if the edge is in I)
6. If i+ 1 = k or if (ui+1, ui+2) is in I, then
7. Use the “remove” transition of the chain to remove the edge (ui, ui+1).
8. Else
9. Use the “add” transition to add the edge (ui+1, ui+2).

10. Then use the “remove” transition to remove the edge (ui, ui+1).
11. Increment i by 1.
12. Increment i by 1.
2 Technically speaking, it would be more appropriate to use terms “walk” and “tour.”

We use “path” and “cycle” to be consistent with earlier papers.
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Processing cycles. Cycles are processed similarly. Let u1, u2, . . . , uk−1, uk = u1

be a cycle from the decomposition and let (u1, u2) be its lowest numbered F -
edge, or let it be the lowest numbered edge if the cycle contains only I-edges.
Let the number of (u2, u3) be smaller than the number of (uk−1, uk) (otherwise,
we “flip” the cycle, i. e., follow the cycle in the opposite direction, to satisfy this
property). We process the cycle as follows.

1. Let i = 1 and let uk+1 = u2.
2. While i < k do
3. If (ui, ui+1) is in F , then
4. Use the “add” transition of the Markov chain to add the edge (ui, ui+1).
5. Else (if the edge is in I)
6. If (ui+1, ui+2) is in I, then
7. Use the “remove” transition of the chain to remove the edge (ui, ui+1).
8. Else
9. If i+ 1 < k, then

10. Use the “add” transition to add the edge (ui+1, ui+2).
11. Then use the “remove” transition to remove the edge (ui, ui+1).
12. Increment i by 1.
13. Increment i by 1.

The following lemma proves that this process always goes only through valid
states of the Markov chain.

Lemma 1. Let I, F ∈ Ω and let ψ ∈ ΨI,F . Moreover, let I =
S1, S2, . . . , S�−1, S� = F be the sequence of subgraphs of G encountered dur-
ing the above described process of changing I into F . Then, Sj ∈ Ω for every
j ∈ {1, 2, . . . , 
}.

Proof. The proof goes by induction on j. Clearly, the claim holds for S1 since
we assume that I ∈ Ω. For the inductive case, let us assume that Sj ∈ Ω for
some j ≥ 1. We want to show that Sj+1 ∈ Ω, too. The described process obtains
Sj+1 either by adding or by removing an edge. If an edge is added to Sj and
all vertices were covered in Sj , all vertices must be covered in Sj+1 as well.
Thus, Sj+1 ∈ Ω. It remains to deal with the case when an edge is removed
from Sj .

Let (ui, ui+1) be the removed edge and let C = u1, u2, . . . , uk be the cycle or
path that contains it. Since (ui, ui+1) was removed, it belongs to I. To prove
that Si+1 ∈ Ω, we need to show that after removing the edge, both ui and ui+1

are still covered by another edge in Sj+1 (and Sj , since Sj and Sj+1 differ only
in the edge (ui, ui+1)).

First we show that ui+1 is always covered in Sj+1. We have several cases to
consider:

– Case 1: i < k − 1 and (ui+1, ui+2) ∈ I. Then, after removing (ui, ui+1), the
vertex ui+1 is still covered by the edge (ui+1, ui+2) which must be in both Sj

and Sj+1 because the edges are processed in order (with the minor exception
of steps 9-11, but this exception does not apply in this case).
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– Case 2: i < k − 1 and (ui+1, ui+2) ∈ F . Then, according to the step 9 in
the path processing algorithm, or step 10 in the cycle processing algorithm,
Sj−1 and Sj differ in the addition of edge (ui+1, ui+2), and therefore, the
vertex ui+1 is covered by that edge in both Sj and Sj+1.

– Case 3: i = k − 1 and C is a path. Since C is a path, the edge (ui, ui+1) =
(uk−1, uk) is not paired with any other edge at uk. However, vertex uk must
be covered by at least one edge in I and at least one edge in F . If there is
an edge e in I ∩ F incident to uk, then, after removing the edge (uk−1, uk),
vertex uk will still be covered by e. Otherwise, there is a pair of edges e1 ∈ I
and e2 ∈ F that are paired together at uk. If e1, e2 belong to a different
cycle/path than C, then either that cycle/path was processed before C, in
which case uk is covered by e2 in Sj+1, or it will be processed after C, in
which case uk is covered by e1 in Sj+1.

Finally, let us consider the case when e1, e2 belong to C. Since (uk−1, uk)
is the last edge in C and (uk−1, uk) ∈ F , the edges e1, e2 must have been
processed earlier. Therefore, e1 ∈ Sj and e2 ∈ Sj , and, therefore, uk is
covered by e2 in Sj (and Sj+1).

– Case 4: i = k − 1 and C is a cycle. If (u1, u2) ∈ F , then (u1, u2) ∈ Sj since
this edge was processed as the first edge of C. Therefore, ui+1 = uk = u1

is covered in Sj (and Sj+1). Let us suppose that (u1, u2) ∈ I, and, thus,
(u1, u2) ∈ Sj . We know that (uk−1, uk) is paired with (u1, u2) at uk = u1

(forming the cycle C) and both (uk−1, uk) and (u1, u2) are in I. However,
the vertex uk is covered by an edge e in F . Either e ∈ I ∩ F , or e must be
paired at uk with an edge e2 ∈ I (and e2 is different from (uk−1, uk) and
(u1, u2)) – otherwise we would not have paired together two edges from I.
If e ∈ I ∩F , then uk is always covered by this edge. Otherwise, if e lies on a
cycle/path preceding C or on C, then e is in Sj and therefore uk is covered
in Sj+1. Alternatively, if e lies on a cycle/path processed after C, then uk is
covered by e2 in Sj+1.

Similar arguments show that ui is covered in Sj+1, we discuss them only briefly:

– Case 1: i > 1 and (ui−1, ui) is in F . Then, ui is covered by (ui−1, ui) in Sj+1.
– Case 2: i > 1 and (ui, ui+1) is in I, or i = 1 and C is a path. In either case,

there exists an edge e ∈ F incident to ui and it will be either e or the edge
e is paired with that will cover ui in Sj+1.

– Case 3: i = 1 and C is a cycle. We claim that (uk−1, uk) ∈ I. Then, the
vertex u1 = uk is covered by (uk−1, uk) in Sj+1. It remains to show that
(uk−1, uk) ∈ I. By contradiction, suppose this edge is in F . But the edge
(u1, u2) was chosen as the smallest numbered edge in F , or if there is no
edge in F , then the smallest numbered edge in I. Thus, if (u1, u2) is in I,
then (uk−1, uk) must be in I as well. �

Splitting the flow. Finally, we are ready to define the canonical flow between
I and F . We consider all pairings from ΨI,F . For a pairing ψ ∈ ΨI,F , we defined
a cycle/path decomposition and we described an algorithm for changing I into
F by following the canonical order of cycles/paths. We call the sequence of
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intermediate subgraphs of G during the modification phase the canonical path
from I to F with respect to ψ. Then, the canonical flow from I to F
splits equally between all canonical paths from I to F , i. e., for each path p that
is a canonical path from I to F , the flow value g(p) = 1/|ΨI,F |.

3.3 Analyzing the Congestion

In this section we bound ρ(T ) for every transition T . In words, we are estimating
the number of canonical paths (weighted by 1/|ΨI,F |) using the transition T . We
will use the standard encoding technique to bound this number.

Encoding. Let T = (M,M ′) be a transition from a state M to a state M ′. Let
I and F be a pair of states and ψ ∈ ΨI,F be a pairing of I ⊕ F such that the
canonical path from I to F associated with ψ uses the transition T . We will
encode this canonical path by an “almost state” E = I ⊕ F ⊕M and a pairing
ψ′ of edges in M ⊕E that we will specify later. (Technically, we defined pairings
only between a pair of states from Ω, but the same definition easily applies to
any subgraphs of G.) The following lemmas show that E has all except possibly
up to four vertices covered by edges.

Lemma 2. Let I, F ∈ Ω and ψ ∈ ΨI,F , let C1, C2, . . . , C� be the components
of the cycle/path decomposition of I ⊕ F with respect to ψ, and suppose the
components are processed in the given order. Let Xi be the state right after
processing the i-th component, and let Yi = I ⊕ F ⊕ Xi. Moreover, let cI(v),
cF (v), cXi(v), and cYi(v) be the degrees of a vertex v in I \ F , F \ I, Xi \ Yi,
and Yi \Xi, respectively. Then,

– {cI(v), cF (v)} = {cXi(v), cYi(v)} for all vertices v ∈ V , and
– Yi ∈ Ω for every i.

Proof. The proof proceeds by induction on i. The base case, i = 0, follows
from the fact that X0 = I and Y0 = F . For the inductive case, we assume the
statement holds for i ≥ 0 and we will prove it for i+ 1.

It will be useful to notice that 0 ≤ cI(v), cF (v) ≤ 2. This follows from the fact
that the graph has maximum degree 3: then, if I and F share an edge adjacent
to v, then the degree of v in I\F (and in F \I) is at most 2. On the other hand, if
there is no common edge adjacent to v, then the degree of v in I must be smaller
than 3 because there must exist an edge covering v in F . Thus, cI(v) ≤ 2, and,
similarly, cF ≤ 2.

By the definition of the canonical path with respect to ψ, the state Xi differs
from the state Xi+1 only in the edges that belong to the component Ci. Namely,
Xi contains the I-edges of Ci but not the F -edges, and Xi+1 contains only the
F -edges but not the I-edges of Ci. We will show that for every vertex v, we have
{cXi(v), cYi(v)} = {cXi+1(v), cYi+1(v)}, and that v is covered in both Xi+1 and
Yi+1, thus proving the lemma.

Clearly, cXi(v) = cXi+1(v) and cYi(v) = cYi+1(v) for every vertex v that is not
on Ci, thus the claim holds for such vertices. Suppose that v is on Ci. There are
several cases:
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– Case 1: v is adjacent to two edges on Ci that are paired at v, one edge is in
I, and one is in F . Then, we know that 1 ≤ cI , cF ≤ 2. Thus, if cI = cF , we
have cXi = cYi = cXi+1 = cYi+1 and the claim follows. Otherwise, without
loss of generality assume that cXi = 1 and cYi = 2. Then, cXi+1 = 2 and
cYi+1 = 1 and the claim holds.

– Case 2: v is adjacent to two edges on Ci that are paired at v, without loss
of generality assume that both are from I. Then, we know that cXi = 2
and cYi = 0 (otherwise the two I-edges would not have been paired). Thus,
cXi+1 = 0 and cYi+1 = 2, and {cXi(v), cYi(v)} = {cXi+1(v), cYi+1(v)}. It
remains to show that v is covered in Xi+1. Since v was, by the inductive
hypothesis, covered in both Xi and Yi, the only possibility for this to happen
is that Xi and Yi share an edge adjacent to v. This edge is then in Xi+1 as
well and it covers v.

– Case 3: v is adjacent to a single edge on Ci, without loss of generality suppose
it is an edge from I. Then, either cXi = 1 and cYi = 0, or cXi = 2 and cYi = 1.
In the second case, cXi+1 = 1 and cYi+1 = 2 and the claim holds. For the
first case we have cXi+1 = 0 and cYi+1 = 1 and we need to argue that v is
covered in Xi+1. The argument is analogous to Case 2: there exists an edge
shared by both Xi and Yi (and therefore Xi+1 and Yi+1) that covers v. �

Lemma 3. Let I, F ∈ Ω and ψ ∈ ΨI,F . Let T = (M,M ′) be a transition used
on the ψ-defined canonical path from I to F and let C = u1, u2, . . . , uk be the
component of the cycle/path decomposition of I ⊕ F that uses T . Let (ut, ut+1)
be the edge in M ⊕M ′. Then, for every vertex v ∈ V \ {u1, ut−1, ut, ut+1}, we
have that {cI(v), cF (v)} = {cM (v), cE(v)} and v is covered in E = I ⊕ F ⊕M .

The proof of Lemma 3 follows from Lemma 2. We defer the details to the journal
version of this paper.

Let us denote the set of “almost states” as Ω′, i. e., Ω′ is the set of subgraphs
of G where at most four vertices are not covered by an edge of the subgraph. The
following lemma states a polynomial relationship between the sizes of Ω and Ω′

– this relationship will be important for establishing a polynomial bound on the
congestion.

Lemma 4. |Ω′| ≤ (m+ 1)4|Ω|, where m is the number of edges of G.

Proof. Let Ω′
k be the subset of Ω′ containing graphs with exactly k vertices

uncovered. We will give an injection h from Ω′
k to Ω × Ek

G. Let H ∈ Ω′
k and

let v1, v2, . . . , vk be its uncovered vertices. For every i ∈ {1, 2, . . . , k}, take the
smallest numbered edge adjacent to vi, let it be (vi, v

′
i). Add all these edges

to H , creating a graph H ′. Thus, h(H) = (H ′, (v1, v′1), (v2, v
′
2), . . . , (vk, v

′
k)).

Clearly, this map is injective since H ′ \ {(vi, v
′
i) | i ∈ {1, 2, . . . , k}} results in H .

Therefore, |Ω′
k| ≤ mk|Ω|. Summing over k ∈ {0, 1, 2, 3, 4}, we get that |Ω′| ≤

(m4 +m3 +m2 +m+ 1)|Ω| ≤ (m+ 1)4|Ω|. �

Specifying the pairing from ΨE,M . By the definition of E we have that
I ⊕ F = M ⊕ E. Thus, we need to pair the same set of edges in M ⊕ E as in
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I⊕F . Recall that the pairing ψ ∈ ΨI,F is given. We construct the corresponding
pairing ψ′ by pairing up the same edges as those paired up in ψ. However, now
we need to argue that this pairing is “legal,” i. e., that for every vertex, there
is at most one unpaired edge (this property follows directly from the fact that
it is satisfied for ψ), and if there is a pairing of two edges from E, then no
two edges from M are paired together at the same vertex, and vice versa. We
allow exceptions at at most four vertices. This statement is summarized in the
following lemma and its proof follows from the arguments made in proofs of
Lemmas 2 and 3.

Lemma 5. Let ψ′ be constructed as described above and let C = u1, u2, . . . , uk

be the component of the cycle/path decomposition of I ⊕ F that uses T . Let
(us, us+1) be the edge in M ⊕M ′ and let v ∈ V \ {u1, us−1, us, us+1}. Finally,
recall that cM (v) is the degree of v in M \ E and cE(v) is its degree in E \M .
Then, the pairing ψ′ pairs min{cM (v), cE(v)} edges from M with edges from E
at v, plus it pairs the remaining edges so that at most one is left unpaired.

Notice that if we know E, T = (M,M ′), and the pairing ψ′, we can reconstruct
I, F , and ψ. Since ψ′ defines a cycle/path decomposition on E ⊕M = I ⊕ F
and ψ′ = ψ, we know which components of the decomposition have been already
processed, which have not been processed, and which one is partially processed.
Therefore, we can uniquely determine which edges of E ⊕M belong to I and
which belong to F .

Bounding the congestion. Suppose that T = (M,M ′) where M and M ′

are almost identical valid edge covers with the only difference that M does not
contain (u, v) and M ′ does contain this edge, or vice versa.

Notice that π(M) = π(I) = π(F ) = 1/|Ω|, and pM,M ′ = 1/(2m). Also note
that the length of any above described canonical path is upper-bounded by m
since every edge gets changed (added or removed) at most once. Finally, as we
argued above, every path through T can be encoded by a pair of E ∈ Ω′ and
ψ′ ∈ ΨM,E where the definition of the set of all pairings between two states has
been naturally extended to include any two subgraphs of G. Therefore,

ρg(T ) =
1

π(M)pM,M ′

∑
p�T

π(Ip)π(Fp)g(p)
(g) ≤
2m2

|Ω|
∑
p�T

1
|ΨIp,Fp |

≤ 2m2

|Ω|
∑

E∈Ω′

∑
ψ′∈ΨM,E

1
|ΨIp,Fp |

≤ 2m2

|Ω|
∑

E∈Ω′
34 ≤ 162m2(m+ 1)4 = O(m6),

where the second to last inequality follows from Lemma 5. Namely, we know that
the number of pairings of M ⊕E at any given vertex (with a possible exception
of up to four vertices) is the same as the number of pairings of I ⊕ F at the
same vertex. Thus, for every such vertex v, we have |ΨIp,Fp(v)| = |ΨM,E(v)|.
At the four special vertices, the ratio |ΨM,E(v)|/|ΨIp,Fp(v)| could be arbitrary;
however, the largest number of pairings at a vertex v of degree 3 is 3 (if all edges
adjacent to v are in M and no edge is in E), the smallest number of pairings is
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1. Thus, |ΨM,E(v)|/|ΨIp,Fp(v)| ≤ 3 and therefore |ΨM,E | =
∏

v∈VG
|ΨM,E(v)| ≤

34
∏

v∈VG
|ΨIp,Fp(v)| = 34|ΨIp,Fp |.

Then, the mixing time is bounded by

τx(δ) ≤ ρg(log π(x)−1 + log δ−1) = O(m6(m+ log δ−1)),

where the last equality follows from the fact that the total number of edge covers
is upper-bounded by the total number of subgraphs of G. Thus, π(x) = 1/|Ω|
and |Ω| ≤ 2m. Also notice that for constant-degree graphs m = O(n). This
finishes the proof of Theorem 1.
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Abstract. We consider finite graphs whose edges are labeled with elements, called
colors, taken from a fixed finite alphabet. We study the problem of determining
whether there is an infinite path where either (i) all colors occur with the same
asymptotic frequency, or (ii) there is a constant which bounds the difference be-
tween the occurrences of any two colors for all prefixes of the path. These two
notions can be viewed as refinements of the classical notion of fair path, whose
simplest form checks whether all colors occur infinitely often. Our notions pro-
vide stronger criteria, particularly suitable for scheduling applications based on a
coarse-grained model of the jobs involved. We show that both problems are solv-
able in polynomial time, by reducing them to the feasibility of a linear program.

1 Introduction

In this paper, a colored graph is a finite directed graph whose edges are labeled with
tags belonging to a fixed finite set of colors. For an infinite path in a colored graph, we
say that the asymptotic frequency of a color is the long-run average number of occur-
rences of that color. Clearly, a color might have no asymptotic frequency on a certain
path, because its long-run average oscillates. We introduce and study the problem of
determining whether there is an infinite path in a colored graph where each color oc-
curs with the same asymptotic frequency. We call such a path balanced. The existence
of such a path in a given colored graph is called the balance problem.

Then, we consider the following stronger property: a path has the bounded difference
property if there is a constant c such that, at all intermediate points, the number of
occurrences of any two colors up to that point differ by at most c. The existence of
such a path is called the bounded difference problem for a given graph. It is easy to
prove that each bounded difference path is balanced. Moreover, each path that is both
balanced and ultimately periodic (i.e., of the form σ1 ·σω

2 , for two finite paths σ1 and
σ2) is also a bounded difference path. However, there are paths that are balanced but do
not have the bounded difference property, as shown in Example 1.

We provide a loop-based characterization for each one of the mentioned decision
problems. Both characterizations are based on the notion of balanced set of loops. A
set of simple loops in the graph is balanced if, using those loops as building blocks, it
is possible to build a finite path where all colors occur the same number of times.

We prove that a graph satisfies the balance problem if and only if it contains a bal-
anced set of loops that are mutually reachable (Theorem 1). Similarly, a graph satisfies
the bounded difference problem if and only if it contains a balanced set of loops that

! Work partially supported by MIUR PRIN Project 2007-9E5KM8.
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are overlapping, i.e., each loop has a node in common with another loop in the set
(Theorem 2).

Using the above characterizations, for each problem we devise a linear system of
equations whose feasibility is equivalent to the solution of the problem. Since the size
of these linear systems is polynomial, we obtain that both our problems are decidable in
polynomial time. Further, we can compute in polynomial time a finite representation of
a path with the required property. We also provide evidence that the problems addressed
are non-trivial, by showing that a closely related problem is NP-hard: the problem of
checking whether there is a perfectly balanced finite path connecting two given nodes
in a graph.

We believe that the two problems that we study and solve in this paper are natural
and canonical enough to be of independent theoretical interest. Additionally, they may
be regarded as instances of the well established notion of fairness.

Balanced paths as fair paths. Colored graphs as studied in this paper routinely occur
in the field of computer science that deals with the analysis of concurrent
systems [MP91]. In that case, the graph represents the transition relation of a concur-
rent program and the color of an edge indicates which one of the processes is making
progress along that edge. One basic property of interest for those applications is called
fairness and essentially states that, during an infinite computation, each process is al-
lowed to make progress infinitely often [Fra86]. Starting from this core idea, a rich
theory of fairness has been developed, as witnessed by the amount of literature devoted
to the subject (see, for instance, [LPS81, Kwi89, dA00]).

Cast in our abstract framework of colored graphs, the above basic version of fairness
asks that, along an infinite path in the graph, each color occurs infinitely often. Such
requirement does not put any bound on the amount of steps that a process needs to
wait before it is allowed to make progress. As a consequence, the asymptotic frequency
of some color could be zero even if the path is fair. Accordingly, several authors have
proposed stronger versions of fairness. For instance, Alur and Henzinger define finitary
fairness roughly as the property requiring that there be a fixed bound on the number
of steps between two occurrences of any given color [AH98]. A similar proposal, sup-
ported by a corresponding temporal logic, was made by Dershowitz et al. [DJP03]. On
a finitarily fair path, all colors have positive asymptotic frequency 1.

Our proposed notions of balanced paths and bounded difference paths may be viewed
as two further refinements of the notion of fair path. Previous definitions treat the fre-
quencies of the relevant events in isolation and in a strictly qualitative manner. Such def-
initions only distinguish between zero frequency (not fair), limit-zero frequency (fair,
but not finitarily so), and positive frequency (finitarily fair). The current proposal, in-
stead, introduces a quantitative comparison between competing events.

Technically, it is easy to see that bounded difference paths are special cases of fini-
tarily fair paths. On the other hand, finitarily fair paths and balanced paths are incom-
parable notions.

We believe that the two proposed notions are valuable to some applications, per-
haps quite different from the ones in which fairness is usually applied. Both the balance

1 For the sake of clarity, we are momentarily ignoring those paths that have no asymptotic fre-
quency.
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property and the bounded difference property are probably too strong for the applica-
tions where one step in the graph represents a fine-grained transition of unknown length
in a concurrent program. In that case, it may be of little interest to require that all pro-
cesses make progress with the same (abstract) frequency.

On the other hand, consider a context where each transition corresponds to some
complex or otherwise lengthy operation. As an example, consider the model of a con-
current program where all operations have been disregarded, except the access to a
peripheral that can only be used in one-hour slots, such as a telescope, which requires
some time for re-positioning. Assuming that all jobs have the same priority, it is cer-
tainly valuable to find a scheduling policy that assigns the telescope to each job with
the same frequency.

As a non-computational example, the graph may represent the rotation of cultures on
a crop, with a granularity of 6 months for each transition [Wik09]. In that case, we may
very well be interested not just in having each culture eventually planted (fairness) or
even planted within a bounded amount of time (finitarily fair), but also occurring with
the same frequency as any other culture (balanced or bounded difference).

The rest of the paper is organized as follows. Section 2 introduces the basic defini-
tions. Section 3 establishes connections between the existence of balanced or bounded
difference paths in a graph and certain loop-based properties of the graph itself.
Section 4 (respectively, Section 5) exploits the properties proved in Section 3 to de-
fine a system of linear equations whose feasibility is equivalent to the balance problem
(resp., the bounded difference problem).

Due to space limitations, some proofs are omitted and reported in the full version of
the current paper.

2 Preliminaries

Let X be a set and i be a positive integer. By Xi we denote the Cartesian product of X
with itself i times. By N, Z, Q, and R we respectively denote the set of non-negative
integer, relative integer, rational, and real numbers. Given a positive integer k, let [k] =
{1, . . . ,k} and [k]0 = [k]∪{0}.

A k-colored graph (or simply graph) is a pair G = (V,E), where V is a set of nodes
and E ⊆ V × [k]×V is a set of colored edges. We employ integers as colors for tech-
nical convenience. All the results we obtain also hold for an arbitrary set of labels.
An edge (u,a,v) is said to be colored with a. In the following, we also simply call a
k-colored graph a graph, when k is clear from the context. For a node v ∈ V we call
vE = {(v,a,w) ∈ E} the set of edges exiting from v, and Ev = {(w,a,v) ∈ E} the set
of edges entering in v. For a color a ∈ [k], we call E(a) = {(v,a,w) ∈ E} the set of
edges colored with a. For a node v ∈ V , a finite v-path ρ is a finite sequence of edges
(vi,ai,vi+1)i∈{1,...,n} such that v1 = v. The length of ρ is n and we denote by ρ(i) the
i-th edge of ρ. Sometimes, we write the path ρ as v1v2 . . .vn, when the colors are unim-
portant. A finite path ρ = v1v2 . . .vn is a loop if v1 = vn. A loop v1v2 . . .vn is simple if
vi = v j, for all i = j, except for i = 1 and j = n. An infinite v-path is defined analogously,
i.e., it is an infinite sequence of edges. Let ρ be a finite path and π be a possibly infinite
path, we denote by ρ ·π the concatenation of ρ and π. By ρω we denote the infinite path
obtained by concatenating ρ with itself infinitely many times. A graph G is strongly
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connected if for each pair (u,v) of nodes there is a finite u-path with last node v and a
finite v-path with last node u.

For a finite or infinite path ρ and an integer i, we denote by ρ≤i the prefix of ρ
containing i edges. For a color a ∈ [k], we denote by |ρ|a the number of edges labeled
with a occurring in ρ. For two colors a,b ∈ [k], we denote the difference between the
occurrences of edges labeled with a and b in ρ by diff a,b(ρ) = |ρ|a− |ρ|b. An infinite
path π is periodic iff there exists a finite path ρ such that π = ρω. A loop σ is perfectly
balanced iff diff a,b(σ) = 0 for all a,b ∈ [k]. Finally, we denote by 0 and 1 the vectors
containing only 0’s and 1’s, respectively. We can now define the following two decision
problems.

The balance problem. Let G be a k-colored graph. An infinite path ρ in G is balanced
if for all a ∈ [k],

lim
i→∞

|ρ≤i|a
i

=
1
k
.

The balance problem is to determine whether there is a balanced path in G.

The bounded difference problem. Let G be a k-colored graph. An infinite path ρ in
G has the bounded difference property (or, is a bounded difference path) if there exists
a number c≥ 0, such that, for all a,b ∈ [k] and i> 0,

|diff a,b(ρ
≤i)| ≤ c.

The bounded difference problem is to determine whether there is a bounded difference
path in G.

3 Basic Properties

In this section, we assume that G = (V,E) is a finite k-colored graph, i.e., both V and
E are finite. In the following lemma, the proof of item 1 is trivial, while the proof of
item 2 can be found in the extended version.

Lemma 1. The following properties hold:

1. if a path has the bounded difference property, then it is balanced;
2. a path ρ is balanced if and only if for all a ∈ [k−1],

lim
i→∞

diff a,k(ρ≤i)
i

= 0.

The following example shows that the converse of item 1 of Lemma 1 does not hold.

Example 1. For all i> 0, let σi = (1 ·2)i ·1 ·3 · (1 ·3 ·2 ·3)i ·1 ·3 ·3. Consider the infinite
sequence σ = ∏ω

i=1 σi obtained by a hypothetic 3-colored graph. On one hand, it is easy
to see that for all i > 0 it holds diff 3,1(σi) = 1. Therefore, diff 3,1(σ1σ2 . . .σn) = n, and
σ is not a bounded difference path.

On the other hand, since the length of the first n blocks is Θ(n2) and the difference
between any two colors is Θ(n), in any prefix σ≤i the difference between any two colors
is in O(

√
i). According to item 2 of Lemma 1, σ is balanced. ��
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Two loops σ,σ′ in G are connected if there exists a path from a node of σ to a node
of σ′, and vice-versa. A set L of loops in G is connected if all pairs of loops in L are
connected. Two loops in G are overlapping if they have a node in common. A set L
of loops in G is overlapping if for all pairs of loops σ,σ′ ∈ L there exists a sequence
σ1, . . . ,σn of loops in L such that (i) σ1 = σ, (ii) σn = σ′, and (iii) for all i = 1, . . . ,n−1,
(σi,σi+1) are overlapping. Given a set of loops L in G, the subgraph induced by L is
G′ = (V ′,E ′), where V ′ and E ′ are all and only the nodes and the edges, respectively,
belonging to a loop in L .

Lemma 2. Let G be a graph, L be a set of loops in G, and G′ =(V ′,E ′) be the subgraph
of G induced by L , then the following statements are equivalent:

1. L is overlapping.
2. The subgraph G′ is strongly connected.
3. There exists u ∈V ′ such that for all v ∈V ′ there exists a path in G′ from u to v.

Proof. [1 ⇒ 2] If L is overlapping, then, for all pairs of loops σ1,σ2, there exists a
sequence of loops that links σ1 with σ2. Thus, from any node of σ1, it is possible to
reach any node of σ2. Hence, G′ is strongly connected.

[2⇒ 3] Trivial.
[3⇒ 2] Let u ∈ V ′ be a witness for (3). Let v,w ∈ V ′, we prove that there is a path

from v to w. We have that u is connected to both v and w. Since all edges in G′ belong
to a loop, for all edges (u′, ·,v′) along the path from u to v there is a path from v′ to u′.
Thus, there is a path from v to u, and, as a consequence, a path from v to w, through u.

[2 ⇒ 1] If G′ is strongly connected, for all σ1,σ2 ∈ L there is a path ρ in G′ from
any node of σ1 to any node of σ2. This fact holds since G′ is induced by L , so ρ uses
only edges of the loops in L . While traversing ρ, every time we move from one loop to
the next, these two loops must share a node. Therefore, all pairs of adjacent loops used
in ρ are overlapping. Thus L is overlapping. ��

The above lemma implies that if L is overlapping then it is also connected, since G′ is
strongly connected.

For all finite paths ρ of G, with a slight abuse of notation let diff (ρ) = (diff 1,k(ρ), . . . ,
diff k−1,k(ρ)) be the vector containing the differences between each color and color k,
which is taken as a reference. We call diff (ρ) the difference vector of ρ2. For all finite
and infinite paths ρ we call difference sequence of ρ the sequence of difference vectors
of all prefixes of ρ, i.e., {diff (ρ≤n)}n∈N. Given a finite set of loops L = {σ1, . . . ,σl} and
a tuple of natural numbers c1, . . . ,cl not all equal to zero, we call natural linear combi-
nation (in short, n.l.c.) of L with coefficients c1, . . . ,cl the vector x = ∑l

i=1 cidiff (σi).
A loop is a composition of a finite tuple of simple loops T if it is obtained by using

all and only the edges of T as many times as they appear in T . Formally, for a loop
σ and an edge e, let n(e,σ) be the number of occurrences of e in σ. The loop σ is a
composition of (σ1, . . . ,σl) if, for all edges e, it holds n(e,σ) = ∑l

i=1 n(e,σi).

2 The difference vector is related to the Parikh vector [Par66] of the sequence of colors of the
path. Precisely, the difference vector is equal to the first k−1 components of the Parikh vector,
minus the k-th component.
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Lemma 3. Let σ be a loop of length n containing m distinct nodes. Then, σ is a com-
position of at least ! n

m" simple loops.

Proof. We use a decomposition algorithm on σ: the algorithm scans the edges of σ
from the beginning to the end. As soon as a simple loop is found, i.e., as soon as a node
is repeated, such a simple loop is removed from σ and added to the tuple. The tuple
given by the removed loops is the decomposition we are looking for. Since a simple
loop contains at most m nodes, the tuple contains at least ! n

m" loops. ��

3.1 The Balance Problem

The following lemma shows that a sequence of integral vectors has sum in o(n) only if
there is a finite set of vectors that occur in the sequence which have an n.l.c. with value
zero.

Lemma 4. Let A⊂ Zd be a finite set of vectors such that there is no subset A′ ⊆ A with
an n.l.c. of value zero. Let {(an,1, . . . ,an,d)}n∈N be an infinite sequence of elements of A,
and Sn,i = ∑n

j=0 a j,i be the partial sum of the i-th component, for all n ∈ N and i ∈ [d].

Then, there exists at least an index h such that limn→∞
Sn,h

n = 0.

The following result provides a loop-based characterization for the balance problem.

Theorem 1. A graph G satisfies the balance problem iff there exists a connected set L
of simple loops of G, with zero as an n.l.c.

Proof. [if] Let L = {σ0, . . . ,σl−1} be a connected set of simple loops having zero
as an n.l.c., with coefficients c0, . . . ,cl−1. For all i = 0, . . . , l− 1, let vi be the initial
node of σi. Since L is connected, there exists a path ρi from vi to v(i+1) mod l . For

all j > 0, define the loop π j = σ j·c0
0 ρ0σ j·c1

1 ρ1 . . .σ
j·cl−1
l−1 ρl−1. We claim that the infi-

nite path π = ∏ j>0 π j is balanced. Each time a π j block ends along π, the part of the
difference vector produced by the loops of L is zero. So, when a π j ends, the differ-
ence vector is due only to the paths ρi. Since the index of the step k( j) at which π j

ends grows quadratically in j and the difference vector diff (π1 . . .π j) grows linearly in
j, we have that lim j→∞ diff (π1 . . .π j)/k( j) = 0. It can be shown that in the steps be-
tween k( j) and k( j + 1), the i-th component of the difference vector differs from the
one of diff (π1 . . .π j) no more than a function Ci, j that grows linearly in j. Specifically,
Ci, j = MPi + jMAi, where MPi is the sum, for all ρ j, of the maximum modulus of the
i-th component of the difference vector along ρ j, and MAi is the sum, for all σ j, of
the maximum modulus of the i-th component of the difference vector along σ j. As a
consequence, limk→∞ diff (π≤k)/k = 0 and π is balanced.

[only if] If there exists an infinite balanced path ρ, since the set of nodes is finite,
there is a set V ′ of nodes occurring infinitely often in ρ. Let ρ′ be a suffix of ρ containing
only nodes in V ′. The path ρ′ is balanced and it is composed by an infinite sequence of
simple loops on V ′, plus a remaining simple path (see the proof of Lemma 3 for further
details). Let L be the (finite) set of such simple loops, and let A ⊂ Zk−1 be the set of
difference vectors of the loops in L .
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Every time a loop trough V ′ closes along ρ′, the difference vector up to that point is
the sum of the difference vectors of the simple loops occurred so far, plus the difference
vector of the remaining simple path. Since the remaining simple path cannot have length
greater than |V ′|, the difference vector up to that point differs from a sum of a sequence
of elements of A by a constant-bounded term. Let n(i) be the index of the i-th point
where a loop is closed along ρ′. Since ρ′ is balanced, by statement 2 of Lemma 1, each
component of the difference sequence {diff (ρ′≤i)}i∈N is in o(i). Hence, each component
of the partial sum of the difference vectors associated to the sequence of loops closed is
in o(n(i)). By Lemma 4, this is possible only if A has a subset A′ with an n.l.c. of value
zero. Thus, the set of loops L ′ with difference vectors in A′ has an n.l.c. with value zero.
Moreover, since the loops in L ′ are constructed with edges of ρ′, they are connected.
This concludes the proof. ��

3.2 The Bounded Difference Problem

Given a graph, if there exists a perfectly balanced loop σ, it is easy to see that σω is a
periodic bounded difference path. Moreover, if ρ is an infinite bounded difference path,
then there exists a constant c such that the absolute value of all color differences is
smaller than c. Since both the set of nodes and the possible difference vectors along ρ
are finite, we can find two indexes i< j such that ρ(i) = ρ( j) and diff (ρ≤i) = diff (ρ≤ j).
So, σ′ = ρ(i)ρ(i + 1) . . .ρ( j) is a perfectly balanced loop. Therefore, the following
holds.

Lemma 5. Given a graph G, the following statements are equivalent:

1. There exists a bounded difference path.
2. There exists a periodic bounded difference path.
3. There exists a perfectly balanced loop.

We now prove the following result.

Lemma 6. Let G be a graph. There exists a perfectly balanced loop in G iff there exists
an overlapping set L of simple loops of G, with zero as n.l.c.

Proof. [only if] If there exists a perfectly balanced loop σ, by Lemma 3 the loop is the
composition of a tuple T of simple loops. Let L be the set of distinct loops occurring
in T , and for all ρ ∈ L , let cρ be the number of times ρ occurs in T . Since in the
computation of the difference vector of a path it does not matter the order in which the
edges are considered, we have ∑ρ∈L cρ ·diff (ρ) = diff (σ) = 0. Finally, since the loops
in L come from the decomposition of a single loop σ, we have that L is overlapping.

[if] Let L = {σ1, . . . ,σl} be such that ∑l
i=1 ci · diff (σi) = 0. We construct a single

loop σ such that diff (σ) = ∑l
i=1 ci ·diff (σi). The construction proceeds in iterative steps,

building a sequence of intermediate paths ρ1, . . . ,ρl , such that ρl is the wanted perfectly
balanced loop. In the first step, we take any loop σi1 ∈ L and we traverse it ci1 times,
obtaining the first intermediate path ρ1 = σ

ci1
i1

. After the j-th step, since L is overlap-
ping, there must be a loop σi j+1 ∈ L that is overlapping with one of the loops in the
current intermediate path ρ j, say in node v. Then, we reorder ρ j in such a way that it
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Fig. 1. A 3-colored graph satisfying the balance problem, but not the bounded difference problem

starts and ends in v. Let ρ′j be such reordering, we set ρ j+1 = ρ′j σ
ci j+1
i j+1

. One can verify
that ρl is perfectly balanced. ��

The following theorem is a direct consequence of the previous two lemmas.

Theorem 2. A graph G satisfies the bounded difference problem iff there exists an over-
lapping set L of simple loops of G, with zero as n.l.c.

Example 2. Consider the graph G in Fig. 1. First note that, up to rotation, there are just
three simple loops in it: σ1 = A ·B ·A, σ2 = C ·D ·E ·F ·C, and σ3 = A ·B ·C ·D ·E ·A. It
is easy to see that diff (σ1) = (1,1), diff (σ2) = (−1,−1), and diff (σ3) = (−1,−3). On
one hand, since the connected set of simple loops {σ1,σ2} has zero as n.l.c., we obtain
that there is a balanced path in G. Example 1 shows a particular balanced sequence of
colors obtained by a non-periodic path of the subgraph G′ of G induced by these two
loops. On the other hand, for all the three overlapping sets of loops ({σ1,σ3}, {σ2,σ3},
and {σ1,σ2,σ3}) there is no way to obtain a zero n.l.c. with all coefficients different
from zero. So, there is no bounded difference path in G. ��

3.3 2-Colored Graphs

When the graph G is 2-colored, the difference vector is simply a number. So, if L is a
connected set of simple loops having zero as n.l.c., then there must be either a perfectly
balanced simple loop or two loops with difference vectors of opposite sign. Notice
that two loops σ,σ′ with color differences of opposite sign have the following n.l.c. of
value zero: |diff (σ′)| · diff (σ)+ |diff (σ)| · diff (σ′) = 0. If the two loops are connected
but not overlapping, we can construct a sequence of adjacent overlapping simple loops
connecting them. In this sequence, we are always able to find a perfectly balanced
simple loop or two overlapping simple loops with difference vectors of opposite sign.
Therefore, the following holds.

Lemma 7. Let G be a 2-colored graph. If there exists a connected set of simple loops
of G with zero as n.l.c., then there exists an overlapping set of simple loops of G with
zero as n.l.c.

Due to the above characterization, both decision problems can be solved efficiently, by
using a minimum spanning tree algorithm to find two loops of opposite color difference
sign, if such exist.
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Theorem 3. A 2-colored graph G = (V,E) satisfies the bounded difference problem iff
it satisfies the balance problem. Both problems can be solved in time O(|V | · |E| ·log |V |).

3.4 A Related NP-Hard Problem

In this section, we introduce an NP-hard problem similar to the bounded difference
problem. Given a k-colored graph G and two nodes u and v, the new problem asks
whether there exists a perfectly balanced path from u to v. We call this question the
perfectly balanced finite path problem. To see that this problem is closely related to the
bounded difference problem, one can note that it corresponds to the statement of item
3 in Lemma 5, by changing the word loop to finite path. The following result can be
proved using a reduction from 3SAT.

Theorem 4. The perfectly balanced finite path problem is NP-hard.

4 Solving the Balance Problem

In this section, we define a system of linear equations whose feasibility is equivalent to
the balance problem for a given strongly connected graph.

Definition 1. Let G = (V,E) be a k-colored graph. We call balance system for G the
following system of equations on the set of variables {xe |e ∈ E}.

1. for all v ∈V ∑e∈Ev xe = ∑e∈vE xe

2. for all a ∈ [k−1] ∑e∈E(a) xe = ∑e∈E(k) xe

3. for all e ∈ E xe ≥ 0
4. ∑e∈E xe > 0.

Let m = |E| and n = |V |, the balance system has m variables and m+ n + k constraints.
It helps to think of each variable xe as a load associated to the edge e ∈ E , and of each
constraint as having the following meaning.

1. For each node, the entering load is equal to the exiting load.
2. For each color a ∈ [k− 1], the load on the edges colored by a is equal to the load

on the edges colored by k.
3. Every load is non-negative.
4. The total load is positive.

The following lemma justifies the introduction of the balance system.

Lemma 8. There exists a set L of simple loops in G with zero as n.l.c. iff the balance
system for G is feasible.

Proof. (Sketch) [only if] If there exists an n.l.c. of L with value zero, let cσ be the
coefficient associated with a loop σ ∈ L . We can construct a vector x ∈ Rm that satisfies
the balance system. First, define h(e,σ) as 1 if the edge e is in σ, and 0 otherwise.
Then, we set xe = ∑σ∈L cσh(e,σ). Considering that, for all σ ∈ L and v ∈ V , it holds
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that ∑e∈vE h(e,σ) = ∑e∈Ev h(e,σ), it is a matter of algebra to show that x satisfies the
balance system.

[if] If the system is feasible, since it has integer coefficients, it has to have a rational
solution. Moreover, all constraints are either equalities or inequalities of the type aT x∼
0, for ∼∈ {>,≥}. Therefore, if x is a solution then cx is also a solution, for all c > 0.
Accordingly, if the system has a rational solution, it also has an integer solution x ∈ Zm.
Due to the constraints (3), such solution must be non-negative. So, in fact x ∈ Nm.

Then, we consider each component xe of x as the number of times the edge e is used
in a set of loops, and we use x to construct such set with an iterative algorithm. At the
first step, we set x1 = x, we take a non-zero component x1

e of x1, we start constructing
a loop with the edge e, and then we subtract a unit from x1

e to remember that we used
it. Next, we look for another non-zero component x1

e′ such that e′ exits from the node e
enters in. It is possible to show that the edge e′ can always be found. Then, we add e′ to
the loop and we subtract a unit from x1

e′ . We continue looking for edges e′ with x1
e′ > 0

and exiting from the last node added to the loop, until we close a loop, i.e., until the
last edge added enters in the node the first edge e exits from. After constructing a loop,
we have a residual vector x2 for the next step. If such vector is not zero, we construct
another loop, and so on until the residual vector is zero. In the end we have a set of (not
necessarily simple) loops, and we show that it has zero as n.l.c. Finally, we decompose
those loops in simple loops with the algorithm of Lemma 3, and we obtain a set L of
simple loops having zero as a natural linear combination. ��

Since in a strongly connected graph all loops are connected, from the previous lemma,
we have:

Corollary 1. If G is strongly connected, there exists a balanced path in G iff the bal-
ance system for G is feasible.

In order to solve the balance problem in G, first we compute the maximal connected
components of G using the classical algorithm [CLRS01]. This algorithm is polyno-
mial in n and m. Then, in each component we compute whether the balance system
is feasible, by using the polynomial algorithm for feasibility of sets defined by linear
constraints [NW88]. This second algorithm is used at most n times and it is polynomial
in the number of constraints (n+m+ k) and in the logarithm of the maximum modulus
of a coefficient in a constraint (in our case, the maximum modulus is 1).

Theorem 5. The balance problem is in P.

We remark that the feasibility algorithm can also provide the value of a solution to
the system in input. By the proof of Lemma 8, such a solution allows us to compute
in polynomial time a set of connected simple loops and the coefficients of an n.l.c. of
value zero. As shown in the if part of the proof of Theorem 1, this in turn allows us to
constructively characterize a balanced path in the graph.

5 Solving the Bounded Difference Problem

In this section, we solve the bounded difference problem using the same approach as in
Section 4.



Balanced Paths in Colored Graphs 159

Definition 2. Let G = (V,E) be a k-colored graph with m = |E|, n = |V |, and sG =
min{n + k− 1,m}, and let u ∈ V be a node. We call bounded difference system for
(G,u) the following system of equations on the set of variables {xe,ye |e ∈ E}.

1-4. The same constraints as in the balance system for G
5. for all v ∈V \ {u} ∑e∈Ev ye−∑e∈vE ye = ∑e∈vE xe

6. ∑e∈uE ye−∑e∈Eu ye = ∑v∈V\{u}∑e∈vE xe

7. for all e ∈ E ye ≥ 0
8. for all e ∈ E ye ≤ (m · sG!)xe.

The bounded difference system has 2m variables and 3m + 2n + k constraints. It helps
to think of the vectors x and y as two loads associated to the edges of G. The constraints
1-4 are the same constraints of the balance problem for G, and they ask that x should
represent a set of simple loops of G having zero as a natural linear combination.

The constraints 5-8 are connection constraints, asking that y should represent a con-
nection load, from u to every other node of the simple loops defined by x, and carried
only on the edges of those loops. Thus, constraints 5-8 ask that the loops represented
by x should be overlapping, because of Lemma 2.

5. Each node v ∈ V \ {u} absorbs an amount of y-load equal to the amount of x-load
traversing it. These constraints ensure that the nodes belonging to the x-solution
receive a positive y-load.

6. Node u generates as much y-load as the total x-load on all edges, except the edges
exiting u.

7. Every y-load is non-negative.
8. If the x-load on an edge is zero, then the y-load on that edge is also zero. Otherwise,

the y-load can be at most m · sG! times the x-load. More details on the choice of this
multiplicative constant follow.

In Lemma 9, we show that if there is a solution x of the balance system, then there is
another solution x′ whose non-zero components are greater or equal to 1 and less than
or equal to sG!, so that ∑e∈E x′e ≤m ·sG!. In this way, the constraints (8) allow each edge
that has a positive x-load to carry as its y-load all the y-load exiting from u.

Lemma 9. Let G = (V,E) be a k-colored graph, with |V | = n, |E| = m, and sG =
min{n+k−1,m}. For all solutions x to the balance system for G there exists a solution
x′ such that, for all e ∈ E, it holds (xe = 0⇒ x′e = 0) and (xe > 0⇒ 1≤ x′e ≤ sG!). As
a consequence, 1≤ ∑e∈E x′e ≤ m · sG!.

The following lemma states that the bounded difference system can be used to solve the
bounded difference problem.

Lemma 10. There exists an overlapping set of simple loops in G, passing through a
node u and having zero as n.l.c. iff the bounded difference system for (G,u) is feasible.

Proof. [only if] Let L be an overlapping set of simple loops having an n.l.c. of value
zero. Let cσ be the coefficient associated with the loop σ∈L in such linear combination.
We start by constructing a solution x ∈ Rm to the balance system as follows. Define
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h(e,σ) ∈ {0,1} as 1 if the edge e belongs to the loop σ, and 0 otherwise. We set xe =
∑σ∈L cσh(e,σ). We have that x is a solution to the balance system for G, or equivalently
that it satisfies constraints (1)-(4) of the bounded difference system for (G,u).

By Lemma 9, there exists another solution x′ ∈ Rm to the balance system, such that
xe = 0⇒ x′e = 0 and xe > 0⇒ 1≤ x′e ≤ sG!. If any loop of the overlapping set L passes
through u, by Lemma 2, there exists a path ρv from u to any node v occurring in L . We
set ye = ∑v∈V ′−{u}(h(e,ρv)∑e∈vE x′e). Simple calculations show that (x′,y) is a solution
to the bounded difference system for (G,u).

[if] If there exists a vector (x,y)∈R2m satisfying the bounded difference system, then
like we did in the second part of Lemma 8, using x, we can construct a set of simple
loops L having zero as n.l.c. Since ∑e∈uE ye−∑e∈Eu ye = ∑v∈V−{u}∑e∈vE xe, we have
that u belongs to at least one edge used in the construction of L . If we set G′ = (V ′,E ′)
as the subgraph of G induced by L , we are able to show by contradiction that there is
a path in G′ from u to every other node of V ′. Indeed if for some v ∈ V ′ − {u} there is
no path in G′ from u to v then there is some load exiting from u that cannot reach its
destination using only edges of G′. Since the constraints (8) make it impossible to carry
load on edges of G that are not used in L , the connection constraints cannot be satisfied.
So, for all v ∈V ′ there is a path in G′ from u to v. By Lemma 2, L is overlapping. ��

In order to solve the bounded difference problem in G, for all u ∈ V we check whether
the bounded difference system for (G,u) is feasible, by using a polynomial time algo-
rithm for feasibility of linear systems [NW88]. This algorithm is used at most n times
and it is polynomial in the number of constraints (2n + 3m+ k) and in the logarithm of
the maximum modulus M of a coefficient in a constraint. In our case, M = m ·sG!. Using
Stirling’s approximation, we have log(m ·sG!) = log(m)+Θ(sG log(sG)). Therefore, we
obtain the following.

Theorem 6. The bounded difference problem is in P.
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ishnendu Chatterjee for the fruitful discussions on a preliminary version of this work.

References

[AH98] Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. on Programming Lan-
guages and Systems 20(6) (1998)

[CLRS01] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

[dA00] de Alfaro, L.: From fairness to chance. ENTCS 22 (2000)
[DJP03] Dershowitz, N., Jayasimha, D.N., Park, S.: Bounded fairness. In: Dershowitz, N.

(ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 304–317. Springer,
Heidelberg (2003)

[Fra86] Francez, N.: Fairness. Springer, Heidelberg (1986)
[Kwi89] Kwiatkowska, M.: Survey of fairness notions. Information and Software Technol-

ogy 31(7), 371–386 (1989)
[LPS81] Lehmann, D., Pnueli, A., Stavi, J.: Impartiality, justice and fairness: The ethics

of concurrent termination. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS,
vol. 115, pp. 264–277. Springer, Heidelberg (1981)



Balanced Paths in Colored Graphs 161

[MP91] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1991)

[NW88] Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience, Hoboken (1988)

[Par66] Parikh, R.J.: On Context-Free Languages. Journal of the ACM 13(4), 570–581
(1966)

[Wik09] Wikipedia. Crop rotation (2009), http://www.wikipedia.com

http://www.wikipedia.com


Few Product Gates But Many Zeros

Bernd Borchert1, Pierre McKenzie2, and Klaus Reinhardt1
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Abstract. A d-gem is a {+,−,×}-circuit having very few ×-gates and
computing from {x} ∪ Z a univariate polynomial of degree d having
d distinct integer roots. We introduce d-gems because they could help
factoring integers and because their existence for infinitely many d would
blatantly disprove a variant of the Blum-Cucker-Shub-Smale conjecture.
A natural step towards validating the conjecture would thus be to rule
out d-gems for large d. Here we construct d-gems for several values of
d up to 55. Our 2n-gems for n ≤ 4 are skew, that is, each {+,−}-gate
adds an integer. We prove that skew 2n-gems if they exist require n
{+,−}-gates, and that these for n ≥ 5 would imply new solutions to
the Prouhet-Tarry-Escott problem in number theory. By contrast, skew
d-gems over the real numbers are shown to exist for every d.

1 Introduction

Consider the polynomials of degrees 4, 8 and 16 computed by the {+,×}-circuits
depicted in Figure 1. Each polynomial factors completely over Z and its roots
are distinct. Clearly the number of ×-gates used in each case is minimum.

Main question: Do {+,−,×}-circuits having n ×-gates and computing
a polynomial f(x) ∈ Z[x] having 2n distinct integer roots exist for all n?

Crandall [Cr96, Prob. 3.1.13] found a normalized circuit for the case n = 3
and asked whether such circuits exist for n > 3, where a normalized circuit
starts from x and alternates between a squaring operation and the addition of a
constant. Dilcher [Di00] characterized the normalized circuits for n = 3. Crandall
and Pomerance [CrPo01] constructed an example for n = 4 and Bremner [Br08]
constructed two infinite families of examples for that case.

Why care? First, polynomials with distinct integer roots may hold the key
to factoring integers. For example, knowing [BoMo74] that ∼ n1/4 operations
modulo n suffice to evaluate x(x − 1)(x − 2) · · · (x − n1/4 + 1) at the points
x = n1/4, 2n1/4, 3n1/4, . . . , n1/2, Strassen [St76] noted that log2 n-bit integers
can be factored in time ∼ n1/4. No provably faster deterministic algorithm for
factoring is known [GaGe03]. Lipton [Li94] later formulated a hypothesis, on
circuits computing polynomials having many distinct integer roots, whose va-
lidity would imply that the integer factoring problem is “too easy” to support

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 162–174, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Circuits computing polynomials having the respective sets of roots
{0,−1,−2,−3}, {0, −1, −2, −4, −7, −9, −10, −11} and {0, −4, −7, −12, −118,
−133, −145, −178, −189, −222, −234, −249, −355, −360, −363, −367}

cryptography. A positive answer to our main question (with further size and
constructivity assumptions) would validate Lipton’s hypothesis. Crandall [Cr96]
discusses further connections with factoring.

Second, by Proposition 1, a positive answer would refute the L-conjecture
of Bürgisser [Bu01]. The L-conjecture states that for some β and any d, any
polynomial f(x) ∈ Q[x] has at most (L(f)+d)β irreducible factors of degree d or
less, where L(f) is the size of a smallest {+,−,×,÷}-circuit computing f(x) from
{x}∪Q (see also [Ch04] and [Ro03]). The L-conjecture implies the τ -conjecture
[BCSS97], namely that any f(x) ∈ Z[x] has at most (τ(f) + 1)β distinct roots
in Z, where τ(f) is the size of a smallest {+,−,×}-circuit computing f(x) from
x ∪ {1}. The τ -conjecture implies PC = NPC in the Blum-Shub-Smale model
of computation over the reals [BCSS97], and Smale named the τ -conjecture the
fourth most important millennium mathematical challenge [Sm00]. A compelling
micro-step towards validating both the τ -conjecture and the L-conjecture would
thus be to provide a negative answer to our main question.

Our main question remains open. Here we partly explain why, by relating the
question to a classical number-theoretic problem. We also extend the question
to encompass polynomials of any degree d > 0 by defining d-gems, so named
to reflect their “precious and seemingly rare” nature. Let 
d be the length of a
shortest addition chain for d, or equivalently, the size of a smallest {+}-circuit
(Section 2 defines circuits formally) computing d from {1}.

Definition 1. A {+,−,×}-circuit c with inputs from {x} ∪ Z is a d-gem if c
has at most 
d ×-gates and if the polynomial fc(x) ∈ Z[x] computed by c has
degree d and has precisely d distinct integer roots.
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Hence a 2n-gem is a {+,−,×}-circuit with n product gates that computes a
polynomial of maximum degree 2n and this polynomial factors completely with
its 2n roots integer and distinct. Our contributions are the following:

– we observe, following [PaSt73], that any polynomial of degree d can be com-
puted from {x} ∪ Z by a {+,−,×}-circuit using 2(

√
d+ 1) product gates;

– if d-gems exist for infinitely many d, then the L-conjecture fails;
– by theoretical considerations and computer search, we construct skew d-gems

for d ≤ 22 and d-gems for d ≤ 31 and d = 36, 37, 42, 54, 55 (see Figure 2),
where a circuit is skew if each of its {+,−}-gates merely adds an integer;

– whereas d-gems trivially require 
d product gates when d = 2n, we show that
this holds for every d ≤ 71; we conclude that all the d-gems we are able to
construct so far have a minimal number of product gates;

– we observe that a skew 2n-gems for any n ≥ 5 would provide new solutions of
size 2n−1 to the Prouhet-Tarry-Escott problem which has an almost 200-year
history in number theory (see for instance [BoIn94]);

– we spell out sufficient conditions implying a 2n-gem;
– we construct skew d-gems over the reals, i.e. with inputs from R ∪ {x} and

with the requirement of distinct roots in R, for every d;
– we prove that any skew 2n-gem over the reals requires at least n {+,−}-

gates; we conclude that the skew 2n-gems (over Z) depicted in Figure 1 have
a minimal number of {+,−}-gates among all skew 2n-gems.

Section 2 defines circuits and proves basic facts. Section 3 relates the existence of
d-gems to the Prouhet-Tarry-Escott problem. Section 4 deals with gems over the
real numbers. Section 5 describes our d-gem constructions. Section 6 concludes.
Proofs left out of this abstract will appear in the full version of the paper.

2 Preliminaries and Basic Facts

By an (arithmetic) {+,−,×}-circuit c we mean a rooted directed acyclic graph
with in-degree-2 nodes called product gates labeled with ×, in-degree-2 nodes
called additive gates labeled with + or − and in-degree-0 nodes called input
gates labeled with an integer or the variable x. We write c× and c+ for the
numbers of product and additive gates in c respectively. The size of c is c× + c+.
A circuit c represents or computes a polynomial fc(x) ∈ Z[x]. A zero or root of
c is an integer a such that fc(a) = 0. We write izerosc for the set of zeros of
c. For example, if c is the leftmost circuit in Figure 1, then c× = c+ = 2 and
c represents fc(x) = (x(x + 3))(x(x + 3) + 2) = x4 + 6x3 + 11x2 + 6x having
izerosc = {0,−1,−2,−3}.

An addition chain for a natural number d is an increasing sequence d0 =
1, d1, . . . , dk = d of natural numbers such that each di for i > 0 is the sum of two
earlier numbers in the sequence. The polynomial xd is computable by an optimal
{×}-circuit having 
d product gates, where 
d is the minimum k for which there
is an addition chain such that dk = d (see [Kn81] for extensive related facts
on addition chains, such as !log2 d" ≤ 
d ≤ 2*log2 d+ for all d). Recall that 
d
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d c× c+ fc(x) izerosc

1 0 0 x {0}
2 1 1 x2 − 1 {−1, 1}
3 2 1 (x2 − 1)x {−1, 0, 1}
4 2 2 ((x2 − 5)2 − 16 {−1, 1,−3, 3}
5 3 2 (((x2 − 5)2 − 16)x {0,−2, 2,−3, 3}
5 3 2 (x2 − 1)((x2 − 4)x) {0,−1, 1,−2, 2}
6 3 2 ((x2 − 25)2 − 242)(x2 − 25) {−1, 1,−7, 7,−5, 5}
6 3 2 ((x2 − 7)x)2 − 36 {1, 2,−3,−1,−2, 3}
7 4 2 (((x2 − 7)x)2 − 36)x {0,−1, 1,−2, 2,−3, 3}
7 4 2 ((x2 − 25)2 − 242)(x2 − 25)x {0,−1, 1,−7, 7,−5, 5}
8 3 3 (((x2 − 65)2 − 1696)2 − 2073600 {−3, 3,−11, 11,−7, 7,−9, 9}
9 4 2 (((x2 − 49)x)2 − 1202)((x2 − 49)x) {0,−3, 3,−5, 5,−8, 8,−7, 7}
10 4 3

((y2 − 236448)2 − 1235522)y
with y = (x2 − 625) {±5, 35, 17, 31, 25}

10 4 3 (((x2 − 250)2 − 14436)x)2 − 1612802 {±4, 8, 14, 18, 20}
12 4 3 (((x2 − 91)x)2 − 58500)2 − 504002 {±1, 5, 6, 9, 10, 11}
14 5 3 ((((x2 − 74)x)2 − ...)2 − ...)(x2 − 74) {±49, 16, 39, 55, 21, 35, 56}
15 5 3

y × (y2 − 343202) × (y2 − 411602)
with y = (x2 − 74)x {±0, 49, 16, 39, 55, 21, 35, 56}

16 4 4 ((((x2 − 67405)2 − 3525798096)2 − ...)2 − ... {±11, 367, 131, 343, 77, 359, 101, 353}
18 5 5 fc16 · (x2 − 1) Set16 ∪{−1, 1}
18 5 4

(y2 − 24842) × (y2 − 41162) × (y2 − 59162)
with y = (x2 − 72 · 13)x {±4, 23, 27, 7, 21, 27, 12, 17, 29}

20 5 5 fc16 · ((x2 − 67405)2 − 3958423056)
{±67, 361, 11, 367, 131,
343, 77, 359, 101, 353}

21 6 4
y × (y2 − 897602) × (y2 − 1504802)×

(y2 − 2636402) with y = (x2 − 72 · 132)x
{±0, 91, 11, 85, 96, 19,

80, 99, 39, 65, 104}
22 6 6 fc20 · (x2 − 1) Set20 ∪{−1, 1}

23 6
y × (y − 4838400x3 + 208051200x) × (x3 − 16x)
with y = z × (z + 45x3 − 700x2 − 2835x + 630)
and z = (x3 + x2 − 197x + 195) × (x2 − x − 42)

{±0, 1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15}

24 5 fc4(y
2) with y = (x2 − 7 · 13 · 19)x

{±3, 40, 43, 8, 37, 45,
15, 32, 47, 23, 25, 48}

24 5 442
z(z + cProp.3.4) with y = (x2 − 11763)2 and

z = (y + 241x2 + ..)(y + 195x2 + ..)(y + x2 + ..)
{±22, 61, 86, 127, 140, 151,
35, 47, 94, 121, 146, 148}

26 6 443 fc24 · (x2 − 1) Set24 ∪{−1, 1}
27 6 y × fc4(y

2) with y = (x2 − 72 · 132)x Set21 ∪ {±49, 56, 105}
28 6 560 fc24 · (y + 117x2 + ...) Set24 ∪ {−1, 1,−153, 153}
30 6 fc5(y

2) with y = (x2 − 72 · 132 · 19)x
{±13, 390, 403, 35, 378, 413, 70, 357,

427, 103, 335, 438, 117, 325, 442}
36 6 fc6(y

2) with y = (x2 − 72 · 132 · 19)x Set30 ∪ {±137, 310, 447}
42 7 fc7(y

2) with y = (x2 − 72 · 132 · 19)x Set36 ∪ {±182, 273, 455}
54 7 fc9(y

2) with y = (x2 − 72 · 132 · 19)x Set42 ∪ {±202, 255, 457, 225, 233, 458}
55 8 The above ×x The above ∪{0}

Fig. 2. Some d-gems which are skew for d ≤ 22. When two examples are given for a
given d, these arise from different minimal addition chains for d. The functions fci are
from Lemma 4 if i ≤ 9 and from the i-gem in this table otherwise. We omitted the cases
d = 11, 13, 17, 19, 25, 29, 31, 37which, like the case d = 55 here, are obtained by extending
a (d−1)-gem; we note that such an extension does not work for 43 which has a shorter ad-
dition chain bypassing 42. The constructions not mentioned is this abstract are explained
in the full paper.
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enters Definition 1 of a d-gem c in the form “c× ≤ 
d”. We impose “c× ≤ 
d”
rather than “c× is minimal” because of the prospect that Strassen (unpublished
work) might have uncovered circuits c with c× < 
deg(fc(x)) and we do not want
declaring the gem status to require a lower bound proof. When d = 2n, then
2�2n = 2n = d = |izerosc| = deg(fc(x)) ≤ 2c× ≤ 2�d = 2�2n so c× is indeed
then minimal. We extend this to all d-gems constructed in this paper as follows,
since d < 71 implies d > 2ld−3 (see [Kn81, p. 446]):

Lemma 1. If d > 2ld−3, then any {×,+,−}-circuit computing a polynomial
f(x) ∈ Z[x] of degree d requires at least 
d product gates.

The L-conjecture clearly fails if skew d-gems exist for infinitely many d, but this
also holds for d-gems:

Proposition 1. If d-gems exist for infinitely many values of d, then the L-
conjecture fails.

To qualify as a d-gem, a circuit c must be extremely efficient in terms of its
number of product gates, that is, c× ≤ 
d ≤ 2 log2 d. At the opposite end of the
spectrum, we have:

Proposition 2. [PaSt73] Any degree-d polynomial f(x) ∈ Z[x] can be computed
by a {+,−,×}-circuit having at most 2

√
d+ 1 product gates.

Proof. Write f(x) = (· · · ((gkx
k + gk−1)xk + gk−2)xk + · · · + g1)xk + g0 where

each gi ∈ Z[x] has degree k = !
√
d ". Once x2, x3, · · · , xk are available, each gi

is computable using additive gates alone. Another k products by xk suffice. �

3 Gems and the Prouhet-Tarry-Escott Problem

For any n > 4, we are unable to rule out the existence of a skew 2n-gem. In
this section we show that any such gem would yield new solutions to a number-
theoretic problem having a long history. Then we examine whether solutions to
the number-theoretic problem can help constructing gems in return.

Recall from Section 1 that a 2n-gem is normalized if its computation starts
from x and iterates the sequence “squaring then adding a constant” at least
once. A normalized 2n-gem thus has n ×-gates and n +-gates and is entirely
described by a sequence γ1, . . . , γn of integers with n ≥ 1. Normalized 8-gems
and normalized 16-gems are investigated in [Cr96, Di00, CrPo01, Br08].

Consider an arbitrary skew 2n-gem c. Consecutive +-gates in c can be merged,
i.e. (g+ a)+ b for a gate g and a, b ∈ Z can be rewritten g+(a+ b). And for c to
reach degree 2n, each ×-gate g must reach twice the degree of the nearest ×-gate
g′ having a path to g, i.e. g must perform (g′ + a)× (g′ + b) with a, b ∈ Z. Hence
c can be taken to be the circuit Skew(α0, β0, . . . , αn−1, βn−1, αn) depicted in
Figure 3.
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+

×

+

×

+
α0

+
β1α1

×

+

×

+
βn−1αn−1

+
αn

x

×

×

+
γ1

×

×

+
γn−1

+
γn

Fig. 3. The skew 2n-gem Skew(α0, β0, . . . , αn−1, βn−1, αn) and its normal form

Proposition 3. Let α0, . . . , αn, β0, . . . , βn−1, a1, . . . , a2n ∈ Z be such that c =
Skew(α0, β0, . . . , αn−1, βn−1, αn) computes the polynomial p(x) =

∏2n

i=1(x−ai).
For any t ∈ Z \ {0}, c′ = Skew(α0t

20
, β0t

20
, . . . , αn−1t

2n−1
, βn−1t

2n−1
, αnt

2n

)
computes the polynomial q(x) =

∏2n

i=1(x− tai).

Proof. We claim that c′ computes q(x) = t2
n

p(x/t). This concludes the proof
since then q(ta1) = · · · = q(ta2n) = 0. So let n = 0. Then c′ computes x+α0t

20
=

t · (x/t + α0) = t · p(x/t). Now consider n > 0 and let q1, q2 and p1, p2 be
computed by the gates input to the lowest ×-gate in c′ and c respectively. Then
q(x) = q1(x)×q2(x)+αnt

2n

= t2
n−1

p1(x/t)× t2
n−1

p2(x/t)+αnt
2n

by induction,
and the latter equals t2

n

[p1(x/t)× p2(x/t) + αn] = t2
n

p(x/t). �

Lemma 2. (Normal form) Let n ≥ 1. Given a1, . . . , a2n ∈ Z and a skew 2n-
gem c such that fc(x) =

∏2n

i=1(x − ai), there exist s ∈ Z and t ∈ {1, 2} and a
normalized 2n-gem computing the polynomial

∏2n

i=1(x− tai − s).

Proof. Let c = Skew(α0, β0, . . . , αn−1, βn−1, αn) (see Figure 3). If αi + βi is
odd for some 0 ≤ i < n then let t = 2, else let t = 1. By Proposition 3, the
skew 2n-gem c′ = Skew(α0t

20
, β0t

20
, . . . , αn−1t

2n−1
, βn−1t

2n−1
, αnt

2n

) computes
q(x) =

∏2n

i=1(x − tai). We will now normalize c′. First we rewrite each ×-gate
(g + a) × (g + b) = g2 + (a + b)g + ab as [g + (a + b)/2]2 + [ab − ((a + b)/2)2],
noting that any such a + b occurring in c′ is even. Then we merge consecutive
+-gates since these are skew. The result would be normalized, were it not for an
extraneous x+ s gate at the input level. We replace x+ s with x. This yields a
normalized 2n-gem computing q(x− s) =

∏2n

i=1(x− tai − s). �
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Definition 2. (see [BoIn94]) Two sets {a1, ..., am}, {b1, ..., bm} solve the PTE
(Prouhet-Tarry-Escott) problem of degree k if ai

1 + ... + ai
m = bi1 + ... + bim

for all i ≤ k. A solution is called ideal if k = m − 1. A solution of the
form {a1,−a1, . . . , am/2,−am/2}, {b1,−b1, . . . , bm/2, −bm/2} is called symmet-
ric and we abbreviate it by {a1, . . . , am/2}, {b1, . . . , bm/2}; a solution of the form
{a1, . . . , am}, {−a1, . . . , −am} is also called symmetric.

Let p(x) = (x−a1)(x−a2) · · · (x−am) and q(x) = (x−b1)(x−b2) · · · (x−bm).

Define, for k = 1, 2, . . . ,m, sk =
m∑

i=1

ak
i and tk =

m∑
i=1

bki .

Proposition 4. ([DoBr37], see [BoIn94].) The following are equivalent:

• s1 = t1 and s2 = t2 and s3 = t3 and · · · and sk = tk
• degree[p(x) − q(x)] ≤ m− (k + 1).

Corollary 1. For any n ≥ 1 and any skew 2n-gem c such that izerosc =
{a1, . . . , a2n}, there is a partition S % T = {a1, . . . , a2n} into two equal size sets
such that the pair S, T is an ideal PTE solution of size 2n−1.

Proof. We apply Lemma 2 to c and obtain a circuit c′ computing a polynomial
(r(x))2 + γn =

∏2n

i=1(x − tai − s) for some γn ∈ Z (Figure 3), s ∈ Z, t ∈ {1, 2}.
Hence −γn = e for some e ∈ N. Now (r(x))2 − e = p(x)q(x), where p(x) =
r(x) +

√
e and q(x) = r(x) −

√
e. Since Z[x] is a Euclidian ring, p(x) and q(x)

must each have 2n−1 distinct roots. (So
√
e ∈ N.) Now deg(p(x) − q(x)) = 0,

so applying Proposition 4 with k = 2n−1 − 1 shows that {a ∈ Z : p(a) = 0}
and {a ∈ Z : q(a) = 0} form an ideal PTE solution of size 2n−1. It is well
known [BoIn94] that shifting from tai+s to tai preserves PTE solutions. Further
dividing out the tai by t to get back to the ai also preserves PTE solutions. �

A skew 32-gem, if it exists, thus implies an ideal PTE solution of degree 15.
Borwein and Ingalls [BoIn94, p. 8] state that “it has been conjectured for a long
time that ideal PTE solutions exist for every n”, yet the largest such solution
known today is due to Shuwen [Shu01] and has degree 11 [We09].

For the conversedirection, consider the ideal symmetric PTE solution {2, 16, 21,
25}, {5, 14, 23, 24} of degree 7 [BoIn94, p. 8]. We could try to unravel the Corollary
1 construction, by expressing p(x) = (x2−22)(x2−162)(x2−212)(x2−252) using 3
products. Here this happens to be possible, by calculating (x2−22)(x2−252) using
2 products, then forming (x2−162)(x2−212) from (x2−22)(x2−252) by repeatedly
subtracting x2 (unavoidable since 22+252 = 162+212), and finally obtaining p(x)
using one last product. In this special case, we could therefore construct a (non-
skew) 16-gem from an ideal symmetric PTE solution.

Figure 2 contains further gems constructed with the help of PTE solutions,
such as a 24-gem constructed with the help of a degree-11 solution. But even if
PTE solutions of degree 15 were known, these would need to fulfill additional
properties in order to yield 32-gems by the strategy described above. We now
show that the ”sym-perfect” condition below is a sufficient additional condition
imposed on ideal symmetric PTE solutions to yield a normalized 2n gem.
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Definition 3. A pair S, T ⊂ Z is called sym-perfect if S = {a} and T = {−a},
or if S = {a1,−a1, . . . , am/2,−am/2}, T = {b1,−b1, . . . , bm/2, −bm/2} and ∃s ∈
Z such that {a2

1 + s, . . . , a2
m/2 + s}, {b21 + s, . . . , b2m/2 + s} is sym-perfect.

If a2
1 and a2

m/2 are respectively smallest and largest in {a2
1, · · · , a2

m/2}, then the
shift s occurring in the recursive definition of sym-perfect is necessarily equal
to −(a2

1 + a2
m/2)/2 (which is also the average of all the numbers that occur).

An example of a sym-perfect pair is {−3, 3,−11, 11}, {−7, 7,−9, 9}, since the
pair {9 − 65, 121 − 65}, {49− 65, 81 − 65} is sym-perfect by virtue of the pair
{562 − 1696}, {162− 1696} in turn being sym-perfect.

Theorem 1. A set U ⊂ Z of size 2n+1 can be written as S∪T for a sym-perfect
pair S, T if and only if U is the set of zeros of a normalized 2n+1-gem.

Proof: The sym-perfect pair {a}, {−a} corresponds to the 2-gem c with fc(x) =
x2 − a2 and izerosc = {a,−a}, which forms the induction basis n = 0.

Now let U = {a1,−a1, . . . , a2n/2,−a2n/2}∪{b1,−b1, . . . , b2n/2,−b2n/2} where
the pair S′ = {a2

1 − s, . . . , a2
2n/2 − s}, T ′ = {b21 − s, . . . , b22n/2 − s} is sym-

perfect. By induction, S′ ∪ T ′ is izerosc′ for a 2n-gem c′. Hence U is izerosc

for the 2n+1-gem c with fc(x) = fc′(x2− s). Conversely, a normalized 2n+1-gem
c with zero set U computes fc(x) = g(x)2 + γn+1 = fcS(x) × fcT (x) for some
normalized 2n-gems cS and cT where γi is the same as in c for all i < n (see
Figure 3). Then U = S ∪ T for their zeros S = {a1,−a1, . . . , a2n/2,−a2n/2} and
T = {b1,−b1, . . . , b2n/2,−b2n/2}. The pair S′, T ′ as above with s = −γ1 for γ1

from the gem c is sym-perfect by induction, which makes S, T sym-perfect. �

Corollary 2. A sym-perfect pair is an ideal, symmetric PTE solution.

Proof: We have to show that ai
1 + (−a1)i + . . . ai

m/2 + (−am/2)i = bi1 + (−b1)i +
. . . bim/2 + (−bm/2)i for all i < m. For odd i, neighbours cancel. For i = 2i′, this
is double the i′-th equation of the PTE {a2

1, . . . , a
2
m/2}, {b21, . . . , b2m/2} which is

just a shift of the sym-perfect PTE from the induction. �

4 The Case of Real Numbers

Exclusively in this section, we extend Definition 1 to the case of real numbers,
that is, to {+,−,×}-circuits having inputs from {x} ∪ R and computing poly-
nomials that factor completely over R. We will bound c+ from below for skew
2n-gems c over R and then construct skew d-gems over R for every d.

Let A be Z, Q or R. For short, we will say that a nonzero polynomial p(x) ∈
R[x] crumbles over A if deg(p) = 0 or if p has deg(p) distinct roots in A.

Proposition 5. Let A be Z, Q or R. Let p(x) ∈ R[x] and q(x) ∈ R[x]. If pq
crumbles over A then both p and q crumble over A.

Fact 2. (Rolle) Over R, the derivative of a crumbling polynomial crumbles.
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Note that Rolle only applies over R. For example, (x−1)(x−2)(x−3) crumbles
over Z but its derivative 3x2− 12x+ 11 crumbles neither over Z nor over Q. For
that reason, the only proof we have of Corollary 3 below is via Theorem 3.

Lemma 3. Let e ∈ R and suppose that a polynomial p(x) + e ∈ R[x] of degree
2n crumbles over R. Then the following holds:
H1. Any skew gem over R for p(x) has at least n− 1 additive gates.
H2. If e = 0 then any skew gem over R for p(x) has at least n additive gates.

Theorem 3. A skew 2n-gem over the reals has at least n additive gates.

Proof. This follows by applying Lemma 3 with e = 0. �

Corollary 3. Any skew 2n-gem (over Z) requires n additive gates.

Proof. Let a skew 2n-gem c compute p(x) ∈ Z[x]. If c had fewer than n additive
gates, then c as a skew gem over the reals would contradict Theorem 3. �

Rojas [Ro03, p. 4] constructs 2n-gems over R for any n. The following variation
constructs skew 2n-gems: g1 = x and gi+1(x) := g2

i (x) − 2, 1 ≤ i < n, yields
gn(x) having 2n distinct roots in [−2, 2]. We extend this to arbitrary degrees:

Proposition 6. For all d > 0, there exists a skew d-gem over R.

The construction in the proof of Proposition 6 produces at most 
d additions
(exactly 
d when d = 2n). In cases like d = 3, 7, 9, 27, 81, it produces 
d/2
additions. We conjecture that c+ ≥ 
d/2 for a skew d-gem c over R.

5 Constructing Gems

In this section we construct gems (over Z), at times with the help of a computer.
Yet we do not know whether 32-gems or d-gems beyond d = 55 exist.

Lemma 4. For every d ≤ 7 and d = 9, for every d distinct integers a1, ..., ad,
there is a d-gem cd such that fcd

(x) = (x− a1)(x − a2) · · · (x− ad).

Proof. The d-gems are: fc1(x) = (x− a1), fc2(x) = (x− a1)× (x− a2),
fc3(x) = fc2(x)× (x− a3),
fc4(x) = fc2(x)× (fc2(x) + (a1 + a2 − a3 − a4) · x︸ ︷︷ ︸

iterated additions of x

+(a3a4 − a1a2)),

fc5(x) = fc4(x)× (x− a5),
fc6(x) = fc3(x) × (fc3(x) + a · fc2(x) + (a · (a1 + a2) − a1a2 − a1a3 − a2a3) ·

x+ (a4a5a6 − a1a2a3 − a · a1a2)) with a = (a1 + a2 + a3 − a4 − a5 − a6),
fc7(x) = fc6(x)× (x− a7),
fc9(x) = fc6(x) × (fc3(x) + a · fc2(x) + (a · (a1 + a2) − a1a2 − a1a3 − a2a3) ·

x+ (a7a8a9 − a1a2a3 − a · a1a2)) with a = (a1 + a2 + a3 − a7 − a8 − a9). �
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The number of additive gates used in proving Lemma 4 can be reduced when
the roots satisfy favorable conditions, such as a1 = −a2 or ai = 0 for some i.
Such relationships between the zeros are exploited extensively in Figure 2.

The case d = 8 is missing from Lemma 4 because not all polynomials having
8 distinct roots have an 8-gem [Di00]. For any 0 < a < b < c < d, we can easily
construct an 8-gem for (x+a)(x−a)(x+ b)(x− b)(x+ c)(x− c)(x+d)(x−d) by
prepending the 4-gem (available by Lemma 4) for (y−a2)(y− b2)(y− c2)(y− b2)
by “y ← x× x”.

To construct a 16-gem, we seek 0 < a < b < c < d < e < f < g < h and an
8-gem for (y − a2)(y − b2)(y − c2)(y − d2)(y − e2)(y − f2)(y − g2)(y − h2). We
first develop sufficient conditions for the existence of a skew 2n-gem for any n.

Definition 4. (Litter conditions.) Let T be the full ordered binary tree with 2n

leaves labeled a1, a2, . . . , a2n ∈ Z in the natural order. Let each internal node in
T be labeled with the product of the labels of the leaves subtended by that node.
The sequence a1, a2, . . . , a2n satisfies the litter conditions if, for 1 < i < n, each
of the 2i nodes at level i has the same litter sum, where the litter sum of a node
is defined as the sum of the labels of its two children.

Example 1. The litter conditions are mute for sequences of length 1 or 2. The
litter conditions for the sequence a1, a2, a3, a4 are the equation a1 +a2 = a3 +a4.
The litter conditions for the sequence a2, b2, c2, d2, e2, f2, g2, h2 are

a2 + b2 = c2 + d2 = e2 + f2 = g2 + h2 and a2b2 + c2d2 = e2f2 + g2h2. (1)

Lemma 5. If the sequence a1, a2, . . . , a2n ∈ Z satisfies the litter conditions, then
the following skew 2n-gem c computes p(x) =

∏
1≤i≤2n(x− ai):

y0 ← x− a1

y1 ← y0 × (y0 + (a1 − a2))
y2 ← y1 × (y1 + (a3a4 − a1a2))
y3 ← y2 × (y2 + (a5a6a7a8 − a1a2a3a4))

...
...

yn ← yn−1 × (yn−1 + (
2n∏

i=2n−1+1

ai −
2n−1∏
i=1

ai )). �

We return to our quest for a 16-gem. By Lemma 5, any distinct squares
a2, b2, c2, d2, e2, f2, g2, h2 satisfying (1) from Example 1 are the zeros of an 8-
gem p(y). In turn, each such 8-gem prepended by “y ← x × x” is a 16-gem. A
small computer in a few hours found several examples, such as:

Proposition 7. A 16-gem with 4 additive gates exists to compute the polynomial
having the 16 roots {±237,±106,±189,±178,±227,±126,±218,±141}.

We note that Bremner [Br08] focusses on 16-gems and constructs two infinite
families. Turning to 32-gems, we were unable to find a 16-gem having 16 distinct
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squares as zeros, nor to find a 32-gem by appealing to the litter conditions of a
sequence of length 32 directly.

The next lemma is our tool to generate d-gems when d = 2n:

Lemma 6. Let h(x) ∈ Z[x] and m1,m2, . . . ,md ∈ Z. Suppose that each one
of the d polynomials h(x) − mi is computed by a gem and that no two such
polynomials share a root. If 
d+
deg(h) ≤ 
d·deg(h) and for some d-gem c, fc(y) =
(y −m1)(y −m2) · · · (y −md), then there is a gem computing fc(h(x)).

We illustrate the use of Lemma 6 in the following:

Theorem 4. There exist 36-gems and 54-gems.

We have filled the rest of Figure 2 largely by trying to combine the mentioned
methods along possible shortest addition chains for the degree d. Many cases
remain open.

6 Conclusion

The following heuristic for factoring a 2n-bit integer N = pq, for primes p and q
of comparable size, is inspired by Lipton [Li94]:

– assume distinct ai ∈ Z and a circuit c computing fc(x) =
∏2n

i=1(x−ai) ∈ Z[x]
– pick a ∈ {0, . . . , N − 1} at random
– compute d = fc(a) modulo N by evaluating each gate in c modulo N
– output gcd(d,N).

This is merely a heuristic because its success probability depends on the distri-
bution of the 2n integers (a − ai) modulo N . If this is close to uniform, then
indeed Prob[1 < gcd(d,N) < N ] is constant. Of course the heuristic runs in time
polynomial in the number of bits required to represent c, and the τ -conjecture
[BCSS97] claims that this number is exponential in n.

Here we introduced gems. These are circuits that use an almost optimal num-
ber of ×-gates to compute polynomials that factor completely over Z with dis-
tinct roots. A 2n-gem could thus serve in the heuristic above if its inputs modulo
N can be computed in time polynomial in n = O(logN), but the L-conjecture
[Bu01] claims that even circuits that are much less constrained than d-gems do
not exist for large d.

We exhibited d-gems over R for every d. But the d-gems we care about (over Z)
are elusive. In particular, constructing skew 32-gems would yield new solutions to
the Prouhet-Tarry-Escott problem. These new PTE solutions would even fulfill
additional conditions. Yet skew 2n-gems for any n ≥ 5 cannot currently be ruled
out. This attests to the difficulty of the L-conjecture [Bu01], since skew 2n-gems
would provide the most severe counter-examples imaginable to it.

We constructed d-gems for several d up to d = 55. We proved that any skew
2n-gem requires n additive gates. We showed that for d ≤ 71, no circuit can
compute a degree-d polynomial using fewer than 
d product gates. Hence all the
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gems constructed so far are ×-optimal, and our skew 2n-gems for n ≤ 4 are also
{+,−}-optimal among skew gems.

Our main open question is essentially the challenge we started with: do
d-gems exist for infinitely many d? A concrete step would be to undertake a
search for d-gems of every type for small values of d, extending the systematic
approach used by Bremner to study normalized 16-gems [Br08]. This would
add entries to Figure 2. Hopefully it could help finding skew 2n-gems for n = 5.
As seen above, resolving the existence question for skew 2n-gems seems like a
natural baby step towards resolving the L-conjecture. But even this step would
seem to break ground from a number-theoretic perspective.
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Abstract. The problem FT h
d (k) consists in computing the value in

[k] = {1, . . . , k} taken by the root of a balanced d-ary tree of height
h whose internal nodes are labelled with d-ary functions on [k] and
whose leaves are labelled with elements of [k]. We propose FT h

d (k) as
a good candidate for witnessing L � LogDCFL. We observe that the
latter would follow from a proof that k-way branching programs solv-
ing FT h

d (k) require Ω(kunbounded function(h)) size. We introduce a “state
sequence” method that can match the size lower bounds on FT h

d (k)
obtained by the Nec̆iporuk method and can yield slightly better (yet
still subquadratic) bounds for some nonboolean functions. Both methods
yield the tight bounds Θ(k3) and Θ(k5/2) for deterministic and nonde-
terministic branching programs solving FT 3

2 (k) respectively. We propose
as a challenge to break the quadratic barrier inherent in the Nec̆iporuk
method by adapting the state sequence method to handle FT 4

d (k).

1 Introduction

Let T h
d be the balanced d-ary ordered tree T h

d of height h, where we take height
to mean the number of levels in the tree and we number the nodes as suggested
by the heap data structure. Thus the root is node 1, and in general the children
of node i are (when d = 2) nodes 2i, 2i + 1 (see Figure 1). For every d, h, k ≥ 2
we define the Tree Evaluation problem and its associated decision problem:

Definition 1 (FT h
d (k) and BT h

d (k))
Given: T h

d with each non-leaf node i independently labelled with a function fi :
[k]d → [k] and each leaf node independently labelled with an element from [k].

Function evaluation problem FT h
d (k): Compute the value v1 ∈ [k] of the root

1 of T h
d , where in general vi = a if i is a leaf labelled a, and vi = fi(vj1 , . . . , vjd

)
if j1, . . . , jd are the children of i.

Boolean evaluation problem BT h
d (k): Decide whether v1 = 1.

In the context of uniform complexity measures such as Turing machine space
we rewrite FT h

d (k) and BT h
d (k) as FTd(h, k) and BTd(h, k) to indicate that d is

fixed but h, k are input parameters. It is not hard to show that for each d ≥ 2 a
deterministic logspace-bounded poly-time auxiliary pushdown automaton solves

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 175–186, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. A height 3 binary tree T 3
2 with nodes numbered heap style

BTd(h, k), implying by [Sud78] that BTd(h, k) belongs to the class LogDCFL of
languages logspace reducible to a deterministic context-free language. We know
L ⊆ LogDCFL ⊆ P (see [Mah07] for up to date information on LogDCFL).
The special case BTd(h, 2) was investigated under a different name in [KRW95]
as part of an attempt to separate NC1 from NC2. In this paper, we suggest
investigating the space complexity of BTd(h, k) and FTd(h, k).

We choose to study the Tree Evaluation problem as a particularly interesting
candidate for non-membership in L or NL (deterministic or nondeterministic log
space) because pebble games on trees provide natural space bounded algorithms
for solving it: Black pebbling provides deterministic algorithms and, though we
do not consider these in this paper, black-white pebbling provides nondetermin-
istic algorithms. We choose k-way branching programs (BPs) as our model of
Turing machine because the inputs to our problems are tuples of numbers in [k].

For fixed d, h we are interested in how the size (number of states) of BPs solv-
ing FT h

d (k) and BT h
d (k) grows with k. One of our contributions is an alternative

approach to Nec̆iporuk’s lower bound method [Nec̆66] for this size. Applied to
the problem BT h

d (k), our “state sequence” approach does as well as (but, so far,
no better than) Nec̆iporuk’s method. On the other hand, our approach does not
suffer in principle from the quadratic limitation inherent in Nec̆iporuk’s method.
Hence there is hope that the approach can be extended. The current bottleneck
stands at height 4. Proving our conjectured lower bound of Ω(k7/ lg k) (writing
lg for log2) for the size of deterministic BPs solving BT 4

3 (k) would constitute a
breakthrough and would overcome the n2 Nec̆iporuk limitation. However we do
not yet know how to do this.

The more specific contributions of this paper are the following:

– we observe that for any d ≥ 2 and unbounded r(h), a lower bound of the
form Ω(kr(h)) on the size of BPs solving FT h

d (k) would prove BTd(h, k) /∈ L;
– we prove tight black pebbling bounds for T h

d and transfer the upper bounds
to size upper bounds of the form kO(h) for deterministic k-way BPs for
FT h

d (k) and BT h
d (k);

– we prove tight size bounds of Θ(k2d−1) and Θ(k2d−1/ lg k) for deterministic
k-way BPs solving FT 3

d (k) and BT 3
d (k) respectively;

– we prove tight size bounds of Θ(k3d/2−1/2) for nondeterministic k-way BPs
solving BT 3

d (k); the argument yields an Ω(n3/2/(lgn)3/2) bound for the
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number of states in nondeterministic binary BPs of arbitrary outdegree when
n is the input length; a comparable bound of Ω(n3/2) was known but the
latter only applied to the number of edges [Pud87, Raz91] in such BPs;

– we give examples of functions, such as the restriction SumMod3
2(k) of FT 3

2 (k)
in which the root function is fixed to the sum modulo k, and the function
Children4

2(k) which is required to simultaneously compute the root values
of two instances of FT 3

2 (k), for which the state sequence method yields a
better k-way BP size lower bound than a direct application of Nec̆iporuk’s
method (Ω(k3) versus Ω(k2) for SumMod3

2(k), and Ω(k4) versus Ω(k3) for
Children4

2(k)).

Section 2 defines branching programs and pebbling. Section 3 relates pebbling
and branching programs to Turing machine space, and proves the pebbling
bounds exploited in Section 4 to prove BP size upper bounds. BP lower bounds
obtained using the Nec̆iporuk method are stated in Subsection 4.1. Our state
sequence method is introduced in Subsection 4.2. The proofs left out of this
abstract will appear in the full version of the paper.

2 Preliminaries

We assume some familiarity with complexity theory, such as can be found in
[Gol08]. We write [k] for {1, 2, . . . , k} and let k ≥ 2.

Warning: Recall that the height of a tree is the number of levels in the tree, as
opposed to the distance from root to leaf. Thus T 2

2 has just 3 nodes.

2.1 Branching Programs

Many variants of the branching program model have been studied [Raz91, Weg00].
Our definition below is inspired by Wegener [Weg00, p. 239], by the k-way branch-
ing program of Borodin and Cook [BC82] and by its nondeterministic variant
[BRS93, GKM08]. We depart from the latter however in two ways: nondeterminis-
tic branching program labels are attached to states rather than edges (because we
think of branching program states as Turing machine configurations) and cycles
in branching programs are allowed (because our lower bounds apply to this more
powerful model).

Definition 2 (Branching programs). A nondeterministic k-way branching
program B computing a total function g : [k]m → R, where R is a finite set,
is a directed rooted multi-graph whose nodes are called states. Every edge has
a label from [k]. Every state has a label from [m], except |R| final sink states
consecutively labelled with the elements from R. An input (x1, . . . , xm) ∈ [k]m

activates, for each 1 ≤ j ≤ m, every edge labelled xj out of every state labelled
j. A computation on input x = (x1, . . . , xm) ∈ [k]m is a directed path consisting
of edges activated by x which begins with the unique start state (the root), and
either it is infinite, or it ends in the final state labelled g(x1, . . . , xm), or it ends
in a nonfinal state labelled j with no outedge labelled xj (in which case we say the
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computation aborts). At least one such computation must end in a final state.
The size of B is its number of states. B is deterministic k-way if every non-final
state has precisely k outedges labelled 1, . . . , k. B is binary if k = 2.

We say that B solves a decision problem (relation) if it computes the charac-
teristic function of the relation.

A k-way branching program computing the function FT h
d (k) requires kd k-ary

arguments for each internal node i of T h
d in order to specify the function fi,

together with one k-ary argument for each leaf. Thus in the notation of Defi-
nition 1 FT h

d (k): [k]m → R where R = [k] and m = dh−1−1
d−1 · kd + dh−1. Also

BT h
d (k): [k]m → {0, 1}.
We define #detFstatesh

d(k) (resp. #ndetFstatesh
d(k)) to be the minimum num-

ber of states required for a deterministic (resp. nondeterministic) k-way branch-
ing program to solve FT h

d (k). Similarly, #detBstatesh
d(k) and #ndetBstatesh

d(k)
denote the number of states for solving BT h

d (k).
The next lemma is easy to prove and shows that the function problem is not

much harder to solve than the Boolean problem.

Lemma 3. #detBstatesh
d(k) ≤ #detFstatesh

d(k) ≤ k · #detBstatesh
d(k) and

#ndetBstatesh
d(k) ≤ #ndetFstatesh

d(k) ≤ k · #ndetBstatesh
d(k).

2.2 Pebbling

The pebbling game for dags was defined by Paterson and Hewitt [PH70] and was
used as an abstraction for deterministic Turing machine space in [Coo74]. Black-
white pebbling was introduced in [CS76] as an abstraction of nondeterministic
Turing machine space (see [Nor09] for a recent survey).

We will only make use of a simple ‘black pebbling’ game in this paper. Here a
pebble can be placed on any leaf node, and in general if all children of a node i
have pebbles, then one of the pebbles on the children can be moved to i (this is
a “sliding” move). The goal is to pebble the root. A pebbling of a tree T using p
pebbles is any sequence of pebbling moves on nodes of T which starts and ends
with no pebbles, and at some point the root is pebbled, and no configuration
has more than p pebbles.

We allow “sliding moves” as above (as opposed to placing a new pebble on
node i) because we want pebbling algorithms for trees to closely correspond to
k-way branching program algorithms for the tree evaluation problem.

We use #pebbles(T ) to denote the minimum number of pebbles required to
pebble T . The following result is proved easily using standard techniques.

Theorem 4. For every d, h ≥ 2, #pebbles(T h
d ) = (d − 1)h − d + 2.

3 Connecting TMs, BPs, and Pebbling

Let FTd(h, k) be the same as FT h
d (k) except now the inputs vary with both h

and k, and we assume the input to FTd(h, k) is a binary string X which codes
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h and k and codes each node function fi for the tree T h
d by a sequence of kd

binary numbers and each leaf value by a binary number in [k], so X has length

|X | = Θ(dhkd lg k) (1)

The output is a binary number in [k] giving the value of the root. The problem
BTd(h, k) is the Boolean version of FTd(h, k): The input is the same, and the
instance is true iff the value of the root is 1.

Obviously BTd(h, k) and FTd(h, k) can be solved in polynomial time, but we
can prove a stronger result.

Theorem 5. For each d ≥ 2 the problem BTd(h, k) is in LogDCFL.

The best known upper bounds on the number of states required by a BP to
solve FT h

d (k) grow as kΩ(h). The next result shows (Corollary 7) that any prov-
able nontrivial dependency on h, for the power of k expressing the minimum
number of such states, would separate L, and perhaps NL (deterministic and
nondeterministic log space), from LogDCFL.

Theorem 6. For each d ≥ 2, if BTd(h, k) is in L (resp. NL) then there is a
constant ωd and a function cd(h) such that #detFstatesh

d(k) ≤ cd(h)kωd (resp.
#ndetFstatesh

d(k) ≤ cd(h)kωd) for all h, k ≥ 2.

Proof. By Lemma 3, arguing for #detBstatesh
d(k) and #ndetBstatesh

d(k) instead of
#detFstatesh

d(k) and #ndetFstatesh
d(k) suffices. In general a Turing machine which

can enter at most C different configurations on all inputs of a given length n can
be simulated (for inputs of length n) by a binary (and hence k-ary) branching pro-
gram with C states. Each Turing machine using space O(lg n) has at most nc pos-
sible configurations on any input of length n ≥ 2, for some constant c. By (1) the
input for BTd(h, k) has length n = Θ(dhkd lg k), so there are at most (dhkd lg k)c′

possible configurations for a log space Turing machine solving BTd(h, k), for some
constant c′. So we can take cd(h) = dc′h and ωd = c′(d + 1). �

Corollary 7. Fix d ≥ 2 and any unbounded function r(h). If #detFstatesh
d(k)

(resp. #ndetFstatesh
d(k)) ∈ Ω(kr(h)) then BTd(h, k) /∈ L (resp. /∈ NL).

The next result connects pebbling upper bounds with BP upper bounds.

Theorem 8. If T h
d can be pebbled with p pebbles, then deterministic branching

programs with O(kp) states can solve FT h
d (k) and BT h

d (k).

Corollary 9. #detFstatesh
d(k) = O(k#pebbles(T h

d )).

4 Branching Program Bounds

In this section we prove upper bounds for the number of states required for
deterministic k-way branching programs to solve both the function problems
FT h

d (k) and the Boolean problems BT h
d (k). The upper bounds for the function
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problems come from pebbling via Theorem 8. We prove that these bounds are
tight for all trees of heights 2 and 3, and it seems plausible that they might be
tight for all trees T h

d : a proof would separate L from LogDCFL (see Section 3).
For the Boolean problems the deterministic upper bounds can be improved

by a factor of lg k over the function problems for height h ≥ 3 (the improvement
is tight for height 3).

We also prove tight bounds for nondeterministic BPs solving the Boolean
problems for heights 2 and 3.

Theorem 10 (BP Upper Bounds)

#detFstatesh
d(k) = O(k(d−1)h−d+2) (2)

#detBstatesh
d(k) = O(k(d−1)h−d+2/ lg k), for h ≥ 3 (3)

#ndetBstates32(k) = O(k5/2) (4)

We can combine the above upper bounds with the Nec̆iporuk lower bounds in
Subsection 4.1, Figure 2, to obtain the tight bounds in the next theorem for
height 3 trees. (The optimal bounds for all cases for height 2 trees are given by
the size of the input: Θ(kd).)

Corollary 11 (Height 3 trees)

#detFstates3d(k) = Θ(k2d−1)
#detBstates3d(k) = Θ(k2d−1/ lg k)

#ndetBstates32(k) = Θ(k5/2)

4.1 The Nec̆iporuk Method

The Nec̆iporuk method still yields the strongest explicit binary branching pro-
gram size lower bounds known today, namely Ω( n2

(lg n)2 ) for deterministic [Nec̆66]

and Ω(n3/2

lg n ) for nondeterministic (albeit for a weaker nondeterministic model in
which states have bounded outdegree [Pud87], see [Raz91]).

By applying the Nec̆iporuk method to a k-way branching program B comput-
ing a function f : [k]m → R, we mean the following well known steps [Nec̆66]:

1. Upper bound the number N(s, v) of (syntactically) distinct branching pro-
grams of type B having s non-final states, each labelled by one of v variables.

2. Pick a partition {V1, . . . , Vp} of [m].
3. For 1 ≤ i ≤ p, lower bound the number rVi(f) of restrictions fVi : [k]|Vi| → R

of f obtainable by fixing values of the variables in [m] \ Vi.
4. Then size(B) ≥ |R| +

∑
1≤i≤p si, where si = min{ s : N(s, |Vi|) ≥ rVi(f) }.

Theorem 12. Applying the Nec̆iporuk method yields Figure 2.
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Model Lower bound for FT h
d (k) Lower bound for BT h

d (k)

Deterministic k-way
branching program

dh−2−1
4(d−1)2

· k2d−1 dh−2−1
3(d−1)2

· k2d−1

lg k

Deterministic binary
branching program

dh−2−1
5(d−1)2

· k2d = Ω(n2/(lg n)2) dh−2−1
4d(d−1)

· k2d

lg k
= Ω(n2/(lg n)3)

Nondeterministic k-
way BP

dh−2−1
2d−2

· k 3d
2 − 1

2
√

lg k dh−2−1
2d−2

· k 3d
2 − 1

2

Nondeterministic bi-
nary BP

dh−2−1
2d−2

· k 3d
2
√

lg k = Ω(n3/2/ lg n) dh−2−1
2d−2

· k 3d
2 = Ω(n3/2/(lg n)3/2)

Fig. 2. Size bounds, expressed in terms of n = Θ(kd lg k) in the binary cases, obtained
by applying the Nec̆iporuk method. Rectangles indicate optimality in k when h = 3
(Cor. 11). Improving any entry to Ω(kunbounded f(h)) would prove L � P (Cor. 7).

Remark 1. TheΩ(n3/2/(lg n)3/2)binary nondeterministic BP lower bound for the
BT h

d (k) problem and in particular forBT 3
2 (k) applies to the number of states when

these can have arbitrary outdegree. This seems to improve on the best known for-
mer bound of Ω(n3/2/ lgn), slightly larger but obtained for the weaker model in
which states have bounded degree, or equivalently, for the switching and rectifier
network model in which size is defined as the number of edges [Pud87, Raz91].

Let Childrenh
d(k) have the same input as FT h

d (k) with the exception that the
root function is deleted. The output is the tuple (v2, v3, . . . , vd+1) of values for
the children of the root.

Theorem 13. For any d, h ≥ 2, the best k-way deterministic BP size lower bound
attainable for Childrenh

d(k) by applying the Nec̆iporuk method is Ω(k2d−1).

Proof. The function Childrenh
d(k) : [k]m → R has m = Θ(kd). Any partition

{V1, . . . , Vp} of the set of k-ary input variables thus has p = O(kd). Claim:
for each i, the best attainable lower bound on the number of states querying
variables from Vi is O(kd−1).

Consider such a set Vi, |Vi| = v ≥ 1. Here |R| = kd, so the number Nk-way
det (s, v)

of distinct deterministic BPs having s non-final states querying variables from
Vi satisfies

Nk-way
det (s, v) ≥ 1s · (s + |R|)sk ≥ (1 + kd)sk ≥ kdsk.

Hence the estimate used in the Nec̆iporuk method to upper bound Nk-way
det (s, v)

will be at least kdsk. On the other hand, the number of functions fVi : [k]v → R

obtained by fixing variables outside of Vi cannot exceed kO(kd) since the number
of variables outside Vi is Θ(kd). Hence the best lower bound on the number of
states querying variables from Vi obtained by applying the method will be no
larger than the smallest s verifying kckd ≤ kdsk for some c depending on d and
k. This proves our claim since then this number is at most s = O(kd−1). �
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Let SumModh
d(k) have the same input as FT h

d (k) with the exception that the
root function is preset to the sum modulo k. In other words the output is v2 +
v3 + · · · + vd+1 mod k.

Theorem 14. The best k-way deterministic BP size lower bound attainable for
SumMod3

2(k) by applying the Nec̆iporuk method is Ω(k2).

4.2 The State Sequence Method

Here we give alternative proofs for some of the lower bounds given in Section
4.1. These proofs are more intricate than the Nec̆iporuk proofs but they do not
suffer a priori from a quadratic limitation. The method also yields stronger lower
bounds to Children4

2(k) and SumMod3
2(k) than those obtained by applying the

Nec̆iporuk’s method as expressed in Subsection 4.1 (see Theorems 13 and 14).

Theorem 15. #ndetBstates32(k) ≥ k2.5 for sufficiently large k.

Proof. Consider an input I to BT 3
2 (k). We number the nodes in T 3

2 as in Figure
1, and let vI

j denote the value of node j under input I. We say that a state in
a computation on input I learns vI

j if that state queries f I
j (vI

2j , v
I
2j+1) (recall

2j, 2j + 1 are the children of node j).

Definition [Learning Interval]. Let B be a k-way nondeterministic BP that
solves BT 3

2 (k). Let C = γ0, γ1, · · · , γT be a computation of B on input I. We
say that a state γi in the computation is critical if one or more of the following
holds:

1. i = 0 or i = T .
2. γi learns vI

2 and there is an earlier state which learns vI
3 with no intervening

state that learns vI
2 .

3. γi learns vI
3 and no earlier state learns vI

3 unless an intervening state learns
vI
2 .

We say that a subsequence γi, γi+1, · · · γj is a learning interval if γi and γj are
consecutive critical states. The interval is type 3 if γi learns vI

3 , and otherwise
the interval is type 2.

Thus type 2 learning intervals begin with γ0 or a state which learns vI
2 , and

never learn vI
3 until the last state, and type 3 learning intervals begin with a

state which learns vI
3 and never learn vI

2 until the last state.
Now let B be as above, and for j ∈ {2, 3} let Γj be the set of all states of B

which query the input function fj . We will prove the theorem by showing that
for large k

|Γ2| + |Γ3| > k2
√

k. (5)

For r, s ∈ [k] let F r,s
yes be the set of inputs I to B whose four leaves are labelled

r, s, r, s respectively, whose middle node functions f I
2 and f I

3 are identically 0
except f I

2 (r, s) = vI
2 and f I

3 (r, s) = vI
3 , and f I

1 (vI
2 , v

I
3) = 1 (so vI

1 = 1). Thus
each such I is a ‘YES input’, and should be accepted by B.
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Note that each member I of F r,s
yes is uniquely specified by a triple

(vI
2 , v

I
3 , f

I
1 ) where f I

1 (vI
2 , v

I
3) = 1 (6)

and hence F r,s
yes has exactly k2(2k2−1) members.

For j ∈ {2, 3} and r, s ∈ [k] let Γ r,s
j be the subset of Γj consisting of those

states which query fj(r, s). Then Γj is the disjoint union of Γ r,s
j over all pairs

(r, s) in [k] × [k]. Hence to prove (5) it suffices to show

|Γ r,s
2 | + |Γ r,s

3 | >
√

k (7)

for large k and all r, s in [k]. We will show this by showing

(|Γ r,s
2 | + 1)(|Γ r,s

3 | + 1) ≥ k/2 (8)

for all k ≥ 2. (Note that given the product, the sum is minimized when the
summands are equal.)

For each input I in F r,s
yes we associate a fixed accepting computation C(I) of

B on input I.
Now fix r, s ∈ [k]. For a, b ∈ [k] and f : [k] × [k] → {0, 1} with f(a, b) = 1 we

use (a, b, f) to denote the input I in F r,s
yes it represents as in (6).

To prove (8), the idea is that if it is false, then as I varies through all inputs
(a, b, f) in F r,s

yes there are too few states learning vI
2 = a and vI

3 = b to verify that
f(a, b) = 1. Specifically, we can find a, b, f, g such that f(a, b) = 1 and g(a, b) = 0,
and by cutting and pasting the accepting computation C(a, b, f) with accepting
computations of the form C(a, b′, g) and C(a′, b, g) we can construct an accepting
computation of the ‘NO input’ (a, b, g).

We may assume that the branching program B has a unique initial state γ0

and a unique accepting state δACC .
For j ∈ {2, 3}, a, b ∈ [k] and f : [k] × [k] → {0, 1} with f(a, b) = 1 define

ϕj(a, b, f) to be the set of all state pairs (γ, δ) such that there is a type j learning
interval in C(a, b, f) which begins with γ and ends with δ. Note that if j = 2
then γ ∈ (Γ r,s

2 ∪ {γ0}) and δ ∈ (Γ r,s
3 ∪ {δACC}), and if j = 3 then γ ∈ Γ r,s

3 and
δ ∈ (Γ r,s

2 ∪ {δACC})
To complete the definition, define ϕj(a, b, f) = ∅ if f(a, b) = 0.
For j ∈ {2, 3} and f : [k] × [k] → {0, 1} we define a function ϕj [f ] from [k] to

sets of state pairs as follows:

ϕ2[f ](a) =
⋃

b∈[k]

ϕ2(a, b, f) ⊆ S2

ϕ3[f ](b) =
⋃

a∈[k]

ϕ3(a, b, f) ⊆ S3

where S2 = (Γ r,s
2 ∪ {γ0}) × (Γ r,s

3 ∪ {δACC}) and S3 = Γ r,s
3 × (Γ r,s

2 ∪ {δACC}).
For each f the function ϕj [f ] can be specified by listing a k-tuple of subsets of

Sj , and hence there are at most 2k|Sj | distinct such functions as f ranges over the
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2k2
Boolean functions on [k]× [k], and hence there are at most 2k(|S2|+|S3|) pairs

of functions (ϕ2[f ], ϕ3[f ]). If we assume that (8) is false, we have |S2|+ |S3| < k.
Hence by the pigeonhole principle there must exist distinct Boolean functions
f, g such that ϕ2[f ] = ϕ2[g] and ϕ3[f ] = ϕ3[g].

Since f and g are distinct we may assume that there exist a, b such that f(a, b) =
1 and g(a, b) = 0. Since ϕ2[f ](a) = ϕ2[g](a), if (γ, δ) are the endpoints of a type
2 learning interval in C(a, b, f) there exists b′ such that (γ, δ) are the endpoints of
a type 2 learning interval in C(a, b′, g) (and hence g(a, b′) = 1). Similarly, if (γ, δ)
are endpoints of a type 3 learning interval in C(a, b, f) there exists a′ such that
(γ, δ) are the endpoints of a type 3 learning interval in C(a′, b, f).

Now we can construct an accepting computation for the ‘NO input’ (a, b, g)
from C(a, b, f) by replacing each learning interval beginning with some γ and end-
ing with some δ by the corresponding learning interval in C(a, b′, g) or C(a′, b, g).
(The new accepting computation has the same sequence of critical states as
C(a, b, f).) This works because a type 2 learning interval never queries v3 and a
type 3 learning interval never queries v2.

This completes the proof of (8) and the theorem. �

Theorem 16. Every deterministic branching program that solves BT 3
2 (k) has

at least k3/ lg k states for sufficiently large k.

Proof. We modify the proof of Theorem 15. Let B be a deterministic BP which
solves BT 3

2 (k), and for j ∈ {2, 3} let Γj be the set of states in B which query fj

(as before). It suffices to show that for sufficiently large k

|Γ2| + |Γ3| ≥ k3/ lg k. (9)

For r, s ∈ [k] we define the set F r,s to be the same as F r,s
yes except that we

remove the restriction on f I
1 . Hence there are exactly k22k2

inputs in F r,s.
As before, for j ∈ {2, 3}, Γj is the disjoint union of Γ r,s for r, s ∈ [k]. Thus to

prove (9) it suffices to show that for sufficiently large k and all r, s in [k]

|Γ r,s
2 | + |Γ r,s

3 | ≥ k/ lg2 k. (10)

We may assume there are unique start, accepting, and rejecting states γ0, δACC ,
δREJ . Fix r, s ∈ [k].

For each root function f : [k] × [k] → {0, 1} we define the functions

ψ2[f ] : [k] × (Γ r,s
2 ∪ {γ0}) → (Γ r,s

3 ∪ {δACC, δREJ})
ψ3[f ] : [k] × Γ r,s

3 → (Γ r,s
2 ∪ {δACC, δREJ})

by ψ2[f ](a, γ) = δ if δ is the next critical state after γ in a computation with input
(a, b, f) (this is independent of b), or δ = δREJ if there is no such critical state.
Similarly ψ3[f ](b, δ) = γ if γ is the next critical state after δ in a computation
with input (a, b, f) (this is independent of a), or δ = δREJ if there is no such
critical state.

CLAIM: The pair of functions (ψ2[f ], ψ3[f ]) is distinct for distinct f .
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For suppose otherwise. Then there are f, g such that ψ2[f ] = ψ2[g] and ψ3[f ] =
ψ3[g] but f(a, b) 	= g(a, b) for some a, b. But then the sequences of critical states
in the two computations C(a, b, f) and C(a, b, g) must be the same, and hence
the computations either accept both (a, b, f) and (a, b, g) or reject both. So the
computations cannot both be correct.

Finally we prove (10) from the CLAIM. Let s2 = |Γ r,s
2 | and let s3 = |Γ r,s

3 |,
and let s = s2 + s3. Then the number of distinct pairs (ψ2, ψ3) is at most

(s3 + 2)k(s2+1)(s2 + 2)ks3 ≤ (s + 2)k(s+1)

and since there are 2k2
functions f we have

2k2
≤ (s + 2)k(s+1)

so taking logs, k2 ≤ k(s+1) lg2(s+2) so k/ lg2(s+2) ≤ s+1, and (10) follows. �

Recall from Theorem 13 that applying the Nec̆iporuk method to Children4
2(k)

yields an Ω(k3) size lower bound and from Theorem 14 that applying it to
SumMod3

2(k) yields Ω(k2). The state sequence method also proves the next two
theorems.

Theorem 17. Any deterministic k-way BP for Children4
2(k) has at least k4/2

states.

Theorem 18. Any deterministic k-way BP for SumMod3
2(k) requires at least

k3 states.

5 Conclusion

Our main open question is whether we can adapt the state sequence method
to break the Ω(n2) barrier for the size of deterministic branching programs. In
particular, can the method be extended to handle trees of height 4? Specifically,
can we prove a lower bound of Ω(k7/ lg k) for BT 4

3 (k) (see Theorem 10)?
Another question arises from the O(k5/2) upper bound from Theorem 10. Is

there a pebbling to justify such a non-integral exponent? As it turns out, the
answer is yes. One can introduce fractional black-white pebbling and develop an
interesting theory. Our work on that issue will be the subject of another paper.

Acknowledgment. James Cook played a helpful role in the early parts of this
research. The second author is grateful to Michael Taitslin for suggesting a ver-
sion of the tree evaluation problem in which the nodes are labelled by fixed quasi
groups (see [Tai05]).
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{irenee.briquel,pascal.koiran}@ens-lyon.fr

Abstract. A dichotomy theorem for counting problems due to Creignou
and Hermann states that or any finite set S of logical relations, the count-
ing problem #SAT(S) is either in FP, or #P-complete. In the present
paper we show a dichotomy theorem for polynomial evaluation. That is,
we show that for a given set S, either there exists a VNP-complete family
of polynomials associated to S, or the associated families of polynomi-
als are all in VP. We give a concise characterization of the sets S that
give rise to “easy” and “hard” polynomials. We also prove that several
problems which were known to be #P-complete under Turing reductions
only are in fact #P-complete under many-one reductions.

1 Introduction

In a seminal paper, Schaefer [13] proved a dichotomy theorem for boolean con-
straint satisfaction problems: he showed that for any finite set S of logical relations
the satisfiability problem SAT(S) for S-formulas is either in P, or NP-complete.
Here, an S-formula over a set of n variables is a conjunction of relations of S where
the arguments of each relation are freely chosen among the n variables. Schae-
fer’s result was subsequently extended in a number of directions. In particular,
dichotomy theorems were obtained for counting problems, optimization problems
and the decision problem of quantified boolean formulas. An account of this line
of work can be found in the book by Creignou, Khanna and Sudan [6]. In a differ-
ent direction, constraint satisfaction problems were also studied over non-boolean
domains. This turned out to be a surprisingly difficult question, and it took a long
time before a dichotomy theorem over domains of size 3 could be obtained [4].

In the present paper we study polynomial evaluation from this dichotomic
point of view. Full proofs of our results are presented in a more detailed ver-
sion of this work [3]. We work within Valiant’s algebraic framework: the role
of the complexity class NP in Schaefer’s dichotomy theorem will be played by
the class VNP of “easily definable” polynomial families, and the role of P will
be played by the class VP of “easily computable” polynomial families [14,2].
There is a well-known connection between counting problems and polynomial
evaluation. For instance, as shown by Valiant the permanent is complete in both
settings [15,14]. In the realm of counting problems, a dichotomy theorem was
obtained by Creignou and Hermann [5,6].
� UMR 5668 ENS Lyon, CNRS, UCBL associée à l’INRIA.
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Theorem 1. For any finite set S of logical relations, the counting problem
#SAT(S) is either in FP, or #P-complete.

In fact, the sets S such that #SAT(S) is in FP are exactly the sets containing
only affine constraints (a constraint is called affine if it expressible as a system
of linear equations over Z/2Z).

Main Contributions

To a family of boolean formulas (φn) we associate the multilinear polynomial
family

P (φn)(X) =
∑

ε

φn(ε)X
ε
, (1)

where X
ε

is the monomial Xε1
1 · · ·Xεk(n)

k(n) , and k(n) is the number of variables
of φn. Imagine that the φn are chosen among the S-formulas of a fixed finite set
S of logical relations. One would like to understand how the complexity of the
polynomials P (φn) depends on S.

Definition 1. A family (φn) of S-formulas is called a p-family if φn is a con-
junction of at most p(n) relations from S, for some polynomial p (in particular,
φn depends on polynomially many variables when S is finite).

Theorem 2 (Main Theorem). Let S be a finite set of logical relations. If S
contains only affine relations of at most two variables, then the families (P (φn))
of polynomials associated to p-families of S-formulas (φn) are in VP. Otherwise,
there exists a p-family (φn) of S-formulas such that the corresponding polynomial
family P (φn) is VNP-complete.

Note, that the hard cases for counting problems are strictly included in our hard
evaluation problems, exactly as the hard decision problems in Schaefer’s theorem
were strictly included in the hard counting problems.

In our algebraic framework the evaluation of the polynomial associated to a
given formula consists in solving a “weighted counting” problem: each assignment
(ε1, . . . , εk) of the variables of φ comes with a weight Xε1

1 · · ·Xεk

k . In particular,
when the variables Xi are all set to 1, we obtain the counting problem #SAT(S).
It is therefore natural that evaluation problems turn out to be harder than
counting problems.

The remainder of this paper is mostly devoted to the proof of Theorem 2.
Along the way, we obtain several results of independent interest. First, we obtain
several new VNP-completeness results. The main ones are about the vertex cover
polynomial VCP(G) and the independent set polynomial IP(G), associated to a
vertex-weighted graph G. Most VNP-completeness results in the literature (and
certainly all the results in Chapter 3 of [2]) are about edge-weighted graphs.

Unlike in most VNP-completeness results, we need more general reductions
to establish VNP-completeness results than Valiant’s p-projection. In Section 4,
we use the “c-reductions”, introduced by Bürgisser [1,2] in his work on VNP
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families that are neither p-computable nor VNP-complete. They are akin to the
oracle (or Turing) reductions from discrete complexity theory. The c-reduction
has not been used widely in VNP-completeness proofs. The only examples that
we are aware of are:

(i) A remark in [2] on probability generating functions.
(ii) The VNP-completeness of the weighted Tutte polynomial in [11]. Even there,

the power of c-reductions is used in a very restricted way since a single oracle
call is performed in each reduction.

By contrast, the power of oracle reductions has been put to good use in #P-
completeness theory (mostly as a tool for performing interpolation). Indeed, as
pointed out in [9], “interpolation features prominently in a majority of #P-
completeness proofs”, and “it is not clear whether the phenomenon of #P-
completeness would be as ubiquitous if many-one reducibility were to be used
in place of Turing.” We argue that the importance of Turing reductions in #P-
completeness should be revised downwards since, as a byproduct of our VNP-
completeness results, we can replace Turing reductions by many-one reductions
in several #P-completeness results from the literature. In particular, we obtain
a many-one version of Creignou and Hermann’s dichotomy theorem1. We leave
it as an open problem whether the 0/1 partial permanent is #P-complete under
many-one reductions (see Section 3 for a definition of the partial permanent,
and [8] for a # P-completeness proof under oracle reductions).

Organization of the Paper and Additional Results

Earlier in this section we gave an informal introduction to constraint satisfac-
tion problems. We give more precise definitions at the beginning of Section 2.
The remainder of that section is devoted to Valiant’s algebraic model of com-
putation. We also deal briefly with the easy cases of Theorem 2 (Remark 1).
We then establish the proof of the hard cases of Theorem 2, beginning with
the case of non affine constraints. For that case, the high-level structure of the
proof is similar to Creignou and Hermann’s proof of #P-completeness of the
corresponding counting problems in [5]. The singletons S = {OR2}, S = {OR1}
and S = {OR0} play a special role in the proof. Here OR2 denotes the negative
two-clause (x, y) 
→ (x∨y); OR0 denotes the positive two-clause (x, y) 
→ (x∨y);
and OR1 denotes the implicative two-clause (x, y) → (x∨y). The corresponding
VNP-completeness results for {OR2} and S = {OR0} are established in sec-
tion 3; the case of {OR1} is only treated in the full version [3], since it uses very
similar techniques. Together with Creignou and Hermann’s results, this suffices
to establish the existence of a VNP-complete family for any set S containing

1 Many-one reductions (Definition 2) are called many-one counting reductions in [5,6].
It was already claimed in [5,6] that Theorem 1 holds true for many-one reductions.
This was not fully justified since the proof of Theorem 1 is based on many-one
reductions from problems which were previously known to be #P-complete under
oracle reductions only. The present paper shows that this claim was indeed correct.
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non affine clauses (the proof is developed in [3]). Section 4 deals with the affine
clauses with at least three variables (Theorem 6). This completes the proof of
Theorem 2. In Section 5, we build on our VNP-completeness results to prove
#P-completeness under many-one reductions for several problems which were
only known to be #P-complete under oracle reductions.

2 Preliminaries

2.1 Constraint Satisfaction Problems

We define a logical relation to be a function from {0, 1}k to {0, 1}, for some
integer k called the rank of the relation. Let us fix a finite set S = {φ1, . . . , φn}
of logical relations. An S-formula over n variables (x1, . . . , xn) is a conjunction of
boolean formulas, each of the form gi(xji(1), . . . , xji(ki)) where each gi belongs to
S and ki is the rank of gi. In words, each element in the conjunction is obtained
by applying a function from S to some variables chosen among the n variables.

An instance of the problem SAT(S) studied by Schaefer [13] is an S-formula φ,
and one must decide whether φ is satisfiable. For instance, consider the 3 boolean
relations OR0(x, y) = x∨y, OR1(x, y) = x∨y and OR2(x, y) = x∨y. The classical
problem 2-SAT is SAT(S) where S = {OR0,OR1,OR2}. The counting problem
#SAT(S) was studied by Creignou and Hermann [5]. In this paper we study the
complexity of evaluating the polynomials P (φ) in (1). We establish which sets
S give rise to VNP-complete polynomial families, and which one give rise only
to easy to compute families. We next define these notions precisely.

2.2 #P-Completeness and VNP-Completeness

Let us introduce the notion of many-one reduction for counting problems :

Definition 2 (Many-one reduction). [17] Let f : {0, 1}∗ → N and g :
{0, 1}∗ → N be two counting problems. A many-one reduction from f to g con-
sists of a pair of polynomial-time computable functions σ : {0, 1}∗ → {0, 1}∗ and
τ : N → N such that for every x ∈ {0, 1}∗, the equality f(x) = τ(g(σ(x))) holds.
When τ is the identity function, this reduction is called parsimonious.

A counting problem f is #P-hard under many-one reduction if every problem
in #P admits a many-one reduction to f .

In Valiant’s model one studies the computation of multivariate polynomials.
This can be done over any field. In the sequel we fix a field K of characteristic 	= 2.
All considered polynomials are over K.

A p-family is a sequence f = (fn) of multivariate polynomials such that the
number of variables and the degree are polynomially bounded functions of n. A
prominent example of a p-family is the permanent family PER = (PERn), where
PERn is the permanent of an n × n matrix with independent indeterminate
entries.

We define the complexity of a polynomial f to be the minimum number L(f)
of nodes of an arithmetic circuit computing f . We recall that the internal nodes
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of an arithmetic circuit perform additions or multiplications, and each input
node is labeled by a constant from K or a variable Xi.

Definition 3 (VP). A p-family (fn) is p-computable if L(fn) is a polynomially
bounded function of n. Those families constitute the complexity class VP.

In Valiant’s model, VNP is the analogue of the class NP (or perhaps more
accurately, of #P).

Definition 4 (VNP). A p-family (fn) is called p-definable if there exists a
p-computable family g = (gn) such that

fn(X1, . . . , Xp(n)) =
∑

ε∈{0,1}q(n)

gn(X1, . . . , Xp(n), ε1, . . . , εq(n))

The set of p-definable families forms the class VNP.

Clearly, VP is included in VNP. To define VNP-completeness we need a notion
of reduction:

Definition 5 (p-projection). A polynomial f with v arguments is said to be
a projection of a polynomial g with u arguments, and we denote it f ≤ g, if
f(X1, . . . , Xv) = g(a1, . . . , au) where each ai is a variable of f or a constant
from K.

A p-family (fn) is a p-projection of (gm) if there exists a polynomially bounded
function t : N → N such that: ∃n0∀n ≥ n0, fn ≤ gt(n).

Definition 6 (VNP-completeness). A p-family g ∈ VNP is VNP-complete
if every p-family f ∈ VNP is a p-projection of g.

The VNP-completeness of the permanent under p-projections [14,2] is a central
result in Valiant’s theory.

It seems that p-projections are too weak for some of our completeness results.
Instead, we use the more general notion of c-reduction [1,2]. First we recall the
notion of oracle computation :

Definition 7. The oracle complexity Lg(f) of a polynomial f with respect to the
oracle polynomial g is the minimum number of arithmetic operations (+, ∗) and
evaluations of g over previously computed values that are sufficient to compute
f from the indeterminates Xi and constants from K.

Definition 8 (c-reduction). Let us consider two p-families f = (fn) and g =
(gn). We have a polynomial oracle reduction, or c-reduction, from f to g (denoted
f ≤c g) if there exists a polynomially bounded function t : N → N such that the
map n 
→ Lgt(n)(fn) is polynomially bounded.

We can define a more general notion of VNP-completeness based on c-reductions:
A p-family f is VNP-hard if g ≤c f for every p-family g ∈ VNP. It is VNP-
complete if in addition, f ∈ VNP. The new class of VNP-complete families
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contains all the classical VNP-complete families since every p-reduction is a c-
reduction.

In our completeness proofs we need c-reductions to compute the homogeneous
components of a polynomial. This can be achieved thanks to a well-known lemma
(see e.g. [2]):

Lemma 1. Let f be a polynomial in the variables X1, . . . , Xn. For any δ such
that δ ≤ deg f , let denote f (δ) the homogeneous component of degree δ of f .
Then, Lf(f (δ)) is polynomially bounded in the degree of f .

By Valiant’s criterion (Proposition 2.20 in [2]), for any finite set S of logical
relations and any p-family (φn) of S-formulas the polynomials (P (φn)) form a
VNP family. Furthermore, the only four boolean affine relations with at most
two variables are (x = 0), (x = 1), (x = y) and (x 	= y). Since for a conjunction
of such relations, the variables are either independent or completely bounded, a
polynomial associated to a p-family of such formulas is factorizable. Thus :

Remark 1. For a set S of affine relations with at most two variables, every p-
family of polynomials associated to S-formulas is in VP.

All the work in the proof of Theorem 2 therefore goes into the hardness proof.

3 Monotone 2-Clauses

In this section we consider the set {OR2} = {(x, y) 
→ (x ∨ y)} and {OR0} =
{(x, y) 
→ (x ∨ y)}. For S = {OR2} and S = {OR0}, we show that there exists
a VNP-complete family of polynomials (P (φn)) associated to a p-family of S-
formulas (φn).

The partial permanent PER∗(A) of a matrix A = (Ai,j) is defined by the
formula:

PER∗(A) =
∑

π

∏
i∈defπ

Aiπ(i)

where the sum runs over all injective partial maps from [1, n] to [1, n]. It is shown
in [2] that the partial permanent is VNP-complete (the proof is attributed to
Jerrum). The partial permanent may be written as in (1), where φn is the boolean
formula that recognizes the matrices of partial maps from [1, n] to [1, n]. But φn

is a p-family of {OR2}-formulas since

φn(ε) =
∧

i,j,k:j �=k

εij ∨ εik ∧
∧

i,j,k:i�=k

εij ∨ εkj .

Here the first conjunction ensures that the matrix ε has no more than one 1 on
each row; the second one ensures that ε has no more than one 1 on each column.
We have obtained the following result.

Theorem 3. The family (φn) is a p-family of {OR2}-formulas, and the poly-
nomial family (P (φn)) is VNP-complete under p-projections.
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The remainder of this section is devoted to the set S = {OR0} = {(x, y) 
→ x∨y}.
The role played by the partial permanent in the previous section will be played
by vertex cover polynomials. There is more work to do because the corresponding
VNP-completeness result is not available from the literature.

Consider a vertex-weighted graph G = (V,E): to each vertex vi ∈ V is asso-
ciated a weight Xi. The vertex cover polynomial of G is

VCP(G) =
∑
S

∏
vi∈S

Xi (2)

where the sum runs over all vertex covers of G (recall that a vertex cover of G
is a set S ⊆ V such that for each edge e ∈ E, at least one of the two endpoints
of e belongs to S). The univariate vertex cover polynomial defined in [7] is a
specialization of ours; it is obtained from VCP(G) by applying the substitutions
Xi := X (for i = 1, . . . , n), where X is a new indeterminate.

Our main result regarding {OR0}-formulas is as follows.

Theorem 4. There exists a family Gn of polynomial size bipartite graphs such
that:

1. The family (VCP(Gn)) is VNP-complete.
2. VCP(Gn) = P (φn) where φn is a p-family of {OR0}-formulas.

Given a vertex-weighted graph G, let us associate to each vi ∈ V a boolean
variable εi. The interpretation is that vi is chosen in a vertex cover when εi is
set to 1. We then have

VCP(G) =
∑

ε∈{0,1}|V |

[ ∧
(vi,vj)∈E

εi ∨ εj

]
X

ε
.

The second property in Theorem 4 will therefore hold true for any family (Gn)
of polynomial size graphs.

To obtain the first property, we first establish a VNP-completeness result for
the independent set polynomial IP(G). This polynomial is defined like the vertex
cover polynomial, except that the sum in (2) now runs over all independent sets
S (recall that an independent set is a set S ⊆ V such that there are no edges
between any two elements of S).

Theorem 5. There exists a family (G′
n) of polynomial size graphs such that

IP(G′
n) = PER∗

n where PER∗
n is the n×n partial permanent. The family IP(G′

n)
is therefore VNP-complete.

Proof. The vertices of G′
n are the n2 edges ij of the complete bipartite graph

Kn,n, and the associated weight is the indeterminate Xij . Two vertices of G′
n

are connected by an edge if they share an endpoint in Kn,n. An independent set
in G′

n is nothing but a partial matching in Kn,n, and the corresponding weights
are the same.
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Next we obtain a reduction from the independent set polynomial to the vertex
cover polynomial. The connection between these two problems is not astonishing
since vertex covers are exactly the complements of independent sets. But we deal
here with weighted counting problems, so that there is a little more work to do.
The connection between independent sets and vertex covers does imply a relation
between the polynomials IP(G) and VCP(G). Namely,

IP(G)(X1, . . . , Xn) = X1 · · ·Xn · VCP(G)(1/X1, . . . , 1/Xn). (3)

Indeed,

IP(G) =
∑

S independent

X1 · · ·Xn∏
vi �∈S Xi

= X1 · · ·Xn

∑
S′ vertex cover

1∏
vi∈S′ Xi

.

Recall that the incidence graph of a graph G′ = (V ′, E′) is a bipartite graph
G = (V,E) where V = V ′ ∪E′. In the incidence graph there is an edge between
e′ ∈ E′ and u′ ∈ V ′ if u′ is one of the two endpoints of e′ in G. When G′ is
vertex weighted, we assign to each V ′-vertex of G the same weight as in G and
we assign to each E′-vertex of G the constant weight −1.

Lemma 2. Let G′ be a vertex weighted graph and G its vertex weighted incidence
graph as defined above. We have the following equalities:

VCP(G) = (−1)e(G′)IP(G′) (4)

IP(G) = (−1)e(G′)VCP(G′) (5)

where e(G′) is the number of edges of G′.

Proof. We begin with (4). To each independent set I ′ of G′ we can injectively
associate the vertex cover C = I ′ ∪ E′. The weight of C is equal to (−1)e(G′)

times the weight of I ′. Moreover, the weights of all other vertex covers of G
add up to 0. Indeed, any vertex cover C which is not of this form must contain
two vertices u′, v′ ∈ V ′ such that u′v′ ∈ E′. The symmetric difference CΔ{u′v′}
remains a vertex cover of G, and its weight is opposite to the weight of C since
it differs from C only by a vertex u′v′ of weight −1.

The equality (5) follow from the combination of (3) and (4).

To complete the proof of Theorem 4 we apply Lemma 2 to the graph G′ = G′
n of

Theorem 5. The resulting graph G = Gn satisfies VCP(Gn) = IP(G′
n) = PER∗

n

since G′
n has an even number of edges: e(G′

n) = n2(n − 1).

4 Affine Relations with at Least Three Variables

Here we consider the case of a set S containing large affine constraints. We first
establish the existence of a VNP-complete family of polynomials associated to a
p-family of affine formulas, and then show how to reduce this family to each affine
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constraint with at least three variables. In this section, our VNP-completeness
results are in the sense of c-reduction.

Let us consider the n × n permanent PERn(M) of a matrix M = (Mi,j).
It may be expressed as the polynomial associated to the formula accepting the
n × n permutation matrices: PERn(M) =

∑
ε φn(ε)X

ε
.

This formula φn expresses, that each row and each column of the matrix ε
contains exactly one 1. Let us consider the formula ϕn defined by:

ϕn(ε) =
n∧

i=1

εi1 ⊕ . . . ⊕ εin = 1 ∧
n∧

j=1

ε1j ⊕ . . . ⊕ εnj = 1

The formula ϕn expresses, that each row and each column of ε contains an
odd number of values 1. Thus, ϕn accepts the permutation matrices, and other
assignments that contain more values 1. We therefore remark, that the n × n
permanent is exactly the homogeneous component of degree n of P (ϕn). But
from Lemma 1, this implies a c-reduction from the permanent family to the
p-family (P (ϕn)). Thus:

Lemma 3. The family (P (ϕn)) is VNP-complete with respect to c-reductions.

Through c-reductions and p-projections, this suffices to establish the existence
of VNP-complete families for affine formulas of at least three variables:

Theorem 6. 1. There exists a VNP-complete family of polynomials associated
to {x ⊕ y ⊕ z = 0}-formulas.

2. There exists a VNP-complete family of polynomials associated to {x⊕y⊕z =
1}-formulas.

3. For every set S containing an affine formula with at least three variables,
there exists a VNP-complete family of polynomials associated to S-formulas.

Proof. 1. Let us consider the formula ϕn. This formula is a conjunction of
affine relations with constant term 1: x1 + . . . + xk = 1. Let ϕ′

n be the
formula obtained from ϕn by adding a variable a and replacing such clauses
by x1 + . . . + xk + a = 0. In the polynomial associated to ϕ′

n, the term of
degree 1 in the variable associated to a is exactly the polynomial P (ϕn):
when a is assigned to 1, the satisfying assignments of ϕ′

n are equal to the
satisfying assignments of ϕn. Since this term of degree 1 can be recovered by
polynomial interpolation of P (ϕ′

n), the family (P (ϕn)) c-reduces to (P (ϕ′
n)).

ϕ′
n is a conjunction of affine relations with constant term 0. The polynomial

P (ϕ′
n) is the projection of the polynomial P (ψn), where the formula ψn is

obtained from ϕ′
n by replacing each affine relation of the type x1⊕. . .⊕xk = 0

by the conjunction of relations

(x1 ⊕ x2 ⊕ a1 = 0) ∧ (a1 ⊕ x3 ⊕ a2 = 0) ∧ . . . ∧ (ak−2 ⊕ xk−1 ⊕ xk = 0)

where the ai are new variables. In fact, on sees easily, that for a given assign-
ment of the xi satisfying ϕ′

n, a single assignment of the ai gives a satisfying
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assignment of ψn; and that if the xi do not satisfy ϕ′
n, no assignment of

the ai works on. The polynomial P (ϕ′
n) is thus the polynomial obtained by

replacing the variables associated to ai by the value 1 in P (ψn); the family
(P (ϕ′

n)) is a p-projection of (P (ψn)).
2. The formula ψn constructed above is a conjunction of relations of the type

x ⊕ y ⊕ z = 0. Let us construct a new formula ψ′
n by introducing two new

variables a and b and replacing each of such relations by the conjunction
(x⊕y⊕a = 1)∧(a⊕z⊕b = 1). One sees easily, that P (ψn) is the projection
of P (ψ′

n) obtained by setting the variables associated to a and b to 1 and 0
respectively.

3. Let us suppose, that S contains a relation of the type x1 ⊕ . . .⊕xk = 0, with
k ≥ 3. The polynomial P (ψn) is the projection of the polynomial associated
to the S-formula obtained by replacing each relation x ⊕ y ⊕ z = 0 of ψn

by a relation x ⊕ y ⊕ z ⊕ a1 ⊕ . . . ⊕ ak−3 = 0, and setting the variables
associated to the ai to 0. Thus, the family (P (ψn)) projects on a family
of polynomials associated to S-formulas, which is therefore VNP-complete.
When S contains a relation with constant term 1, one projects the family
(P (ψ′

n)) similarly.

5 #P-Completeness Proofs

Up to now, we have studied vertex weighted graphs mostly from the point of
view of algebraic complexity theory. Putting weights on edges, or on vertices, can
also be useful as an intermediate step in #P-completeness proofs [15,8]. Here we
follow this method to obtain new #P-completeness results. Namely, we prove
#P-completeness under many-one reductions for several problems which were
only known to be #P-complete under oracle reductions.

Theorem 7. The following problems are #P-complete for many-one reductions.

1. Vertex Cover: counting the number of vertex covers of a given a graph.
2. Independent Set: counting the number of independent sets of a given graph.
3. Bipartite Vertex Cover: the restriction of vertex cover to bipartite graphs.
4. Bipartite Independent Set: the restriction of independent set to bipartite

graphs.
5. Antichain: counting the number of antichains of a given poset.
6. Ideal: counting the number of ideals of a given poset.
7. Implicative 2-SAT: counting the number of satisfying assignments of a con-

junction of implicative 2-clauses.
8. Positive 2-SAT: counting the number of satisfying assignments of a conjunc-

tion of positive 2-clauses.
9. Negative 2-SAT: counting the number of satisfying assignments of a conjunc-

tion of negative 2-clauses.

Remark 2. #P-completeness under oracle reductions is established in [12] for
the first six problems, in [10] for the 7th problem and in [16] for the last two. In
Section 2, the last three problems are denoted #SAT(S) where S is respectively
equal to {OR1}, {OR0} and {OR2}.
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Proof. Provan and Ball establish in [12] the equivalence of Problems 1 and 2, 3
and 4, and 5 and 6; they produce many-one reductions from 1 to 8 and from 4
to 5, and Linial gives in [10] a many-one reduction from 6 to 7. Problems 8
and 9 are clearly equivalent. Therefore, to obtain #P-completeness under many-
one reductions for all those problems, we just need to show the #P-completeness
of Problem 1 and to produce a many-one reduction from Problem 1 to Problem 3
(replacing the oracle reduction from [12]).

In order to prove the #P-completeness of Problem 1, we first establish a
many-one reduction from the #P-complete problem of computing the perma-
nent of {0, 1}-matrices (which is known to be #P-complete under many-one
reductions [17]) to the problem of computing the vertex cover polynomial of a
weighted graph with weights in {0, 1,−1}. In [2], Bürgisser attributes to Jer-
rum a projection from the permanent to the partial permanent, with the use
of the constant −1. Applied to a {0, 1}-matrix, this gives a many-one reduction
from the permanent on {0, 1}-matrices to the partial permanent on {0, 1,−1}-
matrices. By Theorem 5, the n×n partial permanent is equal to the independent
set polynomial of the graph G′

n; the reduction is obviously polynomial. More-
over, by Lemma 2 this polynomial is the projection of the vertex cover polyno-
mial of Gn, with the use of the constant −1. The partial permanent on entries
in {0, 1,−1} therefore reduces to the vertex cover polynomial on graphs with
weights in {0, 1,−1}.

Let G be such a vertex weighted graph, with weights in {0, 1,−1}. A vertex
cover of nonzero weight does not contain any vertex v of weight 0, and in order
to cover the edges that are incident to v, it must contain all its neighbors. One
can therefore remove v, and replace each edge from v to another vertex u by
a self-loop (an edge from u to u). Thus, we obtain a graph G′ with weights in
{1,−1} such that VCP(G) = VCP(G′).

To deal with the weights −1, we use a method similar to [15]. Since VCP(G′)
is the value of a partial permanent on a {0, 1}-matrix, it is positive. We will
construct an integer N and a graph H such that the number of vertex covers
of H modulo N is equal to VCP(G′). This will establish a reduction from the
boolean permanent to counting vertex covers.

We choose N larger than the maximum value of the number of vertex covers
of G′: N = 2v(G′) + 1 will suit our purposes. Now that we compute the number
of vertex covers modulo N , we can replace each −1 weight in G′ by the weight
N − 1 = 2v(G′). But one can simulate such a weight on a vertex by adding to it
v(G′) leaves.

Finally, we construct a many-one reduction from vertex cover to bipartite ver-
tex cover. By applying two times the transformation of Lemma 4, we have a pro-
jection from the vertex cover polynomial of a graph to the vertex cover polynomial
of a bipartite graph, with the use of −1 weights. To eliminate these weights, we can
follow the method used in our above proof of the #P-completeness of Problem 1.
Indeed, since the leaves added to the graph preserve bipartiteness, we obtain a re-
duction from counting vertex covers in a general graph to counting vertex covers
in a bipartite graph.
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The proof of Creignou and Hermann’s dichotomy theorem [5,6] is based on many-
one reductions from the last 3 problems of Theorem 7. We have just shown that
these 3 problems are #P-complete under many-one reductions. As a result, we
have the following corollary to Theorem 7.

Corollary 1. Theorem 1 still holds for #P-completeness under many-one re-
duction.
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Abstract. In contrast to the extremal variants of coNP-complete prob-
lems, which are frequently DP-complete, many extremal variants of NP-
complete problems are in P. We investigate the extremal variants of two
NP-complete problems, the extremal colorability problem with restricted
degree and the extremal unfrozen non-implicant problem, and show that
both of them are DP-complete.
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1 Introduction

Detecting the existence of unsatisfiable subproblems is a significant compo-
nent of exact solvers for NP-complete problems. In proof complexity, prob-
abilistic limits on the size of minimal unsatisfiable subproblems figures large
in establishing exponential lowers for resolution proofs [6]. In logic, determin-
ing whether an instance is a minimal unsatisfiable subproblem, also called the
critical-UNSAT problem1, is to determine whether a given Boolean formula is
unsatisfiable but deleting any clause makes it satisfiable, and has been shown to
be DP-complete [13]. The critical-nonhamilton-path problem [11], the critical-
uncolorability problem [3] and many other extremal coNP problems [5] [9] are
also known to be DP-complete. Papadimitriou and Yannakakis introduced the
class DP, which contains both NP and coNP and is contained in ΔP

2 [12].
The class DP is defined to be all languages that can be expressed as the inter-

section of a language in NP and a language in coNP. The SAT-UNSAT problem
is a typical DP-complete problem [11]: given two Boolean expressions ϕ,ϕ′, is
it true that ϕ is satisfiable and ϕ′ is not? More such problems are introduced
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R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 199–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



200 Y. Cao, J. Culberson, and L. Stewart

in [10]. Many “exact cost” variants of NP-hard optimization problems, for ex-
ample the exact-TSP problem [13] and the exact-four-colorability problem [15],
are also DP-complete. More problems like this can be found in [11] and [14].

Intuitively, extremal coNP problems, such as the critical problems listed above,
are in DP because they can be expressed as a coNP language describing the prob-
lem instance, while each (complementary) subproblem is in NP. As discussed be-
low, if any extremal coNP-complete problem had a polynomial certificate, then
NP=coNP, thus making it likely that such problems are in higher level complex-
ity classes.

Extremal variants of monotonic NP problems are in DP for similar reasons,
the instances are in NP, but all monotonic extensions are in coNP. However, in
contrast to extremal coNP-complete problems, the extremal instances of many
NP-complete problems can be recognized in polynomial time [2].

Some extremal variants of NP-complete problems were previously shown to be
in complexity classes that are likely beyond P. The extremal k-complementary
subgraph problem is isomorphism complete [2] and the problem of recognizing
maximal unfrozen graphs with respect to independent sets is coNP-complete [1].
As far as we know, no extremal variant of an NP-complete problem has been
shown to be DP-complete before this paper.

In this paper, we present two new DP-complete problems that are extremal
variants of the following NP-complete problems: colorability of a graph with
restricted degree, and unfrozen non-implicant. The first illustrates that the ad-
dition of what appears to be a trivial condition to a combinatorial problem can
vastly change the complexity of recognition. In the second problem, a similar
rise in difficulty comes from a requirement for robustness, namely that a non-
implicant remain a non-implicant under the addition of any one literal.

Given a set Ω of structures, such as graphs or Boolean formulas, a property is
a subset P ⊆ Ω and the decision problem associated with P is “given an instance
I ∈ Ω, is I in P?” A property is said to be monotone if whenever an instance
I has the property, then any instance obtained from I by adding (deleting)
elements to (from) I also has that property. The addition or deletion action is
specified according to the property being considered. For example, 3-colorability
is a monotone property with respect to the deletion of edges from the graph; i.e.
if graph G = (V,E) is 3-colorable, then any graph G′ = (V,E′) with E′ ⊂ E
is also 3-colorable. Hamiltonicity is a monotone property with respect to the
addition of edges, and we will discuss monotone properties related to Boolean
formulas in Section 3.

Given a monotone property P , an instance I is said to be unfrozen with respect
to P , written I ∈ U(P), if I ∈ P and remains in P after adding (deleting) any
element to (from) I. For example a graph G is unfrozen 3-colorable if G is 3-
colorable and remains 3-colorable under the addition of any edge. Note that
U(P) is a monotone property, e.g., if a graph is unfrozen 3-colorable then any
graph obtained by deleting edges from that graph is also unfrozen 3-colorable.

Note that for a property P , the action (addition or deletion) discussed in
the definitions of “unfrozen” and “extremal” is usually the opposite action of
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the one discussed in the definition of “monotone”. Given a non-trivial monotone
property P , meaning P 	= ∅ and P 	= Ω, an instance I is extremal with respect to
P , written I ∈ EX(P), if I ∈ P but no longer in P under the addition (deletion)
of any element to (from) I. EX(P) is a property, but is not monotone.

For many coNP-complete properties P , recognizing instances in EX(P) are
known to be DP-complete [3] [5] [9] [11] [13]. The following observation partially
explains the high complexity of these problems. For any monotone property P ,
if the instances in EX(P) can be verified in polynomial time, then the problem
of recognizing the instances of P is in NP. We can simply guess a subset or
superset2 of the instance and check if it is in EX(P). Therefore, recognizing
the instances of EX(P) for any coNP-complete property P cannot be solved in
polynomial time, unless NP=coNP.

This paper is organized as follows. In Section 2, we will introduce our first
example, the extremal 3-colorability problem with maximum degree 8. The DP
complexity result can be generalized to the extremal k-colorability problem with
maximum degree r, where k is an integer at least 3 and r is a function of k. The
extremal k-colorability problem itself is polynomial time solvable; we just need to
check if the graph is complete k-partite. It is interesting that adding a polynomial
property (the restricted degree) can make a problem much more difficult. In
contrast for k-colorability combined with certain NP-complete properties such as
Hamiltonicity and independent set, the corresponding extremal problems remain
in P [2]. In Section 3, we will give another DP-complete extremal variant of an
NP-complete problem, the extremal unfrozen non-implicant problem.

2 Extremal Colorability Problem with Restricted Degree

We first introduce some definitions. Given a graph G = (V,E), a coloring of G
is a labeling of its vertices, and a proper coloring is a labeling such that any pair
of adjacent vertices have different labels (i.e. colors). Graph G is said to be k-
colorable if there is a proper coloring of G using k colors, k ≥ 3. It is well known
that the problem to determine whether a graph is k-colorable is NP-complete
and remains NP-complete for graphs with restricted maximum degree r, k ≥ 3
and r ≥ 4 [8]. A graph G is extremal k-colorable if G is k-colorable but after
adding any edge (u, v) to G, u, v ∈ V and (u, v) /∈ E, the resulting graph is not
k-colorable. G is critical k-uncolorable if G is not k-colorable, but after deleting
any edge (u, v) from G, (u, v) ∈ E, the resulting graph is k-colorable.

Cai and Meyer [4] proved that recognizing critical k-uncolorable graphs is
DP-complete. In contrast, the extremal k-colorable graphs can be recognized
in polynomial time, because they are just complete k-partite graphs. However,
adding a restriction to the maximum degree will make the problem dramatically
more difficult.

The extremal k-colorability problem with maximum degree r (EkCΔr) is: Given
a graph G = (V,E) with maximum degree r and a positive integer k, r ≥ 4 and
k ≥ 3, is it true that G is k-colorable, but adding any edge (u, v) to G, u, v ∈ V

2 Assuming that the size of any superset of an instance is polynomially bounded.
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and (u, v) /∈ E, the resulting graph is either not k-colorable or has maximum
degree greater than r?

Now, we will show that

Theorem 1. E3CΔ2t, t ≥ 4, is DP-complete.

Proof. We show that the theorem holds for t = 4. For t with larger value, the
proof is similar; only the device used to control the degrees needs to be modified
accordingly. E3CΔ8 is in DP, because there are at most |V |2 possible edges
to add and 3-colorability is in NP. To show completeness, we will reduce both
the 3-colorable problem with maximum degree 4 (3CΔ4) and the 3-uncolorable
problem with maximum degree 4 (3UCΔ4) to E3CΔ8.

Lemma 1. E3CΔ8 is NP-hard.

Proof. (of Lemma 1) Given a graph G with maximum degree 4, we can simply
add K8,8’s by breaking an edge and connecting the free ends to vertices of degree
less than 8, until every vertex has degree 8. The resulting graph is extremal 3-
colorable with maximum degree 8 if and only if G is 3-colorable.

Lemma 2. E3CΔ8 is coNP-hard.

Proof. (of Lemma 2) Given a graph G = (V,E) with maximum degree 4, we will
construct a graphG′ = (V ′, E′) such thatG′ is extremal 3-colorablewithmaximum
degree 8 if and only if G is not 3-colorable. We will need to use the T-device shown
in Figure 1(a) throughout the construction. This device has the property that in
any proper 3-coloring of a graph containing the T-device as an induced subgraph,
if vertices u and v are colored with the same color then x must be colored with
that color, but if u and v are colored with different colors then x can be colored
with any color. Initially, replace each edge (u, v) ∈ E by two T-devices in G′ as
shown in Figure 1(b). Since u and v are not adjacent in G′, they can be colored
with the same color. In any proper 3-coloring of G′, if u and v are colored with the
same color, then x and x′ must also be colored with that color. We call u and v the
original vertices, x and x′ the control vertices, and the rest of the vertices assistant
vertices. Let e1, e2, . . . , em be an arbitrary ordering of the edges of G, and xi, x′

i

be the control vertices in the subgraph of G′ corresponding to ei. We can chain
all the control vertices of G′ in a cycle with 2m additional T-devices as shown in

x

u v

u v
x’
x

(a) (b)

Fig. 1. T-device
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x’
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Fig. 2. Chain all the control vertices in a cycle

Figure 2. Note thatxi andx′
i work as the control vertices in the subgraph containing

xi−1, x′
i−1, xi and x′

i. Therefore, in any proper 3-coloring of G′, if xi−1 and x′
i−1 are

colored with the same color, then xi and x′
i must be also colored with that color.

By induction, all the control vertices have to be colored with that color. Please see
Figure 3 for an example of the construction.

Graph G′ is 3-colorable whether G is 3-colorable or not. We can color all
the original and control vertices with one color. Then the graph induced by the
assistant vertices is a collection of isolated edges, which can be easily colored
by the remaining two colors. At this stage, each control vertex has degree 6,
each assistant vertex has degree 3, and each original vertex has degree at most 8
(twice its degree in G). In order to make G′ extremal 3-colorable with maximum
degree 8 while G is not 3-colorable, we need to add more vertices and edges.
Similar to Lemma 1, we can attach K8,8’s to the original and assistant vertices
to make each of them have degree 8, and leave the control vertices unchanged.
This completes the construction of G′.

If G is 3-colorable, then take an arbitrary 3-coloring of G and color the original
vertices of G′ by this coloring. For each edge of G, in the corresponding induced
subgraph of G′, the two original vertices are colored with different colors, which
means the two control vertices can be coloredwith any colors.Color the two control
vertices with two distinct colors and color the assistant vertices properly. Finally,
color the K8,8’s according to the colors of their attached vertices.G′ is not extremal
because we can add an edge between two control vertices with different colors.

If G is not 3-colorable, then for any 3-coloring of G′ there is a pair of original
vertices u and v such that they have the same color and (u, v) ∈ E, otherwise the
coloring of the original vertices of G′ is a proper 3-coloring of G. In the induced
subgraph corresponding to (u, v), the two control vertices must be colored with



204 Y. Cao, J. Culberson, and L. Stewart

x’1

x1 x2

x’2

x3

x’3

a b c d

a b c d
1 2 3e e e

G

G’

Fig. 3. G to G’

the same color. It follows that all the control vertices are colored with the same
color and G′ is extremal 3-colorable with maximum degree 8. Therefore, E3CΔ8
is coNP-hard.

To show E3CΔ8 is DP-hard, we can reduce the well-known DP-complete problem
SAT-UNSAT to it. Given two formulas ϕ and ϕ′, we first transform them to two
graphs G and G′ both with maximum degree 4, such that G is 3-colorable if
and only if ϕ is satisfiable, and G′ is not 3-colorable if and only if ϕ′ is not
satisfiable [8]. Then by Lemmas 1 and 2, we can construct two graphs H and
H ′ both with maximum degree 8, such that H is extremal 3-colorable with
maximum degree 8 if and only if G is 3-colorable, and H ′ is extremal 3-colorable
with maximum degree 8 if and only if G′ is not 3-colorable. Let H∗ be the
graph consisting of two components H and H ′. We have that H∗ is extremal
3-colorable with maximum degree 8 if and only if ϕ is satisfiable and ϕ′ is not
satisfiable. This completes the proof.

In the remainder of this section, we generalize the complexity results to arbi-
trary k ≥ 3. We will show that

Theorem 2. EkCΔρ(k) is DP-complete, ρ(k) = k(k + �
√

k� − 1).
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(a) (b)

K2t+1

KtKt
u v

x

K2t+2

KtKt vu

x

Fig. 4. Generalized T-device

Proof. Emden-Weinert, Hougardy, and Kreuter [7] have shown that determining
if a graph G with maximum degree (k + �

√
k� − 1 = ρ(k)/k) is k-colorable is

NP-complete for k ≥ 3. The same techniques as those used in Theorem 1 will be
applied here. We will reduce the kCΔρ(k)/k and the kUCΔρ(k)/k to EkCΔρ(k),
respectively. Again, EkCΔρ(k) is in DP because there are at most |V |2 possible
edges to add and k-colorability is in NP. To show the NP-hardness, we only
need to attach Kρ(k),ρ(k)’s to vertices with degree less than ρ(k), so that every
vertex in the resulting graph will have degree ρ(k)3. It follows that the original
graph is k-colorable if and only if the resulting graph is extremal k-colorable
with maximum degree ρ(k).

Next, we will show the problem is coNP-hard. Given a graph G = (V,E) with
maximum degree ρ(k)/k, k ≥ 3, we will construct a graph G′ = (V ′, E′) such
that G′ is extremal k-colorable with maximum degree ρ(k) if and only if G is not
k-colorable. The construction of G′ is the same as that in Lemma 2 except that
the structure of the T-device has to be modified to fit into the new environment.
The new T-device consists of two vertices u,v and a k-clique. Each of u and v
has �k

2 � neighbors in the k-clique. There is one vertex x in the k-clique that is
adjacent to neither u nor v, and all the other vertices are adjacent to either u
or v or both. Vertices u and v have at most one neighbor in common in the
k-clique. More specifically, if k = 2t + 1, each of u and v has t neighbors in the
k-clique, which have no vertex in common (See Figure 4(a)); if k = 2t + 2, each
of u and v has t + 1 neighbors in the k-clique, and there is exactly one vertex
that is adjacent to both u and v (See Figure 4(b)). The property of the T-device
is maintained in the generalized device, i.e. in any proper k-coloring, if vertices
u and v are colored with the same color then x must be colored with that color,
but if u and v are colored with different colors then x can be colored with any
color.
3 One vertex may remain at degree ρ(k) − 1 if both ρ(k) and n are odd, but adding

an edge will still violate the degree restriction.
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As in Lemma 2, every edge (u, v) ∈ E is replaced by two T-devices and all
the control vertices are chained together by the T-devices in a way similar to
Figure 2. At this stage, each control vertex has degree 2 ∗ (k− 1)+ 2 ∗ �k

2 � < 3k,
each assistant vertex has degree k or k + 1, and each original vertex has degree
2 ∗ �k

2�∗ degree in G ≤ k ∗ρ(k)/k = ρ(k). By attaching Kρ(k),ρ(k)’s, we can make
each original and assistant vertex have degree ρ(k) and complete the construction
of G′4. Graph G is not k-colorable if and only if G′ is extremal k-colorable with
maximum degree ρ(k).

Now, similar to Theorem 1, we can reduce the SAT-UNSAT problem to
EkCΔρ(k) and therefore, EkCΔρ(k) is DP-complete.

3 Extremal Unfrozen Non-implicant Problem

In this section, we will present another example of a DP-complete problem that
is the extremal variant of an NP-complete problem. A Boolean formula is an
expression written using only Boolean variables, conjunction ∧, disjunction ∨,
negation ¬ and parentheses. A Boolean formula is satisfiable if the variables of
it can be assigned truth values in such a way as to make the formula evaluate
to true. A Boolean formula is valid if the formula evaluates to true under any
truth assignment of its variables. A literal is a variable or a negated variable. A
monomial is a conjunction of literals, and the empty monomial, denoted λ, is
valid. An implicant of a formula ϕ is a monomial C such that C → ϕ is valid. A
monomial C is a prime implicant of ϕ if C is an implicant of ϕ but deleting any
literal from C will make it no longer an implicant of ϕ. Given a Boolean formula
ϕ and a monomial C, the problem to decide whether C is an implicant of ϕ is
coNP-complete, because we can reduce the tautology problem to it simply by
letting C be an empty monomial. The problem to decide whether C is a prime
implicant of ϕ, which is the extremal variant of a coNP-complete problem, has
been shown to be DP-complete [9].

We can define several problems related to the implicant problem. A monomial
C is a non-implicant of a Boolean formula ϕ if C is not an implicant of ϕ, and
C is a critical non-implicant of ϕ if C is a non-implicant of ϕ but adding any
literal that is not in C will create an implicant of ϕ. The non-implicant problem
is NP-complete, since it is the complementary problem of the implicant problem.
Let us consider the complexity of the critical non-implicant problem. Given a
Boolean formula ϕ and a monomial C, the critical non-implicant problem is to
decide whether or not C is a critical non-implicant of ϕ. We say a variable x
is covered by a monomial C if either x or ¬x appears in C. Note that if C is a
non-implicant of ϕ and x is not covered in C, C ∧ x and C ∧¬x cannot both be
implicants of ϕ. It follows that if C does not cover every variable of ϕ, then C
must not be a critical non-implicant of ϕ. Another observation about implicant
is that if C contains both x and ¬x, for any variable x of ϕ, then C must
be an implicant of ϕ. Therefore, a critical non-implicant of a Boolean formula
4 One extra “free” vertex may be needed in certain parity situations to complete the

construction.
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is equivalent to a truth assignment that does not satisfy the formula, and the
critical non-implicant problem can be solved in polynomial time like most other
extremal NP-complete problems.

We find that the unfrozen non-implicant problem is NP-complete and the
extremal unfrozen non-implicant problem is DP-complete. We first introduce
the formal definitions of these problems. To define the unfrozen non-implicant
and extremal unfrozen non-implicant, we need the concept of non-relevant literal.
A literal l is a non-relevant literal to a monomial C, if neither l nor ¬l appears
in C. A monomial C is an unfrozen non-implicant of a Boolean formula ϕ if
C is a non-implicant of ϕ, and C ∧ l is still a non-implicant of ϕ for any non-
relevant literal l to C. C is an extremal unfrozen non-implicant of ϕ if C is an
unfrozen non-implicant of ϕ, but for any non-relevant literal l to C, C ∧ l is not
an unfrozen non-implicant of ϕ, i.e. there is a literal l′ non-relevant to C ∧ l such
that C ∧ l ∧ l′ is an implicant of ϕ. Given a Boolean formula ϕ and a monomial
C, the unfrozen non-implicant (resp. extremal unfrozen non-implicant) problem
is to determine whether or not C is an unfrozen non-implicant (resp. extremal
unfrozen non-implicant) of ϕ. We now present complexity results for these two
problems.

Theorem 3. The unfrozen non-implicant problem is NP-complete.

Proof. As we discussed before, the problem to determine whether or not a mono-
mial is a non-implicant of a given formula is NP-complete. Given a Boolean for-
mula ϕ and a monomial C, the certificate of the unfrozen non-implicant problem
is the conjunction of the certificates of the non-implicant problems for C ∧ l for
each non-relevant literal l to C. This certificate has size O(n2) and is polynomial
checkable, where n is the number of variables in ϕ. Therefore, the problem is in
NP.

We now reduce the SAT problem to this problem. Given a formula ϕ, let y be
a new variable that does not appear in ϕ and ρ = ¬ϕ∧ y. The empty monomial
λ is an unfrozen non-implicant of ρ if and only if ϕ ∈SAT. If ϕ ∈SAT, for any
variable x of ϕ, neither x nor ¬x is an implicant of ρ, because assigning false to
y will make ρ unsatisfied; for y, a satisfying truth assignment of ϕ will make ρ
unsatisfied; and ¬y is obviously a non-implicant. Hence, λ is an unfrozen non-
implicant of ρ. If ϕ /∈SAT, then ¬ϕ is valid and y is an implicant of ρ, from which
it follows that λ is not an unfrozen non-implicant of ρ. Therefore, the unfrozen
non-implicant problem is NP-complete.

Theorem 4. The extremal unfrozen non-implicant problem is DP-complete.

Proof. This problem involves an NP problem to verify an unfrozen non-implicant
and a coNP problem to verify at most 2n monomials, all of which are not unfrozen
non-implicants, where n is the number of variables in the formula. The answer
to the extremal unfrozen non-implicant problem is yes if and only if the answers
to both of these two problems are yes. Hence, the problem is in DP. To show
the DP-completeness, we will reduce both the SAT and the UNSAT problems
to the extremal unfrozen non-implicant problem.
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Lemma 3. The extremal unfrozen non-implicant problem is NP-hard.

Proof. (of Lemma 3) Given a formula ϕ, let V (ϕ) be the set of variables of ϕ.
For a new variable w /∈ V (ϕ), let Cw = (w ∧ aw) ∨ (¬w ∧ ¬aw), where aw is
another new variable. For each variable x ∈ V (ϕ), let Cx = (x∧ax)∨(¬x∧¬ax),
where ax is a new variable corresponding to x. Note that Cx has both satisfying
assignments and unsatisfying assignments no matter how we assign values to x
(ax). The same property holds for Cw since it has the same structure as Cx. Let
ρ = (¬ϕ ∧ w) ∨ Cw

∨
x∈V (ϕ) Cx. We now show that the empty monomial λ is an

extremal unfrozen non-implicant of ρ if and only if ϕ ∈SAT.
If ϕ ∈SAT, we first prove that λ is an unfrozen non-implicant of ρ by showing

that no single literal is an implicant of ρ. For x ∈ V (ϕ), making w = false, ax =
false, aw = true and each Cv = false, v ∈ V (ϕ) and v 	= x, we will have
an unsatisfying truth assignment of ρ. Hence, x is not an implicant of ρ. For
w, taking a satisfying truth assignment of ϕ and making aw = false and each
Cx = false, x ∈ V (ϕ), we will have an unsatisfying truth assignment of ρ.
Hence, w is not an implicant of ρ. Similarly, it can be verified that all other
literals are non-implicants of ρ. Note that there are many two-literal-monomials
in formula ρ and making any of them true will satisfy the entire formula. Also,
every literal over variables of ρ is in at least one of these two-literal-monomials,
which implies that none of the literals is an unfrozen non-implicant of ρ. Hence,
λ is an extremal unfrozen non-implicant of ρ. If ϕ /∈SAT, then ¬ϕ is valid and
w is an implicant of ρ, which implies that λ is not an unfrozen non-implicant of
ρ. Therefore, the extremal unfrozen non-implicant problem is NP-hard.

Lemma 4. The extremal unfrozen non-implicant problem is coNP-hard.

Proof. (of Lemma 4) Given a formula ϕ′, let V (ϕ′) be the set of variables of
ϕ′. For each variable x ∈ V (ϕ′), let Cx = (x ∧ ax) ∨ (¬x ∧ ¬ax), where ax is a
new variable corresponding to x. Let y, z /∈ V (ϕ′) be two new variables, and let
ρ′ = (¬ϕ′∧y∧z)∨(¬y∧¬z)

∨
x∈V (ϕ′) Cx. The empty monomial λ is an extremal

unfrozen non-implicant of ρ′ if and only if ϕ′ ∈UNSAT.
If ϕ′ ∈UNSAT, then every literal over variables of ρ′ is a non-implicant of ρ′.

For ax, x ∈ V (ϕ′), making x = false, y = false, z = true and each Cv = false,
v ∈ V (ϕ′) and v 	= x, yields an unsatisfying truth assignment of ρ′. For z,
making y = false and each Cx = false, x ∈ V (ϕ′), yields an unsatisfying
truth assignment of ρ′. Other literals can be verified similarly. Also, every literal
over the variables of ρ′ is in at least one of the two-literal-monomials, which are
implicants of ρ′. Hence, λ is an extremal unfrozen non-implicant of ρ′.

If ϕ′ /∈UNSAT, then y is an unfrozen non-implicant of ρ′, which means λ is
not an extremal unfrozen non-implicant of ρ′. We can show that for any non-
relevant literal l to y, y ∧ l is a non-implicant of ρ′. For example, consider y ∧ z,
by taking a satisfying truth assignment of ϕ′ and making each Cx = false,
x ∈ V (ϕ′), we will have an unsatisfying truth assignment of ρ′. Therefore, the
extremal unfrozen non-implicant problem is coNP-hard.

To show the extremal unfrozen non-implicant problem is DP-hard, we reduce the
SAT-UNSAT problem to it. Given two formulas ϕ and ϕ′ that have disjoint sets
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of variables, by Lemmas 3 and 4, we can construct two formulas ρ and ρ′ with
disjoint variable sets, such that the empty monomial λ is an extremal unfrozen
non-implicant of ρ if and only if ϕ ∈SAT, and the empty monomial λ is an
extremal unfrozen non-implicant of ρ′ if and only if ϕ′ ∈UNSAT. Let Π = ρ∨ρ′.
Note that any implicant of ρ or ρ′ is also an implicant of Π . We now show that λ
is an extremal unfrozen non-implicant of Π if and only if (ϕ,ϕ′) ∈SAT-UNSAT.
If (ϕ,ϕ′) ∈SAT-UNSAT, then λ is an extremal unfrozen non-implicant of ρ and
ρ′. Because, ρ and ρ′ have disjoint sets of variables, λ is also an extremal unfrozen
non-implicant of Π . If (ϕ,ϕ′) /∈SAT-UNSAT, there are two cases. If ϕ /∈SAT,
then by Lemma 3, w is an implicant of ρ and is also an implicant of Π , which
means λ is not an unfrozen non-implicant of Π . If ϕ ∈SAT and ϕ′ /∈UNSAT, by
Lemma 4, y is an unfrozen non-implicant of ρ′. For any literal l over the variables
of ρ, because l is a non-implicant of ρ, y ∧ l is a non-implicant of Π . Hence, y is
also an unfrozen non-implicant of Π , which means λ is not an extremal unfrozen
non-implicant of Π . This completes the proof of Theorem 4 .
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Abstract. The synchronization problem is investigated for a new class
of deterministic automata called locally strongly transitive. An applica-
tion to synchronizing colorings of aperiodic graphs with a cycle of prime
length is also considered.

Keywords: Černý conjecture, road coloring problem, synchronizing au-
tomaton, rational series.

1 Introduction

The synchronization problem for a deterministic n-state automaton consists in
the search of an input-sequence, called a synchronizing or reset word, such that
the state attained by the automaton, when this sequence is read, does not de-
pend on the initial state of the automaton itself. If such a sequence exists, the
automaton is called synchronizing. If a synchronizing automaton is deterministic
and complete, a well-known conjecture by Černý claims that it has a synchroniz-
ing word of length not larger than (n − 1)2 [7]. This conjecture has been shown
to be true for several classes of automata (cf. [2,3,4,7,8,9,11,12,15,16,17,18,21]).
The interested reader is refered to [13,21] for a historical survey of the Černý
conjecture and to [6] for the study of the synchronization problem for unambigu-
ous automata. In [8], the authors have studied the synchronization problem for
a new class of automata called strongly transitive. An n-state automaton is said
to be strongly transitive if it is equipped by a set of n words {w0, . . . , wn−1},
called independent, such that, for any pair of states s and t, there exists a word
wi, 0 ≤ i ≤ n − 1, such that swi = t. Interesting examples of strongly transi-
tive automata are circular automata and transitive synchronizing automata. The
main result of [8] is that any synchronizing strongly transitive n-state automa-
ton has a synchronizing word of length not larger than (n − 2)(n + L − 1) + 1,
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R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 211–222, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



212 A. Carpi and F. D’Alessandro

where L denotes the length of the longest word of an independent set of the au-
tomaton. As a straightforward corollary of this result, one can obtain the bound
2(n − 2)(n − 1) + 1 for the length of the shortest synchronizing word of any
n-state synchronizing circular automaton.

In this paper, we consider a generalization of the notion of strong transitivity
that we call local strong transitivity. An n-state automaton is said to be locally
strongly transitive if it is equipped by a set of k words W = {w0, . . . , wk−1}
and a set of k distinct states R = {q0, . . . , qk−1} such that, for all s ∈ S,
{sw0, . . . , swk−1} = {q0, . . . , qk−1}. The set W is still called independent while
R is called the range of W. A typical example of such kind of automata is that
of one-cluster automata, recently investigated in [4]. An automaton is called
one-cluster if there exists a letter a such that the graph of the automaton has a
unique cycle labelled by a power of a. Indeed, denoting by k the length of the
cycle, one easily verifies that the words

an−1, an−2, . . . , an−k

form an independent set of the automaton whose range is the set of vertices of the
cycle. Another more general class of locally strongly transitive automata is that
of word connected automata. Given a n-state automaton A = (S,A, δ) and a word
u ∈ A∗, A is called u-connected if there exists a state q ∈ S such that, for every
s ∈ S, there exists � > 0, with su
 = q. Define R and W respectively as:

R = {q, qu, . . . , quk−1}, W = {ui, ui+1, . . . , ui+k−1}, (1)

where k is the least positive integer such that quk = q and i is the least integer
such that, for every s ∈ S, sui ∈ R. Then one has that W is an independent set
of A with range R.

In this paper, by developing the techniques of [8], we prove that any synchro-
nizing locally strongly transitive n-state automaton has a synchronizing word of
length not larger than

(k − 1)(n + L) + �,

where k is the cardinality of an independent set W and L and � denote respec-
tively the maximal and the minimal length of the words of W . As a straight-
forward corollary of this result, we obtain that every n-state synchronizing u-
connected automaton has a synchronizing word of length not larger than

(k − 1)(n + (i + k − 1)|u|) + i|u|,

where i and k are defined as in (1). In particular, if the automaton is one-cluster,
the previous bound becomes (2k− 1)(n− 1), where k is the length of the unique
cycle of the graph of A labelled by a suitable letter of A.

Another result of this paper is related to the well-known Road coloring prob-
lem. This problem asks to determine whether any aperiodic and strongly con-
nected graph, with all vertices of the same outdegree, (AGW graph, for short),
has a synchronizing coloring. The problem was formulated in the context of Sym-
bolic Dynamics by Adler, Goodwyn and Weiss and it is explicitly stated in [1].
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In 2007, Trahtman has positively solved it in [19]. Recently Volkov has raised
in [20] the problem of evaluating, for any AGW graph G, the minimal length
of a reset word for a synchronizing coloring of G. This problem has been called
the Hybrid Černý–Road coloring problem. It is worth to mention that Ananichev
has found, for any n ≥ 2, a AGW graph of n vertices such that the length of the
shortest reset word for any synchronizing coloring of the graph is (n−1)(n−2)+1
(see [20]). By applying our main theorem and a result by O’ Brien [14], we are
able to obtain a partial answer to the Hybrid Černý–Road coloring problem.
More precisely, we can prove that, given a AGW graph G of n vertices, without
multiple edges, such that G has a simple cycle of prime length p < n, there
exists a synchronizing coloring of G with a reset word of length not larger than
(2p − 1)(n − 1). Moreover, in the case p = 2, that is, if G contains a cycle of
length 2, a similar result holds, even in presence of multiple edges. Indeed, for
every graph of such kind, we can prove the existence of a synchronizing coloring
with a reset word of length not larger than 5(n − 1).

2 Preliminaries

We assume that the reader is familiar with the theory of automata and rational
series. In this section we shortly recall a vocabulary of few terms and we fix the
corresponding notation used in the paper.

Let A be a finite alphabet and let A∗ be the free monoid of words over the
alphabet A. The identity of A∗ is called the empty word and is denoted by ε.
The length of a word of A∗ is the integer |w| inductively defined by |ε| = 0,
|wa| = |w| + 1, w ∈ A∗, a ∈ A. For any finite set W of words of A∗, we denote
by LW and �W the lengths of the longest word and the shortest word in W
respectively.

A finite automaton is a triple A = (S,A, δ) where S is a finite set of elements
called states and δ is a map

δ : S × A −→ S.

The map δ is called the transition function of A. The canonical extension of the
map δ to the set S × A∗ is still denoted by δ. For any u ∈ A∗ and s ∈ S, the
state δ(s, u) will be also denoted su. If P is a subset of S and u is a word of A∗,
we denote by Pu and Pu−1 the sets:

Pu = {su | s ∈ P}, Pu−1 = {s ∈ S | su ∈ P}.

If {sw : w ∈ A∗} = S, for all s ∈ S, A is transitive. If n = Card(S), we will say
that A is a n-state automaton. A synchronizing or reset word of A is any word
u ∈ A∗ such that Card(Su) = 1. The state q such that Su = {q} is called reset
state. A synchronizing automaton is an automaton that has a reset word. The
following conjecture has been raised in [7].

Černý Conjecture. Each synchronizing n-state automaton has a reset word of
length not larger than (n − 1)2.
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We recall that a formal power series with rational coefficients and non-
commuting variables in A is a mapping of the free monoid A∗ into Q. A series
S : A∗ → Q is rational if there exists a triple (α, μ, β) where

– α ∈ Q1×n, β ∈ Qn×1 are a horizontal and a vertical vector respectively,
– μ : A∗ → Qn×n is a morphism of the free monoid A∗ in the multiplicative

monoid Qn×n of matrices with coefficients in Q,
– for every u ∈ A∗, S(u) = αμ(u)β.

The triple (α, μ, β) is called a representation of S and the integer n is called
its dimension. With a minor abuse of language, if no ambiguity arises, the num-
ber n will be also called the dimension of S. Let A = (S,A, δ) be any n-state
automaton. One can associate with A a morphism

ϕA : A∗ → QS×S ,

of the free monoid A∗ in the multiplicative monoid QS×S of matrices over the
set of rational numbers, defined as: for any u ∈ A∗ and for any s, t ∈ S,

ϕA(u)st =
{

1 if t = su
0 otherwise.

Let R and K be subsets of S and consider the rational series S with linear
representation (α, ϕA, β), where, for every s ∈ S,

αs =

{
1 if s ∈ R,

0 otherwise,
βs =

{
1 if s ∈ K,

0 otherwise.

It is easily seen that, for any u ∈ A∗, one has

S(u) = Card(Ku−1 ∩ R). (2)

The following well-known result (see [5,10]) extends to rational series a funda-
mental theorem by Moore and Conway on automata equivalence.

Theorem 1. Let S1, S2 : A∗ → Q be two rational series with coefficients in Q of
dimension n1 and n2 respectively. If, for every u ∈ A∗ such that |u| ≤ n1+n2−1,
S1(u) = S2(u), the series S1 and S2 are equal.

The following result is a consequence of Theorem 1.

Lemma 1. Let A = (S,A, δ) be a synchronizing n-state automaton. Assume
that R and K are subsets of S, and t is an integer such that 0 < t < Card(R).
Then there exists a word v such that

|v| ≤ n, Card(Kv−1 ∩ R) 	= t .

Proof. Consider the series S1, S2 defined respectively by

S1(v) = Card(Kv−1 ∩ R), S2(v) = t, v ∈ A∗ .
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In view of (2), S1 is a rational series of dimension n. Moreover, S2 is a rational
series of dimension 1. We have to prove that S1(v) 	= S2(v) for some v ∈ A∗ such
that |v| ≤ n. In view of Theorem 1, it is sufficient to show that S1 	= S2. Let u
be a reset word of the automaton A. Then Ku−1 = S or Ku−1 = ∅, according
to whether the corresponding reset state belongs to K or not. One derives,
respectively, S1(u) = Card(R) or S1(u) = 0 and, in both cases, S1(u) 	= t. Thus,
S1 	= S2, and the statement follows. ��

3 Locally Strongly Transitive Automata

In this section, we study the notion of local strong transitivity. We begin by
introducing the following definition.

Definition 1. Let A = (S,A, δ) be an automaton. A set of k words W =
{w0, . . . , wk−1} is called independent if there exist k distinct states q0, . . . , qk−1

of A such that, for all s ∈ S,

{sw0, . . . , swk−1} = {q0, . . . , qk−1}.

The set R = {q0, . . . , qk−1} will be called the range of W.

An automaton is called locally strongly transitive if it has an independent set
of words. The following example shows that local strong transitivity does not
imply transitivity.

Example 1. Consider the 4-state automaton A over the alphabet A = {a, b}
defined by the following graph:

�������	3
a,b ���������	1

b





a ����
a
�������	2

b

��
�������	4

a,b
��

The automaton A is not transitive. On the other hand, one can easily check that
the set {a, a2} is an independent set of A with range R = {1, 2}.

The following useful property easily follows from Definition 1.

Lemma 2. Let A be an automaton and let W be an independent set of A with
range R. Then, for every u ∈ A∗, the set uW is an independent set of A with
range R.

Proposition 1. Let A = (S,A, δ) be a n-state automaton and consider an in-
dependent set W = {w0, . . . , wk−1} of A with range R. Then, for every subset
P of R, either

Card(Pw−1
i ∩ R) = Card(P ), for all i = 0, . . . , k − 1
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or there exists j, 0 ≤ j ≤ k − 1, such that

Card(Pw−1
j ∩ R) > Card(P ).

Proof. Because of Definition 1, for every s ∈ S and r ∈ R, there exists exactly
one word w ∈ W such that s ∈ {r}w−1. This implies that the sets {r}w−1

i ,
0 ≤ i ≤ k − 1, give a partition of S. Hence, for any r ∈ R, one has:

k = Card(R) =
k−1∑
i=0

Card(R ∩ {r}w−1
i ). (3)

Let P be a a subset of R. If P is empty then the statement is trivially true. If
P = {p1, . . . , pm} is a set of m ≥ 1 states, then one has:

k−1∑
i=0

Card(R ∩ Pw−1
i ) =

k−1∑
i=0

Card

⎛⎝ m⋃
j=1

R ∩ {pj}w−1
i

⎞⎠ .

Since A is deterministic, for any pair pi, pj of distinct states of P and for every
u ∈ A∗, one has:

{pi}u−1 ∩ {pj}u−1 = ∅,
so that the previous sum can be rewritten as:

k−1∑
i=0

m∑
j=1

Card(R ∩ {pj}w−1
i ).

The latter equation together with (3) implies that

k−1∑
i=0

Card(Pw−1
i ∩ R) = k Card(P ).

The statement follows from the equation above. ��

Corollary 1. Let A = (S,A, δ) be a synchronizing n-state automaton and let
W be an independent set of A with range R. Let P be a proper and non empty
subset of R. Then there exists a word w ∈ A∗ such that

|w| ≤ n + LW , Card(Pw−1 ∩ R) > Card(P ).

Proof. Let W = {w0, . . . , wk−1}. We first prove that there exists a word v ∈ A∗

with |v| ≤ n such that

Card(P (vw0)−1 ∩ R) 	= Card(P ). (4)

If Card(Pw−1
0 ∩ R) 	= Card(P ), take v = ε. Now suppose that

Card(Pw−1
0 ∩ R) = Card(P ).
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Since P is a proper and non-empty subset of R and since A is synchronizing,
by applying Lemma 1 with t = Card(P ) and K = Pw−1

0 , one has that there
exists a word v ∈ A∗ such that |v| ≤ n and Card(P (vw0)−1 ∩ R) 	= Card(P ).
Thus take v that satisfies (4) and let W ′ = {vw0, . . . , vwk−1}. By Lemma 2,
W ′ is an independent set of A with range R and LW ′ ≤ n + LW . Therefore, by
Proposition 1, taking into account (4),

Card(P (vw)−1 ∩ R) > Card(P ),

for some w ∈ W ′. The claim is thus proved. ��

As a consequence of Corollary 1, the following theorem holds.

Theorem 2. Let A = (S,A, δ) be a synchronizing n-state automaton and let W
be an independent set of A with range R. Then there exists a reset word for A
of length not larger than

(k − 1)(n + LW ) + �W ,

where k = Card(W ).

Proof. Let P = {r} where r is a given state of R. Starting from the set P , by
iterated application of Corollary 1, one can find a word v such that

|v| ≤ (k − 1)(n + LW ), Pv−1 ∩ R = R.

Thus we have Rv = P . Let u be a word of W of minimal length. Because of
Definition 1, we have Su ⊆ R so that Suv ⊆ Rv = P . Therefore the word uv is
the required word and the statement is proved. ��

In the sequel of this section, we will present some results that can be obtained as
straightforward corollaries of Theorem 2. We recall that an n-state automaton
A = (S,A, δ) is strongly transitive if there exists an independent set W of n
words. Thus, in this case, S is the range of W . The notion of strong transitivity
was introduced and studied in [8] where the following result has been proved.

Theorem 3. Let A = (S,A, δ) be a synchronizing strongly transitive n-state
automaton with an independent set W . Then there exists a reset word w for A
of length not larger than

1 + (n − 2)(n + LW − 1). (5)

Remark 1. Since a strongly transitive automaton A is also locally strongly tran-
sitive, by applying Theorem 2 to A, we obtain the following upper bound on the
length of w:

(n − 1)(n + LW ) + �W ,

which is larger than that of (5). This gap is the consequence of the following
three facts that depend upon the condition S = R. The quantity �W can be
obviously deleted in the equation above. The reset word w of A is factorized as
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w = wjwj−1 · · ·w0, where j ≤ n−2 and, for every i = 0, . . . , j, wi is obtained by
applying Corollary 1. The proof of Corollary 1 is based upon Lemma 1. Under
the assumption S = R, one can see that the upper bound for the word defined
in Lemma 1 is n − 1 so that the corresponding upper bound of Corollary 1 can
be lowered to n+LW − 1. Finally, since A is synchronizing, the word w0 can be
chosen as a letter.

Let us now define a remarkable class of locally strongly transitive automata.

Definition 2. Let A = (S,A, δ) be an n-state automaton and let u ∈ A∗. Then
A is called u-connected if there exists a state q ∈ S such that, for every s ∈ S,
there exists k > 0, such that suk = q.

Let A be a u-connected n-state automaton. Define the set R as:

R = {q, qu, . . . , quk−1},

where k is the least positive integer such that quk = q. Let i be the least integer
such that, for every s ∈ S, sui ∈ R. Finally define the set W as:

W = {ui, ui+1, . . . , ui+k−1}.

One easily verifies that W is an independent set of A with range R and, moreover,
�W = i|u|, LW = (i + k − 1)|u|.

Remark 2. We notice that, by definition of i, there exists a state s such that
s, su, . . . , sui−1 /∈ R and sui ∈ R. This implies that the states s, su, . . . , sui−1

are pairwise distinct. Since moreover Card(R) = k, one derives i + k ≤ n, so
that LW ≤ (n − 1)|u|.

Example 2. Consider the following 6-state automaton A:

�������	0

b

��
a ����
a
�������	1

b



��

b

�������	4
b��

a



��

a

�������	3

a





b

��

�������	2a
�� �������	5

b
��

Let u = ab and q = 0. One can check that, for all s ∈ S, suk = q, with
k ≤ 2. Since qu2 = q, one has R = {0, 2} and one can check that i = 2. Thus
W = {u2, u3} is an independent set of A with range R.

By Remark 2 and by applying Theorem 2, we have
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Corollary 2. Let A = (S,A, δ) be a synchronizing n-state automaton. Suppose
that A is u-connected with u ∈ A∗. Let i and k be integers defined as above.
Then A has a reset word of length not larger than

(k − 1)(n + (i + k − 1)|u|) + i|u|.

We say that an automaton A is letter-connected if it is a-connected for some
letter a ∈ A. This notion is a natural generalization of that of circular automaton.
Indeed, one easily verifies that A is a-connected if and only if it has a unique
cycle labelled by a power of a. By Corollary 2, taking into account that i+k ≤ n
one derives

Corollary 3. A synchronizing a-connected n-state automaton, a ∈ A, has a
reset word of length not larger than

(2k − 1)(n − 1),

where k is the length of the unique cycle of A labelled by a power of a.

We remark that the tighter upper bound

i + (k − 1)(n + k + i − 2)

for the length of the shortest reset word of a synchronizing a-connected n-state
automaton was established in [4].

4 On the Hybrid Černý–Road Coloring Problem

In the sequel, by using the word graph, we will term a finite, directed multigraph
with all vertices of outdegree k. A multiple edge of a graph is a pair of edges
with the same source and the same target. A graph is aperiodic if the greatest
common divisor of the lengths of all cycles of the graph is 1. A coloring of a
graph G is a labelling of its edges by letters of a k-letter alphabet that turns G
into a complete and deterministic automaton. A coloring of G is synchronizing
if it transforms G into a synchronizing automaton. The Road coloring problem
asks the existence of a synchronizing coloring for every aperiodic and strongly
connected graph. This problem was formulated in the context of Symbolic
Dynamics by Adler, Goodwyn and Weiss and it is explicitly stated in [1]. In
2007, Trahtman has positively solved this problem in [19]. Recently Volkov has
raised the following problem [20].

Hybrid Černý–Road coloring problem. Let G be an aperiodic and strongly
connected graph. What is the minimum length of a reset word for a synchronizing
coloring of G?

Now we present a partial answer to the previous problem. For this pur-
pose, we recall the following theorem by O’ Brien [14].
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Theorem 4. Let G be an aperiodic and strongly connected graph of n vertices,
without multiple edges. Suppose G has a simple cycle C of prime length p < n.
Then there exists a synchronizing coloring of G such that C is the unique cycle
labelled by a power of a given letter a.

Corollary 4. Let G be an aperiodic and strongly connected graph of n vertices,
without multiple edges. Suppose G has a simple cycle of prime length p < n.
Then there exists a synchronizing coloring of G with a reset word of length ≤
(2p − 1)(n − 1).

Proof. The statement follows by applying Theorem 4 and Corollary 3 to G. ��

If G contains multiple edges, Theorem 4 cannot be applied so that neither Corol-
lary 4 holds. However, in this case, if G has a cycle of length 2, a result akin to
Corollary 4 can be proven. In order to prove this extension, by following [14], we
recall some notions and results.

For the sake of simplicity, we assume that all vertices of the graph G = (S,E)
have outdegree 2. However, we notice that Proposition 2 stated below remains
true also when the common outdegree of the vertices of G is larger.

We suppose that G has a cycle C of length 2 and call s0, s1 the vertices of C.
A C-tree T of G is a subgraph of G that satisfies the following properties:

– the set of vertices of T is S and, for every vertex s of G, exactly one edge
outgoing from s is an edge of T ;

– C is a subgraph of T ;
– for every vertex s of G, there exists a path from s to s1.

Let T be a given C-tree of G. Define a map

CT : S −→ {0, 1}

as follows: for every s ∈ S, CT (s) = 1 (resp., CT (s) = 0) if the length of the
shortest path in T from s to s1 is even (resp., odd).

Given a vertex s ∈ S, we say that s is aperiodic (with respect to T ) if there
exists an edge (s, t) of G such that CT (t) = CT (s); otherwise the vertex is called
periodic (with respect to T ). One can easily prove that, since G is an aperiodic
graph, for every C-tree T of G, there exists an aperiodic vertex.

Let A = {a, b} be a binary alphabet and define a coloring of the edges of T
as follows: for every edge e = (s, t) of T , label e by the letter a if CT (s) = 1
and by the letter b otherwise. Finally extend, in the obvious way, the latter
coloring to the remaining edges of G in order to transform G into an automaton
A. We remark that with such a coloring, if CT (x) = 1, then CT (xa) = 0 and, if
CT (x) = 0, then CT (xb) = 1. Moreover, if x is aperiodic, then CT (xa) = 0 and
CT (xb) = 1. The following lemma can be proved easily.

Lemma 3. Let x, y be states of A. The following properties hold:

1. If CT (x) = 1, then, for every m ≥ �n/2� − 1, x(ab)m = s1;
2. If CT (x) = 0, then, for every m ≥ �n/2� − 1, x(ba)m = s0;
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3. Either CT (x(ab))m = 0 for all m ≥ 0 or x(ab)n−1 = s1.
4. If x is aperiodic, then there exists σ ∈ {a, b} such that CT (xσ) = CT (yσ).
5. There is a word u such that xu = yu, with |u| ≤ 2n − 2.

Proof. Conditions 1 and 2 immediately follow from the definition of the coloring
of G.

Let us prove Condition 3. Suppose that there exists m ≥ 0 with CT (x(ab)m) =
1. Then, by Condition 1, x(ab)k = s1 for any k ≥ m + �n/2� − 1. Let k be the
least non-negative integer such that x(ab)k = s1. The minimality of k implies
that the states x(ab)i, 0 ≤ i ≤ k are pairwise distinct. Consequently, k + 1 ≤ n,
so that x(ab)n−1 = s1(ab)n−k−1 = s1.

Now let us prove Condition 4. Since x is aperiodic, one has CT (xa) = 0 and
CT (xb) = 1. Moreover, either CT (ya) = 0 or CT (yb) = 1, according to the value
of CT (y). The conclusion follows. Let us prove Condition 5. We can find a word
v such that |v| ≤ n − 2 and at least one of the states xv, yv is aperiodic. By
Condition 4, CT (xvσ) = CT (yvσ) for some σ = a, b. Set

v′ =

{
(ab)�n/2	−1 if CT (xvσ) = 1 ,

(ba)�n/2	−1 if CT (xvσ) = 0 .

According to Conditions 1, 2 one has xvσv′ = yvσv′ ∈ C so that the statement
is verified with u = vσv′. ��

Proposition 2. Let G be an aperiodic and strongly connected graph of n vertices
with outdegree 2. Assume that G has a cycle of length two. Then there exists a
synchronizing coloring of G with a reset word of length ≤ 5(n − 1).

Proof. Let C be the cycle of length two of G and let A be the automaton
obtained from G by considering the coloring defined above. By Condition 3,
S(ab)n−1 ⊆ {s1} ∪ S0, where S0 = {x ∈ S | CT (x) = 0}. By Condition 2,
S0(ba)�n/2	−1 = {s0}. Thus, the set R = S(ab)n−1(ba)�n/2	−1 contains at most
2 states. By Condition 5, there is a word u such that |u| ≤ 2n − 2 and Ru is
reduced to a singleton. We conclude that the word w = (ab)n−1(ba)�n/2	−1u is
a reset word. Moreover, |w| ≤ 5(n − 1). ��
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Abstract. Given an arbitrary graph G and a number k, it is well-known
by a result of Seymour and Thomas [22] that G has treewidth strictly
larger than k if and only if it has a bramble of order k + 2. Brambles
are used in combinatorics as certificates proving that the treewidth of
a graph is large. From an algorithmic point of view there are several
algorithms computing tree-decompositions of G of width at most k, if
such decompositions exist and the running time is polynomial for con-
stant k. Nevertheless, when the treewidth of the input graph is larger
than k, to our knowledge there is no algorithm constructing a bramble
of order k+2. We give here such an algorithm, running in O(nk+4) time.
For classes of graphs with polynomial number of minimal separators, we
define a notion of compact brambles and show how to compute compact
brambles of order k + 2 in polynomial time, not depending on k.

1 Introduction

Motivation. Treewidth is one of the most extensively studied graph parame-
ters, mainly because many classical NP-hard optimisation problems become
polynomial and even linear when restricted to graphs of bounded treewidth. In
many applications of treewidth, one needs to compute a tree-decomposition of
small width of the input graph. Although determining the treewidth of arbitrary
graphs is NP-hard [2], for small values of k one can decide quite efficiently if the
treewidth of the input graph is at most k. The first result of this flavour is a rather
natural and simple algorithm due to Arnborg, Corneil and Proskurowski [2]
working in O(nk+2) time (as usual n denotes the number of vertices of the input
graph and m denotes the number of its edges). Using much more sophisticated
techniques, Bodlaender [5] solves the same problem by an algorithm running in
O(f(k)n) time, where f is an exponential function. The treewidth problem has
been also studied for graph classes, and it was shown [10,11] that for any class
of graphs with polynomial number of minimal separators, the treewidth can be
computed in polynomial time. In particular the problem is polynomial for sev-
eral natural graph classes e.g. circle graphs, circular arc graphs or weakly chordal
graphs. All cited algorithms are able to compute optimal tree-decompositions of
the input graph.

One of the main difficulties with treewidth is that we do not have simple
certificates for large treewidth. We can easily argue that the treewidth of a graph
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G is at most k: it is sufficient to provide a tree-decomposition of width at most
k, and one can check in linear time that the decomposition is correct. On the
other hand, how to argue that the treewidth of G is (strictly) larger than k? For
this purpose, Seymour and Thomas introduced the notion of brambles, defined
below. The goal of this article is to give algorithms for computing brambles.

Some definitions. A tree-decomposition of a graph G = (V,E) is a tree TD such
that each node of TD is a bag (vertex subset of G) and satisfies the following
properties: (1) each vertex of G appears in at least one bag, (2) for each edge of
G there is a bag containing both endpoints of the edge and (3) for any vertex x
of G, the bags containing x form a connected subtree of TD. The width of the
decomposition is the size of its largest bags, minus one. The treewidth of G is
the minimum width over all tree-decompositions of G.

Without loss of generality, we restrict to tree-decompositions such that there
is no bag contained into another. We say that a tree-decomposition TD is finer
than another tree-decomposition TD′ if each bag of TD is contained in some
bag of TD′. Clearly, optimal tree-decompositions are among minimal ones, with
respect to the refining relation. A set of vertices of G is a potential maximal clique
if it is the bag of some minimal tree-decomposition. Potential maximal cliques
of a graph are incomparable with respect to inclusion [10]. More important, the
number of potential maximal cliques is polynomially bounded in the number of
minimal separators of the graph [11], which implies that for several graph classes
(circle, circular arc, weakly chordal graphs...) the number of potential maximal
cliques is polynomially bounded in the size of the graph.

A bramble of order k of G = (V,E) is a function β mapping each vertex subset
X of size at most k − 1 to a connected component β(X) of G − X . We require
that, for any subsets X,Y of V of size at most k − 1, the components β(X) and
β(Y ) touch, i.e. they have a common vertex or an edge between the two.

Theorem 1 (Treewidth-bramble duality, [22]). A graph G is of treewidth
strictly larger than k if and only if it has a bramble of order k + 2.

Very roughly, if a graph has treewidth larger than k, for each possible bag X
of size at most k + 1 the bramble points toward a component of G − X which
cannot be decomposed by a tree-decomposition of width at most k (restricted
to X ∪β(X)) using X as a bag. Treewidth can also be stated in terms of a cops-
and-robber game, and tree-decompositions of width k correspond to winning
strategies for k + 1 cops, while brambles of order k + 2 correspond to escaping
strategies for the robber, if the number of cops is at most k + 1 (see e.g. [6]).

Since optimal tree-decompositions can be obtained using only potential max-
imal cliques as bags, we introduce now compact brambles as follows. Instead of
associating to any set X of size less than k a component β(X) of G − X , we
only do this for the sets which are also potential maximal cliques. It is not hard
to prove that, in Theorem 1, we can replace brambles by compact brambles, see
the full paper [12].
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Related work. In the last years, tree-decompositions have been used for practical
applications which encouraged the developement of heuristic methods for tree-
decompositions of small width [3,13] and, in order to validate the quality of the
decompositions, several authors also developed algorithms finding lower bounds
for treewidth [9,8,7,13].

A bramble of a graph G can be also defined as a set of connected subsets of
V (G), and its order is the minimum cardinality of a hitting set of this family of
subsets. Clearly this definition is equivalent to the previous one, but we should
point out that, even when the bramble is given, computing its order remains an
NP-hard problem. Using the graph minors theory, one can prove that any graph
of treewidth larger than k has a bramble (in the sense of this latter definition)
of order k + 2 and of size f(k), for some function f . Nevertheless this function
seems extremely huge, even for small value of k. An important result of Grohe
and Marx [17] states that there exists a bramble of size polynomial in n and k,
but of order Ω(k1/2/ log2 k). They also emphasize that, if we want a bramble of
order k + 2, its size becomes exponential in k.

Our results. After the seminal paper of Seymour and Thomas proving Theo-
rem 1, there were several results, either with shorter and simpler proofs [4] or
for proving other duality theorems of similar flavour, concerning different types
of tree-like decompositions, e.g. branch-decompositions, path-decompositions or
rank-decompositions (see [1] for a survey). Unified versions of these results have
been given recently in [1] and [18]. We point out that all these proofs are purely
combinatorial: even for a small constant k, it is not clear at all how to use these
proofs for constructing brambles on polynomial time (e.g. the proofs of [22,4]
start by considering the set of all connected subgraphs of the input graph).
Nevertheless the recent construction of [18] gives a simpler information on the
structure of a bramble (see Theorem 4). Based on their framework which we
extend, we build up the following algorithmic result:

Theorem 2. There is an algorithm that, given a graph G and a number k,
computes either a tree-decomposition of G of width at most k, or a bramble of
order k + 2, in O(nk+4) time.

There is an algorithm that, given a graph G, computes a tree-decomposition
of width at most k or a compact bramble of order k + 2 in O(n4r2) time, where
r is the number of minimal separators of the graph.

These brambles can be used as certificates that allow to check, by a simple
algorithm, that a graph has treewidth larger than k. The certificates are of
polynomial size for fixed k, and the compact brambles are of polynomial size
for graph classes with a polynomial number of minimal separators, like circle,
circular-arc or weakly chordal graphs (even for large k). Also, in the area of
graph searching (see [16] for a survey), in which it is very common to give
optimal strategies for the cops, our construction of brambles provides a simple
escape strategy for the robber.
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2 Treewidth, Partitioning Trees and the Generalized
Duality Theorem

For our purpose, it is more convenient to view tree-decompositions as recursive
decompositions of the edge set of the graph, thus we rather use the notion of par-
titioning trees. The notion is very similar to branch-decompositions [21] except
that in our case internal nodes have arbitrary degree; in branch-decompositions,
internal nodes are of degree three.

Definition 1 (partitioning trees). A partitioning tree of a graph G = (V,E)
is a pair (T, τ) where T is a tree and τ is a one-to-one mapping of the edges of
G on the leaves of T .

Given an internal node i of T , let μ(i) be the partition of E where each part
corresponds to the edges of G mapped on the leaves of a subtree of T obtained by
removing node i.

We denote by δ(μ(i)) the border of the partition, i.e. the set of vertices of G
appearing in at least two parts of μ(i); δ(μ(i)) is also called the bag associated
to node i. Let width(T, τ) be the max |δ(μ(i))| − 1, over all internal nodes i of
T . The treewidth of G is the minimum width over all partitioning trees of G.

One can easily transform a partitioning tree (T, τ) into a tree-decomposition
such that the bags of the tree-decompositions are exactly the sets δ(μ(i)). Indeed
consider the tree-decomposition with the same tree, associate to each internal
node i the bag δ(μ(i)) and to each leaf j the bag {xj , yj} where xjyj is the
edge of G mapped on the leaf j. It is a matter of routine to check that this
tree-decomposition satisfies all conditions of tree-decompositions.

Conversely, consider a tree-decomposition TD of G, we describe a partitioning
tree (T, τ) obtained from TD without increasing the width. Initially T is a copy
TD. For each edge e of G, add a new leaf mapped to this edge, and make it
adjacent to one of the nodes of T such that the corresponding bag contains both
endpoints of the edge. Eventually, we recursively remove the leaves of T which
correspond to nodes of TD (thus there is no edge of G mapped on these leaves).
In the end we obtain a partitioning tree of G, and again is not hard to check that
(see e.g. [19]) for each internal node i of T , we have that δ(μ(i)) is contained in
the bag X(i) corresponding to node i in TD.

Consequently, the treewidth of G is indeed the minimum width over all par-
titioning trees of G.

Given a graph which is not necessarily of treewidth at most k, we want to
capture the “best decompositions” one can obtain with bags of size at most k+1.
For this purpose we define partial partitioning trees. Roughly speaking, partial
partitioning trees of width at most k correspond to tree-decompositions such
that all internal bags are of size at most k + 1 – the leaves are allowed to have
arbitrary size.

Definition 2 (partial partitioning trees). Given a graph G = (V,E), a par-
tial partitioning tree is a couple (T, τ), where T is a tree and τ is a one-to-one
function from the set of leaves of T to the parts of some partition (E1, . . . , Ep)
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of E. The bags δ(μ(i)) of the internal vertices are like in the case of partitioning
trees. The bag of the leaf labeled Ei is the set of vertices incident to Ei. The
partition (E1, . . . , Ep) is called the displayed partition of (T, τ).

The width of a partial partitioning tree is max |δ(μ(i))| over all internal nodes
of T .1

Partitioning trees are exactly partial partitioning trees such that the correspond-
ing displayed partition of the edge set is a partition into singletons. Given an
arbitrary graph, our aim is to characterize displayed partitions corresponding to
partial partitioning trees of width at most k. Actually we only consider connected
partial partitioning trees, and also the more particular case when the labels of
the internal nodes are potential maximal cliques, and we will see that this classes
contain the optimal decompositions.

The connected partial partitioning trees (strongly related to a similar notion
on tree-decompositions) are defined as follows. Let X be a set of vertices of G.
We say that the set of edges F is a flap for X if F is formed by a unique edge
with both endpoints in X or if there is a connected component of G−X , induced
by a vertex subset C of G, and F corresponds exactly to the set of edges of G
incident to C (so the edges of F are either between vertices of C or between C
and its neighborhood NG(C)). Given a partial partitioning tree (T, τ) and an
internal node r which will be considered as the root, let T (i) denote the subtree
of T rooted in node i. We denote by E(i) the union of all edge subsets mapped
on the leaves of T (i). We say that (T, τ) is a connected partial partitioning tree
if and only if, for each internal node j and any son i of j, the edge subset E(i)
forms a flap for δ(μ(j)).

All proofs of this section are given in the full paper [12].

Lemma 1. Given an arbitrary partial partitioning tree (T, τ) of G, there always
exists a connected partial partitioning tree (T ′, τ ′) such that each edge subset
mapped on a leaf of T ′ is contained in an edge subset mapped on a leaf of T and
each bag of (T ′, τ ′) is contained in some bag of (T, τ).

Let P be a set of partitions of E. We define a new, larger set of partitions P↑

as follows. Initially, P↑ = P . Then, for any partition μ = (E1, E2, . . . , Ep) ∈ P↑

and any partition ν = (F1, F2, . . . , Fq, Fq+1, . . . , Fr) ∈ P such that Fq+1 ∪ . . . ∪
Fr = E1, we add to P↑ the partition μ ⊕ ν = (E2, . . . , Ep, Fq+1, . . . , Fr). The
process is iterated until it converges. In terms of partial partitioning trees, each
partition ν ∈ P is the displayed partition of a partial partitioning tree with a
unique internal node. Initially elements of P↑ correspond to these star-like partial
partitioning trees. Then, given any partial partitioning tree Tμ corresponding to
an element μ = (E1, E2, . . . , Ep) ∈ P↑ and a star-like partial partitioning tree
Tν corresponding to an element ν = (F1, F2, . . . , Fq, Fq+1, . . . , Fr) ∈ P , if the
leaf E1 of the first tree is exactly Fq+1 ∪ . . . ∪ Fr, then we glue the two trees by
identifying the leaf E1 of Tμ with the internal node of Tν and then removing the

1 We emphasize again that a partial partitioning tree might be of small width even if
its leaves are mapped on big edge sets.
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leaves F1, . . . , Fq of Tν . Thus μ⊕ν is the displayed partition of the new tree. See
full paper [12] for a graphical example of this grammar. (A similar but simpler
grammar is used in [18].)

The proof of the following statement is an easy consequence of the definitions:

Lemma 2. Let T be a partial partitioning tree obtained by recursive gluing. The
root of T corresponds to the internal node of the first star-like partial partitioning
tree used in the recursive gluing. Let x be an internal node of T , and denote by
μx the partition of P corresponding to the star-like tree with internal node x –
which might be different from the partition μ(x) introduced in Definition 1. Then
for any son y of x, E(y) is a part of μx. (Recall that E(y) denotes the union of
parts of E mapped on leaves of the subtree T (y) of T rooted in y.) If x is the
root, then the sets E(y) for all sons y of x are exactly the parts of μx.

Conversely, let T be a (rooted) partial partitioning tree such that, for each
internal node x there is a partition μx ∈ P such that for any son y of x, E(y)
is a part of μx, and, moreover, if x is the root then its sons correspond exactly
to the parts of μx. Then T is obtained by gluing the partitions μx, starting from
the root and in a breadth-first search order.

Let Pk−flap be the set of partitions μ of E such that δ(μ) is of size at most k+1
and the elements of μ are exactly the flaps of δ(μ). The set Pk−pmc is the subset
of Pk−flap such that for any μ ∈ Pk−pmc, its border δ(μ) is a potential maximal
clique. Thus the sets P↑

k−flap and P↑
k−pmc correspond to partial partitioning

trees of width at most k.
By Lemma 2, for any graph G, P↑

k−flap is the set of displayed partitions of
connected partial partitioning trees of width at most k. Moreover, P↑

k−pmc is
the set of displayed partitions of connected partitioning trees of width at most
k and such that the bags of all internal vertices are potential maximal cliques.
Consequently, we have:

Lemma 3. G is of treewidth at most k if and only if P↑
k−flap contains the

partition into singletons, and if and only if P↑
k−pmc contains the partition into

singletons.

Clearly Pk−flap is of size O(nk+1) and Pk−pmc is of size at most the number of
potential maximal cliques of the graph.

We now introduce the notion of orientability, which is useful for the correctness
of our algorithm. Given a set of partitions P and the corresponding set P↑, we
say that P↑ is orientable if, for any partition μ ∈ P↑ and any part F of μ, there
is a partition ν ∈ P↑ finer than μ (i.e. each part of ν is contained in a part of
μ) and a partial partitioning tree Tν displaying ν in which the leaf mapped on
F is adjacent to the root.

Lemma 4. The sets of partitions P↑
k−flap and P↑

k−pmc are orientable.

Following [18], we define P-brambles, associated to any set P of partitions of E.



Constructing Brambles 229

Definition 3 (bramble). Let P be an arbitrary set of partitions of E. A P-
bramble is a set B of pairwise intersecting subsets of E, all of them of size at least
2, and such that for any partition μ = (E1, . . . , Ep) ∈ P, there is a part Ei ∈ B.

With this definition, one can see that a bramble of order k + 2 corresponds
exactly to a Pk−flap-bramble, and a compact bramble of order k+2 corresponds
to a Pk−pmc-bramble.

We say that a set of partitions P↑ is refining if for any two partitions
(A,A2, . . . , Ap) and (B,B2, . . . , Bq) in P↑, with A and B disjoints, there ex-
ists a partition (C1, . . . , Cr) in P↑ such that each part Ci is contained in some
Aj , 2 ≤ j ≤ p, or in some Bl, 2 ≤ l ≤ q.

In [18], the authors show that for the set Pk defined by the partitions of
E having borders of size at most k + 1 (without any other restriction), P↑

k is
refining. Using Lemma 1, we can easily deduce that P↑

k−flap is refining. On the
other hand, much more efforts are required to prove that P↑

k−pmc is also refining
(see full paper [12] for details).

Theorem 3. For any graph G, the sets of partitions P↑
k−flap and P↑

k−pmc are
refining.

The following result implies the “hard part” of Theorem 1. Indeed, by applying
Theorem 4 to P↑

k−flap, we have that any graph of treewidth greater than k has
a bramble of order k + 2. See [18] or the full paper [12] for a proof of this result.

Theorem 4 ([18]). Let P be a set of partitions of E and suppose that P is
refining and does not contain the partition into singletons. Let B be a set of
subsets of E such that:

1. Each element of B is of size at least 2 and it is a part of some μ ∈ P;
2. For each μ = (E1, . . . , Ep) ∈ P, there is some part Ei ∈ B;
3. B is upper closed, i.e. for any F ∈ B, and any superset F ′ with F ⊂ F ′ ⊆ E

such that F ′ is the part of some μ′ ∈ P, we also have F ′ ∈ B;
4. B is inclusion-minimal among all sets satisfying the above conditions.

Then B is a P-bramble.

3 The Algorithm

Our goal is to apply Theorem 4 in order to obtain a P↑
k−flap-bramble and a

P↑
k−pmc-bramble. Note that the sets Pk−flap and Pk−pmc are not refining, so we

cannot use them directly.
We make an abuse of notation and say that a flap of P↑ is a subset of E

appearing as the part of some μ ∈ P↑. Consequently the flaps of P↑ are exactly
the flaps of P . Thus, once we have computed a P↑

k−flap-bramble (resp. a P↑
k−pmc-

bramble), by restricting it to Pk−flap (resp. Pk−pmc) we obtain a bramble (resp.
a compact bramble) of order k + 2. The difficulty is that the complexity of our
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algorithm should be polynomial in the size of Pk−flap (resp. Pk−pmc), while the
sets P↑

k−flap and P↑
k−pmc may be of exponential size even for small k.

We give now our main algorithmic result. It is stated in a general form, for
an arbitrary set of partitions P such that P↑ is refining and orientable.

Theorem 5 (main theorem). Let P be a set of partitions of E. Suppose that
P↑ is refining, orientable and does not contain the partition into singletons. Then
there is an algorithm constructing a P↑-bramble (and in particular a P-bramble),
whose running time is polynomial in the size of E and of P.

The following algorithm is a straightforward translation of Theorem 4 applied
to P↑, so the output Bf is indeed a P↑-bramble.

Bramble(P)
begin

B ← the set of the flaps of P ;
Bf ← ∅;
foreach F ∈ B of size one do

Remove F from B;
end foreach
foreach F ∈ B taken in inclusion order do

if there is a partition μ ∈ P↑ such that F is the unique non-removed
flap of the partition or ∃F ′ ∈ Bf : F ′ ⊆ F then

Add F to Bf ;
else

Remove F from B;
end if

end foreach
return Bf ;

end

Unfortunately the size of P↑ may be exponential in the size of P and E, and
hence the algorithm does not satisfy our complexity requirements because of the
test “if there is a partition μ ∈ P↑ such that F is the unique non-removed flap
of the partition”, which works on P↑. We would like it to work on P instead.
Thus we replace this test by a marking process working on P instead of P↑ but
giving the same bramble (recall that the flaps of P↑ are exactly the flaps of P).

Let us introduce some definitions for the marking. A flap F is said to be
removed if it has already been removed from the final P-bramble (instruction
“Remove F from B”). Intuitively these removed flaps induce some forcing among
other flaps: some of the flaps must be added to the final bramble, some others
cannot be added to the final bramble. Thus whenever a flap is removed, we
call the Algorithm UpdateMarks. We use two types of markings on the flaps:
forbidden and forced. We prove that a flap F will be marked as forced if and only
if there is some partition μ ∈ P↑ such that all flaps of μ, except F , are removed.
Thus, in Algorithm Bramble, it suffices to test the mark of the flaps.
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UpdateMarks
begin

// marking forbidden flaps;
while ∃ a flap F and a partition (F1, . . . , Fp, Fp+1, . . . , Fq) ∈ P such
that

(
∪p

i Fi

)
= F and ∀ i, 1 ≤ i ≤ p, Fi is removed or Fi is forbidden

do
Mark F as forbidden (if not already marked);

end while
// marking forced flaps;
while ∃ (F, F2, . . . , Fp) ∈ P such that ∀ i, 2 ≤ i ≤ p : Fi is removed
or Fi is forbidden do

Mark F as forced (if not already marked);
end while

end

All throughout the algorithm we have the following invariants.

Lemma 5. A flap F is marked as forbidden if and only if there exists a subtree
T (x) of a partial partitioning tree T displaying some partition in P↑ such that:

– Each flap mapped on a leaf of T (x) is removed;
– The union of these flaps is exactly F .

Proof. Suppose first that such a tree exists. We show that the flap F corre-
sponding to the edges mapped on the leaves of T (x) is marked as forbidden.
Each internal node y of T (x) corresponds to a partition μy of P . The edges
E(y) of G mapped on the leaves of T (y) form a flap, by construction of T (see
also Lemma 2). Consider these internal nodes of T (x), in a bottom up order,
we prove by induction that all flaps of such type are marked as forbidden. By
induction, when node y is considered, for each of its sons y1, . . . , yp, either the
son is a leaf and hence the corresponding flap is removed, or E(yi) has been pre-
viously marked as forbidden. Then Algorithm UpdateMarks forbids the flap
E(y). Consequently, E(x) is marked as forbidden.

Conversely, let F be any flap marked as forbidden, we construct a partial
partitioning tree T with a node x as required. We proceed by induction on the
inclusion order over the forbidden flaps. When a flap F becomes forbidden, it is
the union of some flaps F1, . . . , Fp, each of them being forbidden or removed, and
such that (F1, . . . , Fp, Fp+1, . . . , Fq) is an element of P . By induction hypothesis,
to each Fi, i ≤ p, we can associate a tree Ti (which is a subpart of a partial
partitioning tree) such that the flaps mapped on the leaves of Ti form a partition
of Fi and they are all removed. Notice that, if Fi is a removed flap, then the tree
Ti is only a leaf. Consider now a tree T (x) formed by a root x, corresponding to
the partition (F1, . . . , Fp, Fp+1, . . . , Fq) ∈ P , and linked to the roots of T1, . . . , Tp.
Consider any partition (F, F ′

1, . . . , F
′
r) ∈ P (such a partition exists, since F is a

flap). Note that ∪jF
′
j = ∪i≥p+1Fi. The final tree T is obtained by choosing a

root z, corresponding to (F, F ′
1, . . . , F

′
r), to which root we glue the subtree Tx

by adding the edge xz, and for each flap F ′
j we add a leaf adjacent to the root
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z mapped on F ′
j . Thus the final tree T is a gluing between the tree rooted on

x and the tree rooted on z. By construction, for each internal node y of this
tree, the sets E(y′) for the sons y′ of y are parts of some partition μy ∈ P . By
Lemma 2, the tree T is a partial partitioning tree displaying an element of P↑.
Clearly all leaves of T (x) are mapped on removed flaps. ��

Lemma 6. A flap F is marked as forced if and only if there is a partition in
P↑ such that F is the only non-removed flap of the partition.

Proof. Let us show that F is the unique non-removed flap of some partition in P↑

if and only if there is a partial partitioning tree T displaying a (possibly another)
partition in P↑ such that all leaves but F correspond to removed flaps and, more-
over, the leaf mapped on F is adjacent to the root of T . Clearly if such a tree exists,
the partition μ displayed by the partial partitioning tree has F as the unique non-
removed flap. Suppose now that F is a unique non-removed flap of some partition
μ′ ∈ P↑. By the fact that P↑ is orientable, there is a partial partitioning tree T dis-
playing some partition μ, finer than μ′, and such that the leaf of T mapped on F is
adjacent to the root of the tree. Thus every flap Fi of μ other than F is contained
in some flap F ′

j of μ′. Since flap F ′
j has been removed by Algorithm Bramble, flap

Fi has also been removed (in a previous step, unless the trivial case Fi = F ′
j): in-

deed flap Fi has been treated by the algorithm before F ′
j , and if Fi is not removed

it means that it has been added to the bramble Bf , and hence the algorithm will
not remove any superset of Fi – contradicting the fact that F ′

j is now removed. We
conclude that all flaps of μ, except F , have been removed.

It remains to prove that a flap F is marked as forced if and only if there is a
partial partitioning tree T displaying a partition in P↑, such that all leaves but
F correspond to removed flaps and, moreover, the leaf mapped on F is adjacent
to the root of T .

First, if such a tree exists, let z be its root. Then z corresponds to a partition
(F, F2, . . . , Fp) in P , and each flap Fi corresponds to a subtree Ti of T − z. By
Lemma 5, every flap Fi, 2 ≤ i ≤ p, is removed or forbidden. Then Algorithm
UpdateMarks marks the flap F as forced.

Conversely, suppose that Algorithm UpdateMarks marks the flap F as
forced. Let (F, F2, . . . , Fp) be the partition in P which has triggered this mark,
so all flaps Fi are removed or forbidden. Thus to each such flap corresponds a sub-
tree Ti of some partial partitioning tree, such that the leaves of Ti form a partition
of Fi and they are all removed flaps. The tree T , formed by a root x linked to the
roots of each Ti, plus a leaf (mapped on F ) adjacent to z satisfies our claim. ��

Let us discuss now the time complexity of our algorithm. This complexity is the
maximum between the overall complexity of the calls of UpdateMarks, and
the complexity of the tests "∃F ′ ∈ Bf : F ′ ⊆ F" of the Bramble algorithm.
Clearly both parts are polynomial in the total number of flaps, the number of
elements of P and the size of the graph. The number of flaps is itself at most
m|P|, since each partition has at most m parts. It is easy to see that the overall
complexity is quadratic in the size of P , times a small polynomial in the size of
the graph. This achieves the proof of Theorem 5.
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Our algorithmUpdateMarks can be seen as a generalization of the algorithms
of [2,10,15]. We can fasten the marking algorithm by using ideas and data struc-
tures from [2,15] and especially the fact that the number of good couples (or at
least good couples that we really need to use) is moderate. Overall can compute a
bramble of maximum order in time O(nk+4) for P↑

k−flap. Moreover, for any graph,
the number of potential maximal cliques is O(nr2), where r is the number of min-
imal separators of the graph [10,11]. For P↑

k−pmc, our algorithm can compute a
compact bramble of maximum order in time O(n4r2). See the full paper for de-
tails and proofs about these complexities [12], which establish Theorem 2.

4 Conclusion

We have presented in this article an algorithm computing brambles of maximum
order for arbitrary graphs. The running time for the algorithm is O(nk+4) for
computing a bramble of order k + 2, and of course we cannot expect drastic
improvements since the size of the bramble itself is of order Ω(nk+1).

Treewidth can be defined in terms of graph searching as a game between cops
and a robber. As in many games, we can consider the graph of all possible configu-
rations (here it has Θ(nk+2) vertices) and it is possible to compute [14] which are
winning configurations for the cops (treewidth at most k) and which are winning
for the robber (treewidth larger than k). This can also be considered as a certifi-
cate for large treewidth, but clearly more complicated than brambles. As we have
pointed out in the introduction, recent results [17] combining linear programming
and probabilistic constructions also aim at computing (non optimal) brambles of
polynomial size and of large order. To our knowledge, the problem of defining good
obstructions to tree-decompositions – in the sense that these obstructions should
be of moderate size and easy to manipulate – is largely open.

Another interesting question is whether our algorithm for computing brambles
can be used for other tree-like decompositions. As we noted, other parameters
(branchwidth, pathwidth, rankwidth...) fit into the framework of [1,18] of par-
titioning trees and we can define P↑

k−xxx−width-brambles in similar ways. The
problem is that the size of “basic partitions” (the equivalent of our set Pk−flap)
may be exponential in n even for small k. Due to results of [19,20], for branch-
width we can also restrict to connected decompositions and thus our algorithm
can be used in this case with similar complexity as for treewidth.

Acknowledgement. I. Todinca wishes to thank Fedor Fomin and Karol Suchan
for fruitful discussions on this subject.
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Abstract. Straight-line programs (SLPs) offer powerful text compres-
sion by representing a text T [1, u] in terms of a restricted context-free
grammar of n rules, so that T can be recovered in O(u) time. However,
the problem of operating the grammar in compressed form has not been
studied much. We present a grammar representation whose size is of the
same order of that of a plain SLP representation, and can answer other
queries apart from expanding nonterminals. This can be of independent
interest. We then extend it to achieve the first grammar representation
able of extracting text substrings, and of searching the text for patterns,
in time o(n). We also give byproducts on representing binary relations.

1 Introduction and Related Work

Grammar-based compression is a well-known technique since at least the seven-
ties, and still a very active area of research. From the different variants of the
idea, we focus on the case where a given text T [1, u] is replaced by a context-free
grammar (CFG) G that generates just the string T . Then one can store G instead
of T , and this has shown to provide a universal compression method [18]. Some
examples are LZ78 [31], Re-Pair [19] and Sequitur [25], among many others [5].

When a CFG deriving a single string is converted into Chomsky Normal
Form, the result is essentially a Straight-Line Program (SLP), that is, a grammar
where each nonterminal appears once at the left-hand side of a rule, and can
either be converted into a terminal or into the concatenation of two previous
nonterminals. SLPs are thus as powerful as CFGs for our purpose, and the
grammar-based compression methods above can be straightforwardly translated,
with no significant penalty, into SLPs. SLPs are in practice competitive with the
best compression methods [11].

There are textual substitution compression methods which are more powerful
than those CFG-based [17]. A well-known one is LZ77 [30], which cannot be
directly expressed using CFGs. Yet, an LZ77 parsing can be converted into an
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SLP with an O(log u) penalty factor in the size of the grammar, which might be
preferable as SLPs are much simpler to manipulate [28].

SLPs have received attention because, despite their simplicity, they are able to
capture the redundancy of highly repetitive strings. Indeed, an SLP of n rules can
represent a text exponentially longer than n. They are also attractive because
decompression is easily carried out in linear time. Compression, instead, is more
troublesome. Finding the smallest SLP that represents a given text T [1, u] is
NP-complete [28,5]. Moreover, some popular grammar-based compressors such
as LZ78, Re-Pair and Sequitur, can generate a compressed file much larger than
the smallest SLP [5]. Yet, a simple method to achieve an O(log u)-approximation
is to parse T using LZ77 and then converting it into an SLP [28], which in
addition is balanced: the height of the derivation tree for T is O(log u). (Also,
any SLP can be balanced by paying an O(log u) space penalty factor.)

Compression is regarded nowadays not just as an aid for cheap archival or
transmission. Since the last decade, the concept of compressed text databases
has gained momentum. The idea is to handle a large text collection in com-
pressed form all the time, and decompress just for displaying. Compressed text
databases require at least two basic operations over a text T [1, u]: extract and
find. Operation extract returns any desired portion T [l, l +m] of the text. Oper-
ation find returns the positions of T where a given search pattern P [1,m] occurs
in T . We refer as occ to the number of occurrences returned by a find operation.
Extract and find should be carried out in o(u) time to be practical for large
databases.

There has been some work on random access to grammar-based compressed
text, without decompressing all of it [10]. As for finding patterns, there has been
much work on sequential compressed pattern matching [1], that is, scanning the
whole grammar. The most attractive result is that of Kida et al. [17], which
can search general SLPs/CFGs in time O(n + m2 + occ). This may be o(u), but
still linear in the size of the compressed text. Large compressed text databases
require indexed searching, where data structures are built on the compressed
text to permit searching in o(n) time (at least for small enough m and occ).

Indeed, there has been much work on implementing compressed text databases
supporting the operations extract and find efficiently (usually in O(mpolylog(n))
time) [24], but generally based on the Burrows-Wheeler Transform or Com-
pressed Suffix Arrays, not on grammar compression. The only exceptions are
based on LZ78-like compression [23,8,27]. These are self-indexes, meaning that
the compressed text representation itself can support indexed searches. The fact
that no (or weak) grammar compression is used makes these self-indexes not
sufficiently powerful to cope with highly repetitive text collections, which arise
in applications such as computational biology, software repositories, transaction
logs, versioned documents, temporal databases, etc. This type of applications re-
quire self-indexes based on stronger compression methods, such as general SLPs.

As an example, a recent study modeling a genomics application [29] concluded
that none of the existing self-indexes was able to capture the redundancies present
in the collection. Even the LZ78-based ones failed, which is not surprising given
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that LZ78 can output a text exponentially larger than the smallest SLP. The sce-
nario [29] considers a set of r genomes of lengthn, of individuals of the same species,
and can be modeled as r copies of a base sequence, where s edit operations (substi-
tutions, to simplify) are randomly placed. The most compact self-indexes [24,13,9]
occupy essentially nrHk bits, where Hk is the k-th order entropy of the base se-
quence, but this is multiplied r times because they are unable of exploiting long-
range repetitions. The powerful LZ77, instead, is able to achieve nHk + O((r +
s) logn) bits, that is, the compressed base sequence plus O(log n) bits per edit and
per sequence. A properly designed SLP can achieve nHk +O(r logn)+O(s log2 n)
bits, which is much better than the current techniques. It is not as good as LZ77,
self-indexes based on LZ77 are extremely challenging and do not exist yet.

In this paper we introduce the first SLP representation that can support
operations extract and find in o(n) time. More precisely, a plain SLP represen-
tation takes 2n logn bits1, as each new rule expands into two other rules. Our
representation takes O(n logn) + n logu bits. It can carry out extract in time
O((m + h) logn), where h is the height of the derivation tree, and find in time
O((m(m + h) + h occ) logn) (see the detailed results in Thm. 3). A part of our
index is a representation for SLPs which takes 2n logn(1+ o(1)) bits and is able
of retrieving any rule in time O(log n), but also of answering other queries on
the grammar within the same time, such as finding the rules mentioning a given
non-terminal. We also show how to represent a labeled binary relation, which in
addition permits a kind of range query.

Our result constitutes a self-index building on much stronger compression
methods than the existing ones, and as such, it has the potential of being ex-
tremely useful to implement compressed text databases, in particular the very
repetitive ones, by combining good compression and efficient indexed searching.
Our method is independent on the way the SLP is generated, and as such it can
be coupled with different SLP construction algorithms, which might fit different
applications.

2 Basic Concepts

2.1 Succinct Data Structures

We make heavy use of succinct data structures for representing sequences with
support for rank/ select and for range queries. Given a sequence S of length n,
drawn from an alphabet Σ of size σ, rankS(a, i) counts the occurrences of symbol
a ∈ Σ in S[1, i], rankS(a, 0) = 0; and selectS(a, i) finds the i-th occurrence of
symbol a ∈ Σ in S, selectS(a, 0) = 0. We also require that data structures
representing S provide operation accessS(i) = S[i].

For the special case Σ = {0, 1}, the problem has been solved using n + o(n)
bits of space while answering the three queries in constant time [6]. This was
later improved to use O(m log n

m ) + o(n) bits, where m is the number of bits set
in the bitmap [26].

1 In this paper log stands for log2 unless stated otherwise.
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The general case has been proved to be a little harder. Wavelet trees [13]
achieve n logσ+o(n) log σ bits of space while answering all the queries in O(log σ)
time. Another interesting proposal [12], focused on large alphabets, achieves
n log σ + no(log σ) bits of space and answers rank and access in O(log log σ)
time, while select takes O(1) time. Another tradeoff within the same space [12]
is O(1) time for access, O(log log σ) time for select, and O(log log σ log log log σ)
time for rank.

Mäkinen and Navarro [20] showed how to use a wavelet tree to represent a
permutation π of [1, n] so as to answer range queries. We use a trivial variant
in this paper. Given a general sequence S[1, n] over alphabet [1, σ], we use the
wavelet tree of S to find all the symbols of S[i1, i2] (1 ≤ i1 ≤ i2 ≤ n) which are
in the range [j1, j2] (1 ≤ j1 ≤ j2 ≤ σ). The operation takes O(log σ) to count
the number of results, and can report each such occurrence in O(log σ) time by
tracking each result upwards in the wavelet tree to find its position in S, and
downwards to find its symbol in [1, σ]. The algorithms are almost identical to
those for permutations [20].

2.2 Straight-Line Programs

We now define a Straight-Line Program (SLP) and highlight some properties.

Definition 1. [16] A Straight-Line Program (SLP) G = (X = {X1, . . . , Xn}, Σ)
is a grammar that defines a single finite sequence T [1, u], drawn from an alphabet
Σ = [1, σ] of terminals. It has n rules, which must be of the following types:

– Xi → α, where α ∈ Σ. It represents string F(Xi) = α.
– Xi → XlXr, where l, r < i. It represents string F(Xi) = F(Xl)F(Xr).

We call F(Xi) the phrase generated by nonterminal Xi, and T = F(Xn).

Definition 2. [28] The height of a symbol Xi in the SLP G = (X,Σ)
is defined as height(Xi) = 1 if Xi → α ∈ Σ, and height(Xi) =
1 + max(height (Xl), height (Xr)) if Xi → XlXr. The height of the SLP is
height(G) = height(Xn). We will refer to height(G) as h when the referred gram-
mar is clear from the context.

As some of our results will depend on the height of the SLP, it is interesting
to recall that an SLP G of n rules generating T [1, u] can be converted into a
G′ of O(n log u) rules and height(G′) = O(log u), in O(n log u) time [28]. Also,
as several grammar-compression methods are far from optimal [5], it is interest-
ing that one can find in linear time an O(log u) approximation to the smallest
grammar, which in addition is balanced (height O(log u)) [28].

3 Labeled Binary Relations with Range Queries

In this section we introduce a data structure for labeled binary relations sup-
porting range queries. Consider a binary relation R ⊆ A × B, where A =
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{1, 2, . . . , n1}, B = {1, 2, . . . , n2}, a function L : A × B → L ∪ {⊥}, mapping
pairs in R to labels in L = {1, 2, . . . , �}, � ≥ 1, and the others to ⊥. We support
the following queries:

– L(a, b).
– A(b) = {a, (a, b) ∈ R}.
– B(a) = {b, (a, b) ∈ R}.
– R(a1, a2, b1, b2) = {(a, b) ∈ R, a1 ≤ a ≤ a2, b1 ≤ b ≤ b2}.
– L(l) = {(a, b) ∈ R, L(a, b) = l}.
– The sizes of the sets: |A(b)|, |B(a)|, |R(a1, a2, b1, b2)|, and |L(l)|.

We build on an idea by Barbay et al. [2]. We define, for a ∈ A, s(a) = b1b2 . . . bk,
where bi < bi+1 for 1 ≤ i < k and B(a) = {b1, b2, . . . , bk}. We build a string
SB = s(1)s(2) . . . s(n1) and write down the cardinality of each B(a) in unary
on a bitmap XB = 0|B(1)|10|B(2)|1 . . . 0|B(n1)|1. Another sequence SL lists the
labels L(a, b) in the same order they appear in SB: SL = l(1)l(2) . . . l(n1),
l(a) = L(a, b1)L(a, b2) . . .L(a, bk). We also store a bitmap XA = 0|A(1)|10|A(2)|1
. . . 0|A(n2)|1.

We represent SB using wavelet trees [13], L with the structure for large alpha-
bets [12], and XA and XB in compressed form [26]. Calling r = |R|, SB requires
r log n2+o(r) log n2 bits, L requires r log �+r o(log �) bits (i.e., zero if � = 1), and
XA and XB use O(n1 log r+n1

n1
+n2 log r+n2

n2
)+o(r+n1 +n2) = O(r)+o(n1 +n2)

bits. We answer queries as follows:

– |A(b)|: This is just selectXA(1, b) − selectXA(1, b − 1) − 1.
– |B(a)|: It is computed in the same way using XB.
– L(a, b): Compute y ← selectXB(1, a − 1) − a + 1. Now, if rankSB (b, y) =

rankSB (b, y+|B(a)|) then a and b are not related and we return ⊥, otherwise
we return SL[selectSB(b, rankSB (b, y + |B(a)|))].

– A(b): We first compute |A(b)| and then retrieve the i-th element by doing
yi ← selectSB(b, i) and returning 1 + selectXB(0, yi) − yi.

– B(a): This is SB[selectXB (1, a − 1) − a + 2 . . . selectXB (1, a) − a].
– R(a1, a2, b1, b2): We first determine which elements in SB correspond to

the range [a1, a2]. We set a′1 ← selectXB(1, a1 − 1) − a1 + 2 and a′2 ←
selectXB(1, a2) − a2. Then, using range queries in a wavelet tree [20], we
retrieve the elements from SB[a′1, a

′
2] which are in the range [b1, b2].

– L(l): We retrieve consecutive occurrences of l in SL. For the i-th occurrence
we find yi ← selectSL(l, i), then we compute b ← SB[yi] and a ← 1 +
selectXB(0, yi) − yi. Determining |L(l)| is done via rankSL(l, r).

We note that, if we do not support queries R(a1, a2, b1, b2), we can use also the
faster data structure [12] for SB.

Theorem 1. Let R ⊆ A × B be a binary relation, where A = {1, 2, . . . , n1},
B = {1, 2, . . . , n2}, and a function L : A × B → L ∪ {⊥}, which maps every
pair in R to a label in L = {1, 2, . . . , �}, � ≥ 1, and pairs not in R to ⊥. Then
R can be indexed using (r + o(r))(log n2 + log � + o(log �) + O(1)) + o(n1 + n2)
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bits of space, where r = |R|. Queries can be answered in the times shown below,
where k is the size of the output. One can choose (i) rnk(x) = acc(x) = log log x
and sel(x) = 1, or (ii) rnk(x) = log log x log log log x, acc(x) = 1 and sel(x) =
log log x, independently for x = � and for x = n2.

Operation Time (with range) Time (without range)
L(a, b) O(log n2 + acc(�)) O(rnk(n2) + sel(n2) + acc(�))
A(b) O(1 + k logn2) O(1 + k sel(n2))
B(a) O(1 + k logn2) O(1 + k acc(n2))
|A(b)|, |B(a)| O(1) O(1)
R(a1, a2, b1, b2) O((k + 1) logn2) —
|R(a1, a2, b1, b2)| O(log n2) —
L(l) O((k + 1)sel(�) + k logn2) O((k + 1)sel(�) + k acc(n2))
|L(l)| O(rnk(�)) O(rnk(�))

We note the asymmetry of the space and time with respect to n1 and n2, whereas
the functionality is symmetric. This makes it always convenient to arrange that
n1 ≥ n2.

4 A Powerful SLP Representation

We provide in this section an SLP representation that permits various queries
on the SLP within essentially the same space of a plain representation.

Let us assume for simplicity that all the symbols in Σ are used in the SLP, and
thus σ ≤ n is the effective alphabet size. If this is not the case and max(Σ) =
σ′ > n, we can always use a mapping S[1, σ′] from Σ to the effective alphabet
range [1, σ], using rank and select in S. By using Raman et al.’s representation
[26], S requires O(σ log σ′

σ ) = O(n log σ′
n ) bits. Any representation of such an

SLP would need to pay for this space.
A plain representation of an SLP with n rules requires at least 2(n−σ)�logn�+

σ�log σ� ≤ 2n�logn� bits. Based on our labeled binary relation data structure of
Thm. 1, we give now an alternative SLP representation which requires asymptot-
ically the same space, 2n logn + o(n logn) bits, and is able to answer a number
of interesting queries on the grammar in O(log n) time. This will be a key part
of our indexed SLP representation.

Definition 3. A Lexicographic Straight-Line Program (LSLP) G = (X,Σ, s)
is a grammar with nonterminals X = {X1, X2, . . . , Xn}, terminals Σ, and two
types of rules: (i) Xi → α, where α ∈ Σ, (ii) Xi → XlXr, such that:

1. The Xis can be renumbered X ′
i in order to obtain an SLP.

2. F(Xi) � F(Xi+1), 1 ≤ i < n, being � the lexicographical order.
3. There are no duplicate right hands in the rules.
4. Xs is mapped to X ′

n, so that G represents the text T = F(Xs).
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It is clear that every SLP can be transformed into an LSLP, by removing dupli-
cates and lexicographically sorting the expanded phrases. We will use LSLPs in
place of SLPs from now on.

Let us regard a binary relation as a table where the rows represent the elements
of set A and the columns the elements of B. In our representation, every row
corresponds to a symbol Xl (set A) and every column a symbol Xr (set B). Pairs
(l, r) are related, with label i, whenever there exists a rule Xi → XlXr. Since
A = B = L = {1, 2, . . . n} and |R| = n, the structure uses 2n logn + o(n log n)
bits. Note that function L is invertible, thus |L(l)| = 1.

To handle the rules of the form Xi → α, we set up a bitmap Y [1, n] so that
Y [i] = 1 if and only if Xi → α for some α ∈ Σ. Thus we know Xi → α in constant
time because Y [i] = 1 and α = rankY (1, i). The total space is n + o(n) = O(n)
bits [6]. This works because the rules are lexicographically sorted and all the
symbols in Σ are used.

This representation lets us answer the following queries.

– Access to rules: Given i, find l and r such that Xi → XlXr, or α such that
Xi → α. If Y [i] = 1 we obtain α in constant time as explained. Otherwise,
we obtain L(i) = {(l, r)} from the labeled binary relation, in O(log n) time.

– Reverse access to rules: Given l and r, find i such that Xi → XlXr, if
any. This is done in O(log n) time via L(l, r) (if it returns ⊥, there is no
such Xi). We can also find, given α, the Xi → α, if any, in O(1) time via
i = selectY (1, α).

– Rules using a left/right symbol: Given i, find those j such that Xj → XiXr

(left) or Xj → XlXi (right) for some Xl, Xr. The first is answered using
{L(i, r), r ∈ B(j)} and the second using {L(l, i), l ∈ A(j)}, in O(log n) time
per each Xi found.

– Rules using a range of symbols: Given l1 ≤ l2, r1 ≤ r2, find those i such
that Xi → XlXr for any l1 ≤ l ≤ l2 and r1 ≤ r ≤ r2. This is answered, in
O(log n) time per symbol retrieved, using {L(a, b), (a, b) ∈ R(l1, l2, r1, r2)}.

Again, if the last operation is not provided, we can choose the faster represen-
tation [12] (alternative (i) in Thm. 1), to achieve O(log logn) time for all the
other queries.

Theorem 2. An SLP G = (X = {X1, . . . , Xn}, Σ), Σ = [1, σ], σ ≤ n, can be
represented using 2n logn + o(n logn) bits, such that all the queries described
above (access to rules, reverse access to rules, rules using a symbol, and rules
using a range of symbols) can be answered in O(log n) time per delivered datum.
If we do not support the rules using a range of symbols, times drop to O(log logn).
For arbitrary integer Σ one needs additional O(n log max(Σ)

n ) bits.

5 Indexable Grammar Representations

We now provide an LSLP-based text representation that permits indexed search
and random access. We assume our text T [1, u], over alphabet Σ = [1, σ], is
represented with an SLP of n rules.
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We will represent an LSLP G using a variant of Thm. 2. The rows will repre-
sent Xl as before, but these will be sorted by reverse lexicographic order, as if
they represented F(Xl)rev. The columns will represent Xr, ordered lexicograph-
ically by F(Xr). We will also store a permutation πR, which maps reverse to
direct lexicographic ordering. This must be used to translate row positions to
nonterminal identifiers. We use Munro et al.’s representation [22] for πR, with
parameter ε = 1

log n , so that πR can be computed in constant time and π−1
R in

O(log n) time, and the structure needs n logn + O(n) bits of space.
With the LSLP representation and πR, the space required is 3n logn +

o(n logn) bits. We add other n log u bits for storing the lengths |F(Xi)| for
all the nonterminals Xi.

5.1 Extraction of Text from an LSLP

To expand a substring F(Xi)[j, j′], we first find position j: We recursively de-
scend in the parse tree rooted at Xi until finding its jth position. Let Xi → XlXr,
then if |F(Xl)| ≥ j we descend to Xl, otherwise to Xr, in this case looking for
position j − |F(Xl)|. This takes O(height (Xi) log n) time. In our way back from
the recursion, if we return from the left child, we fully traverse the right child
left to right, until outputting j′ − j + 1 terminals.

This takes in total O((height (Xi)+j′−j) logn) time, which is at most O((h+
j′ − j) logn). This is because, on one hand, we will follow both children of a rule
at most j′ − j times. On the other, we will follow only one child at most twice
per tree level, as otherwise two of them would share the same parent.

5.2 Searching for a Pattern in an LSLP

Our problem is to find all the occurrences of a pattern P = p1p2 . . . pm in the
text T [1, u] defined by an LSLP of n rules. As in previous work [15], except for
the special case m = 1, occurrences can be divided into primary and secondary.
A primary occurrence in F(Xi), Xi → XlXr, is such that it spans a suffix of
F(Xl) and a prefix of F(Xr), whereas each time Xi is used elsewhere (directly
or transitively in other nonterminals that include it) it produces secondary oc-
currences. In the case P = α, we say that the primary occurrence is at Xi → α
and the other occurrences are secondary.

Our strategy is to first locate the primary occurrences, and then track all their
secondary occurrences in a recursive fashion. To find primary occurrences of P ,
we test each of the m − 1 possible partitions P = PlPr, Pl = p1p2 . . . pk and
Pr = pk+1 . . . pm, 1 ≤ k < m. For each partition PlPr, we first find all those Xls
such that Pl is a suffix of F(Xl), and all those Xrs such that Pr is a prefix of F(Xr).
The latter forms a lexicographic range [r1, r2] in the F(Xr)s, and the former a lexi-
cographic range [l1, l2] in the F(Xl)revs. Thus, using our LSLP representation, the
Xis containing theprimaryoccurrences correspond those labels i foundwithin rows
l1 and l2, and between columns r1 and r2, of the binary relation. Hence a query for
rules using a range of symbols will retrieve each such Xi in O(log n) time. If P = α,
our only primary occurrence is obtained in O(1) time using reverse access to rules.
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Now, given each primary occurrence at Xi, we must track all the nonterminals
that use Xi in their right hand sides. As we track the occurrences, we also
maintain the offset of the occurrence within the nonterminal. The offset for the
primary occurrence at Xi → XlXr is |F(Xl)|−k+1 (l is obtained with an access
to rule query for i). Each time we arrive at the initial symbol Xs, the offset gives
the position of a new occurrence.

To track the uses of Xi, we first find all those Xj → XiXr for some Xr, using
query rules using a left symbol for π−1

R (i). The offset is unaltered within those
new nonterminals. Second, we find all those Xj → XlXi for some Xl, using
query rules using a right symbol for i. The offset in these new nonterminals is
that within Xi plus |F(Xl)|, where again πR(l) is obtained from the result using
an access to rule query. We proceed recursively with all the nonterminals Xj

found, reporting the offsets (and finishing) each time we arrive at Xs.
Note that we are tracking each occurrence individually, so that we can process

several times the same nonterminal Xi, yet with different offsets. Each occurrence
may require to traverse all the syntax tree up to the root, and we spend O(log n)
time at each step. Moreover, we carry out m − 1 range queries for the different
pattern partitions. Thus the overall time to find the occ occurrences is O((m +
h occ) logn).

We remark that we do not need to output all the occurrences of P . If we just
want occ occurrences, our cost is proportional to this occ. Moreover, the existence
problem, that is, determining whether or not P occurs in T , can be answered
just by counting the primary occurrences, and it corresponds to occ = 0. The
remaining problem is how to find the range of phrases starting/ending with a
suffix/prefix of P . This is considered next.

5.3 Prefix and Suffix Searching

We present different time/space tradeoffs, to search for Pl and Pr in the respec-
tive sets.

Binary search based approach. We can perform a binary search over the
F(Xi)s and over the F(Xi)revs to determine the ranges where Pr and P rev

l ,
respectively, belong. We do the first binary search in the nonterminals as they
are ordered in the LSLP. In order to do the string comparisons, we extract the
first m terminals of F(Xi), in time O((m + h) logn) (Sec. 5.1). As the binary
search requires O(log n) comparisons, the total cost is O((m + h) log2 n) for the
partition PlPr. The search within the reverse phrases is similar, except that we
extract the m rightmost terminals and must use πR to find the rule from the
position in the reverse ordering. This variant needs no extra space.

Compact Patricia Trees. Another option is to build Patricia Trees [21] for the
F(Xi)s and for the F(Xi)revs (adding them a terminator so that each phrase
corresponds to a leaf). By using the cardinal tree representation of Benoit et
al. [4] for the tree structure and the edge labels, each such tree can be represented
using 2n logσ + O(n) bits, and traversal (including to a child labeled α) can be
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carried out in constant time. The ith leaf of the tree for the F(Xi)s corresponds
to nonterminal Xi (and the ith of the three for the F(Xi)revs, to XπR(i)). Hence,
upon reaching the tree node corresponding to the search string, we obtain the
lexicographic range by counting the number of leaves up to the node subtree and
past it, which can also be done in constant time [4].

The difficult point is how to store the Patricia tree skips, as in principle they
require other 4n logu bits of space. If we do not store the skips at all, we can still
compute them at each node by extracting the corresponding substrings for the
leftmost and rightmost descendant of the node, and checking for how many more
symbols they coincide [6]. This can be obtained in time O((�+h) log n), where �
is the skip value (Sec. 5.1). The total search time is thus O(m log n+mh logn) =
O(mh logn).

Instead, we can use k bits for the skips, so that skips in [1, 2k − 1] can be
represented, and a skip zero means ≥ 2k. Now we need to extract leftmost and
rightmost descendants only when the edge length is � ≥ 2k, and we will work
O((� − 2k + h) logn) time. Although the � − 2k terms still can add up to O(m)
(e.g., if all the lengths are � = 2k+1), the h terms can be paid only O(1 + m/2k)
times. Hence the total search cost is O((m + h + mh

2k ) logn), at the price of at
most 4nk extra bits of space. We must also do the final Patricia tree check due
to skipped characters, but this adds only O((m + h) log n) time. For example,
using k = log h we get O((m + h) logn) time and 4n logh extra bits of space.

As we carry out m− 1 searches for prefixes and suffixes of P , as well as m− 1
range searches, plus occ extraction of occurrences, we have the final result.

Theorem 3. Let T [1, u] be a text over an effective alphabet [1, σ] represented
by an SLP of n rules and height h. Then there exists a representation of T
using n(log u+3 logn+O(log σ + log h)+ o(log n)) bits, such that any substring
T [l, r] can be extracted in time O((r − l + h) logn), and the positions of occ
occurrences of a pattern P [1,m] in T can be found in time O((m(m + h) +
h occ) logn). By removing the O(log h) term in the space, search time raises to
O((m2 +occ)h logn). By further removing the O(log σ) term in the space, search
time raises to O((m(m + h) logn + h occ) logn). The existence problem is solved
within the time corresponding to occ = 0.

Compared with the 2n logn bits of the plain SLP representation, ours requires
at least 4n logn+o(n logn) bits, that is, roughly twice the space. More generally,
as long as u = nO(1), our representation uses O(n log n) bits, of the same order
of the SLP size. Otherwise, our representation is superlinear in the size of the
SLP (almost quadratic in the extreme case n = O(log u)). Yet, if u = nω(1), our
representation takes uo(1) bits, which is still much smaller than the original text.

We have not discussed construction times for our index (given the SLP). Those
are O(n log n) for the binary relation part, and all the lengths |F(Xi)| could be
easily obtained in O(n) time. Sorting the strings lexicographically, as well as
constructing the tries, however, can take as much as

∑n
i=1 |F(Xi)|, which can

be even ω(u). Yet, as all the phrases are substrings of T [1, u], we can build the
suffix array of T in O(u) time [14], record one starting text position of each
F(Xi) (obtained by expanding T from the grammar), and then sorting them in
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O(n log n) time using the inverse suffix array permutation (the ordering when
one phrase is a prefix of the other is not relevant for our algorithm). To build
the Patricia trees we can build the suffix tree in O(u) time [7], mark the n suffix
tree leaves corresponding to phrase beginnings, prune the tree to the ancestors
of those leaves (which are O(n) after removing unary paths again), and create
new leaves with the corresponding string depths |F(Xi)|. The point to insert the
new leaves are found by binary searching the string depths |F(Xi)| with level
ancestor queries [3] from the suffix tree leaves. The process takes O(u + n logn)
time and O(u log u) bits of space. Reverse phrases are handled identically.

6 Conclusions and Future Work

We have presented the first indexed compressed text representation based on
Straight-Line Programs (SLP), which are as powerful as context-free grammars.
It achieves space close to that of the bare SLP representation (in many relevant
cases, of the same order) and, in addition to just uncompressing, it permits ex-
tracting arbitrary substrings of the text, as well as carrying out pattern searches,
in time usually sublinear on the grammar size. We also give interesting byprod-
ucts related to powerful SLP and binary relation representations.

We regard this as a foundational result on the extremely important problem of
achieving self-indexes built on compression methods potentially more powerful
than the current ones [24]. As such, there are several possible improvements
we plan to work on, such as (1) reducing the n log u space term; (2) reduce
the O(m2) term in search times; (3) alleviate the O(h) term in search times
by restricting the grammar height while retaining good compression; (4) report
occurrences faster than one-by-one. We also plan to implement the structure to
achieve strong indexes for very repetitive text collections.
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Abstract. In 1983 Akl and Taylor [Cryptographic Solution to a Prob-
lem of Access Control in a Hierarchy, ACM Transactions on Computer
Systems, 1(3), 239–248, 1983] first suggested the use of cryptographic
techniques to enforce access control in hierarchical structures. Over time,
their scheme has been used in several different contexts, including mo-
bile agents environments and broadcast encryption. However, it has never
been fully analyzed from the security point of view.

We provide a rigorous analysis of the Akl-Taylor scheme and prove
that it is secure against key recovery. We also show how to obtain differ-
ent tradeoffs between the amount of public information and the number
of steps required to perform key derivation. Moreover, we propose a gen-
eral construction to set up a key assignment scheme secure w.r.t. key
indistinguishability, given any key assignment scheme secure against key
recovery. Finally, we show how to use our construction, along with our
tradeoffs, to obtain a variant of the Akl-Taylor scheme, secure w.r.t key
indistinguishability, requiring a constant amount of public information.

1 Introduction

Akl and Taylor [1] designed a hierarchical key assignment scheme where each
class is assigned an encryption key that can be used, along with some public pa-
rameters, to compute the key assigned to all classes lower down in the hierarchy.
Due to its simplicity and versatility, the scheme has been employed to enforce
access control in several different domains (e.g., [2,5,6,11,15,16,17]).

Akl and Taylor related the security of their scheme to the infeasibility of
extracting r-th roots modulo n, where r > 1 is an integer and n is the product of
two large unknown primes. However, their analysis gives only an intuition for the
security of the scheme. Later on, Goldwasser and Micali [9], introduced the use
of security reductions to provide rigorous security arguments for cryptographic
protocols1. Despite its use for many years, there has been no attempt to fully
analyze the security of the Akl-Taylor scheme according to the Goldwasser-Micali

1 Security reductions aim at reducing the security of a protocol to the security of
a presumed hard computational problem for which no efficient (i.e., probabilistic
polynomial time) solving algorithm is known.

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 247–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



248 P. D’Arco et al.

paradigm. The issue of providing rigorous security proofs is very important since
many key assignment schemes have been shown insecure against collusive attacks
(see [4] for references).

We consider two different notions of security for hierarchical key assignment
schemes, first proposed by Atallah et al. [3]: security against key recovery and
with respect to key indistinguishability. In the key recovery case, an adversary
cannot compute a key which cannot be derived by the users he has corrupted;
whereas, in the key indistinguishability case, the adversary is not even able to
distinguish the key from a random string of the same length. Hierarchical key
assignment schemes satisfying the above notions of security have been proposed
in [3,4,7].

1.1 Our Contribution

In this paper we analyze the Akl-Taylor scheme as well as some of its variants
with respect to security and efficiency requirements.
Security. We analyze the Akl-Taylor scheme according to the security defini-
tions in [3]. In particular, we carefully specify how to choose the public parame-
ters in order to get instances of the scheme which are secure against key recovery
under the RSA assumption.

Motivated by the fact that the Akl-Taylor scheme is not secure w.r.t. key in-
distinguishability, we propose a general construction to set up a key assignment
scheme secure w.r.t. key indistinguishability, given any key assignment scheme
secure against key recovery. We use this method to obtain a variant of the Akl-
Taylor scheme which achieves security w.r.t. key indistinguishability. Our general
method is of independent interest. Indeed, it may be useful for different instan-
tiations.

In the Akl-Taylor scheme the complexity of the key derivation increases with
the number of classes in the hierarchy. In order to speed up the key derivation
process, MacKinnon et al. [12] and Harn and Lin [10] proposed variants of the
Akl-Taylor scheme. Due to lack of space, we will include the security analysis of
such schemes in the full version of this paper.
Efficiency. We show that the Akl-Taylor scheme is still secure when only part
of the public information as small as a single prime number is published. This at
the cost of a more expensive key derivation. Thus, we show a tradeoff between
the size of the public information and the complexity of the key derivation.

2 Model and Definitions

Consider a set of disjoint classes and a binary relation � that partially orders
the set of classes V . The poset (V,�) is called a partially ordered hierarchy. For
any two classes u and v, the notation v � u is used to indicate that the users in u
can access v’s data. Clearly, since u can access its own data, it holds that u � u,
for any u ∈ V . We denote by Au the set of nodes to whom node u has access
to, i.e., Au = {v ∈ V : v � u}, for any u ∈ V . The partially ordered hierarchy
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(V,�) can be represented by the directed graph G∗ = (V,E∗), where each class
corresponds to a vertex in the graph and there is an edge from class u to class
v if and only if v � u. We denote by G = (V,E) the minimal representation of
the graph G∗, that is, the directed acyclic graph corresponding to the transitive
and reflexive reduction of the graph G∗ = (V,E∗). Such a graph G has the same
transitive and reflexive closure of G∗, i.e., there is a path (of length greater than
or equal to zero) from u to v in G if and only if there is the edge (u, v) in E∗.

Definition 1. Let Γ be a family of graphs corresponding to partially ordered
hierarchies. A hierarchical key assignment scheme for Γ is a pair (Gen,Der) of
algorithms satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time.
It takes as inputs the security parameter 1τ and a graph G = (V,E) in Γ ,
and produces as outputs
(a) a private information su and a key ku, for any class u ∈ V ;
(b) a public information pub.
We denote by (s, k, pub) the output of the algorithm Gen, where s and k
denote the sequences of private information and of keys, respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes
as inputs the security parameter 1τ , a graph G = (V,E) in Γ , two classes
u ∈ V and v ∈ Au, the private information su assigned to class u and the
public information pub, and outputs the key kv assigned to class v.

We require that for each class u ∈ V , each class v ∈ Au, each private
information su, each key kv, each public information pub which can be com-
puted by Gen on inputs 1τ and G, it holds that Der(1τ , G, u, v, su, pub) = kv.

In order to evaluate the security of the scheme, we consider a static adversary
which wants to attack a class v ∈ V and which is able to corrupt all users not
allowed to compute the key kv. We define an algorithm Corruptv which, on
input the private information s generated by the algorithm Gen, extracts the
secret values su associated to all classes u in the set of nodes that do not have
access to node v, i.e., Fv = {u ∈ V : v 	∈ Au}. We denote by corrv the sequence
output by Corruptv(s).

If A(·, ·, . . .) is any probabilistic algorithm, then we denote by a ← A(x, y, . . .)
the experiment of running A on inputs x, y, . . . and letting a be the outcome.
Similarly, if X is a set, then x ← X denotes the experiment of selecting an
element uniformly from X and assigning x this value. A function ε : N → R
is negligible if, for every constant c > 0, there exists an integer τc such that
ε(τ) < τ−c, for all τ ≥ τc.

We consider two different security goals: against key recovery and with respect
to key indistinguishability. In the key recovery case, the adversary, on input
all public information generated by the algorithm Gen, as well as the private
information corrv held by corrupted users, outputs a string k∗

v and succeeds
whether k∗

v = kv.

Definition 2. [REC-ST] Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V,E) ∈ Γ be a graph, and let (Gen,Der) be a
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hierarchical key assignment scheme for Γ . Let STATRECv be a static adversary
which attacks a class v. Consider the following experiment:

Experiment ExpREC
STATv

(1τ , G)
(s, k, pub) ← Gen(1τ , G)
corrv ← Corruptv(s)
k∗

v ← STATRECv (1τ , G, pub, corrv)
return k∗

v

The advantage of STATRECv is defined as AdvREC
STATv

(1τ , G) = Pr[k∗
v = kv]. The

scheme is said to be secure in the sense of REC-ST if, for each graph G = (V,E)
in Γ and each class v ∈ V , the function AdvREC

STATv
(1τ , G) is negligible, for each

static adversary STATRECv whose time complexity is polynomial in τ .

In the key indistinguishability case, two experiments are considered. In the first
one, the adversary is given as a challenge the key kv, whereas, in the second one,
it is given a random string ρ having the same length as kv. It is the adversary’s
job to determine whether the received challenge corresponds to kv or to a random
string. We require that the adversary will succeed with probability only negligibly
different from 1/2.

Definition 3. [IND-ST] Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der) be a hierar-
chical key assignment scheme for Γ and let STATINDv be a static adversary which
attacks a class v. Consider the following two experiments:

Experiment ExpIND−1
STATv

(1τ , G) Experiment ExpIND−0
STATv

(1τ , G)
(s, k, pub) ← Gen(1τ , G) (s, k, pub) ← Gen(1τ , G)
corrv ← Corruptv(s) corrv ← Corruptv(s)
d ← STATINDv (1τ, G, pub, corrv, kv) ρ ← {0, 1}length(kv)

return d d ← STATINDv (1τ, G, pub, corrv, ρ)
return d

The advantage of STATINDv is defined as

AdvIND
STATv

(1τ , G) = |Pr[ExpIND−1
STATv

(1τ , G) = 1] − Pr[ExpIND−0
STATv

(1τ , G) = 1]|.

The scheme is said to be secure in the sense of IND-ST if, for each graph G =
(V,E) in Γ and each v ∈ V , the function AdvIND

STATv
(1τ , G) is negligible, for each

static adversary STATINDv whose time complexity is polynomial in τ .

In Definitions 2 and 3 we have considered a static adversary attacking a class.
A different kind of adversary, the adaptive one, could also be considered. In [4]
it has been proven that security against adaptive adversaries is (polynomially)
equivalent to security against static adversaries. Hence, in this paper we will
only consider static adversaries.
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3 Complexity Assumptions

An RSA generator with associated security parameter τ is a randomized algo-
rithm that returns a pair ((n, e), (n, p, q, d)), where n is the RSA modulus, e is the
encryption exponent and d is the decryption exponent, satisfying the following
conditions:

– p and q are two distinct large odd primes of τ bits;
– n = p · q;
– e ∈ Z∗

φ(n), where φ(n) = (p − 1) · (q − 1);
– d = e−1 mod φ(n).

Two strategies to compute the pair ((n, e), (n, p, q, d)) are used. The former, first
chooses the primes p and q, computes n, picks e at random in Z∗

φ(n), and com-
putes d accordingly. Such a strategy yields a random exponent RSA generator,
denoted Kran

RSA(1τ ). The latter, fixes the encryption exponent e to be a small odd
number, like 3, 17, or 216 + 1, and then generates the other parameters, accord-
ingly2. Given a fixed odd number e, such a strategy yields an RSA generator for
exponent e, denoted Kfix

RSA(1τ , e).
Let B and Grsa be algorithms where the algorithm Grsa corresponds either

to Kran
RSA(1τ ) or to Kfix

RSA(1τ , e). Consider the following experiment:

Experiment ExpGrsa
B

((n, e), (n, p, q, d)) ← Grsa
x ← Z∗

n

y ← xe mod n
x′ ← B(n, e, y)
if x′ = x then return 1

else return 0

The advantage of B is defined as AdvGrsa
B = Pr[ExpGrsa

B = 1].

The RSA generators described above yields the following two assumptions3.

Random Exponent RSA Assumption. The function AdvK
ran
RSA

B (1τ ) is negli-
gible, for each probabilistic algorithm B whose time complexity is polynomial
in τ .

RSA Assumption for Exponent in a set of odd numbers. LetX be a set

of odd numbers. For each e ∈ X , the function AdvK
fix
RSA

B (1τ , e) is negligible,
for each probabilistic algorithm B with time complexity polynomial in τ .

2 There have been some questions raised about the security of this strategy, since it
might be possible that roots of small degree are easier to take than roots of a random
degree.

3 To the best of our knowledge, in the literature there is no analysis of the relationships
between the security of these two different strategies.
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4 The Akl-Taylor Scheme

In this section we describe the Akl and Taylor scheme [1].

Let Γ be a family of graphs corresponding to partially ordered hierarchies,
and let G = (V,E) ∈ Γ .

Algorithm Gen(1τ , G)

1. Randomly choose two distinct large primes p and q having bitlength τ and
compute n = p · q;

2. For each v ∈ V , choose a distinct prime number pv and compute the public
value tv as follows:

tv =

⎧⎨⎩
1 if Av = V ;∏

u�∈Av

pu otherwise.

3. Let pub be the sequence of public values computed in the previous step,
along with the value n;

4. Randomly choose a secret value k0, where 1 < k0 < n;
5. For each class v ∈ V , compute the private information sv and the encryption

key kv as follows:
sv = kv = ktv

0 mod n;
6. Let s and k be the sequences of private information and keys, respectively,

computed in the previous step;
7. Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)
Extract the values tv and tu from pub and compute

stv/tu
u mod n = (ktu

0 )tv/tu mod n = kv.

Akl and Taylor noticed that in order to construct an Akl-Taylor scheme which is
resistant to collusive attacks it is needed that, for each v ∈ V and each X ⊆ Fv,
gcd{tu : u ∈ X} does not divide tv. Indeed, they showed the following result:

Lemma 1 ([1]). Let t and t1, . . . , tm be integers, and let k ∈ Zn, where n = p ·q
is the product of two large primes. The power kt mod n can be feasibly computed
from the set of powers {kt1 mod n, . . . , ktm mod n} if and only if gcd{t1, . . . , tm}
divides t.

The proof of Lemma 1 relies on the infeasibility of extracting r-th roots modulo
n, where r > 1 is an integer and n is the product of two large unknown primes4.
Lemma 1 gives an intuition for the security of the scheme but it has never been
shown whether the existence of an efficient adversary breaking the security of
the scheme in the sense of REC-ST implies the existence of an efficient procedure
which solves a computational hard problem.
4 In particular, when gcd(r, φ(n)) = 1, this is the assumption behind the RSA cryp-

tosystem [14]; whereas, if r = 2, this assumption is used in the Rabin cryptosystem
[13].
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4.1 Proving the Security of the Akl-Taylor Scheme

In this section we show that the Akl-Taylor scheme is secure against key recovery
provided that the primes associated to the classes are properly chosen.

In the following we describe two primes choices. The first choice, denoted fixed
primes choice, yields instances of the Akl-Taylor scheme secure under the RSA
assumption for exponent in a set of odd numbers. The second one, denoted R-
random primes choice, yields instances secure under the random exponent RSA
assumption.

– Fixed primes choice. Let PRIMES
 = {p1, . . . , p�
} be the set of the first �

prime numbers greater than two. Let u1, . . . , u|V | be a sorting of V . Associate
prime pj ∈ PRIMES|V | to class uj.

– R-Random primes choice. Let R = {Rn}n be a family of sets of integers,
where n is an RSA modulus. Choose uniformly at random, for each class, a
distinct prime number in Rn, for an appropriately chosen family R.

The following result holds:

Theorem 1. Let G = (V,E) be a partially ordered hierarchy. The Akl-Taylor
scheme with the fixed primes choice yields a scheme which is secure in the sense
of REC-ST under the RSA assumption for exponents in PRIMES|V |.

Let us consider the R-random primes choice. The next result establishes a lower
bound for the Euler totient function φ(n), when n is an RSA modulus obtained
as the product of two large distinct primes having bitlength τ . More precisely:

Lemma 2. Let p and q be two large distinct primes having bitlength τ and let
n = p · q. The Euler totient function φ(n) satisfies

φ(n) > 22τ−2 − 2τ .

We fix the family R in the R-random primes choice by setting Rn equal to the set
of integers belonging to the interval [3, w], where w = 22τ−2 − 2τ . Therefore, to
avoid overburdening the notation, in the following we will refer to the R-random
primes choice simply as to the random primes choice.

The following result holds:

Theorem 2. Let G = (V,E) be a partially ordered hierarchy. The Akl-Taylor
scheme with the random primes choice yields a scheme secure in the sense of
REC-ST under the random exponent RSA assumption.

4.2 Reducing Public Information in the Akl-Taylor Scheme

Notice that the primes, which are randomly chosen in [3, w] in the random primes
choice, do not need to be independent from each other. Thus, we introduce
a modified random primes choice for the Akl-Taylor scheme, which works as
follows:
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1. Let u1, . . . , u|V | be a sorting of V ;
2. Choose uniformly at random a prime p1 in [3, w];
3. For j = 1, . . . , |V | − 1, compute pj+1 ∈ [3, w] as the j-th prime greater than

p1;
4. For j = 1, . . . , |V |, assign prime pj to class uj.

Notice that if the prime p1 is too close to w, then [p1, w] could not contain the
|V | − 1 primes needed for the other classes. If this event occurs, the generation
of primes continues in [3, p1].

Theorem 3. The Akl-Taylor scheme with the modified random primes choice
yields a scheme which is secure in the sense of REC-ST under the random expo-
nent RSA assumption.

With the modified random primes choice, only the first prime needs to be pub-
lished, along with the modulus n. Indeed, such public information allows each
class to compute the other primes and the sequence of integers tv’s needed for
key derivation. These computations can be performed efficiently (see [2] where
a similar technique was employed). Notice that, in the modified random primes
choice, i ≥ 2 primes of the sequence p1, . . . , p|V | might be published. Then, each
class v has to compute the |V | − i missing primes accordingly, by performing on
average O((|V |− i) · τ) steps to compute the full sequence. This allows to obtain
a tradeoff between the size of the public information and the number of steps
required to perform key derivation.

5 Towards Security w.r.t. Key Indistinguishability

In this section we show a general construction for schemes secure with respect
to key indistinguishability. The construction uses as a building block, a scheme
secure in the sense of REC-ST. Moreover, it makes use of the Goldreich-Levin
hard-core bit (GL bit) [8], which is a natural candidate for turning hardness of
computation into indistinguishability.

Let τ be the security parameter. Given two strings x = x1 · · ·xγ and r =
r1 · · · rγ of length γ polynomially bounded in τ , the GL bit Br(x) corresponds
to the inner product (mod 2) of x and r, i.e., Br(x) =

∑γ
i=1 xi · ri mod 2.

Goldreich and Levin [8] showed that, for every one-way permutation f , given
f(x) and r, it is infeasible to guess Br(x) with non-negligible advantage.

Let (Gen,Der) be a scheme secure in the sense of REC-ST. The idea of our
construction is as follows:

– For each graph G = (V,E), we construct a new graph Gγ = (Vγ , Eγ) by
replacing each node u with a chain of γ + 1 classes denoted u0, u1, . . . , uγ .
Figure 1 shows an example of the graph Gγ = (Vγ , Eγ) for G = (V,E), where
V = {a, b, c} and E = {(a, b), (a, c)}. Notice that, the edge (ui, ui+1) ∈ Eγ ,
for each i = 0, . . . , γ − 1. Moreover, for each (u, v) ∈ E, we place the edge
(u0, v0) in Eγ .
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– Execute the algorithm Gen on input Gγ = (Vγ , Eγ).
– For each class u ∈ V , the private information su is equal to the the private

information su0 assigned to u0 by Gen, whereas, the key is computed as:

ku = Br(ku1 ) ◦ Br(ku2) ◦ · · · ◦ Br(kuγ ),

where r is a randomly chosen string in {0, 1}γ and kui is the key assigned to
ui by Gen, for each i = 1, . . . , γ.

It is easy to see that each class u ∈ V , can compute the key kv assigned to class
v ∈ Au by using su = su0 , the public information output by Gen, the string r
and the derivation algorithm Der of the underlying scheme.

a0 a1 ai aγ

b0 b1 bi bγ c0 c1 ci cγ

Fig. 1. The graph Gγ = (Vγ , Eγ), where V = {a, b, c} and E = {(a, b), (a, c)}

Intuitively, since, for each i = 1, . . . , γ, it is infeasible to guess Br(kvi ) with
non-negligible advantage, an adversary for a class v ∈ V has no information
about even a single bit of the key kv.

Theorem 4. If (Gen,Der) is a scheme secure in the sense of REC-ST, then the
scheme resulting by our construction is secure in the sense of IND-ST.

6 An Akl-Taylor Key Indistinguishable Scheme

In Section 4.1 we have shown that the Akl-Taylor scheme is secure in the sense of
REC-ST under either the random exponent or the fixed exponent RSA assump-
tion. Thus, such a scheme can be used as a building block in the construction
of Section 5, in order to obtain a key assignment scheme which is secure in the
sense of IND-ST under the same assumption.

Notice that the Akl-Taylor scheme is not secure in the sense of IND-ST. Indeed,
any adversary which attacks class u knows the key kv associated to a class v child
of class u. In order to check if a value ρ corresponds to the key ku, the adversary
only needs to test whether ρtv/tu is equal to kv.

In the following we evaluate the parameters of the scheme obtained by using
the construction proposed in Section 5 when the underlying scheme is the Akl-
Taylor scheme with the random choice of primes. Let τ be the security parameter
and let γ = 2τ be the key length. The amount of public information in the
resulting scheme corresponds to the |V |(1 + γ) integers tv’s associated to the
classes in Vγ , in addition to the modulus n and the γ-bit string r. On the other
hand, the construction requires each class to store one secret value, corresponding
to its private information. Finally, a class u, which wants to compute the key
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held by a class v ∈ Au has to perform γ modular exponentiations, to compute
the keys kv1 , . . . , kvγ , and γ inner products modulo 2, to compute the GL bits
Br(kv1), . . . , Br(kvγ ).

According to the results stated in Section 4.2, the amount of public informa-
tion required by the Akl-Taylor scheme with the modified random prime choice
can be reduced to a single prime number, in addition to the modulus n. As ex-
plained in Section 4.2, this requires each class to perform on average O(|V | · τ2)
steps to compute the sequence of primes assigned to the classes in V .

7 Conclusions

We have analyzed the Akl-Taylor scheme with respect to security and efficiency
requirements. We have also shown how to obtain different tradeoffs between the
amount of public information and the number of steps required to perform key
derivation. Motivated by the fact that the Akl-Taylor scheme is not secure w.r.t.
key indistinguishability, we have proposed a general construction to setup a key
assignment scheme secure w.r.t. key indistinguishability, given any key assign-
ment scheme secure against key recovery. Such a construction is of independent
interest and may be useful for different instantiations. As an example, we have
shown how to use our construction, along with our tradeoffs, to obtain a vari-
ant of the Akl-Taylor scheme, secure w.r.t key indistinguishability, requiring a
constant amount of public information.
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vol. 4708, pp. 371–382. Springer, Heidelberg (2007)

8. Goldreich, O., Levin, L.: A Hard-Core Predicate for All One-Way Functions. In:
Proc. of ACM STOC 1989, pp. 25–32 (1989)



Security and Tradeoffs of the Akl-Taylor Scheme and Its Variants 257

9. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Comput. and Syst.
Sci. 28, 270–299 (1984)

10. Harn, L., Lin, H.Y.: A Cryptographic Key Generation Scheme for Multilevel Data
Security. Comput. and Security 9(6), 539–546 (1990)

11. Lin, I.-C., Oub, H.-H., Hwang, M.-S.: Efficient Access Control and Key Manage-
ment Schemes for Mobile Agents. Comput. Standards & Interfaces 26(5), 423–433
(2004)

12. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An Optimal Algorithm for
Assigning Cryptographic Keys to Control Access in a Hierarchy. IEEE Trans. on
Computers, C-34(9), 797–802 (1985)

13. Rabin, M.O.: Digitalized Signatures and Public Key Functions as Intractable as
Factorization, Tech. Rep. MIT/LCS/TR-212, MIT Lab. for Computer Science
(1979)

14. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communic. ACM 21, 120–126 (1978)

15. Tzeng, W.-G.: A Secure System for Data Access Based on Anonymous and Time-
Dependent Hierarchical Keys. In: Proc. of ACM ASIACCS 2006, pp. 223–230
(2006)

16. Yeh, J.H., Chow, R., Newman, R.: A Key Assignment for Enforcing Access Control
Policy Exceptions. In: Proc. of Int. Symposium on Internet Technology, pp. 54–59
(1998)

17. Wang, S.-Y., Laih, C.-S.: Merging: An Efficient Solution for a Time-Bound Hier-
archical Key Assignment Scheme. IEEE Trans. on Dependable and Secure Com-
puting 3(1) (2006)



Parameterized Complexity Classes under Logical
Reductions

Anuj Dawar1 and Yuguo He2

1 University of Cambridge Computer Laboratory, Cambridge CB3 0FD, U.K.
anuj.dawar@cl.cam.ac.uk

2 University of Cambridge Computer Laboratory, Cambridge CB3 0FD, U.K., and
School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081,

China
yuguo.he@cl.cam.ac.uk

Abstract. The parameterized complexity classes of the W -hierarchy are usu-
ally defined as the problems reducible to certain natural complete problems by
means of fixed-parameter tractable (fpt) reductions. We investigate whether the
classes can be characterised by means of weaker, logical reductions. We show that
each class W [t] has complete problems under slicewise bounded-variable first-
order reductions. These are a natural weakening of slicewise bounded-variable
LFP reductions which, by a result of Flum and Grohe, are known to be equiv-
alent to fpt-reductions. If we relax the restriction on having a bounded number
of variables, we obtain reductions that are too strong and, on the other hand,
if we consider slicewise quantifier-free first-order reductions, they are consider-
ably weaker. These last two results are established by considering the charac-
terisation of W [t] as the closure of a class of Fagin-definability problems under
fpt-reductions. We show that replacing these by slicewise first-order reductions
yields a hierarchy that collapses, while allowing only quantifier-free first-order
reductions yields a hierarchy that is provably strict.

1 Introduction

In the theory of parameterized complexity, the W -hierarchy plays a role similar to NP
in classical complexity theory in that many natural parameterized problems are shown
intractable by being complete for some level W [t] of the hierarchy. However, one dif-
ference between the two, perhaps no more than a historical accident, is that NP was
originally defined in terms of resource bounds on a machine model, and the discovery
that it has complete problems under polynomial-time reductions (and indeed that many
natural combinatorial problems are NP-complete) came as a major advance, which also
shows the robustness of the class. On the other hand, the classes W [t] were originally
defined as the sets of problems reducible to certain natural complete problems by means
of fixed-parameter tractable (fpt) reductions [5]. These classes therefore have complete
problems by construction. It was only later that a characterisation of these classes in
terms of resource-bounded machines was obtained [1]. The robustness of the definition
of NP is also demonstrated by the fact that many NP-complete problems are still com-
plete under reductions much weaker than polynomial-time reductions. For instance,
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SAT is NP-complete, even under quantifier-free first-order projections, which are re-
ductions even weaker than AC0 reductions. Thus, the class NP can be characterized as
the class of problems reducible to SAT under polynomial-time reductions, or equiva-
lently as the class of problems reducible to SAT under quantifier-free first-order projec-
tions. The work we report in this paper is motivated by the question of whether similar
robustness results can be shown for the classes W [t]. We investigate whether the classes
can be characterised by means of weaker reductions, just like NP can.

We concentrate on reductions defined in terms of logical formulas. By a result of
Flum and Grohe [7], it is known that fpt-reductions can be equivalently characterised,
on ordered structures, as slicewise bounded-variable LFP reductions. We consider re-
ductions defined in terms of first-order interpretations and introduce a number of pa-
rameterized versions of these. Our main result is that each class W [t] has complete
problems under slicewise bounded-variable first-order reductions, which are a natural
first-order counterpart to slicewise bounded-variable LFP reductions. If we relax the
restriction on having a bounded number of variables, we obtain slicewise first-order
reductions, which are not necessarily fpt. Indeed we are able to show that all Fagin de-
finability problems in W [t] are reducible to problems in FPT under such reductions.
On the other hand, we show that slicewise quantifier-free first-order reductions are con-
siderably weaker in that there are Fagin-definability problems in W [t + 1] that cannot
reduce to such problems in W [t] under these reductions. This last class of reductions
can be seen as the natural parametrization of quantifier-free first-order reductions, for
which NP does have complete problems. Thus, our result shows that the definition of
W [t] is not quite as robust as that of NP.

We present the necessary background and preliminaries in Section 2. The various
kinds of logical reductions are defined in Section 3. Section 4 shows that W [t] contains
complete problems under slicewise bounded-variable first-order reductions. Section 5
considers the case of the two other kinds of reductions we use. For space reasons, we
only give sketches of proofs, omitting details which are often long and tedious coding
of reductions as first-order formulas.

2 Preliminaries

We rely on standard definitions and notation from finite model theory (see [6,12]) and
the theory of parameterized complexity [9]. We briefly recall some of the definitions we
need, but we assume the reader is familiar with this literature.

A relational signature σ consists of a finite collection of relation and constant sym-
bols. A decision problem over σ-structures is an isomorphism-closed class of finite
σ-structures. In general, we assume that our structures are ordered. That is to say, that
σ contains a distinguished binary relation symbol ≤ which is interpreted in every struc-
ture as a linear order of the universe. We are often interested in decision problems
where the input is naturally described as a structure with additional integer parameters.
For instance, the Clique problem requires, given a graph G and an integer k, to decide
whether G contains a clique on k vertices. In all such cases that we will be interested in,
the value of the integer parameter is bounded by the size of the structure, so it is safe to
assume that it is given as an additional constant c in the signature σ, and the position in
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the linear order ≤ of cA codes the value. However, where it is notationally convenient,
we may still write the inputs as pairs (A, k), where A is a structure and k is an integer,
with the understanding that they are to be understood as such coded structures.

A parameterized problem is a pair (Q, κ) where Q is a decision problem over σ-
structures and κ a function that maps σ-structures to natural numbers. We say that
(Q, κ) is fixed-parameter tractable (FPT) if Q is decidable by an algorithm which,
given a σ-structure A of size n runs in time f(κ(A))nc for some constant c and some
computable function f .

Given a pair of parameterized problems, (Q, κ) and (Q′, κ′) where Q is a decision
problem over σ-structures and Q′ is a decision problem over σ′-structures, a reduction
from (Q, κ) to (Q′, κ′) is a computable function r from σ-structures to σ′-structures
such that:

– for any σ-structure A, r(A) ∈ Q′ if, and only if, A ∈ Q; and
– there is a computable function g such that κ′(r(A)) ≤ g(κ(A)).

The reduction r is an fpt-reduction if, in addition, r is computable in time f(κ(A))|A|c
for some constant c and some computable function f . If there is an fpt-reduction from
(Q, κ) to (Q′, κ′), we write (Q, κ) ≤fpt (Q′, κ′) and say that (Q, κ) is fpt-reducible to
(Q′, κ′) .

FPT is the complexity class of parameterized problems that are regarded as tractable.
Above it, there is a hierarchy of complexity classes into which problems that are believed
to be intractable are classified. In particular, the W -hierarchy is an increasing (or, at
least, non-decreasing) sequence of complexity classes W [t] (t ≥ 1) which contain many
natural hard problems. These classes were originally defined as the classes of problems
fpt-reducible to certain weighted satisfiability problems. We use, instead, the equivalent
definition from [9] in terms of weighted Fagin-definability, which we give next. For
a first-order formula ϕ(X) with a free relational variable X of arity s, we define the
weighted Fagin-definability problem for ϕ as the following parameterized problem.

p-WDϕ

Input: A structure A and k ∈ N
Parameter: k

Problem: Decide whether there is a relation S ⊆ As with |S| = k
such that (A, S) |= ϕ.

The complexity class W [t] is then defined as the class of parameterized problems that
are fpt-reducible to p-WDϕ for some Πt formula ϕ. Recall that ϕ is Πt just in case it
is in prenex normal form and its quantifier prefix consists of t alternating blocks, start-
ing with a universal block. These classes are closed under fpt-reductions by definition.
Indeed, to quote Flum and Grohe [9, p.95]: “for a robust theory, one has to close [. . . ]
p-WD-Πt under fpt-reductions”. Our aim in this paper is to test this robustness by vary-
ing the reductions used in the definition to see whether we still obtain the same classes.
We specifically aim to investigate logical reductions and for these, it is convenient to
work with descriptive characterisations of the complexity classes. We summarise below
such characterisations that have been obtained by Flum and Grohe [7,8].
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Recall that LFP is the extension of first-order logic (FO) with an operator lfp for
least fixed-points of positive operators. We write FOs for the collection of first-order
formulas with at most s distinct variables and LFPs for the collection of formulas of
LFP of the form [lfpX,xϕ](t) where ϕ ∈ FOs and t is a tuple of at most s terms. For
any collection Θ of formulas, we say that a parameterized problem (Q, κ) is slicewise-
Θ definable if, and only if, there is a computable function δ : N → Θ such that for all
A, we have A |= δ(κ(A)) if, and only if, A ∈ Q.

Theorem 1 ([7]). A parameterized problem over ordered structures is in FPT if, and
only if, for some s it is slicewise-LFPs definable.

For a similar characterisation of the classes of the W -hierarchy, we need to introduce
some further notation (from [8]). We write Σt,u-Bool(LFPs) for the collection of for-
mulas of LFP of the form

∃x11 · · · ∃x1l1 ∀x21 · · · ∀x2l2 · · · Qxt1 · · ·Qxtlt χ (1)

where χ is a Boolean combination of formulas of LFPs and for i ≥ 2, li ≤ u. In
other words, the formula consists of a sequence of t alternating blocks of quantifiers,
starting with an existential, with the length of all blocks except the first bounded by u,
followed by a Boolean combination of LFPs formulas. Note that all of the variables
in the quantifier prefix may appear inside χ though any given formula in the Boolean
combination may use at most s of them.

Theorem 2 ([8]). A parameterized problem over ordered structures is in W [t] if, and
only if, for some s and u it is slicewise-Σt,u-Bool(LFPs) definable.

The key to the definition of Σt,u-Bool(LFPs) is the interaction between the unbounded
number of variables introduced by the first quantifier block, and the bounded number of
variables available inside each LFPs formula in χ. This is best illustrated with a simple
example. The parameterized dominating set problem takes as input a graph G and a
parameter k and asks whether G contains a set S of at most k vertices such that every
vertex of G is either in S or a neighbour of a vertex in S. For fixed k, this is defined by
the following first-order formula.

∃x1 · · · ∃xk∀y
( ∨

1≤i≤k

(y = xi ∨ E(y, xi))
)

Here, since each of the formulas (y = xi ∨E(y, xi)) has only two variables, the whole
formula is in Σ2,1-Bool(LFP2).

We can somewhat simplify the form of formulas used in Theorem 2. To be precise,
we write Σt,u-Conj(LFPs) for those formulas of the form (1) where χ is a conjunction
of LFPs formulas and Σt,u-Disj(LFPs) for those where it is a disjunction. Then, we
have the following characterisation.

Theorem 3. For any even t ≥ 1, a parameterized problem over ordered structures is
in W [t] if, and only if, for some s and u it is slicewise-Σt,u-Disj(LFPs) definable.

For any odd t ≥ 1, a parameterized problem over ordered structures is in W [t] if,
and only if, for some s and u it is slicewise-Σt,u-Conj(LFPs) definable.
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Proof. (sketch): Consider the case of odd t, as the other case is dual. The Boolean
combination χ in the formula (1) can be written in disjunctive normal form. Now, any
formula ¬ϕ where ϕ is a formula of LFPs is equivalent to a formula of LFP8s. This
follows from Immerman’s proof of a normal form for LFP [11]. In particular, one just
needs to observe that the increase in the number of variables is bounded by a multi-
plicative constant. Thus, χ is equivalent to a disjunction of conjunctions of formulas of
LFP8s. The idea is now to replace the outermost disjunction with an existential quanti-
fier. For each i, we can write a first-order formula ϕi(x) (with just three variables) that
asserts that x is the ith element of the linear order ≤ (see [4]). We use these to index
the m disjuncts in χ. This requires increasing the arity in each fixed-point formula by 1,
and the number of variables by at most 3. We thus obtain a formula with one existential
quantifier followed by a conjunction of formulas of LFP8s+3 that is equivalent to χ on
all ordered structures with at least m elements. We can then add a further conjunct to
take care of the finitely many small structures. The existential quantifier at the front of
the formula is then absorbed into the final block in the prefix, resulting in an increase
of the value of u by 1.

For the case of odd t, we begin with a formula of conjunctive normal form and
convert the outer conjunction to a universal quantifier. ��

3 Logical Reductions

In this section, we introduce reductions that are defined by logical formulas.
Suppose we are given two relational signatures σ and τ and a set of formulas Θ. An

m-ary Θ-interpretation of τ in σ (with parameters z) is a sequence of formulas of Θ in
the signature σ consisting of:

– a formula υ(x, z);
– a formula η(x,y, z);
– for each relation symbol R in τ of arity a, a formula ρR(x1, . . . ,xa, z); and
– for each constant symbol c in τ , a formula γc(x, z),

where each x,y or xi is an m-tuple of free variables. We call m the width of the in-
terpretation. We say that an interpretation Φ associates a τ -structure B to a pair (A, c)
where A is a σ-structure and c a tuple of elements interpreting the parameters z, if there
is a surjective map h from the m-tuples {a ∈ Am | A |= υ[a, c]} to B such that:

– h(a1) = h(a2) if, and only if, A |= η[a1,a2, c];
– RB(h(a1), . . . , h(aa)) if, and only if, A |= ρR[a1, . . . ,aa, c];
– h(a) = cB if, and only if, A |= γc[a, c].

Note that an interpretation Φ associates a τ -structure with (A, c) only if η defines an
equivalence relation on Am that is a congruence with respect to the relations defined
by the formulas ρR and γc. In such cases however, B is uniquely determined up to
isomorphism and we write B = Φ(A, c). We will only be interested in interpretations
that associate a τ -structure to every (A, c).

We say that a map r from σ-structures to τ -structures is Θ-definable if there is a
Θ-interpretation Φ without parameters such that for all σ-structures A, r(A) = Φ(A).
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Thus, we can ask whether a given reduction is LFP-definable or FOs-definable, for
example. It is an easy consequence of the fact that LFP captures P on ordered structures
that a reduction is LFP definable with order if, and only if, it is a polynomial-time
reduction. In the case of the complexity class NP, we know there are complete problems
under much weaker reductions such as those defined by quantifier-free formulas in the
presence of order, or first-order formulas even without order (see [2,13]).

For reductions between parameterized problems, it is more natural to consider the
slicewise definition of interpretations. We say that a reduction r between parameterized
problems (Q, κ) and (Q′, κ′) is slicewise Θ-definable if there is an m and a function
δ that takes each natural number k to an m-ary Θ-interpretation δ(k) such that for any
σ-structure A with r(A) = δ(κ(A))(A). Note, in particular, that the width m of the
interpretation is the same for all k. It is an easy consequence of the proof of Theorem 1
in [7] that a reduction r is an fpt-reduction if, and only if, for some s, it is slicewise
LFPs-definable on ordered structures.

The following definition introduces some useful notation for the different classes of
reductions we consider.

Definition 1. For parameterized problems (Q, κ) and (Q′, κ′), we write

1. (Q, κ) ≤s-fo (Q′, κ′) if there is a reduction from (Q, κ) to (Q′, κ′) that is slicewise
FO-definable;

2. (Q, κ) ≤s-bfo (Q′, κ′) if there is a reduction from (Q, κ) to (Q′, κ′) that is slice-
wise FOs-definable for some s;

3. (Q, κ) ≤s-qf (Q′, κ′) if there is a reduction from (Q, κ) to (Q′, κ′) that is slicewise
Θ-definable, where Θ is the collection of quantifier-free formulas.

It is clear from the definition that (Q, κ) ≤s-bfo (Q′, κ′) implies (Q, κ) ≤s-fo (Q′, κ′).
Furthermore, since the definition of slicewise reductions requires the interpretations to
be of fixed width, and the only variables that occur in a quantifier-free formula are the
free variables, it can be easily seen that a ≤s-qf reduction is defined with a bounded
number of variables. Thus, (Q, κ) ≤s-qf (Q′, κ′) implies (Q, κ) ≤s-bfo (Q′, κ′) and
the reductions in Definition 1 are increasingly weak as we go down the list. The last two
of them are also weaker than fpt-reductions, in the sense that, since FOs formulas are
also LFPs formulas, we have that (Q, κ) ≤s-bfo (Q′, κ′) implies (Q, κ) ≤fpt (Q′, κ′).
As we show in Section 5, it is unlikely that (Q, κ) ≤s-fo (Q′, κ′) implies (Q, κ) ≤fpt

(Q′, κ′) as this would entail the collapse of the W -hierarchy.

4 Bounded-Variable Reductions

In this section, we construct problems that are complete for the class W [t] under ≤s-bfo

reductions.
We first consider the decision problem of alternating reachability, also known as

game. We are given a directed graph G = (V,E) along with a bipartition of the vertices
V = V∃�V∀ and two distinguished vertices a and b. We are asked to decide whether the
pair (a, b) is in the alternating transitive closure defined by (V∃, V∀, E). This is equiv-
alent to asking whether the existential player has a winning strategy in the following
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two-player token pushing game played on G as follows. The token is initially on a. At
each turn, if the token is on an element of V∃, it is the existential player that moves and,
if it is on an element of V∀, it is the universal player that moves. Each move consists
of the player whose turn it is moving the token from a vertex u to a vertex v such that
(u, v) ∈ E. If the token reaches b, the existential player has won. In general, we call a
directed graph G = (V,E) along with a bipartition V = V∃ � V∀ an alternating graph;
we call the vertices in V∃ the existential vertices of G and those in V∀ the universal
vertices; and we call a the source vertex and b the target vertex. We can assume without
loss of generality that the target vertex has no outgoing edges.

An alternating path from a to b is an acyclic subgraph V ′ ⊆ V,E′ ⊆ E with
a, b ∈ V ′ such that for every u ∈ V ′ ∩ V∃, u 	= b, there is a v ∈ V ′ with (u, v) ∈ E′;
for every u ∈ V ′∩V∀, u 	= b and every v ∈ V with (u, v) ∈ E we have that v ∈ V ′ and
(u, v) ∈ E′; and for every u ∈ V ′, there is a path from u to b in (V ′, E′). It is easily
checked that (a, b) is in the alternating transitive closure of (V∃, V∀, E) if, and only if,
there is an alternating path from a to b.

It is known that the alternating reachability problem is complete for P under first-
order reductions, in the presence of order (see [10]). Indeed, it is also known that in
the absence of order, the problem is still complete for the class of problems that are
definable in LFP [3]. Moreover, it is easily shown from the reductions constructed by
Dahlhaus in [3] that every problem definable in LFPs is reducible to alternating reacha-
bility by means of a first-order reduction whose width depends only on s, giving us the
following lemma.

Lemma 1. For any s there is an r such that for any formula ϕ(z) of LFPs in the sig-
nature σ, we can find an FOr-interpretation with parameters z that takes each (A, c),
where A is a σ-structure and c an interpretation of the parameters, to an alternating
graph (V, V∃, V∀, E, a, b) so that A |= ϕ[c] if, and only if, there is an alternating path
from a to b in (V∃, V∀, E).

It is easily checked that alternating reachability is defined by the following formula of
LFP2.

[lfpX,x

(
x = b∨(V∃(x) ∧ ∃y(E(x, y) ∧ X(y)))∨

(V∀(x) ∧ ∃yE(x, y) ∧ ∀y(E(x, y) → X(y)))
)
](a)

For an alternating graph G = (V, V∃, V∀, E) and a subset U ⊆ V , we say that there is a
U -avoiding alternating path from a to b if there is an alternating path from a to b which
does not include any vertex of U . Note, that this is not the same as saying there is an
alternating path from a to b in the subgraph of G induced by V \ U . In particular, a U -
avoiding alternating path may not include any universal vertex which has an outgoing
edge to a vertex in U , though such vertices may appear in an alternating path in the
graph G[V \ U ].

We will now define a series of variants of the alternating reachability problem, which
will lead us to the W [t]-complete problems we seek to define. In the following defini-
tions, k is a fixed positive integer.

k-conjunctive restricted alternating reachability. Given an alternating graph
G = (V, V∃, V∀, E), along with sets of vertices C ⊆ U ⊆ V and distinguished
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vertices a and b, where a has at most k outgoing edges, decide whether for
every v such that (a, v) ∈ E, there is an sv ∈ C and a (U \ {sv})-avoiding
alternating path from v to b. If the answer is yes, we say there is a k-conjunctive
restricted alternating path from a to b.

In other words, the problem asks whether there is an alternating path from a to b, where
a ∈ V∀, of a particular restricted kind. The path is not to use the vertices in U apart from
C, and these may be used only in a limited way. That is, each outgoing edge from a
leads to a path which may use only one vertex of C, though this vertex may be different
for the different edges leaving a.

We define a dual to the above for starting vertices a that are existential.

k-disjunctive restricted alternating reachability. Given an alternating graph
G = (V, V∃, V∀, E), along with sets of vertices C ⊆ U ⊆ V and distinguished
vertices a and b, where a has at most k outgoing edges, decide whether there
is a vertex v with (a, v) ∈ E and an sv ∈ C such that there is a (U \ {sv})-
avoiding alternating path from v to b. If the answer is yes, we say there is a
k-disjunctive restricted alternating path from a to b.

We next define, by induction on t, the problems of conjunctive and disjunctive k, t-
restricted alternating reachability, for which the above two problems serve as base
cases.

Definition 2 (k, t-restricted alternating reachability). The conjunctive k, 0-restricted
alternating reachability problem is just the k-conjunctive restricted alternating reach-
ability problem defined above, and similarly, the disjunctive k, 0-restricted alternating
reachability problem is the k-disjunctive restricted alternating reachability problem.

The conjunctive k, t+1-restricted alternating reachability is the problem of deciding,
given an alternating graph G = (V, V∃, V∀, E), along with sets of vertices C ⊆ U ⊆ V
and distinguished vertices a and b, whether for every v such that (a, v) ∈ E, there is a
disjunctive k, t-restricted alternating path from v to b.

Dually, the disjunctive k, t + 1-restricted alternating reachability is the problem of
deciding whether there is a v such that (a, v) ∈ E and there is a conjunctive k, t-
restricted alternating path from v to b.

Roughly speaking, the conjunctive k, t-restricted alternating reachability problem asks
for an alternating path from a to b, with a a universal node, where we are allowed t
alternations before the restrictions on the use of vertices in the sets U and C kick in.
The disjunctive version is dual.

We are ready to define the parameterized problems we need. By a clique in a directed
graph, we just mean a set of vertices such that for each pair of distinct vertices in the
set, there are edges in both directions.

Definition 3 (clique-restricted alternating reachability). For any fixed t, the param-
eterized t-clique-restricted alternating reachability problem is:
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p-t-CLIQUE RESTRICTED ALTERNATING REACHABILITY

Input: G = (V = V∃ � V∀, E), U ⊆ V , a, b ∈ V and k ∈ N.
Parameter: k

Problem: Is there a clique C ⊆ U with |C| = k such that
(V, V∃, V∀, E, U,C) admits a conjunctive k, t-restricted
alternating path from a to b?

Theorem 4. For each t ≥ 1, p-t-clique-restricted alternating reachability is in W [t].

Proof. This is easily established, using Theorem 2, by writing a formula of
Σt,1-Bool(LFP4) that defines the problem for each fixed value of k. This is obtained
by taking the prenex normal form of the formula

∃x1 · · ·xk(
∧
i

U(xi)∧
∧
i�=j

E(xi, xj)∧xi �= xj)∧∀y1(E(a, y1) → (∃y2(E(y1, y2)∧· · ·Γ · · · )

where Γ is the formula ∃yt−1(E(yt−2, yt−1) ∧
∧

1≤i≤k(
∨

1≤j≤k θi(yt−1, xj))) if t is
odd and the formula ∀yt−1(E(yt−2, yt−1) →

∨
1≤i,j≤k θi(yt−1, xj)) if t is even; and

θi(yt−1, xj) is the formula of LFP4 which states that there is a U \ {xj}-avoiding
alternating path from z to b, where z is the ith (in the linear ordering ≤) vertex such
that there is an edge from yt−1 to z. This formula is obtained as an easy modification
of the LFP2 formula above defining alternating reachability. ��

Theorem 5. For each t ≥ 1, p-t-clique-restricted alternating reachability problem is
W [t]-hard.

Proof. (sketch): Suppose (Q, κ) is in W [t]. Assume that t is odd (the case for even t is
dual). By Theorem 3, there is a u and an s so that (Q, κ) is slicewise-Σt,u-Conj(LFPs)-
definable. Thus, for each k, there is a formula

ϕ ≡ ∃x11 · · · ∃x1l1 ∀x21 · · · ∀x2l2 · · · ∃xt1 · · · ∃xtlt

∧
j∈S

θj

where each θj is in LFPs, which defines the structures A such that A ∈ Q and
κ(A) = k. We give an informal description of the reduction that takes A to an in-
stance G of t-clique-restricted alternating reachability. The reduction is definable by an
FO-interpretation using a number of variables that is a function of s, t and u but inde-
pendent of k. In what follows, we assume that |S| ≤

(
l1
s

)
. If this is not the case, we can

add dummy variables to the first quantifier block without changing the meaning of the
formula.

By Lemma 1, we know that each θj gives rise to an FOr-interpretation (for a fixed
value of r) that maps A to an instance of alternating reachability. Note that, as the
width of the Since θj has (as many as s) free variables, the interpretation will have up
to s parameters from among the variables x11, . . . , xtlt . For notational purposes, we
will distinguish between those parameters that are in the variables quantified in the first
existential block (i.e. x11 . . . x1l1 ) and the others. Thus, we write ARα,β

j for the instance
of alternating reachability obtained from θj , with α the assignment of values to the
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parameters among x11 . . . x1l1 and β the assignment of values to the other parameters.
G will contain the disjoint union of all of these instances (slightly modified as explained
below). Note that, since the interpretation taking A to ARα,β

j has width at most r, the

size of ARα,β
j is at most nr (where n is the size of A). Furthermore, there are at most

|S| · ns such instances. G also contains a target vertex b with an incoming edge from
the target vertex in each ARα,β

j .
In addition, for each initial segment x of the sequence of variables x21 . . . xtlt that

ends at a quantifier alternation (i.e. x = x21 . . . xt′,lt′ for some t′ ≤ t), and each
assignment ρ of values from A to the variables in x, G contains a new element. Note
that the number of such elements is less than 2n

∑
2≤i≤t li , which is at most 2nu(t−1). For

each ρ and ρ′, we include an edge from ρ to ρ′ just in case ρ′ extends the assignment ρ
by exactly one quantifier block. If that block is existential, ρ is in V∃ and if it is universal,
ρ is in V∀. Those ρ which assign a value to every variable in x21 . . . xtlt are in V∀ and
have outgoing edges to a vertex ρj , one for each j ∈ S. These vertices are existential
and have outgoing edges to the source vertex of each ARα,β

j where the assignment
β is consistent with ρ. That is, if a variable x among x21 . . . xtlt occurs among the
parameters of θj we should have β(x) = ρ(x). The unique empty assignment ε is the
source vertex of G.

Let ψ be the part of ϕ after the first existential block, i.e. ϕ ≡ ∃x11 · · · ∃x1l1ψ. The
structure so far codes the interpretation of ψ with each θj replaced by equivalent alternat-
ing reachability conditions. If there is an assignment of values to the variablesx11 . . . x1l1

that makes ψ true, there is an alternating path from source to target in G. However, the
converse is not true, as distinct θj may share free variables from among x11 . . . x1l1 and
there is nothing in the alternating path that ensures consistency in the values they assign
to these variables. In fact, it can be shown that, in the structure described so far, there is
an alternating path from source to target if, and only if, we can assign values to the free
variables x11 . . . x1l1 , independently for each θj in a way that makes ψ true. We now add
a gadget to G that ensures consistency of the assignment of these values.

G also contains a set U of vertices, disjoint from those constructed so far. There
is one vertex in U for each assignment of values from A to a subset of the variables
x11 . . . x1l1 of size s. Thus, U contains a total of

(
l1
s

)
· ns vertices. All vertices in U

are existential (i.e. in V∃) and for α, β ∈ U , there is an edge from α to β if the two
assignments agree on all variables they have in common. It is easily checked that the
maximal cliques in U are of size

(
l1
s

)
. There is one such clique for each assignment of

values to all l1 variables.
To connect the gadget U with the rest of the construction, we replace every vertex v

in each ARα,β
j with two vertices vin and vout. All edges into v now lead to vin and all

edges out of v are replaced by edges out of vout. vout is existential if v is existential and
universal if v is universal. vin is universal for all v and has exactly two outgoing edges,
one to vout and the other to α ∈ U (i.e. the element of U giving the assignment to the
parameters among x11 . . . x1l1 that corresponds to the instance ARα,β

j ). Finally, there

is also an edge from α ∈ U to vout for each vertex v in any instance of the form ARα,β
j .

This completes the description of G. It is not difficult to argue that G contains a
clique C ⊆ U of size

(
l1
s

)
such that (G, C) admits a conjunctive

(
l1
s

)
, t-restricted alter-

nating path from ε to b if, and only if, A |= ϕ. Indeed, if A |= ϕ and γ is an assignment
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to the variables x11 . . . x1l1 that witnesses this, we can choose C to consist of all nodes
α that are consistent with γ. As we have argued above, this will yield the required alter-
nating path through G. Conversely, any clique C ⊆ U of size

(
l1
s

)
must correspond to

such an assignment γ and thus any alternating path in G that uses only C will provide
a witness that A |= ϕ.

We omit from this sketch the construction of the formulas that show that the in-
terpretation that takes A to G can be given by first-order formulas where the num-
ber of variables is independent of k (i.e. independent of l1), but we will make two
points in this connection. One is that the total number of vertices in G is bounded by(
l1
s

)
ns + |S|ns+r + 2n(t−1)u. This is a polynomial in n whose degree depends on s, t

and u (recall, by Lemma 1, that r is a function of s) but not on l1. We use this to estab-
lish that the width of the interpretation is bounded. One subtle point is that in defining
the set U , we need to define not only all s-tuples of elements of A but to pair them
with s-element sets of variables. We do this by identifying the variables with the first l1
elements of the linear order ≤. We then use the fact that any fixed element of a linear
order can be identified with a formula of FO3 (see, for instance, [4]). ��

5 Other First-Order Reductions

As we pointed out in Section 2, one standard definition of the class W [t] is as [p-WD-
Πt]≤

fpt

, i.e. the class of problems fpt-reducible to p-WDϕ for some ϕ ∈ Πt. Here we
consider the class [p-WD-Πt]≤

s-qf

, i.e. the problems reducible by slicewise quantifier-
free reductions to p-WDϕ for some ϕ ∈ Πt and show this class is most likely weaker,
in the sense that there are problems in W [t + 1] that are provably not in this class.

It is known that the alternation of quantifiers in a first-order formula yields a strict
hierarchy of increasing expressive power, even on ordered structures, in the presence of
arithmetic relations [14]. We use this to establish our result.

Say that an alternating graph G is strictly alternating if each vertex in V∃ only has
edges to vertices in V∀ and vice versa. We can write, for each t ≥ 1, a formula ϕt(X) ∈
Πt with a free set variable X that is satisfied by a strictly alternating graph G with a set
S interpreting X if, and only if, the source vertex of G is universal and G contains an
alternating path from a to all b ∈ S (or for some b ∈ S, when t is even) with exactly t
alternations. We are able to show, by a reduction from the problems that Sipser [14] uses
to establish the strictness of the first-order quantifier alternation hierarchy, that ϕt+1(X)
is not equivalent to any formula of Πt, even on ordered structures with arithmetic. On
the other hand, it is not difficult to show that if p-WDϕt+1 ≤s-qf p-WDψ for a formula
ψ ∈ Πt then, composing ψ with the interpretation, we would obtain a formula of Πt

equivalent to ϕt+1. This leads to the following theorem.

Theorem 6. For each t ≥ 1, there is a ϕ ∈ Πt+1 such that for any ψ ∈ Πt,
p-WDϕ 	≤s-qf p-WDψ.

On the other hand, for any formula ϕ(X), it is easy to construct a sequence of first-order
formulas ϕk(k ∈ N), without the variable X , that define the slices of p-WDϕ. These
can be used to construct a slicewise first-order reduction of p-WDϕ to a trivial problem,
giving us the following observation.
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Theorem 7. For any ϕ ∈ FO, there is an FPT problem Q such that p-WDϕ ≤s-fo Q.

6 Concluding Remarks

We have considered varying the notion of reductions used in the definition of the classes
of the W -hierarchy. The results of Section 5 show that slicewise quantifier-free reduc-
tions are too weak, and slicewise first-order reductions are too strong for the purpose.
The intermediate case of slicewise bounded-variable first-order reductions is considered
in Section 4 and though these reductions are considerably weaker than fpt-reductions,
we are able to show the existence of complete problems for the classes of the W -
hierarchy. It would be interesting to investigate whether other, natural W [t]-complete
problems remain complete under these reductions. In particular, is it the case that the
closure of p-WD-Πt under such reductions is all of W [t]?
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Abstract. We study a model of communication complexity that encompasses
many well-studied problems, including classical and quantum communication
complexity, the complexity of simulating distributions arising from bipartite mea-
surements of shared quantum states, and XOR games. In this model, Alice gets
an input x, Bob gets an input y, and their goal is to each produce an output a, b
distributed according to some pre-specified joint distribution p(a, b|x, y). Our re-
sults apply to any non-signaling distribution, that is, those where Alice’s marginal
distribution does not depend on Bob’s input, and vice versa.

By introducing a simple new technique based on affine combinations of lower-
complexity distributions, we give the first general technique to apply to all these
settings, with elementary proofs and very intuitive interpretations. The lower
bounds we obtain can be expressed as linear programs (or SDPs for quantum
communication). We show that the dual formulations have a striking interpre-
tation, since they coincide with maximum violations of Bell and Tsirelson in-
equalities. The dual expressions are closely related to the winning probability
of XOR games. Despite their apparent simplicity, these lower bounds subsume
many known communication complexity lower bound methods, most notably the
recent lower bounds of Linial and Shraibman for the special case of Boolean
functions.

We show that as in the case of Boolean functions, the gap between the quantum
and classical lower bounds is at most linear in the size of the support of the distri-
bution, and does not depend on the size of the inputs. This translates into a bound
on the gap between maximal Bell and Tsirelson inequality violations, which was
previously known only for the case of distributions with Boolean outcomes and
uniform marginals. It also allows us to show that for some distributions, informa-
tion theoretic methods are necessary to prove strong lower bounds.

Finally, we give an exponential upper bound on quantum and classical commu-
nication complexity in the simultaneous messages model, for any non-signaling
distribution.

1 Introduction

Communication complexity of Boolean functions has a long and rich past, stemming
from the paper of Yao in 1979 [1], whose motivation was to study the area of VLSI
circuits. In the years that followed, tremendous progress has been made in developing a
rich array of lower bound techniques for various models of communication complexity
(see e.g. [2]).
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From the physics side, the question of studying how much communication is needed
to simulate distributions arising from physical phenomena, such as measuring bipartite
quantum states, was posed in 1992 by Maudlin, a philosopher of science, who wanted
to quantify the non-locality inherent to these systems [3]. Maudlin, and the authors
who followed [4,5,6,7,8] (some independently of his work, and of each other) progres-
sively improved upper bounds on simulating correlations of the 2 qubit singlet state. In
a recent breakthrough, Regev and Toner [9] proved that two bits of communication suf-
fice to simulate the correlations arising from two-outcome measurements of arbitrary-
dimension bipartite quantum states. In the more general case of non-binary outcomes,
Shi and Zhu gave a protocol to approximate quantum distributions within constant er-
ror, using constant communication [10]. No non-trivial lower bounds are known for this
problem.

In this paper, we consider the more general framework of simulating non-signaling
distributions. These are distributions of the form p(a, b|x, y), where Alice gets input
x and produces an output a, and Bob gets input y and outputs b. The non-signaling
condition is a fundamental property of bipartite physical systems, which states that
the players gain no information on the other player’s input. In particular, distributions
arising from quantum measurements on shared bipartite states are non-signaling, and
Boolean functions may be reduced to extremal non-signaling distributions with Boolean
outcomes and uniform marginals.

Outside of the realm of Boolean functions, a very limited number of tools are avail-
able to analyse the communication complexity of distributed tasks, especially for quan-
tum distributions with non-uniform marginals. In such cases, the distributions live in
a larger-dimensional space and cannot be cast as communication matrices, so standard
techniques do not apply. The structure of non-signaling distributions has been the object
of much study in the quantum information community, yet outside the case of distribu-
tions with Boolean inputs or outcomes [11,12], or with uniform marginal distributions,
much remains to be understood.

Our main contribution is a new method for handling all non-signaling distributions,
including the case of non-Boolean outcomes and non-uniform marginals, based on
affine combinations of lower-complexity distributions, which we use to obtain both
upper and lower bounds on communication. We use the elegant geometric structure of
the non-signaling distributions to analyse the communication complexity of Boolean
functions, but also non-Boolean or partial functions. Although they are formulated,
and proven, in quite a different way, our lower bounds turn out to subsume Linial and
Shraibman’s factorization norm lower bounds [13], in the restricted case of Boolean
functions. Similarly, our upper bounds extend the upper bounds of Shi and Zhu for ap-
proximating quantum distributions [10] to all non-signaling distributions (in particular
distributions obtained by protocols using entanglement and quantum communication).

Our complexity measures can be expressed as linear (or semidefinite) programs, and
when we consider the dual of our lower bound expressions, these turn out to correspond
precisely to maximal Bell inequality violations in the case of classical communication,
and Tsirelson inequality violations for quantum communication. Hence, we have made
formal the intuition that large Bell inequalities should lead to large lower bounds on
communication complexity.
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Many proofs are omitted from this extended abstract, and can be found in the full
version of the paper.

2 Preliminaries

2.1 Non-signaling Distributions

Non-signaling, a fundamental postulate of physics, states that any observation on part
of a system cannot instantaneously affect a remote part of the system, or similarly,
that no signal can travel instantaneously. We consider distributions p(a, b|x, y) where
x ∈ X , y ∈ Y are the inputs of the players, and they are required to each produce an
outcome a ∈ A, b ∈ B, distributed according to p(a, b|x, y).

Definition 1 (Non-signaling distributions). A bipartite, conditional distribution p is
non-signaling if ∀a, x, y, y′,

∑
b p(a, b|x, y) =

∑
b p(a, b|x, y′), and ∀b, x, x′, y,∑

a p(a, b|x, y) =
∑

a p(a, b|x′, y).

For a non-signaling distribution, the marginal distribution p(a|x, y) =
∑

b p(a, b|x, y)
on Alice’s output does not depend on y, so we write p(a|x), and similarly p(b|y) for
Bob. We denote by C the set of all non-signaling distributions.

In the case of binary outcomes A=B={±1}, a non-signaling distribution is uniquely
determined by the (expected) correlations, defined as C(x, y) = E(a · b|x, y), and the
(expected) marginals, defined as MA(x) = E(a|x),MB(y) = E(b|y). For this reason,
we will write p = (C,MA,MB) and use both notations interchangeably when con-
sidering distributions over binary outcomes. We denote by C0 the set of non-signaling
distributions with uniform marginals, that is, p = (C, 0, 0), and write C ∈ C0.

Boolean functions. The communication complexity of Boolean functions is a spe-
cial case of the problem of simulating non-signaling distributions. As we shall see in
Section 2.3, the associated distributions are extremal points of the non-signaling poly-
tope. If the distribution stipulates that the product of the players’ outputs equal some
function f : X × Y → {±1} then this corresponds to the standard model of communi-
cation complexity (up to an additional bit of communication, for Bob to output f(x, y)).
If we further require that Alice’s output be +1 or -1 with equal probability, likewise for
Bob, then the distribution is non-signaling and has the following form:

Definition 2. For a function f : X × Y → {−1, 1}, denote pf the distribution defined
by pf (a, b|x, y) = 1

2 if f(x, y) = a · b and 0 otherwise. Equivalently, pf = (Cf , 0, 0)
where Cf (x, y) = f(x, y).

In the case of randomized communication complexity, a protocol that simulates a
Boolean function with error probability ε corresponds to simulating correlations C′

scaled down by a factor at most 1−2ε, that is, ∀x, y, sgn(C′(x, y)) = Cf (x, y) and
|C′(x, y) |≥ 1−2ε. While we will not consider these cases in full detail, non-Boolean
functions, partial functions and some relations may be handled in a similar fashion,
hence our techniques can be used to show lower bounds in these settings as well.
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Quantum distributions. Of particular interest in the study of quantum non-locality
are the distributions arising from measuring bipartite quantum states. We will use the
following definition (see also [14]):

Definition 3. A distribution p is quantum if there exists a quantum state |ψ〉 in a Hilbert
space H and measurement operators {Ea(x) : a ∈ A, x ∈ X} and {Eb(y) : b ∈ B, y ∈
Y}, such that p(a, b|x, y) = 〈ψ|Ea(x)Eb(y)|ψ〉, and

1. Ea(x)† = Ea(x) and Eb(y)† = Eb(y),
2. Ea(x) · Ea′(x) = δaa′Ea(x) and Eb(y) · Eb′(y) = δbb′Eb(y),
3.
∑

a Ea(x) = � and
∑

b Eb(x) = �, where � is the identity operators on H,
4. Ea(x) · Eb(y) = Eb(y) · Ea(x),

where δab is the Kronecker delta defined by δab=1 if a=b and 0 otherwise.

We denote by Q the set of all quantum distributions. In the restricted case of binary
outcomes with uniform marginals, we let Q0 be the set of all quantum correlations.

2.2 Models of Communication Complexity

We consider the following model of communication complexity of non-signaling dis-
tributions p. Alice gets input x, Bob gets input y, and after exchanging bits or qubits,
Alice has to output a and Bob b so that the joint distribution is p(a, b|x, y). R0(p) de-
notes the communication complexity of simulating p exactly, using private randomness
and classical communication. Q0(p) denotes the communication complexity of simu-
lating p exactly, using quantum communication. We use superscripts “pub” and “ent”
in the case where the players share random bits or quantum entanglement. For Rε(p),
we are only required to simulate some distribution p′ such that δ(p,p′) ≤ ε, where
δ(p,p′) = max{|p(E|x, y) − p′(E|x, y)| : x, y ∈ X × Y, E ⊆ A × B} is the total
variation distance (or statistical distance) between two distributions.

For binary outcomes, we write Rε(C,MA,MB), Qε(C,MA,MB). In the case of
Boolean functions, Rε(C) = Rε(C, 0, 0) corresponds to the usual notion of comput-
ing f with probability at least 1 − ε, where C is the ±1 communication matrix of f .

2.3 Non-signaling, Quantum, and Local Distributions

In quantum information, distributions that can be simulated with shared randomness
and no communication (also called a local hidden variable model) are called local.

Definition 4. Local deterministic distributions are of the form p(a, b|x, y) = δa=λA(x) ·
δb=λB(y) where λA : X → A and λB : Y → B, and δ is the Kronecker delta. A
distribution is local if it can be written as a convex combination of local deterministic
distributions.

We let Λ be the set of local deterministic distributions {pλ}λ∈Λ and L be the set of local
distributions. Let conv(A) be the convex hull of A. In the case of binary outcomes,

Proposition 1. L = conv({(uT v, u, v) : u ∈ {±1}X , v ∈ {±1}Y}).
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We denote by L0 the set of local correlations over binary outcomes with uniform
marginals.

The quantum information literature reveals a great deal of insight into the structure
of the classical, quantum, and non-signaling distributions. It is well known that L and
C are polytopes. While the extremal points of L are simply the local deterministic dis-
tributions, the non-signaling polytope C has a more complex structure [11,12]. C0 is the
convex hull of the distributions obtained from Boolean functions.

Proposition 2. C0 = conv({(Cf , 0, 0) : Cf ∈ {±1}X×Y}).

We show that C is the affine hull of the local polytope (restricted to the positive orthant
since all probabilities p(a, b|x, y) must be positive). This was shown independently of
us, first in the quantum logic community [15,16,17,18], and again independently in the
physics community [19].

Theorem 1. C = aff+{L}, where aff+{L} is the restriction to the positive orthant of
the affine hull of L, and dim C = dimL = |X | × |Y| + |X | + |Y|.

Hence, while local distributions are convex combinations of local deterministic distri-
butions, non-signaling distributions are affine combinations of these distributions.

Corollary 2 (Affine model). p∈C iff ∃qλ ∈ R with p =
∑

λ∈Λ qλpλ.

As for the set of quantum distributions Q, it is known to be convex, but not a poly-
tope. Clearly, L ⊆ Q ⊆ C. In the case of binary outcomes with uniform marginals,
Grothendieck’s inequality (see e.g. [20]), together with Tsirelson’s theorem [21], im-
plies the following statement.

Proposition 3. L0 ⊆ Q0 ⊆ KGL0, where KG is Grothendieck’s constant.

3 Lower Bounds for Non-signaling Distributions

Based on the characterization of C (Theorem 1), we define two new complexity mea-
sures for non-signaling distributions, from which we derive a general method for lower
bounds in deterministic, randomized, and quantum communication complexity.

Definition 5. • ν̃(p) = min{
∑

i |qi |: ∃pi ∈ L, qi ∈ R,p =
∑

i qipi},
• γ̃2(p) = min{

∑
i |qi |: ∃pi ∈ Q, qi ∈ R,p =

∑
i qipi},

• ν̃ε(p) = min{ν̃(p′) : δ(p,p′) ≤ ε},
• γ̃ε

2(p) = min{γ̃2(p′) : δ(p,p′) ≤ ε}.

These quantities are small when the distribution can be written as a near-convex combi-
nation of local (or quantum) distributions, and larger the more negative coefficients are
required in such combinations. The set of local distributions L form the unit sphere of
ν̃, and similarly the set of quantum distributions Q form the unit sphere of γ̃2.

Lemma 1. p ∈ L ⇐⇒ ν̃(p) = 1, and p ∈ Q ⇐⇒ γ̃2(p) = 1.
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3.1 Affine Models for Nonsignaling Distributions

We derive a lower bound by giving an explicit affine model for any non-signaling dis-
tribution from a communication protocol.

Let p be a non-signaling distribution over A × B. For π ≤ 1, we define the scaled-
down probability distribution pπ(a, b|x, y) = πp(a, b|x, y)+(1 − π)p(a|x)p(b|y). For
distributions pf arising from Boolean functions (Definition 2), this corresponds to scal-
ing down the success probability (more precisely the bias) by a factor of π.

Theorem 3. 1. If Rpub
0 (p) ≤ c, then pπ ∈ L for π = 2−c.

2. If Qent
0 (p) ≤ q, then, pπ ∈ Q for π = 2−2q.

3. If Qent
0 (C) ≤ q, then πC ∈ Q0 for π = 2−q.

The proof idea is as follows. The players can no longer communicate, but they never-
theless wish to follow the protocol. They guess a random transcript, and if both players’
messages coincide with the messages in the transcript, they follow the protocol to the
end. If a player’s messages do not match the transcript, then he outputs independently
of the other player, following the marginal distribution corresponding to his input.

Theorem 4. For any non-signaling distribution p,

1. Rpub
0 (p) ≥ log(ν̃(p)) − 1, and Rpub

ε (p) ≥ log(ν̃ε(p)) − 1.
2. Qent

0 (p) ≥ 1
2 log(γ̃2(p)) − 1, and Qent

ε (p) ≥ 1
2 log(γ̃ε

2(p)) − 1.
3. Qent

0 (C) ≥ log(γ̃2(C)), and Qent
ε (C) ≥ log(γ̃ε

2(C)).

Proof. We sketch a proof for the classical case, the quantum case is similar and fol-
lows by using teleportation. Let c be the number of bits exchanged. From Theo-
rem 3, we know that pπ is local for π = 2−c. Let P ′ be a protocol for pπ, using
shared randomness and no communication. Notice that p(a, b|x, y) = 1

πpπ(a, b|x, y)−
( 1

π − 1)p(a|x)p(b|y) is an affine model for p(a, b|x, y). Then ν̃(p) ≤ 2
π − 1. For the

last item we also use the fact that C = 1
2 ( 1

π + 1) πC − 1
2 ( 1

π − 1) (−πC).

3.2 Factorization Norm and Related Measures

In the special case of distributions over binary variables with uniform marginals, the
quantities ν̃ and γ̃2 become equivalent to the quantities ν and γ2 defined in [22,13] (at
least for the interesting case of non-local correlations, that is correlations with non-zero
communication complexity). When the marginals are uniform we omit them and write
ν̃(C) and γ̃2(C). The following are reformulations as Minkowski functionals of the
definitions appearing in [22,13].

Definition 6. – ν(C) = min{Λ > 0 : 1
ΛC ∈ L0},

– γ2(C) = min{Λ > 0 : 1
ΛC ∈ Q0},

– να(C) = min{ν(C′) : 1 ≤ C(x, y)C′(x, y) ≤ α, ∀x, y ∈ X × Y},
– γα

2 (C) = min{γ2(C′) : 1 ≤ C(x, y)C′(x, y) ≤ α, ∀x, y ∈ X × Y}.

Lemma 2. For any correlation C : X × Y → [−1, 1],

1. ν̃(C) = 1 iff ν(C) ≤ 1, and γ̃2(C) = 1 iff γ2(C) ≤ 1,
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2. ν̃(C) > 1 =⇒ ν(C) = ν̃(C),
3. γ̃2(C) > 1 =⇒ γ2(C) = γ̃2(C).

The proof crucially uses the fact that the outcomes are Boolean, and that for uniform
marginals, local distributions are closed under sign changes. This fails to hold with non-
uniform marginals (for instance, quantum measurements on non-maximally-entangled
states) since sign changes also change the marginals. In the special case of sign matri-
ces (corresponding to Boolean functions, as shown above), we also have the following
correspondence between ν̃ε, γ̃ε

2, and να, γα
2 .

Lemma 3. Let 0 ≤ ε < 1/2 and α = 1
1−2ε . For any sign matrix C : X ×Y → {−1, 1},

1. ν̃ε(C) > 1 =⇒ να(C) = ν̃ε(C)
1−2ε ,

2. γ̃ε
2(C) > 1 =⇒ γα

2 (C) = γ̃ε
2(C)
1−2ε .

Linial and Shraibman use γα
2 to derive a lower bound not only on the quantum com-

munication complexity Qent
ε , but also on the classical complexity Rpub

ε . In the case of
binary outcomes with uniform marginals (which includes Boolean functions as a spe-
cial case), we obtain a similar result by combining our bound for Qent

ε (C) with the fact
that Qent

ε (C) ≤ � 1
2R

pub
ε (C)�, which follows from superdense coding. This implies

Rpub
ε (C) ≥ 2 log(γε

2(C)) − 1. In the general case, however, we can only prove that
Rpub

ε (p) ≥ log(γε
2(p)) − 1. This may be due to the fact that the result holds in the

much more general case of arbitrary outcomes and marginals.
Note also that although γ2 and ν are matrix norms, this fails to be the case for γ̃2

and ν̃, even in the case of correlations. Nevertheless, it is still possible to formulate dual
quantities, which turn out to have sufficient structure, as we show in the next section.

4 Duality, Bell Inequalities, and XOR Games

In their primal formulation, the γ̃2 and ν̃ methods are difficult to apply since they are
formulated as a minimization problem. Transposing to the dual space not only turns
the method into a maximization problem; it also has a very natural, well-understood
interpretation since it coincides with maximal violations of Bell and Tsirelson inequal-
ities. This is particularly relevant to physics, since it formalizes in very precise terms
the intuition that distributions with large Bell inequality violations should require more
communication to simulate.

4.1 Bell and Tsirelson Inequalities

Bell inequalities were first introduced by Bell [23], as bounds on correlations achievable
by any local physical theory. He showed that quantum correlations could violate these
inequalities and therefore exhibited non-locality. Tsirelson later proved that quantum
correlations should also respect some bound (known as the Tsirelson bound), giving a
first example of a “Tsirelson-like” inequality for quantum distributions [24].

Since the set of non-signaling distributions C lies in an affine space aff(C), we may
consider the isomorphic dual space of linear functionals over this space. The dual quan-
tity ν̃∗ (technically not a dual norm since ν̃ itself is not a norm in the general case) is the
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maximum value of a linear functional in the dual space on local distributions, and γ̃∗
2 is

the maximum value of a linear functional on quantum distributions. These are exactly
what is captured by the Bell and Tsirelson inequalities.

Definition 7 (Bell and Tsirelson inequalities). Let B : aff(C) 
→ R be a linear func-
tional on aff(C), B(p) =

∑
a,b,x,y Babxyp(a, b|x, y). Define ν̃∗(B) = maxp∈L B(p)

and γ̃∗
2 (B) = maxp∈Q B(p). A Bell inequality is a linear inequality satisfied by any

local distribution, B(p) ≤ ν̃∗(B) (∀ p ∈ L), and a Tsirelson inequality is a linear
inequality satisfied by any quantum distribution, B(p) ≤ γ̃∗

2(B) (∀ p ∈ Q).

By linearity, Bell inequalities are often expressed as linear functionals over the correla-
tions in the case of binary outputs and uniform marginals.

Finally, it follows from (SDP or LP) duality that γ̃2 and ν̃ amount to finding a max-
imum violation of a (normalized) Bell or Tsirelson inequality. In the case of γ̃2, since
there is no known characterization of Q by an SDP, we use the SDP hierarchy of [14]
to obtain the dual expression.

Theorem 5. For any distribution p ∈ C,

1. ν̃(p) = max{B(p) : ∀p′ ∈ L, |B(p′)| ≤ 1}, and
2. γ̃2(p) = max{B(p) : ∀p′ ∈ Q, |B(p′)| ≤ 1},

where the maximization is over linear functionals B : aff(C) 
→ R.

4.2 XOR Games

In an XOR game, Alice is given an input x and Bob is given y according to a distribution
μ, and they should output a = ±1 and b = ±1. They win if a·b equals some ±1 function
G(x, y). Since they are not allowed to communicate, their strategy may be represented
as a local correlation matrix S ∈ L0. The winning bias given a strategy S with respect
to μ is εμ(G‖S) =

∑
x,y μ(x, y)G(x, y)S(x, y), and εpub

μ (G) = maxS∈L0 εμ(G‖S) is
the maximum winning bias of a local (classical) strategy.

Theorem 6. 1. ν(C) = maxμ,G
εμ(G‖C)

εpub
μ (G)

where (μ,G) range over XOR games.

2. ν(C) ≥ 1
εpub(C)

.

5 Comparing γ̃2 and ν̃

It is known that because of Tsirelson’s theorem and Grothendieck’s inequality, γ2 and ν
differ by at most a constant. Although neither of these hold beyond the Boolean setting
with uniform marginals, we show in this section that this surprisingly also extends to
non-signaling distributions.

Theorem 7. For any non-signaling distribution p ∈ C, with inputs in X × Y and
outcomes in A × B with A = |A|, B = |B|,

1. ν̃(p) ≤ (2KG + 1)γ̃2(p) when A = B = 2,
2. ν̃(p) ≤ [2AB(KG + 1) − 1]γ̃2(p) for any A,B.
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The proof uses affine combinations to reduce to the case of distributions with binary
outcomes and uniform marginals, where Grothendieck’s inequality may be applied.

The negative consequence is that one cannot hope to prove separations between clas-
sical and quantum communication using this method, except in the case where the num-
ber of outcomes is large. For binary outcomes at least, arguments based on analysing the
distance to the quantum set, without taking into account the structure of the distribution,
will not suffice to prove large separations. For instance, for the promise distribution
based on the Deutsch-Jozsa problem for which a linear lower bound is proven in [4],
the best lower bound one can achieve using our techniques is at most logarithmic. This
is the first example of a problem for which the corruption bound gives an exponentially
better lower bound than the Linial and Shraibman family of methods.

On the positive side, this is very surprising and interesting for quantum information,
since (by Theorem 5), it tells us that the set of quantum distributions cannot be much
larger than the local polytope, for any number of inputs and outcomes.

6 Upper Bounds for Non-signaling Distributions

We have seen that if a distribution can be simulated using t bits of communication, then
it may be represented by an affine model with coefficients exponential in t (Theorem 4).
In this section, we consider the converse: how much communication is sufficient to sim-
ulate a distribution, given an affine model? This approach allows us to show that any
(shared randomness or entanglement-assisted) communication protocol can be simu-
lated with simultaneous messages, with an exponential cost to the simulation, which
was previously known only in the case of Boolean functions [25,10,26].

Our results imply for example that for any quantum distribution p ∈ Q, Q
‖
ε(p) =

O(log(n)), where n is the input size. This in effect replaces arbitrary entanglement in
the state being measured, with logarithmic quantum communication (using no addi-
tional resources such as shared randomness).

We use the superscript ‖ to indicate the simultaneous messages model, where Alice
and Bob each send a message to the referee, who without knowing the inputs, outputs
the value of the function, or more generally, outputs a, b with the correct probability
distribution conditioned on the inputs x, y.

Theorem 8. For any distribution p ∈ C with inputs in X × Y with |X × Y| ≤ 2n, and
outcomes in A × B with A = |A|, B = |B|, and any ε, δ < 1/2,

1. R
‖,pub
ε+δ (p) ≤ 16

[
ABν̃ε(p)

δ

]2
ln
[
4AB

δ

]
log(AB),

2. Q
‖
ε+δ(p) ≤ O

(
(AB)5

[
ν̃ε(p)

δ

]4
ln
[

AB
δ

]
log(n)

)
.

Proof idea. Let p = q+p+ − q−p− be an affine model for p. They use shared
randomness to generate samples (a, b) from the local distributions p+(a, b|x, y) and
p−(a, b|x, y), and send these samples to the referee, who then reconstructs the distribu-
tion p(a, b|x, y). If the players do not share randomness but are allowed to send quantum
messages to the referee (Item 2), they can use quantum fingerprinting.
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In the case of Boolean functions, corresponding to correlations Cf (x, y) ∈ {±1}
(see Def. 2), the referee’s job is made easier by the fact that he only needs to determine
the sign of the correlation with probability 1 − δ, which improves the bounds. Similar
improvements can be obtained for other types of promises on the distribution.

Theorem 9. Let f : {0, 1}n × {0, 1}n → {0, 1}, with sign matrix Cf , and ε, δ < 1/2.

1. R
‖,pub
δ (f) ≤ 4

[
ν̃ε(Cf )
1−2ε

]2
ln(1

δ ) ,

2. Q
‖
δ(f) ≤ O

(
log(n)

[
ν̃ε(Cf )
1−2ε

]4
ln(1

δ )
)

.

From Lemma 3, these bounds may also be expressed in terms of γα
2 , and the best upper

bounds are obtained from γ∞
2 (Cf ) = 1

εent(Cf ) . The first item then coincides with the
upper bound of [13].

Together with the bound between ν̃ and γ̃2 from Section 5, and the lower bounds on
communication complexity from Section 3, Theorems 8 and 9 immediately imply the
following corollaries.

Corollary 10. Let f : {0, 1}n × {0, 1}n → {0, 1}. If Qent
ε (f) ≤ q, then

1. R
‖,pub
δ (f) ≤ K2

G · 22q+2 ln(1
δ ) 1

(1−2ε)2 ,

2. Q
‖
δ(f) ≤ O

(
log(n)24q ln(1

δ ) 1
(1−2ε)4

)
.

For any distribution p ∈ C with inputs in X × Y with |X × Y| ≤ 2n, and outcomes in
A × B with A = |A|, B = |B|, and any ε, δ < 1/2, if Qent

ε (p) ≤ q,

3. R
‖,pub
ε+δ (p) ≤ O

(
24q (AB)4

δ2 ln2
[

AB
δ

])
,

4. Q
‖
ε+δ(p) ≤ O

(
28q (AB)9

δ4 ln
[

AB
δ

]
log(n)

)
.

The first two items can be compared to results of Yao, Shi and Zhu, and Gavinsky et
al. [25,10,26], who show how to simulate any (logarithmic) communication protocol for
Boolean functions in the simultaneous messages model, with an exponential blowup in
communication. The last two items extend these results to arbitrary distributions.

In particular, Item 3 gives in the special case q = 0, that is, p ∈ Q, a much simpler
proof of the constant upper bound on approximating quantum distributions, which Shi
and Zhu prove using sophisticated techniques based on diamond norms [10]. Moreover,
Item 3 is much more general as it also allows to simulate protocols requiring quantum
communication in addition to entanglement. As for Item 4, it also has new interest-
ing consequences. For example, it implies that quantum distributions (q = 0) can be
approximated with logarithmic quantum communication in the simultaneous messages
model, using no additional resources such as shared randomness, and regardless of the
amount of entanglement in the bipartite state measured by the two parties.

7 Conclusion and Open Problems

By studying communication complexity in the framework provided by the study of
quantum non-locality (and beyond), we have given very natural and intuitive interpreta-
tions of the otherwise very abstract lower bounds of Linial and Shraibman. Conversely,
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it has allowed us to port these very strong and mathematically elegant lower bound
methods to the much more general problem of simulating non-signaling distributions.

Since many communication problems may be reduced to the task of simulating a
non-signaling distribution, we hope to see applications of this lower bound method to
concrete problems for which standard techniques do not apply, in particular for cases
that are not Boolean functions, such as non-Boolean functions, partial functions or rela-
tions. Let us also note that our method can be generalized to multipartite non-signaling
distributions, and will hopefully lead to applications in the number-on-the-forehead
model, for which quantum lower bounds seem hard to prove.

In the case of binary distributions with uniform marginals (which includes in partic-
ular Boolean functions), Tsirelson’s theorem and Grothendieck’s inequality (Proposi-
tion 3) imply that there is at most a constant gap between ν and γ2. For this reason, it
was known that Linial and Shraibman’s factorization norm lower bound technique gives
lower bounds of the same of order for classical and quantum communication (note that
this is also true for the related discrepancy method). Despite the fact that Tsirelson’s
theorem and Grothendieck’s inequality are not known to extend beyond the case of
Boolean outcomes with uniform marginals, we have shown that in the general case of
distributions, there is also a constant gap between ν̃ and γ̃2. While this may be seen as a
negative result, this also reveals interesting information about the structure of the sets of
local and quantum distributions. In particular, this could have interesting consequences
for the study of non-local games.
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Abstract. In this paper, we investigate three strategies of how to use
a spanning tree T of a graph G to navigate in G, i.e., to move from
a current vertex x towards a destination vertex y via a path that is
close to optimal. In each strategy, each vertex v has full knowledge of
its neighborhood NG[v] in G (or, k-neighborhood Dk(v, G), where k is a
small integer) and uses a small piece of global information from spanning
tree T (e.g., distance or ancestry information in T ), available locally at
v, to navigate in G. We investigate advantages and limitations of these
strategies on particular families of graphs such as graphs with locally
connected spanning trees, graphs with bounded length of largest induced
cycle, graphs with bounded tree-length, graphs with bounded hyperbol-
icity. For most of these families of graphs, the ancestry information from
a BFS-tree guarantees short enough routing paths. In many cases, the
obtained results are optimal up to a constant factor.

1 Introduction

As part of the recent surge of interest in different kind of networks, there has
been active research exploring strategies for navigating synthetic and real-world
networks (modeled usually as graphs). These strategies specify some rules to
be used to advance in a graph from a given vertex towards a target vertex
along a path that is close to shortest. Current strategies include (but not limited
to): routing with full-tables, interval routing, routing labeling schemes, greedy
routing, geographic routing, compass routing, etc. in wired or wireless communi-
cation networks and in transportation networks (see [13,15,20,26,31] and papers
cited therein); routing through common membership in groups, popularity, and
geographic proximity in social networks and e-mail networks (see [9,20,23] and
papers cited therein).

Navigation in communication networks is performed using a routing scheme,
i.e., a mechanism that can deliver packets of information from any vertex of
a network to any other vertex. In most strategies, each vertex v of a graph
has full knowledge of its neighborhood and uses a piece of global information

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 282–294, 2009.
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available to it about the graph topology – some ”sense of direction” to each
destination, stored locally at v. Based only on this information and the address
of a destination, vertex v needs to decide whether the packet has reached its
destination, and if not, to which neighbor of v to forward the packet.

One of the most popular strategies in wireless (and social) networks is the
geographic routing (sometimes called also the greedy geographic routing), where
each vertex forwards the packet to the neighbor geographically closest to the
destination (see survey [15] and paper [23]). Each vertex of the network knows
its position (e.g., Euclidean coordinates) in the underlying physical space and
forwards messages according to the coordinates of the destination and the co-
ordinates of neighbors. Although this greedy method is effective in many cases,
packets may get routed to where no neighbor is closer to the destination than
the current vertex. Many recovery schemes have been proposed to route around
such voids for guaranteed packet delivery as long as a path exists [1,19,22].
These techniques typically exploit planar subgraphs (e.g., Gabriel graph, Rela-
tive Neighborhood graph), and packets traverse faces on such graphs using the
well-known right-hand rule.

All earlier papers assumed that vertices are aware of their physical location,
an assumption which is often violated in practice for various of reasons (see
[8,21,27]). In addition, implementations of recovery schemes are either based on
non-rigorous heuristics or on complicated planarization procedures. To overcome
these shortcomings, recent papers [8,21,27] propose routing algorithms which as-
sign virtual coordinates to vertices in a metric space X and forward messages
using geographic routing in X . In [27], the metric space is the Euclidean plane,
and virtual coordinates are assigned using a distributed version of Tutte’s ”rub-
ber band” algorithm for finding convex embeddings of graphs. In [8], the graph
is embedded in Rd for some value of d much smaller than the network size,
by identifying d beacon vertices and representing each vertex by the vector of
distances to those beacons. The distance function on Rd used in [8] is a modifica-
tion of the �1 norm. Both [8] and [27] provide substantial experimental support
for the efficacy of their proposed embedding techniques – both algorithms are
successful in finding a route from the source to the destination more than 95%
of the time – but neither of them has a provable guarantee. Unlike embeddings
of [8] and [27], the embedding of [21] guarantees that the geographic routing will
always be successful in finding a route to the destination, if such a route exists.
Algorithm of [21] assigns to each vertex of the network a virtual coordinate in
the hyperbolic plane, and performs greedy geographic routing with respect to
these virtual coordinates. More precisely, [21] gets virtual coordinates for ver-
tices of a graph G by embedding in the hyperbolic plane a spanning tree of G.
The proof that this method guaranties delivery is relied only on the fact that
the hyperbolic greedy route is no longer than the spanning tree route between
two vertices; even more, it could be much shorter as greedy routes take enough
short cuts (edges which are not in the spanning tree) to achieve significant sav-
ing in stretch. However, although the experimental results of [21] confirm that
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the greedy hyperbolic embedding yields routes with low stretch when applied to
typical unit-disk graphs, the worst-case stretch is still linear in the network size.

Previous work. Motivated by the work of Robert Kleinberg [21], in paper [6],
we initiated exploration of the following strategy in advancing in a graph from a
source vertex towards a target vertex. Let G = (V,E) be a (unweighted) graph
and T be a spanning tree of G. To route/move in G from a vertex x towards a
target vertex y, use the following rule:

TDGR(Tree Distance Greedy Routing) strategy: from a current vertex z (initially

z = x), unless z = y, go to a neighbor of z in G that is closest to y in T .

In this strategy, each vertex has full knowledge of its neighborhood in G and
can use the distances in T to navigate in G. Thus, additionally to standard
local information (the neighborhood NG(v)), the only global information that is
available to each vertex v is the topology of the spanning tree T . In fact, v can
know only a very small piece of information about T and still be able to infer
from it the necessary tree-distances. It is known [14,24,25] that the vertices of
an n-vertex tree T can be labeled in O(n log n) total time with labels of up to
O(log2 n) bits such that given the labels of two vertices v, u of T , it is possible to
compute in constant time the distance dT (v, u), by merely inspecting the labels
of u and v. Hence, one may assume that each vertex v of G knows, additionally
to its neighborhood in G, only its O(log2 n) bit distance label. This distance
label can be viewed as a virtual coordinate of v.

For each source vertex x and target vertex y, by this routing strategy, a
path, called a greedy routing path, is produced (clearly, this routing strategy will
always be successful in finding a route to the destination). Denote by gG,T (x, y)
the length (i.e., the number of edges) of a longest greedy routing path that can
be produced for x and y using this strategy and T . We say that a spanning tree
T of a graph G is an additive r-carcass for G if gG,T (x, y) ≤ dG(x, y) + r for
each ordered pair x, y ∈ V (in a similar way one can define also a multiplicative
t-carcass of G, where gG,T (x, y)/dG(x, y) ≤ t). Note that this notion differs from
the notion of ”remote-spanners” introduced recently in [18].

In [6], we investigated the problem, given a graph family F , whether a small
integer r exists such that any graph G ∈ F admits an additive r-carcass. We
showed that rectilinear p×q grids, hypercubes, distance-hereditary graphs, dually
chordal graphs (and, therefore, strongly chordal graphs and interval graphs), all
admit additive 0-carcasses. Furthermore, every chordal graph G admits an addi-
tive (ω(G) + 1)-carcass (where ω(G) is the size of a maximum clique of G), each
chordal bipartite graph admits an additive 4-carcass. In particular, any k-tree ad-
mits an additive (k + 2)-carcass. All those carcasses were easy to construct.

This new combinatorial structure, carcass, turned out to be ”more attainable”
than the well-known structure, tree spanner (a spanning tree T of a graph G is
an additive tree r-spanner if for any two vertices x, y of G, dT (x, y) ≤ dG(x, y)+r
holds, and is a multiplicative tree t-spanner if for any two vertices x, y, dT (x, y) ≤
t dG(x, y) holds). It is easy to see that any additive (multiplicative) tree r-
spanner is an additive (resp., multiplicative) r-carcass. On the other hand, there
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is a number of graph families not admitting any tree spanners, yet admitting
very good carcasses. For example, any hypercube has an additive 0-carcass (see
[6]) but does not have any tree r-spanner (additive or multiplicative) for any
constant r. The same holds for 2-trees and chordal bipartite graphs [6].

Results of this paper. All graphs occurring in this paper are connected,
finite, undirected, unweighted, loopless and without multiple edges. In a graph
G = (V,E) (n = |V |,m = |E|) the length of a path from a vertex v to a vertex
u is the number of edges in the path. The distance dG(u, v) between vertices u
and v is the length of a shortest path connecting u and v. The neighborhood of a
vertex v of G is the set NG(v) = {u ∈ V : uv ∈ E} and the closed neighborhood
of v is NG[v] = NG(v) ∪ {v}. The disk of radius k centered at v is the set of all
vertices at distance at most k to v, i.e., Dk(v,G) = {u ∈ V : dG(u, v) ≤ k}.

In this paper we continue investigations of how to use spanning trees to navigate
in graphs. Spanning trees are very well understood structures in graphs. There are
many results available in literature on how to construct (and maintain) different
spanning trees in a number of settings; including in distributed way, in self stabi-
lizing and localized way, etc. (see [10,11,12,17] and papers cited therein).

Additionally to TDGR strategy, we propose to investigate two more strategies.
Let G = (V,E) be a graph and T be a spanning tree of G rooted at an arbitrary
vertex s. Using T , we associate an interval Iv with each vertex v such that,
for any two vertices u and v, Iu ⊆ Iv if and only if u is a descendent of v in
T . This can be done in the following way (see [29] and Fig. 1). By depth-first
search tour of T , starting at root, assign each vertex u of T a depth-first search
number DFS(u). Then, label u by interval [DFS(u), DFS(w)], where w is last
descendent of u visited by depth-first search. For two intervals Ia = [aL, aR] and
Ib = [bL, bR], Ia ⊆ Ib if and only if aL ≥ bL and aR ≤ bR. Let xTy denote the
(unique) path of T connecting vertices x and y, and let NG[xTy] = {v ∈ V : v
belongs to xTy or is adjacent to a vertex of xTy in G}.

IGR (Interval Greedy Routing) strategy.
To advance in G from a vertex x towards a target vertex y (y �= x), do:

if there is a neighbor w of x in G such that y ∈ Iw (i.e., w ∈ sTy),
then go to such a neighbor with smallest (by inclusion) interval;

else (which means x �∈ NG[sTy]), go to a neighbor w of x in G
such that x ∈ Iw and Iw is largest such interval.

IGRF (Interval Greedy Routing with forwarding to Father) strategy.
To advance in G from a vertex x towards a target vertex y (y �= x), do:

if there is a neighbor w of x in G such that y ∈ Iw (i.e., w ∈ sTy),
then go to such a neighbor with smallest (by inclusion) interval;

else (which means x �∈ NG[sTy]), go to the father of x in T (i.e., a neighbor
of x in G interval of which contains x and is smallest by inclusion).

Note that both, IGR and IGRF, strategies are simpler and more compact than
the TDGR strategy. In IGR and IGRF, each vertex v, additionally to standard
local information (the neighborhood NG(v)), needs to know only 2�log2 n� bits
of global information from the topology of T , namely, its interval Iv. Information
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Fig. 1. A graph and its rooted spanning tree with precomputed ancestry intervals. For
(ordered) pair of vertices 10 and 4, both IGR and IGRF produce path 10,8,3,4 (TDGR
produces 10,5,4). For pair 5 and 8, IGR produces path 5,2,1,8, while IGRF produces
path 5,3,8 (TDGR produces 5,10,8). For pair 5 and 7, IGR produces path 5,2,1,7, while
IGRF produces path 5,3,2,1,7 (TDGR produces 5,2,1,7).

stored in intervals gives a ”sense of direction” in navigation in G (current vertex
x either may already know intervals of its neighbors, or it can ask each neighbor
w, when needed, whether its interval Iw contains destination y or vertex x itself,
and if yes to send Iw to x). On the other hand, as we will show in this paper,
routing paths produced by IGR (IGRF) will have, in many cases, almost the
same quality as routing paths produced by TDGR. Moreover, in some cases,
they will be even shorter than routing paths produced by TDGR.

Let RG,T (x, y) be the routing path produced by IGR strategy (resp., by IGRF
strategy) for a source vertex x and a target vertex y in G using T . It will
be evident later that this path always exists, i.e., IGR strategy (resp., IGRF
strategy) guarantees delivery. Moreover, this path is unique for each ordered
pair x, y of vertices (note that, depending on tie breaking rule, TDGR can
produce different routing paths for the same ordered pair of vertices). Denote
by gG,T (x, y) the length (i.e., the number of edges) of path RG,T (x, y). We say
that a spanning tree T of a graph G is an additive r-frame (resp., an additive r-
fframe) for G if the length gG,T (x, y) of the routing path RG,T (x, y) produced by
IGR strategy (resp., by IGRF strategy) is at most dG(x, y) + r for each ordered
pair x, y ∈ V . In a similar way one can define also a multiplicative t-frame (resp.,
a multiplicative t-fframe) of G, where gG,T (x, y)/dG(x, y) ≤ t.

In Sections 2 and 3, we show that each distance-hereditary graph admits an
additive 0-frame (0-fframe) and each dually chordal graph (and, hence, each
interval graph, each strongly chordal graph) admits an additive 0-frame. In Sec-
tion 4, we show that each k-chordal graph admits an additive (k − 1)-frame
((k−1)-fframe), each chordal graph (and, hence, each k-tree) admits an additive
1-frame (1-fframe), each AT-free graph admits an additive 2-frame (2-fframe),
each chordal bipartite graph admits an additive 0-frame (0-fframe). Definitions
of the graph families will be given in appropriate sections (see also [3] for many
equivalent definitions of those families of graphs).
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To better understand full potentials and limitations of the proposed routing
strategies, in Section 5, we investigate also the following generalizations of them.
Let G be a (unweighted) graph and T be a (rooted) spanning tree of G.

k-localized TDGR strategy.
To advance in G from a vertex x towards a target vertex y, go, using

a shortest path in G, to a vertex w ∈ Dk(x, G) that is closest to y in T .

In this strategy, each vertex has full knowledge of its disk Dk(v,G) (e.g., all
vertices in Dk(v,G) and how to reach each of them via some shortest path of
G) and can use the distances in T to navigate in G. Let gG,T (x, y) be the length
of a longest path of G that can be produced for x and y using this strategy and
T . We say that a spanning tree T of a graph G is a k-localized additive r-carcass
for G if gG,T (x, y) ≤ dG(x, y) + r for each ordered pair x, y ∈ V (in a similar
way one can define also a k-localized multiplicative t-carcass of G.

k-localized IGR strategy.
To advance in G from a vertex x towards a target vertex y, do:

if there is a vertex w ∈ Dk(x,G) such that y ∈ Iw (i.e., w ∈ sTy),
then go, using a shortest path in G, to such a vertex w

with smallest (by inclusion) interval;
else (which means dG(x, sTy) > k),

go, using a shortest path in G, to a vertex w ∈ Dk(x,G) such
that x ∈ Iw and Iw is largest such interval.

k-localized IGRF strategy.
To advance in G from a vertex x towards a target vertex y, do:

if there is a vertex w ∈ Dk(x,G) such that y ∈ Iw (i.e., w ∈ sTy),
then go, using a shortest path in G, to such a vertex w

with smallest (by inclusion) interval;
else (which means dG(x, sTy) > k), go to the father of x in T .

In these strategies, each vertex has full knowledge of its disk Dk(v,G) (e.g., all
vertices in Dk(v,G) and how to reach each of them via some shortest path of
G) and can use the DFS intervals Iw to navigate in G. We say that a (rooted)
spanning tree T of a graph G is a k-localized additive r-frame (resp., a k-localized
additive r-fframe) for G if the length gG,T (x, y) of the routing path produced by
k-localized IGR strategy (resp., k-localized IGRF strategy) is at most dG(x, y)+r
for each ordered pair x, y ∈ V . In a similar way one can define also a k-localized
multiplicative t-frame (resp., a k-localized multiplicative t-fframe) of G.

We show, in Section 5, that any tree-length λ graph admits a λ-localized
additive 5λ-fframe (which is also a λ-localized additive 5λ-frame) and any δ-
hyperbolic graph admits a 4δ-localized additive 8δ-fframe (which is also a 4δ-
localized additive 8δ-frame). Definitions of these graph families will also be given
in appropriate sections. Additionally, we show that: for any λ ≥ 3, there exists
a tree-length λ graph G with n vertices for which no (λ − 2)-localized additive
1
2

√
log n−1

λ -fframe exists; for any λ ≥ 4, there exists a tree-length λ graph G

with n vertices for which no �2(λ− 2)/3�-localized additive 2
3

√
log 3(n−1)

4λ -frame
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exists; for any λ ≥ 6, there exists a tree-length λ graph G with n vertices for

which no �(λ − 2)/4�-localized additive 3
4

√
log n−1

λ -carcass exists.
Proofs omitted due to space limitation can be found in the journal version of

the paper [7].

2 Preliminaries

Let G = (V,E) be a graph and T be a spanning tree of G rooted at an arbitrary
vertex s. We assume that T is given together with the precomputed ancestry
intervals. The following facts are immediate from the definitions of IGR and
IGRF strategies.

Lemma 1. Any routing path RG,T (x, y) produced by IGR or IGRF, where x is
not an ancestor of y in T , is of the form x1 . . . xkyl . . . y1, where x1 = x, y1 = y,
xi is a descendent of xi+1 in T , and yi is an ancestor of yi−1 in T . In addition,
for any i ∈ [1, k], xi is not an ancestor of y, and, for any i ∈ [1, k− 1], xi is not
adjacent in G to any vertex of sTy.
If x is an ancestor of y in T , then RG,T (x, y) has only part yl . . . y1 with x = yl,
y = y1 and yi being an ancestor of yi−1 in T .

In what follows, any routing path produced by IGR (resp., by IGRF, by TDGR)
will be called IGR routing path (resp., IGRF routing path, TDGR routing path).

Corollary 1. A tale of any IGR routing path (any IGRF routing path) is also
an IGR routing path (IGRF routing path, respectively).

Corollary 2. Both IGR and IGRF strategies guarantee delivery.

Corollary 3. Let T be a BFS-tree (Breadth-First-Search–tree) of a graph G
rooted at an arbitrary vertex s, and let x and y be two vertices of G. Then, IGR
and IGRF strategies produce the same routing path RG,T (x, y) from x to y.

Lemma 2. For any vertices x and y, the IGR routing path (respectively, the
IGRF routing path) RG,T (x, y) is unique.

Lemma 3. Any IGR routing path RG,T (x, y) is an induced path of G.

Note that an IGRF routing path RG,T (x, y) = x1 . . . xkyl . . . y1 may not neces-
sarily be induced in the part x1 . . . xk. In [6], it was shown that routing paths
produced by TDGR strategy are also induced paths.

A graph G is called distance-hereditary if any induced path of G is a shortest
path (see [3] for this and equivalent definitions). By Lemma 3 and Corollary 3,
we conclude.

Theorem 1. Any spanning tree of a distance-hereditary graph G is an additive
0-frame of G, regardless where it is rooted. Any BFS-tree of a distance-hereditary
graph G is an additive 0-fframe of G.
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3 Frames for Dually Chordal Graphs

Let G be a graph. We say that a spanning tree T of G is locally connected if
the closed neighborhood NG[v] of any vertex v of G induces a subtree in T (i.e.,
T ∩NG[v] is a connected subgraph of T ). The following result was proven in [6].

Lemma 4. [6] If T is a locally connected spanning tree of a graph G, then T is
an additive 0-carcass of G.

Here we prove the following lemma.

Lemma 5. Let G be a graph with a locally connected spanning tree T , and let x
and y be two vertices of G. Then, IGR and TDGR strategies produce the same
routing path RG,T (x, y) from x to y (regardless where T is rooted).

Proof. Assume thatwewant to route froma vertexx towards a vertex y inG, where
x 	= y. We may assume that dG(x, y) ≥ 2, since otherwise both routing strategies
will produce path xy. Let x∗ (x′) be the neighbor of x in G chosen by IGR strategy
(resp., by TDGR strategy) to relay the message. We will show that x′ = x∗ by
considering two possible cases. We root the tree T at an arbitrary vertex s.

First assume that NG[x]∩sTy 	= ∅. By IGR strategy, we will choose a neighbor
x∗ ∈ NG[x] such that y ∈ Ix∗ and Ix∗ is the smallest interval by inclusion, i.e.,
x∗ is a vertex from NG[x] closest in sTy to y. If dT (x′, y) < dT (x∗, y), then
x′ /∈ sTy and the nearest common ancestor NCAT (x′, y) of x′, y in T must
be in x∗Ty. Since T ∩ NG[x] is a connected subgraph of T and x′, x∗ ∈ NG[x],
we conclude that NCAT (x′, y) must be in NG[x], too. Thus, we must have
x′ = NCAT (x′, y) = x∗.

Assume now that NG[x]∩sTy = ∅. By IGR strategy, we will choose a neighbor
x∗ ∈ NG[x] such that x ∈ Ix∗ and Ix∗ is the largest interval by inclusion, i.e.,
x∗ is a vertex from NG[x] closest in sTx to NCAT (x, y). Consider the nearest
common ancestor NCAT (x′, x∗) of x′, x∗ in T . Since T ∩ NG[x] is a connected
subgraph of T and x′, x∗ ∈ NG[x], we conclude that NCAT (x′, x∗) must be in
NG[x], too. Thus, necessarily, we must have x′ = NCAT (x′, x∗) = x∗.

From these two cases we conclude, by induction, that IGR and TDGR strate-
gies produce the same routing path RG,T (x, y) from x to y. ��

Corollary 4. If T is a locally connected spanning tree of a graph G, then T is
an additive 0-frame of G (regardless where T is rooted).

It has been shown in [2] that the graphs admitting locally connected spanning
trees are precisely the dually chordal graphs. Furthermore, [2] showed that the
class of dually chordal graphs contains such known families of graphs as strongly
chordal graphs, interval graphs and others. Thus, we have the following result.

Theorem 2. Every dually chordal graph admits an additive 0-frame. In partic-
ular, any strongly chordal graph (any interval graph) admits an additive 0-frame.

Note that, in [2], it was shown that dually chordal graphs can be recognized in
linear time, and if a graph G is dually chordal, then a locally connected spanning
tree of G can be efficiently constructed.
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4 Frames for k-Chordal Graphs and Subclasses

A graph G is called k-chordal if it has no induced cycles of size greater than
k, and it is called chordal if it has no induced cycle of length greater than 3.
Chordal graphs are precisely the 3-chordal graphs.

Theorem 3. Let G = (V,E) be a k-chordal graph. Any BFS-tree T of G is an
additive (k − 1)-fframe (and, hence, an additive (k − 1)-frame) of G. If G is a
chordal graph (i.e., k = 3), then any LexBFS-tree T (a special BFS-tree) of G
is an additive 1-fframe (and, hence, an additive 1-frame) of G.

A graph G is called chordal bipartite if it is bipartite and has no induced cycles of
size greater than 4. Chordal bipartite graphs are precisely the bipartite 4-chordal
graphs. A graph is called AT–free if it does not have an asteroidal triple, i.e. a
set of three vertices such that there is a path between any pair of them avoiding
the closed neighborhood of the third. It is known that AT-free graphs form a
proper subclass of 5-chordal graphs.

Theorem 4. Every chordal bipartite graph G admits an additive 0-fframe and
an additive 0-frame, constructible in O(n2) time. Any BFS-tree T of an AT-free
graph G is an additive 2-fframe (and, hence, an additive 2-frame) of G.

5 Localized Frames for Tree-Length λ Graphs and
δ-Hyperbolic Graphs

In this section, we show that any tree-length λ graph admits a λ-localized addi-
tive 5λ-fframe (which is also a λ-localized additive 5λ-frame) and any δ-hyperbolic
graph admits a 4δ-localized additive 8δ-fframe (which is also a 4δ-localized addi-
tive 8δ-frame). We complement these results with few lower bounds.

Tree-length λ graphs. The tree-length of a graph G is the smallest integer λ for
which G admits a tree-decomposition into bags of diameter at most λ. It has been
introduced and extensively studied in [5]. Chordal graphs are exactly the graphs
of tree-length 1, since a graph is chordal if and only if it has a tree-decomposition
into cliques (cf. [3]). AT-free graphs and distance-hereditary graphs are of tree-
length 2. More generally, k-chordal graphs have tree-length at most k/2. How-
ever, there are graphs with bounded tree-length and unbounded chordality, like
the wheel (here, the chordality is the smallest k such that the graph is k-chordal).
So, bounded tree-length graphs is a larger class than bounded chordality graphs.

We now recall the definition of tree-decomposition introduced by Robertson
and Seymour in their work on graph minors [28]. A tree-decomposition of a
graph G is a tree T whose vertices, called bags, are subsets of V (G) such that:
(1) ∪X∈V (T )X = V (G); (2) for all uv ∈ E(G), there exists X ∈ V (T ) such
that u, v ∈ X ; and (3) for all X,Y, Z ∈ V (T ), if Y is on the path from X to
Z in T then X ∩ Z ⊆ Y . The length of tree-decomposition T of a graph G is
maxX∈V (T ) maxu,v∈X dG(u, v), and the tree-length of G is the minimum, over
all tree-decompositions T of G, of the length of T .
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Theorem 5. If G has the tree-length λ, then any BFS-tree T of G is a λ-
localized additive 5λ-fframe (and, hence, a λ-localized additive 5λ-frame) of G.

Now, we provide some lower bound results.

Lemma 6. For any λ ≥ 3, there exists a tree-length λ graph without any (λ−2)-
localized additive (λa)-fframe for any constant a ≥ 1.

Corollary 5. For any λ ≥ 3, there exists a tree-length λ graph G with n vertices

for which no (λ − 2)-localized additive 1
2

√
log n−1

λ -fframe exists.

Lemma 7. For any λ ≥ 4, there exists a tree-length λ graph without any �2(λ−
2)/3�-localized additive (λa)-frame for any constant a ≥ 1.

Corollary 6. For any λ ≥ 4, there exists a tree-length λ graph G with n vertices

for which no �2(λ − 2)/3�-localized additive 2
3

√
log 3(n−1)

4λ -frame exists.

Lemma 8. For any λ ≥ 6, there exists a tree-length λ graph without any �(λ −
2)/4�-localized additive (λa)-carcass for any constant a ≥ 1.

Corollary 7. For any λ ≥ 6, there exists a tree-length λ graph G with n vertices

for which no �(λ − 2)/4�-localized additive 3
4

√
log n−1

λ -carcass exists.

δ-hyperbolic graphs. δ-Hyperbolic metric spaces were defined by M. Gromov
[16] in 1987 via a simple 4-point condition: for any four points u, v, w, x, the two
larger of the distance sums d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w)
differ by at most 2δ. They play an important role in geometric group theory,
geometry of negatively curved spaces, and have recently become of interest in
several domains of computer science, including algorithms and networking. For
example, (a) it has been shown empirically in [30] that the Internet topology em-
beds with better accuracy into a hyperbolic space than into an Euclidean space
of comparable dimension, (b) every connected finite graph has an embedding in
the hyperbolic plane so that the greedy routing based on the virtual coordinates
obtained from this embedding is guaranteed to work (see [21]). A connected
graph G = (V,E) equipped with standard graph metric dG is δ-hyperbolic if the
metric space (V, dG) is δ-hyperbolic. It is known (see [4]) that all graphs with
tree-length λ are λ-hyperbolic, and each δ-hyperbolic graph has the tree–length
O(δ logn).

Lemma 9. Let G be a δ-hyperbolic graph. Let s, x, y be arbitrary vertices of G
and P (s, x), P (s, y), P (y, x) be arbitrary shortest paths connecting those vertices
in G. Then, for vertices a ∈ P (s, x), b ∈ P (s, y) with dG(s, a) = dG(s, b) =
�dG(s,x)+dG(s,y)−dG(x,y)

2 �, the inequality dG(a, b) ≤ 4δ holds.

It is clear that δ takes values from {0, 1
2 , 1,

3
2 , 2,

5
2 , 3, . . .}, and if δ = 0 then G is

a tree. Hence, in what follows. we will assume that δ ≥ 1
2 .
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Theorem 6. If G is a δ-hyperbolic graph, then any BFS-tree T of G is a 4δ-
localized additive 8δ-fframe (and, hence, a 4δ-localized additive 8δ-frame) of G.

Proof. Let T be an arbitrary BFS-tree of G rooted at a vertex s. Let RG,T (x, y)
be the routing path from a vertex x to a vertex y produced by 4δ-localized IGRF
scheme using tree T . If x is on the T path from y to s, or y is on the T path
from x to s, it is easy to see that RG,T (x, y) is a shortest path of G.

Let sTx (resp., sTy) be the path of T from s to x (resp., to y) and P (y, x) be
an arbitrary shortest path connecting vertices x and y in G. By Lemma 9, for
vertices a ∈ sTx, b ∈ sTy with dG(s, a) = dG(s, b) = �dG(s,x)+dG(s,y)−dG(x,y)

2 �,
the inequality dG(a, b) ≤ 4δ holds. Furthermore, since dG(a, x) + dG(a, s) =
dG(s, x) and dG(b, y) + dG(b, s) = dG(s, y), from the choice of a and b, we have
dG(x, y) ≤ dG(a, x) + dG(b, y) ≤ dG(x, y) + 1.

Let x′ be a vertex of xTs with dG(x′, sT y) ≤ 4δ closest to x. Clearly, x′ belongs
to subpath aTx of path sTx. Let y′ be a vertex of path yTs with dG(x′, y′) ≤ 4δ
(i.e., y′ ∈ D4δ(x′, G)) closest to y. Then, according to 4δ-localized IGRF scheme,
the routing path RG,T (x, y) coincides with (xTx′)∪(a shortest path of G from x′

to y′)∪(y′Ty). We have length(RG,T (x, y)) = dG(x, x′) + dG(x′, y′) + dG(y′, y).
If y′ ∈ bT y, then length(RG,T (x, y)) = dG(x, x′) + dG(x′, y′) + dG(y′, y) ≤

dG(x, a)+4δ+dG(b, y) ≤ dG(x, y)+4δ+1. Assume now that y′ ∈ bT s and y′ 	= b.
Then, we have also x′ 	= a. Since T is a BFS-tree of G, dG(y′, b) must be at most
dG(y′, x′) (otherwise, x′ is closer than b to s in G, which is impossible). Thus,
dG(y′, b) ≤ dG(y′, x′) ≤ 4δ and, therefore, length(RG,T (x, y)) = dG(x, x′) +
dG(x′, y′) + dG(y′, y) ≤ dG(x, a) − 1 + 4δ + dG(b, y′) + dG(b, y) ≤ dG(x, y) + 1 −
1 + 8δ = dG(x, y) + 8δ.

Combining all cases, we conclude that T is a 4δ-localized additive 8δ-fframe
(and a 4δ-localized additive 8δ-frame) of G. ��
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Abstract. In this paper we formulate and study the problem of repre-
senting groups on graphs. We show that with respect to polynomial time
Turing reducibility, both abelian and solvable group representability are
all equivalent to graph isomorphism, even when the group is presented
as a permutation group via generators. On the other hand, the repre-
sentability problem for general groups on trees is equivalent to checking,
given a group G and n, whether a nontrivial homomorphism from G to
Sn exists. There does not seem to be a polynomial time algorithm for
this problem, in spite of the fact that tree isomorphism has polynomial
time algorithms.

1 Introduction

Representation theory of groups is a vast and successful branch of mathematics
with applications ranging from fundamental physics to computer graphics and
coding theory [5]. Recently representation theory has seen quite a few applica-
tions in computer science as well. In this article, we study some of the questions
related to representation of finite groups on graphs.

A representation of a group G usually means a linear representation, i.e. a
homomorphism from the group G to the group GL (V ) of invertible linear trans-
formations on a vector space V . Notice that GL (V ) is the set of symmetries or
automorphisms of the vector space V . In general, by a representation of G on
an object X , we mean a homomorphism from G to the automorphism group
of X . In this article, we study some computational problems that arise in the
representation of finite groups on graphs. Our interest is the following group rep-
resentability problem: Given a group G and a graph X , decide whether G has
a nontrivial representation on X . As expected this problem is closely connected
to graph isomorphism: We show, for example, that the graph isomorphism prob-
lem reduces to representability of abelian groups. In the other direction we show
that even for solvable groups the representability on graphs is decidable using
a graph isomorphism oracle. The reductions hold true even when the groups
are presented as permutation groups. One might be tempted to conjecture that
the problem is equivalent to Graph Isomorphism. However we conjecture that
this might not be the case. The non-solvable version of this problem seems to
be harder than graph isomorphism. For example, we were able to show that
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representability of groups on trees, a class of graphs for which isomorphism is
decidable in polynomial time, is as hard as checking whether, given an integer n
and a group G, the symmetric group Sn has a nontrivial subgroup homomorphic
to G, a problem for which no polynomial time algorithm is known.

2 Background

In this section we review the group theory required for the rest of the article.
Any standard text book on group theory, for example the one by Hall [4], will
contain the required results.

We use the following standard notation: The identity of a group G is denoted
by 1. In addition 1 also stands for the singleton group consisting of only the
identity. For groups G and H , H ≤ G (or G ≥ H) means that H is a subgroup
of G. Similarly by H � G (or G � H) we mean H is a normal subgroup of G.

Let G be any group and let x and y be any two elements. By the commutator
of x and y, denoted by [x, y], we mean xyx−1y−1. The commutator subgroup of
G is the group generated by the set {[x, y]|x, y ∈ G}. We denote the commutator
subgroup of G by G′. The following is a well known result in group theory [4,
Theorem 9.2.1]

Theorem 1. The commutator subgroup G′ is a normal subgroup of G and G/G′

is abelian. Further for any normal subgroup N of G such that G/N is abelian,
N contains G′ as a subgroup.

A group is abelian if it is commutative, i.e. gh = hg for all group elements g
and h. A group G is said to be solvable [4, Page 138] if there exists a decreasing
chain of groups G = G0 � G1 . . . � Gt = 1 such that Gi+1 is the commutator
subgroup of Gi for all 0 ≤ i < t.

An important class of groups that play a crucial role in graph isomorphism and
related problems are permutation groups. In this paper we follow the notation
of Wielandt [11] for permutation groups. Let Ω be a finite set. The symmetric
group on Ω, denoted by Sym (Ω), is the group of all permutations on the set
Ω. By a permutation group on Ω we mean a subgroup of the symmetric group
Sym (Ω). For any positive integer n, we will use Sn to denote the symmetric
group on {1, . . . , n}. Let g be a permutation on Ω and let α be an element of
Ω. The image of α under g will be denoted by αg. For a permutation group G
on Ω, the orbit of α is denoted by αG. Similarly if Δ is a subset of Ω then Δg

denotes the set {αg|α ∈ Δ}.
Any permutation group G on n symbols has a generating set of size at most n.

Thus for computational tasks involving permutation groups it is assumed that
the group is presented to the algorithm via a small generating set. As a result,
by efficient algorithms for permutation groups on n symbols we mean algorithms
that take time polynomial in the size of the generating set and n.

Let G be a subgroup of Sn and let G(i) denote the subgroup of G that fixes
pointwise j ≤ i, i.e. G(i) = {g|jg = j, 1 ≤ j ≤ i}. Let Ci denote a right
transversal, i.e. the set of right coset representative, for G(i) in G(i−1). The
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∪iCi is a generating set for G and is called the strong generating set for G.
The corner stone for most polynomial time algorithms for permutation group
is the Schreier-Sims [9,10,3] algorithm for computing the strong generating set
of a permutation group G given an arbitrary generating set. Once the strong
generating set is computed, many natural problems for permutation groups can
be solved efficiently. We give a list of them in the next theorem.

Theorem 2. Given a generating set for G there are polynomial time algorithms
for the following task.

1. Computing the strong generating set.
2. Computing the order of G.

By a graph we mean a finite undirected graph. For a graph X , V (X) and E (X)
denotes the set of vertices and edges respectively and Aut (X) denotes the group
of all automorphisms of X , i.e. permutations on V (X) that maps edges to edges
and non-edges to non-edges.

Definition 1 (Representation). A representation ρ from a group G to a graph
X is a homomorphism from G to the automorphism group Aut (X) of X.

Alternatively we say that G acts on (the right) of X via the representation ρ.
When ρ is understood, we use ug to denoted uρ(g).

A representation ρ is trivial if all the elements of G are mapped to the identity
permutation. A representation ρ is said to be faithful if it is an injection as well.
Under a faithful action G can be thought of as a subgroup of the automorphism
group. We say that G is representable on X if there is a nontrivial representation
from G to X . We now define the following natural computational problem.

Definition 2 (Group representability problem). Given a group G and a
graph X decide whether G is representable on X nontrivially.

We will look at various restrictions of the above problem. For example, we study
the abelian (solvable) group representability problem where our input groups are
abelian (solvable). We also study the group representability problem on trees,
by which we mean group representability where the input graph is a tree.

Depending on how the group is presented to the algorithm, the complexity
of the problem changes. One possible way to present G is to present it as a
permutation group on m symbols via a generating set. In this case the input size
is m+#V (X). On the other hand, we can make the task of the algorithm easier
by presenting the group via a multiplication table. In this paper we mostly
assume that the group is in fact presented via its multiplication table. Thus
polynomial time means polynomial in #G and #V (X). However for solvable
representability problem, our results extend to the case when G is a permutation
group presented via a set of generators.

We now look at the following closely related problem that occurs when we
study the representability of groups on trees.

Definition 3 (Permutation representability problem). Given a group G
and an integer n in unary, check whether there is a homomorphism from G to Sn.
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Overview of the Results

Our first result is to show that graph isomorphism reduces to abelian repre-
sentability problem. In fact we show that graph isomorphism reduces to the rep-
resentability of prime order cyclic groups on graphs. Next we show that solvable
group representability problem reduces to graph isomorphism problem. Thus
as far as polynomial time Turing reducibility is concerned abelian group repre-
sentability and solvable group representability are all equivalent to graph isomor-
phism. As a corollary we have, solvable group representability on say bounded
degree graphs or bounded genus graphs are all in polynomial time.

We then show that group representability on trees is equivalent to permu-
tation representability (Definition 3). This is in contrast to the corresponding
isomorphism problem because for trees, isomorphism testing is in polynomial
time whereas permutation representability problem does not appear to have a
polynomial time algorithm.

3 Abelian Representability

In this section we prove that the graph isomorphism problem reduces to abelian
group representability on graphs. Given input graphs X and Y of n vertices
each and any prime p > n, we construct a graph Z of exactly p · n vertices
such that X and Y are isomorphic if and only if the cyclic group of order p is
representable on Z. Since for any integer n there is a prime p between n and 2n
(Bertrand’s conjecture), the above constructions gives us a reduction from the
graph isomorphism problem to abelian group representability problem.

For the rest of the section, fix the input graphs X and Y . Our task is to
decide whether X and Y are isomorphic. Firstly we assume, without loss of
generality, that the graphs X and Y are connected, for otherwise we can take
their complement graphs X ′ and Y ′, which are connected and are isomorphic if
and only if X and Y are isomorphic. Let n be the number of vertices in X and
Y and let p be any prime greater than n. Consider the graph Z which is the
disjoint union of p connected components Z1, . . . , Zp where, for each 1 ≤ i < p,
each Zi is an isomorphic copy of X and Zp is an isomorphic copy of Y . First we
prove the following lemma.

Lemma 1. If X and Y are isomorphic then Z/pZ is representable on Z.

Proof. Clearly it is sufficient to show that there is an order p automorphism for
Z. Let h be an isomorphism from X to Y . For every vertex v in X , let vi denote
its copy in Zi. Consider the bijection g from V (Z) to itself defined as follows:
For all vertices v in V (X) and each 1 ≤ i < p − 2, let vg

i = vi+1. Further let g
map vp−1 to vh and vh to v1. It is easy to verify that g is an automorphism of
Z and has order p. ��

We now prove the converse

Lemma 2. If Z/pZ can be represented on Z then X and Y are isomorphic.
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Proof. If Z/pZ can be represented on Z then there exists a nonidentity auto-
morphism g of Z such that the order of g is p. We consider the action of the
cyclic group H , generated by g, on V (X). Since g is nontrivial, there exists at
least one H-orbit Δ of V (X) which is of cardinality greater than 1. However by
orbit stabiliser formula [11, Theorem 3.2], #Δ divides #H = p. Since p is prime,
Δ should be of cardinality p.

We prove that no two vertices of Δ belong to the same connected component.
Assume the contrary and let α and β be two elements of Δ which also belong
to the same connected component of Z. There is some 0 < t < p such that
αgt

= β. We assume further, without loss of generality, that t = 1, for otherwise
we replace g by the automorphism gt, which is also of order p, and carry out
the argument. Therefore αg = β lie in the same component of Z. It follows then
that, for each 0 ≤ i ≤ p − 1, the element αi = αgi

is in the same component of
Z, as automorphisms preserve edges and hence paths. However this means that
there is a component of Z that is of cardinality at least p. This is a contradiction
as each component of Z has at most n < p vertices as they are copies of either
X or Y .

It follows that there is some 1 ≤ i < p, for which g must map at least one
vertex of the component Zi to some vertex of Zp. As a result the automorphism
g maps the entire component Zi to Zp. Therefore the components Zi and Zp are
isomorphic and so are their isomorphic copies X and Y . ��

Given two graphs X and Y of n vertices we find a prime p such that n < p < 2n,
construct the graph Z and construct the multiplication table for Z/pZ. This
requires only logarithmic space in n. Using Lemmas 1 and 2 we have the desired
reduction.

Theorem 3. The graph isomorphism problem logspace many-one reduces to
abelian group representability problem.

4 Solvable Representability Problem

In the previous section we proved that abelian group representability is at least
as hard as graph isomorphism. In this section we show that solvable group repre-
sentability is polynomial time Turing reducible to the graph isomorphism prob-
lem. We claim that a solvable group G is representable on X if and only if
#Aut (X) and #G/G′ have a common prime factor, where G′ is commutator
subgroup of G. We do this in two stages.

Lemma 3. A solvable group G can be represented on a graph X if #G/G′ and
#Aut (X) have a common prime factor.

Proof. Firstly notice that it suffices to prove that there is a nontrivial homomor-
phism, say ρ, from G/G′ to Aut (X). A nontrivial representation for G can be
obtained by composing the natural quotient homomorphism from G onto G/G′

with ρ.
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Recall that the quotient group G/G′ is an abelian group and hence can be
represented on X if for some prime p that divides #G/G′, there is an order
p automorphism for X . However by the assumption of the theorem, there is a
common prime factor, say p, of #G/G′ and #Aut (X). Therefore, by Cayley’s
theorem there is an order p element in Aut (X). As a result, G/G′ and hence G
is representable on X . ��

To prove the converse, for the rest of the section fix the input, the solvable group
G and the graph X . Consider any nontrivial homomorphism ρ from the group G
to Aut (X). Let H ≤ Aut (X) denote the image of the group G under ρ. We will
from now on consider ρ as an automorphism from G onto H . Since the subgroup
H is the homomorphic image of G, H itself is a solvable group.

Lemma 4. The homomorphism ρ maps the commutator subgroup G′ of G onto
the commutator subgroup H ′.

Proof. First we prove that ρ(G′) ≤ H ′. For this notice that for all x and y in G,
since ρ is a homomorphism, ρ([x, y]) = [ρ(x), ρ(y)] is an element of H ′. As G′ is
generated by the set {[x, y]|x, y ∈ G} of all commutators, ρ(G′) ≤ H ′. To prove
the converse notice that ρ is a surjection on H . Therefore for any element h of
H , we have element xh of G such that ρ(xh) = h. Consider the commutator [g, h]
for any two elements g and h of H . We have ρ([xg, xh]) = [g, h]. This proves that
all the commutators of H are in the image of G′ and hence ρ(G′) ≥ H ′. ��

We have the following result about solvable groups that directly follows from
the definition of solvable groups [4, Page 138].

Lemma 5. Let G be any nontrivial solvable group then its commutator subgroup
G′ is a strict subgroup of G.

Proof. By the definition of solvable groups, there exist a chain G = G0�G1 . . .�
Gt = 1 such that Gi+1 is the commutator subgroup of Gi for all 0 ≤ i < t. If
G = G′ = G1 then G = Gi for all 0 ≤ i ≤ t implying G = 1 ��

We are now ready to prove the converse of Lemma 3.

Lemma 6. Let G be any solvable group and let X be any graph. The orders
#G/G′ and #Aut (X) have a common prime factor if G is representable on
graph X.

Proof. Let ρ be any nontrivial homomorphism from G to Aut (X), and let H be
the image of group G under this homomorphism. Since the commutator subgroup
G′ is strictly contained in the group G (Lemma 5), order of the quotient group
#G/G′ > 1. Furthermore, the image group H itself is solvable and nontrivial,
as it is the image of a solvable group G under a nontrivial homomorphism.
Therefore, the commutator subgroup H ′ is strictly contained in H implying
#H/#H ′ > 1.

Consider the homomorphism ρ̃ from G onto H/H ′ defined as ρ̃(g) = ρ(g)H ′.
Since ρ maps G′ onto H ′, we have that G′ is in the kernel of ρ̃. Therefore, ρ̃ can
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be refined to a map from G/G′ onto H/H ′. Clearly the prime factors of #H/H ′

are all prime factors of #G/G′. However, any prime factor of #H/H ′ is a prime
factor of Aut (X), as both H and H ′ are subgroups of Aut (X). Therefore, the
orders of G/G′ and Aut (X) have a common prime factor. ��

The order of the automorphism group of the input graph X can be computed in
polynomial time using an oracle to the graph isomorphism problem [7]. Further
since the automorphism group is a subgroup of Sn, where n is the cardinality of
V (X), all its prime factors are less than n and hence can be determined. Also
since G is given as a table, its commutator subgroup G′ can be computed in poly-
nomial time and the prime factors of #G/G′ can also be similarly determined.
Therefore we can easily check, given the group G via its multiplication table and
the graph X , whether the order of the quotient group G/G′ has common factors
with the order of Aut (X). We thus have the following theorem.

Theorem 4. The problem of deciding whether a solvable group can be repre-
sented on a given graph Turing reduces to graph isomorphism problem.

For the reduction in the above theorem to work, it is sufficient to compute the
order of G and its commutator subgroup G′. This can be done even when the
group G is presented as a permutation group on m symbols via a generating set.
To compute #G we can compute the strong generating set of G and use Theo-
rem 2. Further given a generating set for G, a generating set for its commutator
subgroup G′ can be compute in polynomial time [3, Theorem 4]. Therefore, the
order of G/G′ can be computed in polynomial time given the generating set for
G. Furthermore, G and G′ are subgroups of Sm and hence all their prime factors
are less than m and can be determined. We can then check whether #G/G′

has any common prime factors with #Aut (X) just as before using the graph
isomorphism oracle. Thus we have the following theorem.

Theorem 5. The solvable group representability problem, where the group is
presented as a permutation group via a generating set, reduces to the graph iso-
morphism problem via polynomial time Turing reduction.

5 Representation on Tree

In this section we study the representation of groups on trees. It is known that
isomorphism of trees can be tested in polynomial time [2]. However we show
that the group representability problem over trees is equivalent to permutation
representability problem (Definition 3), a problem for which, we believe, there
is no polynomial time algorithm.

Firstly, to show that permutation representability problem is reducible to
group representability problem on trees, it is sufficient to construct, given and
integer n, a tree whose automorphism group is Sn. Clearly a tree with n leaves,
all of which is connected to the root, gives such a tree (see Figure 1). Therefore
we have the following lemma.
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. . .

Fig. 1. Tree with automorphism group Sn

Lemma 7. Permutation representability reduces to representability on tree.

To prove the converse, we first reduce the group representability problem on an
arbitrary tree to the problem of representability on a rooted tree. We then do
a divide and conquer on the structure of the rooted tree using the permutation
representability oracle. The main idea behind this reduction is Lemma 11 where
we show that for any tree T , either there is a vertex which is fixed by all au-
tomorphisms, in which case we can choose this vertex as the root, or there are
two vertices α and β connected by an edge which together forms an orbit under
the action of Aut (T ), in which case we can add a dummy root (see Figure 2) to
make it a rooted tree without changing the automorphism group.

α β α β

γ

Fig. 2. Minimal orbit has two elements

For the rest of the section fix a tree T . Let Δ be an orbit in the action of
Aut (T ) on V (T ). We define the graph TΔ as follows: A vertex γ (or edge e)
of T belongs to TΔ if there are two vertices α and β in Δ such that γ (or e)
is contained in the path from α to β. It is easy to see that TΔ contains paths
between any two vertices of Δ. Any vertex in TΔ is connected to some vertex
in Δ and all vertices in Δ are connected in TΔ which implies TΔ is connected.
Furthermore TΔ has no cycle, as its edge set is a subset of the edge set of T .
Therefore TΔ is a tree.

Lemma 8. Let g be any automorphism of T and consider any vertex γ (or edge
e) of TΔ. Then the vertex γg (or edge eg) is also in TΔ.

Proof. Since γ (or e) is present in TΔ, there exists α and β in Δ such that γ (or
e) is in the path between α and β. Also since automorphisms preserve paths, γg

(or eg) is in the path from αg to βg. ��

Lemma 9. The orbit Δ is precisely the set of leaves of TΔ.

Proof. First we show that all leaf nodes of TΔ are in orbit Δ. Any node α of TΔ

must lie on a path such that the endpoints are in orbit Δ. If α is a leaf of TΔ,
this can only happen when α itself is in Δ.
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We will prove the converse by contradiction. If possible let α be a vertex in
the orbit Δ which is not a leaf of TΔ. Vertex α must lie on the path between
two leaves β and γ. Also since β and γ are leaves of TΔ, they are in the orbit Δ.

Let g be an automorphism of T which maps α to β. Such an automorphism
exists because α and β are in the same orbit Δ. The image αg = β must lie
on the path between βg and γg and neither βg or γg is β. This is impossible
because β is a leaf of TΔ. ��

Lemma 10. Let γ be a vertex in orbit Σ. If γ is a vertex of the subtree TΔ then
subtree TΣ is a subtree of TΔ.

Proof. Assume that Δ is different from Σ, for otherwise the proof is trivial. First
we show that all the vertices of Σ are vertices of TΔ. The vertex γ lies on a path
between two vertices of Δ, say α and β. Take any vertex γ′ from the orbit Σ.
There is an automorphism g of T which maps γ to γ′. Now γ′ = γg lies on the
path between αg and βg and hence is in the tree TΔ.

Consider any edge e of TΣ. There exists γ1 and γ2 of Σ such that e is on
the path from γ1 to γ2. By previous argument, T contains γ1 and γ2. Since T
is a tree, this path is unique and any subgraph of T , in which γ1 and γ2 are
connected, must contain this path. Hence TΔ contains e. ��

Lemma 11. Let T be any tree then either there exists a vertex α that is fixed
by all the automorphisms of T or there exists two vertices α and β connected
via an edge e such that {α, β} is an orbit of Aut (T ). In the latter case every
automorphism maps e to itself.

Proof. Consider the following partial order between orbits of Aut (T ): Σ ≤ Δ if
TΣ is a subtree of TΔ. The relation ≤ is clearly a partial order because the “sub-
tree” relation is. Since there are finitely many orbits there is always a minimal
orbit under the above ordering. From Lemmas 9 and 10 it follows that for an
orbit Δ, if Σ is the orbit containing an internal node γ of TΔ then Σ is strictly
less than Δ. Therefore for any minimal orbit Δ, all the nodes are leaves. This
is possible if either TΔ is a singleton vertex α, or consists of exactly two nodes
connected via an edge. In the former case all automorphisms of T have to fix α,
whereas in the latter case the two nodes may be flipped but the edge connecting
them has to be mapped to itself. ��

It follows from Lemma 11 that any tree T can be rooted, either at a vertex or at
an edge with out changing the automorphism. Given a tree T , since computing
the generating set for Aut (T ) can be done in polynomial time, we can deter-
mine all the orbits of Aut (T ) by a simple transitive closure algorithm. Having
computed these orbits, we determine whether T has singleton orbit or an orbit
of cardinality 2. For trees with an orbit containing a single vertex α, rooting the
tree at α does not change the automorphism group. On the other hand if the
tree has an orbit with two elements we can add a dummy root as in Figure 2
without changing the automorphism group. Since by Lemma 11 these are the
only two possibilities we have the following theorem.
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Theorem 6. There is a polynomial time algorithm that, given as input a tree
T , outputs a rooted tree T ′ such that for any group G, G is representable on T
if and only if G is representable on the rooted tree T ′.

For the rest of the section by a tree we mean a rooted tree. We will prove the
reduction from representability on rooted trees to permutation representability.
First we characterise the automorphism group of a tree in terms of wreath prod-
uct [Theorem 7] and then show that we can find a nontrivial homomorphism, if
there exists one, from the given group G to this automorphism group by querying
a permutation representability oracle.

Definition 4 (Semidirect product and wreath product). Let G and A be
any two groups and let ϕ be any homomorphism from G to Aut (A), then the
semi-direct product G �ϕ A is the group whose underlying set is G × A and the
multiplication is defined as (g, a)(h, b) = (gh, aϕ(h)b).

We use Wn(A) to denote the wreath product Sn % A which is the semidirect
product Sn�ϕAn, where An is the n-fold direct product of A and ϕ(h), for each h
in Sn, permutes a ∈ An according to the permutation h, i.e. maps (. . . , ai, . . .) ∈
An to (. . . , aj, . . .) where jh = i.

As the wreath product is a semidirect product, we have the following lemma.

Lemma 12. The wreath product Wn(A) contains (isomorphic copies of) Sn and
An as subgroups such that An is normal and the quotient group Wn(A)/An = Sn.

For the rest of the section fix the following: Let T be a tree with root ω with
k children. Consider the subtrees of T rooted at each of these k children and
partition them such that two subtrees are in the same partition if and only if
they are isomorphic. Let t be the number of partitions and let ki, for (1 ≤ i ≤ t),
be the number of subtrees in the i-th partition. For each i, pick a representative
subtree Ti from the i-th partition and let Ai denote the automorphism group of
Ti. The following result is well known but a proof is given for completeness.

Theorem 7. The automorphism group of the tree T is (isomorphic to) the direct
product

∏t
i=1 Wki(Ai).

Proof. Let ω1, . . . , ωk be the children of the root ω and let Xi denote the subtree
rooted at ωi. We first consider the case when t = 1, i.e. all the subtrees Xi are
isomorphic. Any automorphism g of T must permute the children ωi’s among
themselves and whenever ωg

i = ωj , the entire subtree Xi maps to Xj . As all the
subtrees Xi are isomorphic to T1, the forest {X1, . . . , Xk} can be thought of as
the disjoint union of k copies of the tree T1 by fixing, for each i, an isomorphism
σi from T1 to Xi.

For an automorphism g of T , define the permutation g̃ ∈ Sk and the auto-
morphisms ai(g) of T1 as follows: if ωg

i = ωj then ig̃ = j and ai(g) = σigσ
−1
j .

Consider the map φ from Aut (T ) to Wk(A) which maps an automorphism g to
the group element (g̃, a1(g), . . . , ak(g)) in Wk(A). It is easy to verify that φ is
the desired isomorphism.
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When the number of partitions t is greater than 1, any automorphism of T
fixes the root ω and permutes the subtrees in the i-th partition among them-
selves. Therefore the automorphism group of T is same as the automorphism
group of the collection of forests Fi one for each partition i. Each forest is a
disjoint union of ki copies of Ti and we can argue as before that its automor-
phism group is (isomorphic to) Wki(A). Therefore Aut (T ) should be the direct
product

∏t
i=1 Wki (Ai). ��

Lemma 13. If the group G can be represented on the tree T , then there exists
1 ≤ i ≤ t such that there is a nontrivial homomorphism from G to Wki(Ai).

Proof. If there is a nontrivial homomorphism from a group G to the direct
product of groups H1, . . . , Ht then for some i, 1 ≤ i ≤ t, there is a nontrivial
homomorphism from G to Hi. The lemma then follows from Theorem 7. ��

Lemma 14. If there is a nontrivial homomorphism ρ from a group G to Wn(A)
then there is also a nontrivial homomorphism from G either to Sn or to A.

Proof. Let ρ be a nontrivial homomorphism G to Wn(A). Since An is a normal
subgroup of Wn(A) and the quotient group Wn(A)/An is Sn, there is a homo-
morphism ρ′ from Wn(A) to Sn with kernel An. The composition of ρ and ρ′ is
a homomorphism from G to Sn.

If ρ′ · ρ is trivial then ρ′ maps all elements of ρ(G) to identity of Sn. Which
implies that ρ(G) is a subgroup of the kernel of ρ′, that is An. So, ρ is a nontrivial
homomorphism from G to An. Hence there must be a nontrivial homomorphism
from G to A. ��

Theorem 8. Given a group G and a rooted tree T with n nodes and an oracle
for deciding whether G has a nontrivial homomorphism to Sm for 1 ≤ m ≤ n,
it can be decided in polynomial time whether G can be represented on T .

Proof. If the tree has only one vertex then reject. Otherwise let t, k1, . . . , kt

and A1, . . . At be the quantities as defined in Theorem 7. Since there is efficient
algorithm to compute tree isomorphism, t and k1, . . . , kt can be computed in
polynomial time. If G is representable on T then, by Lemma 13 and Lemma 14,
there is a nontrivial homomorphism from G to either Ski or Ai for some i.
Using the oracle, check whether there is a nontrivial homomorphism to any of
the symmetric groups. If found then accept, otherwise for all i, decide whether
there is a nontrivial homomorphism to Ai by choosing a subtree Ti from the
ith partition and recursively asking whether G is representable on Ti. The total
number of recursive calls is bounded by the number of vertices of T . Hence the
reduction is polynomial time. ��

6 Conclusion

In this paper we studied the group representability problem, a computational
problem that is closely related to graph isomorphism. The representability prob-
lem could be equivalent to graph isomorphism, but the results of Section 5 give
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some, albeit weak, evidence that this might not be the case. It would be in-
teresting to know what is the exact complexity of this problem vis a vis the
graph isomorphism problem. We know from the work of Mathon [7] that the
graph isomorphism problem is equivalent to its functional version where, given
two graphs X and Y , we have to compute an isomorphism if there exists one.
The functional version of group representability, namely give a group G and a
graph X compute a nontrivial representation if it exists, does not appear to be
equivalent to the decision version. Also it would be interesting to know if the
representability problem shares some of lowness of graph isomorphism [8,6,1].
Our hope is that, like the study of group representation in geometry and mathe-
matics, the study of group representability on graphs help us better understand
the graph isomorphism problem.
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Admissible Strategies in Infinite Games over
Graphs�

Marco Faella

Università di Napoli “Federico II”, Italy

Abstract. We consider games played on finite graphs, whose objective
is to obtain a trace belonging to a given set of accepting traces. We focus
on the states from which Player 1 cannot force a win. We compare several
criteria for establishing what is the preferable behavior of Player 1 from
those states, eventually settling on the notion of admissible strategy.

As the main result, we provide a characterization of the goals ad-
mitting positional admissible strategies. In addition, we derive a simple
algorithm for computing such strategies for various common goals, and
we prove the equivalence between the existence of positional winning
strategies and the existence of positional subgame perfect strategies.

1 Introduction

Games played on finite graphs have been widely investigated in Computer Science,
with applications including controller synthesis [PR89, ALW89, dAFMR05], pro-
tocol verification [KR01, BBF07], logic and automata theory [EJ91, Zie98], and
compositional verification [dAH01].

These games consist of a finite graph, whose set of states is partitioned into
Player-1 and Player-2 states, and a goal, which is a set of infinite sequences of
states. The game consists in the two players taking turns at picking a successor
state, eventually giving rise to an infinite path in the game graph. Player 1
wins the game if she manages to obtain an infinite path belonging to the goal,
otherwise Player 2 wins. A (deterministic) strategy for a player is a function
that, given the current history of the game (a finite sequence of states), chooses
the next state. A state s is said to be winning if there exists a strategy that
guarantees victory to Player 1 regardless of the moves of the adversary, if the
game starts in s. A state that is not winning is called losing.

The main algorithmic concern of the classical theory of these games is de-
termining the set of winning states. In this paper, we shift the focus to losing
states, since we believe that many applications would benefit from a theory of
best-effort strategies which allowed Player 1 to play in a rational way even from
losing states.

For instance, many game models correspond to real-world problems which
are not really competitive: the game is just a tool which enables to distinguish
internal from external non-determinism. In practice, the behavior of the adver-
sary may turn out to be random, or even cooperative. A strategy of Player 1
� This work was supported by the MIUR PRIN Project 2007-9E5KM8.
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which does not “give up”, but rather tries its best at winning, may in fact end
up winning, even starting from states that are theoretically losing.

In other cases, the game is an over-approximation of reality, giving to Player 2
a wider set of capabilities (i.e., moves in the game) than what most adversaries
actually have in practice. Again, a best-effort strategy for Player 1 can thus often
lead to victory, even against an adversary which is strictly competitive.

In this paper, we compare several alternative definitions of best-effort strate-
gies, eventually settling on the notion of admissible strategy. As a guideline for
our investigation, we take the application domain of automated verification and
synthesis of open systems. Such a domain is characterized by the fact that, once
good strategies for a game have been found, they are intended to be actually
implemented in hardware or software.

Best-Effort Strategies. The classical definition of what a “good” strategy is
states that a strategy is winning if it guarantees victory whenever the game is
started in a winning state [Tho95]. This definition does not put any burden on a
strategy if the game starts from a losing state. In other words, if the game starts
from a losing state, all strategies are considered equivalent.

A first refinement of the classical definition is a slight modification of the game-
theoretic notion of subgame-perfect equilibrium [OR94]. Cast in our framework,
this notion states that a strategy is good if it enforces victory whenever the game
history is such that victory can be enforced. We call such strategies strongly
winning, to avoid confusion with the use of subgame (and subarena) which is
common in computer science [Zie98]. It is easy to see that this definition captures
the intuitive idea that a good strategy should “enforce victory whenever it can”
better than the classical one.

s0 s1 s2

Fig. 1. A game where victory can-
not be enforced

Next, consider games where victory can-
not be enforced at any point during the play.
Take the Büchi game in Figure 1 1, whose
goal is to visit infinitely often s0. No matter
how many visits to s0 Player 1 manages to
make, he will never reach a point where he
can enforce victory. Still, it is intuitively bet-
ter for him to keep trying (i.e., move to s1)
rather than give up (i.e., move to s2). To capture this intuition, we resort to
the classical game-theoretic notion of dominance [OR94]. Given two strategies
σ and σ′ of Player 1, we say that σ dominates σ′ if σ is always at least as good
as σ′, and better than σ′ in at least one case. Dominance induces a strict partial
order on strategies, whose maximal elements are called admissible strategies. In
Section 3, we compare the above notions, and we prove that a strategy is ad-
missible if and only if it is simultaneously strongly winning and cooperatively
strongly winning (i.e., strongly winning with the help of Player 2).

To the best of our knowledge, the only paper dealing with admissibility in a
context similar to ours is [Ber07], which provides existence results for general

1 Player-1 states are represented by circles and Player-2 states by squares.
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multi-player games of infinite duration, and does not address the issue of the
memory requirements of the strategies.

Memory. A useful measure for the complexity of a strategy consists in eval-
uating how much memory it needs regarding the history of the game. In the
simplest case, a strategy requires no memory at all: its decisions are based solely
on the current state of the game. Such strategies are called positional or mem-
oryless [GZ05]. In other cases, a strategy may require the amount of memory
that can be provided by a finite automaton (finite memory), or more [DJW97].

The memory measure of a strategy is particularly important for the applica-
tions that we target in this paper. Since we are interested in actually implement-
ing strategies in hardware or software, the simplest the strategy, the easiest and
most efficient it is to implement.

We devote Section 4 to studying the memory requirements for various types
of “good” strategies. In particular, we prove that all goals that have positional
winning strategies also have positional strongly winning strategies. On the other
hand, admissible strategies may require an unbounded amount of memory on
some of those goals. We then provide necessary and sufficient conditions for a
goal to have positional admissible strategies, building on the results of [GZ05].

We also prove that for prefix-independent goals, all positional winning strate-
gies are automatically strongly winning. Additionally, prefix-independent goals
admitting positional winning strategies also admit positional admissible strate-
gies, as we show by presenting a simple algorithm which computes positional
admissible strategies for these goals.

2 Definitions

We treat games that are played by two players on a finite graph, for an infinite
number of turns. The aim of the first player is to obtain an infinite trace that
belongs to a fixed set of accepting traces. In the literature, such games are
termed two-player, turn-based, and qualitative.The following definitions make
this framework formal.

A game is a tuple G = (S1, S2, δ, C, F ) such that: S1 and S2 are disjoint finite
sets of states; let S = S1 ∪ S2, we have that δ ⊆ S × S is the transition relation
and C : S → N is the coloring function, where N denotes the set of natural
numbers including zero. Finally, F ⊆ Nω is the goal, where Nω denotes the set
of infinite sequences of natural numbers. We denote by ¬F the complement of
F , i.e., Nω \ F . We assume that games are non-blocking, i.e. each state has at
least one successor in δ.

A (finite or infinite) path in G is a (finite or infinite) path in the directed
graph (S, δ). With an abuse of notation, we extend the coloring function from
states to paths, with the obvious meaning. If a finite path ρ is a prefix of a finite
or infinite path ρ′, we also say that ρ′ extends ρ. We denote by first(ρ) the first
state of a path ρ and by last(ρ) the last state of a finite path ρ.

Strategies. A strategy in G is a function σ : S∗ → S such that for all ρ ∈ S∗,
(last(ρ), σ(ρ)) ∈ δ. Our strategies are deterministic, or, in game-theoretic terms,
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pure. We denote StraG the set of all strategies in G. We do not distinguish a
priori between strategies of Player 1 and Player 2. However, for sake of clarity,
we write σ for a strategy that should intuitively be interpreted as belonging to
Player 1, and τ for the (rare) occasions when a strategy of Player 2 is needed.

Consider two strategies σ and τ , and a finite path ρ, and let n = |ρ|. We denote
by OutcG(ρ, σ, τ) the unique infinite path s0s1 . . . such that (i) s0s1 . . . sn−1 = ρ,
and (ii) for all i ≥ n, si = σ(s0 . . . si−1) if si−1 ∈ S1 and si = τ(s0 . . . si−1) oth-
erwise. We set OutcG(ρ, σ) =

⋃
τ∈StraG

OutcG(ρ, σ, τ) and OutcG(ρ) =
⋃

σ∈StraG

OutcG(ρ, σ). For all s ∈ S and ρ ∈ OutcG(s, σ), we say that ρ is consistent with
σ. Similarly, we say that OutcG(s, σ, τ) is consistent with σ and τ . We extend
the definition of consistent to finite paths in the obvious way.

A strategy σ is positional (or memoryless) if σ(ρ) only depends on the last
state of ρ. Formally, for all ρ, ρ′ ∈ S∗, if last(ρ) = last(ρ′) then σ(ρ) = σ(ρ′).

Dominance. Given two strategies σ and τ , and a state s, we set valG(s, σ, τ) =
1 if C(OutcG(s, σ, τ)) ∈ F , and valG(s, σ, τ) = 0 otherwise. Given two strategies
σ and σ′, we say that σ′ dominates σ if: (i) for all τ ∈ StraG and all s ∈ S,
valG(s, σ′, τ) ≥ valG(s, σ, τ), and (ii) there exists τ ∈ StraG and s ∈ S such that
valG(s, σ′, τ) > valG(s, σ, τ).

It is easy to check that dominance is an irreflexive, asymmetric and transitive
relation. Hence, it is a strict partial order on strategies.

Good strategies. In the following, unless stated otherwise, we consider a fixed
game G = (S1, S2, δ, C, F ) and we omit the G subscript.

For an infinite sequence x ∈ Nω, we say that x is accepting if x ∈ F and
rejecting otherwise. We reserve the term “winning” to strategies and finite paths,
as explained in the following. Let ρ be a finite path in G, we say that a strategy σ
is winning from ρ if, for all ρ′ ∈ Outc(ρ, σ), we have that C(ρ′) is accepting. We
say that ρ is winning if there is a strategy σ which is winning from ρ. The above
definition extends to states, by considering them as length-1 paths. A state that
is not winning is called losing.

Further, a strategy σ is cooperatively winning from ρ if there exists a strategy
τ such that C(Outc(ρ, σ, τ)) is accepting. We say that ρ is cooperatively winning
if there is a strategy σ which is cooperatively winning from ρ. Intuitively, a path
is cooperatively winning if the two players together can extend that path into
an infinite path that satisfies the goal. Again, the above definitions extend to
states, by considering them as length-1 paths.

We can now present the following set of winning criteria. Each of them is a
possible definition of what a “good” strategy is.

– A strategy is winning if it is winning from all winning states. This criterion
intuitively demands that strategies enforce victory whenever the initial state
allows it.

– A strategy is strongly winning if it is winning from all winning paths that
are consistent with it.

– A strategy is subgame perfect if it is winning from all winning paths. This
criterion states that a strategy should enforce victory whenever the current
history of the game allows it.
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– A strategy is cooperatively winning (in short, c-winning) if it is cooperatively
winning from all cooperatively winning states. This criterion essentially asks
a strategy to be winning with the help of Player 2.

– A strategy is cooperatively strongly winning (in short, cs-winning) if it is co-
operatively winning from all cooperatively winning paths that are consistent
with it.

– A strategy is cooperatively subgame perfect (in short, c-perfect) if it is coop-
eratively winning from all cooperatively winning paths.

– A strategy is admissible if there is no strategy that dominates it. This cri-
terion favors strategies that are maximal w.r.t. the partial order defined by
dominance.

The notions of winning and cooperatively winning strategies are customary to
computer scientists [Tho95, AHK97]. The notion of subgame perfect strategy
comes from classical game theory [OR94]. The introduction of the notion of
strongly winning strategy is motivated by the fact that in the target applica-
tions game histories that are inconsistent with the strategy of Player 1 cannot
occur. Being strongly winning is strictly weaker than being subgame perfect. In
particular, there are games for which there is a positional strongly winning strat-
egy, but no positional subgame perfect strategy. The term “strongly winning”
seems appropriate since this notion is a natural strengthening of the notion of
winning strategy.

We say that a goal F is positional if, for all games G with goal F , there is a
positional winning strategy in G.

3 Comparing Winning Criteria

In this section, we compare the winning criteria presented in Section 2. Figure 2
summarizes the relationships between the winning criteria under consideration.
We start by stating the following basic properties.

Lemma 1. The following properties hold:

1. all strongly winning strategies are winning, but not vice versa;
2. all subgame perfect strategies are strongly winning, but not vice versa;
3. all cs-winning strategies are c-winning, but not vice versa;
4. all c-perfect strategies are cs-winning, but not vice versa;
5. all games have a winning (respectively, strongly winning, subgame perfect,

c-winning, cs-winning, c-perfect, admissible) strategy.

Proof. The containments stated in (1) and (2) are obvious by definition. The
fact that those containments are strict is proved by simple examples. Similarly
for statements (3) and (4).

Regarding statement (5), the existence of a winning (respectively, strongly
winning, subgame perfect, c-winning, cs-winning, c-perfect) strategy is obvious
by definition. The existence of an admissible strategy can be derived from The-
orem 11 from [Ber07]. �
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C-Winning

CS-Winning

C-Perfect

Winning

Strongly Winning

Subgame Perfect

Admissible

Fig. 2. Comparing winning criteria

The following result provides a characterization of admissibility in terms of the
simpler criteria of strongly winning and cooperatively strongly winning. Such
characterization will be useful to derive further properties of admissible strate-
gies. The result can be proved as a consequence of Lemma 9 from [Ber07].

Theorem 1. A strategy is admissible if and only if it is strongly winning and
cooperatively strongly winning.

4 Memory

In this section, we study the amount of memory required by “good” strategies
for achieving different kinds of goals. We are particularly interested in identifying
those goals which admit positional good strategies, because positional strategies
are the easiest to implement.

4.1 Positional Winning Strategies

In this section, we recall the main result of [GZ05], which provides necessary
and sufficient conditions for a goal to be positional w.r.t. both players. Such
characterization provides the basis for our characterization of the goals admitting
positional admissible strategies, in Section 4.3.

We start with some additional notation. For a goal F ⊆ Nω, we define its
preference relation �F and its strict version ≺F as follows: for two sequences
x, y ∈ Nω,

x ≺F y
def⇐⇒ x 	∈ F and y ∈ F x �F y

def⇐⇒ if x ∈ F then y ∈ F.

Next, define the following relations between two languages X,Y ⊆ Nω.

X �b
F Y

def⇐⇒ ∃y ∈ Y . ∀x ∈ X .x ≺F y X 'b
F Y

def⇐⇒ ∀x ∈ X . ∃y ∈ Y . x �F y

X �w
F Y

def⇐⇒∃x ∈ X . ∀y ∈ Y . x ≺F y X 'w
F Y

def⇐⇒∀y ∈ Y . ∃x ∈ X .x �F y.

In the above definitions, the superscripts b and w stand for “best” and “worst”,
respectively. For instance, X �b

F Y intuitively means that the best sequence
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in Y is strictly better than the best sequence in X . In other words, there is
an accepting sequence in Y , while all sequences in X are rejecting. Similarly,
X 'b

F Y means that the best sequence in Y is at least as good as the best
sequence in X , i.e., if there is an accepting sequence in X , there is an accepting
sequence in Y as well. We omit the subscript “F” when the goal is clear from
the context.

A language M ⊆ N∗ is recognizable if it is accepted by a finite automaton.
We denote by Rec the set of all recognizable languages in N∗. For a language
M ⊆ N∗, we denote by [M ] the language of all infinite words x ∈ Nω such that
all prefixes of x are prefixes of some word in M .

A goal is monotone if for all recognizable sets M,N ∈ Rec,

∃x ∈ N∗ . [xM ] �b [xN ] =⇒ ∀x ∈ N∗ . [xM ] 'b [xN ].

A goal is selective iff, for all x ∈ N∗ and all recognizable sets M,N,K ∈ Rec,

[x(M ∪ N)∗K] 'b [xM∗] ∪ [xN∗] ∪ [xK].

The following result is an adaptation to our setting of Theorem 2 from [GZ05].

Theorem 2 ([GZ05]). Given a goal F , both players have a positional winning
strategy for all games with goal F , if and only if both F and ¬F are monotone
and selective.

4.2 Positional Strongly Winning and Subgame Pefect Strategies

For a game G = (S1, S2, δ, C, F ) and a path ρ = s0 . . . sn in G, define detach(G, ρ)
as the game obtained from G by adding a copy of the path ρ to it as a chain of new
states ending in the original state sn. Formally, detach(G, ρ) = (S1, S

′
2, δ

′, C′, F ),
where S′

2 = S2 ∪ {s′0, s′1, . . . , s′n−1} and s′0, s
′
1, . . . , s

′
n−1 are new distinct states

not belonging to S2 or to S1. Then, (s, t) ∈ δ′ iff either (i) (s, t) ∈ δ, or (ii)
s = s′i and t = s′i+1, or (iii) s = s′n−1 and t = sn. Finally, the color labeling is
defined by:

C′(s) =

{
C(si) if s = s′i for some i ∈ {0, . . . , n − 1},
C(s) otherwise.

The key idea of the detach operation consists in converting a path that may need
the collaboration of Player 2 to occur, into a path which must occur if the game
starts in a certain (new) state. This operation allows us to prove the following
result.

Theorem 3. For a goal F , the following are equivalent:

1. F is positional;
2. F admits positional strongly winning strategies;
3. F admits positional subgame perfect strategies.
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Proof. (Sketch) Since (3 =⇒ 2) and (2 =⇒ 1) are obvious by definition, it
remains to prove that 1 =⇒ 3. Hence, assume that the goal is positional. Let
G be a game and let W be the set of winning paths of G. W may be infinite but
it is certainly countable. Consider any ordering of W into ρ0, ρ1, . . .. Consider
the sequence of games (Gi)i≥0 defined by G0 = G and Gi+1 = detach(Gi, ρi).
Additionally, consider the sequence of strategies (σi)i≥0 defined by: σ0 is any
positional winning strategy in G0, and

σi+1 =

{
σi if σi is winning in Gi+1,
any positional winning strategy in Gi+1 otherwise.

Due to space constraints, we omit the proof that the sequence (σi)i≥0 converges
to a subgame-perfect strategy σ∗ within a finite number of steps. �

4.3 Positional Admissible Strategies

Since all admissible strategies are winning, admissible strategies require at least
as much memory as winning strategies. The following example shows that there
are positional goals for which all admissible strategies require an unbounded
amount of memory.

Example 1. Consider the goal informally described as follows: an infinite se-
quence is accepting if and only if either it contains infinitely many 2’s, or it
contains at least as many 2’s as 1’s. Such goal is positional, as it is monotone
and selective.

Consider the game in Figure 3, with said goal. In the figure, the color of each
state appears next to it or above it. The only choice for Player 1 occurs in s2,
where he can choose between s3 and s5. One can easily check that all states are
losing. However, for all n > 0, the initial prefix sn+1

0 sn
1 is winning and requires

Player 1 to choose s5 after s2. On the other hand, the initial prefix sn+2
0 sn

1 is
cooperatively winning, and requires Player 1 to choose s3 after s2.

In conclusion, any admissible strategy must be able to distinguish sn+1
0 sn

1

from sn+2
0 sn

1 , which requires an unbounded amount of memory. �

s0

1
s1

2
s2

0

s4 2

s3 0

s5

2

s6

0

Fig. 3. Admissible strategies may require unbounded memory for a positional goal
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As shown in the following, in order to obtain positional admissible strategies, we
need the goal to satisfy the following additional property.

Definition 1. A goal is strongly monotone if for all recognizable sets M,N ∈
Rec,

∃x ∈ N∗ . [xM ] �b [xN ] =⇒ ∀x ∈ N∗ . [xM ] 'b [xN ] ∧ [xM ] 'w [xN ].

To gain some intuition, consider the goal of Example 1. We show that it is
monotone, but not strongly so. Let x, M , and N be such that [xM ] �b [xN ].
This means that all sequences in [xM ] are rejecting, i.e., have a number of 2’s
smaller than the number of 1’s. On the other hand, at least one sequence in [xN ]
is accepting. Thus, there is a word z ∈ [N ] that has more excess 2’s (possibly
infinitely many) than any word in [M ].

Now, consider any y ∈ N∗. Assume that y ·y′ ∈ [yM ] is accepting. Then, y ·z
must also be accepting. This shows that [yM ] 'b [yN ] and the goal is monotone.

Assume instead that there is a rejecting sequence in [yN ]. This does not imply
that there is a rejecting sequence in [yM ], as would be required by the definition
of strong monotonicity. A concrete counter-example is provided by Example 1.
Let x = 1 ·1 ·1 ·2, M = 2 ·0∗, N = 0∗ + (2 ·2 ·0∗). Notice that x = C(s0s0s0s1),
[M ] = C(Outc(s5)), and [N ] = C(Outc(s3)). Since [xM ] = 1·1·1·2·2·0ω is rejecting,
while 1·1·1·2·2·2·0ω ∈ [xN ] is accepting, we have that [xM ] �b [xN ]. However,
with y = 1·1·2, we have that all paths in [yM ] are accepting (there is only one)
and there is one rejecting path in [yN ] (namely, 1 ·1 ·2 ·0ω). So, [yM ] 	'w [yN ]
and the goal is not strongly monotone.

The following is the main result of this section, providing a characterization
of the goals admitting positional admissible strategies for both players.

Theorem 4. Given a goal F , both players have a positional admissible strategy
for all games with goal F if and only if both F and ¬F are strongly monotone
and selective.

Due to space constraints, we provide the proof for one direction of Theorem 4,
and a proof sketch for the other one.

Lemma 2. Given a goal F , if Player 1 has a positional admissible strategy for
all games with goal F , then F is strongly monotone and selective.

Proof. By Lemma 5 of [GZ05], F is monotone and selective. It remains to prove
that it is strongly monotone. Let x ∈ N∗, M,N ∈ Rec such that

[xM ] �b [xN ]. (1)

In other words, all paths in [xM ] are rejecting and at least one path in [xN ] is
accepting. Let y ∈ N∗, we will prove that [yM ] 'b [yN ] and [yM ] 'w [yN ].

Assume w.l.o.g. that M,N are not empty. Let Ax,Ay,AM ,AN be the finite
automata recognizing the languages {x}, {y},M,N , respectively. We can assume
w.l.o.g. that these automata are deterministic, and in particular that they have a
unique initial state. Let sx, sy, sM , sN be their respective initial states. Moreover,
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we can assume that Ax and Ay are linearly ordered chains of states, and that
there are no edges in AM (resp., AN ) that go back to sM (resp., sN).

We build a game G as follows. We assign all states of Ax,Ay,AM to Player 1,
and all states of AN to Player 2. We remove the two final states of Ax and Ay

and the two initial states of AM and AN . We connect the four automata as
follows. Let t be a brand new state, we connect the penultimate state of Ax and
the penultimate state of Ay to t. Then, we connect t to all the successors of sM

and sN . We assign state t to Player 1. A technical difficulty is due to the fact
that games are required to be non-blocking, while automata are not. This issue
can be overcome using the notion of essential state, as proposed in the proof of
Lemma 5 of [GZ05].

Let σ∗ be a positional admissible strategy for Player 1 in G. By (1), if the game
starts in sx, once in t any cs-winning strategy must choose N . By Theorem 1,
we have σ∗(t) = sN . Assume that [yM ] contains an accepting sequence. Since all
states in AM have been assigned to Player 1, sy is a winning state in G. Since σ∗

is a winning strategy and C(Outc(sy, σ
∗)) ⊆ [yN ], there must be an accepting

sequence in [yN ] too. Therefore, [yM ] 'b [yN ].
Finally, assume that [yN ] contains a rejecting sequence. Then, σ∗ is not win-

ning from sy. Since σ∗ is a winning strategy, sy is not a winning state. If we
assume that [yM ] contains no rejecting sequences, we obtain that [yM ], being
non-empty, contains at least one accepting sequence. As before, this means that
sy is a winning state, which is a contradiction. Therefore, [yM ] 'w [yN ], which
concludes the proof. �

Lemma 3. Given a goal F , if both F and ¬F are strongly monotone and selec-
tive, then both players have a positional admissible strategy for all games with
goal F .

Proof. (Sketch) Let G = (S1, S2, δ, C, F ), with both F and ¬F strongly mono-
tone and selective. By Theorems 3 and 2, let σ1 be a positional subgame-perfect
strategy for Player 1 in G. Let SW be the set of all states s such that there is
a finite path π in G such that: (i) last(π) = s, (ii) π is winning, and (iii) π can
be extended into an infinite rejecting path (i.e., C(Outc(π)) \F 	= ∅). Let G1 be
the game obtained from G by removing the edges which start in SW ∩ S1 and
do not belong to σ1. Let σ∗ be a positional cs-winning strategy in G1. It can be
proved that σ∗ is subgame-perfect and cs-winning. It follows by Theorem 1 that
σ∗ is admissible. �

5 Prefix-Independent Goals

A goal F is prefix-independent iff for all x ∈ Nω and all c ∈ N, c·x ∈ F if and only
if x ∈ F . Examples of common prefix-independent goals include Büchi, co-Büchi
and parity goals.

Theorem 5. If a goal F is prefix-independent, then, for all games with goal
F , all positional winning strategies are strongly winning, and all positional c-
winning strategies are cs-winning.
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The positionality assumption is necessary in the above result. For a prefix-
independent goal, it is easy to devise winning strategies that are not positional
and not strongly winning. On the other hand, being prefix-independent is not
necessary for ensuring that all positional winning strategies are strongly win-
ning. For instance, safety and reachability goals are not prefix-independent, but
they ensure said property.

Computing positional admissible strategies. Suppose that we are given
a game G with a positional prefix-independent goal F , and that we have an
algorithm for computing the set of winning states and a positional winning
strategy for all games with goal F . Consider the following procedure, inspired
by the proof of Lemma 3.

Procedure 1
1. Compute the set of winning states Win and a positional winning strategy σ for G.
2. Remove from G the edges of Player 1 which start in Win and do not belong to σ.
3. In the resulting game, compute and return a positional cooperatively winning

strategy.

The following theorem shows that the strategy returned by Procedure 1 is
admissible. As far as the complexity of the procedure is concerned, assuming
the usual graph-like adjacency-list representation for games, we obtain the same
asymptotical complexity as finding a positional winning strategy for F . In par-
ticular, step 3 can easily be performed by attributing all states to Player 1 and
then running the algorithm for a positional winning strategy.

Theorem 6. Assume that F is a positional and prefix-independent goal, and
that there is an algorithm for computing the set of winning states and a positional
winning strategy for all games G with goal F in time O(f(|G|)). Then, one
can compute a positional admissible strategy for all games G with goal F using
Procedure 1 in time O(f(|G|)).
This result allows us to easily compute admissible strategies for several common
goals such as Büchi, co-Büchi, and parity. However, prefix-independence is not
necessary for Procedure 1 to work. For instance, it is easy to prove that the
procedure also returns an admissible strategy for reachability and safety goals.

6 Conclusions

We advanced the claim that computer science applications of game theory, espe-
cially in the domain of automatic verification and synthesis of controllers, may
benefit from considering various winning criteria, such as admissibility, in addi-
tion to the classical one. Given the importance of (the lack of) memory for those
applications, and considering that admissible strategies may require unbound-
edly more memory than plain winning strategies (Example 1), with Theorem 4
we characterize the goals that admit positional admissible strategies.

Further investigation and experimentation is needed to verify our claim in a
concrete applicative setting. Moreover, it remains to determine how to compute
admissible strategies for goals that are not prefix-independent.
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Abstract. We investigate the computational complexity of a general
“compression task” centrally occurring in the recently developed tech-
nique of iterative compression for exactly solving NP-hard minimization
problems. The core issue (particularly but not only motivated by itera-
tive compression) is to determine the computational complexity of, given
an already inclusion-minimal solution for an underlying (typically NP-
hard) vertex deletion problem in graphs, to find a better disjoint solu-
tion. The complexity of this task is so far lacking a systematic study. We
consider a large class of vertex deletion problems on undirected graphs
and show that, except for few cases which are polynomial-time solv-
able, the others are NP-complete. This class includes problems such as
Vertex Cover (here the corresponding compression task is decidable
in polynomial time) or Undirected Feedback Vertex Set (here the
corresponding compression task is NP-complete).

1 Introduction

With the introduction of the iterative compression by Reed et al. [17] in 2004,
parameterized complexity analysis has gained a new tool for showing fixed-
parameter tractability results for NP-hard minimization problems (cf. [9, 15]).
For instance, in 2008, applying iterative compression has led to major break-
throughs concerning the classification of the parameterized complexity of two
important problems. First, Chen et al. [4] showed that the NP-complete Di-

rected Feedback Vertex Set problem is fixed-parameter tractable. Sec-
ond, Razgon and O’Sullivan [16] proved that the NP-complete Almost 2-Sat
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problem is fixed-parameter tractable. Refer to the recent survey [9] for more on
iterative compression applied to exactly solving NP-hard minimization problems.

The central idea behind iterative compression is to employ a compression
routine. This is an algorithm that, given a problem instance and a corresponding
solution, either calculates a smaller solution or proves that the given solution
is of minimum size. Using a compression routine, one finds an optimal solution
to a problem by inductively building up the problem instance and iteratively
compressing intermediate solutions. Herein, the essential fact from the viewpoint
of parameterized complexity is that if the task performed by the compression
routine is fixed-parameter tractable, then so is the problem solved by means of
iterative compression. The main strength of iterative compression is that it allows
to see the problem from a different angle: The compression routine does not only
have the problem instance as input, but also a solution, which carries valuable
structural information. The design of a compression routine, therefore, may be
simpler than showing that the original problem is fixed-parameter tractable.

While embedding the compression routine into the iteration framework is
usually straightforward, finding the compression routine itself is not [9, 15]. For
many vertex deletion problems, a common approach to designing a compression
routine is to branch on the possible subsets of the uncompressed solution to
retain in the compressed solution. This leads to the following generic problem
that asks for a disjoint compressed solution:

Input: An instance of the underlying NP-hard problem and a solution S.1

Question: Is there a solution S′ such that S′ ∩ S = ∅ and |S′| < |S|?
We study the complexity of Compression Task depending on what the under-

lying NP-hard problem is. The computational complexity of CompressionTask,
so far, remains widely unclassified. For instance, the fixed-parameter tractability
results (using iterative compression) for Vertex Bipartization [17] or Undi-

rected Feedback Vertex Set [3, 5, 8] leave open whether the respective Com-

pression Task is NP-hard or polynomial-time solvable. By way of contrast, the
fixed-parameter tractability result for the NP-complete Cluster Vertex Dele-

tion problem [10] is based on a polynomial-time algorithm for Compression

Task. Here, extending a framework attributed to Yannakakis [12], we contribute
a complete classification of Compression Task for a natural class of vertex dele-
tion problems (specified by a graph property Π), including all of the above men-
tioned problems.

A graph property Π is a set of graphs; in the following, we say that a graph G
satisfies Π if G ∈ Π . A graph property Π is hereditary if it is closed under
vertex deletion, and non-trivial if it is satisfied by infinitely many graphs and it
is not satisfied by infinitely many graphs.

The classical Π-Vertex Deletion problem is defined as follows: for a non-
trivial hereditary graph property Π testable in polynomial time, given an undi-
rected graph G and a positive integer k, decide whether it is possible to delete
1 Here, the solution is a set. It is conceivable that the Compression Task can be

formulated also for other types of solutions.
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at most k vertices from the graph such that the resulting graph satisfies Π .
For example, Undirected Feedback Vertex Set corresponds to the case
that Π means “being cycle-free”. Yannakakis has shown that Π-Vertex Dele-

tion is NP-complete for any non-trivial hereditary graph property Π in general
graphs [12]. General vertex deletion problems have also been studied in terms of
their parameterized complexity [2, 11].

The Compression Task restricted to vertex deletion problems with prop-
erty Π , called Disjoint Π-Vertex Deletion, can be formulated as follows:

Input: An undirected graph G = (V,E) and a vertex subset S ⊆ V such
that G[V \ S] satisfies Π and S is inclusion-minimal under this property, that
is, for every proper subset S′ ⊂ S the graph G[V \ S′] does not satisfy Π .

Question: Is there a vertex subset S′ ⊆ V of size at most |S|, such that S∩S′ = ∅
and G[V \ S′] satisfies Π?

We replace the requirement |S′| < |S| in the definition of Compression

Task by |S′| ≤ |S| without changing the computational complexity, because the
corresponding hardness reductions (cf. Lemma 4) work for both cases, and the
last case might be of interest if S is already optimal. Moreover, we demand that S
is inclusion-minimal; any solution can be made inclusion-minimal in polynomial
time if Π can be tested in polynomial time. Thus, this requirement does not
change the complexity.

A graph property Π is determined by the components if it holds that if every
connected component of the graph satisfies Π , then so does the whole graph.
The central result of this work can be informally stated as follows:

Main Theorem: Let Π be any non-trivial hereditary graph property that is
determined by the components and that can be tested in polynomial time. Dis-

joint Π-Vertex Deletion is NP-complete unless Π is the set of all graphs
whose connected components are cliques or Π is the set of all graphs whose con-
nected components are cliques of at most s vertices, s ≥ 1—in these cases it is
polynomial-time solvable.2

The main theorem applies to many natural vertex deletion problems in undi-
rected graphs, including Vertex Cover, Bounded-Degree Deletion,
Undirected Feedback Vertex Set [3, 5, 8], Vertex Bipartization [17],
Cluster Vertex Deletion [10], Chordal Deletion [13], and Planar

Deletion [14]. Thus, except for Vertex Cover and Cluster Vertex Dele-

tion, all other problems have an NP-complete Compression Task problems.
Our original motivation for this work comes from the desire to better un-

derstand the limitations of the iterative compression technique. Beyond this,
Disjoint Π-Vertex Deletion also seems to be a natural and interesting
problem on its own: In combinatorial optimization, one often may be confronted
with finding alternative good solutions to already found ones. In the setting of
Disjoint Π-Vertex Deletion, this is put to the extreme in the sense that we
ask for solutions that are completely unrelated, that is, disjoint. For instance,
2 There might exist other polynomial-time solvable cases for non-hereditary

properties.
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this demand also naturally occurs in the context of finding quasicliques [1]. Due
to the lack of space, some proofs are deferred to a full version of the paper.

Preliminaries. We only consider undirected graphs G = (V,E) with n := |V |
and m := |E|. We write V (G) and E(G) to denote, respectively, the vertex and
edge set of a graph G. For v ∈ V , let NG(v) := {u ∈ V | {u, v} ∈ E} and
let degG(v) := |NG(v)|. For S ⊆ V , let NG(S) :=

⋃
v∈S N(v) \ S. For S ⊆ V ,

let G[S] be the subgraph of G induced by S and G − S := G[V \ S]. For v ∈ V ,
letG−v := G[V \{v}]. For a connected graphG, a cut-vertex is a vertex v ∈ V such
that G−v is not connected. A K3 is a complete graph on three vertices. For s ≥ 1,
the graph K1,s = ({u, v1, . . . , vs}, {{u, v1}, . . . , {u, vs}}) is a star. The vertex u is
the center of the star and the vertices v1, . . . , vs are the leaves of the star.

If a graph H does not satisfy some hereditary property Π , then any super-
graph of H does not satisfy Π . We call H a forbidden subgraph for Π . For any
hereditary property Π there exists a set H of “minimal” forbidden induced sub-
graphs, that is, forbidden graphs for which every induced subgraph satisfies Π [7].
For this work, we restrict our attention to non-trivial hereditary properties that
are determined by the components. For the corresponding characterization of Π
by forbidden induced subgraphs, this means that the set of forbidden subgraphs
only contains connected graphs.

By simple counting arguments, there exist Disjoint Π-Vertex Deletion

problems that are not in NP. As [12], we add the stipulation that Π can be tested
in polynomial time, hence the corresponding Disjoint Π-Vertex Deletion

problem is in NP, and our hardness results to come thus will show that it is
NP-complete.

A parameterized problem (I, k) is fixed-parameter tractable with respect to
the parameter k if it can be solved in f(k) · poly(|I|) time, where I is the input
instance and f is some computable function. The corresponding algorithm is
called fixed-parameter algorithm.

2 Polynomial-Time Solvable Cases

This section covers all cases of Disjoint Π-Vertex Deletion that can be
decided in polynomial time. The corresponding graph properties are as follows:

Definition 1. Let Πs, for s ≥ 1, be the graph property that contains all graphs
whose connected components are cliques of at most s vertices. Furthermore,
let Π∞ be the graph property that contains all graphs whose connected com-
ponents of G are cliques (of arbitrary size).

For instance, Π1, Π2, and Π∞ are the properties “being edgeless”, “being a
graph of maximum degree one”, and “every connected component is a clique
(of arbitrary size)”, respectively. The corresponding sets of forbidden induced
subgraphs consist of a single edge (Π1), a path on three vertices and a clique
on three vertices (Π2), and a path on three vertices (Π∞). In general, the set of
forbidden induced subgraphs of Πs for s ≥ 2 contains a path on three vertices and
an (s+1)-vertex clique. Summarizing, for each property Πs, s ≥ 1, and Π∞, the
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corresponding set of forbidden induced subgraphs contains a star with at most
two leaves, and these are clearly the only properties whose sets of forbidden
induced subgraphs contain a star with at most two leaves.

Theorem 1. Disjoint Π-Vertex Deletion is decidable in polynomial time
if Π = Πs, for some s ≥ 1, or if Π = Π∞.

Concerning property Π1, obviously, there can only exist a disjoint solution S′, S′∩
S = ∅, if S forms an independent set in G. Moreover, S′ must contain every end-
point of each edge that has one endpoint in S and the other endpoint in V \ S.
Hence, the input is a yes-instance iff S forms an independent set and |NG(S)| ≤
|S|. This condition can be tested in polynomial time.

Lemma 1. Disjoint Π1-Vertex Deletion can be decided in polynomial time.

Disjoint Π∞-Vertex Deletion is equivalent to the decision version of the
compression step for Cluster Vertex Deletion [10].

Lemma 2 ([10]). Disjoint Π∞-Vertex Deletion can be decided in polyno-
mial time.

The polynomial-time decidability for the remaining properties Πs can be proven
with similar techniques as in the proof of Lemma 2.

Lemma 3. For each s ≥ 2, Disjoint Πs-Vertex Deletion can be decided
in polynomial time.

3 NP-Hardness Framework and Simple Proofs

[12] showed that Π-Vertex Deletion for any non-trivial hereditary prop-
erty Π is NP-complete. Due to the similarity of Π-Vertex Deletion to Dis-

joint Π-Vertex Deletion, in some simple cases we can adapt the framework
from [12].3 This section is mainly devoted to this framework and how it is mod-
ified to partially use it for Disjoint Π-Vertex Deletion.

There are cases, however, where adapting this framework fails; this happens
when there is a star with at least three leaves among the family H of forbidden
induced subgraphs, because (as we will see later) a star with at least three leaves
does not permit to derive a given solution S for the graph that is constructed
by the reduction of the framework. For this case, we have to devise other NP-
hardness proofs (if there is a star with at most two leaves, then the problem is
polynomial-time decidable). Summarizing, we have to distinguish the following
three cases (recall that each graph in H is connected): (1) H does not contain
a star (NP-hard, this section, Theorem 2), (2) H contains a star with at least
three leaves (NP-hard, Section 4, Theorem 3), and (3) H contains a star with at
most two leaves (polynomial-time decidable, Section 2, Theorem 1).

The main result of this section covers all cases that can be proven by adapting
the framework by Yannakakis as described in the remainder of this section.
3 As made explicit in Lewis and Yannakakis’ paper [12], the parts of it we are referring

to in our work have been contributed by Yannakakis.
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Theorem 2. Let Π be a non-trivial hereditary property that is determined by the
components and let H be the corresponding set of all forbidden induced subgraphs.
If H contains no star, then Disjoint Π-Vertex Deletion is NP-hard.

The Framework by Yannakakis and its Limitations. In the following, we briefly
describe the reduction by Yannakakis [12], which shows that any vertex deletion
problem with non-trivial hereditary graph property is NP-hard. Since the hered-
itary graph properties considered in this paper are assumed to be determined by
the components, we present a variant that is restricted to such properties, that
is, the forbidden induced subgraphs shall be connected.

Preliminaries. Let H be the set of forbidden induced subgraphs that corre-
spond to the non-trivial hereditary property Π that is determined by its compo-
nents. An important concept for the framework is the notion of α-sequences [12].

Definition 2 (α-sequence). For a connected graph H ∈ H, if H is 1-
connected, then take a cut-vertex c and sort the components of H − c according
to their size. If H is not 1-connected, then let c be an arbitrary vertex (in this
case, H − c has just one connected component). Sorting the connected compo-
nents of H − c with respect to their sizes gives a sequence α = (n1, . . . , ni),
where n1 ≥ . . . ≥ ni. The sequence depends on the choice of c. The α-sequence
of H, α(H), is a sequence which yields a lexicographically smallest such se-
quence α.

Let H ∈ H be a graph with lexicographically smallest α-sequence among all
graphs in H. Note that every induced subgraph of H has a lexicographically
smaller α-sequence than H . Since Π is satisfied by all independent sets, the
connected graph H must contain at least two vertices, thus a largest component J
of H − c contains at least one vertex. Let d be an arbitrary vertex in J , and
let H ′ be the graph resulting by removing all vertices in J from H , and let J ′

be the graph induced by V (J) ∪ {c} in H .

Reduction. The reduction by Yannakakis [12] from the NP-complete Vertex

Cover
4 problem works as follows. Let G be an instance of Vertex Cover.

For every vertex v in G create a copy of H ′ and identify c and v. Replace every
edge {u, v} in G by a copy of J ′, identifying c with u and d with v. Let G′ be
the resulting graph.

Correctness. The graph G has a size-k vertex cover if and only if G′ has a
size-k vertex set that obstructs all forbidden induced subgraphs H in G′:

(⇒) If A is a vertex cover of G, then S′ := A also obstructs all graphs
in H: Every connected component of G′ − S′ is either (1) a copy of H ′ − c
or (2) a copy of H ′ together with several copies of J ′, each with either c or d
deleted. In the latter case, the copy of H ′ and the copies of J ′ intersect exactly
in one vertex of V (G). Let C be such a connected component and let v be the

4 Given a graph G = (V, E) and k ≥ 0, decide whether there exists a set S ⊆ V of
size at most k such that each edge has at least one endpoint in S.
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described vertex. In case (1), α(H ′ − c) is lexicographically smaller than α(H)
since H ′−c is a subgraph of H . In case (2), v is a cut-vertex and the components
of C − v can be divided into a copy of H ′ − c and several copies of J with one
vertex deleted. Since the latter type of components has less than |V (J)| vertices,
the cut-vertex v gives an α-sequence for C which is lexicographically smaller
than the α-sequence of H . Thus, the connected components in G′ − S′ have
a smaller α-sequence than H , and because H is a forbidden induced subgraph
with lexicographically smallest α-sequence, these connected components do not
contain forbidden induced subgraphs.

(⇐) If S′ is a solution for H-Deletion, then one can determine a vertex
cover A for G: for each w ∈ S′, if w is in a copy of H ′ (possibly w ∈ V (G)), then
add vertex c of that copy of H ′ to A, and if w is in a copy of J ′ (where w 	∈ V (G)),
then add vertex c of that copy of J ′ to A. Obviously, |A| ≤ |S′|. Suppose that
there exists an edge {u, v} in G − A. Then, S′ neither contains any vertex from
the two copies of H ′ corresponding to the vertices u and v nor from the copy of J ′

that replaced the edge {u, v} in the construction of G′. Hence G′ − A contains
a copy of H , a contradiction. Therefore, A is a vertex cover for G.

Limitations. In some cases, a very similar reduction principle can be applied
for Disjoint Π-Vertex Deletion. We simply have to show that there exists
an H-obstruction set S in G′ with the only restriction that S does not contain
any vertex from V (G). Then, in principle, we can use the same arguments as
above. However, for some cases this approach fails; for instance, if J ′ is a clique
and some graph of H is contained in G, then this forbidden induced subgraph,
which also exists in G′, can only be obstructed by vertices in V (G). For example,
this happens when Π is the property “being cycle-free” (Feedback Vertex

Set): H contains all cycles, and the graph H with the smallest α-sequence is K3.
One can deal with this situation by reducing from K3-free graphs, and using the
graph with the smallest α-sequence among all K3-free graphs in H , as shown in
the proof of Lemma 5. The same type of problem, however, also occurs if H is a
star. In this case, each connected component of H−c is an isolated vertex. Thus,
the vertex d has to be one of these vertices, and G and therefore G′ might contain
a forbidden induced subgraph with lexicographically higher α-sequence than H .
This induced subgraph cannot be obstructed by a set S that is not allowed to
contain any vertex from V (G). In this case, the framework by Yannakakis cannot
be used and we have to devise other reduction techniques (Section 4).

New Proofs Based on the Reduction Framework by Yannakakis. Recall that we
assume here that the set of forbidden induced subgraph corresponding to Π
contains no star. We have to distinguish between the cases that (1) all forbidden
induced subgraphs contain a K3 (see Lemma 4), and that (2) not all forbidden
induced subgraph contain a K3 (see Lemma 5).

Lemma 4. If the set H of forbidden induced subgraphs corresponding to Π con-
tains only graphs that contain a K3, then Disjoint Π-Vertex Deletion is
NP-hard.
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Proof. The proof is by reduction from the NP-complete Vertex Cover on K3-
free graphs [6]. Let (G, k) be an instance of Vertex Cover, where G is K3-free.
First, construct a graph G′ using the reduction scheme by Yannakakis. Greedily
compute a minimal H-obstruction set S1 for G′ such that S1 ∩ V (G) = ∅. Such
a set S1 always exists, since G is K3-free and, therefore, does not contain any
forbidden induced subgraph.

It remains to take care of the size of the new solution S′; recall that Disjoint

Π-Vertex Deletion asks for a solution S′ such that |S′| ≤ |S|. First, suppose
that k ≤ |S1|. Informally speaking, we have to force that only k vertices out of
the |S1| available vertices can be used in G′ to obstruct all forbidden induced
subgraphs. Let H , c, J , J ′, and d be defined as in the reduction scheme. We
add a padding gadget C constructed as follows to G′. Add a new vertex w
and |S1|−k+1 copies of H to G′, identify the vertex d of each newly added copy
of H with w, and let S := S1 ∪{w}. The gadget C is obviously connected and w
is a cut-vertex in C. The vertex w obstructs all forbidden induced subgraphs
in C, because deleting w (and, thus, d) from each copy of H in C leaves a graph
with lexicographically smaller α-sequence (witnessed by c in each copy of H).
Hence, S is a minimal H-obstruction set for G′.

An H-obstruction set S′ for G′ with S′ ∩ S = ∅ must contain at least one
vertex in each copy of H in C, thus S′ must contain at least |S1| − k + 1 ver-
tices of C; putting into S′ the vertex c of each copy of H in C obstructs every
forbidden induced subgraph in H : every connected component of C − S′ either
is a copy of H − c or consists of |S1| − k + 1 copies of J that pairwise overlap
in vertex w. In the latter case, w is a cut-vertex witnessing that each remain-
ing connected component has size smaller than J , yielding a lexicographically
smaller α-sequence. This shows that S′, in order to obstruct all forbidden in-
duced subgraphs in C, contains at least |S1|−k+1 vertices. Since S = S1 ∪{w},
there remain at most |S| − |S1| + k − 1 = k vertices to obstruct all forbidden
induced subgraphs in G′ − V (C).

If |S1| < k, then construct C in the same manner with k − |S1| + 1 copies
of H and let S be the union of S1 and the vertex c of each copy of H . Then,
the new solution S′ can obstruct all forbidden induced subgraphs in C with the
vertex w, and there are k − |S1| + 1 + |S1| − 1 = k vertices left to obstruct all
forbidden induced subgraphs in G′ − V (C).

By these arguments and the reduction scheme, G has a size-k vertex cover if
and only if G′ has a H-obstruction set S′ with S′ ∩ S = ∅ and |S′| ≤ |S|. ��

In the following, assume that not all forbidden induced subgraphs contain a K3,
let H′ ⊆ H be the set of all forbidden induced subgraphs that do not contain
a K3, and let H be a forbidden induced subgraph with lexicographically smallest
α-sequence among all graphs in H′.

Lemma 5. If the set H of forbidden induced subgraphs corresponding to Π con-
tains no stars, but other graphs that do not contain a K3, then Disjoint Π-

Vertex Deletion is NP-hard.
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4 Refined Reduction Strategies

Here, we present NP-hardness proofs if H is a star with at least three leaves.
The main result of this section is as follows.

Theorem 3. Let Π be a non-trivial hereditary graph property that is determined
by the components and let H be the corresponding set of all forbidden induced
subgraphs. If H contains a star with at least three leaves, then Disjoint Π-

Vertex Deletion is NP-hard.
Note that a star has a smaller α-sequence than any other forbidden induced
subgraph that is not a star, and there is only one star in H, since the graphs
in H are inclusion-minimal. Therefore, if H contains a star, then the graph with
smallest α-sequence is necessarily the star in H. Let H be the star in H.

The proof of Theorem 3 is based on the following case distinction. (1) H is a
star with at least four leaves (Lemma 6), or (2) H is a star with three leaves. In
the latter case, we distinguish the following two subcases: (2a) H contains a P4

(Lemma 7), and (2b) H does not contain a P4 (Lemma 8).

Lemma 6. If the set H of forbidden induced subgraphs corresponding to prop-
erty Π contains a star H, and if H has at least four leaves, then Disjoint

Π-Vertex Deletion is NP-hard.

Next, we show the NP-hardness of the case that the smallest graph in the set of
forbidden induced subgraphs is a star with three leaves. In this case, a reduction
from Vertex Cover seems less promising, since the Vertex Cover instance
we reduce from contains vertices of degree three and therefore copies of the
forbidden induced star with three leaves. Hence, we use 3-CNF-SAT. First, we
consider the case that the path on four vertices is also forbidden.

Lemma 7. If the set H of forbidden induced subgraphs corresponding to prop-
erty Π contains a star H, and if H has three leaves and H also contains the
path on four vertices, then Disjoint Π-Vertex Deletion is NP-hard.

Proof. The proof is by reduction from 3-CNF-SAT. Let F = c1 ∧ · · · ∧ cm be a
3-CNF formula over a variable set X = {x1, . . . , xn}. We denote the kth literal
in clause cj by lkj , for 1 ≤ k ≤ 3. An example of the following construction
is given in Figure 1. Starting with an empty graph G and S := ∅, construct
an instance (G,S) for Disjoint Π-Vertex Deletion as follows. For each
variable xi, introduce a cycle Xi of 12m vertices (variable gadget), add every
second vertex on Xi to S, and label all the other vertices on the cycle alternately
with “+” and “−”. For each clause cj , add a star Cj with three leaves (clause
gadget) and add its center vertex to S. Each of the three leaves of Cj corresponds
to a literal in cj , and each leaf is connected to a variable gadget as follows.
Suppose that lkj is a literal xi or ¬xi, and let ak be the leaf of Cj corresponding
to lkj . Add a star with three leaves (connection gadget), identify one leaf with ai,
identify another leaf with an unused vertex 5 on Xi with label “+” if lkj is positive
5 This means that no vertex of an other connection gadget has been identified with

this vertex on Xi, that is, it is of degree two.



328 M.R. Fellows et al.
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(x1 ∨ ¬x2 ∨ ¬x3)(¬x1 ∨ x2 ∨ x3)
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+ X2
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+

Fig. 1. Example for the reduction in the proof of Lemma 7 for the 3-CNF-SAT for-
mula (¬x1∨x2∨x3)∧(x1∨¬x2∨¬x3). For illustration, one minimality gadget is labeled
with A and one connection gadget is labeled with B. Furthermore, for the connection
gadget B the vertices are named according to the definitions of ak, uk, vk and wk in the
proof of Lemma 7 for k = 1. The vertices in the given solution S are gray, the vertices
in the disjoint solution S′, corresponding to the satisfying truth assignment x1 = true,
x2 = true, x3 = false, are black.

and with an unused vertex on Xi with label “−” if lkj is negative, and add the
remaining leaf to S. Finally, for each remaining unused vertex v labeled “+” or
“−” in G, add a star with three leaves (minimality gadget), add two of its leaves
to S, and add an edge between the center and v. This concludes the construction.

Obviously, G − S only contains paths on three vertices as connected compo-
nents (cf. Figure 1), that is, G−S satisfies Π . Moreover, S is minimal, that is, for
any v ∈ S, G− (S \ {v}) does not satisfy Π . Let q be the number of minimality
gadgets. We show that formula F has a satisfying truth assignment if and only if
there exists a size-(q+3nm+3m) set S′, S′∩S = ∅, that obstructs all forbidden
induced subgraphs in G. Analogously to the proof of Lemma 6, the construction
can be modified (to “correct” the sizes of S and S′) by adding a padding gadget
based on stars with three leaves. This straightforward modification is omitted.

(⇒) We defer the proof of this direction to a full version of the paper.
(⇐) Let S′, S′∩S = ∅, be a size-(q+3nm+3m) vertex set that obstructs every

forbidden induced subgraph in G. We may assume that S′ does not contain any
degree-one vertex in G (since a degree-one vertex in S′ could be simply replaced
by its neighbor). Recall that the set of forbidden induced subgraphs contains
the star with three leaves and the path on four vertices. Each minimality gadget
is a star with three leaves, and since we assumed that no degree-one vertex is
in S′, its center vertex must be in S′. Hence, S′ contains exactly q vertices of
the minimality gadgets. Since P4s are forbidden, at least every fourth vertex on
the cycle of each variable gadget has to be in S′. However, we will see that S′

contains exactly three vertices for each clause (thus, 3m vertices for all clauses),
and these vertices cannot be vertices on any variable gadget. Therefore, for each
variable gadget Xi, the set S′ must contain exactly every fourth vertex of Xi (in
order to obtain a total number of 3mn vertices in S′ for all n variable gadgets),
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thus S′ either contains all vertices labeled “+” or all vertices labeled “−”. If S′

contains all vertices labeled “+”, then we set xi := true, if S′ contains all vertices
labeled “−”, then we set xi := false. It remains to show that the assignment
defined in this way is a satisfying truth assignment for the formula F .

For a clause gadget Cj , and for each leaf ak of Cj corresponding to literal lkj ,
let uk be the center of the corresponding connection gadget, vk be the degree-
one neighbor of uk, and wk be the neighbor of uk on the variable gadget Xi, for
some 1 ≤ i ≤ n (cf. Figure 1). There is a P4 containing the center of Cj , together
with ak, uk, and vk. Since the center of Cj is in S, the set S′ has to contain at
least three vertices to obstruct the three P4s corresponding to Cj (one for each
leaf). Thus, for all clauses, there are at least 3m vertices in S′ that obstruct
these P4s. In total, S′ contains q + 3nm + 3m vertices. Therefore, there are
exactly 3m vertices in S′ that obstruct these P4s. Thus, for a clause gadget Cj ,
for each leaf ak, either ak ∈ S′ or uk ∈ S′. Which case applies depends on which
vertices from Xi are in S′: if wk 	∈ S′, then wk together with uk and its two
neighbors on Xi induce a star with three leaves, thus uk ∈ S′. If wk ∈ S′, then
either ak ∈ S′ or uk ∈ S′. If wk ∈ S′ and uk ∈ S′, however, then one can simply
remove uk from S′ and add ak instead. After that, S′ still obstructs all forbidden
induced subgraphs. Since S′ obstructs all forbidden induced subgraphs, at least
one leaf ak of Cj must be in S′, which implies that wk ∈ S′. Let Xi be the variable
gadget that contains wk. If wk has label “+”, then xi = true by the definition
of the assignment, and by construction lkj = xi is a positive literal, hence cj is
satisfied. If wk has label “−”, then xi = false, and, by construction, lkj = ¬xi is
a negative literal, hence cj is satisfied. Summarizing, for every clause there is at
least one true literal and thus the constructed truth assignment satisfies F . ��

Finally, we consider the case that the path on four vertices is not forbidden.

Lemma 8. If the set H of forbidden induced subgraphs corresponding to prop-
erty Π contains a star H, and if H has three leaves and H does not contain the
path on four vertices, then Disjoint Π-Vertex Deletion is NP-hard.

5 Outlook

As indicated in the introductory section, there are important problems amenable
to iterative compression that do not fall into the problem class studied here.
Among these, in particular, we have Directed Feedback Vertex Set and
Almost 2-Sat. Hence, it would be interesting to further generalize our results
to other problem classes, among these also being vertex deletion problems on
directed graphs or bipartite graphs and edge deletion problems. Our work here
has left open the case that a forbidden subgraph may consist of more than one
connected component. Finally, one could explore to parameterize Disjoint Π-

Vertex Deletion by the number of vertices by which S′ should at least differ
from S.
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Future-Looking Logics on Data Words and Trees
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Abstract. In a data word or a data tree each position carries a label
from a finite alphabet and a data value from an infinite domain.

Over data words we consider the logic LTL↓
1(F), that extends LTL(F)

with one register for storing data values for later comparisons. We show
that satisfiability over data words of LTL↓

1(F) is already non primitive
recursive. We also show that the extension of LTL↓

1(F) with either the
backward modality F−1 or with one extra register is undecidable. All
these lower bounds were already known for LTL↓

1(X, F) and our results
essentially show that the X modality was not necessary.

Moreover we show that over data trees similar lower bounds hold for
certain fragments of XPath.

1 Introduction

A data word (data tree) is a word (tree) where each position carries a label from a
finite alphabet and a datum from some infinite domain. These models have been
considsered in the realm of semistructured data [3], timed automata [5] and ex-
tended temporal logics [9,8,12]. In this work we consider an infinite domain with
no structure where we can only test for equality or inequality between elements.

There have been various logics considered to specify properties over data
words and data trees. For example from the standpoint of Temporal Logics
(both on data words [8] and trees [12]), of First Order Logics (see [4] for the
data words case and [3] for trees), or of logics based on tree patterns [7,2].
The logic LTL↓

1(X,F) is the extension of LTL(X,F) with the ability to use one
register for storing a data value for later comparisons. It has been studied in [9,8]
where satisfiability and expressivity issues have been addressed. In [8] it has
been established that the satisfiability problem for LTL↓

1(X,F) is decidable and
non primitive recursive on data words. It is also shown in [8] that the two way
extension LTL↓

1(X,F,F−1) is undecidable over data words and, similarly, that the
extension to 2 registers LTL↓

2(X,F) is undecidable.
Here we show that even without the X modality, all the aforementioned lower

bounds remain valid: the satisfiability problem for LTL↓
1(F) over data words is

non primitive recursive, while for LTL↓
1(F,F

−1) and LTL↓
2(F) is undecidable.
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Data trees can be seen as a coding of an xml document [3,12]. Therefore
XPath, the node selecting language of W3C [6], can be considered as a logic over
data trees. By XPath, we refer to the 1.0 specification without all the domain
specific features (arithmetic, string manipulation, etc.) As XPath is at the core of
many xml standard languages (like XQuery and XSLT), deciding satisfiability
of some of its fragments can be of great help during optimization stages.

A data word can be seen as a special case of an unranked ordered data tree, for
instance by adding a root that is the parent of all the positions of the data word.
With this consideration the fragment XPath(→,→+,=) of XPath that contains
only the axis next-sibling (→) and following-sibling (→+) can be seen
as a fragment of LTL↓

1(X,F). There are nonetheless two important differences
between the expressive power of XPath(→,→+,=) and LTL↓

1(X,F). The first one
is that the axis →+ corresponds to the strict future modality in LTL, denoted Fs

in the sequel. Of course F can be defined using Fs but the opposite is not true in
the absence of X. The second difference lies in the fact that XPath can compare
data values in a way strictly more limited than LTL↓

1. We illustrate this with an
example. At a position of a data word, LTL↓

1(F) can store the current data value
in the register, check for a later symbol a with a data value different from the one
in the register, and then further check for a symbol b with a data value matching
the one of the register. In this spirit, XPath could only compare the data values
at the beginning and the end of the path and could not say anything about the
data value of the intermediate a symbol. Hence XPath(→+,=) should be seen as
a fragment of LTL↓

1(Fs), incomparable with LTL↓
1(F) in terms of expressive power.

Based on these ideas, we exhibit a syntactic fragment sLTL↓
1(Fs) of LTL↓

1(Fs)
that limits the use of register comparisons and has the same expressive
power as XPath(→+,=) on data words. We then show that satisfiability over
data words of sLTL↓

1(Fs) is non primitive recursive. Similarly the same re-
striction on LTL↓

1(Fs,Fs
−1) yields a logic with the same expressive power as

XPath(→+, +←,=), which is shown to be undecidable.
Our non primitive recursive results are proved by a reduction from the empti-

ness problem of faulty counter automata. These are counter automata that may
have incrementing errors in their counters during the run. Non-emptiness for this
class of automata was proven to be decidable and not primitive recursive [15].
Our reduction will be centered in a strategy of using data values for coding –
with some limitations– a next step move of this automaton. We show that the
strict future modality together with the limited data comparison capabilities of
sLTL↓

1(Fs) are sufficient for our coding. With the extra power of LTL↓
1(F) for com-

paring data values, we also show that strictness of the future modality can be
avoided. Similar ideas are used for our undecidability results: The extra available
expressive power is sufficient to forbid the incrementing errors and thus to code
the emptiness problem of a Minsky Counter Automaton.

Related work. There are known complexity results concerning the satisfiability
problem of several data-aware fragments of XPath on data trees. When all nav-
igational axes are present, XPath is undecidable [11]. When all vertical axes are
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present but in the absence of any horizontal axis, the status of the decidability
of XPath(↓, ↓+, ↑, ↑+,=) is not yet known [1]. In this paper we show that if decid-
able, the complexity of this fragment cannot be primitive recursive, even in the
absence of the axes ↓ and ↑.

In [3] decidability over data trees of the two-variable fragment of first order
logic, FO2(+1,∼) is established. As a direct consequence, a fragment of XPath
without any descendant/ancestor or following/previous-sibling axes in
the paths of the data test expressions, is shown to be decidable. On the oppo-
site, in the present work we focus on the satisfiability under the absence of the
successor axis.

In [12] it is shown that the emptiness problem for alternating automata with
one register over data trees is decidable. As a direct consequence it is shown
that XPath(↓, ↓+,→,→+,=), with some restriction on the expressions with a
data value test, is decidable and non primitive recursive. As a consequence of
the present work, the hardness result already holds for XPath(↓+,→,=) and for
XPath(→+,=).

We finally remark that, nevertheless, the satisfiability of XPath(↓, ↓+,=) is
“only” ExpTime-complete [10].

2 Preliminaries

We fix a finite set Σ of labels and an infinite set D of data values. The models
we consider are either data words or data trees. A data word σ over a finite
alphabet Σ is a non-empty word of (Σ×D)∗. We assume no structure on D and
D will be used only to perform tests for (in)equalities. In our examples we will
always use data values from N seen as a set of numbers. The data trees we will
be using are unranked and ordered. The domain of an unranked ordered tree
is represented by a prefix-closed set T of elements from N∗ such that whenever
n(i + 1) ∈ T then ni ∈ T . The elements of T will be called nodes of the tree.
A data tree t over Σ,D is a tree domain T together with a labeling function λ
assigning an element of Σ×D to any node of t. We use the standard terminology
for trees such as descendant, ancestor, sibling, etc.

LTL with registers. The most expressive logic for data words we treat here is
LTL↓

n(F,X,F−1,X−1), the Linear Temporal Logic with the freeze quantifier (↓i),
test predicate (↑i) and next (X) and future (F) temporal operators together with
their inverse modalities (X−1,F−1). Sentences are defined:

ϕ, ψ ::= a | ↓i ϕ | ↑i | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | Oϕ

where a is a symbol from a finite alphabet Σ, i ∈ {1, . . . , n}, and O ranges over
{F,X,F−1,X−1}. We also use the strict future temporal operator Fs as a shortcut
for XF. We will consider fragments of this logics as simple restrictions to certain
temporal operators. Intuitively, in the evaluation of ↓i ϕ, current data value is
‘saved’ in the register i, and any appearance of ↑i in ϕ holds at a position iff its
datum is equal to the one stored in register i.
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Given a data word σ, we write σi for the ith element (couple) of the word,
and π1, π2 for the projections on Σ and D. A valuation is defined as a partial
map v : {1, . . . , n} → D. The satisfaction relation |= is inductively defined (we
omitted X−1 and F−1 for succinctness):
σ, i |=v a iff π1(σi) = a σ, i |=v↑k iff k ∈ dom(v) and v(k) = π2(σi)
σ, i |=v↓k ϕ iff σ, i |=v[k �→π2(σi)] ϕ σ, i |=v Xϕ iff i < |σ| and σ, i + 1 |=v ϕ
σ, i |=v Fϕ iff for some i ≤ j ≤ |σ| we have σ, j |=v ϕ

where 1 ≤ i ≤ |σ|. We denote σ, i |=v∅ ϕ by σ, i |= ϕ, with v∅ the empty
valuation; and we write σ |= ϕ for σ, 1 |= ϕ. Also, in the case of LTL↓

1 we use ↓
and ↑ instead of ↓1 and ↑1 for simplicity.

In Section 5 we will lift our results to trees and XPath. In order to do this it is
convenient to introduce now a restriction of LTL↓

1 such that with this restriction
LTL↓

1 corresponds to XPath. A formula of LTL↓
1 is said to be simple if (i) there

is at most one occurrence of ↑ within the scope of each occurrence of ↓ and, (ii)
there is no negation between an occurrence of ↑ and its matching ↓, except maybe
immediately before ↑. We denote by sLTL↓

1 the fragment of LTL↓
1 containing only

simple formulas. The correspondence between sLTL↓
1 and XPath will be made

explicit in Proposition 1 of Section 5.

Faulty counter systems. For proving our lower bounds we will use a reduction
from faulty counter automata that we describe here. A counter automaton (CA)
with zero testing is a tuple 〈Σ,Q, q0, n, δ, F 〉, where Σ is a finite alphabet, Q
is a finite set of states, q0 is the initial state, n ∈ N is the number of counters,
δ ⊂ Q × Σ × L × Q is the transition relation over the instruction set L =
{inc, dec, ifzero} × {1, . . . , n}, and F ⊂ Q is the set of accepting states. A
counter valuation is a function v : {1, . . . , n} → N. An error-free run over w ∈
Σ∗ is a finite sequence 〈q0, v0〉

w0,
0→ 〈q1, v1〉
w1,
1→ · · · observing the standard

interpretation of the instructions �0, �1, · · · (〈dec, c〉 can only be performed if c
is nonzero), where v0, v1, . . . are counter valuations, v0 assigns 0 to each counter,
and w = w0w1 . . . such that wi ∈ Σ ∪ {ε} for every i. A run is accepting iff it
ends with an accepting state.

A Minsky CA has error-free runs. For these automata, already with only two
counters, finitary emptiness is undecidable [13]. An Incrementing CA (from now
on ICA) is defined as a Minsky CA except that its runs may contain errors
that increase one or more counters non-deterministically. We write that two
valuations are in the relation v ≤ v′ iff, for every counter c, v(c) ≤ v′(c). Runs of

Incrementing CA are defined by replacing the relation
a,
→ by

a,
�, where 〈p, u〉 a,
�
〈q, v〉 iff there exist valuations u′, v′ such that u ≤ u′, v′ ≤ v and 〈p, u′〉 a,
→ 〈q, v′〉.

In [8, Theorem 2.9] it is shown that the results of [15] and [14] on Channel
Machines can be adapted to prove the following result.

Theorem 1. Emptiness of ICA is decidable and non primitive recursive.
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3 The Case of sLTL↓
1

In this section we show that satisfiability of sLTL↓
1(Fs) is non primitive re-

cursive over data words. We then prove that satisfiability is undecidable for
sLTL↓

1(Fs,Fs
−1). In the next section we will show that the logic LTL↓

1(F) is also
non primitive recursive and that LTL↓

1(F,F
−1) is undecidable. In Section 5 we

will use the results of this section for proving lower bounds for several fragments
of XPath over data trees.

3.1 Lower Bound for sLTL↓
1(Fs)

Theorem 2. Satisfiability of sLTL↓
1(Fs) on data words is non primitive recursive.

Proof. We exhibit a PTime reduction from the non-emptiness of ICA to satisfi-
ability of sLTL↓

1(Fs). Let C = 〈Σ,Q, q0, n, δ, F 〉 be an ICA.
Let L = {(inci)1≤i≤n, (deci)1≤i≤n, (ifzeroi)1≤i≤n}, and Σ̂ = Q × (Σ ∪ {ε}) ×
L × Q. We construct a formula ϕC ∈ sLTL↓

1(Fs) that is satisfied by a data word
iff C accepts the word. We view a run of C of the form:

〈q0, v0〉
a,inci� 〈q1, v1〉

b,decj� 〈q2, v2〉
b,ifzeroi� 〈q3, v3〉 · · ·

as a string in Σ̂:
〈q0, a, inci, q1〉〈q1, b, decj , q2〉〈q2, b, ifzeroi, q3〉 · · ·

The formula ϕC will force that any string that satisfies it codes a run of C.
In order to do this, ϕC must ensure that:

(begin) the string starts with q0,
(end) the string ends with a state of F ,
(tran) every symbol of Σ̂ in the string corresponds to a transition of C,
(chain) the last component of a symbol of Σ̂ is equal to the first component of

the next symbol,
(pair) for each i, every symbol that contains inci occurring in the string to the

left of a symbol containing ifzeroi, can be paired with a symbol containing
deci and occurring in between the inci and the ifzeroi.

Before continuing let us comment on the (pair) condition. If we were coding
runs of a perfect Minsky CA (ie, with no incremental errors), to the left of any
position containing a ifzeroi, we would require a perfect matching between
inci and deci operations in order to make sure that the value of the counter i is
indeed zero at the position of the test. But as we are dealing with ICA, we only
need to check that each inci has an associated deci to its right and before the
test for zero, but we do not enforce the converse, that all deci match an inci.
This is fortunate because this would require past navigational operators.

The first difficulty comes from the fact that (pair) is not a regular relation.
The pairing will be obtained using data values. The second difficulty is to en-
force (chain) without having access to the string successor relation. In order
to simulate the successor relation we add extra symbols to the alphabet, with
suitable associated data values.
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Fig. 1. Coding of an ICA run

Let Σ′ = Σ̂ ∪ {N, #, @}. The coding of a run consists in a succession of blocks.
Each block is a sequence of 3 or 4 symbols, “c N #” or “c @ N #”, with c ∈ Σ̂. The
data value associated to the c and # symbols of a block is the same and uniquely
determines the block: no two blocks may have the same data value. The data
value associated with the symbol N of a block is the data value of the next block.
If a block contains a symbol c that codes a inci operation that is later in the
string followed by a ifzeroi, then this block contains a symbol @ whose data
value is the that of the block containing deci that is paired with c.

For instance in the example of Fig. 1 one can see four blocks b1, b2, b3, b4.
Each of them starts with a symbol from Σ̂ coding a transition of the ICA and
ends with a # with the same data value marking the end of the block. Inside the
block, the data value of N is the same as the data value of the next block. The
data value of @ corresponds to that of a future block. In this example c1 must
correspond to a inci while c3 to deci and there must be a ifzeroi somewhere
to the remaining part of the word (say, b5). Moreover c2 can’t be a ifzeroi as
otherwise the data value of the symbol @ would refer to a block to the left of c2.

We now show that the coding depicted above can be enforced in sLTL↓
1(Fs). By

π1, π2, π3, π4 we denote the projection of each symbol of Σ̂ into its corresponding
component. To simplify the presentation we use the following abbreviations:

σ̂ ≡
∨

c∈Σ̂

c inc(i) ≡
∨

c∈Σ̂,π3(c)=inci

c inc ≡
∨
i

inc(i)

dec(i) ≡
∨

c∈Σ̂,π3(c)=deci

c last ≡ σ̂ ∧ ¬Fs σ̂ iz(i) ≡
∨

c∈Σ̂,π3(c)=ifzeroi

c

The formula ϕC that we build is the conjunction of all the folowing formulas.

Forcing the structure
G(last ⇒ ¬Fs�) : The string ends with the last transition,∧

c∈{N,@,#} G(c ⇒ ¬(↓Fs(c∧ ↑))) : the data value associated to each N, # and @
uniquely determines the occurrence of that symbol,

G
(
(σ̂ ∧ ¬last) ⇒ (↓Fs(N ∧ Fs(#∧ ↑)))) : each occurrence of Σ̂ (except the last one)
is in a block that contains a N and then a #,∧

iG
(
(inc(i) ∧ Fs(iz(i))) ⇒ ↓Fs(@ ∧ Fs(N ∧ Fs(#∧ ↑)))) : every inci block to the left

of a ifzeroi must have a @ before the N,
G((σ̂ ∧ ¬inc) ⇒ ¬ ↓Fs(@ ∧ Fs(#∧ ↑))) : only blocks inc are allowed to have a @,
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∧
s∈{N,@} G

(
σ̂ ⇒ ¬(↓Fs(s ∧ Fs(s ∧ Fs(#∧ ↑))))) : there is at most one occurrence of N

and @ in each block,∧
s∈Σ̂∪{#} G(σ̂ ⇒ ¬ ↓Fs(s ∧ Fs(#∧ ↑)) : there is exactly one symbol # and one symbol

of Σ̂ per block,
G
(
N ⇒↓Fs(# ∧ Fs(σ̂∧ ↑))) : each symbol N’s datum points to a block to its right,

G(N ⇒ ¬ ↓Fs(# ∧ Fs(# ∧ Fs(σ̂∧ ↑)))) : in fact N has has to point be the next block.

Once the structure has the expected shape, we can enforce the run as follows.
All the formulas below are based on the following trick. In a test of the form
↓Fs(N∧Fs(#∧ ↑)) which is typically performed at a position of symbol Σ̂, the last
symbol # must have the same data value as the initial position. Hence, because
of the structure above, both must be in the same block. Thus the middle symbol
N must also be inside that block. From the structure we know that the data value
of this N points to the next block. Therefore by replacing the test N by one of the
form N ∧ (↓ Fs(↑ ∧ s)) we can transfer some finite information from the current
block to the next one. This gives the desired successor relation.

Forcing a run

(begin)
∨

c∈Σ̂,π1(c)=q0

c

(end) Fs

(
last ∧

∨
c∈Σ̂,π4(c)∈F

c
)

(tran) All elements used from Σ̂ correspond to valid transitions. Let Σ̂C be
that set of transitions of C,

G
( ∧

c∈Σ̂\Σ̂C

¬c
)

(chain) For every c ∈ Σ̂,
G
(
c ⇒ ( ↓Fs

(
N ∧ Fs(#∧ ↑) ∧

∨
d∈Σ̂,

π4(c)=π1(d)

(↓Fs(d∧ ↑)))))
(pair) We first make sure that the block of the @ of an inck is matched with

a block of a deck:∧
k G
(
inc(k) ⇒

(
¬ ↓Fs(@ ∧ Fs(#∧ ↑))∨ ↓Fs

(
@∧ ↓Fs(dec(k)∧ ↑) ∧ Fs(#∧ ↑))))

Now, every inck block to the left of a ifzerok block:
– 1. The block must contain an @ element:∧

k G
(
inc(k) ⇒ ( ↓Fs(@ ∧ Fs(#∧ ↑)) ∨ ¬Fs(iz(k))

))
– 2. The data value of that @ element must point to a future block before
any occurrence of ifzerok:∧

k G
(
inc(k) ⇒ ¬( ↓Fs

(
@∧ ↓Fs(iz(k) ∧ Fs ↑) ∧ Fs(#∧ ↑))))

This concludes the construction of ϕC . The correctness proof is standard. ��
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3.2 Undecidability of sLTL↓
1(Fs, Fs

−1)

We now consider sLTL↓
1(Fs,Fs

−1). The extra modality can be used to code the
run of a (non faulty) Minsky CA.

Theorem 3. Satisfiability of sLTL↓
1(Fs,Fs

−1) is undecidable.

Proof. Consider a Minsky CA C. We revisit the proof of Theorem 2. It is easy
to see that we can enforce the absence of faulty increments during the run
by asking that every deci element is referenced by some previous inci block:∧

i G(dec(i) ⇒↓Fs
−(@∧ ↑)). We thus make sure that every dec is related to a

corresponding inc. Hence, the coding is that of a perfect (non faulty) run. ��

4 The Case of LTL↓
1

In this section we lift the lower bounds of the previous section by considering the
temporal operator F instead of Fs. We can only do so by removing at the same
time the restriction to simple formulas. Hence the results of this section cannot
be applied to XPath. Notice that LTL↓

1(F) and sLTL↓
1(Fs) are incomparable in

terms of expressive power. Indeed, properties like ↓ F(a ∧↑̄∧F(b∧ ↑)) cannot be
expressed in sLTL↓

1(Fs), while LTL↓
1(F) cannot express that the model has at least

two elements. We do not know whether sLTL↓
1(F), which is weaker than the two

above mentioned logics, is already non primitive recursive. The results of this
section improve the results of [8] which show that satisfiability is non primitive
recursive for LTL↓

1(X,F) and undecidable for LTL↓
1(X,F,F−1).

Theorem 4. Over data words,

1. Satisfiability of LTL↓
1(F) is decidable and non primitive recursive.

2. Satisfiability of LTL↓
1(F,F

−1) is undecidable.

Proof. We only prove Item 1, the proof of Item 2 being similar.
Consider an ICA C and recall the coding of runs of C used in the proof of
Theorem 2. In the construction of the formula ϕC , whenever we have “s∧Fs(s′∧
ϕ)” for some ϕ and s 	= s′ two different symbols, Fs can be equivalently replaced
by the F temporal operator. This is the case in all formulas except in three
places: (i) The formula saying that N should point to the next block contains
# ∧ Fs(# ∧ ϕ). But from the structure that is enforced, this can equivalently be
replaced by #∧ F(N∧ F(#∧ϕ)). (ii) To enforce that each block contains at most
one occurrence of symbols in Σ̂ ∪ {N, #, @}. (iii) To enforce that no two symbols
in Σ̂ ∪ {N, #, @} have the same data value.

In order to cope with (ii) and (iii), we use a slightly different coding for runs of
C. This coding is the same as the one for the proof of Theorem 2 except that we
allow succession of equal symbols, denoted as group in the sequel. Note that in a
group two different occurrences of the same symbol in general may have different
data values, as we can no longer enforce their distinctness. However, as we will see,
we can enforce that the Σ̂ group of elements of a block have all the same data value.
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Fig. 2. LTL↓
1(F) cannot avoid having repeated consecutive symbols

Hence a block is now either a group of c ∈ Σ̂ followed by a group of N followed
by a group of # or the same with a group of @ in between. A coding of a run is
depicted in Figure 2.

This structure is enforced by modifying the formulas of the proof of Theorem 2
as follows.

(i) The formulas that limit the number of occurrences of symbols in a block
are replaced by formulas limiting the number of groups in a block.

(ii) The formulas requiring that no two occurrences of a same symbol may
have the same data values are replaced by formulas requiring that no two
occurrences of a same symbol in different groups have the same data value.

(iii) In all other formulas, Fs is replaced by F.
(iv) Finally, we ensure that although we may have repeated symbols inside a

block, all symbols from Σ̂ have the same data value.

G(σ̂ ⇒ ¬ ↓ F((σ̂ ∨ #) ∧ ¬ ↑ ∧F(#∧ ↑)))

Note that this implies that each N of a group must have the same data
values as they all point to the next block. However there could still be @
symbols with different data values as depicted in Fig. 2.

The new sentences now imply, for instance, that:

1. Every position from a group of c ∈ Σ̂ have the same data value which is
later matched by an element of a group of #.

2. Every position from a group of N has the same data value as a position c ∈ Σ̂
of the next block (and then, it has only one possible data value).

3. Every position from a group @ has the same data value as a position c ∈ Σ̂
of a block to its right. Note that the data values of two @ of the same group
may correspond to the data values of symbols in different blocks. This is
basically the main conceptual difference with the previous proof.

The proof of correctness of the construction is left to the reader. ��

Note that in the previous proof we used the fact that LTL↓
1(F), although it has

only one register, can make (in)equality tests several times throughout a path
(as used in the formula of item (iv) in the proof), something that sLTL↓

1(Fs) and
XPath cannot do.
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Two registers. When 2 registers are available the previous result can be adapted
to code a (non faulty) Minsky CA with a strategy similar to [8, Theorem 5.4].

Theorem 5. Satisfiability of LTL↓
2(F) is undecidable over data words.

5 Data Trees and XPath

We now turn to data trees. An xml document can be seen as an unranked tree
with attributes and data values in its nodes. While a data tree has only one data
value per node, an xml document element may have several attributes each of
which with an associated data value. All XPath fragments treated in this paper
can force all elements of an xml document to have only one attribute. Therefore
all hardness results in the present work hold also for the class of xml documents.

The logic XPath. XPath is a two-sorted language, with path expressions (α, β, . . .)
and node expressions (ϕ, ψ, . . .). These are defined by mutual recursion:

α, β ::= ↓ | ↓+ | ↑ | ↑+ | → | →+ | ← | +← | ε | αβ | α ∪ β | α[ϕ]
ϕ, ψ ::= σ | 〈α〉 | ¬ϕ | ϕ ∧ ψ | α = β | α 	= β (σ ∈ Σ)

A path expression essentially describes a traversal of the tree by using the axis:
child (↓), descendant (↓+), the next-sibling (→), following-sibling (→+)
and their inverses, with the ability to test at any stage for node conditions. Let
t be a data tree with domain T and labeling function λ. The semantics of XPath
is defined by induction is the usual intuitive way, we only give here some cases:

[[↓]]t = {(x, xi) | xi ∈ T} [[αβ]]t = {(x, z) | ∃y.(x, y) ∈ [[α]]t ∧ (y, z) ∈ [[β]]t}
[[〈α〉]]t = {x ∈ T | ∃y.(x, y) ∈ [[α]]t} [[α[ϕ]]]t = {(x, y) ∈ [[α]]t | y ∈ [[ϕ]]t}
[[ε]]t = {(x, x) | x ∈ T} [[α+]]t = the transitive closure of [[α]]t

[[α = β]]t = {x ∈ T | ∃y, z.(x, y) ∈ [[α]]t, (x, z) ∈ [[β]]t, π2(λ(y)) = π2(λ(z))}
[[α �= β]]t = {x ∈ T | ∃y, z.(x, y) ∈ [[α]]t, (x, z) ∈ [[β]]t, π2(λ(y)) �= π2(λ(z))}

A key property for using results of Section 3 is that simple formulas can be
translated to XPath and back. The proof of this result is straightforward by
induction on the formula.

Proposition 1. Over data words, sLTL↓
1(Fs) and XPath(→+,=) have the same

expressive power. The same holds for sLTL↓
1(Fs,Fs

−1) and XPath( +←,→+,=).
Moreover, in both cases, the transformation from sLTL↓

1 to XPath takes polyno-
mial time while it takes exponential time in the other direction.

The restriction on negations in the definition of sLTL↓
1 corresponds to the fact

that XPath path expressions are always positive: any path α is essentially a
nesting of operators F with intermediate tests. We remark that there is a big
difference between XPath(→+,=) over data words and XPath(↓+,=) over data
trees. Indeed XPath(↓+,=) is closed under bisimulation and hence it cannot as-
sume that the tree is a vertical path. As the string structure was essential in
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the proof of Theorem 2, the non primitive recursiveness of XPath(→+,=) over
data words does not lift to XPath(↓+,=) over data trees. Actually, satisfiabi-
lity of XPath(↓+,=) is ExpTime-complete [10]. However, if one considers the
logic XPath(↓+,→,=) then the axis → can be used to enforce a vertical path
(¬ ↓+ [→]) and therefore it follows from Theorem 2 and Proposition 1 that:

Corollary 1. Satisfiability of XPath(↓+,→,=) on data trees is at least non prim-
itive recursive.

Similarly, in XPath(↓+, ↑+,=) one can simulate a string by going down to a leaf
using ↓+ and then use the path from that leaf to the root as a string using ↑+.

Corollary 2. Satisfiability of XPath(↓+, ↑+,=) on data trees is at least non prim-
itive recursive.

Note that the decidability of XPath(↓+,→,=) and of XPath(↓+, ↑+,=) is still an
open problem.

Open problem: Is XPath(↓+, ↑+,=) decidable over data trees?

It would be interesting to know whether the strictness of the axis ↓+ is necessary
in the above two results. This boils down to know whether sLTL↓

1(F) is already not
primitive recursive over data words. Note that the proof of Theorem 4 uses in an
essential way the possibility to make (in)equality tests several times throughout
a path. This is exactly what cannot be expressed in sLTL↓

1(F).

Open problem: Is satisfiability of sLTL↓
1(F) primitive recursive over data words?

We conclude with some simple consequences of Theorem 3 and Proposition 1:

Corollary 3. Satisfiability of XPath( +←,→+,=) and of XPath(↓+, ↑+,→,=)
over data trees is undecidable.

Corollary 4. Satisfiability of XPath(→+, ↓, ↑,=) is undecidable.

Proof. This is similar to the proof of Theorem 3 with a slight difference. Consider
that the coding of the run of the counter machine is done at the first level of the
tree (i.e., at distance 1 from the root). Then, the property to ensure that every
decrement has a corresponding increment is now:

∧
i ¬ ↓ [dec(i) ∧ ¬ε =↑↓ [@]].

6 Discussion

By [8] it is known that satisfiability of LTL↓
1(X,F) with infinite data words is

undecidable. The proof of Theorem 4 can be extended to code runs of ICA over
infinite data words, which is known to be undecidable, to show that this result
already holds in the absence of X.

Theorem 6. On infinite data words, the satisfiability problem of LTL↓
1(F) is

undecidable.
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Summary of Results

In the table below we summarize the main results and some of the consequences
we have mentioned. In this table, PR stands for non primitive recursive.

Logic Complexity Details

LTL↓
1(F) PR, decidable Theorem 4 & [8]

LTL↓
1(F,F

−1) undecidable Theorem 4

LTL↓
2(F) undecidable Theorem 5

sLTL↓
1(Fs) PR, decidable Theorem 2 & [8]

sLTL↓
1(Fs,Fs

−1) undecidable Theorem 3

XPath(↓+,→,=) PR, decidability unknown Corollary 1

XPath(↓+, ↑+,=) PR, decidability unknown Corollary 2

XPath(↓+, ↑+,→,=) undecidable Corollary 3

XPath(→+, ↓, ↑,=) undecidable Corollary 4
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http://www.di.unito.it/∼{gaboardi,rover,vercelli}

Abstract. We study the relations between Multiplicative Exponential Linear
Logic (meLL) and Baillot-Mazza Linear Logic by Levels (mL3). We design
a decoration-based translation between propositional meLL and propositional
mL3. The translation preserves the cut elimination. Moreover, we show that there
is a proof net Π of second order meLL that cannot have a representative Π ′

in second order mL3 under any decoration. This suggests that levels can be an
analytical tool in understanding the complexity of second order quantifier.

1 Introduction

The implicit characterization of the polynomial and elementary time computations by
means of structural proof theory takes its origins from a predicative analysis of non
termination. We recall, indeed, that Girard conceived Elementary Linear Logic (ELL)
and Light Linear Logic (LLL) [1] by carefully analyzing the formalization of naı̈ve set
theory inside the Multiplicative and Exponential fragment of Linear Logic (meLL).
The comprehension scheme could be represented without any paradoxical side effect
by forbidding the logical principles dereliction !A � A and digging !!A � !A.

Intuitively, without dereliction and digging the proof nets of both ELL and LLL are
stratified. Namely, during the cut elimination process, every node of a proof net either
disappears or it is always contained in a constant number of regions, called boxes. The
stratified proof nets of ELL are characterized by a cut elimination cost which is bounded
by an elementary function whose parameters are the size of a given net Π and its depth,
i.e. the maximal number of nested boxes in Π .

Moreover, Girard noted that ruling out the monoidality of the functor “!”, i.e.
(!A⊗!B) �!(A ⊗ B), from ELL yields LLL whose cut elimination cost lowers to a
polynomial. The reason is that the logical connective ⊗ somewhat allows to count the
resources we may need. Commuting ⊗ with ! hides the amount of used logical resources
because of the contraction !A � (!A⊗!A). So, the absence of monoidality allows to
keep counting the needed resource by means of ⊗.

In [2], the authors pursue the predicative analysis on meLL by introducing mL3.
This system generalizes ELL by means of explicit indices associated to the edges of the
proof nets of meLL. Moreover, further structural restrictions on mL3 yield a polynomial
time sound generalization mL4 of LLL. The use of indices in meLL analysis is not new
and traces back to, at least, [3,4]. The new systems mL3 and mL4 still characterize

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 344–355, 2009.
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implicitly the elementary and polynomial computations. Their distinguishing feature
lies in a more flexible use of the nodes that change the level, so, somewhat generalizing
the notion of box.

Since mL3 is a restriction of meLL, it is natural that some derivation of the latter
cannot be represented inside the former, the reason being we know that the cost of the
cut elimination of meLL overwhelms the elementary one of mL3.

In this paper, we show that indices strongly restrict meLL proof nets in presence of
∃ and ∀, while they are minor restriction when quantifier do not get used. Indeed, we
can show that every proof net Π in the propositional fragment of meLL has a repre-
sentative Π ′ in mL3 that preserves the cut elimination. Specifically, Π ′ is the result of
a predicative analysis of Π , based on indices we can use to label every edge of mL3

proof nets. The proof net Π ′ of mL3 is the result of the algorithm @, applied to Π , we
introduce in this work. The proof net @(Π) is a decoration of both the edges and the
formulæ of Π , using the paragraph modality §, whose instances correspond to an index
change in the proof net of mL3 being constructed.

The interest of the translation that @ implements is twofold. Concerning the struc-
tural proof theory, @ shows that the modality § internalizes the notion of index at the
level of the formulæ. Concerning the implicit characterization of complexity classes,
@ offers the possibility of a finer study of normalizations measures of propositional
meLL, thanks to the structural aspects that mL3 supplies.

Finally we answer negatively to the following two natural questions: (i) Is there any
extension of @ able to translate every proof net of (full) meLL into mL3?, and (ii) Is
there any translation, alternative to any generalization of @, from meLL to mL3? The
reason of the negative answer lies in the proof net Π of meLL in Figure 6. There is no
decoration Π ′ in mL3 of Π because to obtain Π ′ either we should collapse two distinct
indices of Π ′ or we would need a new node able to change indices but not the formulæ.
Both solutions would imply a cut elimination cost blow up, unacceptable inside mL3.

Summing up, the predicative analysis of meLL by means of the indices inside mL3

identifies as the true source of impredicativity of meLL the collapse of indices, implicit
in the second order quantification of the formulæ of meLL itself. Then, the “side effect”
of such a collapse is the huge cut elimination bound of meLL.

2 Second Order meLL

We start by recalling second order Multiplicative Exponential Logic (meLL) in proof
nets style. In particular, analogously to [2], we present a meLL version including the
paragraph (§) modality.

The formulæ. meLL derives multisets of formulæ that belong to the language generated
by the following grammar:

F ::= A |  A A ::= α | A ⊗ A | A�A | ∀α.A | ∃α.A | !A | ?A | §A | A⊥

The start symbol F generates both (standard) formulæ and partially discharged for-
mulæ. Standard formulæ are generated from the start symbol A. Partially discharged
formulæ are of kind  A; the syntax prevents nesting of  symbols. We shall use A,B,C,



346 M. Gaboardi, L. Roversi, and L. Vercelli

�
A⊥ A

�A⊥ A
⊗

A B

A⊗B

`
A B

A`B

∀

A

∀α.A

∃

A{B/α }

∃α.A

Axiom Cut Tensor Par Forall Exists

�

A

�A

?�A

...

�A

?A

!

A

!A

§

A

§A

pax

�A

�A

Flat Contraction Bang Paragraph Aux. Port

Fig. 1. Nodes for the nets of meLL

possibly with sub or superscripts, to range over standard formulæ, F,G to range over
formulæ. Γ,Δ,Ξ range over multisets of formulæ. The standard meLL formulæ are
quotiented by the De Morgan rules, where (A,A⊥), (⊗,�), (∀, ∃), (§, §) and (!, ?) are
the pairs of dual operators. Notice that § is self dual, namely: (§A)⊥ = §(A⊥).

Proof nets of meLL. Given the nodes in Figure 1, we say that an Axiom node is a proof
net. Moreover, given two proof nets:

Π1

......F1 Fm

Π2

......G1 Gn

Π1 :F1, . . . , Fm Π2 :G1, . . . , Gn

with m,n ≥ 1, then all the graphs inductively built from Π1 and Π2 by the rule schemas
in Figure 2 are proof nets.

Cut elimination in meLL. Every pair of dual linear nodes (axiom/cut, ⊗/�, ∀/∃, §/§)
annihilates in one step of reduction, as usual in literature. The exponential pair of dual
nodes !/? rewrites by means of the big-step in Figure 3.

Basic definitions and properties in meLL. The modality § is not part of the original
version of meLL; it is easy to show that in meLL § is, essentially, useless, i.e. A and
§A may be proved equivalent in meLL. Nevertheless, § become useful when handling
sublogics of meLL. §kA means § . . . §A with k paragraphs.

The original formulation of meLL also contains the mix rule and units, but for sim-
plicity we omit them.

A weakening node is a contraction with 0 premises. We call axiom-edge, weakening-
edge, cut-edge, etc. an edge connected to an an axiom node, a weakening node, a cut
node, etc..

Fact 1 (About the Structure of the Proof Nets). Let Π be a proof net of meLL, and
u one of its cut links or conclusions. Let ρ be a graph-theoretical path along Π from u
to an axiom or to a weakening node v, not containing any other axioms. Then ρ does
not contain any other cut node.
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Fig. 2. Inductive rule schemes to build proof nets of meLL
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Fig. 3. Big-step reduction. A contraction with k premises in the redex implies k copies of Π in
the reduct. For the sake of clarity we do not draw all the boxes in the picture.

Thanks to this Fact, we can state that all the edges of our proof nets are directed down-
wards, from axioms or weakening nodes towards conclusions or cut nodes, even if we
do not draw the corresponding arrows. A path inside a meLL proof net Π is a sequence
of nodes τ = 〈u0, . . . , uk〉 in Π such that (i) each ui is connected with ui+1, (ii) the
direction of such edge is from ui towards ui+1, and (iii) for every i, ui 	= ui+1. The
size of a meLL proof net is the number of its nodes.

3 Multiplicative Linear Logic by Levels: mL3

The system mL3 is described in [2]. It is the subsystem of all the proof nets of meLL
admitting an indexing:
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Fig. 4. Costraints for indexing meLL proof nets

Definition 1. Let Π be a proof net of meLL. An indexing for Π is a function I from
the edges of Π to Z satisfying the constraints in Figure 4 and such that I(e) = I(e′)
for all the conclusions e, e′ of Π .

Fact 2 (Indexes do not Increase from Axioms to Conclusions). Let Π be an mL3

proof net, I an indexing for Π , ρ a path from some node u to some node v. Then
I(u) ≥ I(v).

It will be convenient to consider a particular kind of indexing.

Definition 2. Let Π be an mL3 proof net, and I be an indexing for Π . We say that I is
canonical if Π has an edge e such that I(e) = 0, and I(e′) ≥ 0 for all edges e′ of Π .

Fact 3 (Existence of Canonical Indexing [2]). Every proof net of mL3 admits one and
only one canonical indexing.

We can now define a measure on mL3 proof nets.

Definition 3. Let Π be an mL3 proof net, and let I0 be its canonical indexing. The level
of Π is the maximum integer assigned by I0 to the edges of Π .

If 2n
x is the function such that 2n

0 = 2n and 2n
m = 22n

m−1 , then:

Theorem 1 (Elementary bound for mL3 [2]). Let Π be an mL3 proof net of size s
and level l. Then, the round-by-round cut-elimination procedure reaches a normal form
in at most (l + 1)2s

2l steps.

The Theorem above is a result of weak polynomial soundness, as it only has been proved
for a particular cut-elimination procedure. It is reasonable however that it can be gen-
eralized to any reduction strategy, in analogy to what happens in ELL and LLL [5]. The
interested reader may find the definition of the round-by-round procedure and a proof
of Theorem 1 in [2].

4 Embedding Propositional meLL into mL3

Definition 4. Let Π be a proof net of meLL. A quasi-indexing for Π is a function Q
from the edges of Π to Z that respects all the constraints in Figure 4, with the possible
exception of the axiom edges, and such that for all conclusion e, e′ of Π it holds Q(e) =
Q(e′).
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Fact 4 (Quasi-Indexing Exists). Every meLL proof net admits a quasi-indexing.

Proof. Let Π be a proof net of meLL; we want to build some quasi-indexing Q. We
call c1, . . . , cn the cut nodes of Π . We arbitrarily choose a value Q(e) = i for all the
conclusion edges e of Π , and a value Q(ej

1) = Q(ej
2) = ij for every couple of edges

ej
1, e

j
2 incident in cj . Then, using the rules in Figure 4, we can calculate the value of Q

in all the edges of the proof net. The process of calculation terminates when the axiom
and weakening nodes are reached. ��

For every Π , whose cut nodes are c1, . . . , cn, we call Q(i, i1, , ...in) the (unique) quasi-
indexing that has value i on the conclusions and value i1, . . . , in on the cut-edges. This
definition is justified looking at the proof of Fact 4.

The coming level of a formula is completely unrelated to the levels of Definition 3:

Definition 5. For every formula A of meLL let the formula level fl(A) be:

fl(α) = 0 fl(�A) = fl(A) + 1 � ∈ {!, ?, §}
fl(�A) = fl(A) fl(A� B) = max{fl(A), fl(B)} � ∈ {⊗,�}

Definition 6. Let Π be a proof net of meLL, Q a quasi-indexing for it. Let e be an
edge in Π , labelled by a formula A. Then, the absolute level of e in Π is defined as
al(e) = Q(e) + fl(A).

Notice that the definition depends on the chosen quasi-indexing.
The following map is crucial in the proof of Proposition 1:

Definition 7. For every meLL formula A let (A)∗ be defined as:

(α)∗ = α

(B � C)∗ = §d(B)∗ �(C)∗ if d = fl(C) − fl(B) ≥ 0 � ∈ {⊗,�}
(B � C)∗ = (B)∗ � §−d(C)∗ if d = fl(C) − fl(B) ≤ 0 � ∈ {⊗,�}

(�A)∗ = �((A)∗) � ∈ {!, ?, �} .

The algorithm @. The main result of this section concerns the following algorithm
@. Let the arguments of @ be a proof net Π : A1, . . . , An of propositional meLL and
a quasi-indexing Q for Π . The algorithm returns an mL3 proof net. We will give a
direct proof of this fact. Let the conclusions and the cut edges of Π be e1, . . . , en. Let
K = max1≤i≤n {al(ei)}. For every edge ei, with 1 ≤ i ≤ n, labelled with the formula
Ai, we define @ to perform the following steps:

1. Replace Ai by (Ai)∗.
2. Add ki new (§) nodes after the edge ei where ki = K−al(ei), label the new edges

respectively by §1(Ai)∗, . . . , §ki(Ai)∗ and modify the quasi-indexing accordingly.
Note that now al (ei) = K . See Figure 5 a.

3. Apply the subroutine ϑ of @, here below, to the edge ei.

The subroutine ϑ takes an edge e of (the already modified version of) Π as its argument.
ϑ is recursive and is defined by cases on the kind of the edge e:
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Fig. 5. The main cases of the rewriting steps performed by @ (Proof of Proposition 1)

(a) If e is an axiom edge, then it is done.
(b) If e is the conclusion of a (⊗) node with premises the edges f and g labelled with

formulae B and C respectively, then replace B by (B)∗ and C by (C)∗ respectively.
Let us suppose for clarity that fl(B) > fl(C) (see Figure 5 b). Calling d =
(fl(B)−fl(C)), we add d new (§) nodes after the edge g and label the new edges
g1, . . . , gd respectively by §1(Ci)∗, . . . , §d(Ci)∗. Modify Q accordingly, then apply
ϑ on f and g.

(c) If e is the conclusion of a (!) node (or ( ) or (pax)) with premises the edge f labelled
with the formula B then replace it by (B)∗ and apply ϑ on f .

(d) If e is the conclusion of a (?) node with premises the edges f1, . . . , fl labelled with
formulae B1, . . . Bl, then replace them by (B1)∗, . . . , (Bl)∗ and apply ϑ on every
f1, . . . , fl.

Proposition 1 (Embedding Propositional meLL into mL3). There is an algorithm
@(·, ·) that takes every proof net Π of propositional meLL, endowed with a quasi-
indexing Q, and returns a proof net @(Q,Π) of mL3. The proof nets Π and @(Q,Π)
only differ for the possible presence of some new paragraph nodes.

Proof. @(·, ·) is the algorithm already described. @(·, ·) transforms a proof net Π of
meLL in a new graph @(Q,Π), with conclusions labelled by §k1(A1)∗, . . . , §kn(An)∗,
for some k1, . . . , kn, to which it is naturally associated a quasi-indexing Q′. The quasi-
indexing Q′ associates to conclusions and cut edges of @(Q,Π) the same indices as Q
assigns to conclusions and cut edges of Π . We need to check that @(Q,Π) is really a
proof net of meLL, and that this proof net is in mL3.

Let us consider the transformations previously described. The untyped graph is still
an untyped proof net of meLL, because we have just added some paragraphs. More-
over, by construction every edge e of Π labelled by A is translated into an edge e′ of
@(Q,Π), labelled by (A)∗. So, in particular, axioms, cuts and contractions are labelled
correctly. The labelling of the other nodes follows by construction of @(·, ·).
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At last, we need to show that Q′ is an indexing. Let us consider two edges f, g
incident into an axiom in @(Q,Π), labelled resp. by A and A⊥. Notice that, by con-
struction, for every edge e of @(Q,Π) it holds al(e) = K . As a consequence, f and g
have the same quasi-index Q′(e) = al(e)− fl(A) = K − fl(A), and so Q′ is also an
indexing. ��

Proposition 2 (@(·, ·) preserves the Cut-Elimination). For every reduction Π →+ Σ
in propositional meLL, and for every quasi-indexing Q of Π , there exists a quasi-
indexing Q̃ of Σ such that @(Q,Π) →+ @(Q̃, Σ):

Π →+ Σ in meLL
↓ ↓

@(Q,Π) →+ @(Q̃, Σ) in mL3

Proof. It is enough to prove the result for 1-step reductions Π → Σ. So, let c be the cut
fired during this reduction; c corresponds to a unique cut c′ of @(Q,Π). By construction
of @(·, ·), the only difference between Π and @(Q,Π) is the possible presence of
paragraphs. As many (§) nodes as T may occur just above c′. If we eliminate all the T
(§) nodes we have that the edges entering c′ correspond to the edges entering c. Firing
c′ yields a proof net Θ of mL3. We have to show that Θ = @(Q̃, Σ), for some Q̃. If
c was a cut with an axiom, or a cut between a weakening and a closed box, then both
c and c′ annihilate. Otherwise, we get (at least) one residual c′′ of c′ inside Θ. We can
define Q̃ equal to Q on all the conclusions and cut edges that are not involved in the
reduction, and that is defined on the edges entering c′′ as follows. We distinguish two
cases. If c is not an exponential cut, e is an edge incident to c, and f is an edge incident
to c′′, then Q̃(f) = Q(e) + T . If c is an exponential cut, Q̃(f) = Q(e) + T + 1. ��

Corollary 1 (Complexity Bound for meLL). Let Π be a proof net of meLL. Let’s call
M = max{fl(A) | A a formula labelling an edge of Π}. Then, the round-by-round

cut-elimination procedure of Π terminates in at most (M + 1) · 2M·|Π|
2M steps.

Proof. Let us fix the quasi indexing Q = Q(0, 0, . . . , 0), and let us calculate @(Q,Π).
Notice in particular that (i) the constant K = max1≤i≤n {al(ei)} used defining @
in this case is K = max1≤i≤n {fl(ei)} ≤ M ; and (ii) the indexing I induced on
@(Q,Π) is canonical. We want apply Theorem 1 to @(Q,Π). The size |@(Q,Π)| is
bounded by K · |Π |: indeed, for every node of Π , @ adds at most K new (§) nodes. The
level of @(Q,Π) is l = max{I(e) | e is an edge of @(Q,Π)}. Every I(e) is bounded
by K , so l ≤ K . Thus, @(Q,Π) reduces in at most (K+1) ·2K·|Π|

2K ≤ (M +1) ·2M·|Π|
2M

steps because of Theorem 1. At last, Proposition 2 tells that Π reduces in at most as
many steps as @(Q,Π), and the thesis follows. ��

5 The Full meLL Case

The Proposition 1 fails for second order meLL proof nets. The counterexample is the
proof net Π in Figure 6. The behaviour of Π is analogous to the λ-term (λx.xx)2. Note
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Fig. 6. This proof net represents the λ-term (λx.xx)2. The two dashed boxes are the proof nets
proving � C⊥, D and, essentially, � ?D⊥, C.

that the argument 2 of Π is not really necessary, but it is makes evident the dynamic
interaction of the two occurrences of x.

We call ρ the path starting from the axiom v and arriving into the contraction u
passing through the (∃) node w1; we call τ the path starting from v and arriving into u
passing through the (∃) node w2.

Firstly, we can imagine to extend the algorithm @ used in the proof of Proposition 1,
to a new algorithm @. It is necessary to extend the definitions of the map (·)∗ and of
the formula level. The most naı̈ve assumption is that (QA)∗ = Q(A)∗ and fl(QA) =
fl(A) for each quantifier Q. It will be enough to study the behaviour of @ along the
paths ρ and τ . Starting from the cut node c, @ would add several new (§) nodes to Π ,
in particular over the right premise of the (⊗) nodes z1 and z2, but no new nodes over
ρ and τ . So, the resulting net would not admit any indexing, because the two edges
incident in v would still have different quasi-indices 2 and 3.

Now, the reader may legitimately think that this problem is due to our particular (and
naı̈ve) definition of the algorithm @. In fact, the problem is more serious. We will show
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Fig. 7. Exponential inductive rule schemes to build proof nets of SLL

that there is no way of building an mL3 proof net just adding some (§)-nodes to Π . In
order to have the same index on the two sides of v, we need to add along the path ρ one
(§) node more than the ones we add along τ . The problem arises as the two formulas
labelling the premises of u must be equal. Along ρ, a (§) node can be added only along
the four edges connecting v to t; but whatever edge we choose, if we add a (§) node
along it, we are forced to add another (§) node along τ to make the premises of u agree.
And so the resulting proof net cannot be indexed.

6 Concluding Remarks and Further Works

The main contribution of our work is a predicative analysis of meLL by means of the
indices inside mL3. Such an analysis highlights that the source of the huge complex-
ity cost of meLL is due to the use of second order quantifiers that hide and collapse
indices. Our analysis is also connected to other problems, that motivate some further
developments we outline in the following.

mL3 as a framework for ICC. We recall that the main reason behind mL3 is to better
understand computations with elementary cost. This work is to support the idea that
mL3 is very useful to characterize other complexity classes. Of course, the simple def-
inition of mL4 as a subsystem of mL3, that generalizes a simplified version of LLL,
studied in [6,7], already supports such an idea. We strengthen it further by embedding
the propositional fragment of SLL [8] in mL3. We recall that the formulæ of SLL are
a subset of the meLL ones. The proof nets of SLL are built using the “linear” nodes
of meLL, and the “exponential” nodes in Figure 7. Our embedding of SLL into mL3 is
based on an intermediate embedding of SLL into meLL. Let us call exponential every
path from a ( ) node u of a meLL proof net to the first (?) node we may cross, starting
from u. SLL can be identified with the subsystem of meLL including all and only the
proof nets Π that satisfy the following conditions:

R1: Every exponential path entering a (?) node with one premise crosses at most one
(pax) node.

R2: Every exponential path entering a (?) node with more that one premise does not
cross any (pax) node.

§N: No (§) node occurs in Π .

R1 and R2 simplify analogous conditions in [7]. Basing it on the R1, R2, and §N,
we define the following map algorithm from the proof nets of SLL to those ones of
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meLL. Every (?) node of Π becomes a ( ) node followed by a (pax) node followed
by a (?) node. Every multiplexor (m) with k premises becomes a tree composed by k
( ) nodes, followed by a (?) node. Proposition 1 implies that propositional SLL has a
corresponding subsystem in mL3. In particular, it is easy to verify that such a subsystem
is the one obtained by considering only the proof nets of propositional mL3 satisfying
exactly R1 and R2 since @ preserves them.

Our future work is on the embedding of full SLL into mL3. This should be possi-
ble because the structural constraints that lead from meLL to SLL limit the interaction
between second order quantifiers and indices, implicitly hidden by the of-course modal-
ity. The proof net in Figure 6, not in SLL, supports this idea, because the second order
quantifiers, associated to the duplication-related modality, may require to collapse in-
dices which must be necessarily distinct, as already observed in Section 5.

Complexity bounds for the simply typed λ-calculus. We also aim at a proof theo-
retical based analysis of the computational complexity of the simply typed λ-calculus,
which, under the Curry-Howard analogy, can correspond to intuitionistic propositional
meLL. We mean we want to trace back to simply typed λ-calculus the purely structural
analysis of the computational complexity that mL3 supplies for propositional meLL.
The point is to avoid any reference to the type of a given simply typed λ-term to infer
its normalization cost, as in [9,10]. First steps in this direction are Proposition 1, and a
careful inspection of the definition of @. Let Π be a proof net of propositional meLL.
Proposition 1 implies that the length of the reduction sequences of @(Π) in mL3 bound
those ones of Π . The definition of @ reveals a relation between the structure of Π and
the level of @(Π). The latter comes from the formulæ levels of formulæ of only specific
axiom nodes of Π . So, the open points for coming work are at least two: (i) Is there any
linear or polynomial function relating the size of Π and the level of @(Π)?, and (ii) Is
there any alternative @′ to @ never using the formulæ of the above specific axioms in
Π able to yield @′(Π) in mL3?

Acknowledgments. We warmly thank the anonymous referees for the detailed com-
ments and suggestions on the preliminary version of the paper.
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Abstract. We consider a problem of hyper-minimisation of an automa-
ton [2,3]: given a DFA M we want to compute a smallest automaton N
such that the language L(M)ΔL(N) is finite, where Δ denotes the sym-
metric difference. We improve the previously known O(|Σ|n2) solution
by giving an expected O(|δ| log n) time algorithm for this problem, where
|δ| is the size of the (potentially partial) transition function. We also give
a slightly slower deterministic O(|δ| log2 n) version of the algorithm.

Then we introduce a similar problem of k-minimisation: for an au-
tomaton M and number k we want to find a smallest automaton N such
that L(M)ΔL(N) ⊆ Σ<k, i.e. the languages they recognize differ only
on words of length less than k. We characterise such minimal automata
and give algorithm with a similar complexity for this problem.

Keywords: finite automata, minimisation, hyper-minimisation, cover
automata.

1 Introduction

DFA is the simplest device recognising languages known in the formal language
theory. Studying its properties is motivated by simplicity of the notion, possible
applications of the result, connections with various areas in theoretical computer
science and the apparent beauty of the results of automata theory.

DFA is defined as a quintuple 〈Q,Σ, δ, q0, F 〉, where Q is the (finite) state-
set, Σ — (finite) alphabet, δ — the transition function, q0 — starting state, and
F ⊆ Q is the set of accepting states. By the usual convention, n denotes |Q|.

One of the classical problem in the field is minimisation of a given automaton
M : two automatons M , N are equivalent, denoted by M≡N , if L(M) = L(N).
An automaton M is minimal if for each equivalent N it holds that |Q(M)| ≥
|Q(N)|). Minimisation of an automaton is is a problem of giving a smallest
equivalent automaton. A breakthrough was made by Hopcroft [9], who gave
an algorithm running in time O(n logn). When the alphabet is not fixed, his
algorithm runs in time O(|Σ|n log n), as addressed directly by Gries [7].

A recent development in the area was done by considering a partial function
δ instead of full transition function: whenever δ(q0, w) is not defined, the word
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w is not accepted. Valmari and Lehtinen [12] gave an O(|δ| log n) algorithm in
this case. As |δ| = O(|Σ|n), this refines the previously existing results.

The question whether any algorithm faster than O(|δ| log n) for automata
minimisation is possible remains a challenging open problem. In particular, no
argument suggesting that minimisation cannot be done in linear time is known.
On the other hand, it is known [5] that there are automata for which all possible
executions of the Hopcroft algorithm run in Θ(n logn).

A recent notion of f -equivalence [2,3] considers a minimisation of an au-
tomaton while allowing the resulting language to differ from the original one
on a finite amount of words. Languages L and L′ are f -equivalent, denoted
by L∼L′, if |LΔL′| < ∞, where Δ denotes the symmetric difference of two
languages. Similarly, automata M , M ′ are f -equivalent, denoted by M∼M ′,
if L(M)∼L(M ′). Automaton M is hyper-minimal, if for every M ′∼M it holds
that |Q(M)| ≤ |Q(M ′)|. This springs a natural question: how difficult is it to
hyper-minimise an automaton N , i.e. to construct a hyper-minimal automaton
M∼N . It is known that such construction can be done in time O(n2) [2]. We
improve its runtime to (expected) O(|δ| log n), which can be determinized and
run in O(|δ| log2 n). As minimisation reduces to the hyper-minimisation, any
substantially faster algorithm would be a major breakthrough in the field.

We then introduce a similar notion of k-f -equivalence, denoted by ∼k: L∼kL
′

if max{|w| : w ∈ LΔL′} < k. An automaton M is k-minimal if for all M ′ such
that L(M)∼kL(M ′) it holds that M has the least number of states. Similarly
we study the problem of k-minimisation of a given automaton M .

We introduce relations that allow to better understand the structure of the k-
minimal automata and characterise them. Using them we give an algorithm for k-
minimisation working in (expected) O(|Σ|n logn) time. Note that the algorithm
reads k as part of the input and the running time does not depend on k. As
before it can be determinised and have O(|Σ|n log2 n) running time. Since hyper-
minimisation of M is equivalent to n-minimisation, one cannot expect that any
algorithm faster than O(|δ| log n) can be found.

It should be noted that the O(n2) algorithm and our algorithms work in a
different way then the Hopcroft’s algorithm, which iteratively refined the par-
tition of states. Both Badr’s [2] and Badr et al. [3] algorithms calculated the
equivalence classes of ∼ and then greedily merged the appropriate states. Our
algorithm for hyper-minimisation, as well as the one for k-minimisation, works
in phases: roughly speaking, in the �-th phase it finds pairs of states q, q′ such
that max{|w| : w ∈ L(q)ΔL(q′)} = � and merges them.

The notion of k-f -equivalence is somehow complementary to the problem of
finding a minimal cover automata — for an automaton M such that k is the
length of longest word in L(M) we want to find a minimal automaton N such
that L(N)∩Σ≤k = L(M) [4]. It was introduced with practical purpose in mind:
if an automaton recognises a finite language then one can store the length of the
longest recognised word and a cover automaton. The input is accepted if it is
not too long and recognised by the cover automaton. A clever modification of
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Hopcroft algorithm can be applied in this setting, yielding a O(n log n) algorithm
for finding a minimal cover automaton [10].

In parallel, a similar work concerning hyper-minimisation was done by M.
Holzer and A. Maletti [8], who independently gave a randomised algorithm for
hyper-minimisation running in expected time O(|Σ|n logn).

2 Preliminaries

For an automaton M = 〈Q,Σ, δ, q0, F 〉 we define its language L = L(M) in
the usual sense. By M(w) we denote δ(q0, w). We say that a word w induces
a language L(w) := w−1L: the language recognised after reading the word w.
Let also LM (q) denote L(〈Q,Σ, δ, q, F 〉), where M = 〈Q,Σ, δ, q0, F 〉, i.e. the
language recognized by the automaton M with the starting state set to q.

A standard approach to minimisation is to consider a Myhill-Nerode relation
on words, defined for the language L = L(M) as

w≡Lw′ iff ∀u ∈ Σ∗ wu ∈ L ⇐⇒ wu′ ∈ L.

This relation has finitely many equivalence classes for regular languages and each
such class corresponds to one state in the minimal DFA recognising the language
L. To make this approach more efficient, it should be noted that if M(w) =
M(w′) then w≡Lw′, i.e. the relation is in fact defined for states: q≡Lq′ ⇐⇒
LM (q) = LM (q′). The minimisation algorithm starts with partition of states
into two classes F and Q \ F and iteratively refine the partition until it is left
with the set of equivalence classes of ≡L [9,12].

It is easy to see that the minimisation reduces to hyper-minimisation: consider
an automaton M . Create M ′ by adding one accepting state dummy , one fresh
letter $ to the alphabet and extend the transition function by δN (q, $) = dummy
and for every letter b ∈ Σ δN (dummy, b) = dummy. Then for each q ∈ Q(M) it
holds that LN (q) = LM (q) ∪ $(Σ ∪ {$})∗, hence it is infinite. Remove the state
dummy from an automaton hyper-minimal for M ′. The obtained automaton is
minimal for L(M).

The relation ∼ plays a similar role in the problem of hyper-minimisation as
≡ in the problem of minimisation. We refine ∼ so that it can be used to the
problem of k-minimisation as well.

We employ the classification of states developed in [3]: the preamble, de-
noted by P (M), or simply P , is a set of states q reachable from q0 by finitely
many words, i.e. L(〈Q,Σ, q0, δ, {q}〉) is finite. On the other hand, kernel K(M),
or simply K, is defined as Q \ P , i.e. set of states q such that language
L(〈Q,Σ, q0, δ, {q}〉) is infinite.

The automaton M ′ is obtained by merging state q to state p in automaton
M = 〈Q,Σ, δ, q0, F 〉 if M ′ is obtained by changing all transitions ending in q to
transitions ending in p and deleting state q. If q was a starting state then p is
the new starting state. Formally M ′ = 〈Q \ {q}, Σ, δ′, q′0, F \ {q}〉 where

δ′(r, a) =

{
δ(r, a) if δ′(r, a) 	= q

p if δ′(r, a) = q
, q′0 =

{
q0 if q0 	= q

p if q0 = q .
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For two languages L,L′ define their distance as

d(L,L′) =

{
max{|u| : u ∈ L(w)ΔL(w′)} + 1 if L 	= L′ ,

0 if L = L′ .

This definition can be easily extended to states by setting d(q, q′) =
d(L(q), L(q′)). If we fix a language L then the distance between words is de-
fined as dL(w,w′) = d(L(w), L(w′)). Usually the language L is clear from the
context and so we drop the index L.

Fact 1 (d is a pre-ultrametric). For all languages L, L′, L′′ it holds that
d(L,L′′) ≤ max(d(L,L′), d(L′, L′′)).

The distance between the words allows relation between words similar to the
f -equivalence: w∼u iff d(w, u) < ∞ and w 	∼u otherwise. This relation is right
invariant : u∼w implies ux∼wx for all words x.

Fact 2. ∼ is a right invariant equivalence relation.

We extend the f -equivalence to states and automata: q∼q′ iff for every w,w′

such that M(w) = q and M(w′) = q′ it holds that w∼w′; M∼M ′ iff q0∼q′0. Not
that the definition for automata coincides with the one given in the Introduction:
M∼M ′ iff L(M)ΔL(M ′) is finite.

We characterise the distance between two states in an operational manner.
To this end for each � ≥ 0 we introduce relation DM


 on Q(M) defined by:

– DM
0 (q, q′) iff q = q′,

– DM

 (q, q′) iff for all a ∈ Σ either DM


−1

(
δM (q, a), δM (q′, a)

)
or both δM (q, a)

and δM (q′, a) are not defined.

Denote also DM (q, q′) ⇐⇒ ∃
D
M

 (q, q′). By an easy induction it follows that

both DM

 and DM are equivalence relations. We drop the upper index M when-

ever the automaton is clear from the context.

Fact 3. If M is minimal and the transition function is always defined then
D
(q, q′) iff d(q, q′) ≤ �.

To compute the relation D, one does not need to consider � > n:

Lemma 1. Consider an automaton M . Then DM = DM
n .

3 Hyper-minimisation

Badr et. al claimed [3, Thm. 3.2] that any (greedy) algorithm that at each step
merges p to q such that p≡q ∨ (p∼q ∧ p ∈ P (M)) correctly hyper-minimises the
automaton. Unfortunately this is not the case, still the argument can be easily
corrected — some additional care is needed, when merging two states from
the preamble. We say that a linear order < on Q is valid, if for every pair of states
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p, q ∈ P and letter a ∈ Σ it holds that δ(q, a) = p implies q < p and for q ∈ P ,
p ∈ K it holds that q < p.

Theorem 1. Any (greedy) algorithm that at each step merges p to q such that
p≡q ∨ (p∼q ∧ p ∈ P (M) ∧ p < q) correctly hyper-minimises the automaton.

Such an order can be easily constructed — it is enough to sort topologically the
acyclic graph corresponding to the states of the preamble and arbitrarily define
it on the kernel.

Our algorithm utilises this approach, similarly to the previously known ones.
Its novelty lays in the way pairs of states to be merged are found and the data
structures that are employed.

On high level in the �-th phase we calculate for the remaining states the
relation D
 on the remaining states, i.e. the distance between them. After that
we merge some states and continue to the following phase. This approach result
in no more than |Q| phases, by Lemma 1.

3.1 Signatures

Since we deal with partial δ function, it is important to treat differently the
states q of the automaton with different sets of defined transitions: for a state
q the set {a : δ(q, a) is defined} is the signature of q, denoted by sig(q). This
allows bounding the running time by |δ| rather than n|Σ|.

We would like to think that sig(q) 	= sig(q′) implies that q 	∼q′ and hence we
can minimise states with different signatures separately. This can be achieved,
whenever there are no states inducing finite languages.

Fact 4. Suppose that automaton M has no states q such that L(q) is finite.
Then sig(q) 	= sig(q′) implies q 	∼q′.

The states inducing finite languages are naturally divided into those in the
preamble and those in the kernel. The former can be easily removed.

Fact 5. Let M be an automaton and M ′ be obtained from M by removing the
set of states P (M) ∩ {q : |L(q)| < ∞}. Then for q ∈ Q(M ′) it holds that
LM (q)∼LM ′(q). In particular L(M)∼L(M ′).

Unfortunately, such a straightforward approach cannot be applied to states from
the kernel inducing finite languages. On one hand such states cannot be removed,
as this causes the language of the automaton to change on infinitely many words.
On the other hand, their existence prevents us from using Fact 4. An intermediate
approach turns out to work, we can remove the problematic states temporarily,
calculate the D classes and then bring back those states.

Lemma 2. Suppose that automaton M is minimal and has no states q ∈ P (M)
such that L(q) is finite. Let M ′ be obtained from M by removing the states
Q′ = {q : q ∈ K(M) ∧ |L(q)| < ∞}. Then for q, q′ ∈ Q \ Q′ it holds that
DM ′

(q, q′) ⇐⇒ LM (q)∼LM (q′).
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3.2 Automata Reduction

Fig. 1. Example of introducing gadgets on
a single state

Our algorithm has a high time-
dependency on |Σ|. Thus we reduce
the input so that we can treat |Σ| as
a small constant. To this end we trans-
form the input automaton M into
other one, denoted by Gadgets(M),
using only four-letter alphabet Σ′ =
{0, 1, 2, 3}. On the other hand, we in-
crease the number of states from n to
O(|δ|). On a high level, one can imag-
ine that we encode possible letters of
Σ as 0–1 sequences. The letters 2, 3
are used to indicate which states sim-
ulate the states from the original automaton and which states are technical
gadgets and distinguish states of different signatures. For simplicity of the pre-
sentation, we add a special non-accepting state trash such that each transition
not defined explicitly goes to trash. Assume that the automaton M is minimised

a

b c
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0

0
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2

2

2 2
p

3

3

3

3

33

3

transitions to proper and auxiliary states

transitions to gadget state

transitions to signature state

1

Fig. 2. Automaton M and its M ′. There are two signatures.

and does not have states inducing finite language. To shorten the notation, let M ′

denote Gadgets(M). Please consult Fig. 1 and Fig. 2 for an illustration. Parti-
tion the set of states into subsets with the same signature. For each signature sig
with � symbols {a0, . . . , a
−1} introduce �−1 new auxiliary states per each state
q of this signature, named s1,q, s2,q, . . . s
−1,q. By convention, let s0,q = q, we
call it a proper state. Then define transition function as δM ′(si,q, 0) = δM (q, i)
for i = 0, . . . � − 1; δM ′(si,q, 1) = si+1,q for i = 0, . . . � − 2. The newly created
states s1,q, s2,q, . . . s
−1,q are assigned the signature sig(q).
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Moreover, we distinguish proper states from auxiliary states by creating a
gadget state p with δM ′(p, 2) = p and adding the transition δM ′(q, 2) = p for
each state q. Then we distinguish states corresponding to different signatures by
another gadget: let {sig1, sig2, . . . , sigk} be the set of all signatures. Introduce
signature states {sig1, sig2, . . . , sigk} and add transitions δM ′(sigi, 3) = sigi+1 for
i = 1, . . . , k − 1, δM ′(sigk, 1) = sigk and δM ′(sj,q, 3) = sig(q).

The size of the automaton M ′ is Θ(|δM |) and M ′ can be constructed using
in similar time bounds. The only nontrivial part is that we need to group states
with the same signatures using counting sort. To upper bound the running time
by O(|δ| log n) instead of O(|δ| log |δ|) we show that the DM ′

classes are of size
O(n).

Lemma 3. Let M ′ = Gadgets(M). Then none of the signature states nor the
trash nor the state gadget is DM ′

-equivalent to any other state. If DM ′
(si,q, si′,q′)

then sig(q) = sig(q′) and i = i′.

The automaton M ′ retains the basic properties of M , meaning that two states
in M are f -equivalent iff they are equivalent in M ′.

Lemma 4. Let q, q′ ∈ Q(M) and M ′ = Gadgets(M). Then DM (q, q′) iff
DM ′

(q, q′).

3.3 Algorithm and Its Running Time

We now present Algorithm Comp-f-equiv(M) calculating the hyper-minimal
automaton f -equivalent to M .

direction of merging

boundary of a group

group’s representative
state

Fig. 3. Example of states in a group

Preprocessing. First of all we cal-
culate K(M) and P (M). This takes
just a linear time: we find the strongly
connected components of the underly-
ing graph and mark vertices that can
be reached from those of them that
are nontrivial (i.e. contain either more
than two vertices or a loop).

Then we remove the states from the
preamble inducing finite languages
and minimise the automaton. Let us
denote this automaton by M1. We
temporarily remove the states from
the kernel of M1 that induce finite lan-

guages and denote the result by M2. Then we built M ′ = Gadgets(M2).
The algorithm also requires some simple data structures: for each state q a

list of its predecessors l[q]

l[q] = {q′′ : ∃x ∈ {0, 1, 2, 3} such that δM ′ (q′′, x) = q}

is created. Moreover, we store rank of q — the number of its predecessors.
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The Theorem 1 requires a pre-computed linear valid order on Q. To fix such
an order, sort topologically the states of the preamble and order the states of the
kernel arbitrarily, such that they are all greater than the states of the preamble.

For technical reasons, we do not store the states in the dictionary, but rather
their dictionary representatives, Dic. So a table of representatives is also created.
In the beginning, for each state q, Dic[q] = q.

Dictionaries. For the states of M ′ we built a dictionary mapping a tuple
〈q0, q1, q2, q3〉 into a state q such that δ(q, i) = qi for all i. Each state occurs
at most once in the structure. To implement this dictionary, we use dynamic
hashing with a worst-case constant time lookup and amortized expected constant
time for updates (see [6] or a simpler variant with the same performance bounds
[11]). We convert each tuple into an integer from {1 . .N}, where N = |δ|4 fits
in a constant number of machine words, so we can hash it in a constant time.
Whenever we insert a tuple already existing in the structure, we have a new pair
of states to merge.

The analogous dictionary with O(logn) time per operation is very simple for
the deterministic case: note that by Lemma 3 if q, q′ are merged then they are
both either auxiliary states or proper states, they have the same signature and
correspond to the same letter. So it is enough to built a separate dictionary
for each set of states Qsigj ,i = {si,q : sig(q) = sigj}. As there are only O(n)
elements in such set by Lemma 3, it can be implemented as a balanced binary
tree. In order to have a constant time access to the dictionary itself, we create a
table of all signatures. For a single signature sigj it keeps a pointer to the table
indexed by 1 . . . , �j, where �j is the size of the alphabet associated with sigj . For
an index i there is a pointer to the dictionary for the set Qsigj ,i. This O(log n)
bound per operation can be greatly improved if we are allowed to fully use the
power of RAM model: plugging in the exponential search trees of [1] gives us a
total running time of O(|δ| log n log2 log n

log log log n ).

Merging states. Suppose two states q > q′ are to be merged. Let q1 be the
one of them with higher rank and q′1 the one with lower rank. We remove Dic[q′1]
from the dictionary and keep only Dic[q1] and set Dic[q] to Dic[q1]. The rank of
q is set to be the sum of ranks q and q′.

Then we update the dictionary by reinserting all states q′′ such that
δM ′(q′′, x) = q′1 for some x ∈ {0, 1, 2, 3}. To do this efficiently, we scan l[q′1].
After the update l[q′] is appended to l[q]. We also store the information that q′

was merged to q: a group consists of the states that were merged to a single state.
A representative of the group is the unique state that survived the merging.

When all the merging is done, for each q we calculate the representative of
q’es group: we inspect a sequence q = q0, q1 . . . , qm such that qi was merged to
qi+1 and qm was not merged to anything. Then q0, q1 . . . , qm−1 were all merged
to qm. All the states that were merged to a single qm form a DM ′

-class. This
information can be used to merge the states from the P (M1) to their f -equivalent
states, i.e. those that are in the same DM ′

-class.
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Theorem 2. Comp-f-equiv(M) properly hyper-minimises the automaton M
and runs in expected time O(|δ| log n) (O(|δ| log2 n) worst-case).

4 k-Minimisation

We now consider the problem of k-minimising the automaton. Note that M and
N are k-f-equivalent iff d(L(M), L(N)) ≤ k. The general scheme is the same as
previously, this time we are in more difficult situation: there is no notion similar
to ∼ which works in the case of k-minimisation. Moreover, there is no theo-
retic characterisation of the k-minimal automaton. We begin with introducing a
proper notion and describing the k-minimal automaton from a theoretical point
of view. In particular we show that the k-minimal automaton can be obtained
by merging some states into the others and the merging can be done in a (some-
how) greedy fashion. Then we implement this approach. Unfortunately we were
unable to efficiently deal with signatures in this case and the algorithm runs in
O(|Σ|n logn) time. We assume that the transition function is total.

4.1 Relation on States

We start with defining a relation playing the same role as ∼:

Definition 1. We say that w∼ku if d(w, u) = 0 or d(w, u) + min(|w|, |u|) ≤ k
and w 	∼ku otherwise.

The intuition of this relation is similar to the one for ∼: consider any regular
language L, an automaton M recognising it, and two words w, w′. Let M(w) = q,
M(w′) = q′. Suppose q is merged to q′. If L(q) 	= L(q′) then wL(w) ⊆ L(M) is
changed to wL(w′), so it should hold that |w|+d(L(w), L(w′)) ≤ k. On the other
hand if we were to merge q′ to q then w′L(w′) ⊆ L(M) is changed to w′L(w),
hence it should hold that |w′| + d(L(w), L(w′)) ≤ k. Choosing the smaller of
those terms we obtain min(|w|, |w′|)+d(L(w), L(w′)) ≤ k, as in the definition of
∼k. On the other hand, if w 	∼kw

′ then it seems that we cannot merge the states
q and q′. The second part of this intuition is formalised in Lemma 6. The first
one needs some further refinements before it is put to work.

Note that ∼k is not an equivalence relation for any k. Still, it has some use-
ful properties, which are quite close to being an equivalence relation and are
essentially used in proofs of combinatorial properties and in the analysis of the
algorithm for calculating the k-hyper-minimal automaton.

Lemma 5. For all k the relation ∼k has the following properties

1. it is right invariant
2. if w1∼kw2, w2∼kw3 and |w2| ≥ max(|w1|, |w3|) then w1∼kw3

3. if w1∼kw2, w2∼kw3 and |w1| ≤ min(|w2|, |w3|) then w1∼kw3

As promised, sets of words {wi}j
i=1 such that for w 	= w′ ∈ {wi}j

i=1 we have
w 	∼kw

′ can be used to lower-bound the size of the k-minimised automaton:
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Lemma 6. Consider L′ ⊆ L such that for each w 	= w′ ∈ L′ it holds that
w 	∼kw

′. Then for each automaton M such that L∼kL(M) it holds that M(w) 	=
M(w′), in particular M has at least |L′| states.

The definition of ∼k can be easily extended to states: q∼kq
′ if for all (w,w′)

such that M(w) = q,M(w′) = q′ it holds that w∼kw
′. One can easily see that

this is equivalent to q∼kq
′ when

d(q, q′) = 0 or d(q, q′) + min(max(|w| : M(w) = q),max(|w| : M(w) = q′)) ≤ k

Instead of considering for a state q all the words w such that M(w) = q it is
enough to consider the longest one:

Definition 2. For every state of q ∈ Q let its representative word (called
word[q]) be a longest word w such that M(w) = q if q ∈ P or any word with
length at least k, if q ∈ K.

This definition is designed in a way so that the ∼k equivalence between states
could be expressed in terms of representatives of states:

Fact 6. word[q]∼k word[q′] iff q∼kq
′.

4.2 k-Minimal Automaton

We want to define a k-minimal automaton k-f-equivalent to M using relation ∼k

on states of M . Since ∼k is not an equivalence relation, we need some additional
refinement. To this end we construct an equivalence relation ≈k which refines
∼k defined on the set of states of M . Its equivalence classes correspond to states
in the k-minimal automaton M ′∼kM . The relation has the following properties:

1. q≈kq
′ implies q∼kq

′

2. for each class of abstraction {qi}i∈I of ≈k we designate its representative
word w — the longest of {word[qi]}i∈I . We denote by Rep[q] the repre-
sentative of q in its class of abstraction and we extend the notion of the
representative word to words: Rep[w] = Rep[M(w)].

3. Rep[q] 	= Rep[q′] implies Rep[q]	∼k Rep[q′]

The relation is defined algorithmically. Let us first define Rep[wi] = wi for all
wi such that wi = word[qi] for some state qi. Then consider {w1, . . . , wn} =
{word[q]}q∈Q in any order. If for considered wi there exists wj such that
Rep[wj ] = wj , wi∼kwj and |wi| ≤ |wj | then for all w such that Rep[w] = wi

set Rep[w] = wj (choose any such j if there are many possible ones). In the
end we extend the notion for states: Rep[q] = Rep[word[q]] and set q≈kq

′ if
Rep[q] = Rep[q′].

Fact 7. The relation defined above satisfies conditions (1)–(3).

Consider again minimised automaton M , using relation ≈k on its states we define
an automaton N = Equivalence-To-Automaton(M,≈k) and later show how
to create it efficiently. Construct an automaton N by taking
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QN = {〈w〉 : Rep[w] = w} δ(〈w〉, x) = 〈Rep[wx]〉 FN = {〈w〉 : M(w) ∈ F}

and set a starting state 〈Rep[ε]〉. By property 3 of ≈k one can easily derive that
N is k-minimal.

The natural attempt to show that L(N)∼kL(M) is to prove that N(w) =
〈Rep[w]〉. Unfortunately this is not the case. We proceed in a slightly more
complicated fashion. First we argue that the defined automaton behaves well on
short words and then show that d(LM (w), LN (〈w〉)) can be upper-bounded in
terms of |w|. Those facts allow proving that L(N)∼kL(M).

Theorem 3. Automaton N is k-minimal and N∼kM .

4.3 Algorithm

We show how to efficiently calculate N = Equiv-To-Auto. An algorithm similar
toComp-f-equiv is used. As we do not use different signatures for different states,
we do not employ gadgets for signatures and additional symbol 3 in the alphabet.
On the other hand we have to be a little more subtle now, as we are interested in cal-
culating the classesof relationDM


 and not onlyDM ′
. Roughly speaking in the �-th

phase we calculate the equivalence classes of DM

 . To this end we merge states not

in some arbitrary fashion but in order representing the inductive definition of D
.

group representative

points at star representative

star boundary

group boundary

Fig. 4. Example of states in a group and in a star

The algorithm works
similar to Comp-equiv-k.
We list only the impor-
tant differences. We first
minimise the automaton,
obtaining M1 and then
introduce gadgets as in
Section 3.2, except for
the signature gadgets,
which are not needed:
M ′ = Gadgets(M1). The
algorithm works in phases.
In one phase it first merges
all the proper states that
could be merged at the be-
ginning of this phase. Then

it starts merging the auxiliary states and gadget states. When there are no more
auxiliary states to merge, the counter is increased and the next phase begins.
Also more information is stored. A group of states that were merged together
is subdivided into stars. Each star has its representative (star-representative).
In particular group-representative is one of the star-representatives of stars
forming this group.

If two groups, represented by q and q′, are merged, we check whether q∼kq
′.

If so then two stars represented by q and q′ are merged and assigned the longer
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of the two representative words. Note that this representative also becomes the
new group representative.

When merging of groups is finished, N = Equiv-To-Auto(M1, star) is built,
treating the states in one star as states in one equivalence class of ≈k.

The running time analysis of Comp-equiv-k is the same as the one of Comp-

f-equiv. All additional operations are done in constant time per operation.
The following lemma formalises the intuition that auxiliary states do not

influence the process of merging state and thus phases correspond to calculating
the distance between the states of the automaton.

Lemma 7. Two states q, q′ ∈ Q(M1) are merged in �-th phase of Comp-equiv-

k iff d(q, q′) ≤ �.

To prove the correctness of the algorithm we show that the following invariants
concerning groups and stars are kept: the first two invariants describe properties
of stars, the following four the properties of groups.

1. Let q1, . . . , qi be all the states in a star. Then |word[q1]| ≥ |word[qj ]| for
j = 2, . . . , i,

2. qj∼kqj′ for all j, j′ = 1, . . . , i.
3. group is a union of stars
4. Let p1, . . . , pi′ be the star-representatives of star forming a group represented

by p1. Then |word[p1]| ≥ |word[pj ]| for j = 2, . . . , i′,
5. pj 	∼kpj′ for all j 	=, j′ ∈ {1, . . . , i′},
6. the group consisting of proper states is an equivalence class of DM1




Theorem 4. Comp-equiv-k correctly k-minimises M .

Open Problem

Is there a fully deterministic algorithm which hyper-minimize (or maybe even
k-minimise) an automaton in time O(|Σ|n logn)?

References

1. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees.
J. ACM 54(3), 13 (2007)

2. Badr, A.: Hyper-minimization in O(n2). In: Ibarra, O.H., Ravikumar, B. (eds.)
CIAA 2008. LNCS, vol. 5148, pp. 223–231. Springer, Heidelberg (2008)

3. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO - Theoretical Informatics and Applications 43(1), 69–94
(2009)
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Abstract. We study deterministic regular expressions extended with
the counting operator. There exist two notions of determinism, strong
and weak determinism, which almost coincide for standard regular ex-
pressions. This, however, changes dramatically in the presence of count-
ing. In particular, we show that weakly deterministic expressions with
counting are exponentially more succinct and strictly more expressive
than strongly deterministic ones, even though they still do not capture
all regular languages. In addition, we present a finite automaton model
with counters, study its properties and investigate the natural extension
of the Glushkov construction translating expressions with counting into
such counting automata. This translation yields a deterministic automa-
ton if and only if the expression is strongly deterministic. These results
then also allow to derive upper bounds for decision problems for strongly
deterministic expressions with counting.

1 Introduction

The use of regular expressions (REs) is quite widespread and includes applica-
tions in bioinformatics [17], programming languages [23], model checking [22],
XML schema languages [21], etc. In many cases, the standard operators are ex-
tended with additional ones to facilitate usability. A popular such operator is the
counting operator allowing for expressions of the form “a2,4”, defining strings
containing at least two and at most four a’s, which is used for instance in Egrep
[9] and Perl [23] patterns and in the XML schema language XML Schema [21].

In addition to expanding the vocabulary of REs, subclasses of REs have been
investigated to alleviate, e.g., the matching problem. For instance, in the context
of XML and SGML, the strict subclasses of weakly and strongly deterministic
regular expressions have been introduced. Weak determinism (also called one-
unambiguity [2]) intuitively requires that, when matching a string from left to
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right against an expression, it is always clear against which position in the ex-
pression the next symbol must be matched. For example, the expression (a+b)∗a
is not weakly deterministic, but the equivalent expression b∗a(b∗a)∗ is. Strong
determinism intuitively requires additionally that it is also clear how to go from
one position to the next. For example, (a∗)∗ is weakly deterministic, but not
strongly deterministic since it is not clear over which star one should iterate
when going from one a to the next.

While weak and strong determinism coincide for standard regular expres-
sions [1]1, this situation changes completely when counting is involved. Firstly,
the algorithm for deciding whether an expression is weakly deterministic is non-
trivial [13]. For instance, (b?a2,3)2,2b is weakly deterministic, but the very similar
(b?a2,3)3,3b is not. So, the amount of non-determinism introduced depends on
the concrete values of the counters. Second, as we will show, weakly deterministic
expressions with counting are strictly more expressive than strongly determinis-
tic ones. Therefore, the aim of this paper is an in-depth study of the notions of
weak and strong determinism in the presence of counting w.r.t. expressiveness,
succinctness, and complexity. In particular, our contributions are the following:

– We give a complete overview of the expressive power of the different classes of
deterministic expressions with counting. We show that strongly deterministic
expressions with counting are equally expressive as standard deterministic
expressions. Weakly deterministic expressions with counting, on the other
hand, are more expressive than strongly deterministic ones, except for unary
languages, on which they coincide. However, not all unary regular languages
are definable by weakly deterministic expressions with counting (Section 3).

– We investigate the difference in succinctness between strongly and weakly
deterministic expressions with counting, and show that weakly deterministic
expressions can be exponentially more succinct than strongly deterministic
ones. This result prohibits an efficient algorithm translating a weakly deter-
ministic expression into an equivalent strongly deterministic one, if such an
expression exists. This contrasts with the situation of standard expressions
where such a linear time algorithm exists [1] (Section 4).

– We present an automaton model extended with counters, counter NFAs (CN-
FAs), and investigate the complexity of some related problems. For instance,
it is shown that boolean operations can be applied efficiently to CDFAs, the
deterministic counterpart of CNFAs (Section 5).

– Bruggemann-Klein [1] has shown that the Glushkov construction, translating
regular expressions into NFAs, yields a DFA if and only if the original expres-
sion is deterministic. We investigate the natural extension of the Glushkov
construction to expressions with counters, converting expressions to CNFAs.
We show that the resulting automaton is deterministic if and only if the
original expression is strongly deterministic (Section 6).

1 Brüggemann-Klein [1] did not study strong determinism explicitly, although she did
study strong unambiguity. However, she gives a procedure to transform expressions
into star normal form which rewrites weakly deterministic expressions into equiva-
lent strongly deterministic ones in linear time.
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– Combining the results of Section 5, concerning CDFAs, with the latter result
then also allows to infer better upper bounds on the inclusion and equivalence
problem of strongly deterministic expressions with counting. Further, we show
that testing whether an expression with counting is strongly deterministic can
be done in cubic time, as is the case for weak determinism [13] (Section 7).

The original motivation for this work comes from the XML schema language
XML Schema, which uses weakly deterministic expressions with counting. How-
ever, it is also noted by Sperberg-McQueen [20], one of its developers, that
“Given the complications which arise from [weakly deterministic expressions], it
might be desirable to also require that they be strongly deterministic as well [in
XML Schema].” The design decision for weak determinism is probably inspired
by the fact that it is the natural extension of the notion of determinism for
standard expressions, and a lack of a detailed analysis of their differences when
counting is allowed. A detailed examination of strong and weak determinism of
regular expressions with counting intends to fill this gap.

Related work: Apart from the work already mentioned, there are several au-
tomata based models for different classes of expressionswith counting with as main
application XML Schema validation, by Kilpelainen and Tuhkanen [12], Zilio and
Lugiez [4], and Sperberg-McQueen [20]. Here, Sperberg-McQueen introduces the
extension of theGlushkov constructionwhichwe study in Section 6.We introduce a
new automata model in Section 5 as none of these models allow to derive all results
in Sections 5 and 6.Further, Sperberg-McQueen [20] andKoch andScherzinger [14]
introduce a (slightly different) notion of strongly deterministic expression with
and without counting, respectively. We follow the semantic meaning of Sperberg-
McQueen’s definition, while using the technical approachof Koch and Scherzinger.
Finally, Kilpelainen [10] shows that inclusion for weakly deterministic expressions
with counting is coNP-hard; and Colazzo,Ghelli, and Sartiani [3] have investigated
the inclusion problem involving subclasses of deterministic expressionswith count-
ing. Seidl et al. also investigate counting constraints in XML schema languages by
adding Presburger constraints to regular languages [18]. Concerning determinis-
tic languages without counting, the seminal paper is by Bruggemann-Klein and
Wood [2] where, in particular, it is shown to be decidable whether a language is de-
finable by a deterministic regular expression. Conversely, general regular expres-
sions with counting have also received quite some attention [7,8,11,16].

2 Preliminaries

Let N denote the natural numbers {0, 1, 2, . . .}. For the rest of the paper, Σ always
denotes a finite alphabet. The set of regular expressions overΣ,denoted by RE(Σ),
is defined as follows: ε and everyΣ-symbol is in RE(Σ); and whenever r and s are in
RE(Σ), then so are (rs), (r+s), and (s)∗. For readability,we usually omit parenthe-
ses in examples. The language defined by a regular expression r, denoted by L(r),
is defined as usual. By RE(Σ,#) we denote RE(Σ) extended with numerical occur-
rence constraints or counting. That is, when r is an RE(Σ,#)-expression then so is
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rk,
 for k ∈ N and � ∈ N0∪{∞}with k ≤ �. Here, N0 denotes N\{0}. Furthermore,
L(rk,
) =

⋃

i=k L(r)i. We use r? to abbreviate (r + ε). Notice that r∗ is simply an

abbreviation for r0,∞. Therefore, we do not consider the ∗-operator in the context
of RE(Σ,#). The size of a regular expression r in RE(Σ,#), denoted by |r|, is the
number of Σ-symbols and operators occurring in r plus the sizes of the binary rep-
resentations of the integers. An RE(Σ,#) expression r is nullable if ε ∈ L(r). We
say that an RE(Σ,#) r is in normal form if for every nullable subexpression sk,l of
r we have k = 0. Any RE(Σ,#) can easily be normalized in linear time. Therefore,
we assume that all expressions used in this paper are in normal form. Sometimes
we will use the following observation, which follows directly from the definitions:

Remark 1. A subexpression rk,
 is nullable if and only if k = 0.

Weak determinism. For an RE(Σ,#) r, let Char(r) be the set of Σ-symbols
occurring in r. A marked regular expression with counting over Σ is a regular
expression over Σ × N in which every (Σ × N)-symbol occurs at most once. We
denote the set of all these expressions by MRE(Σ,#). Formally, r ∈ MRE(Σ,#)
if r ∈ RE(Σ × N,#) and, for every subexpression s s′ or s + s′ of r, Char(s) ∩
Char(s′) = ∅. A marked string is a string over Σ ×N (in which (Σ ×N)-symbols
can occur more than once). When r is a marked regular expression, L(r) is
therefore a set of marked strings.

The demarking of a marked expression is obtained by deleting these integers.
Formally, the demarking of r is dm(r), where dm : MRE(Σ,#) → RE(Σ,#) is
defined as dm(ε) := ε, dm((a, i)) := a, dm(rs) := dm(r)dm(s), dm(r + s) :=
dm(r) + dm(s), and dm(rk,
) := dm(r)k,
. Any function m : RE(Σ,#) →
MRE(Σ,#) such that for every r ∈ RE(Σ,#) it holds that dm(m(r)) = r is
a valid marking function. For conciseness and readability, we will from now on
write ai instead of (a, i) in marked regular expressions. For instance, a marking
of (a+b)1,2a+bc is (a1+b1)1,2a2+b2c1. The markings and demarkings of strings
are defined analogously. For the rest of the paper, we usually leave the actual
marking function m implicit and denote by r a marking of the expression r.
Likewise w will denote a marking of a string w. We always use overlined letters
to denote marked expressions, symbols, and strings.

Definition 2. An RE(Σ,#) expression r is weakly deterministic (also called
one-unambiguous) if, for all strings u, v, w ∈ Char(r)∗ and all symbols a, b ∈
Char(r), the conditions uav, ubw ∈ L(r) and a 	= b imply that a 	= b.

A regular language is weakly deterministic with counting if it is defined by some
weakly deterministic RE(Σ,#) expression. The classes of all weakly determin-
istic languages with counting, respectively, without counting, are denoted by
DET#

W (Σ), respectively, DETW (Σ).
Intuitively, an expression is weakly deterministic if, when matching a string

against the expression from left to right, we always know against which symbol
in the expression we must match the next symbol, without looking ahead in the
string. For instance, (a + b)∗a and (a2,3 + b)3,3b are not weakly deterministic,
while b∗a(b∗a)∗ and (a2,3 + b)2,2b are.
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Fig. 1. Parse tree of (a0,1)0,3(b0,∞ + c0,∞)d. Counter nodes are numbered from 1 to 4.

Strong determinism. Intuitively, an expression is weakly deterministic if, when
matching a string from left to right, we always know where we are in the expres-
sion. For a strongly deterministic expression, we will additionally require that
we always know how to go from one position to the next. Thereto, we distin-
guish between going forward in an expression and backward by iterating over a
counter. For instance, in the expression (ab)1,2 going from a to b implies going
forward, whereas going from b to a iterates backward over the counter.

Therefore, an expression such as ((a+ ε)(b+ ε))0,2 will not be strongly deter-
ministic, although it is weakly deterministic. Indeed, when matching ab, we can
go from a to b by either going forward or by iterating over the counter. By the
same token, also (a1,2)3,4 is not strongly deterministic, as we have a choice of
counters over which to iterate when reading multiple a’s. Conversely, (a2,2)3,4 is
strongly deterministic as it is always clear over which counter we must iterate.

For the definition of strong determinism, we follow the semantic meaning of
the definition by Sperberg-McQueen [20], while using the formal approach of
Koch and Scherzinger [14] (who called the notion strong one-unambiguity)2. We
denote the parse tree of an RE(Σ,#) expression r by pt(r). Figure 1 contains
the parse tree of the expression (a0,1)0,3(b0,∞ + c0,∞)d.

A bracketing of a regular expression r is a labeling of the counter nodes of
pt(r) by distinct indices. Concretely, we simply number the nodes according to
the depth-first left-to-right ordering. The bracketing r̃ of r is then obtained by
replacing each subexpression sk,
 of r with index i with ([is]i)k,
. Therefore, a
bracketed regular expression is a regular expression over alphabet Σ � Γ , where
Γ := {[i, ]i | i ∈ N}. For example, ([1([2a]2)0,1]1)0,3(([3b]3)0,∞ + ([4c]4)0,∞)d is a
bracketing of (a0,1)0,3(b0,∞+c0,∞)d, for which the parse tree is shown in Figure 1.
We say that a string w in Σ � Γ is correctly bracketed if w has no substring of
the form [i]i. That is, we do not allow a derivation of ε in the derivation tree.

Definition 3. A regular expression r is strongly deterministic with counting if
r is weakly deterministic and there do not exist strings u, v, w over Σ∪Γ , strings
α 	= β over Γ , and a symbol a ∈ Σ such that uαav and uβaw are both correctly
bracketed and in L(r̃).
2 The difference with Koch and Scherzinger is that we allow different derivations of ε

while they forbid this. For instance, a∗+b∗ is strongly deterministic in our definition,
but not in theirs, as ε can be matched by both a∗ and b∗.
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A standard regular expression (without counting) is strongly deterministic if
the expression obtained by replacing each subexpression of the form r∗ with
r0,∞ is strongly deterministic with counting. The class DET#

S (Σ), respectively,
DETS(Σ), denotes all languages definable by a strongly deterministic expres-
sions with, respectively, without, counting.

3 Expressive Power

Brüggemann-Klein and Wood [2] proved that for any alphabet Σ DETW (Σ)
forms a strict subclass of the regular languages, denoted REG(Σ). The complete
picture of the relative expressive power depends on the size of Σ, as shown by
the following theorem.

Theorem 4. For every alphabet Σ,

DETS(Σ) = DETW (Σ) = DET#
S (Σ) = DET#

W (Σ) � REG(Σ) (if |Σ| = 1)

DETS(Σ) = DETW (Σ) = DET#
S (Σ) � DET#

W (Σ) � REG(Σ) (if |Σ| ≥ 2)

Proof. The equality DETS(Σ) = DETW (Σ) is already implicit in the work of
Brüggemann-Klein [1]. By this result and by definition, all inclusions from left to
right already hold. It therefore suffices to show that (1) DET#

S (Σ) ⊆ DETS(Σ)
for arbitrary alphabets, (2) DET#

W (Σ) ⊆ DET#
S (Σ) for unary alphabets, (3)

DET#
S (Σ) � DET#

W (Σ) for binary alphabets, and (4) DET#
W (Σ) � REG(Σ)

for unary alphabets.

(1): We show that each strongly deterministic expression with counting can be
transformed into a strongly deterministic expression without counting. This is
quite non-trivial, but the crux is to unfold each counting operator in a smart
manner, taking special care of nullable expressions.
(2): The crux of this proof lies in Lemma 5. It is well known and easy to see that
the minimal DFA for a regular language over a unary alphabet is defined either
by a simple chain of states (sometimes also called a tail [19]), or a chain followed
by a cycle.The languages in DET#

W (Σ) can be defined in this manner. The
following lemma adds to that, that for weakly deterministic regular expressions,
only one node in this cycle can be final. The theorem then follows as any such
language can be defined by a strongly deterministic expression.

Lemma 5. Let Σ = {a}, and L ∈ REG(Σ), then L ∈ DET#
W (Σ) if and only if

L is definable by a DFA which is either a chain, or a chain followed by a cycle,
for which at most one of the cycle nodes is final.

(3 and 4): Witnesses for non-inclusion are the languages defined by (a2,3b?)∗

and (aaa)∗(a + aa), respectively. Both languages can be shown not to be in
DETW (Σ) [2]. The theorem then follows from the above results.
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4 Succinctness

In Section 3 we learned that DET#
W (Σ) strictly contains DET#

S (Σ), prohibit-
ing a translation from weak to strong deterministic expressions with counting.
However, one could still hope for an efficient algorithm which, given a weakly
deterministic expression known to be equivalent to a strong deterministic one,
constructs this expression. However, this is not the case:

Theorem 6. For every n ∈ N, there exists an r ∈ RE(Σ,#) over alphabet
{a} which is weakly deterministic and of size O(n) such that every strongly
deterministic expression s, with L(r) = L(s), is of size at least 2n.

The above theorem holds for the family of languages defined by (a2n+1,2n+1
)1,2,

each of which is weakly deterministic and defines all strings with a’s of length
from 2n + 1 to 2n+2, except for the string a2n+1+1. These expressions, in fact,
where introduced by Kilpelainen when studying the inclusion problem for weakly
deterministic expressions with counting [10].

5 Counter Automata

Let C be a set of counter variables and α : C → N be a function assigning a
value to each counter variable. We inductively define guards over C, denoted
Guard(C), as follows: for every cv ∈ C and k ∈ N, we have that true, false,
cv = k, and cv < k are in Guard(C). Moreover, when φ1, φ2 ∈ Guard(C), then
so are φ1 ∧ φ2, φ1 ∨ φ2, and ¬φ1. For φ ∈ Guard(C), we denote by α |= φ that
α models φ, i.e., that applying the value assignment α to the counter variables
results in satisfaction of φ.

An update is a set of statements of the form cv++ and reset(cv) in which every
cv ∈ C occurs at most once. By Update(C) we denote the set of all updates.

Definition 7. A non-deterministic counter automaton (CNFA) is a 6-tuple A =
(Q, q0, C, δ, F, τ) where Q is the finite set of states; q0 ∈ Q is the initial state;
C is the finite set of counter variables; δ : Q × Σ × Guard(C) × Update(C) × Q
is the transition relation; F : Q → Guard(C) is the acceptance function; and
τ : C → N assigns a maximum value to every counter variable.

Intuitively, A can make a transition (q, a, φ, π, q′) whenever it is in state q, reads
a, and guard φ is true under the current values of the counter variables. It
then updates the counter variables according to the update π, in a way we
explain next, and moves into state q′. To explain the update mechanism formally,
we introduce the notion of configuration. Thereto, let max(A) = max{τ(c) |
c ∈ C}. A configuration is a pair (q, α) where q ∈ Q is the current state and
α : C → {1, . . . ,max(A)} is the function mapping counter variables to their
current value. Finally, an update π transforms α into π(α) by setting cv := 1,
when reset(cv) ∈ π, and cv := cv + 1 when cv++ ∈ π and α(cv) < τ(cv).
Otherwise, the value of cv remains unaltered.
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Let α0 be the function mapping every counter variable to 1. The initial config-
uration γ0 is (q0, α0). A configuration (q, α) is final if α |= F (q). A configuration
γ′ = (q′, α′) immediately follows a configuration γ = (q, α) by reading a ∈ Σ,
denoted γ →a γ′, if there exists (q, a, φ, π, q′) ∈ δ with α |= φ and α′ = π(α).

For a string w = a1 · · · an and two configurations γ and γ′, we denote by
γ ⇒w γ′ that γ →a1 · · · →an γ′. A configuration γ is reachable if there exists a
string w such that γ0 ⇒w γ. A string w is accepted by A if γ0 ⇒w γf where γf

is a final configuration. We denote by L(A) the set of strings accepted by A.
A CNFA A is deterministic (or a CDFA) if, for every reachable configura-

tion γ = (q, α) and for every symbol a ∈ Σ, there is at most one transition
(q, a, φ, π, q′) ∈ δ such that α |= φ.

The size of a transition θ or acceptance condition F (q) is the number of
symbols which occur in it plus the size of the binary representation of each
integer occcurring in it. By the same token, the size of A, denoted by |A|, is
|Q| +

∑
q∈Q log τ(q) + |F (q)| +

∑
θ∈δ |θ|.

Theorem 8. 1. Given CNFAs A1 and A2, a CNFA A accepting the union or
intersection of A1 and A2 can be constructed in polynomial time. Moreover,
when A1 and A2 are deterministic, then so is A.

2. Given a CDFA A, a CDFA which accepts the complement of A can be con-
structed in polynomial time.

3. membership for word w and CDFA A is in time O(|w||A|).
4. membership for non-deterministic CNFA is np-complete.
5. emptiness for CDFAs and CNFAs is pspace-complete.
6. Deciding whether a CNFA A is deterministic is pspace-complete.

6 From RE(Σ,#) to CNFA

In this section, we show how an RE(Σ,#) expression r can be translated in poly-
nomial time into an equivalent CNFA Gr by applying a natural extension of the
well-known Glushkov construction. We emphasize at this point that such an ex-
tended Glushkov construction has already been given by Sperberg-McQueen [20].
Therefore, the contribution of this section lies mostly in the characterization
given below: Gr is deterministic if and only if r is strongly deterministic. More-
over, as seen in the previous section, CDFAs have desirable properties which by
this translation also apply to strongly deterministic RE(Σ,#) expressions. We
refer to Gr as the Glushkov counting automaton of r.

6.1 Notation and Terminology

We first provide some notation and terminology needed in the construction be-
low. For an RE(Σ,#) expression r, the set first(r) (respectively, last(r)) consists
of all symbols which are the first (respectively, last) symbols in some word de-
fined by r. These sets are inductively defined as follows:

– first(ε) = last(ε) = ∅ and ∀a ∈ Char(r), first(a) = last(a) = {a};
– first(r1 + r2) = first(r1) ∪ first(r2) and last(r1 + r2) = last(r1) ∪ last(r2);
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– If ε ∈ L(r1), first(r1r2) = first(r1) ∪ first(r2), else first(r1r2) = first(r1);
– If ε ∈ L(r2), last(r1r2) = last(r1) ∪ last(r2), else last(r1r2) = last(r2);
– first(rk,
) = first(r1) and last(rk,
) = last(r1).

For a regular expression r, we say that a subexpression of r of the form sk,
 is an
iterator or iterated subexpression of r. Let lower(sk,
) := k, and upper(sk,
) := �.
We say that sk,
 is bounded when � ∈ N, otherwise it is unbounded. For instance,
an iterator of the form s0,∞ is a nullable, unbounded iterator.

For a marked symbol x and an iterator c we denote by iterators(x, c) the list
of all iterated subexpressions of c which contain x, except c itself. For marked
symbols x, y, we denote by iterators(x, y) all iterated subexpressions which con-
tain x but not y. Finally, let iterators(x) be the list of all iterated subexpressions
which contain x. Note that all such lists [c1, . . . , cn] contain a sequence of nested
subexpressions. Therefore, we will always assume that they are ordered such
that c1 ≺ c2 ≺ · · · ≺ cn. Here c ≺ c′ denotes that c is a subexpression of
c′. For example, if r = ((a1,2

1 b1)3,4)5,6, then iterators(a1, r) = [a1,2
1 , (a1,2

1 b1)3,4],
iterators(a1, b1) = [a1,2

1 ], and iterators[a1] = [a1,2
1 , (a1,2

1 b1)3,4, ((a1,2
1 b1)3,4)5,6].

6.2 Construction

We now define the set follow(r) for a marked regular expression r. As in the
standard Glushkov construction, this set lies at the basis of the transition relation
of Gr. The set follow(r) contains triples (x, y, c), where x and y are marked
symbols and c is either an iterator or null. Intuitively, the states of Gr will be a
designated start state plus a state for each symbol in Char(r). A triple (x, y, c)
then contains the information we need for Gr to make a transition from state x
to y. If c 	= null, this transition iterates over c and all iterators in iterators(x, c)
are reset by going to y. Otherwise, if c equals null, the iterators in iterators(x, y)
are reset. Formally, the set follow(r) contains for each subexpression s of r,

– all tuples (x, y, null) for x in last(s1), y in first(s2), and s = s1 s2; and
– all tuples (x, y, s) for x in last(s1), y in first(s1), and s = s1

k,
.

We introduce a counter variable cv(c) for every iterator c in r whose value will
always denote which iteration of c we are doing in the current run on the string.
We define a number of tests and update commands on these counter variables:

– value-test([c1, . . . , cn]) :=
∧

ci
(lower(ci) ≤ cv(ci)) ∧ (cv(ci) ≤ upper(ci)).

When we leave the iterators c1, . . . , cn we have to check that we have done
an admissible number of iterations for each iterator.

– upperbound-test(c) := cv(c) < upper(c) when c is a bounded iterator and
upperbound-test(c) := true otherwise. When iterating over a bounded iter-
ator, we have to check that we can still do an extra iteration.

– reset(c1, . . . , cn) := {reset(cv(c1)), . . . , reset(cv(cn))}. When leaving some it-
erators, their values must be reset. The counter variable is reset to 1, because
at the time we reenter this iterator, its first iteration is started.

– update(c) := {cv(c)++}. When iterating over an iterator, we start a new
iteration and increment its number of transitions.
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We now define the Glushkov counting automaton Gr = (Q, q0, C, δ, F, τ). The
set of states Q is the set of symbols in r plus an initial state, i.e., Q := {q0} �⋃

x∈Char(r) qx. Let C be the set of iterators occurring in r. We next define the
transition function. For all y ∈ first(r), (q0, dm(y), true, ∅, qy) ∈ δ.3 For every
element (x, y, c) ∈ follow(r), we define a transition (qx, dm(y), φ, π, qy) ∈ δ. If
c = null, then φ := value-test(iterators(x, y)) and π := reset(iterators(x, y)). If
c 	= null, then φ := value-test(iterators(x, c)) ∧ upperbound-test(c) and π :=
reset(iterators(x, c)) ∪ update(c). The acceptance criteria of Gr depend on the
set last(r). For any symbol x /∈ last(r), F (qx) := false. For every element x ∈
last(r), F (qx) := value-test(iterators(x)). Here, we test whether we have done
an admissible number of iterations of all iterators in which x is located. Finally,
F (q0) := true if ε ∈ L(r). Lastly, for all bounded iterators c, τ(cv(c)) = upper(c)
since c never becomes larger than upper(c), and for all unbounded iterators c,
τ(cv(c)) = lower(c) as there are no upper bound tests for cv(c).

Theorem 9. For every RE(Σ,#) expression r, L(Gr) = L(r). Moreover, Gr is
deterministic iff r is strongly deterministic.

7 Decidability and Complexity Results

Definition 3, defining strong determinism, is of a semantical nature. Therefore,
we provide Algorithm 1 for testing whether a given expression is strongly deter-
ministic, which runs in cubic time. To decide weak determinism, Kilpeläinen and
Tuhkanen [13] give a cubic algorithm for RE(Σ,#), while Brüggemann-Klein [1]
gives a quadratic algorithm for RE(Σ) by computing its Glushkov automaton
and testing whether it is deterministic4.

Theorem 10. For any r ∈ RE(Σ,#), isStrongDeterministic(r) returns true
if and only if r is strong deterministic. Moreover, it runs in time O(|r|3).

We next consider the following decision problems, for expressions of class R:
inclusion: Given two expressions r, r′ ∈ R, is L(r) ⊆ L(r′)?
equivalence: Given two expressions r, r′ ∈ R, is L(r) = L(r′)?
intersection: Given a number of expressions r1, . . . , rn ∈ R, is

⋂n
i=1 L(ri) 	= ∅?

Theorem 11. (1) inclusion and equivalence for RE(Σ,#) are expspace-
complete [16], intersection for RE(Σ,#) is pspace-complete [7]. (2) in-

clusion and equivalence for DETW (Σ) are in ptime, intersection for
DETW (Σ) is pspace-complete [15]. (3) inclusion for DET#

W (Σ) is conp-hard
[11].

3 Recall that dm(y) denotes the demarking of y.
4 There sometimes is some confusion about this result: Computing the Glushkov au-

tomaton is quadratic in the expression, while linear in the output automaton (con-
sider, e.g., (a1 + · · · + an)(a1 + · · · + an)). Only when the alphabet is fixed is the
Glushkov automaton of a deterministic expression of size linear in the expression.
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Algorithm 1. isStrongDeterministic. Returns true if r is strong determin-
istic, false otherwise.

r ← marked version of r
2: Initialize Follow ← ∅

Compute first(s), last(s), for all subexpressions s of r
4: if ∃x, y ∈ first(r) with x �= y and dm(x) = dm(y) then return false

for each subexpression s of r, in bottom-up fashion do
6: if s = s1 s2 then

if last(s1) �= ∅ and ∃x, y ∈ first(s1) with x �= y and dm(x) = dm(y) then
return false

8: F ← {(x, dm(y)) | x ∈ last(s1), y ∈ first(s2)}
else if s = s1

[k,�], with � ≥ 2 then
10: if ∃x, y ∈ first(s1) with x �= y and dm(x) = dm(y) then return false

F ← {(x, dm(y)) | x ∈ last(s1), y ∈ first(s1)}
12: if F ∩ Follow �= ∅ then return false

if s = s1 s2 or s = s1
k,�, with � ≥ 2 and k < � then

14: Follow ← Follow � F
return true

By combining (1) and (2) of Theorem 11 we get the complexity of intersection

for DET#
W (Σ) and DET#

S (Σ). This is not the case for the inclusion and equiv-

alence problem, unfortunately. By using the results of the previous sections we
can, for DET#

S (Σ), give a pspace upperbound for both problems, however.

Theorem 12. (1) equivalence and inclusion for DET#
S (Σ) are in pspace.

(2) intersection for DET#
W (Σ) and DET#

S (Σ) is pspace-complete.

8 Conclusion

We investigated and compared the notions of strong and weak determinism in
the presence of counting. Weakly deterministic expressions have the advantage of
being more expressive and more succinct than strongly deterministic ones. How-
ever, strongly deterministic expressions are expressivily equivalent to standard
deterministic expressions, a class of languages much better understood than the
weakly deterministic languages with counting. Moreover, strongly deterministic
expressions are conceptually simpler (as strong determinism does not depend
on intricate interplays of the counter values) and correspond naturally to de-
terministic Glushkov automata. The latter also makes strongly deterministic
expressions easier to handle as witnessed by the pspace upperbound for inclu-
sion and equivalence, whereas for weakly deterministic expressions only a trivial
expspace upperbound is known. For these reasons, one might wonder if the
weak determinism demanded in the current standards for XML Schema should
not be replaced by strong determinism. The answer to some of the following
open questions can shed more light on this issue: (1) Is it decidable if a lan-
guage is definable by a weakly deterministic expression with counting? (2) Can
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the Glushkov construction given in Section 6 be extended such that it trans-
lates any weakly deterministic expression with counting into a CDFA? (3) What
are the exact complexity bounds for inclusion and equivalence of strongly and
weakly deterministic expression with counting?
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Abstract. A graph is k-choosable if it admits a proper coloring of its vertices
for every assignment of k (possibly different) allowed colors to choose from for
each vertex. It is NP-hard to decide whether a given graph is k-choosable for
k ≥ 3, and this problem is considered strictly harder than the k-coloring problem.
Only few positive results are known on input graphs with a given structure. Here,
we prove that the problem is fixed parameter tractable on P5-free graphs when
parameterized by k. This graph class contains the well known and widely studied
class of cographs. Our result is surprising since the parameterized complexity of
k-coloring is still open on P5-free graphs. To give a complete picture, we show
that the problem remains NP-hard on P5-free graphs when k is a part of the input.

1 Introduction

Graph coloring is one of the most well known and intensively studied problems in graph
theory. The k-COLORING problem asks whether the vertices of an input graph G can be
colored with k colors such that no pair of adjacent vertices receive the same color (such
coloring is also called a proper coloring). This problem is known to be NP-complete
even when k ≥ 3 is not a part of the input but a fixed constant.

Vizing [19] and Erdős et al. [6] introduced a version of graph coloring called list
coloring. In list coloring, a set L(v) of allowed colors is given for each vertex v of
the input graph, and we want to decide whether a proper coloring of the graph exists
such that each vertex v receives a color from L(v). If G has a list coloring for every
assignment of lists of cardinality k to its vertices, then G is said to be k-choosable.
Hence the k-CHOOSABILITY problem asks whether an input graph G is k-choosable.
List coloring has received increasing attention since the beginning of 90’s, and there
are very good surveys [1,17] and books [11] on the subject. It is proved to be a very
difficult problem; Gutner and Tarsi [9] proved that k-CHOOSABILITY is ΠP

2 -complete
for bipartite graphs for any fixed k ≥ 3, whereas 2-CHOOSABILITY can be solved in
polynomial time [6]. The 3-CHOOSABILITY and 4-CHOOSABILITY problems remain
ΠP

2 -complete for planar graphs, whereas any planar graph is 5-choosable [16]. Due to
these hardness results, upto the assumption that NP is not equal to co-NP, CHOOS-
ABILITY is strictly harder than COLORING on general graphs [1].

Despite being a difficult problem to deal with, CHOOSABILITY has applications in a
large variety of areas, like various kinds of scheduling problems, VLSI design, and fre-
quency assignments [1]. Consequently, any attempt to solve this problem is of interest,
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and we attack it using structural information on the input and parameterized algorithms.
A problem is fixed parameter tractable (FPT) if its input can be partitioned into a main
part (typically the input graph) of size n and a parameter (typically an integer) k so
that there is an algorithm that solves the problem in time O(nc · f(k)), where f is a
computable function dependent only on k, and c is a fixed constant independent of in-
put [5]. In this case, we say that the problem is FPT when parameterized by k. The
field of parameterized algorithms and fixed parameter complexity/tractability has been
flourishing during the last decade, with many new results appearing every year in high
level conferences and journals, and it has been enriched by several new books [7,14].

In this paper, we show that k-CHOOSABILITY is fixed parameter tractable on P5-free
graphs. These are graphs containing no induced copy of a simple path on 5 vertices, and
this graph class contains the class of cographs that has been subject to extensive theoret-
ical study [3]. An interesting point to mention is that the fixed parameter tractability of
k-COLORING on P5-free graphs is still open [10]. As mentioned above, CHOOSABIL-
ITY is more difficult than COLORING on general graphs. Our result indicates that the
opposite might be true for the class of P5-free graphs. In last year’s MFCS, Hoàng et al.
showed that k-COLORING can be solved in polynomial time for any fixed k on P5-free
graphs [10], but in their running time k contributes to the degree of the polynomial.
Furthermore, k-COLORING is NP-complete on P5-free graphs when k is a part of input
[12]. To give a complete picture, here we show that k-CHOOSABILITY is NP-hard on
P5-free graphs when k is a part of input. Thus fixed parameter tractability is the best
we can expect to achieve for k-CHOOSABILITY on this graph class.

To mention other existing results on the coloring problem on graphs that do not
contain long induced paths, 3-COLORING has a polynomial-time solution on P6-free
graphs [15], 5-COLORING is NP-complete for P8-free graphs, and 4-COLORING is
NP-complete for P12-free graphs [20].

2 Definitions and Preliminaries

We consider finite undirected graphs without loops or multiple edges. A graph is de-
noted by G = (V,E), where V = V (G) is the set of vertices and E = E(G) is the
set of edges. For a vertex v ∈ V , the set of vertices that are adjacent to v is called
the neighborhood of v and denoted by NG(v) (we may omit index if the graph under
consideration is clear from the context). The degree of a vertex v is deg(v) = |N(v)|.
The average degree of G is d(G) = 1

|V |
∑

v∈V deg(v). For a vertex subset U ⊆ V

the subgraph of G induced by U is denoted by G[U ]. A set U ⊆ V is a clique if all
vertices in U are pairwise adjacent in G. A set of vertices U is a dominating set if for
each vertex v ∈ V , either v ∈ U or there is a vertex u ∈ U such that v ∈ N(u). We
also say that a subgraph H of G is dominating if V (H) is a dominating set. We denote
by G − U the graph G[V \ U ], and by G − u the graph G[V \ {u}] for u ∈ V .

A vertex coloring of a graph G = (V,E) is an assignment c : V → N of a positive
integer (color) to each vertex of G. The coloring c is proper if adjacent vertices receive
distinct colors. Assume that each vertex v ∈ V is assigned a color list L(v) ⊂ N, which
is the set of admissible colors for v. A mapping c : V → N is a list coloring of G if
c is a proper vertex coloring and c(v) ∈ L(v) for every v ∈ V . For a positive integer
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k, G is k-choosable if G has a list coloring for every assignment of color lists L(v)
with |L(v)| = k for all v ∈ V . The choice number (also called list chromatic number)
of G, denoted ch(G), is the minimum integer k such that G is k-choosable. The k-
CHOOSABILITY problem asks for a given graph G and a positive integer k, whether G
is k-choosable. It is known that dense graphs have large choice number [1], as indicated
by the following result.

Proposition 1 ([1]). Let G be a graph and s be an integer. If

d(G) > 4
(
s4

s

)
log(2

(
s4

s

)
)

then ch(G) > s.

By Pr we denote the graph on vertex set {v1, v2, . . . , vr} and edge set
{v1v2, v2v3, . . . , vr−1vr}. A graph is Pr-free if it does not contain Pr as an induced
subgraph. Cographs are the class of P4-free graphs, and they are contained in the class
of P5-free graphs. These graph classes can be recognized in polynomial time. The fol-
lowing structural property of P5-free graphs was proved by Bacsó and Tuza [2].

Proposition 2 ([2]). Every connected P5-free graph has either a dominating clique or
a dominating P3.

It follows from the results of [2] that such a clique or path can be constructed in poly-
nomial time.

Finally, we distinguish between the parameterized and the non-parameterized ver-
sions of our problem. In the CHOOSABILITY problem, G and k are input. We denote
by k-CHOOSABILITY the version of the problem parameterized by k.

3 k-CHOOSABILITY Is FPT on P5-Free Graphs

In this section we prove that k-CHOOSABILITY is fixed parameter tractable on P5-free
graphs.

Theorem 1. The k-CHOOSABILITY problem is FPT on P5-free graphs.

Proof. We give a constructive proof of this theorem by describing a recursive algorithm
based on Propositions 1 and 2 that checks whether ch(G) ≤ k. We assume that k ≥ 3,
since for k ≤ 2, k-CHOOSABILITY can be solved in polynomial time for general graphs
[6]. If G is disconnected, then ch(G) is equal to the maximum choice number of the
connected components of G. Thus we also assume that G is connected.

Our algorithm uses as its main tool a procedure called Color, given in Algo-
rithm 1. This procedure takes as input a connected P5-free graph G and a set W =
{w1, . . . , wr} ⊆ V (G) with a sequence of color lists L = (L(w1), . . . , L(wr)), each
of size k. For the notation in this procedure, we let L = L(w1) ∪ · · · ∪ L(wr), and we
denote l = max{maxL(w1), . . . ,maxL(wr)}. Let also L = L(w1) × · · · × L(wr)
and X = 2L. We say that vertices w1, . . . , wr are colored by c = (c1, . . . , cr) ∈ L if
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Procedure Color(G, W , L)
Find a dominating set U = {u1, . . . , up} of H = G −W , such that U is a clique or U
induces a P3;
Let X = ∅;
if p > k then Return(NO), Halt;
if d(G[W ∪ U ]) > d then Return(NO), Halt;
forall Color lists L(u1), . . . , L(up) ⊆ {1, . . . , l, l + 1, . . . , l + kp}, s.t. |L(ui)| = k do

if U = V (H) then
Let X = ∅;
forall List colorings s of H do

Let X := X ∪ {c ∈ L : c(wi) �= s(uj) if wiuj ∈ E(G)};
if X �= ∅ then Add(X ,X); else Return(NO), Halt;

if U �= V (H) then
Let H1, . . . , Hq be the connected components of H − U , and let
Fi = G[W ∪ U ∪ V (Hi)] for i ∈ {1, . . . , q};
Let L′ = (L(u1), . . . , L(up)), L′ = L × L(u1) × · · · × L(up);
for i = 1 to q do

Color(Fi, W ∪ U,L ∪ L′);
if the output is NO then

Return(NO), Halt;

else
Let Xi be the output;

Let Y = X1;
for i = 2 to q do

Let Z = ∅;
forall X ∈ Xi and Y ∈ Y do

if X ∩ Y �= ∅ then Add(Z, X ∩ X ′);
else Return(NO), Halt;

Let Y = Z;

forall Z ∈ Z do
Let X = {(c(w1), . . . , c(wr)) : c ∈ Z, c(wi) �= c(uj) if wiuj ∈
E(G) and c(ui) �= c(uj) if uiuj ∈ E(G)};
if X �= ∅ then Add(X ,X);
else Return(NO), Halt;

if X = ∅ then Return(NO), Halt; else Return(X ).

Algorithm 1. Pseudo code for the procedure Color

each wi is colored by ci. Set H = G−W . Procedure Color produces an output which
either contains a list of different sets X = (X1, . . . , Xs), Xi ∈ X, such that for any as-
signment of color lists of size k to vertices of H , there is a set Xi with the property that
any c ∈ Xi can be used for coloring of W with respect to adjacencies between vertices
in W and vertices in V (H), or the output contains ”NO” if there is a list assignment for

vertices of H such that no list coloring exists. Denote d = 4
(
k4

k

)
log(2

(
k4

k

)
). The sub-

routine Add(A, a) adds the element a to the set A if a /∈ A, and the subroutine Halt
stops the algorithm. Our main algorithm calls Procedure Color(G, ∅, ∅). To simplify
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the description of the algorithm it is assumed that for W = ∅, L contains unique zero
coloring (i.e. L is non empty). If the output is ”NO” then G is not k-choosable, and
otherwise G is k-choosable.

To prove the correctness of the algorithm, let us analyze one call of Procedure
Color. Since each induced subgraph of a P5-free graph is P5-free, by Proposition 2
it is possible to construct the desired dominating set U in the beginning of the pro-
cedure. If |U | > k ≥ 3 then U is a clique in G and ch(G) ≥ ch(G[U ]) > k. If
d(G[W ∪ U ]) > d then ch(G) ≥ ch(G[W ∪ U ]) > k by Proposition 1. Otherwise we
proceed and consider color lists for vertices of U . It should be observed here that it is
sufficient to consider only color lists with elements from the set L∪{l+1, . . . , l+kp},
since we have to take into account only intersections of these lists which each other and
with lists for vertices of W . If U = V (H) then the output is created by checking all
possible list colorings of H . If U 	= V (H) then we proceed with our decomposition of
G. Graphs F1, . . . , Fq are constructed and Procedure Color is called recursively for
them. It is possible to consider these graphs independently since vertices of different
graphs Hi and Hj are not adjacent. Then outputs for F1, . . . , Fq are combined and the
output for G is created by checking all possible list colorings of U .

Now we analyze the running time of this algorithm. To estimate the depth of the
recursion tree we assume that h sets U are created recursively without halting and de-
note them by U1, . . . , Uh. Since |Ui| ≤ k, |U1 ∪ · · · ∪ Uh| ≤ kh. Notice that each
set Ui is a dominating set for Ui+1, . . . , Uh. Hence

∑
v∈Ui

degF (v) ≥ h − 1, where

F = G[U1 ∪ · · · ∪ Uh], and
∑

v∈V (F )

deg(v) ≥ h(h − 1). This means that d(F ) ≥ h−1
k ,

and if h > kd+1 = 4k
(
k4

k

)
log(2

(
k4

k

)
)+1 then Procedure Color stops. Therefore the

depth of the recursion tree is at most kd + 1 = 4k
(
k4

k

)
log(2

(
k4

k

)
) + 1. It can be easily

noted that the number of leaves in the recursion tree is at most n = |V (G)|, and the

number of calls of Color is at most (4k
(
k4

k

)
log(2

(
k4

k

)
) + 1)n = O(k5 · 2k4 · n). Let

us analyze the number of operations used for each call of this procedure. The set U can
be constructed in polynomial time by the results of [2]. If |U | > k then the algorithm
finishes its work. Assume that |U | ≤ k. Since the depth of the recursion tree is at most
kd+1, color lists for vertices of U are chosen from the set {1, . . . , (kd+1)k2}, and the

number of all such sets is
(
(kd+1)k2

k

)
. So, there are at most

(
(kd+1)k2

k

)k
(or 2O(k8·2k4

))
possibilities to assign color lists to vertices of U . The number of all list colorings of
vertices of U is at most kk. Recall that the output of Color is either ”NO” or a list
of different sets X = (X1, . . . , Xs) where Xi ∈ X. Since the depth of the recursion
tree is at most kd + 1 and each set U contains at most k elements (if the algorithm
does not stop), the size of W is at most k(kd + 1). Hence the output contains at most

2k(kd+1) (or 2O(k6·2k4
)) sets. Using these bounds and the observation that q ≤ n, we

can conclude that the number of operations for each call of Color is 2O(k8·2k4
) ·nc for

some positive constant c. Taking into account the total number of calls of the procedure

we can bound the the running time of our algorithm as 2O(k8·2k4
) ·ns for some positive

constant s.
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4 CHOOSABILITY Is NP-Hard on P5-Free Graphs

In this section we show that CHOOSABILITY, with input G and k, remains NP-hard
when the input graph is restricted to P5-free graphs.

Theorem 2. The CHOOSABILITY problem is NP-hard on P5-free graphs.

Proof. We reduce the not-all-equal 3-Satisfiability (NAE 3-SAT) problem with only
positive literals [8] to CHOOSABILITY. For a given set of Boolean variables X =
{x1, . . . , xn}, and a set C = {C1, . . . , Cm} of three-literal clauses over X in which
all literals are positive, this problem asks whether there is a truth assignment for X
such that each clause contains at least one true literal and at least one false literal. NAE
3-SAT is NP-complete [8].

Our reduction has two stages. First we reduce NAE 3-SAT to LIST COLORING by
constructing a graph with color lists for its vertices. Then we build on this graph to
complete the reduction from NAE 3-SAT to CHOOSABILITY.

At the first stage of the reduction we construct a complete bipartite graph (Kn,2m)

H with the vertex set {x1, . . . , xn} ∪ {C(1)
1 , . . . , C

(1)
m } ∪ {C(2)

1 , . . . , C
(2)
m }, where

{x1, . . . , xn} and ({C(1)
1 , . . . , C

(1)
m }∪{C(2)

1 , . . . , C
(2)
m }) is the bipartition of the vertex

set. Hence on the one side of bipartition we have a vertex for each variable, and on the
other side we have two vertices for each clause. We define color lists for vertices of H as
follows: L(xi) = {2i−1, 2i} for i ∈ {1, . . . , n}, L(C(1)

j ) = {2p−1, 2q−1, 2r−1} and

L(C(2)
j ) = {2p, 2q, 2r} if the clause Cj contains literals xp, xq, xr for j ∈ {1, . . . ,m}.

Lemma 1. The graph H has a list coloring if and only if there is a truth assignment for
the variables in X such that each clause contains at least one true literal and at least
one false literal.

Proof. Assume that H has a list coloring. Set the value of variable xi = true if ver-
tex xi is colored by 2i − 1, and set xi = false otherwise. For each clause Cj with
literals xp, xq, xr, at least one literal has value true since at least one color from the

list {2p, 2q, 2r} is used for coloring vertex C
(2)
j , and at least one literal has value false,

since at least one color from the list {2p− 1, 2q− 1, 2r− 1} is used for coloring vertex
C

(1)
j .
Suppose now that there is a truth assignment for the variables in X such that each

clause contains at least one true literal and at least one false literal. For each variable
xi, we color vertex xi by the color 2i − 1 if xi = true, and we color xi by the color
2i otherwise. Then any two vertices C

(1)
j and C

(2)
j , which correspond to the clause

Cj with literals xp, xq, xr, can be properly colored, since at least one color from each
of lists {2p − 1, 2q − 1, 2r − 1} and {2p, 2q, 2r} is not used for coloring of vertices
x1, . . . , xn.

Now we proceed with our reduction and add to H a clique with k = n + 4nm −
4m vertices u1, . . . , uk. For each vertex xi, we add edges xiu
 for � ∈ {1, . . . , k},

� 	= 2i − 1, 2i. For vertices C
(1)
j and C

(2)
j which correspond to clause Cj with literals
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xp, xq, xr, edges C
(1)
j u
 such that � 	= 2p − 1, 2q − 1, 2r − 1 and edges C

(2)
j u
 such

that � 	= 2p, 2q, 2r are added for � ∈ {1, . . . , k}. We denote the obtained graph by G.
We claim that G is k-choosable if and only if there is a truth assignment for the

variables in X such that each clause contains at least one true literal and at least one
false literal.

For the first direction of the proof of this claim, suppose that for any truth assign-
ment there is a clause all of whose literals have the same value. Then we consider a list
coloring for G with same color list {1, . . . , k} for each vertex. Assume without loss of
a generality that ui is colored by color i for i ∈ {1, . . . , k}. Then each vertex xi can

be colored only by colors 2i − 1, 2i, each vertex C
(1)
j can be colored only by colors

2p − 1, 2q − 1, 2r − 1 and each vertex C
(2)
j can be colored only by colors 2p, 2q, 2r if

C
(1)
j , C

(2)
j correspond to the clause with literals xp, xq, xr . By Lemma 1, it is impossi-

ble to extend the coloring of vertices u1, . . . , uk to a list coloring of G.
For the other direction, assume now that there is a truth assignment for the variables

in X such that each clause contains at least one true literal and at least one false literal.
Assign arbitrarily a color list L(v) of size k to each vertex v ∈ V (G). We show how to
construct a list coloring of G. Denote by U the set of vertices {u2n+1, . . . , uk}. Notice
that U is a clique whose vertices are adjacent to all vertices of G. We start coloring the
vertices of U and reducing G according to this coloring, using following rules:

1. If there is a non colored vertex v ∈ U such that L(v) contains a color c which was
not used for coloring the vertices of U and there is a vertex w ∈ {x1, . . . , xn} ∪
{C(1)

1 , . . . , C
(1)
m }∪ {C(2)

1 , . . . , C
(2)
m } such that c /∈ L(w), then color v by c. Other-

wise choose a non colored vertex v ∈ U arbitrarily and color it by the first available
color.

2. If, after coloring some vertex in U , there is a vertex xi such that at least 2m − 1
colors that are not included in L(xi) are used for coloring U , then delete xi.

3. If, after coloring some vertex in U , there is a vertex C
(s)
j with s ∈ {1, 2} such that

at least n − 2 colors that are not included in L(C(s)
j ) are used for coloring U , then

delete C
(s)
j .

This coloring of U can be constructed due the property that for each v ∈ U , |L(v)| = k
and |U | = k − 2n < k. Rule 2 is correct since degG(xi) = k + 2m − 2, and therefore
if at least 2m−1 colors that are not included in L(xi) are used for coloring U , then any
extension of the coloring of U to the coloring of G − xi can be further extended to the
coloring of G, since there is at least one color in L(xi) which is not used for the coloring
of neighborhood of this vertex. By same arguments, we can show the correctness of
Rule 3 using the fact that degG(C(s)

j ) = k + n − 3.

If after coloring the vertices of U , all vertices of {x1, . . . , xn} ∪ {C(1)
1 , . . . , C

(1)
m } ∪

{C(2)
1 , . . . , C

(2)
m } are deleted then we color remaining vertices u1, . . . , u2n greedily, and

then we can claim that a list coloring of G exists by the correctness of Rules 2 and 3.
Assume that at least one vertex of {x1, . . . , xn}∪{C(1)

1 , . . . , C
(1)
m }∪{C(2)

1 , . . . , C
(2)
m }

was not deleted, and denote the set of such remaining vertices by W . Let v ∈ U be the
last colored vertex of U . Since |U | = k − 2n = n + 4nm − 4m − 2n = n(2m − 1) +
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2m(n−2), the color list L(v) contains at least 2n colors which are not used for coloring
the vertices of U . Furthermore, for each w ∈ W , all these 2n colors are included in
L(w), due to the way we colored the vertices of U and since w was not deleted by
Rules 2 or 3. We denote these unused colors by 1, . . . , 2n and let L = {1, . . . , 2n}.
We proceed with coloring of G by coloring the vertices u1, . . . , u2n by the greedy
algorithm using the first available color. Assume without loss of generality that if some
vertex ui is colored by the color from L then it is colored by the color i. Now it remains
to color the vertices of W . Notice that G[W ] is an induced subgraph of H . For each
w ∈ W , denote by L′(w) the colors from L(w) which are not used for coloring vertices
from the set {u1, . . . , uk} that are adjacent to w. It can be easily seen that for any

xi ∈ W , 2i − 1, 2i ∈ L′(x1), for any C
(1)
j ∈ W which corresponds to clause with

literals xp, xq, xr, 2p − 1, 2q − 1, 2r − 1 ∈ L′(C(1)
j ), and for any C

(2)
j ∈ W which

corresponds to clause with literals xp, xq, xr, 2p, 2q, 2r ∈ L′(C(2)
j ). Since there is a

truth assignment for variables X such that each clause contains at least one true literal
and at least one false literal, by Lemma 1 we can color the vertices of W .

To conclude the proof of the theorem, it remains to prove that G is P5-free. Suppose
that P is an induced path in G. Since H is a complete bipartite graph, P can contain
at most 3 vertices of H and if it contains 3 vertices then these vertices have to be
consecutive in P (notice that if P contains vertices only from one set of the bipartition
of H , then the number of such vertices is at most 2 since they have to be joined by
subpaths of P which go through vertices from the clique {u1, . . . , uk}). Also P can
contain at most 2 vertices from the clique {u1, . . . , uk}, and if it has 2 vertices then they
are consecutive. Hence, P has at most 5 vertices, and if P has 5 vertices then either P =
ut1ut2C

(s1)
j1

xiC
(s2)
j2

or P = ut1ut2xi1C
(s)
j xi2 . Assume that P = ut1ut2C

(s1)
j1

xiC
(s2)
j2

.
Since P is an induced path, vertices ut1 , ut2 are not adjacent to xi. By the construction

of G, it means that {t1, t2} = {2i − 1, 2i}. But then C
(s2)
j2

is adjacent either ut1 or

ut2 . Suppose that P = ut1ut2xi1C
(s)
j xi2 . Again by the construction of G, {t1, t2} =

{2i2 −1, 2i2} and C
(s)
j is adjacent to ut1 or ut2 . By these contradictions, P has at most

4 vertices.

5 Conclusion and Open Problems

We proved that the k-CHOOSABILITY problem is FPT for P5-free graphs when param-
eterized by k. It can be noted that our algorithm described in the proof of Theorem 1
does not explicitly use the absence of induced paths P5. It is based on the property that
any induced subgraph of a k-choosable P5-free graph has a dominating set of bounded
(by some function of k) size. It would be interesting to construct a more efficient algo-
rithm for k-CHOOSABILITY which actively exploits the fact that the input graph has no
induced P5.

Another interesting question is whether it is possible to extend our result for Pr-free
graphs for some r ≥ 6? Particularly, it is known [18] that any P6-free graph contains
either a dominating biclique or a dominating induced cycle C6. Is it possible to prove
that k-CHOOSABILITY is FPT for P6-free graphs using this fact?
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Also, we proved that k-CHOOSABILITY is NP-hard for P5-free graphs. Is this prob-
lem ΠP

2 -complete?
Finally, what can be said about P4-free graphs or cographs? It is possible to con-

struct a more efficient algorithm using same ideas as in the proof of Theorem 1 and the
well known fact (see e.g. [3]) that any cographs can be constructed from from isolated
vertices by disjoint union and join operations, and such decomposition of any cograph
can be constructed in linear time [4]? Instead of the presence of a dominating clique or
a dominating P3 we can use the property [13] that ch(Kr,rr) > r. Unfortunately this
algorithm is still double exponential in k. Is it possible to construct a better algorithm?
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Abstract. A Solovay function is a computable upper bound g for prefix-
free Kolmogorov complexity K that is nontrivial in the sense that g agrees
with K, up to some additive constant, on infinitely many places n. We
obtain natural examples of Solovay functions by showing that for some
constant c0 and all computable functions t such that c0n ≤ t(n), the
time-bounded version Kt of K is a Solovay function.

By unifying results of Bienvenu and Downey and of Miller, we show
that a right-computable upper bound g of K is a Solovay function if and
only if Ωg is Martin-Löf random. Letting Ωg =

∑
2−g(n), we obtain as

a corollary that the Martin-Löf randomness of the various variants of
Chaitin’s Ω extends to the time-bounded case in so far as ΩKt is Martin-
Löf random for any t as above.

As a step in the direction of a characterization of K-triviality in terms
of jump-traceability, we demonstrate that a set A is K-trivial if and only
if A is O(g(n)−K(n))-jump traceable for all Solovay functions g, where
the equivalence remains true when we restrict attention to functions g of
the form Kt, either for a single or all functions t as above.

Finally, we investigate the plain Kolmogorov complexity C and its
time-bounded variant Ct of initial segments of computably enumerable
sets. Our main theorem here is a dichotomy similar to Kummer’s gap the-
orem and asserts that every high c.e. Turing degree contains a c.e. set B
such that for any computable function t there is a constant ct > 0 such
that for all m it holds that Ct(B � m) ≥ ct ·m, whereas for any nonhigh
c.e. set A there is a computable time bound t and a constant c such that
for infinitely many m it holds that Ct(A � m) ≤ log m + c. By similar
methods it can be shown that any high degree contains a set B such that
Ct(B � m) ≥+ m/4. The constructed sets B have low unbounded but
high time-bounded Kolmogorov complexity, and accordingly we obtain
an alternative proof of the result due to Juedes, Lathrop, and Lutz [JLL]
that every high degree contains a strongly deep set.

1 Introduction and Overview

Prefix-free Kolmogorov complexity K it not computable and in fact does not
even allow for computable lower bounds. However, there are computable upper
bounds for K and, by a construction that goes back to Solovay [BD, S], there
are even computable upper bounds that are nontrivial in the sense that g agrees

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 392–402, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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with K, up to some additive constant, on infinitely many places n; such upper
bounds are called Solovay functions.

For any computable time-bound t, the time-bounded version Kt of K is obvi-
ously a computable upper bound for K, and we show that Kt is indeed a Solovay
function in case c0n ≤ t(n) for some appropriate constant c0. As a corollary,
we obtain that the Martin-Löf randomness of the various variants of Chaitin’s Ω
extends to the time-bounded case in so far as for any t as above, the real number

ΩKt =
∑
n∈N

1
2Kt(n)

is Martin-Löf random. The corresponding proof exploits the result by Bienvenu
and Downey [BD] that a computable function g such that Ωg =

∑
2−g(n) con-

verges is a Solovay function if and only if Ωg is Martin-Löf random. In fact, this
equivalence extends by an even simpler proof to the case of functions g that are
just right-computable, i.e., effectively approximable from above, and one then
obtains as special cases the result of Bienvenu and Downey and a related re-
sult of Miller where the role of g is played by the fixed right-computable but
noncomputable function K.

An open problem that received some attention recently [BDG, DH, N] is
whether the class of K-trivial sets coincides with the class of sets that are g(n)-
jump-traceable for all computable functions g such that

∑
2−g(n) converges. As

a step in the direction of a characterization of K-triviality in terms of jump-
traceability, we demonstrate that a set A is K-trivial if and only if A is O(g(n)−
K(n))-jump traceable for all Solovay functions g, where the equivalence remains
true when we restrict attention to functions g of the form Kt, either for a single
or all functions t as above.

Finally, we consider the time-bounded and unbounded Kolmogorov complex-
ity of the initial segments of sets that are computationally enumerable, or c.e.,
for short. The initial segments of a c.e. set A have small Kolmogorov complexity,
more precisely, by Barzdins’ lemma it holds that C(A � m) ≤+ 2 logm, where C
denotes plain Kolmogorov complexity. Theorem 4, our main result in this sec-
tion, has a structure similar to Kummer’s gap theorem in so far as it asserts a
dichotomy in the complexity of initial segments between high and nonhigh c.e.
sets. More precisely, every high c.e. Turing degree contains a c.e. set B such that
for any computable function t there is a constant ct > 0 such that for all m it
holds that Ct(B � m) ≥ ct · m, whereas for any nonhigh c.e. set A there is a
computable time bound t and a constant c such that for infinitely many m it
holds that Ct(A � m) ≤ logm + c. By similar methods it can be shown that any
high degree contains a set B such that Ct(B � m) ≥+ m/4. The constructed
sets B have low unbounded but high time-bounded Kolmogorov complexity, and
accordinlgy we obtain an alternative proof of the result due to Juedes, Lathrop,
and Lutz [JLL] that every high degree contains a strongly deep set.

Notation. In order to define plain and prefix-free Kolmogorov complexity, we
fix additively optimal oracle Turing machines V and U, where U has prefix-
free domain. We let CA(x) denote the Kolmogorov-complexity of x with respect
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to V relative to oracle A, let C(x) = C∅(x), and similarly define prefix-free
Kolmogorov complexity KA and K with respect to U. In connection with the
definition of time-bounded Kolmogorov complexity, we assume that V and U
both are able to simulate any other Turing machine M running for t steps in
O(t · log(t)) steps for an arbitrary machine M and in O(t(n)) steps in case M
has only two work tapes.

For a computable function t : N → N and a machine M , the Kolmogorov
complexity relative to M with time bound t is

Ct
M (n) := min{|σ| : M(σ) ↓= n in at most t(|n|) steps},

and we write Ct for Ct
U. The prefix-free Kolmogorov complexity with time

bound t denoted by Kt
M (n) and Kt(n) = Kt

U is defined likewise by considering
only prefix-free machines and the corresponding universal machine U in place
of U.

We identify strings with natural numbers by the order isomorphism between
the length-lexicographical order on strings and the usual order on N, and we
write |m| for the length of the string that corresponds to the number m, where
then |m| is roughly logm.

2 Solovay Functions and Martin-Löf Randomness

Definition 1 (Li, Vitányi [LV]). A computable function f : N → N is called
a Solovay function if K(n) ≤+ f(n) for all n and K(n) =+ f(n) for infinitely
many n.

Solovay [S, BD] had already constructed Solovay functions and by slightly variy-
ing the standard construction, next we observe that time-bounded prefix-free
Kolmogorov complexity indeed provides natural examples of Solovay functions.

Theorem 1. There is a constant c0 such that time-bounded prefix-free Kol-
mogorov complexity Kt is a Solovay function for any computable function t : N →
N such that c0n ≤ t(n) holds for almost all n.

Proof. Fix a standard effective and effectively invertible pairing func-
tion 〈., .〉 : N2 → N and define a tripling function [., ., .] : N3 → N by letting

[s, σ, n] = 1s0〈σ, n〉.

Let M be a Turing machine with two tapes that on input σ uses its first tape
to simulate the universal machine U on input σ and, in case U(σ) = n, to
compute 〈σ, n〉, while maintaining on the second tape a unary counter for the
number of steps of M required for these computations. In case eventually 〈σ, n〉
had been computed with final counter value s, the output of M is z = [s, σ, n],
where by construction in this case the total running time of M is in O(s).

Call z of the form [s, σ, n] a Solovay triple in case M(σ) = z and σ is an
optimal code for n, i.e., K(n) = |σ|. For some appropriate constant c0 and any
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computable function t that eventually is at least c0n, for almost all such triples z
it then holds that

K(z) =+ Kt(z),

because given a code for M and σ, by assumption the universal machine U can
simulate the computation of the two-tape machine M with input σ with linear
overhead, hence U uses time O(s) plus the constant time required for decoding M ,
i.e., time at most c0|z|. ��

Next we derive a unified form of a characterization of Solovay function in terms
of Martin-Löf randomness of the corresponding Ω-number due to Bienvenu and
Downey [BD] and a result of Miller [M] that asserts that the notions of weakly
low and low for Ω coincide. Before, we review some standard notation and facts
relating to Ω-numbers.

Definition 2. For a function f : N → N, the Ω-number of f is

Ωf :=
∑
n∈N

2−f(n)

Definition 3. A function f : N → N is an information content measure relative
to a set A in case f is right-computable with access to the oracle A and Ωf

converges; furthermore, the function f is an information content measure if it
is an information content measure relative to the empty set.

The following remark describes for a given information content measure f an
approximation from below to Ωf that has certain special properties. For the
sake of simplicity, in the remark only the oracle-free case is considered and the
virtually identical considerations for the general case are omitted.

Remark 1. For a given information content measure f , we fix as follows a non-
decreasing computable sequence a0, a1, . . . that converges to Ωf and call this
sequence the canonical approximation of Ωf .

First, we fix some standard approximation to the given information content
measure f from above, i.e., a computable function (n, s) 
→ fs(n) such that for
all n the sequence f0(n), f1(n), ... is a nonascending sequence of natural numbers
that converges to f(n), where we assume in addition that fs(n)−fs+1(n) ∈ {0, 1}.
Then in order to obtain the ai, let a0 = 0 and given ai, define ai+1 by searching
for the next pair of the form (n, 0) or the form (n, s + 1) where in addition it
holds that fs(n) − fs+1(n) = 1 (with some ordering of pairs understood), let

di = 2−f0(n) or di = 2−fs+1(n) − 2−fs(n) = 2−fs(n) ,

respectively, and let ai+1 = ai + di. Furthermore, in this situation, say that the
increase of di from ai to ai+1 occurs due to n.

It is well-known [DH] that among all right-computable functions exactly the
information content measures are, up to an additive constant, upper bounds for
the prefix-free Kolmogorov complexity K.
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Theorem 2 unifies two results by Bienvenu and Downey [BD] and by Miller [M],
which are stated below as Corollaries 1 and 2. The proof of the backward direc-
tion of the equivalence stated in Theorem 2 is somewhat more direct and uses
different methods when compared to the proof of Bienvenu and Downey, and is
quite a bit shorter than Miller’s proof, though the main trick of delaying the enu-
meration via the notion of a matched increase is already implicit there [DH, M].
Note in this connection that Bienvenu has independently shown that Miller’s
result can be obtained as a corollary to the result of Bienvenu and Downey [DH].

Theorem 2. Let f be an information content measure relative to a set A.
Then f has the Solovay property with respect to KA, i.e.,

lim
n→∞

(f(n) − KA(n)) 	= +∞ (1)

if and only if Ωf is Martin-Löf random relative to A.

Proof. We first show the backwards direction of the equivalence asserted in the
theorem, where the construction and its verification bear some similarities to
Kučera and Slaman’s [KS] proof that left-computable sets that are not Solovay
complete cannot be Martin-Löf random. We assume that (1) is false and con-
struct a sequence U0, U1, . . . of sets that is a Martin-Löf test relative to A and
covers Ωf . In order to obtain the component Uc, let a0, a1, . . . be the canonical
approximation to Ωf where in particular ai+1 = ai + di for increases di that
occur due to some n. Let bi be the sum of all increases dj such that j ≤ i and
where dj and di are due to the same n. With the index c understood, say an
increase di due to n is matched if it holds that

2c+1bi ≤ 2−KA(n).

For every di for which it could be verified that di is matched, add an interval
of size 2di to Uc where this interval either starts at ai or at the maximum place
that is already covered by Uc, whichever is larger. By construction the sum of
all matched di is at most ΩA/2c+1 ≤ 2−(c+1) and the sets Uc are uniformly c.e.
relative to A, hence U0, U1, . . . is a Martin-Löf test relative to A. Furthermore,
this test covers Ωf because by the assumption that (1) is false, for any c almost
all increases are matched.

For ease of reference, we review the proof of the forward direction of the
equivalence asserted in the theorem, which follows by the same line of stan-
dard argument that has already been used by Bienvenu and Downey and by
Miller. For a proof by contraposition, assume that Ωf is not Martin-Löf ran-
dom relative to A, i.e., for every constant c there is a prefix σc of Ωf such
that KA(σc) ≤ |σc| − 2c. Again consider the canonical approximation a0, a1, . . .
to Ωf where f(n, 0), f(n, 1), . . . is the corresponding effective approximation from
above to f(n) as in Remark 1. Moreover, for σc as above we let sc be the least
index s such that as exceeds σc (assuming that the expansion of Ωf is not even-
tually constant and leaving the similar considerations for this case to the reader).
Then the sum over all values 2−f(n) such that none of the increases d0 through ds
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was due to n is at most 2−|σc|, hence all pairs of the form (f(n, s) − |σc| + 1, n)
for such n and s where either s = 0 or f(n, s) differs from f(n, s − 1) form a
sequence of Kraft-Chaitin axioms, which is uniformly effective in c and σc rela-
tive to oracle A. Observe that by construction for each n, there is an axiom of
the form (f(n) − |σc|+ 1, n) and the sum of all terms 2−k over all axioms of the
form (k, n) is less than 2−f(n)−|σc|.

Now consider a prefix-free Turing machine M with oracle A that given codes
for c and σc and some other word p as input, first computes c and σc, then
searches for sc, and finally outputs the word that is coded by p according to
the Kraft-Chaitin axioms for c, if such a word exists. If we let d be the coding
constant for M , we have for all sufficiently large c and x that KA(n) ≤ 2 log c +
KA(σc) + f(n) − |σc| + 1 + d ≤ f(n) − c. ��

As special cases of Theorem 2 we obtain the following results by Bienvenu and
Downey [BD] and by Miller [M], where the former one is immediate and for the
latter one it suffices to observe that the definition of the notion low for Ω in
terms of Chaitin’s Ω number

Ω :=
∑

{x : U(x)↓}
2−|x|.

is equivalent to a definition in terms of ΩK.

Corollary 1 (Bienvenu and Downey). A computable information content
measure f is a Solovay function if and only if Ωf is Martin-Löf random.

Corollary 2 (Miller). A set A is weakly low if and only if A is low for Ω.

Proof. In order to see the latter result, it suffices to let f = K and to recall that
for this choice of f the properties of A that occur in the two equivalent assertions
in the conclusion of Theorem 2 coincide with the concepts weakly low and low
for ΩK . But the latter property is equivalent to being low for Ω, since for any
set A, it is equivalent to require that some or that all left-computable Martin-Löf
random set are Martin-Löf random relative to A [N, Proposition 8.8.1]. ��

By Corollary 1 and Theorem 1 it is immediate that the known Martin-Löf ran-
domness of ΩK extends to the time-bounded case.

Corollary 3. There is a constant c0 such that ΩKt :=
∑

x∈N
2−Kt(x)is Martin-

Löf random for any computable function twhere c0n ≤ t(n) for almost all n.

3 Solovay Functions and Jump-Traceability

In an attempt to define K-triviality without resorting to effective randomness or
measure, Barmpalias, Downey and Greenberg [BDG] searched for characteriza-
tions of K-triviality via jump-traceability. They demonstrated that K-triviality
is not implied by being h-jump-traceable for all computable functions h such
that

∑
n 1/h(n) converges. Subsequently, the following question received some
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attention: Can K-triviality be characterized by being g-jump traceable for all
computable functions g such that

∑
2−g(n) converges, that is, for all computable

functions g that, up to an additive constant term, are upper bounds for K?
We will now argue that Solovay functions can be used for a characterization

of K-triviality in terms of jump traceability. However, we will not be able to
completely avoid the notion of Kolmogorov complexity.

Definition 4. A set A is K-trivial if K(A � n) ≤+ K(n) for all n.

Definition 5. Let h : N → N be a computable function. A set A is O(h(n))-
jump-traceable if for every function Φ partially computable in A there is a func-
tion h ∈ O(h(n)) and a sequence (Tn)n∈N of uniformly c.e. finite sets, which is
called a trace, such that for all n

|Tn| ≤ h(n), and Φ(n) ∈ Tn

for all n such that Φ(n) is defined.

Theorem 3. There is a constant c0 such that the following assertions are equiv-
alent for any set A.

(i) A is K-trivial.
(ii) A is O(g(n) − K(n))-jump-traceable for every Solovay function g.

(iii) A is O(Kt(n) − K(n))-jump-traceable for all computable functions t
where c0n ≤ t(n) for almost all n.

(iv) A is O(Kt(n) − K(n))-jump-traceable for some computable function t
where c0n ≤ t(n) for almost all n.

Proof. The implication (ii)⇒(iii) is immediate by Theorem 1, and the implica-
tion (iii)⇒(iv) is trivially true. So it suffices to show the implications (i)⇒(ii)
and (iv)⇒(i), where due to space considerations we only sketch the correspond-
ing proofs.

First, let A be K-trivial and let ΦA be any partially A-computable function.
Let 〈., .〉 be some standard effective pairing function. Since A is K-trivial and
hence low for K, we have

K(〈n,ΦA(n)〉 =+ KA(〈n,ΦA(n)〉 =+ KA(n) =+ K(n) ,

whenever ΦA(n) is defined. Observe that the constant that is implicit in the
relation =+ depends only on A in the case of the first and last relation symbol,
but depends also on Φ in case of the middle one.

By the coding theorem there can be at most constantly many pairs of the
form (n, y) such that K(n, y) and K(n) differ at most by a constant, and given n,
K(n) and the constant, we can enumerate all such pairs. But then given a Solovay
function g, for given n we can enumerate at most g(n)−K(n)+1 possible values
for K(n) and for each such value at most constantly many pairs (n, y) such that
some y is equal to ΦA(n), hence A is O(g(n) − K(n))-jump-traceable.
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Next, let c0 be the constant from Theorem 1 and let t be a computable time
bound such that (iv) is true for this value of c0. Then Kt is a Solovay function
by choice of c0.

Recall the tripling function [., ., .] and the concept of a Solovay triple [s, σ, n]
from the proof of Theorem 1, and define a partial A-computable function Φ that
maps any Solovay triple [s, σ, n] to A � n. Then given an optimal code σ for n,
one can compute the corresponding Solovay triple z = [s, σ, n], where then Kt(z)
and K(z) differ only by a constant, hence the trace of ΦA at z has constant size
and contains the value A � n, i.e., we have K(A � n) ≤+ |σ| = K(n), hence A is
K-trivial. ��

4 Time Bounded Kolmogorov Complexity and Strong
Depth

The initial segments of a c.e. set A have small Kolmogorov complexity, by
Barzdins’ lemma [DH] it holds for all m that

C(A � m | m) ≤+ logm and C(A � m) ≤+ 2 logm.

Furthermore, there are infinitely many initial segments that have considerably
smaller complexity. The corresponding observation in the following remark is
extremely easy, but apparently went unnoticed so far and, in particular, improves
on corresponding statements in the literature [DH, Lemma attributed to Solovay
in Chapter 14].

Remark 2. Let A be a c.e. set. Then there is a constant c such that for infinitely
many m it holds that

C(A � m | m) ≤ c, C(A � m) ≤+ C(m) + c, and C(A � m) ≤ logm + c.

For a proof, it suffices to fix an effective enumeration of A and to observe that
there are infinitely many m ∈ A such that m is enumerated after all numbers n ≤
m that are in A, i.e., when knowing m one can simulate the enumeration until m
appears, at which point one then knows A � m.

Barzdins [Ba] states that there are c.e. sets with high time-bounded Kolmogorov
complexity, and the following lemma generalizes this in so far as such sets can
be found in every high Turing degree.

Lemma 1. For any high set A there is a set B where A =T B such that for
every computable time bound t there is a constant ct > 0 where

Ct(B � m) ≥+ ct · m and C(B � m) ≤+ 2 logm.

Moreover, if A is c.e., B can be chosen to be c.e. as well.

Proof. Let A be any high set. We will construct a Turing-equivalent set B as
required. Recall the following equivalent characterization of a set A being high:



400 R. Hölzl, T. Kräling, and W. Merkle

there is a function g computable in A that majorizes any computable function f ,
i.e., f(n) ≤ g(n) for almost all n. Fix such a function g, and observe that in
case A is c.e., we can assume that g can be effectively approximated from below.
Otherwise we may replace g with the function g′ defined as follows. Let Mg be
an oracle Turing machine that computes g if supplied with oracle A. For all n,
let

g̃(n, s) := max{MAi
g (n) | i ≤ s},

where Ai is the approximation to A after i steps of enumeration, and let g′(n) :=
lims→∞ g̃(n, s). We have g(n) ≤ g′(n) for all n and by construction, g′ can be
effectively approximated from below.

Partition N into consecutive intervals I0, I1, . . . where interval Ij has length 2j

and let mj = max Ij . By abuse of notation, let t0, t1, . . . be an effective enumer-
ation of all partial computable functions. Observe that it is sufficient to ensure
that the assertion in the theorem is true for all t = ti such that ti is computable,
nondecreasing and unbounded. Assign the time bounds to the intervals I0, I1, . . .
such that t0 will be assigned to every second interval including the first one, t1
to every second interval including the first one of the remaining intervals, and
so on for t2, t3, . . ., and note that this way ti will be assigned to every 2i+1-th
interval.

We construct a set B as required. In order to code A into B, for all j
let B(mj) = A(j), while the remaining bits of B are specified as follows. Fix
any interval Ij and assume that this interval is assigned to t = ti. Let B have
empty intersection with Ij \{mj} in case the computation of t(mj) requires more
than g(j) steps. Otherwise, run all codes of length at most |Ij |−2 on the univer-
sal machine V for 2t(mj) steps each, and let wj be the least word of lenght |Ij |−1
that is not output by any of these computations, hence C2t(wj) ≥ |wj | − 1. Let
the restriction of B to the first |wj | places in Ij be equal to wj .

Now let vj be the initial segment of B of length mj + 1, i.e., up to and
including Ij . In case t = ti is computable, nondecreasing and unbounded, for
almost all intervals Ij assigned to t, we have Ct(vj) > |vj |/3, because otherwise,
for some appropriate constant c, the corresponding codes would yield for almost
all j that C2t(wj) ≤ |vj |/3 + c ≤ |Ij | − 2. Furthermore, by construction for
every such t there is a constant ct > 0 such that for almost all m, there is some
interval Ij assigned to t such that mj ≤ m and ctm ≤ mj/4, hence for almost
all m the initial segment of B up to m cannot have Kolmogorov complexity of
less than ctm.

We omit the routine proof that A and B are Turing-equivalent and that if A
was c.e., then B is c.e. as well, where for the latter fact we need the assumption
that g can be effectively approximated from below.

Finally, to see that C(B � m) ≤+ 2 logm, notice that in order to determine
B � m without time bounds it is enough to know on which of the intervals Ij

the assigned time bounds ti terminate before their computation is canceled by
g, which requires one bit per interval, plus another one describing the bit of A
coded into B at the end of each interval. ��
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Lemma 2. Every high degree contains for every computable, nondecreasing and
unbounded function h a set B such that for every computable time bound t and
almost all m,

Ct(B � m) ≥+ 1
4
m and C(B � m) ≤ h(m) · logm.

Proof. The argument is similar to the proof of Lemma 1, but now, when
considering interval Ij , we diagonalize against the largest running time
among t0(mj), . . . , th(j)−2(mj) such that the computation of this value requires
not more than g(j) steps. This way we ensure – for any computable time bound t
– that at the end of almost all intervals Ij compression by a factor of at most 1/2
is possible, and that within interval Ij , we have compressibility by a factor of at
most 1/4, up to a constant additive term, because interval Ij−1 was compressible
by a factor of at most 1/2. ��

Kummer’s gap theorem asserts that any array noncomputable c.e. Turing degree
contains a c.e. set A such that there are infinitely many m such that C(A � m) ≥
2 logm, whereas all c.e. sets in an array computable Turing degree satisfy C(A �
m) ≤ (1 + ε) logm for all ε > 0 and almost all m. Similarly, Theorem 4, the
main result of this section, asserts a dichotomy for the time-bounded complexity
of intial segments between high and nonhigh sets.

Theorem 4. Let A be any c.e. set.

(i) If A is high, then there is a c.e. set B with B =T A such that for every
computable time bound t there is a constant ct > 0 such that for all m, it
holds that Ct(B � m) ≥ ct · m.

(ii) If A is not high, then there is a computable time bound t such that Ct(A �
m) ≤+ logm.

Proof. The first assertion is immediate from Lemma 1. In order to demonstrate
the second assertion, it suffices to observe that for the modulus of convergence s
of the c.e. set A there is a computable function f such that s(m) ≤ f(m) for
infinitely many m. ��

As another easy consequence of Lemma 1, we get an alternative proof of the
result due to Juedes, Lathrop and Lutz [JLL] that every high degree contains a
strongly deep set. We omit details due to lack of space.
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Abstract. The longest path problem is the problem of finding a path of
maximum length in a graph. Polynomial solutions for this problem are
known only for small classes of graphs, while it is NP-hard on general
graphs, as it is a generalization of the Hamiltonian path problem.
Motivated by the work of Uehara and Uno in [20], where they left
the longest path problem open for the class of interval graphs, in this
paper we show that the problem can be solved in polynomial time on
interval graphs. The proposed algorithm runs in O(n4) time, where n
is the number of vertices of the input graph, and bases on a dynamic
programming approach.

Keywords: Longest path problem, interval graphs, polynomial algo-
rithm, complexity, dynamic programming.

1 Introduction

A well studied problem in graph theory with numerous applications is the Hamil-
tonian path problem, i.e., the problem of determining whether a graph is Hamil-
tonian; a graph is said to be Hamiltonian if it contains a Hamiltonian path, that
is, a simple path in which every vertex of the graph appears exactly once. Even if
a graph is not Hamiltonian, it makes sense in several applications to search for a
longest path, or equivalently, to find a maximum induced subgraph of the graph
which is Hamiltonian. However, finding a longest path seems to be more difficult
than deciding whether or not a graph admits a Hamiltonian path. Indeed, it has
been proved that even if a graph has a Hamiltonian path, the problem of finding
a path of length n − nε for any ε < 1 is NP-hard, where n is the number of
vertices of the graph [15]. Moreover, there is no polynomial-time constant-factor
approximation algorithm for the longest path problem unless P=NP [15]. For
related results see also [7,8, 9,22,23].

It is clear that the longest path problem is NP-hard on every class of graphs
on which the Hamiltonian path problem is NP-complete. The Hamiltonian path
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problem is known to be NP-complete in general graphs [10, 11], and remains
NP-complete even when restricted to some small classes of graphs such as split
graphs [13], chordal bipartite graphs, split strongly chordal graphs [17], circle
graphs [5], planar graphs [11], and grid graphs [14]. However, it makes sense
to investigate the tractability of the longest path problem on the classes of
graphs for which the Hamiltonian path problem admits polynomial time solu-
tions. Such classes include interval graphs [16], circular-arc graphs [6], convex
bipartite graphs [17], and co-comparability graphs [4]. Note that the problem
of finding a longest path on proper interval graphs is easy, since all connected
proper interval graphs have a Hamiltonian path which can be computed in linear
time [2]. On the contrary, not all interval graphs are Hamiltonian; in the case
where an interval graph has a Hamiltonian path, it can be computed in linear
time [16]. However, in the case where an interval graph is not Hamiltonian, there
is no known algorithm for finding a longest path on it.

In contrast to the Hamiltonian path problem, there are few known polynomial
time solutions for the longest path problem, and these restrict to trees and some
small graph classes. Specifically, a linear time algorithm for finding a longest path
in a tree was proposed by Dijkstra around 1960, a formal proof of which can
be found in [3]. Later, through a generalization of Dijkstra’s algorithm for trees,
Uehara and Uno [20] solved the longest path problem for weighted trees and block
graphs in linear time and space, and for cacti in O(n2) time and space, where n
and m denote the number of vertices and edges of the input graph, respectively.
More recently, polynomial algorithms have been proposed that solve the longest
path problem on bipartite permutation graphs in O(n) time and space [21], and
on ptolemaic graphs in O(n5) time and O(n2) space [19].

Furthermore, Uehara and Uno in [20] introduced a subclass of interval
graphs, namely interval biconvex graphs, which is a superclass of proper in-
terval and threshold graphs, and solved the longest path problem on this class
in O(n3(m + n logn)) time. As a corollary, they showed that a longest path of
a threshold graph can be found in O(n +m) time and space. They left open the
complexity of the longest path problem on interval graphs.

In this paper, we resolve the open problem posed in [20] by showing that
the longest path problem admits a polynomial time solution on interval graphs.
Interval graphs form an important and well-known class of perfect graphs [13];
a graph G is an interval graph if its vertices can be put in a one-to-one corre-
spondence with a family of intervals on the real line, such that two vertices are
adjacent in G if and only if their corresponding intervals intersect. In particular,
we propose an algorithm for solving the longest path problem on interval graphs
which runs in O(n4) time using a dynamic programming approach. Thus, not
only we answer the question left open by Uehara and Uno in [20], but also im-
prove the known time complexity of the problem on interval biconvex graphs, a
subclass of interval graphs [20].

Interval graphs form a well-studied class of perfect graphs, have important
properties, and admit polynomial time solutions for several problems that are
NP-complete on general graphs (see e.g. [1, 13, 16]). Moreover, interval graphs
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have received a lot of attention due to their applicability to DNA physical map-
ping problems [12], and find many applications in several fields and disciplines
such as genetics, molecular biology, scheduling, VLSI circuit design, archaeology
and psychology [13].

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a
graph G, we denote its vertex and edge set by V (G) and E(G), respectively. An
undirected edge is a pair of distinct vertices u, v ∈ V (G), and is denoted by uv.
We say that the vertex u is adjacent to the vertex v or, equivalently, the vertex
u sees the vertex v, if there is an edge uv in G. Let S be a set of vertices of a
graph G. Then, the cardinality of the set S is denoted by |S| and the subgraph
of G induced by S is denoted by G[S]. The set N(v) = {u ∈ V (G) : uv ∈ E(G)}
is called the neighborhood of the vertex v ∈ V (G) in G, sometimes denoted
by NG(v) for clarity reasons. The set N [v] = N(v) ∪ {v} is called the closed
neighborhood of the vertex v ∈ V (G).

A simple path of a graph G is a sequence of distinct vertices v1, v2, . . . , vk

such that vivi+1 ∈ E(G), for each i, 1 ≤ i ≤ k − 1, and is denoted by
(v1, v2, . . . , vk); throughout the paper all paths considered are simple. We
denote by V (P ) the set of vertices in the path P , and define the length
of the path P to be the number of vertices in P , i.e., |P | = |V (P )|.
We call right endpoint of a path P = (v1, v2, . . . , vk) the last vertex vk of
P . Moreover, let P = (v1, v2, . . . , vi−1, vi, vi+1, . . . , vj , vj+1, vj+2, . . . , vk) and
P0 = (vi, vi+1, . . . , vj) be two paths of a graph. Sometimes, we shall denote the
path P by P = (v1, v2, . . . , vi−1, P0, vj+1, vj+2, . . . , vk).

2.1 Structural Properties of Interval Graphs

A graph G is an interval graph if its vertices can be put in a one-to-one corre-
spondence with a family F of intervals on the real line such that two vertices
are adjacent in G if and only if the corresponding intervals intersect; F is called
an intersection model for G [1]. The class of interval graphs is hereditary, that
is, every induced subgraph of an interval graph G is also an interval graph. Ra-
malingam and Rangan [18] proposed a numbering of the vertices of an interval
graph; they stated the following lemma.

Lemma 1. (Ramalingam and Rangan [18]): The vertices of any interval graph
G can be numbered with integers 1, 2, . . . , |V (G)| such that if i < j < k and
ik ∈ E(G), then jk ∈ E(G).

As shown in [18], the proposed numbering, which results after sorting the intervals
of the intersection model of a graph G on their right ends [1], can be obtained in
O(|V (G)| + |E(G)|) time. An ordering of the vertices according to this number-
ing is found to be quite useful in solving some graph-theoretic problems on interval
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graphs [1,18]. Throughout the paper, such an ordering is called a right-end order-
ing of G. Let u and v be two vertices of G; if π is a right-end ordering of G, denote
u <π v if u appears before v in π. In particular, if π = (u1, u2, . . . , u|V (G)|) is a
right-end ordering of G, then ui <π uj if and only if i < j.

Lemma 2. Let G be an interval graph, and let π be a right-end ordering of G.
Let P = (v1, v2, . . . , vk) be a path of G, and let v
 /∈ V (P ) be a vertex of G such
that v1 <π v
 <π vk and v
vk /∈ E(G). Then, there exist two consecutive vertices
vi−1 and vi in P , 2 ≤ i ≤ k, such that vi−1v
 ∈ E(G) and v
 <π vi.

2.2 Normal Paths

Our algorithm for constructing a longest path of an interval graph G uses a
specific type of paths, namely normal paths.

Definition 1. Let G be an interval graph, and let π be a right-end ordering
of G. The path P = (v1, v2, . . . , vk) of G is called a normal path, if v1 is the
leftmost vertex of V (P ) in π, and for every i, 2 ≤ i ≤ k, the vertex vi is the
leftmost vertex of N(vi−1) ∩ {vi, vi+1, . . . , vk} in π.

The notion of a normal path of an interval graph G is a generalization of the
notion of a typical path of G; the path P = (v1, v2, . . . , vk) of an interval graph
G is called a typical path, if v1 is the leftmost vertex of V (P ) in π. The notion
of a typical path was introduced by Arikati and Rangan [1], in order to solve the
path cover problem on interval graphs; they proved the following result.

Lemma 3. (Arikati and Rangan [1]): Let P be a path of an interval graph G.
Then, there exists a typical path P ′ in G such that V (P ′) = V (P ).

The following lemma is the basis of our algorithm for solving the longest path
problem on interval graphs.

Lemma 4. Let P be a path of an interval graph G. Then, there exists a normal
path P ′ of G, such that V (P ′) = V (P ).

3 Interval Graphs and the Longest Path Problem

In this section we present our algorithm, which we call Algorithm LP Interval,
for solving the longest path problem on interval graphs; it consists of three phases
and works as follows:

• Phase 1: it takes an interval graph G and constructs the auxiliary interval
graph H ;

• Phase 2: it computes a longest path P on H using Algorithm LP on H ;
• Phase 3: it computes a longest path P̂ on G from the path P ;

The proposed algorithm computes a longest path P of the graph H using dy-
namic programming techniques and, then, computes a longest path P̂ of G from
the path P . We next describe in detail the three phases of our algorithm and
prove properties of the constructed graph H which will be used for proving the
correctness of the algorithm.
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3.1 The Interval Graph H

In this section we present Phase 1 of the algorithm: given an interval graph
G and a right-end ordering π of G, we construct the interval graph H and a
right-end ordering σ of H .

	 Construction of H and σ: Let G be an interval graph and
let π = (v1, v2, . . . , v|V (G)|) be a right-end ordering of G. Initially, set
V (H) = V (G), σ = π, and A = ∅. Traverse the vertices of π from left to
right and do the following: for every vertex vi add two vertices ai,1 and
ai,2 to V (H) and make both these vertices to be adjacent to every ver-
tex in NG[vi] ∩ {vi, vi+1, . . . , v|V (G)|}; add ai,1 and ai,2 to A. Update σ
such that a1,1 <σ a1,2 <σ v1, and vi−1 <σ ai,1 <σ ai,2 <σ vi for every i,
2 ≤ i ≤ |V (G)|.

We call the constructed graph H the stable-connection graph of the graph G.
Hereafter, we will denote by n the number |V (H)| of vertices of the graph H
and by σ = (u1, u2, . . . , un) the constructed ordering of H . By construction, the
vertex set of the graph H consists of the vertices of the set C = V (G) and the
vertices of the set A. We will refer to C as the set of the connector vertices c of
the graph H and to A as the set of stable vertices a of the graph H ; we denote
these sets by C(H) and A(H), respectively. Note that |A(H)| = 2|V (G)|.

By the construction of the stable-connection graph H , all neighbors of a stable
vertex a ∈ A(H) are connector vertices c ∈ C(H), such that a <σ c. Moreover,
observe that all neighbors of a stable vertex form a clique in G and, thus, also
in H . For every connector vertex ui ∈ C(H), we denote by uf(ui) and uh(ui) the
leftmost and rightmost neighbor of ui in σ, respectively, which appear before ui

in σ, i.e., uf(ui) <σ uh(ui) <σ ui. Note that uf(ui) and uh(ui) are distinct stable
vertices, for every connector vertex ui.

Lemma 5. Let G be an interval graph. The stable-connection graph H of G is
an interval graph, and the vertex ordering σ is a right-end ordering of H.

Definition 2. Let H be the stable-connection graph of an interval graph G, and
let σ = (u1, u2, . . . , un) be the right-end ordering of H. For every pair of indices
i, j, 1 ≤ i ≤ j ≤ n, we define the graph H(i, j) to be the subgraph H [S] of H,
induced by the the set S = {ui, ui+1, . . . , uj} \ {uk ∈ C(H) : uf(uk) <σ ui}.

The following properties hold for every induced subgraph H(i, j), 1 ≤ i ≤ j ≤ n,
and they are used for proving the correctness of Algorithm LP on H .

Observation 1. Let uk be a connector vertex of H(i, j), i.e., uk ∈ C(H(i, j)).
Then, for every vertex u
 ∈ V (H(i, j)), such that uk <σ u
 and uku
 ∈
E(H(i, j)), u
 is also a connector vertex of H(i, j).

Observation 2. No two stable vertices of H(i, j) are adjacent.

Lemma 6. Let P = (v1, v2, . . . , vk) be a normal path of H(i, j). Then:
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Algorithm LP on H

Input: a stable-connection graph H , a right-end ordering σ = (u1, u2, . . . , un) of H .
Output: a longest binormal path of H .

for j = 1 to n
for i = j downto 1

if i = j and ui ∈ A(H) then
�(ui; i, i) ← 1; P (ui; i, i) = (ui);

if i �= j then

for every stable vertex uk ∈ A(H), i ≤ k ≤ j − 1
�(uk; i, j) ← �(uk; i, j−1); P (uk; i, j) = P (uk; i, j−1); {initialization}

if uj is a stable vertex of H(i, j), i.e., uj ∈ A(H) then
�(uj ; i, j) ← 1; P (uj ; i, j) = (uj);

if uj is a connector vertex of H(i, j), i.e., uj ∈ C(H) and i ≤ f(uj) then

execute process(H(i, j));
compute the max{�(uk; 1, n) : uk ∈ A(H)} and the corresponding path P (uk; 1, n);

where the procedure process() is as follows:

process(H(i, j))

for y = f(uj) + 1 to j − 1
for x = f(uj) to y − 1 {ux and uy are adjacent to uj}

if ux, uy ∈ A(H) then
w1 ← �(ux; i, j − 1); P ′

1 = P (ux; i, j − 1);
w2 ← �(uy ; x + 1, j − 1); P ′

2 = P (uy; x + 1, j − 1);
if w1 + w2 + 1 > �(uy; i, j) then

�(uy; i, j) ← w1 + w2 + 1; P (uy ; i, j) = (P ′
1, uj , P

′
2);

return the value �(uk; i, j) and the path P (uk; i, j), ∀ uk ∈ A(H(f(uj) + 1, j − 1));

Fig. 1. The algorithm for finding a longest binormal path of H

(a) For any two stable vertices vr and v
 in P , vr appears before v
 in P if and
only if vr <σ v
.

(b) For any two connector vertices vr and v
 in P , if v
 appears before vr in P
and vr <σ v
, then vr does not see the previous vertex v
−1 of v
 in P .

3.2 Finding a Longest Path on H

In this section we present Phase 2 of Algorithm LP Interval. Let G be an interval
graph and let H be the stable-connection graph of G constructed in Phase 1. We
next present Algorithm LP on H , which computes a longest path of the graph
H . Let us first give some definitions and notations necessary for the description
of the algorithm.

Definition 3. Let H be a stable-connection graph, and let P be a path of H(i, j),
1 ≤ i ≤ j ≤ n. The path P is called binormal if P is a normal path of H(i, j),
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Algorithm LP Interval

Input: an interval graph G and a right-end ordering π of G.
Output: a longest path P̂ of G.

1. Construct the stable-connection graph H of G and the right-end ordering σ of H ;
let V (H) = C∪A, where C = V (G) and A are the sets of the connector and stable
vertices of H , respectively;

2. Compute a longest binormal path P of H , using Algorithm LP on H ;
let P = (v1, v2, . . . , v2k, v2k+1), where v2i ∈ C, 1 ≤ i ≤ k, and v2i+1 ∈ A, 0 ≤ i ≤ k;

3. Compute a longest path P̂ = (v2, v4, . . . , v2k) of G, by deleting all stable vertices
{v1, v3, . . . , v2k+1} from the longest binormal path P of H ;

Fig. 2. The algorithm for solving the longest path problem on an interval graph G

both endpoints of P are stable vertices, and no two connector vertices are con-
secutive in P .

Notation 1. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be
the right-end ordering of H. For every stable vertex uk ∈ A(H(i, j)), we denote
by P (uk; i, j) a longest binormal path of H(i, j) with uk as its right endpoint,
and by �(uk; i, j) the length of P (uk; i, j).

Since any binormal path is a normal path, Lemma 6 also holds for binormal
paths. Moreover, since P (uk; i, j) is a binormal path, it follows that its right
endpoint uk is also the rightmost stable vertex of P in σ, due to Lemma 6(a).

Algorithm LP on H , which is presented in Figure 1, computes for every in-
duced subgraph H(i, j) and for every stable vertex uk ∈ A(H(i, j)), the length
�(uk; i, j) and the corresponding path P (uk; i, j). Since H(1, n) = H , it follows
that the maximum among the values �(uk; 1, n), where uk ∈ A(H), is the length
of a longest binormal path P (uk; 1, n) of H . In Section 4.2 we prove that the
length of a longest path of H equals to the length of a longest binormal path
of H . Thus, the binormal path P (uk; 1, n) computed by Algorithm LP on H is
also a longest path of H .

3.3 Finding a Longest Path on G

During Phase 3 of our Algorithm LP Interval, we compute a path P̂ from the
longest binormal path P of H , computed by Algorithm LP on H , by simply
deleting all the stable vertices of P . In Section 4.2 we prove that the resulting
path P̂ is a longest path of the interval graph G.

In Figure 2, we present our Algorithm LP Interval for solving the longest path
problem on an interval graph G; note that Steps 1, 2, and 3 of the algorithm
correspond to the presented Phases 1, 2, and 3, respectively.
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4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and compute its time
complexity. More specifically, in Section 4.1 we show that Algorithm LP on H
computes a longest binormal path P of the graph H (in Lemma 13 we prove
that this path is also a longest path of H), while in Section 4.2 we show that
the length of a longest binormal path P of H is equal to 2k + 1, where k is the
length of a longest path of G. Finally, we show that the path P̂ constructed at
Step 3 of Algorithm LP Interval is a longest path of G.

4.1 Correctness of Algorithm LP on H

We next prove that Algorithm LP on H correctly computes a longest binormal
path of the graph H . The following lemmas appear useful in the proof of the
algorithm’s correctness.

Lemma 7. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be
the right-end ordering of H. Let P be a longest binormal path of H(i, j) with uy

as its right endpoint, let uk be the rightmost connector vertex of H(i, j) in σ,
and let uf(uk)+1 ≤σ uy ≤σ uh(uk). Then, there exists a longest binormal path P ′

of H(i, j) with uy as its right endpoint, which contains the connector vertex uk.

Lemma 8. Let H be a stable-connection graph, and let σ be the right-end or-
dering of H. Let P = (P1, v
, P2) be a binormal path of H(i, j), and let v
 be a
connector vertex of H(i, j). Then, P1 and P2 are binormal paths of H(i, j).

Lemma 9. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be
the right-end ordering of H. Let P1 be a binormal path of H(i, j − 1) with ux as
its right endpoint, and let P2 be a binormal path of H(x + 1, j − 1) with uy as
its right endpoint, such that V (P1) ∩ V (P2) = ∅. Suppose that uj is a connector
vertex of H and that ui ≤σ uf(uj) ≤σ ux. Then, P = (P1, uj , P2) is a binormal
path of H(i, j) with uy as its right endpoint.

Lemma 10. Let H be a stable-connection graph, and let σ be the right-end
ordering of H. For every induced subgraph H(i, j) of H, 1 ≤ i ≤ j ≤ n, and
for every stable vertex uy ∈ A(H(i, j)), Algorithm LP on H computes the length
�(uy; i, j) of a longest binormal path of H(i, j) which has uy as its right endpoint
and, also, the corresponding path P (uy; i, j).

Proof (sketch). Let P be a longest binormal path of the stable-connection graph
H(i, j), which has a vertex uy ∈ A(H(i, j)) as its right endpoint. Consider first
the case where C(H(i, j)) = ∅; the graph H(i, j) is consisted of a set of stable ver-
tices A(H(i, j)), which is an independent set, due to Observation 2. Therefore, in
this case Algorithm LP on H sets �(uy; i, j) = 1 for every vertex uy ∈ A(H(i, j)),
which is indeed the length of the longest binormal path P (uy; i, j) = (uy) of
H(i, j) which has uy as its right endpoint. Therefore, the lemma holds for every
induced subgraph H(i, j), for which C(H(i, j)) = ∅.



The Longest Path Problem Is Polynomial on Interval Graphs 411

We examine next the case where C(H(i, j)) 	= ∅. Let
C(H) = {c1, c2, . . . , ck, . . . , ct} be the set of connector vertices of H , where
c1 <σ c2 <σ . . . <σ ck <σ . . . <σ ct. Let σ = (u1, u2, . . . , un) be the vertex
ordering of H constructed in Phase 1. Recall that, by the construction of H ,
n = 3t, and A(H) = V (H) \ C(H) is the set of stable vertices of H .

Let H(i, j) be an induced subgraph of H , and let ck be the rightmost connector
vertex of H(i, j) in σ. The proof of the lemma is done by induction on the index k of
the rightmost connector vertex ck of H(i, j). More specifically, given a connector
vertex ck of H , we prove that the lemma holds for every induced subgraph H(i, j)
of H , which has ck as its rightmost connector vertex in σ. To this end, in both the
induction basis and the induction step, we distinguish three cases on the position
of the stable vertex uy in the ordering σ: ui ≤σ uy ≤σ uf(ck), uh(ck) <σ uy ≤σ uj ,
and uf(ck)+1 ≤σ uy ≤σ uh(ck). In each of these three cases, we examine first the
length of a longest binormal path of H(i, j) with uy as its right endpoint and, then,
we compare this value to the length of the path computed by Algorithm LP on H .
Moreover, we prove that the path computed by Algorithm LP on H is indeed a
binormal path with uy as its right endpoint. ��

Due to Lemma 10, and since the output of Algorithm LP on H is the maximum
among the lengths �(uy; 1, n), uy ∈ A(H(1, n)), along with the corresponding
path, it follows that Algorithm LP on H computes a longest binormal path of
H(1, n) with right endpoint a vertex uy ∈ A(H(1, n)). Thus, since H(1, n) = H ,
we obtain the following result.

Lemma 11. Let G be an interval graph. Algorithm LP on H computes a longest
binormal path of the stable-connection graph H of the graph G.

4.2 Correctness of Algorithm LP Interval

We next show that Algorithm LP Interval correctly computes a longest path of
an interval graph G. The correctness proof is based on the following property: for
any longest path P of G there exists a longest binormal path P ′ of H , such that
|P ′| = 2|P |+1 and vice versa (this property is proved in Lemma 12). Therefore,
we obtain that the length of a longest binormal path P of H computed by
Algorithm LP on H is equal to 2k+1, where k is the length of a longest path P̂
of G. Next, we show that the length of a longest binormal path of H equals to
the length of a longest path of H . Finally, we show that the path P̂ computed
at Step 3 of Algorithm LP Interval is indeed a longest path of G.

Lemma 12. Let H be the stable-connection graph of an interval graph G. Then,
for any longest path P of G there exists a longest binormal path P ′ of H, such
that |P ′| = 2|P | + 1 and vice versa.

Proof. Let σ be the right-end ordering of the graph H constructed in Phase 1.
(=⇒) Let P = (v1, v2, . . . , vk) be a longest path of G, i.e., |P | = k. We will show
that there exists a binormal path P ′ of H such that |P ′| = 2k + 1. Since G is an
induced subgraph of H , the path P of G is a path of H as well. We construct a path
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P̂ of H from P , by adding to P the appropriate stable vertices, using the follow-
ing procedure. Initially, set P̂ = P and for every subpath (vi, vi+1) of the path P̂ ,
1 ≤ i ≤ k−1, do the following: consider first the case where vi <σ vi+1; then, by the
construction of H , vi+1 is adjacent to both stable vertices ai,1 and ai,2 associated
with the connector vertex vi. If ai,1 has not already been added to P̂ , then replace
the subpath (vi, vi+1) by the path (vi, ai,1, vi+1); otherwise, replace the subpath
(vi, vi+1) by the path (vi, ai,2, vi+1). Similarly, in the case where vi+1 <σ vi, re-
place the subpath (vi, vi+1) by the path (vi, ai+1,1, vi+1) or (vi, ai+1,2, vi+1), re-
spectively. Finally, consider the endpoint v1 (resp. vk) of P̂ . If a1,1 (resp. ak,1) has
not alreadybeen added to P̂ , then adda1,1 (resp. ak,1) as the first (resp. last) vertex
of P̂ ; otherwise, add a1,2 (resp. ak,2) as the first (resp. last) vertex of P̂ .

By the construction of P̂ it is easy to see that for every connector vertex v of
P we add two stable vertices as neighbors of v in P̂ , and since in H there are
exactly two stable vertices associated with every connector vertex v, it follows
that every stable vertex of H appears at most once in P̂ . Furthermore, since we
add in total k+1 stable vertices to P , where |P | = k, it follows that |P̂ | = 2k+1.
Denote now by P ′ a normal path of H such that V (P ′) = V (P̂ ). Such a path
exists, due to Lemma 4. Due to the above construction, the path P̂ is consisted of
k + 1 stable vertices and k connector vertices. Thus, since no two stable vertices
are adjacent in H due to Observation 2, and since P ′ is a normal path of H , it
follows that P ′ is a binormal path of H . Thus, for any longest path P of G there
exists a binormal path P ′ of H , such that |P ′| = 2|P | + 1.

(⇐=) Consider now a longest binormal path P ′ = (v1, v2, . . . , v
) of H . Since P ′

is binormal, it follows that � = 2k+1, and thatP ′ has k connector vertices and k+1
stable vertices, for some k ≥ 1. We construct a pathP by deleting all stable vertices
from the path P ′ of H . By the construction of H , all neighbors of a stable vertex a
are connector vertices and form a clique in G; thus, for every subpath (v, a, v′) of
P ′, v is adjacent to v′ in G. It follows that P is a path of G. Since we removed all
the k + 1 stable vertices of P ′, it follows that |P | = k, i.e., |P ′| = 2|P | + 1.

Summarizing, we have constructed a binormal path P ′ of H from a longest
path P of G such that |P ′| = 2|P |+1, and a path P of G from a longest binormal
path P ′ of H such that |P ′| = 2|P | + 1. This completes the proof. ��

Lemma 13. For any longest path P and any longest binormal path P ′ of H, it
holds |P ′| = |P |.

Let P be the longest binormal path of H computed in Step 2 of Algorithm
LP Interval, using Algorithm LP on H . Then, in Step 3 Algorithm LP Interval
computes the path P̂ by deleting all stable vertices from P . By the construction
of H , all neighbors of a stable vertex a are connector vertices and form a clique
in G; thus, for every subpath (v, a, v′) of P , v is adjacent to v′ in G. It follows
that P̂ is a path of G. Moreover, since P is binormal, it has k connector vertices
and k + 1 stable vertices, i.e., |P | = 2k + 1, where k ≥ 1. Thus, since we have
removed all k + 1 stable vertices of P , it follows that |P̂ | = k and, thus, P̂ is a
longest path of G due to Lemma 12. Thus, we have proved the following result.
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Theorem 1. Algorithm LP Interval computes a longest path of an interval
graph G.

4.3 Time Complexity

Let G be an interval graph on |V (G)| = n vertices and |E(G)| = m edges. It
has been shown that we can obtain the right-end ordering π of G, which results
from numbering the intervals after sorting them on their right ends, in O(n+m)
time [1, 18].

First, we show that Step 1 of Algorithm LP Interval, which constructs the
stable-connection graph H of the graph G, takes O(n2) time. Indeed, for every
connector vertex ui, 1 ≤ i ≤ n, we can add two stable vertices in V (H) in O(1)
time and we can compute the specific neighborhood of ui in O(n) time.

Step 2 of Algorithm LP Interval includes the execution of Algorithm LP on H .
The subroutine process() takes O(n2) time, due to the O(n2) pairs of the
neighbors ux and uy of the connector vertex uj in the graph H(i, j). Additionally,
the subroutine process() is executed at most once for each subgraph H(i, j) of
H , 1 ≤ i ≤ j ≤ n, i.e., it is executed O(n2) times. Thus, Algorithm LP on H
takes O(n4) time.

Step 3 of Algorithm LP Interval can be executed in O(n) time since we simply
traverse the vertices of the path P , constructed by Algorithm LP on H , and
delete every stable vertex.

Theorem 2. A longest path of an interval graph can be computed in O(n4) time.

5 Concluding Remarks

In this paper we presented a polynomial-time algorithm for solving the longest
path problem on interval graphs, which runs in O(n4) time and, thus, provided
a solution to the open problem stated by Uehara and Uno in [20] asking for the
complexity status of the longest path problem on interval graphs. It would be
interesting to see whether the ideas presented in this paper can be applied to
find a polynomial solution to the longest path problem on convex and biconvex
graphs, the complexities of which still remain open [20].
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Abstract. The description of a single state of a modelled system is of-
ten complex in practice, but few procedures for synthesis address this
problem in depth. We study systems in which a state is described by
an arbitrary finite structure, and changes of the state are represented
by structure rewriting rules, a generalisation of term and graph rewrit-
ing. Both the environment and the controller are allowed to change the
structure in this way, and the question we ask is how a strategy for the
controller that ensures a given property can be synthesised.

We focus on one particular class of structure rewriting rules, namely
on separated structure rewriting, a limited syntactic class of rules. To
counter this restrictiveness, we allow the property to be ensured by the
controller to be specified in a very expressive logic: a combination of
monadic second-order logic evaluated on states and the modal μ-calculus
for the temporal evolution of the whole system. We show that for the
considered class of rules and this logic, it can be decided whether the
controller has a strategy ensuring a given property, and in such case a
finite-memory strategy can be synthesised. Additionally, we prove that
the same holds if the property is given by a monadic second-order formula
to be evaluated on the limit of the evolution of the system.

1 Introduction

Structure rewriting is a generalisation of graph rewriting and graph grammars,
which have been widely studied in computer science [1] and even used as a ba-
sis for software development environments.1 Since unrestricted graph rewriting
constitutes a programming language, most questions about unrestricted rewrit-
ing systems are necessarily undecidable. While the Graph Minor Theorem has
recently allowed a basic analysis of large classes of single-pushout graph transfor-
mation systems [3], to define structure rewriting for which the synthesis problem
remains decidable, it is necessary to strongly limit the allowed rewriting rules.

Choosing a restricted class of structure rewriting rules, we want to preserve
the original motivation of practical applicability. In the context of software veri-
fication, this means that we want to allow at least basic manipulations on graphs
that often appear as memory structures on the heap. One candidate for such a

� This work was partially supported by the DFG Graduiertenkolleg 1298 AlgoSyn.
1 It is interesting to note that the idea to rewrite relational structures was introduced

in 1973 by Rajlich [2] and it preceded most of the work on graph grammars.

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 415–426, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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class, used for example in the verification of Pointer Assertion Logic programs [4],
are graphs of bounded clique-width. The class of rewriting rules that corresponds
to such graphs, separated handle hypergraph rewriting rules, was identified in
[5] in the context of hypergraph grammars.

We study the synthesis problem, which we view as a two-player zero-sum
game, in the course of which a structure is manipulated using similar separated
structure rewriting rules. We consider two possibilities to define the property to
be ensured, i.e. the winning condition in such games. One possibility is to use
a μ-calculus formula evaluated on the sequence of structures that constitutes a
play. In such a formula, instead of the usual predicates assigned to states, we
allow arbitrary monadic second-order formulas to be evaluated on the “current”
structure. The other possibility is to give a single monadic second-order formula
and evaluate it on the limit of all structures that appear during the play.

As our main result, we show that for the games described above it is decidable
which player has a winning strategy and that a winning strategy can be con-
structed. In fact, we prove that conditions expressed by monadic second-order
formulas over the structures can be reduced to ω-regular conditions over the
game arena. Thus, we identify a class of structure rewriting games that have the
same nice properties as ω-regular games.

2 Preliminaries

For any set A we denote by A∗ and Aω the set of finite, and respectively infinite,
sequences of elements of A. Given a (finite or infinite) sequence α = a0a1 . . . we
write α[i] to denote the (i + 1)st element of α, i.e. α[i] = ai.

A (relational) structure over a finite signature τ = {R1, . . . , Rn} (with Ri

having arity ri) is a tuple A = (A,RA
1 , . . . , RA

n ) where A is the universe of A and
each relation RA

i ⊆ Ari . We often write a ∈ A when a ∈ A is meant.
Given two structures A,B over the same signature τ we say that a function

f : A ↪→ B is an embedding if f is injective and for each Ri ∈ τ it holds that
(a1, . . . , ari) ∈ RA

i ⇐⇒ (f(a1), . . . , f(ari)) ∈ RB
i .

Given a sequence of structures A0A1 . . . we define the limit of this sequence
A∞ = lim Ai. The universe of A∞ consists of all elements that remain in all Ai

from some n on, A∞ =
⋃

n∈N

⋂
i≥n Ai. The relations are defined similarly, i.e. a

tuple is in RA∞
k if for some n it is in all RAi

k for i > n, so RA∞
k =

⋃
n∈N

⋂
i≥n RAi

k .
There are many ways to describe properties of structures, and the most general

way that we use is monadic second-order logic, MSO. We omit the standard
formal definition of the semantics of MSO here, let us only mention the syntax.
Atomic formulas are built using first-order variables x0, x1, . . . and second-order
variables X0, X1, . . . in the expressions Ri(x1, . . . , xri) or x ∈ X . Formulas can
be negated, connected by disjunction and conjunction, and both first and second-
order quantification is allowed. So if ϕ and ψ are MSO formulas, then ϕ ∧ ψ,
ϕ∨ψ, ¬ϕ, ∃xϕ, ∀xϕ and ∃Xϕ, ∀Xϕ are MSO-formulas as well. We write A |= ϕ
if the formula ϕ is satisfied by the structure A.

A play of a structure rewriting game corresponds to a sequence of struc-
tures, so to express properties of plays we not only need to express properties of
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structures, but also the ways they change through the sequence. One of the most
expressive logics used for such temporal properties, which subsumes for example
the linear time logic, is the modal μ-calculus, Lμ. We use an extension of Lμ

where arbitrary MSO formulas are allowed instead of predicates. The syntax of
Lμ[MSO] is given by

ϕ = ψMSO | Y | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | μY ϕ | νY ϕ,

where ψMSO is any MSO sentence. The semantics of Lμ[MSO], i.e. the notion
that a sequence of structures A0A1 . . . satisfies an Lμ[MSO] formula ϕ, is defined
analogously to the standard semantics of Lμ (cf. Chapter 10 of [6]), with the only
change that instead of using predicates we say that ψMSO holds at position i if
and only if it is satisfied by the structure Ai. We do not repeat the formal
semantics of Lμ[MSO] here, let us only mention the intuition, namely that ♦ϕ
holds in a sequence A0A1 . . . if ϕ holds from the next step on, i.e. in A1A2 . . .,
and that μY ϕ denotes the least fixed-point and νY ϕ the greatest fixed-point.

In addition to MSO and Lμ[MSO], we use the standard definitions of alternat-
ing parity ω-word automata and non-deterministic parity ω-tree automata, with
the slight modification that our word automata have priorities on transitions
and not on states, and tree automata have final positions for the case that some
branch of the tree is finite.

3 Structure Rewriting Games

We will define two-player games in the course of which a structure is manipulated
by the players using separated structure rewriting rules, similar to the ones
presented in [5]. In this section we introduce such rules, the rewriting process
and the corresponding games.

3.1 Structure Rewriting Rules

Let us fix the signature τ and partition it into two disjoint subsets: the set τt of
terminal relation symbols and the set τn of non-terminal symbols. We say that
a structure A is separated if no element appears in two non-terminal relations,
i.e. if for all (a1, . . . , ark

) ∈ RA
k , (b1, . . . , brl

) ∈ RA
l with Rk, Rl ∈ τn it holds that

ai 	= bj for all i ≤ rk, j ≤ rl (except if k = l and a = b of course).
A structure rewriting rule L → R consists of a finite structure L over the

signature τ and a finite structure R over the extended signature τ ∪ {Pl}l∈L,
where each Pl is a unary predicate, i.e. PR

l ⊆ R, and we assume that PR
l are

pairwise disjoint (this assumption can be omitted, as we explain in Section 5).
A match of the rule L → R in another structure A is an embedding σ : L ↪→

A, which induces the following mapping relation Mσ on R × A:

(r, a) ∈ Mσ ⇐⇒ a = σ(l) and r ∈ PR
l for some l ∈ L.

Intuitively, we consider the elements of R that belong to PR
l as replacements for

l, and thus Mσ contains the pairs (r, a) for which a is to be replaced by r.
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We define the result of an application of L → R to A on the match σ as a
structure B = A[L → R/σ], such that the universe of B is given by (A\σ(L))∪̇R,
and the relations as follows (writing bM I

σ for {a | (b, a) ∈ M I
σ}):

(b1, . . . , bri) ∈ RB
i ⇐⇒

(
b1M

I
σ × . . . × briM

I
σ

)
∩ RA

i 	= ∅,

where M I
σ = Mσ ∪ {(a, a) | a ∈ A}. Intuitively, we remove L, insert R, and

connect all r ∈ PR
l in places where l was before in A, as given by σ.

A separated structure rewriting rule is a rewriting rule L → R where R is
separated and L consists of only one tuple of elements in a non-terminal relation,
i.e. there exists an Ri ∈ τn such that L = ({l1, . . . , lri}, RL

1 , . . . , RL
n) with RL

i =
{(l1, . . . , lri)} and RL

j = ∅ for j 	= i. (Note that li = lj is possible.) We denote
the set of all separated rules over τ = τn ∪ τt by S(τ).

An example of a separated rewriting of a structure with one binary terminal
relation R0 (depicted as unlabelled edges) and one non-terminal binary relation
R1 is given in Figure 1.

a b
R1

a b
R1

Pa Pb Pb

Fig. 1. Rewriting the tuple (a, b) ∈ R1 in a structure

Applications of a single separated rewriting rule to a separated structure are
confluent and yield again a separated structure (cf. [5]). Thus, if A is a finite
separated structure and L → R is a separated rule, we can define A[L → R],
the separated structure resulting from applying the rule to all tuples in RA

i in
any order (where Ri is the single non-empty relation in L). Note that if RA

i = ∅,
then A[L → R] = A.

3.2 Games Played with Structures

Let α = r0r1 . . . be a sequence of separated rewriting rules, all belonging to a
finite set. For a non-terminal symbol Rk ∈ τn we define the Rk-starting structure
Sk as one with only one Rk-tuple, Sk = ({a1, . . . , ark

}, RSk
1 , . . . , RSk

n ) with
RSk

k = {(a1, . . . , ari)} and RSk

j = ∅ for j 	= k. Having a starting relation symbol
(and structure) and a sequence of rules, we can define the corresponding sequence
of finite separated structures stk(α) = A0A1 . . . such that A0 = Sk and for each
i ∈ N we set Ai+1 = Ai[ri]. We will be interested either in properties of the
whole sequence of structures expressed in Lμ[MSO] or in a property of the limit
structure lim Ai expressed in MSO.
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Definition 1. A separated structure rewriting game G = (V0, V1, E, ϕ) consists
of disjoint sets V0 and V1 of positions of Player 0 and Player 1, respectively, a
set of moves E ⊆ V × S × V , where V = V0 ∪ V1 and S ⊆ S(τ) is a finite set
of separated rewriting rules, and either an Lμ[MSO] or an MSO formula ϕ that
describes the winning condition of the game.

A play of G = (V0, V1, E, ϕ) starts in a distinguished position v0 ∈ V and with
a starting structure A0 = Sk for some non-terminal Rk ∈ τn. If the play is in a
position v ∈ Vi with structure A, player i must choose a move (v, r, w) ∈ E (for
simplicity we assume that such a move always exists). The play continues from
the position w with the structure A[r]. Formally, a play π = v0e0v1e1 . . . of G is an
infinite sequence of positions and moves, π ∈ (V E)ω , such that ei = (vi, ri, vi+1),
i.e. the ith move goes from the ith position to the (i+1)st position. A play π as
above induces a sequence of rules r0r1 . . . seen during the play, which we denote
by rules(π).

A strategy of player i is a function that assigns to each history of a play
ending in a position of player i, i.e. to each h = v0 . . . vn ∈ (V E)∗Vi, the next
move (vn, r, w) ∈ E. Note that the structure corresponding to each position vn

is a function of h and the starting symbol Rk, so we can omit the constructed
structures in the definition of a strategy. We say that a play π = v0e0v1 . . . is
consistent with a strategy σi of player i if for each prefix h = v0e0 . . . vk of π
with vk ∈ Vi it holds that ek = (vk, r, vk+1) = σi(h). When the starting position
v0, the non-terminal symbol Rk, and the strategies of both players σ0 and σ1 are
fixed, there exists a unique play π = v0e0 . . . that starts in v0 and is consistent
with both these strategies. This play induces a unique sequence of structures
stk(rules(π)), which we will denote by πk(σ0, σ1, v0). We say that Player 0 wins
the play π if either stk(rules(π)) |= ϕ, in case the winning condition is given by
an Lμ[MSO] formula ϕ, or if lim stk(rules(π)) |= ϕ, if ϕ is an MSO formula to
be evaluated on the limit structure.

We say that Player 0 wins the game G from v0 and Rk if she has a strat-
egy σ0 such that for all strategies σ1 of her opponent, πk(σ0, σ1, v0) |= ϕ (or
limπk(σ0, σ1, v0) |= ϕ). If Player 1 has a strategy σ1 such that for all strategies
σ0 of Player 0, πk(σ0, σ1, v0) 	|= ϕ, then we say that Player 1 wins the game G.
We will prove the following main result about separated graph rewriting games.

Theorem 1. Let G be a finite separated structure rewriting game, v0 a position
in G and Rk ∈ τn a non-terminal symbol. Then either Player 0 wins G starting
from v0 and Rk or Player 1 does, it is decidable which player is the winner and
a winning strategy for this player can be constructed.

The theorem above is a consequence of the following stronger theorem, which
allows us to reduce questions about separated structure rewriting games to ques-
tions about ω-regular games.

Theorem 2. Let S be a finite set of separated structure rewriting rules over a
signature τ = τn ∪ τt and let Rk ∈ τn. For any MSO formula ϕ the set of finite
sequences of rules which end in a structure satisfying ϕ, i.e. the set

{r0 . . . ri | stk(r0 . . . ri)[i] |= ϕ}
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is a regular subset of S∗. Moreover, the set {π ⊆ Sω | lim stk(π) |= ϕ} is an
ω-regular subset of Sω. Both these statements are effective, i.e. the automata
can be algorithmically constructed from S,Rk and ϕ.

By Theorem 2, if ϕ is a formula of Lμ[MSO], then, for each MSO-sentence ψMSO

occurring in ϕ, there is a corresponding regular language L(ψMSO) ⊆ S∗. By
the standard correspondence of regular languages and MSO (and Lμ as well)
on words, this implies that the set {π ⊆ Sω | stk(π) |= ϕ} is ω-regular as well.
Thus, both in the case of an Lμ[MSO] formula evaluated on the whole sequence,
and in the case of an MSO formula evaluated on the limit structure, the set of
winning sequences of rules is ω-regular, and the automaton recognising it can be
effectively constructed.

Therefore, for any separated structure rewriting game G, we get an equivalent
ω-regular winning condition over the same game arena. Since ω-regular games
are determined, establishing the winner in such games is decidable and finite-
memory strategies are sufficient to win [7], Theorem 1 follows. Note that any
result on ω-regular games can be transferred to separated structure games in the
same way: for example, players could be allowed to take moves concurrently or
one could consider multi-player games and ask for admissible strategies [8].

Let us remark2 that defining A[L → R] as the structure with all occurrences
of L rewritten to R is crucial for Theorem 2 and its consequences. Note that this
is in contrast to the case of graph grammars [5], where any rule can be applied
at any position. If we allowed the players to pick both a position to rewrite and a
rewriting rule, it would be possible to simulate active context-free games, which
were proven undecidable in [9]. To simulate these games, one would represent a
word as a directed line with unary non-terminal predicates representing letters,

e.g. the word aba would be represented as
a b a .

4 Proving Regularity: From Structures to Words

In this section, we prove Theorem 2 in a few steps. First, we reduce structure
rewriting to tree rewriting in a way reminding of the tight connection between
separated handle rewriting of graphs and the vertex replacement algebra [5].
In addition to the standard vertex replacement methods, we also preserve the
exact sequence of rewriting steps. Next, we are concerned with checking an
MSO property on a tree constructed by a sequence of applications of simple tree
rewriting rules. To do this, we take a tree automaton that checks this property
and construct an alternating word automaton running on the sequence of tree
rewriting rules that simulates the tree automaton.

4.1 From Structures to Trees

We represent the structures that the players manipulate by binary trees with
labelled nodes. The leaves of the tree represent the elements of the structure,
2 Thanks to Anca Muscholl for pointing out this remark and reduction.
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and the labels describe which tuples of elements are in which relations. Note
that this is a standard representation for graphs of bounded clique-width.

For our purposes, a labelled binary tree T = (T,�, λ) consists of a prefix-
closed set T ⊆ {0, 1}∗, the prefix relation � and the labelling function λ : T →
ΣS . The set of labels ΣS depends on a number kS that we will later compute
from the considered set of separated rewrite rules S, and contains the following
types of labels (with an intuition on how they will be used later).

– The symbols ‘n’ for all n ≤ kS (used to label leaves of T ).
– The symbol ‘⊕’ (denoting the disjoint sum).
– The symbols ‘i ← j’ for all i, j ≤ kS (used to re-label i to j).
– The symbols ‘Rk(i1, . . . , irk

)’ for each Rk ∈ τ and each number ij ≤ kS

(for adding to the relation Rk all tuples (a1, . . . , ark
) if aj is labelled by ij).

We consider only labellings that obey a few simple structural properties.

(1) The label λ(v) is a number if and only if v is a leaf of T .
(2) A node v ∈ T has both successors v0, v1 ∈ T if and only if λ(v) = ⊕.

Moreover, for separated structures, one additional property holds.

(3) For each Rk ∈ τn the subtree below every node v with λ(v) = Rk(i1, . . . , irk
)

has exactly |{i1, . . . , irk
}| leaves and all its other nodes are labelled by ⊕.

With each tree T = (T,�, λ) that fulfils the properties (1) and (2) we now
associate a structure A = S(T ), and if (3) is fulfilled, then A is separated. As
said before, the universe of A consists of the leaves of T . For each Rk ∈ τ , a
tuple (v1, . . . , vrk

) belongs to RA
k iff there exists a node v ∈ T such that:

– v � vj for all j ∈ {1, . . . , rk},
– λ(v) = Rk(i1, . . . , irk

) for some tuple i1, . . . , irk
≤ kS , such that

– for j ∈ {1, . . . , rk}, each vj is re-labelled to ij on the path from vj to v in T .

To define the label ln of a leaf w to which it is re-labelled on a path w = w0 . . . wn,
we start with l0 = λ(w) and set

lk+1 =

{
j if λ(wk) = j ← i and lk = i,

lk otherwise.

Note that the condition that no Rk(i)-labels appear beneath any Rl(i)-label for
all Rk, Rl ∈ τn guarantees, that no elements in RA

k will appear in any other
non-terminal relation, so the structure A is separated in such a case.

For finite structures, the converse of the above remark also holds. The follow-
ing lemma is obtained by constructing the tree T bottom-up, starting with the
separated non-terminal relations of A, as shown for an example structure in Fig-
ure 2 (where there is one terminal binary relation R0 drawn as unlabelled edges,
and one explicitly marked non-terminal binary relation R1; some re-labelling
nodes in the tree are not strictly necessary).
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1

2

5

6

R1

1

⊕

2

⊕
R0(1, 2)

R0(1, 5)

R0(2, 6)

6 ← 4

5 ← 3

R1(3, 4)
⊕

43

Fig. 2. Representing a separated structure, with marked subtree for the relation R1

Lemma 1. For every finite separated structure A there exists a tree T such
that A = S(T ), the properties (1)–(3) above are satisfied, and each element of
the structure is re-labelled to a unique label at the root of T .

For a finite set of separated rewriting rules S = {L1 → R1, . . . ,Lm → Rm},
let Tk be a tree that represents Rk (without Pl), as constructed above. Let
mk be the maximal number that appears in the labels of Tk and set kS =
maxk=1...m mk + 1. A crucial observation is that replacing all Rk(i)-labelled
subtrees in a representation of a separated structure by an extended tree Tk (see
the added re-labellings in Figure 2) exactly corresponds to structure rewriting.

To extend Tk, we construct, for a label Rj(i1, . . . , irj), the replacement tree
Tk[Rj(i1, . . . , irj)] as follows. Let l(r) be the unique label that every element r
of Rk gets at the root of Tk (guaranteed by Lemma 1). We create a sequence of
nodes that, for each r ∈ Rk, contains exactly one node with label ‘n ← l(r)’.
The number n is equal to kS if r is in no set PRk

l , and n = im if r ∈ PRk

l and
the element l corresponds to the im-leaf in the representation of Rj(i1, . . . , irj).

The relationship between structure rewriting and tree rewriting is formalised
in the following lemma which is a consequence of the definitions of structure
rewriting and interpretation of a structure in a tree.

Lemma 2. Let A = S(T ) be a separated structure represented by a tree T sat-
isfying properties (1)–(3) and such that the maximal label number kS does not
appear in i in any label Rk(i) in T . Then, for each rule Lk → Rk from S with
Rl ∈ τn being the non-empty relation in L, the tree T ′ obtained from T by
replacing each Rl(i) subtree by Tk[Rl(i)], represents the structure A[Lk → Rk].

It also follows from the construction, that if A0A1 . . . is a sequence of rewritten
structures and T0T1 . . . the corresponding sequence of trees representing them,
then lim An is represented by lim Tn.

Thus, to complete the transition from structure rewriting to tree rewriting,
we only need to translate the MSO properties of structures to MSO properties
of trees that represent them. This is done in an analogous way to interpreting
bounded clique-width graphs in the tree. By the definition of S(T ) given above,



Synthesis for Structure Rewriting Systems 423

elements of S(T ) are leaves of T and a tuple v belongs to R
S(T )
l if an inductively

defined condition is fulfilled. The property of being a leaf is easy to express in
MSO, and the inductive definition for v ∈ R

S(T )
l can be expressed as well,

because MSO is strong enough to allow fixed-point definitions and there are
only finitely many labels in use. Thus, we can state the following lemma.

Lemma 3. Fix a signature τ and kS . For every MSO formula ϕ over τ there
exists a (computable) MSO formula ψ over the signature {�, Px | x ∈ ΣS} of
the ΣS-labelled trees such that for each such tree T , S(T ) |= ϕ ⇐⇒ T |= ψ.

4.2 Simplifying Tree Rewriting

Above, we translated separated structure rewriting to rewriting trees, where
only specific subtrees are replaced. This restriction is important as alternating
reachability is undecidable on arbitrary ground tree rewriting systems [10].

Before we proceed to words, let us reduce the problem to a simplified version
of tree rewriting: one where only leaves are rewritten. Previously, we have been
rewriting a subtree of an Rl(i)-labelled node to some other tree. But property
(3), fulfilled by all trees representing separated structures, guarantees that there
are only finitely many isomorphic subtrees S rooted at Rl(i)-labelled nodes.
Thus, we replace such nodes and the whole subtree by new leaves labelled by
RS

l (i), and from now on we operate on such reduced trees.
To rewrite trees, we use the same notation as for structure rewriting. Thus,

if T is a tree, then T [c → T ′] denotes T with all c-labelled leaves replaced by
T ′. Note that this is a special case of separated structure rewriting if leaves are
labelled by non-terminal predicates. (To preserve the partial order on the tree,
the whole tree T ′ must be included in the new predicate Pc.)

By the classical result of Rabin, for each MSO formula ψ over a labelled binary
tree, there exists a non-deterministic tree automaton Aψ that accepts a labelled
tree T if and only if T |= ψ.

Given a sequence of separated rewriting rules π = r0r1 . . . that generates a
sequence of structures stk(π) = A0A1 . . ., we have shown above how to reduce
the question whether An |= ϕ (or lim An |= ϕ) to the question whether Tn |= ψ
(or lim Tn |= ψ), where Tn are the corresponding trees.

If Aψ is the tree automaton corresponding to ψ, we construct an automaton
A′

ψ that accepts the reduced tree (with all Rk(i)-labelled nodes with subtrees
S replaced by RS

i (i)-labelled leaves) if and only if Aψ accepts the original one.
This is done by letting A′

ψ, in an RS
i (i)-leaf, simulate any run of Aψ on the

subtree S (which is possible, as S has bounded size).

4.3 From Trees to Words

For the sequence of structures and rules considered above, let T0 be a tree such
that A0 = S(T0). We replace each rule ri = Lk → Rk, where Rl is the only
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non-empty relation in Lk, by si = RS
l (i) → Tk[Rl(i)]3. Rewriting the tree T0

using the rules si generates a sequence of reduced trees T0T1 . . . and, as shown
previously, An |= ϕ (or lim An |= ϕ) if and only if A′

ψ accepts Tn (or lim Tn).
We will show how to simulate the run of A′

ψ on the tree Tn (or lim Tn) by a
run of an alternating word automaton B on the sequence s0s1 . . . sn (or s0s1 . . .)
of rules. By the correspondence between si and ri, the same automaton B (with
swapped alphabet) accepts the corresponding sequences r0r1 . . . of separated
structure rewriting rules as required in Theorem 2.

The construction of B from A′
ψ and the starting tree T0 proceeds in two steps.

We first reduce the problem to tree rewriting rules where the right-hand side is
either a constant or has height one, and the starting tree has one vertex. After
this easy reduction, we construct the alternating automaton B in Lemma 4.

For the first step, observe that rewriting with a rule s = c → T can be
represented as a sequence of rewritings with rules having a smaller right-hand
side, building the tree T step by step. For this, we need to add new labels
corresponding to every proper subtree of T . In this way, a single rule s is replaced
by a sequence of rules s′1 . . . s′m with simpler right-hand sides and using more
labels, such that applying s′1 . . . s′m in sequence gives the same result as applying
s once. Since the number m of smaller rules needed to replace a given rule s is
constant, this operation preserves regularity, i.e. for a regular set L of sequences
of the simpler rules s′, the set of sequences of full rules such that their expansion
is in L is regular as well. Thus, it is enough to show that the set of sequences of
simple rules resulting in a tree accepted by A′

ψ is regular.
Let R be a finite set of tree rewriting rules of the simple form c → c′, c → g(c′)

or c → f(c1, c2). For such tree rewriting rules, we make the second step, in which
an alternating word automaton is constructed that simulates the automaton
running on the tree. The existence of such an automaton, stated in the following
lemma, is another instance of the classical relationship between tree automata
and games.

Lemma 4. Let A be a non-deterministic parity tree automaton and s a label.
There exists an alternating parity word automaton B over the alphabet R such
that B accepts s0s1 . . . ∈ Rω (or s0 . . . sn ∈ R∗) if and only if A accepts the limit
tree lim Ti (or Tn), where T0 consists of one node labelled a0 and Ti+1 = Ti[si].

Since alternating parity word automata accept exactly the ω-regular languages,
the above lemma completes the proof of Theorem 2.

5 Consequences

In this section we state a few consequences of Theorem 2 that illustrate the
usefulness of structure rewriting games. To start with, let us remark that many
3 Note that a priori si is not a single rule because there can be different trees S and

sequences i. Thus, formally, we should replace ri by a sequence of all possible si-
rules, with added checks that not too much is rewritten. But the differences in S and
i are in fact irrelevant: one could as well pick any single option and use it everywhere
consistently. Therefore we take the liberty and consider si as a single rule.
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operations on structures of bounded size can be represented by separated struc-
ture rewriting in a more natural way than by listing all possible states.

To move away from finite-state systems, let us show how decidability of MSO
over pushdown graphs is a direct consequence of Theorem 1. It follows from the
fact that every pushdown graph can be constructed as limit graph in a simple
game with two positions and two kinds of moves, one with rules that construct
the configuration of the pushdown system when the stack is empty and another
one used to construct the next configurations with more symbols on the stack.

The intimate connection of ω-regularity and MSO, together with Theorem 2,
allows us to make direct use of the above construction to generalise Theorem 1 to
games played on pushdown arenas. Indeed, ω-regular winning conditions can be
expressed in MSO, so if MSO is decidable on a class of graphs, so is establishing
the winner in games with ω-regular winning conditions.

In addition to the synthesis problem we considered, one might ask whether
an Lμ[MSO] formula (of the full μ-calculus, allowing the � operator as well)
holds on the whole abstract reduction graph generated by a separated structure
rewriting system. This verification problem can also be solved with our methods,
using the standard translation between μ-calculus and parity games.

Let us finally explain why the assumption that the predicates PR
l are pairwise

disjoint, made in the definition of separated rewrite rules, is not necessary. In the
proofs, the only use of this disjointness was when a node in a tree representing
an element r ∈ R was re-labelled. The newly assigned label guaranteed that
r will appear in the correct tuples in all relations. If r belonged to various
different predicates PR

l , it would be necessary to assign to it a set of labels at
the same time, instead of a single one. Technically, this is a change as the trees
representing structures would have to be labelled by sets of numbers, and the
MSO formulas interpreting the structure in such tree would have to account for
that. Substantially, it is exactly analogous to the case we presented. Similarly,
one could extend rewriting rules to include special predicates PRk,i

l , which would
add the marked elements only to the relation Rk and only at ith position.

6 Perspectives

We proved that in the special case of separated rewriting rules, the synthesis
problem remains decidable even if the expressive logic Lμ[MSO] is used to specify
the winning condition. It is natural to ask about other, less restricted classes of
structure rewrite rules and logics, for which this problem is decidable.

One interesting logic to consider is the extension of first-order logic by simple
reachability. It was shown in [11] that this logic is decidable on a class of graphs
that can be represented by trees similar to the ones considered in this paper, but
with an additional node label for asynchronous product. We ask whether there
is a syntactic class of structure rewrite rules that corresponds to such graphs.

Another example is the class of structure rewrite rules L → R where both
in L and in R the only non-empty relations are unary (but now L can contain
more than one element, so the rule is not necessarily separated). If the starting
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structure contains only unary relations as well, then only unary relations appear
in all rewritten structures. In this case, it is enough to count the number of
elements in each combination of the unary predicates, and thus the occurring
structures are just another representation of Petri nets, and rewriting represents
changes of the marking of the net. Thus, for this special case, it is known precisely
which problems are and which are not decidable. But if one allows only unary
predicates on the left-hand side and any separated structure on the right-hand
side, then the question which problems remain decidable is open.

In addition to other classes of rules and logics, it is interesting to ask how
restricted structure rewriting rules can be used to approximate systems where
more complex rewriting takes place. One example of this kind is the use of
hyperedge replacement grammars for abstraction of data in pointer-manipulating
programs [12]. Graphs obtained by hyperedge replacement are a subclass of
structures generated by separated rewriting which we considered. This justifies
our view of the presented results as a first step towards algorithmic synthesis for
general structure rewriting systems.
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Abstract. The paper studies the expressivity, relative succinctness and
complexity of satisfiability for hybrid extensions of the branching-time
logics CTL and CTL+ by variables. Previous complexity results show
that only fragments with one variable do have elementary complexity.
It is shown that H1CTL+ and H1CTL, the hybrid extensions with one
variable of CTL+ and CTL, respectively, are expressively equivalent but
H1CTL+ is exponentially more succinct than H1CTL. On the other hand,
HCTL+, the hybrid extension of CTL with arbitrarily many variables
does not capture CTL∗, as it even cannot express the simple CTL∗ prop-
erty EGFp. The satisfiability problem for H1CTL+ is complete for triply
exponential time, this remains true for quite weak fragments and quite
strong extensions of the logic.

1 Introduction

Reasoning about trees is at the heart of many fields in computer science . A
wealth of sometimes quite different frameworks has been proposed for this pur-
pose, according to the needs of the respective application. For reasoning about
computation trees as they occur in verification, branching-time logics like CTL
and tree automata are two such frameworks. In some settings, the ability to
mark a node in a tree and to refer to this node turned out to be useful. As
neither classical branching-time logics nor tree automata provide this feature,
many different variations have been considered, including tree automata with
pebbles [8,22,25], memoryful CTL∗ [15], branching-time logics with forgettable
past [17,18], and logics with the “freeze” operator [12]. It is an obvious question
how this feature can be incorporated into branching-time logics without losing
their desirable properties which made them prevailing in verification [23].

This question leads into the field of hybrid logics, where such extensions of
temporal logics are studied [3]. In particular, a hybrid extension of CTL has
been introduced in [25]. As usual for branching-time logics, formulas of their
hybrid extensions are evaluated at nodes of a computation tree, but it is possible
to bind a variable to the current node, to evaluate formulas relative to the root
and to check whether the current node is bound to a variable. As an example,
the HCTL-formula ↓x@rootEF(p ∧ EFx) intuitively says “I can place x at the
current node, jump back to the root, go to a node where p holds and follow some
(downward) path to reach x again. Or, equivalently: “there was a node fulfilling
p in the past of the current node”.

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 427–438, 2009.
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EXPTIME

2EXPTIME

3EXPTIME

nonelementary

CTL ≡ CTL+

CTL∗ H1CTL ≡ H1CTL+

H1CTL∗ HCTL ≡ HCTL+

HCTL∗

Fig. 1. Expressivity and complexity of satisfiability for hybrid branching-time logics.
The lines indicate strict inclusion, unrelated logics are incomparable.

In this paper we continue the investigation of hybrid extensions of classi-
cal branching-time logics started in [25]. The main questions considered are
(1) expressivity, (2) complexity of the satisfiability problem, and (3) succinctness.
Figure 1 shows our results in their context.

Classical branching-time logics are CTL (with polynomial time model check-
ing and exponential time satisfiability) and CTL∗ (with polynomial space model
checking and doubly exponential time satisfiability test). As CTL is sometimes
not expressive enough1 and CTL∗ is considered too expensive for some applica-
tions, there has been an intense investigation of intermediate logics. We take up
two of them here: CTL+, where a path formula is a Boolean combination of basic
path formulas2 and ECTL, where fairness properties can be stated explicitly.

Whereas (even simpler) hybrid logics are undecidable over arbitrary transi-
tion systems [1], their restriction to trees is decidable via a simple translation
to Monadic Second Order logic. However, the complexity of the satisfiability
problem is high even for simple hybrid temporal logics over the frame of natural
numbers: nonelementary [9] , even if only two variables are allowed [21,25]. The
one variable extension of CTL, H1CTL, behaves considerably better, its satis-
fiability problem can be solved in 2EXPTIME [25]. This is the reason why
this paper concentrates on natural extensions of this complexity-wise relatively
modest logic. Even H1CTL can express properties that are not bisimulation-
invariant (e.g., that a certain configuration can be reached along two distinct
computation paths) and is thus not captured by CTL∗. In fact, [25] shows that
H1CTL captures and is strictly stronger than CTL with past, another extension
of CTL studied in previous work [14]. One of our main results is that H1CTL
(and actually even HCTL+) does not capture ECTL (and therefore not CTL∗) as
it cannot express simple fairness properties like EGFp. To this end, we introduce
a simple Ehrenfeucht-style game (in the spirit of [2]). We show that existence of
a winning strategy for the second player in the game for a property P implies
that P cannot be expressed in HCTL+.

In [25] it is also shown that the satisfiability problem for H1CTL∗ has nonele-
mentary complexity. We show here that the huge complexity gap between

1 Some things cannot be expressed at all, some only in a very verbose way.
2 Precise definitions can be found in Section 2.
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H1CTL and H1CTL∗ does not yet occur between H1CTL and H1CTL+: we
prove that there is only an exponential complexity gap between H1CTL and
H1CTL+, even when H1CTL+ is extended by past modalities and fairness op-
erators. We pinpoint the exact complexity by proving the problem complete for
3EXPTIME.

The exponential gap between the complexities for satisfiability of H1CTL and
H1CTL+ already suggests that H1CTL+ might be exponentially more succinct
than H1CTL. In fact, we show an exponential succinctness gap between the two
logics by a proof based on the height of finite models. It should be noted that
an O(n)!-succinctness gap between CTL and H1CTL was established in [25]. We
mention that there are other papers on hybrid logics and hybrid tree logics that
do not study expressiveness or complexity issue, e.g., [10,20].

The paper is organized as follows. Definitions of the logics we use are in
Section 2. Expressivity results are presented in Section 3. The complexity results
can be found in Section 4, the succinctness results in Section 5. Proofs omitted
due to space constraints can be found in the full version of this paper [13].

Note. We mourn the loss of Volker Weber, who died suddenly and unexpectedly
on the 7th of April 2009. He was 30 years old. Volker contributed a lot to the
present paper which we prepared and submitted after his death.

2 Definitions

Tree logics. We first review the definition of CTL and CTL∗ [5]. Formulas of
CTL∗ are composed from state formulas ϕ and path formulas ψ. They have the
following abstract syntax.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Eψ | Aψ

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ

We use the customary abbreviations Fψ for .Uψ and Gψ for ¬F¬ψ. The
semantics of formulas is defined inductively. The semantics of path formulas is
defined relative to a tree3 T , a path π of T and a position i ≥ 0 of this path.
E.g., T , π, i |= ψ1Uψ2 if there is some j ≥ i such that T , π, j |= ψ2 and, for each
l, i ≤ l < j, T , π, l |= ψ1. The semantics of state formulas is defined relative to
a tree T and a node v of T . E.g., T , v |= Eψ if there is a path π in T , starting
from v such that T , π, 0 |= ψ. A state formula ϕ holds in a tree T if it holds in
its root. Thus, sets of trees can be defined by CTL∗ state formulas.

CTL is a strict sub-logic of CTL∗. It allows only path formulas of the forms
Xϕ and ϕ1Uϕ2 where ϕ,ϕ1, ϕ2 are state formulas. CTL+ is the sub-logic of
CTL∗ where path formulas are Boolean combinations of formulas of the forms
Xϕ and ϕ1Uϕ2 and ϕ,ϕ1, ϕ2 are state formulas.

3 In general, we consider finite and infinite trees and, correspondingly, finite and in-
finite paths in trees. It should always be clear from the context whether we restrict
attention to finite or infinite trees.
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Hybrid logics. In hybrid logics, a limited use of variables is allowed. For a
general introduction to hybrid logics we refer to [3]. As mentioned in the intro-
duction, we concentrate in this paper on hybrid logic formulas with one variable
x. However, as we also discuss logics with more variables, we define hybrid logics
HkCTL∗ with k variables. For each k ≥ 1, the syntax of HkCTL∗ is defined by
extending CTL∗ with the following rules for state formulas.

ϕ ::= ↓xi ϕ | xi | @xi ϕ | root | @root ϕ

where i ∈ {1, . . . , k}. The semantics is now relative to a vector u = (u1, . . . , uk)
of nodes of T representing an assignment xi 
→ ui. For a node v and i ≤ k we
write u[i/v] to denote (u1, . . . , ui−1, v, ui+1, . . . , uk). For a tree T a node v and
a vector u, the semantics of the new state formulas is defined as follows.

T , v,u |= ↓xi ϕ if T , v,u[i/v] |= ϕ
T , v,u |= xi if v = ui

T , v,u |= @xi ϕ if T , ui,u |= ϕ
T , v,u |= root if v is the root of T
T , v,u |= @root ϕ if T , r,u |= ϕ, where r is the root of T

Similarly, the semantics of path formulas is defined relative to a tree T , a path
π of T , a position i ≥ 0 of π and a vector u. Intuitively, to evaluate a formula
↓xi ϕ one puts a pebble xi on the current node v and evaluates ϕ. During the
evaluation, xi refers to v (unless it is bound again by another ↓xi-quantifier).

The hybrid logics HkCTL+ and HkCTL are obtained by restricting HkCTL∗

in the same fashion as for CTL+ and CTL, respectively. The logic HCTL is the
union of all logics HkCTL, likewise HCTL+ and HCTL∗.

(Finite) satisfiability of formulas, the notion of a model and equivalence of
two (path and state) formulas ψ and ψ′ (denoted ψ ≡ ψ′) are defined in the
obvious way. We say that a logic L′ is at least as expressive as L (denoted as
L ≤ L′) if for every ϕ ∈ L there is a ϕ′ ∈ L′ such that ϕ ≡ ϕ′. L and L′ have
the same expressive power if L ≤ L′ and L′ ≤ L. L′ is strict more expressive
than L if L ≤ L′ but not L′ ≤ L.

Size, depth and succinctness. For each formula ϕ, we define its size |ϕ| as
usual and its depth d(ϕ) as the nesting depth with respect to path quantifiers.

The formal notion of succinctness is a bit delicate. We follow the approach
of [11] and refer to the discussion there. We say that a logic L is h-succinct in
a logic L′, for a function h : N → R, if for every formula ϕ in L there is an
equivalent formula ϕ′ in L′ such that |ϕ′| ≤ h(|ϕ|). L is F-succinct in L′ if L is
h-succinct in L′, for some h in function class F . We say that L is exponentially
more succinct than L′ if L is not h-succinct in L′, for any function h ∈ 2o(n).

Normal forms. We say that a HkCTL formula is in E-normal form, if it does
not use the path quantifier A at all. A formula is in U-normal form if it only
uses the combinations EX, EU and AU (but not, e.g., EG and AX).
Proposition 1. Let k ≥ 1. For each HkCTL formula ϕ there is an equiva-
lent HkCTL-formula of linear size in U-normal form and an equivalent HkCTL-
formula in E-normal form.
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3 Expressivity of HCTL and HCTL+

3.1 The Expressive Power of HCTL+ Compared to HCTL

Syntactically CTL+ extends CTL by allowing Boolean combinations of path
formulas in the scope of a path quantifier A or E. Semantically this gives CTL+

the ability to fix a path and test its properties by several path formulas. However
in [6] it is shown that every CTL+-formula can be translated to an equivalent
CTL-formula. The techniques used there are applicable to the hybrid versions
of these logics.

Theorem 2. For every k ≥ 1, HkCTL has the same expressive power as
HkCTL+.

Proof (Sketch). For a given k ≥ 1 it is clear that every HkCTL-formula is also a
HkCTL+-formula. It remains to show that every HkCTL+-formula can be trans-
formed into an equivalent HkCTL-formula. In [6] , rules for the transformation of
a CTL+ formula into an equivalent CTL formula are given. Here, we have to con-
sider the additional case in which a subformula in the scope of the ↓x-operator
is transformed. However, it is not hard to see that the transformation extends
to this case as any assignment to a variable x can be viewed as a proposition
that only holds in one node. It should be noted that for a HkCTL+-formula ϕ
the whole transformation constructs a HkCTL-formula of size 2O(|ϕ| log |ϕ|). ��

The transformation algorithm in Theorem 2 also yields an upper bound for the
succinctness between H1CTL+ and H1CTL.

Corollary 3. H1CTL+ is 2O(n log n)-succinct in H1CTL.

3.2 Fairness Is Not Expressible in HCTL+

In this subsection, we show the following result.

Theorem 4. There is no formula in HCTL+ which is logically equivalent to

E
∞
Fp.

Here, T , v,u |= E
∞
Fϕ if there is a path π starting from v that has infinitely

many nodes v′ with T , v′,u |= ϕ. As an immediate consequence of this theorem,
HCTL+ does not capture CTL∗.

In order to prove Theorem 4, we define an Ehrenfeucht-style game that cor-
responds to the expressive power of HCTL. A game for a different hybrid logic
was studied in [2]. We show that if a set L of trees can be characterized by a
HCTL-formula, the spoiler has a winning strategy in the game for L. We expect
the converse to be true as well but do not attempt to prove it as it is not needed
for our purposes here.

Let L be a set of (finite or infinite) trees. The HCTL-game for L is played by
two players, the spoiler and the duplicator. First, the spoiler picks a number k
which will be the number of rounds in the core game. Afterwards, the duplicator
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chooses two trees, T ∈ L and T ′ 	∈ L. The goal of the spoiler is to make use of
the difference between T and T ′ in the core game.

The core game consists of k rounds of moves, where in each round i a node
from T and a node from T ′ are selected according to the following rules. The
spoiler can choose whether she starts her move in T or in T ′ and whether she
plays a node move or a path move.

In a node move she simply picks a node from T (or T ′) and the duplicator
picks a node in the other tree. We refer to these two nodes by ai (in T ) and a′i
(in T ′), respectively, where i is the number of the round.

In a path move, the spoiler first chooses one of the trees. Let us assume she
chooses T , the case of T ′ is completely analogous. She picks an already selected
node aj of T , for some j < i and a path π starting in aj. However, a node aj

can only be selected if there is no other node al, l < i below aj . The duplicator
answers by selecting a path π′ from a′j . Then, the spoiler selects some node a′i
from π′ and the duplicator selects a node ai from π.

The duplicator wins the game if at the end the following conditions hold, for
every i, j ≤ k:

– ai is the root iff a′i is the root;
– ai = aj iff a′i = a′j ;
– for every proposition p, p holds in ai iff it holds in a′i;
– there is a (downward) path from ai to aj iff there is a path from a′i to a′j ;
– aj is a child of ai iff a′j is a child of a′i.

Theorem 5. If a set L of (finite and infinite) trees can be characterized by a
HCTL-formula, the spoiler has a winning strategy on the HCTL-game for L.

The proof of Thm. 5 is by induction on the structure of the HCTL-formula [13].
Now we turn to the proof of Thm. 4. It makes use of the following lemma

which is easy to prove using standard techniques (see, e.g., [19]). The lemma
will be used to show that the duplicator has certain move options on paths
starting from the root. The parameter Sk given by the lemma will be used below
for the construction of the structures Bk.

For a string s ∈ Σ∗ and a symbol a ∈ Σ let |s| denote the length of s and |s|a
the number of occurrences of a in s.

Lemma 6. For each k ≥ 0 there is a number Sk ≥ 0 such that, for each s ∈
{0, 1}∗ there is an s′ ∈ {0, 1}∗ such that |s′| ≤ Sk and s ≡k s′.

Here, ≡k is equivalence with respect to the k-round Ehrenfeucht game on strings
(or equivalently with respect to first-order sentences of quantifier depth k). It
should be noted that, if k ≥ 3 and s ≡k s′, then the following conditions hold.

– s ∈ {0}∗ implies s′ ∈ {0}∗.
– If the first symbol of s is 1 the same holds for s′.
– If s does not have consecutive 1’s, s′ does not either.
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We fix some Sk, for each k.
The proof of Thm. 4 uses the HCTL-game defined above. Remember that the

spoiler opens the game with the choice of a k ∈ N and the duplicator responds
with two trees T ∈ L and T ′ 	∈ L. We want to show that the duplicator has a
winning strategy so we need to construct such trees, and then need to show that
the duplicator has a winning strategy for the k-round core game on T and T ′.

We will use transition systems in order to finitely represent infinite trees. A
transition system is a K = (V,E, v0, �) where (V,E) is a directed graph, v0 ∈ V ,
and � labels each state v ∈ V with a finite set of propositions. The unraveling
T (K) is a tree with node set V + and root v0. A node v0 . . . vn−1vn is a child of
v0 . . . vn−1 iff (vn−1, vn) ∈ E. Finally, the label of a node v0 . . . vn is �(vn).

Inspired by [7] we define transition systems Ai, for each i ≥ 0, as depicted in
Fig. 2 (a). Nodes in which p holds are depicted black, the others are white (and
we subsequently refer to them as black and white nodes, respectively).

A0 : Ak : ⇒Ak−1

(a)

Bk : ⇒ANk

(b)

Fig. 2. Illustration of the definition of (a) Ak and (b) Bk. The path of white nodes in
Bk consists of Sk nodes. The double arrow ⇒ indicates that every white node on the
left is connected to every black node on the right.

Thus, A0 has a black (root) node and a white node with a cycle. Ai has a
black (root) node, a white node with a cycle and a copy of Ai−1. Furthermore,
there is an edge from the white node below the root of Ai to each black node in
the copy of Ai−1 (as indicated by ⇒). Let Ti := T (Ai). We first introduce some
notation and state some simple observations concerning the tree Ti.

(1) For a node v in Ti we denote the maximum number of black nodes on a path
starting in v (and not counting v itself) the height h(v) of v. Then the root
of Ti has height i.

(2) If u and v are black nodes of some Ti with h(u) = h(v) then the subtrees
T (u) and T (v) induced by u and v are isomorphic.

(3) The height of a tree is defined as the height of its root.
(4) A white node v of height i has one white child (of height i) and i black

children of heights 0, . . . , i − 1. A black node has exactly one white son.
(5) Each finite path π of Ti induces a string s(π) ∈ {0, 1}∗ in a natural way:

s(π) has one position, for each node of π, carrying a 1 iff the corresponding
node is black.

(6) The root of Ti has only one child. We call the subtree induced by this (white!)
child Ui. If v is a white node of height i then T (v) is isomorphic to Ui.



434 A. Kara et al.

r

u2

u1

v

ρ

Nk−1

r′

u′
2

u′
1

v′

ρ′

Nk−1∼=

Fig. 3. Illustration of the case where h(v) ≤ Nk−1. The colors of v and v′ are not
known a priori.

Next we define numbers Nk inductively as follows: N0 := 0 and Nk := Nk−1 +
max(S3, Sk) + 1.

The following lemma shows that the duplicator has a winning strategy in two
structures of the same kind, provided they both have sufficient depth.

Lemma 7. Let i, j, k be numbers such that i, j ≥ Nk. Then the duplicator has a
winning strategy in the k-round core game on (a) Ti and Tj, and (b) Ui and Uj.

Proof (Sketch). In both cases, the proof is by induction on k, the case k = 0
being trivial. We consider (a) first. Let k > 0 and let us assume that the spoiler
chooses v ∈ Ti in her first node move. We distinguish two cases based on the
height of v.

h(v) > Nk−1: Let π denote the path from r to v. By Lemma 6 there is a string
s′ with |s′| ≤ Sl such that s(π) ≡l s′, where l = max(k, 3). Here, l ≥ 3
guarantees in particular that s′ does not have consecutive 1’s. As j ≥ Nk =
Nk−1 + Sl + 1, there is a node v′ of height ≥ Nk−1 in Tj such that the
path π′ from r′ to v′ satifies s(π′) = s′. The duplicator chooses v′ as her
answer in this round. By a compositional argument, involving the induction
hypothesis, it can be shown that the duplicator has a winning strategy for
the remaining k − 1 rounds.

h(v) ≤ Nk−1: Let π be the path from r to v, and u1 be the highest black node on
π with h(u1) ≤ Nk−1. Then we must have h(u1) = Nk−1 because π contains
black nodes of height up to i ≥ Nk. Hence, u1 has a white parent u2 s.t.
h(u2) > Nk−1. We determine a node u′

2 in T ′ in the same way we picked
v′ for v in the first case. In particular, h(u′

2) ≥ Nk−1 and for the paths ρ
leading from r to u2 and ρ′ leading from r′ to u′

2 we have s(ρ) ≡k s(ρ′).
Let u′

1 be the black child of u′
2 of height h(u1). As h(u1) = h(u′

1) there is
an isomorphism σ between T (u1) and T (u2) and we choose v′ := σ(v). An
illustration is given in Figure 3.

The winning strategy of the duplicator for the remaining k − 1 rounds
follows σ on T (u1) and T (u2) and is analogous to the first case in the rest
of the trees. The case of path moves is very similar, see [13].

��
We are now prepared to prove Thm. 4.
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Proof (of Thm. 4). By Thm. 2 it is sufficient to show that no formula equivalent

to E
∞
Fp exists in HCTL. To this end, we prove that the duplicator has a winning

strategy in the HCTL-game for the set of trees fulfilling E
∞
Fp.

We define transition systems Bk, for k ≥ 0. As illustrated in Figure 2 (b), Bk

has a black root from which a path of length Sk of white nodes starts. The last
of these white nodes has a self-loop and an edge back to the root. Furthermore,
Bk has a copy of ANk

and there is an edge from each white node of the initial

path to each black node of the copy of ANk
. Clearly, for each k, T (Bk) |= E

∞
Fp

and T (Ak) 	|= E
∞
Fp.

It can be shown that, for each k, the duplicator has a winning strategy in the
k-round core game on T = T (Bk) and T ′ = T (ANk

) [13]. ��

4 Satisfiability of H1CTL+

Theorem 8. Satisfiability of H1CTL+ is hard for 3EXPTIME.

Proof. The proof is by reduction from a tiling game (with 3EXPTIME com-
plexity) to the satisfiability problem of H1CTL+. Actually we show that the
lower bound even holds for the fragment of H1CTL+ without the U-operator
(but with the F-operator instead).

An instance I = (T,H, V, F, L, n) of the 2EXP-corridor tiling game consists
of a finite set T of tile types, two relations H,V ⊆ T × T which constitute
the horizontal and vertical constraints, respectively, two sets F,L ⊆ T which
describe the starting and end conditions, respectively, and a number n given
in unary. The game is played by two players, E and A, on a board consisting
of 22n

columns and (potentially) infinitely many rows. Starting with player E
and following the constraints H , V and F the players put tiles to the board
consecutively from left to right and row by row. The constraints prescribe the
following conditions:

– A tile t′ can only be placed immediately to the right of a tile t if (t, t′) ∈ H .
– A tile t′ can only be placed immediately above a tile t if (t, t′) ∈ V .
– The types of all tiles in the first row belong to the set F .

Player E wins the game if a row is completed containing only tiles from L or if
A makes a move that violates the constraints. On the other hand, player A wins
if E makes a forbidden move or the game goes on ad infinitum.

A winning strategy for E has to yield a countermove for all possible moves of
A in all possible reachable situations. Furthermore, the starting condition and
the horizontal and vertical constraints have to be respected. Finally, the winning
strategy must guarantee that either player A comes into a situation where he
can no longer make an allowed move or a row with tiles from L is completed.

The problem to decide for an instance I whether player E has a winning
strategy on I is complete for 3EXPTIME. This follows by a straightforward
extension of [4].

��
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We can obtain, by simple instantiation, a consequence of this lower complexity
bound which will be useful later on in proving the exponential succinctness of
H1CTL+ in H1CTL.

Corollary 9. There are finitely satisfiable H1CTL+ formulas ϕn, n ∈ N, of size
O(n) s.t. every tree model Tn of ϕn has height at least 222n

.

Proof. It is not difficult to construct instances In, n ∈ N, of the 2EXP-tiling
game with |I| = O(n) over a set T of tiles with |T | = O(1) such that player
E has a winning strategy and any successful tiling of the 22n

-corridor requires
222n

rows. In order to achieve this, one encodes bits using tiles and forms the
constraints in a way that enforces the first row to encode the number 0 in binary
of length 22n

, and each other row to encode the successor in the natural number
of the preceding row, while winning requires the number 222n

to be reached. The
construction in the proof of Thm. 8 then maps each such In to a formula ϕn of
size O(n) that is finitely satisfiable such that every finite model Tn of ϕn encodes
a winning strategy for player E in the 22n

-tiling game. Such a strategy will yield
a successful tiling of the 22n

-corridor for any counterstrategy of player A, and
any such tiling is encoded on a path of Tn which contains each row of length 22n

as a segment of which there are 222n

many. Thus, Tn has to have height at least
22n · 222n

. ��

Using the ideas of the transformation mentioned in Theorem 2 we can show that
the lower bound for H1CTL+ is optimal. Even for strictly more expressive logics
than H1CTL+ the satisfiability problem remains in 3EXPTIME.

Theorem 10. The satisfiability problem for H1CTL+ is 3EXPTIME-complete.

Proof. The lower bound follows from Thm. 8. The upper bound of 3EXPTIME

also holds when H1CTL+ is extended by the fairness operators
∞
F and

∞
G and the

operators Y (previous) and S (since) [14] which are the past counterparts of X
and U. The proof is by an exponential reduction to the satisfiability problem of
H1CTL extended by Y and S which is 2EXPTIME-complete [24]. It should be

noted that because of Thm. 4 the extension of H1CTL+ by
∞
F yields a strictly

more expressive logic. ��

5 The Succinctness of H1CTL+ w.r.t. H1CTL

In Corollary 3 an upper bound of 2O(n log n) for the succinctness of H1CTL+ in
H1CTL is given. In this section we establish the lower bound for the succinctness
between the two logics. Actually we show that H1CTL+ is exponentially more
succinct than H1CTL. The model-theoretic approach we use in the proof is
inspired by [16]. We first establish a kind of small model property for H1CTL.

Theorem 11. Every finitely satisfiable H1CTL-formula ϕ with |ϕ| = n has a
model of depth 22O(n)

.
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Proof. In [24] it was shown that for every H1CTL-formula ϕ, an equivalent non-
deterministic Büchi tree automaton Aϕ with 22O(|ϕ|)

states can be constructed.
It is easy to see by a pumping argument that if Aϕ accepts some finite tree at
all, it accepts one of depth 22O(|ϕ|)

. It should be noted that the construction in
[24] only constructs an automaton that is equivalent to ϕ with respect to sat-
isfiability. However, the only non-equivalent transformation step is from ϕ to a
formula ϕ′ without nested occurrences of the ↓-operator (Lemma 4.3 in [24]). It
is easy to see that this step only affects the propositions of models but not their
shape let alone depth. ��

Corollary 9 and Theorem 11 together immediately yield the following.

Corollary 12. H1CTL+ is exponentially more succinct than H1CTL.

6 Conclusion

The aim of this paper is to contribute to the understanding of one-variable
hybrid logics on trees, one of the extensions of temporal logics with reasonable
complexity. We showed that H1CTL+ has no additional power over H1CTL
but is exponentially more succinct, we settled the complexity of H1CTL+ and
showed that hybrid variables do not help in expressing fairness (as HCTL+

cannot express EGFp).
However, we leave a couple of issues for further study, including the following.

– We conjecture that the succinctness gap between H1CTL+ and H1CTL is
actually θ(n)!.

– We expect the HCTL-game to capture exactly the expressive power of HCTL.
Remember that here we needed and showed only one part of this equivalence.

– The complexity of Model Checking for HCTL has to be explored thoroughly,
on trees and on arbitrary transition systems. In this context, two possible
semantics should be explored: the one, where variables are bound to nodes
of the computation tree and the one which binds nodes to states of the
transition system (the latter semantics makes the satisfiability problem un-
decidable on arbitrary transition systems [2])
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Abstract. Cellular automata (CA) are discrete, homogeneous dynami-
cal systems. Non-surjective one-dimensional CA have finite words with no
preimage (called orphans), pairs of different words starting and ending
identically and having the same image (diamonds) and words with more/
fewer preimages than the average number (unbalanced words). Using a lin-
ear algebra approach, we obtain new upper bounds on the lengths of the
shortest such objects. In the case of an n-state, non-surjective CA with
neighborhood range 2 our bounds are of the orders O(n2), O(n3/2) and
O(n) for the shortest orphan, diamond and unbalanced word, respectively.

1 Introduction

Non-surjective cellular automata (CA) have Garden of Eden-configurations: con-
figurations without a preimage. By compactness, there exist also finite patterns
that do not appear in any image configuration [2]. These we call orphans. The
Garden of Eden -theorem by E. F. Moore [5] and J. Myhill [7] proves the ex-
istence of mutually erasable patterns in non surjective CA. These are two finite
words such that two configurations, having the same prefix and suffix and only
differing on those words, have the same image. Mutually erasable words are also
called diamonds. The existence of diamonds is equivalent to being non-surjective.
Non-surjectivity is also equivalent to the existence of finite words of the same
size with a different number of preimages [2]. Patterns that do not have the
average number of preimages are called unbalanced.

One will naturally think about the size of these objects. The objective of
this paper is to bound the size of the smallest orphan, diamond and unbalanced
word of any non-surjective one-dimensional CA, in terms of the number of states
in the automaton. For dimensions greater than one, it is known that it is not
decidable whether a given CA is surjective or not [3]. Therefore only bounds for
one-dimensional CA will be studied: in higher dimensions no recursive bounds
exist.

Using a standard blocking technique, one can convert any one-dimensional
CA into a CA with the range-2 neighborhood, so we will only study the bounds
in this range-2 case. The previously known bounds were an exponential bound

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 439–450, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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for shortest orphans, a quadratic bound for shortest diamonds and an O(n2 lnn)
bound for the shortest unbalanced words, where n is the number of states. These
can be found in, or easily deduced from [9] and [6].

We will use tools based on linear algebra to obtain a linear upper bound for
the size of the shortest unbalanced words, a quadratic bound for the size of the
shortest orphans and an 2n

3
2 bound for the length of the shortest diamonds.

By using some combinatorial arguments, we are able to reduce the bounds for
orphans and diamonds slightly. For all problems we also tried to bound the best
possible upper bounds from below. However, the only non-constant lower bounds
we found are for the case of shortest orphans.

The paper is organized as follows: In Section 2 we give the definitions of the
main concepts, and in Section 3 we explain our basic linear algebra tools that
we use to obtain bounds. In Section 4 we provide the bounds that the linear
algebra approach immediately provides for the shortest orphans, diamonds and
unbalanced words. All bounds are better than any previously known bounds. In
the case of orphans the improvement is even from exponential to polynomial. In
Section 5 we fine-tune the bounds by looking in detail at the first steps of the
dimension reductions. In Section 6 we consider the algorithmic aspects and show
that an orphan, a diamond and an unbalanced word can be found in polynomial
time. Section 7 reports the existence for every n ≥ 2 of an n-state range-2
CA whose shortest orphan is of length 2n − 1. In contrast, for diamonds and
unbalanced words we have no non-constant examples. Finally, in Section 8 we
formulate open problems and discuss some related questions.

2 Definitions

A configuration is a function c that assigns a state from a finite state set S to
every point in Z. We denote the state of a point p ∈ Z of a configuration c by
cp. The set of all configurations is SZ. The range-r neighborhood is the tuple
N = (0, . . . , r − 1). A local rule is a function f : S|N | → S.

Formally, a cellular automaton G is a 3-tuple (S,N, f). At each time step a
new configuration G(c) is computed from c by updating the states with f at
each point p:

G(c)p = f(cp, cp+1 . . . , cp+r−1) for all p ∈ Z.

The hereby defined function G is called the global function of the CA.
We will only consider range-2 CA G with a non-surjective global function

throughout the whole paper. The generalization of our results to general range-r
are quite straightforward, and will only be briefly discussed in Section 8.

Applications of the range-2 local rule f : S × S −→ S to finite words w ∈ S∗

will be denoted by the same symbol G as the global function. In this case

G(s1s2 . . . sn) = t1t2 . . . tn−1

where ti = f(si, si+1) for all i = 1, 2, . . . , n − 1.
Configurations without a preimage are called Garden of Eden-configurations.

We will be interested in finite words without a preimage, that is to say words u
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for which there exists no word w such that G(w) = u. Such u exist if and only
if the CA is non-surjective [2] and are called orphans.

By the Garden of Eden-theorem of E. F. Moore and J. Myhill, see [5] and
[7], we know that non-surjective CA have configurations which differ only in a
finite number of cells and which have the same image under G. We consider
the finite differing part of such configurations: Two words w = p c1 . . . cl s and
w′ = p c′1 . . . c′l s ∈ Sl+2 with G(w) = G(w′) are said to form a diamond if
(c1, . . . , cl) 	= (c′1, . . . , c′l). The length of the diamond is l. A cellular automaton
has a diamond iff it is non-surjective.

There are |S|k different words of length k and |S|k+1 different preimages for
words of length k. We call G k-balanced, if all words of length k have the same
number of predecessor words, i.e. |G−1(u)| = |S| for all u ∈ Sk. Words u with
|G−1(u)| 	= |S| are called unbalanced. A CA has unbalanced words, iff it is non-
surjective [2].

3 Linear Algebra Tools

3.1 Vectorial Interpretation of Sets

The proofs are mainly based on the vectorial interpretation of sets of states,
introduced in [1] for the CA context: let us denote by S = {1, . . . , n} the set of
all states. A subset X ⊆ S is interpreted as the 0-1 vector x in Rn whose i-th
coordinate is 1 if i ∈ X and 0 otherwise. The vectors corresponding to single
element sets are the unit coordinate vectors ei and they form a basis of the
vector space Rn.

We define fa : Rn −→ Rn as the linear transformation such that

fa(ei) =
∑

f(i,j)=a

ej ,

where f is the local transition function of the automaton and a a state. We
define φ : Rn −→ R as the linear form defined by

φ(x) = x · (1, . . . , 1).

We call φ(x) the weight of a vector x since it is the sum of its coordinates.
If w = a1 . . . ak is a word1 on the alphabet S, let fw denote the composition
fak

◦ · · · ◦ fa1 . The analogous notation for compositions is also used with any
other family of functions indexed by letters of an alphabet.

Lemma 1. Balance The following equality holds for all x ∈ Rn :∑
a∈S

φ(fa(x)) = φ(x)|S|

1 The word could be empty, in which case fw(x) = x.
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Proof. For each ei we have ∑
a∈S

fa(ei) = (1, 1, . . . , 1)

because for each j ∈ S there exists a unique a ∈ S such that f(i, j) = a. By the
linearity of φ we have∑

a∈S

φ(fa(ei)) = φ(
∑
a∈S

fa(ei)) = |S| = φ(ei)|S|.

Now, due to the linearity of fa and φ this extends to any vector x of Rn in place
of ei. ��

Note, that if x is a vector corresponding to X ⊆ S, then φ(fw(x)) is the number
of preimages of w that start in a state of X . This can be proved by an easy
induction on the length of w.

The main application of the balance lemma is the following: If φ(fw(x)) 	= φ(x)
for some word w of length k then φ(fu(x)) < φ(x) and φ(fu′(x)) > φ(x) for some
words u and u′ of that same length k.

3.2 A Very Useful Lemma

For any x ∈ Rn with φ(x) > 0 we want to establish an upper bound for the
length of shortest words u, u′ such that φ(fu(x)) < φ(x) and φ(fu′(x)) > φ(x).
Therefore, the following lemma will be crucial. Strongly inspired by [8] and [4],
it can be considered as the basis for all our results.

The lemma concerns affine subspaces of Rn and the minimal number of ap-
plications of given linear transformations that take a given point outside the
subspace. Recall that an affine subspace of Rn of dimension d is a set x + V
where x ∈ Rn and V ⊆ Rn is a linear subspace of dimension d. In particular,
singleton sets {x} are affine subspaces of dimension 0. Affine subspaces relevant
in our setup are the sets {x ∈ Rn | φ(x) = c} of vectors having a fixed weight
c ∈ R. Their dimension is n − 1.

An affine combination of vectors is a linear combination where the coeffi-
cients sum up to one. Affine subspaces are closed under affine combinations of
their elements, and conversely, any set closed under affine combinations is affine.
The affine subspace generated by a set X ⊆ Rn of vectors consists of all affine
combinations of elements of X .

Lemma 2. Let A be an affine subspace of Rn, and let x ∈ A. Let Σ be an
alphabet and for every a ∈ Σ, let ψa : Rn → Rn be a linear transformation.
Then, if there is a word w such that ψw(x) 	∈ A then there exists such a word of
length at most dimA + 1.

Proof. Consider the affine spaces A0 ⊆ A1 ⊆ . . . defined by A0 = {x}, and Ai+1

is generated by Ai ∪
⋃

a∈S ψa(Ai). Equivalently, Ai is generated by {ψw(x) |
|w| ≤ i}.
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By definition, Ai+1 = Ai means that ψa(Ai) ⊆ Ai for all a ∈ Σ. Hence if
Ai+1 = Ai for some i, then Aj = Ai for every j ≥ i.

Let i be the smallest number such that ψw(x) 	∈ A for some w of length i,
that is, the smallest i such that Ai 	⊆ A. This means that in A0 ⊂ A1 ⊂ · · · ⊂ Ai

all inclusions are proper. In terms of dimensions of affine spaces we have that

0 = dimA0 < dimA1 < · · · < dimAi.

This means that dimAi−1 ≥ i−1. But Ai−1 ⊆ A so that we also have dimAi−1 ≤
dimA. We conclude that i ≤ dimA + 1. ��

For our case we get the following corollary.

Corollary 1. Let G be a non-surjective CA and x ∈ Rn a vector such that
φ(x) > 0. Then there exist words u, u′ of length at most n = |S| such that
φ(fu(x)) < φ(x) and φ(fu′(x)) > φ(x).

Proof. This is a direct application of Lemma 2. Let Σ = S, ψa = fa and A = x+
kerφ. Note that A is an affine subspace of Rn of dimension n−1, and φ(fw(x)) 	=
φ(x) iff fw(x) 	∈ A. Since G is non-surjective, there exists an orphan v. As
fv(ei) = 0 for all unit coordinate vectors ei, we have fv(x) = 0. In particular,
fv(x) 	∈ A. Thus, by Lemma 2, there exists a word w of length at most n such
that φ(fw(x)) 	= φ(x). Now, Lemma 1 guarantees the existence of words u, u′ of
the same length |w| with φ(fu(x)) < φ(x) and φ(fu′ (x)) > φ(x). ��

4 Basic Bounds

We will prove first a quadratic bound for the size of orphans using the previously
defined linear algebraic tools.

Theorem 1. If a range-2 non-surjective CA has n states, then it has an orphan
of length at most n2.

Proof. We start with x = (1, . . . , 1). By applying Corollary 1, we know that
there exists a word w of length at most n such that φ(fw(x)) < φ(x) = n. As
fw(x) is a vector of non-negative integers, 0 ≤ φ(fw(x)) ≤ φ(x) − 1. Repeating
this argument on fw(x) in place of x, and continuing likewise, we successively
decrease the weight of the vectors. After at most n iterations we obtain a vector
of weight 0. Concatenating all words w gives an orphan of length at most n2. ��

We are not aware of any previously published polynomial bound for the length
of the shortest orphan. An exponential bound 2n can be easily seen by combi-
natorial arguments.

In [6], Moothathu proves an O(n2 lnn) upper bound for the shortest unbal-
anced words and asks whether this can be improved. Our linear algebra tools
lead straightforwardly to a better bound:

Theorem 2. Let G be a non-surjective range-2 CA with n states. Then its short-
est unbalanced words have at most length n.
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Proof. Let x = (1, . . . , 1). Because G is non-surjective, by Corollary 1 there is
a word w of length n such that φ(fw(x)) 	= φ(x) = n. Since φ(fw(x)) is the
number of predecessors of w starting with an arbitrary state of S, we have that
w is unbalanced. ��

For diamonds also, we obtain a better bound than the previously existing one.

Theorem 3. Let G = (S,N, f) be a non-surjective range-2 CA with n states.
Then 2(�

√
n� − 1)n + 2 is an upper bound for shortest diamonds of G.

Proof. Let k = �√n� + 1 and let / = p c1 . . . cm s, p d1 . . . dm s be a diamond
of G where c1 	= d1 and cm 	= dm. Let us denote a = f(p, c1) = f(p, d1) and
b = f(cm, s) = f(dm, s). Let x be the 0/1 -vector corresponding to {c1, d1}, so
φ(x) = 2.

By Corollary 1, we can successively increase the weight of x by reading words
of length n. Thus there is a word w of length at most (k − 2)n such that
φ(fw(x)) ≥ k, i.e. there are more than k preimages of aw that start in p. If
two of them end with the same letter, we already found a diamond. Therefore
without loss of generality, we can assume that all of them have different last
letters. Denote the set of these last letters by L. Symmetrically we can find a
word w̃ of length (k − 2)n with at least k preimages, where the preimages end
either in cm or dm and have different first letters. We denote the set of first
letters of those preimages by R.

As |L × R| = k2 > n, there are two distinct pairs (l, r), (l′, r′) ∈ L × R
with f(l, r) = f(l′, r′). Let wl, wl′ be words of length |w| such that G(p wl l) =
G(p wl′ l′) = aw. Analogously, let wr , wr′ be words of length |w̃| such that
G(r wr s) = G(r′ wr′ s) = w̃b. Then p wl l r wr s and p wl′ l′ r′ wr′ s form a
diamond, and the length of the diamond is at most

|wl l r wr| = |w| + |w̃| + 2 ≤ 2(k − 2)n + 2. ��

5 Improved Bounds

5.1 Improving the Algebraic Tools

We can improve Lemma 2 under conditions that apply for diamonds and orphans.
The idea is to prove a lower bound for the dimension of the first affine subspace
A1. Let us call a 0/1 -square matrix k-regular if every row and every column
contains exactly k ones.

Lemma 3. Let M be a k-regular 0/1 matrix of size n×n, where 1 ≤ k ≤ n−1.
Then rankM ≥ max{�n

k �, � n
n−k�}.

Proof. It follows from the assumptions that every column contains k non-zero
elements. To any collection of i columns one can then add another linearly in-
dependent column, provided i < n

k . This follows from the fact that some row r
contains a zero in each of the i columns, so any column with a non-zero element
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in row r is linearly independent of the i columns. Hence the rank of the matrix
is at least n

k .
Analogously, the rank of the (n − k)-regular matrix M ′ = 1 − M is at least

n
n−k , where 1 is the matrix that contains only ones. The ranks of M and M ′ are
easily seen equal, so the result follows. ��

Now we state an improvement of Corollary 1, that can be applied to diamonds
and orphans of range-2 CA.

Corollary 2. Let G = (S,N, f) be a range-2 non-surjective CA with S =
{1, . . . , n}, and let x be a 0/1 -vector. Let k = φ(x) and assume that 1 ≤ k ≤
n− 1. If for all s ∈ S, fs(x) is a 0/1 -vector then there are words u, u′ of length
at most n − max{�n

k �, � n
n−k �} + 2 with φ(fu(x)) < φ(x) and φ(fu′(x)) > φ(x).

Proof. We follow the proof of Lemma 2 and use the same notation. Here, A is
the affine space x+ kerφ. Since G is not surjective, there is a w with fw(x) /∈ A.
We give a lower bound for the dimension of A1, the affine space generated by
vectors x and fs(x) over all s ∈ S.

Define the 0/1 -matrix M = (f1(x), . . . , fn(x)). Without loss of generality, we
can assume that φ(fs(x)) = k for all s ∈ S, as otherwise fs(x) /∈ A. Thus, every
column of M contains exactly k ones and n − k zeros. Further, as in the proof
of Lemma 1 we see that the sum of the columns is (k, k, . . . , k)T so the matrix
M is k-regular.

Lemma 3 gives r = max{�n
k �, � n

n−k �} as a lower bound for the rank of M .
Thus the affine subspace

A1 = x + 〈{fs(x) − x | s ∈ S}〉

of Lemma 2 has at least dimension r − 1. Hence the chain of dimensions in
Lemma 2 becomes

r − 1 ≤ dimA1 < . . . < dimAi−1 ≤ dimA = n − 1

Hence r+i−3 ≤ dimAi−1 ≤ n−1 and therefore there is an u with |u| ≤ n−r+2
and φ(fu(x)) 	= φ(x). The claim follows from Lemma 1. ��

To obtain the bounds for the lengths of the shortest orphan and diamond, we
apply the corollary above at each weight reduction step. This will lead to ex-
pressions of the form Hk,n =

∑k
i=1�n

i �. We immediately see that Hk,n > n ln k,
since

∑k
i=1

1
i > ln k. Further, we note that

n−1∑
i=1

max
{⌈n

i

⌉
,

⌈
n

n − i

⌉}
= 2H�n−1

2 �,n + b

where b = 2 if n is even otherwise b = 0.
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5.2 Improved Results

Combinatorial methods as well as Corollary 2 allow us to lower the bounds by
looking at each weight reduction step. Let Fa : 2S → 2S be the set mapping

Fa(X) = {y ∈ S | ∃x ∈ X : f(x, y) = a}

for all a ∈ S and X ⊆ S. Function Fa corresponds to the linear mapping fa,
with the difference that Fa ignores possible multiplicities.

The next lemma lowers the bound for the first step of weight reduction.

Lemma 4. If G is non-surjective then there exists a letter a such that |Fa(S)| <
|S|.

Proof. If Fa(S) = S for all a ∈ S then Fw(S) = S for all w ∈ S∗, so the CA
would be surjective. ��

For the second step and the last step of the weight reduction, Corollary 2 provides
a reducing word of length at most 2. More generally, we have the following:

Lemma 5. If |X | = k and 1 ≤ k ≤ n − 1 then there exists a word u of length
at most n − max{�n

k �, � n
n−k �} + 2 such that |Fu(X)| < |X |.

Proof. Let x ∈ Rn be the 0/1 -vector corresponding to set X . If fs(x) is not a
0/1 -vector for some s ∈ S then either φ(fs(x)) > k or |Fs(X)| < k. In both
cases |Fa(X)| < |X | for some a ∈ S.

If all fs(x) are 0/1 -vectors then the conditions of Corollary 2 are satisfied, so
the bound follows from the Corollary. ��

Now we easily get the following upper bounds for shortest orphans and diamonds.

Theorem 4. Let G = (N,S, f) be a non-surjective range-2 CA with |S| = n.
Then n2 − 2H�n−1

2 �,n + n − b − 1 is an upper bound for the length of a shortest
orphan, where b = 2 if n is even otherwise b = 0. Especially, a smallest orphan
has at most length n2 − 2n ln�n−1

2 � + n.

Proof. We modify the proof of Theorem 1. We use Lemma 4 to improve the first
reduction step and Lemma 5 on the remaining steps. We get the following upper
bound for the length of a shortest orphan w:

|w| ≤ 1 +
∑n−1

i=1 (n − max{�n
i �, �

n
n−i�} + 2)

= 1 + (n − 1)(n + 2) −
∑n−1

i=1 max{�n
i �, �

n
n−i�}

= n2 + n − 2H�n−1
2 �,n − b − 1

where b = 2 if n is even otherwise b = 0. ��

Theorem 5. Let G = (S,N, f) be a non-surjective range-2 CA with |S| = n,
its shortest diamond has at most length 2(�

√
n�n − n ln(�

√
n�) + 2�

√
n� − 2).
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Proof. We modify the proof of Theorem 3. Note, that the conditions of Corollary
2 are fulfilled for every increment of weight: If at any stage fs(x) is not a 0/1
-vector then a diamond is found.

Thus the step increasing the weight from i takes a word of length at most
n − �n

i � + 2. Therefore we obtain the upper bound
k−1∑
i=2

(n −
⌈n

i

⌉
+ 2) = (k − 2)(n + 2) + n − Hk−1,n

for the lengths of the words w and w̃ in the proof of Theorem 3. Recall that
k = �

√
n� + 1. We now obtain the result from this, the fact that |w| + |w̃| + 2

is an upper bound for the length of the shortest diamond, and the fact that
Hk−1,n > n ln(k − 1). ��

6 Algorithms

The proof of Lemma 2 gives us algorithms for finding orphans, diamonds and
unbalanced words whose running times are polynomial in the number of states.

Here, only one step will be described in Algorithm 1. That is to say, the
algorithm is for obtaining from a vector x a word w = w1 . . . wk such that
φ(fw(x)) < φ(x). Note that we can easily have the converse, by only changing
the inequality in the algorithm. The full algorithms can be easily deduced from
this by looking at the proofs of Theorems 1, 2 and 3.

Algorithm 1. How to decrease the weight of a vector
Data: A non-surjective CA G = (S, (0, 1), f) and x ∈ {0, 1}n \ 0n

Result: A word w with φ(fw(x)) < φ(x).
F := {(x, ε)} % Set of independent vectors reached.
while ∃a ∈ S,∃(x,w) ∈ F such that fa(x) is not in the

affine space generated by F do
if φ(fa(x)) < φ(x) then

return wa ;
end
if φ(fa(x)) = φ(x) then

F := F ∪ {(fa(x), wa)} ;
end

end

It is important to note that the algorithms based on this method will not neces-
sarily find the shortest orphans, diamonds or unbalanced words. De Bruijn-graph
based algorithms of [9] can be used to find a shortest diamond in polynomial time,
using a breadth-first search on the product of the de Bruijn automaton with itself.
Our algorithm above finds a shortest unbalanced word if the search in the while
-loop is done in the breadth-first order, starting with vector x = (1, 1, . . . , 1).
We are not aware of a polynomial time method to find a shortest orphan.
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7 Tightness

It is an interesting question to determine the best possible upper bounds for the
lengths of shortest orphans, diamonds and unbalanced words. To see how tight
our bounds are, we tried to discover families of CA with long shortest orphans,
diamonds and unbalanced words.

For the shortest orphans we were able to construct, for every n ≥ 1, an n-
state, range-2 CA An whose shortest orphan has length 2n− 1. This example is
still well below our quadratic upper bound, but we conjecture that 2n− 1 is the
proper bound for the length of the shortest orphan. Through exhaustive search
we verified that no 2, 3 or 4 state automaton exceeds this bound.

The transition table of An is given in figure 1. The state set is S = {0, 1, 2, . . .
, n−1} and the local rule f is obtained from the function f ′(a, b) = b−a (mod n)
by changing the entry (0, 0) from 0 to 1.

f 0 1 . . . n − 2 n − 1
0 1 1 . . . n − 2 n − 1
1 n − 1 0 . . . n − 3 n − 2
...

...
...

...
...

n − 2 2 3 . . . 0 1
n − 1 1 2 . . . n − 1 0

Fig. 1. Local transition function of the automaton An which has a shortest orphan of
length 2n − 1

Theorem 6. For any number of states n ≥ 2, the shortest orphan of automaton
An has length 2n − 1.

Proof. Word w = 0(10)n−1 is an orphan: the only preimages of 0 are aa for
a 	= 0, so a preimage of w cannot contain 0’s and should be of the form

a a a + 1 a + 1 . . . a − 1 a − 1.

But such a word necessarily contains letter 0, a contradiction.
Let us prove that every word u of length 2n − 2 has a preimage. The related

local rule f ′(a, b) = a − b (mod n) makes a CA surjective, so u has a preimage
v under the local rule f ′. Moreover, adding any constant c (mod n) to all the
letters of v provides another preimage of u under f ′. Since the length of v is
2n − 1, some letter s ∈ S appears at most once in v. Hence the preimage v′

obtained by subtracting s from every letter of v contains at most one 0. But on
such words f ′ and f are identical, so v′ is a pre-image to u under f . ��

Concerning the shortest diamond, a computer search found an 8-state CA whose
shortest diamond is of length 6. No automata with longer shortest diamond has
been found. For every n ≤ 6 a CA with n states and a shortest diamond of
length n − 1 exists, and we conjecture this to be the optimal bound.
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8 Conclusion and Open Problems

For all problems—size of a smallest unbalanced word, orphan and diamond—
the linear algebra approach leads to better bounds than the ones obtained with
combinatorial methods. For some of the problems, we decreased the upper bound
further by looking closer into the dimensional argument of our approach. The
results can be extended straightforward to arbitrary neighborhood ranges. For
unbalanced words and orphans one can use exactly the same approach. For
diamonds a standard blocking technique can be used.

The following table gives an overview of the results, for range-2 and the general
range.

r = 2 general r

Non-balanced word n nr−1

Diamond 2n
3
2 − n lnn + 2

√
n − 2 (r − 1)(n

3(r−1)
2 − nr−1 r−1

2
ln n)

Orphan n2 − 2n ln n
2

+ n n2(r−1)

We reported in Section 7 a family of n-state CA with shortest orphans of
length 2n− 1, and also results of preliminary computer experiments. These lead
us to formulate the following conjectures:

Conjecture 1. The tight upper bound of the length for the shortest orphan of an
n -state non-surjective range-2 CA is 2n − 1.

Conjecture 2. The tight upper bound of the length for the shortest diamond of
an n -state non-surjective range-2 CA is n − 1.

An interesting related problem is the size of words for which many orphans
occur. It can be seen rather easily that more than half of the words in Sl are
orphans when l is exponential in the size of shortest orphans. Can a polynomial
bound be obtained? This is relevant for the complexity of converting a given
non-surjective CA to a lattice gas automaton, see [10].
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Abstract. Nested Pushdown Trees are unfoldings of pushdown graphs
with an additional jump-relation. These graphs are closely related to col-
lapsible pushdown graphs. They enjoy decidable μ-calculus model check-
ing while monadic second-order logic is undecidable on this class. We
show that nested pushdown trees are tree-automatic structures, whence
first-order model checking is decidable. Furthermore, we prove that it is
in 2-EXPSPACE using pumping arguments on runs of pushdown sys-
tems. For these arguments we also develop a Gaifman style argument for
graphs of small diameter.

1 Introduction

Nested pushdown trees were introduced in [1] as an expansion of trees generated
by pushdown systems with nested jump-edges. They were proposed for soft-
ware verification as jump-edges may be used to reason about matching pairs of
calls and returns in a program. Another approach to software verification checks
pushdown trees (without jump-edges) against specifications given by automata
or μ-calculus formulas. But these methods even lack the ability to express that
every call has a matching return. Alur et al. showed that nested pushdown trees
are tame structures with respect to the μ-calculus, in the sense that μ-calculus
model checking on nested pushdown trees is decidable. On the other hand they
proved the undecidability of monadic second-order logic on nested pushdown
trees. These results make nested pushdown trees an interesting class from a
model theoretic point of view because there are few natural classes that sepa-
rate μ-calculus and monadic second-order logic with respect to model checking.
In fact, the author knows of only one similar result, namely, for the class of
collapsible pushdown graphs [7]. The hierarchy of collapsible pushdown graphs
forms an extension of the hierarchy of higher-order pushdown graphs by using a
new operation called collapse. There is a close relation between nested pushdown
trees and collapsible pushdown graphs: the former are first-order interpretable
in collapsible pushdown graphs of order two. 1 In this sense, jump-edges form
a very weak form of collapse-edges. For both classes nothing is known so far

1 As the proof of this claim is unpublished, we give an idea: A node in a nested
pushdown tree is a run, i.e., a list of pairs of states and stacks. Push the state
onto the stack. This list of stacks can be seen as a level 2 stack and every edge in
the nested tree can then be simulated by up to four operations of the collapsible
pushdown system.

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 451–463, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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about the decidability of first-order model checking. In the following we are go-
ing to settle the problem for nested pushdown trees with the positive answer that
first-order model checking for nested pushdown trees is in 2-EXPSPACE. Fur-
thermore, we show that nested pushdown trees are tree-automatic. The notion
of tree-automatic structures was developed in [2] and generalises the concept
of automatic structures to the tree case. These are (usually) infinite structures
that allow a finite representation by tree-automata. Due to the good algorith-
mic behaviour of tree-automata the class of tree-automatic structures has nice
properties, e.g., first-order model checking is decidable. But in general even auto-
matic structures, and hence also tree-automatic structures, have non-elementary
lower bounds for FO model checking [4]. Nevertheless we can show that model
checking on nested pushdown trees is elementary by using pumping techniques
for pushdown systems.

Here is an outline of the paper. In Section 2 we present an Ehrenfeucht-Fräıssé-
game argument for the equivalence of certain structures with parameters for
first-order logic up to a fixed quantifier rank. This argument is a form of locality
argument on structures of small diameter, despite the fact that small diameters
normally prohibit the use of locality arguments. We use local isomorphisms on
subgraphs which are nicely embedded into the full graph. Later, this is a main
tool in our pumping arguments. Section 3.1 provides the definition of nested
pushdown trees and Section 3.2 contains the proof that these structures are tree-
automatic. In order to show that first-order model checking on nested pushdown
trees is in 2-EXPSPACE (Section 3.4), we develop pumping arguments on nested
pushdown trees in 3.3.

2 A Gaifman Style Lemma on Graphs of Small Diameter

In this section we present a game argument showing that certain tuples of a given
graph have the same 0ρ-type, where 0ρ is equivalence for first-order formulas
up to quantifier rank ρ. This argument forms the back-bone of the transforma-
tions we are going to use on tuples in a nested pushdown tree. It is a kind of
Gaifman-locality argument for certain graphs with possibly small diameter. The
crucial property of these graphs is that there are some generic edges that make
the diameter small in the sense that a lot of vertices are connected to the same
vertex, but when these edges are removed the diameter becomes large. There-
fore, on the graph with these generic edges removed we can apply Gaifman-like
arguments in order to establish partial isomorphisms and 0ρ-equivalence. As
disjoint but isomorphic neighbourhoods in such a graph have generic edges to
the same vertices (in the full graph) moving a tuple from one neighbourhood to
the other does not change the 0ρ-type of the tuple.

We use the following definitions and notation. By FO we denote first-order
logic and we write FOρ for the restriction of FO to formulas of quantifier rank
up to ρ. We write ā = a1, a2 . . . , an ∈ A for a tuple of elements from a set A. For
structures A and B with n parameters ā ∈ An and b̄ ∈ Bn we write A, ā 0ρ B, b̄
for the fact that A, |= ϕ(ā) if and only if B |= ϕ(b̄) for all ϕ ∈ FOρ. For some
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structure G = (V,E1, E2, . . . , En) with binary relations E1, E2, . . . , En and sets
A,B ⊆ V we say that A and B touch if A ∩ B 	= ∅ or there are a ∈ A, b ∈ B
such that (a, b) ∈ Ei or (b, a) ∈ Ei for some i ≤ n. For a tuple ā ∈ A we define
inductively the l-neighbourhood of ā with respect to A setting A0(ā) := {ai ∈ ā},
and

Al+1(ā) := Al(ā) ∪ {b ∈ A : there are i ≤ n and c ∈ Al(ā) s.t. (b, c) ∈ Ei or (c, b) ∈ Ei} .

We write Nl(ā) for the l-neighbourhood with respect to the whole universe V .
We say that A and B are isomorphic over C ⊆ V and write A 0C B if there

is some isomorphism ϕ : G�A 0 G�B such that for all a ∈ A and c ∈ C

(a, c) ∈ Ei iff (ϕ(a), c) ∈ Ei and (c, a) ∈ Ei iff (c, ϕ(a)) ∈ Ei .

Lemma 1. Let G = (V,E1, E2, . . . , En) be some structure, A,B ⊆ V not touch-
ing and let ϕ : A 0 B be an isomorphism of the induced subgraphs. Let ā ∈ A
and c̄ ∈ C := G \

(
A2ρ(ā) ∪ B2ρ(ϕ(ā))

)
.

ϕ�A2ρ−1(ā) : A2ρ−1(ā) 0C B2ρ−1(ϕ(ā)) implies G, ā, ϕ(ā), c̄ 0ρ G,ϕ(ā), ā, c̄.

Proof. We prove the claim by induction on ρ using Ehrenfeucht-Fräıssé-Game-
terminology. By symmetry, we may assume that Spoiler extends the left-hand
side, i.e., extending ā, ϕ(ā), c̄ by some d ∈ V . The general idea is that Spoiler
either chooses an element in A ∪ B that is close to ā or ϕ(ā) and Duplicator
responds with applying the isomorphism ϕ. Otherwise, Duplicator just responds
choosing the same element as Spoiler.
Local case: if d ∈ A2ρ−1(ā) set a′ := d and if d ∈ ϕ(A2ρ−1 (ā)) set a′ := ϕ−1(d).
Then we set ā′ := ā, a′.

As A2ρ−1(ā′) ⊆ A2ρ(ā), we have c̄ ∈ C′ := G\
(
A2ρ−1(ā′)∪ϕ(A2ρ−1 (ā′))

)
. Since

A and B do not touch and C′=C∪D for D ⊆
(
A \A2ρ−1(ā′))∪(B \ B2ρ−1(ϕ(ā′))

)
we get A2ρ−1−1(ā′) 0C′ ϕ(A2ρ−1−1(ā′)). Hence, we obtain by induction hypoth-
esis

G, ā′, ϕ(ā′), c̄ 0ρ−1 G,ϕ(ā′), ā′, c̄

Nonlocal case: otherwise, d ∈ C′ := G \
(
A2ρ−1(ā) ∪ ϕ(A2ρ−1(ā))

)
and we set

c̄′ := c̄ρ, d.
Note that A2ρ−1−1(ā) 0C′ ϕ(A2ρ−1−1(ā)) as A and B are not touching and the
distance of elements in A2ρ−1−1(ā) and elements in C′ ∩ A is at least 2. Hence,
by induction hypothesis

G, ā, ϕ(ā), c̄′ 0ρ−1 G,ϕ(ā), ā, c̄′. ��

3 Nested Pushdown Trees

Nested pushdown trees are generated by pushdown systems in the following way.
We unfold the configuration graph of a pushdown system and we add a jump
relation that connects every push- with the corresponding pop-operations.
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After formally introducing nested pushdown trees, we show that this class of
structures is tree-automatic. This already implies that FO model checking for
nested pushdown trees is decidable. But it does not yield an elementary bound
for the complexity since the model checking for tree-automatic structures is in
general non-elementary [4].

We give a separate argument that yields an elementary bound. This argument
is based on pumping techniques. In Section 3.3 we present these techniques which
shorten long runs but preserve their 0ρ-type in the nested pushdown tree. Due
to this result, we only have to inspect finitely many short runs in order to find
witnesses for existential quantifications. Section 3.4 shows that this search may
be done in 2-EXPSPACE.

3.1 Definition

Definition 1 (Pushdown System). A tuple P = (Q,Σ,Δ, (q0,⊥)) with a fi-
nite set of states Q, a finite set of stack symbols Σ, an initial configuration
(q0,⊥) ∈ Q × Σ and a transition relation Δ ⊆ Q × Σ × Q ×

{
pop, id, pushσ for

each σ ∈ Σ
}

is called a pushdown system.

Definition 2. A run r of P is a function r : {0, 1, 2, . . . , n} → Q × Σ∗ such
that for all i < n there is some (q, σ, p, op) ∈ Δ and some wi ∈ Σ∗ such that
r(i) = (q, wiσ) and r(i+1) = (p, op(wiσ)), where pop(wiσ) = wi, id(wiσ) = wiσ,
and pushτ (wiσ) = wiστ . We call r a run from r(0) to r(n). We say that the
length of r is length(r) := n.

For runs r and r′ of length n and m, respectively, such that r(n) = r′(0) we
call

s : {0, 1, . . . , n + m} → Q × Σ∗ s(i) :=

{
r(i) if i ≤ n

r′(i − n) otherwise

the composition of r and r′. We also say that s decomposes into r and r′.

Note that a run does not necessarily start in the initial configuration (q0,⊥) of
the pushdown system P . The next definition summarises some useful notation
about runs.

Definition 3. Let r be a run of a pushdown system P = (Q,Σ,Δ, (q0,⊥)) and
let w, v be words over Σ.

– If r has length n, then last(r) := r(n).
– By w ≤ v we mean that w is a prefix of v.
– For r(i) = (q, v), we set Stck(r(i)) := v. We write |r(i)| for |v| and w ≤ r(i)

if w ≤ v.
– We say that r is w-prefixed if w ≤ r(i) for all i ∈ dom(r).
– We set max(r) := max{|r(i)| : i ∈ dom(r)}.
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Remark 1 (Prefix Replacement). Let r be a w-prefixed run of some pushdown
system P for some word w ∈ Σ∗. If w′ ∈ Σ∗ ends with the same letter as w then
the function

r[w/w′] : dom(r) → Q × Σ∗

r[w/w′](i) := (qi, w
′wi) if r(i) = (qi, wwi)

is a run of P , where wwi denotes the usual concatenation of the words w and
wi.

Definition 4 (Nested Pushdown Tree (NPT)). Let P = (Q,Σ,Δ, (q0,⊥))
be a pushdown system. Then the nested pushdown tree generated by P is NPT
(P ) := (R,→, ↪→) where (R,→) is the unfolding of the configuration graph of P ,
i.e., R is the set of all runs of P starting at the configuration q0,⊥. For two runs
r1, r2 ∈ R, we have r1 → r2 if r2 extends r1 by exactly one configuration. The
binary relation ↪→ is called jump relation and is defined as follows: let r1, r2 ∈ R
and last(r1) = (q, w) ∈ Q × Σ∗. Then r1 ↪→ r2 if r1 is an initial segment of r2,
last(r2) = (q′, w) for some q′ ∈ Q and w is a proper prefix of all stacks between
last(r1) and last(r2), i.e., w < r2(i) for all length(r1) < i < length(r2).

3.2 NPT Are Tree-Automatic

We start with the notion of a tree-automatic structure which was introduced in
[2]. A tree is a finite, prefix closed subset of {0, 1}∗, where ε represents the root
and we assume the successors at each vertex to be ordered. For a finite set Σ, a
Σ-labelled tree is a map c : T → Σ for some tree T . The convolution of two Σ-
labelled trees c1 and c2 is defined as c1 ⊗ c2 : dom(t1) ∪ dom(t2) → (Σ ∪ {�})2,
where � represents undefined elements, and

(c1 ⊗ c2)(t) =

⎧⎪⎨⎪⎩
(c1(t), c2(t)) if t ∈ dom(c1) ∩ dom(c2) ,

(c1(t),�) if t ∈ dom(c1) \ dom(c2) ,

(�, c2(t)) if t ∈ dom(c2) \ dom(c1) .

A tree-automaton is a tuple A = (Q,Σ,Δ, F ) where Q is a finite set of states,
Σ ⊆ Q a finite set of labels, Δ ⊆ Q2 ×Σ ×Q the transition relation, and F ⊆ Q
the set of final states. A run of A on a Σ-labelled tree c : T → Σ is a function
r : T → Q such that for each leaf l ∈ T we have r(l) = c(l) and for inner nodes
n ∈ T we have r(n) = q if there is some (q0, q1, σ, q) ∈ Δ such that r(ni) = qi

for i ∈ {0, 1} and c(n) = σ. A run r is accepting if r(0) ∈ F . Note that we
require Σ ⊆ Q as A has no special initial state but starts at every leaf of the
tree initialised with the label of this leaf.

A structure B = (B,E1, E2, . . . , En) with binary relations Ei is tree-automatic
if there are automata AB, AE1 , AE2 , . . . , AEn such that

1. AB accepts a set C of Σ-labelled trees.
2. There is a bijection f : C → B.
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3. for c1, c2 ∈ C, the automaton AEi accepts c1⊗c2 if and only if (f(c1), f(c2)) ∈
Ei.

Theorem 1. Nested pushdown trees are tree-automatic.2

By the decidability of the FO model checking for arbitrary tree-automatic struc-
tures [2] we obtain that FO model checking on nested pushdown trees is decid-
able.

For the proof of the theorem, we use the fact that, for every context-free
grammar G, there is a tree-automaton A which accepts exactly the derivation
trees of G. In order to prove tree-automaticity of a NPT, it therefore suffices to
give a context free grammar of runs of a pushdown system P (starting at the
initial configuration) and to provide grammars generating all pairs of derivations
of runs that are connected by → or ↪→, respectively.

Let P = (Q,Σ,Δ, (q0,⊥)) be a pushdown system. The following context-free
grammar generates all runs of P which start at the initial configuration q0,⊥.
The terminal symbols are the transitions of P , i.e., T := Δ. We use the non-
terminal symbols N := {X(q,σ) : q ∈ Q, σ ∈ Σ} ∪ {Cp

(q,σ) : q, p ∈ Q, σ ∈ Σ}. The
idea of the coding is the following. A non-terminal X(q,σ) generates a subrun
starting from (q, σ) and a Cp

(q,σ) generates a subrun starting at (q, σ), ending at
(p, σ) and in between this element σ is never removed from the stack. Note that
such a subrun may be extended by prefixing some pushσ- and postfixing some
pop-operation that deletes this symbol σ again. For q, p, r, s ∈ Q and σ, τ ∈ Σ,
the productions are

X(q,σ) →(q, σ, p, id)
∣∣∣ (q, σ, p, id)X(p,σ)

∣∣∣ (q, σ, p,pushτ)
∣∣∣ (q, σ, p,pushτ)X(p,τ)∣∣∣ (q, σ, p,pushτ)Cr

(p,τ)(r, τ, s,pop)
∣∣∣ (q, σ, p,pushτ)Cr

(p,τ)(r, τ, s,pop)X(s,σ)∣∣∣ (q, σ, p,pushτ)(p, τ, r,pop)
∣∣∣ (q, σ, p,pushτ)(p, τ, r,pop)X(r,σ)

and Cp
(q,σ) →(q, σ, r, id)Cp

(r,σ)

∣∣∣ (q, σ, p, id)
∣∣∣ (q, σ, r,pushτ)Cs

(r,τ)(s, τ,u,pop)C
p
(u,σ)∣∣∣ (q, σ, s,pushτ)(s, τ,u,pop)C

p
(u,σ)

∣∣∣ (q, σ, r,pushτ)Cs
(r,τ)(s, τ, p,pop)∣∣∣ (q, σ, r,pushτ)(r, τ, p,pop)

Note that for every run r of P starting in (q0,⊥) there is a unique derivation
tree starting from X(q0,⊥) and the leaves of this derivation tree – read from left
to right – are the transitions of r. Vice versa, every derivation tree codes a valid
run.

As a next step we show that the set of convolutions of the derivation trees of
runs r1, r2 such that r2 extends r1 by exactly one transition may also be defined
via some context free grammar. Note that if a run r2 extends another run r1

by a pushσ- or id-transition, the derivation trees only differ in the subtree that
starts at the end of the unique longest path that is labelled by non-terminals

2 I thank Dietrich Kuske for proposing a useful coding of runs in trees.
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X(q,σ) (where q and σ may vary along the path). The coding of r2 contains an
isomorphic copy of this subtree in the coding of r1, and extends this subtree
by a new rightmost successor with label X(q,σ) for some q ∈ Q and σ ∈ Σ
and this new rightmost successor has a successor itself which is labelled by the
last transition of r2. The case of a pop-transition is a bit more involved as the
subrun between this pop-operation and the corresponding pushσ-operation is
derived from a Cp

(q,σ) symbol in the derivation of r2, while it is derived from
X(q,σ) in the derivation of r1. But in fact, for both derivations, the form of this
subtree is the same and the terminal symbols coincide. The only difference is
that the non-terminals of the form X(r,τ) in the derivation of r1 are replaced by
Cs

(r,τ) for some s ∈ Q in the derivation of r2.
We use the following notation. For some terminal or non-terminal a we write

a2 as an abbreviation for the pair (a, a) and we write Zp
(q,σ) for the pair (X(q,σ),

Cp
(q,σ)). The productions are

(X(q,σ))2 →a21a
2
2 . . . a

2
n(X(p,τ))2 for every X(q,σ) → a1a2 . . . anX(p,τ)

(Cp
(q,σ))

2 →a21a
2
2 . . . a

2
n for every Cp

(q,σ) → a1a2 . . . an

(X(q,σ))2 →(q, σ, p, id)2
(
�,X(p,σ)

) ∣∣∣ (q, σ, p,pushτ)2
(
�,X(p,τ)

)
∣∣∣ (q, σ, p,pushτ)2(Cr

(p,τ))
2(r, τ, s,pop)2

(
�,X(s,σ)

)
∣∣∣ (q, σ, p,pushτ)2Zr

(p,τ)

(
�, (r, τ, s,pop)

) ∣∣∣ (q, σ, p,pushτ)2
(
�, (p, τ, s,pop)

)

Zp
(q,σ) →(q, σ, r, id)2Zp

(r,σ)

∣∣∣ (q, σ, p, id)2
∣∣∣ (q, σ, r,pushτ)2(Cs

(r,τ))
2(s, τ,u,pop)2Zp

(u,σ)∣∣∣ (q, σ, s,pushτ)2(s, τ,u,pop)2Z
p
(u,σ)

∣∣∣ (q, σ, r,pushτ)2(Cs
(r,τ))

2(s, τ, p,pop)2
∣∣∣ (q, σ, r,pushτ)2(r, τ, p,pop)2

(�,X(q,σ))→
(
�, (q, σ, p, id)

) ∣∣∣
(
�, (q, σ, p,pushτ)

)

Analogously to the →-case, we can give a grammar for runs r1, r2 such that
r1 ↪→ r2. If r1 ↪→ r2, then r1 is an initial segment of r2. Thus, the derivation of
r2 contains that of r1. It extends the derivation of r1 by a derivation of the form
(q, σ, p, pushτ )Cr

(p,τ)(r, τ, s, pop). The following productions describe this:

(X(q,σ))
2 →a2

1a
2
2 . . . a2

n(X(p,τ))
2 for every X(q,σ) → a1a2 . . . anX(p,τ)

(Cp
(q,σ))

2 →a2
1a

2
2 . . . a2

n for every Cp
(q,σ) → a1a2 . . . an

(X(q,σ))
2 →(q, σ, p, id)2

(
�, X(p,σ)

) ∣∣ (q, σ, p, pushτ )2
(
�, X(p,τ)

)∣∣ (q, σ, p,pushτ )2(Cr
(p,τ))

2(r, τ, s, pop)2
(
�, X(s,σ)

)(
�, X(p,σ)

)→(�, (q, σ, p,pushτ )
)(

�, (p, τ, r,pop)
)∣∣ (�, (q, σ, p,pushτ )

)
(�, Cs

(r,τ))
(
�, (p, τ, r, pop)

)
The productions of

(
�, Cp

(q,σ)

)
are exactly as for Cp

(q,σ) in the second component
with first component always marked �, i.e., the first run is already finished and
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the second run extends the first one by some “closed” subrun, i.e., a subrun that
starts and ends with the same stack content.

3.3 �ρ-Pumping on NPT

In this section we present several pumping lemmas on runs of a pushdown system
P . The aim is to show that for every run of a pushdown system there is another
one of bounded length which represents a node with the same 0ρ-type in the
NPT generated by P . We use these lemmas later to prove an elementary bound
for the complexity of FO model checking on nested pushdown trees. As every
0ρ-type has a witness of bounded length, a model checking algorithm for an
FOρ-formula only has to check runs of bounded length in order to find a witness
for an existential quantification.

We bound the length of a run in three steps. The first one reduces the size
of the last stack of a run, the second one reduces the size of the maximal stack
passed along the run and the last one gives us basically a bound on the number of
occurrences of every given stack along the run. We will see that these conditions
are sufficient for bounding its length.

We start with a general observation about the structure of runs that are
related by some edge. We will use this lemma in several of our pumping lemmas.

Lemma 2. Let r = r1 ◦ r2 ◦ r3 be a run of a pushdown system P , w ∈ Σ∗ and
σ ∈ Σ such that r2 is w-prefixed, r3 is (wσ)-prefixed and Stck(last(r1)) = w. If
r ∗ s for ∗ ∈ {↪→,←↩,→,←} then s = r1 ◦ r′2 for some w-prefixed run r′2.

Proof. As wσ ≤ last(r) we have w ≤ last(s). Hence, the only non-trivial case is
s ↪→ r. By definition of ↪→, we have wσ ≤ r(i) for all i ∈ dom(r) \ dom(s) and s
is an initial segment of r. Thus, r1 is an initial segment of s. ��

Now we can state our first pumping lemma, that reduces the size of the last
configuration of a given run, while preserving its 0ρ-type.

Lemma 3 (First 0ρ-Pumping Lemma). Let r̄ = r1, r2, . . . , rm ∈ NPT(P )
and
r ∈ NPT(P ) such that

|last(r)| > |last(ri)| + (2 + 2ρ+1)|Q| · |Σ| + 2ρ + 1 for all i ≤ m .

There is an s ∈ NPT(P) such that |last(s)| < |last(r)| andNPT(P), r̄, r �ρ NPT(P), r̄, s.

Proof. Because of the length of v := Stck(last(r)) there are w1 < w2 ≤ v and
decompositions of r as r = rw1 ◦ sw1 = rw2 ◦ sw2 such that

1. swi(0) = (wi, q) for some q ∈ Q and all i ∈ {1, 2};
2. swi is wi-prefixed;
3. |w1| > |last(ri)| and |last(r)| > |w2| + 2ρ;
4. w1 and w2 end with the same letter σ ∈ Σ;
5. |w2| − |w1| > 1 + 2ρ+1.
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. . . q′,w′ q,w . . .

q′,w′ q,w . . .

Fig. 1. Second pumping lemma: we replace the upper q, w by the lower one. The dotted
/ dashed boxes mark the neighbourhood of the upper / lower q, w

Then s := rw1 ◦ sw2 [w2/w1] is well defined by Remark 1. Note that N2ρ(r) and
N2ρ(s) do not touch because |last(r)| − |last(s)| = |w2| − |w1| > 1 + 2ρ+1 and
for runs connected by a path of length 2 · 2ρ + 1 the height of their last stacks
does not differ by more than 2 · 2ρ + 1. Furthermore, due to 3., Lemma 2, and
Remark 1, it follows that for all r′ ∈ N2ρ(r) we have r′ = rw2 ◦ r′w2

for some
w2-prefixed r′w2

and the function ϕ : r′ 
→ rw1 ◦ r′w2
[w2/w1] is an embedding of

N2ρ(r) into N2ρ(s). For the same reasons, ϕ−1 : rw1 ◦ r′w1

→ rw2 ◦ r′w1

[w1/w2]
for a w1-prefixed run r′w1

forms an embedding of N2ρ(s) into N2ρ(r). Finally, as
|last(r)| > |last(s)| ≥ |w1| > |last(ri)| + 2ρ, again by Lemma 2, ri cannot be in
the 2ρ-neighbourhood of r and s. Hence, we may apply Lemma 1. ��

Now we are going to prove a second 0ρ-type preserving pumping lemma that
preserves the last configuration of a run r, but reduces max(r).

Lemma 4 (Second 0ρ-Pumping Lemma). Let r̄ = r1, r2, . . . , rm ∈ NPT(P )
and r ∈ NPT(P ) such that max(r) > max(ri) + |Q|2|Σ| + 1 for all 1 ≤ i ≤ m,
and such that max(r) > |last(r)| + |Q|2|Σ| + 2ρ + 1. Then there is some s ∈
NPT(P ) such that last(s) = last(r), max(s) < max(r), and r̄, r 0ρ r̄, s.

Proof. We eliminate the last occurrence of a stack of length max(r) in r. For
this purpose, let i ∈ dom(r) be maximal with Stck(r(i)) = w for w ∈ Σ∗ with
|w| > |Q2||Σ| + 2ρ + 1 + |last(r)|. Then for all last(r) ≤ v ≤ w, the run r
decomposes as r = rv ◦ sv ◦ tv such that i ∈ dom(rv ◦ sv), sv is v-prefixed,
sv(0) = (qv, v), last(sv) = (pv, v) for some qv, pv ∈ Q, and |t(i)| < |v| for all
1 ≤ i ≤ length(t). Then there are v1 < v2 ≤ w with

1. max(ri) < |v1|
2. |v2| > |v1| > |last(r)| + 2ρ

3. qv1 = qv2 , pv1 = pv2

4. the last letter of v1 and v2 is the same σ ∈ Σ.

Then we set s′v2
:= sv2 [v2/v1]. Note that s := rv1 ◦ s′v2

◦ tv1 is a well defined run.
We use Lemma 1 to show that r̄, r 0ρ r̄, s. We set

A := {t ∈ N2ρ (r) : t = rv1 ◦ sv1 ◦ t
′, t′ run} B := {t ∈ N2ρ (s) : t = rv1 ◦ s

′
v2 ◦ t

′, t′ run} .
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Note that ri /∈ A ∪ B as for all t ∈ A ∪ B, we have max(t) ≥ |v1| > max(ri).
From Lemma 2 it follows that for each run t′ such that rv1 ◦ sv1 ◦ t′ ∈ N2ρ(r)
or rv1 ◦ s′v2

◦ t′ ∈ N2ρ(s) we have |t′(i)| < |v1| for 1 ≤ i ≤ length(t′). Hence, for
j := length(rv1 ◦sv1) and every t ∈ A we have Stck(t(j)) = v1, while for all t ∈ B
we have |t(j)| < |v1| as length(sv1) > length(s′v2

). Thus, for all a ∈ A and b ∈ B
the runs a and b disagree on a proper prefix of both elements, whence A and B
cannot touch.

Now we claim that there is an isomorphism of the induced subgraphs
ϕ : A2ρ(r) 0 B2ρ(s), given by rv1 ◦ sv1 ◦ t′ 
→ rv1 ◦ s′v2

◦ t′. For this note that
for any two runs t′, t′′ and for ∗ ∈ {→,←, ↪→,←↩} we have

(rv1 ◦ sv1 ◦ t′) ∗ (rv1 ◦ sv1 ◦ t′′) iff t′ ∗ t′′ iff (rv1 ◦ s′v2
◦ t′) ∗ (rv1 ◦ s′v2

◦ t′′).

In order to apply the game argument, we finally have to show that edges between
A2ρ−1(r) and NPT(P )\A2ρ(r) are preserved under ϕ. Assume that a ∈ A2ρ−1(r)
and c ∈ NPT(P ) \

(
A2ρ(r)∪B2ρ(s)

)
. Note that a → c or a ↪→ c implies that a is

a subrun of c and thus c ∈ A2ρ(r) by definition of A. Assume that c → a. then
|last(c)| ≤ |last(r) + 2ρ| < |v1|. Hence c 	= rv1 ◦ sv1 . But as rv1 ◦ sv1 is a proper
initial segment of a, this results in c ∈ A2ρ(r). Thus, if c ∈ NPT(P ) \ A2ρ(r) is
connected to a then c ↪→ a and c is an initial segment of rv1 ◦sv1 . But as the last
stack of a and c agree and |last(a)| < |v1| then c is an initial segment of rv1 . Thus,
c ↪→ ϕ(a) as sv1 and s′v2

are both v1-prefixed and last(a) = last(ϕ(a)) < v1.
Now we found an 0ρ-equivalent run s that is shorter than r. Iterating this

process leads eventually to some run s with the desired properties ��

Now we state our last pumping lemma, which decreases the number of occur-
rences of a given stack in a run r without affecting its 0ρ-type. In order to do
this we have to define what it means for a given stack w to occur often in a
run r. We are going to count the occurrences of w as a stack in a w-prefixed
subrun of r. Afterwards, we will see that bounding this number and max(r) is a
sufficient condition to bound the total number of occurrences of a stack w in r.

Definition 5. Let r be a run of the pushdown system P = (Q,Σ,Δ, (q0,⊥))
of length n. The number of occurrences of w in r is denoted |r|w :=

∣∣{i ∈ N :
Stck(r(i)) = w}

∣∣. We set Ξ(r) := max
{
|s|w : w ∈ Σ∗ and s is a w-prefixed

subrun of r
}
.

Lemma 5 (Third 0ρ-Pumping Lemma). Let r̄ ∈ NPT(P ) such that Ξ(ri)≤
B for all ri ∈ r̄ and some B ∈ N. For r ∈ NPT(P ), there is some s ∈ NPT(P )
such that max(s) ≤ max(r), last(s) = last(r), Ξ(s) ≤ B + (2ρ+1 + 2)|Q| + 2ρ +
1, and r̄, r 0ρ r̄, s.

Figure 2 gives an idea of the proof which is similar to that of the Lemma 4.

3.4 FO Model Checking on NPT Is in 2-EXPSPACE

Using the three pumping lemmas we can now establish a “dynamic small witness
property” for NPT: given the length of the runs representing parameters in a
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. . . q1,w q2,w . . . q2,w q3,w . . . q,w′ . . .

q3,w . . . q,w′ . . .

Fig. 2. Third pumping lemma: we replace the upper q, w′ by the lower one. The dotted
/ dashed boxes mark the neighbourhood of the upper / lower q, w′.

formula of quantifier rank ρ, we can bound the length of the run representing a
witness for the first existential quantification occurring in the formula, if there
is some witness for this quantification at all. The crucial point is that a bound
on max(r) and a bound on Ξ(r) yield a bound on the length of r:

Lemma 6. Let P = (Q,Σ,Δ, (q0,⊥)) be a pushdown system and r a run of P

such that max(r) = h and Ξ(r) = b, then length(r) ≤ bh+2−b
b−1 .

Proof. Let mh := b. For every w ∈ Σh and some w-prefixed subrun s of r we
have length(s) ≤ mh as the height of all stacks in s is h, whence all elements in
s have stack w.

Now assume that every subrun t of r which is w-prefixed for some w ∈ Σn+1

has length(t) ≤ mn+1. Let w ∈ Σn be an arbitrary word and let s be a maximal
w-prefixed subrun of r. Then there are 0 = e1 < e2 < . . . < ef < ef+1 =
length(s) + 1 such that for 0 ≤ i ≤ f we have Stck(s(ei)) = w and s restricted
to (ei, ei+1) is wi-prefixed for some wi ∈ Σn+1. We have f ≤ b due to Ξ(s) ≤
Ξ(r) ≤ b. By assumption we get length(s) ≤ (1 + mn+1)b. Note that r is ε-
prefixed, hence

length(r) ≤ m0 = b + bm1 = b + b2 + b2m2 = . . . = mh

h∑
i=0

bi =
bh+2 − b

b − 1
. ��

In the following we define our notion of a small run. Let P = (Q,Σ,Δ, (q0,⊥)) be
a pushdown system. For j ≤ k ∈ N we say that some r ∈ NPT(P ) is (j, k)-small
if

|last(r)| ≤ 6|P |2j2k, max(r) ≤ 8|P |3j2k, and Ξ(r) ≤ 6|P |j2k .

Lemma 7. Let P = (Q,Σ,Δ, (q0,⊥)) be a pushdown system, r̄ = r1, r2, . . . ,
ri ∈ NPT(P ) and i ≤ k ∈ N. Then there are r̄′ = r′1, r

′
2, . . . , r

′
i ∈ NPT(P ) such

that every r′j is (j, k)-small and r̄ 0k−i r̄′.

The proof is by induction on i using the pumping lemmas.
With the bounds on the length of runs we can do FO model checking by brute

force inspection of short runs. In order to check for an existential witness we only
have to test all runs of bounded length. The bound depends on the number of
parameters chosen before and on the size of the formula which we check. This
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Algorithm: ModelCheck(P, α, ϕ)

Input: pushdown system P , ϕ ∈ FOρ, an assignment α : free(ϕ) → NPT(P )
such that n = |dom(α)| and α(xj) is (j, ρ + n)-small for each j ≤ n

if ϕ is an atom or negated atom then
if NPT(P ) |= ϕ[α] then accept else reject;

if ϕ = ϕ1 ∨ ϕ2 then guess i ∈ {1, 2}, and ModelCheck(P, α, ϕi);
if ϕ = ϕ1 ∧ϕ2 then universally choose i ∈ {1, 2}, and ModelCheck(P, α, ϕi);
if ϕ = ∃xiϕ1 then

guess an (i, k + n)-small a of NPT(P ) and ModelCheck(P, α[xi 
→ a], ϕ1);
if ϕ = ∀xiϕ1 then

universally choose an (i, k + n)-small a of NPT(P ) and
ModelCheck(P, α[xi 
→ a], ϕ1);

Algorithm 1. ModelCheck used in the proof of Theorem 2

means for a fixed quantifier in some formula ϕ we only have to check a finite
initial part of the nested pushdown tree under consideration. Thus, we can give
an alternating algorithm for FO model checking on NPT that works similar to
the FO model checking algorithm on finite structures explained in [6].

Theorem 2. The structure complexity of FO model checking on NPT is in
EXPSPACE, while its expression and combined complexity are in 2-EXPSPACE.

Proof. We assume that the i-th quantifier with respect to quantifier depth binds
xi. The algorithm ModelCheck (see next page), decides NPT(P ) |= ϕ. Due to
Lemma 7, a straightforward induction shows that ModelCheck is correct. We
analyse the space that this algorithm uses. Due to Lemma 6 an (i, k)-small run r
has bounded length and we can store it as a list of exp(O(i|P |4k exp(k))) many
transitions. Thus, we need exp(O(i|P |4k exp(k))) log(P ) space for storing one
run. Additionally, we need space for checking whether such a list of transitions
forms a valid run and for checking the atomic type of the runs. We can do this
by simulation of P . The size of the stack is bounded by the size of the runs.
Thus, the alternating algorithm ModelCheck is in

ASPACE
(
|ϕ| log(|P|) exp(O(|P|4|ϕ|2 exp(|ϕ|)))

)
⊆ ASPACE

(
exp(O(|P|4 exp(2|ϕ|)))

)
.

As the number of alternations is bounded by |ϕ|, we see by [5](Theorem 4.2)
that FO model checking for NPT is in DSPACE

(
exp(O(|P |4 exp(2|ϕ|)))

)
.

4 Conclusions

By tree-automaticity as well as pumping techniques we showed decidability of
the FO model checking on NPT. Both approaches are transferable to some ex-
tent to the case of collapsible pushdown graphs. The tree-automaticity argument
applies at least to level 2 of the hierarchy of collapsible pushdown automata.3

3 We obtained this result recently and hope to publish it soon.
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But for arguments in the spirit of generation growth [4] combined with a re-
sult about counting abilities of higher-order pushdown systems[3], one obtains
level 5 collapsible pushdown systems that are not tree-automatic. This raises the
question of a characterisation of all tree-automatic collapsible pushdown graphs,
especially for levels 3 and 4. Another open problem is effective FO model check-
ing on collapsible pushdown graphs and whether pumping techniques lead to
effective model checking algorithms on these graphs.
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The Prismoid of Resources
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Abstract. We define a framework called the prismoid of resources where
each vertex refines the λ-calculus by using a different choice to make ex-
plicit or implicit (meta-level) the definition of the contraction, weakening,
and substitution operations. For all the calculi in the prismoid we show
simulation of β-reduction, confluence, preservation of β-strong normali-
sation and strong normalisation for typed terms. Full composition also
holds for all the calculi of the prismoid handling explicit substitutions.
The whole development of the prismoid is done by making the set of re-
sources a parameter, so that the properties for each vertex are obtained
as a particular case of the general abstract proofs.

1 Introduction

Linear Logic [5] gives a logical framework to formalise the notion of control of
resources by means of weakening, contraction and linear substitution. A suc-
cinct representation of Linear Logic proofs is given by Proof-Nets [5] which are
often used as a semantical support to define λ-calculi with explicit control oper-
ators [19,18,9,7].

In this paper we develop an homogeneous framework of λ-calculi called the
prismoid of resources. Each vertex is a specialised λ-calculus parametrised by a
set of sorts wich are of two kinds : resources w (weakening) and c (contraction),
and cut-elimination operation s (substitution). If a sort in {c, s, w} belongs to
a given calculus, then management of the corresponding operations is explicit
in this calculus. Explicit resources will allow more refined cut-elimination proce-
dures. Each edge is an operation to simulate and/or project one vertex into the
other one. The eight calculi of the prismoid correspond to 23 different ways to
combine sorts by means of explicit or implicit (meta-level) operations.

The asymmetry between different sorts will be reflected in the prismoid by
means of its two bases. The base BI contains all the calculi without explicit sub-
stitutions and the base BE only contains those with explicit substitutions. The
bases are of different nature as they will not enjoy exactly the same properties.

λsw λcsw

λw λcw

λs λcs

λ∅ λc

explicit base

implicit base

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 464–476, 2009.
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Thus for example, the λcs-calculus has only explicit control of contraction
and substitution, the λ-calculus has no explicit control at all, and the λcsw-
calculus – a slight variation of λlxr [9] – has explicit control of everything.

For all calculi of the prismoid we show simulation of β-reduction, confluence,
preservation of β-strong normalisation (PSN) and strong normalisation (SN) for
simply typed terms. Thus in particular, none of the calculi suffers from Mellies’
counter-example [14]. Full composition, stating that explicit substitution is able
to implement the underlying notion of higher-order substitution, is also shown
for all calculi with sort s, ie. those included in the explicit substitution base.
Each property is stated and proved by making the set of sorts a parameter, so
that the properties for each vertex of the prismoid turn out to be a particular
case of some general abstract proof, which may hold for the whole prismoid or
just for only one base.

While both implicit and explicit substitutions are usually [1,6,13] defined by
means of the propagation of an operator through the structure of terms, the be-
haviour of calculi of the prismoid can be understood as a mechanism to decrease
the multiplicity of variables that are affected by substitutions. This notion is
close in spirit to MELL Proof-Nets, and shares common ideas with calculi by
Milner [16] and Accattoli and Guerrini [2]. However their formalisms only han-
dle the substitution operation as explicit, leaving weakening and contraction as
implicit functions.

Road Map: Section 2 introduces syntax and operational semantics of the pris-
moid. Section 3 explores how to enrich the λ-calculus by adding more explicit
control of resources, while Section 4 deals with the dual operation which for-
gets rich information given by explicit weakening and contraction. Section 5 is
devoted to PSN and confluence on untyped terms. Finally, typed terms are in-
troduced in Section 6 together with a SN proof for them. We conclude and give
future directions of work in Section 7.

2 Terms and Rules of the Prismoid

We assume a denumerable set of variable symbols x, y, z, . . .. Lists and sets of
variables are denoted by capital Greek letters Γ,Δ,Π, . . .. We write Γ ; y for
Γ ∪{y} when y /∈ Γ . We use Γ \Δ for set difference and Γ \\ Δ for obligation
set difference which is only defined if Δ ⊆ Γ .

Terms are given by the grammar t, u ::= x | λx.t | tu | t[x/u] | Wx(t) | Cy|z
x (t).

The terms x, λx.t, tu, t[x/u], Wx(t) and Cy|z
x (t) are respectively called term

variable, abstraction, application, closure, weakening and contraction.
Free and bound variables of t, respectively written fv(t) and bv(t), are defined
as usual: λx.u and u[x/v] bind x in u, Cy|z

x (u) binds y and z in u, x is free in
Cy|z

x (u) and in Wx(t).
Given three lists of variables Γ = x1, . . . , xn, Δ = y1, . . . , yn and Π =

z1, . . . , zn of the same length, the notations WΓ (t) and CΔ|Π
Γ (t) mean, respec-

tively, Wx1(. . .Wxn(t)) and Cy1|z1
x1 (. . . Cyn|zn

xn (t)). These notations will extend
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naturally to sets of variables of same size thanks to the equivalence relation
in Figure 1. The particular cases C∅|∅

∅ (t) and W∅(t) mean simply t.
Given lists Γ = x1, . . . , xn and Δ = y1, . . . , yn, the renaming of Γ by Δ in t,

written RΓ
Δ(t), is the capture-avoiding simultaneous substitution of yi for every

free occurrence of xi in t. For example Rx1x2
y1y2

(Cy|z
x1 (x2yz)) = Cy|z

y1 (y2yz).
Alpha-conversion is the (standard) congruence generated by renaming of

bound variables. For example, λx1.x1Cy1|z1
x (y1z1) ≡α λx2.x2Cy2|z2

x (y2z2). All the
operations defined along the paper are considered modulo alpha-conversion so
that in particular capture of variables is not possible.

The set of positive free variables of a term t, written fv+(t), denotes the
free variables of t which represent a term variable at the end of some (possibly
empty) contraction chain. Formally,

fv+(y) := {y}
fv+(λy.u) := fv+(u) \ {y}
fv+(uv) := fv+(u) ∪ fv+(v)
fv+(Wy(u)) := fv+(u)
fv+(u[y/v]) := (fv+(u) \ {y}) ∪ fv+(v)
fv+(Cz|w

y (u)) := (fv+(u) \ {z, w}) ∪ {y} if z ∈ fv+(u) or w ∈ fv+(u)
fv+(Cz|w

y (u)) := fv+(u) \ {z, w} otherwise

The number of occurrences of the positive free variable x in the term t is
written |fv+(t)|x. We extend this definition to sets by |fv+(t)|Γ =Σx∈Γ |fv+(t)|x.
Thus for example, given t = Wx1(xx) Wx(y) Cz1|z2

z (z2), we have x, y, z ∈ fv+(t)
with |fv+(t)|x = 2, |fv+(t)|y = |fv+(t)|z = 1 but x1 /∈ fv+(t).

We write t[y]x for the non-deterministic replacement of one positive oc-
currence of x in t by a fresh variable y. Thus for example, (Wx(t) x x)[y]x may
denote either Wx(t) y x or Wx(t) x y, but neither Wy(t) x x nor Wx(t) y y.

The deletion function removes non positive free variables in Γ from t:

delΓ (y) := y
delΓ (u v) := delΓ (u) delΓ (v)
delΓ (λy.u) := λy.delΓ (u) if y /∈ Γ
delΓ (u[y/v]) := delΓ (u)[y/delΓ (v)] if y /∈ Γ

delΓ (Wx(u)) :=
{
u
Wx(delΓ (u))

if x ∈ Γ
if x /∈ Γ

delΓ (Cy|z
x (u)) :=

{
delΓ\x∪{y,z}(u)
Cy|z

x (delΓ (u))
if x ∈ Γ & y, z /∈ Γ & x /∈fv+(Cy|z

x (u))
otherwise

This operation does not increase the size of the term. Moreover, if x ∈ fv(t) \
fv+(t), then size(delx(t)) < size(t).

Now, let us consider a set of resources R = {c, w} and a set of sorts S =
R ∪ {s}. For every subset B ⊆ S, we define a calculus λB in the prismoid of
resources which is equipped with a set TB of well-formed terms, called B-
terms, together with a reduction relation →B given by a subset of the reduction
system described in Figure 1. Each calculus belongs to a base : the explicit



The Prismoid of Resources 467

substitution base BE which contains all the calculi having at least sort s and
the implicit substitution base BI containing all the other calculi. A term t is in
TB iff ∃ Γ s.t. Γ �B t is derivable in the following system :

x �B x

Γ �B u Δ �B v

Γ �B Δ �B uv

Γ �B u

Γ �B x �B λx.u

Γ �B u
(w ∈ B)

Γ ;x �B Wx(u)

Γ �B v Δ �B u
(s ∈ B)

Γ �B (Δ �B x) �B u[x/v]

Γ �B u
(c ∈ B)

x; (Γ �B {y, z}) �B Cy|z
x (u)

In the previous rules, �B means standard union if c /∈ B and disjoint union
if c ∈ B. Similarly, Γ �B Δ is used for Γ \ Δ if w /∈ B and for Γ \\ Δ if w ∈ B.

Notice that variables, applications and abstractions belong to all calculi of the
prismoid while weakening, contraction and substitutions only appear in calculi
having the corresponding sort. If t is a B-term, then w ∈ B implies that bound
variables of t cannot be useless, and c ∈ B implies that no free variable of t has
more than one free occurrence. Thus for example the term λz.xy belongs to the
calculus λB only if w /∈ B (thus it belongs to λ∅, λc, λs, λcs), and (xz)[z/yx]
belongs to λB only if s ∈ B and c /∈ B (thus it belongs to λs and λsw). A useful
property is that Γ �B t implies Γ = fv(t).

In order to introduce the reduction rules of the prismoid we need a meta-
level notion of substitution defined on alpha-equivalence classes; it is the one
implemented by the explicit control of resources. A B-substitution is a pair of
the form {x/v} with v ∈ TB. The application of a B-substitution {x/u} to
a B-term t is defined as follows: if |fv+(t)|x = 0 we have to check if x occurs
negatively. If |fv(t)|x = 0 or w /∈ B then t{x/u} := delx(t). Otherwise, t{x/u} :=
Wfv(u)\fv(t)(delx(t)). If |fv+(t)|x = n + 1 ≥ 2, then t{x/u} := t[y]x{y/u}{x/u}.
If |fv+(t)|x = 1, t{x/u} := delx(t){{x/u}} where {{x/u}} is defined as follows :

x{{x/u}} := u
y{{x/u}} := y x 	= y
(s v){{x/u}} := s{{x/u}} v{{x/u}}
(λy.v){{x/u}} := λy.v{{x/u}} x 	= y & y /∈ fv(u)
s[y/v]{{x/u}} := s{{x/u}}[y/v{{x/u}}] x 	= y & y /∈ fv(u)
Wy(v){{x/u}} := Wy\fv(u)(v{{x/u}}) x 	= y

Cz|w
y (v){{x/u}} :=

{
CΔ|Π

Γ (v{z/RΓ
Δ(u)}{w/RΓ

Π(u)})
Cz|w

y (v{{x/u}})

{
x = y & Γ = fv(u)
Δ,Π are fresh
x 	= y & z, w /∈ fv(u)

This definition looks complex, this is because it is covering all the calculi of the
prismoid by a unique homogeneous specification. The restriction of this operation
to particular subsets of resources results in simplified notions of substitutions.
As a typical example, the previous definition can be shown to be equivalent to
the well-known notion of higher-order substitution on s-terms [8].

We now introduce the reduction system of the prismoid. In the last column
of Figure 1 we use the notation A+ (resp. A−) to specify that the equation/rule
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belongs to the calculus λB iff A ⊆ B (resp. A ∩ B = ∅). Thus, each calculus λB

contains only a strict subset of the reduction rules and equations in Figure 1.
All the equations and rules can be understood by means of MELL Proof-

Nets reduction (see for example [9]). The reduction rules can be split into four
groups: the first one fires implicit/explicit substitution, the second one imple-
ments substitution by decrementing multiplicity of variables and/or performing
propagation, the third one pulls weakening operators as close to the top as possi-
ble and the fourth one pushes contractions as deep as possible. Alpha-conversion

Equations :
(CCA) Cx|z

w (Cy|p
x (t)) ≡ Cx|y

w (Cz|p
x (t)) c+

(CC) Cy|z
x (t) ≡ Cz|y

x (t) c+

(CCC) Cb|c
a (Cy|z

x (t)) ≡ Cy|z
x (Cb|c

a (t)) x = b, c & a = y, z c+

(WWC) Wx(Wy(t)) ≡ Wy(Wx(t)) w+

(SSC) t[x/u][y/v] ≡ t[y/v][x/u] y /∈ fv(u) & x /∈ fv(v) s+

Rules :
(β) (λx.t) u → t{x/u} s−

(B) (λx.t) u → t[x/u] s+

(V) x[x/u] → u s+

(SGc) t[x/u] → t x /∈ fv(t) s+ & w−

(SDup) t[x/u] → t[y]x [x/u][y/u] |fv+(t)|x > 1 & y fresh s+ & c−

(SL) (λy.t)[x/u] → λy.t[x/u] s+

(SAL) (t v)[x/u] → t[x/u] v x /∈ fv(v) s+

(SAR) (t v)[x/u] → t v[x/u] x /∈ fv(t) s+

(SS) t[x/u][y/v] → t[x/u[y/v]] y ∈ fv+(u) \ fv(t) s+

(SW1) Wx(t)[x/u] → Wfv(u)\fv(t)(t) (sw)+

(SW2) Wy(t)[x/u] → Wy\fv(u)(t[x/u]) x = y (sw)+

(LW) λx.Wy(t) → Wy(λx.t) x = y w+

(AWl) Wy(u) v → Wy\fv(v)(u v) w+

(AWr) u Wy(v) → Wy\fv(u)(u v) w+

(SW) t[x/Wy(u)] → Wy\fv(t)(t[x/u]) (sw)+

(SCa) Cy|z
x (t)[x/u] → CΔ|Π

Γ (t[y/RΓ
Δ(u)][z/RΓ

Π(u)])

8<
:

y, z ∈ fv+(t)
Γ = fv(u)
Δ and Π are fresh

(cs)+

(CL) Cy|z
w (λx.t) → λx.Cy|z

w (t) c+

(CAL) Cy|z
w (t u) → Cy|z

w (t) u y, z /∈ fv(u) c+

(CAR) Cy|z
w (t u) → t Cy|z

w (u) y, z /∈ fv(t) c+

(CS) Cy|z
w (t[x/u]) → t[x/Cy|z

w (u)] y, z ∈ fv+(u) (cs)+

(SCb) Cy|z
w (t)[x/u] → Cy|z

w (t[x/u]) x = w & y, z /∈ fv(u) (cs)+

(CW1) Cy|z
w (Wy(t)) → Rz

w(t) (cw)+

(CW2) Cy|z
w (Wx(t)) → Wx(Cy|z

w (t)) x = y, z (cw)+

(CGc) Cy|z
w (t) → Rz

w(t) y /∈ fv(t) c+& w−

Fig. 1. The reduction rules and equations of the prismoid
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guarantees that no capture of variables occurs during reduction. The use of pos-
itive conditions (conditions on positive free variables) in some of the rules will
become clear when discussing projection at the end of Section 4.

The notations ⇒R, ≡E and →R∪E , mean, respectively, the rewriting (resp.
equivalence and rewriting modulo) relation generated by the rules R (resp. equa-
tions E and rules R modulo equations E). Similarly, ⇒B, ≡B and →B mean,
respectively, the rewriting (resp. equivalence and rewriting modulo) relation gen-
erated by the rules (resp. the equations and rules modulo equations) of the cal-
culus λB. Thus for example the reduction relation →∅ is only generated by the
β-rule exactly as in λ-calculus. Another example is →c which can be written
→{β,CL,CAL,CAR,CGc}∪{CCA,CC,CCC}. Sometimes we mix both notations to denote par-
ticular subrelations, thus for example →c\β means →{CL,CAL,CAR,CGc}∪{CCA,CC,CCC}.

Among the eight calculi of the prismoid we can distinguish the λ∅-calculus,
known as λ-calculus, which is defined by means of the →∅-reduction relation
on ∅-terms. Another language of the prismoid is the λcsw-calculus, a variation
of λlxr [9], defined by means of the →{c,s,w}-reduction relation on {c, s, w}-
terms. A last example is the λw-calculus given by means of →w-reduction, that
is, →{β,LW,AWl,AWr}∪{WWC}.

A B-term t is in B-normal form is there is no u s.t. t →B u. A B-term t is
said to be B-strongly normalising, written t ∈ SNB, iff there is no infinite
B-reduction sequence starting at t.

The system enjoys the following properties.

Lemma 1 (Preservation of Well-Formed Terms by Reduction). If Γ �B

t and t →B u, then ∃ Δ ⊆ Γ s.t. Δ �B u. Moreover w ∈ B implies Δ = Γ .

Lemma 2 (Full Composition). Let t[y/v] ∈ TB. Then t[y/v] →∗
B t{y/v}.

3 Adding Resources

This section is devoted to the simulation of the λ∅-calculus into richer calculi
having more resources. The operation is only defined in the calculi of the base
BI . We consider the function ARA( ) : T∅ 
→ TA for A ⊆ R which enriches
a λ∅-term in order to fulfill the constraints needed to be an A-term. Adding
is done not only on a static level (the terms) but also on a dynamic level
(reduction).

ARA(x) := x

ARA(λx.t) :=
{

λx.Wx(ARA(t))
λx.ARA(t)

w ∈ A & x /∈ fv(t)
otherwise

ARA(t u) :=
{

CΔ|Π
Γ (RΓ

Δ(ARA(t))RΓ
Π(ARA(u)))

ARA(t) ARA(u)

{
c ∈ A & Γ = fv(t) ∩ fv(u)
Δ and Π are fresh

otherwise

For example, adding resource c (resp. w) to t = λx.yy gives λx.Cy1|y2
y (y1y2)

(resp. λx.Wx(yy)), while adding both of them gives λx.Wx(Cy1|y2
y (y1y2)).
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We now establish the relation between ARA() and implicit substitution, which
is the technical key lemma of the paper.

Lemma 3. Let t, u ∈ T∅. Then

– If c /∈ A, then ARA(t){x/ARA(u)} = ARA(t{x/u}).
– If c ∈ A, then CΔ|Π

Γ (RΓ
Δ(ARA(t)){x/RΓ

Π(ARA(u))}) →∗
A ARA(t{x/u}), where

Γ = (fv(t) \ x) ∩ fv(u) and Δ,Π are fresh sets of variables.

Proof. By induction on t, using the usual lambda-calculus substitution definition
[3] for x, as the source calculus is the lambda-calculus.

Theorem 1 (Simulation). Let t ∈ T∅ such that t →∅ t′.

– If w ∈ A, then ARA(t) →+
A Wfv(t)\fv(t′)(ARA(t′)).

– If w /∈ A, then ARA(t) →+
A ARA(t′).

Proof. By induction on the reduction relation →β using Lemma 3.

While Theorem 1 states that adding resources to the λ∅-calculus is well behaved,
this does not necessarily hold for any arbitrary calculus of the prismoid. Thus
for example, what happens when the λs-calculus is enriched with resource w?
Is it possible to simulate each s-reduction step by a sequence of sw-reduction
steps? Unfortunately the answer is no: we have t1 = (x y)[z/v] →s x y[z/v] = t2
but ARw(t1) = Wz(x y)[z/v] 	→sw x Wz(y)[z/v] = ARw(t2).

4 Removing Resources

In this section we give a mechanism to remove resources, that is, to change the
status of weakening and/or contraction from explicit to implicit. This is dual to
the operation allowing to add resources to terms presented in Section 3. Whereas
adding is only defined within the implicit base, removing is defined in both bases.
As adding, removing is not only done on a static level, but also on a dynamic
one. Thus for example, removing translates any csw-reduction sequence into a
B-reduction sequence, for any B ∈ {s, cs, sw}.

Given two lists of variables Γ = y1 . . . yn (with all yi distinct) and Δ =
z1 . . . zn, then (Γ 
→ Δ)(y) is y if y /∈ Γ , or zi if y = yi for some i. The
collapsing function of a term without contractions is then defined modulo α-
conversion as follows:

SΓ
Δ(y) := (Γ 
→ Δ)(y)

SΓ
Δ(uv) := SΓ

Δ(u)SΓ
Δ(v)

SΓ
Δ(λy.u) := λy.SΓ

Δ(u) y /∈ Γ
SΓ

Δ(u[y/v]) := SΓ
Δ(u)[y/SΓ

Δ(v)] y /∈ Γ

SΓ
Δ(Wy(v)) :=

{
SΓ

Δ(v)
Wy(SΓ

Δ(v))
(Γ 
→ Δ)(y) ∈ fv(SΓ

Δ(v))
(Γ 
→ Δ)(y) /∈ fv(SΓ

Δ(v))

This function renames the variables of a term in such a way that every occur-
rence of Wx(t) in the term implies x /∈ fv(t). For example Sy,z

x,x(Wy(Wz(x))) = x.
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The function RRA( ) : TB 
→ TB\A removes A ⊆ R from a B-term .

RRA(x) := x RRA(t[x/u]) := RRA(t)[x/RRA(u)]

RRA(λx.t) := λx.RRA(t) RRA(Wx(t)) :=
{
RRA(t)
Wx(RRA(t))

if w ∈ A

if w /∈ A

RRA(t u) := RRA(t) RRA(u) RRA(Cy|z
x (t)) :=

{
Sy,z

x,x(RRA(t))
Cy|z

x (RRA(t))
if c ∈ A

if c /∈ A

Lemma 4. Let t, u ∈ TA and b ∈ R. Then RRb(t{x/u}) = RRb(t){x/RRb(u)}.

Calculi of the prismoid include rules/equations to handle substitution but also
other rules/equations to handle resources {c, w}. Moreover, implicit (resp. ex-
plicit) substitution is managed by the β-rule (resp. the whole system s). We can
then split the reduction relation →B in two different parts: one for (implicit or
explicit) substitution, which can be strictly projected into itself, and another
one for weakening and contraction, which can be projected into a more subtle
way given by the following statement.

Theorem 2. Let A ⊆ R such that A ⊆ B ⊆ S and let t ∈ TB. If t ≡B u, then
RRA(t) ≡B\A RRA(u). Otherwise, we sum up in the following array :

s
/∈

B t ⇒β u RRA(t) →+
β RRA(u)

s
∈

B t ⇒s u RRA(t) →+
s RRA(u)

t ⇒B\β u
RRA(t) →∗

B\β\A RRA(u)
t ⇒B\s u

RRA(t) →∗
B\s\A RRA(u)

RRB(t) = RRB(u) RRB(t) = RRB(u)

Proof. By induction on the reduction relation using Lemma 4. For the points
involving RRA( ), one can first consider the case where A is a singleton. Then the
general result follows from two successive applications of the simpler property.

It is now time to discuss the need of positive conditions (conditions involving pos-
itive free variables) in the specification of the reduction rules of the prismoid. For
that, let us consider a relaxed form of SS1 rule t[x/u][y/v] → t[x/u[y/v]] if y ∈
fv(u) \ fv(t) (instead of y ∈ fv+(u) \ fv(t)).

The need of the condition y ∈ fv(u) is well-known [4], otherwise PSN does
not hold. The need of the condition y /∈ fv(t) is also natural if one wants to
preserve well-formed terms. Now, the reduction step t1 = x[x/Wy(z)][y/y′] →SS1

x[x/Wy(z)[y/y′]] = t2 in the calculus with sorts {s, w} cannot be projected into
RRw(t1) = x[x/z][y/y′] →SS1 x[x/z[y/y′]] = RRw(t2) since y /∈ fv(z). Similar
examples can be given to justify positive conditions in rules SDup, SCa and CS.

Lemma 5. Let t ∈ T∅ and let A ⊆ R. Then RRA(ARA(t)) = t.

The following property states that administration of weakening and/or contrac-
tion is terminating in any calculus. The proof can be done by interpreting
reduction steps by a strictly decreasing arithmetical measure.
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Lemma 6. If s /∈ B, then the reduction relation →B\β is terminating. If s ∈ B,
then the reduction relation →B\s is terminating.

We conclude this section by relating adding and removing resources :

Corollary 1. Let ∅ 	= A ⊆ R. Then, the unique A-normal form of t ∈ TA is
ARA(RRA(t)) if w /∈ A, and Wfv(t)\fv(RRA(t))(ARA(RRA(t))) if w ∈ A.

Proof. Suppose w ∈ A. Termination of →A (Lemma 6) implies that there is
t′ in A-normal form such that t →∗

A t′. By Lemma 1, fv(t) = fv(t′) and by
Theorem 2, RRA(t) = RRA(t′). Since t′ is in A-normal form, then we get
t′ ≡A Wfv(t′)\fv(RRA(t′))(ARA(RRA(t′))) by a simple induction. Hence, t′ ≡A

Wfv(t)\fv(RRA(t))(ARA(RRA(t))). To show uniqueness, let us consider two A-normal
forms t′1 and t′2 of t. By the previous remark, both t′1 and t′2 are congruent to the
term Wfv(t)\fv(RRA(t))(ARA(RRA(t))) which concludes the case. The case w /∈ A is
similar.

5 Untyped Properties

We first show PSN for all the calculi of the prismoid. The proof will be split in
two different subcases, one for each base. This dissociation comes from the fact
that redexes are erased by β-reduction in base BI while they are erased by SGc
and/or SW1-reduction in base BE .

Theorem 3 (PSN for the prismoid). Let B ⊆ S and A = B \ {s}. If t ∈
T∅ & t ∈ SN ∅, then ARA(t) ∈ SNB.

Proof. There are three cases, one for BI and two subcases for BE .

– Suppose s /∈ B. We first show that u ∈ TB & RRB(u) ∈ SN ∅ imply u ∈ SNB.
For that we apply Theorem 6 in the appendix with A1 =→β , A2 =→B\β,
A =→β and R = RRB( ), using Theorem 2 and Lemma 6. Take u = ARB(t).
Then RRB(ARB(t)) =L.5 t ∈ SN ∅ by hypothesis. Thus, ARB(t) ∈ SNB.

– Suppose B = {s}. The proof of ARs(t) = t ∈ SNs follows a modular proof
technique to show PSN of calculi with full composition which is completely
developed in [8]. Details concerning the s-calculus can be found in [17].

– Suppose s ∈ B. Then B = {s} ∪ A. We show that u ∈ TB & RRA(u) ∈ SNs
imply u ∈ SNB. For that we apply Theorem 6 in the appendix with A1 =→s,
A2 =→B\s, A =→s and R = RRA( ), using Theorem 2 and Lemma 6.
Now, take u = ARA(t). We have RRA(ARA(t)) = RRA(ARA(t)) =L.5 t ∈ SN ∅
by hypothesis and t ∈ SNs by the previous point. Thus, ARA(t) ∈ SNB.

Confluence of each calculus of the prismoid is based on that of the λ∅-
calculus [3]. For any A ⊆ R, consider xc : T{s}∪A 
→ TA which replaces explicit
by implicit substitution.

xc(y) := y xc(Wy(t)) := Wy(xc(t))
xc(t u) := xc(t) xc(u) xc(Cy1|y2

y (t)) := Cy1|y2
y (xc(t))

xc(λy.t) := λy.xc(t) xc(t[y/u]) := xc(t){y/xc(u)}
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Lemma 7. Let t ∈ TB. Then 1) t →∗
B xc(t), 2) RRB\s(xc(t)) = xc(RRB\s(t)).

3) if t →s u, then xc(t) →∗
β xc(u).

Proof. The first and the second property are shown by induction on t using
respectively Lemmas 2 and 4. The third property is shown by induction on
t →s u.

Theorem 4. All the languages of the prismoid are confluent.

Proof. Let t →B t1 and t →B t2. We remark that B = A or B = {s} ∪ A, with
A ⊆ R. We have RRA(t) →∗

B\A RRA(ti) (i=1,2) by Theorem 2; xc(RRA(t)) →∗
β

xc(RRA(ti)) (i=1,2) by Lemma 7; and xc(RRA(ti)) →∗
β t3 (i=1,2) for some

t3 ∈ T∅ by confluence of the λ-calculus [3]. Also, ARA(RRA(xc(ti))) =L. 7
ARA(xc(RRA(ti))) →∗

A WΔi(ARA(t3)) for some Δi (i=1,2) by Theorem 1.
But ti →∗

B (L. 7) xc(ti) →∗
A (C. 1) WΓi(ARA(RRA(xc(ti)))) for some Γi

(i=1,2). Then WΓi(ARA(RRA(xc(ti)))) →∗
A WΓi∪Δi(ARA(t3)) (i=1,2). Now, →∗

A

⊆ →∗
B so in order to close the diagram we reason as follows.

If w /∈ B, then Γ1 ∪Δ1 = Γ2∪Δ2 = ∅ and we are done. If w ∈ B, then →B pre-
serves free variables by Lemma 1 so that fv(t) = fv(ti) = fv(WΓi∪Δi(ARA(t3)))
(i=1,2) which gives Γ1 ∪ Δ1 = Γ2 ∪ Δ2

6 Typing

We now introduce simply typed terms for all the calculi of the prismoid, and
show that they all enjoy strong normalisation. Types are built over a countable
set of atomic symbols and the type constructor →.

An environment is a finite set of pairs of the form x : T . If Γ = {x1 :
T1, ..., xn : Tn} is an environment then the domain of Γ is dom(Γ ) = {x1, ..., xn}.
Two environments Γ and Δ are said to be compatible if x : T ∈ Γ and
x : U ∈ Δ imply T = U . Two environments Γ and Δ are said to be disjoint
if there is no common variable between them. Compatible union (resp. disjoint
union) is defined to be the union of compatible (resp. disjoint) environments.

Typing judgements have the form Γ 1 t : T for t a term, T a type and Γ
an environment. Typing rules extend the inductive rules for well-formed terms
(Section 2) with type annotations. Thus, typed terms are necessarily well-formed
and each set of sorts B has its own set of typing rules.

x : T �B x : T

Γ �B t : T
(c ∈ B)

x : U ; (Γ �B {y : U, z : U}) �B Cy|z
x (t) : T

Γ �B t : T
(w ∈ B)

Γ ;x : U �B Wx(t) : T

Γ �B u : U Δ �B t : T
(s ∈ B)

Γ �B (Δ �B x : U) �B t[x/u] : T

Γ �B t : U

Γ �B x : T �B λx.t : T → U

Γ �B t : T → U Δ �B u : T

Γ �B Δ �B tu : U
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A term t ∈ TB is said to have type T (written t ∈ T T
B ) iff there is Γ s.t.

Γ 1B t : T . A term t ∈ TB is said to be well-typed iff there is T s.t. t ∈ T T
B .

Remark that every well-typed B-term has a unique type.

Lemma 8. If Γ 1B t : T , then 1) fv(t) = dom(Γ ), 2) Γ \ Π ;Δ 1B RΠ
Δ(t) : T ,

for every Π ⊆ Γ and fresh Δ, 3) RRA(t) ∈ T T
B\A, for every A ⊆ R.

Proof. By induction on Γ 1B t : T .

Theorem 5 (Subject Reduction). If t ∈ T T
B & t →B u, then u ∈ T T

B .

Proof. By induction on the reduction relation using Lemma 8.

Corollary 2 (Strong normalization). Let t ∈ T T
B , then t ∈ SNB.

Proof. Let A ⊆ R so that B = A or B = A∪{s}. It is well-known that (simply)
typed λ∅-calculus is strongly normalising (see for example [3]). It is also straight-
forward to show that PSN for the λs-calculus implies strong normalisation for
well-typed s-terms (see for example [7]). By Theorem 2 any infinite B-reduction
sequence starting at t can be projected into an infinite (B\A)-reduction sequence
starting at RRA(t). By Lemma 8 RRA(t) is a well-typed (B \ A)-term, that is, a
well-typed term in λ∅ or λs. This leads to a contradiction.

7 Conclusion and Future Work

The prismoid of resources is proposed as an homogeneous framework to define λ-
calculi being able to control weakening, contraction and linear substitution. The
formalism is based on MELL Proof-Nets so that the computational behaviour
of substitution is not only based on the propagation of substitution through
terms but also on the decreasingness of the multiplicity of variables that are
affected by substitutions. All calculi of the prismoid enjoy sanity properties such
as simulation of β-reduction, confluence, preservation of β-strong normalisation
and strong normalisation for typed terms.

The technology used in the prismoid could also be applied to implement
higher-order rewriting systems. Indeed, it seems possible to extend these ideas
to different frameworks such as CRSs [11], ERSs [10] or HRSs [15].

Another open problem concerns meta-confluence, that is, confluence for terms
with meta-variables. This could be useful in the framework of Proof Assistants.

Finally, a more technical question is related to the operational semantics of
the calculi of the prismoid. It seems possible to extend the ideas in [2] to our
framework in order to identify those reduction rules of the prismoid that could
be transformed into equations. Equivalence classes will be bigger, but reduc-
tion rules will coincide exactly with those of Nets [2]. While the operational
semantics proposed in this paper is more adapted to implementation issues, the
opposite direction would give a more abstract and flexible framework to study
denotational properties.
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A Appendix

Theorem 6 ([12]). Let A1 and A2 be two reduction relations on the set k and
let A be a reduction relation on the set K. Let R ⊆ k× K. Suppose

– For every u, v, U (u R U & u A1 v imply ∃V s.t. v R V and U A+ V ).
– For every u, v, U (u R U & u A2 v imply ∃V s.t. v R V and U A∗ V ).
– The relation A2 is well-founded.

Then, t R T & T ∈ SN A imply t ∈ SN A1∪A2 .
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Abstract. Our goal is to start the investigation of dynamic algorithms
for solving games that are played on finite graphs. The dynamic game
determinacy problem calls for finding efficient algorithms that decide the
winner of the game when the underlying graph undergoes repeated mod-
ifications. In this paper, we focus on turn-based reachability games. We
provide an algorithm that solves the dynamic reachability game problem
on trees. The amortized time complexity of our algorithm is O(log n),
where n is the number of nodes in the current graph.

1 Introduction

We start to investigate dynamic algorithms for solving games that are played on
finite graphs. Games played on graphs, with reachability, Büchi, Muller, Streett,
parity and similar type of winning conditions, have recently attracted a great
attention due to connections with model checking and verification problems,
automata and logic [6][11][13][17]. Given one of these games, to solve the game
means to design an (efficient) algorithm that tells us from which nodes a given
player wins the game. Polynomial time algorithms exist to solve some of these
games, while efficient algorithms for other games remain unknown. For example,
on a graph with n nodes and m edges, the reachability game problem is in
O(n + m) and is PTIME-complete [8], and Büchi games are in O(n · m) [1].
Parity games are known to be in NP∩ Co-NP but not known to be in P.

An algorithm for solving the games is static if the games remain unchanged
over time. We pose the dynamic game determinacy problem:

We would like to maintain the graph of the game that undergoes a se-
quence of update and query operations in such a way that facilitates an
efficient solution of the current game.

Contrary to the static case, the dynamic determinacy problem takes as input
a game G and a (finite or infinite) sequence α1, α2, α3, . . . of update or query
operations. The goal is to optimize the average running time per operation over
a worst-case sequence of operations. This is known as the amortized running
time of the operations.

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 477–488, 2009.
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There has recently been increasing interest in dynamic graph algorithms (See,
for example, [4][5]). The dynamic reachability problem on graphs have been in-
vestigated in a series of papers by King [9], Demetrescu and Italiano [3], Roditty
[14] and Roditty and Zwick [15][16]. In [16], it is shown that for directed graphs
with m edges and n nodes, there is a dynamic algorithm for the reachability
problem which has an amortized update time of O(m+n logn) and a worst-case
query time of O(n). This paper extends this line of research to dynamic reacha-
bility game algorithms. In the setting of games, for a given directed graph G and
a player σ, a set of nodes T is reachable from a node u in G means that there is
a strategy for player σ such that starting from u, all paths produced by player σ
following that strategy reach T , regardless of the actions of the opponent. Hence,
the dynamic reachability game problem can be viewed as a generalization of the
dynamic reachability problem for graphs.

We now describe two-person reachability games played on directed finite
graphs. The two players are Player 0 and Player 1. The arena A of the game is
a directed graph (V0, V1, E), where V0 is a finite set of 0-nodes, V1 is a finite set
of 1-nodes disjoint from V0, and E ⊆ V0 × V1 ∪ V1 × V0 is the edge relation. We
use V to denote V0 ∪ V1. A reachability game G is a pair (A, T ) where A is the
arena and T ⊆ V is the set of target nodes for Player 0.

The players start by placing a token on some initial node v ∈ V and then
move the token in rounds. At each round, the token is moved along an edge
by respecting the direction of the edge. If the token is placed at u ∈ Vσ, where
σ ∈ {0, 1}, then Player σ moves the token from u to a v such that (u, v) ∈ E.
The play stops when the token reaches a node with no out-going edge or a
target node. Otherwise, the play continues forever. Formally, a play is a (finite
or infinite) sequence π = v0 v1 v2 . . . such that (vi, vi+1) ∈ E for all i. Player
0 wins the play π if π is finite and the last node in π is in T . Otherwise, Player
1 wins the play.

In this paper we provide an algorithm that solves the dynamic reachability
game played on trees. We investigate the amortized time complexity of the al-
gorithm. We concentrate on trees because: (1) Trees are simple data structures,
and the study of dynamic algorithms on trees is the first step towards the dy-
namic game determinacy problem. (2) Even in the case of trees the techniques
one needs to employ is non-trivial. (3) The amortized time analysis for the dy-
namic reachability game problem on graphs, in general case, is an interesting
hard problem. (4) Finally, we give a satisfactory solution to the problem on
trees. We show that the amortized time complexity of our algorithm is of order
O(log n), where n is the number of nodes on the tree. The space complexity of
our algorithm is O(n).

2 A Static Algorithm for Reachability Games

Let G = (A, T ) be a reachability game. A (memoryless) strategy for Player σ is a
partial function fσ : Vσ → V1−σ. A play π = v0 v1 ... conforms fσ if vi+1 = fσ(vi)
whenever vi ∈ Vσ and fσ is defined on vi for all i. All strategies in this paper
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are memoryless. A winning strategy for Player σ from v is a strategy fσ such
that Player σ wins all plays starting from v that conform fσ. A node u is a
winning position for Player σ, if Player σ has a winning strategy from u. The
σ-winning region, denoted Wσ, is the set of all winning positions for Player σ.
Note that the winning regions are defined for memoryless strategies. A game
enjoys memoryless determinacy if the regions W0 and W1 partition V .

Theorem 1 (Reachability game determinacy[7]). Reachability games en-
joy memoryless determinacy. Moreover, there is an algorithm that computes W0

and W1 in time O(n + m).

Proof. For Y ⊆ V , set Pre(Y ) = {v ∈ V0 | ∃u[(v, u) ∈ E ∧ u ∈ Y ]} ∪ {v ∈ V1 |
∀u[(v, u) ∈ E → u ∈ Y ]}. Define a sequence T0, T1, ... such that T0 = T , and
for i > 0, Ti =Pre(Ti−1) ∪ Ti−1. There is an s such that Ts = Ts+1. We say a
node u has rank r, r ≥ 0, if u ∈ Tr − Tr−1. A node u has infinite rank if u /∈ Ts.
Once checks that a node u ∈ W0 if and only if u has a finite rank. Computing
W0 takes O(n + m) time. ��

3 Dynamic Reachability Game Problem: A Set-Up

As mentioned above, the dynamic game determinacy problem takes as input a
reachability game G = (A, T ) and a sequence α1, α2, . . . of update and query
operations. The operations produce the sequence of games G0, G1, . . . such that
Gi is obtained from Gi−1 by applying the operation αi. A dynamic algorithm
should solve the game Gi for each i. We use the notation

Ai = (V0,i ∪ V1,i, Ei), Vi, Ti, Wσ,i

to denote the arena, the set of nodes, the target set and σ-winning region for Gi.
We define the following six update operations and one query operation:

1. InsertNode(u, i, j) operation, where i, j ∈ {0, 1}, creates a new node u in Vi.
Set u as a target if j = 1 and not a target if j = 0.

2. DeleteNode(u) deletes u ∈ V where u is isolated, i.e., with no incoming or
outgoing edge.

3. InsertEdge(u, v) operation inserts an edge from u to v.
4. DeleteEdge(u, v) operation deletes the edge from u to v.
5. SetTarget(u) operation sets node u as a target.
6. UnsetTarget(u) operation sets node u not as a target.
7. Query(u) operation returns true if u ∈ W0 and false if u ∈ W1

By Theorem 1, each node of Vi belongs to either W0,i or W1,i.

Definition 1. A node u is in state σ if u ∈ Wσ. The node u changes its state
at stage i + 1, if u is moved either from W0,i to W1,i+1 or from W1,i to W0,i+1.
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Using the static algorithm from Theorem 1, one produces two lazy dynamic
algorithms for reachability games. The first algorithm runs the static algorithm
after each update and therefore query takes constant time at each stage. The
second algorithm modifies the game graph after each update operation without
re-computing the winning positions, but the algorithm runs the static algorithm
for the Query(u) operation. In this way, the update operations take constant
time, but Query(u) takes the same time as the static algorithm. The amortized
time complexity in both algorithms is the same as the static algorithm.

4 Reachability Game Played on Trees

This section is the main technical contribution of the paper. All trees are di-
rected, and we assume that the reader is familiar with basic terminology for
trees. A forest consists of pairwise disjoint trees. Since the underlying tree of the
game undergos changes, the game will in fact be played on forests. We however
still say that a reachability game G is played on trees if its arena is a forest F .
We describe a fully dynamic algorithm for reachability games played on trees.

A forest F is implemented as a doubly linked list List(F ) of nodes. A node
u is represented by the tuple (p(u), pos(u), tar(u)) where p(u) is a pointer to
the parent of u (p(u) = null if u is a root), pos(u) = σ if u ∈ Vσ and a boolean
variable tar(u) = true iff u is a target.

Our algorithm supports all the operations listed in Section 3. At stage s,
the algorithm maintains a forest Fs obtained from Fs−1 after performing an
operation. We briefly discuss the operations and their implementations:

– Inputs of the update and query operation are given as pointers to their
representatives in the linked list List(Fs).

– The operations InsertNode and DeleteNode are performed in constant time.
The InsertNode(u, i, j) operation links the last node in List(Fs) to a new
node u. The DeleteNode(u) operation deletes u from List(Fs).

– All other update operations and the query operation have amortized time
O(log n), where n is the number of nodes in V .

– The InsertEdge(u, v) operation is performed only when v is the root of a
tree not containing u. InsertEdge(u, v) links the trees containing u and v.
DeleteEdge(u, v) does the opposite by splitting the tree containing u and v
into two trees. One contains u and the other has v as its root.

4.1 Splay Trees

We describe splay trees (see [10] for details) which we will use in our algorithm.
The splay trees form a dynamic data structure for maintaining elements drawn
from a totally ordered domain D. Elements in D are arranged in a collection PD

of splay trees, each of which is identified by the root element.

– Splay(A, u): Reorganize the splay tree A so that u is at the root if u ∈ A.
– Join(A,B): Join two splay trees A,B ∈ PD, where each element in A is less

than each element in B, into one tree.
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– Split(A, u): Split the splay tree A ∈ PD into two new splay trees

Above(u) = {x ∈ A | x > u} and Below(u) = {x ∈ A | x ≤ u}.

– Max(A)/Min(A): Returns the Max/Min element in A ∈ PD.

Theorem 2 (splay trees[12]). For the splay trees on PD, the amortized time
of the operations above is O(log n), where n is the cardinality of D. ��

4.2 Dynamic Path Partition

Recall that a node u is in state σ at stage s if u ∈ Wσ,s. Denote the state of
u at stage s by States(u). The update operations may change the state of u.
This change may trigger a series of state changes on the ancestors of u. The
state of u does not change if no update operation is applied to a descendant
of u. We need to have a ChangeState(u) algorithm which carries out the nec-
essary updates when the state of u is changed. The ChangeState(u) algorithm
will not be executed alone, but will rather be a subroutine of other update
operations.

One may propose a naive ChangeState(u) algorithm as follows. We hold for
each node v its current state. When ChangeState(u) is called, it first changes
the state of u, then checks if the parent p(u) of u needs to change its state.
If so, we changes the state of p(u), and checks if the parent of p(u) needs to
change its state, etc. This algorithm takes O(n) amortized time. Our goal is to
improve this time bound. For this, we introduce dynamic path partition explained
below.

Let x <F y denote the fact that x is an ancestor of y in forest F . Set
Path(x, y) = {z | x ≤F z ≤F y}.

Definition 2. A path partition of a forest F is a collection PF of sets such that
PF partitions the set of nodes in F and each set in PF is of the form Path(x, y)
for some x, y ∈ F .

Nodes in Path(x, y) are linearly ordered by <F . Call the element of PF that
contains u the block of u. A block is homogeneous if all its elements have the same
state. A path partition PF is homogeneous if each block in PF is homogeneous.
For any u in Fs, set νs(u) = |{v | (u, v) ∈ Es ∧ States(u) = States(v)}|.

Definition 3. A node u in Fs is stable at stage s if u ∈ Ts or for some σ ∈
{0, 1}, u ∈ Vσ,s ∩ Wσ,s and νs(u) ≥ 2. We use Zs to denote the set of stable
nodes at stage s.

The following lemma shows how state changes influence non-stable nodes in
homogeneous fragments of blocks. The proof follows from the definitions.

Lemma 1. Suppose x is stable, x ≤Fs y, Path(x, y) is homogeneous and there
is no stable node in {z | x <Fs z ≤Fs y}. If y changes state at stage s + 1 then
the nodes in the set {z | x <Fs z ≤Fs y} are precisely those nodes that need to
change their states. ��
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Definition 4. A path partition of F is stable if whenever a node u is stable, it
is the ≤F -maximum element in its own block.

From this definition, for a stable path partition, if u is stable, all elements x 	=
u in the block of u are not stable. An example of a stable and homogeneous
partition is the trivial partition consisting of singletons.

At stage s, the algorithm maintains two data structures, one is the linked list
List(Fs) as described above, and the other is the path partition PFs . Each node
u in List(Fs) has an extra pointer to its representative in PFs . The path partition
is maintained to be homogeneous and stable. Denote the block of u at stage s
by Bs(u). To obtain logarithmic amortized time, each Bs(u) is represented by a
splay tree.

4.3 ChangeState(u) Algorithm

The ChangeState(u) algorithm carries out two tasks. One is that it changes the
states of all the necessary nodes of the underlying forest once u changes its state.
The second is that it changes the path partition by preserving its homogeneity
and stability properties. For the ease of notations, in this subsection we do not
use the subscripts s for the forest Fs and the target set Ts. We write F for Fs

and T for Ts.
We explain our ChangeState(u) algorithm informally. Suppose u changes its

state at stage s + 1. The algorithm defines a sequence of nodes x1 >F x2 >F

. . . where x1 = u. For i ≥ 1, the algorithm splits Bs(xi) into two disjoint
sets Above(xi) and Below(xi) and temporarily sets Bs+1(xi) = Below(xi). By
homogeneity, all nodes in Below(xi) have the same state at stage s. Change
the state of all nodes in Bs+1(xi) (this can be done by Lemma 1) and join the
current two blocks containing u and Bs+1(xi) into one. If min{Bs+1(xi)} is the
root, stop the process. Otherwise, consider the parent of min{Bs+1(xi)} which is
wi = p(min{Bs+1(xi)}). If States(wi) 	= States(xi) or wi ∈ Zs, stop the loop, do
not define xi+1 and Bs+1(u) is now determined. Otherwise, set xi+1 = wi and
repeat the above process for xi+1. Consider the last wi in the process described
above that did not go into the block of u. If wi /∈ Zs and it becomes stable
after the change, split Bs(wi) into Above(wi) and Below(wi) and declare that
wi ∈ Zs+1. These all determine the new partition at stage s + 1.

Algorithm 1 implements the ChangeState(u) procedure. The current block of
v is denoted by B(v). Elements of B(v) are stored in a splay tree with order
≤F . With the root of each splay tree B(v) the variable q(B(v)) ∈ {0, 1} is
associated to denote the current state of nodes in B(v). The while loop computes
the sequence x1, x2, ... and w1, w2, ... described above using the variables x and
w. The boolean variable ChangeNext decides if the while loop is active. The
boolean variable Stable(v) indicates whether v is stable. With each stable node
v, the variable n(v) equals ν(v) at the given stage.

The next two lemmas imply that the path partition obtained after the execu-
tion of ChangeState(u) remains homogeneous and stable.

Lemma 2. Bs+1(u) = {z |States(z) 	= States+1(z)}.
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Algorithm 1. ChangeState(u)
1: ChangeNext ← true; x ← u.
2: while ChangeNext do
3: Split(B(x), x); q(B(x)) ← 1 − q(B(x)); Join(B(u), B(x)).
4: if p(min{B(x)}) = null then Stop the process. end if
5: w ← p(min{B(x)}).
6: if Stable(w) ∨ q(B(w)) = q(B(u)) then ChangeNext ← false. end if
7: x ← w.
8: end while
9: Run UpdateStable(x, u)

Algorithm 2. UpdateStable(x, u)
1: if Stable(x) then
2: n(x) ← [q(B(u)) = q(B(x))? n(x) + 1 : n(x) − 1].
3: if n(x) < 2 ∧ ¬ tar(x) then Stable(x) ← false. end if
4: else
5: Stable(x) ← true; Split(B(x), x); n(x) ← 2.
6: end if

Proof. If z = u then States(z) 	= States+1(z). Assume z 	= u and z ∈ Bs+1(u).
Let x be the ≤F -maximum node in Bs(z). By definition of Bs+1(u), x /∈ Zs

and States(x) = States(u). Therefore by Lemma 1 and the construction of the
algorithm, Bs+1(u) ⊆ {z |States(z) 	= States+1(z)}.

Conversely, if States(z) 	= States+1(z), z must be an ancestor of u. Let x be the
≤F -minimum node in Bs+1(u). If x is the root, {z |States(z) 	= States+1(z)} ⊆
Bs+1(u). If x is not the root, either p(x) ∈ Zs or States(p(x)) = States+1(u).
Again by Lemma 1 and description of the algorithm, States(x) = States+1(x)
and thus {z |States(z) 	= States+1(z)} ⊆ Bs+1(u). ��

Lemma 3. Suppose v /∈ Zs. The node v ∈ Zs+1 if and only if v is the parent of
the ≤F -least node that changes its state at stage s + 1.

Proof. Suppose for simplicity that v ∈ V0,s. The case when v ∈ V1,s can be
proved in a similar way. Suppose one of v’s children, say v0, is the ≤F -least node
that changes its state at stage s + 1. If States(v) = 1, then all of its children
are in W1,s. Thus States+1(v0)=0, and v should also changes to state 0. This
contradicts with the ≤F -minimality of v1. Therefore v ∈ W0,s. Since v /∈ Zs,
exactly one of its child, say v1 is in W0,s. If v1 = v0, then none of v’s children is
in W0,s+1 and States(v) 	= States+1(v). Therefore v1 	= v0. Thus at stage s + 1,
v has exactly two children in W0,s+1 and v ∈ Zs+1.

On the other hand, suppose v ∈ Zs+1. This means that, v ∈ W0,s+1 and v
has two children v0, v1 in W0,s+1. Note that for any x, at most one child of x
may change state at any given stage. Therefore, at most one of v0 and v1, say
v1, is in W0,s. Hence v ∈ W0,s, and States(v) =States+1(v). Therefore v0 is the
≤F -least node that changes state at stage s + 1. ��
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4.4 Update and Query Operations

We describe the update and query operations. The query operation takes a
parameter u and returns q(B(u)), which is the state variable associated with the
root of the splay tree representing B(u). We use an extra variable c(u) to denote
the current number of children of u.

In principle, the algorithms for operations InsertEdge(u, v), DeleteEdge(u, v),
SetTarget(u) and UnsetTarget(u) perform the following three tasks. (1) Firstly, it
carries out the update operation on u and v. (2) Secondly, it calls ChangeState(u)
in the case when u needs to change state. (3) Lastly, it updates c(z), n(z) and
Stable(z) for each z. Task (1) is straightforward by changing the values of p(v)
and tar(u). Task (2) (3) can be done by using a fixed number of if statements,
each with a fixed boolean condition involving comparisons on the variables. We
illustrate this using the InsertEdge(u, v) operation as follows.

Algorithm 3. InsertEdge(u, v)
1: p(v) ← u; c(u) ← c(u) + 1.
2: if ¬ tar(u) ∧ q(B(u)) = q(B(v)) ∧ (c(u) = 1 or q(B(u)) = Pos(u)) then
3: Run ChangeState(u).
4: else if Stable(u) ∧ q(B(u)) = q(B(v)) then
5: n(u) ← n(u) + 1.
6: else if ¬Stable(u) ∧ c(u) > 1 ∧ q(B(u)) = q(B(v)) =Pos(u) then
7: Stable(u) ← true; Split(B(u), u); n(u) ← 2.
8: end if

The InsertEdge(u, v) operation is described in Algorithm 3. Suppose the path
partition on Fs is homogeneous and stable, and

1. q(B(z)) = States(z).
2. n(z) = |{z′ | (z, z′) ∈ Es∧ States(z) = States(z′)}|.
3. c(z) = |{z′ | (z, z′) ∈ Es}|.
4. Stable(z) is true if and only if z ∈ Zs.

Suppose the edge (u, v) is inserted at stage s + 1. We prove the following two
lemmas which imply the correctness of the algorithm.

Lemma 4. ChangeState(u) is called in the InsertEdge(u, v) algorithm if and
only if States(u) 	= States+1(u).

Proof. Note that ChangeState(u) is called if and only if the condition for the if
statement at Line 2 of Algorithm 3 holds. We prove one direction of the lemma,
the other direction is straightforward.

Suppose States(u) 	= States+1(u). It must be that u /∈ Ts and States(u) 	=
States(v). Suppose further that u is not a leaf at stage s. If u ∈ V0,s ∩W0,s, there
is a child w of u which is also in W0,s. This means that States(u) = States+1(u).
Similarly, one may conclude that u does not change state if u ∈ V1,s ∩ W1,s.
Therefore u ∈ (V0,s ∩ W1,s) ∪ (V1,s ∩ W0,s). Therefore the condition for the if
statement at Algorithm 3 Line 2 holds. ��
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Lemma 5. Stable(u) is true at stage s + 1 if and only if u ∈ Zs+1.

Proof. It is easy to see that if u ∈ Zs then u ∈ Zs+1 and Stable(u) is set to
true at stage s + 1. Suppose u /∈ Zs. Note that Stable(u) is set to true at stage
s + 1 if and only if Line 6 in Algorithm 3 is reached and the condition for the if
statement at this line holds, if and only if u is not a leaf at stage s, States(u) =
States+1(u) =States(v) and u ∈ Vσ,s ∩ Wσ,s for some σ ∈ {0, 1}.

If u is not a leaf, States(u) = States+1(u) =States(v) and u ∈ Vσ,s ∩ Wσ,s for
some σ ∈ {0, 1}, then there is a child w of u in Wσ,s and thus u ∈ Zs+1. On
the other hand, suppose u ∈ Zs+1. If u changes state, then u ∈ Vσ,s ∩ W1−σ,s

for some σ ∈ {0, 1}. This means all children of u are in W1−σ,s and u /∈ Zs+1.
Therefore it must be that u did not change state. By definition of a stable node,
u is not a leaf, States(u) =States(v) and u ∈ Vσ,s ∩ Wσ,s. ��

Algorithm 4. DeleteEdge(u, v)
1: p(v) ← null; c(u) ← c(u) − 1.
2: if B(u) = B(v) then Split(B(u), u). end if
3: if ¬Stable(u) ∧ q(B(u)) = q(B(v)) ∧ [(c(u) = 0 ∧ q(B(u)) = 0) ∨ (q(B(u)) =

Pos(u))] then
4: Run ChangeState(u).
5: end if
6: if Stable(u) ∧ q(B(u)) = q(B(v)) then
7: n(u) ← n(u) − 1.
8: if n(u) < 2 then Stable(u) ← false. end if
9: end if

The DeleteEdge(u, v) operation is described in Algorithm 4. Suppose that the
edge (u, v) is deleted at stage s+1. We also have the following two lemmas which
imply the correctness of the algorithm. The proofs are similar in spirit to the
proofs of Lemma 4 and Lemma 5.

Lemma 6. ChangeState(u) is called in the DeleteEdge(u, v) algorithm if and
only if States(u) 	= States+1(u). ��

Lemma 7. Stable(u) is true at stage s + 1 if and only if u ∈ Zs+1. ��

The SetTarget(u) and UnsetTarget(u) operations are described in Algorithm 5
and Algorithm 6, respectively.

4.5 Correctness

The next lemma implies the correctness of the algorithms 1-6.

Lemma 8. At each stage s, States(z) = q(B(z)) for all node z ∈ Fs.
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Algorithm 5. SetTarget(u)
1: if c(u) = 0 then n(u) = 0.
2: else if Pos(u) = q(B(u)) then n(u) ← [Pos(u) = 0? 0 : c(u)].
3: else if Stable(u) then n(u) ← [Pos(u) = 0? n(u): c(u) − n(u)].
4: else n(u) ← [Pos(u) = 0? 1 : c(n) − 1]. end if
5: tar(u) ← true; Stable(u) ←true; Split(B(u), u).
6: if q(B(u)) = 1 then Run ChangeState(u). end if

Algorithm 6. UnsetTarget(u)
1: if (Pos(u) = 0 ∧ n(u) = 0) ∨ (Pos(u) = 1 ∧ n(u) < c(u)) then
2: Run ChangeState(u); n(u) ← c(u) − n(u).
3: end if
4: Stable(u) ← [(n(u) > 1 ∧ Pos(u) = q(B(u)))? true: false].
5: tar(u) ← false.

Proof. The proof proceeds by induction on s. For simplicity, we assume that the
initial forest F0 contains only isolated nodes. We set for each node z, p(z) =
null, c(z) = n(z) = 0, B(z) = {z}, Stable(z) = true if and only if q(B(z)) = 0
if and only if tar(z) = true. For the case when F0 is an arbitrary forest, we
may assume that the variables c(z), n(z), B(z), Stable(z) and q(B(z)) has been
pre-set to their respect values as described in the previous subsection. We use
γs(u) to denote the number of children of u in stage s and recall that νs(u) is
the number of u’s children in the same state as u. The lemma follows from the
fact that the following six inductive assumptions are preserved at each stage s.

(1) The set {B(v) | v ∈ V0,s ∪ V1,s} forms a homogeneous path partition of Fs.
(2) For each z, c(z) = γs(z).
(3) For each z, n(z) = νs(z) whenever z is stable.
(4) For each z, Stable(z) is set to True if and only if z is a stable node.
(5) The path partition {B(v) | v ∈ V } is stable.
(6) For each z, States(z) = q(B(z)). ��

5 Complexity

We analyze the amortized complexity of our algorithm. Each InsertEdge(u, v),
DeleteEdge(u, v), SetTarget(u), and UnsetTarget(u) algorithm runs at most once
the ChangeState(u) algorithm, a fixed number of splay tree operations, and a
fixed number of other low-level operations such as pointer manipulations and
comparisons. By Theorem 2, each splay tree operation takes amortized time
O(log n) where n is the number of nodes in the forest. Therefore, the amortized
time complexity for these operations is O(log n) plus the amortized time taken
by the ChangeState(u) algorithm.

We now focus on the amortized time complexity of the ChangeState(u) al-
gorithm. The algorithm runs in iterations. At each iteration, it processes the
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current block of nodes B(x) and examines the parent w of the ≤F -least node in
B(x). If w does not exist or does not need to change state, the algorithm stops
and calls UpdateStable(w, x); otherwise, the algorithm sets x to w and starts
another iteration. Each iteration in the algorithm and the UpdateStable(w, x)
algorithm both run a fixed number of splay tree operations and therefore takes
amortized time O(log n). Therefore the algorithm takes time O(τ logn+logn) to
execute a sequence of k update operations, where τ is the number of iterations
of ChangeState(u). We prove the following lemma which implies the O(log n)
amortized time complexity of the above update operations.

Lemma 9. For any sequence of k update operations, the total number of itera-
tions ran by the ChangeState(u) algorithm is O(k).

Proof. Given a forest F = (V,E) and path partition PF . For a node u ∈ V , let
B(u) denote the block of u. Define EP

F ⊆ P 2
F such that for all u, v ∈ V

(B(u), B(v)) ∈ EP
F if and only if (∃w ∈ B(u))(∃w′ ∈ B(v))(w,w′) ∈ E

The pair (PF , EP
F ) also forms a forest, which we call the partition forest of PF .

We prove the lemma using the accounting method (see [2]). At each stage s,
we define the credit function ρs : PFs → N. For block B ∈ PF0 , let ρ0(B) be the
number of children of B in PF0 . At each stage s + 1, the credit function ρs+1 is
obtained from ρs with the following requirements:

– We create for each execution of InsertEdge(u, v) and ChangeState(u) an
amortized cost of 1. This cost contributes towards the credit ρs(B(u)). Note
that we can create amortized cost at most 2 at each stage.

– For each iteration of ChangeState(u), we take out 1 from ρs(B) of some
B ∈ PFs .

Let ts be the total number of iterations ran at stage s. Our goal is to define ρs

in such a way that for any s > 0,∑
B∈PFs

ρs(B) ≤
∑

B∈PFs−1

ρs−1(B) + 2 − ts

and ρs(B) ≥ 0 for any B ∈ PFs . Note that the existence of such a credit function
ρs implies for any k,

k∑
s=1

ts ≤ 2k ∈ O(k).

We define our desired credit function ρs by preserving, for every stage s, the
following invariant:

(∀B ∈ PFs) ρs(B) = | {B′ ∈ PFs | (B,B′) ∈ EP
Fs

} |.

The detailed procedure for defining ρs is omitted due to space restriction. ��
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Theorem 3. There exists a fully dynamic algorithm to solve reachability games
played on trees which supports InsertNode(u, i, j) and DeleteNode(u) in constant
time, and InsertEdge(u, v), DeleteEdge(u, v), SetTarget(u), UnsetTarget(u) and
Query(u) in amortized O(log n)-time where n is the number of nodes in the
forest. The space complexity of the algorithm is O(n).

Proof. By Lemma 9, the update operations have amortized time complexity
O(log n). The splay tree data structures take space O(n) at each stage. ��
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Abstract. We show that for a semiring K, the support of all recogniz-
able series over K are recognizable if and only if in every finitely gene-
rated subsemiring of K there exists a finite congruence such that 0K is a
singleton congruence class.

1 Introduction

One stream in the rich theory of formal power series deals with connections to
formal languages. To each formal power series, one associates a certain language,
called the support, which consists of all words which are not mapped to zero.

It is well known that recognizable series do not necessarily have recognizable
supports. In the recent decades, one investigated sufficient conditions for the
recognizability of the support of recognizable series, see [3, 9] for recent surveys.

Let us call some semiring K an SR-semiring (support-recognizable), if the
support of every recognizable series over K is a recognizable language. It is well-
known that all positive semirings (semirings which are both zero-divisor free and
zero-sum free) and all locally finite semirings are SR-semirings [2, 3, 9].

Wang showed that commutative, quasi-positive semirings (that is, for every
k ∈ K \ {0K}, � ∈ K, n ∈ N, it holds kn + � 	= 0K) are SR-semirings [13].
Very recently, the author showed that zero-sum free, commutative semirings are
SR-semirings [5].

The standard examples for semirings which are not SR-semirings are Q and
Z with usual addition and multiplication [2, 3, 9].

Despite the research in the recent decades, a characterization of SR-semirings
was never achieved. One does not even know a necessary condition for a semiring
to be an SR-semiring. The proof techniques for the above subclasses of SR-
semirings are entirely different. Another confusing fact is all finite fields as well
as Q+ are SR-semirings, but Q is not an SR-semiring.

In the present paper, we show an algebraic characterization of SR-semirings:
some semiring K is an SR-semiring iff in every finitely generated subsemiring of
K there exists a finite congruence such that 0K is a singleton congruence class.
Equivalently, K is an SR-semiring iff in every finitely generated subsemiring of
K, the set {0K} is recognizable according to Mezei and Wright [7]. Roughly

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 489–500, 2009.
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spoken, we prove this characterization by assuming some finite subset C ⊆ K,
defining a certain recognizable series SC , and using the syntactic monoid of the
support of SC to show that the syntactic congruence of the set {0K} in the
subsemiring generated by C is finite.

From this characterization, we obtain some closure properties: the class of SR-
semirings is closed under direct product, and the semiring of (n × n)-matrices
over some SR-semiring is an SR-semiring. In particular, the (n × n)-matrices
over Q+ are an SR-semiring which was not known in the literature.

The paper is organized as follows: In Section 2, we deal with some preliminar-
ies. In Section 3.1, we present known subclasses of SR-semirings. In Section 3.2,
we present Proposition 1 which characterizes the recognizability of R-supports
and includes the key idea of the paper. In Section 3.3, we consider finitely gene-
rated semirings. In Section 3.4, we develop our characterization of SR-semirings
as a particular case of the results from Section 3.2. In Section 3.5, we discuss
some open questions.

2 Preliminaries

2.1 Notations

Let N = {0, 1, . . .}. Let M be some set.
We call some mapping f : N → M ultimately constant if there is some k ∈ N

such that for every k′ ≥ k, f(k′) = f(k).

2.2 Monoids and Semirings

A monoid (M, ·, 1M) consists of a set M, a binary associative operation ·, and
some 1M ∈ M which is an identity for ·. If no confusion arises, we denote a
monoid by M.

Given some alphabet Σ, we denote by Σ∗ the free monoid over Σ.
Let M be some monoid and C ⊆ M. We denote by � � : C∗ → M the unique

homomorphism which arises from the identity on letters. We denote by 〈C, ·〉
the least subset of M which includes C and 1M, and is closed under ·. Clearly,
〈C, ·〉 together with · and 1M is itself a monoid called the submonoid generated
by C. We have 〈C, ·〉 =

{
�w�
∣∣w ∈ C∗}.

A semiring (K,+, ·, 0K, 1K) consists of a set K together with two binary op-
erations + and · such that (K,+, 0K) is a commutative monoid, (K, ·, 1K) is a
monoid with zero 0K, and (K, ·, 1K) distributes over (K,+, 0K). As above, we
denote a semiring by K if no confusion arises.

We call some semiring K commutative if (K, ·, 1K) is a commutative monoid.
We call K zero-divisor free if for every k, � ∈ K \ {0K}, we have k� 	= 0K. We

call K zero-sum free if for every k, � ∈ K \ {0K}, we have k + � 	= 0K. We call
semirings which are zero-divisor free and zero-sum free positive semirings.

Let C ⊆ K. We denote by 〈C, ·〉 the submonoid of (K, ·, 1K) generated by C.
We denote by 〈C,+, ·〉 the least subset of K which contains C, 1K, and 0K, and
is closed under + and ·. We call 〈C,+, ·〉 the subsemiring of K generated by C.
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Let k ∈ K. A decomposition of k over C consists of some n ∈ N and
w1, . . . , wn ∈ C∗ such that

k =
∑

i∈{1,...,n}
�wi�.

There exists a decomposition of k over C iff k ∈ 〈C,+, ·〉.
If K = 〈C,+, ·〉 for some finite subset C ⊆ K, then K is called finitely genera-

ted. If for every finite C ⊆ K, the subsemiring 〈C,+, ·〉 is finite, then K is called
locally finite.

2.3 Monoids and Congruences

Let (M, ·, 1M) be some monoid. We call an equivalence relation ∼ on M a con-
gruence iff for every k, �,m ∈ M, k ∼ � implies km ∼ �m and mk ∼ m�.
Equivalently, we can say that an equivalence relation ∼ on M is a congruence iff
for every k, k′, �, �′ ∈ M satisfying k ∼ k′ and � ∼ �′, we have k� ∼ k′�′.

A congruence is called finite, if it has finitely many congruence classes.
A congruence ∼ is called coarser than a congruence ∼′, if for every k, � ∈ M,

k ∼′ � implies k ∼ �.
Let L ⊆ M. For k, � ∈ M, let k ∼L � if for every m,m′ ∈ M, we have

mkm′ ∈ L iff m�m′ ∈ L. The relation ∼L is a congruence and called the syntactic
congruence of L. The quotient of M under ∼L is denoted by ML = M/∼L and
called the syntactic monoid of L. The canonical homomorphism ηL : M → ML

is called the syntactic homomorphism of L.
A congruence ∼ saturates L if L is a union of congruence classes of ∼. It is

well-known that ∼L is the coarsest congruence which saturates L. Consequently,
there exists some finite congruence which saturates L if and only if ∼L is finite.
In this case, L is called a recognizable set over M. If M is a free monoid Σ∗, then
this notion of recognizability coincides with recognizability by finite automata.

2.4 Semirings and Congruences

Let (K,+, ·, 0K, 1K) be some semiring.
An equivalence relation ∼ on K is called a congruence, if ∼ is a congruence

for both the monoids (K,+, 0K) and (K, ·, 1K).
Let R ⊆ K. For k, � ∈ K, let k ∼R � if for every p, q,m ∈ K, we have

pkq + m ∈ R iff p�q + m ∈ R.
It is easy to show that ∼R is an equivalence on K. Moreover, we can show that

∼R is a congruence. For this, let k, � ∈ K satisfy k ∼R �. Let x ∈ K be arbitrary.
At first, we want to show kx ∼R �x and xk ∼R x�. Let p, q,m ∈ K be arbitrary.
Since k ∼R �, we have p(kx)q+m = pk(xq)+m ∈ R iff p(�x)q+m = p�(xq)+m ∈
R, and hence, kx ∼R �x. By a symmetric argument, we get xk ∼R x�. Thus, ∼R

is a congruence for (K, ·, 1K).
Next, we want to show k+x ∼R �+x. We have p(k+x)q +m = pkq+(pxq+

m) ∈ R iff p(� + x)q + m = p�q + (pxq + m) ∈ R. Hence, k + x ∼R � + x, and by
the commutativity of +, it follows x + k ∼R x + �.
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Thus, ∼R is a congruence. We call ∼R the syntactic congruence of R.
Given k, � ∈ K satisfy k ∼R �, we have 1Kk1K + 0K = k ∈ R iff 1K�1K + 0K =

� ∈ R, i.e., k ∈ R iff � ∈ R. Thus, ∼R saturates R.

Lemma 1. The relation ∼R is the coarsest congruence which saturates R.

Proof. Let ∼ be some congruence on K which saturates R. Let k, � ∈ K satisfy
k ∼ �. Let p, q,m ∈ K. Since ∼ is a congruence, we have pkq + m ∼ p�q + m.
Since ∼ saturates R, we have pkq + m ∈ R iff p�q + m ∈ R. Hence, k ∼R �.

According to Mezei and Wright [7], some subset M ⊆ K is called recognizable
over (K,+, ·, 0K, 1K) if there is a finite semiring K ′, a subset F ⊆ K′ and a
homomorphism h : K → K′ such that M = h−1(F ).

We have then the following classic coincidence:

Theorem 1. Let R ⊆ K. The following assertions are equivalent:

1. The set R is recognizable.
2. The set R is saturated by a finite congruence ∼ on K.
3. The syntactic congruence of R is finite.

Proof (sketch). (3) ⇒ (2) is obvious. (2) ⇒ (3) follows from Lemma 1. To show
(1) ⇒ (2), one sets k ∼ � iff h(k) = h(�). To show (2) ⇒ (1), one uses the
quotient K/∼, the canonical homomorphism, and the image of R as K′, h, and
F , respectively.

2.5 Weighted Finite Automata

We recall some notions on (weighted automata) and recommend [1, 2, 3, 4, 6, 8,
10] for overviews.

We denote by Σ some finite alphabet. Let (K,+, ·, 0, 1) be a semiring. Map-
pings from Σ∗ to K are often called series. We denote the class of all series from
Σ∗ to K by K〈〈Σ∗〉〉. A weighted finite automaton over Σ and K (for short WFA)
is a tuple [Q,μ, λ, %], where

– Q is a non-empty, finite set of states,
– μ : Σ∗ → KQ×Q is a homomorphism whereas KQ×Q are the Q×Q matrices

over K with usual matrix multiplication, and
– λ, % ∈ KQ.

Let A = [Q,μ, λ, %] be a WFA. It defines a series |A| by |A|(w) = λμ(w)% for
w ∈ Σ∗. As usual, λμ(w)% is understood as a product of the row λ, the matrix
μ(w), and the column %.

A series S is called recognizable over K if S = |A| for some WFA A. The class
of all recognizable series is denoted by Krec〈〈Σ∗〉〉.

Let C ⊆ K. If for every p, q ∈ Q, we have λ[p], μ[p, q], %[q] ∈ C ∪ {0K}, then
we call A a WFA with weights in C.
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3 Overview and Main Results

3.1 Historical Background

Let K be a semiring and S ∈ K〈〈Σ∗〉〉. The support of S is defined by

supp(S) =
{
w ∈ Σ∗ ∣∣S(w) 	= 0K

}
.

It is well-known that if S is recognizable, supp(S) is not necessarily recognizable.
The standard example is the series S over the semiring of the rational numbers
(Q,+, ·, 0, 1) defined by S(w) = 2|w|a0.5|w|b −0.5|w|a2|w|b.1 For w ∈ Σ∗, we have
S(w) = 0 iff |w|a = |w|b. Hence, supp(S) =

{
w ∈ Σ∗ ∣∣ |w|a 	= |w|b

}
which is not

a recognizable language. However, S is well known to be recognizable [2, 3, 9].
We could also define S(w) = 2|w|a3|w|b − 3|w|a2|w|b which gives a counter

example in the semiring (Z,+, ·, 0, 1).
From the beginnings of the research on formal power series in the sixties

it was studied under which conditions the support of a recognizable series is
recognizable [10, 2, 3, 9]. One is particularly interested in classes of semirings for
which the support of any recognizable series is recognizable. This problem was
already considered in [10].

Let us call a semiring K an SR-semiring (support-recognizable), if for every
finite alphabet2 Σ and every S ∈ Krec〈〈Σ∗〉〉, supp(S) is a recognizable language.

Today, one knows three classes of SR-semirings.

1. The most obvious statement was already mentioned in [10] (see also [2, 9]):
Every positive semiring is an SR-semiring. The proof is straightforward,
starting from a WFA A = [Q,μ, λ, %] one “removes the weights from A” and
obtains a non-deterministic automaton recognizing supp(|A|).
Let K1 be the semiring of finite languages over a finite alphabet Δ, equipped
with union and concatenation,

(
Pf(Δ∗),∪, ·, ∅, {ε}

)
. The semiring K1 is a

typical example of a positive semiring.
2. Every locally finite semiring is an SR-semiring [2, 3, 9]. Given some WFA

A = [Q,μ, λ, %] over a locally finite semiring, the range of μ is finite. Hence,
we can define a finite congruence ∼ on Σ∗ by setting u ∼ v iff μ(u) = μ(v).
This congruence saturates supp(|A|), and hence, supp(|A|) is recognizable.
This class includes all finite semirings.
Let K2 be the set of all ultimately constant3 mappings f : N → Z/4Z. With
componentwise + and ·, (K2,+, ·, 0, 1) is a locally finite semiring.

3. There is another, less known class of SR-semirings: In 1998 [13], Wang in-
troduced quasi-positive semirings K (that is, for every k ∈ K \ {0K}, � ∈ K,
n ∈ N, it holds kn+� 	= 0K), and showed that all commutative, quasi-positive
semirings are SR-semirings. Very recently, the author generalized Wang’s
result by showing that every commutative, zero-sum free semiring is an
SR- semiring [5]. The proof relies on counting factors and Dickson’s lemma.

1 For w ∈ Σ∗, x ∈ Σ, |w|x denotes the number of occurrences of x in w.
2 We could equivalently use some fixed Σ with at least two letters (see Section 3.4).
3 The restriction to ultimately constant mappings is just because the author prefers

countable examples.
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Let Q+ = {q ∈ Q | q ≥ 0} and K3 =
(
Q+ ×Q+,+, ·, (0, 0), (1, 1)

)
whereas +

and · are defined componentwise. The semiring K3 is a typical commutative,
zero-sum free semiring which has zero-divisors.

These three classes are incomparable: The semiring K1 belongs exclusively to
the first class, because it is not locally finite, and it is not commutative for
|Δ| > 1. The semiring K2 belongs exclusively to the second class, because it has
zero-sums. The semiring K3 belongs exclusively to the third class, because it has
zero-divisors and it is not locally finite.

To the authors knowledge, there is no known SR-semiring in the literature
beyond these three classes.

Let us mention that there is an important related result: in 1961 and 1975
M. P. Schützenberger and E. D. Sontag showed that if K is a ring, then
for every recognizable series S with a finite image and every R ⊆ K, the set
suppR(S) = {w ∈ Σ∗ |S(w) ∈ R} is recognizable [11, 12, 2, 9].

The SR-semirings under (1) and (2) above, and the result by Schützenber-

ger/Sontag are the fundamental cornerstones in this area for 25 years.
Up to now, it was not possible to characterize the SR-semirings. To the authors

knowledge, one does not even know a necessary condition for a semiring to be
an SR-semiring. In the authors opinion, there are two confusing observations:

The first confusing observation arises around the rational numbers: On the
one hand, the field (Q,+, ·, 0, 1) is the standard example of a non-SR-semiring.
On the other hand, all finite fields are SR-semirings. Moreover, (Q+,+, ·, 0, 1) is
a positive semiring and thus an SR-semiring.

The other confusing observation is that the proof ideas for these three classes
are quite different on a first glance, and it seems to be hopeless to give one
coherent proof for all the three classes.

3.2 On R-Supports

Let K be a semiring and R ⊆ K. The R-support of some S ∈ K〈〈Σ∗〉〉 is defined as

suppR(S) = {w ∈ Σ∗ |S(w) ∈ R}.

In Proposition 1, we show a crucial characterization for the recognizability of
R-supports. All the other results in the paper are more or less conclusions from
Proposition 1. In particular, we will achieve results on the support by considering
the particular case R = K \ {0K} of Proposition 1.

Proposition 1. Let C be a finite subset of K and assume 1K ∈ C. Let R ⊆ K.
The following assertions are equivalent:

1. For every WFA A over some finite alphabet Σ with weights in C, the set
suppR(|A|) is recognizable.

2. For every WFA A over {a, b} with weights in C, the set suppR(|A|) is rec-
ognizable.

3. The set R ∩ 〈C,+, ·〉 is recognizable over the semiring 〈C,+, ·〉.
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Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (1) (sketch) Let Σ be an arbitrary, finite alphabet. Let A = [Q,μ, λ, %]

be a WFA over Σ with weights in C. Let h : Σ∗ → {a, b}∗ be some injective
homomorphism. We can construct a WFA A′ over {a, b} with weights in C such
that for every w ∈ {a, b}∗

|A′|(w) =

{
|A|
(
h−1(w)

)
if h−1(w) is defined

0K if h−1(w) is not defined.

To construct A′, we use the states Q (from A) and some additional states. The
key idea is: if A can read some letter c ∈ Σ from some p ∈ Q to some q ∈ Q
with a weight μ(c)[p, q], then A′ can read h(c) from p to q with the same weight,
i.e., μ′(h(c)

)
[p, q] = μ(c)[p, q]. To proceed the construction of A′ and prove its

correctness formally, we need the path semantics of WFA which is not introduced
here for the reasons of space.

Clearly, suppR(|A|) = h−1
(
suppR(|A′|)

)
. By (2), suppR(|A′|) is recognizable.

Since recognizable are closed under inverse homomorphisms, suppR(|A|) is rec-
ognizable.

(3) ⇒ (1) Let A = [Q,μ, λ, %] be a WFA with weights in C. Clearly, μ is
a homomorphism μ : Σ∗ → 〈C,+, ·〉Q×Q. By (3), there are a homomorphism
h : 〈C,+, ·〉 → Kf into a finite semiring Kf and a subset F ⊆ Kf such that
R ∩ 〈C,+, ·〉 = h−1(F ). The homomorphism h extends to a homomorphism
h : 〈C,+, ·〉Q×Q → KQ×Q

f .
We define a relation ∼ on Σ∗ by setting u ∼ v if h(μ(u)) = h(μ(v)). Since

h ◦ μ : Σ∗ → KQ×Q
f is a homomorphism, ∼ is a congruence. Since h ◦ μ maps

into the finite monoid KQ×Q
f , ∼ is a finite congruence.

We show that ∼ saturates suppR(|A|). Let u, v ∈ Σ∗ satisfy u ∼ v, i.e.,
h(μ(u)) = h(μ(v)). Consequently, h(λ) · h(μ(u)) · h(%) = h(λ) · h(μ(v)) · h(%),
h(λμ(u)%) = h(λμ(v)%), i.e., h

(
|A|(u)

)
= h
(
|A|(v)

)
. By the choice of h, we have

|A|(u) ∈ R∩ 〈C,+, ·〉 iff |A|(v) ∈ R∩ 〈C,+, ·〉. Since |A|(u), |A|(v) ∈ 〈C,+, ·〉, it
follows |A|(u) ∈ R iff |A|(v) ∈ R, i.e., u ∈ suppR(|A|) iff v ∈ suppR(|A|).

(1) ⇒ (3) We define a suitable series SC over the alphabet Σ = C .∪ {#}.
From the recognizability of suppR(SC), we conclude that the syntactic congru-
ence of R ∩ 〈C,+, ·〉 in the semiring 〈C,+, ·〉 is finite.

Let n ≥ 0 and w1, . . . , wn ∈ C∗. We define

SC

(
#w1#w2 . . .#wn

)
=

n∑
i=1

�wi�.

(Recall that � � : C∗ → 〈C, ·〉 ⊆ 〈C,+, ·〉 is the canonical homomorphism.)
For w ∈ CΣ∗, we define SC(w) = 0K.
Clearly,

{
SC(w)

∣∣w ∈ Σ∗} = 〈C,+, ·〉.
The series SC is recognized by the following WFA with weights in C. The

label C|C at state 3 means that for every x ∈ C, there is a transition from 3 to
3 which is labeled with the letter x and weighted with x.
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1 2 3 4
# | 1K # | 1K # | 1K

# | 1K

Σ | 1K C |C Σ | 1K

Let w = #w1#w2 . . .#wn. The key idea of the WFA is, that for every 1 ≤ i ≤ n,
there is a path which reads wi from state 3 to state 3 and is weighted with �wi�.

For the construction of this WFA, we need the assumption 1K ∈ C.
For abbreviation, we denote R′ = R ∩ 〈C,+, ·〉.
Let M and η : Σ∗ → M be the syntactic monoid and the syntactic homomor-

phism of suppR(SC). By (1), M is finite. By a counting argument, there is some
n ≤ |M|! such that for every k ∈ M, we have kn = k2n.

We show two claims (a) and (b). For k ∈ K and m ∈ N, let

m ⊗ k = k + · · · + k︸ ︷︷ ︸
m-times

.

(a) For every w,w′ ∈ C∗ satisfying η(w) = η(w′), we have �w� ∼R′ �w′�.
(b) For every w ∈ C∗, we have 2n ⊗ �w� ∼R′ n ⊗ �w�.

We show (a). Let p, q,m ∈ 〈C,+, ·〉. We have to show p�w�q + m ∈ R′ iff
p�w′�q + m ∈ R′.

Let np ≥ 0 and p1, . . . , pnp ∈ C∗ be a decomposition of p. Assume similar
decompositions for q and for m. If np = 0 or nq = 0, then p = 0K or q = 0K,
and we are done. Assume np ≥ 1 and nq ≥ 1. Let x ∈ {w,w′}, and consider the
word:4 ( np⊙

i=1

nq⊙
j=1

#pixqj

)(
nm⊙
i=1

#mi

)
. (1)

If we set x = w (resp. x = w′), then expression (1) defines a word which we call
y (resp. y′). We have SC(y) =
np∑
i=1

nq∑
j=1

�piwqj� +
nm∑
i=1

�mi� =

( np∑
i=1

�pi�

)
�w�

( nq∑
j=1

�qj�

)
+

nm∑
i=1

�mi� = p�w�q + m,

and similarly, SC(y′) = p�w′�q + m. From η(w) = η(w′), it follows η(y) = η(y′).
Hence, y ∈ suppR(SC) iff y′ ∈ suppR(SC). Thus, SC(y) ∈ R iff SC(y′) ∈ R.
Since SC(y), SC(y′) ∈ 〈C,+, ·〉, it follows, SC(y) ∈ R′ iff SC(y′) ∈ R′, i.e.,
p�w�q + m ∈ R′ iff p�w′�q + m ∈ R′.

We show (b). Let p, q,m ∈ 〈C,+, ·〉 and assume decompositions as above. Let
x ∈ {n, 2n} and consider the word( np⊙

i=1

nq⊙
j=1

x⊙
�=1

#piwqj︸ ︷︷ ︸
)(

nm⊙
i=1

#mi

)
. (2)

4 The large symbol � in Expressions (1) and (2) denotes the concatenation of words.
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If we set x = 2n (resp. x = n), then expression (2) defines a word which we call y
(resp. y′). We have SC(y) = p(2n⊗�w�)q+m, and SC(y′) = p(n⊗�w�)q+m. We
have η(y) = η(y′). (Note that for fixed i and j, the η-image of the underbraced
part in (2) is the same for x = n and for x = 2n by the choice of n.) Now, we
can argue as for (a).

Now, we have shown (a) and (b), and we can show that ∼R′ is finite.
Let X ⊆ C∗ such that for every w ∈ C∗ there is exactly one ∼R′-equivalent5

word in X . We have |X | ≤ |M| by (a).
Let p ∈ 〈C,+, ·〉. Let np ≥ 0 and p1, . . . , pnp ∈ C∗ be a decomposition of p.

By (a) we can replace in p1, . . . , pnp every word by a ∼R′ -equivalent word in X .
If there are at least 2n equal words in the list, we can utilize (b) and erase n of
the 2n equal words. In this way, we achieve for every x ∈ X some nx < 2n such
that

p ∼R′
∑
x∈X

nx ⊗ �x�.

Consequently, ∼R′ has at most (2n)|X| ≤
(
2(|M|!)

)|M| classes. ��

Theorem 2. Let R ⊆ K. The following assertions are equivalent:

1. For every WFA A over some finite Σ, the set suppR(|A|) is recognizable.
2. For every WFA A over {a, b}, the set suppR(|A|) is recognizable.
3. For every finitely generated subsemiring K′ ⊆ K, the set R∩K′ is recognizable

over the semiring K′.

Proof. (1) ⇔ (2) and (3) ⇒ (1) follow immediately from Proposition 1(1) ⇔ (2)
and Proposition 1(3) ⇒ (1), respectively.

(1) ⇒ (3) Just let C ⊆ K′ be a finite set of generators of K′, and apply
Proposition 1(1) ⇒ (3) for the set C = C′ ∪ {1K}.

3.3 On Finitely Generated Semirings

For finitely generated semirings, Theorem 2 simplifies as follows:

Corollary 1. Let K be a finitely generated semiring and let R ⊆ K. The fol-
lowing assertions are equivalent:

1. For every WFA A over K and some Σ, the set suppR(|A|) is recognizable.
2. The set R is recognizable over K.

Proof. (1)⇒(2) follows immediately from Theorem 2(1)⇒(3).
Assume (2). Clearly, for every subsemiring K′ ⊆ K, the set R ∩ K′ is recog-

nizable over K′. (To obtain a finite congruence on K′ which saturates R∩K′, we
can simply restrict a finite congruence on K which saturates R to K′.) Now, (1)
follows from Theorem 2(3)⇒(1). ��
5 Let us call u, v ∈ C∗ ∼R′ -equivalent if �u� ∼R′ �v�.
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Corollary 1(1)⇒(2) does not hold for arbitrary semirings. Just consider K2 from
Section 3.1 and let R = {0K2}. Every finitely generated subsemiring K′ of K2 is
finite, and hence, R = R ∩ K′ is recognizable over K′. By Theorem 2, K2 and R
satisfy Corollary 1(1).

However, K2 and R do not satisfy Corollary 1(2): just let f 	= g ∈ K2. We
have (1K2 · f · 1K2) + (−f) = 0K2 but (1K2 · g · 1K2)+ (−f) = g − f 	= 0K2 . Hence,
f 	∼R g, i.e., ∼R is infinite. Thus, R = {0K2} is not recognizable over K2.

In the particular case of the semiring (Z,+, ·, 0, 1), it was observed in [2, 3]
that for every a, b ∈ Z, R = a + bZ, and every S ∈ Zrec〈〈Σ∗〉〉, suppR(S) is
recognizable. We can extend this observation.

Corollary 2. Let R ⊆ Z. The following assertions are equivalent:

1. For every WFA A over Z and some Σ, the set suppR(|A|) is recognizable.
2. There is some b ≥ 1 such that for every x ∈ R, we have x − b ∈ R and

x + b ∈ R.

Proof. By Corollary 1, it remains to show that (2) characterizes the recognizable
sets of Z. Indeed, if R satisfies (2), then R is saturated by the finite congruence ∼
defined by x ∼ y iff x − y is a multiple of b.

Conversely, if R is recognizable, then R is saturated by a finite congruence ∼.
There are y ∈ Z, b ≥ 1 such that y ∼ y + b. It follows 0 ∼ b, and (2).

Clearly, we could also fix Σ = {a, b} in Corollaries 1 and 2.

3.4 On SR-Semirings

We present our characterization of SR-semirings:

Theorem 3. Let K be a semiring. The following assertions are equivalent:

1. The semiring K is an SR-semiring.
2. For every finitely generated subsemiring K′ ⊆ K, {0K} is a recognizable set

over K′.
3. In every finitely generated subsemiring K′ ⊆ K, there is a finite congruence

such that {0K} is a singleton congruence class.

Proof. (2)⇔(3) follows from Theorem 1(1)⇔(2).
Let R = K \ {0K}. We show (1)⇒(2). Let K′ ⊆ K be a finitely generated

subsemiring. From Theorem 2(2)⇒(3), it follows that the set R∩K′ = K′ \ {0K}
as well as its complement {0K} are recognizable.

We show (2)⇒(1). From (2), it follows that for every finitely generated sub-
semiring K′ ⊆ K, the set K′ \ {0K} = R ∩ K′ is recognizable over K′. Thus, (1)
follows from Theorem 2(3)⇒(1). ��

The reader should be aware that in the proof of (1)⇒(2) in Theorem 3, we
just require that for every recognizable series S over the alphabet {a, b} over K,
supp(S) is recognizable. In the proof of (2)⇒(1) in Theorem 3, we prove that for
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every recognizable series S over some finite Σ over K, supp(S) is recognizable.
Consequently, the size of the alphabet Σ is not relevant in the definition of an
SR-semiring in Section 3.1.

Let us reconsider the known cases of SR-semirings from Section 3.1. If K is a
positive semiring, then every subsemiring K′ is a positive semiring. The definition
of a positive semiring just says that there is a congruence on K′ which consists
of the congruence classes {0K} and K′ \ {0K}. This congruence is somehow an
extremal case of a congruence in Theorem 3(3).

If K is a locally finite semiring, then every finitely generated subsemiring K′

is finite. Hence, we can show that K is an SR-semiring by using the identity
relation on K′ as a congruence in Theorem 3(3). This congruence is somehow
the other extremal case of a congruence in Theorem 3(3).

Consequently, the known cases of SR-semirings, the positive semirings and
the locally finite semirings, are two contrary extremal cases of Theorem 3.

Theorem 4. For SR-semirings K,K1,K2, the semirings K1 ×K2 and Kn×n for
n ≥ 1 are SR-semirings.

Proof. We show the claim for K1 ×K2. It suffices to show that K1 ×K2 satisfies
Theorem 3(3). So let K′ ⊆ K1 × K2 be finitely generated. Let C ⊆ K′ be a finite
set of generators of K′. Let i ∈ {1, 2}. Let Ci ⊆ Ki be the i-th components
of the members of C, i.e., C ⊆ C1 × C2. Since Ki is an SR-semiring, there is
by Theorem 3(1)⇒(3) a finite congruence ∼i on 〈Ci,+, ·〉 such that {0Ki} is a
singleton congruence class. We define a relation ∼ on K′ by setting (k1, k2) ∼
(�1, �2) iff k1 ∼1 �1 and k2 ∼2 �2 for every (k1, k2), (�1, �2) ∈ K′. It is easy to
verify that ∼ is a congruence as in Theorem 3(3).

We show the claim for Kn×n. Again, we show that Kn×n satisfies Theo-
rem 3(3). Let K′ ⊆ Kn×n be a finitely generated subsemiring. Let C′ be a
finite set of generators of K′. Let

C =
{
A[i, j]

∣∣A ∈ C′, 1 ≤ i, j ≤ n
}
.

Clearly, C is finite and K′ ⊆ 〈C,+, ·〉n×n. Since K is an SR-semiring, there is
by Theorem 3(1)⇒(3) a congruence ∼ on 〈C,+, ·〉 such that {0K} is a singleton
congruence class. We can extend ∼ to K′: for A,B ∈ K′, we set A ∼ B if
A[i, j] ∼ B[i, j] for every 1 ≤ i, j ≤ n. Clearly, ∼ on K′ is a finite congruence
and the null-matrix is a singleton congruence class. ��
From Theorem 4, we can construct SR-semirings which were not known previ-
ously. For example, the product Pf(Δ∗)×Z/4Z (with componentwise operation)
and the semiring of n × n matrices over Q+ for n ≥ 1 are SR-semirings by
Theorem 4, but they do not fall in any class in Section 3.1.

3.5 Open Questions

It is not clear whether or how one can characterize the semirings for which the
support (or R-support) of every recognizable series with finite image is recog-
nizable. As mentioned in Section 3.1, this class includes all rings (in particular
Q) [11, 12, 2, 9], and hence, this class strictly includes all SR-semirings.
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Given some language L ⊆ Σ∗, the characteristic series of L is defined by
1L(w) = 1K if w ∈ L and 1L(w) = 0K if w /∈ L. It is well-known that for
every semiring, the characteristic series of a recognizable language is recognizable
[2, 9]. It is a wide open problem to characterize the semirings for which the
converse holds, i.e., to characterize the semirings for which the support of every
recognizable series with image {0K, 1K} is recognizable. See [13] for recent results.

Moreover, one could consider the case of a single letter alphabet. If for some
semiring K and a one-letter alphabet Σ the support of every series in Krec〈〈Σ∗〉〉
is recognizable, is K necessarily an SR-semiring?

Finally, it is not clear whether Proposition 1 holds for finite sets C ⊆ K which
do not include 1K.
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Abstract. We consider a general framework in which a memoryless
robot periodically explores all the nodes of a connected anonymous graph
by following local information available at each vertex. For each vertex v,
the endpoints of all edges adjacent to v are assigned unique labels from
the range 1 to deg(v) (the degree of v). The generic exploration strategy
is implemented using a right-hand-rule transition function: after entering
vertex v via the edge labeled i, the robot proceeds with its exploration,
leaving via the edge having label [i mod deg(v)] + 1 at v.

A lot of attention has been given to the problem of labeling the graph
so as to achieve a periodic exploration having the minimum possible
length π. It has recently been proved [Czyzowicz et al., Proc.
SIROCCO’09 [1]] that π ≤ 4 1

3
n holds for all graphs of n vertices. Herein,

we provide a new labeling scheme which leads to shorter exploration cy-
cles, improving the general bound to π ≤ 4n − 2. This main result is
shown to be tight with respect to the class of labelings admitting certain
connectivity properties. The labeling scheme is based on a new graph
decomposition which may be of independent interest.

1 Introduction

The problem of finding Eulerian cycles and Hamiltonian cycles is at the heart
of graph theory. In fact, many applications arise in different contexts. One of
these can be found in the field of graph exploration by means of a mobile entity.
The entity might be represented, for instance, by a software agent or a robot.
The task of periodic visiting of all vertices of a network is particularly useful
in network maintenance, where the status of every vertex has to be checked
regularly. According to the imposed model as well as to the robot capabilities,
the problem may vary in its complexity.
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Model assumptions. We assume that the explored graph G = (V,E) is simple,
undirected, connected, and anonymous, i.e., the vertices in the graph are neither
labeled nor colored. However, while visiting a vertex the robot can distinguish
between its adjacent edges. This is achieved by using a predefined local ordering
of edges known as a local orientation, which can be given in one of two ways:

– An implicit cyclic ordering, given at each node v ∈ V as a local cyclic
ordering of adjacent edges. This is encoded through a NextPort function
which naturally defines a transition operation known as the right-hand-rule
(or basic walk [2]): a robot entering vertex v by an adjacent edge e leaves
this vertex by the next edge adjacent to v in the specified cyclic order,
NextPort(e). The local ordering of edges is cyclic in the sense that successive
applications of NextPort iterate through all of the edges adjacent to v.

– An explicit port labeling, in which, for each vertex v ∈ V , there exist con-
secutive integer labels (starting from 1), also called port numbers, preas-
signed to all the edges adjacent to v, next to the endpoint v of each edge.
Thus, each edge of the graph is assigned two port numbers, one for each
endpoint. The labels at node v are always distinct and form the discrete
interval [1, deg(v)], where deg(v) is the degree of v in G. In such a set-
ting, the natural definition of NextPort for port number l at vertex v is
NextPort(l) := [l mod deg(v)] + 1.

A robot, initially located at a generic vertex v, starts the exploration of G by
traversing the edge having label 1 at endpoint v. Once it has reached the other
endpoint of this edge, say u, it reads the associated label, say l, and enters to the
neighboring vertex u of v. In order to keep on with the exploration, the robot now
follows the right-hand rule, leaving vertex u by the edge labeled NextPort(u). In
doing so, eventually the robot will re-enter port 1 at vertex v, and the traversal
will proceed periodically from then on. We will say that the robot explores the
graph if its route goes through each vertex of the graph at least once; from now
on, we will only consider port labelings leading to valid explorations. It is known
that all graphs admit a port labeling leading to an exploration [3].

Studied parameter and its motivation. For a given port labeling, the ex-
ploration period π is defined as the total number of steps made by the robot
before returning to the initial port (or equivalently, as the total number of arcs
of the form (u, v), for {u, v} ∈ E, used during the exploration). In this paper, we
focus on finding labelings which lead to valid explorations of minimum possible
period. This immediately leads to the natural definition of the graph parameter
π(G) known as the minimum exploration period of the graph.

The parameter π(G) obviously characterizes the best-case behavior of the
basic walk on G, but its studies have in fact some much stronger motivation:
π(G) is the minimum possible exploration period for any oblivious robot (i.e.,
a robot which is not equipped with any state information which survives when
traversing an edge), even if the labeling of the graph is given using explicit port
numbers, and the choice of the next edge is not necessarily governed by the
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Fig. 1. Exploration cycles obtained for different labelings: (a) a labeling leading to a
Hamiltonian cycle, (b) another exemplary labeling

right-hand-rule [1]. In other words, in the context of these studies, the basic
walk is fully representative of all oblivious exploration strategies.

Moreover, the value of π(G), expressed in relation to the number of nodes
n, exposes certain interesting structural properties of the graph. For example,
we have that π(G) = n if and only if G is Hamiltonian, and for a Hamiltonian
graph an appropriate labeling can be defined so as to direct ports 1 and 2 of all
nodes along the edges of the Hamiltonian cycle (Fig. 1a). It is also known that
π(G) < 2n for all graphs admitting a spanning tree T such that G \ T has no
isolated vertices [1].

Related work. Periodic graph exploration problems have been studied in a
wide variety of contexts; we confine ourselves to a brief survey of directly related
results in the model of anonymous undirected graphs with local port labels, and
robots are deterministic and equipped with no memory (or a very small number
of bits of memory).

When no assumptions are made about the port labeling, it is a well-established
fact [4] that no oblivious robot can explore all graphs. In [5], the impossibility
result was extended to a finite team of robots, showing that they cannot ex-
plore all planar cubic graphs. This result is improved in [6], where the authors
introduce a powerful tool, called the Jumping Automaton for Graphs (JAG). A
JAG is a finite team of finite automata that permanently cooperate and that
can use teleportation to move from their current location to the location of any
other automaton. However, even JAGs cannot explore all graphs. The proof that
a robot requires at least n states (and thus Ω(logn) bits of state memory) to
explore all graphs of order n can be found in [7]. On the other hand, by a semi-
nal result of Reingold [8], a robot equipped with Θ(log n) memory can perform
a deterministic exploration of any graph, and the resulting exploration period
is thus polynomial with respect to n. In [9], the authors investigate the graph
exploration capability with respect to the memory size provided to a robot. An-
other way of assisting exploration is described in [10], where it is shown that an
appropriate pre-coloring of the graph using 3 colors always allows a robot with
constant memory to successfully complete the exploration.

A natural problem consists in manually setting up the local orientation of
the port numbers in order to allow an oblivious robot to efficiently explore the
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input graph. This line of study, which is also pursued herein, was introduced
in [3]. That paper provided the first constructions of port labelings leading to
short exploration periods for an oblivious robot, showing that for any graph on n
nodes, we have π(G) ≤ 10n. Recently, by applying a clever graph decomposition
technique in order to build an appropriate exploration cycle, [1] have improved
this bound to π(G) ≤ 4 1

3n. They have also shown a strong worst-case lower
bound: for arbitrarily large values of n, there exist n-node graphs Gn such that
π(Gn) ≥ 2.8n − O(1).

An interesting variation to this problem was proposed in [11], where the robot
is equipped with few extra memory bits; we will denote the exploration periods
in such a model by πc. In [11] it is shown how to obtain an exploration period
πc(G) ≤ 4n − 2, regardless of the starting vertex of the robot. The obtained
bound has since been improved in [12] to πc(G) < 3.75n − 2 by exploiting some
particular graph properties, still allowing only constant memory. The constant
memory model was also addressed in [1] and the bound was further improved to
πc(G) < 3.5n−2 by using a combination of the properties from [12] and the new
decomposition technique also used in [12] for the oblivious case. Interestingly
enough, apart from the relation πc(Gn) ≥ 2n − 2 which clearly holds whenever
Gn is a tree on n nodes, there are to date no known non-trivial lower bounds on
the worst case value of parameter πc.

Our results. The central result of this paper is to establish an improved
bound on the minimum exploration period of any graph G on n nodes, namely,
π(G) ≤ 4n− 2. The proof is constructive, and we also show that a port labeling
which guarantees an exploration period of at most 4n− 2 for the basic walk can
be computed in polynomial time in a centralized setting. The result is obtained
by applying a new graph decomposition technique which may be of interest in
its own right, and a completely new analysis. Our labeling preserves a structural
property first introduced in [1]: the set of edges which are traversed twice (in
opposite directions) during one exploration period is a connected spanning sub-
graph of G. We present an example showing that the worst-case analysis of our
approach is tight, and that our approach is the best possible when restricted to
the class of explorations having the stated structural property.

Outline. Section 2 describes the structural properties defined in [1] which we use
in order to construct a suitable graph decomposition. The main proofs are given
in Section 3. Subsection 3.1 provides lemmata which characterize the decomposi-
tion that we introduce, while Subsection 3.2 formally describes the corresponding
algorithmic procedure. Further properties of the labelings are discussed in Sec-
tion 4. Subsection 4.1 describes a modification of our construction, leading to a
polynomial time algorithm for computing an appropriate labeling. Subsection 4.2
shows that for some graphs, the proposed construction is the best possible with
respect to the applied graph decomposition. Final remarks are given in Section 5.

Preliminaries and notation. For a graph or multigraph H , we will denote by
V (H) its vertex set, by E(H) its edge multiset, and by |E(H)| the number of its
edges (including multiple edges). The number of edges adjacent in H to a vertex
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v ∈ V (H) is denoted by degH(v). The notation 2e denotes 2 copies of an edge
e; the notation 2H denotes a multigraph with vertex set V (H) and each edge
e ∈ E(H) replaced by 2e. An edge e ∈ H is called double if 2e belongs to H ,
and single otherwise. Throughout the paper we will never consider multigraphs
with more than two parallel edges.

Let G = (V,E) be a connected simple graph, with |V | = n. Any labeling
scheme for G uniquely determines an exploration cycle, understood as a sequence
of directed edges traversed in a single period of the exploration, i.e., a sequence
in which the directed edge (u, v) corresponds to a transition of the robot from
some node u to another node v, where {u, v} ∈ E. The corresponding exploration
multigraph H is defined as the undirected submultigraph of 2G given by the
edges of G traversed by the robot during one exploration cycle (each edge is
included as it is traversed, possibly twice if it is traversed in both directions).
Let H2 be the spanning subgraph of H consisting of its double edges only, and
let H1 = H \ H2. A vertex v ∈ V is called saturated in H with respect to G if
degH(v) = deg2G(v).

In the next section, we show how to build the exploration multigraph H by
keeping H2 as small as possible, so as not to allow the robot to traverse too
many edges twice.

2 The Graph Decomposition

In order to provide the new construction of the exploration multigraph H , we
need to briefly discuss some of the structural properties of exploration multi-
graphs. The following simple observation holds (cf. e.g. [1] for a more detailed
discussion).

Proposition 1 ([1]). Any exploration multigraph H ⊆ 2G has the following
properties:

A. For each vertex v ∈ V , degH(v) is even.
B. Each vertex v ∈ V having degH1

(v) = 0 is saturated in H with respect to G.

The converse of the above proposition does not hold in general, but one more
additional property can also be formulated.

C. H2 is connected.

Then, the following structural theorem has recently been shown.

Theorem 1 ([1]). Any multigraph H ⊆ 2G fulfilling properties A, B, and C is
a valid exploration multigraph, i.e. induces an exploration cycle on G of length
at most |E(H)|.

We can thus concentrate on defining a multigraph which satisfies properties A,
B, and C. To achieve this, in graph G we select an arbitrary spanning tree T0.
Let G′ = G \ T0. Then, in multigraph 2G′ we find a spanning (not necessarily
connected) submultigraph H ′ satisfying properties analogous to A and B:
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A’. For each vertex v ∈ V , degH′ (v) is even.
B’. Each vertex v ∈ V having degH′

1
(v) = 0 is saturated in H ′ with respect to G′.

The final multigraph H is given as H = H ′ ∪ 2T0, thus 2T0 ⊆ H2. It is
clear that H satisfies properties A, B, C, and that |E(H)| = |E(H ′)| + 2(n −
1). Note that the construction of H ′ can be performed independently for each
connected component of G′; throughout the rest of the discussion, w.l.o.g. we
assume that G′ is connected. Hence, in order to obtain an exploration cycle
with period π(G) ≤ 4n − 2, we confine ourselves to constructing an appropriate
submultigraph H ′ ⊆ 2G′ with |E(H ′)| ≤ 2n. So, it remains to show the following
theorem, which constitutes the main result of our paper.
Theorem 2. For any connected graph G′ with vertex set V , |V | = n, there exists
a multigraph H ′ ⊆ 2G′ such that |E(H ′)| ≤ 2n, and H ′ satisfies properties A′

and B′.

3 Proof of Theorem 2

Let T be a rooted spanning tree in G′ with root r. We will call a vertex v ∈ V
tree-saturated in T if degT (v) = degG′(v). For tree T , let s(T ) denote the number
of tree-saturated vertices in T , and let sh(T ), for 0 ≤ h < n, be the number of
tree-saturated vertices in T at height (i.e. distance in tree T from root r to the
vertex) not greater than h. The vertex adjacent to v on the path in T leading
from v to root r will be called the parent p(v), while the edge connecting these
two vertices will be called the parent edge pe(v) = {p(v), v}. For convenience of
notation, we will occasionally augment the edge set of tree T by the fictional
parent edge of the root pe(r), and then denote E+(T ) = E(T ) ∪ pe(r).

Consider the following partial order on rooted spanning trees in graph G′. We
will say that Ta < Tb if one of the following conditions is fulfilled.
1. s(Ta) < s(Tb),
2. s(Ta) = s(Tb), and for some h, 0 ≤ h < n, we have ∀0≤l<h sl(Ta) = sl(Tb)

and sh(Ta) > sh(Tb).

Now, multigraph H ′ can be determined by the following algorithm:

Algorithm 1: Computing multigraph H ′

1. Let T be a minimal spanning tree in G′ with respect to order (<).
2. Let S be a subgraph in G′ \ T , whose connected components are stars, such

that for each v ∈ V either v is tree-saturated in T or degS(v) > 0.
3. Find a submultigraph H ′ ⊆ S ∪ 2T fulfilling properties A’ and B’, such that

|E(H ′)| ≤ 2n, and return it as output.

We have to show that all the steps of the above algorithm are well defined.
Step (1) requires no comment. For step (2), notice that graph S is well defined
because any graph admits a subgraph which is a set of stars, touching all non-
isolated vertices; for graph G′ \T , the only isolated vertices are those which were
tree-saturated in T . Before we proceed to describe the procedure to be used in
Step (3), we first need to show some structural lemmata.
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3.1 Properties of Graph S
Let S be an arbitrary star which is a connected component of S with vertex set
{v1, . . . , vk}. Whenever k ≥ 3 (i.e. when S is not a single edge) we assume that
v1 is the center of the star. Note that none of the vertices vi can be tree-saturated
in T .

Lemma 1. Assume that k ≥ 3. Then for any vi, 1 < i ≤ k, if p(vi) is tree-
saturated in T , then vi lies on the path in T from v1 to root r.

Proof. Suppose that, to the contrary, p(vi) is tree-saturated in T and, that vi

does not lie on the path from v1 to root r. We have two cases.

1. Center v1 lies on the path from vi to root r (Fig. 2a). Then, consider the
tree T ∗ = T ∪ {v1, vi} \ pe(vi). T ∗ is a valid spanning tree in G′; moreover,
s(T ∗) < s(T ) (since vertex p(vi) is no longer tree-saturated in T ∗ and no
new vertices are tree-saturated), a contradiction with the minimality of T .

2. Vertices v1 and vi lie on paths to root r, neither of which is contained in the
other (Fig. 2b). Then we obtain a contradiction by defining tree T ∗ in the
same way as in the previously considered case. ��

Lemma 2. Assume that k ≥ 3. Then there can exist at most one vi, 1 ≤ i ≤ k,
such that p(vi) is tree-saturated in T .

Proof. Suppose that, to the contrary, there are two vertices vi and vj , i 	= j,
such that p(vi) and p(vj) are tree-saturated (note that we do not necessarily
assume that p(vi) 	= p(vj)). Once again, we need to consider two cases.

1. The parent p(v1) of the center of the star is tree-saturated (i.e. we can put
i = 1; Fig. 3a). Then by Lemma 1, vj lies on the path in T leading from
v1 to root r. Then, consider the tree T ∗ = T ∪ {v1, vj} \ pe(v1). T ∗ is a
valid spanning tree in G′. We now have s(T ∗) ≤ s(T ), since vertex p(v1) is
no longer tree-saturated in T ∗, vertex vj may have become tree-saturated,
while the tree-saturation of the other vertices does not change. However,
if s(T ∗) = s(T ), then vj must be tree-saturated in T ∗, so denoting by h

a)

vi

1v

p(v )1

b)

v1

vi

p(v )i

Fig. 2. Arrangements of a star center with respect to saturated vertices (solid edges
belong to the tree, dashed edges belong to a star; a cross denotes a saturated vertex,
a double circle denotes the star center)
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the height of vj in T (equivalently T ∗) we have ∀0≤l<h sl(T ∗) = sl(T ) and
sh(T ∗) > sh(T ). Thus, we obtain that T ∗ < T , a contradiction with the
minimality of T .

2. The parents p(vi) and p(vj), for some i, j > 1, are tree-saturated (Fig. 3b).
Then by Lemma 1, both vi and vj lie on the path in T leading from v1 to
root r; without loss of generality we can assume that vj is closer than vi

to root r. Then, consider the tree T ∗ = T ∪ {v1, vj} \ pe(vi). T ∗ is a valid
spanning tree in G′, and using the same arguments as in the previous case
we obtain that T ∗ < T , a contradiction with the minimality of T . ��

Lemma 3. Let S be a two-vertex star component consisting of vertices v1, v2,
at heights h1 and h2 in tree T , respectively. If p(v1) and p(v2) are both tree-
saturated, then |h1 − h2| ≤ 1.

Proof. Without loss of generality let h1 ≤ h2. Suppose that p(v1) and p(v2) are
both tree-saturated, and that h1 < h2−1. Similarly to the proof of Lemma 1, let
T ∗ = T ∪{v1, v2}\pe(v2). It is clear that in T ∗ vertex p(v2) (at level h2−1) is no
longer tree-saturated, vertex v1 (at level h1 < h2 −1) may possibly become tree-
saturated, while the tree-saturation of the remaining vertices does not change.
Hence T ∗ < T , a contradiction with the minimality of T . ��

3.2 Construction of Multigraph H ′

We now describe the routine used in Step (3) of Algorithm 1 to construct
submultigraph H ′ ⊆ S ∪ 2T by iteratively adding edges. Taking into account
Lemma 3, we can write E(S) = E(S)+ ∪

⋃n
h=1 E(S)h,h ∪

⋃n
h=1 E(S)h,h−1, where

E(S)+ denotes the set of edges belonging to stars of more than 2 vertices,

a)

p(v )j

vj

p(v )1

v1

b)
p(v )j

vj

p(v )i

vi

v1

Fig. 3. Arrangements of two saturated parents for a star (solid edges belong to the
tree, dashed edges belong to a star; a cross denotes a saturated vertex, a shaded circle
denotes a possible saturated vertex, while a double circle denotes the star center)
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E(S)h,h is the set of edges of two-vertex stars with both vertices at height h
in tree T , and finally E(S)h,h−1 is the set of edges of two-vertex stars with one
vertex at height h and the other at height h− 1 in tree T . Likewise, since T is a
tree, we can write E(2T ) =

⋃n
h=1 E(2T )h,h−1, where E(2T )h,h−1 contains edges

connecting a vertex at height h with a vertex at height h − 1 in tree T .
We start by putting E(H ′) = E(S)+. Then, for all levels h ∈ (n, n−1, . . . , 1),

considered in decreasing order, we choose which edges from E(S)h,h, E(S)h,h−1

and E(2T )h,h−1 to add to E(H ′):

(a) Add all edges from E(S)h,h ∪ E(S)h,h−1 to E(H ′).
(b) For each vertex v at level h, add to E(H ′) a subset of the two copies of edge

pe(v) from E(2T )h,h−1 so that the degree of v is even in H ′. When an even
number of edges is required, 2 edges should be used if v is tree-saturated or
p(v) is tree-saturated, and 0 edges should be used otherwise.

(c) Successively consider all edges {v1, v2} ∈ E(S)h,h ∪ E(S)h,h−1 which were
added in step (a). If both vertex v1 and vertex v2 are currently of even degree
in H ′, and both p(v1) and p(v2) are tree-saturated, then remove from E(H ′)
edge {v1, v2}.

(d) For each vertex v at level h affected by changes in step (c), remove from
E(H ′) one of the two copies of edge pe(v) so that the degree of v is even in
H ′.

To show that graph H ′ fulfills properties A’ and B’ it suffices to prove the
following lemma.

Lemma 4. For each vertex v ∈ V , degH′(v) is even. Moreover, if degH′
1
(v) = 0,

then v is tree-saturated and degH′
2
(v) = deg2T (v).

Proof. For each height h, the degree of all vertices at height h in H ′ is always
even after completion of steps (b) and (d) for height h, and is never changed
afterwards. (For the root r at height h = 0, the degree must be even by the
Handshaking lemma). Consequently, the degree of all vertices in H ′ is even.

If degH′
1
(v) = 0, then since all edges of stars with more than two vertices

appear in E(H ′
1), v can only be adjacent to a 2-vertex star or tree-saturated in

T . The former case is impossible, since by definition of steps (c) and (d) either
the edge of the 2-vertex star, or pe(v) belongs to E(H ′

1). In the latter case, the
definition of steps (a)-(d) is such that each edge of tree T adjacent to a tree-
saturated vertex appears either in 1 or 2 copies in E(H ′) = E(H ′

1) ∪ E(H ′
2),

hence if degH′
1
(v) = 0, then clearly degH′

2
(v) = deg2T (v). ��

The relation |E(H ′)| ≤ 2n will now be shown using a local cost-based argument.
First, we will assign costs c to vertices and edges of T as follows.

1. For each edge e ∈ E(T ), cost c(e) ∈ {0, 1, 2} is set as the number of times
edge e appears in multigraph H ′.

2. For each vertex v ∈ V , we set cost c(v) ∈ {0, 1} by considering the following
cases:
(a) if v is tree-saturated in T , then c(v) = 0,
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(b) if v belongs to a 2-vertex star from S, then c(v) = 1 if pe(v) appears in
H ′ at most once, and c(v) = 0 otherwise,

(c) if v belongs to a star from S having at least 3 vertices, then c(v) = 0 if
p(v) is tree-saturated, and c(v) = 1 otherwise.

Lemma 5. For the cost assignment c we have
∑

x∈E(T )∪V c(x) ≥ |E(H ′)| =
|E(H ′ ∩ 2T )| + |E(H ′ ∩ S)|.

Proof. Indeed, we have
∑

x∈E(T ) c(x) = |E(H ′ ∩ 2T )| by definition of the costs
of edges. Next, notice that |E(H ′ ∩ S)| can be redistributed over the costs of
vertices as follows (note that the stars are vertex-disjoint). For a k-vertex star,
with k > 2, we pay for k − 1 edges by assigning a cost of 1 to all vertices of the
star, except perhaps one vertex v for which p(v) is tree-saturated (by Lemma 2
there can be at most one such vertex for each star). For an edge of a 2-vertex
star which appears in H ′, we pay for the edge using the cost assigned to at least
one of its end-vertices having cost 1; an end-vertex with such cost must exist by
the construction of steps (c)-(d) of the algorithm. ��

Lemma 6. For each vertex v ∈ V , c(v) + c(pe(v)) ≤ 2.

Proof. Since c(v) ≤ 1, the claim is clearly true if pe(v) < 2. If c(pe(v)) = 2, then
edge pe(v) appears twice in H ′, hence by the construction of steps (a)-(d) of the
algorithm it is clear that vertex v or vertex p(v) is tree-saturated. In either case,
we have c(v) = 0 by the definition of costs, which completes the proof. ��

Combining Lemmata 5 and 6, summing over all vertices, immediately gives the
sought bound, |E(H ′)| ≤ 2n, which completes the proof of Theorem 2.

4 Construction of the Labeling

Recalling from Section 2 that |E(H)| = |E(H ′)| + 2(n − 1), we can rephrase
Theorem 2 in the original language of graph exploration.

Theorem 3. For any graph G of size n there exists a port labeling leading to
an exploration period π ≤ 4n − 2.

It is natural to ask about the runtime of the procedure required to obtain a
labeling with such an exploration period, and about the tightness of the obtained
bound; we address these questions in the following subsections.

4.1 Runtime of the Labeling Procedure

Whereas the construction of the appropriate cycle can always be performed using
Algorithm 1 (in finite time), this does not necessarily mean that a solution can
be found in polynomial time. The problem consists in computing an appropriate
spanning tree, minimal in the sense of order (<), in step (1). In general, finding
a spanning tree having a minimum number of saturated vertices is already NP -
hard. (The proof of this observation proceeds by reduction from the problem
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of finding a Hamiltonian path in a 3-regular graph: a 3-regular graph has a
spanning tree without saturated vertices if and only if it admits a Hamiltonian
path.)

In order to obtain polynomial time complexity, we apply a slight modification
of step (1): instead of requiring tree T to be minimal, we only require that
Lemmata 1, 2 and 3 hold for this tree. If there appears a contradiction in the
proof of either lemmata, we replace tree T by tree T ∗, using the modifications
shown in Fig. 2 for Lemma 1. For Lemma 2, we use the replacement from Fig. 3a,
while instead of the replacement from Fig. 3b, define tree T ∗ by putting T ∗ =
T ∪ {v1, vj} ∪ {v1, vi} \ (pe(v1) ∪ pe(vi)). For Lemma 3, we simply perform the
operations described in the proof.

We now observe that the modification for Lemma 1 decreases the value of
parameter s(T ), whereas the modifications for Lemmas 2 and 3 either decrease
the value of parameter s(T ), or decrease the value of parameter

∑
0≤l<n(l·sl(T )).

The initial value of parameter s(T ) is at most n; clearly, the modification process
stops when s(T ) = 0. Next, since we have

∑
0≤l<n(l · sl(T )) < n2, then this

parameter may only be decreased less than n2 times for a given value of s(T ).
Overall, the total number of tree modifications is less than n3. This guarantees
polynomial runtime of the whole algorithm.

Theorem 4. There exists a polynomial time algorithm which, given a graph G,
determines a port labeling leading to an exploration period π ≤ 4n − 2.

4.2 Tightness of the Bound

In this section, we show that there actually exist instances for which the length of
the computed exploration cycle by means of our approach is 4n−O(1). Consider
the following property of multigraph H2, obtained by a slight modification of
property C, which is also satisfied by our construction.

D. H2 spans vertex set V , i.e. for all v ∈ V , degH2
(v) > 0.

We make the following claim, which is partially complementary to Theorem 1.

Theorem 5. For all values of n ≥ 3, there exists a graph G of order n, such
that any exploration multigraph H ⊆ 2G fulfilling properties A, B, and D, has
|E(H)| ≥ 4n − 8 edges.

Proof. Consider the complete bipartite graph G = K2,l on n = l+2 vertices, for
any l ≥ 1. By property D, for each of the l vertices v ∈ V such that degG(v) = 2,
we have degH2

(v) > 0, hence degH1
(v) ≤ 1. Taking into account property A we

obtain degH1
(v) = 0, and so by property B, v is saturated in H2. This means

that H = 2G, and so |E(H)| = 2|E(G)| = 4n − 8. ��

5 Conclusions

We have shown that by applying a special construction of a spanning tree, dedi-
cated to the considered exploration problem, it is possible to find in polynomial
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time an exploration cycle of length at most 4n − 2. Moreover, we have shown
that the obtained bound on the exploration period is sometimes tight up to an
additive factor. The best known existential lower bound on the length of an
exploration cycle is within an additive factor of 2.8n [1]. However, obtaining cy-
cles significantly shorter than 4n would require some completely new insight; in
particular, the construction would need to avoid the condition imposed on the
double-edge subgraph of multigraph H (property D in Theorem 5).

Acknowledgement. The authors are most grateful to Jurek Czyzowicz, Leszek
Gąsieniec, David Ilcinkas, and Ralf Klasing for helpful comments and discussions.
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Abstract. We show that each level of the quantifier alternation hierar-
chy within FO2[<] on words is a variety of languages. We use the notion
of condensed rankers, a refinement of the rankers defined by Weis and
Immerman, to produce a decidable hierarchy of varieties which is inter-
woven with the quantifier alternation hierarchy – and conjecturally equal
to it. It follows that the latter hierarchy is decidable within one unit, a
much more precise result than what is known about the quantifier al-
ternation hierarchy within FO[<], where no decidability result is known
beyond the very first levels.

First-order logic is an important object of study in connection with computer
science and language theory, not least because many important and natural
problems are first-order definable: our understanding of the expressive power of
this logic and the efficiency of the solution of related algorithmic problems are
of direct interest in such fields as verification. Here, by first-order logic, we mean
the first-order logic of the linear order, FO[<], interpreted on finite words.

In this context, there has been continued interest in fragments of first-order
logic, defined by the limitation of certain resources, e.g. the quantifier alterna-
tion hierarchy (which is closely related with the dot-depth hierarchy of star-free
languages). It is still an open problem whether each level of this hierarchy is de-
cidable.1 Another natural restriction concerns the number of variables used (and
re-used!) in a formula. It is interesting, notably because the trade-off between
formula size and number of variables is known to be related with the trade-off
between parallel time and number of processes, see [18,5,1,4].

In this paper, we concentrate on FO2[<], the 2-variable fragment of FO[<].
It is well-known that every FO[<]-formula is logically equivalent with a formula
using only 3 variables, but that FO2[<] is properly less expressive than FO[<].
The expressive power of FO2[<] was characterized in many interesting fashions
(see [12,14,15,3]), and in particular, we know how to decide whether an FO[<]-
formula is equivalent to one in FO2[<].
� Both authors acknowledge support from the ANR project dots, the ESF program

AutoMathA and the Indo-French P2R project modiste-cover.
1 On the other hand, the quantifier alternation hierarchy collapses at level 2 for the

first-order logic of the successor FO[S] [16,9].
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A recent result of Weis and Immerman refined a result of Schwentick, Thérien
and Vollmer [12] to give a combinatorial description of the FO2

m[<]-definable
languages (those that can be defined by an FO2[<]-formula with quantifier al-
ternation bounded above by m), using the notion of rankers. Rankers are finite
sequences of instructions of the form go to the next a-position to the right (resp.
left) of the current position.

Our first set of results shows that FO2
m (the FO2

m[<]-definable languages), and
the classes of languages defined by rankers having m alternations of directions
(right vs. left), are varieties of languages. This means that membership of a
language L in these classes depends only on the syntactic monoid of L, which
justifies an algebraic approach of decidability.

Our investigation shows that rankers are actually better suited to character-
ize a natural hierarchy within unary temporal logic, and we introduce the new
notion of a condensed ranker, that is more adapted to discuss the quantifier
alternation hierarchy within FO2[<]. There again, the alternation of directions
in rankers defines hierarchies of varieties of languages Rm and Lm, with partic-
ularly interesting properties. Indeed, we show that these varieties are decidable,
that they admit a neat characterization in terms of closure under deterministic
and co-deterministic products, and that Rm ∪ Lm ⊆ FO2

m ⊆ Rm+1 ∩ Lm+1.
The latter containments show that we can effectively compute, given a language
L ∈ FO2, an integer m such that L is in FO2

m+1, possibly in FO2
m, but not in

FO2
m−1. This is much more precise than the current level of knowledge on the

general quantifier alternation hierarchy in FO[<].2

1 An Algebraic Approach to Study FO2
m

If u ∈ A+ is a non-empty word, we denote by u[i] the letter of u in position i
(1 ≤ i ≤ |u|), and by u[i, j] the factor u[i] · · ·u[j] of u (1 ≤ i ≤ j ≤ |u|). Then
we identify the word u with the logical structure ({1, . . . , |u|}, (a)a∈A), where a
denotes the set of integers i such that u[i] = a.

Let FO[<] (resp. FOk[<], k ≥ 0) denote the set of first-order formulas using
the unary predicates a (a ∈ A) and the binary predicate < (resp. and at most
k variable symbols). It is well-known that FO3[<] is as expressive as FO[<] and
that FO2[<] is properly less expressive.

In the sequel, we omit the predicate < and we write simply FO or FOk. The
classes of FO- and FO2-definable languages have well-known beautiful character-
izations [12,14,15,3]. Two are of particular interest in this paper.

- The algebraic characterization in terms of recognizing monoids: a language is
FO-definable if and only if it is recognized by a finite aperiodic monoid, i.e., one in
which xn = xn+1 for each element x and for all n large enough (Schützenberger
and McNaughton-Ladner, see [13]); and a language is FO2-definable if and only
if it is recognized by a finite monoid in DA (see [14,3]), a class of monoids with
many interesting characterizations, which will be discussed later. These algebraic
2 Unfortunately, it cannot help directly with the general problem since a language L

is FO2[<]-definable if and only if L and its complement are Σ2-definable [11].
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characterizations prove the decidability of the corresponding classes of languages:
L is FO (resp. FO2)-definable if and only if the (effectively computable) syntactic
monoid of L is in the (decidable) class of aperiodic monoids (resp. in DA).

- The language-theoretic characterization: a language is FO-definable if and
only if it is star-free, i.e., it can be obtained from singletons using Boolean
operations and concatenation products (Schützenberger, see [8]); a language is
FO2-definable if and only if it can be written as the disjoint union of unambiguous
products of the form B∗

0a1B
∗
1 · · · akB

∗
k, where k ≥ 0, the ai are letters and

the Bi are subsets of the alphabet. Such a product is called unambiguous if
each word u ∈ B∗

0a1B
∗
1 · · · akB

∗
k admits a unique factorization in the form u =

u0a1u1 · · · akuk such that ui ∈ B∗
i for each i.

We now concentrate on FO2-formulas and we define two important parameters
concerning such formulas. To simplify matters, we consider only formulas where
negation is used only on atomic formulas so that, in particular, no quantifier
is negated. This is naturally possible up to logical equivalence. Now, with each
formula ϕ ∈ FO2, we associate in the natural way a parse tree: each occurrence
of a quantification, ∃x or ∀x, yields a unary node, each occurrence of ∨ or ∧
yields a binary node, and the leaves are labeled with atomic or negated atomic
formulas. Each path from root to leaf in this parse tree has a quantifier label,
which is the sequence of quantifier node labels (∃ or ∀) encountered along this
path. A block in this quantifier label is a maximal factor consisting only of ∃ or
only of ∀. The quantifier depth of ϕ is the maximum length of the quantifier label
of a path in the parse tree of ϕ, and the number of blocks of ϕ is the maximum
number of blocks in the quantifier label of a path in its parse tree.

We let FO2
m,n denote the set of first-order formulas with quantifier depth at

most n and with at most m blocks and let FO2
m denote the union of the FO2

m,n for
all n. We also denote by FO2 (FO2

m) the class of FO2 (FO2
m)-definable languages.

Weis and Immerman’s characterization of the expressive power of FO2
m,n[<] in

terms of rankers [18], see Thm. 1 below, forms the basis of our own results.

1.1 Rankers and Logic

A ranker [18] is a non-empty word on the alphabet {Xa,Ya | a ∈ A}.3 Rankers
may define positions in words: given a word u ∈ A+ and a letter a ∈ A, we
denote by Xa(u) (resp. Ya(u)) the least (resp. greatest) integer 1 ≤ i ≤ |u| such
that u[i] = a. If a does not occur in u, we say that Ya(u) and Xa(u) are not
defined. If in addition q is an integer such that 1 ≤ q ≤ |u|, we let

Xa(u, q) = Xa(u[q + 1, |u|])
Ya(u, q) = Ya(u[1, q − 1]).

These definitions are extended to all rankers: if r′ is a ranker, Z ∈ {Xa,Ya | a ∈
A} and r = r′Z, we let r(u, q) = Z(u, r′(u, q)) if r′(u, q) and Z(u, r′(u, q)) are
defined, and we say that r(u, q) is undefined otherwise.
3 Weis and Immerman write �a and �a instead of Xa and Ya. We rather follow the

notation in [3], where X and Y refer to the future and past operators of LTL.
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Finally, if r starts with an X- (resp. Y-) letter, we say that r defines the
position r(u) = r(u, 0) (resp. r(u) = r(u, |u| + 1)), or that it is undefined on u if
this position does not exist. Then L(r) is the language of all words on which r is
defined. We say that the words u and v agree on a class R of rankers if exactly
the same rankers from R are defined on u and v.

Rankers can be seen as sequences of directional instructions: go to the next
a to the right, resp. to the left. We classify them by the number of instructions
and by the number of changes of direction. The depth of a ranker r is defined to
be its length (as a word). A block in r is a maximal factor in {Xa | a ∈ A}+ (an
X-block) or in {Ya | a ∈ A}+ (a Y-block). If n ≥ m, we denote by RX

m,n (resp.
RY

m,n ) the set of m-block, depth n rankers, starting with an X -(resp. Y-) block,
and we let Rm,n = RX

m,n ∪RY
m,n and RX

m,n =
⋃

n′≤n RX
m,n′ ∪

⋃
m′<m,n′<n Rm′,n′ .

We define RY
m,n dually and we let RX

m =
⋃

n≥m RX
m,n, RY

m =
⋃

n≥m RY
m,n and

Rm = RX
m ∪ RY

m.4

Rankers and temporal logic. Let us depart for a moment from the consid-
eration of FO2-formulas, to observe that rankers are naturally suited to describe
the different levels of a natural class of temporal logic. The symbols Xa and
Ya (a ∈ A) can be seen as modal (temporal) operators, with the future and
past semantics respectively. We denote the resulting temporal logic (known as
unary temporal logic) by TL: its only atomic formula is ., the other formulas
are built using Boolean connectives and modal operators. Let u ∈ A+ and let
0 ≤ i ≤ |u| + 1. We say that . holds at every position i, (u, i) |= .; Boolean
connectives are interpreted as usual; and (u, i) |= Xaϕ (resp. Yaϕ) if and only if
(u, j) |= ϕ, where j is the least a-position such that i < j (resp. the greatest a-
position such that j < i). We also say that u |= Xaϕ (resp. Yaϕ) if (u, 0) |= Xaϕ
(resp. (u, 1 + |u|) |= Yaϕ).

TL is a fragment of propositional temporal logic PTL; the latter is expressively
equivalent to FO and TL is expressively equivalent to FO2, see [14].

As in the case of FO2-formulas, one may consider the parse tree of a TL-
formula and define inductively its depth and number of alternations (between
past and future operators). If n ≥ m, the fragment TLX

m,n (resp. TLY
m,n) consists

of the TL-formulas with depth n and with m alternations, in which every branch
(of the parse tree) with exactly m alternations starts with future (resp. past)
operators. The fragments TLm,n, TLX

m,n, TLY
m,n, TLX

m, TLY
m and TLm are defined

according to the same pattern as in the definition of Rm,n, RX
m,n, RY

m,n, RX
m, RY

m

and Rm. We also denote by TLX
m,n (TLX

m, TLm, etc) the class of TLX
m,n (TLX

m,
TLX

m, etc)-definable languages. The following result is elementary.

Proposition 1. Let 1 ≤ m ≤ n. Two words satisfy the same TLX
m,n formulas

if and only if they agree on rankers from RX
m,n. A language is in TLX

m,n if and
only if it is a Boolean combination of languages of the form L(r), r ∈ RX

m,n.

4 Readers familiar with [18] may notice a small difference between our RX
m,n and their

analogous R�
m,n; introduced for technical reasons, it creates no difference between

Rm,n and R�
m,n, the classes which intervene in crucial Thm. 1 below.
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Similar statements hold for TLY
m,n, TLm,n, TLX

m,n, TLY
m,n, TLX

m, TLY
m and

TLm, relative to the corresponding classes of rankers.

Rankers and FO2. The connection established by Weis and Immerman [18]
between rankers and formulas in FO2

m,n, Thm. 1 below, is deeper. If x, y are
integers, we let ord(x, y), the order type of x and y, be one of the symbols <, >
or =, depending on whether x < y, x > y or x = y.

Theorem 1. Let u, v ∈ A∗ and let 1 ≤ m ≤ n. Then u and v satisfy the same
formulas in FO2

m,n if and only if

(WI 1) u and v agree on rankers from Rm,n,
(WI 2) if the rankers r ∈ Rm,n and r′ ∈ Rm−1,n−1 are defined on u and v,

then ord(r(u), r′(u)) = ord(r(v), r′(v)).
(WI 3) if r ∈ Rm,n and r′ ∈ Rm,n−1 are defined on u and v and end with

different direction letters, then ord(r(u), r′(u)) = ord(r(v), r′(v)).

Corollary 1. For each n ≥ m ≥ 1, TLm,n ⊆ FO2
m,n and TLm ⊆ FO2

m.

FO2
m and TLm-definable languages form varieties. Our first result is the

following. We refer the reader to [8] and to Section 1.2 below for background
and discussion on varieties of languages.

Proposition 2. For each n ≥ m ≥ 1, the classes TLX
m,n TLY

m,n, TLY
m, TLY

m,
TLm,n, TLm, FO2

m,n and FO2
m are varieties of languages.

Sketch of proof. Let ρm,n be the relation for two words to agree on TLX
m,n-

formulas. Using Prop. 1, one verifies that ρm,n is a finite index congruence.
Then a language is TLX

m,n-definable if and only if it is a union of ρm,n-classes,
if and only if it is recognized by the finite monoid A∗/ρm,n. It follows that
these languages are exactly those accepted by the monoids in the pseudovariety
generated by the A∗/ρm,n, for all finite alphabets A, and hence they form a
variety of languages. TLX

m, being the increasing union of the TLX
m,n (n ≥ m), is

a variety as well.
The proof for the other fragments of TL is similar. For the fragments of FO2,

we use Thm. 1 instead of Prop. 1. ��

This result shows that, for a given regular language L, TLX
m- (resp. TLm-, FO2

m-,
etc) definability is characterized algebraically, that is, it depends only on the
syntactic monoid of L. This justifies using the algebraic path to tackle decid-
ability of these definability problems. Eilenberg’s theory of varieties provides the
mathematical framework.

1.2 A Short Survey on Varieties and Pseudovarieties

We summarize in this section the information on monoid and variety theory that
will be relevant for our purpose, see [8,2,14,15] for more details.
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A language L ⊆ A∗ is recognized by a monoid M if there exists a morphism
ϕ : A∗ → M such that L = ϕ−1(ϕ(L)). For instance, if u ∈ A∗ and B ⊆ A, let
alph(u) = {a ∈ A | u = vaw for some v, w ∈ A∗} and [B] = {u ∈ A∗ | alph(u) =
B}. Then [B] is recognized by the direct product of |B| copies of the 2-element
monoid {0, 1} (multiplicative).

A pseudovariety of monoids is a class of finite monoids closed under tak-
ing direct products, homomorphic images and submonoids. Pseudovarieties of
subsemigroups are defined similarly. A class of languages V is a collection V =
(V(A))A, indexed by all finite alphabets A, such that V(A) is a set of languages in
A∗. If V is a pseudovariety of monoids, we let V(A) be the set of languages of A∗

recognized by a monoid in V. The class V is closed under Boolean operations,
residuals and inverse homomorphic images. Classes of recognizable languages
with these properties are called varieties of languages, and Eilenberg’s theorem
(see [8]) states that the correspondence V 
→ V , from pseudovarieties of monoids
to varieties of languages, is one-to-one and onto. Moreover, the decidability of
membership in the pseudovariety V, implies the decidability of the variety V :
indeed, a language is in V if and only if its (effectively computable) syntactic
monoid is in V.

For every finite semigroup S and s ∈ S, we denote by sω the unique power
of s which is idempotent. Another important monoid-theoretic concept is the
following: if S is a monoid and s, t ∈ S, we say that s ≤J t (resp. s ≤R t,
s ≤L t) if s = utv (resp. s = tv, s = ut) for some u, v ∈ S ∪ {1}. We also
say that s J t is s ≤J t and t ≤J s. The relations R and L are defined
similarly.

Pseudovarieties that will be important in this paper are the following.

- J1, the pseudovariety of idempotent and commutative monoids; the corre-
sponding variety is the Boolean algebra generated by the languages [B], B ⊆ A.

- R, L and J, the pseudovarieties of R-, L- and J -trivial monoids; a monoid
is, say, R-trivial if each of its R-classes is a singleton.

- DA, the pseudovariety of all finite monoids in which (xy)ωx(xy)ω = (xy)ω

for all x, y; DA has a great many characterizations in combinatorial, algebraic
and logical terms [2,3,11,12,14,15].

- K (resp. D, LI) is the pseudovariety of semigroups in which xωy = xω (resp.
yxω = xω, xωyxω = xω) for all x, y.

Finally, if V is a pseudovariety of semigroups and W is a pseudovariety of
monoids, we say that a finite monoid M lies in the Mal’cev product W ©m V if
there exists a finite monoid T and onto morphisms α : T → M and β : T → N
such that N ∈ V and β−1(e) ∈ W for each idempotent e of N . Then W ©m V is
a pseudovariety of monoids and we have in particular [8,2,10]:

K ©m J1 = K ©m J = R, D ©m J1 = D ©m J = L, LI ©m J1 = LI ©m J = DA.

We denote by TLX
m,n TLY

m,n, TLY
m, TLY

m, TLm,n, TLm, FO2
m,n and FO2

m the
pseudovarieties corresponding to the language varieties discovered in Prop. 2.
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2 Main Results

Our main tool to approach the decidability of FO2
m-definability lies in a variant

of rankers, which we borrow from a proof in Weis and Immerman’s paper [18]. As
in the turtle language of [12], a ranker can be seen as a sequence of instructions:
go to the next a to the right, go to the next b to the left, etc. We say that a
ranker r is condensed on u if it is defined on u, and if the sequence of positions
visited zooms in on r(u), never crossing over a position already visited. Formally,
r = Z1 · · ·Zn is condensed on u if there exists a chain of open intervals

(0, |u| + 1) = (i0, j0) ⊃ (i1, j1) ⊃ · · · ⊃ (in−1, jn−1) 5 r(u)

such that for all 1 ≤ � ≤ n − 1 the following properties are satisfied:

– If Z�Z�+1 = XaXb then (i�, j�) = (Xa(u, i�−1), j�−1).
– If Z�Z�+1 = YaYb then (i�, j�) = (i�−1,Ya(u, j�−1).
– If Z�Z�+1 = XaYb then (i�, j�) = (i�−1,Xa(u, i�−1)).
– If Z�Z�+1 = YaXb then (i�, j�) = (Ya(u, j�−1), j�−1).

For instance, the ranker XaYbXc is defined on the words bac and bca, but it is con-
densed only on bca. Rankers in R1, or of the form XaYb1 · · ·Ybk

or YaXb1 · · ·Xbk
,

are condensed on all words on which they are defined. We denote by Lc(r) the
set of all words on which r is condensed.

Condensed rankers form a natural notion, equally well-suited to the descrip-
tion of FO2

m-definability (see Thm. 2 below). With respect to TL, for which
Prop. 1 shows a perfect match with the notion of rankers, they can be inter-
preted as adding a strong notion of unambiguity, see Section 3 below and the
work of Lodaya, Pandya and Shah [7] on unambiguous interval temporal logic.

2.1 Condensed Rankers Determine a Hierarchy of Pseudovarieties

Let us say that two words u and v agree on condensed rankers from a set R of
rankers, if the same rankers are condensed on u and v. We write u &m,n v (resp.
u 'm,n v) if u and v agree on condensed rankers in RX

m,n (resp. RY
m,n).

These relations turn out to have a very nice recursive characterization. For
each word u ∈ A∗ and letter a occurring in u, the a-left (resp. a-right) fac-
torization of u is the factorization that isolates the leftmost (resp. rightmost)
occurrence of a in u; that is, the factorization u = u−au+ such that a does not
occur in u− (resp. u+). We say that the word a1 · · ·ar is a subword of u if u can
be factored as u = u0a1u1 · · · arur, with the ui ∈ A∗.

Proposition 3. The relations &m,n and 'm,n (n ≥ m ≥ 1) are uniquely deter-
mined by the following properties.

- u &1,n v if and only if u '1,n v, if and only if u and v have the same subwords
of length at most n.

- If m ≥ 2, then u &m,n v if and only if alph(u) = alph(v), u 'm−1,n−1 v and
for each letter a ∈ alph(u), the a-left factorizations u = u−au+ and v = v−av+

satisfy u− 'm−1,n−1 v− and u+ &m,n−1 v+ (if n > m).
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- If m ≥ 2, then u 'm,n v if and only if alph(u) = alph(v), u &m−1,n−1 v and
for each letter a ∈ alph(u), the a-right factorizations u = u−au+ and v = v−av+

satisfy u+ &m−1,n−1 v+ and u− 'm,n−1 v− (if n > m).

Corollary 2. The relations &m,n and 'm,n are finite-index congruences.

For each m ≥ 1, let us denote by Rm (resp. Lm) the pseudovariety generated by
the quotients A∗/&m,n (resp. A∗/'m,n), where n ≥ m and A is a finite alphabet.
Corollary 2 shows that a language L is in the corresponding variety Rm (resp.
Lm) if and only if L is a Boolean combination of languages of the form Lc(r),
with r ∈ RX

m (resp. RY
m).

By definition, Rm and Lm are contained in both Rm+1 and Lm+1 for all
m. Moreover, Prop. 3 shows that &1,n = '1,n is the congruence defining the
piecewise n-testable languages studied by Simon in the early 1970s, and that, in
consequence, R1 = L1 = J, the pseudovariety of J -trivial monoids [8].

In addition, one can show that if a position in a word u is defined by a ranker
r ∈ RX

m,n (resp. RY
m,n), then the same position is defined by a ranker s ∈ RX

m,n

(resp. RY
m,n) which is condensed on u. This leads to the following result5.

Proposition 4. Let n ≥ m ≥ 1. If the words u and v agree on condensed
rankers in RX

m,n (resp. RY
m,n), then they agree on rankers from the same class.

In particular, TLX
m ⊆ Rm and TLY

m ⊆ Lm.

As indicated above, condensed rankers allow for a description of FO2
m-defin-

ability, as neat as with ordinary rankers: we show that the statement of Weis
and Immerman’s theorem can be modified to use condensed rankers instead.

Theorem 2. Let u, v ∈ A∗ and let 1 ≤ m ≤ n. Then u and v satisfy the same
formulas in FO2

m,n if and only if

(WI 1c) u and v agree on condensed rankers from Rm,n,
(WI 2c) if the rankers r ∈ Rm,n and r′ ∈ Rm−1,n−1 are condensed on u and

v, then ord(r(u), r′(u)) = ord(r(v), r′(v)).
(WI 3c) if r ∈ Rm,n and r′ ∈ Rm,n−1 are condensed on u and v and end with

different direction letters, then ord(r(u), r′(u)) = ord(r(v), r′(v)).

Thus there is a connection between FO2
m and the varieties Rm and Lm. But

much more can be said about the latter varieties.

2.2 Language Hierarchies

Prop. 3 also leads to a description of the language varieties Rm and Lm in
terms of deterministic and co-deterministic products. Recall that a product of
languages L = L0a1L1 · · · akLk (k ≥ 1, ai ∈ A, Li ⊆ A∗) is deterministic if,
for 0 ≤ i ≤ k, each word u ∈ L has a unique prefix in L0a1L1 · · ·Li−1ai. If for

5 Whose converse does not hold, see Ex. 2 below.



On FO2 Quantifier Alternation over Words 521

each i, the letter ai does not occur in Li−1, the product L0a1L1 · · ·akLk is called
visibly deterministic: this is obviously also a deterministic product.

The definition of a co-deterministic or visibly co-deterministic product is dual,
in terms of suffixes instead of prefixes. If V is a class of languages and A is a
finite alphabet, let Vdet(A) (resp. Vvdet(A), Vcodet(A), Vvcodet(A)) be the set of
all Boolean combinations of languages of V(A) and of deterministic (resp. visibly
deterministic, co-deterministic, visibly co-deterministic) products of languages of
V(A). Schützenberger gave algebraic characterizations of the closure operations
V 
−→ Vdet and V 
−→ Vcodet, see [8]: if V is a variety of languages and if V is
the corresponding pseudovariety of monoids, then Vdet and Vcodet are varieties
of languages and the corresponding pseudovarieties are, respectively, K©m V and
D ©m V. Then we show the following.

Proposition 5. For each m ≥ 1, we have Rm+1 = Lvdet
m = Ldet

m , Rm+1 =
K ©m Lm, Lm+1 = Rvcodet

m = Rcodet
m and Lm+1 = D ©m Rm. In particular,

R2 = R and L2 = L.

Sketch of proof. Prop. 3 shows that Rm+1 ⊆ Lvdet
m , which is trivially contained

in Ldet
m . The last containment is proved algebraically, by showing that if γ : A∗ →

M is an onto morphism, and M ∈ K ©m Lm, then for some large enough n,
u &m+1,n v implies γ(u) = γ(v): thus M is a quotient of A∗/&m+1,n and hence,
M ∈ Rm+1. This proof relies on a technical property of semigroups in DA: if
a ∈ A occurs in alph(v) and γ(u) R γ(uv), then γ(uva) R γ(u). ��

It turns out that the Rm and the Lm were studied in the semigroup-theoretic lit-
erature (Kufleitner, Trotter and Weil, [17,6]). In [6], it is defined as the hierarchy
of pseudovarieties obtained from J by repeated applications of the operations
X 
→ K ©m X and X 
→ D ©m X. Prop. 5 shows that it is the same hierarchy as
that considered in this paper6. The following results are proved in [6, Section 4].

Proposition 6. The hierarchies (Rm)m and (Lm)m are infinite chains of de-
cidable pseudovarieties, and their unions are equal to DA. Moreover, every m-
generated monoid in DA lies in Rm+1 ∩ Lm+1.

The decidability statement in Prop. 6 is in fact a consequence of a more precise
statement (see [17,6]) which gives defining pseudoidentities for the Rm and Lm.
Let x1, x2, . . . be a sequence of variables. If u is a word on that alphabet, we let
ū be the mirror image of u, that is, the word obtained from reading u from right
to left. We let

G2 = x2x1, I2 = x2x1x2,

for n > 2, Gn = xnGn−1, In = GnxnIn−1,

ϕ(x1) = (xω
1 xω

2 xω
1 )ω, ϕ(x2) = xω

2 ,

and, for n > 2, ϕ(xn) = (xω
nϕ(Gn−1Gn−1)ωxω

n)ω.

6 More precisely, the pseudovarieties Rm and Lm in [6] are pseudovarieties of semi-
groups, and the Rm and Lm considered in this paper are the classes of monoids in
these pseudovarieties.
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Proposition 7 ([6]). For each m ≥ 2, Rm = DA ∩ [[ϕ(Gm) = ϕ(Im)]] and
Lm = DA ∩ [[ϕ(Gm) = ϕ(Im)]].

Example 1. For R2, this yields xω
2 (xω

1 xω
2 xω

1 )ω = xω
2 (xω

1 xω
2 xω

1 )ωxω
2 . One can verify

that, together with the pseudo-identity defining DA, this is equivalent to the
usual pseudo-identity describing R = R2, namely (st)ωs = (st)ω .

For R3 = K ©m L, no pseudo-identity was known in the literature. We get

ϕ(G3) = (xω
3 ((xω

1 xω
2 xω

1 )ωxω
2 (xω

1 xω
2 xω

1 )ω)ωxω
3 )ω

ϕ(I3) = (xω
3 ((xω

1 xω
2 xω

1 )ωxω
2 (xω

1 xω
2 xω

1 )ω)ωxω
3 )ω

(xω
3 ((xω

1 xω
2 xω

1 )ωxω
2 (xω

1 xω
2 xω

1 )ω)ωxω
3 )ωxω

2 (xω
1 xω

2 xω
1 )ωxω

2 .

2.3 Connection with the TLm and the FO2
m Hierarchies

Prop. 4 established a containment between the Rm (resp. Lm) and the TLm

hierarchies. A technical analysis allows us to prove a containment in the other
direction, but one that is not very tight – showing the difference between the
consideration of condensed rankers and that of ordinary rankers.

Proposition 8. R2 = TLX
2 and L2 = TLY

2 . If m ≥ 3 and if two words agree
on rankers in RX

�3m/2� (resp. RY
�3m/2�), then they agree on condensed rankers in

RX
m (resp. RY

m). In particular Rm ⊆ TLX
�3m/2� and Lm ⊆ TLY

�3m/2�.

Example 2. The language Lc(XaYbXc) is in R3 and not in TLX
3 .

The connection between the Rm, Lm and FO2
m hierarchies is tighter.

Theorem 3. Let m ≥ 1. Every language in Rm or Lm is FO2
m-definable, and

every FO2
m-definable language is in Rm+1 ∩ Lm+1. Equivalently, we have

Rm ∨ Lm ⊆ FO2
m ⊆ Rm+1 ∩ Lm+1,

where V ∨ W denotes the least pseudovariety containing V and W.

Sketch of proof. The containment Rm ∨ Lm ⊆ FO2
m follows directly from

Property (WI 1c) in Thm. 2. The proof of the converse containment also relies
on that theorem. We show that if u &m+1,2n or u 'm+1,2n, then Properties (WI
1c), (WI 2c) and (WI 3c) hold for m,n. This is done by a complex and quite
technical induction. ��

If m = 1, we know that R2 ∩ L2 = R ∩ L = J = R1 ∨ L1: this reflects the ele-
mentary observation that FO2

1-definable languages, like FO1-definable languages,
are the piecewise testable languages. For m ≥ 2, we conjecture that Rm ∨Lm is
properly contained in Rm+1 ∩ Lm+1. The following shows it holds for m = 2.
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Example 3. It is elementary to find an FO2
2-formula defining the language L =

{b, c}∗ca{a, b}∗ (every c is before every a, every b has an a in its past or a c in
its future, and there is at least an a and a c). The words un = (bc)n(ab)n are in
L, while the words vn = (bc)nb(ca)n are not. Almeida and Azevedo showed that
R2 ∨ L2 is defined by the pseudo-identity (bc)ω(ab)ω = (bc)ωb(ab)ω [2, Thm.
9.2.13 and Exerc. 9.2.15]). In particular, for each language K recognized by a
monoid in R2 ∨ L2, the words un and vn are eventually all in K, or all in the
complement of K. Therefore L is not recognized by such a monoid, which proves
that R2 ∨ L2 is strictly contained in FO2

2, and hence also in R3 ∩ L3. It also
shows that TL2 is properly contained in FO2

2.

Finally, we formulate the following conjecture.

Conjecture 1. For each m ≥ 1, FO2
m = Rm+1 ∩ Lm+1.

3 Consequences

The main consequence we draw of Thm. 3 and of the decidability of the pseu-
dovarieties Rm and Lm is summarized in the next statement.

Theorem 4. Given an FO2-definable language L, one can compute an integer
m such that L is FO2

m+1-definable but not FO2
m−1-definable. That is: we can

decide the quantifier alternation level of L within one unit.

Sketch of proof. If M ∈ DA, we can compute the largest m such that M 	∈
Rm ∩ Lm (Prop. 6). Then M ∈ FO2

m+1 \ FO2
m−1 by Thm. 3. ��

The fact that the Rm and Lm form strict hierarchies (Prop. 6), together with
Thm. 3, proves that the FO2

m hierarchy is infinite. Weis and Immerman had
already proved this result by combinatorial means [18], whereas our proof is
algebraic. From that result on the FO2

m, it is also possible to recover the strict
hierarchy result on the Rm and Lm and the fact that their union is equal to DA.
By the same token, Prop. 4 and 8 show that the TLm (resp. TLm) hierarchy is
infinite and that its union is all of FO2 (resp. DA).

Similarly, the fact that an m-generated element of DA lies in Rm+1 ∩ Lm+1

(Prop. 6), shows that an FO2-definable language in A∗ lies in R|A|+1∩L|A|+1, and
hence in FO2

m+1 – a fact that was already established by combinatorial means
by Weis and Immerman [18, Thm. 4.6]. It also shows that such a language is in
TL 3

2 (|A|+1) by Prop. 8.
Finally we note the following result. It was mentioned in the introduction

that the languages in FO2 are disjoint unions of unambiguous products of the
form B∗

0a1B
∗
1 · · · akB

∗
k , where each Bi is a subset of A. Props. 5 and 6 imply the

following statement.7

7 The weaker statement with the word visibly deleted was proved by the authors in
[6], as well as by Lodaya, Pandya and Shah [7].
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Proposition 9. The least variety of languages containing the languages of the
form B∗ (B ⊆ A) and closed under visibly deterministic and visibly
co-deterministic products, is FO2.

Every unambiguous product of languages of the form B∗
0a1B

∗
1 · · ·akB

∗
k (with

each Bi ⊆ A), can be expressed in terms of the B∗
i and the ai using only Boolean

operations and at most |A| + 1 applications of visibly deterministic and vis-
ibly co-deterministic products, starting with a visibly deterministic (resp. co-
deterministic) product.
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Abstract. Let I be a finite set of integers and F be a finite set of maps
of the form n 
→ ki n + �i with integer coefficients. For an integer base
k ≥ 2, we study the k-recognizability of the minimal set X of integers
containing I and satisfying ϕ(X) ⊆ X for all ϕ ∈ F . In particular, solv-
ing a conjecture of Allouche, Shallit and Skordev, we show under some
technical conditions that if two of the constants ki are multiplicatively
independent, then X is not k-recognizable for any k ≥ 2.

1 Introduction

In the general framework of numeration systems, the so-called recognizable sets
of integers have been extensively studied. Let k ≥ 2 be an integer. The function
repk : N → {0, . . . , k − 1}∗ maps a non-negative integer onto its k-ary repre-
sentation (without leading zeros). A set X ⊆ N is k-recognizable if the language
repk(X) = {repk(n) | n ∈ X} is regular; see, for instance, [3]. A similar definition
can be given for the k-recognizable subsets of Z using convenient conventions to
represent negative numbers, like adding a symbol “−” to the alphabet or consid-
ering the positive and the negative elements separately. Since the seminal work
of Cobham [4], it is well-known that the recognizability of a set depends on the
choice of the base k — except for the ultimately periodic sets, i.e., the union of a
finite set and a finite number of infinite arithmetic progressions, which are easily
seen to be k-recognizable for all k ≥ 2. The celebrated theorem of Cobham can
be stated as follows. Let k, � ≥ 2 be two multiplicatively independent bases, i.e.,
log k/ log � is irrational. If a set X ⊆ N is both k-recognizable and �-recognizable,
then it is ultimately periodic.

Kimberling introduced the so-called self-generating sets of integers [10]. They
can be defined as follows. Let r ≥ 1 and G = {ϕ1, ϕ2, . . . , ϕr} be a set of affine
maps where ϕi : n 
→ ki n + �i with ki, �i ∈ Z and 2 ≤ k1 ≤ k2 ≤ · · · ≤ kr. The
set generated by G and a finite set of integers I is the minimal subset X of Z
containing I and such that ϕi(X) ⊆ X for all i = 1, . . . , r. For any subset S ⊆ Z,
we set G(S) := {ϕ(s) | s ∈ S, ϕ ∈ G}, G0(S) := S and Gm+1(S) := G(Gm(S))
for all m ≥ 0. Otherwise stated X =

⋃
m≥0 Gm(I) is the set of all integers n

such that there exist m ≥ 0, a ∈ I and a finite sequence (ϕi1 , ϕi2 , . . . , ϕim) of
maps in G such that

n = ϕim ◦ ϕim−1 ◦ · · · ◦ ϕi1 (a) = ϕim(ϕim−1(· · ·ϕi1 (a) · · · )). (1)
� Supported by Osk. Huttunen Foundation.
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Example 1. In [10], for G = {n 
→ 2n, n 
→ 4n−1} and I = {1}, it is shown that
the corresponding self-generating set

K1 = {1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 15, 16, . . .}

is closely related to the Fibonacci word. Notice that for I = {0}, we get a subset
containing negative integers: K0 = {0,−1,−2,−4,−5,−8,−9, . . .}. In particular,
for I = {0, 1}, the corresponding self-generating set is K0 ∪ K1.

These self-generating sets are also called affinely recursive in [11] where the corre-
spondence between words i1i2 · · · im over the alphabet {1, 2, . . . , r} and integers
ϕim(ϕim−1 (· · ·ϕi1(1) · · · )) is studied. For example, conditions under which this
correspondence is one-to-one are given, which in turn implies that the natural
ordering of the integers induces an ordering on the set of non-empty words over
{1, 2, . . . , r} providing a kind of abstract numeration system [12].

In [2] a general framework for self-generating sets is considered. The k-ary
representations of the elements in a self-generating set are related to words over
Σk = {0, 1, . . . , k−1} where some fixed block of digits is missing. As an illustra-
tion, one can notice that the set K1 − 1 = {0, 1, 2, 3, 5, 6, 7, 10, . . .} introduced in
Example 1 consists of all integers whose binary expansion does not contain “00”
as factor. Recall that the characteristic sequence (cX(n))n≥0 of a set X ⊆ N is
defined by cX(n) = 1, if n ∈ X and cX(n) = 0, otherwise. In particular, X is k-
recognizable (resp., ultimately periodic) if and only if (cX(n))n≥0 is k-automatic
(resp., an ultimately periodic infinite word). These self-generating sets are con-
sequently studied from the point of view of automatic and morphic sequences
as well as in relation to non-standard numeration systems; for the definitions
and further information, see [1,13]. Moreover, Allouche, Shallit and Skordev ask
the following question: Under what conditions is the characteristic sequence of
a self-generating set k-automatic ? They also present the following conjecture.

Conjecture 1. With “mixed base” rules, such as G = {n 
→ 2n+ 1, n 
→ 3n}, the
set generated from I = {1} is not k-recognizable for any integer base k ≥ 2.

Let us fix notation once and for all.

Definition 1. In this paper, instead of considering a set G of maps as described
above, we will moreover consider the extended set of r + 1 ≥ 2 maps

F = G ∪ {ϕ0} = {ϕ0, ϕ1, . . . , ϕr} where ϕ0 : n 
→ n

and ϕi : n 
→ ki n + �i with ki, �i ∈ Z and 2 ≤ k1 ≤ k2 ≤ · · · ≤ kr. Having
identity function at our disposal, for any set S ⊆ Z, we have Fm(S) ⊆ Fm+1(S).
Therefore, for any finite set I of integers, the set

Fω(I) := lim
m→∞

Fm(I)

is exactly the self-generating set with respect to G and I.
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The content of the paper is the following.

1. If we add to F an extra map ψ : n 
→ n+� with � 	= 0, then the corresponding
self-generating set Fω(I) is ultimately periodic and therefore k-recognizable
for all k ≥ 2.

2. If all the multiplicative constants ki are pairwise multiplicatively depen-
dent, then we give a general method to build a finite automaton recognizing
repk(Fω(I)) for any k that is multiplicatively dependent on every ki. Let
us note that the case where the constants ki are powers of a fixed base is
considered in [8].

3. If there exist i, j such that ki and kj are multiplicatively independent and
if
∑r

i=1 k−1
i < 1, then Fω(I) is not k-recognizable for any k ≥ 2. In partic-

ular, this condition always holds for sets F where r = 2 and k1 < k2 are
multiplicatively independent, answering Conjecture 1 in the affirmative.

The techniques rely on a classical gap theorem; see Theorem 3. We study differ-
ences and ratios of consecutive elements in the considered self-generating set.

2 Ultimately Periodic Self-generating Sets

Theorem 1. If we add to F in Definition 1 an extra map ψ : n 
→ n + � with
� 	= 0, then the corresponding self-generating set Fω(I) is ultimately periodic of
period �.

Proof. Denote by F j(I) mod � the set {n mod � | n ∈ F j(I)}. Recall that
the identity function ϕ0 belongs to F . Since there are finitely many congruence
classes modulo � and F j(I) mod � ⊆ F j+1(I) mod �, there must exist an in-
teger J such that F J+1(I) mod � = F J(I) mod �. Moreover, this means that
F j(I) mod � = F J(I) mod � for every j ≥ J , and, consequently,

Fω(I) mod � = F J (I) mod �. (2)

On the other hand, if n ∈ Fω(I), then ψt(n) = n+ t � ∈ Fω(I). Since n+ t � ≡ n
mod �, we conclude by (2), for any n ≥ maxF J(I), that

cF ω(I)(n) =
{

1, if n mod � ∈ F J(I) mod �;
0, otherwise.

Hence, the characteristic sequence of Fω(I) is ultimately periodic with preperiod
maxF J (I) and period �.

Remark 1. In Definition 1 and in what follows, we always assume that all the
multiplicative constants ki of the affine maps ϕ1, . . . , ϕr in F are at least 2. This
condition does not guarantee that the corresponding self-generating set is not
ultimately periodic. For example, if ϕi(x) = r x + i for i = 1, . . . , r, then we
easily see that Fω({0}) = N.
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Let y ≥ 0. Recall (for instance, see [3]) that a set Y ⊆ N is k-recognizable if
and only if Y + y is k-recognizable. As explained by the following lemma, from
the point of view of recognizability of subsets of N, one can assume that all the
additive constants �i are non-negative.

Lemma 1. Let X = Fω(I) be a self-generating set as given in Definition 1.
There exist a non-negative integer y and a self-generating set Y = F̂ω(I − y),
where F̂ = {ϕ0, ϕ̂1, . . . , ϕ̂r}, such that X = Y + y and ϕ̂i : n 
→ ki n + �̂i for
every i = 1, 2, . . . , r with some non-negative constants �̂i completely determined
by F .

Proof. Assume that at least for some function ϕi ∈ F the constant �i is negative.
Otherwise, the claim is trivial. Let y = max{|�i| | �i < 0} and set, for i =
1, 2, . . . , r,

�̂i := �i + (ki − 1)y.

Since ki ≥ 2, the constants �̂i are non-negative for every i.
We show by induction on the number of applied maps that x belongs to Fω(I)

if and only if x−y belongs to F̂ω(I−y). First, for any x ∈ I, it is obvious that x−y
belongs to I − y. Recall that F = G∪ {ϕ0} and assume now that x ∈ Gm(I) for
some m ≥ 1. Otherwise stated, x is obtained by applying m maps in {ϕ1, . . . , ϕr}.
Therefore there exist z ∈ Gm−1(I) and i ∈ {1, . . . , r} such that x = ϕi(z). By
induction hypothesis, z−y belongs to Ĝm−1(I−y) where Ĝ = F̂ \{ϕ0}. Then we
have ϕi(z) = ki z + �i and ϕ̂i(z − y) = ki(z − y)+ �i +(ki −1)y = ϕi(z)− y. This
proves that x − y belongs to Ĝm(I − y). Assume now that x − y ∈ Ĝm(I − y)
for some m ≥ 1. There exist z ∈ Ĝm−1(I − y) and i ∈ {1, . . . , r} such that
x − y = ϕ̂i(z). Then x = ki(z + y) + �i = ϕi(z + y) and by induction hypothesis
z + y belongs to Gm−1(I). This concludes the proof.

Example 2. Consider the set X = K1 given in Example 1 and generated from
{1} by the maps n 
→ 2n and n 
→ 4n − 1. Applying the constructions given in
the previous proof, set y = 1 and consider the maps 2n + 1 and 4n + 2. These
two maps generate from {1}− 1 = {0}, the set {0, 1, 2, 3, 5, 6, 7, 10, . . .} which is
equal to X − 1.

3 Multiplicatively Dependent Case

In this section, we assume that the multiplicative coefficients ki appearing in
Definition 1 are all pairwise multiplicatively dependent, i.e., for every pair (i, j),
there exist positive integers ei and ej such that kei

i = k
ej

j . Note that ki and kj

are multiplicatively dependent if and only if there exist an integer n ≥ 2 and two
integers di, dj ≥ 1 such that ki = ndi and kj = ndj . By this characterization, it
is easy to see that if the coefficients ki are pairwise multiplicatively dependent,
then there exists an integer k such that every ki is a power of k. Our aim is to
build a finite automaton showing that the set Fω(I) is k-recognizable.
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Recall that Σk = {0, 1, . . . , k − 1} and that repk : N → Σ∗
k maps an integer n

to its k-ary representation without leading zeros. For any finite alphabet A ⊆ Z,
the function valA,k : A∗ → Z maps a word w = wnwn−1 · · ·w0 over A to the
corresponding numerical value

valA,k(w) =
n∑

i=0

wi k
i.

The function defined over the set of words w ∈ A∗ such that valA,k(w) ≥ 0 and
which maps w to repk(valA,k(w)) is called normalization over A. In the special
case A = Σk, we simply write valk instead of valΣk,k.

Theorem 2. Let F given in Definition 1 be such that the multiplicative coeffi-
cients k1, . . . , kr are all pairwise multiplicatively dependent. The corresponding
self-generating set X = Fω(I) is k-recognizable if ki is a power of k for every
i = 1, 2, . . . , r.

We first sketch a proof relying on Frougny’s normalization theorem.

Proof. Assume that X ⊆ N and that the maps are of the kind ϕi : n 
→ kei n+�i

with e1 ≥ 1 for all i ∈ {1, . . . , r}. Let n = ϕim(ϕim−1(· · ·ϕi1 (a) · · · )) for some
a ∈ I. With that integer, we associate the word

w = a 0ei1−1�i1 · · · 0eim−1�im

over the finite alphabet I ∪{0, �1, . . . , �r} ⊂ Z. One can notice that valk(w) = n.
Apply Proposition 7.1.4 in [13] (see also [7]) and Theorem 4.3.6 in [1] to the
language I{0e1−1�1, . . . , 0er−1�r}∗ to get the regular language repk(Fω(I)).

We give below another proof which is independent of Frougny’s normalization
theorem. It describes a way to build an automaton recognizing the k-ary rep-
resentations of Fω(I). We denote by Z≥0 (resp., Z≤0) the set of non-negative
(resp., non-positive) integers.

Remark 2. The set of non-negative elements (resp., the set of absolute values of
non-positive elements) in Fω(I) can be obtained from a finite set of non-negative
elements. Let m� = max{|�i| | i = 1, 2, . . . , r} and denote by M� the interval of
integers [[−m�,m�]]. Define Ij := F j(I) ∩ M� for j ≥ 0. Since ki ≥ 2 for all
i ∈ {1, 2, . . . , r}, it follows that if n does not belong to M�, then ϕi(n) 	∈ M�

for all i ∈ {0, 1, . . . , r}. By this property and since F j(I) ⊆ F j+1(I), there must
exist an integer J such that Ij = IJ for all j ≥ J . Hence, the integers of Fω(I)
falling into the interval M� are exactly the ones in IJ . We set I+ := (IJ ∪I)∩Z≥0

and I− := (IJ ∪ I) ∩ Z≤0. By the property above, we conclude that

Fω(I) = (Fω(I+) ∩ Z≥0) ∪ (Fω(I−) ∩ Z≤0).

Hence, Fω(I+) ∩ Z≥0 is obtained from I+ by considering only non-negative
images of the maps ϕi. Let F = {ϕ0, ϕ1, ϕ2, . . . , ϕr}, where ϕi : n 
→ ki n − �i

for i = 1, 2, . . . , r. Then we have Fω(I−) ∩ Z≤0 = −(F (−I−) ∩ Z≥0). Otherwise
stated, the negation of the elements in Fω(I−)∩Z≤0 are obtained from −I− by
considering only non-negative images of the maps ϕi.
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Proof. From the previous remark, we may assume without loss of generality
that I and X are subsets of N. Let k be an integer such that all the coefficients
ki are powers of k. Note that val−1

k (n) contains all the representations of the
integer n in base k over Σ∗

k, including those with leading zeros. We define a non-
deterministic finite automaton A = (Q, {q0}, Σk, Δ, T ) accepting the reversal of
the elements in val−1

k (Fω(I)), so we may allow leading zeros in front of the most
significant digit. The transition relation Δ is a finite subset of Q × Σ∗

k × Q. If
(p, w, q) belongs to Δ, we write p

w−→ q. An input x ∈ Σ∗
k is accepted if and only

if there is a sequence of states q0, q1, . . . , qi such that qi ∈ T , x can be factored
as u1 · · ·ui and (q0, u1, q1), (q1, u2, q2), . . . (qi−1, ui, qi) ∈ Δ.

Let M be the maximal element in I ∪ {k1, . . . , kr, |�1|, . . . , |�r|} and m =
|repk(M)|. Define Q = {q0}∪({−1, 0,+1}×Σm+1

k ). A state q = (c, x) ∈ Q\{q0}
is final if and only if c = 0 and x ∈ val−1

k (I). From the initial state q0, we have
all the transitions

q0
w−→ (0, w̃)

where w ∈ Σm+1
k and w̃ is the reversal of w. Recall that entries are read in

A the least significant digit first, that is from right to left. This explains why
we consider the reversals in the encoding. From each state Q \ {q0} there are
transitions corresponding to the maps ϕi, i = 1, 2, . . . , r. The idea is to guess
the sequence of maps (ϕi1 , ϕi2 , . . . , ϕim) that was used to obtain the integer
corresponding to the input belonging to val−1

k (Fω(I)) and apply the inverses of
these maps in reversed order to get back the representation of one of the initial
values in I. The first component of a state q = (c, xmxm−1 · · ·x0) corresponds to
a carry bit and the second component represents the last m+1 digits of a number,
x0 being the least significant one. We show how to simulate the multiplications
and additions in the successive applications of the affine functions ϕi using only
the carry bit c and the digits xmxm−1 · · ·x0.

Consider first a state p = (0, xmxm−1 · · ·x0) and ϕi-transitions, where ϕi :
n 
→ ki n + �i and �i ≥ 0. For the inverse of ϕi, we want to subtract �i and then
divide by ki = kt for some positive integer t. We do this using the classical paper-
and-pencil method as illustrated in Figure 1(a), where valk(ymym−1 · · · y0) = �i

and x = 1, if valk(xmxm−1 · · ·x0) < �i and x = 0, otherwise. Note that, by the
definition of m, we have ym = 0. Hence, a “carry” bit x might be needed only if
xm = 0. Multiplying an integer n by kt corresponds to adding t zeros at the end
of the k-ary representation of n. Hence, if ϕi is the correct guess, zmzm−1 · · · z0

should have at least t zeros as suffix. If this is not the case, we choose to have

xxmxm−1· · ·x1x0

− ymym−1 · · · y1y0

zm zm−1 · · · z1 z0

(a) subtraction

xmxm−1· · ·x1x0

+ ymym−1 · · · y1y0

zzm zm−1 · · · z1 z0

(b) addition

Fig. 1. The paper-and-pencil subtraction and addition
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no ϕi-transitions starting from p. If x = 0, then ϕi-transitions are of the form

p
w−→ (0, w̃zm · · · zt), (3)

where w is any word over Σk of length t. If x = 1, then we have two cases
depending on the form of w ∈ Σt

k:

1. If w = 0t, then the transition is

p
w−→
(
−1, (k − 1)tzm · · · zt

)
, (4)

where the first component −1 indicates that a carry was needed in a “pre-
vious” subtraction and it must be borrowed from the first non-zero digit of
the input that will be read in the future.

2. Otherwise w̃ = vu0s, where s < t, u ∈ {1, 2, . . . , k − 1} and v ∈ Σt−s−1
k ,

then the transition is

p
w−→ (0, v(u − 1)(k − 1)szm · · · zt) . (5)

Here the carry x = 1 was borrowed from u and no carry is postponed to
future calculations.

Consider next a state p = (0, xmxm−1 · · ·x0) and ϕi-transitions, where ϕi : n 
→
ki n + �i and �i < 0. Instead of subtraction, we consider now addition by the
paper-and-pencil method where valk(ymym−1 · · · y0) = |�i|. This is illustrated in
Figure 1(b). Note that since ym = 0 by the definition of m, a carry z = 1 can
occur only if xm = k − 1. As above, the ϕi-transitions exist only if the last t
digits of zmzm−1 · · · z0 are zeros. This holds also for any transition considered
in the sequel. If z = 0, then we have the transitions of the form (3). If z = 1 we
have again two cases depending on the digits of w ∈ Σt

k:

1. If w = (k − 1)t, then the carry is shifted to future calculations.

p
w−→
(
+1, 0tzm · · · zt

)
. (6)

2. If w̃ = vu(k − 1)s, where s < t, u ∈ {0, 1, . . . , k − 2} and v ∈ Σt−s−1
k , then

p
w−→ (0, v(u + 1)0szm · · · zt) . (7)

Here the carry is added to the digit u and no carry is postponed to future
calculations.

Secondly, consider a state of the form p = (−1, xmxm−1 · · ·x0) and assume that
�i ≥ 0. The carry component −1 means that we have borrowed a carry in a
subtraction and after the subtraction we have read only zeros, which have been
turned into digits k − 1. Otherwise, if non-zero digits were read, there would be
no longer a carry −1. Hence, we can be sure that xm = k−1 in Figure 1(a), and
consequently, we have x = 0, since ym = 0. This is important, since it means
that no “new” carry is borrowed. Again, assume that zt−1 · · · z0 = 0t. If w = 0t,
then the transition is of type (4). Otherwise, the transitions are of type (5).
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If �i < 0, then we perform addition as in Figure 1(b) and assume zt−1 · · · z0 =
0t. If z = 0 and w = 0t, no new carries occur and again the transition is of
type (4). If z = 0 and w 	= 0t, then the transitions are of type (5). If z = 1, then
this positive carry and the negative carry borrowed in a previous calculation
annihilate each other. Hence, the transition is of type (3).

Finally, consider the states of the form p = (+1, xmxm−1 · · ·x0). The carry
component +1 means that we obtained a carry in an addition and after the
addition we have read only digits k − 1, which have been turned into zeros.
Otherwise, if a digit u 	= k − 1 were read, it would have been turned into u +
1 and there would be no longer a carry +1. Hence, we conclude that xm =
0 in Figures 1(a) and 1(b). If �i ≥ 0, then consider Figure 1(a) and assume
zt−1 · · · z0 = 0t. If x = 0 and w = (k − 1)t, then the transition is of type (6).
If x = 0 and w 	= (k − 1)t, then the transitions are of type (7). If x = 1, then
the negative and positive carry annihilate each other and the transitions are of
type (3). Assume now that �i < 0 and zt−1 · · · z0 = 0t. In Figure 1(b) no new
carry z = 1 can occur, since both xm = 0 and ym = 0. Hence, we have only two
cases. If w = (k − 1)t, then the transition is of type (6). Otherwise, it is of the
type (7).

If n = ϕim (ϕim−1(· · ·ϕi1(a) · · · )) for some a ∈ I, then using the above transi-
tions and k-ary representations, we are able to correctly simulate the calculation
n 
→ ϕ−1

im
(n) 
→ ϕ−1

im−1
(ϕ−1

im
(n)) 
→ · · · 
→ a as long as the k-ary representation

of n given as input contains enough leading zeros. However, we may fix this by
replacing the set of final states T by an enlarged set T ′. A state q′ ∈ Q belongs
to T ′ if there exists a path with label 0t, t ≥ 0, from q′ to some state q ∈ T .
Hence, with the modified final states the automaton A accepts all the reversals of
the words in val−1

k (Fω(I)). On the other hand, it cannot accept any other word.
Namely, for any word w accepted by A there is a sequence (ϕi1 , ϕi2 , . . . , ϕim)
such that (1) holds for n = valk(w). It is well-known that any non-deterministic
finite automaton can be turned into a DFA, e.g., by the subset construction.
Hence, Fω(I) is k-recognizable.

Remark 3. The set Fω(I) considered in the above theorem is k-recognizable
and therefore kn-recognizable for all n ≥ 1; again, see [3] for details. But usu-
ally this set is not ultimately periodic and therefore, by Cobham’s Theorem,
not �-recognizable for any � ≥ 2 such that k and � are multiplicatively indepen-
dent. Indeed, if Theorem 4 described below can be applied, then Fω(I) contains
arbitrarily large gaps.

4 Multiplicatively Independent Case

In this section, our aim is to show that Fω(I) ⊆ N given in Definition 1 is not
recognizable in any base k ≥ 2 provided that

∑r
i=1 k−1

i < 1 and that there
are at least two multiplicatively independent coefficients ki. For the proof, we
introduce the following notation. Let X = {x0 < x1 < x2 < · · · } be an infinite
ordered subset of N. Then we denote

RX = lim sup
i→∞

xi+1

xi
and DX = lim sup

i→∞
(xi+1 − xi).
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In order to prove that a set is not k-recognizable for any base k ≥ 2, we use the
following result from [5], see also Eilenberg’s book [6, Chapter V, Theorem 5.4].

Theorem 3 (Gap Theorem). Let k ≥ 2. If X is a k-recognizable infinite
subset of N, then either RX > 1 or DX < ∞.

Note that DX < ∞ means that X is syndetic, i.e., there exists a constant C
such that the gap xi+1 − xi between any two consecutive elements xi, xi+1 in
X is bounded by C. Let us first show that if

∑r
i=1 k−1

i < 1, then the set Fω(I)
given in Definition 1 contains arbitrarily large gaps.

Theorem 4. Let X = Fω(I) be a self-generating subset of N given in Defini-
tion 1. If

∑r
i=1 k−1

i < 1, then X is not syndetic.

Proof. Let n ≥ 1 and K = k1k2 · · · kr. Let g = g1 ◦ g2 ◦ · · · ◦ gn be a compos-
ite function, where gj belongs to {ϕ1, ϕ2, . . . , ϕr} for every j = 1, 2, . . . , n and
gj = ϕi for exactly ni integers j ∈ {1, . . . , n}. Note that n1 + n2 · · · + nr = n.
By definition, we have g(x) = kn1

1 kn2
2 · · · knr

r x + cg, where cg is some constant
depending only on g. Since kn1

1 kn2
2 · · · knr

r divides Kn, we get

#{g(x) mod Kn | x ∈ Z} = kn−n1
1 kn−n2

2 · · ·kn−nr
r .

The set Fn(I) contains exactly the integers obtained by at most n applications of
maps in F . For any interval of integers [[N,N + Kn − 1]] where N > maxFn(I),
the elements in X belonging to this interval have been obtained by applying
at least n + 1 maps. Hence, in the interval [[N,N + Kn − 1]] there can be at
most kn−n1

1 kn−n2
2 · · ·kn−nr

r integers x ∈ X such that the last n maps which
produce x correspond to the composite function g, i.e., such that there exists
y ∈ X satisfying g(y) = x. For fixed numbers ni, i = 1, 2, . . . , r, there are
n!/(n1!n2! · · ·nr!) functions g of the type described above. Thus, the number of
integers in X ∩ [[N,N + Kn − 1]] for any large enough N is at most∑
n1,n2,...,nr

(
n!

n1!n2! · · ·nr!

)
kn−n1
1 kn−n2

2 · · · kn−nr
r = Kn

(
1
k1

+
1
k2

+ · · · + 1
kr

)n

where the sum is over n1, n2, . . . , nr ≥ 0 satisfying n1 +n2 + · · ·+nr = n. Hence,
the biggest gap xi+1 − xi between two consecutive elements xi, xi+1 ∈ X in the
interval [[N,N + Kn − 1]] is at least

d(n) =
Kn

Kn
(

1
k1

+ 1
k2

+ · · · + 1
kr

)n =
(

1
k1

+
1
k2

+ · · · + 1
kr

)−n

.

Since
∑r

i=1 k−1
i < 1, the function d(n) tends to infinity as n tends to infinity.

This means that there are arbitrarily large gaps in X . In other words, the self-
generating set X is not syndetic.

Before showing that RX = 1 let us first recall the density property of multiplica-
tively independent integers. A set S is dense in an interval I if every subinterval
of I contains an element of S.
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Theorem 5. If k, � ≥ 2 are multiplicatively independent, {kp/�q | p, q ≥ 0} is
dense in [0,∞).

This is a consequence of Kronecker’s theorem, which states that for any irrational
number θ the sequence ({nθ})n≥0 is dense in the interval [0, 1). Here {x} denotes
the fractional part of the real number x. The proof of Kronecker’s theorem as
well as the proof of Theorem 5 can be found in [1, Section 2.5] or [9]. As an easy
consequence of the previous theorem, we obtain the following result.

Corollary 1. Let α > 0 and β be two real numbers. If k and � are multiplica-
tively independent, then the set {(αkp + β)/�q | p, q ≥ 0} is dense in [0,∞).

Proof. We show how to get arbitrarily close to any positive real number x. Let
ε > 0. By Theorem 5, there exists integers p and q such that∣∣∣∣xα − kp

�q

∣∣∣∣ < ε

2α
and

∣∣∣∣ β�q

∣∣∣∣ < ε

2
.

Hence, it follows that∣∣∣∣x − αkp + β

�q

∣∣∣∣ ≤ ∣∣∣∣x − αkp

�q

∣∣∣∣+ ∣∣∣∣ β�q

∣∣∣∣ < ε

2α
α +

ε

2
= ε.

Let us next consider the ratio RX of a self-generating set X .

Theorem 6. For any self-generating set X = Fω(I) given in Definition 1 where
ki and kj are multiplicatively independent for some i and j, we have RX = 1.

Proof. Without loss of generality, we may assume that F = {ϕ0, ϕ1, ϕ2}, where
ϕ1 : n 
→ k1 n + �1, ϕ2 : n 
→ k2 n + �2, and k1 and k2 are multiplicatively
independent. Namely, for F ⊆ F ′, it is obvious that Fω(I) ⊆ F ′ω(I) and con-
sequently, RF ω(I) = 1 implies RF ′ω(I) = 1. By Lemma 1, we may also assume
that �1 and �2 are non-negative. Moreover, with Remark 2, we may consider that
both I and X are subsets of N.

Let a ∈ X be a positive integer and set Xn := X ∩ [ϕn−1
1 (a), ϕn

1 (a)] for all
n > 0. Note that ∪n∈NXn = X ∩ [a,∞). Recall that X = {x0 < x1 < x2 < · · · }
and define

rn := max
{

xi+1 − xi

xi

∣∣∣∣ xi+1, xi ∈ Xn

}
.

Note that, for all x and for j = 1, 2, if we set bj := �j/(kj − 1), then we have

ϕn
j (x) = kn

j x + �j

n−1∑
i=0

ki
j = (x + bj) kn

j − bj . (8)

Let m ≥ 0 and xi, xi+1 be two consecutive elements belonging to the set Xm.
By Corollary 1, there exist infinitely many positive integers p and q such that

ϕp
2(a)
kq
1

=
(a + b2)k

p
2 − b2

kq
1

∈
[
xi+1 + b1 − 3

4
(xi+1 − xi), xi + b1 +

3
4
(xi+1 − xi)

]
.
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Therefore ϕp
2(a) is an element of X belonging to the interval

[c, d] :=
[
kq
1(xi+1 + b1) − 3

4
kq
1(xi+1 − xi), k

q
1(xi + b1) +

3
4
kq
1(xi+1 − xi)

]
,

which is a sub-interval1 of the interval [ϕq
1(xi), ϕ

q
1(xi+1)]. In other words, we

have
ϕq

1(xi) < c < ϕp
2(a) < d < ϕq

1(xi+1)

Hence, for all t > q, the difference xj+1 −xj of any two consecutive elements xj ,
xj+1 of X in the interval [ϕt

1(xi), ϕt
1(xi+1)] is at most

max{ϕt−q
1 (ϕq

1(xi+1)) − ϕt−q
1 (ϕp

2(a)), ϕt−q
1 (ϕp

2(a)) − ϕt−q
1 (ϕq

1(xi))}

≤ max{ϕt
1(xi+1) − ϕt−q

1 (c), ϕt−q
1 (d) − ϕt

1(xi)} =
3
4
kt
1(xi+1 − xi) + b1k

t−q
1 .

Thus, the ratio (xj+1 − xj)/xj is at most

3 kt
1(xi+1 − xi)
4ϕt

1(xi)
+

b1k
t−q
1

ϕt
1(xi)

=
3 kt

1(xi+1 − xi)
4ϕt

1(xi)
+

1
kq
1

b1k
t
1

(xi + b1)kt
1 − b1

. (9)

The latter term in this sum can be taken as small as possible for q and t large
enough (1/kq

1 tends to 0 and the other factor tends to a constant b1/(xi + b1)).
In particular, for q and t large enough, we have

b1k
t−q
1

ϕt
1(xi)

<
xi+1 − xi

12xi
.

Moreover, we have

3 kt
1(xi+1 − xi)
4ϕt

1(xi)
=

3 (xi+1 − xi)
4 (xi + b1 − b1/kt)

<
3 (xi+1 − xi)

4 xi
<

10 (xi+1 − xi)
12 xi

.

Thus, by (9), we obtain

xj+1 − xj

xj
<

11 (xi+1 − xi)
12 xi

. (10)

Since the above holds for any consecutive elements xi and xi+1 in Xm and there
are only finitely many such pairs, we conclude that there exists an integer N1

such that (10) holds for any consecutive elements xj , xj+1 ∈ Xn where n ≥ N1.
Hence, we obtain rn < 11

12 rm for every n ≥ N1. Moreover, by repeating this
procedure, we conclude that there exists an integer Nk such that

rn <

(
11
12

)k

rm

for every n ≥ Nk. This implies that lim supn→∞ rn = 0 and, consequently,

RX = 1 + lim sup
n→∞

rn = 1.

1 c − ϕq
1(xi) = 1

4
kq
1(xi+1 − xi) + b1 and ϕq

1(xi+1) − d = 1
4
kq
1(xi+1 − xi) − b1 which is

positive for large enough q.
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Our main result is a straightforward consequence of the previous theorems.

Theorem 7. Let X = Fω(I) be given in Definition 1. If
∑r

t=1 k−1
t < 1 and

there exist i, j such that ki and kj are multiplicatively independent, then Fω(I)
is not k-recognizable for any integer base k ≥ 2.

Proof. Let X = Fω(I) satisfy the assumptions of the theorem. By Theorem 4,
we have DX = ∞ and, by Theorem 6, we have RX = 1. Thus, Theorem 3 implies
that X is not k-recognizable for any k.

As a corollary, we have solved the conjecture presented in [2].

Corollary 2. Let F = {ϕ0, n 
→ k1 n + �1, n 
→ k2 n + �2}, where k1 and k2 are
multiplicatively independent. Then any infinite self-generating set Fω(I) given
in Definition 1 is not k-recognizable for any k ≥ 2.

Proof. This follows directly from Theorem 7. Namely, if k1 and k2 are multiplica-
tively independent, then k1 ≥ 2 and k2 ≥ 3 and k−1

1 +k−1
2 ≤ 1/2+1/3 = 5/6 < 1.
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Complete for Logspace
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Abstract. We show that k-tree isomorphism can be decided in loga-
rithmic space by giving a logspace canonical labeling algorithm. This
improves over the previous StUL upper bound and matches the lower
bound. As a consequence, the isomorphism, the automorphism, as well
as the canonization problem for k-trees are all complete for deterministic
logspace. We also show that even simple structural properties of k-trees
are complete for logspace.

Keywords: graph isomorphism, graph canonization, k-trees, space com-
plexity, logspace completeness.

1 Introduction

Two graphs G and H are called isomorphic if there is a bijective mapping φ
between the vertices of G and the vertices of H that preserves the adjacency
relation, i.e., φ relates edges to edges and non-edges to non-edges. Graph Iso-
morphism (GI) is the problem of deciding whether two given graphs are isomor-
phic. The problem has received considerable attention since it is one of the few
natural problems in NP that are neither known to be NP-complete nor known
to be solvable in polynomial time.

It is known that GI is contained in coAM [GS86, Sch88] and in SPP [AK06]
providing strong evidence that GI is not NP-complete. On the other hand, the
strongest known hardness result due to Torán [Tor04] says that GI is hard for
the class DET (cf. [Coo85]). DET is a subclass of NC2 (even of TC1) and contains
NL as well as all logspace counting classes [AJ93, BDH+92].

For some restricted graph classes the known upper and lower complexity
bounds for the isomorphism problem match. For example, a linear time al-
gorithm for tree isomorphism was already known in 1974 to Aho, Hopcroft
and Ullman [AHU74]. In 1991, an NC algorithm was developed by Miller and
Reif [MR91], and one year later, Lindell [Lin92] obtained an L upper bound.
On the other hand, in [JKM+03] it is shown that tree isomorphism is L-hard
(provided that the trees are given in pointer notation). In [ADK08], Lindell’s
log-space upper bound has been extended to the class of partial 2-trees, a class
of planar graphs also known as generalized series-parallel graphs. Very recently,
it has been shown that even the isomorphism problem for all planar graphs is

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 537–548, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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in logspace [DLN+08]. Much of the recent progress on logspace algorithms for
graphs has only become possible through Reingold’s result that connectivity in
undirected graphs can be decided in deterministic logspace [Rei05]. Our result
does not depend on this, yielding a comparatively simple algorithm.

In this paper we show that the isomorphism problem for k-trees is in logspace
for each fixed k ∈ N+. This improves the previously known upper bound of
StUL [ADK07] and matches the lower bound. In fact, we prove the formally
stronger result that a canonical labeling for a given k-tree is computable in
logspace. Recall that the canonization problem for graphs is to produce a canon-
ical form canon(G) for a given graph G such that canon(G) is isomorphic to
G and canon(G1) = canon(G2) for any pair of isomorphic graphs G1 and G2.
Clearly, graph isomorphism reduces to graph canonization. A canonical labeling
for G is any isomorphism between G and canon(G). It is not hard to see that
even the search version of GI (i.e., computing an isomorphism between two given
graphs in case it exists) as well as the automorphism group problem (i.e., com-
puting a generating set of the automorphism group of a given graph) are both
logspace reducible to the canonical labeling problem.

The parallel complexity of k-tree isomorphism has been previously investi-
gated by Del Greco, Sekharan, and Sridhar [GSS02] who introduced the concept
of the kernel of a k-tree in order to restrict the search for an isomorphism be-
tween two given k-trees. We show that the kernel of a k-tree can be computed
in logspace and exploit this fact to restrict the search for a canonical labeling of
a given k-tree G. To be more precise, we first transform G into an undirected
tree T (G) whose nodes are formed by the k-cliques and (k + 1)-cliques of G.
Then we compute the center node of T (G) which coincides with the kernel of G
and try all labelings of the vertices in ker(G). In order to extend a labeling of
the kernel vertices of G to the other vertices of G in a canonical way, we color
the nodes of the tree T (G) to encode additional structural information about G.
Finally, we apply a variant of Lindell’s algorithm to compute canonical labelings
for the colored versions of T (G) and derive from them a canonical labeling for
the k-tree G.

Our tree representation T (G) is similar to the construction used in [ADK07].
The main advantage of our construction lies in the fact that the tree T (G)
can be directly constructed in logspace from G, whereas the tree representation
of [ADK07] is obtained as a reachable subgraph of a mangrove1 based on G and
hence can only be derived from G with the help of an StUL oracle.

2 Preliminaries

As usual, L is the class of all languages decidable by Turing machines with read-
only input tape and an O(log n) bound on the space used on the working tapes.
FL is the class of all functions computable by Turing machines that additionally
have a write-only output tape.

1 A mangrove is a digraph with at most one directed path between each pair of nodes.
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Given a graph G, we use V (G) and E(G) to denote its vertex and edge
sets, respectively. We define the following notations for subgraphs of G. For
M ⊆ V (G), G[M ] denotes the subgraph of G induced by M and we use G−M
as a shorthand for G[V (G) \ M ].

Given a graph G and two vertices u, v ∈ V (G), the distance dG(u, v) is the
length of the shortest path from u to v. The eccentricity of a vertex v ∈ V (G) is
the longest distance to another vertex, i.e., eccG(v) = max{dG(u, v)|u ∈ V (G)}.
The center of G consists of all vertices with minimal eccentricity.

Given two graphs G and H , an isomorphism from G to H is a bijection
φ : V (G) → V (H) with {u, v} ∈ E(G) ⇔ {φ(u), φ(v)} ∈ E(H). On colored
graphs, an isomorphism must additionally preserve colors. G and H are called
isomorphic, in symbols G ∼= H , if there is an isomorphism from G to H . Given
a graph class G, a function f defined on G computes an invariant for G if

∀G,H ∈ G : G ∼= H ⇒ f(G) = f(H) .

If the reverse implication also holds, f is a complete invariant for G. If ad-
ditionally f(G) ∼= G for all G ∈ G, f computes canonical forms for G. Given
a function f that computes canonical forms, an isomorphism ψG from G to its
canonical form f(G) is called a canonical labeling.

The isomorphisms from a graph G to itself are called automorphisms and
they form a group, which we denote by Aut(G). An automorphism is called
non-trivial if it is not the identity. The graph automorphism problem
(GA) is to decide if a graph has non-trivial automorphisms. A graph without
non-trivial automorphisms is called rigid.

In the next section, we present an FL algorithm that, given a k-tree G, com-
putes a canonical labeling ψG.

3 Canonizing k-Trees

Fix any k ∈ N+. The class of k-trees is inductively defined as follows. Any
k-clique is a k-tree. Further, given a k-tree G and a k-clique C in G, one can
construct another k-tree by adding a new vertex v and connecting v to every
vertex in C. The initial k-clique is called base of G, and the k-clique C the new
vertex v is connected to is called support of v. Note that each k-clique of a
k-tree G can be used as base for constructing G – but once the base is fixed, the
support of each vertex is uniquely determined.

An interesting special case of k-trees are k-paths, where the support Ci of
any new vertex vi (except the first vertex added to G) must either contain the
vertex vi−1 added in the previous step or be equal to the support Ci−1 of the
latter. Fig. 1 shows a 2-tree that is a 2-path as well.

We note that k-trees can be recognized in logspace [ADK07], so we can safely
assume that the input is indeed a k-tree.

We first define a tree representation T (G) for k-trees G.
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G:

1

23

45

67 8 T (G):

1
2

1
3 2

3
1

3 2

2
1 4

1 4
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5 1

5 1

5
3

6
1 4

1
6 6

4
7

5 1

5
7 7

1 4
6 8

6 8

4
8

Fig. 1. A 2-tree G and its tree representation T (G)

Definition 1. For a k-tree G, its tree representation T (G) is defined by

V (T (G)) =
{
M ⊆ V (G)

∣∣M is a k-clique or a (k + 1)-clique
}

E(T (G)) =
{
{M1,M2} ⊆ V (T (G))

∣∣M1 � M2

}
.

Note that T (G) reflects the iterative construction of G: The base of G is a k-
clique and thus a node in T (G). Each time a new vertex u is added to G, it is
connected to all vertices of its support Pu (a k-clique), forming a new (k + 1)-
clique Cu that is a superset of Pu. In T (G), the addition of u results in a new
node Cu being added and connected to Pu. Additionally, the k many k-cliques in
Cu that contain the new vertex u are added as new nodes to T (G) and connected
to Cu. From these observations it is clear that T (G) is indeed a tree.

We continue by proving some basic properties of our tree representation T (G).

Lemma 2. For any k-tree G and any vertex v ∈ V (G), the nodes of T (G) that
contain v form a subtree of T (G).

Proof. We prove by induction over the construction of G that any node M added
to T (G) with v ∈ M either is the unique node first introducing v or is hooked
up to a previously added node that contains v. If M is a k-clique in G this is
immediately clear as it is either the base node in T (G) or it is a subset of a
(k + 1)-clique node and hence does not introduce any new vertices. So assume
that M is a (k + 1)-clique Cu, which was added to T (G) upon the addition of
some vertex u to G. If u = v then M is the single node of T (G) introducing v.
If u 	= v we have v ∈ Cu \ {u} = Pu and thus there is an edge to a previously
added k-clique node Pu that contains v. ��

Lemma 3. For any k-tree G, the center of T (G) is a single node.

Proof. Suppose not. Then the center consists of two adjacent nodes, one a k-
clique and one a (k + 1)-clique. This leads to a contradiction because k-clique
nodes have even eccentricity while that of (k + 1)-clique nodes is odd: All leaves
are k-clique nodes, and k-cliques and (k+1)-cliques alternate on every path. ��
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Definition 4. The clique corresponding to the center node of T (G) is called
kernel of G and denoted ker(G).

Note that ker(G) can be either a k-clique or a (k + 1)-clique, depending on the
structure of G. The concept of the kernel of a k-tree was introduced in [GSS02].
The definition there is slightly different but the equivalence can be easily verified.

We continue by recalling some basic facts concerning undirected trees.

Fact 5. Given an undirected tree T and two nodes u, v ∈ V (T ), the distance
dT (u, v) can be computed in FL.

Proof. Think of T as rooted in u and all edges directed away from u. The di-
rection of an edge e can be determined in logspace by computing the lexico-
graphically-first Euler tour starting at u that visits each edge once per direction
(cf. [AM04]). Then the unique path from v to u can be found by always choosing
the unique incoming edge as next step. Only the current node and the number
of steps have to be remembered. Upon reaching u, output the number of steps
taken. ��

Fact 6. The center of an undirected tree T can be computed in FL.

Proof. We first show that the eccentricity eccT (u) of each node u ∈ V (T ) is com-
putable in logspace. This can be done by iterating over all v ∈ V (T ), each time
calculating dT (u, v) (this is possible in logspace by Fact 5). Only the maximum
distance to u has to be remembered, the result being eccT (u).

Observe now that also the maximum eccentricity eccmax of all nodes u ∈ V (T )
is computable in logspace by iterating over all u ∈ V (T ). Then compute again
the eccentricity of all nodes u, this time outputting u if eccT (u) = eccmax. ��

Our goal is to canonize G by using Lindell’s algorithm [Lin92] to canonize T (G).
To achieve this, we declare the kernel K of G as the root of T (G). As a conse-
quence, we can identify each (k +1)-clique M ∈ V (T (G)) \ {K} with the unique
vertex v ∈ M that is not present in the k-clique M ′ that lies next to M on
the path from K to M in T (G). For later use, we denote this vertex by v(M)
and for each v ∈ V (G) \ K, we use Mv to denote the unique (k + 1)-clique
M ∈ V (T (G)) \ {K} with v(M) = v.

It is clear that T (G) does not provide complete structural information about
G, since the vertices in the kernel K are indistinguishable in T (G) and further,
only one out of the k edges between each added vertex u and its support can be
recovered from T (G). To add the missing information, we give individual colors
to the kernel vertices and color the nodes of T (G) as well. Since the kernel K of
a given k-tree G can be determined in logspace, we can simplify the notation by
assuming that K consists of the vertices 1, . . . , k′, where k′ = ‖K‖ ∈ {k, k + 1}
equals the size of K.

Definition 7. Let G be a k-tree with vertex set V (G) = {1, . . . , n} and kernel
K = {1, . . . , k′}. For each vertex v of G, we denote by

lG(v) = min
{
dT (G)(K,M)

∣∣M ∈ V (T (G)), v ∈ M
}
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the level of v in G. Further, for any permutation π ∈ Sk′ , let T (G, π) denote the
directed colored tree obtained from T (G) by choosing K as the root and coloring
each node M ∈ V (T (G)) by the set c(M) = {c(v) | v ∈ M}, where

c(v) =

{
π(v) if v ∈ ker(G),
lG(v) + k′ otherwise.

The definition of T (G, π) is similar to the construction of the colored tree
T (G,B, θ) in [ADK07]. The main advantage of our construction lies in the fact
that T (G, π) can be directly constructed from G in logspace, whereas the tree
representation used in [ADK07] (which in turn is related to the decomposition
defined in [KCP82]) is defined as the reachable subgraph of a mangrove derived
from G. This allows us to decide st-reachability in the tree T (G, π) in logspace,
an essential step to achieve our upper bound.

Another advantage of our construction comes with the usage of the kernel K
as a canonical base. This makes it superfluous to cycle through all k-cliques of
G (as in [ADK07]), leaving only the permutations of the vertices within K to
enumerate.

Lemma 8. For a k-tree G and a permutation π on the kernel K of G, T (G, π)
can be computed in FL.

Proof. It is clear that the nodes and edges of T (G) can be determined in logspace:
First iterate over all subsets M of V (G) of size k (this requires space k logn)
and output M as a node if M is a k-clique in G. Likewise, find and output all
(k + 1)-cliques M , each time adding edges to all k + 1 many k-cliques contained
in M . The (intermediate) result T (G) cannot be stored due to space limitations,
but it is possible to recompute it as needed (as long as only a constant number
of operations is chained).

Next determine the kernel K of G (Fact 6) and think of all edges in T (G)
directed away from K. As described in Fact 5, the direction can be determined
in logspace. It remains to compute the color c(M) of each node M ∈ V (T (G)).

For each v ∈ M calculate c(v) by examining the unique path from M to K
in T (G) (the path can be found by following the unique incoming edge at each
node). Store the length � of the path and the position pv where v was last found
(this can be done in parallel for all v ∈ M). If pv = � (i. e. v ∈ K), then add
the number c(v) = π(v) to the color c(M) of M . If pv < �, add the number
c(v) = � − pv + ‖K‖ to c(M). The latter is correct, because by Lemma 2 the
nodes containing v form a subtree of T (G) and thus the node that is closest to
K and contains v is on the path from K to M . ��

We will need to compute a canonical labeling of T (G, π). We observe the follow-
ing generalization of the logspace tree canonization algorithm.

Lemma 9. Lindell’s algorithm [Lin92] can be extended to colored trees and to
output not only a canonical form, but also a canonical labeling. This modification
preserves the logarithmic space bound.
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Proof sketch. Colors can be handled by extending the tree isomorphism order
defined in [Lin92] by using color(s) < color(t) as additional condition (where
s and t are the roots of the trees to compare). The canonical labeling can be
computed by using a counter i initialized to 0: Instead of printing (the first letter
of) the canon of a node v, increment i and print “v 
→ i”. ��

Next we show that the colored tree representations of isomorphic k-trees are also
isomorphic, provided that the kernels are labeled accordingly.

Lemma 10. Let φ ∈ Sn be an isomorphism between two k-trees G and H with
V (G) = V (H) = {1, . . . , n} and ker(G) = ker(H) = K. Then φ (viewed as a
mapping from V (T (G)) to V (T (H))) is an isomorphism between T (G, π1) and
T (H,π2), provided that π1(u) = π2(φ(u)) for all u ∈ K.

Proof. It can be easily checked that any isomorphism between G and H is also
an isomorphism between T (G) and T (H) that maps the kernel K of G to the
kernel of H , which equals K by assumption. In order to show that the color of
a node M ∈ V (T (G, π1)) coincides with the color of φ(M) ∈ V (T (H,π2)), we
prove the stronger claim that c(v) = c(φ(v)) for all v ∈ V (G). For v ∈ K, we
have c(φ(v)) = π2(φ(v)) = π1(v) = c(v) by assumption. Since φ must preserve
the level of the vertices, it follows further for v ∈ V (G) \ K that

c(φ(v)) = lH(φ(v)) + ‖K‖ = lG(v) + ‖K‖ = c(v) .

This completes the proof of the lemma. ��

Conversely, the next lemma shows that from any isomorphic copy T of T (G, π1)
we can easily derive an isomorphic copy G′ of G. Moreover, any isomorphism φ
between T (G, π) and T can be efficiently converted into an isomorphism between
G and G′.

Lemma 11. Let G be a k-tree and let π be a permutation on the kernel K of
G. Then from any colored tree T that is isomorphic to T (G, π), an isomorphic
copy G′ of G can be computed in logspace. Further, it is possible to compute in
logspace an isomorphism between G and G′ from any given isomorphism between
T (G, π) and T .

Proof sketch. Construct G′ as follows. Let V (G′) = {1, . . . , n}, where n is k plus
the number of (k + 1)-clique nodes in T (we call m ∈ V (T ) an l-clique node,
if l = ‖c(m)‖). This is correct due to the one-to-one correspondence between
the vertices v ∈ V (G) \ K and the (k + 1)-clique nodes Mv ∈ T (G, π) \ {K}.
Next determine the center node z of T (see Lemma 6) and make {1, . . . , k′}
a clique in G′, where k′ = ‖c(z)‖. Further, for any non-center (k + 1)-clique
node m ∈ V (T ) \ {z}, let v(m) denote the corresponding vertex in V (G′) (to
make this mapping unique, let v(m) preserve the order of (k+1)-clique nodes in
V (T )). Based on the color c(m) = {c1, . . . , ck+1} of m add the following edges
to E(G′): For each ci ≤ k′ add an edge {ci, v(m)} and for each ci > k′ with
ci < cmax = max{ci | ci ∈ c(m)} add an edge {v(m), v(m′)}, where m′ is the
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(ci − k′)-th node on the path from z to m. This completes the construction of
G′.

Now let φ be an isomorphism from T (G, π) to T . Construct an isomorphism
φ′ from G to G′ as follows. For v ∈ K, let φ′(v) = π(v), and for v /∈ K, let
φ′(v) = v(φ(Mv)). By induction on the level of v in G, it can be proven that
this is indeed an isomorphism. Both constructions can easily be seen to be in
logspace. ��
Now we are ready to prove our main result.

Theorem 12. Given a k-tree G with vertex set V (G) = {1, . . . , n} and kernel
K = {1, . . . , k′}, a canonical labeling ψG ∈ Sn can be computed in FL.

Proof. In order to compute ψG we iterate over all permutations π ∈ Sk′ and
compute a canonical labeling ψT (G,π) for the colored tree T (G, π) using the
algorithm from Lemma 9. Let π1 be one of the permutations that give rise
to the lexicographically smallest colored tree ψT (G,π1)(T (G, π1)). By applying
Lemma 11, we can reconstruct from this tree an isomorphic copy canon(G) of
G together with an isomorphism ψG between G and canon(G). By Lemmas 8
and 9, it is clear that ψG is computable in logspace.

It remains to show that the canonical labelings of any two isomorphic k-
trees G and H map these graphs to the same canon ψG(G) = ψH(H). To see
this, let π1, π2 ∈ Sk′ be two permutations that give rise to the lexicographically
smallest trees ψT (G,π1)(T (G, π1)) and ψT (H,π2)(T (H,π2)), respectively. Since by
Lemma 10 for any tree T (G, π1) that can be derived from G via some permu-
tation π1 there is an isomorphic tree T (H,π2) that can be derived from H via
some permutation π2 (and vice versa), it follows that ψT (G,π1)(T (G, π1)) and
ψT (H,π2)(T (H,π2)) are equal, implying that canon(G) = canon(H). ��
We note that the above construction can be extended to colored k-trees as fol-
lows. Let ζ : V (G) → C be a vertex coloring of G. Modify the coloring of T (G, π)
(cf. Definition 7) by replacing c(v) with the pair c′(v) = (c(v), ζ(v)).

Theorem 12 immediately yields the following corollaries.

Corollary 13. For any fixed k, k-tree canonization is in FL.

Corollary 14. For any fixed k, k-tree isomorphism is L-complete.

The L-hardness can be seen by a reduction from the isomorphism problem for
trees in pointer notation, which is known to be L-hard [JKM+03]. The reduction
transforms a tree T into a k-tree Ek(T ) by adding a (k − 1)-clique C and
connecting C to all nodes in V (T ) (cf. Fig. 2). It can easily be seen that Ek(T )
is a k-tree and that T1

∼= T2 ⇔ Ek(T1) ∼= Ek(T2).
We note that fixing k is essential, as the isomorphism problem for the class

of all k-trees, k ∈ N+, is isomorphism complete [KCP82] and thereby unlikely
to be decidable in polynomial time.

Furthermore, there is a standard Turing reduction of the automorphism group
problem (i.e., computing a generating set of the automorphism group of a given
graph) to the search version of GI for colored graphs (cf. [Hof82, KST93]). It is
not hard to see that this reduction can be performed in logspace.
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Corollary 15. For any fixed k, computing a generating set of the automorphism
group of a given k-tree, and hence computing a canonical labeling coset for a given
k-tree is in FL.

Corollary 16. For any fixed k, the k-tree automorphism problem (i. e., deciding
whether a given k-tree has a non-trivial automorphism) is L-complete.

Observe that the mapping T 
→ Ek(T ) does not provide a correct reduction of
tree automorphism (which is L-complete [JKM+03]) to k-tree automorphism,
as the vertices within the newly added clique can always be permuted without
changing the graph. To sidestep this difficulty, we use a transformation E′

k that
preserves rigidity. Let T be a rooted tree with n = ‖V (T )‖ and root r ∈ V (T ).
Then E′

k(T, r) is defined as follows (cf. Fig. 2):

V (E′
k(T, r)) = V (T ) ∪

{
ui

∣∣ 1 ≤ i ≤ k + n
}

E(E′
k(T, r)) = E(T ) ∪

{
{v, ui}

∣∣ v ∈ V (T ), 1 ≤ i ≤ k − 1
}

∪
{
{r, uk}

}
∪
{
{ui, uj}

∣∣ 1 ≤ i < j ≤ k + n, j − i ≤ k
}

It is easy to see that E′
k(T, r) is a k-tree and that any non-trivial automorphism

of (T, r) induces a non-trivial automorphism of E′
k(T, r). To see that E′

k(T, r)
is rigid whenever (T, r) is rigid, assume n > k (all smaller trees can be hard-
coded in the reduction). Any automorphism of E′

k(T, r) must fix all newly added
vertices ui: Each of the vertices ui, 1 ≤ i ≤ k − 1, is uniquely determined by its
degree n + k − 2 + i (unless r is connected to all vertices of T , but then T is a
star and not rigid anyway). The vertices ui, k +1 ≤ i ≤ k +n, are the only ones
not adjacent to u1 and uniquely identified by the structure of E′

k(T, r) (examine
the tree representation T (E′

k(T, r)) to see this). Finally, the vertex uk is unique
among the remaining ones by the shortest distance to uk+n.

Ek(T ):

T

u1 u2 uk−1· · ·
E′

k(T, r):

r

T

u1 u2 uk−1 uk uk+1 uk+2 uk+n· · · · · ·
· · ·

Fig. 2. The transformations Ek(T ) and E′
k(T, r)

4 Complete Problems for Logspace

In this section we prove some additional completeness results for logspace that
are related to our main result. The hardness is under DLOGTIME-uniform AC0-
reductions. We first recall that ORD is L-complete, where ORD is the problem
of deciding for a directed line graph P and two vertices s, t ∈ V (P ) if there is a
path from s to t [Ete97].
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In Lemma 6 we have seen that the center of an undirected tree can be com-
puted in FL. We now show that the decision variant is hard for L even when
restricted to paths.

Theorem 17. Given an undirected path P and a vertex c ∈ V (P ), it is L-hard
to decide if c belongs to the center of P .

This implies the L-hardness of the following problem: Given a k-tree (or k-path)
G and a vertex c ∈ V (G), decide whether c belongs to the kernel of G. The
reduction for this is (P, c) 
→ (Ek(P ), c), where Ek is as defined above.

Proof. We reduce from ORD using (P, s, t) 
→ (P ′, n) as reduction, where

V (P ′) = V (P ) ∪
{
i′
∣∣ i ∈ V (P )

}
∪ {s′′}

E(P ′) =
{
{i, j}

∣∣ (i, j) ∈ E(P ) ∧ j 	= t
}

∪
{
{n, n′}

}
∪
{
{i′, j′}

∣∣ (i, j) ∈ E(P ) ∧ j /∈ {s, t}
}

∪
{
{i′, s′′}

∣∣ (i, s) ∈ E(P )
}

∪ {{s′′, s′}}

and n is the vertex without successor in P . P ′ is the undirected path that consists
of two copies of P that are twisted before t, connected at their ends and have the
second copy of s duplicated (cf. Fig. 3). If s precedes t in P (left side), then n is
the center of P ′, but if t precedes s then n′ is the center of P ′ (right side). ��
Finally, we examine two problems related to the structure of k-trees. Let G be a
graph. A vertex v ∈ V (G) is called simplicial in G, if its neighborhood induces
a clique. A bijective mapping σ : {1, . . . , ‖V (G)‖} → V (G) of the vertices of G
is called perfect elimination order (PEO), if for all i, σ(i) is simplicial in
G −

⋃
j<i{σ(j)}. Note that a graph can have several perfect elimination orders,

so finding a PEO is not a functional but a search problem. It is well-known that
a graph has a PEO if and only if it is chordal. As k-trees are a subclass of chordal
graphs, each k-tree has a PEO.

A related problem is the fast reordering problem (FRP) which is defined
in [GSS02] as a preprocessing step for parallel algorithms. It consists of finding a
sequence of sets R0, . . . , Rk ⊆ V (G), such that each Ri is a maximal independent
set of simplicial vertices of G−

⋃
j<i Rj and that G−

⋃
0≤j≤k Rj is a clique. For

general chordal graphs there can be several such sequences, but for k-trees this
sequence is unique and the remaining clique is the kernel. In [GSS02] it was
shown that if the input graphs are restricted to k-trees, the FRP can be solved
in NC. We improve this and show logspace completeness for both problems:

Theorem 18. For k-trees (k fixed), it is logspace complete to find a perfect
elimination order and to solve the fast reordering problem.

s

t′ n′

s′′
s′

t n

t′

s′′
s′ n′

t s n

Fig. 3. The reduction of ORD to verifying the center
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s t

n

t′s′

t s

n

s′t′

Fig. 4. The reduction of ORD to finding a PEO

Proof. We first show FRP ∈ FL: Let G be a k-tree. We compute the level lG(v)
for each v ∈ V (G) (cf. Definition 7). As observed in Lemma 8, this is possible in
logspace. Let lmax = max{lG(v) | v ∈ V (G)}. Output Ri := {v ∈ V (G) | lG(v) =
lmax −2i} for i = 0, . . . , �lmax /2�−1. The correctness follows from the structure
of T (G).

Next, we note that a perfect elimination order can be efficiently computed
when a solution to the FRP is known (i. e. finding a PEO reduces to solving the
FRP): Take the members of the Ri in ascending order (first those from R0, then
those from R1 and so on up to Rk) and finally those from ker(G) = V (G)\

⋃
i Ri.

No matter which order is chosen within the Ri and the kernel, the result is a
PEO, as each Ri is independent and ker(G) is a clique.

Finally we show that finding a perfect elimination order is hard for logspace
even for paths. The result for k-trees (and k-paths) can again be obtained us-
ing the construction of Ek given above. We solve an ORD instance (P, s, t) in
DLOGTIME-uniform AC0 with a single oracle gate for computing a PEO of the
path P ′ given by

V (P ′) = V (P ) ∪
{
i′
∣∣ i ∈ V (P ) \ {n}

}
E(P ′) =

{
{i, j}

∣∣ (i, j) ∈ E(P )
}

∪
{
{i′, j′}

∣∣ (i, j) ∈ E(P ), j 	= n
}

∪
{
{i′, n}

∣∣ (i, n) ∈ E(P )
}

where n is the vertex in P without successor. We claim that for any PEO σ of
P ′ (where pi is a shorthand for the position σ−1(i) of a vertex in σ):

(P, s, t) ∈ ORD ⇔ ps ≤ pt ≤ pn ∨ ps′ ≤ pt′ ≤ pn

If (P, s, t) /∈ ORD, then s is between t and n, and s′ is between t′ and n in
P ′ (right side in Fig. 4). Thus σ cannot satisfy both ps ≤ pt and ps′ ≤ pt′ . If
(P, s, t) ∈ ORD (left side of Fig. 4), n does not become simplicial until at least
one copy of P is completely removed. Similarly, if the first copy is completely
removed before n, t does not become simplicial before s is removed; and if the
second copy is completely removed before n, t′ does not become simplicial before
s′ is removed. ��
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Abstract. The concept of determinism, while clear and well assessed for string
languages, is still matter of research as far as picture languages are concerned.
We introduce here a new kind of determinism, called snake, based on the bous-
trophedonic scanning strategy, that is a natural scanning strategy used by many
algorithms on 2D arrays and pictures. We consider a snake-deterministic variant
of tiling systems, which defines the so-called Snake-DREC class of languages.
Snake-DREC properly extends the more traditional approach of diagonal-based
determinism, used e.g. by deterministic tiling systems, and by online tessellation
automata. Our main result is showing that the concept of snake-determinism of
tiles coincides with row (or column) unambiguity.

Keywords: picture language, 2D language, tiling systems, online tessellation
automata, determinism, unambiguity.

1 Introduction

Picture languages are a generalization of string languages to two dimensions: a picture
is a two-dimensional array of elements from a finite alphabet. Several classes of picture
languages have been considered in the literature [8,10,6,12]. In particular, here we refer
to class REC introduced in [8] with the aim to generalize to 2D the class of regular
string languages. REC is a robust class that has various characterizations; in particular,
it is the class of picture languages that can be generated by tiling systems, a model
introduced in [7], where pictures are specified as alphabetic projection of a local 2D
language defined by a set of tiles.

For string regular languages, two central notions are those of determinism and un-
ambiguity. Going towards 2D, the concept of unambiguity is straightforward and yields
to class UREC [7]. UREC defines unambiguously tiling recognizable languages, whose
pictures are the projection of a unique element in the corresponding local language.
In an effort to go towards determinism, the authors of [1] introduced an intermediate
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defining pictures”.
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notion of “line” unambiguity, embodied in classes Row-UREC and Col-UREC, and
based on backtracking at most linear in one dimension of the picture.

The concept of determinism for picture languages is far from being well understood.
The most relevant difficulty is that in 2D any notion of determinism seems to require
some pre-established “scanning strategy” for reading the picture. Tiling systems are
implicitly nondeterministic: REC is not closed under complement, and the membership
problem is NP-complete [11]. Clearly, this latter fact severely hinders the potential ap-
plicability of the notation. The identification of a reasonably “rich” deterministic subset
of REC would spur its application, since it would allow linear parsing w.r.t. the number
of pixels of the input picture.

In past and more recent years, several different deterministic subclasses of REC have
been studied, e.g. the classes defined by deterministic 4-way automata [10] or deter-
ministic online tessellation automata [9]. This latter model inspired the notion of deter-
minism of [1], that relies on four diagonal-based scanning strategies, each starting from
one of the four corners of the picture. To mark this aspect, in this paper we will call the
corresponding deterministic class Diag-DREC1.

In a effort to generalize their approach, the same authors in [2] suggest other kinds of
strategies. Inspired by their work, we introduce here a new kind of determinism for tiles,
based on a boustrophedonic scanning strategy, that is a natural scanning strategy used
by many algorithms on pictures and 2D arrays (such as shearsort) [4,2,5]. This leads to a
class called Snake-DREC, which can be defined equivalently in terms of tiling systems
or online tessellation acceptors.

Snake-DREC properly extends Diag-DREC while keeping some important closure
properties. For instance, it is still closed under complement, rotation and symmetries.
However, like Diag-DREC, it is not closed under intersection. When pictures of only
one row (or column) are considered, this model reduces to deterministic finite state au-
tomata. Quite surprisingly, we found that our notion of determinism coincides with line
unambiguity of Row-UREC (or Col-UREC): our main result is showing that the lan-
guages of this class can actually be recognized deterministically by following a bous-
trophedonic scanning strategy.

The paper is organized as follows. In Section 2 we recall some basic definitions and
properties on two-dimensional languages and tiling systems. In Section 3 we introduce
snake-deterministic tiling systems. In Section 4 we present our main result. In the last
section we define and characterize class Snake-DREC.

2 Preliminaries

2.1 Tiling Recognizable Picture Languages

The following definitions are taken and adapted from [8].
Let Σ be a finite alphabet. A two-dimensional array of elements of Σ is a picture

over Σ. The set of all pictures over Σ is Σ++. A picture language is a subset of Σ++. If C
denotes some kind of picture-accepting device, then L(C) denotes the class of picture
languages recognized by such devices.

1 The original name is DREC.
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For h, k ≥ 1, Σh,k denotes the set of pictures of size (h, k); # � Σ is used when needed
as a boundary symbol; p̂ refers to the bordered version of picture p. That is, for p ∈ Σh,k,
it is

p =

p(1, 1) . . . p(1, k)
...
. . .

...

p(h, 1) . . . p(h, k)

p̂ =

# # . . . # #
# p(1, 1) . . . p(1, k) #
...
...
. . .

...
...

# p(h, 1) . . . p(h, k) #
# # . . . # #

.

A pixel is an element p(i, j) of p. We call (i, j) the position in p of the pixel. We will
sometimes use position (i, j) with i or j equal to 0, or h + 1, or k + 1 for referring to
borders.

We will sometimes consider the 90o clockwise rotation, the horizontal mirror, and

the vertical mirror of a picture p. E.g. if p =
a b
c d

, then
c a
d b

,
c d
a b

, and
b a
d c

are its rotation, horizontal mirror and vertical mirror, respectively. Naturally, the same
operations can be applied to languages, and classes of languages, too.

We call tile a square picture of size (2,2). We denote by T (p) the set of all tiles
contained in a picture p.

Let Σ be a finite alphabet. A (two-dimensional) language L ⊆ Σ++ is local if there
exists a finite setΘ of tiles over the alphabet Σ∪{#} such that L = {p ∈ Σ++ | T ( p̂) ⊆ Θ}.
We will refer to such language as L(Θ).

Let π : Γ → Σ be a mapping between two alphabets. Given a picture p ∈ Γ++,
the projection of p by π is the picture π(p) ∈ Σ++ such that π(p) (i, j) = π(p(i, j)) for
every position (i, j). Analogously, the projection of a language L ⊆ Γ++ by π is the set
π(L) = {π(p) | p ∈ Γ++} ⊆ Σ++.

A tiling system (TS) is a 4-tuple τ = 〈Σ, Γ, Θ, π〉 where Σ and Γ are two finite alpha-
bets, Θ is a finite set of tiles over the alphabet Γ ∪ {#} and π : Γ → Σ is a projection. A
picture language L ⊆ Σ++ is tiling recognizable if there exists a tiling system 〈Σ, Γ, Θ, π〉
such that L = π(L(Θ)). We say that τ generates L and denote by REC the class of picture
languages that are tiling recognizable, i.e, REC = L(TS). Notice in particular that any
local language is tiling recognizable.

Example 1. The language Lcenter of square pictures over {0, 1} with odd size, greater
than 2, and having 1 only in the center is generated by the tiling system 〈Σ, Γ, Θ, π〉,
where: Γ = {1,� ,� , · }; π(1) = 1, π(x) = 0 for x � 1, and the set of tiles is Θ = T ( p̂),

p =

� · · · · · �
· � · · · � ·
· · � · � · ·
· · · 1 · · ·
· · � · � · ·
· � · · · � ·
� · · · · · �

.

Notice that it is straightforward to extend the previous tiling system to define the
language L′center of square pictures with odd size, and having 1 not only in the center,



552 V. Lonati and M. Pradella

but possibly elsewhere. E.g., we may set Γ = ({0, 1} × {� ,� , · }) ∪ {(1, 1)} and π:
π(0, y) = 0, π(1, x) = 1.

REC coincides with the class of languages recognized by online tessellation acceptors
(OTA), that are special acceptors related to cellular automata [9]. Informally, an online
tessellation acceptor can be described as an infinite two-dimensional array of identi-
cal finite-state automata, where the computation proceeds by counter-diagonals starting
from top-left towards bottom-right corner of the input picture. A run of a OTA on a
picture consists in associating a state to each position of the picture. At the beginning,
an initial state is assigned to all top and left border positions. The state at position (i, j)
is given by the transition function and depends both on the symbol of the picture at that
position, and on the states already associated with positions (i, j−1), (i−1, j−1) and (i−
1, j). The picture is accepted if the state associated with the bottom-right corner is final.

A natural subclass of REC, already introduced in [7], is UREC consisting of the
tiling recognizable languages whose pictures are the projection of a unique element in
the corresponding local language. Formally, a tiling system 〈Σ, Γ, Θ, π〉 is called unam-
biguous if, for every q, q′ ∈ L(Θ), π(q) = π(q′) implies q = q′. UREC is the class of
all unambiguous languages. It is known that UREC ⊂ REC and that it is undecidable
whether a tiling system is unambiguous [3].

2.2 Diagonal-Deterministic Languages

Here we present the notion of determinism proposed in [1]. This is inspired by the
deterministic version of online tessellation acceptors [9], which are directed according
to a corner-to-corner direction (namely, from top-left to bottom-right, or tl2br).

Consider a scanning strategy that respects the tl2br direction: any position (x, y) is
read only if all the positions that are above and to the left of (x, y) have already been
read. Roughly speaking, tl2br determinism means that, given a picture p ∈ Σ++, its
preimage p′ ∈ L(Θ) ⊆ Γ++ can be build deterministically when scanning p with any
such strategy. Formally, a tiling system τ = 〈Σ, Γ, Θ, π〉 is called tl2br-deterministic if
for any X, Y, Z ∈ Γ ∪ {#} and a ∈ Σ, there exists at most one tile

X Y
Z A

∈ Θ with π(A) = a.

By rotation, one can define d-deterministic tiling systems (d-DTS) for any corner-to-
corner direction d in {tl2br, tr2bl, bl2tr, br2tl}, where t, b, l, and r stand for top, bottom,
left, and right, respectively.

Example 2. The language L f r= f c of square pictures where the first row equals the first
column is in L(tl2br-DTS) ∩ L(tr2bl-DTS) ∩ L(bl2tr-DTS), but does not belong to
L(br2tl-DTS) [1].

We use Diag-DREC to denote the family of languages recognized by some d-DTS (for
all corner-to-corner directions d). Diag-DREC is equal to the closure by rotation of the
class of languages recognized by deterministic OTAs (denoted as DOTAs).

Example 3. The language L∃r=lr of square pictures where there is one row that equals
the last one cannot be recognized neither by any tl2br-DTS [9, Theorem 3.1], nor
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(symmetrically) by any tr2bl-DTS. However, L∃r=lr ∈ Diag-DREC since one can prove
that it is recognized both by bl2tr-DTS and br2tl-DTS.

Diag-DREC is properly included in UREC, as the following example testifies.

Example 4. Let Lframes = L f r= f c∩Llr=lc∩L2 f r=2lc∩L2lr=2 f c be the language of square pic-
tures such that: the first row equals the first column, the last row equals the last column,
the second row equals the reverse of the second last column, the second last row equals
the reverse of the second column. Then Lframes is in UREC but not in Diag-DREC [1].

2.3 Row and Column Unambiguity

In [1] a hierarchy of classes between determinism and unambiguity is also exhibited.
Here we adapt the basic definitions, results, and examples from [1].

Consider the side-to-side direction t2b (from top to bottom). A tiling system 〈Σ, Γ,
Θ, π〉 is called t2b-unambiguous if, for any rows X = (X1, X2, · · · , Xm) ∈ Γ1,m ∪ {#}1,m
and a = (a1, a2, · · · , am) ∈ Σ1,m, there exists at most one row A = (A1, A2, · · · , Am) ∈
Γ1,m such that

π(A) = a and T

⎛
⎜⎜⎜⎜⎜⎝

# X1 X2 . . . Xm #
# A1 A2 . . . Am #

⎞
⎟⎟⎟⎟⎟⎠ ⊆ Θ . (1)

Example 5. Let L = L∃c= f c ∩ L∃c=lc of square pictures where there are one column that
equals the first one and one column that equals the last one. L is not in Diag-DREC, but
it can be recognized by a t2b-unambiguous tiling system.

Similar properties define d-unambiguous tiling systems (d-UTS) for any side-to-side
direction d ∈ {t2b, b2t, l2r, r2l}. Row-UREC (resp. Col-UREC) denotes the class of
row-unambiguous (resp. column-unambiguous) languages, i.e., the languages generated
by t2b-UTS or b2t-UTS (resp. l2r-UTS or r2l-UTS). The following relation holds, with
all strict inclusions:

Diag-DREC ⊂ (Col-UREC ∩ Row-UREC) ⊂ (Col-UREC ∪ Row-UREC) ⊂ UREC. (2)

In the rest of the paper we will use the informal term line unambiguity for referring both
to row and to column unambiguity.

3 Snake-Deterministic Tiling Systems

Given a tiling system τ = 〈Σ, Γ, Θ, π〉 and a picture p ∈ Σ++, imagine to build one
preimage p′ ∈ L(Θ), π(p′) = p, by scanning p with a boustrophedonic strategy. More
precisely, start from the top-left corner, scan the first row of p rightwards, then scan
the second row leftwards, and so on, like in the following picture, where the number in
each pixel denotes its scanning order:

1 2 3 4

8 7 6 5

9 10 11 12

.
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This means that we scan odd rows rightwards and even row leftwards, assigning a sym-
bol in Γ to each position. The choice of the symbol clearly depends on the symbols
in the neighbourhood, and it is determined by a tile in Θ. In general, the choice is not
unique and hence the procedure may not be deterministic. We introduce the following
definition to guarantee such condition.

Definition 1. A tiling system τ = 〈Σ, Γ, Θ, π〉 is snake-deterministic if Γ and Θ can be
partitioned as Γ = Γ1 ∪ Γ2, Θ = Θ1 ∪Θ2, where

– 〈Σ, Γ, Θ1, π〉 is tl2br-deterministic and Θ1 contains only tiles like

a2 b2

a1 b1
, with ai, bi ∈ Γi ∪ {#} for i = 1, 2;

– 〈Σ, Γ, Θ2, π〉 is tr2bl-deterministic and Θ2 contains only tiles like

a1 b1

a2 b2
, with ai, bi ∈ Γi ∪ {#} for i = 1, 2, and (a1, b1) � (#, #).

Snake-deterministic tiling systems are abbreviated as snake-DTS.

In the following we shall always use this notation: symbols on light gray background
belong to Γ1 ∪ {#}, symbols on dark gray background belong to Γ2 ∪ {#}. Hence tiles in

Θ1 or Θ2 will appear as
a b
c d

or
c d
a b

, respectively.

In [1], it is proved that tl2br-deterministic tiling systems are equivalent to determin-
istic online tessellation acceptors (DOTA). Analogously, here we introduce a similar
model of acceptor equivalent to snake-deterministic tiling systems.

Definition 2. A deterministic snake online tessellation acceptor (ZOTA) is a 7-tuple
〈Σ,Q1,Q2, q01, q02, F, δ〉 where:

- Σ is the input alphabet;
- Q1 and Q2 are two disjoint set of states;
- q0i ∈ Qi are the initial states;
- F ⊂ Q1 ∪ Q2 = Q;
- δ : Q × Q × Q × Σ �→ Q is the transition function satisfying δ(p1, q1, p2, a) ∈ Q2,
δ(p2, q2, p1, a) ∈ Q1, for every pi, qi ∈ Qi and a ∈ Σ.

A run of any ZOTA on a picture consists in scanning the picture following the snake-
like strategy, associating, at each step, a state with the current position in the picture. At
step 0, the initial state q01 is assigned to all the border positions (0, j) and (i, 0) with i
even, whereas the initial state q02 is assigned to all positions (i, 0) with i odd. The state at
position (i, j) is given by the transition function and depends on the input symbol at that
position and on the states already associated with some of the neighbouring positions:
for odd i, the positions considered are (i − 1, j), (i − 1, j − 1), and (i, j − 1); for even i,
(i − 1, j), (i − 1, j + 1), and (i, j + 1). The picture is accepted if the state associated with
the last position (i.e. the bottom-rightmost for pictures with an odd number of rows, the
bottom-leftmost otherwise) is in F.

Reasoning as in [8, Theorem 8.1] one can easily prove that deterministic snake tes-
sellation automata are equivalent to snake-deterministic tiling systems.
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Proposition 1. L(ZOTA) = L(snake-DTS).

Proposition 2. L(snake-DTS) is a boolean algebra.

Proof (sketch). If L is recognized by a ZOTA, then so is its complement (it is sufficient
to exchange final states with non-final ones). Hence, by Proposition 1, L(snake-DTS)
is closed under complement.

Moreover, given two snake-DTSs recognizing two languages L1 and L2 respectively,
one can follow the construction defined in [8] to build a new TS recognizing the in-
tersection L1 ∩ L2. Such construction preserves snake-determinism, hence we get the
closure under intersection. ��
The following example shows how a snake-DTS, or, equivalently, a ZOTA, can “propa-
gate signals” both in tl2br and tr2bl corner-to-corner directions. This property does not
hold in general for tl2br-DTSs or tr2bl-DTSs. Indeed, we will show in Section 4 that
they are strictly less powerful than snake-DTSs.

Example 6. The language Lcenter described in Example 1 is recognized by the following
snake-DTS. Γ = Γ1 ∪ Γ2 where

Γ0 = {�,�,↘,↙,→,←,−, ·, 1}, Γ1 = {1} × Γ0, Γ2 = {2} × Γ0,

and π is such that π(x, 1) = 1, π(x, y) = 0, for y � 1. Θ = T ( p̂) ∪ T (q̂) where p and q
are the following pictures. For better readability, the first component of symbols in Γ1

is depicted as a light gray background, instead of the symbol 1; analogously, the first
component of symbols in Γ2 is depicted as a dark gray background.

p =

�→ − − − − − − −
· � · · · · ←� −
· · �→ · · � · ·
· · · ↘←� · · ·
· · · · 1 → · · ·
· · ←� · � · · ·
· · � · · · �→ ·
←� · · · · · � ·
� · · · · · · · �

, q =

�→ − − − − −
· � · · ←� −
· · �→↙ · ·
· · ← 1 · · ·
· · � · �→ ·
←� · · · � ·
� · · · · · �

.

The basic mechanism of this tiling system is the same as the one of Example 1: the
two diagonals are used to identify the center. To make the tiles snake-deterministic,
we have first to distinguish odd and even rows, by using in Γ a first component 1,
and 2, respectively. First, notice that we have to use two prototypal pictures p and q
to define the tile-set: p represents pictures in which the center symbol is found during
a left-to-right scan, while q represents the other direction. Symbols → and ← mark
the fact that there is a diagonal at the position immediately below. This information is
needed for the right-to-left component of the boustrophedonic movement, to mark the
top-left to bottom-right diagonal (symbol→), and analogously for the other direction
and diagonal (symbol ←). Symbol − is used to identify the start of the top-right to
bottom-left diagonal. Symbols↘ and↙ are used both to mark diagonals, and to state
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that at the following row the center will be found. Notice that the language generated
by this tiling system does not contain pictures having side less than 7 - it is clearly
straightforward to extend it to cover those cases as well.

A simple extension of the same structure can be used to define a snake-deterministic
tiling system for the language L′center, mentioned at the end of Example 1. ��

4 Snake Determinism Is Equivalent to Line Unambiguity

In this section we prove our main result, showing that snake-deterministic tiling systems
are equivalent to t2b-unambiguous tiling systems.

Theorem 1. L(snake-DTS) = L(t2b-UTS).

In one direction, the result is easy (any snake-deterministic tiling system is also t2b-
unambiguous). The converse is less intuitive; in order to prove it, from now on let
τ = 〈Σ, Γ, Θ π〉 be a t2b-UTS.

First of all, let Γ1 (resp. Γ2) be the set of symbols in Γ that may appear only in odd
(resp. even) rows, and w.l.o.g assume that Γ1 and Γ2 are disjoint. (Otherwise we can
mark with subscript i all elements that may appear in Γi, possibly duplicating symbols
and tiles.) Consequently, as in the definition of snake-DTS, split the set of tiles into two
sets Θ1 and Θ2. If the resulting tiling system is not snake-deterministic, then we build
a snake-deterministic tiling system τ̃ = 〈Σ, Γ̃, Θ̃, π̃〉 that simulates τ. Before formally
defining τ̃, let us first point out some important remarks.

Given any X = (X1, X2, . . . , Xm) ∈ Γ1,m ∪ {#}1,m and a = (a1, a2, . . . , am) ∈ Σ1,m,
there exists at most one preimage A = (A1, A2, . . . , Am) ∈ Γ1,m satisfying relation (1).
However, we have no guarantees that A can be built from left to right deterministically.
For instance, for m = 4, τ may allow the choices represented in Figure 1 (left).

# ��

�����
�

���
��

��
��

A1
��

�����
� A2

�� A3
��

����� A4
�� #

A′1
����� A′2 �� A′3 A′4

A′′1 �� A′′2 �� A′′3

# ��

�����
�

���
��

��
��

A1
��

����� A2
�� A3

��

����
� A4

�� #

A′1 A′2 �� A′3 A′4

A′′1

Fig. 1. Graph (left) and tree (right) of the preimages of row (a1, a2, a3, a4)

Clearly, τ being t2b-unambiguous, only one branch of the graph ends with #: the one
corresponding to A. In the other cases, a backtracking linear in the length of the row is
always sufficient to (eventually) determine A.

Remark 1. Since we are building a preimage of a fixed row a, at each position we can
choose among symbols that all have the same image through π. E.g., π(A1) = π(A′1) =
π(A′′1 ) = a1.

Remark 2. Since τ is t2b-unambiguous, the branch corresponding to A cannot con-
tain symbols with in-degree greater that one (otherwise there would exist two different
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preimages of row a satisfying relation (1), a contradiction). In other words, if two or
more branches “collapse”, the successive symbols may be ignored. Then we can as-
sume that the graph of the preimages of a is actually a tree, where each symbol has
exactly one predecessor. We call it the tree of the preimages of a in Γ. For the previous
example, the tree is depicted in Figure 1 (right).

Similar remarks can be done if we try to build the preimage of row a from right
to left.

To simulate τ deterministically on a picture p, we proceed as follows. Let p′ be
the unique preimage of p in L(Θ). When scanning rightwards the first row of p, we
compute and keep trace of the tree of its preimages in Γ; at the end of the row, we
determine which branch is successful (i.e, the one that corresponds to the first row of
p′). When scanning the second row backwards, we use such information (together with
the traces we left in the previous scan) to reconstruct backwards the successful branch
and, at the same time, we compute and keep trace of the tree of the preimages in Γ of
the current row. This procedure continues till the last row has been scanned.

To represent locally the tree of preimages of the current row, we store at each position
the set of symbols of Γ that may appear at the corresponding position of p′, together
with their predecessors in the tree. To represent the correspondence between a sym-
bol and its predecessors, which is unique by Remark 2, we use partial functions. For
instance, the tree of the previous example is represented by the sequence of partial func-
tions (α1, α2, α3, α4, α5), where α1(A1) = α1(A′1) = α1(A′′1 ) = #, α2(A2) = α2(A′2) = A1,
α3(A3) = A2, α3(A′3) = A′2, α4(A4) = α4(A′4) = A3, and α5(#) = A4.

We shall need some notation. Given a partial function f : X → Y, we set I f = f (Δ f );
moreover, we write f (x) =⊥ if f (x) is not defined, set Δ f = {x ∈ X | f (x) �⊥}, and
say that f is non-empty if Δ f � ∅. For i = 1, 2, let Γ̂i = Γi ∪ {#} and call Φi the set
of non-empty partial functions ϕ : Γ̂i → Γ̂i such that |π(Δϕ)| = |π(Iϕ)| = 1 (this last
condition is the formalization of Remark 1). In particular, for every A ∈ Γi, let A be the
function in Φi with domain {#} such that A(#) = A; moreover, let  be the function with
domain {#} such that (#) = #. Finally, we abbreviate π(Δϕ) by π(ϕ).

Recall that during the simulation we perform two operations at the same time: we
reconstruct the successful branch in the tree of preimages of the previous row, and
compute the tree of preimages of the current row. Hence the local alphabet of τ̃ must
contain both pieces of information. This leads to the following definition:

Γ̃ = Γ̃1 ∪ Γ̃2 where Γ̃1 = Γ̂2 ×Φ1, and Γ̃2 = Γ̂1 ×Φ2, (3)

∀(A, ϕ) ∈ Γ̃ : π̃(A, ϕ) = π(ϕ). (4)

The role of symbol (A, ϕ) is the following: A is the correct symbol that one should have
chosen when scanning the above position (i.e., the symbol appearing at that position
in p′), whereas ϕ keeps trace of all possible symbols that may appear in the current
position, together with their predecessors in the computation. Notice that w.l.o.g we
define more than one border symbol in Γ̃, i.e., all pairs (A, ϕ) with π(ϕ) = #.

In order to define the set of tiles, we need some other notations. For any b ∈ Σ ∪ {#},
we introduce the partial function r-nextb : Γ̂2×Γ̂2×Φ1 → Φ1 by setting r-nextb(X, Y, α) =
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β, where, for every B ∈ Γ̂1:

β(B) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A if π(B) = b and A is the unique element in Δα s.t.
X Y
A B

∈ Θ1,

⊥ otherwise.

Informally, r-nextb(X, Y, α) represents all possible symbols that can appear in next po-
sition, when going rightwards, reading symbol b, and given previous neighbours like
X Y
A

, with A ∈ Δα.
Symmetrically, for any d ∈ Σ let l-nextd : Γ̂1 × Γ̂1 ×Φ2 → Φ2 be the partial function

defined by l-nextd(A, B, γ) = δ, where, for every D ∈ Γ̂2:

δ(D) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

C if π(D) = d and C is the unique element in Δγ s.t.
A B
D C

∈ Θ2,

⊥ otherwise.

Lemma 1. Let τ = 〈Σ, Γ, Θ, π〉 be t2b-unambiguous and let X = (X1, X2, . . . , Xm), A =
(A1, A2, . . . , Am) and a = (a1, a2, . . . , am) satisfying relation (1), with Xi ∈ Γ2 ∪ {#} for
every i. Moreover set

α1 = r-nexta1 (#, X1, ), ∀ j = 2, . . . ,m : α j = r-nextaj (X j−1, X j, α j−1)

Then, for every j = 1, 2, . . . ,m, A j ∈ Δαi , α1(A1) = #, α j(A j) = A j−1 for j � 1. Similar
results hold for the symmetric direction.

Proof. We reason by induction on j = 1, 2, . . . ,m. For sake of brevity, we use Δi to
denote Δαi . Clearly, A1 ∈ Δ1 with α1(A1) = #. Now, assuming that the statement

holds for k ≤ j, we prove it for j + 1. We have
X j X j+1

A j A j+1
∈ Θ. If

X j X j+1

A′j A j+1
∈ Θ

for some other A′j ∈ Δ j then, setting A′k−1 = αk(A′k) for every k = j, . . . , 2, 1, we ob-

tain that
# X1 . . . X j X j+1 . . . Xm #
# A′1 . . . A′j A j+1 . . . Am # ∈ Θ̃1. This yields a contradiction, since also rela-

tion (1) holds but τ is 2tb-unambiguous. Thus, A j is unique and hence A j+1 ∈ Δ j+1 with
α j+1(A j+1) = A j. ��
We are ready to prove Theorem 1, as a straightforward consequence of the following
proposition.

Proposition 3. Given a t2b-unambiguous tiling system τ = 〈Σ, Γ, Θ, π〉, let τ̃ be the
tiling system = 〈Σ, Γ̃, Θ̃, π̃〉 where Γ̃ and π̃ are defined as in (3) and (4), while Θ̃ =
Θ̃1 ∪ Θ̃2, where

Θ̃1 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(A, δ) (B, γ)
(D, λ) (δ(D), μ)

(π(δ), π(γ)) = (#, #) ⇒ (A, B) = (#, #),
D ∈ Δδ, δ(D) ∈ Δγ, π(λ) = # ⇒ λ = ,

μ = r-nextπ̃(μ)(D, δ(D), λ)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

Θ̃2 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(X, α) (Y, β)
(β(B), δ) (B, γ)

(π(α), π(β)) � (#, #),
B ∈ Δβ, β(B) ∈ Δα, π(γ) = # ⇒ γ = ,

δ = l-nextπ̃(δ)(β(B), B, γ)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

Then, τ̃ is a snake-DTS equivalent to τ.



Snake-Deterministic Tiling Systems 559

(#, �) (#, �) (#, �) · · · (#, �) (#, �)
(#, �) (#, α1,1) (#, α1,2) · · · (#, α1,m) (#, �A1,m )
(#, �A2,1 ) (A1,1, α2,1) (A1,2, α2,2) · · · (A1,m, α2,m) (#, �)
(#, �) (A2,1, α3,1) (A2,2, α3,2) · · · (A2,m, α3,m) (#, �A3,m )
· · · · · · · · · · · · · · · · · ·
(#, �) (An−1,1, αn,1) (An−1,2, αn,2) · · · (An−1,m, αn,m) (#, �An,m )
(#, �) (An,1, �) (An,2, �) · · · (An,m, �) (#, �)

# # # · · · # # #
# A1,1 A1,2 · · · A1,m−1 A1,m #
# A2,1 A2,2 · · · A2,m−1 A2,m #
# A3,1 A3,2 · · · A3,m−1 A3,m #
· · · · · · · · · · · · · · · · · · · · ·
# An,1 An,2 · · · An,m−1 An,m #
# # # · · · # # #

Fig. 2. Examples of bordered pictures in L(Θ̃) (left), and L(Θ) (right)

Proof. The TS τ̃ is snake-deterministic by definition. We prove that π̃(L(Θ̃) = π(L(Θ)).
First let p̃ ∈ L(Θ̃). W.l.o.g assume that the number of rows of p̃ is odd; then ̂̃p is as in
Figure 2 (left). By the definition of Θ̃, this implies that the picture p in Figure 2 (right)
belongs to L(Θ). Moreover, one can easily see that π(p) = π̃( p̃). Hence, π̃(L(Θ̃)) ⊆
π(L(Θ)).

On the other hand, consider a picture p as in Figure 2 (right). Then, let p̃ be a picture
as in Figure 2 (left), where symbols Ai, j are from p, whereas the partial functions αi, j

are defined inductively according to the boustrophedonic order of positions (i, j):

α1,1 = r-nextπ(A1,1)(#, #, ), α1, j = r-nextπ(A1, j)(#, #, α1, j−1) j = 2, . . . ,m,
α2,m = l-nextπ(A2,m)(A1,m, #, ), α2, j = l-nextπ(A2, j)(A1, j, Aa, j+1, α2, j+1) j = m − 1, . . . , 2,
α3,1 = r-nextπ(A3,1)(#, A2,1, ), α3, j = r-nextπ(A3, j)(A2, j−1, A2, j, α1, j−1) j = 2, . . . ,m,
. . .

One can verify that each αi j is well defined. Indeed, using Lemma 1 one can prove that,
for every i = 1, 2, . . . , n and j = 1, 2, . . . ,m, Ai, j ∈ Δαi, j and αi, j(Ai, j) is Ai, j−1 if i is odd,
or Ai, j+1 if i is even. By the definition of Θ̃, this implies that p̃ ∈ L(Θ̃). Since obviously
π̃( p̃) = π(p), we get π(L(Θ) ⊆ π̃(L(Θ̃)) and this concludes the proof. ��

5 Class Snake-DREC

Theorem 1 implies that snake-DTS can simulate both tl2br-DTS and tl2br-DTS. Actu-
ally, this extension is proper as shown in next proposition.

Proposition 4. L(snake-DTS) properly extends L(tl2br-DTS) ∪ L(tr2bl-DTS).

Proof. Since both tl2br-DTS and tl2br-DTS are t2b-unambiguous, the inclusion is a
consequence of Theorem 1. The inclusion is proper as testified by the language L =
L∃c= f c ∩ L∃c=lc described in Example 5. ��
Notice that L(snake-DTS) does not extend the whole class Diag-DREC. For instance
the language L∃r=lr described in Example 3 is in Diag-DREC but, reasoning as in [1],
one can prove that it does not belong to L(snake-DTS). On the contrary, by
Proposition 4 we have that the closure under horizontal mirror of L(snake-DTS) prop-
erly includes Diag-DREC. However, it is not closed by rotation: for instance
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L∃c=lc ∈ L(snake-DTS) since it is in L(tr2bl-DTS), but its rotation is not (see again
Example 3). This leads to the following definition.

Definition 3. Snake-DREC is the closure under rotation of L(snake-DTS). The lan-
guages in Snake-DREC are called snake-deterministic.

We conclude characterizing Snake-DREC and summarizing its properties in the follow-
ing theorem.

Theorem 2. Snake-DREC = Row-UREC ∪ Col-UREC. Snake-DREC is properly in-
cluded between Diag-DREC and UREC. Snake-DREC is closed under complement,
rotation and mirrors, but not under intersection.

Proof. The first identity follows by Theorem 1, by applying rotations. Then, the inclu-
sions are a straightforward consequence of relation (2). Proposition 2 implies the clo-
sure under complement; the closure under rotation is obvious by definition; the closure
under mirrors follows by the closure under mirrors of both Row-UREC and Col-UREC.
L∃r= f r is in Snake-DREC, but its intersection with all its rotations is not [1]. ��
Acknowledgments. We thank Alberto Bertoni and Massimiliano Goldwurm for their
useful comments.
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Abstract. We study visibly pushdown automata (VPA) models for ex-
pressing and evaluating queries on words with a nesting structure. We
define a query VPA model, which is a 2-way deterministic VPA that can
mark in one run all positions in a document that satisfy a query, and
show that it is equi-expressive as unary monadic queries. This surprising
result parallels a classic result by Hopcroft and Ullman for queries on
regular word languages. We also compare our model to query models on
unranked trees, and show that our result is fundamentally different from
those known for automata on trees.

1 Introduction

A nested word is a word endowed with a nesting structure that captures hierar-
chically structured segments of the word. Applications of nested words abound
in computer science— terms and expressions are naturally nested (the brack-
eting capturing the nesting), XML/HTML/SGML documents are nested words
capturing hierarchically structured data elements (the open and close tags cap-
ture the nesting), and even runs of recursive sequential programs can be seen as
nested words capturing the nested calling structure (the call to and return from
procedures capture the nesting).

a c c a a a c cc c

Fig. 1. A nested word

Trees have been the traditional approach to model nested structures. The rich
results in the automata theory of trees is a robust theory that captures tractable
representations of nested structures. Nested words are an alternative way to
describe nested structures, where the linear arrangement of data is emphasized
(as is common in a document representing this data, like an XML document).
Automata on nested words process a document (word) along this linear order,
but also exploit the nesting edges.

The systematic study of nested word structures and finite automata working
on them was first done using visibly pushdown automata (where the automaton

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 561–573, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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processes the word left to right, and uses a stack to relay information flow along
the nesting edges) [1]. An alternative and mathematically equivalent model is
that of nested word automata [2], which are finite state automata (no stack) and
process a nested word linearly, but where the automata are additionally allowed
to refer to nested-edge-predecessors in order to update the state.

Visibly pushdown automata and nested word automata were first introduced
in the context of formal verification (since runs of recursive programs are nested
words). Since its introduction in 2004, this model has become quite popular,
and a rich theory of visibly pushdown languages has been developed, ranging
from applications to model-checking, monitoring, temporal logics, programming
languages, security, XML, and complexity theory1.

In this paper, we study the power of visibly pushdown automata in expressing
and answering queries on nested words. We introduce an automaton model for
defining queries, called query visibly pushdown automata (query VPA). A query
VPA is a deterministic two-way (can move left and right) visibly pushdown
automaton that can mark positions of a word. When moving right, a query VPA
pushes onto the stack when reading open-tags and pops from the stack reading
close-tags, like a visibly pushdown automaton. However, when moving left it
does the opposite: it pushes onto the stack reading close-tags and pops from
the stack reading open-tags. Hence it preserves the invariant that the height of
the stack when at a particular position in the word is precisely the number of
unmatched calls before that position (which is the number of unmatched returns
after that position).

A query VPA runs (deterministically) on a word and marks a set of positions;
these positions are to be seen as the set of all answers to a query. Note that a
query VPA, when given a word, gives all answers to the query in a single run.

Our main result is that query VPAs have the right expressive power for defin-
ing queries: we show that a query is expressible as a unary formula in monadic
second-order logic (MSO) if and only if it is implemented by a query VPA. Both
directions are non-trivial, and the direction of implementing any MSO query
using query VPAs relies on a beautiful observation by Hopcroft and Ullman [4].

We find it remarkable that the simple definition of two-way VPAs exactly
captures all monadic queries. This result actually parallels a classic result in
the theory of automata on finite non-nested words, which equates the power of
unary monadic queries on (non-nested) words to that of two-way automata on
words [4,10].

A query VPA, when viewed as an algorithm working on a word, traverses the
word back and forth, and outputs all positions that answer the query, using only
space O(d), where d is the depth of the word (the depth of nesting in the word).
Our result hence implies that any unary MSO query can be answered on a word
of length n using only O(d) space (with no dependence on n) and in time O(n2).
As far as we know (and also based on discussions [11]), there is no such parallel
result using the theory of tree automata (it is however well-known that given a

1 See the VPL/Nested word languages page at http://www.cs.uiuc.edu/∼madhu/vpa

for a comprehensive list of papers and references.
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particular position, checking whether it is an answer to a query can be done in
O(d)-space; see also the related work below).

Related Work. Theoretical query models for XML have been studied using
tree models. While most tree automata models work by passing states along the
edges of the tree, there are tree automaton models that work in the linear order
corresponding to its word representation (see [3] and the more recent [6]).

The most closely related work to our result on query VPAs is that of the
query automaton model on unranked trees [10]. Query automata (more precisely,
S2DTAu) on unranked trees select positions in a tree and is exactly as powerful as
unary monadic queries on trees [10] (which is the same as that on nested words).
This model works like a two-way tree automaton on unranked trees, has parallel
copies of automata that go up and down the tree, with automata processing
children of a node synchronizing when going up to their parent. However, they are
complex due to a special class of transitions (called stay transitions) that rewrite,
using regular relations, the states labeling the children of a node. Further, there
is a semantic restriction that requires that that the children of any node be
processed by a stay transition at most once.

We believe that query VPA are significantly simpler and a different model
than S2DTAu, and it is not easy to convert between the two models (in either
direction). Note that we also do not have any semantic restriction of the kind
imposed on stay transitions in our setting, which is an important difference
between the two models.

In [5], selecting tree-automata are defined, which are simpler than query au-
tomata and can return positions that satisfy any MSO query. However, these
automata are nondeterministic in nature, and thus fundamentally different from
our model.

Another line of work that is related is the work of Neumann and Seidl: in [9]
(see also [8]), it was shown that a single-pass from left-to-right is sufficient to
answer all queries that pick an element by referring only to properties of the
document that occur before the element; these queries do not handle future
predicates and hence can work in one pass using only O(d) space.

Yet another work that is relevant is that reported in Neumann’s thesis ([8],
Chapter 7), where it is shown that for any query, there is a pushdown automaton
that does two passes on a document, the first pass left-to-right, and the second
pass right-to-left, such that any node being an answer to a query is determined
solely by the states of the automaton on the two passes. Note that this is quite
different from ours; an algorithm implementing this scheme would have to store
states of the automaton at all positions in the first pass, and hence will require
O(n)-space to output all answers to a query.

2 Preliminaries

For simplicity of exposition, we will assume that every letter in the word is the
source or target of a nested edge; extending our results to the general class of
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nested words is straightforward. Nested words will be modeled as words over an
alphabet where a single letter of the alphabet encodes an open/close tag.

Let Σ be a fixed finite alphabet of “open tags”, and let Σ = {c | c ∈ Σ} be
the corresponding alphabet of “close tags”. Let Σ̂ = Σ ∪ Σ. A well-matched
word is any word generated by the grammar: W → cWc, W → WW , W → ε,
where we have a rule W → cWc for every c ∈ Σ. The set of all well-matched
words over Σ̂ will be denoted by WM (Σ̂).

Nested Words, Monadic Second-Order Logic

A well-matched word w ∈ WM (Σ̂) can be seen as a nested structure: a linear
labeled structure with nesting edges. For example, the structure correspond-
ing to the word cacc̄aāācc̄c̄ is shown in Figure 1. The linear skeleton (de-
noted by solid edges) encodes the word and the nesting edges (denoted by
dotted edges) relate open-tags with their matching close-tags. We skip the for-
mal definition, but denote the nested structure associated with a word w as
nw(w) = ({1, . . . , |w|}, {Qa}a∈Σ̂,≤, ν), where the universe is the set of positions
in w, each Qa is a unary predicate that is true at the positions labeled a, the ≤
relation encodes the linear order of the word, and ν is a binary relation encoding
the nesting edges.

Monadic second-order logic (MSOν) over nested structures is defined in the
standard manner, with interpreted relations ≤ and ν: Formally, fix a countable
set of first-order variables FV and a countable set of monadic second-order (set)
variables SV . Then the syntax of MSO formulas over Σ̂ labeled nested structures
is defined as:

ϕ ::= x ∈ X | Qi(x) | x ≤ y | ν(x, y) | ϕ ∨ ϕ | ¬ϕ |
∃x(ϕ) | ∃X(ϕ)
where x, y ∈ FV,X ∈ SV.

Automata on Nested Words

There are two definitions of automata on nested words which are roughly equiv-
alent: nested word automata and visibly pushdown automata. In this paper, we
prefer the latter formalism. Intuitively, a visibly pushdown automaton is a push-
down automaton that reads a nested word left to right, and pushes a symbol
onto the stack when reading open-tags and pops a symbol from the stack when
reading a closed tag. Note that a symbol pushed at an open tag is popped at
the matching closed tag. Formally,

Definition 1 (VPA). A visibly pushdown automaton (Vpa) over (Σ,Σ) is
a tuple A = (Q, q0, Γ, δ, F ), where Q is a finite set of states, q0 ∈ Q is the
initial state, F ⊆ Q is the set of final states, Γ is a finite stack alphabet, and
δ = 〈δopen , δclose〉 is the transition relation, where:

– δopen ⊆ ((Q × Σ) × (Q × Γ ));
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– δclose ⊆ ((Q × Σ × Γ ) × Q).

A transition (q, c, q′, γ) ∈ δopen (denoted q
c/γ−−→ q′) is a push-transition, where

the automaton reading c changes state from q to q′, pushing γ onto the stack.

Similarly, a transition (q, c, γ, q′) (denoted q
c/γ−−→ q′) is a pop-transition, allowing

the automaton, when in state q reading c with γ on the top of the stack, to pop
γ off the stack and change state to q′. A configuration of a Vpa A is a pair
(q, s) ∈ Q× Γ ∗. If a ∈ Σ̂, we say that (q1, s1)

a−→A (q2, s2) if one of the following
conditions are true:

– a = c ∈ Σ, s2 = γ.s1 and (q1, c, q2, γ) ∈ δopen , or
– a = c ∈ Σ, s1 = γ.s2 and (q1, c, γ, q2) ∈ δclose .

Note that the height of the stack after reading a prefix u of a well-matched word
w is precisely the number of unmatched calls in u. We extend the definition of
a−→A to words over Σ̂∗ in the natural manner. The language L(A) accepted by
Vpa A is the set of words w ∈ Σ̂∗ such that (q0, ε)

w−→A (q, ε) for some q ∈ QF .
One important observation about VPAs, made in [1], is that deterministic VPAs
are as expressive as non-deterministic VPAs (defined above). Finally, a language
L of well-matched words is called a visibly pushdown language (Vpl) if there
some Vpa A such that L = L(A).

Monadic Queries and Automata

A (unary) query is a function f : WM (Σ̂) → 2N such that for every w ∈ WM (Σ̂),
f(w) ⊆ [|w|]. In other words, a query is a function that maps any well-matched
word to a set of positions in the word.

A unary monadic query is a formula ϕ(x0) in MSOν that has precisely one
free variable, the first-order variable x0. Such a formula defines a query fϕ:
for any word w, fϕ(w) is the set of positions i such that the nested structure
corresponding to w satisfies ϕ(x0) when x0 is interpreted to be the i’th position.
We will say query f is expressible in MSOν if there is a unary monadic query
ϕ(x0) such that f = fϕ. We will consider unary monadic queries as the standard
way to specify queries on nested words in this paper.

Any query f over Σ̂-labeled nested structures can be encoded as a language
of well-matched words over a modified alphabet. If Σ̂ = (Σ,Σ), then let Σ̂′ =
(Σ′, Σ′) where Σ′ = Σ∪(Σ×{∗}). A starred-word is a well-matched word of the
form u(a, ∗)v where u, v ∈ Σ̂∗, i.e. it is a well matched over Σ̂ where precisely
one letter has been annotated with a ∗.

A query f then corresponds to a set of starred-words:
L∗(f) = {a1a2 . . . ai−1(ai, ∗)ai+1. . .an | i ∈ f(a1 . . . ai−1aiai+1 . . . an) and each
aj ∈ Σ̂}. Intuitively, L∗(f) contains the set of all words w where a single position
of w is marked with a ∗, and this position is an answer to the query f on w. We
refer to L∗(f) as the starred-language of f . It is easy to see that the above is a
1-1 correspondence between unary queries and starred-languages.
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From results on visibly pushdown automata, in particular the equivalence of
MSOν formulas and visibly pushdown automata [1], the following lemma follows:

Theorem 1. A query f is expressible in MSOν iff L∗(f) is a visibly pushdown
language.

Hence we can view unary monadic queries as simply visibly pushdown starred-
languages, which will help in many proofs in this paper.

The main result of this paper is as follows. We define the automaton model of
query VPA over nested words, which is a two-way visibly pushdown automaton
that answers unary queries by marking positions in an input word. We show that
a unary query is expressible in MSOν iff it is computed by some query VPA.
Notice that this result is very different from Theorem 1; the query VPA is a
machine that marks all positions that are answers to a query, as opposed to a
VPA that can check if a single marked position is an answer to a query.

3 Query VPA

The goal of this section is to define an automaton model for nested words called
a query VPA. A query VPA is a pushdown automaton that can move both
left and right over the input string and store information in a stack. The cru-
cial property that ensures tractability of this model is that the stack height
of such a machine is pre-determined at any position in the word. More pre-
cisely, any query VPA P working over a well-matched input w has the property
that, for any partition of w into two strings u and v (i.e., w = uv), the stack
height of P at the interface of u and v is the same as the number of unmatched
open-tags in u (which is the same as the number of unmatched close-tag in
v). In order to ensure this invariant, we define the two-way VPA as one that
pushes on open-tags and pops on close-tags while moving right, but pushes on
close-tags and pops on open-tags while moving left. Finally, in addition to the
ability to move both left and right over the input, the query VPA can mark
some positions by entering special marking states ; intuitively, the positions in a
word that are marked will be answers to the unary query that the automaton
computes.

We will now define query VPA formally. We will assume that there is a left-
end-marker � and a right-end-marker � for the input to ensure that the au-
tomaton doesn’t fall off its ends; clearly, �,� 	∈ Σ̂.

Definition 2 (Query VPA). A query VPA (QVPA) over (Σ,Σ) is a tuple
P = (Q, q0, Γ, δ,Q∗, S, C), where Q is a finite set of states, q0 ∈ Q is the initial
state, Q∗ ⊆ Q is a set of marking states, Γ is a finite stack alphabet, (S,C) is a
partition of Q×Σ̂, and δ = 〈δopen , δclose , δchng〉 is the transition relation, where:

– δopen
right : S ∩ (Q × Σ) → (Q × Γ )

– δopen
left : (S ∩ (Q × Σ)) × Γ → Q
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– δclose
right : (S ∩ (Q × Σ)) × Γ ) → Q

– δclose
left : S ∩ (Q × Σ) → (Q × Γ )

– δchng : C ∪ (Q × {�,�}) → Q

The δopen
right and δclose

left functions encode push-transitions of the automaton reading
an open-tag and moving right, and reading a close-tag and moving left, respec-
tively. The δopen

left and δclose
right functions encode pop-transitions when the automa-

ton reads an open-tag and moves left, and reads a close-tag and moves right,
respectively. On the other hand, the δchng function encodes transitions where
the automaton changes the direction of its head movement. Observe that we
force the automaton to change direction whenever it reads either � or �. Note
that the query VPA has no final states. Finally, the definition above describes a
deterministic model, which we will focus on in this paper. The non-deterministic
version of the above automaton can also be defined, but they do not increase
the expressive power.

We will now define the execution of a query VPA on a word x = �w�.
A configuration of the query VPA is a tuple 〈p, d, q, s〉, where p ∈ [|x|] is the
position in the input currently being scanned, d ∈ {left , right} is the direction
in which the head moving currently, q ∈ Q is the current state, and s ∈ Γ ∗

is the current stack contents. The initial configuration is 〈1, right , q0, ε〉, i.e.,
initially the automaton is reading the leftmost symbol of w (not �), it is moving
right, in the initial state, with an empty stack. A run is a sequence c0, c1, . . . cn,
where c0 is the initial configuration, and for each i, if ci = 〈pi, di, qi, si〉 and
ci+1 = 〈pi+1, di+1, qi+1, si+1〉, then one of the following holds

– If (qi, x[pi]) ∈ S ∩ (Q × Σ), and di = right then di+1 = di, pi+1 = pi + 1,
qi+1 = q and si+1 = γsi, where δopen

right (qi, x[pi]) = (q, γ)
– If (qi, x[pi]) ∈ S ∩ (Q × Σ), and di = right then di+1 = di, pi+1 = pi + 1,

qi+1 = q and si = γsi+1, where δclose
right (qi, x[pi], γ) = q

– If (qi, x[pi]) ∈ S ∩ (Q × Σ), and di = left then di+1 = di, pi+1 = pi − 1,
qi+1 = q and si = γsi+1, where δopen

left (qi, x[pi], γ) = q

– If (qi, x[pi]) ∈ S ∩ (Q × Σ), and di = left then di+1 = di, pi+1 = pi − 1,
qi+1 = q and si+1 = γsi, where δclose

left (qi, x[pi]) = (q, γ)
– If (qi, x[pi]) ∈ C then si = si+1, and qi+1 = δchng(qi, x[pi]). To define the

new position and direction, there are two cases to consider. If di = right
then di+1 = left and pi+1 = pi − 1. On the other hand, if di = left then
di+1 = right and pi+1 = pi + 1.

Observe that the way the run is defined, the stack height in any configuration
is determined by the word w. More precisely, in any configuration c = 〈p, d, q, s〉
of the run with p ∈ {1, . . . |w|}, if d = right then |s| is equal to the number
of unmatched open-tags in the word x[1] · · ·x[p − 1] (which is the same as the
number of unmatched close-tags in x[p] · · ·x[|w|]). On the other hand, if d = left
then |s| is equal to the number of unmatched open-tags in the word x[1] · · ·x[p].
When scanning the left-end-marker (p = 0) or the right-end-marker (p = |x|+1),
the stack height is always 0.
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Finally, the query VPA P is said to mark a position j in a well-matched word
w, where 1 ≤ j ≤ |w|, if the unique run c0 . . . cn of P on the input �w� is such
that for some i, ci = (j, d, q, s) where q ∈ Q∗. The query implemented by the
query VPA P is the function fP , where fP (w) is the set of all positions marked
by P when executed on �w�.

We now state the main result of this paper: the set of queries implemented
by query VPA is precisely the set of unary monadic queries.

Theorem 2. A query f is expressible in MSOν if and only if there is query VPA
P such that fP = f .

The proof of Theorem 2 follows from Lemmas 1 and 2 that are proved in the
next two sections.

3.1 Implementing Monadic Queries on Query VPA

In this section we prove one direction of Theorem 2, namely, that every monadic
query can be implemented on a query VPA.

Lemma 1. For any monadic query f , there is a query VPA P such that f = fP .

Proof. Let f be a monadic unary query. From Theorem 1, we know that there
is a deterministic VPA A such that L∗(f) = L(A). This suggests a very simple
algorithm that will mark all the answers to query f by repeatedly simulating
A on the word w. First the algorithm will simulate the VPA A on the word w,
assuming that the starred position is the rightmost symbol of w; the algorithm
marks position |w| of �w� only if A accepts. Then the algorithm simulates A
assuming that the starred position is |w| − 2, and so on, each time marking a
position if the run of A on the appropriate starred word is accepting. A näıve
implementation of this algorithm will require maintaining the starred position, as
well as the current position in the word that the simulation of A is reading, and
the ability to update these things. It is unclear how this additional information
can be maintained by a query VPA that is constrained to update its stack
according to whether it is reading an open-tag or a close-tag. The crux of the
proof of this direction is demonstrating that this can indeed be accomplished.
While we draw on ideas used in a similar proof for queries on regular word
languages (see [10] for a recent exposition), the construction is more involved
due to the presence of a stack.

Before giving more details about the construction, we will give two technical
constructions involving VPAs. First given any VPA B = (Q, q0, Γ, δ, F ) there is a
VPA B′ with a canonical stack alphabet that recognizes the same language; the
VPA B′ = (Q, q0, Q×Σ, δ′, F ) which pushes (q, c) whenever it reads an open-tag
c in state q. Details of this construction can be found in [1]. Next, given any VPA
B = (Q, q0, Γ, δ, F ), there is a VPA Bpop recognizing the same language, which
remembers the symbol last popped since the last unmatched open-tag in its control
state. We can construct this: Bpop = (Q×(Γ ∪{⊥}), (q0,⊥), Γ, δ′, F ×(Γ ∪{⊥})),
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where the new transitions are as follows. If q
c/γ1−−−→B q′ then (q, γ)

c/γ1−−−→Bpop

(q′,⊥). If q
c/γ1−−−→B q′ then (q, γ)

c/γ1−−−→ (q′, γ1).
For the rest of this proof, let us fix A to be the deterministic VPA with a

canonical stack alphabet recognizing L∗(f), and Apop to be the (deterministic)
version of A that remembers the last popped symbol in the control state. We
will now describe the query VPA P for f . Let us fix the input to be �w�, where
w = a1a2 · · · an.

P will proceed by checking for each i, i starting from n and decremented in
each phase till it becomes 1, whether position i is an answer to the query. To do
this, it must check if A accepts the starred word where the star is in position i.
P will achieve this by maintaining an invariant, which we describe below.

The Invariant. Let w = a1 . . . an, and consider a position i in w. Let w = uaiv
where u = a1 . . . ai−1 and v = ai+1 . . . an.

Recall that the suffix from position i + 1, v, can be uniquely written as
wkckwk−1ck−1 · · ·w1c1w0, where for each j, wj is a well-matched word, and
ck, . . . c1 are the unmatched close-tags in v.

In phase i, the query VPA will navigate to position i with stack σ such that
(a) its control has information of a pair (q, γ) such that this state with stack σ
is the configuration reached by Apop on reading the prefix u, and (b) its control
has the set B of states of A that is the precise set of states q′ such that A
accepts v from the configuration (q′, σ). Hence the automaton has a summary of
the way A would have processed the unstarred prefix up to (but not including)
position i and a summary of how the unstarred suffix from position i + 1 would
be processed. Under these circumstances, the query VPA can very easily decide
whether position i is an answer to the query — if A on reading (ai, ∗) can go
from state q to some state in B, then position i must be marked.

Technically, in order to ensure that this invariant can be maintained, the query
VPA needs to maintain more information: a set of pairs of states of A, S, that
summarizes how A would behave on the first well-matched word in v (i.e. wk),
a stack symbol StackSym that accounts for the difference in stack heights, and
several components of these in the stack to maintain the computation. We skip
these technical details here.

Marking position i. If ai ∈ Σ then the query VPA P will mark position i iff

q
(ai,∗)/(q,(ai,∗))−−−−−−−−−−→A q′ where q′ ∈ B. Similarly, if ai ∈ Σ then P marks i iff

q
(ai,∗)/γ′
−−−−−−→A q′ with q′ ∈ B.

Maintaining the Invariant. Initially the query VPA P will simulate the VPA
Apop on the word w from left to right. Doing this will allow it to obtain the
invariant for position n. So what is left is to describe how the invariant for
position i − 1 can be obtained from the invariant for position i. Determining
the components of the invariant, except for the new control state of Apop , are
easy and follow from the definitions; the details are deferred to the appendix.
Computing the new state of Apop at position i−1 is interesting, and we describe
this below.
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Determining the state of Apop. Recall that we know the state of Apop af-
ter reading a1 · · ·ai−1, which is (q, γ). We need to compute the state (q′, γ′)
of Apop after reading a1 · · · ai−2. The general idea is as follows. The query
VPA P will simulate Apop backwards on symbol ai−1, i.e., it will compute
Prev = {p | p

ai−1−−−→Apop (q, γ). If |Prev | = 1 then we are done. On the other
hand, suppose |Prev | = k > 1. In this case, P will continue simulating Apop

backwards on symbols ai−2, ai−3 and so on, while maintaining for each state
p ∈ Prev the set of states of Apop that reach p. If at some position j the sets
associated with all states p ∈ Prev become empty except one, or j = 1 (we
reach the beginning of the word), then we know which state p ∈ Prev is state
of Apop after reading a1 · · · ai−2 — it is either the unique state whose set is
non-empty or it is state whose set includes the initial state. However P now
needs to get back to position i − 1. This is done by observing the following. We
know at position j + 1 at least two different threads of the backward simula-
tion are still alive. Position i − 1 is the unique position where these two threads
converge if we now simulate Apop forwards. The idea just outlined works for
queries on regular word languages, but does not work for query VPA due to one
problem. If we go too far back in the backwards simulation (like the beginning
of the word), we will lose all the information stored in the stack. Therefore, we
must ensure that the backward simulation does not result in the stack height
being lower than what it is supposed after reading a1 · · · ai−2. To do this we
use the special properties of the VPA Apop . Observe that if we go backwards
on an unmatched open-tag (in a1 · · · ai−1), the state of the VPA A at the time
the open-tag was read is on the stack. Thus, the state of Apop after reading
the open-tag is uniquely known. Next if ai−1 ∈ Σ is a matched close-tag, then
since we keep track of the last symbol popped after reading ai−1, we know the
symbol that was popped when ai−1 was read, which allows us to know the
state of A, when it read the open-tag that matches ai−1. These two observa-
tions ensure that we never pop symbols out of the stack. The details are as
follows.

ai−1 ∈ Σ: Simulate backwards until (in the worst case) the rightmost unmatched
open-tag symbol in the word a1 . . . ai−2, and then simulate forward to de-
termine the state (q′, γ′) as described above.

ai−1 ∈ Σ: γ is symbol that is popped by Apop when it reads ai−1. So γ encodes
the state of A when the matching open-tag aj to ai−1 was read. So simulate
backwards until aj is encountered and then simulate forwards.

This completes the description of the query VPA.

3.2 Translating Query VPA to Monadic Queries

We now complete the proof of Theorem 2, by showing that any query imple-
mented on a query VPA can be described as a unary monadic query.
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Lemma 2. For any query VPA A, there is an MSOν formula ϕ(x) such that
fϕ = fA.

Proof. Let A be a query VPA. The query defined by A will be translated into
an MSOν formula through several intermediate stages.

Let f be the query defined by the query VPA A. We first construct a two-
way (non-marking) VPA B that accepts the starred-language of f . B accepts a
word w with a ∗ in position i if and only if i ∈ f(w). Constructing B is easy. B
simulates A on a word w with a ∗ in position i and accepts the word if A reaches
position i in a marking state. B also ensures in a first run over the word that
the word has a unique position that is marked with a ∗. The language accepted
by B is L∗(f), the starred-language of f .

Any nested word w can be represented as a tree called a stack tree. A stack
tree is a Σ̂ binary tree that has one node for every position in w, and the node
corresponding to position i is labeled by w[i]. The stack tree corresponding to a
word w is defined inductively as follows: (a) if w = ε, then the stack tree of w is
the empty tree, and (b) if w = cw1cw2, then the stack tree corresponding to w
has its root labeled c, has the stack-tree corresponding to w1 rooted at its left
child, the right child is labeled c which has no left child, but has a right child
which has the stack-tree corresponding to w2 rooted at it.

We now show that the set of stack-trees corresponding the starred words
accepted by B can be accepted using a pushdown tree-walking automaton [7]. A
pushdown tree-walking automaton works on a tree by starting at the root and
walking up and down the tree, and has access to a stack onto which it always
pushes a symbol when going down the tree and pops the stack when coming
up an edge. Note that the height of the stack when at a node of the tree is
hence always the depth of the node from the root. From B, we can build a tree-
walking automaton C that reads the tree corresponding to a starred word, and
simulates B on it. C can navigate the tree and effectively simulate moving left
or right on the word. When B moves right reading a call symbol, C moves to
the left child of the call and pushes the symbol B pushes onto its stack. When
B moves right to read the corresponding return, C would go up from the left
subtree to this call and pop the symbol from the stack and use it to simulate
the move on the return. The backward moves on the word that B makes can
also be simulated: for example, when B reads a return and moves left, C would
go to the corresponding node on the left-subtree of the call node corresponding
to the return, and when doing so push the appropriate symbol that B pushed
onto the stack. When C moves down from an internal or return node, or from a
call node to the right, it pushes in a dummy symbol onto the stack.In summary,
whenever B is in a position i with stack γ1 . . . γk, C would be reading the node
corresponding to i in the tree, and the stack would have γ1 . . . γk when restricted
to non-dummy symbols.

It is known that pushdown tree-walking automata precisely accept regular tree
languages. Hence we can construct an MSO formula on trees that precisely is true
on all trees that correspond to starred words accepted by B. This MSO formula
can be translated to MSOν ψ on nested words, which is true on precisely the set
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of starred nested words that B accepts. Assuming x is not a variable in ψ, we
replace every atomic formula of the form Q(a,∗)(y) (the atomic formula checking
whether position y is labeled a and is starred) by the formula x = y ∧ Qa(y),
to get a formula ϕ(x), with a free variable x. Intuitively, we replace every check
the formula does for a starred label by a check as to whether that position is x.
It is easy to see then that the formula ϕ(x) is an MSOν formula on Σ̂-labeled
(unstarred) nested words, which precisely defines the query defined by B, and
hence the original query VPA A. This concludes the proof.

4 Conclusions

The query automaton model we have defined on nested words is an elegant model
that answers queries using the least space possible. While our result is theoretical
in nature, it may have implications on applications: our model shows that unary
queries on XML (like logical XPath queries) can be answered using only O(d)-
space; we also believe that our model could have applications in verification
where, given a run of a sequential program, we can build efficient algorithms
that answer queries such as “which positions x of the run satisfy a temporal
formula ϕ(x)?”, with applications to debugging error traces.

Finally, our query automaton model can be adapted to an analogous MSO-
complete unary query automata on unranked trees as well: we can define a 2-way
pushdown automaton tree-walking automaton that processes it by traversing it
according to the linear order (determined by its serialization as a word), pushing
onto the stack when going down a tree and popping the stack when coming up;
this will essentially be an encoding of the query VPA on the tree.
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Abstract. We provide sufficient conditions for categorical models living
in arbitrary cpo-enriched cartesian closed categories to have the maximal
consistent sensible λ-theory as their equational theory. Finally, we prove
that a model of pure λ-calculus we have recently introduced in a carte-
sian closed category of sets and (multi-)relations fulfils these conditions.
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Introduction

The first model of λ-calculus, namely D∞, was postulated by Scott in 1969 in
the category of complete lattices and continuous functions. After Scott’s D∞, a
large number of models have been introduced in various categories of domains.
For example, the continuous semantics [14] is given in the cartesian closed cat-
egory (ccc, for short) whose objects are complete partial orders and morphisms
are Scott continuous functions. The stable semantics [3] and the strongly sta-
ble semantics [5] are refinements of the continuous semantics which have been
introduced to capture the notion of ‘sequential’ continuous function.

Although these semantics are very rich (in each of them it is possible to build
up 2ℵ0 models having pairwise distinct λ-theories) they are also hugely incom-
plete: there is a continuum of λ-theories that cannot be presented as equational
theories of continuous, stable, or strongly stable models (see [13]). For this rea-
son, researchers are today shifting their attention towards less canonical struc-
tures and categories [7,11,12]. This is also due to a widespread growing interest
in two branches of computer science which are strongly related to the semantics
of λ-calculus: game semantics and linear logic. The categories naturally arising
in these fields are often non-standard since they can have morphisms which are
not functions and/or they can be non-well-pointed.

At the moment, there is a lack of general methods for a uniform treatment
of models living in non-standard semantics. For instance, the classic method for
turning a categorical model into a λ-model asked for well-pointed categories [2,
Sec. 5.5], whilst, in collaboration with Bucciarelli and Ehrhard, we have recently
shown that such a requirement was unnecessary [6]. In the same paper we have
also built an extensional model D of λ-calculus living in a (highly) non-well-
pointed ccc of sets and (multi-)relations, which has been previously studied as a
� Work supported by ANR ParSec grant ANR-06-SETI-010-02 and CONCERTO.
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semantic framework for linear logic [8,4]. We conjectured that D can be seen as
a “relational version” of Scott’s D∞ and, hence, that its equational theory is the
maximal consistent sensible λ-theory H∗ (just like for D∞). Unfortunately, the
classic methods to characterize the equational theory of a model are not directly
applicable to our model D , since it lives in a non-well-pointed category.

In the present paper, we provide sufficient conditions for categorical models
living in possibly non-well-pointed, but cpo-enriched, ccc’s to have H∗ as their
equational theory. The idea of the proof is that we want to find a class of models
(as large as possible) satisfying an Approximation Theorem. More precisely, we
want to be able to characterize the interpretation of a λ-term M as the least
upper bound of the interpretations of its approximants. These approximants are
particular terms of an auxiliary calculus, due to Wadsworth [15], and called here
the labelled λ⊥-calculus, which is strongly normalizable and Church-Rosser.

Then we define the “well stratifiable ⊥-models”, and we show that they
model Wadsworth’s calculus and satisfy the Approximation Theorem. As a con-
sequence, we get that every well stratifiable ⊥-model U equates all λ-terms
having the same Böhm tree; in particular, U is sensible, i.e., it equates all un-
solvable λ-terms. Finally we prove, under the additional hypothesis that U is
extensional, that the theory of U is H∗.

At the end of the paper, we show that our relational model D of [6] fulfils
these conditions and we conclude that its equational theory is H∗.

1 Preliminaries

To keep this article self-contained, we summarize some definitions and results.
With regard to the λ-calculus we follow the notation and terminology of [2]. Our
main reference for category theory is [1].
Cartesian Closed Categories. Let C be a cartesian closed category (ccc, for
short). We denote by A×B the product of A and B, by [A ⇒ B] the exponential
object and by ev ∈ C([A ⇒ B]×A,B) the evaluation morphism. For any C and
f ∈ C(C ×A,B), Λ(f) ∈ C(C, [A ⇒ B]) stands for the (unique) morphism such
that ev ◦ (Λ(f) × Id) = f . Finally, � denotes the terminal object and !A the only
morphism in C(A,�). We recall that in a ccc the following equalities hold:
(pair) 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 Λ(f) ◦ g = Λ(f ◦ (g × Id)) (Curry)
(beta) ev ◦ 〈Λ(f), g〉 = f ◦ 〈Id, g〉 Λ(ev) = Id (Id-Curry)

We say that C is well-pointed if, for all f, g ∈ C(A,B), whenever f 	= g, there
exists a morphism h ∈ C(�, A) such that f ◦ h 	= g ◦ h.

The ccc C is cpo-enriched if every homset is a cpo (C(A,B),'(A,B),⊥(A,B)),
composition is continuous, pairing and currying are monotonic, and the following
strictness conditions hold: (l-strict) ⊥ ◦ f = ⊥, (ev-strict) ev ◦ 〈⊥, f〉 = ⊥.

The λ-Calculus. Let Var be a countably infinite set of variables. The set Λ of
λ-terms is inductively defined as usual: x ∈ Λ, for each x ∈ Var; if M,N ∈ Λ
then MN ∈ Λ; if M ∈ Λ then λx.M ∈ Λ, for each x ∈ Var.

Concerning specific λ-terms, we set I ≡ λx.x and Ω ≡ (λx.xx)(λx.xx).
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Given a reduction rule →R we write R (=R) for its transitive and reflexive
(and symmetric) closure. A λ-term M is solvable if M β λx1 . . . xn.yN1 · · ·Nk

for some x1, . . . , xn ∈ Var, N1, . . . , Nk ∈ Λ (n, k ≥ 0); otherwise M is unsolvable.
A λ-theory is any congruence on Λ, containing =β. A λ-theory is: consistent if

it does not equate all λ-terms; extensional if it contains =η; sensible if it equates
all unsolvable λ-terms. The set of all λ-theories, ordered by inclusion, forms a
complete lattice. We denote by H∗ the greatest consistent sensible λ-theory.

The Böhm tree BT(M) of a λ-term M is defined as follows: if M is unsolvable,
then BT(M) = ⊥, that is, BT(M) is a tree with a unique node labelled by ⊥; if
M is solvable, then M β λx1 . . . xn.yN1 · · ·Nk (with n, k ≥ 0) and:

BT(M) = λx1 . . . xn.y
��� 			

BT(N1) · · · BT(Nk)

We call B the minimum λ-theory equating all λ-terms having the same Böhm
tree. Given two Böhm trees t, t′ we define t ⊆BT t′ if, and only if, t results from t′

by replacing some subtrees with ⊥. The relation ⊆BT is transferred on λ-terms
by setting M 'BT N if, and only if, BT(M) ⊆BT BT(N).

We write M 'η,∞ N if BT(N) is a (possibly infinite) η-expansion of BT(M)
(see [2, Def. 10.2.10(iii)]). For example, let us consider J ≡ Θ(λjxy.x(jy)), where
Θ is Turing’s fixpoint combinator [2, Def. 6.1.4]. Then x 'η,∞ Jx, since

Jx =β λz0.x(Jz0) =β λz0.x(λz1.z0(Jz1))
=β λz0.x(λz1.z0(λz2.z1(Jz2))) =β . . .

Using 'η,∞, we can define another relation on λ-terms which will be useful in
Subsec. 2.6. For all M,N ∈ Λ we set M �η N if there exist M ′, N ′ such that
M 'η,∞ M ′ 'BT N ′ 6η,∞ N . Let us provide an example of this situation:

λx.x


 ��

�η,∞ λx.x
�� �� �BT λx.x

�� ��
�η,∞ λx.x

�� 
x ⊥ λz.x λz0.x ⊥ λz.x λz0.x y λz.x λz0.x y x

z λz1.z0 z λz1.z0 z λz1.z0

λz2.z1 λz2.z1 λz2.z1

...
...

...

Finally, we write M 0η N for M �η N �η M .

2 Well Stratifiable Categorical Models

The λ-theory H∗ was first introduced by Hyland [10] and Wadsworth [15], who
proved (independently) that the theory of D∞ is H∗. This proof has been ex-
tended by Gouy in [9] with the aim of showing that also the stable analogue
of D∞ had H∗ as equational theory. Actually, his result is more powerful and
covers many suitably stratifiable models living in “regular” ccc’s (in the sense of
[9]). However, all regular ccc’s have (particular) cpo’s as objects and (particular)
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continuous functions as morphisms, hence only concrete categories can be regu-
lar. Concerning models in non-well-pointed categories, Di Gianantonio et al. [7]
provided a similar proof, but it only works for non-concrete categories of games.

In this section we provide sufficient conditions for models living in (possibly
non-well-pointed) cpo-enriched ccc’s to have H∗ as equational theory.

2.1 A Uniform Interpretation of λ-Terms

A model of λ-calculus U is a reflexive object in a ccc C, i.e., a triple (U,Ap, λ)
such that U is an object of C, and λ ∈ C([U ⇒ U ], U) and Ap ∈ C(U, [U ⇒ U ])
satisfy Ap ◦ λ = Id[U⇒U ]. U is called extensional when moreover λ ◦ Ap = IdU .

A λ-term M is usually interpreted as a morphism |M |I ∈ C(U I , U) for some
finite subset I ⊂ Var containing the free variables of M . The arbitrary choice
of I is tedious to treat when dealing with the equalities induced by a model.
Fortunately, when the underlying category has countable products, we are able
to interpret all λ-terms in the homset C(UVar, U) just slightly modifying the
usual definition of interpretation (see [2, Def. 5.5.3(vii)]). Indeed, given M ∈ Λ,
we can define |M |Var ∈ C(UVar, U) by structural induction on M , as follows:

– |x|Var = πVar
x ,

– |NP |Var = |N |Var • |P |Var, where a • b = ev ◦ 〈Ap ◦ a, b〉,
– |λx.N |Var = λ◦Λ(|N |Var◦ηx), where ηx = ΠVar

Var−{x}×Id ∈ C(UVar×U,UVar).

It is easy to check that |M |Var = |M |I ◦ ΠVar
I for all finite sets I containing the

free variables of M . In other words, |M |Var is the morphism |M |I ∈ C(U I , U)
‘seen’ as an element of C(UVar, U). Moreover, |M |Var = |N |Var iff |M |I = |N |I .

Hence, for the sake of simplicity, we will work in ccc’s having countable prod-
ucts and we will use the interpretation |−|Var. We insist on the fact that this
is just a simplification: all the work done in this section could be adapted to
cover also categorical models living in ccc’s without countable products but the
statements and the proofs would be significantly more technical.

We set Th(U ) = {(M,N) : |M |Var = |N |Var}. Th(U ) is called the λ-theory
induced by U , or just the (equational) theory of U . It is easy to check that if U
is an extensional model then Th(U ) is an extensional λ-theory.

2.2 Stratifiable Models in Cpo-Enriched Ccc’s

The classic methods for proving that the theory of a categorical model is H∗

require that the λ-terms are interpreted as elements of a cpo and that the mor-
phisms involved in the definition of the interpretation are continuous functions.
Thus, working possibly outside well-pointed categories, it becomes natural to
consider categorical models living in cpo-enriched ccc’s.

From now on, and until the end of the section, we consider a fixed non-trivial
categorical model U = (U,Ap, λ) living in a cpo-enriched ccc C having countable
products.

Since in a cpo-enriched ccc pairing and currying are monotonic we get the
following lemma.
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Lemma 1. The operations • and λ ◦ Λ(− ◦ ηx) are continuous.

To lighten the notation we write'and ⊥ respectively for'(UVar,U) and ⊥(UVar,U).

Definition 1. The model U is a ⊥-model if the following two conditions hold:
(i) ⊥ • a = ⊥ for all a ∈ C(UVar, U),
(ii) λ ◦ Λ(⊥(UVar×U,U)) = ⊥.

Stratifications of models are done by using special morphisms, acting at the level
of C(U,U) and called ‘projections’.

Definition 2. Given an object U of a cpo-enriched ccc C, a morphism p ∈
C(U,U) is a projection from U into U if p '(U,U) IdU and p ◦ p = p.

From now on, we also fix a family (pk)k∈� of projections from U into U such
that (pk)k∈� is increasing with respect to '(U,U) and �k∈�pk = IdU .

Notation 1. Given a morphism a ∈ C(UVar, U) we write ak for pk ◦ a.

Remark 1. Since the pk’s are increasing, �k∈�pk = IdU , and composition is
continuous, we have for every morphism a ∈ C(UVar, U):

(i) ak ' a,
(ii) a = �k∈�ak.

Definition 3. The model U is called:
(i) stratified (by (pk)k∈�) if ak+1 • b = (a • bk)k;
(ii) well stratified (by (pk)k∈�) if, moreover, a0 • b = (a • ⊥)0.

Of course, the fact that U is a (well) stratified model depends on the family
(pk)k∈� we are considering. Hence, it is natural and convenient to introduce the
notion of (well) stratifiable model.

Definition 4. The model U is stratifiable ( well stratifiable) if there exists a
family (pk)k∈� making U stratified (well stratified).

The aim of this section is in fact to prove that every extensional well stratifiable
⊥-model has H∗ as equational theory.

2.3 Modelling the Labelled λ⊥-Calculus in U

We recall now the definition of the labelled λ⊥-calculus (see [15] or [2, Sec. 14.1]).
We consider a set C = {ck : k ∈ �} of constants called labels, together with a
constant ⊥ to indicate lack of information.

The set Λlab
⊥ of labelled λ⊥-terms is inductively defined as follows: ⊥ ∈ Λlab

⊥ ;
x ∈ Λlab

⊥ , for every x ∈ Var; if M,N ∈ Λlab
⊥ then MN ∈ Λlab

⊥ ; if M ∈ Λlab
⊥ then

λx.M ∈ Λlab
⊥ , for every x ∈ Var; if M ∈ Λlab

⊥ then ckM ∈ Λlab
⊥ , for every ck ∈ C.

We will denote by Λ⊥ the subset of Λlab
⊥ consisting of those terms that do not

contain any label; note that Λ � Λ⊥ � Λlab
⊥ .

The labelled λ⊥-terms can be interpreted in U ; the intuitive meaning of
ckM is the k-th projection applied to the meaning of M . Hence, we define the
interpretation function as the unique extension of the interpretation function of
λ-terms such that:
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– |⊥|Var = ⊥,
– |ckM |Var = pk ◦ |M |Var = (|M |Var)k, for all M ∈ Λlab

⊥ and k ∈ �.

Since the ccc C is cpo-enriched, all labelled λ⊥-terms are interpreted in the cpo
(C(UVar, U),',⊥). Hence we can transfer this ordering, and the corresponding
equality, on Λlab

⊥ as follows.

Definition 5. For all M,N ∈ Λlab
⊥ we set M 'U N iff |M |Var ' |N |Var.

Moreover, we write M =U N iff M 'U N and N 'U M .

It is straightforward to check that both 'U and =U are contextual.
The notion of substitution can be extended to Λlab

⊥ by setting: ⊥[M/x] = ⊥
and (ckM)[N/x] = ck(M [N/x]) for all M,N ∈ Λlab

⊥ . We now show that U is
sound for the β-conversion extended to Λlab

⊥ .

Lemma 2. For all M,N ∈ Λlab
⊥ we have (λx.M)N =U M [N/x].

Proof. By [2, Prop. 5.5.5] we know that (λx.M)N =U M [N/x] still holds for
λ-calculi extended with constants c, if |c|Var = u◦!UVar for some u ∈ C(�, U).
Hence, this lemma holds since the interpretation defined above is equal to that
obtained by setting: |ck|Var = λ ◦ Λ(pk)◦!UVar and |⊥|Var = ⊥(�,U)◦!UVar .

We now introduce the reduction rules on labelled λ⊥-terms which generate the
labelled λ⊥-calculus.

Definition 6
The ω-reduction is defined by: The γ-reduction is defined by:
⊥M →ω ⊥ c0(λx.M)N →γ c0(M [⊥/x])
λx.⊥ →ω ⊥ ck+1(λx.M)N →γ ck(M [ckN/x]).

The ε-reduction is defined by:
ck⊥ →ε ⊥,
ck(cnM) →ε cmin(k,m)M .

The calculus on Λlab
⊥ generated by the ω-, γ-, ε-reductions is called labelled λ⊥-

calculus. Note that the β-reduction is not considered here.
The main properties of this calculus are summarized in the next theorem.

Theorem 1. [2, Thm. 14.1.12 and 14.2.3] The labelled λ⊥-calculus is strongly
normalizable and Church Rosser.

We now show that the interpretation of a labelled λ⊥-term, in a well stratified
⊥-model, is invariant along its ω-, ε-, γ-reduction paths.

Proposition 1. If U is a well stratified ⊥-model, then for all M,N ∈ Λlab
⊥ :

(i) ⊥M =U ⊥, (iv) cn(cmM) =U cmin(n,m)M,
(ii) λx.⊥ =U ⊥, (v) (c0λx.M)N =U c0(M [⊥/x]),
(iii) ck⊥ =U ⊥, (vi) (ck+1λx.M)N =U ck(M [ckN/x]).
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Proof. (i) |⊥M |Var = |⊥|Var • |M |Var = ⊥ • |M |Var, which is ⊥ by Def. 1(i).
(ii) |λx.⊥|Var = λ ◦ Λ(|⊥|Var ◦ ηx) = λ ◦ Λ(⊥ ◦ ηx). Using (l-strict) this is equal
to λ ◦ Λ(⊥(UVar×U,U)), which is ⊥ by Def. 1(ii). On the other side, |⊥|Var = ⊥.
(iii) |ck⊥|Var = ⊥k, hence by Rem. 1 we obtain ⊥k ' �k∈�⊥k = ⊥. The other
inequality is clear.
(iv) |cn(cmM)|Var = pn ◦pm ◦ |M |Var. By continuity of ◦, and since the sequence
(pk)k∈� is increasing and every pk '(U,U) IdU we obtain pn ◦ pm = pmin(n,m).
(v) |(c0λx.M)N |Var = (|λx.M |Var)0 • |N |Var by def. of | − |Var

= (|λx.M |Var • ⊥)0 by Def. 3(ii)
= |c0((λx.M)⊥)|Var by def. of | − |Var

= |c0(M [⊥/x])|Var by Lemma 2.
(vi) |(ck+1λx.M)N |Var = (|λx.M |Var)k+1 • |N |Var by def. of | − |Var

= (|λx.M |Var • (|N |Var)k)k by Def. 3(i)
= |ck((λx.M)(ckN))|Var by def. of | − |Var

= |ck(M [ckN/x])|Var by Lemma 2.

Corollary 1. If U is a well stratified ⊥-model, then for all M,N ∈ Λlab
⊥ ,

M =ωγε N implies M =U N .

Proof. The result follows from Prop. 1, since the relation =U is contextual.

Thus, every well stratifiable ⊥-model is a model of the labelled λ⊥-calculus.

2.4 Completely Labelled λ⊥-Terms

We now study the properties of those labelled λ⊥-terms M which are completely
labelled. This means that every subterm of M “has” a label.

Definition 7. The set of completely labelled λ⊥-terms is defined by induction:
ck⊥ is a completely labelled λ⊥-term, for every k; ckx is a completely labelled
λ⊥-term, for every x and k; if M,N ∈ Λlab

⊥ are completely labelled then also
ck(MN) and ck(λx.M) are completely labelled for every x and k.

Note that every completely labelled λ⊥-term is β-normal, since every lambda
abstraction is “blocked” by a ck.

Definition 8. A complete labelling L of a term M ∈ Λ⊥ is a map which assigns
to each subterm of M a natural number. We will write LM for the set of all
complete labellings of M .

Notation 2. Given a term M ∈ Λ⊥ and a complete labelling L of M , we denote
by ML the resulting completely labelled λ⊥-term.

It is easy to check that LM is directed w.r.t. the following partial ordering:
L1 'lab L2 iff for each subterm N of M we have L1(N) ≤ L2(N). By structural
induction on the subterms of M one proves that L1 'lab L2 implies ML1 'U

ML2 . Thus, the set of the ML ’s such that L ∈ LM , is also directed w.r.t. 'U .

Lemma 3. If U is a well stratified ⊥-model, then for all M ∈ Λ⊥ we have
|M |Var = �L∈LM |ML|Var.

Proof. By straightforward induction on M , using a = �k∈�ak and Lemma 1.
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2.5 The Approximation Theorem and Applications

Approximation theorems are an important tool in the analysis of the λ-theories
induced by the models of λ-calculus. In this section we provide an Approximation
Theorem for the class of well stratified ⊥-models: we show that the interpretation
of a λ-term in a well stratified ⊥-model U is the least upper bound of the
interpretations of its direct approximants. From this it follows first that Th(U )
is sensible, and second that B ⊆ Th(U ).

Definition 9. Let M,N ∈ Λ⊥, then: (1) N is an approximant of M if there is
a context C[−1, . . . ,−k] over Λ⊥, with k ≥ 0, and M1, . . . ,Mk ∈ Λ⊥ such that
N ≡ C[⊥, . . . ,⊥] and M ≡ C[M1, . . . ,Mk]; (2) N is an approximate normal
form (app-nf, for short) of M if, furthermore, it is βω-normal.

Given M ∈ Λ, we define the set A(M) of all direct approximants of M as follows:
A(M) = {W ∈ Λ⊥ : ∃N, (M β N) and W is an app-nf of N}.

It is easy to check that if M is unsolvable then A(M) = {⊥}.
The proof of the following lemma is straightforward once recalled that, if

N ∈ A(M), then M results (up to β-conversion) from N by replacing some ⊥
in N by other terms.

Lemma 4. If U is a well stratifiable ⊥-model and M ∈ Λ, then for all N ∈
A(M) we have N 'U M .

Given M ∈ Λlab
⊥ we will denote by M ∈ Λ⊥ the term obtained from M by erasing

all labels.

Lemma 5. For all M ∈ Λlab
⊥ , we have that M 'U M .

Proof. By Rem. 1(i) we have (|M |Var)k ' |M |Var, and this implies ckM 'U M .
We conclude the proof since 'U is contextual.

The following syntactic property is a consequence of the results in [2, Sec. 14.3].

Proposition 2. [9, Prop. 1.9] Let M ∈ Λ and L be a complete labelling of M .
If nf(ML) is the ωγε-normal form of ML, then nf(ML) ∈ A(M).

Theorem 2. (Approximation Theorem) If U is a well stratified ⊥-model, then
for all M ∈ Λ:

|M |Var =
⊔

A(M),

where
⊔

A(M) =
⊔

{|W |Var : W ∈ A(M)}.

Proof. Let L be a complete labelling for M . From Thm. 1 there is a unique ωεγ-
normal form of ML. We denote this normal form by nf(ML). Since ML εγω

nf(ML), and U is a model of the labelled λ⊥-calculus (Cor. 1), we have ML =U

nf(ML). Moreover, Prop. 2 implies that nf(ML) ∈ A(M) and hence nf(ML) 'U

nf(ML) by Lemma 5. This implies that |nf(ML)|Var '
⊔

A(M). Since L is
an arbitrary complete labelling for M , we have: |M |Var = �L∈LM |ML|Var, by
Lemma 3 this is equal to �L∈LM |nf(ML)|Var '

⊔
A(M). The opposite inequality

is clear.
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Corollary 2. Let U be a non-trivial well stratifiable ⊥-model. A λ-term M is
unsolvable if, and only if, M =U ⊥.

Proof. (⇒) If M is unsolvable, then A(M) = {⊥}. Hence, M =U ⊥ by Thm. 2.
(⇐) If M is solvable, then by [2, Thm. 8.3.14] there exist N1, . . . , Nk ∈ Λ, with
k ≥ 0, such that MN1 · · ·Nk =U I. Since U is a ⊥-model, M =U ⊥ would
imply I =U ⊥ (by Def. 1(i)) and U would be trivial. Contradiction.

Corollary 3. If U is a well stratifiable ⊥-model, then Th(U ) is sensible.

We show that the notion of Böhm tree can be also generalized to terms in Λ⊥.

Definition 10. For all M ∈ Λ⊥ we write BT(M) for the Böhm tree of the λ-
term obtained by substituting Ω for all occurrences of ⊥ in M . Vice versa, for
all M ∈ Λ we denote by M [k] ∈ Λ⊥ the (unique) βω-normal form such that
BT(M [k]) = BTk(M) (where BTk(M) is the Böhm tree of M pruned at level k).

It is straightforward to check that, for every λ-term M , M [k] ∈ A(M). Vice versa,
the following proposition is a consequence of the Approximation Theorem.

Proposition 3. IfU is a well stratifiable⊥-model then, for all M ∈ Λ, |M |Var =
�k∈�|M [k]|Var.

Proof. For all W ∈ A(M), there exists a k ∈ � such that all the nodes in BT(W )
have depth less than k. Thus W 'BT M [k] and W 'U M [k] by Thm. 2.

Corollary 4. If N 'BT M then N 'U M .

Proof. If N 'BT M then for all k ∈ � we have N [k] 'BT M . By Lemma 4
N [k] 'U M . Thus |N |Var = �k∈�|N [k]|Var ' |M |Var by Prop. 3.

As a direct consequence we get the following result.

Theorem 3. If U is a well stratifiable ⊥-model, then B ⊆ Th(U ).

2.6 A General Class of Models of H∗

The definition of 0η has been recalled in Sec. 1, together with those of 'BT ,
'η,∞, �η. However, for proving that Th(U ) = H∗, the following alternative
characterization of 'η,∞ will be useful.

Theorem 4. [2, Lemma 10.2.26] The following conditions are equivalent:
– M 'η,∞ N ,
– for all k ∈ � there exists Pk ∈ Λ such that Pk η M , and P

[k]
k = N [k].

Lemma 6. If U is an extensional well stratified ⊥-model then, for all M ∈ Λ⊥
and x ∈ Var, x 'η,∞ M implies cnx 'U M for all n ∈ �.
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Proof. From [2, Def. 10.2.10], we can assume that M ≡ λy1 . . . ym.xM1 · · ·Mm

with yi 'η,∞ Mi. The proof is done by induction on n. If n = 0, then:
c0x =U λy1 . . . ym.c0xy1 · · · ym since U is extensional,

=U λy1 . . . ym.c0(x⊥)y2 · · · ym since U is well stratified (Def. 3(ii)),
...

...
...

=U λy1 . . . ym.c0(x⊥ · · · ⊥) since U is well stratified (Def. 3(ii)),
'U λy1 . . . ym.x⊥ · · · ⊥ by Lemma 5,
'U λy1 . . . ym.xM1 · · ·Mm by ⊥ 'U Mi.

If n > 0, then:
cnx =U λy1 . . . ym.cnxy1 · · · ym since U is extensional,

=U λy1 . . . ym.cn−1(x(cn−1y1))y2 . . . ym since U is stratified (Def. 3(i)),
...

...
...

=U λy1 . . . ym.cn−m(x(cn−1y1) · · · (cn−mym)) since U is stratified (Def. 3(i)).
Recalling that yi 'η,∞ Mi, we have:

λy1 . . . ym.cn−m(x(cn−1y1) · · · (cn−mym))
'U λy1 . . . ym.cn−m(xM1 · · ·Mm) since cn−iyi 'U Mi by I.H.,
'U λy1 . . . ym.xM1 · · ·Mm by Lemma 5.

Lemma 7. Let U be an extensional well stratified ⊥-model and M,N,W ∈ Λ⊥.
If W is a βω-normal form such that W 'BT M and M 'η,∞ N , then W 'U N .

Proof. The proof is done by induction on the structure of W .
If W ≡ ⊥, then it is trivial.
If W ≡ x then M ≡ x and we conclude by Lemma 6 since |x|Var = �n∈�(|x|Var)n.
If W ≡ λx1 . . . xm.yW1 · · ·Wr , then M =β λx1 . . . xm.yM1 · · ·Mr and every Wi

is a βω-normal form such that Wi 'BT Mi (for i ≤ r). By M 'η,∞ N , we
can assume that N =βη λx1 . . . xm+s.yN1 · · ·Nr+s, with xm+k 'η,∞ Nr+k (for
1 ≤ k ≤ s) and Mi 'η,∞ Ni (for i ≤ r). From xm+k 'η,∞ Nr+k we obtain, using
the previous lemma, that xm+k 'U Nr+k. Moreover, since Wi 'BT Mi 'η,∞ Ni,
the induction hypothesis implies Wi 'U Ni. Hence, W 'U N .

Lemma 8. IfU is an extensional well stratifiable ⊥-model then for all M,N ∈Λ:
(i) M 'η,∞ N implies M =U N ,
(ii) M �η N implies M 'U N .

Proof. (i) Suppose that M 'η,∞ N . Since all W ∈ A(M) are βω-normal forms
such that W 'BT M , the Approximation Theorem and Lemma 7 imply that
M 'U N . We prove now that also N 'U M holds. By the characterization
of 'η,∞ given in Thm. 4 we know that for all k ∈ � there exists a λ-term
Pk such that Pk η M and P

[k]
k = N [k]. Since every P

[k]
k ∈ A(Pk), we have

P
[k]
k 'U Pk; also, from the extensionality of U , Pk =U M . Thus, by Prop. 3, we

have |N |Var = �k∈�|N [k]|Var = �k∈�|P [k]
k |Var ' |M |Var. This implies N 'U M .

(ii) Suppose now that M �η N . By definition, there exist two λ-terms M ′ and
N ′ such that M 'η,∞ M ′ 'BT N ′ 6η,∞ N . We conclude as follows: M =U M ′

by (i), M ′ 'U N ′ by Thm. 3, and N ′ =U N , again by (i).



584 G. Manzonetto

We recall that the λ-theory H∗ can be defined in terms of Böhm trees as follows:
M =H∗ N if, and only if, M 0η N (see [2, Thm. 16.2.7]).

Theorem 5. If U is a non-trivial well stratifiable extensional ⊥-model living
in a cpo-enriched ccc (having countable products), then Th(U ) = H∗.

Proof. By Lemma 8(ii) we have that M 0η N implies M =U N . Thus, H∗ ⊆
Th(U ). We conclude since H∗ is the maximal consistent sensible λ-theory.

3 An Extensional Relational Model of λ-Calculus

In this section we recall the definition of our model D of [6], which is extensional
by construction. Finally, we prove that Th(D) = H∗ by applying Thm. 5

Multisets and Sequences. Let S be a set. A multiset m over S can be defined
as an unordered list m = [a1, a2, . . .] with repetitions such that ai ∈ S for all
i. A multiset m is called finite if it is a finite list, we denote by [] the empty
multiset. We will write Mf(S) for the set of all finite multisets over S. Given two
multisets m1 = [a1, a2, . . .] and m2 = [b1, b2, . . .] the multiset union of m1,m2 is
defined by m1 � m2 = [a1, b1, a2, b2, . . .].

A �-indexed sequence σ = (m1,m2, . . . ) of multisets is quasi-finite if mi = []
holds for all but a finite number of indices i. If S is a set, we denote by Mf(S)(ω)

the set of all quasi-finite �-indexed sequences of multisets over S.
MRel: a Relational Semantics. We shortly present the category MRel. The
objects of MRel are all the sets. A morphism from S to T is a relation from
Mf(S) to T , in other words, MRel(S, T ) = P(Mf(S) × T ). The identity of
S is the relation IdS = {([a], a) : a ∈ S} ∈ MRel(S, S). The composition of
s ∈ MRel(S, T ) and t ∈ MRel(T, U) is defined by:

t ◦ s = {(m, c) : ∃(m1, b1), . . . , (mk, bk) ∈ s such that
m = m1 � . . . � mk and ([b1, . . . , bk], c) ∈ t}.

The categorical product S × T of two sets S and T is their disjoint union. The
terminal object � is the empty set, and !S is the empty relation.

MRel is cartesian closed, non-well-pointed and has countable products
[6, Sec. 4].

A Relational Analogue of D∞. We build a family of sets (Dn)n∈� as follows:
D0 = ∅, Dn+1 = Mf(Dn)(ω). Since the operation S 
→ Mf(S)(ω) is monotonic
and D0 ⊆ D1, we have Dn ⊆ Dn+1 for all n ∈ �. Finally, we set D =

⋃
n∈�Dn.

To define an isomorphism in MRel between D and [D ⇒ D](= Mf(D) × D)
just remark that every element σ = (σ0, σ1, σ2, . . .) ∈ D stands for the pair
(σ0, (σ1, σ2, . . .)) and vice versa. Given σ ∈ D and m ∈ Mf(D), we write m · σ
for the element τ ∈ D such that τ1 = m and τi+1 = σi. This defines a bijection
between Mf(D) × D and D, and hence an isomorphism in MRel as follows:

Proposition 4. The triple D = (D,Ap, λ) where:
– λ = {([(m,σ)],m · σ) : m ∈ Mf(D), σ ∈ D} ∈ MRel([D ⇒ D], D),
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– Ap = {([m · σ], (m,σ)) : m ∈ Mf(D), σ ∈ D} ∈ MRel(D, [D ⇒ D]),
is a (non-trivial) extensional categorical model of λ-calculus.

We now prove that Th(D) = H∗. From Thm. 5 it is enough to check that MRel
is cpo-enriched and D is a well stratifiable ⊥-model.

Theorem 6. The ccc MRel is cpo-enriched.

Proof. It is clear that, for all sets S, T , the homset (MRel(S, T ),⊆, ∅) is a cpo,
that composition is continuous, and pairing and currying are monotonic. Finally,
it is easy to check that the strictness conditions hold.

Theorem 7. D is an extensional well stratifiable ⊥-model, thus Th(D) = H∗.

Proof. D is an extensional model by Prop. 4. By definition of Ap and λ it is
straigthforward to check that ∅ • a = ∅, for all a ∈ MRel(DVar, D), and that
λ ◦ Λ(∅) = ∅, hence D is a ⊥-model. Let now pn = {([σ], σ) : σ ∈ Dn}, where
(Dn)n∈� is the family of sets which has been used to build D. Since (Dn)n∈� is
increasing also (pn)n∈� is, and furthermore �n∈�pn = {([σ], σ) : σ ∈ D} = IdD.
Then, easy calculations show that D enjoys conditions (i) and (ii) of Def. 3.
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Abstract. The satisfiability problem of hybrid logics with the downar-
row binder is known to be undecidable. This initiated a research program
on decidable and tractable fragments.

In this paper, we investigate the effect of restricting the propositional
part of the language on decidability and on the complexity of the satisfi-
ability problem over arbitrary, transitive, total frames, and frames based
on equivalence relations. We also consider different sets of modal and hy-
brid operators. We trace the border of decidability and give the precise
complexity of most fragments, in particular for all fragments including
negation. For the monotone fragments, we are able to distinguish the
easy from the hard cases, depending on the allowed set of operators.

Keywords: hybrid logic, satisfiability, decidability, complexity, Post’s
lattice.

1 Introduction

Hybrid logics are well-behaved extensions of modal logic. However, their ex-
pressive power often has adverse effects on their computational properties: for
instance, the satisfiability problem for basic modal logic extended with the ↓
binder is undecidable [9,15,1], as opposed to PSPACE-complete for basic modal
logic [17] and modal logic extended with nominals and the satisfaction operator
@ [1].

In order to regain decidability, many restrictions of the hybrid binder language
have been considered. On the syntax side, it has been shown in [30] that restrict-
ing the interactions between ↓ and universal operators (such as ∧, �) makes
satisfiability decidable again. On the semantics side, the satisfiability problem
for the ↓ language has been investigated over different frame classes. It becomes
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decidable over frames with bounded width [30], over transitive and complete
frames [21], and over frames with an equivalence relation [20]. In the latter case,
decidability is not lost if @ or the global modality is added to the language
[20], which is not the case over transitive frames [21]. Furthermore, over linear
frames and transitive trees, where ↓ on its own is useless, extensions of the ↓ lan-
guage have been shown to be decidable, albeit nonelementarily, in [14,21]. But
elementarily decidable fragments over these frame classes have been obtained by
bounding the number of state variables [29,32,11]. An overview of complexity
results for hybrid logics can be found in [27].

Our aim is to obtain a more fine-grained distinction between decidable and
undecidable hybrid logics by restricting the set of Boolean operators allowed in
formulae. This is interesting in its own right because it will outline sources of
“bad” behaviour (i.e., undecidability) more precisely. Furthermore, it is interest-
ing in view of the relation between modal and description logic (DL). Concept
satisfiability, the DL-counterpart of modal satisfiability, plays an important role
because other useful decision problems for DLs are reducible to it. For a number
of DLs without full Boolean expressivity, notably the EL and DL-Lite families,
this problem is tractable [4,5,12], and other relevant decision problems have lower
complexity than for the standard DL ALC, the counterpart of the modal logic K.
In the case of these restricted DLs, there are also fine-grained analyses of addi-
tional features that increase complexity and those which do not [5,3]. Our study
can be seen as a general framework which accommodates restrictions of different
types—on Boolean operators systematically, and also on modal operators and
frame classes. As one possible application of the obtained results, we will gain
insights into the complexity of extensions of modal and description logics with
hybrid operators—among them the above mentioned restricted DLs.

For the sake of generality, we will systematically replace the usual ∧, ¬ with
arbitrary, not necessarily complete, sets of Boolean operators. All such possible
sets are captured in Post’s lattice [24,10], which consists of all clones, i. e., all
closed sets of Boolean functions. Each clone corresponds to a set of Boolean
operators closed under nesting, and vice versa. The lattice allows for transferring
upper and lower complexity bounds between clones. It will thus be possible to
prove finitely many results that will be valid for an infinite number of sets of
operators—and hence for infinitely many satisfiability problems. This technique
has been used for analysing the complexity of satisfiability for propositional logic
[18] and modal logic [6], satisfiability and model checking for linear temporal logic
[8,7], and satisfiability of constraint satisfaction problems [26,28].

Using Post’s lattice, we will investigate the complexity of the satisfiability
problem for hybrid logics containing the modal operators �,� and the following
hybrid features: nominals, the satisfaction operator @ and the hybrid binder ↓.
We will consider subsets of these operators, as well as the above described sys-
tematic restrictions to the Boolean operators allowed. We will carry out this anal-
ysis over four different frame classes: all frames, transitive frames, total frames
(where every state has at least one successor), and frames with equivalence
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relations (ER frames). The work presented here is part of ongoing work that
also includes acyclic frame classes such as transitive trees and linear structures.

While our analysis is complete with respect to the sets of Boolean operators
covered, it is far from complete for sets of modal and hybrid operators, as well as
for frame classes. This is because the latter “dimensions” of expressivity are much
more difficult to systematise. Therefore, we are currently restricting ourselves
to the most prominent sets of modal/hybrid operators and frame classes. It
should also be noted that a fourth dimension is possible, namely allowing for
multiple accessibility relations in models, i.e., multiple modalities of each kind.
We have omitted this consideration from the present paper mostly for the sake of
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Fig. 1. Post’s Lattice. The complexity of F-SAT(O, B) for frame classes F ∈
{all, trans, total, ER} and sets O of Boolean operators with {�, ↓} ⊆ O ⊆ {�, �, ↓, @}.
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a clearer presentation. However, we believe that many of the upper bounds can be
straightforwardly extended to the multi-modal case—and will therefore indeed
be helpful to gain insights into the behaviour of more expressive description
logics.

This paper contains the most complete subset of our results obtained so far
(see Figure 1), namely the following. We will show that, over each of the four
above frame classes, satisfiability is as hard as in the full Boolean case whenever
the negation of the implication or self-dual Boolean operators are allowed. (A
Boolean function is self-dual if negating all of its arguments will always negate
its value.) This means that, in these cases, satisfiability remains undecidable over
arbitrary frames, total frames and, if the @-operator is present, over transitive
frames; and NEXPTIME-complete over transitive frames without @ and over
ER frames. These results can be found in Section 3.3.

In Section 3.3, we also completely classify the complexity of fragments in-
cluding only negation and the Boolean constants. We obtain completeness for
LOGSPACE if the @-operator is included and for AC0[2] otherwise.

For all monotone fragments including the Boolean constant 0, we obtain a
duality between easy cases, which are all included in NC1, and hard cases, for
which we obtain lower bounds ranging from LOGSPACE to PSPACE (Section
3.2). Satisfiability for fragments not including 0, but possibly all 1-reproducing
functions, turns out to be trivial as shown in Section 3.1.

For the fragments that are based on the binary xor operator, the complexity
is open. This case has turned out to be difficult to handle in [6,8,7]. A list of
still open questions can be found in Section 4. Due to the page limit, this paper
does not contain proofs. Our proofs can be found in [19].

2 Preliminaries

Boolean Functions and Clones. We can identify an n-ary propositional
operator (connector) c with the n-ary Boolean function fc : {0, 1}n → {0, 1}
defined by fc(a1, . . . , an) = 1 if and only if c(x1, . . . , xn) becomes true when
assigning ai to xi for all 1 ≤ i ≤ n. The Boolean values false and true correspond
to constants, i. e., nullary functions, and will be denoted by 0 and 1.

A set of Boolean functions is called a clone if it contains all projections and is
closed under arbitrary composition [23, Chapter 1]. The set of all Boolean clones
forms a lattice, which has been completely classified by Post [24]. For a set B of
Boolean functions, we denote by [B] the smallest clone containing B and call B
a base for [B]. Whenever we use B for a set, we assume that B is finite.

The clones relevant to this paper are listed in Table 1. We use the following
notions for n-ary Boolean functions f :

– f is t-reproducing if f(t, . . . , t) = t, t ∈ {0, 1}.
– f is monotone if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
– f is t-separating if there exists an i ∈ {1, . . . , n} such that f(a1, . . . , an) = t

implies ai = t, t ∈ {0, 1}.
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– f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).

The definition of all Boolean clones can be found, e. g., in [10]. Notice that
[B ∪ {1}] = BF if and only if [B] ⊇ S1 or [B] ⊇ D.

Table 1. Boolean clones relevant to this paper, with definitions and bases

Name Definition Base
BF All Boolean functions {∧,¬}
R1 1-reproducing functions {∨,→}
M monotone functions {∨,∧, 0, 1}
S1 1-separating functions {x ∧ y}
S11 S1 ∩ M {x ∧ (y ∨ z), 0}
D self-dual functions {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
V constant or n-ary OR functions {∨, 0, 1}
E constant or n-ary AND functions {∧, 0, 1}
E0 {∧, 0}
N functions depending on at most one variable {¬, 0, 1}
N2 {¬}
I constant or identity functions {id, 0, 1}
I0 {id, 0}
I1 {id, 1}
I2 {id}

Hybrid Logic. In the following, we will introduce the notions and definitions
of hybrid logic. The terminology is largely taken from [2].

Let PROP be a countable set of atomic propositions, NOM be a countable set
of nominals, SVAR be a countable set of variables and ATOM = PROP∪NOM∪
SVAR. We will stick with the common practice to denote atomic propositions by
p, q, . . ., nominals by i, j, . . ., and variables by x, y, . . .. We define the language
of hybrid (modal) logic HL as the set of well-formed formulae of the form

ϕ ::= a | c(ϕ, . . . , ϕ) | �ϕ | �ϕ | ↓x.ϕ | @tϕ

where a ∈ ATOM, c is a Boolean operator, x ∈ SVAR and t ∈ NOM∪SVAR. Note
that the usual cases . and ⊥ are covered by the Boolean constants 1 and 0.

Formulae of HL are interpreted on (hybrid) Kripke structures K = (W,R, η),
consisting of a set of states W , a transition relation R : W × W , and a labeling
function η : PROP ∪ NOM → ℘(W ) that maps PROP and NOM to subsets of W
with |η(i)| = 1 for all i ∈ NOM. In order to evaluate ↓-formulae, an assignment
g : SVAR → W is necessary. Given an assignment g, a state variable x and a
state w, an x-variant gx

w of g is defined by gx
w(x) = w and gx

w(x′) = g(x′) for all
x 	= x′. For any a ∈ ATOM, let [η, g](a) = {g(a)} if a ∈ SVAR and [η, g](a) = η(a),
otherwise. The satisfaction relation of hybrid formulae is defined by

K, g, w |= a iff w ∈ [η, g](a), a ∈ ATOM,
K, g, w |= c(ϕ1, . . . , ϕn) iff fc(t1, . . . , tn) = 1, where ti is the truth value of

K, g, w |= ϕi, 1 ≤ i ≤ n,
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K, g, w |= �ϕ iff K, g, w′ |= ϕ for some w′ ∈ W with wRw′,
K, g, w |= �ϕ iff K, g, w′ |= ϕ for all w′ ∈ W with wRw′,
K, g, w |= @tϕ iff K, g, w |= ϕ for w ∈ W such that w ∈ η(t),
K, g, w |= ↓x.ϕ iff K, gx

w, w |= ϕ.

A hybrid formula ϕ is said to be satisfiable if there exists a Kripke structure
K = (W,R, η), a w ∈ W and an assignment g : SVAR → W such that K, g, w |=
ϕ.

The at operator @t shifts evaluation to the state named by t ∈ NOM ∪ SVAR.
The downarrow binder ↓x. binds the state variable x to the current state. The
symbols @x, ↓x. are called hybrid operators whereas the symbols � and � are
called modal operators.

For considering fragments of hybrid logics, we define subsets of the language
HL as follows. Let B be a finite set of Boolean functions and O a set of hybrid and
modal operators. We define HL(O,B) to denote the set of well-formed hybrid
formulae using the operators in O and the Boolean connectives in B only.

Properties of Frames. A frame F is a pair (W,R), where W is a set of states
and R ⊆ W ×W a transition relation. We will refer to a frame as being transitive,
total or ER whenever its transition relation R is transitive (uRv∧vRw → uRw),
total (∀u∃v(uRv)), or an equivalence relation, i. e., reflexive (uRu), transitive
and symmetric (uRv → vRu). In this paper we will consider the class all of all
frames, the class trans of all transitive frames, the class total of all total frames,
and the class ER of all ER frames.

The Satisfiability Problem. Let K = (W,R, η) be a Kripke structure. Say
that K is based on a frame F iff F is the frame underlying K, i. e., F = (W,R).
We define the satisfiability problems for the fragments of HL over frame classes
defined above as follows.

Problem: F-SAT(O,B)
Input: an HL(O,B)-formula ϕ

Output: is there a Kripke structure K = (W,R, η) based on a frame from F,
an assignment g : SVAR → W and a w ∈ W such that K, g, w |= ϕ ?

In case F = all, we will omit the prefix and simply write SAT(O,B).

Complexity Theory. We assume familiarity with the standard notions of
complexity theory as, e. g., defined in [22]. In particular, we will make use of the
classes LOGSPACE, NL, P, coNP, PSPACE, NEXPTIME, and coRE.

We will now introduce the notions of circuit complexity required for this paper,
for more information on circuit complexity the reader is referred to [31]. The class
NC1 is defined as the set of languages recognizable by a logtime-uniform Boolean
circuits of logarithmic depth and polynomial size over {∧,∨,¬}, where the fan-in
of ∧ and ∨ gates is fixed to 2.

The class AC0 is defined as the set of languages recognizable by a logtime-
uniform Boolean circuits of constant depth and polynomial size over {∧,∨,¬},
where the fan-in of gates of the first two types is not bounded. If, in addition,
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modulo-2 gates are allowed, then the corresponding class is AC0[2]. Both AC0

and AC0[2] are strictly contained in NC1. Altogether, the following inclusions are
known: AC0 ⊆ AC0[2] ⊂ NC1 ⊆ LOGSPACE ⊆ NL ⊆ P ⊆ coNP ⊆ PSPACE ⊂
NEXPTIME ⊂ coRE.

A language A is constant-depth reducible to D, A ≤cd D, if there is a logtime-
uniform AC0-circuit family with oracle gates for D that decides membership in
A. Unless otherwise stated, all reductions in this paper are ≤cd-reductions.

Known results. The following theorem summarizes results for hybrid binder
languages with Boolean operators ∧,∨,¬ that are known from the literature.

Theorem 1 ([1,21,20])

(1) SAT({�, ↓}, {∧,∨,¬}) and SAT({�,�, ↓,@}, {∧,∨,¬}) are coRE-complete.
(2) trans-SAT({�, ↓}, {∧,∨,¬}) is NEXPTIME-complete.
(3) trans-SAT({�, ↓,@}, {∧,∨,¬}) is coRE-complete.
(4) ER-SAT({�, ↓}, {∧,∨,¬}) is NEXPTIME-complete.
(5) ER-SAT({�, ↓,@}, {∧,∨,¬}) is NEXPTIME-complete.

3 Results

In this section, we present our results ordered by clones. Section 3.1 considers
clones containing only 1-reproducing functions. Clones containing the Boolean
constant 0 but not negation are considered in Section 3.2. Finally, in Section 3.3,
we study satisfiability problems based on clones with negation.

This arrangement is motivated by the observation that the availability of the
Boolean constant 0 and/or negation has a very strong impact on our results.
Although we obtain different complexities for the clones including 0 but not
negation (namely, I, V, E, and M), the results for these clones follow a certain
pattern. But if we add negation, this picture changes completely.

Please note that opposed to the importance of the presence of 0, which makes
the difference between trivial and nontrivial problems, hybrid languages can
always express the constant 1 as ↓x.x or @xx. Therefore, we only have to consider
clones including 1.

3.1 Why We Cannot Say Anything without Saying “False”

We start our investigation at the clone I2, which contains only the identity func-
tion.1 Obviously, every hybrid I2-formula is satisfied by the model consisting of a
singleton reflexive state to which all propositions, nominals, and state variables
are labeled.

But this observation takes us much further, as we can add conjunction, dis-
junction, and implication for example, and still satisfy every formula by the same
model. In fact, we can add every 1-reproducing function, i. e., every function that
produces 1 if all parameters are 1, obtaining the following result.
1 Since 1 ≡ ↓x.x, there is no difference between the satisfiability problems for

I2 and I1.
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Theorem 2. F-SAT({�,�, ↓,@}, B) for [B] ⊆ R1 and all considered frame
classes F ∈ {all, trans, total,ER} is trivial.

It is interesting to note which Boolean operations are not contained in R1. The
most basic ones are the Boolean constant 0 and negation, as every clone in Post’s
lattice that is not below R1 contains one of these.

As hybrid languages can always express the Boolean constant 1, the presence
of negation implies the availability of 0. Therefore, there are two kinds of clones
remaining: those containing 0 but not negation, and those containing negation.
In the following subsection, we will consider the first kind, i. e., the monotone
clones below M. Clones with negation will be considered in Section 3.3.

3.2 Everything But Negation – The Monotone Clones

In this section, we consider the clones below M that contain the Boolean constant
0; satisfiability for the clones without 0 is trivial by Theorem 2. Roughly speaking,
we consider the clones I, V, E, and M. We start with I and then jump to M. Clones
containing either disjunction or conjunction are considered last, as some results
will easily follow from the preceding cases.

The clone I. The clone I is of particular interest, as it allows us to study the
effect of having the Boolean constant 0 at our disposal, yielding the following
two observations. First, the Boolean constant 0 distinguishes trivial from non-
trivial satisfiability problems. While all satisfiability problems for clones without
0 are trivial (Theorem 2), all problems for clones with 0 are not. The precise
complexity of the latter problems will vary from almost trivial cases (Theorem 3)
to LOGSPACE-completeness (Theorem 4), depending on the modal and hybrid
operators allowed. Higher complexities and even undecidability occur if we add
further Boolean functions as discussed in the following sections.

Second, Theorems 3 and 4 demonstrate a duality between easy and hard cases,
which we will see in all results for clones below M. For the full set of modal and
hybrid operators, satisfiability problems over the class of all frames and the class
of transitive frames will be considerably harder than those over total frames and
equivalence relations. Furthermore, if we drop the �-operator when considering
arbitrary or transitive frames, complexity will drop to where it is for total frames
and equivalence relations.

Intuitively speaking, we might say that the complexity gap we observe in the
results for monotone clones is due to the ability to express that a state has no
successor by �0. On the one hand, if we cannot express this property because of
the absence of � or if there are no such states because we only consider frames
with a total accessibility relation, satisfiability for the clone I is almost trivial, i. e.,
we only need to look at one symbol of a formula to determine its satisfiability.

Theorem 3. The following satisfiability problems are almost trivial.2

1. total-SAT({�,�, ↓,@}, B) and ER-SAT({�,�, ↓,@}, B) for [B] ⊆ I.

2 More precisely, they are in ΔR
0 , a class strictly below DLOGTIME [25].
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2. SAT({�, ↓,@}, B) and trans-SAT({�, ↓,@}, B) for [B] ⊆ I.

On the other hand, the proof of the following theorem shows how to use �0 to
obtain LOGSPACE-hardness, without using any further Boolean connectives. A
matching upper bound will be presented in Theorem 15.

Theorem 4. SAT({�,�, ↓,@}, B) and trans-SAT({�,�, ↓,@}, B) for [B] ⊇ I0
are LOGSPACE-hard.

The clone M. Let us now consider the clone M of all monotone functions. Here,
more precisely for all clones between S11 and M, we obtain the same duality as
in the previous section, only at a higher level of complexity. For the “hard cases”,
i. e., those satisfiability problems where we consider non-total frame classes and
all modal and hybrid operators, we obtain PSPACE-hardness. For the class of all
frames, this follows immediately from the corresponding result for modal logic.

Theorem 5 ([6,16]). SAT({�,�}, B) is PSPACE-hard for [B] ⊇ S11.

Unfortunately, the proof of this result does not generalize to transitive frames.

Theorem 6. trans-SAT({�,�, ↓,@}, B) is PSPACE-hard for [B] ⊇ S11.

The proof of Theorem 6 crucially depends on the existence of states without
successor, and the ability to express this property: the truth values 0 (resp. 1)
are encoded as states having no (resp. at least one) successor. If there are no
such states (Theorem 7) or if we cannot express this property (Corollary 8),
complexity drops to NC1.

Theorem 7. total-SAT(O,B) and ER-SAT(O,B) are NC1-complete under
≤cd-reductions for O ⊆ {�,�, ↓,@} and S11 ⊆ [B] ⊆ M.

The proof of Theorem 7, shows that deciding ϕ ∈ total-SAT({�,�, ↓,@},M) is
equivalent to deciding whether K1, g1, w1 |= ϕ, for the singleton reflexive model
K1 mapping all atomic propositions into state w1. In order to decide the latter,
all hybrid and modal operators of ϕ can be ignored, as K1 is a singleton model.
There, only the treatment of the �-operator depends on the transition relation
being total or an equivalence relation. If this operator is not allowed, the same
argumentation goes through for our other frame classes, too.

Corollary 8. SAT(O, B) and trans-SAT(O, B) are NC1 -complete for O ⊆
{�,↓,@} and S11 ⊆ [B] ⊆ M.

The clones V and E. If we consider conjunction or disjunction only separately,
the complexity of formula evaluation decreases from NC1-complete to below AC0.
As the complexity for the “easy cases” for M was determined by this complexity
(Theorem 7 and Corollary 8), the following results are not too surprising.

Theorem 9. total-SAT({�,�, ↓,@}, B) and ER-SAT({�,�, ↓,@}, B) are in
AC0 for [B] ⊆ E or [B] ⊆ V.
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Corollary 10. SAT(O,B) and trans-SAT(O,B) are in AC0 for O ⊆ {�, ↓,@}
and [B] ⊆ E or [B] ⊆ V.

This result is optimal in the sense that including all modal and hybrid operators
we immediately get LOGSPACE lower bounds from Theorem 4.

For the case of conjunctions, this result can be improved. Considering arbi-
trary frames, a coNP lower bound is already known for the modal satisfiability
problem.

Theorem 11 ([6,13]). SAT({�,�}, B) is coNP-hard for [B] ⊇ E0.

For transitive frames, we are able to show NL-hardness.

Theorem 12. trans-SAT({�,�, ↓,@}, B) is NL-hard for [B] ⊇ E0.

We conjecture that all lower bounds provided in this section (except, perhaps,
the last one) are optimal. Nevertheless, matching upper bounds are missing.

3.3 Clones Including Negation

Negation immediately limits the number of relevant satisfiability problems in
two ways. First, as �ϕ ≡ ¬�¬ϕ, we cannot exclude the �-operator and keep �
as we did for monotone clones. Therefore, we have to consider only two hybrid
languages: with and without @. Second, as 1 and 0 are always expressible by
↓x.x and ¬↓x.x, we only need to consider clones with both constants. These are
N (only negation), L (exclusive or), and BF (all Boolean functions).

While we will completely classify all satisfiability problems based on N and
BF, we will not provide any specific results for L.

Negation only. The results for the satisfiability problems based on N stick out
from our other results, as N is the only clone (besides those for which satisfia-
bility is trivial) where all complexity results are the same for all frame classes
we consider. We show that satisfiability for the hybrid language including @ is
LOGSPACE-complete, while it is AC0[2]-complete for the language without @.

Theorem 13. F-SAT({�,�, ↓}, B) is AC0[2]-complete for [B] ⊆ N and all con-
sidered frame classes F ∈ {all, trans, total,ER}.

The key to the proof of this theorem is that a given formula can be transformed
into negation normal form by an AC0[2]-circuit. Subsequently determining satis-
fiability is easy. We now turn to the hybrid language including the @-operator.

Theorem 14. F-SAT({�, ↓,@}, B) is LOGSPACE-hard for [B] ⊇ N2 and all
considered frame classes F ∈ {all, trans, total,ER}.

We again provide a matching upper bound for all considered frame classes, which
yields LOGSPACE-completeness of the respective satisfiability problems.

Theorem 15. F-SAT({�,�, ↓,@}, B) is in LOGSPACE for [B] ⊆ N and all
considered frame classes F ∈ {all, trans, total,ER}.
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All Boolean functions. Finally, let us consider the clones between D, S1 and
BF, the clone of all Boolean functions. For the classes of all frames, transitive
frames, and equivalence relations, we can transfer results obtained for the set
{∧,∨,¬} of Boolean functions to these clones using a technical Lemma (see
Appendix). Additionally, we show that we can reduce the satisfiability problem
over the class of all frames to the one over the class of total frames, establishing
undecidability for all hybrid languages in this case.

Theorem 16. Let [B ∪ {1}] = BF. Then:

(1) SAT(O,B) and total-SAT(O,B) are coRE-complete, for any O ⊇ {�, ↓}.
(2) trans-SAT({�, ↓,@}, B) is coRE-complete.
(3) trans-SAT({�, ↓}, B) is NEXPTIME-complete.
(4) ER-SAT({�, ↓}, B) and ER-SAT({�, ↓,@}, B) are NEXPTIME-complete.

4 Conclusions

We have almost completely classified the complexity of hybrid binder logics over
four frame classes with respect to all possible combinations of Boolean operators,
see Figure 1. The main open question is for tight upper bounds for the mono-
tone fragments including the �-operator over the classes of all and of transitive
frames.

Another open questions concerns the hybrid languages with � but without @
over the class of transitive frames. The complexity for the respective satisfiability
problems based on V, E, and M is open; in the case of V even for the class of
all frames. For I, containment in AC0 follows from an analysis of the proof of
Theorem 13. Finally, we could not obtain any bounds on the complexity for
problems based on L, besides LOGSPACE-hardness inherited from Theorem 4.

We are currently investigating the same problems over frame classes important
for representing modal properties, such as transitive trees, linear frames and the
natural numbers. Here, satisfiability for ↓, @, and arbitrary Boolean operators is
already decidable, but with a nonelementary lower bound; hence, a complexity
analysis is worthwile as well. Because each such frame is acyclic, the fact that
certain formulae are always satisfied in the singleton reflexive frame is not helpful
any longer. This makes obtaining upper bounds more difficult. On the other hand,
we can also express the constant 0 by ↓x.�x, which reduces the sets of Boolean
operators to consider. We plan to publish these results in “Part II”.
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Abstract. An intersection graph of n vertices assumes that each vertex
is equipped with a subset of a global label set. Two vertices share an edge
when their label sets intersect. Random Intersection Graphs (RIGs) (as
defined in [18,32]) consider label sets formed by the following experiment:
each vertex, independently and uniformly, examines all the labels (m
in total) one by one. Each examination is independent and the vertex
succeeds to put the label in her set with probability p. Such graphs nicely
capture interactions in networks due to sharing of resources among nodes.
We study here the problem of efficiently coloring (and of finding upper
bounds to the chromatic number) of RIGs. We concentrate in a range
of parameters not examined in the literature, namely: (a) m = nα for
α less than 1 (in this range, RIGs differ substantially from the Erdös-
Renyi random graphs) and (b) the selection probability p is quite high
(e.g. at least ln2 n

m
in our algorithm) and disallows direct greedy colouring

methods.
We manage to get the following results:

– For the case mp ≤ β ln n, for any constant β < 1−α, we prove that
np colours are enough to colour most of the vertices of the graph
with high probability (whp). This means that even for quite dense
graphs, using the same number of colours as those needed to properly
colour the clique induced by any label suffices to colour almost all of
the vertices of the graph. Note also that this range of values of m, p
is quite wider than the one studied in [4].

– We propose and analyze an algorithm CliqueColour for finding a
proper colouring of a random instance of Gn,m,p, for any mp ≥ ln2 n.
The algorithm uses information of the label sets assigned to the
vertices of Gn,m,p and runs in O

(
n2mp2

ln n

)
time, which is polynomial

in n and m. We also show by a reduction to the uniform random
intersection graphs model that the number of colours required by
the algorithm are of the correct order of magnitude with the actual
chromatic number of Gn,m,p.
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– We finally compare the problem of finding a proper colouring for
Gn,m,p to that of colouring hypergraphs so that no edge is monochro-
matic. We show how one can find in polynomial time a k-colouring of
the vertices of Gn,m,p, for any integer k, such that no clique induced
by only one label in Gn,m,p is monochromatic.

Our techniques are novel and try to exploit as much as possible the
hidden structure of random intersection graphs in this interesting range.

1 Introduction

We study random intersection graphs (RIGs), a relatively recent combinatorial
model, that nicely captures interactions between nodes in distributed networks.
Such interactions may occur for example when nodes blindly select resources
(such as frequencies) from a limited globally available domain. For this graph
model, we investigate the important combinatorial problem of vertex colouring,
namely assigning integers (colours) to the vertices of the graph such that no
adjacent vertices get the same colour. Colouring of sparse random intersection
graphs was studied in [4]. The range of values that we consider here is different
and gives quite denser graphs. Furthermore, our techniques are different than
those used by the authors in [4]. Colouring properties provide useful insight
to algorithmic design for important problems (like frequency assignment and
concurrency control) in distributed networks characterized by dense interactions
and resource limitations, such as wireless mobile and sensory networks.

1.1 Importance and Motivation

Random intersection graphs may be used to model several real-life applications
characterized by dense, blind, possibly local interactions quite accurately (com-
pared to the well known Gn,p̂ model where edges appear independently with
probability p̂). In particular, the Gn,p̂ model seems inappropriate for describ-
ing some real world networks (like mobile, sensor and social networks) because
it lacks certain features of those networks, such as a scale free degree distri-
bution and the emergence of local clusters. One of the underlying reasons for
this mismatch is the independence between edges, in other words the missing
transitivity that characterizes such networks: if vertices x and y exhibit a rela-
tionship of some kind in a real world network and so do vertices y and z, then
this suggests a connection between vertices x and z, too.

For example, we consider the following scenario concerning efficient and secure
communication in sensor networks: The vertices in our model correspond to
sensor devices that blindly choose a limited number of resources among a globally
available set of shared resources (such as communication channels, encryption
keys etc). Whenever two sensors select at least one resource in common (e.g. a
common communication channel, a common encryption key), a communication
link is implicitly established (represented by a graph edge); this gives rise to
communication graphs that look like random intersection graphs. Particularly
for security purposes, the random selection of elements in our graphs can be seen



602 S. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

as a way to establish local common keys on-line, without any global scheme for
predistribution of keys. In such a case, the set of labels can be a global set of large
primes (known to all) but each node selects uniformly at random only a few.
Two nodes that have selected a common prime can communicate securely. Notice
that no other node can know what numbers a different node has selected. Thus,
the local communication is guaranteed to be secure. In the case when the shared
resource is the wireless spectrum, then nodes choosing the same label (frequency)
may interfere, and the corresponding link in the intersection graph abstracts a
conflict, while a colour class (e.g. the vertices with the same colour) corresponds
to wireless devices that can simultaneously access the wireless medium.

Random intersection graphs are also relevant to and capture quite nicely social
networking. Indeed, a social network is a structure made of nodes (individuals
or organizations) tied by one or more specific types of interdependency, such
as values, visions, financial exchange, friends, conflicts, web links etc. Social
network analysis views social relationships in terms of nodes and ties. Nodes are
the individual actors within the networks and ties are the relationships between
the actors. In particular, as [8] explicitly suggests proposing RIGs with a power
law degree distribution, people with common friends may become friends as well,
since they probably share common attributes and attributes can be obtained
quite randomly (such as social preference, hobbies etc). So when a person A
connects to B and B connects to C, the probability of a connection between A
and C is higher because of more probable attributes in common. Thus RIGs can
abstract such tendency for triangle clusterings.

Other applications may include oblivious resource sharing in a (general) dis-
tributed setting, interactions of mobile agents traversing the web etc. Even epi-
demiological phenomena (like spread of disease) tend to be more accurately
captured by these “interaction-sensitive” random graph models.

1.2 Related Work

Random intersection graphs, denoted by Gn,m,p, were first defined in [18,32]. In
this model, to each of the n vertices of the graph, a random subset of a universal
set of m elements is assigned, by independently choosing elements with the same
probability p. Two vertices u, v are then adjacent in the Gn,m,p graph if and only
if their assigned sets of elements have at least one element in common. Various
properties of Gn,m,p such as connectivity, degree distribution, independent sets,
Hamilton cycles and its relation to the well known Bernoulli random graph model
were investigated in [18,33,26,12,14].

In [4] the authors propose algorithms that whp probability colour sparse in-

stances of Gn,m,p. In particular, for m = nα, α > 0 and p = o
(√

1
nm

)
they show

that Gn,m,p can be coloured optimally. Also, in the case where m = nα, α < 1
and p = o

(
1

m ln n

)
they show that χ(Gn,m,p) ∼ np whp. To do this, they prove

that Gn,m,p is chordal whp (or equivalently, the label graph does not contain
cycles) and so a perfect elimination scheme can be used to find a colouring in
polynomial time. The range of values we consider here is different than the one
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needed for the algorithms in [4] to work. In particular, we study colouring Gn,m,p

for the wider range mp ≤ (1 − α) lnn, as well as the denser range mp ≥ ln2 n.
We have to note also, that the proof techniques used in [4] cannot be used in
the range we consider, since the properties that they examine do not hold in our
case. Hence a completely new approach is needed.

The book [22] contains several techniques for upper bounding the chromatic
number χ(G) of arbitrary graphs G. For general graphs it seems that one can-
not easily beat the bound χ(G) ≤ Δ, where Δ is the maximum degree of G (or
χ(G) ≤ Δ+1 if G is a clique or an odd cycle). However, assuming that the graph
G has some additional structure, many interesting and advanced techniques for
bounding the chromatic number exist for proving bounds for the chromatic num-
ber. These techniques are in fact algorithms that have (a) an iterative part that
can generally be implemented in polynomial time which is followed almost al-
ways by (b) an application of the Local Lemma, which does not always lead
to an algorithm that runs in polynomial time. Using a technique like that, Jo-
hansson (see chapter 13 of [22]) proved that for triangle free graphs we have
χ(G) ≤ 160Δ

ln Δ , which is the strongest result known so far. Using a modification
of Johansson’s technique, Frieze and Mubayi [15] proved a quite strong bound
on the chromatic number of simple Hypergraphs.

Concerning part (b) of the above technique, when some additional assump-
tions are true (that can in general be thought of as a stricter form of the Local
Lemma assumptions), then Beck’s technique [3] (see also [24] where the authors
put Beck’s technique in a more general framework) can be used to actually
convert the Local Lemma existential proof into a polynomial running time algo-
rithm! We have to say here that there are not many polynomial time algorithms
that colour graphs with a relatively small number of colours. The best known
approximation algorithm gives an approximation of O

(
n (log log n)2

(log n)3

)
. Also, Mol-

loy and Reed [23] used Beck’s technique to find a polynomial algorithm to colour
optimally graphs whose chromatic number is close to their maximum degree Δ.
Another notable algorithm is the one proposed by Alon and Kahale [2] that
uses the second to last eigenvalue of a special case of random graphs that are
3-colourable (more specifically they are constructed starting with 3 sets of n
vertices each and then drawing edges between any pair of vertices that lie on
different sets independently with probability p; of course these graphs are 3-
colourable by definition and it is assumed that one is given the graph as it is,
but without any information concerning the 3 sets).

Colouring Bernoulli random graphs was considered in [5] and also [21]. As it
seems to be implied by these two works, randomness sometimes allows for smaller
chromatic number than maximum degree whp. For Gn,p̂, it is shown that whp
χ(Gn,p̂) ∼ d

log d , where d is the mean degree. We have to point out here that both
[5] and [21] prove that there exists a colouring of Gn,p̂ using around d

log d , but
their proof does not lead to polynomial time algorithms. In fact, to the best of
our knowledge, the problem of constructing a colouring of Gn,p̂ using Θ

(
d

log d

)
colours remains open for non-trivial values of p̂.
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Distributed Computing Related Work. From a distributed computing per-
spective, our work is related to collision avoidance and message inhibition meth-
ods ([20]) as well as range assignment problems in directional antennas’ optimiza-
tion ([7]). The (distant-2) chromatic number of random proximity and random
geometric graphs has been studied in [9]. Furthermore, our colouring results can
be applied in coordinating MAC access in sensor networks (see [6]). Our results
also relate to distributed colouring and channel utilization ([19,31]). Finally, the
RIG modeling can be useful in the efficient blind selection of few encryption
keys for secure communications over radio channels ([10]), as well as in k-Secret
sharing between swarm mobile devices (see [11]).

1.3 Our Contribution

In this paper we study the problem of colouring a random instance of the random
intersection graphs model Gn,m,p, mainly for the interesting range m = nα, α < 1,
where the model seems to differ the most from Bernoulli random graphs (see [14]
and [29]). In particular

– For the case mp ≤ β lnn, for any constant β < 1−α, we prove that np colours
are enough to colour most of the vertices of the graph with high probability
(whp). This means that even for quite dense graphs, using the same number
of colours as those needed to properly colour the clique induced by any label
suffices to colour almost all of the vertices of the graph. Note also that this
range of values of m, p is quite wider than the one studied in [4].

– We propose and analyze an algorithm CliqueColour for finding a proper
colouring of a random instance of Gn,m,p, for any mp ≥ ln2 n. The algorithm
uses information of the label sets assigned to the vertices of Gn,m,p and

runs in O
(

n2mp2

lnn

)
time, which is polynomial in n and m. We also show by a

reduction to the uniform random intersection graphs model that the number
of colours required by the algorithm are of the correct order of magnitude
with the actual chromatic number of Gn,m,p.

– We finally compare the problem of finding a proper colouring for Gn,m,p to
that of colouring hypergraphs so that no edge is monochromatic. We show
how one can find in polynomial time a k-colouring of the vertices of Gn,m,p,
for any integer k, such that no clique induced by only one label in Gn,m,p is
monochromatic.

Our proof techniques try to take advantage of the special randomness of Gn,m,p

and the way that edges appear in it as part of cliques. Especially in the design
of algorithm CliqueColor, by carefully colouring a few vertices we were able to
reduce the complex problem of colouring the whole graph, to the problem of
colouring a simpler one.

2 Definition of the Model

We now formally define the model of random intersection graphs.
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Definition 1 (Random Intersection Graph - Gn,m,p [18,32]). Consider a
universe M = {1, 2, . . . ,m} of elements and a set of vertices V (G) = {v1, v2, . . . ,
vn}. If we assign independently to each vertex vj, j = 1, 2, . . . , n, a subset Svj

of M choosing each element i ∈ M independently with probability p and put an
edge between two vertices vj1 , vj2 if and only if Svj1

∩Svj2
	= ∅, then the resulting

graph is an instance of the random intersection graph Gn,m,p.
Consider now the bipartite graph with vertex set V (G) ∪ M and edge set

{(vj , i) : i ∈ Svj }. We will refer to this graph as the bipartite random graph
Bn,m,p associated to Gn,m,p.

In this model we also denote by Ll the set of vertices that have chosen label
l ∈ M . The degree of v ∈ V (G) will be denoted by dG(v).

By the above definition, one can realize that the edges in a random intersection
graph appear as parts of cliques. In particular, the sets Ll, l ∈ M are in fact
a (not necessarily minimal) clique cover of Gn,m,p. The size of each such clique
is a binomial random variable with parameters n, p. Similarly, the number of
cliques that a vertex v belongs to (i.e. |Sv|) is a binomial random variable with
parameters m, p. In general, one can imagine that the smaller p is, the smaller the
intersections between different (label) cliques will be in the clique cover implied
by the sets Ll, l ∈ M. In the extreme case where the cliques Ll, l ∈ M are
disjoint, one could colour Gn,m,p optimally by using the sets Ll. The authors in
[4] show that one can also optimally colour Gn,m,p even in the case where the sets
Ll, l ∈ M intersect, provided that there is no induced cycle of size more than 3
in the instance graph. In this paper we consider a different range of values for the
parameters of Gn,m,p that give whp intersection graphs in which the intersection
between the sets Ll, l ∈ M is much higher and the clique structure of the graph
is more complex. Consequently, the techniques used in [4] cannot be used here.

A closely related model to Gn,m,p is the Uniform Random Intersection Graphs
Model, denote by Gn,m,λ, where λ is a positive integer, which was first defined in
[17]. In this model, every vertex chooses independently, uniformly at random a
set of exactly λ labels and then we connect vertices that have at least one label
in common. It is worth mentioning here that, apart from the case where the
number of labels chosen by a vertex in Gn,m,p is concentrated around its mean
value, the probabilistic behavior of Gn,m,λ seems a lot different than the one of
Gn,m,p.

3 Colouring Almost All Vertices

We are going to consider the case where m = nα, for α ∈ (0, 1) some fixed
constant. The area mp = o

(
1

lnn

)
gives almost surely instances in which the

label graph (i.e. the dual graph where the labels in M play the role of vertices
and the vertices in V play the role of labels) is quite sparse and can be coloured
optimally using maxl∈M |Ll| colours (see [4]). We will here consider the denser
area mp = Ω

(
1

ln n

)
. In this range of values, it is easy to see that the values of

|Ll| are concentrated around np. We were able to prove that even for values of
the parameters m, p that give quite denser graphs, we can still use np colours to
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properly colour most of the graph.1. Our proof technique is inspired by analogous
ideas of Frieze in [16] (see also [21]). Before presenting the main result, we state
an auxiliary lemma that was proved in [26,27] and will be useful in the proof.

Lemma 1 ([26,27]). Let Gn,m,p be a random instance of the random intersec-
tion graphs model. Then the conditional probability that a set of k0 vertices is an
independent set, given that ki of them are already an independent set is equal to(

(1 − p)k0−ki + (k0 − ki)p(1 − p)k0−ki−1

(
1 − kip

1 + (ki − 1)p

))m

.

Proof. See [26,27]. ��

We are now ready to present our theorem.

Theorem 1. When m = nα, α < 1 and mp ≤ β lnn, for any constant β < 1−α.
Then a random instance of the random intersection graphs model Gn,m,p contains
a subset of at least n − o(n) vertices that can be coloured using np colours, with
probability at least 1 − e−n0.99

.

Proof. Due to lack of space we refer the interested reader to the full version of
the paper [25]. ��

It is worth noting here that the proof of Theorem 1 can also be used similarly to
prove that Θ(np) colours are enough to colour n− o(n) vertices even in the case
where mp = β lnn, for any constant β > 0. However, finding the exact constant
multiplying np is technically more difficult.

4 A Polynomial Time Algorithm for the Case mp ≥ ln2 n

In the following algorithm every vertex chooses i.u.a.r (independently, uniformly
at random) a preference in colours, denoted by shade(·) and every label l chooses
a preference in the colours of the vertices in Ll, denoted by cl(·).

Algorithm CliqueColour
Input: An instance Gn,m,p of Gn,m,p and its associated bipartite Bn,m,p.
Output: A proper colouring Gn,m,p.

1. for every v ∈ V choose a colour denoted by shade(v) independently, uni-
formly at random among those in C;

2. for every l ∈ M choose a colouring cl(·) of the vertices in Ll such that for
every colour in {c ∈ C : ∃v ∈ Ll with shade(v) = c} there is exactly one
vertex in the set {u ∈ Ll : shade(u) = c} having cl(u) = c while the rest
remain uncoloured;

1 Note however, that this does not mean that the chromatic number is close to np,
since the part that is not coloured could be a clique in the worst case.
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3. set U = ∅ and C = ∅;
4. for l = 1 to m do {
5. colour every vertex in Ll\{U ∪C} according to cl(·) iff there is no collision

with the colour of a vertex in Ll ∩ C;
6. include every vertex in Ll coloured that way in C and the rest in U ; }
7. let H denote the (intersection) subgraph of Gn,m,p induced by the vertices

in U ;
8. give a proper colouring of H using a new set of colours C′;
9. output a colouring of Gn,m,p using |C ∪ C′| colours;

It is easy to see now that the above algorithm provides a proper colouring of its
input graph. The number of colours that it needs (i.e. the cardinality of the sets
C and C′) and the time needed to colour H in step 8 are considered in Theorem
3.

Theorem 2 (Correctness). Given an instance Gn,m,p of the random intersec-
tion graphs model, algorithm CliqueColour always finds a proper colouring.

Proof. Due to lack of space we refer the interested reader to the full version of
the paper [25]. ��

The following theorem concerns the efficiency of algorithm CliqueColour, pro-
vided that additionally mp ≥ ln2 n and p = o

(
1√
m

)
. Notice that for p larger

than 1√
m

, every instance of the random intersection graphs model Gn,m,p, with
m = nα, α < 1, is complete whp.

Theorem 3 (Efficiency). Algorithm CliqueColour succeeds in finding a proper
Θ
(

nmp2

ln n

)
-colouring using of Gn,m,p in polynomial time, provided that mp ≥

ln2 n, p = o
(

1√
m

)
and m = nα, α < 1.

Proof. For s ∈ C, let Zc denote the number of vertices v ∈ V such that
shade(v) = c. Zc is a binomial random variable, so by Chernoff bounds we
can see that, for any positive constant β1 that can be arbitrarily small

Pr
(∣∣∣∣Zc − n

|C|

∣∣∣∣ ≥ β1n

|C|

)
≤ 2e−

β2n
3|C| .

For |C| = Θ
(

mnp2

ln n

)
and p = o

(
1√
m

)
, we can then use Boole’s inequality to see

that there is no c ∈ C such that
∣∣∣Zc − n

|C|

∣∣∣ ≥ β1n
|C| , with probability 1 − o(1), i.e.

almost surely.
Using the same type of arguments, we can also verify that for arbitrarily small

positive constants β2 and β3, we have that Pr(∃v ∈ V : ||Sv| − mp| ≥ β2mp) =
o(1) and Pr(∃l ∈ M : ||Ll| − np| ≥ β3np) = o(1), for all mp = ω(lnn) and
m = nα, α < 1.

We will now prove that the maximum degree of the graph H is small enough
to allow a proper colouring of H using C′ = Θ

(
nmp2

ln n

)
colours. For a label
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l ∈ M let Yl denote the number of vertices v ∈ Ll such that cl(v) 	= shade(v).
In order for a label l not to be able to assign colour shade(v) to v ∈ Ll, it
should be the case that it has assigned colour shade(v) to another vertex u ∈ Ll

with shade(u) = shade(v). Hence, the only way to have a collision is when two
or more vertices with the same shade have all chosen label l. Notice also that
in order to have Yl ≥ k, the number of different shades appearing among the
vertices that have chosen label l should be at most |Ll| − k. This means that

Pr(Yl ≥ k) ≤
(|Ll|

k

) ( |Ll|−k
|C|

)k

. Given the concentration bound for |Ll|, we have
that Pr(∃l : Yl ≥ k) is at most

m

(
(1 + β3)np

k

)(
(1 + β3)np − k

|C|

)k

+ o(1) ≤ m

(
3np

k

)k (2np

|C|

)k

+ o(1).

By now setting k = np
ln n and for |C| ≥ 18mnp2

lnn we then have that, with probability
1 − o(1), there is no label l ∈ M such that Yl ≥ np

ln n .
For a label l ∈ M now let Wl be the number of vertices v ∈ Ll such that

shade(v) = cl(v) but they remained uncoloured, hence included in H. In order
for a vertex v ∈ Ll to be counted in Wl, there should exist a label j prior to
l (i.e. a label among 1, . . . l − 1) such that v ∈ Lj and there is another vertex
u ∈ Lj with shade(u) = shade(v). The probability that this happens is at most
p
(
1 − (1 − p)Zshade(v)

)
(1 + (1 − p) + (1 − p)2 + · · ·) = 1 − (1 − p)Zshade(v) . The

crucial observation now is that, because choices of labels by vertices (of the same
shade or not) is done independently and because the vertices counted in Wl have
(by definition of the colouring cl(·) in step 2 of the algorithm) different shades,
the inclusion in Wl of any vertex u ∈ Ll with shade(u) = cl(u) does not affect
the inclusion of another v ∈ Ll\{u} with shade(v) = cl(v). Hence, taking also
into account the concentration bound for Zshade(v) and |Ll|, we have that

Pr(∃l : Wl ≥ k′) ≤ m

(
(1 + β3)np

k′

)(
1 − (1 − p)(1+β1)

n
|C|
)k′

+ o(1).

By now setting k′ = np
lnn and using the relation (1 − x)y ∼ 1 − xy, valid for all

x, y such that xy = o(1), we have that when |C| ≥ 18mnp2

ln n , there is no label l
such that Wl ≥ np

lnn , with high probability.
We have then proved that the number of vertices in U of the algorithm that

have chosen a specific label is with high probability at most 2np
ln n . Since, for any

vertex v in Gn,m,p has |Sv| ≤ (1+β2)mp, we conclude that the maximum degree
in H satisfies maxv∈H degreeH(v) ≤ (1 + β2)mp 2np

ln n . It is then evident that we
can colour H greedily, in polynomial time, using 2.1nmp2

lnn more colours, with
high probability. Hence, we can colour Gn,m,p in polynomial time, using at most
20.1nmp2

lnn colours in total. ��

It is worth noting here that the number of colours used by the algorithm in
the case mp ≥ ln2 n, p = O

(
1

4√m

)
and m = nα, α < 1 is of the correct order

of magnitude. Indeed, by the concentration of the values of |Sv| around mp
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for any vertex v with high probability, one can use the results of [28] for the
uniform random intersection graphs model Gn,m,λ, with λ ∼ mp to provide a
lower bound on the chromatic number. Indeed, it can be easily verified that the
independence number of Gn,m,λ, for λ = mp ≥ ln2 n is at most Θ

(
ln n
mp2

)
, which

implies that the chromatic number of Gn,m,λ (and hence of the Gn,m,p because

of the concentration of the values of |Sv|) is at least Ω
(

nmp2

ln n

)
.

5 Colouring Random Hypergraphs

The model of random intersection graphs Gn,m,p could also be though of as
generating random Hypergraphs. The Hypergraphs generated have vertex set
V and edge set M. There is a huge amount of literature concerning colouring
hypergraphs. However, the question about colouring there seems to be different
from the one we answer in this paper. More specifically, a proper colouring of
a hypergraph seems to be any assignment of colours to the vertices, so that no
monochromatic edge exists. This of course implies that fewer colours than the
the chromatic number (studied in this paper) are needed in order to achieve this
goal.

We would also like to mention that as far as Gn,m,p is concerned, the problem
of finding a colouring such that no label is monochromatic seems to be quite
easier when p is not too small.

Theorem 4. Let Gn,m,p be a random instance of the model Gn,m,p, for p =
ω( ln m

n ) and m = nα, for any fixed α > 0. Then with high probability, there is a
polynomial time algorithm that finds a k-colouring of the vertices such that no
label is monochromatic, for any fixed integer k ≥ 2.

Proof. Due to lack of space we refer the interested reader to the full version of
the paper [25]. ��

6 Future Work

We are currently trying to extend the applicability of our colouring methods to
other ranges of p, and to the related model Gn,m,λ, where each vertex selects
u.a.r. λ labels to form its corresponding label set.
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Abstract. We consider Priority Algorithm [4] as a syntactic model
of formulating the concept of greedy algorithm for Job Scheduling,
and we study the computation of optimal priority algorithms. A Job

Scheduling subproblem S is determined by a (possibly infinite) set of
jobs, every finite subset of which potentially forms an input to a schedul-
ing algorithm. An algorithm is optimal for S, if it gains optimal profit
on every input. To the best of our knowledge there is no previous work
about such arbitrary subproblems of Job Scheduling. For a finite S, it
is coNP-hard to decide whether S admits an optimal priority algorithm
[12]. This indicates that meaningful characterizations of subproblems ad-
mitting optimal priority algorithms may not be possible. In this paper
we consider those S that do admit optimal priority algorithms, and we
show that the way in which all such algorithms compute has non-trivial
and interesting structural features.

1 Introduction

Finding structure in computation of general models is a difficult task, and given
the current state of knowledge a far-to-reach goal. In this paper we aim to
find non-trivial structure in the computation of models which are syntactically
restricted.

Greedy algorithms find many applications due to their conceptual simplic-
ity, computational efficiency, and amenability to analysis. Borodin, Nielsen and
Rackoff [4] introduced the “priority algorithm” model, aiming to syntactically
formulate the concept of greedy algorithm by generalizing on-line computation.
Much previous work on priority algorithms [1,2,4,11], [12,13] and its generaliza-
tions [3,9] focuses on priority algorithms for scheduling problems. Unlike most
previous research this work is about optimal priority algorithms. Here too we
consider priority algorithms for Job Scheduling where the goal is to maximize
the total profit by scheduling weighted jobs, with given release, deadline and
processing time, on identical multiple machines (see Section 2 for definitions).

A priority algorithm for Job Scheduling proceeds in stages. In the first
part of a stage, the algorithm specifies an ordering, or priority, on the set of all
possible jobs in the input. In the second part of a stage, the algorithm is given
the job from the actual input that has highest priority, and the algorithm must
make an irrevocable decision whether or not to schedule the job, and if so, how.

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 612–623, 2009.
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In [4] the general model is restricted in three ways: a fixed-priority algorithm
computes an ordering only once in the beginning; a greedy-priority does not reject
a job that can be scheduled, whereas a memoryless depends its choices only on
the jobs scheduled so far, i.e. it ignores the rejected jobs. These concepts are
formalized in Definition 1 (Section 2). In this paper, the term priority algorithm
is understood as priority algorithm for Job Scheduling. Job Scheduling is
defined in Section 2.

In the context of priority algorithm, subproblems of Job Scheduling are
identified by a (typically infinite) set of jobs S. Every finite subset S ⊆ S is a
possible input. The set (subproblem) S admits an optimal priority algorithm A,
if A gains optimal profit on every input. Common examples of subproblems are
Interval Scheduling and Proportional Profit Job Scheduling. In this paper we
consider arbitrary subproblems. Apart from the theoretical interest, in practice
our results apply in a range of areas: from previously studied problems and
algorithms, to specialized industrial problems.

The Job Scheduling problem (determined by all possible jobs) does not ad-
mit optimal priority algorithms even for one-machine environment and restricted
types of jobs [4]. Meaningful characterizations of Job Scheduling subproblems
admitting optimal algorithms is beyond our reach, due to their highly complex
structure. For example, checking even for a finite subproblem whether it admits
an optimal priority algorithm is coNP-hard [12]. Instead, we study properties
of optimal priority algorithms in the most general setting. Consider any such
subproblem and any priority algorithm optimal on this subproblem, where no
explicit description is given either for the subproblem or for the algorithm. Is
there anything interesting that can be said on how the algorithm computes?
Finding such structure seems to be a non-trivial task. An optimal priority algo-
rithm can be very wild during its computation. Let us start with a very restricted
but interesting example.

Example 1. Consider the subproblem specified by the jobs in Figure 1, for one-
machine scheduling.

Although in practice, many interesting subproblems are of infinite size for
schedules on multiple-machine environments, such a finite subproblem with in-
puts from these 5 jobs is a good starting point. This example is used in the

J1
2

J2 J3
3 1

J
J'6
7

Fig. 1. Jobs J1, J2, J3 are interval jobs (processing time = release - deadline). J and
J ′ are jobs where their processing time is denoted by the solid horizontal line and their
release and deadline times are denoted by the small vertical “line-bounds”. The job
profits are written below each job. Some schedules: {J1, J}, {J2, J}, {J2, J

′}, {J3, J
′}.
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proof of Lemma 1. For the moment we just raise the following questions as a
challenge. The depicted finite subproblem admits an optimal priority algorithm:
the challenge is to find one. Does there exist an optimal fixed -priority algorithm?
Theorem 2 (below) states that the profit gained from the most profitable parts
of the input is insensitive to the presence of jobs of smaller profit. This statement
becomes more interesting by observing that it does not imply any order in which
an optimal priority algorithm may process the input. What does the example in
Figure 1 tell us about this? These questions will be answered below.

Examples even for subproblems of small size reveal a big spectrum of possible op-
timal priority algorithms, with algorithms exhibiting a conceptually complicated
behavior.

Motivation. Previous attempts formulate optimal greedy algorithms through
connections to matroids [6], greedoids [10] and matroid embeddings [8]. Observe
that the greedy algorithm for matroids is a priority algorithm whereas the op-
timal priority algorithm “Earliest Finishing Time First” does not have natural
formulations as a matroid-related subset system (see [5] p.345). In this sense our
work generalizes research relating matroids and greedy algorithm.

The choice of Job Scheduling, as a case-study, is not arbitrary. Job Sche-

duling is a well-studied NP-hard problem. In particular for priority algorithms,
Job Scheduling has the advantage of a natural input formulation in terms of
jobs where revealing one does not restrict subsequent ones. This is not true if
for example we have some other problem where the input consists of a graph,
where revealing e.g. a vertex and its neighbors restricts the valid inputs to those
containing the neighbors. Finally, an important motivation is the application to
real-world problems. Job Scheduling is a well-studied problem and studying
efficient algorithms for Job Scheduling subproblems is an area of intensive
interest for practitioners. In particular, the general setting (arbitrary subproblem
and algorithm) in which we derive our results allow us to apply them to industrial
applications, where the scheduling subproblems are tailored to very specialized
settings.

Roadmap and Contribution. In Section 2 we give definitions and we show Lemma
1 which rules-out a possible normal form for optimal priority algorithms. Accord-
ing to this not every optimal priority algorithm can be in the restricted class of
fixed-priority algorithms. Section 3 is devoted to the proofs of Theorem 1, 2 and
3. Theorem 1 complements Lemma 1 by stating that the greedy and memory-
less restrictions are not actual restrictions for optimal greedy algorithms. Our
main technical contribution is theorems 2 and 3. The first shows that an optimal
priority algorithm always gains the more profit from the more profitable parts
of the input. The latter says that algorithms optimal on subproblems with jobs
of distinct profit, always schedule the same set of jobs. Although the proofs of
these two theorems are somehow involved, their details seem to matter to the
extent that they reveal aspects of optimal greedy computation.
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2 Definitions and Preliminaries

2.1 Definitions and Notation

A job J is (id, r, d, p, w) ∈ N5, where id is the job descriptor, r, d, p are its
release, deadline and processing time respectively and w is its profit (weight).
Furthermore, r < d and p ≤ d − r. We omit id if no confusion arises. When
p = d − r then we call this job an interval. In case of proportional profit p = w,
a job is denoted by (id, r, d, p) (or (r, d, p)). An instance of the non-preemptive
Job Scheduling on identical machines P |rj |

∑
wjŪj (in [7] notation) consists

of m machines and n jobs. We want to assign jobs to machines so as to maxi-
mize the profit from properly scheduled jobs, rather than the equivalent but more
common scheduling-theory formulation where every job must be scheduled ac-
cording to the release time constraint and we aim to minimize the weight of late
scheduled jobs. Also, wJ denotes the profit of job J and profit(S) =

∑
J∈S wJ .

For a priority algorithm A and an input S we denote by A(S) just the set of
scheduled jobs (i.e. not where they are scheduled); e.g. profit(A(S)) denotes the
profit of A on input S. For a given number of machines we denote by opt(S) the
total profit of an optimal schedule on a finite set of jobs S.

Definition 1 (Priority Algorithms for Job Scheduling subproblems)
To simplify notation we assume that the number of machines is given to the
algorithm in the beginning of each execution. Let S be a set of jobs which specifies
a Job Scheduling subproblem; input instances will be finite subsets of S. A
priority algorithm for S consists of two sets of functions, the ordering and the
decision functions. We denote by O(S) the set of all total orderings on S. Let D
be the set of all possible decisions on whether and where to schedule a job. The
computation for an input of n jobs proceeds in n ∈ N rounds.

At the beginning of the k-th round the algorithm has already read from the
input k − 1 jobs. For each round k the ordering function has the following form:

r(k) : (S × D)k−1 → O(S)

The decision function for the k-th round has the following form:

d(k) : (S × D)k−1 × S → D

We place no complexity (or computability) restrictions on the ordering and de-
cision functions. We now describe how this algorithm operates on a finite input
instance S ⊆ S. Consider the k-th round, for k ≤ |S|; k − 1 jobs from S have
already been processed and α ∈ (S×D)k−1 consists of the decisions made so far.
First, from the jobs remaining in the input, the job J of highest priority accord-
ing to r(k)(α) is presented to the algorithm. Then, d(k)(α, J) is applied to make
an irrevocable decision to reject or to schedule J (specifying the processor and
its starting time). We sometimes refer to this as a general or adaptive priority
algorithm and denote it by Priority.

Restrictions to the model: In the fixed-priority model the ordering is de-
termined only once in the beginning; this is denoted by the prefix Fixed (or F
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for short). According to the greedy restriction, when a greedy-priority algorithm
Greedy (G) reads a job that can be scheduled it necessarily schedules it. The
memoryless restriction refers to Memoryless (M) algorithms where the r(k)’s
and d(k)’s depend only on the scheduled jobs.

We say that the priority algorithm A is optimal for the subproblem determined
by S if for every (finite) input S ⊆ S, A gains optimal profit on S.

2.2 Our Results

In general, fixed, greedy and memoryless restrict the power of the model [11].
This is not true for optimal priority algorithms for one-machine scheduling on
sets of intervals, where there always exists an optimal Memoryless-Fixed-

Greedy-Priority [12]. For multiple-machines and general types of jobs the
following simple lemma states that the situation is different, even for subprob-
lems with jobs of distinct and proportional profits.

Lemma 1. For any number of machines, there exists an arbitrarily large set
of jobs S and a Memoryless-Greedy-Priority algorithm optimal on S such
that no Fixed-Priority algorithm is optimal on S. Furthermore, S consists of
jobs of distinct, proportional profit.

Proof. We first present a proof for one-machine environments and a finite sub-
problem and then we show how to generalize it. Say that S = {J1, J2, J3, J, J

′}
is depicted in Figure 1, where J1 = (1, 3, 2), J2 = (8, 11, 3), J3 = (15, 16, 1), J =
(2, 9, 6), J ′ = (8, 18, 7). Here is a M-G-Priority algorithm optimal on S.

– The initial ordering is J2 > J1 > J3 > J > J ′. Read the first job and
schedule it (if the first job is J or J ′ choose an arbitrary starting point).

– After reading the first job, if J2 is scheduled then determine the ordering
J > J ′ > J1 > J3 and schedule greedily. That is, schedule (if present) J
starting at 2 (leftmost) and J ′ starting at 11 (rightmost).

– Else, if J1 is the first scheduled job then determine the ordering J > J ′ > J3

and schedule greedily. That is, if J or J ′ is present then schedule at the
earliest available time wrt the so far scheduled jobs.
Similarly, if J3 is the first scheduled job (the ordering is J ′ > J).
If the first scheduled job is among {J, J ′} then schedule the remaining one -
if any.

It is easy to check optimality of the above algorithm. This together with the
argument that rules-out Fixed-Priority algorithms, and the generalization to
multiple machines and infinite subproblems, are presented in the full version. ��

Properties of optimal priority algorithms. For the rest of the paper we implicitly
consider a number of machines k, which depends on the inputs we mention.

It is not hard to show the following normal form for optimal priority algo-
rithms. The proof of this and the next two theorems are given in Section 3.
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Theorem 1 (Normal form). Given a set of jobs S and an algorithm A ∈
Priority optimal on S, there exists A′ ∈ M-G-Priority which is also optimal
on S.

In general it is impossible to give a meaningful characterization of where an
optimal priority algorithm schedules the input jobs. It is straightforward to con-
struct subproblems where for inputs of n jobs the number of optimal schedules is
e.g. n!Ω(n!); consider many small jobs with very large release and deadline times.
Moreover for each such schedule there is an optimal priority algorithm.

Our main contribution shows that there is structure on the decision of an
optimal priority algorithm to gain profit by scheduling a job from particular
subsets of the input. This takes us to the first strongly non-trivial fact about
greedy computation. Although we do not have explicit knowledge neither of the
algorithm nor of the subproblem, we know that the algorithm is going to make
more profit from the more profitable parts of the input. Specifically, consider
a run of an optimal priority algorithm on some input S. Populate this input
set with jobs of smaller profit Ŝ. Theorem 2 says that when an optimal priority
algorithm computes on S∪Ŝ the total profit gained from the scheduled jobs from
S it is the same as if the algorithm were computing on S alone. This statement
becomes more interesting by realizing that this “semantically greedy” behavior
does not imply something for the order in which the algorithm processes jobs
from the input. This is clear when we consider subproblems with non-overlapping
jobs, but more importantly when considering subproblems where every optimal
algorithm must consider jobs of smaller profit first. Our running example of
Figure 1 determines a simple such subproblem: note that we cannot process first
neither J nor J ′. Still, although smaller jobs are considered first the profit gained
from the most profitable parts (which is not revealed yet to the algorithm) is
the same no matter what!

Theorem 2 (Main structural theorem). Let S be a set of jobs and A ∈
Priority be optimal on S. Let S ⊆ S and Ŝ ⊆ S be finite subsets, such that every
job in Ŝ has profit (strictly) smaller than every job in S. If A(S ∪ Ŝ) = S′ ∪ Ŝ′,
where S′ ⊆ S and Ŝ′ ⊆ Ŝ, then profit(S′) = profit(A(S)) = opt(S).

For subproblems where the jobs are of distinct profit all priority algorithms are
bound to schedule the same sets of jobs. Once again, in general we cannot tell
where a job is scheduled. Note that there are trivial examples where Theorem
3 fails in case of non-distinct profits; e.g. consider subproblems where any two
interval-jobs overlap and they are of the same profit.

Theorem 3 (Distinct profit invariance). Let S be a set of distinct profit jobs
which admits an optimal priority algorithm. Then, every two priority algorithms
optimal on S schedule the same set of jobs on every finite subset of S.

3 Proofs of Theorems 1, 2 and 3

Theorem 1 directly follows from Lemmas 4 and 5. We show Theorem 2 by first
proving a restricted version in Lemma 2. The proof of Theorem 2 is given at the
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end, and it is a corollary of lemmas 2 and 5. Theorem 3 is a corollary of lemmas
3 and 6, where Lemma 3 is a restricted version of Theorem 3.

Perhaps, it worths noting that the proofs themselves in some sense make
transparent issues concerning (optimal) greedy computation.

The following lemma is a restriction of Theorem 2 to memoryless algorithms.

Lemma 2. Let S be a set of jobs and A ∈ M-Priority be optimal on S. Let
S ⊆ S and Ŝ ⊆ S be finite subsets, such that every job in Ŝ has profit (strictly)
smaller than every job in S. If A(S ∪ Ŝ) = S′ ∪ Ŝ′, where S′ ⊆ S and Ŝ′ ⊆ Ŝ,
then profit(A(S)) = profit(S′).

Proof. By the optimality of A, for every finite subset S ⊆ S, A(S) is the set
of jobs corresponding to an optimal schedule. We proceed by induction on the
size of S. The induction basis (S = ∅) trivially holds. Suppose that for every
S, where |S| < k the induction claim holds. We wish to show that for every S
where |S| = k the induction claim is true. For the inductive step we assume the
contrary and we show how to construct an input where A is non-optimal. That
is, assume that there exist S and Ŝ, |S| = k where profit(A(S)) 	= profit(S′).
Since A is optimal we have that opt(S) = profit(A(S)) > profit(S′).

Outline. We proceed by first excluding a simple “boundary” case. Then we probe
some points of the computation of A on S∪Ŝ which guide us to the construction
of two inputs. Finally, by “sieving” the computation of A when it runs on these
two inputs we construct two new inputs where one is a subset of the other but
A gains smaller profit on the bigger input set; i.e. A is not optimal.

First we observe that there does not exist J ∈ S s.t. J 	∈ A(S) and J 	∈ S′;
i.e. the two runs of A on S and on S ∪ Ŝ cannot agree on rejections regarding
jobs from S. If such J exists then since A is memoryless it schedules the same
sets of jobs on S ∪ Ŝ and on (S \ {J}) ∪ Ŝ. Hence by the induction hypothesis,
profit(A(S)) = profit(A(S \ {J})) = profit(S′), a contradiction.

Now we consider how A processes jobs from Ŝ on input S ∪ Ŝ. We probe the
computation at the first point where the condition in the inductive predicate
fails - recall that this is our assumption throughout this argument. Consider the
sequence T1 = 〈J1

1 , J
1
2 , . . . , J1

α〉, α ≤ |Ŝ| in which A reads and accepts jobs from
Ŝ. Let Pl = {J1

1 , . . . , J
1
l }, 1 ≤ l ≤ |Ŝ|, i.e. ∅ ≡ P0 � P1 � . . . � Pα ⊆ Ŝ. Say

that j is minimum s.t. A(S ∪Pj) = S′
j ∪Pj and profit(A(S)) > profit(S′

j), where
S′

j ⊆ S is the set of all jobs from S which are scheduled when A computes on
S ∪ Pj . That is, A(S ∪ Pj−1) = S′

j−1 ∪ Pj−1 and profit(A(S)) = profit(S′
j−1).

Clearly, j > 0.
Observe that J1

j cannot be the last job scheduled by A when computing on
S ∪Pj . If this were the case then profit

(
A(S ∪Pj−1)

)
> profit

(
A(S ∪Pj)

)
, which

contradicts the optimality of A. Therefore, there exists a job from S scheduled
by A after J1

j .
A run σ of a priority algorithm at some input is the sequence of pairs of

the presented jobs and the decisions of the algorithm. Note that a memoryless
algorithm does not have knowledge of its decision to reject a job in some previous
round. Let σj denote the run of A on S∪Pj , and σj−1 the run of A on S∪Pj−1.
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Up to the point that J1
j is read in σj , the corresponding prefixes of the runs σj

and σj−1 coincide, and thus the same jobs are scheduled. Record the sequence
of jobs read by A after J1

j in σj ; these jobs are all from S. Let this sequence be
T2 = 〈J2

1 , J2
2 , . . . , J

2
m, . . . , J2

n〉. As before we can easily see (more details are given
in the full version) that σj and σj−1 may agree only on acceptances. We look for
the first job J2

m where the two runs of A disagree on the rejection/acceptance
of this job. J2

m exists (i.e. m ≥ 1) since otherwise profit(S′
j) = profit(S′

j−1) =
profit(A(S)); moreover, all jobs in {J2

1 , . . . , J
2
m−1} are scheduled in both runs.

We exclude the case that the point J2
m of disagreement can be such that

J2
m 	∈ S′

j−1 and J2
m ∈ S′

j . Suppose that J2
m 	∈ S′

j−1 and J2
m ∈ S′

j . The two runs
σj , σj−1 are identical at least up to the point that J1

j is read. Since J2
m is read

after every job in Pj , then every job in Pj is scheduled when A computes on
(S \ {J2

m}) ∪ Pj as when it computes on S ∪ Pj . By the induction hypothesis,
the fact that A is memoryless and by construction we have that: profit

(
A((S \

{J2
m}) ∪ Pj)

)
= profit

(
A(S \ {J2

m})
)

+ profit
(
Pj

)
= profit

(
S′

j−1

)
+ profit

(
Pj

)
=

profit(A(S)) + profit
(
Pj

)
> profit

(
S′

j

)
+ profit

(
Pj

)
= profit

(
A(S ∪ Pj)

)
, which

contradicts the optimality of A. Hence, J2
m ∈ S′

j−1 and J2
m 	∈ S′

j .
Nowwe are ready to show thatA isnot optimalby showing that it gains (strictly)

smaller profit on a subset of an input than what it gains on this input. Let us denote
by P the set of all jobs read by A up to the point that J1

j (excluding J1
j ) has been

read. We know that when A runs on P ∪ {J2
1 , . . . , J

2
m−1, J

2
m} all of {J2

1 , . . . , J
2
m−1,

J2
m} are scheduled. Let profit(A(P )) = s, profit({J2

1 , . . . , J
2
m−1}) = s′ and profit

({J2
m}) = Δ > δ = profit({J1

j }). Note that since A considers jobs in the above or-
der, it holds thatA(P ∪{J2

1 , . . . , J
2
m}) = A(P )∪{J2

1 , . . . , J
2
m}. Putting everything

together we have:

profit
(
A(P ∪ {J2

1 , . . . , J
2
m} ∪ {J1

j })
)

= s + s′ + δ < s + s′ + Δ

= profit
(
A(P ∪ {J2

1 , . . . , J
2
m})
)

which contradicts the optimality of A. ��

Lemma 3 is the analog of Theorem 3 when we restrict it to memoryless algo-
rithms. As in Lemma 2 here too we do an induction, compare computations (but
now of different algorithms), and cut/concatenate them. Though, the argument
is quite different. Assuming that two optimal, memoryless algorithms when com-
puting on distinct profit input sets they accept different sets of jobs, we show
that the subsets of the output where they disagree are singletons. We conclude
using the optimality of the algorithms by showing that the two singleton sets
must have the same profit and since each job has distinct profit, these two sets
contain the same job.

Lemma 3. Let S be a set of distinct profit jobs which admits an optimal priority
algorithm. Then, every two optimal Memoryless-Priority algorithms on S
schedule the same set of jobs on every finite subset of S.

Proof. By induction on the size of S ⊆ S. The induction basis trivially holds.
Assume that for every S, |S| < k the lemma (induction predicate) is true. We
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wish to show that it holds for every |S| = k. Suppose that there exists an S,
|S| = k and two memoryless-priority algorithms A,A′ optimal on S, such that
A(S) 	= A′(S). Consider the sequence in which A reads jobs from S: TA =
〈J1, J2, . . . , Jk〉. The corresponding sequence for A′ is TA′ = 〈Ji1 , Ji2 , . . . , Jik

〉.
Each job in TA is associated with an acceptance or rejection decision. A and
A′ cannot agree on a rejection decision for a job. If this happens for a job
Ĵ ∈ S then A(S) = A(S \ {Ĵ}) = A′(S \ {Ĵ}) = A′(S), contradiction. Say that
A(S) = S′∪SA, A′(S) = S′∪SA′ , where S′ contains every job accepted by both
algorithms.

Say that Ĵ is the last job in TA accepted by A and rejected by A′. Remove Ĵ
from S. Since A′ is memoryless A′(S\{Ĵ}) = A′(S). By the induction hypothesis,
on (S \ {Ĵ}) A accepts every job from SA′ . Furthermore, there are no scheduled
jobs from SA. Therefore, when A runs on S Ĵ is read before every job from SA′ .
We argue that Ĵ is the only job in SA. Suppose that |SA| > 1 (when A computes
on S). Since Ĵ is the last job accepted by A and rejected by A′, then there exists
a Ĵ ′ ∈ SA read before Ĵ (when A runs on S); o.w. A gets less profit than A′

on S. If we remove Ĵ then A rejects every job from SA. This holds since by the
induction hypothesis the two algorithms accept the same set of jobs and since
A′ is memoryless, when removing Ĵ , A′ has an identical run as before in which
it rejects every job from SA. But, A cannot reject every job from SA since Ĵ ′ is
read and scheduled. Hence, SA = {Ĵ}.

Symmetrically we show that SA′ = {Ĵ ′}. By the optimality we have profit(S′∪
SA) = profit(S′ ∪ SA′) which implies that profit({Ĵ}) = profit({Ĵ ′}), contradict-
ing the distinct profits assumption. ��

It is easy to show Lemma 4 and a simple version of Lemma 5 which together
imply the normal form theorem (Theorem 1). However, for the full version of
Lemma 5 the proof is more involved. There is a difference in the conclusions of
Lemma 4 and 5. In Lemma 4 the optimal greedy-priority algorithm schedules
the same jobs as the adaptive priority algorithm. For Lemma 5 a similar thing is
not true for the optimal memoryless algorithm and the algorithm with memory.
However, with a little more technical effort we can obtain an optimal memoryless
algorithm that agrees on the scheduled jobs with the one with memory on at
least one input. This additional feature of the full version of Lemma 5 it is not
needed for the proof of Theorem 1, but we need it for theorems 2 and 3.

Lemma 4. Given a set of jobs S and a priority algorithm A ∈ Priority op-
timal on S, there exists A′ ∈ G-Priority which is also optimal on S. Further-
more, for every input (finite set) S ⊆ S, A(S) = A′(S).

The argument is based on the fact that an optimal priority algorithm cannot
reject preemptively. If a priority algorithm rejects a job that can be scheduled
then the algorithm is not optimal on the input that contains every job seen so far.
From now on we blur the distinction between optimal algorithms in Priority

and G-Priority.
In the following lemma we show that given a priority algorithm A optimal

on a set of jobs, we can construct a family of memoryless priority algorithms
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optimal on this set. It is quite easy to show that the memoryless algorithm which
simulates A assuming no rejected job to be present in the input, is optimal
(that’s an easy inductive argument in which we compare with the execution of
the optimal A on the input set that doesn’t contain the rejected jobs). However,
to conclude the proofs of Lemma 6 and Theorem 2 on a fixed set R we need the
memoryless algorithm AR

M with the following properties:

i. AR
M is optimal on S and

ii. On every input S ⊆ S if the set of all jobs rejected by A is R, then A(S) =
AR

M (S).

In light of [11] it is not clear whether a memoryless algorithm with properties
(i) and (ii) exists. Moreover, it is easy to show that there is S and optimal
A ∈ G-Priority such that for every optimal memoryless AM , in general it is
not the case that A(S) = AM (S), if the set of jobs rejected by A is R1 ⊆ S
or R2 ⊆ S. However, if instead of two we have one set R, then there exists
an algorithm AR

M with the above two properties. This algorithm simulates A
“assuming that jobs from R that (i) they are consistent with the computation
and (ii) they could be rejected, are rejected”. Here by “consistent” we mean that
if at some round there is a job in R that should be rejected but this conflicts
with previous rounds of the computation, then we ignore this job. There are a
few more technical details on the implementation of AR

M . The details (formal
description of AR

M ) and the proof of Lemma 5 are given in the full version.
We denote the collection of AR

M algorithms (one for each R ⊆ S) by FA.

Lemma 5. Let S be a set of jobs, and A ∈ G-Priority optimal on S. Then,
the family FA of M-Priority algorithms is also optimal on S. Furthermore, for
every input S, where the set of jobs rejected by A equals R ⊆ S, the algorithm
AR

M produces an identical schedule to A.

Lemma 6. Let S be a set of distinct profit jobs that admits an optimal priority
algorithm. Then, for every optimal priority algorithm A there exists an optimal
memoryless-priority algorithm AM such that for every finite S ⊆ S, A(S) =
AM (S).

Proof. Corollary of lemmas 3 and 5. By Lemma 3 and since S is a set of dis-
tinct profit jobs every optimal memoryless-priority algorithm on S schedules the
same set of jobs on every subset of S. By Lemma 5 we have a family of opti-
mal memoryless-priority algorithms. Fix a memoryless-priority algorithm AM

optimal on S. For an arbitrary finite S ⊆ S, let R be the set of jobs rejected
by A when running on S. Say that AR

M is the optimal memoryless algorithm
associated with the set of rejected jobs R as in the proof of Lemma 5. Then,
AM (S) = AR

M (S) = A(S). ��

Theorem 3 follows by Lemma 3 and 6. The proof of Theorem 2 follows.

Proof (Theorem 2). This is a corollary of lemmas 2 and 5. Fix S and Ŝ such
that profit(A(S ∪ Ŝ)) 	= profit(S′), where S, S′, Ŝ are defined as in the statement
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of the theorem. Let R be the set of jobs rejected by A on (S ∪ Ŝ). Consider the
optimal memoryless-priority algorithm AR

M . Say that AR
M (S ∪ Ŝ) = S′

AR
M

∪ ˆSAR
M

,

as in Lemma 2. By Lemma 2 we have that profit(AR
M (S)) = profit(S′

AR
M

). Since

AR
M and A are optimal on S we have that profit(A(S)) = profit(AR

M (S)). Also,
AR

M and A have identical schedules on (S ∪ Ŝ). Hence, S′
AR

M
= S′. Therefore,

profit(A(S)) = profit(S′). ��

4 Conclusions

Previous research deals with the approximation power of priority algorithms for
several variations of classic scheduling problems. The approximation power of
priority algorithms for Job Scheduling is well-understood. Subsets of scheduling
problems have received much attention both in practical and theoretical research.
In this work we raise the question of what happens when we restrict the model
to subsets of Job Scheduling that admit optimal priority algorithms. We set
this question in a general framework where we do not need to have an explicit
description either of the subset of Job Scheduling or of the algorithm. In this
general setting we show that a priority algorithm optimal on a subproblem is
bound to make decisions which are also “semantically greedy”. We systematically
remove possible restrictions from the model: memoryless and greedy, and we
show that such optimal algorithms always attempt to maximize what they gain
from the most profitable parts of the input. As the contrapositive of Theorem 2
states, an optimal priority algorithm cannot compensate by scheduling jobs of
smaller profit for not scheduling more profitable jobs.

It is worth noting that our techniques merely exploit the general primitives
of the model. For example, our arguments do not explicitly involve the fact
that jobs may overlap. In this sense our proofs can be extended without mod-
ification to more general models for maximization packing problems where (i)
the profit gained by a specific input element is always the same, i.e. in case of
Job Scheduling it applies to identical machine environments, and (ii) input
elements do not reveal information about future input elements.

Finally, we remark that our results hold also for the more general case where
the inputs of the subproblems have underlying subset systems satisfying the
hereditary property.

It seems that the most interesting research direction is to adjust a similar
study for problems with more complicated and perhaps less natural descriptions
of inputs. We believe that understanding the structure of computation of syn-
tactically defined models is an issue worth pursuing, in the general program of
classifying the intuitive concept of algorithmic paradigms.
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Abstract. We consider approximation algorithms for the shortest com-
mon superstring problem (SCS). It is well-known that there is a constant
f > 1 such that there is no efficient approximation algorithm for SCS
achieving a factor of at most f in the worst case, unless P = NP. We
study SCS on random inputs and present an approximation scheme that
achieves, for every ε > 0, a 1 + ε-approximation in expected polynomial
time. This result applies not only if the letters are chosen independently
at random, but also to the more realistic mixing model, which allows de-
pendencies among the letters of the random strings. Our result is based
on a sharp tail bound on the optimal compression, which improves a
previous result by Frieze and Szpankowski.

1 Introduction and Results

In this paper, we consider the problem Shortest Common Superstring (SCS). For
a finite alphabet Σ, a string s of length l over Σ is a sequence s = s1s2 . . . sl of
letters si ∈ Σ. We write s ∈ Σl and denote s’s length by |s|. For 0 ≤ k ≤ |s|,
s’s prefix and suffix of length k are s1 . . . sk and s|s|−k+1 . . . s|s|, respectively. For
strings s, t with |s| ≤ |t|, we say that s is a substring of t if s is a contiguous
subsequence of t, i.e., for some 1 ≤ j ≤ |t| − |s| + 1, we have si = tj−1+i,
i = 1, . . . , |s|. In this case, the smallest such j is the leftmost occurrence of s in
t. Given strings s, t, the overlap ov(s, t) of s and t is the longest suffix of s that
is also a prefix of t. Now, given a multiset S = {s1, . . . , sn} (in the following, n
always denotes |S|) of strings over Σ, the problem SCS is to find an as short as
possible superstring for S, i.e., a string t over Σ such that all si ∈ S are substrings
of t. The length of the shortest superstring is denoted optl(S). We measure the
running time of algorithms with respect to the input length ||S|| :=

∑n
i=1 |si|.

Studying SCS is motivated by applications like DNA sequencing (see e.g. Gus-
field [6]) and data compression, e.g., sequencing a DNA string is often done by
sequencing short random fragments and then heuristically finding a short super-
string for them. Due to its applications, fast algorithms for SCS are of interest,
but since it is NP-hard (see Middendorf [9]), an efficient (i.e., polynomial worst
case running time) algorithm finding optimal solutions unlikely exists. Thus, ap-
proximation algorithms have been studied. For a superstring t of an input S, let
the (length) approximation ratio be arl(t) := |t|/optl(S). Let t’s compression be
c(t) := ||S|| − |t| and the optimal compression of S be optc(S) := ||S|| − optl(S).

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 624–635, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Then, the (compression) approximation ratio of t is arc(t) := optc(S)/c(t). For
both length and compression, an algorithm achieves factor f , f ≥ 1, if it al-
ways computes a superstring with approximation ratio at most f . Tarhio and
Ukkonen [12] and Turner [14] independently considered the now well-known algo-
rithm Greedy. It repeatedly removes two strings s, t from S with largest overlap
|ov(s, t)|, overlaps them maximally to produce a string s ⊕ t, and puts s ⊕ t
back in S. In the end, the only string in S is the superstring. Both [12] and [14]
conjectured that Greedy has factor 2 in the length measure (Blum, Jiang, Li,
Tromp, and Yannakakis [4] showed factor 4), but no proof has been found yet.
They did prove that it has factor 2 for compression, but it is easy to see that
achieving some constant factor in one measure does not imply any constant fac-
tor for the other. In a sequence of papers, efficient algorithms with improved
constant factor for length were presented, see e.g. [4], Teng and Yao [13], and
Armen and Stein [2,3]. Currently, the best algorithm is by Sweedyk [11] and has
factor 2.5. Unfortunately, SCS seems to resist arbitrarily good approximation
(no PTAS exists): Since it is maxSNP-hard in both measures, for some constant
f > 1 no efficient algorithm with factor f exists, unless P = NP. Vassilevska [15]
showed that assuming P 	= NP, explicit lower bounds for achievable factors f are
1.00082 for length and 1.00093 for compression. On the other hand, many prob-
lems with such inapproximability results are solved satisfactorily in practice, i.e.,
by “fast” algorithms computing “good” solutions. Hence, there is a discrepancy
between the theoretical results from worst case analyses and empirical obser-
vations. Sometimes, this can be explained by an average case analysis. Instead
of the worst case behavior over all inputs, the expected behavior for a random
input from some distribution over all inputs is analyzed. The problem is that
results for one input distribution say little about other distributions or inputs
occurring in practice. Hence, Spielman and Teng [10] introduced the so called
smoothed analysis of algorithms: An algorithm’s behavior is analyzed for inputs
which are chosen by an adversary and then slightly perturbed by small random
modifications. Thus, it is a mixture of worst case and average case analysis. For-
mally, for an input I, the expected behavior regarding the random perturbation
of I is analyzed, and we consider the worst expected behavior over all I. While
an average case analysis may yield that we perform good for almost all inputs,
a smoothed analysis may show that this even holds in a small neighborhood
of every input. Especially for SCS, a smoothed analysis seems very reasonable:
Laboratory methods introduce random errors when sequencing DNA, and DNA
itself is evolved by random mutations from some ancestor’s DNA. In this pa-
per, we perform a probabilistic analysis for SCS “in the spirit of a smoothed
analysis”. The reason why we say “in the spirit” is that normally, one shows
a dependence between the amount of random noise and the analyzed param-
eter, which here is the expected running time. In our result (see Theorem 1),
we neglect the random noise’s influence on the running time (we only show it
to be polynomial), only the minimum total string length ||S|| we can handle
depends on the amount of noise. Nevertheless, we have a perturbation model of
random inputs. In the paper, we also perform a classical average case analysis.
Its random input models are introduced next.
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Models of Random Inputs. To produce a random input S, we fix the alphabet
Σ and the lengths |si| of S’s strings in some way. The si are then generated by
a stationary and ergodic stochastic process {Xk}∞k=−∞ with random variables
Xk ∈ Σ. For r ≤ s ∈ ZZ, let Xs

r := {Xk}s
k=r be the subsequence of {Xk} between

r and s. Then, a string si ∈ S is generated by choosing the letters X
|si|
1 produced

by our process, and the si are chosen independently. Let the l-th order probability
distribution of {Xk} be P (l)(x) := Pr[Xi = xi, 1 ≤ i ≤ l], x ∈ Σl. For brevity,
let p(x) := P (1)(x), x ∈ Σ, let pmin := minx∈Σ p(x), and pmax := maxx∈Σ p(x).
In the Bernoulli model, the letters in our process are chosen independently. Since
in many applications (e.g., DNA sequencing) this is unrealistic, we also consider
the mixing model (see e.g. �Luczak and Szpankowski [7]), where our process has
the mixing property. For r ≤ s, let Fs

r be the σ-field generated by Xs
r . The

mixing property is that a function α : IN −→ [0, 1) with limg→∞ α(g) = 0 exists
such that for every m ∈ ZZ, g ∈ IN, and events A ∈ Fm

−∞ and B ∈ F∞
m+g,

(1 − α(g)) Pr[A] Pr[B] ≤ Pr[A ∩ B] ≤ (1 + α(g)) Pr[A] Pr[B] . (1)

Since without dependencies, Pr[A ∩ B] = Pr[A] Pr[B], (1) says that depen-
dencies weaken with increasing distance of letters, and α characterizes their
quantity. We note that the mixing model generalizes the Markovian model.
In the Bernoulli model, where the entropy (the “amount of randomness”) is
H = −

∑
x∈Σ p(x) ln p(x), Alexander [1] analyzed the optimal compression. Es-

sentially, a random input Sn with n strings is divided into a set S
(l)
n of long strings

and a set S
(s)
n of short ones. For vn := (|S(l)

n | ln |S(l)
n |)/H +

∑
s∈S

(s)
n

|s|, we have
limn→∞ E[|optc(Sn)/vn−1|] = 0. Thus, if all strings are long, (1−ε)(n lnn)/H ≤
E[optc(Sn)] ≤ (1 + ε)(n lnn)/H for all ε > 0 and n large enough (we always as-
sume n large where necessary). Later, Frieze and Szpankowski [5] and Yang and
Zhang [17] considered the mixing model and the Bernoulli model, respectively,
and analyzed the optimal compression and the one produced by some greedy
algorithms. In [5], mixing model inputs Sn with n strings are considered. In this

model, the entropy is H = liml→∞ −E[lnP (l)(Xl
1)]

l . It is shown that for any ε > 0,

Pr[(1 − ε)(n lnn)/H ≤ optc(Sn) ≤ (1 + ε)(n lnn)/H ] = 1 − o(1) ,

and the same holds for Greedy’s compression. Thus, Greedy compresses optimally
in expectation, and Pr[optc(Sn) > (1 + ε)(n lnn)/H ] = o(1). Our first result is
to strengthen the latter statement in Lemma 1 and Corollary 1: We prove an
exponentially small upper bound on the probability for a limited class of models.
Our second result is given in Theorem 1: We give an approximation scheme that
for every ε > 0 has factor 1 + ε in the length measure and polynomial expected
running time. We note that Ma [8] has performed a smoothed analysis showing
that Greedy has factor 1 + o(1) in expectation. However, our approach and the
one in [5] and [8] are different: While these papers consider efficient algorithms
and expected solution quality, we demand guaranteed approximation ratio 1 + ε
and polynomial running time only in expectation. Before stating our results, it
remains to introduce our smoothed (perturbation) model. For a random input
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S, we assume that for every letter si
j in S’s strings si, the adversary can specify

a probability distribution pi
j : Σ → [0, 1]. Then, the si

j are drawn independently
according to the pi

j. Notice that this generalizes the Bernoulli model, where
all letters share the same distribution. Without restrictions, deterministic worst
case inputs can be chosen, prohibiting our results. We hence demand that for a
fixed ε̂ ∈ (0, 1/2], (pi

j)max = maxx∈Σ pi
j(x) ≤ 1− ε̂ for all si

j . Thus, pmax ≤ 1 − ε̂

for pmax := maxsi
j
(pi

j)max. Observe that we can model fixed strings with random
noise: Fix a mutation probability pm ∈ (0, 1/2]. For deterministically chosen
strings si, we mutate every letter si

j independently with probability pm. If a letter
si

j with original value xi
j ∈ Σ is mutated, we choose the new value uniformly

from Σ \ {xi
j}. For every si

j , the resulting distribution pi
j is pi

j(x
i
j) = 1 − pm and

pi
j(x

′) = pm/(|Σ|−1) for x′ 	= xi
j . It is easy to see that for ε̂ := pm, pmax ≤ 1− ε̂.

Thus, we can model this process. Notice that ε̂ limits the amount of random noise
and is the equivalent of the standard deviation in [10]. We prove our results for
the smoothed and Bernoulli model in Sect. 2.1–2.2 and generalize them to the
mixing model in Sect. 2.3. For clarity, we omit any rounding of non-integer values
in the paper.

2 Results

For an input S for SCS, we let Δ(S) := max1≤i,j≤n |si| − |sj | + 1. In Sect. 2.2,
we give an approximation scheme ApproxSCS(S, c), c > 0 rational.

Theorem 1. Fix a Bernoulli or smoothed model, ε ∈ (0, 1), and k ∈ IN. Set
c := 2(1 + k)/| ln pmax|. Then, for a random input S with ||S|| ≥ (2c/ε)(n lnn)
and Δ(S) ≤ nk, ApproxSCS(S, c) has factor 1 + ε for the length measure and
polynomial expected running time.

Notice that individual strings are not required to have a minimum length, the
Ω(n lnn) lower bound on ||S|| demands only a Ω(lnn) average length. With
respect to applications, assuming Δ(S) = poly(n) seems not very restrictive.
For a Bernoulli model with a uniform distribution on Σ, since p(x) = |Σ|−1 for
all x ∈ Σ, we have H

| ln pmax| = −
∑

x∈Σ p(x) ln p(x)

| ln pmax| = − ln(|Σ|−1)
| ln(|Σ|−1)| = 1. The following

lemma applies hence to distributions close to the uniform one. Observe that the
upper bound e−Ω(n ln n) on Pr[optc(S) > (1+ε)(n lnn)/H ] can only be improved
by a constant factor in the exponent: The smallest (nonzero) probability that
any event regarding a random input S can have is the probability that all letters
are chosen the value x ∈ Σ with p(x) = pmin. For inputs with ||S|| = O(n lnn),
the probability of this event is p

O(n ln n)
min = e−O(n lnn).

Lemma 1. Fix ε > 0 and a Bernoulli model with H/| ln pmax| < 1 + ε. For
a random input S with Δ(S) = polylog(n), it holds that Pr[optc(S) > (1 +
ε)(n lnn)/H ] = e−Ω(n ln n).
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2.1 Upper Bounding the Optimal Compression

The following algorithm isolates, given an input S for SCS, a set Srel of “relevant”
(regarding optl(S)) strings.

Algorithm Partition(S)

1. Set Srel := S. Then, while there are two strings s, t ∈ Srel with s a substring
of t, set Srel := Srel \ {s}.

2. Set Ssub := S \ Srel and output (Srel, Ssub).

It is easily seen that finally every string in Ssub is a substring of one in Srel, and
Srel is substring-free: for no two strings s, t ∈ Srel, s is a substring of t. Further-
more, S and Srel have the same possible superstrings. Thus, optl(S) = optl(Srel).
Obviously, Partition can be implemented with running time O(poly(||S||)).
Definition 1. For an input S = {s1, . . . , sn} for SCS, the string graph is the
complete, undirected, weighted graph Gs(S) = (S,E) on vertex set S with edge
weights as follows: For an edge e = {si, sj} ∈ E, if si is a substring of sj or vice
versa, w(e) = min{|si|, |sj |}. Otherwise, w(e) = max{|ov(si, sj)|, |ov(sj , si)|}.
Furthermore, we let mxt(S) be the weight of a maximum spanning tree in Gs(S).

Lemma 2. For every input S for SCS, optc(S) ≤ mxt(S).

Proof. We use a known property of substring-free inputs S̃. Let t̃∗ be a shortest
superstring for S̃, and s̃1, . . . , s̃|S̃| be S̃’s strings in order of increasing leftmost
occurrence in t̃∗. Then (see Vazirani [16]), the optimal compression for S̃ fulfills

optc(S̃) =
∑|S̃|−1

i=1 |ov(s̃i, s̃i+1)| . (2)

Set (Srel, Ssub) :=Partition(S). Let t∗ be a shortest superstring for Srel, and let
s1
r , . . . , s

n′
r be the strings of Srel in order of increasing leftmost occurrence in t∗.

Since Srel is substring-free, optc(Srel) = ||Srel|| − |t∗| =
∑n′−1

i=1 |ov(si
r, s

i+1
r )| ≤∑n′−1

i=1 w({si
r, s

i+1
r }) for the weights w({si

r, s
i+1
r }) of the edges {si

r, s
i+1
r } ∈ E

in the string graph Gs(S) = (S,E). Hence, by choosing P := {{si
r, s

i+1
r } ∈

E | 1 ≤ i ≤ n′ − 1}, we get a path P connecting all strings in Srel with weight
w(P ) ≥ ||Srel|| − |t∗|. We set T := P and extend T to a spanning tree of
Gs(S). For every string si ∈ Ssub, there is a string sri ∈ S such that Partition
removed si from Srel since it found si to be a substring of sri . Now, for every
si ∈ Ssub, we add {si, sri} to T . Since Partition never considers a string again
once it is removed from Srel, it is easy to see that adding the edges {si, sri} to
T does not create cycles. Therefore, in the end, T contains |Srel| − 1 + |Ssub| =
n − 1 edges and no cycles and hence is a tree. Notice that w(T ) − w(P ) =∑

si∈Ssub
w({si, sri}) =

∑
si∈Ssub

|si| = ||Ssub||. Using w(P ) ≥ ||Srel|| − |t∗|, we
get w(T ) ≥ ||Srel|| − |t∗| + ||Ssub|| = ||S|| − |t∗|. Now, since t∗ is also a shortest
superstring for S, it follows that optc(S) = ||S|| − |t∗| ≤ w(T ) ≤ mxt(S). ��
For a random input S for SCS and a rational number c > 0, the following
efficient algorithm either certifies by outputting “success” that optc(S) ≤ cn lnn,
or outputs “fail”. The latter happens only with exponentially small probability.
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Algorithm BoundComp(S = {s1, . . . , sn}, c)

1. Compute mxt(S). Output “success” if mxt(S) ≤ cn lnn and “fail” otherwise.

Lemma 3. Fix a Bernoulli or smoothed model and ε > 0. For a random input S
for SCS and c ≥ (1+(lnΔ(S))/ lnn)/| ln pmax|+ ε, c = O(1), BoundComp(S, c)
runs in time O(poly(||S||)). It outputs “fail” with probability e−Ω(n ln n). If it
outputs “success”, optc(S) ≤ cn lnn.

Proof. The algorithm clearly has running time O(poly(||S||)). Lemma 2 yields
that if “success” is output, optc(S) ≤ mxt(S) ≤ cn lnn. It remains to ana-
lyze the failure probability, which is Pr[mxt(S) > cn lnn]. If this happens,
mxt(S) = (cn lnn) + δ =: f(δ) for some δ ∈ {1, . . . , ||S|| − cn lnn}, since
mxt(S) ≤ ||S||. Fix such a δ. If mxt(S) = f(δ), there is a spanning tree
T ⊆ E in the string graph Gs with edge weights w(e) ≥ 0 for e ∈ T such
that

∑
e∈T w(e) = f(δ). By definition of Gs, this implies the following: For ev-

ery edge e = {si, sj} ∈ T , there is a direction (a, b) ∈ {(i, j), (j, i)} such that
|ov(sa, sb)| = w(e) (e has type overlap) or sa is a substring of sb and |sa| = w(e) (e
has type substring). Furthermore, for a “substring” edge, there is a leftmost oc-
currence la,b ∈ {1, . . . , |sb|−|sa|+1} where sa appears in sb. A spanning tree T to-
gether with its edge weights, directions, types, and leftmost occurrences is called
a spanning tree configuration. An example of a string graph with a spanning
tree configuration is shown in Fig. 1 (only the tree’s edges with their weights are
shown). An arrow from si to sj at an edge e = {si, sj} means that e’s direction is
(i, j), and the type is indicated by ‘o’ (overlap) or ‘s, l’ (substring with leftmost
occurrence l). We upper bound the number of possible spanning tree configura-
tions: There are nn−2 ≤ en ln n spanning trees in a graph on n labeled vertices.
For natural numbers x ≥ y, the number of ordered partitions of x into y non-
negative summands is

(
x+y−1

y−1

)
, and

(
x
y

)
≤ (ex/y)y. Hence, we can partition f(δ)

into n−1 edge weights in
(
f(δ)+n−2

n−1

)
≤
(
2f(δ)

n

)
≤ (2ef(δ)/n)n = en ln(f(δ)/n)+O(n)

ways. The edge directions and types can be chosen in 4n−1 = eO(n) ways. For
the leftmost occurrence of a string si in sj , we have |sj |−|si|+1 ≤ Δ(S) choices.
Thus, for the leftmost occurrences of the at most n − 1 “substring” edges, we
have at most (Δ(S))n−1 ≤ en lnΔ(S) choices. Let Ĉ be the set of all spanning tree
configurations. For brevity, let k := (lnΔ(S))/ lnn. Then, n lnΔ(S) = kn lnn.
Using this, we conclude

|Ĉ| ≤ e(n ln n)+n ln(f(δ)/n)+(n ln Δ(S))+O(n) = e(1+k)(n ln n)+n ln(f(δ)/n)+O(n) . (3)

s1

s3

s2

s4 s5

s7s6

C1 C8. . .. . .

c1

c1 c8

c8

s3

s7

s1

s5s4

s2

3 3 4 2

4

s6

s,6o

o

os,2

2 s,2

Fig. 1. A Spanning Tree Configuration C and the Resulting Equality Graph Ge(C)
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Now, we upper bound the probability that a fixed configuration C ∈ Ĉ appears,
i.e., the string graph of S contains the maximum spanning tree T from C. We
model the properties of S’s strings implied by C’s appearance using the equality
graph Ge(C) = (V,E), which looks as follows: For every string si ∈ S, it contains
the vertices si

j, j = 1, . . . , |si|. In words, for every si, it contains |si| vertices,
regardless of the actual assignment of elements from the alphabet Σ to the let-
ters si

j . To construct the edge set E, we consider all edges e = {si, sj} ∈ T . Let
(a, b) be the direction of e. If e’s type is substring with leftmost occurrence la,b,
if C appears, sa appears as a substring at position la,b in sb, i.e., sa

1 . . . sa
|sa| =

sb
la,b

. . . sb
la,b+|sa|−1. Hence, we add the edges {sa

1, s
b
la,b

}, . . . , {sa
|sa|, s

b
la,b+|sa|−1}

to E. Then, if C appears, any two letters connected by an edge in Ge are cho-
sen equal elements from Σ. Now, we assume that e has type overlap. If C ap-
pears, the suffix of sa of length w(e) matches the prefix of sb of that length,
or equivalently sa

|sa|−w(e)+1 . . . sa
|sa| = sb

1 . . . sb
w(e). Thus, we add the w(e) edges

{sa
|sa|−w(e)+1, s

b
1}, . . . , {sa

|sa|, s
b
w(e)} to Ge(C). In Fig. 1, the equality graph for the

configuration on the left is shown. Let C = {C1, . . . , C|C|} contain the connected
components of size at least two in Ge, and L :=

⋃|C|
i=1 Ci. Since Ge’s edges are

inserted according to the tree T containing no cycles, Ge contains no cycles.
Hence, all components Ci are trees. The number of vertices in a tree is larger
than its edge number by one. Since Ge contains

∑
e∈T w(e) = f(δ) edges, we get

|L| =
∑|C|

i=1 |Ci| = f(δ)+|C|. If C appears, for every Ci there is a ci ∈ Σ such that
ci is assigned to all letters in Ci. In both models, the probability that this hap-
pens for a single component Ci is at most p

|Ci|−1
max : Let l1, . . . , l|Ci| be the letters in

Ci. For a fixed ci ∈ Σ, Pr[
∧|Ci|

j=1 lj = ci] =
∏|Ci|

j=1 Pr[lj = ci] ≤ Pr[l1 = ci] ·p|Ci|−1
max ,

since Pr[lj = ci] ≤ pmax for all lj . Now, the probability that for some ci ∈ Σ,
lj = ci for all lj is

∑
ci∈Σ Pr[

∧|Ci|
j=1 lj = ci] ≤

∑
ci∈Σ Pr[l1 = ci] ·p|Ci|−1

max = p
|Ci|−1
max .

With |L| = f(δ) + |C|, we get

Pr[C appears] ≤
∏|C|

i=1 p
|Ci|−1
max = e

∑ |C|
i=1(|Ci|−1) ln(pmax)

= eln(pmax)(|L|−|C|) = eln(pmax)f(δ) . (4)

Clearly, Pr[mxt(S) = f(δ)] ≤ Pr[∃C ∈ Ĉ: C appears]. With (3) and (4), we get

Pr[mxt(S) = f(δ)] ≤ e(1+k)(n ln n)+n ln(f(δ)/n)+ln(pmax)f(δ)+O(n) (5)
= e((1+k)−| ln pmax|c)(n ln n)+O(n ln ln n)+O(n) . (6)

To get (6), consider n ln(f(δ)/n) + ln(pmax)f(δ) = n ln(((cn lnn) + δ)/n) +
ln(pmax) · ((cn lnn) + δ) in (5). Standard analysis shows that it is at most
n ln(c lnn) + ln(pmax)cn lnn = O(n ln lnn) − | ln pmax|cn lnn (here, we used
that c = O(1)). Remember that k = (lnΔ(S))/ lnn. Therefore, by choice
of c in the lemma, c ≥ (1 + k)/| ln pmax| + ε, or equivalently | ln pmax|c ≥
1 + k + ε| ln pmax| = 1 + k + ε′, ε′ > 0. Thus, (1 + k) − | ln pmax|c ≤ −ε′,
and (6) yields Pr[mxt(S) = f(δ)] ≤ e−ε′(n ln n)+O(n ln ln n)+O(n) = e−Ω(n ln n).
Throughout the paper, we assume that ||S|| ≤ 2n (otherwise, we can solve SCS
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optimally in time O(poly(||S||)), see Sect. 2.2). Then, since 1 ≤ δ ≤ ||S|| ≤ 2n,
we get Pr[mxt(S) > cn lnn] =

∑||S||
δ=1 Pr[mxt(S) = f(δ)] ≤ 2n · e−Ω(n ln n) =

eO(n)−Ω(n ln n) = e−Ω(n ln n). ��

2.2 The Approximation Scheme

It is well known that in a complete, directed, weighted graph G = (V,E), one
can compute a maximum weight hamiltonian path (a path (v1, v2, . . . , v|V |) of
vertices with vi 	= vj for i 	= j) in time O(|V |22|V |) with dynamic programming.
Algorithm OptSCS below uses this to compute a shortest superstring in time
O(n22n). We modify the definition of the string graph Gs(S) from Sect. 2.1
to yield the directed string graph −→

G s(S). It is a complete (without self-loops),
directed, weighted graph on vertex set S, and the weight of an edge (si, sj),
i 	= j, is w(si, sj) = |ov(si, sj)|.
Algorithm OptSCS(S = {s1, . . . , sn})
1. Set (Srel, Ssub) :=Partition(S). Let {s1

r , . . . , s
n′
r } be the strings in Srel.

2. Compute a maximum weight hamiltonian path (sh1
r , . . . , s

hn′
r ) in −→

G s(Srel).
3. Output t := sh1

r ⊕sh2
r ⊕ . . .⊕s

hn′
r (maximally overlap strings along the path).

Lemma 4. For every input S for SCS, OptSCS(S) computes a shortest super-
string in time O(2n · poly(||S||)).

The proof is simple: Since S and Srel share the same superstrings (see Sect. 2.1),
to show that t is a shortest superstring for S, it suffices to show this for Srel.
Clearly, t is a superstring for Srel. We show it to be optimal. Let t∗ be a
shortest superstring for Srel and si1

r , . . . , s
in′
r be Srel’s strings in order of in-

creasing leftmost occurrence in t∗. Since (sh1
r , . . . , s

hn′
r ) is a maximum weight

hamiltonian path in −→
G s(Srel), with (2) we get c(t) =

∑n′−1
j=1 |ov(shj

r , s
hj+1
r )| ≥∑n′−1

j=1 |ov(sij
r , s

ij+1
r )| = optc(Srel). Thus, |t| = optl(Srel). We turn to the running

time. Partition runs in time O(poly(||S||)). With Step 2’s running time O(n22n),
a running time of O(poly(||S||)+n22n) = O(2n ·poly(||S||)) follows for OptSCS.
We can now prove Theorem 1. Consider the following algorithm.

Algorithm ApproxSCS(S = {s1, . . . , sn}, c)
1. Run BoundComp(S, c). If it succeeds, output Greedy(S).
2. Run OptSCS(S) and output the superstring computed.

Proof (of Theorem 1). We start with the running time. BoundComp(S, c) runs
in time O(poly(||S||)) by Lemma 3. Since the same holds for Greedy, Step 1
has polynomial worst case running time. To prove a polynomial expected run-
ning time, it thus suffices to upper bound Step 2’s expected running time,
which is the product of the time spent if it is executed and its execution prob-
ability. The former is O(2n · poly(||S||)) by Lemma 4. We upper bound the
latter. Since Δ(S) ≤ nk, we have (lnΔ(S))/ lnn ≤ k. Thus, by choice of c,
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c ≥ (1 + (lnΔ(S))/ lnn)/| ln pmax| + ε′ for some ε′ > 0, and Lemma 3 is appli-
cable. The lemma yields that BoundComp(S, c) fails in Step 1 with probability
e−Ω(n ln n). Since Step 2 is only executed if this happens, its execution probability
is e−Ω(n ln n), and its expected running time is O(2n · poly(||S||) · e−Ω(n ln n)) =
O(poly(||S||), since 2n · e−Ω(n lnn) = o(1). We turn to the factor for the length
measure. A solution output in Step 2 has optimal approximation ratio 1. Now as-
sume that Step 1 outputs t :=Greedy(S). This happens only if BoundComp(S, c)
succeeds, i.e., if optc(S) ≤ cn lnn due to Lemma 3. With c ≤ ε||S||/(2n lnn) due
to ||S|| ≥ (2c/ε)(n lnn) in the lemma, this yields that optc(S) ≤ (ε/2)||S||, which
in turn yields optl(S) = ||S||−optc(S) ≥ (1− ε/2)||S||. Clearly, |t| ≤ ||S||. With
ε < 1, we get an approximation ratio of |t|

optl(S) ≤ ||S||
(1−ε/2)||S|| = 1

1−ε/2 ≤ 1+ε. ��

We prove Lemma 1. Set c := (1 + ε)/H . If optc(S) > (1 + ε)(n lnn)/H ],
BoundComp(S, c) fails, which has probability e−Ω(n ln n) by Lemma 3. It is us-
able since Δ(S) = polylog(n), yielding Δ(S) ≤ (lnn)k for a fixed k ∈ IN. Thus,
(lnΔ(S))/ lnn = O(ln lnn)/ lnn = o(1). Since H/| ln pmax| < 1+ε, 1/| ln pmax| =
(1 + ε)/H − ε′ = c − ε′ for ε′ > 0. Since (1 + (lnΔ(S))/ lnn)/| ln pmax| + ε′/2 =
(1 + o(1))(c − ε′) + ε′/2 ≤ c, Lemma 3’s assumptions are fulfilled.

2.3 Generalization to the Mixing Model

We generalize our results to the mixing model. For a length l ∈ IN, we set
pl
max := maxx∈Σl P (l)(x) be the maximum probability of a string of length l.

Lemma 5. Fix a mixing model. Then, pl
max = e−Ω(l).

Proof. For the mixing model, given l ∈ IN, choose x∗ ∈ Σl with P (l)(x∗) = pl
max.

For the function α: IN → [0, 1) with limg→∞ α(g) = 0 limiting the dependencies
in the model (cf. (1)), we choose g0 ∈ IN with α(g0) < (1−pmax)/pmax. Let r ∈ Σl

be a random string, and set m := �(l−1)/g0� = Ω(l). For k ∈ {0, . . . ,m}, we let
Ek be the event that r1+k·g0 = x∗

1+k·g0
, and Êk :=

⋂k−1
k′=0 Ek′ . Then, pl

max = Pr[r =
x] ≤ Pr[

⋂m
k=0 Ek]. Observe that for every k, the letters concerning the events Ek

and Êk have a distance of at least g0. By choice of g0, (1 + α(g0))pmax < 1.
With (1), it follows that

Pr[Ek | Êk] = Pr[Ek∩Êk]

Pr[Êk]
≤ (1 + α(g0)) Pr[Ek] ≤ (1 + α(g0))pmax =: c < 1 . (7)

Now, pl
max ≤ Pr[

⋂m
k=0 Ek] =

∏m
k=0 Pr[Ek | Êk] ≤ cm+1 ≤ em ln c = e−Ω(l). ��

Since pl
max = e−Ω(l), a constant c > 0 with pl

max ≤ e−cl exists. Thus, | ln pl
max|/l ≥

| ln e−cl|/l = c. Given a mixing model, we define cmix := sup{c > 0 | ∃l0 ∈ IN: ∀l ≥
l0: | ln pl

max|/l ≥ c}.

Lemma 6. With | ln pmax| replaced by cmix, Lemma 3 holds in the mixing model.

Proof. We adapt the part of Lemma 3’s proof that upper bounds the probability
that a configuration C appears. Consider the equality graph Ge(C). We assign
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numbers ν to its vertices, i.e., the letters of S’s strings, by traversing the spanning
tree T in the string graph Gs(S). We start at s1 and set ν(s1

j ) := j, j = 1, . . . , |s1|.
Then, while unnumbered strings si exist, choose one with an edge e = {si, si′} ∈
T such that si′ is numbered (such an si always exists, and e is unique, so no
numbering conflicts arise). For the letters si

j connected to a letter si′
j′ by an

edge in Ge, we set ν(si
j) := ν(si′

j′ ). Then, we assign numbers to the not yet
numbered letters of si such that ν(si

j+1) = ν(si
j) + 1 for j = 1, . . . , |si| − 1. The

numbering for the equality graph in Fig. 1 is shown in Fig. 2. For a block length
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ŝ7

Fig. 2. An Equality Graph Ge with Strings Divided into Blocks

l ∈ IN, we divide the si into blocks (substrings) of length at most l. For a string
si, all letters si

j with the same value �ν(si
j)/l� form a block. In Fig. 2, l = 2

is used, and s1 contains three blocks s1
1s

1
2, s1

3s
1
4, and s1

5. Let again C contain
the connected components Ci of size at least two in Ge, and L :=

⋃|C|
i=1 Ci (in

Fig. 2, letters in L are grey). For each si, let the block string ŝi = ŝi
1 . . . ŝi

|ŝi| be
the sequence of the blocks in si from left to right which have full length l and
contain only letters from L (in Fig. 2, these blocks are marked with boxes, e.g.,
ŝ4 = ŝ4

1ŝ
4
2). Since each block is a length l substring of si, ŝi is a string over the

alphabet Σl. Notice that the blocks ŝi
j are chosen by the l-th order probability

distribution P (l):Σl → [0, 1] of our model. First, we neglect block dependencies
and get a Bernoulli model over alphabet Σl in which we estimate the probability
of the configuration C. Later, we consider the dependencies. Consider blocks
ŝi

j , ŝ
i′
j′ in two block strings ŝi, ŝi′ such that for k = 1, . . . , l, the two letters in

ŝi
j and ŝi′

j′ at position k are connected by an edge in Ge. We call such blocks
matching. In Fig. 2, ŝ1

1 and ŝ3
1 have this property. If C appears, ŝi

j = ŝi′
j′ . Hence,

we create a block equality graph Ĝe = (V̂ , Ê) for the block strings ŝi. We let
V̂ be the set of all blocks, and {ŝi

j, ŝ
i′
j′} ∈ Ê if ŝi

j and ŝi′
j′ are matching. In

Fig. 2, the block equality graph for the equality graph on the left is shown.
We lower bound the number |Ê| of edges. Consider an edge e = {si, si′} in
the spanning tree T of C. There are indices a, a′ such that Ge contains the
w(e) edges {si

a+k, s
i′
a′+k}, k = 0, . . . , w(e) − 1. Let L′ be the set of all letters

in these edges. For l − 1 ≤ k ≤ w(e) − l, regardless of the positions of the
blocks in si, si

a+k lies in a block of full length l in L′ ⊆ L. Thus, there are at
least (w(e) − 2(l − 1))/l blocks ŝi

j with all letters in L. In our numbering ν,
two letters connected by an edge in Ge have the same number. Thus, due to
the edges {si

a+k, s
i′
a′+k}, for every above block ŝi

j , the letters in si′ connected
to ŝi

j by these edges form a block ŝi′
j′ in L, and thus ŝi

j and ŝi′
j′ are matching.
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It follows that for every edge e ∈ T , Ĝe contains at least (w(e) − 2(l − 1))/l
edges. In the following, we set l := ln lnn. With w(T ) = f(δ) = (cn lnn) + δ we
get |Ê| ≥

∑
e∈T (w(e) − 2(l − 1))/l = w(T )/l − O(n) = (1 − o(1))f(δ)/l. Since

we assume a Bernoulli model, Ĝe is an equality graph as above. For clarity,
we denote probabilities assuming independence of blocks by Pri and ones with
dependencies with Prd. With |Ê| = (1 − o(1))f(δ)/l, (4) yields

Pri[C appears] ≤ eln(pl
max)(1−o(1))f(δ)/l ≤ e−(1−ε′)cmixf(δ) (8)

for every fixed ε′ > 0 by definition of cmix. We choose ε′ later. We now consider
block dependencies and correct (8) accordingly. In Ge, for the set L of all letters
contained in C’s components, |L| = f(δ)+|C| ≤ 2f(δ) since |C| ≤ f(δ). The total
number of blocks

∑n
i=1 |ŝi| is hence at most 2f(δ)/l = o(1)f(δ) since l = ω(1).

Let an assignment be a function â from the set of all blocks ŝi
j in our strings to

Σl assigning to each block ŝi
j a value âi

j . For a string ŝi, we let E i
j be the event

that ŝi
j = âi

j and Ê i
j :=

⋂j−1
j′=1 E i

j′ . Remember that the function α limiting the
dependencies in the mixing model has range [0, 1) i.e., α(1) < 1. Analogously
to (7), we get for events E i

j and Ê i
j that Prd[E i

j | Ê i
j ] ≤ (1+α(1)) Prd[E i

j ] < 2 Pri[E i
j ]

since Prd[E i
j ] = Pri[E i

j ]. Accordingly,

Prd[Ê i
|ŝi|+1] =

∏|ŝi|
j=1 Prd[E i

j | Ê i
j ] <

∏|ŝi|
j=1 2 Pri[E i

j ] = 2|ŝ
i| Pri[Ê i

|ŝi|+1] , (9)

i.e., the dependencies increase the probability that ŝi is chosen according to â
by a factor of 2|ŝ

i|. Let A be the subset of all possible assignments such that
C appears iff for some â ∈ A, we have ŝi

j = âi
j for all blocks. Using (9) and∑n

i=1 |ŝi| = o(1)f(δ), we get for a fixed assignment â

Prd[Ê i
|ŝi|+1, i = 1, . . . , n] =

∏n
i=1 Prd[Ê i

|ŝi|+1] <
∏n

i=1 2|ŝ
i| Pri[Ê i

|ŝi|+1]

= 2
∑n

i=1 |ŝi|∏n
i=1 Pri[Ê i

|ŝi|+1] = 2o(1)f(δ) Pri[Ê i
|ŝi|+1, i = 1, . . . , n] . (10)

Since (with or without dependencies) Pr[C appears] =
∑

â∈A Pr[Ê i
|ŝi|+1, i =

1, . . . , n], (10) yields Prd[C appears] = 2o(1)f(δ) Pri[C appears]. Thus, the addi-
tional term o(1)f(δ) introduced in the exponent of (8) is compensated by the
choice of ε′. We finish considering the depedencies by concluding that in the proof
of Lemma 3, we can replace (4) by Prd[C appears] ≤ e−(1−ε′)cmixf(δ). Thus, in the
calculations following (4), | ln pmax| is replaced by (1 − ε′)cmix, and (6) becomes

Pr[mxt(S) = f(δ)] ≤ e((1+k)−(1−ε′)cmixc)(n ln n)+O(n ln ln n)+O(n) . (11)

It is easy to see that due to c ≥ (1 + k)/cmix + ε in the lemma, an ε′ > 0 exists
with c ≥ (1 + k)/((1 − ε′)cmix) + ε′, yielding (1 − ε′)cmixc ≥ 1 + k + ε′′, ε′′ > 0.
We fix ε′ in that way. Now, in (11), (1 + k) − (1 − ε′)cmixc ≤ −ε′′, yielding
Pr[mxt(S) = f(δ)] = e−Ω(n ln n) as before. The rest works as before. ��

Corollary 1. With | ln pmax| replaced by cmix, Theorem 1 and Lemma 1 hold in
the mixing model.
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Abstract. The core of a cooperative game contains all stable distributions of
a coalition’s gains among its members. However, some games have an empty
core, with every distribution being unstable. We allow an external party to offer
a supplemental payment to the grand coalition, which may stabilize the game,
if the payment is sufficiently high. We consider the cost of stability (CoS)—the
minimal payment that stabilizes the game.

We examine the CoS in threshold network flow games (TNFGs), where each
agent controls an edge in a flow network, and a coalition wins if the maximal flow
it can achieve exceeds a certain threshold. We show that in such games, it is coNP-
complete to determine whether a given distribution (which includes an external
payment) is stable. Nevertheless, we show how to bound and approximate the
CoS in general TNFGs, and provide efficient algorithms for computing the CoS
in several restricted cases.

1 Introduction

Many artificial intelligence settings involve multiple self-interested agents. Although
self-interested, the agents may still benefit from cooperation. A natural tool for ana-
lyzing such strategic situations is, of course, cooperative game theory. In cooperative
games, every subset (coalition) of agents can achieve a certain utility by cooperating. A
natural question which arises is how to divide the gains obtained by a coalition among
its members, since the total utility generated by the coalition is (by assumption) of little
interest to each individual agent. Each possible division of the coalition’s gains among
its members is called an imputation.

Cooperative game theory solution concepts seek to define appropriate ways of dis-
tributing a coalition’s gains among its members, so as to meet some desirable criteria. A
prominent solution concept is the core [7], which is the set of all stable imputations—
those where no subset of agents has a rational incentive to split off from the grand
coalition (the set of all agents). Some games have infinitely many imputations in their
core, while others have empty cores. In games where the core is empty, any imputation
would be unstable. Thus, as opposed to normal-form games where the existence of a
stable solution in the form of a (mixed-strategy) Nash equilibrium is guaranteed, some
cooperative domains are inherently unstable.

We examine the possibility of stabilizing a cooperative game using external payments,
based on a model introduced by Bachrach et al [1]. In this model, an external party is

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 636–650, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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interested in inducing all the agents to cooperate. This is done by offering the grand
coalition a supplemental payment, given to the grand coalition as a whole, and provided
only if this coalition is formed. The game’s cost of stability (CoS) is the minimal external
payment that allows a stable division of the grand coalition’s adjusted gains.

In this work we consider games defined over network flow domains, where agents
must cooperate to allow flow through the network. Such games can model situations
where some commodity (traffic, liquid, information) flows through a network with var-
ious capacity constraints, and different entities own the different links (roads, pipes,
cables) along the way. Such games have been studied in several works [8, 9, 2, 4]. We
examine threshold network flow games (TNFGs), where each agent controls an edge in
the network, and a coalition “wins” if the maximal flow it allows from the source ver-
tex to the sink vertex exceeds a certain threshold. Computing the core of such a game
enables finding a stable distribution of the rewards obtained from operating the network
among the various agents. However, in many such games the core would be empty. In
fact, we will see that unless there exists some veto agent, without which no coalition can
achieve the required flow, the game’s core would be empty and no imputation would be
stable. There might exist some external party (e.g., a government) that would be will-
ing to pay in order to ensure the cooperation of all agents in allowing flow through the
network. Naturally, this external party would want to minimize its costs.

We explore the CoS in TNFGs. We show that it is coNP-complete to determine
whether a given profit division, allowed by some external payment, makes a certain
TNFG stable. Despite this hardness result, we nevertheless show how to bound and
approximate the CoS in general TNFGs, and provide efficient algorithms for computing
the CoS and finding optimal super-imputations in several restricted forms of TNFGs.
We give an upper bound on the CoS in TNFGs based on the max-flow value of the
network, which can also be used to approximate the CoS. We consider the CoS in
connectivity games, a restricted form of TNFGs, and show that in these games the CoS
is equal to the max-flow value of the network. We generalize this result, considering
TNFGs with equal edge capacities. We also consider the case of serial TNFGs, built
by serially connecting several component TNFGs. We show that the CoS of a serial
TNFG is equal to the minimal CoS among the component TNFGs, and that this value
may be computed efficiently if the number of edges in each component is not too large.
Finally, we consider the relationship between the CoS in TNFGs and the CoS in another
well-known cooperative domain—weighted voting games.

2 Preliminaries

We now define certain game-theoretic concepts necessary for our analysis of the cost of
stability. We also define the domain on which we will be concentrating, the threshold
network flow game.

2.1 Cooperative Games

A (transferable utility) cooperative game (also called a coalitional game) is defined by
specifying the collective utility that can be achieved by every coalition of agents. In this
work, the term game always refers to a cooperative game.
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Definition 1. A cooperative game consists of a finite set of agents N and a function
v : 2N → R. The function v is called the characteristic function of the game.

The characteristic function maps every coalition of agents to the total utility that can
be achieved by those agents together. In many typical cooperative games, adding more
agents to a coalition never reduces the achievable utility. Such games are called
increasing.

Definition 2. A cooperative game 〈N, v〉 is increasing if v(C′) ≤ v(C) for any C′ ⊆
C ⊆ N .

The TNFG domain considered in this work is one where a coalition can either win or
lose. Such domains can be modeled as simple cooperative games.

Definition 3. A cooperative game 〈N, v〉 is simple if v only takes the values 0 or 1, i.e.,
v : 2N → {0, 1}. We say a coalition C ⊆ N is a winning coalition if v(C) = 1, and it
is a losing coalition if v(C) = 0.

In such games, it is usually assumed that v(∅) = 0 and v(N) = 1. An agent without
which no coalition can win is called a veto agent.

Definition 4. In a simple cooperative game 〈N, v〉, an agent a ∈ N is a veto agent if
for any coalition C ⊆ N it holds that v(C \ {a}) = 0.

2.2 Flow Networks

Flow networks are useful for modeling systems where some fluid commodity travels
through a network with capacity constraints. A flow network consists of a directed
graph 〈V,E〉, with capacities on the edges c : E → R+, a distinguished source vertex
s ∈ V , and a distinguished sink vertex t ∈ V (s 	= t). A flow through the network is
a function f : E → R+ which obeys the capacity constraints and conserves the flow
at each vertex (except for the source and sink), meaning that the total flow entering a
vertex must equal the total flow leaving that vertex. The value of a flow f (denoted |f |)
is the net amount flowing out of the source (and into the sink). A cut of a flow network
is a partition of the vertexes into two subsets S, T (where S ∪ T = V and S ∩ T = ∅)
such that s ∈ S and t ∈ T . The capacity of a cut 〈S, T 〉 is defined as the sum of the
capacities of the edges crossing the cut (from S to T ). We call a minimal capacity cut
a min-cut and a maximal value flow a max-flow. The max-flow min-cut theorem states
that in any flow network, the max-flow value is equal to the min-cut capacity.

Max-flow min-cut theorem. The value of a flow f in a flow network is maximal if and
only if there exists a cut of the network with capacity equal to |f |.

Many efficient algorithms for finding a maximal value flow for a given network are
known. Note that if all the edge capacities in a network are integers, the Ford-Fulkerson
algorithm [6] produces an integer max-flow. This implies the following lemma:

Lemma 1. In a flow network 〈V,E, c, s, t〉, if c(e) ∈ N for all e ∈ E then there exists
a max-flow f such that f(e) ∈ N for all e ∈ E.
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A general graph theory problem which may be solved efficiently using flow networks
is that of finding the maximal number of edge-disjoint paths between two vertexes in a
directed graph. This is done by assigning each edge a capacity of 1, and computing the
max-flow value in the resulting flow network.

Lemma 2. Given a flow network 〈V,E, c, s, t〉, if c(e) = 1 for all e ∈ E then the
maximal number of edge-disjoint paths from s to t in the directed graph 〈V,E〉 is equal
to the max-flow value of the flow network.

Proof. Since all capacities are 1, Lemma 1 implies that there exists a max-flow f such
that f(e) = 0 or f(e) = 1 for all e ∈ E. This means that f must define |f | edge-
disjoint paths from s to t (with a flow of 1 through each). There cannot exist more than
|f | edge-disjoint paths, since then we could construct a flow whose value was greater
than |f |, contradicting the assumption that f is a max-flow.

2.3 Threshold Network Flow Games

A threshold network flow game (TNFG) is a cooperative game defined over a flow
network, where each agent controls an edge in the network. Coalitions of agents may
cooperate in order to send a certain flow from the source to the sink, and a coalition
wins if the max-flow value allowed when using only the edges in the coalition exceeds
a certain threshold (this threshold variant of network flow games has been studied by
Kalai and Zemel [8] and Bachrach and Rosenschein [2]).

Definition 5. A threshold network flow domain consists of a flow network 〈V,E, c, s, t〉
and a threshold k ∈ R+.

Definition 6. Given a threshold network flow domain 〈V,E, c, s, t, k〉, a threshold net-
work flow game (TNFG) is the cooperative game 〈N, v〉 where N = E and the char-
acteristic function is defined as:

v(C) =

⎧⎪⎨⎪⎩
1 if there exists a flow f in the network such that |f | ≥ k and

∀e ∈ E \ C : f(e) = 0
0 otherwise

By definition, TNFGs are simple games. They are also increasing games, since adding
more edges to a coalition can only increase the value of the max-flow. It is easy to check
whether a given coalition is a winning coalition by computing the max-flow value of
the network which contains only the edges in the coalition and checking whether that
value exceeds the threshold.

2.4 Imputations and the Core

The characteristic function of a cooperative game defines only the total gains a coalition
achieves, but does not offer a way of distributing those gains among the agents in the
coalition. Such a division is called an imputation (or a payoff vector).
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Definition 7. Given a cooperative game 〈N, v〉, an imputation is a vector p ∈ RN
+ such

that
∑

a∈N pa = v(N). We call pa the payoff of agent a, and denote the payoff of a
coalition C ⊆ N as p(C) =

∑
a∈C pa.

Cooperative game theory solution concepts offer ways of choosing an imputation, so as
to satisfy some criteria. A basic criterion is individual rationality, which requires that
pa ≥ v({a}) for any agent a ∈ N—otherwise, some agent has an incentive to leave the
coalition and work alone. A stronger criterion is that of coalitional rationality, based
on the notions of blocking coalitions and stable imputations.

Definition 8. In a cooperative game 〈N, v〉, a coalition C ⊆ N blocks an imputation
p if p(C) < v(C).

Definition 9. In a cooperative game 〈N, v〉, an imputation p is stable if it is not blocked
by any coalition, i.e., for every coalition C ⊆ N , p(C) ≥ v(C).

If the coalition C blocks the imputation p, the members of C could leave the grand
coalition, derive the gains of v(C), give each member a ∈ C its previous gains pa—and
still some utility remains, so each agent could get more utility. If an unstable imputation
is chosen, we cannot expect all agents to remain in the grand coalition. The core is the
set of all stable imputations.

Definition 10. The core of a cooperative game is the set of all imputations that are
stable.

Some games have infinitely many imputations in their core, while other games have
empty cores. If we divide the gains of the grand coalition using an imputation in the
core, then no subset of agents has an incentive to break off and work alone. However, if
the core is empty, then any possible division of the grand coalition’s gains is unstable:
there will always be some coalition with an incentive to break away. In simple games,
there is a well-known characterization of the core based on the game’s veto agents: the
core consists of all imputations which divide the grand coalition’s gains only among the
veto agents. Consequently, the core of a simple game (such as a TNFG) is nonempty if
and only if there exists at least one veto agent. Note that we can compute the core of a
TNFG in polynomial time, simply by finding all the veto agents (a given edge is a veto
agent if and only if the coalition of all other edges is a losing coalition).

What should we do if we are faced with a game whose core is empty, but we still
wish to ensure that no coalition has an incentive to leave the grand coalition? In the next
section we suggest a solution, using external payments.

3 The Cost of Stability

We now consider the possibility of stabilizing a cooperative game using external pay-
ments, leading to the definition of the cost of stability, as introduced by Bachrach et
al [1]. If a game is increasing, the maximal utility is achieved by the grand coalition.
However, if the game’s core is empty, it is impossible to distribute the gains of the grand
coalition in a stable manner among the agents. This impedes the agents’ cooperation,
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rendering the grand coalition unstable. Consider an external party that would like to
induce all the agents to cooperate. One way to do this is by offering the grand coalition
a supplemental payment if all agents cooperate. This external payment is offered to the
grand coalition as a whole, and is provided only if this coalition is formed. The adjusted
game is defined based on the original game and the supplemental payment.

Definition 11. Given a cooperative game G = 〈N, v〉 and a supplemental payment
Δ ∈ R+, the adjusted game is the cooperative game G(Δ) = 〈N, v′〉 where the char-
acteristic function is defined as:

v′(C) =

{
v(C) if C 	= N

v(C) + Δ if C = N

We call v′(N) = v(N) + Δ the grand coalition’s adjusted gains. We call a division of
the adjusted gains in the adjusted game a super-imputation.

Definition 12. Given an adjusted game G(Δ) = 〈N, v′〉, a super-imputation is a vec-
tor p ∈ RN

+ such that
∑

a∈N pa = v′(N) = v(N) + Δ.

We will sometimes talk about super-imputations without explicitly defining the adjusted
game—in such a case the supplemental payment is implied by the sum of the super-
imputation’s payments.

Even if the core of the original game G was empty, the core of the adjusted game
G(Δ) may not be empty—if the supplemental payment is high enough. Naturally, the
external party would prefer to minimize the supplemental payment. The cost of stability
(CoS) is defined as the minimal sum of payments such that a stable super-imputation
exists in the adjusted game.

Definition 13. The cost of stability of a cooperative game G = 〈N, v〉 is defined as
follows:

CoS(G) = min
Δ∈R+

{v(N) + Δ : the core of G(Δ) is nonempty}

Note that for any simple game G, CoS(G) ≥ 1, and CoS(G) = 1 if and only if the core
of G is nonempty. For simple games, we can give additional lower and upper bounds
on the CoS.

Theorem 1. If there exist m pairwise-disjoint winning coalitions in a simple game G =
〈N, v〉, then CoS(G) ≥ m.

Proof. Let C1, . . . , Cm be pairwise-disjoint winning coalitions in G. Let p be a super-
imputation such that p(N) < m. This means there must exist a winning coalition Ci

(1 ≤ i ≤ m) such that p(Ci) < 1 (otherwise we would get p(N) ≥
∑m

j=1 p(Cj) ≥∑m
j=1 1 = m). This means that Ci blocks p and p is unstable. Therefore, any stable

super-imputation p′ must satisfy p′(N) ≥ m, so CoS(G) ≥ m.

Theorem 2. Let G = 〈N, v〉 be a simple game and let S ⊆ N be a subset of agents. If
every winning coalition C in G satisfies C ∩ S 	= ∅, then CoS(G) ≤ |S|.
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Proof. We define a super-imputation p as follows:

∀a ∈ N : pa =

{
1 if a ∈ S

0 otherwise

Any winning coalition includes at least one agent from S, and so is paid at least 1. This
means that p is stable, therefore: CoS(G) ≤ p(N) = |S|.

4 Hardness of Determining Stability of Super-Imputations in
TNFGs

This work focuses on the CoS in TNFGs. We first consider the problem of testing
whether a given super-imputation, allowed by a certain supplemental payment, is ac-
tually stable in a TNFG. We show that this problem is in fact coNP-complete.

Definition 14. TNFG-SUPER-IMPUTATION-STABILITY (TNFG-SIS): Given a
TNFG G = 〈V,E, c, s, t, k〉, a supplemental payment Δ, and a super-imputation p in
the adjusted game G(Δ), decide whether p is stable, i.e., whether there exists some
blocking coalition for p in G(Δ).

Theorem 3. TNFG-SIS is coNP-complete.

Proof. TNFG-SIS is in coNP, since we can easily verify instability: given a potentially
blocking coalition, we can check whether it is a winning coalition and whether the sum
of payments to the coalition members is less than 1, in polynomial time. We show that
TNFG-SIS is coNP-hard by polynomially reducing SUBSET-SUM to the complement
of TNFG-SIS. SUBSET-SUM is a well-known NP-complete problem, where we are
given a set of positive integers A = {a1, . . . , an} and a positive integer b, and are asked
to determine whether there exists a subset A′ ⊆ A such that the sum of the elements in
A′ is exactly b. Given a SUBSET-SUM instance, we construct the following TNFG:

V = {s, t} ∪ {v1, . . . , vn}
E = {(s, vi) : 1 ≤ i ≤ n} ∪ {(vi, t) : 1 ≤ i ≤ n}
∀ 1 ≤ i ≤ n : c(s, vi) = c(vi, t) = ai

k = b

In other words, for each element ai we add a path from s to t with capacity ai,
and we define the threshold to be the target sum b (see Figure 1). We now define a
super-imputation p as follows:

∀ 1 ≤ i ≤ n : p(s,vi) = p(vi,t) =
ai

2(b + 1)

We show that this super-imputation is unstable if and only if the given SUBSET-SUM

instance is a “yes” instance.
First, assume p is unstable. This means there is some winning coalition C such that

p(C) < 1. We can assume that if (s, vi) ∈ C for some 1 ≤ i ≤ n then also (vi, t) ∈ C
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Fig. 1. Reduction of a SUBSET-SUM instance 〈{a1, a2, . . . , an}, b〉 to an instance of TNFG-SIS.
The game’s threshold is b. We consider the stability of a super-imputation giving an edge with
capacity ai a payoff of ai

2(b+1)
.

(otherwise, we could remove (s, vi) from C and C would still block p). Likewise, we
can assume that if (vi, t) ∈ C for some 1 ≤ i ≤ n then also (s, vi) ∈ C. Let I ⊆
{1, . . . , n} be the subset of indexes such that C = {(s, vi) : i ∈ I} ∪ {(vi, t) : i ∈ I}.
We assumed p(C) < 1, so:

1 > p(C) = 2
∑
i∈I

ai

2(b + 1)
⇒ b + 1 >

∑
i∈I

ai

The max-flow value allowed by C is
∑

i∈I ai, and we assumed C is a winning coalition,
so
∑

i∈I ai ≥ b. Altogether, we get:

b + 1 >
∑
i∈I

ai ≥ b

But since all ai are integers, we conclude that
∑

i∈I ai = b, so the given SUBSET-SUM

instance is a “yes” instance.
On the other hand, assume the given SUBSET-SUM instance is a “yes” instance. This

means there is some subset of indexes I such that
∑

i∈I ai = b. Define the coalition
C = {(s, vi) : i ∈ I} ∪ {(vi, t) : i ∈ I}. The max-flow value allowed by C is∑

i∈I ai = b, so C is a winning coalition. However:

p(C) = 2
∑
i∈I

ai

2(b + 1)
=

b

b + 1
< 1

So the coalition C blocks p, and p is unstable.

Another interesting question is whether finding the CoS itself is computationally hard
in TNFGs. The answer to that question is yes, although this result does not follow
from Theorem 3. The proof is based on a reduction from the well-known PARTITION

problem, and is omitted due to space constraints.
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5 The Cost of Stability in TNFGs

We now show how to bound and approximate the CoS in general TNFGs, and provide
efficient algorithms for computing the CoS and finding optimal super-imputations1 in
restricted classes of TNFGs.

5.1 Connectivity Games

We first show that the CoS can be computed efficiently in connectivity games, where a
coalition wins if it contains a path from the network’s source to its sink.

Definition 15. A connectivity game is a TNFG where the capacities of all edges are 1
and the threshold is also 1.

Theorem 4. The CoS of a connectivity game is equal to the max-flow value of the
underlying flow network.

Proof. Let C be the set of edges crossing a min-cut in a connectivity game G. Notice
that |C| is equal to the max-flow value of the network due to the max-flow min-cut
theorem (since all capacities are 1). Any winning coalition in G (containing a path from
s to t) must include some edge in C, so from Theorem 2 we get CoS(G) ≤ |C|. On
the other hand, Lemma 2 guarantees the existence of |C| edge-disjoint paths from s to
t, each of which is a winning coalition, so from Theorem 1 we get CoS(G) ≥ |C|. We
conclude that CoS(G) = |C|.

5.2 Bounding the CoS in TNFGs

We now give an upper bound on the CoS in general TNFGs, based on the max-flow
value of the underlying flow network.2

Theorem 5. Let G be a TNFG with threshold k, and let F be the max-flow value of the
underlying flow network. Then CoS(G) ≤ F

k .

Proof. Let E be the edge set of G, and let S be the set of edges crossing a min-cut of
G. We define the super-imputation p as follows:

∀e ∈ E : pe =

{
c(e)
k if e ∈ S

0 otherwise

Notice that due to the max-flow min-cut theorem:

p(E) =
∑
e∈S

c(e)
k

=
F

k

1 A super-imputation is optimal if it is stable and the sum of payments is equal to the CoS.
2 Note that there is a trivial upper bound on the CoS in any simple game—the CoS is never

greater than the number of agents in the game (this is implied by Theorem 2).
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Let C be a winning coalition in G. This means that:∑
e∈C∩S

c(e) ≥ k

And so:

p(C) =
∑
e∈C

pe =
∑

e∈C∩S

c(e)
k

≥ 1

So p is stable and CoS(G) ≤ p(E) = F
k .

A corollary of Theorem 5 is that the ratio between the max-flow value (F ) and the
threshold (k) of a TNFG (which is easy to compute) can serve as an approximation
for the game’s CoS (an F

k -approximation). Of course, this approximation is tighter the
smaller the ratio. Also, the proof of Theorem 5 shows us how to efficiently find a stable
super-imputation with adjusted gains equal to this ratio.

5.3 Equal Capacity TNFGs

We now generalize Theorem 4, showing an efficient way to compute the CoS of a TNFG
with equal edge capacities.

Theorem 6. If G is a TNFG where the capacities of all edges are equal to b and the
threshold is rb (for some b ∈ R+ and r ∈ N), then CoS(G) = F

rb , where F is the
max-flow value of the underlying flow network.

Proof. We know that CoS(G) ≤ F
rb by Theorem 5, so it suffices to prove that

CoS(G) ≥ F
rb .3

Denote d = F
b . Note that d ∈ N, since a min-cut in G contains d edges (each with

capacity b). We claim that there must exist d edge-disjoint paths from s to t in G. This
follows from Lemma 2, because if we changed all the capacities in the network to 1, the
max-flow value would be d (any min-cut in the original network is still a min-cut after
the change).

Let C1, . . . , Cd denote edge-disjoint paths from s to t in G. Let p be a stable super-
imputation in G. Since the threshold is rb, any coalition containing r of the paths Ci

(1 ≤ i ≤ d) is a winning coalition. In other words, for any subset of indexes I ⊆
{1, . . . , d} where |I| = r, it must hold that:∑

i∈I

p(Ci) ≥ 1

We can write
(
d
r

)
such inequalities, and each p(Ci) appears in an equal number of them,

so summing all the inequalities yields:

r

d

(
d

r

) d∑
i=1

p(Ci) ≥
(
d

r

)
⇒

d∑
i=1

p(Ci) ≥ F

rb

3 The proof of Theorem 5 also provides an efficient method for finding an optimal super-
imputation in this case.
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Since this is true for any stable super-imputationp, we conclude that: CoS(G) ≥ F
rb .

Note that Theorem 4 is actually a special case of Theorem 6, where r = b = 1.

5.4 Serial TNFGs

We now examine the special case of serial TNFGs, built by serially connecting a se-
quence of component TNFGs. Such games can model scenarios where the flow must
pass through a series of bottlenecks. We show that in such a case, the CoS of the entire
sequence is equal to the minimal CoS among the component TNFGs.

Definition 16. Given a set of TNFGs {G1, . . . , Gn} all with the same threshold k, a
serial TNFG is the TNFG with threshold k over the flow network obtained by merging
the sink of Gi with the source of Gi+1 for every 1 ≤ i < n.

Theorem 7. If G is a serial TNFG composed of the TNFGs {G1, . . . , Gn}, then
CoS(G) = min

1≤i≤n
CoS(Gi).

Proof. We will prove the theorem for the case where n = 2, and the general case
follows by induction. Assume w.l.o.g. that CoS(G1) ≤ CoS(G2). Denote by E1 and E2

the edge sets of G1 and G2 respectively, and denote by E = E1 ∪E2 the edge set of G.
Let p′ be an optimal super-imputation in G1 (i.e., p′ is stable and p′(E1) = CoS(G1)).
We define the super-imputation p in G as follows:

∀e ∈ E : pe =

{
p′e if e ∈ E1

0 if e ∈ E2

Notice that p(E) = p′(E1) = CoS(G1). We will show that p is optimal in G, which
implies that CoS(G) = CoS(G1).

First, let C ⊆ E be a winning coalition in G. C must contain a subset C′ ⊆ C ∩ E1

which is a winning coalition in G1. p′ is stable in G1, so p(C) = p′(C′) ≥ 1, meaning
that p is stable in G.

On the other hand, let p̃ be a super-imputation in G such that p̃(E) < p(E) =
CoS(G1). Write p̃(E1) = αp̃(E) and p̃(E2) = (1 − α)p̃(E) for some 0 ≤ α ≤ 1.
Assume w.l.o.g. α > 0. There must exist a winning coalition C1 ⊆ E1 in G1 such that
p̃(C1) < α, otherwise the super-imputation 1

α p̃ would be stable in G1 with adjusted
gains smaller than CoS(G1), which would be a contradiction. Likewise, there must
exist a winning coalition C2 ⊆ E2 in G2 such that p̃(C2) ≤ (1 − α).4 The coalition
C1 ∪ C2 is then a winning coalition in G, but p̃(C1 ∪ C2) < α + (1 − α) = 1. We
conclude that p̃ is unstable in G and so p(E) = CoS(G).

Altogether, this shows that p is optimal in G, which implies that CoS(G) = p(E) =
CoS(G1). So the theorem is proved for the case where n = 2. The general case follows
by induction.

Using Theorem 7, we now show how the CoS of a serial TNFG can be computed effi-
ciently, as long as the number of edges in each component TNFG is not too large.

4 Here the inequality is not strict, since if α = 1 then p̃ is 0 for any coalition in G2.
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Definition 17. A B-bounded serial TNFG is a serial TNFG with components
{G1, . . . , Gn} where the number of edges in each component TNFG Gi (1 ≤ i ≤ n) is
bounded by some constant number B.5

Theorem 8. The CoS of a B-bounded serial TNFG can be computed in polynomial
time.

Proof. Let G be a B-bounded serial TNFG whose component TNFGs are
{G1, . . . , Gn}. We present an algorithm for computing CoS(G) in time linear in n,
although the runtime includes a constant factor which is exponential in B. Therefore,
this algorithm is only tractable if the bound B is small.

For each TNFG Gi, we can describe CoS(Gi) as a linear program. Let Ei denote
the set of edges in Gi. For every e ∈ Ei we define a variable pe. The linear program is:

Minimize:
∑
e∈Ei

pe

Under the constraints:
∀e ∈ Ei : pe ≥ 0
∀C ⊆ Ei :

∑
e∈C

pe ≥ v(C)

Recall that v(C) equals 1 if C is a winning coalition and 0 otherwise. The number
of constraints in the linear program is exponential in |Ei|, but |Ei| is bounded by the
constant B. Linear programs can be solved efficiently, so we can calculate CoS(Gi) in
constant time with respect to n (although exponential with respect to B).

Once we have computed CoS(Gi) for all n component TNFGs, we can get CoS(G)
by using Theorem 7: CoS(G) = min

1≤i≤n
CoS(Gi).

6 Weighted Voting Games and TNFGs

We now examine the relationship between the CoS in TNFGs and in weighted voting
games (WVGs), a well-known game theoretic model of cooperative decision making.6

Definition 18. Given a set of agents N , a weight function w : N → R+ and a threshold
q ∈ R+, a weighted voting game is the simple cooperative game where a coalition
C ⊆ N is a winning coalition if and only if the sum of the weights of the agents in C
exceeds the threshold q, that is w(C) =

∑
a∈C w(a) ≥ q.

We can define a WVG based on any subset of agents in a TNFG: given a TNFG
〈V,E, c, s, t, k〉 and a subset of agents F ⊆ E, we define the WVG WF = 〈F,w, k〉
where w(e) = c(e) for every agent e ∈ F . We also denote the CoS of the new game
WF as CoS(F ).

We now show that the CoS of a TNFG is bounded by the CoS of any WVG induced
by the set of edges crossing a cut of the flow network.

5 Note that the number of components n is not bounded.
6 Analysis of the CoS in WVGs is given by Bachrach et al [1].
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Theorem 9. Let G = 〈V,E, c, s, t, k〉 be a TNFG instance, let F ⊆ E be the set of
edges crossing a cut of G, and let pF be a super-imputation in the WVG WF . If pF is
stable in WF , then the super-imputation p is stable in G, where p(e) = pF (e) if e ∈ F
and p(e) = 0 otherwise.

As a direct corollary we get that CoS(G) ≤ CoS(F ).

Proof. Let C ⊆ E be a winning coalition in G, i.e., the agents in C allow a flow with
value k from s to t. In particular, it must hold that w(F ∩C) = c(F ∩C) ≥ k, so F ∩C
is a winning coalition in WF . Since pF is stable in WF , we know that pF (F ∩C) ≥ 1,
and therefore:

p(C) ≥ p(F ∩ C) = pF (F ∩ C) ≥ 1

So p is stable in G.

We can now supply alternative proofs to some of the theorems in this work using WVGs.
Theorem 5 is a direct corollary of Theorem 9, if we consider the edges crossing a min-
cut of a TNFG. The hardness of TNFG-SIS (Theorem 3) follows from the hardness of
the equivalent problem for WVGs, since we can reduce a WVG to a TNFG: given a
WVG W = 〈N,w, q〉, we define the TNFG GW = 〈V,E, c, s, t, k〉 by setting V =
{s, t}; c = w; k = q and E = N , where all edges are from s to t.7 By similar
arguments to those in the proof of Theorem 9, a super-imputation is stable in W if and
only if it is stable in GW . Bachrach et al. [1] prove that testing for super-imputation
stability in WVGs is coNP-hard, so it follows that TNFG-SIS is coNP-hard as well.

7 Related Work

The concept of the core was introduced by Gillies [7]. Similar concepts are the least-
core and the nucleolus [11], which are guaranteed to be nonempty. A different solution
concept is the Shapley value [12], which aims for fairness rather than stability.

Elkind et al. [3] discuss various solution concepts in WVGs, showing that in this
domain computing the core can be done in polynomial time, while many questions re-
lating to other solution concepts are NP-hard. Elkind and Pasechnik [5] show a pseudo-
polynomial algorithm for computing the nucleolus of WVGs.

Bachrach and Rosenschein [2] examine calculating power indexes in TNFGs. Power
indexes attempt to measure how much “real power” each player has in a given game. It is
shown that for TNFGs, computing the Shapley-Shubik index is NP-hard and computing
the Banzhaf index is #P-complete. However, an efficient algorithm for the restricted
case of connectivity games over bounded layer graphs is provided. Elkind et al. [4]
show how to compute power indexes in the special case of series-parallel TNFGs.

While our work focuses on TNFGs, much research has considered the cardinal net-
work flow game (CNFG), where a coalition’s utility equals the max-flow value it can
achieve. Computing the core in CNFGs can be done in polynomial time; Kalai and
Zemel [8, 9] show that numerous families of CNFGs have nonempty cores.

7 This requires allowing a multigraph, but we could avoid that by splitting every edge into two
equivalent edges.
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Yokoo et al. [13] demonstrate that various cooperative solution concepts (such as the
core, nucleolus and Shapley value) are vulnerable to manipulations in open anonymous
environments. They use a more fine-grained model of cooperative games, where each
agent has a set of skills, and values are defined for different subsets of skills (rather than
subsets of agents). They show that agents may sometimes profit from manipulations
such as submitting false names, collusion, and hiding skills.

Monderer and Tennenholtz [10] investigate the case of an interested party who
wishes to influence the behavior of agents in a game which is not under its control.
The approach taken is close to the one we take here in spirit, although that work deals
with normal-form games, not cooperative games. In that model, the interested party
may commit to making non-negative payments to the agents if certain strategy profiles
are selected. Payments are given to agents individually, but they are dependent on the
strategies selected by all agents. As in our work, it is assumed that the interested party
wishes to minimize its expenses. Determining the optimal monetary offers to be made in
order to implement a desired outcome is shown to be NP-hard in general, but becomes
tractable under certain modifications.

The CoS concept that we use here was first defined by Bachrach et al. [1], who ex-
amined the CoS in WVGs. It was shown that it is coNP-complete to test whether a given
super-imputation in such a game is stable, but the CoS may be computed efficiently if
either the player weights or payments are bounded. An efficient approximation algo-
rithm for the CoS in general WVGs was also given.

8 Conclusion

We examined stabilizing cooperative games using external payments, and considered
the CoS—the minimal total payment that allows a stable division of the grand coali-
tion’s gains among the agents, in the context of network flow games (TNFGs). We
showed that it is coNP-complete to determine whether a given super-imputation in a
TNFG is stable. We provided an upper bound on the CoS based on the network’s max-
flow, which can be used to approximate the CoS. We showed that in connectivity games
and in equal capacity TNFGs , both the CoS and an optimal super-imputation may be
found efficiently. We also showed how to compute the CoS in serial TNFGs with a
small number of edges per component. Finally, we showed that the CoS of any TNFG
can be bounded by the CoS of a WVG induced by some cut of the flow network.

In future work, we could examine the CoS in various other cooperative games. Ad-
ditionally, it might be interesting to define the CoS for any coalition (not only for the
grand coalition), and perhaps for various coalitional structures. Finally, we could inves-
tigate the relationship between the CoS and other cooperative solution concepts such as
the least-core, nucleolus, and Shapley value.
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Abstract. Extension of sand pile models, one-dimensional sand au-
tomata are an intermediate discrete dynamical system between one di-
mensional cellular automata and two-dimensional cellular automata. In
this paper, we shall study the decidability problem of global behavior
of this system. In particular, we shall focus on the problem of injec-
tivity and surjectivity which have the property of being decidable for
one-dimensional cellular automata and undecidable for two-dimensional
one. We prove the following quite surprising property that surjectivity is
undecidable whereas injectivity is decidable. For completeness, we also
study these properties on some classical restrictions of configurations
(finite, periodic and bounded ones).

Introduction

Complex systems are systems made of a great number of well known entities
interacting locally with each other in a fully determined way. Despite the fact
that the local behavior is completely known, the global behavior of the system
may be very complex and even unpredictable. One simple formal model of com-
plex systems is cellular automata which consist on entities endowed with a state
chosen among a finite set, arranged on a regular grid of fixed dimension. Dynam-
ics of this system is obtained by applying uniformly and synchronously a local
transition function. In such systems, it was proved that in for one dimensional
grid, injectivity and surjectivity are decidable [1] whereas these properties are
undecidable in higher dimensions [2].

Introduced as a generalisation of sand-piles models [3], sand automata [4] are
a variant of cellular automata where states are integers and where the local
transition function works according to the gap between the neighbour value and
the cell’s one. To keep some locality, the difference is said to be infinite if it excess
the radius, thus the local transition function has only a finite number of cases. In
a topological way, those systems can be seen as an intermediate model between
one-dimensional and two-dimensional cellular automata (see [5,6]). Therefore,
one natural question is the it makes sense to study decidability questions on
injectivity and surjectivity in these models.

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 651–662, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



652 G. Richard

This paper is divided as follows: in section 1, we give formal definitions needed.
Then in section 2, we prove undecidability of surjectivity in general as well as
for classical restrictions on configurations. In section 3, we deal with the case
of injectivity proving that it is decidable in general but not for all classical
restrictions on configurations.

1 Definitions

In the rest of the paper, for any a, b ∈ Z with a ≤ b and I ⊆ Z, let �a, b� be the
set {a, a + 1, . . . , b − 1, b} and I the set I ∪ {−∞,+∞}.

1.1 Sand Automata

A sand automaton is a pair (r, f) where r ∈ N is the radius and f : �−r, r�
2r+1 →

�−r, r� is the local transition rule. This system acts on elements c ∈ Z
Z

called
configurations. A configuration c is bounded if there exists b ∈ N such that ∀i ∈ Z,
|c(i)| < b. It is finite if c is constant except for a finite numbers of elements (i.e.,
there exists l, k ∈ Z, such that for all z ∈ Z such that |z| > l, c(z) = k). It is
weakly periodic if there exists p ∈ Z+, d ∈ Z such that ∀z ∈ Z, c(z+p) = c(z)+d.
In the case where d = 0 in the previous definition, the configuration is called
strongly periodic.

For any r, l ∈ N, the l-local view function vl : Z
r × Z × Z

r → �−l, l�
2r+1

is
defined as:

vl(z−r, . . . , z0, . . . , zr)(i) =

⎧⎨⎩
−∞ if (zi − z0) < −l
(zi − z0) if |(zi − z0)| ≤ l
+∞ if (zi − z0) > l

This definition is extended to any configuration c ∈ Z
Z

and position z ∈ Z as
vl(c)(z) = vl(c(z − r), . . . , c(z + r)) provided that c(z) /∈ {−∞,+∞}. The global
function G : Z

Z → Z
Z

of a sand automaton (r, f) is defined, for all c ∈ ZZ and
i ∈ Z by:

G(c)(i) =

⎧⎨⎩
−∞ if c(i) = −∞
c(i) + f(vr(c)(i)) if c(i) ∈ Z
+∞ if c(i) = +∞

An sand automaton is injective (resp. surjective) if its global function is. It is
injective (resp. surjective) on finite configurations if the restriction of its global
configuration to finite configurations is injective (resp. surjective). The same
holds for bounded, weakly periodic or strongly periodic configurations. The links
between those different properties can be found in the article of J. Cervelle,
E. Formenti and B. Masson [7]. In this rest of this paper, we shall study whether
those properties are decidable.
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1.2 Two-Counter Machines

In this paper, we shall obtain undecidability result using reduction from the
halting problem of two-counter machines. Let Υ = {0,+} and Φ = {−, 0,+} ×
{0, 1} be respectively the set of test values and counter operations. For all (φ, j) ∈
Φ, testing τ : N2 → N2 and modifying θ : Φ × N2 → N2 actions are respectively
defined for any i ∈ {0, 1} and v ∈ N2 by:

τ(v)i =
{

0 if vi = 0
+ if vi > 0 θ(φ)(v)i =

⎧⎨⎩
max(0, vi − 1) if φ = (i,−)
vi + 1 if φ = (i,+)
vi otherwise

Introduced by M. Minsky [8], two-counter machines (CM-2) are quadruplet
(Q, q0, qf , t) where Q is a finite set of states, q0, qf ∈ Q are respectively the initial
and final state and t : Q×Υ 2 → Q×Φ the local transition rule. Those machines
act on configurations c ∈ Q×N2 by the global transition rule T : Q×N2 → Q×N2

defined as T (q, v) = (q′, θ(φ)(v)) when (q′, φ) = t(q, τ(v)). The configuration
(qf , (0, 0)) ∈ Q × N2 is the halting configuration. With these definitions, a two-
counter machine is halting if starting from the configuration (q0, (0, 0)) it even-
tually reaches an halting configuration. An evolution of a 2-CM is a sequence
(c0, . . . cn−1) ⊂ (Q × N2)n where for all i ∈ �0, n − 2�, ci+1 = T (ci). Such evolu-
tion is halting if c0 = (qi, (0, 0)) and cn−1 = (qf , (0, 0)). Thought seeming simple,
this system can achieve universal computation and thus the following theorem
holds:

Theorem 1 (M. Minsky [8], 1967). The halting problem for two-counter
machines is undecidable.

2 Surjectivity

In this section, we shall reduce the previous halting problem proving undecid-
ability of surjectivity in sand automaton.

Theorem 2. Given a sand-automaton S = (r, f), it is undecidable to know
whether it is surjective.

The reduction use the following sketch. We first define an encoding of any evo-
lution of any CM-2 inside a configuration of a sand automaton. Then, for each
two-counter machine, we define a sand automaton that is surjective on all con-
figurations except those containing the encoding of an halting evolution. To do
this, the constructed sand automaton “checks” locally whether the configuration
seems to be a correct evolution of the machine. In this case, the automaton
does a XOR on some additional checking bits. The main point is that those
bits are positioned such that a valid halting evolution creates a finite cycle and
thus prevents surjectivity. The idea of this technique is similar to the one used
in the proof of undecidability of surjectivity over finite configurations in two-
dimensional cellular automata by J. Kari [9] whereas realisation is trickier due
to additional restrictions encountered.
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2.1 Proof of the Theorem

Encoding two-counter machine evolution. This section is devoted to explain
how to encode an evolution of a two-counter machine inside a sand automaton con-
figuration. One trick in the encoding is that all data are encoded by sequence of
integers which are all multiple of 10. Intermediate values being only used to achieve
unambiguity. Therefore, to ease reading and understanding, values in configura-
tions of sand automaton are given as one digit numbers (ex: 0.5).

For any configuration c = (q, l, r) ∈ Q×N2, any integer h ∈ �−r−1, l+1� and
any array of checking bits (x = (x0, . . . , x7) ∈ {0, 1}8), the c − h − x snapshot
is the sequence of values (depicted in Fig. 1) obtained by concatenating the
following sub-sequences where l? = 1 iff l = 0 (resp. r? = 1 iff r = 0):

– (l + 1, l + 1.3, l + 1 + x0, l + 1 + x1) to encode first counter;
– (−r − 1,−r − 1 + 0.4,−r − 1 + x2,−r − 1 + x3) to encode second counter;
– (0, .1, x4, x5) to encode zero;
– (h, h + 0.2, h + q, h + l?, h + r?, h + x6, h + x7) to encode the state.

0

h

l + 1

−r − 1

x0 x1

x2 x3

x4 x5

q
l? r? x6 x7

Fig. 1. A (q, l, r) − h − x snapshot

A c−h snapshot (denoted as Sh
c ) a c−h−x snapshot for an arbitrary x ∈ {0, 1}8.

With this notation, a configuration c = (q, l, r) is encoded as any c− 0 snapshot
and a transition between c = (q, l, r) and c′ = (q′, l′, r′) is encoded as following
sequence of snapshots:

Tc,c′ = S1
c . . .Sl

cSl+1
(q,l′,r)S

l
(q,l′,r)Sl−1

(q,l′,r) . . .S
−r
(q,l′,r)S

−r−1
(q,l′,r′)S

−r
(q,l′,r′) . . .S

−1
(q,l′,r′)

One way to depict this encoding is to represent each Si
c as a four valuated function

(one value for −l − 1, 0, i and r + 1) and join those points leading to the figure 2.
With this encoding, to any 2-CM (Q, q0, qf , t) and any evolution (c0, . . . cn−1) ⊂

(Q × N2)n, one the set S ∈ Nk of partial configuration of sand automata on the
form:
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0
q

q

q

q

q′

l
l′

r r′

Fig. 2. Encoding a transition (q, l, r) � (q′, l′, r′)

S0
c0

Tc0,c1S0
c1

. . . Tcn−2,cn−1S0
cn−1

The idea is now to construct, for any 2-CM, a sand automaton which is
surjective on all configuration except those containing an encoding of an halting
configuration.

Construction of the automaton. The main point of the constructed sand-
automaton is to “check” whether the current configuration contains the encoding
of an halting evolution. To do this, we use a neigbourhood of large size which
is more than twice the size of a snapshot which ensure that our local view
contains at least one neighbouring snapshot if it exists. As snapshots can be of
arbitrary large height, one cannot see the whole contents of the snapshot though
the local view. However, using the small “bumps” (gaps between 0.1 and 0.4) in
the encoding, one can determine in which section (head, stacks or zero) is the
current position and whether this is compatible with the same section in the left
and right neighbours.

The local transition function is chosen to be identity except for position cor-
responding to one of the checking bit xi where the local view correspond to a
partial correct encoding (see Fig. 3). In this case, we choose either to do a XOR
with the value of the corresponding checking bit of either the left or the right
neighbour. The former is denoted as x−

i whereas the latter is denoted as x+
i .

With this definition, the sand automaton behaves as identity except for valid
portions of encoding where it behaves as a one dimensional XOR.

The last point of the construction is to define which neighbour is used in
each situation and add some additional rules to ensure that the line of xored
bits go trough the whole encoding. Thus, we define the order of checking pre-
sented in figure 4. For example, when seeing two consecutive snapshots on the
form Sc

l S
(q,l′,r)
l+1 the checking bit x0 is xored with the checking bit x6 rather

than using the next x0 bit. Using the depicted order, the resulting line of xored
bits is compound either of repetitions of the pattern x+

0 x−
6 x−

4 x−
7 x+

1 x+
6 x−

4 x+
7 or

x−
2 x+

7 x+
5 x+

6 x−
3 x−

7 x+
5 x−

6 . One important thing to notice is that all data need for
applying the transition of the counter machine is included in the head portion
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+∞ −∞ −∞ +∞ −∞ −∞

Here the local transition rule enforce the central red column to decrease by one since
the local view correspond to a possibly valid encoding and the values of the x7 in the

current and next blocs are both one.

Fig. 3. Example of non-zero transition for x+
7

x0
x1

x0
x1

x6

x7

x6

x7

x3
x2

x3
x2

x6

x7

x6

x7

x6 x7

x7 x6

x4

x5

x4

x5

x6 x7

x7 x6

x4

x5

x4

x5

Fig. 4. Order of checks

(q, l?, r?) and thus can be read when the sequence of snapshot change the value
of l or r (as for example for Sc

l S
(q,l′,r)
l+1 ). For the case of initial or halting configu-

ration, we add the following additional order of checking (x−
6 x+

1 )(x−
2 x+

5 )(x−
3 x+

0 )
which links the two previously introduced patterns.
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Lemma 1. For the constructed sand-automaton, a configuration contains a cy-
cle of xored bits if and only if it encodes an halting evolution of the associated
CM-2.

Proof. It is clear that the encoding of a correct evolution implies the existence
of a cycle of xored bits.

Let us now look at the converse and assume there exists a cycle of xored bits.
The first easy remark is that the cycle is restricted by the order of xi defined
previously. Do to this choice, the cycle is made of convex polyominoes. This
ensure that the cycle is compound of succession of triangles and trapezes which
form a valid upper or lower part.

From this remark, it can be deduced that there exists exactly one starting and
one halting configurations and that the two parts (lower and upper) are coherent.
Thus, looking around checking bits involved in the cycle, there is the encoding
of a valid evolution of the associated CM-2 from the initial configuration to the
halting one inducing that the CM-2 is halting. ��

This lemma concludes the proof of the theorem: since one dimensional XOR is
surjective on finite configuration and infinite one but not for cyclic configurations
of fixed size, the constructed automaton is not surjective if and only if the CM-2
is halting.

2.2 Specific Cases

Using some variations of the previous construction, we can achieve to proove
undecidability of surjectivity on several restrictions of configurations1.

Proposition 1. Given a sand-automaton S = (r, f), it is undecidable to know
whether it is surjective on finite configurations.

Proof. On the one hand, in our construction, for a sufficiently large n the ∞-
local view 02r+1 does not encode any valid configuration. This implies that our
sand automaton acts as identity on it. Therefore, the only predecessor of pattern
02r+1 is 0 and, if one of the constructed automaton is surjective, it is surjective
on finite configuration (note that this implication is not true in general).

On the other hand, if the constructed automaton has a cycle of xored bits,
then it exists a finite configuration with this cycle. Hence, it is not surjective on
finite configuration. ��

Proposition 2. Given a sand-automaton S = (r, f), it is undecidable to know
whether it is surjective on bounded, weakly periodic or strongly periodic configu-
rations.

Proof. For this result, it is sufficient to remark that the constructed automaton
is either surjective for any of these classes of configuration if the 2-CM halts
1 Note that some of those results can also be achieved using equivalences found in the

work of J. Cervelle, E. Formenti and B. Masson [4].
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or has a strongly periodic (hence also weakly periodic) and bounded counter-
example that can be constructed by repeating the non-finite portion of the finite
counter example.

3 Injectivity

Now let us procced with injectivity. In a first part, we use again the previous con-
struction to prove undecidability of injectivity over finite, bounded and strongly
periodic configurations. Then, we give a full new proof for decidability of the
general and weakly periodic case.

3.1 On Finite, Bounded and Strongly Periodic Configurations

Proposition 3. Given a sand-automaton, it is undecidable to know whether it
is injective on finite configurations.

Proof. If we take the previous construction, one can see that the automaton is
injective unless on configurations containing infinite lines of xored bits or cycles.
As previously cycles correspond to halting whereas infinite lines cannot occur in
a finite configuration. ��

Proposition 4. Given a sand-automaton, it is undecidable to know whether it
is injective on bounded or strongly periodic configurations.

Proof (sketch). The basic idea of this proof is the same as the previous case, that
is, to get rid of the case of infinite xored bit lines which are not cycles. To do
this it is sufficient to add in our encoding a constant shift between to consecutive
snapshots such that any portion (head, counters or zero) is not horizontal. With
this condition, any infinite xored line is necessarily unbounded and thus cannot
occur in bounded or strongly periodic configuration. ��

3.2 In General and Weakly Periodic Configuration

At this point, one could think that every property is undecidable in one-
dimensional sand-automata. In fact, this is not the case and injectivity in decid-
able in the general case. This result is very interesting since it make the status
of those two properties distinct and even make distinction inside injectivity. The
rest of this section is thus devoted to prove the following theorem.

Theorem 3. It is decidable to known whether a sand-automaton is injective.

Proof of the theorem. The idea of the proof is to show that if a sand-
automaton is not injective, then there exist a pair of weakly periodic config-
urations with the same image and whose perdiod can be bounded. This proof is
somewhat similar to the proof in the case of one-dimensional cellular automata
(see [1]).
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x

y

c

c′
G(c) = G(c′)

a b

Fig. 5. Example of (x, y) mutually erasable pattern

Let us fix a sand automaton (r, f) with global transition rule G. Let us take
δ : N → N and π : N → N defined as d0 = 2r + 1, π0 = 0 and for all n ∈ N,
δn+1 = 4δn(1 + (2πn + 1)2(2r+1)) and πn+1 = 4δn+1(2r + 1).

Let I be an interval of Z, two configurations c, c′ ∈ Z
Z

are I mutually erasable
if G(c)|I = G(c′)|I and for any sub interval I ′ ⊆ I such that |I ′| > 2r + 1,
there exists p ∈ I ′ such that c(p) 	= c′(p) Inside such a pair, a position z ∈ Z
is at level l if c(z) 	= c(z′), for all i ∈ �0, l − 1�, �πi, πi+1 − 1� ∩ v∞(c)(z) 	= ∅
and �πi, πi+1 − 1� ∩ v∞(c′)(z) 	= ∅. The set of positions at level l is denoted as
Δl(c, c′).

A (x, y) mutually erasable pattern ((x, y)-mep) is a pair (c, c′) ∈ �a−r, b+r� →
�c, d�) such that b−a < x, d−c < y, v∞(c)(a) = v∞(c′)(a), v∞(c)(b) = v∞(c′)(b),
G(c)|�a,b� = G(c′)|�a,b�, c(a) 	= c′(a) and c(b) 	= c′(b) (see Fig. 5). Intuitively, x, y
mutually erasable patterns are bounded distinct portions of configuration with
the same image and such that local view is the same at extremities of each
configuration. The first easy result is that such patterns can be turned into two
weakly periodic configurations with the same image.

Lemma 2. if there exists a (x, y)-mep, then the automaton is not injective.

Proof. Let us take (c, c′) a (x, y)-mep. The basic idea is to construct a configura-
tion by gluing successive repetitions of those patterns. To do this, let us consider
the configuration c̃ : Z → Z defined as, for any z ∈ Z,

c̃(z) = c(a + (z mod (b − a))) + (G(c)(b) − G(c)(a))
⌊

z

b − a

⌋
This construction can also be done on c′ to obtain the configuration c̃′. One

first property is that for all z ∈ Z, c̃(z +(b−a)) = c̃(z)+ (G(c)(b)−G(c)(a)). As
the same can be said on c̃′ and since G(c′)(b)−G(c′)(a) = G(c)(b)−G(c)(a), it is
sufficient to show that G(c̃) and G(c̃′) coincide on �a, b�. However, as v∞(c)(a) =
v∞(c)(b),we have, for any z ∈ �a − r, b + r�, c̃(z) = c(z). The same applies for
c′. Since G(c) and G(c′) coincide on �a, b� and c(a) 	= c′(a), we constructed two
distinct configurations with the same image. ��

In the other direction, we shall prove that any non-injective sand-automata do
have some mep with a computable bounded size.
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Lemma 3 (Hn). Let take a non-injective sand automaton then either it has a
(dn, πn)-mep or for any I mutually erasable configuration c, c′ where |I| ≥ 2δn,
Δn(c, c′) 	= ∅.

Proof. The case n = 0 is trivial since the second condition is always true.
Now, assume that Hn is true. To prove Hn+1, let us assume that there is

no (dn, πn)-mep and take (c, c′) two I-mutually erasable configurations with
|I| > 2δn. Without loss of generality, we can suppose that I = �−δn, δn� and
that we have some position p ∈ �−r, r� such that 0 = c(p) 	= c(p′).

The first step consist on “clipping” the configuration Let us look at the set
S = {c(z) | z ∈ I}∪{c′(z) | z ∈ I}. This set has at most 4δn+1 values thus there
exists u ∈ �1, 1 + πn+1� and l ∈ �−πn+1 − 1,−1� such that S ∩ �u− r, u + r� = ∅
and S ∩ �l − r, l + r� = ∅. Now let us construct the two elements d, d′ ∈ Z →
�−πn+1, πn+1� defined, for any z ∈ I, as:

d(z) =

⎧⎨⎩
−∞ if c(z) < l
c(z) if l ≤ c(z) ≤ u
∞ if c(z) > u

The same can be done for d′. This operation intuitively consists on “clipping”
both configurations between l and u. By construction, it can be easily seen that
d and d′ are I mutually erasable configurations and that Δ0(d, d′) ⊂ Δ0(c, c′).

Now let us look more in details at Δ0(d, d′). By construction, we have p ∈
Δ0(d, d′). Since δn+1 = 4δn(1+(2πn +1)2(2r+1)), we can divide our interval into
1 + 2(2πn + 1)2(2r+1) distinct sub-intervals of size 2δn. Now, let us prove that at
least half of them do have a point at level n. The basic idea is to make use of the
recurrence hypothesis and the obvious fact that a (δn, πn)-mep is a (δn+1, πn+1)-
mep. To apply this hypothesis on any sub-interval I ′, we must ensure that (d, d′)
is I ′-mutually erasable. Since (d, d′) is I erasable, the fact that their image by
the transition function is the same is trivial. The more difficult point is to show
that Δ0(d, d′) is “dense” on the left or on the right of p. To do this, we shall
proof the following lemma:

Lemma 4. If there exists l < p < u such that Δ0(d, d′)∩�l−r, l+r� = Δ0(d, d′)∩
�u − r, u + r� = ∅ then there exists a (u − l + 2r + 1, πn+1)-mep.

If we are in this conditions, one can easily obtain a mep from this by “gluing”
the identical portions as depicted in figure 6. More formally, we consider the
configuration e defined as:

e(z) =

⎧⎪⎪⎨⎪⎪⎩
d(z) if z ∈ �l − r, u + r�
d(z + u − l + 2r) if z ∈ �l − 3r − 1, l − r�
d(z − u + l + 2r) if z ∈ �u + r, u + 3r + 1�
+∞ otherwise

The same can be done to obtain e′ from d′. Since d(p) 	= d′(p), (e, e′) is a
(δn+1, πn+1)-mep, concluding the proof of lemma 4.

With the previous claim, we have found at least (2πn + 1)2(2r+1) positions
at level n. Since this number is more that the square the number of possible
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l r

d

d′
⇒

e

e′

l r

Fig. 6. Gluing by identical portion

elements in vπn , there are two positions z, z′ such that vπn(d)(z) = vπn(d)(z′)
and vπn(d′)(z) = vπn(d′)(z′). If this condition would also be true for v∞ then
we would have a (δn+1, πn+1)-mep. It follows that either v∞(d)(z) or v∞(d)(z′)
contains a value larger than πn which is neither −∞ nor ∞. As d has values into
�−πn+1, πn+1�, then either z or z′ is at level n + 1.

To sum up, starting for c, c′ two I mutually erasable configurations with |I| ≤
2δn+1 and assuming that there is no (δn+1, πn+1)-mep, we have shown that there
exists a point at level n (either z or z′). ��

To finish the proof, it is sufficient to note that a (f, r) sand automaton cannot
have any level 2r + 2 position since v∞ contains at most 2r + 1 values and
that any non injective sand-automaton has either two δ2r+1 mutually erasable
configuration or a (δ2r+1, π2r+1)-mep by the same gluing argument as previously.
It follows that any non-injective sand-automata have a (δ2r+1, π2r+1)-mep. As
those mep are in finite number (up to some vertical translation), the injectivity
problem is decidable for one-dimensional sand-automaton.

4 Conclusion

Those two results of decidability confirm the place of sand automata as an inter-
mediate model between one and two dimensional cellular automata. The fact that
status of injectivity and surjectivity differ is very interesting and could perhaps
help understanding better these two notions. Even if they use the same global
idea as for cellular automata, the two proofs are more subtle. The proof of un-
decidability of surjectivity is more powerful by working under several additional
restrictions as the one for cellular automata whereas the proof of decidability of
injectivity is an extension of the “cut and glue” idea used for cellular automata.
For the later case, the fact that some restrictions become undecidable is also
very interesting as they can all be seen as providing a way to “fix” some origin.
In this way, we have somehow the same duality as between the classical halting
problem and the immortality problem. It could be interesting to see if sand-
automata could help provide a model where the first is undecidable whereas the
second is decidable. To conclude, we can note that the bound on size of mep
is rough and can probably be improved if trying to consider the complexity of
deciding injectivity.



662 G. Richard

References

1. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of par-
allel maps for tessellation structures. Journal of Computer and System Sciences 6(5),
448–464 (1972)

2. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM Jour-
nal on Computing 21(3), 571–586 (1992)

3. Goles, E., Kiwi, M.A.: Games on line graphs and sand piles. Theoretical Computer
Science 115(2), 321–349 (1993)

4. Cervelle, J., Formenti, E., Masson, B.: From sandpiles to sand automata. Theoretical
Computer Science 381(1-3), 1–28 (2007)

5. Dennunzio, A., Guillon, P., Masson, B.: Stable dynamics of sand automata. In: Fifth
Ifip International Conference on Theoretical Computer Science, TCS 2008, vol. 273,
pp. 157–169 (2008)

6. Dennunzio, A., Guillon, P., Masson, B.: Sand automata as cellular automata. Ac-
cepted to TCS (2008) (under revision)

7. Cervelle, J., Formenti, E., Masson, B.: Basic properties for sand automata. In: Je-
drzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 192–211.
Springer, Heidelberg (2005)

8. Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, Englewoods
Cliffs (1967)

9. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput.
Syst. Sci. 48(1), 149–182 (1994)



Quantum Algorithms to Solve the Hidden Shift Problem
for Quadratics and for Functions of Large Gowers Norm

Martin Rötteler
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Abstract. Most quantum algorithms that give an exponential speedup over clas-
sical algorithms exploit the Fourier transform in some way. In Shor’s algorithm,
sampling from the quantum Fourier spectrum is used to discover periodicity of
the modular exponentiation function. In a generalization of this idea, quantum
Fourier sampling can be used to discover hidden subgroup structures of some
functions much more efficiently than it is possible classically. Another problem
for which the Fourier transform has been recruited successfully on a quantum
computer is the hidden shift problem. Quantum algorithms for hidden shift prob-
lems usually have a slightly different flavor from hidden subgroup algorithms, as
they use the Fourier transform to perform a correlation with a given reference
function, instead of sampling from the Fourier spectrum directly. In this paper we
show that hidden shifts can be extracted efficiently from Boolean functions that
are quadratic forms. We also show how to identify an unknown quadratic form
on n variables using a linear number of queries, in contrast to the classical case
were this takes Θ(n2) many queries to a black box. What is more, we show that
our quantum algorithm is robust in the sense that it can also infer the shift if the
function is close to a quadratic, where we consider a Boolean function to be close
to a quadratic if it has a large Gowers U3 norm.

1 Introduction

Fourier analysis has a wide range of applications in computer science including sig-
nal processing, cryptography, Boolean functions, just to name a few. The fast Fourier
transform (FFT) algorithm provides an efficient way to compute the discrete Fourier
transform of length N in time O(N logN). This is a significant improvement over the
naive O(N2) implementation and allows to apply Fourier analysis to correlation prob-
lems, to image and audio processing, efficient decoding of error-correcting codes, data
compression, etc. In a more theoretical context, the Fourier transform over the Boolean
hypercube—also called Walsh-Hadamard transform—is used to study certain classes
of Boolean functions, for instance monotone functions, functions with constant depth,
and functions with variables of high influence.

In quantum computing, Fourier transforms have turned out to be extremely suc-
cessful tools and feature prominently in quantum algorithms that achieve exponen-
tial speedups. The prime examples are Shor’s algorithms for discrete log and factoring
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[Sho97]. Indeed, the quantum computer can sample from the Fourier spectrum on N
points in quantum time O(log2 N), a big advantage over the classical case. Here “quan-
tum time” is measured in terms of elementary quantum gates that are needed to imple-
ment the unitary operation corresponding to the Fourier transform. This possibility of
performing a quantum Fourier transform more efficiently than in the classical case has
a tremendous upside and much of the power of quantum computing stems from there.
This fact has been leveraged for instance for the solution of the abelian hidden subgroup
problem (HSP) which essentially is solved by sampling from the Fourier spectrum of
a given function [ME98, BH97, Kit97]. The hidden subgroup, a secret property of the
function, can then be inferred by a subsequent classical post-processing.

However, the high hopes that Fourier sampling might lead to efficient quantum al-
gorithms for HSPs over general non-abelian groups, including cases that would encom-
pass the famous graph isomorphism problem, have been somewhat dampened recently,
as [HMR+06] showed that new techniques to design highly entangling measurements
would be required in order for the standard approach to succeed. Perhaps for this reason,
the field of quantum algorithms has seen a shift towards other algebraic problems such as
the algorithm for finding hidden nonlinear structures [CSV07]. The techniques to tackle
those problems are still based on Fourier analysis but have a different flavor than the HSP.

Classically, besides allowing for sampling from the spectrum the importance of the
Fourier transform for performing correlation tasks cannot be overstated. Therefore, it
is very natural to try to leverage the quantum computer’s exponential speedup at com-
puting Fourier transforms to compute correlations efficiently. It turns out, however, that
this task is an extremely challenging one. First of all, it can be shown that it is impos-
sible to compute correlations between two unknown vectors of data due to requirement
for the time evolution to be unitary and the fact that the correlation between two in-
puts is a non-linear map of the inputs. For some special problems, however, in which
one of the inputs is a fixed, known vector of data, correlations can be computed. This
question becomes relevant in particular for hidden shift problems, where correlations
can be used in a particularly fruitful way. These problems ask to identify a hidden shift
provided that access to a function f(x) and a shifted version g(x) = f(x + s) of the
function is given. Formally, the hidden shift problem is defined as follows:

Given: Finite group G, finite set R, maps f, g : G → R.
Promise: There exists s ∈ G such that g(x) = f(x + s) for all x ∈ G.

Task: Find s.

The first example of a problem of this kind that was solved on a quantum computer
was f(x) being the Legendre symbol and s being an unknown element of the cyclic
group Zp modulo a prime. As shown in [DHI03], for the Legendre symbol the hidden
shift s can be found efficiently on a quantum computer. The key observation is that the
Legendre function is an eigenfunction of the Fourier transform for the cyclic group Zp.
This fact can be used to compute a correlation of a shifted Legendre symbol with the
Legendre symbol itself by using the convolution theorem, involving the application of
two discrete Fourier transforms over Zp.

Our results. We present an efficient quantum algorithm to solve the hidden shift prob-
lem for a class of quadratic Boolean functions for which the associated quadratic form
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is non-degenerate. Those functions are special cases of what is known as bent functions
[Rot76]. An intriguing property of these functions is that, in absolute values, they have
a perfectly flat Fourier spectrum. In general, bent functions are those Boolean functions
for which the Hamming distance to the set of all linear Boolean functions is maximum,
where distance is measured by Hamming distance between their truth tables. A quan-
tum algorithm to solve the hidden shift problem for bent functions has been studied in
[Röt08], where the emphasis is on the richness of different classes of bent functions
for which a hidden shift problem can be defined and solved. In this paper, in contrast,
we restrict ourselves to just one class of bent functions, namely the quadratic forms,
and study a different question: is it possible to solve the hidden shift problem also in
cases where a given function f is actually not a quadratic form, but close to a quadratic
form? We answer this question in the affirmative, provided that f is not “too far” from a
quadratic form, where we measure closeness by the Gowers norm. We give a quantum
algorithm that can find a hidden shift for functions that are close to quadratics by using
a simple idea: first, we give a quantum algorithm that finds this quadratic form. Then
we solve the hidden shift problem for this quadratic form by resorting to the hidden
shift algorithm for the bent function case (the case where the corresponding quadratic
form is not of full rank can be taken care without major complications), and finally
we use a test to determine whether the resulting candidate shift is indeed the correct
answer. Overall, we obtain an algorithm that solves the hidden shift for functions of
large Gowers norms using O(n) queries to the functions. The classical lower bound for
such functions is at least Ω(n2) (for the case of perfect quadratics), but we conjecture
that for the case of functions that are close to quadratics, actually the classical query
complexity scales exponentially.

Related work. We already mentioned [Röt08] which addressed the hidden shift prob-
lem for bent functions and which constitutes a building block for our algorithm. The
hidden shift problem itself goes back to [DHI03], in which an algorithm similar to
our Algorithm 2 was used in order to correlate a shifted function with a given refer-
ence function, thereby solving a deconvolution problem. The main difference with the
present work is the departure from functions that have perfectly flat Fourier spectrum.

Our algorithm in Section 3 to identify the quadratic function is similar to the meth-
ods used in [CSV07, DDW09, BCD05] to extract information about functions that have
been encoded into the phases of quantum states. Related to the considered hidden shift
problem is also the work by Russell and Shparlinski [RS04] who considered shift prob-
lems for the case of χ(f(x)), where f is a polynomial on a finite group G and χ a
character of G, a general setup that includes our scenario. The two cases for which
algorithms were given in [RS04] are the reconstruction of a monic, square-free polyno-
mial f ∈ Fp[X ], where χ is the quadratic character (Legendre symbol) over Fp and the
reconstruction of a hidden shift over a finite group χ(sx), where χ is the character of
a known irreducible representation of G. The technique used in [RS04] is a generaliza-
tion to the technique of [DHI03]. It should be noted that we use a different technique
in our algorithm, namely we combine and entangle two states that are obtained from
querying the function, whereas [RS04] has more the flavor of a “single register” algo-
rithm. Another difference is that our algorithm is time efficient, i. e., fully polynomial
in the input size, whereas [RS04] is query efficient only.
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In a broader context, related to the hidden shift problem is the problem of unknown
shifts, i. e., problems in which we are given a supply of quantum states of the form
|D + s〉, where s is random, and D has to be identified. Problems of this kind have been
studied by Childs, Vazirani, and Schulman [CSV07], where D is a sphere of unknown
radius, Decker, Draisma, and Wocjan [DDW09], where D is a graph of a function, and
Montanaro [Mon09], where D is the set of points of a fixed Hamming-weight. The
latter paper also considers the cases where D hides other Boolean functions such as
juntas, a problem that was also studied in [AS07].

2 Fourier Analysis of Boolean Functions

First we briefly recall the Fourier representation of a real valued function f : Zn
2 → R

on the n-dimensional Boolean hypercube. For any subset S ⊆ [n] = {1, . . . , n} there
is a character of Zn

2 via χS : x 
→ (−1)Sxt

, where x ∈ Zn
2 (the transpose is necessary

as we assume that all vectors are row vectors) and S ∈ Zn
2 in the natural way. The inner

product of two functions on the hypercube is defined as 〈f, g〉 = 1
2n

∑
x f(x)g(x) =

Ex(fg). The χS are inequivalent character of Zn
2 , hence they obey the orthogonality

relation Ex(χSχT ) = δS,T . The Fourier transform of f is a function f̂ : Zn
2 → R

defined by

f̂(S) = Ex(fχS) =
1
2n

∑
x∈Zn

2

χS(x)f(x), (1)

f̂(S) is the Fourier coefficient of f at frequency S, the set of all Fourier coefficients
is called the Fourier spectrum of f and we have the representation f =

∑
S f̂(S)χS .

The convolution property is useful for our purposes, namely that f̂ ∗ g(S) = f̂(S)ĝ(S)
for all S where the convolution (f ∗ g) of two functions f , g is the function defined as
(f ∗ g)(x) = 1

2n

∑
y∈Zn

2
f(x + y)g(y). In quantum notation the Fourier transform on

the Boolean hypercube differs slightly in terms of the normalization and is given by the
unitary matrix

H2n =
1√
2n

∑
x,y∈Zn

2

(−1)xyt |x〉 〈y| ,

which is also sometimes called Hadamard transform [NC00]. Note that the Fourier
spectrum defined with respect to the Hadamard transform which differs from (1) by a
factor of 2−n/2. It is immediate from the definition of H2n that it can be written in
terms of a tensor (Kronecker) product of the Hadamard matrix of size 2 × 2, namely
H2n = (H2)⊗n, a fact which makes this transform appealing to use on a quantum
computer since can be computed using O(n) elementary operations.

For Boolean functions f : Zn
2 → Z2 with values in Z2 we tacitly assume that the

real valued function corresponding to f is actually F : x 
→ (−1)f(x). The Fourier
transform is then defined with respect to F , i. .e, we obtain that

F̂ (w) =
1
2n

∑
x∈Zn

2

(−1)wxt+f(x), (2)
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where we use w ∈ Zn
2 instead of S ⊆ [n] to denote the frequencies. Other than this

notational convention, the Fourier transform used in (2) for Boolean valued functions
and the Fourier transform used in (1) for real valued functions are the same. In the paper
we will sloppily identify f̂ = F̂ and it will be clear from the context which definition
has to be used.

We review some basic facts about Boolean quadratic functions. Recall that any
quadratic Boolean function f has the form f(x1, . . . , xn) =

∑
i<j qi,jxixj +

∑
i �ixi

which can be written as f(x) = xQxt + Lxt, where x = (x1, . . . , xn) ∈ Zn
2 . Here,

Q ∈ Fn×n
2 is an upper triangular matrix and L ∈ Fn

2 . Note that since we are working
over the Boolean numbers, we can without loss of generality assume that the diagonal
of Q is zero (otherwise, we can absorb the terms into L). It is useful to consider the
associated symplectic matrix B = (Q + Qt) with zero diagonal which defines a sym-
plectic form B(u, v) = uBvt. This form is non-degenerate if and only if rank(B) = n.
The coset of f +R(n, 1) of the first order Reed-Muller code is described by the rank of
B. This follows from Dickson’s theorem [MS77] which gives a complete classification
of symplectic forms over Z2:

Theorem 1 (Dickson [MS77]). Let B ∈ Zn×n
2 be symmetric with zero diagonal (such

matrices are also called symplectic matrices). Then there exists R ∈ GL(n,Z2) and
h ∈ [n/2] such that RBRt = D, where D is the matrix (1h ⊗σx)⊕0n−2h considered
as a matrix over Z2 (where σx is the permutation matrix corresponding to (1, 2)). In
particular, the rank of B is always even. Furthermore, under the base change given by
R, the function f becomes the quadratic form iph(x1, . . . , x2h)+L′(x1, . . . , xn) where
we used the inner product function iph and a linear function L′.

Let f(x) = xQxt + Lxt be a quadratic Boolean function such that the associated
symplectic matrix B = (Q + Qt) satisfies rank(B) = 2h = n. Then the corre-
sponding quadratic form is a so-called bent function [Rot76, Dil75, MS77]. In gen-
eral, bent functions are characterized as the functions f whose Fourier coefficients
f̂(w) = 1

2n

∑
x∈Zn

2
(−1)wxt+f(x) satisfy |f̂(w)| = 2−n/2 for all w ∈ Zn

2 , i. e., the
spectrum of f is flat. It is easy to see that bent functions can only exist if n is even and
that affine transforms of bent functions are again bent functions. Indeed, let f be a bent
function, let A ∈ GL(n,Z2) and b ∈ Zn

2 , and define g(x) := f(xA+b). Then also g(x)
is a bent function and ĝ(w) = (−1)−wbf̂(w(A−1)t) for all w ∈ Zn

2 . A very simple, but
important observation is that if f is bent, then this implicitly defines another Boolean
function via 2n/2f̂(w) =: (−1)f̃(w). Then this function f̃ is again a bent function and

called the dual bent function of f . By taking the dual twice we obtain f back: ˜̃f = f .
Theorem 1 allows us to define a whole class of bent functions, namely the Boolean

quadratics for which B = (Q + Qt) has maximal rank. It is easy to see that un-
der suitable choice of Q, so instance the inner product function ipn(x1, . . . , xn) =∑n/2

i=1 x2i−1x2i can be written in this way. Using affine transformations we can eas-
ily produce other bent functions from the inner product function and Theorem 1 also
implies that up to affine transformations the quadratic bent functions are equivalent to
the inner product function. From this argument also follows that the dual of a quadratic
bent function is again a quadratic bent function, a fact that will be used later on in the
algorithm for the hidden shift problem over quadratic bent functions.



668 M. Rötteler

3 The Hidden Shift Problem for Quadratics

Let n ≥ 1 and let O be an oracle which gives access to two Boolean functions f, g :
Zn

2 → Z2 such that there exists s ∈ Zn
2 such that g(x) = f(x + s) for all x ∈ Zn

2 . The
hidden shift problem is to find s by making as few queries to O as possible. If f is a
bent function, whence also g since it is an affine transform of f , then the hidden shift
can be efficiently extracted using the following standard algorithm. Recall that Boolean
functions are assumed to be computed into the phase. This is no restriction, as whenever
we have a function implemented as |x〉 |0〉 
→ |x〉 |f(x)〉, we can also compute f into
the phase as |x〉 
→ (−1)f(x) by applying f to a qubit initialized in 1√

2
(|0〉 − |1〉).

Algorithm 2 (Standard algorithm for the hidden shift problem [DHI03])
Input: Boolean functions f , g such that g(x) = f(x + s). Output: hidden shift s.

(i) Prepare the initial state |0〉.
(ii) Apply Fourier transform H⊗n

2 to prepare equal distribution of all inputs:

1√
2n

∑
x∈Zn

2

|x〉 .

(iii) Compute the shifted function into the phase to get

1√
2n

∑
x∈Zn

2

(−1)f(x+s) |x〉 .

(iv) Apply H⊗n
2 to get∑

w

(−1)swt

f̂(w) |w〉 =
1√
2n

∑
w

(−1)swt

(−1)f̃(w) |w〉 .

(v) Compute the function |w〉 
→ (−1)f̃(w) into the phase resulting in

1√
2n

∑
w

(−1)swt |w〉 .

(vi) Finally, apply another Hadamard transform H⊗n
2 to get |s〉 and measure s.

The function f̃ that has been used in Step (iv) can only be applied by means of a unitary
operation if the Fourier spectrum of f is flat, in other words if f is a bent function.
See also [Röt08] for several classes of bent functions to which this algorithm has been
applied. Note that Algorithm 2 requires only one query to g and one query to f̃ . Fur-
thermore, the quantum running time is O(n) and the algorithm is exact, i. e., zero error.
Note that Step (iii) of Algorithm 2 assumes that the Fourier transform of f is flat.

There is an intriguing connection between the hidden shift problem for injective
functions f , g and the hidden subgroup problem over semidirect products of the form
A � Z2 where the action is given by inversion in A [Kup05, FIM+03]. In our case
the functions are not injective, however, it is possible to exploit the property of being
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bent to derive another injective “quantum” function: F (x) := 1√
2n

∑
y(−1)f(x+y) |y〉

(similarly a function G can be derived from g). Now, an instance of an abelian hidden
subgroup problem in Zn

2 � Z2 can be defined via the hiding function H(x, b) that eval-
uates to F (x), if b = 0, and to G(x), if b = 1. This reduction leads to an algorithm that
is different from Algorithm 2, but also can be used to compute the shift.

Now, we consider a different task: we begin with an arbitrary quadratic Boolean
function (not necessarily bent) f , which is given by an oracle O. We show that f can be
discovered using O(n) quantum queries to O, whereas showing a lower bound of Ω(n2)
classical queries is straightforward. Recall that Bernstein and Vazirani [BV97] solved
the case of linear function f . We use quadratic forms f(x1, . . . , xn) =

∑
i<j qi,jxixj +∑

i �ixi written as f(x) = xQxt + Lxt, where x = (x1, . . . , xn) ∈ Zn
2 . Here, Q ∈

Zn×n
2 is an upper triangular matrix and L ∈ Zn

2 . Using the oracle we can compute the
function into the phase and obtain the state

|ψ〉 =
1√
2n

∑
x∈Zn

2

(−1)xQxt+Lx+b |x〉 . (3)

We will show next, that Q and L can be obtained from a linear number of copies of
|ψ〉. The method uses two such states at a time and combines them using the unitary
transform defined by

T : |x, y〉 
→ 1√
2n

∑
z∈Z2

(−1)zyt |x + y, z〉 .

Note that T can be implemented efficiently on a quantum computer as it is just a con-
trolled not between each qubit in the y register as source to the corresponding qubit in
the x register as target, followed by a Hadamard transform of each qubit in the y regis-
ter. The following computation shows that T can be used to extract information about
Q from two copies of |ψ〉.

T |ψ〉 ⊗ |ψ〉 = T

(
1
2n

∑
x,y

(−1)xQxt+yQyt+L(x+y)t |x, y〉
)

=
1√
23n

∑
x,y,z

(−1)xQxt+yQyt+L(x+y)t

(−1)zyt |x + y, z〉

=
1√
23n

∑
x,u,z

(−1)uQut+u(Q+Qt)xt+Lut+z(x+u)t |u, z〉

=
1√
2n

∑
u

(−1)uQtut+Lut ∣∣u, u(Q + Qt)
〉
.

Hence this state has the form 1√
2n

∑
u(−1)p(u) |u, u(Q + Qt)〉, where p is the quadratic

Boolean function p(u) = uQtut + Lut .
We now describe a direct way to recover f from sampling from these states. Suppose

we sample k = O(n) times, obtaining pairs (ui, vi) from this process. The goal is to
identify the matrix Q. Observe that learning what Q is equivalent to learning what
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M := (Q + Qt) is since Q is an upper triangular matrix with zero diagonal. Now,
arrange the sampled vectors ui into a matrix U = (u1| . . . |uk) and similarly V =
(v1| . . . |vk). Then U tM = V t is a system of linear equations for each of the n columns
of M . Since the matrix U was chosen at random, we obtain that it is invertible with
constant probability, i. e., we can find M with constant probability of success.

We shall now improve this in order to obtain a method that is more robust regarding
errors in the input state |ψ〉. Instead of sampling k times from T |ψ〉⊗2, we consider the
coherent superposition |ψ〉⊗2k and apply T⊗k to it. The resulting state has the form∑

u1,...,uk

ϕ(u1, . . . , uk) |u1, . . . , uk〉 |Mu1, . . . ,Muk〉 , (4)

with certain phases, indicated by ϕ. Next, note that there is an efficient classical algo-
rithm which on input U and V computes the matrix M . We can compute this algorithm
in a reversible fashion and apply to the state (4). The resulting state has constant overlap
with a state that is the superposition of the cases for which the Gauss algorithm com-
putation was successful (returning M ) and those cases for which it was unsuccessful
(returning ⊥): using the shorthand notation u = (u1, . . . , uk), we obtain the state⎛⎝ ∑

u good

ϕ(u) |u〉 |Mu〉

⎞⎠ |M〉 +

(∑
u bad

ϕ(u) |u〉 |Mu〉
)

|⊥〉 .

Measuring this state will yield M with constant probability. Once M has been found,
we can infer Q and uses this information to compute it into the phases in equation (3)
in order to cancel the quadratic part out. From the resulting states we can efficiently
determine L from a constant number of subsequent Fourier samplings.

Relation to learning parity with errors. We now return to the hidden shift problem. In
the following we argue that the quantum algorithm for finding a shift for quadratic func-
tions has an advantage over classical attempts to do so, since it can even handle cases
where the function is close to a quadratic function. It is easy to see that the shift prob-
lem for quadratic functions themselves can be solved classically in Θ(n) queries: the
lower bound is a straightforward information-theoretic argument. For the upper bound
we show that from knowledge of the quadratics and the promise that there is a shift
s such that g(x) = f(x + s), we can determine s. Indeed, it is sufficient to query at
points (0, . . . , 0), and ei, where ei denotes the ith vector in the standard basis to get
equations of the form sut

i = bi, where ui ∈ Zn
2 and bi ∈ Z2. With constant probability

after n trials the solution is uniquely characterized and can be efficiently found, e. g., by
Gaussian elimination. The problem with this approach is that if f and g are not perfect
quadratics, the resulting equations will be

sut
1 ≈ε b1, sut

2 ≈ε b2, . . .

where the ≈ε symbol means that each equation can be incorrect with probability 1 − ε.
As it turns out from Theorem 4 below, we will be able to tolerate noise of the order
ε = O(1/n). It is perhaps interesting to note that similar equations with errors have
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been studied in learning. The best known algorithm is the Blum-Kalai-Wasserman sieve
[BKW03], running in subexponential time in n, albeit able to tolerate constant error ε.

We show that the following algorithm for computing an approximating quadratic
form is robust with respect to errors in the input function:

Algorithm 3 [Find-Close-Quadratic]. The following algorithm takes as input a black-
box for a Boolean function f . The output is a quadratic Boolean function which approx-
imates f .

– Prepare 2k copies of the state 1√
2n

∑
x(−1)f(x) |x〉.

– Group them into pairs of 2 registers and apply the transformation T to each pair.
– Rearrange the register pairs [1, 2], [3, 4], . . . , [2k − 1, 2k] into a list of the form

[1, 3, . . . , k, 2, 4, . . . , 2k]. Next, apply the reversible Gauss algorithm to the se-
quence of registers.

– Measure the register holding the result of the Gauss algorithm computation and
obtain M ∈ Zn×n

2 . Use M to uncompute the quadratic phase and extract the
linear term via Fourier sampling.

Theorem 4. Let f, g : Zn
2 → Z2 be Boolean functions, let g =

∑
i,j qi,jxixj +

∑
i �ixi

be a quadratic polynomial, and assume that |〈f, g〉| > (1− ε). Then algorithm running
Find-Close-Quadratic on input f finds the quadratic form corresponding to g, and
thereby g itself with probability psuccess ≥ c(1−nε), where c is a constant independent
of n.

Proof. First note that |〈f, g〉| > (1 − ε) implies that f and g disagree on at most ε2n

of the inputs. Hence the two quantum states |ψf 〉 = 1√
2n

∑
x f(x) |x〉 and |ψg〉 =

1√
2n

∑
x g(x) |x〉 satisfy |〈ψf |ψg〉| > (1 − ε).

Next, observe that the algorithm can be seen as application of a unitary operation U .
We first study the “perfect” case, where we apply U to the state

∣∣ψ⊗k
g

〉
and then study

the effect of replacing this with the input corresponding to f . Notice that the algorithm
can also be seen as a POVM M which consists of rank 1 projectors {Ei : i ∈ I}
such that

∑
i∈I Ei = 1. Since the algorithm identifies M with constant probability, we

obtain that the POVM element EM , which corresponds to the correct answer satisfies
Pr(measure M) = tr

(
EM

∣∣ψ⊗k
g

〉 〈
ψ⊗k

g

∣∣) = p0 ≥ Ω(1).
For vectors v, w we have that ‖v−w‖2

2 = 2−2|〈v, w〉|, we get using |〈ψ⊗k
f |ψ⊗k

g 〉| >
(1 − ε)k ∼ (1 − kε) + O(ε2). For the difference |δ〉 :=

∣∣∣ψ⊗
f

〉
−
∣∣ψ⊗

g

〉
we therefore get

that ‖δ‖2 < 2kε. Denoting EM = |ϕ〉 〈ϕ| with normalized vector |ϕ〉, we obtain for
the probability of identifying M on input f :

tr
(
EM

∣∣∣ψ⊗k
f

〉〈
ψ⊗k

f

∣∣∣) = 〈ψg|EM |ψ⊗k
g 〉 + 〈δ|EM |ψ⊗k

g 〉 + 〈ψ⊗k
g |EM |δ〉 + 〈δ|EM |δ〉

≥ p0 + 2〈δ|ϕ〉〈ϕ|ψ⊗k
g 〉 + |〈δ|ϕ〉|2.

By Cauchy-Schwartz, we finally get that |〈δ|ϕ〉| ≤ ‖δ‖‖ϕ‖ ≤
√

2kε. Hence, we obtain
for the overall probability of success psuccess ≥ p0 −

√
8kε. ��

We give an application of Theorem 4 to the problem of efficiently finding an approxi-
mation of a function of large Gowers U3 norm in the following section.
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4 Polynomials and the Gowers Norm

Recall that the Gowers norms measure the extent to which a function f : Fn → C
behaves like a phase polynomial. For k ≥ 1, the Gowers norm is defined by

‖f‖Uk(Fn) :=
(
Ex,h1,...,hk∈FnΔh1 . . . Δhk

f(x)
)1/2k

,

where Δhf(x) = f(x + h) − f(x) for all h ∈ Fn. It is immediate that if |f(x)| ≤ 1
for all x, then ‖f‖Uk(F n) ∈ [0, 1]. Moreover, degree k polynomials are characterized
precisely by the vanishing of Δh1 . . . Δhk

f(x) for all hi. It is furthermore easy to see
that ‖f‖Uk(Fn) = 1 if and only if f is a phase polynomial of degree less than k [GT08].

Theorem 5 (Inverse theorem for the Gowers U3 norm [GT08]). Let f : Fn → C be
a function that is bounded as |f(x)| ≤ 1 for all x. Suppose that the kth Gowers norm
of f satisfies ‖f‖Uk(F n) ≥ 1 − ε. Then there exists a phase polynomial g of degree
less than k such that ‖f − g‖ = o(1). For fixed field F and degree k, the o(1) term
approaches zero as ε goes to zero.

Before we state the algorithm we recall a useful method to compare two unknown
quantum states for equality. This will be useful for a one-sided test that the output of
the algorithm indeed is a valid shift.

Lemma 1 (SWAP test [Wat00, Buh01]). Let |ψ〉, |ϕ〉 be quantum states, and denote
by SWAP the quantum operation which maps |ψ〉 |ϕ〉 
→ |ϕ〉 |ψ〉, and by Λ(SWAP ) the
same operations but controlled to a classical bit. Apply (H2 ⊗ 1)Λ(SWAP )(H2 ⊗ 1)
to the state |0〉 |ϕ〉 |ψ〉, measure the first qubit in the standard basis to obtain a bit b
and return the result (where result b = 1 indicates that the states are different). Then
Pr(b = 1) = 1

2 − 1
2 |〈ϕ|ψ〉|2.

Lemma 1 has many uses in quantum computing, see for instance [Wat00, Buh01]. Basi-
cally, it is useful whenever given |ϕ〉 and |ψ〉 two cases have to be distinguished: (i) are
the two states equal, or (ii) do they have inner product at most δ. For this case it provides
a one-sided test such that Pr(b = 1) = 0 if |ψ〉 = |ϕ〉 and Pr(b = 1) ≥ 1

2 (1 − δ2) if
|ψ〉 	= |ϕ〉 and |〈ϕ|ψ〉| ≤ δ.

Algorithm 6 [Shifted-Large-U3]. The following algorithm solves the hidden shift
problem for an oracle O which hides (f, g), where g(x) = f(x + s) for s ∈ Zn

2

and where ‖f‖U3(Z2) ≥ (1 − ε).

1. Solve the hidden quadratic problem for f . This gives a quadratic g(x) = xQxt +
Lxt.

2. Compute the dual quadratic function corresponding to the Fourier transform of g.
3. Solve the hidden shift problem for f(x), f(x + s), and g. Obtain a candidate s ∈

Zn
2 .

4. Verify s using the SWAP test.

Theorem 7. Let f be a Boolean function with ‖f‖U3 ≥ 1 − ε. Then Algorithm 6
(Shifted-Large-U3) solves the hidden shift problem for f with probability psuccess >
c(1 − ε), where c is a universal constant.



Quantum Algorithms to Solve the Hidden Shift Problem 673

Proof sketch. In general the fact that large Gowers U3 norm implies large correlation
with a quadratic follows from the inverse theorem for Gowers U3 norm [GT08, Sam07].
For the special case of the field Z2 and the large Gowers norm (1− ε) we are interested
in, we use [AKK+03] to obtain a stronger bound on the correlation with the quadratics.
The claimed result follows from [AKK+03] and the robustness of Algorithm 6 against
errors in the input functions. ��
Remark 1. It should be noted that in the form stated, Algorithm 6 only applies to the
case where the rank h = rk(Q + Qt)/2 = n/2 is maximum, as only this case cor-
responds to bent functions. However, it is easy to see that it can be applied in case
h < n/2 as well. There the matrix (Q + Qt) has a non-trivial kernel, defining a n − 2h
dimensional linear subspace of Zn

2 . In the Fourier transform, the function is supported
on an affine shift of dual space, i. e., the function has 22h non-zero Fourier coefficients,
all of which have the same absolute value 2−h. Now, the hidden shift algorithm can
be applied in this case too: instead of the dual bent function we compute the Boolean
function corresponding to the first 2h rows of (R−1)t, where R is as in Theorem 1 into
the phase. This will have the effect of producing a shift s lying in an affine space s + V
of dimension n − 2h. For h < n/2 the shift is no longer uniquely determined, how-
ever, we can describe the set of all shifts efficiently in that case by giving one shift and
identifying a basis for V .

5 Conclusions and Open Problems

It is an interesting question is whether the quantum algorithm to find approximations
for functions for large Gowers norms U2 and U3 can be used to find new linear and
quadratic tests for Boolean functions. Furthermore, it would be interesting to study the
tradeoff between number of queries and soundness for quantum tests, in analogy to the
results that have been shown in the classical case [ST06].
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Abstract. This paper establishes a surprising reduction from parity and mean pay-
off games to linear programming problems. While such a connection is trivial for
solitary games, it is surprising for two player games, because the players have op-
posing objectives, whose natural translations into an optimisation problem are min-
imisation and maximisation, respectively. Our reduction to linear programming
circumvents the need for concurrent minimisation and maximisation by replac-
ing one of them, the maximisation, by approximation. The resulting optimisation
problem can be translated to a linear programme by a simple space transformation,
which is inexpensive in the unit cost model, but results in an exponential growth
of the coefficients. The discovered connection opens up unexpected applications –
like µ-calculus model checking – of linear programming in the unit cost model, and
thus turns the intriguing academic problem of finding a polynomial time algorithm
for linear programming in this model of computation (and subsequently a strongly
polynomial algorithm) into a problem of paramount practical importance: All ad-
vancements in this area can immediately be applied to accelerate solving parity
and payoff games, or to improve their complexity analysis.

1 Introduction

This paper links two intriguing open complexity problems, solving parity and payoff
games and solving linear programming problems in the unit cost model.

Linear programming. [1,2,3,4,5,6,7], the problem of maximising cT x under the side
conditions Ax ≤ b and x ≥ 0, is one of the most researched problems in computer
science and discrete mathematics. The interest in linear programming has two sources:
It has a significant practical impact, because a wide range of optimisation problems in
economy and operations research can be approached with linear programming, and it is
the source of a range of challenges that remained unresolved for years.

The most prominent open challenge is Smale’s 9th problem [8], which asks if linear
programming has a polynomial time solution in the unit cost model. In the unit cost
model, we assume that all arithmetic operations have an identical unit cost. This model
is inspired by the desire of mathematicians to use real numbers instead of rationals, but
it can also be applied to handle large numbers, whose representation in binary led to an
exponential (or higher) blow-up in the size of the problem description.

Dantzig’s simplex algorithm addresses both complexity models alike. While highly
efficient in practice [1], Klee and Minty [2] showed that the worst case running time of

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 675–686, 2009.
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the simplex algorithm is exponential in the size of the linear programme. Their original
proof referred to a particular Pivot rule, but it has proven to be very flexible with re-
spect to the chosen Pivot rule, and could be extended to every suggested deterministic
Pivot rule that does not depend on the history of previous updates. The proof is also
independent of the chosen cost model, because the path constructed by the Pivot rule
has exponential length.

While the complexity for the unit cost model is still open, polynomial time algo-
rithms for the Turing model like Kachian’s ellipsoid method [3] and interior point
methods such as Karmarkar’s algorithm [4] are known for decades. Unfortunately, these
algorithms depend on the size of the binary representation of the numbers, and do not
provide any insight for the unit cost model. Apart from the mathematical interest in
determining the unit cost complexity of solving linear programmes, such an algorithm
is a prerequisite of finding a strongly polynomial time algorithm. The requirement for
an algorithm to be strongly polynomial is slightly higher: It also requires that the in-
termediate arithmetic operations can be performed in polynomial time, which usually
depends on the representation of the numbers. Thus, a polynomial time algorithm in the
unit cost model will usually provide a polynomial time algorithm for some representa-
tion of the numbers different from the usual binary representation.

Current attempts to finding a strongly polynomial time algorithm focus on the Sim-
plex algorithms. Randomised update strategies, for example, have been suggested early
on for the simplex technique, but their complexity has not yet been analysed success-
fully. For the simplest of these techniques, which uses a random edge Pivot rule that
chooses a profitable base change uniformly at random, the number of arithmetic steps
needed on non-degenerated simplices is merely known to be at least quadratic in the
size of the constraint system [5]. Shadow vertex techniques [6,7] for exploring the sim-
plex allowed for randomised polynomial time procedures for the approximation [6] and
computation [7] of the solution to linear programmes.

Parity and Payoff Games are finite two player zero sum games of infinite duration.
They are played on labelled directed graphs, whose vertices are partitioned into two
sets of vertices owned by two players with opposing objectives. Intuitively, they are
played by placing a pebble on the game graph. In each step, the owner of a vertex
chooses a successor vertex of the digraph. This way, an infinite run of the game is
constructed, where the objectives of the players is to minimise and maximise the av-
erage payoff of the moves in mean payoff games, or to enforce parity or imparity
of the highest colour occurring infinitely many times in parity games, respectively.
These games play a central role in model checking [9,10,11,12,13], satisfiability check-
ing [11,9,14,15], and synthesis [16,17], and numerous algorithms for solving them
have been studied [9,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]. Mean pay-
off games [34,35,36] have further applications in economic game theory.

The complexity of solving parity games is equivalent to the complexity of µ-calculus
model checking [9]. The complexity of solving parity and mean payoff games is known
to be in the intersection of UP and coUP [22], but its membership in P is still open.
Up to a recent complexity analysis by Friedman [37], strategy improvement algorithms
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[25,26,27,28,29] have been considered candidates for a polynomial running time. To
the best of my knowledge, all algorithms proposed so far for solving parity or mean
payoff games are now known not to be in P.

The Reduction proposed in this paper reduces testing if there are states in a mean
payoff game with value ≥ 0 to solving a linear programming problem. It is simple to
extend this non-emptiness test to finding the 0 mean partition of a mean payoff game
and hence to solving parity and mean payoff games.

Our reduction goes through an intermediate representation of the non-emptiness
problem to a non-standard optimisation problem that treats minimisation and maximisa-
tion quite differently: While minimisation is represented in a standard way — replacing
minimisation v = min{t1,t2, . . . ,tn} over n terms by n inequalities v ≤ ti and maximis-
ing over the possible outcome — maximisation is replaced by an approximation within
small margins. We use v = logb(b

t1 +bt2 +btn) instead of v = max{t1, t2, . . . ,tn}, which
keeps the error of the operation sufficiently small if the basis b is big enough:

max{t1, t2, . . . ,tn} ≤ logb

(
bt1 + bt2 + btn

)
≤ logb n + max{t1,t2, . . . ,tn}.

From there it is a small step to building a linear programme that computes the exponent
of the solution to this non-standard optimisation problem.

Starting from parity games or from mean payoff games with a binary representation
of the edge weights, this linear programme is cheap to compute in the unit cost model
(bi-linear in the number of vertices and edges and linear in the size of the representa-
tion), but the constants are exponential in the edge weights of the mean payoff game,
and doubly exponential in the number of colours for parity games.

The benefit of the proposed reduction for game solving is therefore not immediate,
but depends on future results in linear programming. There has, however, been recent
progress in the quest for polynomial time algorithms in the unit cost model, or even
strongly polynomial algorithms. Shadow vertex techniques [6,7], for example, seem to
be promising candidates; Kelner and Spielman [7] use this quest as the main motivation
for their randomised polynomial time algorithm.

But the benefit of the reduction is bi-directional. While solving finite games of infi-
nite duration automatically profits from future progress in the theory of linear program-
ming, linear programming profits from the problem: The proposed reduction contributes
an important natural problem class that can be reduced to linear programming, but re-
quires a polynomial time algorithm in the unit cost model, because the constants are too
large for efficient binary representation. Opening up a range of model checking prob-
lems to linear programming, the proposed reduction lifts the problem of finding such
algorithms from a problem of mere academic interest to one of practical importance.
Furthermore, it is unintuitive that the complexity of inherently discrete combinatorial
problems like µ-calculus model checking or solving parity games should depend on the
cost model of arithmetic operations. Provided a polynomial time algorithm for solving
linear programming problems in the unit cost model is found, it thus seems likely that
a polynomial time algorithm for solving parity games can be inferred.
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2 Finite Games of Infinite Duration

Finite games of infinite duration (ω-games) are played by two players, a Maximiser and
a Minimiser, with opposing objectives. ω-games are composed of a finite arena and an
evaluation function.

Arenas. A finite arena is a triple A = (Vmax,Vmin,E) consisting of

– a set V = Vmax ∪Vmin of vertices that is partitioned into two disjoint sets Vmax and
Vmin, called the vertices owned by the Maximiser and Minimiser, respectively, and

– a set E ⊆ V ×V of edges, such that (V,E) is a directed graph without sinks.

Plays. Intuitively, a game is played by placing a token on a vertex of the arena. If the
token is on a vertex v ∈Vmax, the Maximiser chooses an edge e = (v,v′) ∈ E originating
in v to a vertex v′ ∈ V and moves the token to v′. Symmetrically, the Minimiser chooses
a successor in the same manner if the token is on one of her vertices v ∈ Vmin. In this
way, they successively construct an infinite play ϑ = v0v1v2v3 . . . ∈ V ω.

Strategies. For a finite arena A = (Vmax,Vmin,E), a (memoryless) strategy for the Max-
imiser is a function f : Vmax → V that maps every vertex v ∈ Vmax of the Maximiser to
a vertex v′ ∈ V such that there is an edge (v,v′) ∈ E from v to v′. A play is called
f -conform if every decision of the Maximiser in the play is in accordance with f . For
a strategy f of the Maximiser, we denote with A f = (Vmax,Vmin,E f ) the arena obtained
from A by deleting the transitions from vertices of the Maximiser that are not in accor-
dance with f . The analogous definitions are made for the Minimiser.

Mean Payoff Games. A mean payoff game is a game M = (Vmax,Vmin,E,w) with
arena A = (Vmax,Vmin,E) and a weight function w : E → Z from the edges of the mean
payoff game to the integers. Each play ϑ = v0v1v2 . . . of a mean payoff game is evaluated
to value(ϑ) = liminf

n→∞
1
n ∑n

i=1 w
(
(vi−1,vi)

)
.

As a variant, we can allow for real valued weight functions w : E → R. We then refer
explicitly to a real valued mean payoff game.

The objective of the Maximiser and Minimiser are to maximise and minimise this
value, respectively. For single player games where all vertices are owned by one player
(or, likewise, all vertices owned by the other player have exactly one successor), the
optimal strategy for this player from some vertex v is to proceed to a cycle with maximal
or minimal average weight a and henceforth follow it. The outcome value(v) = a of
this game when started in v is called the value of v. Mean payoff games are memoryless
determined:

Proposition 1. [34,35,36] For every real valued mean payoff game M , there are Min-
imiser and Maximiser strategies f and g, respectively, such that the value of every vertex
in M f equals the value of every vertex in Mg. ��

The 0 mean partition M≥0 = {v ∈ V | value(v) ≥ 0} of a mean payoff game is thus
well-defined. We say that a vertex v is winning for the Maximiser if it is in M≥0, and
winning for the Minimiser otherwise.
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Corollary 1. [34,35,36] The 0 mean partition is well-defined, and both players have
winning strategies for their respective winning region M≥0 and V \M≥0. ��

Solving a mean payoff game can be reduced to finding the 0 mean partition of a number
of games played on sub-arenas with a slightly adjusted weight function, because the
average weight of a cycle is a multiple of 1

n for some n ≤ |V |, and it hence suffices to
know that the value is within an interval [ i

n2 ,
i+1
n2 [ for some integer i ∈ Z.

Corollary 2. A mean payoff game with n vertices and maximal absolute edge weight
a can be solved in time O

(
n log(a + n)

)
when using an oracle for the construction of

0 mean partitions. ��

Parity Games. A parity game is a game P = (Vmax,Vmin,E,α) with arena A =
(Vmax,Vmin,E) and a colouring function α : V → C ⊂ N that maps each vertex of P
to a natural number. C denotes the finite set of colours.

Each play is evaluated by the highest colour that occurs infinitely often. The Max-
imiser wins a play ϑ = v0v1v2v3 . . . if the highest colour occurring infinitely often in
the sequence α(ϑ) = α(v0)α(v1)α(v2)α(v3) . . . is even, while the Minimiser wins if the
highest colour occurring infinitely often in α(ϑ) is odd. Without loss of generality, we
assume that the highest occurring colour is bounded by the number of vertices in the
arena. It is simple to reduce solving parity games to finding the 0 mean partition of a
mean payoff game: One can simply translate a colour c to the weight |V |c [34].

Corollary 3. [34] Parity games are memoryless determined, and solving them can be
reduced in time O(mn) to solving the 0 mean partition problem of a mean payoff game
with the same arena, such that the Minimiser and Maximiser have the same winning
regions and winning strategies. ��

3 Reduction

In this section, we describe a reduction from finding the 0 mean partition of a mean
payoff game, to which solving parity and payoff games can be reduced in polynomial
time by Corollaries 2 and 3, to solving a linear programming problem. We first focus
on the slightly simpler problem of testing M≥0 for emptiness, and reduce this question
to a linear programming problem.

The first important observation for our reduction is that membership in M≥0 is in-
variant under increasing the weight function slightly: If every edge weight in a mean
payoff game with n vertices is increased by some value in [0, 1

n [, then the weight of
every cycle is increased by a value in [0,1[, and hence non-negative if, and only if, the
original integer valued weight of the cycle is non-negative.

Lemma 1. If we increase the weight function of an (integer valued) mean payoff game
M = (Vmax,Vmin,E,w) with n = |V | vertices for every edge by some non-negative value
< 1

n , then the same cycles as before have non-negative weight in the resulting real
valued mean payoff game, and the 0 mean partition does not change. ��
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This observation is used to replace maximisation in a natural representation of the ob-
jectives of both players in a mean payoff game (Subsection 3.1) by a logarithmic ex-
pression in Subsection 3.2, which is subsequently translated into a boundedness test
for a linear programming problem in Subsection 3.3. In Subsection 3.4, we show how
this boundedness test, which refers to a non-emptiness test of M≥0, can be adjusted to
a bounded optimisation problem that provides M≥0, and discuss the complexity of the
transformations in Subsection 3.5. An example that illustrates these transformations is
provided in Section 4.

3.1 Basic Inequations

We now devise a set of inequalities that have a non-trivial solution if, and only if, M≥0 is
non-empty. For our reduction, we extend addition from R to R∪{−∞} in the usual way
by choosing a +(−∞) = −∞ = −∞+ a for all a ∈ R∪{−∞}. This motivates the defi-
nition of a family of basic inequalities for a mean payoff game M = (Vmax,Vmin,E,w)
that contains one inequality

v ≤ w
(
(v,v′)

)
+ v′

for every edge (v,v′) originating from a Minimiser vertex v ∈ Vmin, and one inequality

v ≤ max
{

w
(
(v,v′)

)
| v′ ∈ suc(v)

}
+ cv

for every Maximiser vertex v ∈ Vmax, where suc(v) denotes the set of successor vertices
of v, and each cv ∈ [0, 1

|V | [ can be any sufficiently small slip value (cf. Lemma 1).
Every such system of inequalities has a trivial solution that assigns −∞ to every

vertex; but it also has a real valued solution for all vertices in M≥0.

Lemma 2. For every such system of inequalities for a mean payoff game M =
(Vmax,Vmin,E,w), a vertex v ∈ V has a real valued solution if, and only if, v is in M≥0.

Proof. ‘⇐:’ Let us fix an optimal strategy for the Maximiser in the mean payoff game
and consider the system of inequalities that contain one equation v ≤ w(e)+v′ for every
edge of the resulting singleton game. (A solution to this set of inequalities is obviously
a solution to the original set of inequalities.) This set of inequalities has obviously a
solution that is real valued for every vertex v ∈ M≥0 (and sets v = −∞ for every vertex
v not in M≥0)1.

‘⇒’ A real valued solution for a vertex v defines a strategy for the Maximiser that
witnesses value(v) ≥ 0: If v ≤ max

{
w
(
(v,v′)

)
| v′ ∈ suc(v)

}
+ cv holds true, then v ≤

w
(
(v,v′)

)
+v′ +cv holds for some v′ ∈ suc(v) in particular, and we choose a Maximiser

strategy that fixes such a successor for every Maximiser vertex. By a simple inductive
argument, every vertex u reachable from v in the resulting singleton game is real valued,
and, for every cycle reachable from v, the sum of the edge weights and vertex slips is

1 Starting with the digraph with states M≥0 and the respective edges defined by the fixed Max-
imiser strategy, we can apply the following algorithm until values are assigned to all vertices
in M≥0: (1) pick a vertex v in a leaf component of the digraph that is the minimum of the
weighted distance to plus the value assigned to any vertex v′ that is already removed from the
graph (or an arbitrary value if no such vertex exists), and then (2) remove v from the graph.
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non-negative. As the sum of the vertex slips is strictly smaller than 1 in every cycle, the
sum of the edge weights is strictly greater than −1, and hence non-negative. ��

Naturally, having one real valued solution implies having unbounded solutions, because
adding the same value r ∈ R to every value of a solution provides a new solution.

3.2 Logarithmic Inequations

These observations set the ground for a reduction to linear programming: For a suf-
ficiently large basis b > 1, logb ∑v′∈suc(v) bw((v,v′)) bv′ equals max

{
w
(
(v,v′)

)
+ v′ | v′ ∈

suc(v)
}

+ cv for some slip value cv ∈ [0, 1
n [, because

max
v′∈suc(v)

{w
(
(v,v′)

)
+v′} ≤ logb ∑

v′∈suc(v)
bw((v,v′)) bv′ ≤ logb |suc(v)|+ max

v′∈suc(v)
{w
(
(v,v′)

)
+v′}

holds true. (For the extension to R∪{−∞} we use the usual convention b−∞ = 0 and
logb 0 = −∞.) Choosing a basis b > nout

|V | that is greater than the |V |-th power of the
maximal out-degree nout of Maximiser vertices guarantees logb i < 1

n , and hence that
the small error caused by moving from minimisation to the logarithm of the sum of the
exponents is within the margins allowed for by Lemma 1.

Corollary 4. The system of inequalities consisting of the Minimiser inequalities and
the adjusted Maximiser inequalities have a real valued solution for a vertex v ∈ V if,
and only if, v ∈ M≥0. ��

Note that the reduction uses estimation from below (through the inequality) as well as
estimations from above (through the slip) at the same time, which is sound only because
the slip values are within the small margins allowed for by Lemma 1.

3.3 Linear Inequations

The resulting optimisation problem can be translated into a standard linear program-
ming problem by a simple space transformation: As the exponential function v 
→ bv

is a strictly monotone ascending mapping from R∪ {−∞} onto R≥0, we can simply
replace the Minimiser inequalities by

bv ≤ bw((v,v′)) ·bv′ ,

for every edge (v,v′) originating from a Minimiser vertex v ∈ Vmin, and the adjusted
Maximiser inequalities by

bv ≤ ∑
v′∈suc(v)

bw((v,v′)) bv′

for every vertex v ∈ Vmax owned by the Maximiser, and require bv ≥ 0 for all vertices
v ∈ V of the game.

Reading the bv as variables, this provides us with a linear constraint system

Ax ≤ 0, subject to x ≥ 0,
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and Corollary 4 implies that this constraint system has a solution different from x = 0
if, and only if, M≥0 is non-empty for the defining mean payoff game. As every positive
multiple of a solution to Ax ≤ 0 and x ≥ 0 is again a solution, this implies the following
corollary:

Corollary 5. The resulting linear programme maximise 1T x for Ax ≤ 0 and x ≥ 0 is
unbounded if M≥0 is non-empty, and the constraint system has x = 0 as the only solution
if M≥0 = /0 is empty. ��

3.4 From Qualitative to Quantitative Solutions

While solving the linear programme introduced in the previous subsection answers only
the qualitative question of whether the linear programming problem is bounded, and
hence if M≥0 is non-empty, it is simple to extend the approach to a qualitative solution
that provides us with M≥0 and a strategy for the Maximiser that witnesses this. To
achieve this, it suffices to bound the value of every vertex from above, for example, by
adding a constraint x ≤ 1, or any other constraint x ≤ d for some constant vector d > 0.
(Where > for the vector requires > for every row.)

Proposition 2. For every constant vector d > 0, the solution to the linear programming
problem maximise cT x for Ax ≤ 0, x ≤ d, and x ≥ 0 assigns a value 	= 0 to a variable
if, and only if, it is in M≥0. A witnessing strategy for the Maximiser in the defining mean
payoff game can be inferred from the solution.

Proof. For the solution of the linear programming problem it holds that if a Maximiser
vertex v has some successor with non-zero value, or if a Minimiser vertex v has only
non-zero successors, than the value bv assigned to v by the solution is also non-zero.
(Otherwise we could increase it, and hence 1T x, without changing any other value.)
Hence, the logarithms of the solution define a solution to the system of logarithmic
inequalities from the previous subsection, and we can infer a witnessing strategy for the
Maximiser as described in the proof of Lemma 2.

Now consider a solution to the new linear programming problem defined by the
sub-game of the mean payoff game that contains only the vertices with 0 values. If it
had a solution different to 0, we could increase the solution of the linear programming
problem we started with by ε times the solution of the new liner programming problem
for a sufficiently small ε > 0. Hence 0 is the only solution to the new problem, and
therefore there is no real valued solution for the basic or logarithmic inequalities defined
by this sub-game. By Corollary 1 the Minimiser has thus a witnessing strategy for the 0
mean partition in the sub-game, which is also a witnessing strategy in the full game. ��

3.5 Translation Complexity

The proposed translation of a given mean payoff game to a linear programming problem
is cheap in the unit cost model:

Proposition 3. A mean payoff game M with n vertices and m edges, and edge weights
represented in binary can be translated in time O(|M |+ nm) in the unit cost model.
(Where |M | denotes the length of the representation of M .)
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Proof. We have to compute the linear constraint Ax ≤ 0, which requires the computa-
tion of the non-zero constants of A, and filling up A with 0s. As the rows of A refer to
Maximiser vertices or edges originating from Minimiser vertices, and the columns refer
to vertices, the latter requires O(nm) steps.

Each edge refers to exactly one non-zero constant in A, and we need to translate the
edge weight w(e) to bw(e). We compute b0 = b (computing b is well within O(nm)), and
then bi = b(2i) = b2

i−1 for all i ≤ log2 max{|w(e)| | e ∈ E}. bw(e) can then be expressed
as a product of the respective bi if w(e) > 0 is positive, as its reciprocal if w(e) < 0
is negative, and by 1 if w(e) = 0. The required time for the computation of bw(e) is
therefore linear in the binary representation of w(e), and computing all constants bw(e)

requires O(|M |) operations. ��

The translation of parity games to mean payoff games [34] discussed in Section 2 im-
plies a likewise bound for parity games.

Corollary 6. A parity game P with n vertices and m edges can be translated in time
O(nm) in the unit cost model. ��

Note that this also implies a polynomial bound on the cost of translating a mean payoff
game whose edge weights are represented in unary — and hence of parity games with
a bounded number of colours — in the Turing model of computation.

Corollary 7. For parity games with a bounded number of colours and mean payoff
games where the edge weights are represented in unary, the reduction results in a linear
programme in binary representation that can be constructed in polynomial time. ��

As a result, the known polynomial bounds [3,4] for solving linear programming prob-
lems in the Turing model of computation imply a polynomial bound for these sub-
problems.

Corollary 8. Parity games with a bounded number of colours and mean payoff games
whose edge weights are represented unary can be solved in polynomial time. ��

Remark 1. If the algorithm requires non-degenerated linear programmes, then we can
first apply the strongly polynomial standard ε-perturbation technique [38].

While the bounds provided by Corollary 8 are not new, they can be considered as a
sanity check for new techniques: Besides its potential for parity and mean payoff games
in general, the reduction is good enough to infer the relevant known polynomial bounds.

4 Example

This section contains an example reduction from solving the small parity game from
Figure 1(a) to a linear programming problem.

Finding the winning region for the player that wins when the highest colour occurring
infinitely many times is even can be reduced to finding the 0 mean partition of the mean
payoff game from Figure 1(b). By Lemma 2, finding this 0 mean partition reduces to
determining which variables can have a real value in a solution to any set
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Fig. 1. Figure 1(a) shows a small example parity game. The vertices of the player with the ob-
jective to ensure parity are depicted as squares, while the positions of her opponent are depicted
as circles. The vertices of the parity game are decorated with their respective colour. The parity
game of Figure 1(a) is translated into the mean payoff game M of Figure 1(b). The edges of M
are decorated with their weights, and the vertices with their name.

v1 ≤ max{v2 −1, v4 −1}+ cv1 v3 ≤ v1 v4 ≤ v2 −1
v2 ≤ max{v1, v3 + 4, v4 −1}+ cv2 v3 ≤ v4 −1 v4 ≤ v3 + 4

of inequations, where cv1 ,cv2 < 1
4 can be any non-negative constant smaller than the

reciprocal of the size of the game.
The maximal out-degree of a Maximiser vertex is 3, and choosing a basis b big

enough to provide logb 3 < 1
4 , which holds for all b > 34, we can seek a solution to the

inequations

v1 ≤ logb(b
v2−1 + bv4−1) v3 ≤ v1 v4 ≤ v2 −1

v2 ≤ logb(b
v1 + bv3+4 + bv4−1) v3 ≤ v4 −1 v4 ≤ v3 + 4

instead by Corollary 4, because logb(b
v2 + bv4−1) = max{v2, v4 − 1} + cv1 and

logb(b
v1−1 +bv3+4 +bv4) = max{v1 −1, v3 +4, v4}+cv2 holds for some cv1 ≤ logb 2 <

1
4 and cv2 ≤ logb 3 < 1

4 , respectively.
This system of inequations on the domain [−∞,∞[ can be rewritten as the system

bv1 ≤ b−1 ·bv2 + b−1 ·bv4 bv3 ≤ bv1 bv4 ≤ b−1 ·bv2

bv2 ≤ bv1 + b4 ·bv3 + b−1 ·bv4) bv3 ≤ b−1 ·bv4 bv4 ≤ b4 ·bv3

of inequations. Finally, the individual bvi can be treated as variables after adding the
constraints 0 ≤ bv1 , bv2 , bv3 , bv4 , bv5 , bv6 .

For finding a witnessing strategy for the Maximiser—and hence a winning strategy
for the player that wants to ensure parity in the game from Figure 1(a)—it suffices to
add the additional constraint bv1 , bv2 , bv3 , bv4 , bv5 , bv6 ≤ 1 and maximise bv1 + bv2 +
bv3 + bv4 + bv5 + bv6 .

Note that the constraints in the linear programming problem reach b4 = 45212176
for b = 82 even in this tiny example.

5 Discussion

The introduced reduction from solving parity and mean payoff games to linear pro-
gramming opens up the well developed class of linear programming techniques to the
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analysis of these classes of ω-games. It also links their complexity to the complexity of
linear programming in the unit cost model.

As the unit cost complexity of linear programming is not known, there is no imme-
diate practical benefit attached to this reduction, but the drawn connections between
linear programmes and finite games of infinite durations link two intriguing open prob-
lems. The potential benefit for the two areas are quite different in nature: The linear
programming community gains a natural and important class of problems that would
benefit from a polynomial time algorithm for linear programming, while the game solv-
ing community will automatically profit from future developments of polynomial time
algorithms.
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Abstract. A real α is called recursively enumerable (“r.e.” for short)
if there exists a computable, increasing sequence of rationals which con-
verges to α. It is known that the randomness of an r.e. real α can be
characterized in various ways using each of the notions; program-size
complexity, Martin-Löf test, Chaitin Ω number, the domination and Ω-
likeness of α, the universality of a computable, increasing sequence of
rationals which converges to α, and universal probability. In this paper,
we generalize these characterizations of randomness over the notion of
partial randomness by parameterizing each of the notions above by a real
T ∈ (0, 1], where the notion of partial randomness is a stronger repre-
sentation of the compression rate by means of program-size complexity.
As a result, we present ten equivalent characterizations of the partial
randomness of an r.e. real. The resultant characterizations of partial
randomness are powerful and have many important applications. One
of them is to present equivalent characterizations of the dimension of
an individual r.e. real. The equivalence between the notion of Hausdorff
dimension and compression rate by program-size complexity (or partial
randomness) has been established at present by a series of works of many
researchers over the last two decades. We present ten equivalent charac-
terizations of the dimension of an individual r.e. real.

Keywords: algorithmic randomness, recursively enumerable real, par-
tial randomness, dimension, Chaitin Ω number, program-size complexity,
universal probability.

1 Introduction

A real α is called recursively enumerable (“r.e.” for short) if there exists a com-
putable, increasing sequence of rationals which converges to α. The randomness
of an r.e. real α can be characterized in various ways using each of the notions;
program-size complexity, Martin-Löf test, Chaitin Ω number, the domination
and Ω-likeness of α, the universality of a computable, increasing sequence of
rationals which converges to α, and universal probability. These equivalent char-
acterizations of randomness of an r.e. real are summarized in Theorem 6 (see
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Section 3), where the equivalences are established by a series of works of Martin-
Löf [9], Schnorr [14], Chaitin [4], Solovay [15], Calude, Hertling, Khoussainov and
Wang [1], Kučera and Slaman [7], and Tadaki [20], between 1966 and 2006. In
this paper, we generalize these characterizations of randomness over the notion
of partial randomness, which was introduced by Tadaki [18,19] and is a stronger
representation of the compression rate by means of program-size complexity. We
introduce many characterizations of partial randomness for an r.e. real by pa-
rameterizing each of the notions above on randomness by a real T ∈ (0, 1]. In
particular, we introduce the notion of T -convergence for a computable, increas-
ing sequence of rationals and then introduce the same notion for an r.e. real. The
notion of T -convergence plays a crucial role in these our characterizations of par-
tial randomness. We then prove the equivalence of all these characterizations of
partial randomness in Theorem 8, our main result, in Section 4.

On the other hand, by a series of works of Ryabko [12,13], Staiger [16,17],
Tadaki [18,19], Lutz [8], and Mayordomo [10] over the last two decades, the
equivalence between the notion of compression rate by program-size complexity
(or partial randomness) and Hausdorff dimension seems to be established at
present. The subject of the equivalence seems to be one of the most active areas
of the recent research of algorithmic randomness. In the context of the subject,
we can consider the notion of the dimension of an individual real in particular,
and this notion plays a crucial role in the subject. As one of the main applications
of our main result on partial randomness, i.e., Theorem 8, we can present many
equivalent characterizations of the dimension of an individual r.e. real.

The paper is organized as follows. We begin in Section 2 with some prelimi-
naries to algorithmic information theory and partial randomness. In Section 3,
we review the previous results on the equivalent characterizations of randomness
of an r.e. real. Our main result on partial randomness of an r.e. real is presented
in Section 4. In Section 5 we apply our main result on partial randomness to give
many equivalent characterizations of the dimension of an r.e. real. In Section 6,
we investigate further properties of the notion of T -convergence, which plays a
crucial role in our characterizations of the partial randomness and dimension of
r.e. reals. We conclude this paper with a mention of the future direction of this
work in Section 7. Due to the 12-page limit, we omit most proofs. A full paper
which describes all the proofs and other related results is in preparation.

2 Preliminaries

We start with some notation about numbers and strings which will be used in
this paper. N = {0, 1, 2, 3, . . .} is the set of natural numbers, and N+ is the set
of positive integers. Q is the set of rational numbers, and R is the set of real
numbers. A sequence {an}n∈N of numbers (rationals or reals) is called increasing
if an+1 > an for all n ∈ N.

{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, . . .} is the set of finite binary strings,
where λ denotes the empty string. For any s ∈ {0, 1}∗, |s| is the length of s.
A subset S of {0, 1}∗ is called prefix-free if no string in S is a prefix of another
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string in S. For any partial function f , the domain of definition of f is denoted
by dom f . We write “r.e.” instead of “recursively enumerable.”

Normally, o(n) denotes any function f : N+ → R such that limn→∞ f(n)/n =
0. On the other hand, O(1) denotes any function g : N+ → R such that there is
C ∈ R with the property that |g(n)| ≤ C for all n ∈ N+.

Let α be an arbitrary real. For any n ∈ N+, we denote by α�n∈ {0, 1}∗ the
first n bits of the base-two expansion of α − �α� with infinitely many zeros,
where �α� is the greatest integer less than or equal to α. Thus, in particular, if
α ∈ [0, 1), then α�n denotes the first n bits of the base-two expansion of α with
infinitely many zeros. For example, in the case of α = 5/8, α�6= 101000.

A real α is called r.e. if there exists a computable, increasing sequence of
rationals which converges to α. An r.e. real is also called a left-computable real.
Let α and β be arbitrary r.e. reals. Then α+β is r.e. If α and β are non-negative,
then αβ is r.e. On the other hand, a real α is called right-computable if −α is
left-computable. We say that a real α is computable if there exists a computable
sequence {an}n∈N of rationals such that |α − an| < 2−n for all n ∈ N. It is
then easy to see that, for every α ∈ R, α is computable if and only if α is both
left-computable and right-computable. A sequence {an}n∈N of reals is called
computable if there exists a total recursive function f : N × N → Q such that
|an − f(n,m)| < 2−m for all n,m ∈ N. See e.g. Weihrauch [23] for the detail of
the treatment of the computability of reals and sequences of reals.

2.1 Algorithmic Information Theory

In the following we concisely review some definitions and results of algorithmic
information theory [4,5]. A computer is a partial recursive function C : {0, 1}∗ →
{0, 1}∗ such that domC is a prefix-free set. For each computer C and each
s ∈ {0, 1}∗, HC(s) is defined as min

{
|p|
∣∣ p ∈ {0, 1}∗ & C(p) = s

}
(may be ∞).

A computer U is said to be optimal if for each computer C there exists d ∈ N
with the following property; if p ∈ domC, then there is q ∈ domU for which
U(q) = C(p) and |q| ≤ |p| + d. It is easy to see that there exists an optimal
computer. We choose a particular optimal computer U as the standard one for
use, and define H(s) as HU (s), which is referred to as the program-size complexity
of s or the Kolmogorov complexity of s. It follows that for every computer C there
exists d ∈ N such that, for every s ∈ {0, 1}∗, H(s) ≤ HC(s) + d.

For any optimal computer V , Chaitin’s halting probability ΩV of V is defined
as
∑

p∈dom V 2−|p|. The real ΩV is also called Chaitin Ω number.

Definition 1 (weak Chaitin randomness, Chaitin [4,5]). For any α ∈ R,
we say that α is weakly Chaitin random if there exists c ∈ N such that n − c ≤
H(α�n) for all n ∈ N+. ��

Chaitin [4] showed that, for every optimal computer V , ΩV is weakly Chaitin
random.
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Definition 2 (Martin-Löf randomness, Martin-Löf [9]). A subset C of
N+ × {0, 1}∗ is called a Martin-Löf test if C is an r.e. set and

∀n ∈ N+
∑

s∈Cn

2−|s| ≤ 2−n,

where Cn =
{
s
∣∣ (n, s) ∈ C

}
. For any α ∈ R, we say that α is Martin-Löf random

if for every Martin-Löf test C, there exists n ∈ N+ such that, for every k ∈ N+,
α�k /∈ Cn. ��

Theorem 1 (Schnorr [14]). For every α ∈ R, α is weakly Chaitin random if
and only if α is Martin-Löf random. ��

The program-size complexity H(s) is originally defined using the concept of
program-size, as stated above. However, it is possible to define H(s) without
referring to such a concept, i.e., as in the following, we first introduce a universal
probability m, and then define H(s) as − log2 m(s). A universal probability is
defined as follows [24].

Definition 3 (universal probability). A function r : {0, 1}∗ → [0, 1] is called
a lower-computable semi-measure if

∑
s∈{0,1}∗ r(s) ≤ 1 and the set {(a, s) ∈

Q × {0, 1}∗ | a < r(s)} is r.e. We say that a lower-computable semi-measure
m is a universal probability if for every lower-computable semi-measure r, there
exists c ∈ N+ such that, for all s ∈ {0, 1}∗, r(s) ≤ cm(s). ��

The following theorem can be then shown (see e.g. Theorem 3.4 of Chaitin [4]
for its proof).

Theorem 2. For every optimal computer V , the function 2−HV (s) of s is a
universal probability. ��

By Theorem 2, we see that H(s) = − log2 m(s) +O(1) for every universal prob-
ability m. Thus it is possible to define H(s) as − log2 m(s) with a particular
universal probability m instead of as HU (s). Note that the difference up to an
additive constant is nonessential to algorithmic information theory.

2.2 Partial Randomness

In the works [18,19], we generalized the notion of the randomness of a real so that
the degree of the randomness, which is often referred to as the partial randomness
recently [2,11,3], can be characterized by a real T with 0 < T ≤ 1 as follows.

Definition 4 (weak Chaitin T -randomness). Let T ∈ R with T ≥ 0. For
any α ∈ R, we say that α is weakly Chaitin T -random if there exists c ∈ N such
that Tn − c ≤ H(α�n) for all n ∈ N+. ��

Definition 5 (Martin-Löf T -randomness). Let T ∈ R with T ≥ 0. A subset
C of N+ × {0, 1}∗ is called a Martin-Löf T -test if C is an r.e. set and

∀n ∈ N+
∑

s∈Cn

2−T |s| ≤ 2−n.
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For any α ∈ R, we say that α is Martin-Löf T -random if for every Martin-Löf
T -test C, there exists n ∈ N+ such that, for every k ∈ N+, α�k /∈ Cn. ��

In the case where T = 1, the weak Chaitin T -randomness and Martin-Löf T -
randomness result in weak Chaitin randomness and Martin-Löf randomness,
respectively. Tadaki [19] generalized Theorem 1 over the notion of T -randomness
as follows.

Theorem 3 (Tadaki [19]). Let T be a computable real with T ≥ 0. Then, for
every α ∈ R, α is weakly Chaitin T -random if and only if α is Martin-Löf T -
random. ��

Definition 6 (T -compressibility). Let T ∈ R with T ≥ 0. For any α ∈ R,
we say that α is T -compressible if H(α�n) ≤ Tn + o(n), which is equivalent to
lim supn→∞ H(α�n)/n ≤ T . ��

For every T ∈ [0, 1] and every α ∈ R, if α is weakly Chaitin T -random and
T -compressible, then

lim
n→∞

H(α�n)
n

= T. (1)

The left-hand side of (1) is referred to as the compression rate of a real α in gen-
eral. Note, however, that (1) does not necessarily imply that α is weakly Chaitin
T -random. Thus, the notion of partial randomness is a stronger representation
of compression rate.

In the works [18,19], we generalized Chaitin Ω number to Ω(T ) as follows. For
each optimal computer V and each real T > 0, the generalized halting probability
ΩV (T ) of V is defined by

ΩV (T ) =
∑

p∈dom V

2−
|p|
T .

Thus, ΩV (1) = ΩV . If 0 < T ≤ 1, then ΩV (T ) converges and 0 < ΩV (T ) < 1,
since ΩV (T ) ≤ ΩV < 1. The following theorem holds for ΩV (T ).

Theorem 4 (Tadaki [18,19]). Let V be an optimal computer and let T ∈ R.

(i) If 0 < T ≤ 1 and T is computable, then ΩV (T ) is weakly Chaitin T -random
and T -compressible.

(ii) If 1 < T , then ΩV (T ) diverges to ∞. ��

3 Previous Results on the Randomness of an r.e. Real

In this section, we review the previous results on the randomness of an r.e. real.
First we review some notions on r.e. reals.

Definition 7 (Ω-likeness). For any r.e. reals α and β, we say that α domi-
nates β if there are computable, increasing sequences {an} and {bn} of rationals
and c ∈ N+ such that limn→∞ an = α, limn→∞ bn = β, and c(α − an) ≥ β − bn

for all n ∈ N. An r.e. real α is called Ω-like if it dominates all r.e. reals. ��
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Solovay [15] showed the following theorem. For its proof, see also Theorem 4.9
of [1].

Theorem 5 (Solovay [15]). For every r.e. reals α and β, if α dominates β
then H(β�n) ≤ H(α�n) + O(1) for all n ∈ N+. ��

Definition 8 (universality). A computable, increasing and converging sequence
{an} of rationals is called universal if for every computable, increasing and converg-
ing sequence {bn} of rationals there exists c ∈ N+ such that c(α− an) ≥ β − bn for
all n ∈ N, where α = limn→∞ an and β = limn→∞ bn. ��

The previous results on the equivalent characterizations of randomness for an
r.e. real are summarized in the following theorem.

Theorem 6 ([14,4,15,1,7,20]). Let α be an r.e. real with 0 < α < 1. Then the
following conditions are equivalent:

(i) The real α is weakly Chaitin random.
(ii) The real α is Martin-Löf random.

(iii) The real α is Ω-like.
(iv) For every r.e. real β, H(β�n) ≤ H(α�n) + O(1) for all n ∈ N+.
(v) There exists an optimal computer V such that α = ΩV .

(vi) There exists a universal probability m such that α =
∑

s∈{0,1}∗ m(s).
(vii) Every computable, increasing sequence of rationals which converges to α is

universal.
(viii) There exists a universal computable, increasing sequence of rationals which

converges to α. ��

The historical remark on the proofs of equivalences in Theorem 6 is as follows.
Schnorr [14] showed that (i) and (ii) are equivalent to each other. Chaitin [4]
showed that (v) implies (i). Solovay [15] showed that (v) implies (iii), (iii) implies
(iv), and (iii) implies (i). Calude, Hertling, Khoussainov, and Wang [1] showed
that (iii) implies (v), and (v) implies (vii). Kučera and Slaman [7] showed that
(ii) implies (vii). Finally, (vi) was inserted in the course of the derivation from
(v) to (viii) by Tadaki [20].

4 New Results on the Partial Randomness of an r.e. Real

In this section, we generalize Theorem 6 above over the notion of partial ran-
domness. For that purpose, we first introduce some new notions. Let T be an
arbitrary real with 0 < T ≤ 1 throughout the rest of this paper. These notions
are parametrized by the real T .1

1 The parameter T corresponds to the notion of “temperature” in the statistical
mechanical interpretation of algorithmic information theory developed by Tadaki
[21,22].
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Definition 9 (T -convergence). An increasing sequence {an} of reals is called
T -convergent if

∑∞
n=0(an+1 − an)T < ∞. An r.e. real α is called T -convergent

if there exists a T -convergent computable, increasing sequence of rationals which
converges to α, i.e., if there exists an increasing sequence {an} of rationals such
that (i) {an} is T -convergent, (ii) {an} is computable, and (iii) limn→∞ an = α.

��

Note that every increasing and converging sequence of reals is 1-convergent, and
thus every r.e. real is 1-convergent. In general, based on the following lemma, we
can freely switch from “T -convergent computable, increasing sequence of reals”
to “T -convergent computable, increasing sequence of rationals.”

Lemma 1. For every α ∈ R, α is an r.e. T -convergent real if and only if there
exists a T -convergent computable, increasing sequence of reals which converges
to α. ��

The following argument illustrates the way of using Lemma 1: Let V be an optimal
computer, and let p0, p1, p2, . . . be a recursive enumeration of the r.e. set domV .
Then ΩV (T ) =

∑∞
i=0 2−|pi|/T , and the increasing sequence

{∑n
i=0 2−|pi|/T

}
n∈N

of reals is T -convergent since ΩV =
∑∞

i=0 2−|pi| < 1. If T is computable, then this
sequence of reals is computable. Thus, by Lemma 1 we have Theorem 7 below.

Theorem 7. Let V be an optimal computer. If T is computable, then ΩV (T ) is
an r.e. T -convergent real. ��

Definition 10 (Ω(T )-likeness). An r.e. real α is called Ω(T )-like if it domi-
nates all r.e. T -convergent reals. ��

Note that an r.e. real α is Ω(1)-like if and only if α is Ω-like.

Definition 11 (T -universality). A computable, increasing and converging se-
quence {an} of rationals is called T -universal if for every T -convergent com-
putable, increasing and converging sequence {bn} of rationals there exists c ∈ N+

such that c(α − an) ≥ β − bn for all n ∈ N, where α = limn→∞ an and
β = limn→∞ bn. ��

Note that a computable, increasing and converging sequence {an} of rationals
is 1-universal if and only if {an} is universal.

Using the notions introduced above, Theorem 6 is generalized as follows.

Theorem 8 (main result). Let α be an r.e. real with 0 < α < 1. Suppose that
T is computable. Then the following conditions are equivalent:

(i) The real α is weakly Chaitin T -random.
(ii) The real α is Martin-Löf T -random.

(iii) The real α is Ω(T )-like.
(iv) For every r.e. T -convergent real β, H(β �n) ≤ H(α �n) + O(1) for all

n ∈ N+.
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(v) For every r.e. T -convergent real γ > 0, there exist an r.e. real β ≥ 0 and
a rational q > 0 such that α = β + qγ.

(vi) For every optimal computer V , there exist an r.e. real β ≥ 0 and a rational
q > 0 such that α = β + qΩV (T ).

(vii) There exist an optimal computer V and an r.e. real β ≥ 0 such that α =
β + ΩV (T ).

(viii) There exists a universal probability m such that α =
∑

s∈{0,1}∗ m(s)
1
T .

(ix) Every computable, increasing sequence of rationals which converges to α is
T -universal.

(x) There exists a T -universal computable, increasing sequence of rationals
which converges to α. ��

We see that Theorem 8 is a massive expansion of Theorem 3 in the case where
the real α is r.e. with 0 < α < 1. The condition (vii) of Theorem 8 corresponds
to the condition (v) of Theorem 6. Note, however, that, in the condition (vii) of
Theorem 8, a non-negative r.e. real β is needed. The reason is as follows: In the
case of β = 0, the possibility that α is weakly Chaitin T ′-random with a real
T ′ > T is excluded by the T -compressibility of ΩV (T ) imposed by Theorem 4
(i). However, this exclusion is inconsistent with the condition (i) of Theorem 8.

Theorem 8 can be proved by generalizing the proof of Theorem 6 over the no-
tion of partial randomness. For example, using Lemma 2 below, the implication
(ii) ⇒ (v) of Theorem 8 is proved as follows, in which the notion of T -convergence
plays an important role.

Proof (of (ii) ⇒ (v) of Theorem 8). Suppose that γ is an arbitrary r.e. T -
convergent real with γ > 0. Then there exists a T -convergent computable, in-
creasing sequence {cn} of rationals which converges to γ. Since γ > 0, without
loss of generality we can assume that c0 = 0. We choose any one rational ε > 0
such that

∑∞
n=0[ε(cn+1 − cn)]T ≤ 1. Such ε exists since the sequence {cn} is

T -convergent. Note that the sequence {ε(cn+1 − cn)} is a computable sequence
of positive rationals. Thus, since α is a positive r.e. real and also Martin-Löf
T -random by the assumption, it follows from Lemma 2 below that there exist a
computable, increasing sequence {an} of rationals and a rational r > 0 such that
an+1−an > rε(cn+1 −cn) for every n ∈ N, a0 > 0, and α = limn→∞ an. We then
define a sequence {bn} of positive rationals by bn = an+1 −an − rε(cn+1 − cn). It
follows that {bn} is a computable sequence of rationals and

∑∞
n=0 bn converges

to α−a0−rε(γ−c0). Thus we have α = a0+
∑∞

n=0 bn+rεγ, where a0+
∑∞

n=0 bn

is a positive r.e. real. This completes the proof. ��

Lemma 2. Let α be an r.e. real, and let {dn} be a computable sequence of
positive rationals such that

∑∞
n=0 dn

T ≤ 1. If α is Martin-Löf T -random, then
for every ε > 0 there exist a computable, increasing sequence {an} of rationals
and a rational q > 0 such that an+1 − an > qdn for every n ∈ N, a0 > α − ε,
and α = limn→∞ an. ��

Lemma 2 can be proved, based on the generalization of the techniques used in
the proof of Theorem 2.1 of Kučera and Slaman [7] over partial randomness.
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In addition to the proof of Lemma 2, the complete proof of Theorem 8 will be
described in a full version of this paper, which is in preparation.

Theorem 8 has many important applications. One of the main applications is
to give many characterizations of the dimension of an individual r.e. real, some
of which will be presented in the next section. As another consequence of Theo-
rem 8, we can obtain Corollary 1 below for example, which follows immediately
from the implication (vii) ⇒ (iv) of Theorem 8 and Theorem 7.

Corollary 1. Suppose that T is computable. Then, for every two optimal com-
puters V and W , H(ΩV (T )�n) = H(ΩW (T )�n) + O(1) for all n ∈ N+. ��

Note that the computability of T is important for Theorem 8 to hold. For ex-
ample, we cannot allow T to be simply an r.e. real in Theorem 8.

The notion of T -convergence has many interesting properties, in addition to
the properties which we saw above. In Section 6, we investigate further properties
of the notion of T -convergence.

5 New Characterizations of the Dimension of an r.e. Real

In this section we apply Theorem 8 to give many characterizations of dimension
for an individual r.e. real. In the works [18,19], we introduced the notions of
six “algorithmic dimensions”, 1st, 2nd, 3rd, 4th, upper, and lower algorithmic
dimensions as fractal dimensions for a subset F of N -dimensional Euclidean
space RN . These notions are defined based on the notion of partial randomness
and compression rate by means of program-size complexity. We then showed
that all the six algorithmic dimensions equal to the Hausdorff dimension for any
self-similar set which is computable in a certain sense. The class of such self-
similar sets includes familiar fractal sets such as the Cantor set, von Koch curve,
and Sierpiński gasket. In particular, the notion of lower algorithmic dimension
for a subset F of R is defined as follows.

Definition 12 (lower algorithmic dimension, Tadaki [19]). Let F be a
nonempty subset of R. The lower algorithmic dimension dimAF of F is defined
by dimAF = supx∈F lim infn→∞ H(x�n)/n. ��

Thus, for every α ∈ R,

dimA{α} = lim inf
n→∞

H(α�n)
n

. (2)

Independently of us, Lutz [8] introduced the notion of constructive dimension of
an individual real α using the notion of lower semicomputable s-supergale with
s ∈ [0,∞), and then Mayordomo [10] showed that, for every real α, the construc-
tive dimension of α equals to the right-hand side of (2). Thus, the constructive
dimension of α is precisely the lower algorithmic dimension dimA{α} of α for
every real α.

Using Lemma 3 below, we can convert each of all the conditions in Theo-
rem 8 into a characterization of the lower algorithmic dimension dimA{α} for
any r.e. real α.
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Lemma 3. Let α ∈ R. For every t ∈ [0,∞), α is weakly Chaitin t-random if
t < dimA{α}, and α is not weakly Chaitin t-random if t > dimA{α}.

Proof. Let α ∈ R, and let t ∈ [0,∞). Assume first that t < dimA{α}. Then,
since dimA{α}n ≤ H(α�n) + o(n) for all n ∈ N+, we see that

tn +
(

dimA{α} − t − o(n)
n

)
n ≤ dimA{α}n − o(n) ≤ H(α�n)

for all n ∈ N+. Thus, since dimA{α}− t− o(n)/n > 0 for all sufficiently large n,
we see that α is weakly Chaitin t-random.

On the other hand, assume that α is weakly Chaitin t-random. Then we see
that t ≤ lim infn→∞ H(α�n)/n = dimA{α}. Thus, if t > dimA{α} then α is not
weakly Chaitin t-random. This completes the proof. ��

For example, using Lemma 3, the condition (iii) in Theorem 8 is converted as
follows. In this paper, we interpret the supremum sup ∅ of the empty set as 0.

Theorem 9. Let α be an r.e. real. Then, for every t ∈ (0, 1], α is Ω(t)-like if
t < dimA{α}, and α is not Ω(t)-like if t > dimA{α}. Thus,

dimA{α} = sup{ t ∈ (0, 1] | α is Ω(t)-like }. ��

On the other hand, the condition (viii) in Theorem 8 is converted as follows,
using Lemma 3. Here Rc denotes the set of all computable reals.

Theorem 10. Let α be an r.e. real with 0 < α < 1, Then, for every t ∈ (0, 1]∩
Rc, if t < dimA{α} then α =

∑
s∈{0,1}∗ m(s)

1
t for some universal probability

m, and if t > dimA{α} then α 	=
∑

s∈{0,1}∗ m(s)
1
t for any universal probability

m. Thus, dimA{α} = supS, where S is the set of all t ∈ (0, 1] ∩ Rc such that
α =

∑
s∈{0,1}∗ m(s)

1
t for some universal probability m. ��

In the same manner, using Lemma 3 we can convert each of the remaining eight
conditions in Theorem 8 also into a characterization of the lower algorithmic
dimension of an r.e. real. In a full version of this paper, we will describe the
complete list of the ten characterizations of the lower algorithmic dimension
obtained from Theorem 8.

6 Further Properties of T -Convergence

In this section, we investigate further properties of the notion of T -convergence.
First, as one of the applications of Theorem 8, the following theorem can be
obtained.

Theorem 11. Suppose that T is computable. For every r.e. real α, if α is T -
convergent, then α is T -compressible.
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Proof. Using (vii) ⇒ (iv) of Theorem 8, we see that, for every r.e. T -convergent
real α, H(α�n) ≤ H(ΩU (T )�n)+O(1) for all n ∈ N+. It follows from Theorem 4
(i) that α is T -compressible for every r.e. T -convergent real α. ��

In the case of T < 1, the converse of Theorem 11 does not hold, as seen in
Theorem 12 below in a sharper form. Theorem 12 can be proved partly using
(vii) ⇒ (ix) of Theorem 8.

Theorem 12. Suppose that T is computable and T < 1. Then there exists an
r.e. real η such that (i) η is weakly Chaitin T -random and T -compressible, and
(ii) η is not T -convergent. ��

Let T1 and T2 be arbitrary computable reals with 0 < T1 < T2 < 1, and let
V be an arbitrary optimal computer. By Theorem 4 (i) and Theorem 11, we
see that the r.e. real ΩV (T2) is not T1-convergent and therefore every com-
putable, increasing sequence {an} of rationals which converges to ΩV (T2) is not
T1-convergent. At this point, conversely, the following question arises naturally:
Is there any computable, increasing sequence of rationals which converges to
ΩV (T1) and which is not T2-convergent ? We can answer this question affirma-
tively in the form of Theorem 13 below.

Theorem 13. Let T1 and T2 be arbitrary computable reals with 0 < T1 < T2 <
1. Then there exist an optimal computer V and a computable, increasing sequence
{an} of rationals such that (i) ΩV (T1) = limn→∞ an, (ii) {an} is T -convergent
for every T ∈ (T2,∞), and (iii) {an} is not T -convergent for every T ∈ (0, T2].

��

7 Concluding Remarks

In this paper, we have generalized the equivalent characterizations of random-
ness of a recursively enumerable real over the notion of partial randomness, so
that the generalized characterizations are all equivalent to the weak Chaitin
T -randomness. As a stronger notion of partial randomness of a real α, Tadaki
[18,19] introduced the notion of the Chaitin T -randomness of α, which is defined
as the condition on α that limn→∞ H(α�n) − Tn = ∞.2 Thus, future work may
aim at modifying our equivalent characterizations of partial randomness so that
they become equivalent to the Chaitin T -randomness.
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Affairs and Communications of Japan, and by CREST from Japan Science and
Technology Agency.

2 The actual separation of the Chaitin T -randomness from the weak Chaitin T -
randomness is done by Reimann and Stephan [11].
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Abstract. If the given problem instance is partially solved, we want
to minimize our effort to solve the problem using that information. In
this paper we introduce the measure of entropy H(S) for uncertainty in
partially solved input data S(X) = (X1, ..., Xk), where X is the entire
data set, and each Xi is already solved. We use the entropy measure to
analyze three example problems, sorting, shortest paths and minimum
spanning trees. For sorting Xi is an ascending run, and for shortest
paths, Xi is an acyclic part in the given graph. For minimum span-
ning trees, Xi is interpreted as a partially obtained minimum spanning
tree for a subgraph. The entropy measure, H(S), is defined by regarding
pi = |Xi|/|X| as a probability measure, that is, H(S) = −nΣk

i=1pi log pi,
where n = Σk

i=1|Xi|. Then we show that we can sort the input data S(X)
in O(H(S)) time, and solve the shortest path problem in O(m + H(S))
time where m is the number of edges of the graph. Finally we show that
the minimum spanning tree is computed in O(m + H(S)) time.

Keywords: entropy, complexity, adaptive sort, minimal mergesort,
ascending runs, shortest paths, nearly acyclic graphs, minimum span-
ning trees.

1 Introduction

The concept of entropy is successfully used in information and communication
theory. In algorithm research, the idea is used explicitly or implicitly. In [7],
entropy is explicitly used to navigate the computation of the knapsack problem.
On the other hand, entropy is used implicitly to analyze the computing time of
various adaptive sorting algorithms [10]. In this paper, we develop a more unified
approach to the analysis of algorithms using the concept of entropy. We regard
the entropy measure as the uncertainty of the input data of the given problem
instance, that is, the computational difficulty of the given problem instance.

First let us describe the framework of amortized analysis. Let S0, S1, ...,
SN be the states of data such that S0 is the initial state and SN is the final
state. The computation in this paper is to transform Si−1 to Si at the i-th step
for i = 1, , , , , N . The potential of state S is denoted by Φ(S), which describes
some positive aspect of data. That is, increasing the potential will ease the
computation at later steps. The actual time and amortized time for the i-th step
are denoted by ti and ai. We use the words “time” and “cost” interchangeably.
The amortized time is defined by the accounting equation

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 700–711, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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ai = ti − ΔΦ(Si), (1)

where ΔΦ(Si) = Φ(Si)−Φ(Si−1). That is, the amortized time is the actual time
minus the increase of potential at the i-th step. By summing up the equation
over i, we have

Σai = Σti + Φ(S0) − Φ(SN ), or Σti = Σai − Φ(S0) + Φ(SN ).

Let the state of data be given by a decomposition of a set X as S(X) =
(X1, ..., Xk). Let |X | = n, ni = |Xi| and pi = ni/n. Note that

∑
pi = 1.

We define the entropy of a decomposition of X , H(S(X)), abbreviated as H(S),
by

H(S) = −n
k∑

i=1

pi log pi =
k∑

i=1

|Xi| log(|X |/|Xi|) (2)

Normally entropy is defined without the factor of n, the size of the data set.
We include this to deal with a dynamic situation where the size of the data
set changes. Logarithm is taken with base 2 unless otherwise specified. Since pi

(i = 1, · · · , k) can be regarded as a probability measure, we have

0 ≤ H(S) ≤ n log k

and the maximum is obtained when |Xi| = n/k (i = 1, · · · , k). We capture the
computational process as a process of decreasing the entropy in the given data
set X . We assume H(S0) ≥ H(S1) ≥ ... ≥ H(SN ). We use −H(S) for the
potential in equation (1). The accounting equation becomes ai = ti − ΔH(Si),
where ΔH(Si) = H(Si−1) − H(Si). That is, the amortized time is the actual
time minus the decrease of entropy at the i-th step. The entropy is regarded as
a negative aspect of the data, i.e., the less entropy, the closer to the solution.

Let T and A be the actual total time and the amortized total time. Sum-
ming up ai for i = 1, ..., N , we have A = T + H(SN ) − H(S0), or T =
A+H(S0)−H(SN ). We call this process of summing up amortized times over the
computational steps “summing-up”. In the following we see three applications,
where A can be easily obtained. In many applications, H(SN ) = 0, meaning that
the total time is A plus the initial entropy. We also have a reasonable assumption
that −

∑k
i=1 pi log pi > 0 for the initial state, meaning H(S0) = Ω(n).

Let S′(X) = (X ′
1, ..., X

′
k′) be a refinement of S(X) = (X1, ..., Xk), that is,

S′(X) is a decomposition of X and for any X ′
i there is Xj such that X ′

i ⊆ Xj .
Then we have H(S) ≤ H(S′). As the entropy is a measure of uncertainty, we
can say S(X) is more solved than S′(X).

The concept of amortized cost and actual cost is a relative one. That is, the
actual time itself may be formulated as amortized time and actual time at a lower
level of computation. Specifically, the actual time ti in the accounting equation
can be like tij − (Ψi,j−1 −Ψi,j), where Ψ is another potential associated with the
lower level computation. In such a case, summing-up takes place over indices i
and j. Thanks to the linear property of the accounting equation, we can analyze
amortized time on the upper level and lower level computation separately. We
will see an example of a two-level amortized analysis in Section 5.



702 T. Takaoka

In later sections, we show three interpretations of Xi’s. In sorting, Xi’s are
ascending runs which are regarded as solved. In shortest paths, Xi’s are acyclic
parts of the given graph, which can be processed without the effort of finding
the minimum in the priority queue. In the minimum spanning tree problem, Xi

is the set of vertices of a partially solved minimum spanning tree for a subgraph.
The main point of the paper is to offer a new method for algorithm analysis

rather than designing new algorithms.

2 Application to Adaptive Sort

Adaptive sorting is to sort the list of n numbers into increasing order as efficiently
as possible by utilizing the structure of the list which reflects some presortedness.
See Estivill-Castro and Wood [3] for a general survey on adaptive sorting. There
are many measures of disorder or presortedness. The simplest one is the number
of ascending runs in the list. Let the given list X = (a1, a2, · · · , an) be divided
into k ascending runs Xi (i = 1, · · · , k), that is, S(X) = (X1, X2, · · · , Xk) where
Xi = (a(i)

1 , · · · , a(i)
ni ) and a

(i)
1 is the |X1| + · · · + |Xi−1| + 1-th element in X .

We denote the length of list X by |X |. S(X) is abbreviated as S. Note that
a
(i)
1 ≤ · · · ≤ a

(i)
ni for each Xi and a

(i)
ni > a

(i+1)
1 if Xi is not the last list. The sort

algorithm called natural merge sort [5] sorts X by merging two adjacent lists
for each phase halving the number of ascending runs after each phase so that
sorting is completed in O(n log k) time. Mannila [6] proved that this method is
optimal under the measure of the number of ascending runs.

In this paper we generalize the measure RUNS (S) of the number of ascending
runs into that of the entropy of ascending runs in X , denoted by H(S). Then we
analyze a sorting algorithm, called minimal merge sort, that sorts X by merging
two minimal length runs successively until we have the sorted list. We show
that the time for this algorithm is O(H(S)) and is optimal under the measure
of H(S). Hence the measure H(S) derived from runs-entropy is sharper than
RUNS measure of O(n log k).

The idea of merging two shortest runs may be known. The algorithm style
based on “meta-sort” in the next section is due to [10].

3 Minimal Mergesort

All lists are maintained in linked list structures in this section. Let S(X) =
(X1, · · · , Xk) be the given input list such that each Xi is sorted in ascending
order. Re-arrange X into S′(X) = (Xi1 , · · · , Xik

) in such a way that |Xij | ≤
|Xij+1 | (j = 1, · · · , k − 1), that is, (X1, · · · , Xk) is sorted with |Xi| as key. We
call this “meta-sort.” Since each |Xij | is an integer up to n, we can obtain S′(X)
in O(n) time by radix sort. Now we sort S′(X) by merging two shortest lists
repeatedly. Formally we have the following. Let M and L be lists of lists, whereas
Wi (i = 1, 2) and W are ordinary lists. By the operation M ⇐ L, the leftmost list
in L is moved to the rightmost part of M . By the operation Wi ⇐ M (i = 1, 2)
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the leftmost list of M is moved to Wi. By the operation M ⇐ W , W is moved
to the rightmost part of M . First(L) is the first list in L.

Algorithm 1 (Minimal mergesort)

1 Meta-sort S(X) into S′(X) by length of Xi;
2 Let L = S′(X);
3 M := ∅;
4 M ⇐ L;
5 if L 	= ∅ then M ⇐ L;
6 for i := 1 to k − 1 do begin
7 W1 ⇐ M ;
8 W2 ⇐ M ;
9 W := merge (W1,W2);

10 while L 	= ∅ and |W | > |first(L)| do M ⇐ L;
11 M ⇐ W
12 end

{W is the sorted list}.

Lemma 1. If W2 is not an original Xi for any i at line 9, it holds that |W2| ≤
2
3 |W |.

Proof. Suppose to the contrary that |W2| > 2|W1|. Then for the previously
merged lists V1 and V2, that is, W2 = merge (V1, V2), we have |V1| > |W1| or
|V2| > |W1|. Thus V2 or V1 must have been merged with W1 or a shorter list, a
contradiction.

We measure the computing time by the number of key comparisons in the merge
operation at line 9, where the straight-forward merging is done with |W1|+|W2|−
1 key comparisons.

Lemma 2. We slightly modify the definition of amortized time; it is the actual
time minus constant times decrease of entropy. Then the amortized time for the
i-th merge is not greater than zero.

Proof. Let ni = |Xi| for i = 1, ..., k. In particular, |W1| = n1 and |W2| = n2.
The change of entropy occurs only with n1 and n2. Thus, noting n1 ≤ n2 ≤ 2n1,
the decrease of entropy is

ΔH = n1 log(n/n1) + n2 log(n/n2) − (n1 + n2) log(n/(n1 + n2))
= n1 log(1 + n2/n1) + n2 log(1 + n1/n2)
≥ n1 log 2 + n2 log(3/2) ≥ log(3/2)(n1 + n2)

Thus
ai = n1 + n2 − 1 − ΔH/ log(3/2) ≤ 0

Theorem 1. The algorithm minimal mergesort sorts S(X) = (X1, · · · , Xk)
where each Xi is an ascending sequence in O(H(S)) time.

Proof. Theorem follows from Lemma 2 and the initial entropy is given by H(S).
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Example. Let |X1| = 2, |Xi| = 2i−1 (i = 2, · · · , k − 1) and n = 2k. Then
minimal mergesort sorts S(X) in O(n) time, since H(S) = O(n), whereas natural
mergesort takes O(n log logn) time to sort S(X).

Lemma 3. Any sorting algorithm takes at least Ω(H(S)) time when the entropy
of ascending runs in S(X) is H(S) and |Xi| ≥ 2 for i = 1, · · · , k.

Proof. Sorting S(X) into S′(X) = (a′1, · · · , a′n) where a′1 ≤ · · · ≤ a′n means that
S′(X) is a permutation of S(X). To establish a lower bound, we can assume that
all elements in X are different. Let Xi = (a(i)

1 , · · · , a(i)
ni ). Let a

(i)
ni (i = 1, · · · , k)

be fixed to be the i-th largest element in X . Then there are
(

n−k
n1−1

)
possibilities

of X1 being scattered in X ′. Since the constraint of a
(1)
n1 > a

(2)
1 is satisfied by

the choice of a
(1)
n1 , we have

(
n−k−n1+1

n2−1

)
possibilities of X2 being scattered in X ′.

Repeating this calculation yields the number of possibilities N as

N =
(n − k)!

(n1 − 1)! (n − k − n1 + 1)!
×

(n − k − n1 + 1)!
(n2 − 1)! (n − k − n1 − n2 + 2)!

×

· · · (nk−1 − 1)!
(nk − 1)! 0!

=
n !

n1! · · ·nk!
· n1 · · ·nk

n(n − 1) · · · (n − k + 1)
.

Since the number of possible permutations is not fewer than this, we have the
lower bound T on the computing time based on the binary decision tree model
approximated by T = logN . In the following we use natural logarithm for no-
tational convenience. The result should be multiplied by log2 e. We use the fol-
lowing integral approximation.

n logn − n + 1 ≤
∑n

j=1 log j ≤ n logn − n + logn

T is evaluated by using the first inequality for n and the second for ni,

T = logN ≥ logn! −
∑k

i=1 logni! +
∑k

i=1(logni − log(n − i + 1))
=
∑k

i=1 ni log n
ni

− k logn + 1

Since
∑

ni log n
ni

is minimum when n1 = · · · = nk−1 = 2 and nk = n− 2(k − 1),

2T − H(S)
≥
∑

ni log
n

ni
− 2k logn + 2

≥ 2(k − 1) log
n

2
+ (n − 2k + 2) log

n

n − 2k + 2
− 2k logn + 2

= (n − 2k) log
n

n − 2k + 2
− 2 log(n − 2k + 2) + 4

≥ −2 log(n − 2k + 2),

since 1 ≤ k ≤ n/2. On the other hand we can show T ≥ log(n − 2k + 2). Thus
we have T ≥ H(S)/4 = Ω(H(S)).
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If ni=1 for some i, a(i)
ni and a

(i+1)
1 form a part of a descending sequence. By revers-

ing the descending sequences, we can guarantee that the sequence is decomposed
into ascending runs of length al least 2. Let us extend minimal mergesort with
this extra scanning in linear time, and define the entropy on the modified se-
quence. From this extension and the above lemma we see that minimal mergesort
is asymptotically optimal for any sequence under the entropy measure. We can
define entropy by decomposing the given sequence in non-consecutive portions.
Minimal mergesort is not optimal under the entropy measure defined in this way.
There are more entropy measures defined in [10].

4 Application to Shortest Paths for Nearly Acyclic
Graphs

Let G = (V,E) be a directed graph where V is the set of vertices with |V | = n
and E is the set of edges with |E| = m. The non-negative cost of edge (vi, vj)
is denoted by c(vi, vj). Let OUT (v) (also IN(v)) be the list of edges from (to)
v expressed by the set of the other end points of edges from (to) v. A brief
description of Dijkstra’s algorithm follows. Let S be the solution set, to which
shortest distances have been established by the algorithm. The vertices in V −S
have tentative distances that are those of the shortest paths that go through S
except for the end points. We take a vertex in V − S that has the minimum
distance, finalize it, and update the distances to other vertices in V − S using
edge list OUT (v). If we organize Q by a Fibonacci heap or 2-3 heap [9], we can
show the single source shortest path problem can be solved in O(m + n logn)
time. We call this algorithm with one of those priority queues the standard single
source algorithm. We assume the graph is connected from the source. Note that
we use the same symbol S for the state of data and the solution set, hoping this
is not a source of confusion.

We give the following well known algorithm [11] and its correctness for acyclic
graphs for the sake of completeness. See [11] for the proof. It runs in O(m) time,
that is, we do not need an operation of finding the minimum in the priority
queue.

Algorithm 2 {G = (V,E) is an acyclic graph.}

1 Topologically sort V and assume without loss of generality); V = {v1, · · · , vn}
where (vi, vj) ∈ E ⇔ i < j;

2 d[v1] := 0; {v1 is the source}
3 for i := 2 to n do d[vi] := ∞;
4 for i := 1 to n do
5 for vj such that (vi, vj) ∈ E do
6 d[vj ] := min{d[vj ], d[vi] + c(vi, vj)}.

Lemma 4. At the beginning of Line 5 in Algorithm 2, the shortest distances
from v1 to vj (j < i) are computed. Also at the beginning of line 5, distances
computed in d[vj ] (j ≥ i) are those of shortest paths that lie in {v1, · · · , vi−1}
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except for vj. Thus at the end shortest distances d[vi] are computed correctly for
all i(1 ≤ i ≤ n).

Abuaiadh and Kingston [1] gave a result by restricting the given graph to be-
ing nearly acyclic. When they solve the single source problem, they distinguish
between two kinds of vertices in V − S. One is the set of vertices, “easy” ones,
to which there are no edges from V − S, e.g., only edges from S. The other is
the set of vertices, “difficult” ones, to which there are edges from V − S. To
expand S, if there are easy vertices, those are included in S and distances to
other vertices in V − S are updated. If there are no easy vertices, the vertex
with minimum tentative distance is chosen to be included in S. If the number
of such delete-minimum operations is t, the authors show that the single source
problem can be solved in O(m+n log t) time with use of a Fibonacci heap. That
is, the second term of the complexity is improved from n logn to n log t. If the
graph is acyclic, t = 1 and we have O(m+n) time. Since we have O(m+n logn)
when t = n, the result is an improvement of Fredman and Tarjan with use of the
new parameter t. The authors claim that if the given graph is nearly acyclic, t
is expected to be small and thus we can have a speed up.

The definition of near acyclicity and the estimate of t under it is not clear,
however. We will show that the second term can be bounded by the entropy
derived from a structural property of the given graph.

Algorithm 3 {Single source shortest paths with v0 being the source} [1], [8]
1 for v ∈ V do if v = v0 then d[v] := 0 else d[v] := ∞;
2 Organize V in a priority queue Q with d[v] as key;
3 S := ∅;
4 while S 	= V do begin
5 if there is a vertex v in V − S with no incoming edge from V − S then
6 Choose v
7 else
8 Choose v from V − S such that d[v] is minimum;
9 Delete v from Q;

10 S := S ∪ {v} ;
11 for w ∈ OUT (v) ∩ (V − S) do d[w] := min{d[w], d[v] + c(v, w)}
12 end.

It is shown in [1] that a sequence of n delete, m decrease-key and t find-min
operations is processed in O(m + n log t) time, meaning that the single source
shortest path problem can be solved in the same amount of time.

We use the 2-3 heap for priority queue Q with the additional operation of
delete. Let v1, , , , , vk be deleted between two consecutive find-min operations
such that v1 is found at a find-min operation at line 8, and vk is found at line 6
immediately before the next find-min. Each induced subgraph from them forms
an acyclic graph, and they are topologically sorted in the order in which vertices
are chosen at line 6. Thus they can be deleted from the heap without the effort
of find-min operations. Let V1, ..., Vt be the sets of vertices such that Vi is the
acyclic set chosen following the i-th find-min operation and just before the next
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find-min. We call this set the i-th acyclic set. Note that the source is chosen
by the first find-min. Then S(V ) = (V1, ..., Vt) forms a decomposition of the set
V . We denote the entropy of this decomposition by H(S). Lemma 6 in the next
section shows that t find-min operations with |V1|+...+|Vt| deletes interleaved in
Algorithm 3 (each i-th find-min followed by |Vi| deletes) can be done in O(H(S))
time. Let ms be the number of edges examined at line 11 between the s-th find-
min operation and the (s + 1)-th find-min operation. Between these operations,
O(ms) amortized time is spent at line 11. The total time for line 11 becomes
O(m).

When t = 1, the whole graph is acyclic, and we can solve the single source
problem in O(m) time by Lemma 4. The time for building Q at line 2 is absorbed
in O(m). Thus we have the following theorem.

Theorem 2. Algorithm 3 solves the single source shortest path problem in O(m+
H(S)) time.

5 Analysis of Delete Operations

We maintain the priority queue for the single source shortest path problem by a
2-3 heap [9]. In traditional priority queues, decrease-key, insert and delete-min
operations are defined. We define a delete operation on a 2-3 heap. When we
delete node v, we remove the subtree rooted at v similarly to decrease-key on v,
entailing a reshape of the work space. After destroying v, we merge the subtrees
of v at the root level. The amortized time for a delete is proportional to the
number of children, which is O(log nv), where nv is the number of descendants
of node v to be deleted. A delete is defined on a Fibonacci heap in [1].

Let us delete nodes vj(j = 1, ..., k) in the batch mode from a 2-3 heap of size
n. In the batch mode, we disconnect all children of all vj and merge them at the
root level. In other words, we do not process vj one by one. Assume the number
of descendants of vj is nj . The total amortized time T of deleting v1, ..., vk in the
batch mode is T = O(log n1+ ...+lognk). Noting that n1+ ...+nk ≤ cn for some
constant c, T is maximized as T = O(k log(n/k)) when n1 = ... = nk = cn/k.
Thus

Lemma 5. k consecutive delete operations on a 2-3 heap of size n can be done
in O(k log(n/k)) time.

Now we perform t batches of delete operations. Assume the i-th batch has ki

delete operations. Let the time for the i-th batch of delete operations be denoted
by Ti. Since Ti = O(ki log(n/ki)) by Lemma 5, we have the total time for all
deletes bounded within a constant factor by

k1 log(n/k1)+...+kt log(n/kt) = n(Σt
i=1(ki/n) log(ki/n)) = n(−Σt

i=1pi log pi),
where pi = ki/n. We define H(S) = −nΣt

i=1pi log pi. Let us perform those t
batches of delete operations after t find-min operations; each batch after each
find-min. One find-min operation can be done in O(log n) time. Thus the total
time becomes O(t log n + H(S)), which is further simplified to O(H(S)) by the
following lemma.
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Lemma 6. For t ≥ 2, t logn ≤ O(H(S)). Thus the time for heap operations
described above is bounded by O(H(S)).

Proof. H(S) is minimum when k1 = ... = kt−1 = 1, and kt = n − t + 1. Thus
2H(S) ≥ 2(t − 1) logn + 2(n − t + 1) log(n/(n − t + 1)) ≥ t logn

Remark. In terms of amortized analysis in Section 1, we can define ai and ti
in the following way. Let V (s) = Vs ∪ ...∪ Vt. We define the state of data set, Ss,
to be the data set V (s) decomposed as above. The initial state S = S1 is given
by V1 ∪ ... ∪ Vt. The entropy of the state of data is defined for the beginning of
the s-th find-min at line 8 using V (s) by

H(Ss) = Σt
i=s|Vi| log(|V (s)|/|Vi|)

Noting that |V (s)| ≥ |V (s+1)|, the decrease of entropy at the beginning of the
next find-min operation is

ΔH(Ss+1) = Σt
i=s|Vi| log(|V (s)|/|Vi|) − Σt

i=s+1|Vi| log(|V (s+1)|/|Vi|)
≥ |Vs| log(|V (s)|/|Vs|)

We define the actual time and amortized time to be those for the stage from the
s-th find-min to the (s + 1)-th. The actual time ts for stage s is given by

ts = O(ms + |Vs| log(|V (s)|/|Vs|) + logn).

This is because we inspect O(ms) edges, perform O(Vs) deletes in the heap of size
|V (s)|, and spend O(log n) time for a find-min. We interpret the above formula
as ts ≤ cs(ms + |Vs| log(|V (s)|/|Vs|) + logn) with some constant cs > 0.

The amortized time for the s-th stage is slightly modified with constant cs,
and given as

as = ts − csΔH(Ss+1)
≤ cs(ms + |Vs| log(|V (s)|/|Vs|) + logn) − cs|Vs| log(|V (s)|/|Vs|)
≤ cs(ms + logn)

Using constant c = max{cs} and noting H(St) = 0, we have

T ≤ A + c(H(S1) − H(St)) ≤ O(m + t logn + H(S1)) = O(m + H(S))

Note that when we perform summing-up over as, we also perform summing-up
over actual and amortized times for operations on the 2-3 heap. In this sense,
the above is a “two-level” amortized analysis.

Remark. In [1], O(t log n + H(S)) is bounded by O(n log t). Thus our analysis
of O(t log n + H(S)) ≤ O(H(S)) is sharper.

6 Relationship with 1-Dominator

As a definition of near-acyclicity, the definition and algorithm for a 1-dominator
decomposition is given in [8]. The decomposition is given by the set of disjoint



Partial Solution and Entropy 709

sets, called 1-dominator sets, whose union is V . A 1-dominator set dominated by
a trigger v, Av, is the maximal set of vertices w such that any path from outside
Av to w must go through v, and the subgraph induced by Av is an acyclic graph.
Let IN(v) = {u|(u, v) ∈ E}. Av is formally defined by the maximal set satisfying
the following formula for any w.

The induced graph from Av is acyclic, v ∈ Av and
(w ∈ Av)&(w 	= v) → (IN(w) 	= φ)&(IN(w) ⊆ Av)

In [8] it is shown V is uniquely decomposed into several Av’s, and the time for this
decomposition is O(m). The 1-dominator decomposition is used for identifying
the set of the triggers, R. Only triggers are maintained in the heap. Once the
distance to a trigger is finalized, the distances to members of the 1-dominator set
are finalized through Algorithm 2 in time proportional to the number of edges
in the set. At the border of the set. the distances to other triggers are updated.
The time for the single source problem becomes O(m + r log r), where r is the
number of triggers, that is, r = |R|.

We show that the entropy H(S) in Section 4 is bounded by the entropy defined
by the 1-dominator decomposition.

Theorem 3. The decomposition by 1-dominator sets is a refinement of the de-
composition defined by Algorithm 3.

Proof. Suppose a vertex v is obtained by find-min at line 8 and v is not a trigger.
Then v is inside some 1-dominator set. Since the distance to the corresponding
trigger is smaller, the trigger must be included in the solution set earlier, and
v must have subsequently been deleted from the heap, a contradiction. Thus v
is a trigger. Then the 1-dominator set is subsequently deleted from the heap,
and possibly more 1-dominator sets. Thus the 1-dominator decomposition is a
refinemment of the decomposition S(V ).

The decomposition by Algorithm 3 is dynamically defined, i.e., it cannot be
defined statically before the algorithm starts. On the other hand, the algorithm
based on the 1-dominator decomposition is more predictable as the preprocessing
can reveal the 1-dominator decomposition and its entropy, which bounds the
entropy defined by Algorithm 3.

In [8], the single source algorithm is given in a slightly different way. It main-
tains only triggers in the heap, and the distances between triggers are given by
those of pseudo edges, which are defined between triggers through the inter-
vening acyclic part and obtained in O(m) time. In other words, the standard
single source algorithm runs on this reduced graph. Thus the time becomes
O(m+r log r), which may be better than O(m+H(S)) of Algorithm 3. However
Algorithm 3 and the single source algorithm in [8] are not incompatible. We
can run Algorithm 3 on the reduced graph obtained through the 1-dominator
decomposition. Then the time will become O(m + H(S′)), where H(S′) is the
entropy defined by the algorithm run on the reduced graph.
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7 Remaining Work for the MST Problem

Let G = (V,E) be an undirected graph with edge cost function c(u, v) for the
edge (u, v). Let Kruskal’s algorithm continue to work for the minimum (cost)
spanning tree (MST) problem after the problem has been solved partially by the
same algorithm. We estimate how much more time is needed to complete the
work by using the concept of entropy. Let G1 = (V1, E1), ..., Gk = (Vk, Ek) be
subgraphs of G such that V1, ..., Vk form a decomposition of V and Gi is the
induced sub-graph from Vi. We assume the MST problem has been solved for
Gi with spanning trees Ti for i = 1, ..., k. The state of data S(V ) is defined by
S(V ) = (V1, ..., Vk), and the entropy of the state is defined by (2) where Xi is
interpreted as Vi.

The remaining work is to keep merging two trees by connecting them by
the best possible edge. We use array name to keep track of names of trees to
which vertices belong. If the two end points of an edge have different names, it
connects distinct trees successfully. Otherwise it would form a cycle, not desirable
situation, resulting in skipping the edge. The following algorithm completes the
work from line 4.

Algorithm 4 {To complete the MST problem}
1 Let the sorted edge list L has been partially scanned
2 Minimum spanning trees for G1, ..., Gk have been obtained
3 Let name[v] = i for v ∈ Vi have been set for i = 1, ..., k
4 while k > 1 do begin
5 Remove the first edge (u, v) from L
6 if u and v belong to different subtrees T1 and T2 (without loss of generality)
7 then begin
8 Connect T1 and T2 by (u, v);
9 Change the names of the nodes in the smaller tree to that of the larger tree;

10 k := k − 1;
11 end
12 end.

The analysis is similar to the proof of Lemma 2. We first analyze the time for
name changes at line 9. Let ti and ai be the actual time and amortized time for
the i-th operation that merges T1 and T2, where |T1| = n1 and |T2| = n2 and
V1 and V2 are the sets of vertices corresponding to those spanning sub-trees. We
measure the time by the number of name changes. Let the state of data after
the i-th merge be Si. The change of entropy occurs only with n1 and n2. Thus
the decrease of entropy is

ΔH(Si) = n1 log(n/n1) + n2 log(n/n2) − (n1 + n2) log(n/(n1 + n2))
= n1 log(1 + n2/n1) + n2 log(1 + n1/n2) ≥ min{n1, n2}

Noting that ti = min{n1, n2}, amortized time becomes

ai = ti − ΔH(Si) ≤ 0
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The rest of work is bounded by O(m). Thus the total time for the remaining
work becomes O(m +H(S)), where H(S) is the initial entropy at the beginning
of line 4. Note that the condition for ai ≤ 0 is crucial. In the analysis of minimal
merge sort, it is satisfied by the fact that the two shortest ascending runs are
merged, whereas in the MST problem in this section, it is satisfied by merging
the smaller tree to the larger tree.

8 Concluding Remarks

We captured computation as a process of reducing entropy, starting from some
positive value and ending in zero. The amortized time for a step of the com-
putation is the sum of the actual time minus the reduction of entropy. If the
analysis of a single amortized time is easier than the analysis of the total actual
time, this method by entropy will be useful for analysis. We showed that three
specific problems of sorting, shortest paths and minimum spanning trees can be
analyzed by this unified entropy analysis.

If the computation process is a merging process of two sets in the decomposi-
tion, our method may be used. The definition of entropy and actual time needs
care depending on the specifics of each problem. It remains to be seen if more
difficult problems can be analyzed by this method.

Acknowledgment. The author gratefully acknowledges many constructive com-
ments given by the reviewers. This work was partially done at Kansai University.
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Abstract. In this paper we study a subclass of pebble automata (PA)
for data languages for which the emptiness problem is decidable. Namely,
we show that the emptiness problem for weak 2-pebble automata is decid-
able, while the same problem for weak 3-pebble automata is undecidable.
We also introduce the so-called top view weak PA. Roughly speaking, top
view weak PA are weak PA where the equality test is performed only be-
tween the data values seen by the two most recently placed pebbles. The
emptiness problem for this model is still decidable.

1 Introduction

Logic and automata for words over finite alphabets are relatively well understood
and recently there is broad research activity on logic and automata for words and
trees over infinite alphabets. Partly, the study of infinite alphabets is motivated
by the need for formal verification and synthesis of infinite-state systems and
partly, by the search for automated reasoning techniques for XML. Recently,
there has been a significant progress in this field, see [1,2,4,5,8,10].

Roughly speaking, there are two approaches to studying data languages: logic
and automata. Below is a brief survey on both approaches. For a more compre-
hensive survey, we refer the reader to [10]. The study of data languages, which
can also be viewed as languages over infinite alphabets, starts with the introduc-
tion of finite-memory automata (FMA) in [5], which are also known as register
automata (RA). The study of RA was continued and extended in [8], in which
pebble automata (PA) were also introduced. Each of both models has its own
advantages and disadvantages. Languages accepted by FMA are closed under
standard language operations: intersection, union, concatenation, and Kleene
star. In addition, from the computational point of view, FMA are a much eas-
ier model to handle. Their emptiness problem is decidable, whereas the same
problem for PA is not. However, the PA languages possess a very nice logical
property: closure under all boolean operations, whereas FMA languages are not
closed under complementation.

Later in [2] first-order logic for data languages was considered, and, in par-
ticular, the so-called data automata was introduced. It was shown that data
automata define the fragment of existential monadic second order logic for data
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c© Springer-Verlag Berlin Heidelberg 2009
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languages in which the first order part is restricted to two variables only. An
important feature of data automata is that their emptiness problem is decid-
able, even for the infinite words, but is at least as hard as reachability for Petri
nets. The automata themselves always work nondeterministically and seemingly
cannot be determinized, see [1]. It was also shown that the satisfiability problem
for the three-variable first order logic is undecidable.

Another logical approach is via the so called linear temporal logic with n reg-
ister freeze quantifier over the labels Σ, denoted LTL↓

n(Σ, X, U), see [4]. It was
shown that one way alternating n register automata accept all LTL↓

n(Σ, X, U) lan-
guages and the emptiness problem for one way alternating one register automata
is decidable. Hence, the satisfiability problem for LTL↓

1(Σ, X, U) is decidable as
well. Adding one more register or past time operators to LTL↓

1(Σ, X, U) makes
the satisfiability problem undecidable.

In this paper we continue the study of PA, which are finite state automata
with a finite number of pebbles. The pebbles are placed on/lifted from the input
word in the stack discipline – first in last out – and are intended to mark positions
in the input word. One pebble can only mark one position and the most recently
placed pebble serves as the head of the automaton. The automaton moves from
one state to another depending on the current label and the equality tests among
data values in the positions currently marked by the pebbles, as well as, the
equality tests among the positions of the pebbles.

Furthermore, as defined in [8], there are two types of PA, according to the
position of the new pebble placed. In the first type, the ordinary PA, also called
strong PA, the new pebbles are placed at the beginning of the string. In the
second type, called weak PA, the new pebbles are placed at the position of the
most recent pebble. Obviously, two-way weak PA is just as expressive as two-way
ordinary PA. However, it is known that one-way nondeterministic weak PA are
weaker than one-way ordinary PA, see [8, Theorem 4.5.].

In this paper we show that the emptiness problem for one-way weak 2-
pebble automata is decidable, while the same problem for one-way weak 3-pebble
automata is undecidable. We also introduce the so-called top view weak PA.
Roughly speaking, top view weak PA are one-way weak PA where the equality
test is performed only between the data values seen by the two most recently
placed pebbles. Top view weak PA are quite robust: alternating, nondeterminis-
tic and deterministic top view weak PA have the same recognition power. To the
best of our knowledge, this is the first model of computation for data language
with such robustness. It is also shown that top view weak PA can be simulated
by one-way alternating one-register RA. Therefore, their emptiness problem is
decidable. Another interesting feature is top view weak PA can simulate all
LTL↓

1(Σ, X, U) languages.
This paper is organized as follows. In Section 2 we review the models of

computations for data languages considered in this paper. Section 3 and Section 4
deals with the decidability and the complexity issues of weak PA, respectively.
In Section 5 we introduce top view weak PA. Finally, we end our paper with a
brief observation in Section 6.
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2 Model of Computations

In Subsection 2.1 we recall the definition of weak PA from [8]. We will use the
following notation. We always denote by Σ a finite alphabet of labels and by
D an infinite set of data values. A Σ-data word w =

(
σ1
a1

)(
σ2
a2

)
· · ·
(
σn

an

)
is a finite

sequence over Σ × D, where σi ∈ Σ and ai ∈ D. A Σ-data language is a set of
Σ-data words.

We assume that neither of Σ and D contain the left-end marker ' or the right-
end marker &. The input word to the automaton is of the form 'w&, where ' and
& mark the left-end and the right-end of the input word. Finally, the symbols
ν, ϑ, σ, . . ., possibly indexed, denote labels in Σ and the symbols a, b, c, d, . . .,
possibly indexed, denote data values in D.

2.1 Pebble Automata

Definition 1. (See [8, Definition 2.3]) A one-way alternating weak k-pebble
automaton (k-PA) over Σ is a system A = 〈Σ,Q, q0, F, μ, U〉 whose components
are defined as follows.

– Q, q0 ∈ Q and F ⊆ Q are a finite set of states, the initial state, and the set
of final states, respectively;

– U ⊆ Q − F is the set of universal states; and
– μ ⊆ C × D is the transition relation, where

• C is a set whose elements are of the form (i, σ, V, q) where 1 ≤ i ≤ k,
σ ∈ Σ, V ⊆ {i + 1, . . . , k} and q ∈ Q; and

• D is a set whose elements are of the form (q, act), where q ∈ Q and act

is either stay, right, place-pebble or lift-pebble.
Elements of μ will be written as (i, σ, V, q) → (p, act).

Given a word w =
(
σ1
a1

)
· · ·
(
σn

an

)
∈ (Σ×D)∗, a configuration of A on 'w& is a triple

[i, q, θ], where i ∈ {1, . . . , k}, q ∈ Q, and θ : {i, i+1, . . . , k} → {0, 1, . . . , n, n+1},
where 0 and n + 1 are positions of the end markers ' and &, respectively. The
function θ defines the position of the pebbles and is called the pebble assign-
ment. The initial configuration is γ0 = [k, q0, θ0], where θ0(k) = 0 is the initial
pebble assignment. A configuration [i, q, θ] with q ∈ F is called an accepting
configuration.

A transition (i, σ, V, p) → β applies to a configuration [j, q, θ], if

(1) i = j and p = q,
(2) V = {l > i : aθ(l) = aθ(i)}, and
(3) σθ(i) = σ.

Note that in a configuration [i, q, θ], pebble i is in control, serving as the head
pebble.

Next, we define the transition relation 1A as follows: [i, q, θ] 1A [i′, q′, θ′], if
there is a transition α → (p, act) ∈ μ that applies to [i, q, θ] such that q′ = p,
θ′(j) = θ(j), for all j > i, and
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- if act = stay, then i′ = i and θ′(i) = θ(i);
- if act = right, then i′ = i and θ′(i) = θ(i) + 1;
- if act = lift-pebble, then i′ = i + 1;
- if act = place-pebble, then i′ = i − 1, θ′(i − 1) = θ′(i) = θ(i).

As usual, we denote the reflexive transitive closure of 1A by 1∗
A. When the

automaton A is clear from the context, we will omit the subscript A.

Remark 1. Note the pebble numbering that differs from that in [8]. In the above
definition we adopt the pebble numbering from [3] in which the pebbles placed on
the input word are numbered from k to i and not from 1 to i as in [8]. The reason
for this reverse numbering is that it allows us to view the computation between
placing and lifting pebble i as a computation of an (i − 1)-pebble automaton.

Furthermore, the automaton is no longer equipped with the ability to compare
positional equality, in contrast with the ordinary PA introduced in [8]. Such
ability no longer makes any difference because of the “weak” manner in which
the new pebbles are placed.

The acceptance criteria is based on the notion of leads to acceptance below. For
every configuration γ = [i, q, θ],

– if q ∈ F , then γ leads to acceptance;
– if q ∈ U , then γ leads to acceptance if and only if for all configurations γ′

such that γ 1 γ′, γ′ leads to acceptance;
– if q /∈ F ∪ U , then γ leads to acceptance if and only if there is at least one

configuration γ′ such that γ 1 γ′ and γ′ leads to acceptance.

A Σ-data word w ∈ (Σ × D)∗ is accepted by A, if γ0 leads to acceptance. The
language L(A) consists of all data words accepted by A.

The automaton A is nondeterministic, if the set U = ∅, and it is deterministic,
if there is exactly one transition that applies for each configuration. It turns out
that weak PA languages are quite robust.

Theorem 1. For all k ≥ 1, alternating, non-deterministic and deterministic
weak k-PA have the same recognition power.

The proof is quite standard and the details will appear in the journal version
of this paper. In view of this, we will always assume that our weak k-PA is
deterministic.

We end this subsection with an example of language accepted by weak 2-PA.
This example will be useful in the subsequent section.

Example 1. Consider a Σ-data language L∼ defined as follows. A Σ-data word
w =

(
σ1
a1

)
· · ·
(
σn

an

)
∈ L∼ if and only if for all i, j = 1, . . . , n, if ai = aj , then

σi = σj . That is, w ∈ L∼ if and only if whenever two positions in w carry the
same data value, their labels are the same.

The language L∼ is accepted by weak 2-PA which works in the following
manner. Pebbles 2 iterates through all possible positions in w. At each iteration,
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the automaton stores the label seen by pebble 2 in the state and places pebble 1.
Then, pebble 1 scans through all the positions to the right of pebble 2, checking
whether there is a position with the same data value of pebble 2. If there is such
a position, then the labels seen by pebble 1 must be the same as the label seen
by pebble 2, which has been previously stored in the state.

3 Decidability and Undecidability of Weak PA

In this section we will discuss the decidability issue of weak PA. We show that
the emptiness problem for weak 3-PA is undecidable, while the same problem for
weak 2-PA is decidable. The proof of the decidability of the emptiness problem
for weak 2-PA will be the basis of the proof of the decidability of the same
problem for top view weak PA.

Theorem 2. The emptiness problem for weak 3-PA is undecidable.

The proof of Theorem 2 is similar to the proof of the undecidability of the
emptiness problem for weak 5-PA in [8]. The main technical step in the proof is
to show that the following Σ-data language

Lord =

{(
σ

a1

)
· · ·
(

σ

an

)(
$
d

)(
σ

a1

)
· · ·
(

σ

an

)
: a1, . . . , an are pairwise different

}

is accepted by weak 5-PA, where Σ = {σ, $}. We observe that weak 3-PA is suf-
ficient. From this step, the undecidability can be easily obtained via a reduction
from the Post Correspondence Problem (PCP).

Now we are going to show that the emptiness problem for weak 2-PA is
decidable. The proof is by simulating weak 2-PA by one-way alternating one
register automata (1-RA). See [4] for the definition of alternating RA.

In fact, the simulation can be easily generalized to arbitrary number of peb-
bles. That is, weak k-PA can be simulated by one-way alternating (k − 1)-RA.
(Here (k − 1)-RA stands for (k − 1)-register automata.) This result settles a
question left open in [8]: Can weak PA be simulated by alternating RA?

Theorem 3. For every weak k-PA A, there exists a one-way alternating (k−1)-
RA A′ such that L(A) = L(A′). Moreover, the construction of A′ from A is
effective.

Now, by Theorem 3, we immediately obtain the decidability of the emptiness
problem for weak 2-PA because the same problem for one-way alternating 1-RA
is decidable [4, Theorem 4.4].

Corollary 1. The emptiness problem for weak 2-PA is decidable.

We devote the rest of this section to the proof of Theorem 3 for k = 2. Its
generalization to arbitrary k ≥ 3 is pretty straightforward.

Recall that we always assume that weak PA is deterministic. Let A =
〈Σ,Q, q0, μ, F 〉 be a weak 2-PA. We normalize the behavior of A as follows.
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– Pebble 1 is lifted only after it reads the right-end marker &.
– Only pebble 2 can enter a final state and it does so after it reads the right-end

marker &.
– Immediately after pebble 2 moves right, pebble 1 is placed.
– Immediately after pebble 1 is lifted, pebble 2 moves right.

Such normalization can be obtained in a pretty standard manner. The details
will appear in the journal version of this paper.

On input word w =
(
σ1
d1

)
· · ·
(
σn

dn

)
, the run of A on 'w& can be depicted as a

tree shown in Figure 1.
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Fig. 1. The tree representation of a run of A on the data word w =
(

σ1
d1

) · · · (σn
dn

)
The meaning of the tree is as follows.

– q0, q1, . . . , qn, qn+1 are the states of A when pebble 2 is the head pebble
reading the positions 0, 1, . . . , n, n + 1, respectively, that is, the symbols
',
(
σ1
d1

)
, . . . ,

(
σn

dn

)
, &, respectively.

– qf is the state of A after pebble 2 reads the symbol &.
– For 1 ≤ i ≤ j ≤ n, pi,j is the state of A when pebble 1 is the head pebble

reading the position j, while pebble 2 is above the position i.
– For 1 ≤ i ≤ n, the state pi is the state of A immediately after pebble 1 is

lifted and pebble 2 is above the position i.
It must be noted that there is a transition (2, σi, ∅, pi) → (qi+1, right) ap-
plied by A that is not depicted in the figure.
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Fig. 2. The corresponding run of A′ the data word w =
(

σ1
d1

) · · · (σn
dn

)
to the one in

Figure 1

Now the simulation of A by a one-way alternating 1-RA A′ becomes straight-
forward if we view the tree in Figure 1 as a tree depicting the computation of A′

on the same word w. Figure 2 shows the corresponding run of A′ on the same
word. Roughly, the automaton A′ is defined as follows.

– The states of A′ are elements of Q ∪ (Q × Q);
– the initial state is q0; and
– the set of final states is F ∪ {(p, p) : p ∈ Q}.

For each placement of pebble 1 on position i, the automaton performs the fol-
lowing “Guess–Split–Verify” procedure which consists of the following steps.

1. From the state qi, A′ “guesses” (by disjunctive branching) the state in which
pebble 1 is eventually lifted, i.e. the state pi. It stores pi in its internal state
and simulates the transition (2, σi, ∅, ∅, qi) → (pi,i, place-pebble) ∈ μ to
enter into the state (pi,i, pi).

2. A′ “splits” its computation (by conjunctive branching) into two branches.
– In one branch, assuming that the guess pi is correct, A′ moves right

and enters into the state qi+1, simulating the transition (2, ∅, pi) →
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(qi+1, right). After this, it recursively performs the Guess–Split–Verify
procedure for the next placement of pebble 1 on position (i + 1).

– In the other branch A′ stores the data value di in its register and simu-
lates the run of pebble 1 on

(
σi

di

)
· · ·
(
σn

dn

)
, starting from the state pi,i, to

“verify” that the guess pi is correct.
During the simulation, to remember the guess pi, the states of A′ are
(pi,i, pi), . . . , (pi,n+1, pi). A′ accepts when the simulation ends in the state
(pi, pi), that is, when the guess pi is “correct.”

4 Complexity of Weak 2-PA

In this subsection we are going to study the time complexity of three specific
problems related to weak 2-PA.

Emptiness problem. The emptiness problem for weak 2-PA. That is, given a
weak 2-PA A, is L(A) = ∅?

Labelling problem. Given a deterministic weak 2-PA A over the labels Σ
and a sequence of data values d1 · · ·dn ∈ Dn, is there a sequence of labels
σ1 · · ·σn ∈ Σn such that

(
σ1
d1

)
· · ·
(
σn

dn

)
∈ L(A)?

Data value membership problem. Given a deterministic weak 2-PA A over
the labels Σ and a sequence of finite labels σ1 · · ·σn ∈ Σn, is there a sequence
of data values d1 · · · dn ∈ Dn such that

(
σ1
d1

)
· · ·
(
σn

dn

)
∈ L(A)?

The emptiness problem, as we have seen in the previous section, is decidable. The
labelling and data value membership problem are in NP. To solve the labelling
problem, one simply guesses a sequence σ1 · · ·σn ∈ Σn and runs A to check
whether

(
σ1
d1

)
· · ·
(
σn

dn

)
∈ L(A). Similarly, to solve the data value membership

problem, one can guess a sequence of data values d1 · · · dn and run A to check
whether

(
σ1
d1

)
· · ·
(
σn

dn

)
∈ L(A).

We will show that the emptiness problem is not primitive recursive, while
both the labelling and data value membership problems are NP-complete.

Theorem 4. The emptiness problem for weak 2-PA is not primitive recursive.

The proof of theorem 4 is by simulation of incrementing counter automata
and follows closely the proof of similar lower bound for one-way alternating
1-RA [4, Theorem 2.9]. In short, the main technical step is to show that the
following Σ-data language Linc which consists of the data words of the form:(

α
a1

)
· · ·
(

α
am

)(
β
b1

)
· · ·
(

β
bn

)
; where

– Σ = {α, β};
– the data values a1, . . . , am are pairwise different;
– the data values b1, . . . , bn are pairwise different;
– each ai appears among b1, . . . , bn;

is accepted by weak 2-PA. The intuition of this language is to represent the
inequality m ≤ n, which is important in the simulation of incrementing counter
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automata, of which the emptiness problem is known to be decidable [9], but not
primitive recursice [7].

Now we are going to show the NP-hardness of the labelling problem. It is by
a reduction from graph 3-colorability problem which states as follows. Given an
undirected graph G = (V,E), is G is 3-colorable?

Let V = {1, . . . , n} and E = {(i1, j1), . . . , (im, jm)}. Assuming that D con-
tains the natural numbers, we take i1j1 · · · imjm as the sequence of data values.
Then, we construct a weak 2-PA A over the alphabet Σ = {ϑR, ϑG, ϑB} that
accepts data words of even length in which the following hold.

– For all odd position x, the label on position x is different from the label on
position x + 1.

– For every two positions x and y, if they have the same data value, then they
have the same label. (See Example 1.)

Thus, the graph G is 3-colorable if and only if there exists σ1 · · ·σ2m ∈
{ϑR, ϑG, ϑB}∗ such that

(
σ1
i1

)(
σ2
j1

)
· · ·
(
σ2m−1

im

)(
σ2m

jm

)
∈ L(A), and the NP-hardness,

hence the NP-completeness, of the labelling problem follows.
The NP-hardness of data value membership problem can established in a

similar spirit. The reduction is from the following variant of graph 3-colorability,
called 3-colorability with constraint. Given a graph G = (V,E) and three integers
nr, ng, nb, is the graph G 3-colorable with the colors R, G and B such that the
numbers of vertices colored with R, G and B are nr, ng and nb, respectively?

The polynomial time reduction to data value membership problem is as fol-
lows. Let V = {1, . . . , n} and E = {(i1, j1), . . . , (im, jm)}.

We define Σ = {ϑR, ϑG, ϑB, ν1, . . . , νn} and take

νi1νj1 · · · νimνjm ϑR · · ·ϑR︸ ︷︷ ︸
nr times

ϑG · · ·ϑG︸ ︷︷ ︸
ng times

ϑB · · ·ϑB︸ ︷︷ ︸
nb times

as the sequence of finite labels. Then, we construct a weak 2-PA over Σ that
accepts data words of the form(
νi1

c1

)(
νj1

d1

)
· · ·
(
νim

cm

)(
νjm

dm

)(
ϑR

a1

)
· · ·
(

ϑR

anr

)(
ϑG

a′1

)
· · ·
(

ϑG

a′ng

)(
ϑB

a′′1

)
· · ·
(

ϑB

a′′nb

)
,

where

– νi1 , νj1 , . . . , νim , νjm ∈ {ν1, . . . , νn};
– in the sub-word

(
νi1
c1

)(νj1
d1

)
· · ·
(

νim
cm

)(νjm
dm

)
, every two positions with the same

labels have the same data value (see Example 1);
– the data values a1, . . . , anr , a

′
1, . . . , a

′
ng

, a′′1 , . . . , a
′′
nb

are pairwise different;
– For each i = 1, . . . ,m, the data values ci, di appear among a1, . . . , anr ,

a′1, . . . , a
′
ng

, a′′1 , . . . , a
′′
nb

such that the following holds:
• if ci appears among a1, . . . , anr , then di appears among a′1, . . . , a

′
ng

or
a′′1 , . . . , a

′′
nb

;
• if ci appears among a′1, . . . , a

′
ng

, then di appears either among a1, . . . , anr

or a′′1 , . . . , a
′′
nb

; and
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• if ci appears among a′′1 , . . . , a
′′
nb

, then di appears among a1, . . . , anr or
a′1, . . . , a

′
ng

.

Note that we can store the integers r, g, b and m in the internal states of A,
thus, enable A to “count” up to nr, ng, nb and m. We have each state for the
numbers 1, . . . , nr, 1, . . . , ng, 1, . . . , nb and 1, . . . ,m. The number of states in A
is still polynomial on n.

Now the graph G is 3-colorable with the constraints nr, ng, nb if and only if
there exits c1d1 · · · cmdma1 · · · anra

′
1 · · · a′ng

a′′1 · · · a′′nb
such that(

νi1

c1

)(
νj1

d1

)
· · ·
(
νim

cm

)(
νjm

dm

)(
ϑR

a1

)
· · ·
(

ϑR

anr

)(
ϑG

a′1

)
· · ·
(

ϑG

a′ng

)(
ϑB

a′′1

)
· · ·
(

ϑB

a′′nb

)
is accepted by A. The NP-hardness, hence the NP-completeness, of the data
value membership problem then follows.

5 Top View Weak k-PA

In this section we are going to define top view weak PA. Roughly speaking, top
view weak PA are weak PA where the equality test is performed only between
the data values seen by the last and the second last placed pebbles. That is, if
pebble i is the head pebble, then it can only compare the data value it reads
with the data value read by pebble (i+ 1). It is not allowed to compare its data
value with those read by pebble (i + 2), (i + 3), . . . , k.

Formally, top view weak k-PA is a tuple A = 〈Σ,Q, q0, μ, F 〉 where Q, q0, F
are as usual and μ consists of transitions of the form: (i, σ, V, q) → (q′, act),
where V is either ∅ or {i + 1}.

The criteria for the application of transitions of top view weak k-PA is defined
by setting

V =
{

∅, if aθ(i+1) 	= aθ(i)

{i + 1}, if aθ(i+1) = aθ(i)

in the definition of transition relation in Subsection 2.1. Note that top view weak
2-PA and weak 2-PA are the same.

Remark 2. We can also define the alternating version of top view weak k-PA.
However, just like in the case of weak k-PA, alternating, nondeterministic and
deterministic top view weak k-PA have the same recognition power. Furthermore,
by using the same proof presented in Section 4, it is straightforward to show that
the emptiness problem, the labelling problem, and the data value membership
problem have the same complexity lower bound for top view weak k-PA, for each
k = 2, 3, . . ..

The following theorem is a stronger version of Theorem 3.

Theorem 5. For every top view weak k-PA A, there is a one-way alternating
1-RA A′ such that L(A′) = L(A). Moreover, the construction of A′ is effective.
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Proof. The proof is a straightforward generalization of the proof of Theorem 3.
Each placement of a pebble is simulated by “Guess–Split–Verify” procedure.
Since each pebble i can only compare its data value with the one seen by peb-
ble (i+1), A′ does not need to store the data values seen by pebbles (i+2), . . . , k.
It only needs to store the data value seen by pebble (i + 1), thus, one register is
sufficient for the simulation.

Following Theorem 5, we immediately obtain the decidability of the emptiness
problem for top view weak k-PA.

Corollary 2. The emptiness problem for top view weak k-PA is decidable.

Since the emptiness problem for ordinary 2-PA (See [6, Theorem 4]) and for weak
3-PA is already undecidable, it seems that top view weak PA is a tight boundary
of a subclass of PA languages for which the emptiness problem is decidable.

Remark 3. In [11] it is shown that for every sentence ψ ∈ LTL↓
1(Σ, X, U), there

exists a weak k-PA Aψ, where k = fqr(ψ) + 1, such that L(Aψ) = L(ψ). We
remark that the proof actually shows that the automaton Aψ is top view weak
k-PA. Thus, it shows that the class of top view weak k-PA languages contains
the languages definable by LTL↓

1(Σ, X, U).

6 Concluding Remark

We end this paper with a quick observation on top view weak PA. We note that
the finiteness of the number of pebbles for top view weak PA is not necessary. In
fact, we can just define top view weak PA with unbounded number of pebbles,
which we call top view weak unbounded PA.

We elaborate on it in the following paragraphs. Let A = 〈Σ,Q, q0, μ, F 〉 be
top view weak unbounded PA. The pebbles are numbered with the numbers
1, 2, 3, . . .. The automaton A starts the computation with only pebble 1 on the
input word. The transitions are of the form: (σ, χ, q) → (p, act), where χ ∈ {0, 1}
and σ, q, p, act are as in the ordinary weak PA.

Let w =
(
σ1
a1

)
· · ·
(
σn

an

)
be an input word. A configuration of A on 'w& is a

triple [i, q, θ], where i ∈ N, q ∈ Q, and θ : N → {0, 1, . . . , n, n + 1}. The initial
configuration is [1, q0, θ0], where θ0(1) = 0. The accepting configurations are
defined similarly as in ordinary weak PA.

A transition (σ, χ, p) → β applies to a configuration [i, q, θ], if

(1) p = q, and σθ(i) = σ,
(2) χ = 1 if aθ(i−1) = aθ(i), and χ = 0 if aθ(i−1) 	= aθ(i),

The transition relation 1 and the acceptance criteria can be defined in a similar
manner as in Section 2.1.

It is straightforward to show that 1-way deterministic 1-RA can be simulated
by top view weak unbounded PA. Each time the register automaton change the
content of the register, the top view weak unbounded PA places a new pebble.
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Furthermore, top view weak unbounded PA can be simulated by 1-way alter-
nating 1-RA. Each time a pebble is placed, the register automaton performs
“Guess–Split–Verify” procedure described in Section 3. Thus, the emptiness
problem for top view unbounded weak PA is still decidable.

Acknowledgment. The author would like to thank Michael Kaminski for his
invaluable directions and guidance related to this paper and for pointing out the
notion of unbounded pebble automata.
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Abstract. Let C be a threshold logic circuit computing a Boolean func-
tion MODm : {0, 1}n → {0, 1}, where n ≥ 1 and m ≥ 2. Then C outputs
“0” if the number of “1”s in an input x ∈ {0, 1}n to C is a multiple of
m and, otherwise, C outputs “1.” The function MOD2 is the so-called
PARITY function, and MODn+1 is the OR function. Let s be the size
of the circuit C, that is, C consists of s threshold gates, and let e be
the energy complexity of C, that is, at most e gates in C output “1”
for any input x ∈ {0, 1}n. In the paper, we prove that a very simple
inequality n/(m − 1) ≤ se holds for every circuit C computing MODm.
The inequality implies that there is a tradeoff between the size s and en-
ergy complexity e of threshold circuits computing MODm, and yields a
lower bound e = Ω((log n − log m)/ log log n) on e if s = O(polylog(n)).
We actually obtain a general result on the so-called generalized mod
function, from which the result on the ordinary mod function MODm

immediately follows. Our results on threshold circuits can be extended
to a more general class of circuits, called unate circuits.

1 Introduction

A circuit of threshold gates is a theoretical model of a neural circuit in the
brain, and is well studied through decades [10,11,13,14]. An input-output char-
acteristic of a biological neuron is roughly represented by a threshold gate, but
the mechanism of energy consumption of a neuron is quite different from an
electrical circuit: a neural “firing” consumes substantially more energy than a
“non-firing” [8,9], while a gate in an electrical circuit consumes almost the same
amount of energy in either case of outputting “1” and outputting “0” [1,7]. A
biological study reports that, due to the asymmetricity of the energy consump-
tion, the fraction of neurons firing concurrently is possibly fewer than 1% [8].
Based on the biological fact above, the energy complexity e of a threshold cir-
cuit C is defined as the maximum number of threshold gates outputting “1” over
all inputs to C [16]. We then confront the following natural question from the
� Supported by MEXT Grant-in-Aid for Young Scientists (B) No.21700003.
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point of computational complexity: what Boolean functions can or cannot be
computed by reasonably small threshold circuits with small energy complexity?
It has been shown that the energy complexity strongly influences the computa-
tional power of threshold circuits [16,18]. In particular, if a Boolean function f
has high communication complexity, there exists a tradeoff among the following
three complexities: size (that is, the number of gates) s, depth d, and energy
complexity e of threshold circuits computing f [18]. However, the mod function
MODm : {0, 1}n → {0, 1} has low communication complexity, and hence the
result in [18] does not yield any interesting tradeoff for MODm, where n and
m are positive integers, and MODm(x) is 0 if the number of “1”s in an input
x ∈ {0, 1}n is a multiple of m and, otherwise, MODm(x) is 1. MODm is the
PARITY function if m = 2, and is the OR function if m = n + 1.

In the paper, we deal with a fairly large class of Boolean functions, called the
generalized mod function [2,3,5], and show that there exists a tradeoff between the
size s and energy complexity e of threshold circuits C computing the generalized
mod function. The result immediately yields a very simple tradeoff for the ordi-
nary mod function MODm. More precisely, we prove that n/(m− 1) ≤ se, that is,
log(n/(m−1)) ≤ e log s, for every circuitC computing MODm. Bothn andm, and
hence n/(m − 1), do not depend on the design of C, while se is monotonically in-
creasingwith respect to s and e. Therefore, s and e cannot be simultaneously small.
That is, if s is small, then e must be large, and if e is small, then smust be large. The
tradeoff n/(m−1) ≤ se immediately implies a lower bound on the size s expressed
by n,m and e: (n/(m − 1))1/e ≤ s. If s = O(polylog(n)), then the tradeoff also
implies a lower bound on e: e = Ω((logn − logm)/ log logn). The lower bound on
e is tight up to a constant factor. Our results on threshold circuits can be extended
to a more general class of circuits, called “unate circuits,” as stated in Section 4.

It is well known that there exists a tradeoff between the size s and depth d
of a threshold circuit computing the PARITY function. Siu et al. proved that
n ≤ (s/d)d+ε for any fixed ε > 0 if the weights of the threshold gates are integers
and their absolute values are sufficiently small [15]. Impagliazzo et al. proved
that n/2 ≤ s2(d−1) even if the absolute values of weights are arbitrarily large [6].
Our tradeoff between s and e holds even if the absolute values of weights are
arbitrarily large. It should be noted that the inequality d ≤ e does not necessarily
holds, and that if a Boolean function f can be computed by a polynomial-size
threshold circuit C of energy complexity e then the function f can be computed
by a polynomial-size threshold circuit C′ of depth d′ = 2e + 1 [17].

2 Preliminaries

For x = (x1, x2, · · · , xn) ∈ {0, 1}n, we denote by [x]m the Hamming weight of x
modulo m and hence [x]m =

∑n
i=1 xi (mod m). Let M = {0, 1, · · · ,m−1}, then

m = |M |. For a set A ⊆ M , the generalized mod function MODA
m : {0, 1}n →

{0, 1} is defined as follows [2,3,5]:

MODA
m(x) =

{
0 if [x]m ∈ A;
1 otherwise. (1)
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Let a = min(|A|, |M − A|). We may assume that the generalized mod function
MODA

m is not trivial, and hence

1 ≤ a ≤
⌊m

2

⌋
(2)

and

2 ≤ m ≤ n + 1. (3)

If A = {0}, then MODA
m is the ordinary mod function MODm, and

MODm(x) =
{

0 if [x]m = 0;
1 otherwise.

If m = 2 and A = {0}, then MODA
m is the so-called PARITY function. If

m = n + 1 and A = {0}, then MODA
m is the OR function. If m = n + 1 and

A = {0, 1, · · · , �n/2�}, then MODA
m is the MAJORITY function. Thus, the class

of generalized mod functions MODA
m is fairly large.

In the paper, a threshold gate is the so-called linear threshold logic gate, and
can have an arbitrary number k of inputs. For every input z = (z1, z2, · · · , zk) ∈
{0, 1}k to a threshold gate g with weights w1, w2, · · · , wk and a threshold t, the
output g(z) of the gate g for z is defined as follows:

g(z) =

⎧⎨⎩1 if
k∑

i=1

wizi ≥ t;

0 otherwise,
(4)

where w1, w2, · · · , wk and t are arbitrary real numbers.
A threshold (logic) circuit C is a combinatorial circuit of threshold gates, and

is expressed by a directed acyclic graph as illustrated in Fig. 1. Let n be the

Fig. 1. (a) A threshold circuit C with n = 3 and s = 5; and (b) the 0-fixed circuit C0

of C
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Table 1. Various designs of circuits computing the PARITY function of n variables

�����������Designs
Complexities

s e d Notes

Small d n + 1 n + 1 2 Fig. 2(a)
Small e n + 1 2 n + 1 Fig. 2(b)

Moderate s, e and d log n log n log n Ref. [14]
Moderate s, e and fairly small d polylog(n) polylog(n) log n/ log log n Ref. [12]
Moderate s, d and fairly small e polylog(n) log n/ log log n polylog(n) Sect. 3.1

Small e and d 2n−1 + 1 1 2 Truth table

number of input variables to C, then C has n input nodes of in-degree 0, each
of which corresponds to one of the n input variables x1, x2, · · · , xn.

The size s of a threshold circuit C is the number of threshold gates in C.
Figure 1(a) depicts a threshold circuit with n = 3 and s = 5, while Fig. 1(b)
depicts a circuit with n = 2 and s = 5. (Impagliazzo et al. define the “size” of C
to be the number of wires in C, and obtained a tradeoff between the “size” and
the depth [6].)

Let C be a threshold circuit of size s, let g1, g2, · · · , gs be the gates in C, and
let x = (x1, x2, · · · , xn) ∈ {0, 1}n be an input to C. Then the input zi to a gate
gi, 1 ≤ i ≤ s, either consists of the inputs x1, x2, · · · , xn to C and the outputs
of the gates other than gi or consists of some of them. However, we denote the
output gi(zi) of gi for zi by gi[x], because x decides gi(zi). Thus gi[x] = gi(zi).
Let gs be one of the gates of out-degree 0, and we regard the output gs[x] of gs

as the output C(x) of C. Thus, C(x) = gs[x] for every input x ∈ {0, 1}n. The
gate gs is called the output gate of C.

A threshold circuit C computes a Boolean function f : {0, 1}n → {0, 1} if
C(x) = f(x) for every input x ∈ {0, 1}n.

The depth d of a circuit C is the number of gates in the longest path from an
input node to the output gate gs, and corresponds to the parallel computation
time.

We define the energy complexity e of a threshold circuit C as

e = max
x∈{0,1}n

s∑
i=1

gi[x].

Thus, the energy complexity e is the maximum number of gates outputting “1”
over all inputs x ∈ {0, 1}n. Clearly 0 ≤ e ≤ s. We may assume without loss of
generality that e ≥ 1.

As summarized in the Table 1, there are various designs of threshold circuits
computing the PARITY function MOD2. Figure 2 illustrates two of them, for
which n = 4 and s = n+1 = 5. For the circuit in Fig. 2(a) d = 2 and e = n = 4.
On the other hand, for the circuit in Fig 2(b) d = n + 1 = 5 and e = 2; if the
number i of “1”s in an input is odd, then only the two gates gi and gs output
“1”; and otherwise only gi outputs “1.”



728 K. Uchizawa, T. Nishizeki, and E. Takimoto

Fig. 2. Threshold circuits computing the PARITY function of n = 4 variables; (a)
s = 5, d = 2, e = 4; and (b) s = 5, d = 5, e = 2

3 Size-Energy Tradeoff

In Section 3.1, we present, as Theorem 1, our main result on the size-energy
tradeoff for circuits computing the generalized mod function MODA

m. The theo-
rem immediately yields a tradeoff for circuits computing the ordinary mod func-
tion MODm. In Section 3.2, we present four lemmas, and using them we prove
Theorem 1. In Section 3.3, we present a tradeoff better than that in Theorem 1
if e ≥ 5.

3.1 Main Theorem and Corollaries

Our main result is the following theorem:

Theorem 1. Let C be a threshold circuit computing the generalized mod func-
tion MODA

m of n variables, and let a = min{|A|, |M − A|}. Then the size s and
energy complexity e of C satisfy

n + 1 − a

m − a
≤ se. (5)

The ordinary mod function MODm is MODA
m for the case where A = {0} and

hence a = 1. The PARITY function is MODm for the case m = 2. We thus have
the following corollary.

Corollary 1
(a) If a threshold circuit C computes the ordinary mod function MODm, then
n/(m − 1) ≤ se.
(b) If a threshold circuit C computes the PARITY function, then n ≤ se and
hence logn ≤ e log s.

If n, m and a are fixed, then the left side (n + 1 − a)/(m − a) of Eq. (5) is a
constant and does not depend on the design of C. On the other hand, s and e
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depend on the design of C, and the right side se is monotonically increasing with
regards to s and e. Thus Eq. (5) implies that there exists a tradeoff between e
and s.

One can know that the lower bound (n + 1 − a)/(m − a) on se in Eq. (5)
cannot be improved much, as follows. For the case where m = n+1 and A = {0},
MODA

m is the OR function, and can be computed by a circuit C with s = e = 1,
and hence Eq. (5) holds in equality for the circuit C. Thus, for any ε > 0, the
inequality

(1 + ε)
(

n + 1 − a

m − a

)
≤ se

does not hold in general. For the case where m = 2 and A = {0}, MODA
m is

the PARITY function MOD2, which can be computed by a circuit C such that
s = n + 1 and e = 2 as illustrated in Fig. 2(b). In this case, the right side se of
Eq. (5) is (n + 1)2 for the circuit C, while the left side is n. Therefore, for any
ε > 0, the inequality (

n + 1 − a

m − a

)2+ε

≤ se

does not hold if n is sufficiently large.
Equation (5) immediately implies(

n + 1 − a

m − a

)1/e

≤ s,

which is a lower bound on s expressed in terms of n,m, a and e. One can easily
know from the bound that s = Ω(

√
n) if e ≤ 2 and m = O(1).

From Theorem 1, one can immediately obtain a lower bound on e expressed
in terms of n and m as follows.

Corollary 2. Let C be a threshold circuit computing MODm. If s =
O(polylog(n)), then

e = Ω

(
logn − logm

log logn

)
.

Corollary 2 implies that if m = o(n) then MODm cannot be computed by any
threshold circuit C such that s = O(polylog(n)) and e = o(logn/ log logn).
Similarly to the corollary above, Sung and Nishino [12] prove that d =
Θ(log n/ log logn) if a threshold circuit C with depth d computes the PAR-
ITY function and s = O(polylog(n)). Slightly modifying a circuit given in [12],
one can construct a threshold circuit of size s = O(polylog(n)) and energy
e = O(log n/ log log n) that computes the PARITY function of n variables. (See
Table 1.) Thus, the lower bound on e in Corollary 2 is best possible within a
constant factor for the case where m = 2.

3.2 Proof of Theorem 1

Let a threshold circuit C consist of gates g1, g2, · · · , gs, and let gs be the output
gate of C: gs[x] = C(x) for every x ∈ {0, 1}n. For an input x ∈ {0, 1}n, we
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define a pattern pC(x) ∈ {0, 1}s of C for x as pC(x) = (g1[x], g2[x], · · · , gs[x]).
We often denote pC(x) simply by p(x). We denote by P(C) the set of all patterns
that arise in C: P(C) = {pC(x) | x ∈ {0, 1}n}.

One can easily prove the following lemma.

Lemma 1. For an arbitrary threshold circuit C, |P(C)| ≤ se + 1.

Proof. If s = 1, then |P(C)| ≤ 2, se + 1 = 2 and hence Lemma 1 holds. We
may thus assume that s ≥ 2. Since the energy complexity of C is e, at most e of
the s gates output “1” for any input x. Therefore, we have

|P(C)| ≤
e∑

i=0

(
s

i

)
(6)

≤ 1 + s +
1
2
(
s2 + s3 + · · · + se

)
≤ 1 + s +

s2(se−1 − 1)
2(s − 1)

. (7)

From Eq. (7) and s ≤ 2(s − 1), we obtain

|P(C)| ≤ 1 + s + s(se−1 − 1) = 1 + se. ��

For every input x ∈ {0, 1}n, we define an extended pattern qC(x) ∈ {0, 1}s ×M
of a threshold circuit C for x as follows: qC(x) = (pC(x), [x]m), where M =
{0, 1, · · · ,m − 1}. We often denote qC(x) simply by q(x). We denote by Q(C)
the set of all extended patterns that arise in C: Q(C) = {qC(x) | x ∈ {0, 1}n}.
Since |M | = m, we have |Q(C)| ≤ |P(C)| · m. A better upper bound on |Q(C)|
can be obtained for a circuit C computing MODA

m, as follows.

Lemma 2. Let C be a threshold circuit computing MODA
m, and let a = |A|.

Then

|Q(C)| ≤ (|P(C)| − 1)(m − a) + a. (8)

Proof. We give a proof only for the case where |A| ≤ |M−A| and hence a = |A|,
because the proof for the other case where |A| > |M − A| is similar.

The set P(C) can be partitioned into the following two subsets P1(C) and
P0(C):

P1(C) = {p(x) | x ∈ {0, 1}n, C(x) = 1}

and
P0(C) = {p(x) | x ∈ {0, 1}n, C(x) = 0}.

Since gs is the output gate of C, we have gs[x] = 1 if C(x) = 1, and gs[x] = 0 if
C(x) = 0. Thus P1(C) ∩ P0(C) = ∅. Similarly, the set Q(C) can be partitioned
into the following two subsets Q1(C) and Q0(C):

Q1(C) = {q(x) | x ∈ {0, 1}n, C(x) = 1}
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and
Q0(C) = {q(x) | x ∈ {0, 1}n, C(x) = 0}.

Clearly

|P(C)| = |P1(C)| + |P0(C)| (9)

and

|Q(C)| = |Q1(C)| + |Q0(C)|. (10)

If C(x) = MODA
m(x) = 1, then [x]m ∈ M − A by Eq. (1). We thus have

|Q1(C)| ≤ |P1(C)| · (m − a). (11)

On the other hand, if C(x) = 0 then [x]m ∈ A. We thus have

|Q0(C)| ≤ |P0(C)| · a (12)

Substituting Eqs. (11) and (12) to Eq. (10), we have

|Q(C)| ≤ |P1(C)| · (m − a) + |P0(C)| · a. (13)

Equations (9) and (13) imply that

|Q(C)| ≤ (|P(C)| − |P0(C)|) · (m − a) + |P0(C)| · a
= |P(C)| · (m − a) − |P0(C)| · (m − 2a). (14)

By Eq. (2) we have m − 2a ≥ 0. Therefore, the right side of Eq. (14) is non-
increasing with respect to |P0(C)|. Since a ≥ 1 by Eq. (2), we have A 	= ∅.
Since A ⊆ M = {0, 1, · · · ,m − 1} and m − 1 ≤ n by Eq. (3), there is an input
x ∈ {0, 1}n such that [x]m ∈ A and hence C(x) = MODA

m(x) = 0. Therefore,
p(x) ∈ P0(C) and hence |P0(C)| ≥ 1. Thus, the right side of Eq. (14) takes the
maximum value when |P0(C)| = 1, and hence Eq. (8) holds. ��
For a threshold circuit C with n(≥ 2) inputs, we denote by C0 a circuit obtained
from C by fixing the n-th variable xn of input x = (x1, x2, · · · , xn) to the constant
0. As illustrated in Fig. 1, one can obtain C0 from C by deleting the n-th input
node for xn and all the wires linked from the node. We call C0 the 0-fixed circuit
of C. The 0-fixed circuit C0 has n − 1 inputs, but the size of C0 is the same as
that of C.

Define X0 ⊆ {0, 1}n as follows: X0 = {(x1, x2, · · · , xn) ∈ {0, 1}n | xn = 0}.
For each input x′ = (x1, x2, · · · , xn−1) ∈ {0, 1}n−1 to the 0-fixed circuit C0 of C,
let x ∈ X0 be the input to C such that x = (x1, x2, · · · , xn−1, 0). Then clearly
[x′]m = [x]m and pC0

(x′) = pC(x). We thus have

P(C0) = {pC0
(x′) | x′ ∈ {0, 1}n−1}

= {pC(x) | x ∈ X0} ⊆ P(C) (15)

and
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Q(C0) = {(pC0
(x′), [x′]m) | x′ ∈ {0, 1}n−1}

= {(pC(x), [x]m) | x ∈ X0} ⊆ Q(C). (16)

If a threshold circuit C computes the function MODA
m of n variables, then

clearly the 0-fixed circuit C0 computes the function MODA
m of n − 1 variables.

We now have the following key lemma on Q(C) and Q(C0).

Lemma 3. If a threshold circuit C computes the function MODA
m of n(≥ 1)

variables, then |Q(C0)| + 1 ≤ |Q(C)| where |Q(C0)| is assumed to be 1 if n = 1.

Sketchy proof. Clearly Lemma 3 holds for the case where n = 1, and hence
one may assume that n ≥ 2. Suppose that a threshold circuit C computes
the function MODA

m of n(≥ 2) variables, and that C consists of s threshold
gates g1, g2, · · · , gs. One may assume that g1, g2, · · · , gs are topologically ordered
with respect to the underlying directed acyclic graph of C, and that gs is the
output gate of C. Assume for a contradiction that Lemma 3 does not hold.
Then, Q(C0) = Q(C) because Q(C0) ⊆ Q(C) by Eq. (16). Let X1 be the subset
of {0, 1}n such that X1 = {(x1, x2, · · · , xn) ∈ {0, 1}n | xn = 1}. Let Q1 be
the subset of Q(C) such that Q1 = {(p(x), [x]m) | x ∈ X1}. Then we have
Q1 ⊆ Q(C) = Q(C0).

Let h = |P(C)|. To derive a contradiction, we construct the following sequence
of 2h + 1 inputs to C:

x0 → y0 → x1 → y1 → · · · → xh−1 → yh−1 → xh, (17)

where xj ∈ X1 and yj ∈ X0 for every index j. We arbitrarily choose x0 from
the set X1(	= ∅), and choose y0,x1, · · · ,xh as in the following (a) and (b):

(a) From xj , 0 ≤ j ≤ h − 1, we obtain yj ∈ X0 such that p(yj) = p(xj) and
(p(yj), y′j) 	∈ Q(C0) for y′j = [yj ]m + 1 (mod m).

(b) From yj ∈ X0, 0 ≤ j ≤ h − 1, we obtain xj+1 ∈ X1 simply by flipping the
n-th input of yj ∈ X0.

The sequence (17) corresponds to the following sequence of patterns:

p(x0)→p(y0)→p(x1)→p(y1) → · · ·→p(xh−1)→p(yh−1)→p(xh). (18)

One can prove that p(xj) = p(yj) 	= p(xj+1) for each j, 0 ≤ j ≤ h − 1.
Therefore, the sequence (18) contains h + 1 patterns p(x0),p(x1), · · · ,p(xh),
but h = |P(C)|. Thus, there is a pair of indices l and r, 0 ≤ l < r ≤ h, such that
p(xl) = p(xr). We now consider the following subsequence of (18)

p(xl)→p(yl)→p(xl+1)→p(yl+1)→· · ·→p(xr−1)→p(yr−1)→p(xr),

and find a sequence of gates gil
, gil+1 , · · · , gir−1 , as follows. Since p(yj) 	= p(xj+1)

for each j, l ≤ j ≤ r − 1, there are one or more gates that output b ∈ {0, 1}
for yj and output the complement b̄ of b for xj+1. Let gij be the gate with the
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smallest index among all these gates. Let it, l ≤ t ≤ r − 1, be the smallest index
among il, il+1, · · · , ir−1. Then one can prove that the n-th input node xn of C is
directly connected to the gate git , and the weight wn is not zero. From the fact
one can derive git [xl] 	= git [xr], which contradicts to p(xl) = p(xr). The details
are omitted, due to the page limitation. ��

From Lemma 3 one can easily prove the following lower bound on |Q(C)|.

Lemma 4. If a threshold circuit C computes the function MODA
m of n(≥ 1)

variables, then

n + 1 ≤ |Q(C)|. (19)

Proof. By Eq. (3) we have n ≥ m − 1, and hence we prove by induction on n
that Eq. (19) holds for every integer n such that n ≥ m − 1.

For the inductive basis, we assume that n = m − 1. Clearly, for every integer
i ∈ M , there exists an input x ∈ {0, 1}n such that [x]m = i. Thus |Q(C)| ≥
|M | = m = n + 1, and hence Eq. (19) holds.

For the inductive hypothesis, we assume that n ≥ m(≥ 2) and that Eq. (19)
holds for every threshold circuit computing the function MODA

m of (n − 1) vari-
ables. Let C be a threshold circuit computing MODA

m of n variables. Since the
0-fixed circuit C0 of C computes the function MODA

m of n − 1 variables, the in-
duction hypothesis implies that |Q(C0)| ≥ (n−1)+1 = n. Therefore, by Lemma
3 we have |Q(C)| ≥ |Q(C0)| + 1 ≥ n + 1. ��

There exists a threshold circuit C computing the function MODA
m of n variables

such that |Q(C)| = n + 1, as illustrated in Fig. 2(a) for m = 2 and A = {0}.
Therefore, the lower bound on |Q(C)| in Lemma 4 is best possible.

Using Lemmas 1, 2 and 4, one can easily prove Theorem 1, as follows.

Proof of Theorem 1. By Lemma 2 and Lemma 4 we have

n + 1 ≤ (|P(C)| − 1)(m − a) + a. (20)

Slightly modifying Eq. (20) and using Lemma 1, we have

n + 1 − a

m − a
≤ |P(C)| − 1 ≤ se. ��

3.3 Theorem 2

In the section, we present a tradeoff which is better than that in Theorem 1 if
e ≥ 5.

Applying a counting argument ([4, p.102, p.122]) and the Stirling’s formula
to Eq. (6), one can easily prove the following upper bound on |P(C)|, which is
better than the bound in Lemma 1 if e ≥ 5:

|P(C)| ≤ 1√
2πe

·
(

2cnpr · s
e

)e

(21)
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where cnpr
∼= 2.718 is the Napier’s (or mathematical) constant. Similarly to the

proof of Theorem 1, we can prove the following theorem from Eqs. (20) and (21).

Theorem 2. Let C be a threshold circuit computing the function MODA
m of n

variables. Then the size s and energy complexity e of C satisfy

n + 1 − a

m − a
+ 1 ≤ 1√

2πe
·
(

2cnpr · s
e

)e

. (22)

4 Conclusions

In the paper, we show that there exists a very simple tradeoff (n + 1 − a)/(m−
a) ≤ se between the size s and the energy complexity e of a threshold circuit
computing MODA

m, where n is the number of input variables, 2 ≤ m ≤ n + 1,
and a = min{|A|, |M − A|}. The main idea of the proof of our result is to show
that the number of patterns of a circuit is at most se + 1 and the number of
extended patterns is at least n + 1.

We have so far considered circuits of threshold logic gates, but our result
can be extended to a more general class of circuits, called “unate circuits.” A
function g(z1, z2, · · · , zk) : {0, 1}k → {0, 1} is said to be unate in variable zi if

g(z1, · · · , zi−1, 0, zi+1, · · · , zk) ≤ g(z1, · · · , zi−1, 1, zi+1, · · · , zk)

or
g(z1, · · · , zi−1, 1, zi+1, · · · , zk) ≤ g(z1, · · · , zi−1, 0, zi+1, · · · , zk)

holds for all z1, · · · , zi−1, zi+1, · · · , zk ∈ {0, 1}. A function g is said to be unate
if g is unate in every variable zi, 1 ≤ i ≤ k. A unate gate is a logical gate
computing a unate function. Clearly, a threshold gate, OR gate, AND gate, etc.
are unate gates, while there is a unate function which cannot be computed by
any single threshold gate. A unate circuit is a combinatorial circuit C consisting
of unate gates, let the size s of C be the number of gates in C, and let the
energy complexity e of C be the maximum number of gates outputting “1” over
all inputs. Then one can observe that our proof scheme for threshold circuits
can be applied to unate circuits and yields the same tradeoffs as in Theorem 1
and Theorem 2.
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Abstract. A computable plane curve is defined as the image of a com-
putable real function from a closed interval to the real plane. As it is
showed by Ko [7] that the length of a computable curve is not neces-
sarily computable, even if the length is finite. Therefore, the set of the
computable curves of computable lengths is different from the set of the
computable curves of finite lengths. In this paper we show further that
the points covered by these two sets of curves are different as well. More
precisely, we construct a computable curve K of a finite length and a
point z on the curve K such that the point z does not belong to any
computable curve of computable length. This gives also a positive an-
swer to an open question of Gu, Lutz and Mayordomo in [4].

1 Introduction

The computability and complexity over real numbers are of fundamental im-
portance both for the practical applications (e.g in scientific computations) and
for the theoretical interests. One of very realistic approachs to computability
and complexity over real numbers is the Turing-machine-based bit model (see
[10,2,6]). In this model, every real number x is represented by a sequence (xn) of
rational numbers which converges to x effectively in the sense that |x−xn| ≤ 2−n

for all n. This sequence serves as a name of the real number x. A real number
x is called computable if it has a computable name. Similarly a real function f
is computable if there is a Turing machine which transfers each name of a real
number x in the domain of f into a name of f(x). By the same principle, we can
define the computability of other mathematical objects by introducing proper
“naming systems”, for example, the computability of subsets of the Euclidean
space [1], of semi-continuous functions [11], of functional spaces [12], etc.

A prominent and important example of such mathematical objects is the
curve. In mathematical analysis, a curve can be defined as the range of a contin-
uous real function. Thus, computability of curves can be introduced by means
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of computable real functions (see [10,3]). Physically, a curve can be regarded
as the trace of a particle motion. If the particle moves according to some algo-
rithmically definable laws, its trace should be naturally regarded as computable.
This leads to the definition of computable curves as the ranges of computable
functions f : [0; 1] → Rn. The function f is then called a parametrization of the
curve C if C = range(f). Notice that this is not the only possible definition of
computable curves (see Lemma 3 below). For example, one could restrict the
parameterizations to one-to-one functions. From the non-computable point of
view these gives the same notion of curves.

Recently, Gu, Lutz and Mayordomo [3,4] investigated in details the differences
of these two notions of computable curves and moreover the points covered by
computable curves. Among others, they showed in [4] that there is a computable
curve Γ of finite length such that any of its computable parameterizations f must
retrace. That is, f traces some segments of the curve Γ more than once. This
means that two versions of computable curves mentioned above are different. This
does not happen if the curve have a computable length because then there exists
always a one-to-one computable parametrization (except possibly one point). This
shows a significant difference between computable curves of finite and computable
lengths. Therefore they raise the question whether there exists a point which lies
on a computable curve of finite length but not on any computable curve of com-
putable length? in [4]. The main theorem of this paper will give a positive answer
to this question. We actually show that there is a computable curve K of a finite
length and an one-to-one parameterization such that K contains a point z which
does not belong to any computable curve of a computable length.

Our paper is organized as follows. In Section 2 we will shortly recall some
basic definitions and show a technical lemma which will be used in the proof
of the main theorem. Section 3 shows some basic facts related to computable
curves of computable lengths. As a simple example we will show that the set of
points covered by computable curves of computable lengths is not exhausted by
computable polygons. In the last Section 4 we prove our main theorem.

2 A Technical Lemma

We consider only plane curves in this paper. A plane curve C is a subset of R2

so that there exists a continuous function f : [0; 1] → R2 with f([0; 1]) = C.
Any such a function f is then called a parameterization of C. The curve C is
called simple if there exists a parameterization which is either an injection on
the closed interval [0; 1] or an injection on (0; 1] with the additional condition
f(0) = f(1). In both cases we call the function f an one-to-one parameterization
of C (even if f may be not one-to-one on [0, 1]) and the curve of the latter case
is called closed. Thus, a simple curve never intersects itself.

If f : [0; 1] → R2 is an one-to-one parameterization of a simple curve C, then,
according to Jordan [5], the length l(C) of the curve C is defined by

l(C) := sup
n−1∑
i=0

|f(ti) − f(ti+1)| (1)
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where the supremum is taken over all partitions 0 = t0 < t1 < t2 < · · · <
tn = 1, and |x| is the Euclidean norm of the point x ∈ R2, i.e., |f(ti) − f(ti+1)|
is the length of the straight line connecting the points f(ti) and f(ti+1). A
curve of a finite length is also called rectifiable. It is well known that the length
of a simple curve defined by (1) is independent of the choice of the one-to-
one parameterization f . A curve is called differentiable if it has a differentiable
parameterization.

The computability of real numbers and real functions are defined based on the
(extended) Turing machine model (see [10] for details). We say that a sequence
(xn)n∈N of real numbers converges effectively if |xn+1 − xn| ≤ 2−n for all n. A
real number x is computable if there is a computable sequence (xn)n∈N of ra-
tional numbers which converges to x effectively. A real function f : [0; 1] → R is
computable if there is a Turing machine M such that, for any input of sequence
(xn)n∈N of rational numbers converging effectively to an x ∈ [0; 1], M((xn)n∈N)
outputs a sequence (yn)n∈N of rational numbers which converges to f(x) effec-
tively. Equivalently, f is computable iff there is a computable sequence (pn)n∈N

of computable rational polynomials which converges uniformly and effectively to
f . Naturally, a function f : [0; 1] → Rn is computable if all of its component func-
tions are computable. Finally, we call a curve C computable if it has a computable
parameterization, i.e., C = rangef for a computable function f : [0; 1] → Rn.

Notice that we can also define curves by images of open intervals and even
R. This does not change anything presented below, because any point on such
a curve belongs trivially to the image of the corresponding parameterization
restricted to some subinterval [a; b] where a and b is rational.

The next lemma shows a simple fact related to two curves which will allow
to separat curves by points later on unless one of the curve is a subcurve of the
other.

Lemma 1. Let C and C′ be two rectifiable, non-closed simple curves and let
g : [0; 1] → R2 be a parameterization of C′. If we have C′ ∩ Uz 	= ∅ for any
point z ∈ C and any open neighborhood Uz of z, then there exists an interval
[a; b] ⊆ [0; 1] such that g([a; b]) = C.

Proof. Suppose that C,C′ are rectifiable, non-closed simple curves. If C′∩Uz 	= ∅
for any point z ∈ C and any open neighborhood Uz of z, then C must be a part
of C′, i.e., C ⊆ C′. Otherwise, by the compactness of C′, we can find a point z in
C\C′ which has a positive distance from C′ and hence some open neighborhood
of z is disjointed from C which contradicts the hypothesis.

Because C′ is a rectifiable simple curve, there exists an one-to-one parame-
terization f : [0; 1] → C′. This parameterization f must be injective since C′ is
non-closed. Therefore the inverse function f−1 exists which is also continuous
and maps particularly two end points of C to u, v ∈ [0; 1]. Suppose w.l.o.g. that
u < v. Then we have f([u; v]) = C.

Let h : [0; 1] → [0; 1] be a continuous function defined by h := f−1 ◦ g. Since
f([0; 1]) = C ⊆ C′ = g([0; 1]), we have [u; v] ⊆ h([0; 1]). By the continuity of h,
there exist a ∈ h−1(u) and b ∈ h−1(v) such that h([a; b]) = [u; v] (we suppose
w.l.o.g that a < b). This implies immediately that g([a; b]) = C.



Points on Computable Curves of Computable Lengths 739

By Lemma 1, if a curve C is not contained completely in another curve C′,
then there exist a point z in C and a small neighborhood Uz around z such
that U is totally disjoint from the curve C′. Particularly, if C is longer than
C′, then C cannot be completely contained in C′. If in addition C is a rational
polygon and C′ is a computable curve, then such a point z and the corresponding
neighborhood Uz can be effectively found. That is, we have the following lemma.

Lemma 2. Let C be a rational polygon and let C′ be a computable curve. If the
length of C is larger than the length of C′, then we can effectively find a rational
point z on C and a rational neighborhood Uz of z such that C′ ∩ Uz = ∅.

3 Computable Curves of Computable Length

In this section we investigate the properties of computable curves of computable
lengths. We will see that computable curves can be equivalently defined in sev-
eral different ways. Finally, by a simple example, we will show that there is a
point which lies on a computable curve of computable length but not on any
computable polygon.

It is well known that a curve of infinite length can be significantly different
from that of finite length. While the later has always a Lebesgue measure zero,
a curve of infinite length can almost fill the complete space. For computable
curves, it makes a big difference whether a computable curve has a computable
or non-computable length. For example, Gu, Lutz and Mayordomo showed in
[4] that the arc-length parameterization of a curve is relatively computable in
its length. Therefore, any computable curve of computable length has always a
computable one-to-one parameterization. But [4] shows also that there exists a
computable curve of finite length which must retrace no matter what computable
parameterization we choose, and hence it does not have a one-to-one computable
parameterization at all.

By a similar technique used in [4] we can show that computable curves of a
computable length can be equivalently characterized in several ways.

Lemma 3. Let C be a curve of a computable length l. Then the following con-
ditions are equivalent.

1. C is a computable curve, i.e., C has a computable parameterization;
2. C has a computable one-to-one parameterization;
3. There is a computable sequence of rational polygon functions (pn)n∈N which

converges uniformly effectively to C and the sequence (l(pn))n of the polygon-
lengths converges effectively as well

4. There is a computable sequence (Us)s∈N of finite sets of rational open balls
such that the Hausdorff distance

dH

(⋃
Us, C

)
≤ 2−s

for all s. Here a rational open ball is a set B(a, δ) := {x ∈ R2 : |x − a| < δ}
for some rational point a and positive rational number δ.
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5. C has a computable arc length parameterization f : [0; l] → R2 where l is
the length of C. Here f is an arc length parameterization means that the
segment f([0; t]) has the length t for any t ∈ [0; l].

However, in another paper [9] we have shown that all of the above conditions
are different if the curve does not have a computable length.

Many curves we are familiar with do have computable length. The following
lemma gives a simple sufficient condition that a curve has computable length.

Lemma 4. If an one-to-one parameterization of a simple curve C has a com-
putable derivative, then C has computable length.

Proof. Let f(t) := 〈x(t), y(t)〉 be a one-to-one parameterization of C such that
the derivative f ′(t) = 〈x′(t), y′(t)〉 is computable as well. Then the arc length
of C can be calculated by l(C) =

∫ 1

0

√
(x′(t))2 + (y′(t))2dt which is computable

(see for example [8]).

Thus, by Lemma 4, line segments connecting two computable points, computable
polygons (connecting finitely many computable points by straight lines), com-
putable circles, etc, have computable length.

The polygons are probably among the simplest curves. On the other hand, any
computable curve can be approximated effectively by a computable sequence of
computable polygons. It would be quite natural to guess that the set of points
on computable curves of computable length should be covered by all computable
polygons. However, the following simple example shows that this is not the case.
Even computable circles can contain points which do not lie on any computable
polygon.

Example 1. Let a ∈ R2 be any computable point and let r > 0 be any com-
putable real number. Then the circle centered at a of the radius r is computable
curve C of a computable length.

Notice that any computable line segment intersects the circle C in at most two
points. The number of computable line segments is countable. Since the circle
C contains uncountably many points, there must be points on C which do not
lie on any computable line segment. This implies immediately that the sets of
points covered by computable curves of computable length and by computable
polygons are different.

The same argument as in the example shows that there are points on computable
line segments which are not on any computable circle. Therefore, this does not
mean that circles are more complicated than the polygons. It might be interesting
to determine which hierarchy of curves can be separated properly by points.

4 Computable Curves of Non-computable Length

In this section we will have a closer look at computable curves of non-computable
length and prove our main theorem.
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From Lemma 3 we know that any computable curve of a computable length
has one-to-one parameterizations. However, Gu, Lutz and Mayordomo showed
in [4] that this is not generally true for computable curves. They constructed a
computable curve Γ of left computable length such that any computable param-
eterization f : [0; 1] → Γ of Γ must retrace some portion arbitrarily many times.
More precisely, for any natural number n, there are disjoint closed subintervals
I0, I1, · · · , In ⊆ [0; 1] such that f(Ii) = f(I0) for all i ≤ n. This shows a sig-
nificant difference between computable curves of finite and computable length.
Then they asked, if the points covered by these two types of curves are also
different. The following theorem gives a positive answer to this question.

Theorem 1. There is a point which lies on a simple computable curve of finite
length but not on any simple computable curve of computable length.

Proof. We will construct a computable curve K of finite length and a point z
on the curve K such that z does not lie on any computable curve of computable
length. The curve K is constructed in stages by a finite injury priority method.

By Lemma 3, if C is a computable curve of computable length, then there
is a computable sequence (pn)n∈N of rational polygons which converges to C
effectively. In addition, there is also a computable sequence (cn)n∈N of rational
numbers which converges effectively to the length l of C. Let (Mi)i∈N be an
effective enumeration of all Turing machines whose possible outputs are pairs of
computable sequences of rational polygons and sequences of rational numbers.
If Turing machine Mi outputs a pair

〈
(pi

s)s∈N, (ci
s)s∈N

〉
of sequences of rational

polygons and rational numbers which satisfy the following conditions

|pi
s − pi

s+1| ≤ 2−s and |ci
s − ci

s+1| ≤ 2−s (2)

for all s, then Ci := lims→∞ pi
s is a computable curve of the computable length

li := lims→∞ ci
s. For technical simplicity, let Ci = ∅ and li = 0, if Mi does

not output a pair satisfying (2). Then we have an effective enumeration 〈Ci, li〉
which includes all computable curves Ci of computable lengths li. Now it suffices
to construct a computable curve K of finite length and a point z on K which
satisfies for all i the following requirements

Ri: the point z does not lie on the curve Ci.

To satisfy the single requirement Ri, fix a neighborhood, say, a ball B(a, δ)
with rational center a and rational radius δ where a is a point of the already
constructed polygon K. By means of the sequences (pi

s) and (ci
s), we first try to

shrink the ball B(a, δ) further to some open subset U of B(a, δ) with U ∩K 	= ∅
so that only one connected part of Ci could possibly be in U ∩K. Notice that we
can always find such U if Ci is indeed simple. For convenience we assume that
B(a, δ) is small enough to fulfill this condition. Otherwise replace B(a, δ) by U .
Next we estimate the length of the segment of Ci in the neighborhood B(a, δ)
to the sufficient precision. If it is very close to the length of K in this ball, then
replace the straight line of K in this neighborhood by sufficiently small “zig-
zag”. In this way we can increase the length of K in the neighborhood so that it
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is longer than the length of Ci in the neighborhood by at least, say, 2−i. If we do
that at the step s, we should restrict the “heights” of all “zig-zag” less than 2−s

to guarantee that the constructed polygon sequence converges effectively. Then,
by Lemma 2, we can effectively find a point z on K and a new (sub)neighborhood
B′ ⊆ B(a, δ) of z such that the curve Ci does not intersect the neighborhood
B′. This new neighborhood can be used for the actions of another computable
curve of computable length.

To satisfy all requirements Ri simultaneously we arrange that Ri has a higher
priority than Rj if i < j. We will construct a computable sequence (Ks)s∈N of
rational polygons which converges effectively to a curve K, where Ks is defined
at the stage s. In order to make sure that K contains a point z which does
not lie on any curve Ci, we will use the technique described above to find a
point zi on K and a rational ball Bi(zi, δi) such that Ci is disjoint from Bi.
Since Ks changes during the construction, we can only find possible candidates
zi,s on Ks and and a ball Bi,s centered at zi at each stage s such that Bi,s

is disjointed from Ci. Possibly, they have to be changed later. More precisely,
we will actually construct Ks, zi,s and Bi,s at the stage s which satisfy all the
following conditions:

(a) |Kt − Ks| ≤ 2−s for all t ≥ s and hence K := lims→∞ Ks is a computable
curve;

(c) For each s, zi,s is on the curve Ks and Bi,s = B(zi,s, δi,s) (for some δi,s) is
disjointed from Ci;

(d) For each i, Bi+1,s is a subset of Bi,s and zi,s and Bi,s can be changed only
finitely many times hence they converge to zi and Bi, respectively.

(e) The radiuses of Bi converges to zero if i increases to infinite.

The sequences mentioned above can be constructed by a standard finite injury
priority method. Therefore the limit z := limi→∞ zi is a point on the computable
curve K and it does not lie on any computable curve of computable length.

It remains to show that the curve K has finite length. Notice that the actions
for Ci could be destroyed at most 2(i−1) times due to the actions for Cj of
higher priority. If, at the stage s, we construct a new polygon Ks according to
the strategy for Ci, then we should make sure that the difference of the lengths
between Ks and the previous Ks−1 does not exceed 2−2i. Therefore the actions
for Ci in the construction can contribute a length-change of K at most 2−i

totally and the final length of the curve K must be finite.

Notice that the computable curve K constructed in the proof of the Theorem
1 is an effective limit of a computable sequence of polygon functions. So it has
actually a computable parameterization without retrace. Thus Theorem 1 can
actually be strengthen to the following.

Theorem 2. There is simple computable curve C and a point z on C which
satisfy the following conditions:

1. C has a finite (non-computable) length;
2. C has a computable one-to-one parameterization;
3. z does not lie on any simple computable curve of computable length.
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Abstract. We investigate whether all Boolean submodular functions
can be decomposed into a sum of binary submodular functions over a
possibly larger set of variables. This question has been considered within
several different contexts in computer science, including computer vision,
artificial intelligence, and pseudo-Boolean optimisation. Using a connec-
tion between the expressive power of valued constraints and certain al-
gebraic properties of functions, we answer this question negatively.

Our results have several corollaries. First, we characterise precisely
which submodular polynomials of arity 4 can be expressed by binary
submodular polynomials. Next, we identify a novel class of submodular
functions of arbitrary arities which can be expressed by binary submod-
ular functions, and therefore minimised efficiently using a so-called ex-
pressibility reduction to the Min-Cut problem. More importantly, our
results imply limitations on this kind of reduction and establish for the
first time that it cannot be used in general to minimise arbitrary submod-
ular functions. Finally, we refute a conjecture of Promislow and Young
on the structure of the extreme rays of the cone of Boolean submodular
functions.

Keywords: Decomposition of submodular functions, Min-Cut, Pseudo-
Boolean optimisation, Submodular function minimisation.

1 Introduction

A function f : 2V → R is called submodular if for all S, T ⊆ V ,

f(S ∩ T ) + f(S ∪ T ) ≤ f(S) + f(T ).

Submodular functions are a key concept in operational research and combinato-
rial optimisation [27,26,33,32,14,21,17]. Examples include cut capacity functions,
matroid rank functions, and entropy functions. Submodular functions are often
considered to be a discrete analogue of convex functions [24].
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Both minimising and maximising submodular functions, possibly under some
additional conditions, have been considered extensively in the literature. Sub-
modular function maximisation is easily shown to be NP-hard [32] since it gen-
eralises many standard NP-hard problems such as the maximum cut problem.
In contrast, the problem of minimising a submodular function (SFM) can be
solved efficiently with only polynomially many oracle calls, see [17]. The time
complexity of the fastest known general algorithm for SFM is O(n6 + n5L),
where n is the number of variables and L is the time required to evaluate the
function [28].

The minimisation of submodular functions on sets is equivalent to the minimi-
sation of submodular functions on distributive lattices [32]. Krokhin and Larose
have also studied the more general problem of minimising submodular functions
on non-distributive lattices [22].

An important and well-studied sub-problem of SFM is the minimisation of
submodular functions of bounded arity (SFMb), also known as locally defined
submodular functions [8], or submodular functions with succinct representa-
tion [12]. In this scenario the submodular function to be minimised is defined
as the sum of a collection of functions which each depend only on a bounded
number of variables. Locally defined optimisation problems of this kind occur in
a wide variety of contexts:

– In the context of pseudo-Boolean optimisation, such problems involve the
minimisation of Boolean polynomials of bounded degree [2].

– In the context of artificial intelligence, they have been studied as valued
constraint satisfaction problems (VCSP) [31], also known as soft or weighted
constraint satisfaction problems.

– In the context of computer vision, such problems are often formulated as
Gibbs energy minimisation problems or Markov Random Fields (also known
as Conditional Random Fields) [23].

We will present our results primarily in the language of pseudo-Boolean opti-
misation. Hence an instance of SFMb with n variables will be represented as a
polynomial in n Boolean variables, of some fixed bounded degree.

However, the concept of submodularity is important in a wide variety of fields
within computer science, and our results have direct consequences for Constraint
Satisfaction Problems [10,7,19,11] and Computer Vision [20]. Due to space re-
strictions we will not elaborate on these connections.

A general algorithm for SFM can always be used for the more restricted
SFMb, but the special features of this more restricted problem sometimes allow
more efficient special-purpose algorithms to be used. (Note that we are focusing
on exact algorithms which find an optimal solution.) In particular, it has been
shown that certain cases can be solved much more efficiently by reducing to
the Min-Cut problem; that is, the problem of finding a minimum cut in a
directed graph which includes a given source vertex and excludes a given target
vertex. For example, it has been known since 1965 that the minimisation of
quadratic submodular polynomials is equivalent to finding a minimum cut in a
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corresponding directed graph [16,2]. Hence quadratic submodular polynomials
can be minimised in O(n3) time, where n is the number of variables.

A Boolean polynomial in at most 2 variables has degree at most 2, so any
sum of binary Boolean polynomials has degree at most 2; in other words, it
is quadratic. It follows that an efficient algorithm, based on reduction to Min-

Cut, can be used to minimise any class of functions that can be written as a
sum of binary submodular polynomials. We will say that a polynomial that can
be written in this way, perhaps with additional variables to be minimised over,
is expressible by binary submodular polynomials (see Section 2.1). The following
classes of functions have all been shown to be expressible by binary submodular
polynomials in this way1, over the past four decades:

– polynomials where all terms of degree 2 or more have negative coefficients
(also known as negative-positive polynomials) [30];

– cubic submodular polynomials [1];
– {0, 1}-valued submodular functions (also known as 2-monotone func-

tions) [10,6];
– a class recently found by Živný and Jeavons [35] and independently in [34].

All these classes of functions have been shown to be expressible by binary sub-
modular polynomials and hence minimisable in cubic time (in the total number
of variables). Moreover, several broad classes of submodular functions over non-
Boolean domains have also been shown to be expressible by binary submodular
functions and hence minimisable in cubic time [3,5,6]. This series of positive
expressibility results naturally raises the following question:

Question 1. Are all submodular polynomials expressible by binary submodular
polynomials, over a possibly larger set of variables?

Each of the above expressibility results was obtained by an ad-hoc construction,
and no general technique2 has previously been proposed which is sufficiently
powerful to address Question 1.

1.1 Contributions

Cohen et al. recently developed a novel algebraic approach to characterising the
expressive power of valued constraints in terms of certain algebraic properties of
those constraints [4].

Using this systematic algebraic approach we are able to give a negative answer
to Question 1: we show that there exist submodular polynomials of degree 4
that cannot be expressed by binary submodular polynomials. More precisely, we

1 In fact, it is known that all Boolean polynomials (of arbitrary degree) are expressible
by binary polynomials [2], but the general construction does not preserve submod-
ularity; that is, the resulting binary polynomials are not necessarily submodular.

2 For example, standard combinatorial counting techniques cannot resolve this ques-
tion because we allow arbitrary real-valued coefficients in submodular polynomials.
We also allow an arbitrary number of additional variables.
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characterise exactly which submodular polynomials of arity 4 are expressible by
binary submodular polynomials and which are not.

On the way to establishing these results we show that two broad families of
submodular functions, known as upper fans and lower fans , are all expressible by
binary submodular functions. This provides a new class of submodular polyno-
mials of all arities which are expressible by binary submodular polynomials and
hence solvable efficiently by reduction to Min-Cut. We use the expressibility of
this family, and the existence of non-expressible functions, to refute a conjecture
from [29] on the structure of the extreme rays of the cone of Boolean submodular
functions, and suggest a more refined conjecture of our own.

2 Preliminaries

In this section, we introduce the basic definitions and the main tools used
throughout the paper.

2.1 Cost Functions and Expressibility

We denote by R the set of all real numbers together with (positive) infinity. For
any fixed set D, a function φ from Dn to R will be called a cost function on D
of arity n. If the range of φ lies entirely within R, then φ is called a finite-valued
cost function. If the range of φ is {0,∞}, then φ can be viewed as a predicate,
or relation, allowing just those tuples t ∈ Dn for which φ(t) = 0.

Cost functions can be added and multiplied by arbitrary real values, hence
for any given set of cost functions, Γ , we define the convex cone generated by
Γ , as follows.

Definition 1. For any set of cost functions Γ , the cone generated by Γ , denoted
Cone(Γ ), is defined by:

Cone(Γ ) = {α1φ1 + · · · + αrφr | r ≥ 1; φ1, . . . , φr ∈ Γ ; α1, . . . , αr ≥ 0}.

Definition 2. A cost function φ of arity n is said to be expressible by a set
of cost functions Γ if φ = miny1,...,yj φ′(x1, . . . , xn, y1, . . . , yj) + κ, for some
φ′ ∈ Cone(Γ ) and some constant κ.

The variables y1, . . . , yj are called extra (or hidden) variables, and φ′ is called
a gadget for φ over Γ .

We denote by 〈Γ 〉 the expressive power of Γ , which is the set of all cost functions
expressible by Γ .

It was shown in [4] that the expressive power of a set of cost functions is char-
acterised by certain algebraic properties of those cost functions called fractional
polymorphisms. For the results of this paper, we will only need a certain subset
of these algebraic properties, called multimorphisms [7]. These are defined in
Definition 3 below (see also Figure 1).

The i-th component of a tuple t will be denoted by t[i]. Note that any
operation on a set D can be extended to tuples over the set D in a
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t1
t2
...
tk

t′1 = f1(t1, . . . , tk)
t′2 = f2(t1, . . . , tk)

...
t′k = fk(t1, . . . , tk)

t1[1] t1[2] . . . t1[n]
t2[1] t2[2] . . . t2[n]

...
tk[1] tk[2] . . . tk[n]

t′1[1] t′1[2] . . . t′1[n]
t′2[1] t′2[2] . . . t′2[n]

...
t′k[1] t′k[2] . . . t′k[n]

φ−→

φ(t1)
φ(t2)

...
φ(tk)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
k∑

i=1

φ(ti)

≥

φ−→

φ(t′1)
φ(t′2)

...
φ(t′k)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
k∑

i=1

φ(t′i)

Fig. 1. Inequality establishing F = 〈f1, . . . , fk〉 as a multimorphism of cost function φ
(see Definition 3)

standard way, as follows. For any function f : Dk → D, and any col-
lection of tuples t1, . . . , tk ∈ Dn, define f(t1, . . . , tk) ∈ Dn to be the tuple
〈f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])〉.

Definition 3 ([7]). Let F : Dk → Dk be the function whose k-tuple of output
values is given by the tuple of functions F = 〈f1, . . . , fk〉, where each fi : Dk → D.

For any n-ary cost function φ, we say that F is a k-ary multimorphism of φ
if, for all t1, . . . , tk ∈ Dn,

k∑
i=1

φ(ti) ≥
k∑

i=1

φ(fi(t1, . . . , tk)).

For any set of cost functions, Γ , we will say that F is a multimorphism of Γ if F
is a multimorphism of every cost function in Γ . The set of all multimorphisms
of Γ will be denoted Mul(Γ ).

Note that multimorphisms are preserved under expressibility. In other words,
if F ∈ Mul(Γ ), and φ ∈ 〈Γ 〉, then F ∈ Mul({φ}) [7,4]. This has two important
corollaries. First, if 〈Γ1〉 = 〈Γ2〉, then Mul(Γ1) = Mul(Γ2). Second, if there exists
F ∈ Mul(Γ ) such that F 	∈ Mul({φ}), then φ is not expressible by Γ , that is,
φ 	∈ 〈Γ 〉.

2.2 Lattices and Submodularity

Recall that L is a lattice if L is a partially ordered set in which every pair of
elements (a, b) has a unique supremum and a unique infimum. For a finite lattice
L and a pair of elements (a, b), we will denote the unique supremum of a and b
by a ∨ b, and the unique infimum of a and b by a ∧ b.

For any finite lattice-ordered set D, a cost function φ : Dn → R is called
submodular if for every u, v ∈ Dn, φ(u ∧ v) + φ(u ∨ v) ≤ φ(u) + φ(v) where
both ∧ and ∨ are applied coordinate-wise on tuples u and v [27]. This standard
definition can be reformulated very simply in terms of multimorphisms: φ is
submodular if 〈∧,∨〉 ∈ Mul({φ}).
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Using results from [7] and [32], it can be shown that any submodular cost func-
tion φ can be expressed as the sum of a finite-valued submodular cost function
φfin, and a submodular relation φrel, that is, φ = φfin + φrel.

Moreover, it is known that all submodular relations are binary decomposable
(that is, equal to the sum of their binary projections) [18], and hence expressible
by binary submodular relations. Therefore, when considering which cost func-
tions are expressible by binary submodular cost functions, we can restrict our
attention to finite-valued cost functions without any loss of generality.

Next we define some particular families of submodular cost functions, first
described in [29], which will turn out to play a central role in our analysis.

Definition 4. Let L be a lattice. We define the following cost functions on L:

– For any set A of pairwise incomparable elements {a1, . . . , am} ⊆ L, such
that each pair of distinct elements (ai, aj) has the same least upper bound,∨

A, the following cost function is called an upper fan:

φA(x) =

⎧⎪⎨⎪⎩
−2 if x ≥

∨
A,

−1 if x 	≥
∨

A, but x ≥ ai for some i,

0 otherwise.

– For any set B of pairwise incomparable elements {a1, . . . , am} ⊆ L, such
that each pair of distinct elements (ai, aj) has the same greatest lower bound,∧

B, the following cost function is called a lower fan:

φB(x) =

⎧⎪⎨⎪⎩
−2 if x ≤

∧
B,

−1 if x 	≤
∧

B, but x ≤ ai for some i,

0 otherwise.

We call a cost function a fan if it is either an upper fan or a lower fan. Note
that our definition of fans is slightly more general than the definition in [29].
In particular, we allow the set A to be empty, in which case the corresponding
upper fan φA is a constant function. It is not hard to show that all fans are
submodular [29].

2.3 Boolean Cost Functions and Polynomials

In this paper we will focus on problems over Boolean domains, that is, where
D = {0, 1}.

Any cost function of arity n can be represented as a table of values of size Dn.
Moreover, a finite-valued cost function φ : Dn → R on a Boolean domain D =
{0, 1} can also be represented as a unique polynomial in n (Boolean) variables
with coefficients from R (such functions are sometimes called pseudo-Boolean
functions [2]). Hence, in what follows, we will often refer to a finite-valued cost
function on a Boolean domain and its corresponding polynomial interchangeably.

For polynomials over Boolean variables there is a standard way to define
derivatives of each order (see [2]). For example, the second-order derivative of a
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polynomial p, with respect to the first two indices, denoted δ1,2(x), is defined as
p(1, 1,x)− p(1, 0,x)− p(0, 1,x)+ p(0, 0,x). Derivatives for other pairs of indices
are defined analogously. It was shown in [13] that a polynomial p(x1, . . . , xn) over
Boolean variables x1, . . . , xn represents a submodular cost function if, and only
if, its second-order derivatives δi,j(x) are non-positive for all 1 ≤ i < j ≤ n and
all x ∈ Dn−2. An immediate corollary is that a quadratic polynomial represents
a submodular cost function if, and only if, the coefficients of all quadratic terms
are non-positive.

Note that a cost function is called supermodular if all its second-order deriva-
tives are non-negative. Clearly, f is submodular if, and only if, −f is supermod-
ular, so it is straightforward to translate results about supermodular functions,
such as those given in [6] and [29], into similar results for submodular functions,
and we will use this observation several times below. Cost functions which are
both submodular and supermodular (in other words, all second-order derivatives
are equal to zero) are called modular, and polynomials corresponding to modular
cost functions are linear [2].

Example 1. For any set of indices I = {i1, . . . , im} ⊆ {1, . . . , n} we can define a
cost function φI in n variables as follows:

φI(x1, . . . , xn) =

{
−1 if (∀i ∈ I)(xi = 1),

0 otherwise.

The polynomial representation of φI is p(x1, . . . , xn) = −xi1 . . . xim , which is
a polynomial of degree m. Note that it is straightforward to verify that φI is
submodular by checking the second-order derivatives of p.

However, the function φI is also expressible by binary submodular polynomi-
als, using a single extra variable, y, as follows:

φI(x1, . . . , xn) = min
y∈{0,1}

{−y + y
∑
i∈I

(1 − xi)}.

We remark that this is a special case of the expressibility result for negative-
positive polynomials first obtained in [30].

Note that when D = {0, 1}, the set Dn with the product ordering is isomorphic
to the lattice of all subsets of an n-element set ordered by inclusion. Hence, a
cost function on a Boolean domain can be viewed as a cost function defined on
a lattice of subsets, and we can apply Definition 4 to identify certain Boolean
functions as upper fans or lower fans, as the following example indicates.

Example 2. Let A = {I1, . . . , Ir} be a set of subsets of {1, 2, . . . , n} such that
for all i 	= j we have Ii 	⊆ Ij and Ii ∪ Ij =

⋃
A.

By Definition 4, the corresponding upper fan function φA has the following
polynomial representation:

p(x1, . . . , xn) = (r − 2)
∏

i∈
⋃

A

xi −
∏
i∈I1

xi − · · · −
∏
i∈Ir

xi.
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We remark that any permutation of a set D gives rise to an automorphism of
cost functions over D. In particular, for any cost function f on a Boolean domain
D, the dual of f is the corresponding cost function which results from exchang-
ing the values 0 and 1 for all variables. In other words, if p is the polynomial
representation of f , then the dual of f is the cost function whose polynomial
representation is obtained from p by replacing all variables x with 1−x. Observe
that, due to symmetry, taking the dual preserves submodularity and expressibil-
ity by binary submodular cost functions.

It is not hard to see that upper fans are duals of lower fans and vice versa.

3 Results

In this section, we present our main results. First, we show that fans of all arities
are expressible by binary submodular cost functions. Next, we characterise the
multimorphisms of binary submodular cost functions. Combining these results,
we then characterise precisely which 4-ary submodular cost functions are ex-
pressible by binary submodular cost functions. More importantly, we show that
some submodular cost functions are not expressible by binary submodular cost
functions, and therefore cannot be minimised using the Min-Cut problem via
an expressibility reduction. Finally, we consider the complexity of recognizing
which cost functions are expressible by binary submodular cost functions.

3.1 Expressibility of Upper Fans and Lower Fans

We denote by Γsub,n the set of all finite-valued submodular cost functions of arity
at most n on a Boolean domain D, and we set Γsub =

⋃
n Γsub,n.

We denote by Γfans,n the set of all fans of arity at most n on a Boolean domain
D, and we set Γfans =

⋃
n Γfans,n.

Our next result shows that Γfans ⊆ 〈Γsub,2〉. The proof is omitted due to space
restrictions.

Theorem 1. Any fan on a Boolean domain D is expressible by binary submod-
ular functions on D using at most 1 + �m/2� extra variables, where m is the
degree of its polynomial representation.

Many of the earlier expressibility results mentioned in Section 1 can be obtained
as simple corollaries of Theorem 1, as the following examples indicate.

Example 3. Any negative monomial −x1x2 · · ·xm is a positive multiple of an
upper fan, and the positive linear monomial x1 is equal to −(1 − x1) + 1, so it
is a positive multiple of a lower fan, plus a constant. Hence all negative-positive
submodular polynomials are contained in Cone(Γfans), and by Theorem 1, they
are expressible by binary submodular polynomials, as originally shown in [30].

Example 4. A polynomial is called homogeneous [1] or polar [9] if it can be
expressed as a sum of terms of the form ax1x2 . . . xk or a(1−x1)(1−x2) . . . (1−xk)
with positive coefficients a, together with a constant term. It was observed in [1]
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that all polar polynomials are supermodular, so all negated polar polynomials
are submodular. As every negated term −ax1x2 . . . xk, is a positive multiple of
an upper fan, and every negated term −a(1−x1)(1−x2) . . . (1−xk), is a positive
multiple of a lower fan, by Theorem 1, all cost functions which are the negations
of polar polynomials are expressible by binary submodular polynomials, and
hence solvable by reduction to Min-Cut, as originally shown in [1].

Example 5. Any cubic submodular polynomial can be expressed as a positive
sum of upper fans [29]. Hence, by Theorem 1, all cubic submodular polynomials
are expressible by binary submodular polynomials, as originally shown in [1].

Example 6. A Boolean cost function φ is called 2-monotone [10] if there exist
two sets R,S ⊆ {1, . . . , n} such that φ(x) = 0 if R ⊆ x or x ⊆ S and φ(x) = 1
otherwise (where R ⊆ x means ∀i ∈ R, x[i] = 1 and x ⊆ S means ∀i 	∈ S, x[i] =
0). It was shown in [6, Proposition 2.9] that a 2-valued Boolean cost function is
2-monotone if, and only if, it is submodular.

For any 2-monotone cost function defined by the sets of indices R and S, it
is straightforward to check that φ = miny∈{0,1} y(1 + φA/2) + (1 − y)(1 + φB/2)
where φA is the upper fan defined by A = {R} and φB is the lower fan defined by
B = {S}. Note that the function yφA is an upper fan, and the function (1−y)φB

is a lower fan. Hence, by Theorem 1, all 2-monotone polynomials are expressible
by binary submodular polynomials, and solvable by reduction to Min-Cut, as
originally shown in [10].

However, Theorem 1 also provides many new functions of all arities which have
not previously been shown to be expressible by binary submodular functions, as
the following example indicates.

Example 7. The function 2x1x2x3x4−x1x2x3−x1x2x4−x1x3x4−x2x3x4 belongs
to Γfans,4, but does not belong to any class of submodular functions which has
previously been shown to be expressible by binary submodular functions. In
particular, it does not belong to the class Γnew identified in [34,35].

3.2 Characterisation of Mul(Γsub,2)

Since we have seen that a cost function can only be expressed by a given set
of cost functions if it has the same multimorphisms, we now investigate the
multimorphisms of Γsub,2.

A function F : Dk → Dk is called conservative if, for each possible choice
of x1, . . . , xk, the tuple F(x1, . . . , xk) is a permutation of x1, . . . , xk (though
different inputs may be permuted in different ways).

For any two tuples x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉 over D, we denote
by H(x,y) the Hamming distance between x and y, which is the number of
positions at which the corresponding values are different.

Theorem 2. For any Boolean domain D, and any F : Dk → Dk, the following
are equivalent:
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1. F ∈ Mul(Γsub,2).
2. F ∈ Mul(Γ∞

sub,2), where Γ∞
sub,2 denotes the set of binary submodular cost func-

tions taking finite or infinite values.
3. F is conservative and Hamming distance non-increasing.

The proof is omitted due to space restrictions.

3.3 Non-expressibility of Γsub over Γsub,2

Theorem 2 characterises the multimorphisms of Γsub,2, and hence enables us to
systematically search (for example, using Mathematica) for multimorphisms
of Γsub,2 which are not multimorphisms of Γsub. In this way, we have identi-
fied the function Fsep : {0, 1}5 → {0, 1}5 defined in Figure 2. We will show in
this section that this function can be used to characterise all the submodular
functions of arity 4 which are expressible by binary submodular functions on a
Boolean domain. Using this result, we show that some submodular functions are
not expressible in this way.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Fsep(x) 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Fig. 2. Definition of Fsep

Proposition 1. Fsep is conservative and Hamming distance non-increasing.

Proof. Straightforward exhaustive verification. ��

Theorem 3. For any function f ∈ Γsub,4 the following are equivalent:

1. f ∈ 〈Γsub,2〉.
2. Fsep ∈ Mul({f}).
3. f ∈ Cone(Γfans,4).

Proof. First, we show (1) ⇒ (2). Proposition 1 and Theorem 2 imply that Fsep is
a multimorphism of any binary submodular function on a Boolean domain. Hence
having Fsep as a multimorphism is a necessary condition for any submodular
cost function on a Boolean domain to be expressible by binary submodular cost
functions.
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Next, we show (2) ⇒ (3). Consider the complete set of inequalities on the
values of a 4-ary cost function resulting from having the multimorphism Fsep,
as specified in Definition 3. A routine calculation in Mathematica shows that,
out of 165 such inequalities, there are 4635 which are distinct. After removing
from these all those which are equal to the sum of two others, we obtain a
system of just 30 inequalities which must be satisfied by any 4-ary submodular
cost function which has the multimorphism Fsep. Using the double description
method [25], we obtain from these 30 inequalities an equivalent set of 31 extreme
rays which generate the same polyhedral cone of cost functions. These extreme
rays all correspond to fans or sums of fans.

Finally, we show (3) ⇒ (1). By Theorem 1, all fans are expressible over Γsub,2.
It follows that any cost function in this cone of functions is also expressible over
Γsub,2. ��

Next we show that there are indeed 4-ary submodular cost functions which do
not have Fsep as a multimorphism and therefore are not expressible by binary
submodular cost functions.

Definition 5. For any Boolean tuple t of arity 4 containing exactly 2 ones and
2 zeros, we define the 4-ary cost function θt as follows:

θt(x1, x2, x3, x4) =

⎧⎪⎨⎪⎩
−1 if (x1, x2, x3, x4) = (1, 1, 1, 1) or (0, 0, 0, 0),

1 if (x1, x2, x3, x4) = t,

0 otherwise.

Cost functions of the form θt were introduced in [29], where they are called
quasi-indecomposable functions. We denote by Γqin the set of all (six) quasi-
indecomposable cost functions of arity 4. It is straightforward to check that
they are submodular, but the next result shows that they are not expressible by
binary submodular functions.

Proposition 2. For all θ ∈ Γqin, Fsep 	∈ Mul({θ}).

Proof. The following table shows that Fsep 	∈ Mul({θ(1,1,0,0)}).

Fsep

1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0
0 0 1 1
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 1
0 1 1 1

θ(1,1,0,0)−→

0
0
0
0
0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∑

= 0

θ(1,1,0,0)−→

0
0
1
0
0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∑

= 1

Permuting the columns appropriately establishes the result for all other θ ∈ Γqin.
��
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Corollary 1. For all θ ∈ Γqin, θ 	∈ 〈Γsub,2〉.

Proof. By Theorem 3 and Proposition 2. ��

Are there any other 4-ary submodular cost functions which are not expressible
over Γsub,2? Promislow and Young characterised the extreme rays of the cone of
all 4-ary submodular cost functions and established that Γsub,4 = Cone(Γfans,4 ∪
Γqin) – see Theorem 5.2 of [29]. Hence the results in this section characterise the
expressibility of all 4-ary submodular functions.

Promislow and Young conjectured that for k 	= 4, all extreme rays of Γsub,k

are fans [29]; that is, they conjectured that for all k 	= 4, Γsub,k = Cone(Γfans,k).
However, if this conjecture were true it would imply that all submodular func-
tions of arity 5 and above were expressible by binary submodular functions, by
Theorem 1. This is clearly not the case, because inexpressible cost functions such
as those identified in Corollary 1 can be extended to larger arities (for example,
by adding dummy arguments) and remain inexpressible. Hence our results refute
this conjecture for all k ≥ 5. However, we suggest that this conjecture can be
refined to a similar statement concerning just those submodular functions which
are expressible by binary submodular functions, as follows:

Conjecture 1. For all k, Γsub,k ∩ 〈Γsub,2〉 = Cone(Γfans,k).

This conjecture was previously known to be true for k ≤ 3 [29]; Theorem 1
shows that Cone(Γfans,k) ⊆ Γsub,k ∩ 〈Γsub,2〉 for all k, and Theorem 3 confirms
that equality holds for k = 4.

3.4 The Complexity of Recognising Expressible Functions

Finally, we show that we can test efficiently whether a submodular polynomial
of arity 4 is expressible by binary submodular polynomials.

Definition 6. Let p(x1, x2, x3, x4) be the polynomial representation of a 4-ary
submodular cost function f . We denote by aI the coefficient of the term

∏
i∈I xi.

We say that f satisfies condition Sep if for each {i, j}, {k, �} ⊂ {1, 2, 3, 4}, with
i, j, k, � distinct, we have a{i,j} + a{k,�} + a{i,j,k} + a{i,j,�} ≤ 0.

Theorem 4. For any f ∈ Γsub,4, the following are equivalent:

1. f ∈ 〈Γsub,2〉.
2. f satisfies condition Sep.

Proof. As in the proof of Theorem 3, we construct a set of 30 inequalities cor-
responding to the multimorphism Fsep. Each of these inequalities on the values
of a cost function can be translated into inequalities on the coefficients of the
corresponding polynomial representation by a straightforward linear transfor-
mation. This calculation shows that 24 of the resulting inequalities impose the
condition of submodularity, and the remaining 6 impose condition Sep. Hence
a submodular cost function of arity 4 has the multimorphism Fsep if, and only
if, its polynomial representation satisfies condition Sep. The result then follows
from Theorem 3. ��
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Using Theorem 4, we can test whether optimisation problems given as a sum of
submodular functions of arity 4 can be reduced to the Min-Cut problem via
the expressibility reduction. These problems arise in Computer Vision and in
Valued Constraint Satisfaction Problems.

Furthermore, by Theorem 1, the number of extra variables needed in this
reduction is rather small compared to the theoretical upper bound given in [4].

It is known that the problem of recognising whether an arbitrary degree-4
polynomial is submodular is co-NP-complete [9,15]. At the moment, the com-
plexity of the recognition problem for submodular polynomials of degree 4 that
are expressible by binary submodular polynomials is open.
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