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Abstract. A succinct text index uses space proportional to the text
itself, say, two times n log σ for a text of n characters over an alphabet of
size σ. In the past few years, there were several exciting results leading to
succinct indexes that support efficient pattern matching. In this paper
we present the first succinct index for a text that contains wildcards.
The space complexity of our index is (3 + o(1))n log σ + O(� log n) bits,
where � is the number of wildcard groups in the text. Such an index finds
applications in indexing genomic sequences that contain single-nucleotide
polymorphisms (SNP), which could be modeled as wildcards.

In the course of deriving the above result, we also obtain an alter-
nate succinct index of a set of d patterns for the purpose of dictionary
matching. When compared with the succinct index in the literature, the
new index doubles the size (precisely, from n log σ to 2n log σ, where n
is the total length of all patterns), yet it reduces the matching time to
O(m log σ + m log d + occ), where m is the length of the query text. It
is worth-mentioning that the time complexity no longer depends on the
total dictionary size.

1 Introduction

Pattern matching is a fundamental problem. Consider a text T and a pattern P ,
the earliest work can solve the problem in O(|T | + |P |) time. When the text
remains relatively static (say, the text is the human genome), one would like to
build an index of T so as to speed up pattern matching. Let n be the number of
characters of T . The classical index suffix trees requires O(n) words, or equiva-
lently, O(n log n) bits, and can support pattern matching in O(|P | + occ) time,
where occ is the number of occurrences of P in T . Note that the space complex-
ity has a natural lower bound of n logσ bits (i.e., worst-case text size), where
σ is the alphabet size. Starting with the work of Ferragina and Manzini [6] and
Grossi and Vitter [9], the past decade has witnessed a chain of works that make
it feasible to build a succinct text index with size proportional to n log σ bits or
even a compressed index (with size proportional to nHk bits), while supporting
efficient pattern matching, using O(|P | + occ log1+ε n) time for any ε > 0 (see
the survey by Navarro and Mäkinen [12] for a complete list of references).

This paper is concerned with pattern matching on text containing wildcards
(or don’t care characters). Specifically, a wildcard, denoted by φ, is a special char-
acter that matches any single character. Fischer and Paterson [8] were among
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the first to study wildcard matching. There are several results on text indexing
for wildcard matching. In the simple setting where the text contains no wild-
cards, Rahman and Iliopoulos [15] and later Lam et al. [11] have each given
an O(n)-word index for matching patterns with wildcards. Indexing a text con-
taining wildcards is technically more challenging. It naturally arises in indexing
genomic sequences, in which some base pairs are known to be single-nucleotide
polymorphisms (SNP), that could be modeled as wildcards. The wildcard index
by Cole et al. [5] uses O(n logk n) words, where k is the number of wildcards.
It takes O(|P | + logk n log log n + occ) time to find the occurrences of a given
pattern P without wildcards. Obviously, the size of the index implies a pro-
hibitive amount of memory for applications involving more than a few wildcards.
Lam et al. [11] have given another index, which requires only O(n) words and
also avoids a time complexity exponential in the number of wildcards. Precisely,
the time required is O(|P | log n + γ + occ) time, where γ is defined as follows.
Assume that the text T contains � ≥ 1 groups of consecutive wildcards. I.e.,
T = T1φ

k1T2φ
k2 . . . φk�T�+1, where k1, k2, . . . k� ≥ 1, and each Ti contains no

wildcards. Define γ to be the sum, over all Ti’s, of the number of occurrences
of Ti in P . Note that γ is upper bounded by |P |(� + 1).1 Both indexes can be
extended to handle patterns with wildcards.

When we index long genomic sequences (e.g., the human genome which has
about three billion characters), even an O(n)-word or O(n log n)-bit data struc-
ture is still too large. In this paper, we give a succinct index for a text containing
wildcard characters. Precisely, assume that T has � ≥ 1 wildcard groups, the
space complexity is (3 + o(1))n log σ + O(σ log n) + O(� log n) bits. For practical
applications, the last two terms can often be absorbed into o(n log σ), and the
pattern matching time of the new index compares favorably with the previous in-
dexes. It is useful to define �̂ to be the number of distinct wildcard-group lengths
(i.e., the number distinct elements in the set {k1, k2, . . . , k�}; e.g., if ki = 1 for
all i, then �̂ = 1). Given a pattern P , our new index can find all occurrences
of P in O(|P |(log σ + min(|P |, �̂) log �) + γ logσ � + occ log1+ε n) time for any
ε > 0.

In the course of deriving the above solution for indexing wildcards, we have
also obtained a succinct index for the dictionary matching problem, which is
another classical matching problem not involving wildcards. In this problem, we
are required to index a set of patterns P1, P2, . . . , Pd with total length n. Given
a query text T , the index is required to locate the occurrences of all Pi in T .
Aho and Corasick [1] were the first to give an O(n)-word index for the dictionary
matching problem. Chan et al. [3] have improved the space complexity to O(nσ)
bits, and recently Hon et al. [10] gave a succinct index using (1 + o(1))n log σ +
O(d log n) bits. The matching time for any text T is O(|T |(logε n+log d)+occ). In
this paper we present a different way to derive a succinct index for the dictionary

1 [11] has given a more practical upper bound of γ. Define the prefix complexity of
the Ti’s to be the maximum number of Tj ’s that are prefixes of the same Ti. Then γ
is at most |P | times the prefix complexity. In practice, wildcards are sparse and the
prefix complexity is often a small constant.
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matching problem. The new index increases the space to (2 + o(1))n log σ +
O(d log n) bits, but reducing the matching time to O(|T |(log σ + log d) + occ).

Organization of the paper. In Section 2, we will review several data structures
in the literature for indexing text (without wildcards), as well as for indexing
geometric data on a two-dimensional plane. In Section 3, we describe the core
elements of our succinct index, which include BWT and a new solution to the
dictionary matching problem. In Section 4, we present the details of matching
with wildcards in the text.

2 Preliminaries

Throughout this paper, we consider texts and patterns with characters chosen
from an alphabet Σ of size σ. The text can contain one or more wildcard charac-
ter φ, which is a special character not in Σ, and which can match any character
in Σ. Our data structures would make use of two additional symbols $ and #
not in Σ. We assume that $ is lexicographically smaller than all characters in Σ,
and # greater than all characters in Σ. Below we review several data structures
for text indexing (without wildcards), as well as points and rectangles in a two
dimensional plane.

2.1 Suffix Array

Let T [1..n] be a text that does not contain wildcard character and ends with a
special character $. A suffix of T is a substring T [j..n] where 1 ≤ j ≤ n. We sort
all suffixes of T in lexicographical order and store their starting positions in an
integer array SA[1, n]. Intuitively, SA[i] gives the starting position of the i-th
smallest suffix of T , or equivalently, the suffix with rank i.

Consider a pattern X . Inside SA, all the suffixes of T that contain X as a
prefix appear in consecutive entries. We define the SA range X to be [s, r] if
there are s′ = s − 1 suffixes lexicographically smaller than X , and r suffixes
smaller than or equal to X . If X does not appear in T , then s− 1 = r and the
SA range has a right boundary (r) smaller than the left boundary (s). In this
case, we say that the SA range of X is empty.

2.2 Burrows-Wheeler Transform (BWT)

Burrows-Wheeler Transform (BWT) was first proposed as a compression tech-
nique [2]. Later it was found that BWT can support pattern matching efficiently
when equipped with auxiliary data structures. Let T [1..n] be a text (containing
no wildcard). Assume T [n] = $. The BWT of T is a sequence of n characters
such that the i-th character is the character in T just preceding the rank-i suffix
of T . Precisely, BWT [i] = T [j− 1] where j = SA[i] and SA[i] �= 1. If SA[i] = 1,
BWT [i] = $.

BWT can be used to compute the SA range of any pattern if it is equipped with
auxiliary data structures to compute the functions Count(c) and Appear(i, c). For
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any character c, Count(c) gives the number of characters in T that are lexico-
graphically smaller than c, and Appear(i, c) returns the number of times c ap-
pears in the prefix BWT [1..i]. Suppose that the SA range [s, r] of a string X is
given. Then, for any character c, we can find the SA range of cX as [Count(c) +
Appear(s− 1, c) + 1, Count(c) + Appear(r, c)] [6].

A straightforward implementation of the Appear function requires O(nσ log n)
bits. To reduce the space requirement, we use the wavelet tree implementation
proposed by Ferragina et al. [7]. It only uses n log σ + o(n log σ) bits, but it
is slower, taking O(log σ) time to serve each function call. On the other hand,
with the wavelet tree implementation, we no longer need to store T or BWT
explicitly, since it supports retrieving any single character of BWT in O(log σ)
time. In summary, BWT together the auxiliary data structures occupy n logσ +
o(n log σ)+O(σ log n) bits and can support pattern matching efficiently, as stated
in the following lemma.

Lemma 1. Let P be a pattern of m characters. The SA ranges of all suffixes of
P can be computed in O(m log σ) time.

2.3 Orthogonal Range Search

Consider a set G of � points on a two-dimensional plane. Given a rectangle R =
(x1, y1)× (x2, y2), we want to find all the points in G that are enclosed by R.

Lemma 2. [13] Given � points with coordinates in [1..n], we can build an
O(� log n)-bit data structure such that given a query rectangle R, all the points
enclosed by R can be reported in O(log � + t logε �) time, where t is the number
of answers and ε > 0.

2.4 Point Enclosure Problem

Consider a set H of � rectangles on a two-dimensional plane. Given a query point
q = (x, y), we want to find efficiently all the rectangles in H that enclose q.

Lemma 3. [4] Given � rectangles on a 2-D plane, we can build an O(�)-word
data structure such that given a query point q, all the rectangles enclosing q can
be reported in O(log� + t) time, where t is the number of answers.

3 Succinct Representation of Non-wildcard Characters

Consider a text T of n characters. Suppose T = T1φ
k1T2φ

k2 . . . T�φ
k�T�+1, where

φki denotes a group of ki consecutive wildcards, and each Ti does not contain any
wildcard. Below, each Ti is called a text segment. In this section we show how to
index the Ti’s. We make use of BWT and the point enclosure data structure. The
former allows us to determine whether each Ti is a prefix of a given pattern X in
constant time. This prefix matching capability, together with the point enclosure
data structure, allow us to have a faster index for dictionary matching, i.e., to
find out the occurrences of every Ti in a given pattern X . In Section 4, we will
show how to make use of these indexes to perform wildcard matching.
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3.1 BWT and Prefix Matching

Define TS = T1$T1#T2$T2# . . . T�+1$T�+1#, where $ and # are new symbols
assumed to be lexicographically smaller than and greater than all symbols in
T , respectively. We construct the BWT index (including the necessary auxiliary
data structures) to support pattern matching for TS. We denote this index as
BWT -TS. Note that with BWT -TS, we no longer need to store the text TS
explicitly as the index can support pattern matching TS. BWT -TS uses (2 +
o(1))n log σ + O(σ log n) bits. Furthermore, we explicitly store the SA range of
each Ti (with respect to the suffixes of TS), using (� + 1) log n bits.

Below, an SA range always makes reference to the suffixes of TS. By Lemma 1,
for any pattern P [1..m], we can use BWT -TS to find the SA ranges of the suffixes
P [m..m], P [m−1..m], . . . , P [1..m] in O(m log σ) time. In the rest of this section,
we show how to exploit the SA ranges of a suffix X = P [j..m] and a text segment
Ti to determine whether X is a prefix of Ti, and more importantly, whether Ti

is a prefix of X .
Note that X may or may not appear in any Ti, and the SA range [s, r] of X

may be empty (s − 1 = r) or non-empty (s ≤ r). When X has a non-empty
SA range, it is straightforward to determine whether X is a prefix of a text
segment Ti, or vice versa. See the following lemma. The duplicate structure
of TS is needed to handle the case when X has an empty SA range.

Lemma 4. Suppose that the text segment Ti has SA range [p, q]. For any string X,
if the SA range [s, r] of X is non-empty, then (i) X is a prefix of Ti if and only if
s ≤ p ≤ q ≤ r; and (ii) Ti is a prefix of X if and only if p ≤ s ≤ r ≤ q. Both
conditions can be determined in constant time.

Proof. We only prove (i), as (ii) is symmetric. Suppose X is a prefix of Ti. The
SA range of X encloses all suffixes with prefix X , so the SA range of Ti must
be enclosed by the SA range of X . Hence, s ≤ p ≤ q ≤ r. Conversely, suppose
s ≤ p ≤ q ≤ r. The SA range of X encloses all suffixes with the prefix X . Since
the SA range of Ti is a subrange of [s, r], all suffixes with the prefix Ti must also
have X as the prefix. Thus, X is a prefix of Ti.

It remains to consider the case when X has an empty SA range. In this case, X
does not occur anywhere in TS, and X is not a prefix of any text segment Ti.
However, Ti can still be a prefix of X . To determine this case is no longer
straightforward. The following lemma exploits the duplicate structure of each Ti

in TS to derive a simple condition.

Lemma 5. Suppose that the text segment Ti has SA range [p, q]. For any string X,
if the SA range [s, r] X is empty (i.e., s − 1 = r), then Ti is a prefix of X if and
only if p ≤ r < s ≤ q. This can be determined in constant time.

Proof. Suppose that Ti is a prefix of X . Since X has an empty SA range and Ti

has a non-empty one, Ti is a proper prefix of X . Recall that $ is smaller than
any character in Σ, and hence Ti$ is lexicograpically smaller than X . Similarly,
Ti# is lexicograpically greater than X . If [s, r] is an empty range, s− 1 = r and
r < s. It remains to prove the other two inequalities: (1) p ≤ r; (2) s ≤ q.
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(1) By definition of [p, q], the p-th smallest suffix of TS contains Ti$ as a prefix.
This prefix is smaller than X , and hence there are at least p suffixes of TS
smaller than X . Therefore, s− 1 ≥ p and r = s− 1 ≥ p.

(2) By definition of [p, q] and #, the q-th smallest suffix of TS contains Ti# as
a prefix, and this prefix is greater than X . There are at most q − 1 suffixes
of TS smaller than or equal to X . Therefore, r ≤ q − 1 and s = r + 1 ≤ q.

Conversely, if p ≤ r < s ≤ q, we can prove that Ti is a prefix of X . Let X ′

be the prefix comprising the first |Ti| characters of X (or equal to X if X is
shorter than Ti). For the sake of contradiction, we assume that Ti is not a prefix
of X and consider the scenarios when X ′ is larger than Ti or smaller than Ti.
If X ′ > Ti, TS contains at least q suffixes smaller than X , and s − 1 ≥ q. It
contradicts that s ≤ q. If Ti > X ′, then there are at most p− 1 suffices that are
smaller than X , and s− 1 ≤ p− 1. It contradicts that r = s− 1 ≥ p.

3.2 Dictionary Matching

Given the text segments T1, T2, . . . , T�+1 and a pattern P [1..m], the dictionary
matching problem is to report the occurrences of all Ti that appear in P . In this
section, we show how to make use of BWT -TS (defined in the previous section)
and a point enclosure index to perform dictionary matching in a more efficient
way than the existing indexes in the literature. The overall space requirement
is (2 + o(1))n log σ + O(σ log n) + O(� log n) bits, and the dictionary query can
be answered in O(m log σ +m log � + γ) time, where γ denotes the total number
of occurrences. This result, when compared with the work of Hon et al. [10],
doubles the space requirement, but improves the dominating term of the time
complexity from m logε n to m log σ.

Suppose that a text segment Ti appears in P . Then Ti must be a prefix of
some suffix of P . To find out such occurrences, we consider each suffix P [j..m]
of P separately and find all Ti’s that are a prefix of P [j..m]. First of all, we use
Lemma 1 to compute the SA ranges (with respect to TS) of every suffix P [j..m].
Using Lemmas 4(ii) and 5, we can check whether Ti, for all i in [1, � + 1], is a
prefix of P [j..m] in O(�) time. We can speed up this checking process for each
P [j..m] to O(log �) time by a reduction to a point enclosure problem defined as
follows.

For each Ti with SA range [p, q], we consider the rectangle (p, p)× (q, q)
in the two-dimensional plane. Let H be the set of all the � + 1 rectan-
gles associated with the Ti’s. We build an O(� log n)-bit index for point
enclosure query. For each P [j..m], we transform its SA range [s, r] to a
query point xj = (s, r). By Lemmas 4(ii) and 5, Ti is a prefix of P [j..m]
if and only if the rectangle of Ti encloses xj .

Lemma 6. We can build an index for T1, T2, . . . , T�+1 using (2 + o(1))n log σ +
O(σ log n)+O(� log n) bits. Then, given a pattern P , the occurrences of all Ti in
P can be computed in O(m log σ +m log �+ γ) time, where γ is the total number
of occurrences.
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Proof. First, we can find the SA ranges of all suffixes of P . By Lemma 1, it
takes O(m log σ) time. H contains � + 1 rectangles. By Lemma 3, we can build
an O(� log n)-bit data structure to answer the point enclosure query of each suffix
of P in O(log �+t) time, where t is the number of answers. In summary, the total
time required to find the occurrences of all Ti in P is O(m log σ + m log � + γ).

Repeated Dictionary Matching. Given a pattern P , after we have computed
the γ occurrences of the text segments in P , we want to store these results in a
compact way so that they can be retrieved altogether in O(γ) time. It is indeed
relatively simple to derive a scheme using only O(m log �) bits, i.e., independent
of the size of γ. Details are as follows.

First, we observe a relationship between all text segments Ti that are a prefix
of a particular suffix P [j..m] of P . For any 1 ≤ j ≤ m, let Dj be the set
containing all such Ti’s. Let Longest(Dj) denote the longest Ti in the set Dj .
Note that a text segment Ti is in Dj if and only if Ti is a prefix of Longest(Dj).
Therefore, for each Ti, we maintain a set of text segments that are each a prefix
of Ti. Then, for each P [j..m], we only need to store Longest(Dj). The space
required to store all Longest(Dj) for all j is O(m log �) bits. To re-generate the
γ answers of the dictionary matching for P , we report all Ti’s that are each a
prefix of Longest(Dj) for all j.

It remains to show how to maintain the list of prefix text segments for each Ti.
There are several possible ways. Below we make use of a compact trie, which
requires O(� log �) bits. First, we build a compact trie CT for all text segments
{T1$, T2$, .., T�$}. Each Ti is associated with a leaf in CT . If text segments are
identical, they are associated with the same leaf. Consider any node u in CT ,
we denote path(u) as the concatenation of all edge labels from the root to u.
For each Ti, we mark the node v of CT such that path(v) = Ti. Then, for all
nodes, we store a link to its closest marked ancestor. The space required by CT
is O(� log �) bits. Given any Ti, we can recover the text segments that are a prefix
of Ti by traversing the marked nodes from the leaf associated with Ti towards
the root. To conclude, the space requirement is dominated by BWT -TS and the
SA ranges of all Ti’s, which is (2 + o(1))n log σ + O(σ log n) + O(� log n) bits.

Lemma 7. Using CT , we can retrieve, for any Ti, all the text segments that
are each a prefix of Ti in O(t) time, where t is the number of results.

4 Matching with Wildcards

Finally we come to the discussion of matching a text T containing wildcards.
Assume T = T1φ

k1T2φ
k2 ..T�φ

k�T�+1, where k1, k2, . . . , k� ≥ 1, and each Ti

contains no wildcards. The basic data structure is BWT -TS (as defined in
Section 3.1), which indexes all the text segments Ti of T . Furthermore, we index
the reverse of each Ti, which is denoted ←−Ti below. Let TP = ←−T1$

←−
T2$ . . .

←−
T�$,

and denote BWT -TP as the index comprising the BWT of TP and the required
auxiliary data structures (as stated in Section 2.2). BWT -TS and BWT -TP to-
gether occupy (3+ o(1))n logσ +O(σ log n) bits. Note that TP doesn’t have the
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duplicate structure of TS. We only need BWT -TP to support constant-time
checking whether a string X is a prefix of some ←−Ti, but not vice versa. We also
store the SA ranges of all Ti’s with respect to TS, as well as the SA ranges of
all ←−Ti’s with respect to TP . They require O(� log n) bits.

Additional auxiliary data structures (such as for indexing the SA ranges of the
Ti’s) will be given in the discussion below; they only use o(n log σ) + O(� log n)
bits.

Let P be a given pattern of m characters. Following Lam et al. [11], we divide
the problem of matching P with T into three cases.

Type 1: P is a substring of some Ti, where 1 ≤ i ≤ � + 1.
Type 2: P occurs in T [u..v] which contains exactly one wildcard group φkj .
Type 3: P occurs in T [u..v] which contains two or more wildcard groups.

Below we show how to make use of BWT -TS, BWT -TP and some auxiliary
data structures to match the pattern efficiently in each case.

4.1 Type 1 Matching

This is the simplest case and it does not involve any wildcards. We simply search
for P in BWT -TS. The required SA range can be computed in O(n log σ) time.
The only technical difficulty is how to retrieve the occurrences of P given the
SA range of P with respect to TS. The problem becomes trivial if we can keep
a suffix array of TS, which requires O(n log n) bits. Below we show that with a
suitable sampling of the suffix array, we can reduce the space to o(n log σ), while
allowing each occurrence to be retrieved in O(log1+ε n) time for any ε > 0.

Lemma 8. We can build an o(n log σ)-bit auxiliary data structure such that,
given the SA range of a pattern P , the occurrences of P in TS can be reported
in O(occ1 logε+1 n) time, where occ1 is the number of type-1 occurrences.

Proof. Let β be the sampling factor. We show that an index of O(n
β log n) bits

would allow us to access an value in the suffix array of TS in O(β log σ) time.
Let M be a bit vector of length |TS|. Initially, M [i] = 0 for all i. Then we

mark every M [i] = 1 where SA[i] = kβ and 0 ≤ k ≤
⌈

n
β

⌉
. We store the tuple

(i, SA[i]) where M [i] is marked with 1 in ascending order of i. Suppose we want
to retrieve SA[j] which has not been stored up. Let j0 = j. We will have to find
an index jy such that the tuple (jy , SA[jy]) is stored and SA[j0]−SA[jy] < β. In
general, we can find the index jx by backward searching BWT -TS with character
BWT -TS[jx−1]. We recurively obtain j1, j2, j3.. until we find jy such that the
tuple (jy , SA[jy]) is stored. Tuple can be retrieved in constant time if a rank and
select data structure has been built on M . Then, we report SA[j] = SA[jy] + y.
The searching time for a character in BWT -TS is O(log σ). Since y < β, we can
compute SA[j] in O(β log σ) time.

Let β = �logε n logσ n� for some ε > 0. The space requirement of the sampled
SA plus the rank and select index is o(n log σ). The access time of an entry in
the suffix array becomes O(log1+ε n).
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4.2 Type 2 Matching

For type 2 matching, we are interested in matching a given pattern P [1..m] with
Tiφ

kiTi+1 for all 1 ≤ i ≤ �. More specifically, we want to find out whether,
for some 1 ≤ a ≤ m, P [1..a] is a suffix of Ti, and P [a + ki + 1..m] is a prefix
of Ti+1. The first condition can be rewritten as

←−−−−
P [1..a] is a prefix of←−Ti. In other

words, both conditions involve prefix matching, so we can exploit BWT -TP and
the SA ranges of ←−Ti’s, as well as and BWT -TS and the SA ranges of Ti’s. By
Lemma 4(i), we would first compute the SA ranges of the suffixes of P and ←−P ;
then for any fixed i and a, it takes constant time to check whether

←−−−−
P [1..a] is a

prefix of ←−Ti , and P [a + ki + 1..m] is a prefix of Ti+1. Finding all the SA ranges
requires O(m log σ) time, and then the naive implementation of type-2 matching
requires O(m�) time.

For genomic sequences, we observe that the number of wildcard groups (i.e., �)
is usually not a small constant, but the number of distinct wildcard group sizes ki’s
is a small constant. Recall that the latter is denoted by �̂. In fact, it is often the case
that most groups contain only one wildcard. This motivates us to further improve
the time complexity to something depending on �̂ instead of �. Below we show how
to index the SA ranges of the Ti’s using an orthogonal range search index. Then
the time complexity can be reduced to to O(m(�̂) log � + occ2 logε �) time, where
occ2 is the number of type-2 occurrences of P .

Consider any integer b which is equal to some wildcard group size ki. Let W (b)
denote all the wildcard groups that have size b, i.e., W (b) = {i | ki = b and 1 ≤
e ≤ �}. We want to conduct type-2 matching for all the wildcard groups in W (b)
together. Given a position a of P , we want to find, for all i in W (b), whether
P [1..a] is a suffix of Ti and P [a + b + 1..m] is a prefix of Ti+1.

Lemma 9. We can build an O(� log n)-bit data structure to store the SA ranges
of ←−Ti’s and the SA ranges of Ti’s. Then, for any wildcard group size b, given
a pattern P [1..m] and a position 1 ≤ a ≤ m, we can find in O(log �) time the
number of i ∈ W (b) such that

←−−−−
P [1..a] is a prefix of ←−Ti and P [a + b + 1..m] is

a prefix of Ti+1. Furthermore, if there are t such i’s, we can report them in
O(t logε �) time for some ε > 0.

Proof. We make use of orthogonal range search on a two-dimensional plane.
Consider any wildcard group size b. We define a set Gb of points as follows. For
each wildcard group i ∈ W (b), let the SA range of ←−Ti on TP be (s′, r′) and the
SA range of Ti+1 on TS be (s, r). We add the point (s′, s) into Gb. Given any
position a on P , let Ra be the rectangle (x1, y1) × (x2, y2) where (x1, y1) and
(x2, y2) are the SA range of

←−−−−
P [1..a] on TP and the SA range of P [a + b + 1..m]

on TS, respectively. We find all the points on Gb that is enclosed by the query
range Ra. A point in Gb represents a wildcard group ki, it is enclosed by Ra if
and only if the SA range of

←−−−−
P [1..a] encloses the SA range of←−Ti and the SA range

of P [a + b + 1..m] encloses the SA range of Ti+1. By Lemma 2, an O(� log n)-bit
data structure can be built for all �̂ distinct wildcard group sizes, then we can
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determine the number of points enclosed by Ra in O(�̂+log �) time, and retrieve
each point in O(logε �) time.

There are � wildcard groups. The total number of points in all �̂ orthogonal
range search indexes is �. Therefore, the total space required by the orthogonal
range search indexes is O(� log n) bits.

Let us summarize the computation for type-2 matching for any given pattern P

of m characters. We compute the SA ranges of all
←−−−−
P [1..a] with respect to TP

and the SA ranges of all P [a..m] with respect to TS in O(m log σ) time. There
are min(m, �̂) different b’s for P . For each b, we consider every position a on
P . All type-2 matches can be found in O(m log � + t logε �) time, where t is the
number of occurrences. Summing over possible wildcard group size, we obtain
the following lemma.

Lemma 10. Given a pattern of m characters, all type-2 matches can be located
in O(m(log σ + min(m, �̂) log �) + occ2 logε �) time, where occ2 is the number of
type-2 occurrences and ε is an arbitrary positive constant.

4.3 Type 3 Matching

Type-3 matching occurs when a pattern P matches with a substring T [j..j + m]
which contains at least two groups of wildcards. In this case, P contains at least a
whole text segmentTi. Therefore, we will first find out all Ti completely included in
P , and then verify whether each suchTi can be extended to form a type-3 matching.

The first step is equivalent to performing a dictionary matching to report all
Ti that occurs in P . By Lemma 6, we could find all Ti that occurs on P in
O(m log σ + m log � + γ) time, where γ is the total number of occurrences of the
Ti’s in P . If Ti occurs in P with starting position x, then it is possible that P
occurs in T with starting position y = ti−x+1, where ti is the starting position
of Ti in T . Using BWT -TS and BWT -TP , we can apply Lemma 4(i) to verify
each candidate position y in constant time. Details are as follows.

First of all, we collect all the γ candidate positions y in an array A[1..n]
as follows. Initially, all entries of A are set to zero. We employ the constant
time initialization technique[14] on A. The access time to any cell in A remains
constant. Each time we find a candidate position y of P , we increment A[y] by 1.
The working space required by A is O(n log �) bits.

Consider each y with A[y] > 0. We want to verify whether P matches T [y..y+
m− 1]. Let Tf be the first text segment whose starting position tf ≥ y. Let Tg

be the last text segment that ends at or before y +m−1 (i.e., tg ≤ y+m−|Ti|).
Note that g ≥ f . A position y defines a type-3 matching of P if and only if the
following three conditions hold.

(1) A[j] = g − f + 1.
(2) If y < tf − kf−1 (i.e., the wildcard group φkf−1 starts after T [y]), then

P [1..tf − kf−1 − y] is a suffix of Tf−1, or equivalently,
←−−−−−−−−−−−−−−
P [1..tf − kf−1 − y] is

a prefix of ←−−−Tf−1.
(3) If tg+1 ≤ y + m− 1 (i.e., the wildcard group φkg ends before T [y + m− 1]),

then P [tg+1 − y + 1..m] is a prefix of Tg+1.
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Suppose that we have computed the SA ranges of all suffixes of P with respect
to TS, as well as the SA ranges of all the suffixes of ←−P with respect to TP .
Then, by Lemma 4(i), we can make use of BWT -TP and BWT -TS to verify
condition (2) and condition (3) in constant time. We conclude with the following
lemma.

Lemma 11. All type-3 matches can be located in O(m log σ +m log �+ γ) time.
The working space required is O(n log � + m log n) bits.

Theorem 1. Combining the results on type-1, type-2 and type-3 matching, we
can find all occurrences of a given pattern P of m characters in O(m(log σ +
min(m, �̂) log �)+occ1 logε+1 n+occ2 logε �+γ) time, where occ1 and occ2 denote
the number of type-1 and 2 occurrences respectively, and γ is the occurrences of
all text segments in P . The index space required is (3+o(1))n log σ+O(σ log n)+
O(� log n) bits. The working space required is O(n log � + m log n) bits.

Reducing the Working Space. The solution to the type-3 matching demands
a working space O(n log �+m logn) bits. The first term is way too much. Below
we show how to trade the running time for a solution that requires less working
space. At the end, we obtain a solution that requires only O(n log σ + m log n)-
bit working space, but the verification time for the γ candidates would increase
to O(γ logσ �). Intuitively, the idea is to split the array A into a number of
subarrays. Then, we parse the γ dictionary matching results several times to
cover all candidate positions.

By Lemma 7, we could retrieve the γ matching results for multiple times.
Precisely, we could retrieve the γ matching results for d times in O(dγ) time.
Now, we split the entries in the array A into a number of groups. In each group,
there are ρ = 	n log σ

�log �� 
 consecutive entries of array A. No entry in A is contained
in more than one group. Therefore, there are O(logσ �) groups of entries in total.
Each group corresponds to a range of entries in A.

Let B[1..ρ] be an array of integers. The space required by B is O(ρ log �) =
O(n log σ) bits. We repeat the process to mark the candidate positions, however,
we mark the candidate positions on array B instead. We set b = 1, ρ + 1, 2ρ +
1, . . . , ρ logσ �+1. For each b, we mark on the array B by increasing the entry B[j′]
by one if the candidate position j = ti − k + 1 falls between b and b + ρ − 1,
where j′ = j − b + 1. We ignore all candidate positions that do not fall between
b and b + ρ − 1. After we have marked array B for all γ dictionary matching
occurrences, for each B[j′] > 0, it indicates an candidate position j = j′ + b− 1.
Then, we verify the candidate position j as mentioned in previous section. We
repeat the marking process for another b until all positions on T are covered.
The process marks the array for logσ � times.

Lemma 12. Type 3 matches can be located in O(m log σ + m log � + γ logσ �)
time. The working space required is O(m log n + n log σ) bits.
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