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Preface

This volume contains the papers presented at the 16th International Sympo-
sium on String Processing and Information Retrieval (SPIRE 2009), held during
August 25-27, 2009 in Saariselké, Finland.

The annual SPIRE conference provides researchers within fields related to
string processing and/or information retrieval a possibility to present their orig-
inal contributions and to meet and discuss with other researchers with similar
interests. The Call for Papers invited submissions related to string processing
(dictionary algorithms; text searching; pattern matching; text and sequence com-
pression; automata-based string processing), information retrieval (information
retrieval models; indexing; ranking and filtering; interface design; visualization;
benchmarking), natural language processing (text analysis; text mining; ma-
chine learning; information extraction; language models; knowledge representa-
tion), search applications and usage (cross-lingual information access systems;
multimedia information access; digital libraries; collaborative retrieval and Web-
related applications; semi-structured data retrieval; evaluation), and interaction
of biology and computation (DNA sequencing and applications in molecular bi-
ology; evolution and phylogenetics; recognition of genes and regulatory elements;
sequence driven protein structure prediction).

The papers presented at the symposium were selected from 84 submissions
written by authors from 28 different countries. Each submission was reviewed by
at least two and on average 2.9 reviewers. The Committee accepted 34 papers
(= 40%): 22 papers for 25-minute and 12 papers for 15-minute presentations. In
addition to these, SPIRE 2009 also featured invited talks by Mehryar Mohri (New
York University, USA) and Kalervo Jarvelin (University of Tampere, Finland).

The Program Committee voted to give the Best Paper Award to Amihood
Amir and Haim Parienty for their paper “Towards a Theory of Patches.”

We are especially thankful to the members of the Program Committee, who
provided us with thorough and timely reviews despite the fact that the reviewing
schedule was unusually tight due to the early date of the 2009 symposium.

Additional thanks go to the following people for their generous helpfulness
and support throughout the process of planning and organizing SPIRE 2009:
SPIRE Steering Committee coordinator Ricardo Baeza-Yates, the editorial office
staff at Springer, the office personnel at the University of Tampere, and the staff
at the conference hotel Riekonlinna in Saariselka.

We are grateful for the financial support provided by the Department of
Computer Sciences of University of Tampere, the Federation of Finnish Learned
Societies, Yahoo! Research, the Department of Computer Science of University
of Helsinki, and the Swedish Institute of Computer Science.

June 2009 Jussi Karlgren
Jorma Tarhio
Heikki Hyyro
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SPIRE 2009 was the 16th edition of the Symposium on String Processing and In-
formation Retrieval. The four first events concentrated mainly on string process-
ing and were held in South America under the title South American Workshop
on String Processing (WSP) in 1993, 1995, 1996 and 1997. WSP was transformed
into SPIRE in 1998, when the scope of the conference was broadened to include
also the area of information retrieval.
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Range Quantile Queries:
Another Virtue of Wavelet Trees*

Travis Gagie!, Simon J. Puglisi®**, and Andrew Turpin?

1 Research Group for Combinatorial Algorithms in Bioinformatics,
Bielefeld University, Germany
travis.gagie@gmail.com
2 School of Computer Science and Information Technology,
Royal Melbourne Institute of Technology, Australia
{simon.puglisi,andrew.turpin}@rmit.edu.au

Abstract. We show how to use a balanced wavelet tree as a data struc-
ture that stores a list of numbers and supports efficient range quantile
queries. A range quantile query takes a rank and the endpoints of a sub-
list and returns the number with that rank in that sublist. For example,
if the rank is half the sublist’s length, then the query returns the sub-
list’s median. We also show how these queries can be used to support
space-efficient coloured range reporting and document listing.

1 Introduction

If we are given a list of the closing prices of a stock for the past n days and asked
to find the kth lowest price, then we can do so in O(n) time [1]. We can also
preprocess the list in O(nlogn) time and store it in O(n) words such that, given
k later, we can find the answer in O(1) time: we simply sort the list. However, we
might also later face range quantile queries, which have the form “what was the
kth lowest price in the interval between the ¢th and the rth days?”. Of course, we
could precompute the answers to all such queries, but storing them would take
2(n3logn) bits of space. In this paper we show how to use a balanced wavelet
tree to store the list in O(n) words such that we can answer range quantile
queries in O(log o) time, where ¢ is the number of distinct items in the entire
list.

We know of no previous work on quantile querie, but several authors have
written about range median queries, the special case in which k is half the
length of the interval between ¢ and r. Krizanc, Morin and Smid [11] introduced
the problem of preprocessing for median queries and gave four solutions, three

* This work was supported by the Sofja Kovalevskaja Award from the Alexander von
Humboldt Foundation and the German Federal Ministry of Education and Research
and by the Australian Research Council.

** Corresponding Author.

! Henceforth, for brevity, we will use “quantile query” to mean “range quantile query”,

and similarly with other types of range queries.

J. Karlgren, J. Tarhio, and H. Hyyro (Eds.): SPIRE 2009, LNCS 5721, pp. 1. 2009.
© Springer-Verlag Berlin Heidelberg 2009



2 T. Gagie, S.J. Puglisi, and A. Turpin

Table 1. Bounds for range median queries

space (words) time restriction
Krizanc et al. [II] O(n) O(n®) e>0
Krizanc et al. [IT] O(nlog, n) O(blog’n/logh) 2<b<n
Krizanc et al. [[I] O(nlog®n/loglogn) O(logn)
gerg%zar;ﬁnﬁq O(n*(loglogn)?/log”n) O(1)
Theorem [T O(n) O(logn)

of which have worse bounds than using a balanced wavelet tree; their fourth
solution involves storing O(n?loglogn/logn) words to answer queries in O(1)
time. Bose, Kranakis, Morin and Tang [2] then considered approximate queries,
and Har-Peled and Muthukrishnan [9] and Gfeller and Sanders [7] considered
batched queries. Recently, Krizanc et al.’s fourth solution was superseded by
one due to Petersen and Grabowski [I5/16], who reduced the space bound to
O(n?(loglogn)?/log” n) words. Table [ shows the bounds for Krizanc et al.’s
first three solutions, for Petersen and Grabowski’s solution, and for using a
balanced wavelet tree.

Har-Peled and Muthukrishnan [9] describe applications of median queries to
the analysis of Web advertising logs. In the final section of this paper we show
that our solution for quantile queries can be used to support coloured range
reporting, that is, to enumerate the distinct items in a sublist. This result imme-
diately improves Valiméki and Mékinen’s recent space-efficient solution to the
document listing problem [T13JI8].

In the full version of this paper we will also discuss how to use a wavelet tree
to answer range counting queries (see [12]), coloured range counting queries (re-
turning the number of distinct elements in a range without enumerating them),
and how to support updates at the cost of slowing queries down to take time
proportional to the logarithm of the largest number allowed.

2 Wavelet Trees

Grossi, Gupta and Vitter [§] introduced wavelet trees for use in data compression,
and Ferragina, Giancarlo and Manzini [5] showed they have myriad virtues in this
respect. Wavelet trees are also important for compressed full-text indexing [14].
As we shall see, there is yet more to this intriguing data structure.

A wavelet tree T for a sequence s of length n is an ordered, strictly binary
tree whose leaves are labelled with the distinct elements in s in order from left
to right and whose internal nodes store binary strings. The binary string at
the root contains n bits and each is set to 0 or 1 depending on whether the
corresponding character of s is the label of a leaf in 77s left or right subtree.
For each internal node v of T, the subtree T, rooted at v is itself a wavelet
tree for the subsequence of s consisting of the occurrences of its leaves’ labels.
For example, if s = a,b,r,a,c,a,d,a,b,r,a and the leaves in T’s left subtree are
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labelled a, b and c, then the root stores 00100010010, the left subtree is a wavelet
tree for abacaaba and the right subtree is a wavelet tree for rdr. The important
properties of the wavelet tree for our purposes are summarized in the following
lemma.

Theorem 1 (Grossi et al. [8]). The wavelet tree T for a list of n elements
on alphabet o requires nlogo(1 4 o(1)) bits of space, and can be constructed in
O(nlogo) time.

To see why the space bound is true, consider that the binary strings’ total length
is the sum over the distinct elements of their frequencies times their depths,
which is O(nlogo) bits. The construction time bound is easy to see from the
recursive description of the wavelet tree given above.

We note as an aside that, while investigating data structures that support rank
and select queries, Mékinen and Navarro [I2] pointed out a connection between
wavelet trees and a data structure due to Chazelle [3] for two-dimensional range
searching on sets of points.

3 Range Quantile Queries

We now describe how the wavelet tree can be used to answer quantile queries.
Let s be the list of n numbers we want to query. We build and store the wavelet
tree T for s and, at each internal node v, we store a small data structure that
lets us perform O(1)-time rank queries on v’s binary string. A rank query on a
binary string takes a position and returns the number of 1s in the prefix that
ends at that position. Jacobson [10] and later Clark [4] showed we can support
O(1)-time rank queries on a binary string with a data structure that uses a
sublinear number of extra bits, beyond those needed to store the string itself. It
follows that the size of this preprocessed wavelet tree remains O(nlogo) bits.

Given k, £ and r and asked to find the kth smallest number in s[¢..r], we start
at the root of T and consider its binary string b. We use the two rank queries
rank,(¢£ — 1) and rank(r) to find the numbers of 0s and 1s in b[1..¢ — 1] and
b[¢..r]. If there are more than k copies of 0 in b[{..r], then our target is a label
on one of the leaves in T7s left subtree, so we set £ to one more than the number
of 0s in b[1..£ — 1], set 7 to the number of Os in b[1..r], and recurse on the left
subtree. Otherwise, our target is a label on one of the leaves in 77s right subtree,
so we subtract from k the number of Os in b[¢..r], set £ to one more than the
number of 1s in b[1..¢ — 1], set r to the number of 1s in b[1..r], and recurse on
the right subtree. When we reach a leaf, we return its label. An example is given
in Figure [l Since T is balanced and we spend constant time at each node as
we descend (using the rank structures), our search takes O(logo) time. Thus,
together with Theorem [Tl we have the following.

Theorem 2. There exists a data structure of size O(nlogo) bits which can be
built in O(nlogo) time that answers range quantile queries on s[1..n] in O(log o)
time.
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k=5
=3
r=9
k=2
/€:

r=>5
k=2
=2
r=3
k=1
{=1
r=1

Fig. 1. A wavelet tree T (left) for s = 6,2,0,7,9,3,1,8,5,4, and the values (right) the
variables k, ¢ and r take on as we search for the 5th smallest element in s[3..9]. The
dashed boxes in T' show the ranges from which we recursively select.

Some comments on ¢ are in order at this point. Firstly, and obviously, if o is
constant, then so is our query time. If we represent the binary strings at each
level of the wavelet tree with a more complicated rank/select data structure of
Raman et. al [I7] (instead of Clark [4], see [8I12]), the size of the wavelet tree is
reduced to nHo(s) + O(nloglogn/log, n) bits without affecting the query time,
where Hy(s) is the zeroth order entropy of s. Prior solutions for median queries
do not make such opportunistic use of space.

At the other extreme, if o is £2(n) we can map the symbols in s to the range
[1..n], by first sorting the items in O(nlogn) time, and storing the mapping in
O(nlogo) bits of space. Preprocessing the array this way, and then using the
wavelet tree approach above, allows us to match the £2(nlogn) time lower bound
for median queries [11], when the number of queries is O(n). This lower bound
applies to any computational model which has an 2(nlogn) time lower bound
on sorting s. Still, the solution is not completely satisfying, and we leave an open
question: Does an O(nlogn) preprocessing algorithm exist that allows quantile
(or even just median) queries to be answered in o(logn) time when o is 2(n)?

4 Application to Space Efficient Document Listing

The algorithm for quantile queries just described can, when coupled with another
wavelet tree property, be used to enumerate the d distinct items in a given sublist
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s[¢..r] in O(dlog o) time as follows. Let ¢, ca,. .., ¢q be the distinct elements in
s[¢..r] and, without loss of generality, assume ¢; < c2 < ... < ¢4. Further, let
my, i € 1..d be the number of times ¢; occurs in s[f..r]. To enumerate the ¢;, we
begin by finding c¢;, which can be achieved in O(logo) via a quantile query, as
¢1 must be the element with rank 1 in s[¢..r]. Observe now that c; must be the
element in the range with rank m; + 1, and in general ¢; is the element with
rank 1+ Z;;ll mj4+1. Fortunately, each m; can be determined in O(log o) time
by exploiting a well known property of wavelet trees, namely, their ability to
return, in O(log o) the number of occurrences of a symbol in a prefix of s (see
[8]). Each m; is the difference of two such queries.

The document listing problem [13] is a variation on the classical pattern match-
ing problem. Instead of returning all the positions at which a pattern P occurs
in the text T, we consider T as a collection of k documents (concatenated) and
our task is to return the set of documents in which P occurs.

Muthukrishnan [I3], who first considered the problem, gave an O(nlogn) bit
data structure (essentially a heavily preprocessed suffix tree) that lists documents
in optimal O(|P| + ndoc) time, where ndoc is the number of documents contain-
ing P. Recently, Valiméki and Mékinen [I8] used more modern compressed and
succinct data structures to reduce the space requirements of Muthukrishnan’s
approach at the cost of slightly increasing search to O(|P| + ndoclogk) time.
Their data structure consists of three pieces: the compressed suffiz array (CSA)
of T'; a wavelet tree built on an auxilliary array, E (described shortly); and a
succinct range minimum query data structure [6].

Central to both Muthukrishnan’s and Véliméki and Méakinen’s solutions is
the so-called “document array” E[l..n], which is parallel to the suffix array
SA[l..n]: E[i] is the document in which suffix SA[i] begins. Given an interval
SA[i..j] where all the occurrences of a pattern lie, the document listing problem
then reduces to enumerating the distinct items in E[i..j]. Without getting into
too many details, Valiméaki and Méakinen use the compressed suffix array (CSA)
of T to find the relevant sublist of F in O(|P]|) time, and then a combination
of E’s wavelet tree and a range minimum query data structure [6] to enumerate
the distinct items in that sublist in O(ndoclogk) time. However, as we have
described above, the wavelet tree of E alone is sufficient to solve this problem in
the same O(ndoclog k) time bound. In practice we may expect this new approach
to be faster, as the avoidance of the minimum queries should reduce CPU cache
misses. Also, because the wavelet tree of F is already present in [I8] we have
reduced the size of their data structure by 2n + o(n) bits, the size of the data
structure for minimum queries.

Acknowledgements
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Abstract. The edit distance problem on two unordered trees is known
to be MAX SNP-hard. In this paper, we present an approximation algo-
rithm whose approximation ratio is 2h + 2, where we consider unit cost
edit operations and h is the maximum height of the two input trees. The
algorithm is based on an embedding of unit cost tree edit distance into
L, distance. We also present an efficient implementation of the algorithm
using randomized dimension reduction.

1 Introduction

The tree edit distance problem is important because of its wide range of applica-
tions which is not limited to but includes computational biology, XML databases,
and image analysis [4I8/18].

For the ordered tree edit distance problem, Tai [15] first developed a polyno-
mial time algorithm, from which several improvements followed [ITJ21]. Recently,
Demaine et al. [6] developed an O(n?) time algorithm and showed that it is opti-
mal under a reasonable computation model, where n is the maximum size of the
input trees. Garofalakis and Kumar [7] developed an efficient method to embed
ordered edit distance into L; normed vector space, although move operations
are allowed in their definition of the edit distance.

On the other hand, the unordered edit distance problem is known to be MAX
SNP-hard for trees of bounded height [20], whereas some polynomial time algo-
rithms are known for restricted cases [9JI9]. Halldérsson and Tanaka [9] gave a
2h approximation algorithm for the largest common subtree problem (LCST) for
unordered trees of bounded height h, which was recently improved to a 1.5h ap-
proximation by us [3]. These results do not imply that the edit distance problem
is 1.5h-approximable, although the edit distance can be calculated from LCST.
An intuitive explanation for this statement is as follows: let us consider trees each
of which consists of n nodes. Assume that the input trees are very similar so that
the size of LCST is large (e.g., OPTcst = n — O(logn)) and the edit distance
between them is small (e.g., OPTrgp = O(logn)). Even if we can approximate
the LCST by a small factor o(> 1), the corresponding edit distance becomes at

J. Karlgren, J. Tarhio, and H. Hyyro (Eds.): SPIRE 2009, LNCS 5721, pp. 7 2009.
© Springer-Verlag Berlin Heidelberg 2009



8 D. Fukagawa, T. Akutsu, and A. Takasu

least APXtep > n—APX | cst =n—(1/a)OPTicst = n—(1/a)(n—O(logn)) =
(1-1/a)n+6O(logn) = O(n), which may be much greater than OPTrgp = O(1).
That is a motivation for us to develop an approximation algorithm for the tree
edit distance problem.

In this paper, we propose an algorithm to embed the tree edit distance into
the L1 norm with worst case distortion 2h + 2. Though similar representations
have appeared in the literature [BII4JT6IT7], they did not prove any approxima-
tion ratios. Although the idea of embedding and its algorithm is not novel in the
sense that linear (or close to linear) algorithms are already shown for the similar
distances, our main interest of this paper is to guarantee an approximation ratio
against the original edit distance using such a distance. For the embedding, we
also show efficient representation of the vector by randomized dimension reduc-
tion. Our algorithm gives a (2h 4 2)-approximation ratio for the edit distance
problem on rooted, labeled and unordered trees, which implies a constant factor
approximation for trees of bounded height. The handling of unordered trees of
bounded height is important since the height of trees in XML databases tends

to be 10.

2 Preliminaries

2.1 Tree and Forest

A forest is a graph without cycles. A tree is a connected forest. For a forest F,
V(F') denotes the set of nodes in F. In this paper, a tree T is rooted, that is,
T has a special node called the root of T', denoted by root(7"). Each connected
component of a forest is a rooted tree. Every non-root node v € V(F) has a
parent, denoted by parent(v), and v is called a child of parent(v). Nodes sharing
the same parent are siblings. In this paper, a forest F' is labeled, that is, each
node v € V(F) has a label, denoted by label(v), from a finite alphabet X. In
this paper, we assume that |X| = O(n) where n is the number of nodes that we
consider.

For a forest F', we call a forest F’ a subforest of F if V(F') C V(F) and the
ancestor-descendant relation among V(F') is conserved in V(F”). A subforest is a
subtreeif it is connected. A subforest F’ of F is complete if for any node v € V(F),
parent(v) € V(F’) implies v € V(F'). A (complete) subforest is a (complete)
subtree if it is connected. We use F(v) (resp. T(v)) to refer to the complete
subtree of a forest F' (resp. of a tree T') rooted at v. For a pair of subforests F; and
F5 of a forest F', F1 UFy, F1NFEy, and Fy — F5 denote the subforests of F' induced
by V(F1) UV(F2)7 V(F1) ﬂV(F2)7 and V(F1) —V(FQ) = {’U S V(Fl) ‘ v V(FQ)},
respectively.

In this paper, trees and forests are unordered; it implies that the ordering be-
tween siblings can be permuted arbitrarily. In what follows, we call an unordered,
rooted, and labeled tree simply a tree.

! http://www.cs.washington.edu/research/xmldatasets/
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We use |F| to denote the size of F' (i.e., |F| = [V(F)|). The depth of a node
v in a tree T, which is denoted by depth(v), is the length of the path from the
root to v. The height of a tree T' is height(T) = max,ey(r) depth(v). For two
isomorphic forests F} and Fs, we write F] =~ F5.

2.2 Tree Edit Distance and Mapping

An edit operation of tree T is either a deletion, an insertion, or a substitution,
which are defined as follows:

Deletion: Delete a non-root node v in T making the children of v become
children of the parent of v.

Insertion: The complement of deletion. Insert a node v as a child of v in T
making a subset of the children of u become the children of v.

Substitution: Change the label of a node v in T

The unit cost edit distance (or just edit distance) between T and T5 is the mini-
mum number of edit operations which transforms T} into To. We use dist(T1, Ts)
to denote the edit distance between Ty and Ts. Note that dist(-, -) is a metric.

It is known that there exists a close relationship between the edit distance and
the edit distance mapping (or just mapping) [4]. A set of pairs M C V(T1)x V(T3)
is called a mapping if the following conditions are satisfied for any two pairs
(v1,w1), (va,ws) € M: (i) v1 = vy iff w1 = we, (ii) v1 is an ancestor of vy iff w;
is an ancestor of we. For a mapping M and a pair of nodes v; € V(T3), i = 1,2,
we denote M (vy) = vo and vy = M~ Y(vy) if (vy,ve) € M.

3 A (2h+2)-Approximation Algorithm for Trees of
Height h

The algorithm is quite simple. We construct a feature vector from each input
tree and compute the L; distance between two feature vectors (see Fig.[I]). Let
h denote the maximum height of input trees, i.e., h = max;—1 2{height(7;)}.

3.1 Feature Vector for Trees

For a pair of trees t and T, #(T,t) denotes the number of T'(v)’s isomorphic
to t; in other words, #(T,t) = [{v € V(T) | T(v) ~ t}|. Then, we consider the
feature vector ¢(T') for a tree T which is defined by ¢(T) = (¢1(T))rer and
o+(T) = #(T,t) for a set T = {t1,t2,...} of trees that we consider. Though
we may consider feature vectors in infinite dimensions (i.e., we may consider
all possible trees t), it is enough to consider feature vectors in (|71] + |7%|)-
dimensions (i.e., each coordinate corresponds to a complete subtree in T; or T5)
for the case of approximating the edit distance between T7 and T5.

Let N denote the set of non-negative integers and let N7 denote the set of all
possible functions from 7 to N.
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¢(Tl):(49 47 25 1’ 19 1, 0’ 09 1’ 19 0)

¢(T2) = ( 3, 6’ 25 Oa 2, 07 1’ 1’ 09 O’ 1 )

Oa Ob Oc¢c 0d G4 Ga Oa Gd Od \r o
ATERATE dgb%%
av a C c av a C

Fig. 1. Feature vectors for two trees. Only coordinates whose values are positive for at
least one of T and 1% are shown.

Definition 1 (Feature vector for a tree). For a tree T, the feature vector
of T is the vector ¢(T) € N7 which satisfies ¢;(T) = #(T,t) for anyt € T.

In what follows, we assume that 7 is a set which covers all complete subtrees of
the input trees.

The distance function dg(T1,T2) = ||¢(Th) — ¢(T2) |1, which is naturally de-
fined by the feature vector, is equivalent to the bottom-up distance introduced
by Valiente [16]. As shown in that paper, the corresponding bottom-up mapping
is a special case of the edit distance mapping and the time complexity of com-
puting the bottom-up distance is linear in the number of nodes. However, he did
not showed any approximation ratio of bottom-up distance against the original
tree edit distance, which is the main interest of this paper.

3.2 Approximate Tree Edit Distance with Feature Vector

In this section, we prove that given two trees 17 and 75, the L; norm of their
feature vectors ||@(T1) — ¢(T2)||1 approximates dist(7T1,T>) with distortion 2h +
2. Recall that the Ly norm ||z||; of a real vector = (;);ex in R¥ is given by

2l = > iex @il

Lemma 1. ||¢(T1) — ¢(T2)]|1 < (2h + 2) - dist(T1, T») holds.

Proof. Let ey, ..., e, denote an optimal sequence of edit operations which con-
verts Ty into T, and let T7(= T%),T¢, ..., T{"(= T2) be the sequence of inter-
mediate trees. That is, for j = 1,2,...,m, the tree T} is obtained by applying
an edit operation e; to Tfﬁl. Note that m = dist(71,T») since the sequence of
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operations is optimal. We assume without loss of generality that height(Tf ) < h,
j=1,2,...,m by the following proposition.

Proposition 1. Any optimal sequence of edit operations can be arranged so that
all deletions precede all insertions.

This proposition is apparent by considering the corresponding edit distance map-
ping (see e.g., [15]) and its cost. For an edit distance mapping M from T to T”,

cost(M) := Z cost(u — 0) + Z cost(u — v) + Z cost(p — v) (1)

uel (u,v)EM veJ

where I = V(T) — M~*(V(T")) and J = V(T") — M(V(T)). This is equal to the
cost of edit sequence in which we delete the nodes in I, change the labels of
nodes (u,v) € M if it is necessary, and insert the nodes J.

Then, we prove the following equation.

p(Th) = (o)l < D (T ) = S(TY)|l < (2h+2) - dist(T1, T5) .
Jj=1

Since the first inequality clearly holds by the definition of le , it is sufficient
to prove that ||¢(T7 ") — ¢(TY)||1 < 2k + 2 holds for j = 1,...,m. Let anc(v)
denote the set of ancestors of v, including v itself. Note that |anc(v)| = depth(v)+
1<h+1

Substitution: Let v and v’ respectively be the nodes in Tf;l and le which are
relevant to the substitution. Then, ¢; may decrease by one for each subtree
t =T/ ' (z), = € anc(v) and ¢ may increase by one for each subtree t' =
T (2'), ' € anc(v'). Therefore, ||[¢(TV ") — ¢(T7)||; < |anc(v)|+ |anc(v')| <
2h + 2 holds. ‘ A

Deletion: Let v be the deleted node in Tffl. For w = parent(v), let w’ in TY
correspond to w. Then, the feature vector may decrease for the subtrees
t = T9"'(2), © € anc(v) and may increase for t = T/ (z'), ' € anc(w').
Therefore, ||op(T7 1) — ¢(T7)||1 < lanc(v)] + |anc(w’)| < 2|anc(v)| < 2h + 2
holds. ,

Insertion: Since insertion is the complement of deletion, 7Y ~! is obtained by
deleting a node in T7. Therefore, ||(T7 ") — ¢(T7)|1 < 2h + 2 holds.

Since e; is one of the above, it holds that (T — (T < 2k + 2. O

Note that the ratio 2h + 2 is tight; consider non-branching trees (that is, each
non-leaf node has exactly one child) 77 and Ty of the same height h in which
nodes are all labeled a except that the leaf of T3 is labeled b. Then we have
diSt(Tth) =1 and ||¢(T1) — ¢(T2)||1 =2h + 2.

By Lemma [I we have shown the upper bound of the embedded distance.
Next, we show that the lower bound of the embedded distance exactly matches
the edit distance. Before showing the lower bound, we show that our embedding
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approximates the tree edit distance by computing the largest common complete
subforest of the input trees. For two trees, a common complete subforest is a
forest which is isomorphic to a complete subforest of each tree. It is obvious
that the feature vectors of trees share the feature vector of a common subforest
because the common subforest appears in each tree. The following lemma says
that the opposite is true.

Lemma 2. For a largest common complete subforest F of Ty and Ty, ¢(F) =
min{¢¢(T1), ¢:(T2)} holds for anyt € T.

Proof. Assume that there exists a tree ¢ for which ¢,(F) # min;—1 2{¢:(T3)}
holds. Since F' is a common complete subforest of T7 and Ts, ¢(F) < ¢:(T3),
i = 1,2 is obvious. By the assumption, we have ¢;(F) < min;=1 2 ¢¢(T;). For
i=1,2, let F; =~ F be a complete subforest of T; and let M C V(F;) x V(F5)
be the corresponding mapping between nodes in Fy and Fy. That is, {M(v) |
v € V(F1)} = V(Fy). Since ¢(F) < ¢(T;) i = 1,2, T; must include a complete
subtree T;(w;) ~ t for some node w; € V(T; — F}).

Now we prove that there is a common complete subforest F”' between T and
T, and that |F"| > |F|, which contradicts the assumption that F' is the largest.

Let X; be the complete subforest induced by V(F; N T;(w;)) (see Fig.2). In
what follows, we simply write M (X;) and M~1(X3) to denote the subtrees
induced by {M(v) | v € V(X1)} and {M~1(v) | v € V(X2)}, respectively. Let us
divide F; into four disjoint complete subforests of T;:

P1:X1_M_1(X2)a PQZM(Xl)—X27
Q1 =X1 N M (Xy), Q2 = M(X1)N Xy,
Ry = M~ Y(X2) — X1, Ry = X5 — M(X), ’

Fl=F —X; - M ' (X,), \F3=F—X>— M(Xy).

though some of them may be empty. Then, the mapping M satisfies M (P;) = P,
M(Q1) = Q2, and M(Ry) = Ry, where M(X) denotes the subforest of T5
induced by {M(v) € V(F2) | v € V(X) C V(F1)} for a subforest X of T7.
Therefore we have M (F]) = Fj and F| ~ Fj.

Furthermore, we expand construct larger subforests F!' = F/UT;(w;), i = 1,2.
Since F! is a subforest of F; — X; = F; — (F; N T;(w;)) = F; — Ti(w;), F] and
T;(w;) do not intersect. Thus F{" and F}' are isomorphic.

Finally, we prove that |F}’| = |Fj/| > |F|. We assume without loss of generality
that | X3 U M~Y(X2)| < |T1(w1)] since we can modify the mapping M between
Fy and F3 so that the mapping between their subforests X; and Xs is mazimal,
that is, M maps all the component subtrees which are common between X; and
Xs. Since Fy includes X; U M ~1(X3) and wy € V(F}), the inequation is strict,
that is, | X7 U M~Y(X3)| < |T1(w1)|. Therefore, we have |F| = |Fy| — |X; U
M~YX2)| + |T1(w1)| > |Fi| = |F| and the lemma follows. |

Lemma 3. For any pair of trees Ty and To, dist(Ty,T3) < ||¢(T1) — d(To)||1-

Proof. We assume without loss of generality that 77 and 75 are not isomor-
phic, since the lemma is obvious if they are isomorphic. Let F' be a largest
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FyXyM(X) R,

Fig. 2. An example for the proof of Lemmal[2l In the upper row, the common complete
subforest F' of T and T (shown within dashed lines) consists of four components
of complete subtrees {A, B, B,C}. The two complete subtrees 71 (w1) and T2 (w2) are
isomorphic. For ¢ = 1,2, T;(w;) and F; share complete subtrees X; (shown by shaded
triangles). In the lower row, modified common subforests are shown (using dashed
lines). The union of the modified common subforest F| = F} — X; — M_l(Xz) and the
subtree T4 (w1) is strictly larger than Fi.

common complete subforest of T7 and T5. Then, we can edit T to become iso-
morphic to Ty by changing the label of root(T}) into that of root(T»), deleting
|T1| — | F| — 1 non-root nodes, and inserting |T>| — |F'| — 1 non-root nodes. There-
fore, we have dist(T1,7%) < > ,_; »(|T3] — [F| = 1) + 1. On the other hand,
J6(T1) — S(T)lt = ir s direr (61(T:) — min{6y(T1), 6u(T2)}). Recall that
|¢(T)|l1 = |T'| by the definition and ), min{¢¢(T1), ¢+(T>)} = |F| by Lemma[2
Then, we have dist(T1,T2) < 3, o [T3] — 2|F| = [|¢(T1) — ¢(T2)]]1- O

Combining Lemma [Tl and Lemma Bl we have:

Theorem 1. For rooted, unordered, and labeled trees Ty and T> of mazimum
height h, it holds that

1

9 + 2||¢(T1) — ¢(Tp)[|1 < dist(T1,T32) < [|@(T1) — d(T2)|1-
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Procedure COMPUTESIGNATURE(F)
Let Ly = {v | height(F(v)) =k}, k=0,1,...,h;
Assign an integer o(v) € [0,|X]) to each node v € Lo according to their labels ;
for k=1,...,hdo
For each node v € Ly, let £(v) denote the descending list of integers
{o(w) | w € children(v)} ;
Sort Ly in lexicographical ascending order of (label(v),&(v)), v € Ly ;
Let m = maxyer, , 0(v) ;
Assign an integer o(v) > m to each v € Ly, so that o(v) = o(v') iff

(label(v), £(v)) = (label(v'),£(v)) ;

Fig. 3. Algorithm to compute signatures o(v) for each complete subtree F(v) in a
forest F'

Corollary 1. Let Ty and T be trees of mazimum height h. Then, dist(Ty,T5)
can be approzimated within a factor of 2h+2 in O(nlogn) time, where n is the
number of nodes that we consider, that is, n = |T1| + |Tz|.

Note that computing ||¢(T1) — ¢(T2)||1 is usually much more efficient than com-
puting dist(77, T%). Computing ||¢(T1) — ¢(T2)]||1 can be done efficiently by com-
puting the signatures (see Section L)) of all complete subtrees T; and Ts. In
Fig.Bl we show an algorithm to compute the signatures of all complete subtrees
in a given forest F', which is similar to the well-known isomorphism test algo-
rithm [I]. The time cost of our algorithm is O(|F|log(|F| + | X)) (or linear time
in the RAM modelE7 although computing dist(7T7,7%) is MAX SNP-hard for
unordered trees and only an O(n?) algorithm is known even for ordered trees,
where n = max;=1 2 |T;|. In the next section, we define the signature of trees and
discuss its merits and drawbacks.

4 Tree Signature and Fingerprint

4.1 Coding of Trees

In this section, we discuss efficient data structures for the feature vectors of trees.

Recall that ¢(T) € N7 where 7 is the set of all possible trees. Although
7 is infinite, the feature vector ¢(T) is so sparse that at most |T| elements
of ¢(T) become non-zero and we can use, for example, a set of pairs o(T) =
{(code(t), p:(T)) | ¢:(T) > 0} where code(t) is a bit-string which encodes a
tree ¢.

For example, code(t) may be the Euler string [2JTT] of a canonically ordered
version of ¢ (which can be obtained by using the algorithm in Fig.[3). In this
case, the size of code(t) becomes O(]t|log|X|). This is optimal in the sense that

2 Our algorithm is essentially the same as the O(A|F|log |F|) time algorithm by Vish-
wanathan and Smola [I7] where they consider another setting in which a label of
a node is a string of length at most A. Even in their setting, our algorithm works
after a preprocess to encode strings by integers at most |F'|, which does not affect
the order of running-time.
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there are at most C,,|X|" = O(4™| X|™) distinct labeled unordered trees of size n,
where C), denotes the Catalan number (see e.g., [12]). We further reduce the size
of code(t) of a tree ¢ by using hashing functions — for example, the signature
of t. For a forest F', the signature of a complete subtree of F' is an integer at
most O(|X| + |F|), which may be dealt with as one word in the RAM model.
Furthermore, computing all signatures in a forest F' is done efficiently by the
algorithm shown in Fig.[3

4.2 Karp-Rabin Fingerprint for Trees

In some applications, we want to deal with huge number of trees. In those cases,
it is hard to apply the signature-based technique since the signature o(7T) of a
tree T' depends on the whole set of input trees.

Let us consider a situation that we have a text of a set of trees T7,T5,...
and we want to perform nearest neighbor tasks for each query tree g which is
not known beforehand. If we adopt the signature-based technique, we have to
compute the signatures of all subtrees in ¢. If we directly use the algorithm
COMPUTESIGNATURE, we have to recompute almost all signatures in the text
trees. To avoid running the algorithm against the whole trees, we may be able
to use dictionary-based signatures, in which we maintain signature of a subtree
t along with the label of root(t) and the list of signatures of children(root(¢)).
In both cases, however, we have to lookup each subtree of the query ¢, which
causes expensive |¢g| lookups to compute ¢(q).

Instead, we can design a randomized scheme to obliviously encode trees with
small integers. By obliviously encoding trees, we can compute ¢(7T) of a tree T
by itself, that is, without the other trees.

Oblivious encoding is simply realized by using (code(T')), though it may be too
large. Since the size of code(T") is O(|T'|log |X|), we can interpret it as an integer,
denoted by (code(T')), and can assume that log({code(T"))) = O(|T|log|X]).
For example, a X-string s = (so,...,5|s|—1) € 2" is interpreted as an integer
() = 1%l 85| D) where s} = s; for 0 < < |s| — 1 and s/, = 1.

To reduce the size of integers, we substitute (code(-)) by its modulo p for
a randomly drawn prime number p. We call such a hashing function the Karp-
Rabin fingerprint [10] and denote it by 1 : T — NP, that is, " (T) = (¥ (T))2_}
and Y(T') = 32 cq(p) #(Tt) where T(k;p) = {t € T | (code(t)) = k mod p}
for k =0,...,p—1. By using modular arithmetic, two distinct complete subtrees
may fall into the same hash; we call that a collision. Clearly, ||¢(T1) — ¢(T2)||1 =
l? (Th) — P (T2)||1 holds if no collision occurs. If a collision occurs, the two
distances may differ. In the rest of this section, let us estimate the probability
that a collision occurs.

Let us assume that p is drawn uniformly at random from the set of prime
numbers less than 7. Then, the following lemma is known [T0/I3]:

Lemma 4. For any positive number N, the probability that p divides N is
O( log N )

7/logT
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Let F =Ty UTy U---UT,, be the forest of concern. Let n = max; |T;| and
N = |F| = Y, |Ti|. If we set the upper bound of the prime number p as 7 =
N2n%log N log|X|, the probability of collision is at most:

Pr[3v,w € V(F)[F(v) # F(w) A ({(code(F(v))) = (code(F(w))) mod p)]]

N2 log(max;c p(code(t))) B .
= 2o lostmsscr(code(t)) )=ot/m. @

(Ninog\E|
T/logT

Note that computation of 9)” and modular arithmetic operations on p are done in
time polynomial in N and in log | ¥|. Using randomized prime number generation
[13], our algorithm works in randomized polynomial time.

Theorem 2. For a set of trees, denoted by F = {Ty,..., Ty}, let us choose the
upper bound of the random prime number as T = N?n?log N, where N =", |T}]|
and n = max; |T;|. Then, with probability 1 — O(1/n),

1

o 4 2 1¥" (L) =¥ (T))lly < dist(Ty, T) < [[97(T:) — 4" (Ty)lly for all i, j.

5 Concluding Remarks

In this paper, we have shown an 2h + 2 approximation algorithm for the tree
edit distance problem for unordered trees of height at most h. The algorithm is
based on embedding the tree edit distance into the L; norm of feature vectors.
Although both the idea of the embedding and the algorithm to compute the
feature vector are known in the literature, any approximation ratio had not
been known for them.

Recently the simlar approximation ratio 1.5h is proved by the authors, how-
ever, the ratios are not compatible and the techniques used are completely dif-
ferent. The results complement each other, by which both problems are approx-
imable when the height is small. This is interesting because both problems are
known to be hard to approximate even if the height is constant. To develop an
efficient approximation algorithm for the general tree edit distance problem is
left as an open problem.
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Abstract. This paper presents a Web graph representation based on
a compact tree structure that takes advantage of large empty areas of
the adjacency matrix of the graph. Our results show that our method is
competitive with the best alternatives in the literature, offering a very
good compression ratio (3.3-5.3 bits per link) while permitting fast nav-
igation on the graph to obtain direct as well as reverse neighbors (2-15
microseconds per neighbor delivered). Moreover, it allows for extended
functionality not usually considered in compressed graph representations.

1 Introduction

The World Wide Web structure can be regarded as a directed graph at several
levels, the finest grained one being pages that point to pages. Many algorithms
of interest to obtain information from the Web structure are essentially basic
algorithms applied over the Web graph [11, [16].

Running typical algorithms on those huge Web graphs is always a problem.
Even the simplest external memory graph algorithms, such as graph traversals,
are usually non disk-friendly [24]. This has pushed several authors to consider
compressed graph representations, which aim to offer memory-efficient graph
representations that still allow fast navigation without decompressing. The aim
of this research is to allow classical graph algorithms to be run in main memory
over much larger graphs than those affordable with a plain representation.

The most famous representative of this trend is surely Boldi and Vigna’s We-
bGraph Framework [6]. The WebGraph compression method is indeed the most
successful member of a family of approaches to compress Web graphs based on
their statistical properties [1, 5, |7, 20, 21, 23]. It allows fast extraction of the
neighbors of a page while spending just a few bits per link (about 2 to 6, de-
pending on the desired navigation performance). Their representation explicitly
exploits Web graph properties such as: (1) the power-law distribution of inde-
grees and outdegrees, (2) the locality of reference, (3) the “copy property” (the
set of neighbors of a page is usually very similar to that of some other page).

More recently, Claude and Navarro |10} showed that most of those properties
are elegantly captured by applying Re-Pair compression |17] on the adjacency

* Funded in part (for the Spanish group) by MEC grant (TIN2006-15071-C03-03); and
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lists, and that reverse navigation (finding the pages that point to a given page)
could be achieved by representing the output of Re-Pair using some more so-
phisticated data structures |9]. Reverse navigation is useful to compute several
relevance ranking on pages, such as HITS, PageRank, and others. Their tech-
nique offers better space/time tradeoffs than WebGraph, that is, they offer faster
navigation than WebGraph when both structures use the same space.

Asano et al. [2] achieve even less than 2 bits per link by explicitly exploiting
regularity properties of the adjacency matrix of the Web graphs, but their nav-
igation time is substantially higher, as they need to uncompress full domains in
order to find the neighbors of a single page.

In this paper we also aim at exploiting the properties of the adjacency ma-
trix, yet with a general technique to take advantage of clustering rather than a
technique tailored to particular Web graphs. We introduce a compact tree rep-
resentation of the matrix that not only is very efficient to represent large empty
areas of the matrix, but at the same time allows efficient forward and backward
navigation of the graph. An elegant feature of our solution is that it is symmet-
ric, both navigations are carried out by similar means and achieve similar times.
In addition, our proposal allows some interesting operations that are not usually
present in alternative structures.

2  Owur Proposal

The adjacency matrix of a Web graph of n pages is a square matrix {a;;} of nxn,
where each row and each column represents a Web page. Cell a;; is 1 if there
is a hyperlink in page 7 towards page j, and 0 otherwise. Page identifiers are
integers, which correspond to their position in an array of alphabetically sorted
URLs. This puts together the pages of the same domains, and thus locality of
reference translates into closeness of page identifiers. As on average there are
about 15 links per Web page, this matrix is extremely sparse. Due to locality
of reference, many 1s are placed around the main diagonal (that is, page ¢ has
many pointers to pages nearby i). Due to the copy property, similar rows are
common in the matrix. Finally, due to skewness of distribution, some rows and
colums have many 1s, but most have very few.

We propose a compact representation of the adjacency matrix that exploits its
sparseness and clustering properties. The representation is designed to compress
large matrix areas with all Os into very few bits.

We represent the adjacency matrix by a k2-ary tree, which we call k2-tree, of
height h = [log; n]. Each node contains a single bit of data: 1 for the internal
nodes and 0 for the leaves, except for the last level, where all are leaves and
represent bit values of the matrix. The first level (numbered 0) corresponds to
the root; its k2 children are represented at level 1. Each child is a node and
therefore it has a value 0 or 1. All internal nodes (i.e., with value 1) have exactly
k? children, whereas leaves (with value 0 or at the last tree level) have no children.

Assume for simplicity that n is a power of k; we will soon remove this as-
sumption. Conceptually, we start dividing the adjacency matrix following a MX-
Quadtree strategy [22, Section 1.4.2.1] into k? submatrices of the same size, that
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Retrieving direct neighbors for page 10
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(a) First example. (b) Expansion, subdivision and navigation for k = 2.

Fig. 1. k*-tree examples

is, k rows and k columns of submatrices of size n?/k?. Each of the resulting k2
submatrices will be a child of the root node and its value will be 1 iff in the cells
of the submatrix there is at least one 1. A 0 child means that the submatrix has
all Os and hence the tree decomposition ends there.

The children of a node are ordered in the tree starting with the submatrices
in the first (top) row, from left to right, then the submatrices in the second row
from left to right, and so on. Once the level 1, with the children of the root, has
been built, the method proceeds recursively for each child with value 1, until
we reach submatrices full of Os, or we reach the cells of the original adjacency
matrix. In the last level of the tree, the bits of the nodes correspond to the
matrix cell values. Figure illustrates a 22-tree for a 4 x 4 matrix.

A larger k induces a shorter tree, with fewer levels, but more children per
internal node. If n is not a power of k, we conceptually extend our matrix to the
right and bottom with 0s, making it of width n/ = k'°2x "1, This does not cause
a significant overhead as our technique is efficient to handle large areas of 0s.

Figure[L(b)|shows an example of the adjacency matrix of a Web graph (we use
the first 11 x 11 submatrix of graph CNR [6]), how it is expanded to an n’ x n’
matrix (n’ power of k = 2) and its corresponding tree. Notice that its last level
represents cells in the original adjacency matrix, but most cells in the original
adjacency matrix are not represented in this level because, where a large area
with Os is found, it is represented by a single 0 in a smaller level of the tree.

2.1 Navigating with a k2-Tree

To obtain the pages pointed by a specific page p, that is, to find direct neighbors
of page p, we need to find the 1s in row p of the matrix. We start at the root
and travel down the tree, choosing exactly k children of each node.

Example. We find the pages pointed by the first page in the example of
Figure that is, find the 1s of the first matrix row. We start at the root
of the 2%-tree and compute which children of the root overlap the first row of
the matrix. These are the first two children, to which we move:

— The first child is a 1, thus it has children. To figure out which of its children
are useful we repeat the same procedure. We compute in the corresponding
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submatrix (the one at the top left corner) which of its children represent
cells overlapping the first row of the original matrix. These are the first and
the second children. They are leaf nodes and their values are 1 and 1.

— The second child of the root represents the second submatrix, but its value
is 0. This means that all the cells in the adjacency matrix in this area are 0.

Thus, the Web page represented by the first row has links to itself and page 2.
Figure [1(b)| shows this navigation for a larger example.

Reverse neighbors. An analogous procedure retrieves the list of reverse neigh-
bors. To obtain which pages point to page g, we need to locate which cells have
a 1 in column ¢ of the matrix. Thus, we carry out a symmetric algorithm, using
columns instead of rows.

Summarizing, searching for direct or for reverse neighbors in the k2-tree is
completely symmetric. The only difference is the formula to compute the children
of each node used in the next step. In either case we perform a top-down traversal
of the tree. If we want to search for direct(reverse) neighbors in a k*-tree, we go
down through % children forming a row(column) inside the matrix.

3 Data Structure and Algorithms

Our data structure is essentially a compact tree of NV nodes. There exist several
such representations for general trees |4, [12, [14, [19], which asymptotically ap-
proach the information-theoretic minimum of 2N +o(N) bits. In our case, where
there are only arities k2 and 0, the information-theoretic minimum of N + o(N)
bits is achieved by a so-called “ultra-succinct” representation [15] for general
trees. Our representation is much simpler, and close to the so-called LOUDS
(level-ordered unary degree sequence) tree representation [14] (which would not
achieve N + o(N) bits if directly applied to our trees).

Our data structure can be regarded as a simplified variant of LOUDS for the
case where arities are just k2 and 0, which achieves the information-theoretic
minimum of N+o0(NV) bits, provides the traversal operations we require (basically
move to the i-th child, although also parent is easily supported) in constant time,
and is simple and practical.

3.1 Data Structure
We represent the whole adjacency matrix via the k?-tree using two bit arrays:

T (tree): stores all the bits of the k2-tree except those in the last level. The bits
are placed following a levelwise traversal: first the k2 binary values of the
children of the root node, then the values of the second level, and so on.

L (leaves): stores the last level of the tree. Thus it represents the value of (some)
original cells of the adjacency matrix.

We create over T an auxiliary structure that enables us to compute rank
queries efficiently. Given an offset 7 inside a sequence T' of bits, rank(T, i) counts
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the number of times the bit 1 appears in T'[1,4]. This can be supported in con-
stant time and fast in practice using sublinear space on top of the bit sequence
[14, [18]. In practice we use an implementation that uses 5% of extra space on
top of the bit sequence and provides fast queries, as well as another that uses
37.5% extra space and is much faster [13].

We do not need to perform rank over the bits in the last level of the tree;
that is the practical reason to store them in a different bitmap (L). Thus the
space overhead for rank is paid only over T

Analysis. Assume the graph has n pages and m links. Each link is a 1 in the
matrix, and in the worst case it induces the storage of one distinct node per
level, for a total of [log,=(n?)] nodes. Each such (internal) node costs k? bits,
for a total of k?m[log, n] bits. However, especially in the upper levels, not all
the nodes in the path to each leaf can be different. In the worst case, all the
nodes exist up to level |logg. m| (only since that level there can be m different
internal nodes at the same level). From that level, the worst case is that each of
the m paths to the leaves is unique. Thus, in the worst case, the total space is
boszml 120 L k2 (Nogye n?] — |logge m)) = k2m(logge ™ + O(1)) bits.

This shows that, at least in a worst-case analysis, a smaller k yields less space
occupancy. For k = 2 the space is 4m(log, :Lj +0(1)) = 2mlog, :Lj + O(m) bits,
which is asymptotically twice the information-theoretic minimum necessary to
represent all the matrices of n x n with m 1s. In the experimental section we
see that, on Web graphs, the space is much better than the worst case, as Web
graphs are far from uniformly distributed.

Finally, the expansion of n to the next power of k can, in the horizontal
direction, force the creation of at most k¢ new children of internal nodes at level
£>1 (level £ =1 is always fully expanded unless the matrix is all zeros). Each
such child will cost k2 extra bits. The total excess is O(k? - k%8 "1=1) = O(k?n)
bits, which is usually negligible. The vertical expansion is similar.

3.2 Finding a Child of a Node

Our levelwise traversal satisfies the following property, which permits fast navi-
gation to the i-th child of node z, child;(x) (for 0 <i < k?):

Lemma 1. Let x be a position in T (the first position being 0) such that T[x] =
1. Then child;(x) is at position rank(T,z)-k* +i of T : L

Proof. T : L is formed by traversing the tree levelwise and appending the bits
of the tree. We can likewise regard this as traversing the tree levelwise and
appending the k2 bits of the childred of the 1s found at internal tree nodes. By
the time node z is found in this traversal, we have already appended k? bits per
1in T[1,x — 1], plus the k? children of the root. As T[z] = 1, the children of x
are appended at positions rank(T, z) - k% to rank(T,x) - k? + (k? — 1).

Ezample. To represent the 22-tree of Figure arrays T and L are:
T =1011 1101 0100 1000 1100 1000 0001 0101 1110,
L =0100 0011 0010 0010 1010 1000 0110 0010 0100.
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Direct(n, p, g, z) Reverse(n, g, p, )

1. If x > |T| Then // leaf 1. If x > |T| Then // leaf

2. If L[z — |T|] = 1 Then output ¢ 2. If L{z — |T|] = 1 Then output p

3. Else // internal node 3. Else // internal node

4. If t = —1 or T[z] = 1 Then 4. If 2 = —1 or T[z] = 1 Then

5. y=rank(T,z) - k> + k- |p/(n/k)] 5. y =rank(T,z) - k* + ¢/ (n/k)]

6. For j=0...k—1Do 6. For j=0...k—1 Do

7. Direct(n/k, p mod (n/k), 7. Reverse(n/k, gmod (n/k),
q+ (n/k)-J, y+J) p+(n/k)-d,y+3j-k)

Fig. 2. Returning direct(reverse) neighbors

In T each bit represents a node. First four bits represent nodes 0,1,2 and 3,
which are the children of the root. The following four bits represent the children
of node 0. There are no children for node 1 because it is a 0, then the children
of node 2 start at position 8 and those of node 3 start at position 12. The bit in
position 4, the fifth bit of T', represents the first child of node 0, and so on.

3.3 Navigation

To find the direct(reverse) neighbors of a page p(q) we need to locate which
cells in row ap, (column a.q) of the adjacency matrix have a 1. We have already
explained that these are obtained by a top-down tree traversal that chooses k
out of the k? children of a node, and also gave the way to obtain the -th child
of a node in our representation. The only missing piece is the formula that maps
global row numbers to the children number at each level.

Recall h = [log;, n] is the height of the tree. Then the nodes at level ¢ represent
square submatrices of width k"¢, and these are divided into k% submatrices of
width k" =*=1. Cell (ps, q¢) at a matrix of level £ belongs to the submatrix at row
|pe/k"=*"1] and column [q,/k"~¢1].

Let us call py the relative row position of interest at level ¢. Clearly py =
p, and row pp of the submatrix of level ¢ corresponds to children number % -
|pe/k"=*1] + j, for 0 < j < k. The relative position in those children is p;41 =
pe mod k" ~¢~1. Similarly, column ¢ corresponds qo = g and, in level £, to children
jk+|q/k" 1], for 0 < j < k, with relative position g11 = g mod k"¢~

The algorithms for extracting direct and reverse neighbors are described in
Figure @l For direct neighbors it is called Direct(k", p,0, —1), where the param-
eters are: current submatrix size, row of interest in current submatrix, column
offset of the current submatrix in the global matrix, and the position in T : L
of the node to process (the initial —1 is an artifact because our trees do not
represent the root node). Values T, L, and k are global. It is assumed that
n is a power of k and that rank(T,—1) = 0. For reverse neighbors it is called
Reverse(k", q,0, —1), where the parameters are the same except that the second
is the column of interest and the third is the row offset of the current submatrix.



24 N.R. Brisaboa, S. Ladra, and G. Navarro

Analysis. Our navigation time has no worst-case guarantees better than O(n),
as a row p — 1 full of 1s followed by p full of Os could force a Direct query on p
to go until the leaves across all the row, to return nothing.

However, this is unlikely. Assume the m 1s are uniformly distributed in the
matrix. Then the probability that a given 1 is inside a submatrix of size (n/k%) x
(n/k%) is 1/k2¢. Thus, the probability of entering the children of such submatrix
is (brutally) upper bounded by m/k?‘. We are interested in k¢ submatrices at
each level of the tree, and therefore the total work is on average upper bounded
by m-zg:_ol k*/k* = O(m). This can be refined because there are not m different
submatrices in the first levels of the tree. Assume we enter all the O(k") matrices
of interest up to level ¢ = |logg2 m], and from then on the sum above applies.
This is O(k' +m - 3,21 | k*/k>) = O(k' + m/k') = O(y/m) time. This is not
the ideal O(m/n) (average output size), but much better than O(n) or O(m).

Again, if the matrix is clustered, the average performance is indeed better
than under uniform distribution: whenever a cell close to row p forces us to
traverse the tree down to it, it is likely that there is a useful cell at row p as well.

3.4 Construction

Assume our input is the n x n matrix. Construction of our tree is easily carried o
ut bottom-up in linear time and using the same space as the final tree. If, instead,
we have an adjacency list representation of the matrix, we can still achieve the
same time by setting up n cursors, one per row, so that each time we have to
access ap, we compare the current cursor of row p with value q.

In this case we could try to achieve time proportional to m, the number of 1s
in the matrix. For this sake we could insert the 1s one by one into an initially
empty tree, building the necessary part of the path from the root to the cor-
responding leaf. After the tree is built we can traverse it levelwise to build the
final representation, or recursively to output the bits to different sequences, one
per level, as before. The space could still be O(k?m(1 + log: :i )), that is, pro-
portional to the final tree size, if we used some dynamic compressed parentheses
representation of trees [8]. The total time would be O(log m) per bit of the tree.

As we produce each tree level and traverse each matrix row (or adjacency list)
sequentially, we can construct the tree on disk in optimal I/O time provided we
have main memory to maintain log, n disk blocks to output the tree, plus B
disk blocks (B being the disk page size in bits) for reading the matrix.

4 A Hybrid Approach

As we can notice, the greater k is, the more space L needs, because even though
there are fewer submatrices in the last level, they are larger. Hence we may spend
k? bits to represent very few 1s. Notice for example that if k = 4 in Figure
we will store some last-level submatrices containing a unique 1, spending 15 more
bits that are 0. On the contrary, when k = 2 we use fewer bits for that leaf level.

We can improve our structure if we use a larger k for the first levels of the
tree and a small k for the last levels. This strategy takes advantage of the strong
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points of both approaches. Using large values of k for the first levels, the tree is
shorter, so we will be able to obtain the list of neighbors faster, as we have fewer
levels to traverse. Using small values of k for the last levels we do not store too
many bits for each 1 of the adjacency matrix, as the submatrices are smaller.

5 Experimental Evaluation

We ran several experiments over some Web crawls from the WebGraph project.
Figure Bla) gives the main characteristics of the graphs used: name (and ver-
sion) of the graph, number of pages and links and the size of a plain adjacency
list representation of the graphs (using 4-byte integers). The machine used in
our tests is a 2GHz Intel®Xeon® (8 cores) with 16 GB RAM. It ran Ubuntu
GNU/Linux with kernel version 2.4.22-15-generic SMP (64 bits). The compiler
was gcc version 4.1.3 and -09 compiler optimizations were set. Space is mea-
sured in bits per edge (bpe), by dividing the total space of the structure by the
number of edges (i.e., links) in the graph. Time results measure average CPU user
time per neighbor retrieved: We compute the time to search for the neighbors of
all the pages (in random order) and divide by the total number of edges in the
graph.

5.1 Comparison between Different Alternatives

We first study our approach with different values of k. Figure Bi(b) shows 8
different alternatives of our method over the EU graph using different values of
k. All build on the rank structure that uses 5% of extra space |13]. The first
column names the approaches as follows: '2 x 2/, /3 x 3’ and '4 x 4’ stand for the
alternatives where we subdivide the matrix into 2 x 2, 3 x 3 and 4 x 4 submatrices,
respectively, in every level of the tree. On the other hand, we denote 'H — i’ the
hybrid approach where we use k¥ = 4 up to level i of the tree, and then we
use k = 2 for the rest of the levels. The second and third columns indicate
the size, in bytes, used to store the tree T" and the leaves L, respectively. The
fourth column shows the space needed in main memory by the structures (e.g.,
including the extra space for rank), in bits per edge. Finally, the last two columns
show the times to retrieve the direct (fifth column) and reverse (sixth) neighbors,
measured in microseconds per link retrieved (us/e). Note that, when we use a
fixed k, we obtain better times when k is greater, because we are shortening the
height of the tree, but the compression ratio worsens, as the space for L becomes
dominant and many Os are stored in there.

If we use a hybrid approach, we can maintain a compression ratio close to
that obtained by the ’2 x 2’ alternative while improving the time, until we get
close to the 4 x 4’ alternative. The best compression is obtained for 'H — 3/,
even better than ‘2 x 2’. Figure Blc) shows similar results graphically, for the
three larger graphs, space on the left and time to retrieve direct neighbors on the
right. The space does not worsen much if we keep k = 4 up to a moderate level,
whereas times improve consistently. A medium value, say switching to k = 2 at
level 7, looks as a good compromise.
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(a) Description of the graphs used. (b) Different approaches over graph EU.
File Pages Links | Size Variant| Tree Leaves Space |Direct Reverse
(millions) |(millions)|(MB) (bytes)  (bytes) | (bpe) |(us/e) (us/e)
CNR (2000) 0.325 3.216 14 2 X2 (6,860,436 5,583,076 |5.21076| 2.56 2.47
EU (2005) 0.862 19.235 7 3 x 3 [5,368,744 9,032,928 |6.02309| 1.78 1.71
Indochina (2004) 7.414| 194.109| 769 4 x4 (4,813,692 12,546,092|7.22260| 1.47 1.42
UK (2002) 18.520| 298.113|1,208 H — 16,360,432 5,583,100 |5.21077| 2.78  2.62

H — 3 [6,860,412 5,583,100 |5.21076| 2.67  2.49
H — 5 (6,864,404 5,583,100 |5.21242| 2.39  2.25
H — 716,927,924 5,583,100 |5.23884| 2.10  1.96
H —9 8,107,036 5,583,100 |5.72924| 1.79  1.67
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(c) Space/time behavior of the hybrid approach varying the level where we change k.

UK - Direct Neighbors UK - Reverse Neighbors
25 T T T T T T T T 25 T T T T T T T T
a i 2x2 —— 8 2x2 ——
3x3 b 3x3
+ L ax4 ¥ 4x4 %
20 + H Hybrid5 = Bl 20 + Hybrid5 = Bl
— B i Hybrid37 --=-- — H Hybrid37 --=--
2 P¥ WebGraph x 2 - 2 WebGraph x 2 -~
3 o i i WebGraph x 2 (RAM) - 2 a % WebGraph x 2 (RAM) -~
o 1B5r wg, X L RePair x 2 —4-— S 151 b4 RePair x 2 —4--
2 H RePair_both - 2 * RePair_both -
o * ih o
g ! E g .
E 10¢r 1 1 E 10t 1 1
o - o -
£ H €
5t : 1 5t 1
2.2
0 L L L L L Sl i R TS| 0 L L L S e p 0 s
4 4.5 5 5.5 6 6.5 7 75 8 8.5 4 4.5 5 5.5 6 6.5 7 75 8 8.5
space (bits/edge) space (bits/edge)
(d) Space/time to retrieve direct and reverse neighbors.
EU - Direct Neighbors
5 . . . . i )
: 22 —— (f) Comparison with approach Smaller.
4x4 -
4| Hybrids 1
— Hybrid37 --=--
3 WebGraph -
3 H WebGraph (RAM) - -«
5 3r ! RePair -4 1 .
2 [ : Space (bpe) |Smaller Smaller x 2 Hybrid5
3 :
’g % ; CNR 1.99 3.98 4.46
<2 e N ] EU 2.78 5.56  5.21
£ . X Time (ms/p)
1t ; T 1 CNR 2.34 0.048
[ EU 28.72 0.099
o A ) °"" T .
4 5 6 7 8 9

space (bits/edge)
(e) Retrieving only direct neighbors.

Fig. 3. Experimental evaluation
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5.2 Comparison with Other Methods

We first compare graph representations that allow retrieving both direct and
reverse neighbors. Figure[Bl(d) shows the space/time tradeoff for retrieving direct
and reverse neighbors, over the larger graph (UK), as it is representative of
the common behaviour of the other smaller graphs. We measure the average
time efficiency in ps/e as before. Representations providing space/time tuning
parameters appear as a line, whereas the others appear as a point.

We compare our compact representations with the proposal in |9, Chapter
7] that computes both direct and reverse neighbors (RePair both), as well as
the simpler representation in [10] (as improved in [9, Chapter 6], RePair) that
retrieves just direct neigbors. In this case we represent both the graph and its
transpose, in order to achieve reverse navigation as well (RePair x 2). We do the
same with Boldi and Vigna’s technique 6] ( WebGraph), as it also allows for direct
neighbors retrieval only (we call it WebGraph x 2 when we add both graphs).
As this technique uses less space on disk than what the process needs to run, we
show in WebGraph (RAM) the minimum space needed to run (yet we keep the
best time it achieves with sufficient RAM space). All the implementations were
provided by their authors.

We include our alternatives 2 x 2, 3 x 3, 4 x 4, and Hybrid), all of which use
the slower solution for rank that uses just 5% of extra space [13], and Hybrid37,
which uses the faster rank method that uses 37.5% extra space on top of T'.

As we can see, our representations (particularly Hybrid5 and 2 x 2) achieve the
best compression (3.3 to 5.3 bpe, depending on the graph, 4.22 for graph UK)
among all the techniques that provide direct and reverse neighbor queries. The
only alternative that gets somewhat close is RePair both, but it is much slower
to retrieve direct neighbors. For reverse neighbors, instead, it is an interesting
alternative. Hybrid37 offers relevant tradeoffs in some cases. Finally, WebGraph
x 2 and RePair x 2 offer very attractive time performance, but they need
significantly more space. As explained, using less space may make the difference
between being able of fitting a large Web graph in main memory or not.

If, instead, we wished only to carry out forward navigation, alternatives Re-
Pair and WebGraph become preferable in most cases. Figure[B|(e), however, shows
graph EU, where we still achieve significantly less space than WebGraph.

We also compare our proposal with the method in 2] (Smaller). As we do not
have their code, we ran new experiments on a Pentium IV of 3.0 GHz with 4
GB of RAM, which resembles better the machine used in their experiments. We
used the smaller graphs, on which they have reported experiments. Figure B(f)
shows the space and average time needed to retrieve the whole adjacency list of
a page, in milliseconds per page. As, again, their representation cannot retrieve
reverse neighbors, Smaller x 21is an estimation of the space they would need to
represent both the normal and transposed graphs.

Our method is orders of magnitude faster to retrieve an adjacency list, while
the space is similar to Smaller x 2. The difference is so large that it could be
possible to be competitive even if part of our structure (e.g. L) was in secondary
memory (in which case our main memory space would be similar to just Smaller).



28 N.R. Brisaboa, S. Ladra, and G. Navarro
6 Extended Functionality

While alternative compressed graph representations |2, 16, [L0] are limited to re-
trieving the direct, and sometimes the reverse, neighbors of a given page, and we
have compared our technique with those in these terms, we show now that our
representation allows for more sophisticated forms of retrieval than extracting
direct and reverse neighbors.

First, in order to determine whether a given page p points to a given page ¢,
most compressed (and even some classical) graph representations have no choice
but to extract all the neighbors of p (or a significant part of them) and see if
q is in the set. We can answer such query in O(log, n) time, by descending to
exactly one child at each level of the tree. More precisely, at level £ we descend
to child k- [p/k" ¢~ |+ |g/k"*~1], if it is not a zero, and compute the relative
position of cell (p,¢) in the submatrix just as in Section B3l If we arrive at the
last level and find a 1 at cell (p, ¢), then there is a link, otherwise there is not.

A second interesting operation is to find the direct neighbors of page p that
are within a range of pages [q1, g2] (similarly, the reverse neighbors of ¢ that are
within a range [p1,p2]). This is interesting, for example, to find out whether p
points to a domain, or is pointed from a domain, in case we sort URLSs in lexico-
graphical order. The algorithm is similar to Direct and Reverse in Section [3.3]
except that we do not enter all the children 0 < j < k of a row (or column), but
only from |q;/k" =471 < j < |go/k" ¢~ (similarly for p; to ps).

Yet a third operation of interest is to find all the links from a range of pages
[p1,p2] to another [q1,g2]. This is useful, for example, to extract all the links
between two domains. The algorithm to solve this query indeed generalizes all
of the others we have seen. This gives times of O(n) for retrieving direct and
reverse neighbors (we made a finer average-case analysis in Section B3), O(p2 —
p1 +log, n) or O(g2 — g1 + log, n) for ranges of direct or reverse neighbors, and
O(log;, n) for queries on single links.

7 Conclusions

We have introduced a compact representation for Web graphs that takes ad-
vantage of the sparseness and clustering of their adjacency matrix. Our rep-
resentation enables efficient forward and backward navigation in the graph (a
few microseconds per neighbor found) within compact space (about 3 to 5 bits
per link). Our experimental results show that our technique offers an attrac-
tive space/time tradeoff compared to the state of the art. Moreover, we support
queries on the graph that extend the basic forward and reverse navigation.

More exhaustive experimentation and tuning is needed to exploit the full
potential of our data structure, in particular regarding the space/time tradeoffs
of the hybrid approach. We also plan to research and experiment more in depth
on the extended functionality supported by our representation.

The structure we have introduced can be of more general interest. It could be
fruitful, for example, to generalize it to binary relations, such as the one relating
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keywords with the Web pages, or more generally documents, where they appear.
Then one could retrieve not only the Web pages that contain a keyword, but also
the set of keywords present in a Web page, and thus have access to important
summarization data without accessing the page itself. Our range search could
permit searching within subcollections or subdirectories. Our structure could
become a relevant alternative to the current state of the art in this direction,
e.g. |3,19]. Another example is the representation of discrete grids of points, for
computational geometry applications or geographic information systems.
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Abstract. We consider on-line construction of a suffix tree for a param-
eterized string, where we always have the suffix tree of the input string
read so far. This situation often arises from source code management sys-
tems where, for example, a source code repository is gradually increasing
in its size as users commit new codes into the repository day by day. We
present an on-line algorithm which constructs a parameterized suffix tree
in randomized O(n) time, where n is the length of the input string. Our
algorithm is the first randomized linear time algorithm for the on-line
construction problem.

1 Introduction

Parameterized pattern matching is a variant of traditional pattern matching
in which some symbols are allowed to be consistently renamed into different
symbols within a match. It was first introduced by Baker [I] and has been suc-
cessfully applied to several application domains, such as software maintenance,
program plagiarism detection [IJ2], and RNA structural matching [3].

For general pattern matching problems, we usually preprocess a text and build
an index data structure, e.g., a suffix tree or a suffix array, which enables us to
answer pattern occurrence queries in time proportional to the length of the
pattern but independent of the length of the text. For parameterized pattern
matching, Baker adopted this idea and proposed an algorithm to answer all
pocc parameterized matches of a pattern of length m in a text of length n in
O(mlog n—+ poce) time, by using a variant of suffix trees, so called parameterized
suffiz tree (p-suffix tree) of the text.
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A suffix tree of a string T is the compacted trie of all the suffixes of T' [4I56].
A suffix tree is one of the most popular full-text index data structures, and it has
been widely used in many applications for decades. There are several algorithms
to construct the suffix tree of a string drawn from a constant-sized alphabet
in O(n) time. These include the algorithms by Weiner [4], McCreight [5] and
Ukkonen [6]. We remark that all these algorithms exploit an important property
of suffix trees, i.e., each node has an outgoing suffix link. For a general alphabet,
where the alphabet size is not constant but some polynomial in n, however, these
algorithms inherently incur O(logn) overhead due to the branching problem. To
address this problem, Farach [7] proposed a divide-and-conquer approach, which
constructs suffix trees in O(n) time. This algorithm differs from the others above
in that it is not sweep-based and it is not dependent on the existence of outgoing
suffix links.

In contrast to suffix trees for strings, p-suffix trees lack the suffix link property,
i.e., there could be nodes in the tree without an outgoing suffix link defined. In
addition, the number of children in an internal node of the tree usually needs
not to be bounded by a constant. These problems have been major hurdles
in developing a linear time construction algorithm for p-suffix trees, and until
recently, it seemed inevitable to bear the alphabet dependent O(logn) factor
in the time complexity [II]]. However, Cole and Hariharan [9] came up with
a breakthrough that achieves a randomized O(n) time construction algorithm.
The algorithm uses dynamic perfect hashing and introduces additional types of
nodes in the tree, so that it effectively deals with the above mentioned problems.

We consider an on-line construction of p-suffix trees, where we always have
the p-suffix tree of the input string read so far. This situation often arises from
source code management systems where, for example, a source code repository
is gradually increasing in its size as users commit new codes into the repository
day by day. If we want to use p-suffix trees for duplicate code detection [I], we
have to rebuild the entire p-suffix tree index from scratch, every time a user
commits a new code. On-line p-suffix tree construction, on the other hand, only
requires to update a portion of the p-suffix tree, thus it can minimize the effort
to manage the whole index system.

However, the above mentioned algorithms do not support on-line construction
since they are based on McCreight’s suffix tree construction algorithm. Recently,
Shibuya [3] adapted Ukkonen’s algorithm to [I] and [8], and proposed on-line
construction algorithms that achieve the same time complexity bounds as their
off-line counterparts (see Table [I]). Still, to the best of our knowledge, an on-
line construction algorithm which achieves linear time complexity has not been
reported yet.

In this paper, we propose an on-line algorithm for constructing parameterized
suffix trees in randomized linear time. Our algorithm can be regarded as the
on-line counterpart to the Cole and Hariharan’s off-line construction algorithm.
Table[llsummarizes the time complexities of p-suffix tree construction algorithms
in the literature.
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Table 1. Time complexity of algorithms for constructing parameterized suffix trees.
n is the length of an input parameterized string over X' U IT where X' is a set of fixed
symbols and II is a set of parameters.

Off-line Algorithms On-line Algorithms
Algorithm Time Complexity Algorithm Time Complexity
Baker [I] O(n(|II] + log | X)) Shibuya [3] O(n(|II| + log|X]))
Kosaraju [§] O(n(log |II| +log|X]|)) Shibuya [3] O(n(log |I1| 4 log | X))

Cole and Hariharan [9] Randomized O(n) This paper Randomized O(n)

2 Preliminaries

Let T' = T'[1..n] be a string of length n over a finite ordered alphabet. We denote
the i-th symbol of T as T'[i]. A substring starting at position i and ending at
position j is denoted by T[i..j] = T[i|T[i + 1]...T[j], and if i > j, we regard
TJi..j] as an empty string. We denote the i-th prefiz of T ending at position i
as T" = T[1..i], and the j-th suffiz of T starting at position j as T; = T[j..n].

2.1 Parameterized Matching

A parameterized string (p-string, in short) is a string over X' U IT, where X is a
set of fixed symbols and I7 is a set of parameters. Two p-strings are said to be a
parameterized match (p-match) if there exists a bijective mapping from IT to IT
which maps a parameter in the first string into a parameter in the second string,
while keeping the fixed symbols invariant. For example, suppose that we have a
set of fixed symbols X = {a,b,c, -} and a set of parameters IT = {X,Y,Z,--- }.
Two p-strings abXaXYb and abZaZXb are a p-match since all fixed symbols, a
and b, are identical and there exists the bijective mapping from X and Y of the
first p-string into Z and X, respectively, of the second p-string.

In order to match two p-strings, we use an encoding prev, which chains to-
gether occurrences of the same parameter, to obtain a string in (X UIN)* where
IN is the set of non-negative integers. For each parameter, the leftmost occur-
rence is represented by a 0, and each successive occurrence is represented by the
difference in positions compared to the previous occurrence of the same param-
eter. A number representing such difference in positions is called a parameter
pointer. For example, prev(abXaXYb) = ab0a20b = prev(abYaYZb).

Definition 1 (prev encoding). We define prev : (X UII)* — (X UIN)* to be
the function such that for any p-string T of length n, prev(T) = S where, for
1<:<n,

Tl Tl eX,
Sli]=40 if T[i] € IT and T'[i] # T[j] for any 1 < j < 4,
i—k if T[] eIl and k =max{j|T[j]=T[i] and 1 < j <i} .

From the above definitions, it is easily seen that matching two prev encoded
strings is equivalent to p-matching two p-strings [I].
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0b2$

Fig. 1. A p-suffix tree of the p-string 7' = XbYbYXbX$ where X' = {b,$} and IT = {X,Y}

Theorem 1. Two p-strings T and T’ of the same length n are a p-match if and
only if prev(T) = prev(T’).

2.2 Parameterized Suffix Trees

Assume that a given p-string T' ends with the sentinel symbol $ € Y| which is
lexicographically smaller than any other symbol in X' U II and occurs nowhere
else in T. For 1 < i < n, we define the i-th parameterized suffiz (p-suffix) of T,
denoted by T';, as the prev encoded string of a suffix T3, i.e., prev(T;).

A parameterized suffic tree (p-suffix tree) of T', PST(T), is a compacted trie
that represents all the p-suffixes of T'. We refer to [I] for a formal description. An
example of the p-suffix tree of T' = XbYbYXbX$ is shown in Fig. [Il Each edge of
the tree is labeled with a nonempty substring of suffix T'; for some 7. Note that
some edge labels are not exact substrings of prev(T) as we will describe shortly.
We frequently refer to any position, locus, in the tree as follows. The string for
a locus u, denoted by str(u), is the concatenation of the labels on the path from
the root to that locus. If u is a node then we say that str(u) occurs explicitly;
otherwise, it occurs implicitly. For any locus u, we call u the locus of str(u). If
a locus u of a string w lies in the middle of the edge from a node x to a node
y, we call z and y the contracted and extended locus of u (or w), respectively.
An implicit locus can be specified by its contracted locus and the proper offset
label. For any locus u, pathlen(u) is defined to be the length of str(u). We also
denote the parent of a given node u as parent(u). In Fig. [ for example, we can
see str(u) = Ob and pathlen(u) = 2 for explicit locus u. An implicit locus v can
be specified by (root,b) in this example.

Due to the difference between normal and parameterized strings, we have to
address the following issues to construct p-suffix trees.
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Dynamic representation of edge labels. Note that, for some integers 1 <
i < j < n, a parameter symbol T'[j] can have different values in T'; and prev(T),
if the last occurrence of the same symbol lies before i. For example, observe that
for T = aXaXb, the 4-th symbol X differs in prev(T) = a0a2b and T5 = aOb.
Since the algorithm frequently refers to the prev value of a symbol on any locus
in the tree, it should be computed in constant time. By storing prev(T") in an
array of size n, we can compute the j-th symbol of T; in constant time [IJ.
Let eval be the function of j and b € ¥ U N such that eval(j,b) = 0 if b is
a non-negative integer larger than j — 1, and eval(j,b) = b, otherwise. Then,
Tilj] = eval(j, prev(T)[j + i — 1]).

In order to store the p-suffix tree in space linear in the input size, each edge
label is specified by a pair (k,p), where k and p are starting and ending posi-
tions of the corresponding substring of T'. We store pathlen(u) for each internal
node u, so that we can dynamically determine the label on the edge. For ex-
ample, if node w has an outgoing edge label (k,p), we evaluate the label as
T—pathien(u) [Pathlen(u) + 1..pathlen(u) + (p — k+1)]. This can be done in time
proportional to the length of the label.

Missing suffix links. We define suffix links in p-suffix trees as follows.

Definition 2 (Suffix link). For a node u, we define a suffix link from a node
u to a locus v, if str(u) is a prefix of the (i — 1)-th p-suffiz T;—1 and str(v) is a
prefiz of the i-th p-suffix T; and |str(u)| = |str(v)| + 1. Let link(u) denote this
locus v.

Unlike the suffix tree for strings, an internal node in the p-suffix tree does not
necessarily have an outgoing suffix link defined as a node. This is due to the fact
that the distinct right context property [10] does not hold for p-strings. Figure[Il
shows that for node w, suffix link link(u) points to the middle of an edge, which
corresponds to implicit locus v. Observe that v is not defined as a real node,
i.e., an internal node with at least two children. For this reason, dynamic data
structure is used to maintain incoming suffix links for each edge and this incurs
O(logn) factor in previous construction algorithms [TI8I3].

Node branching. Given a node u and a symbol «, node branching is to find
the edge (u,v) whose label begins with a. Since an internal node in the tree has
at most |X| + |II| children, branching may incur alphabet dependent O(logn)
overhead.

3 Algorithm

We assume that p-string 7' is given on-line symbol by symbol and from left to
right. At time r, the algorithm reads the r-th symbol of T" and builds PST(T")
by updating PST(T"~1!). Note that the prefix of p-suffix T; read so far at time
ris Ty = Ty[1..r — i+ 1], where 1 < i <.
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Algorithm 1. MAIN

DU W

Create L and root, and set link(root) «— L;
Create an edge from L to root and mark it as a don’t care edge;
The result tree is denoted by PST(T°);
for r=1ton do
Compute prev(T)[r];
Transform PST(T"~!) into PST(T");
end for

The outline of our algorithm for constructing the p-suffix tree of T" is shown in

Algorithm [Il Our algorithm is based on the Ukkonen’s algorithm, but we need
some tools to make our on-line algorithm run in linear time for p-strings.

— Computing prev on-line. As we have considered in the previous section,

we need to determine the prev value of a newly introduced symbol in order
to maintain an array of prev(T"). This can be done in O(1) time by using a
table of size |IT| which holds the last occurrence of each parameter. In the
case that |IT| is a polynomial in n, we can use a dynamic perfect hashing
scheme [9] instead. Thus we assume that at any time we can determine the
symbol on the label in the p-suffix tree in constant time.

— Implicit update. For supporting implicit update of edges to leaf nodes u,

we use an open transition (k,oc0) to represent the label on the edge from
parent(u) to u as described in [0].

— Maintaining missing suffix links. To maintain missing suffix links, three

types of nodes, namely, real, imaginary and back-propagated nodes are
used [9]. We call a node v an imaginary node, if v has only one child and
there are some nodes u having suffix links to v, i.e., v = link(u). We call a
node u a back-propagated node, if u has one child and an outgoing suffix link
to a node v, i.e., v = link(u) exists. Real nodes are the other internal nodes,
which are neither imaginary nor back-propagated.

— Constant node branching. Cole and Hariharan [9] showed that node

branching can be done in randomized O(1) time using dynamic perfect hash-
ing with high success probability. By hashing a pair of the node number and
the first symbol of the label, we can find the corresponding edge in constant
time.

At time 7, we need to update loci of the p-suffixes by extending the existing

edges or creating new branches in PST(TT*I). For 1 <i <r—1, let w denote

r

T.

7

1 A
. We can represent T: as wa, where a € XY UIN is the prev value of the newly

introduced r-th symbol on the corresponding locus. According to the occurrences

of

w and wa in PST(T"~1), exactly one of the following cases holds:

— Case 1. w occurs only once in PST(T"1).

It implies that wa does not occur in PST(T"~!) and the locus of w is a leaf
in PST(T"~1'). In order to insert wa to PST(T"~!), we only update the
locus of w to point to wa. However, this can be done implicitly thanks to the
open transition [].
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— Case 2. w occurs more than once in PST(T"~!), but wa does not.
It implies that for some symbol b # a, wb occurs in PST(T"~!). Thus,
we have to create a new leaf w and (possibly) an internal node v so that
str(w) = wa and str(v) = w.

— Case 3. wa occurs already in PST(T"~1).

It implies that wa already exists in PST(T"~1). Thus, we do nothing but
extend the current locus by one symbol to point to wa.

We define an active point and an end point as follows. The end point at time

r, denoted by End", is the locus of the longest p-suffix T' ;_1 for which Case 3
holds. The active point at time r, denoted by Act”, is the locus of the longest
p-suffix T’ ;71 for which Case 2 holds (if exists). If no such suffix for Case 2 exists,
the active point is defined to be the same as the end point.

We now describe how the algorithm builds PST(T") from PST(T"~1'). At
time 7, we denote a € XY UIN as the prev value of the newly introduced r-th
symbol. Note that we have to compute the proper value of a according to the
corresponding locus. Let v be Act” at the beginning of time r.

1. (Case 3) If we can follow an existing edge from v with a (i.e., Act” = End"),
(a) follow the edge from v with a and find the locus w of wa, where w =
str(v). By definition, w will be Act™ 1.
(b) r—r+1.
2. Otherwise, we perform the following iterations until End" is encountered.
(a) (Case 2) While v does not have an a-transition
i. Create an a-transition from v
ii. Traverse upwards from v to find the nearest ancestor v which has an
outgoing suffix link. Follow the suffix link from w to ' = link(u).
iii. Traverse downwards from u’ to a locus v’ such that |str(v’)|—|str(u’)]
= |str(v)|—|str(u)|. Meanwhile, for every second node 2’ encountered
on the path from v’ to v’ (excluding v’ and v'), we create a new back-
propagated node z (if not exists) on the path from u to v such that
|str(z")| — |str(u’)| = |str(z)| — |str(u)|. Set link(z) < z'.
iv. If v’ is not a node, create a node at v and link(v) « v'.
v. v
(b) (Case 3) Follow an existing edge from v with a and find the locus w of
wa, where w = str(v). w will be Act™ .
(¢) r—r+1.

We remark that if a newly created node v’ has only an a-transition, v’ is an

imaginary node by definition.

4 Analysis

We now discuss the time complexity of our algorithm.
First, we consider the total number of nodes created during the entire op-
erations. Since we create at most one real node and one imaginary node per
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suffix, the number of real and imaginary nodes is bounded by O(n). By using
a charging argument, the number of back-propagated nodes is also bounded by
O(n). We omit the details because it can be proven as in [J].

We now account for the time taken for traversing the p-suffix tree. At time r,
the algorithm performs iterations until the end point is encountered. Note that
the total number of iterations during the entire operations is bounded by O(n)
as in [6]. For each iteration, we process the following procedures:

1. Traverses up nodes from v to the nearest ancestor v with an outgoing suffix
link.

2. Traverses down from u’ = link(u) to v’ and create back-propagated nodes.

3. Performs the remaining operations, e.g., node branching, updating edge
labels, computing pathlen(v) for newly created nodes, etc.

The time to process Part 1 and 2 is proportional to the number of imaginary
and back-propagated nodes, and it is bounded by O(n). We refer to [9] for the
details. Part 3 requires constant time to perform each operation and thus the
total time is O(n).

Theorem 2. For a p-string T of length n, the parameterized suffix tree of T
can be constructed on-line in randomized O(n) time.
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Abstract. A succinct text index uses space proportional to the text
itself, say, two times nlog o for a text of n characters over an alphabet of
size o. In the past few years, there were several exciting results leading to
succinct indexes that support efficient pattern matching. In this paper
we present the first succinct index for a text that contains wildcards.
The space complexity of our index is (3 + o(1))nlog o + O(£logn) bits,
where / is the number of wildcard groups in the text. Such an index finds
applications in indexing genomic sequences that contain single-nucleotide
polymorphisms (SNP), which could be modeled as wildcards.

In the course of deriving the above result, we also obtain an alter-
nate succinct index of a set of d patterns for the purpose of dictionary
matching. When compared with the succinct index in the literature, the
new index doubles the size (precisely, from nlogo to 2nlogo, where n
is the total length of all patterns), yet it reduces the matching time to
O(mlogo + mlogd + occ), where m is the length of the query text. It
is worth-mentioning that the time complexity no longer depends on the
total dictionary size.

1 Introduction

Pattern matching is a fundamental problem. Consider a text T and a pattern P,
the earliest work can solve the problem in O(|T| 4 |P|) time. When the text
remains relatively static (say, the text is the human genome), one would like to
build an index of T" so as to speed up pattern matching. Let n be the number of
characters of T. The classical index suffix trees requires O(n) words, or equiva-
lently, O(nlogn) bits, and can support pattern matching in O(|P| + occ) time,
where occ is the number of occurrences of P in T'. Note that the space complex-
ity has a natural lower bound of nlogo bits (i.e., worst-case text size), where
o is the alphabet size. Starting with the work of Ferragina and Manzini [6] and
Grossi and Vitter [9], the past decade has witnessed a chain of works that make
it feasible to build a succinct text index with size proportional to nlog o bits or
even a compressed index (with size proportional to nHy, bits), while supporting
efficient pattern matching, using O(|P| + occlog' ™ n) time for any € > 0 (see
the survey by Navarro and Mékinen [12] for a complete list of references).

This paper is concerned with pattern matching on text containing wildcards
(or don’t care characters). Specifically, a wildcard, denoted by ¢, is a special char-
acter that matches any single character. Fischer and Paterson [8] were among

* Part of the work is supported by RGC Grant HKU 714006E.
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the first to study wildcard matching. There are several results on text indexing
for wildcard matching. In the simple setting where the text contains no wild-
cards, Rahman and Iliopoulos [I5] and later Lam et al. [II] have each given
an O(n)-word index for matching patterns with wildcards. Indexing a text con-
taining wildcards is technically more challenging. It naturally arises in indexing
genomic sequences, in which some base pairs are known to be single-nucleotide
polymorphisms (SNP), that could be modeled as wildcards. The wildcard index
by Cole et al. [5] uses O(nlog® n) words, where k is the number of wildcards.
It takes O(|P| + log" nloglogn + occ) time to find the occurrences of a given
pattern P without wildcards. Obviously, the size of the index implies a pro-
hibitive amount of memory for applications involving more than a few wildcards.
Lam et al. [I1] have given another index, which requires only O(n) words and
also avoids a time complexity exponential in the number of wildcards. Precisely,
the time required is O(|P|logn + v + occ) time, where « is defined as follows.
Assume that the text T contains £ > 1 groups of consecutive wildcards. I.e.,
T = T1¢k1T2¢k2 ...¢>’WT@+1, where ki,k2,...k¢ > 1, and each T; contains no
wildcards. Define v to be the sum, over all T;’s, of the number of occurrences
of T; in P. Note that « is upper bounded by |P|(¢ + 1) Both indexes can be
extended to handle patterns with wildcards.

When we index long genomic sequences (e.g., the human genome which has
about three billion characters), even an O(n)-word or O(nlogn)-bit data struc-
ture is still too large. In this paper, we give a succinct index for a text containing
wildcard characters. Precisely, assume that 7" has £ > 1 wildcard groups, the
space complexity is (34 o(1))nlogo + O(o logn) + O(¢logn) bits. For practical
applications, the last two terms can often be absorbed into o(nlogo), and the
pattern matching time of the new index compares favorably with the previous in-
dexes. It is useful to define ¢ to be the number of distinct wildcard-group lengths
(i.e., the number distinct elements in the set {ki, ka,..., k¢}; e.g., if k; = 1 for
all ¢, then i = 1). Given a pattern P, our new index can find all occurrences
of P in O(|P|(logo + min(|P|,f)log?) + vlog, { + occlog' ™ n) time for any
e > 0.

In the course of deriving the above solution for indexing wildcards, we have
also obtained a succinct index for the dictionary matching problem, which is
another classical matching problem not involving wildcards. In this problem, we
are required to index a set of patterns Py, Ps, ..., P; with total length n. Given
a query text T', the index is required to locate the occurrences of all P; in T.
Aho and Corasick [I] were the first to give an O(n)-word index for the dictionary
matching problem. Chan et al. [3] have improved the space complexity to O(no)
bits, and recently Hon et al. [I0] gave a succinct index using (1 + o(1))nlogo +
O(dlogn) bits. The matching time for any text T" is O(|T'|(log® n+log d)+occ). In
this paper we present a different way to derive a succinct index for the dictionary

! [I1] has given a more practical upper bound of . Define the prefix complexity of
the T;’s to be the maximum number of T};’s that are prefixes of the same T;. Then
is at most | P| times the prefix complexity. In practice, wildcards are sparse and the
prefix complexity is often a small constant.
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matching problem. The new index increases the space to (2 4+ o(1))nlogo +
O(dlogn) bits, but reducing the matching time to O(|T|(log o + log d) + occ).

Organization of the paper. In Section 2, we will review several data structures
in the literature for indexing text (without wildcards), as well as for indexing
geometric data on a two-dimensional plane. In Section 3, we describe the core
elements of our succinct index, which include BWT and a new solution to the
dictionary matching problem. In Section 4, we present the details of matching
with wildcards in the text.

2 Preliminaries

Throughout this paper, we consider texts and patterns with characters chosen
from an alphabet X of size 0. The text can contain one or more wildcard charac-
ter ¢, which is a special character not in X', and which can match any character
in Y. Our data structures would make use of two additional symbols $ and #
not in . We assume that $ is lexicographically smaller than all characters in X,
and # greater than all characters in X'. Below we review several data structures
for text indexing (without wildcards), as well as points and rectangles in a two
dimensional plane.

2.1 Suffix Array

Let T'[1..n] be a text that does not contain wildcard character and ends with a
special character $. A suffix of T' is a substring T'[j..n] where 1 < j < n. We sort
all suffixes of T in lexicographical order and store their starting positions in an
integer array SA[l,n]. Intuitively, SA[i] gives the starting position of the i-th
smallest suffix of T'; or equivalently, the suffix with rank i.

Consider a pattern X. Inside SA, all the suffixes of T' that contain X as a
prefix appear in consecutive entries. We define the SA range X to be [s,r] if
there are s’ = s — 1 suffixes lexicographically smaller than X, and r suffixes
smaller than or equal to X. If X does not appear in T', then s — 1 = r and the
SA range has a right boundary (r) smaller than the left boundary (s). In this
case, we say that the SA range of X is empty.

2.2 Burrows-Wheeler Transform (BWT)

Burrows-Wheeler Transform (BWT) was first proposed as a compression tech-
nique [2]. Later it was found that BWT can support pattern matching efficiently
when equipped with auxiliary data structures. Let T[1..n] be a text (containing
no wildcard). Assume T'[n] = $. The BWT of T is a sequence of n characters
such that the i-th character is the character in 7" just preceding the rank-7 suffix
of T. Precisely, BWT[i] = T[j — 1] where j = SA[i] and SA[i] # 1. If SA[{] =1,
BWTI[i] = 8.

BWT can be used to compute the SA range of any pattern if it is equipped with
auxiliary data structures to compute the functions Count(c) and Appear(i, ¢). For
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any character ¢, Count(c) gives the number of characters in 7' that are lexico-
graphically smaller than ¢, and Appear(i, ¢) returns the number of times ¢ ap-
pears in the prefix BWTI1..i]. Suppose that the SA range [s,r] of a string X is
given. Then, for any character ¢, we can find the SA range of ¢X as [Count(c) +
Appear(s — 1,¢) + 1, Count(c) + Appear(r,c)] [6].

A straightforward implementation of the Appear function requires O(no logn)
bits. To reduce the space requirement, we use the wavelet tree implementation
proposed by Ferragina et al. [7]. It only uses nlogo + o(nlogo) bits, but it
is slower, taking O(log o) time to serve each function call. On the other hand,
with the wavelet tree implementation, we no longer need to store 7' or BWT
explicitly, since it supports retrieving any single character of BWT in O(log o)
time. In summary, BWT together the auxiliary data structures occupy nlogo +
o(nlogo)+0(ologn) bits and can support pattern matching efficiently, as stated
in the following lemma.

Lemma 1. Let P be a pattern of m characters. The SA ranges of all suffizes of
P can be computed in O(mlogo) time.

2.3 Orthogonal Range Search

Consider a set G of £ points on a two-dimensional plane. Given a rectangle R =
(z1,y1) X (22,y2), we want to find all the points in G that are enclosed by R.

Lemma 2. [13] Given { points with coordinates in [1..n], we can build an
O(¢logn)-bit data structure such that given a query rectangle R, all the points
enclosed by R can be reported in O(log + tlog® £) time, where t is the number
of answers and € > 0.

2.4 Point Enclosure Problem

Consider a set H of ¢ rectangles on a two-dimensional plane. Given a query point
q = (z,y), we want to find efficiently all the rectangles in H that enclose q.

Lemma 3. [J]] Given £ rectangles on a 2-D plane, we can build an O(¢)-word
data structure such that given a query point q, all the rectangles enclosing q can
be reported in O(logl + t) time, where t is the number of answers.

3 Succinct Representation of Non-wildcard Characters

Consider a text T of n characters. Suppose T' = Ty ¢*1 To*2 ... Ty* Ty 1, where
¢* denotes a group of k; consecutive wildcards, and each T; does not contain any
wildcard. Below, each T; is called a text segment. In this section we show how to
index the T;’s. We make use of BWT and the point enclosure data structure. The
former allows us to determine whether each T; is a prefix of a given pattern X in
constant time. This prefix matching capability, together with the point enclosure
data structure, allow us to have a faster index for dictionary matching, i.e., to
find out the occurrences of every T; in a given pattern X. In Section dl we will
show how to make use of these indexes to perform wildcard matching.
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3.1 BWT and Prefix Matching

Define T'S = TASTAHT8To# ... Ty 18Ty 117, where $ and # are new symbols
assumed to be lexicographically smaller than and greater than all symbols in
T, respectively. We construct the BWT index (including the necessary auxiliary
data structures) to support pattern matching for 7'S. We denote this index as
BWT-TS. Note that with BWT-T'S, we no longer need to store the text T'S
explicitly as the index can support pattern matching T'S. BWT-T'S uses (2 +
o(1))nlogo + O(ologn) bits. Furthermore, we explicitly store the SA range of
each T; (with respect to the suffixes of T'S), using (¢ + 1) logn bits.

Below, an SA range always makes reference to the suffixes of T'S. By Lemmal[I]
for any pattern P[1..m], we can use BWT-T'S to find the SA ranges of the suffixes
Plm..m],Plm—1..m|,..., P[1l..m] in O(mlogo) time. In the rest of this section,
we show how to exploit the SA ranges of a suffix X = P[j..m] and a text segment
T; to determine whether X is a prefix of T;, and more importantly, whether T;
is a prefix of X.

Note that X may or may not appear in any T;, and the SA range [s,r] of X
may be empty (s — 1 = r) or non-empty (s < r). When X has a non-empty
SA range, it is straightforward to determine whether X is a prefix of a text
segment T;, or vice versa. See the following lemma. The duplicate structure
of T'S is needed to handle the case when X has an empty SA range.

Lemma 4. Suppose that the text segment T; has SA range [p, q]. For any string X,
if the SA range [s,7] of X is non-empty, then (i) X is a prefix of T; if and only if
s < p<q<r;and (ii) T; is a prefix of X if and only if p < s < r < q. Both
conditions can be determined in constant time.

Proof. We only prove (i), as (ii) is symmetric. Suppose X is a prefix of T;. The
SA range of X encloses all suffixes with prefix X, so the SA range of T; must
be enclosed by the SA range of X. Hence, s < p < ¢ < r. Conversely, suppose
s < p < g <r. The SA range of X encloses all suffixes with the prefix X. Since
the SA range of T; is a subrange of [s, ], all suffixes with the prefix 7; must also
have X as the prefix. Thus, X is a prefix of T;.

It remains to consider the case when X has an empty SA range. In this case, X
does not occur anywhere in 7'S, and X is not a prefix of any text segment 7;.
However, T; can still be a prefix of X. To determine this case is no longer
straightforward. The following lemma exploits the duplicate structure of each T;
in T'S to derive a simple condition.

Lemma 5. Suppose that the text segment T; has SA range [p, q]. For any string X,
if the SA range [s,r] X is empty (i.e., s — 1 = r), then T; is a prefix of X if and
only if p <r < s < q. This can be determined in constant time.

Proof. Suppose that T; is a prefix of X. Since X has an empty SA range and T;
has a non-empty one, T; is a proper prefix of X. Recall that $ is smaller than
any character in X, and hence T;$ is lexicograpically smaller than X . Similarly,
T;# is lexicograpically greater than X. If [s, 7] is an empty range, s — 1 = r and
r < s. It remains to prove the other two inequalities: (1) p <r; (2) s <gq.
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(1) By definition of [p, ¢, the p-th smallest suffix of T'S contains T;$ as a prefix.
This prefix is smaller than X, and hence there are at least p suffixes of T'S
smaller than X. Therefore, s —1>pandr=s—12>p.

(2) By definition of [p, q] and #, the ¢-th smallest suffix of T'S contains T;# as
a prefix, and this prefix is greater than X. There are at most ¢ — 1 suffixes
of T'S smaller than or equal to X. Therefore, r <g¢g—1and s=r+1<gq.

Conversely, if p < r < s < ¢, we can prove that T; is a prefix of X. Let X’
be the prefix comprising the first |T;| characters of X (or equal to X if X is
shorter than T;). For the sake of contradiction, we assume that 7; is not a prefix
of X and consider the scenarios when X’ is larger than T; or smaller than T;.
If X’ > T;, T'S contains at least ¢ suffixes smaller than X, and s — 1 > ¢. It
contradicts that s < ¢q. If T; > X', then there are at most p — 1 suffices that are
smaller than X, and s — 1 < p — 1. It contradicts that r =s—1 > p.

3.2 Dictionary Matching

Given the text segments Ty, Ty, ..., Ty+1 and a pattern P[1..m], the dictionary
matching problem is to report the occurrences of all T; that appear in P. In this
section, we show how to make use of BWT-T'S (defined in the previous section)
and a point enclosure index to perform dictionary matching in a more efficient
way than the existing indexes in the literature. The overall space requirement
is (24 o(1))nlogo + O(ologn) + O(¢logn) bits, and the dictionary query can
be answered in O(m log o +mlog ¢+ ) time, where v denotes the total number
of occurrences. This result, when compared with the work of Hon et al. [I0],
doubles the space requirement, but improves the dominating term of the time
complexity from mlog®n to mlogo.

Suppose that a text segment T; appears in P. Then 7; must be a prefix of
some suffix of P. To find out such occurrences, we consider each suffix P[j..m]
of P separately and find all T;’s that are a prefix of P[j..m]. First of all, we use
Lemma[Ilto compute the SA ranges (with respect to T'S) of every suffix P[j..m].
Using Lemmas Hf(ii) and B we can check whether T;, for all ¢ in [1,£+ 1], is a
prefix of P[j..m] in O({) time. We can speed up this checking process for each
P[j..m] to O(log £) time by a reduction to a point enclosure problem defined as
follows.

For each T; with SA range [p, g], we consider the rectangle (p,p) x (g, q)
in the two-dimensional plane. Let H be the set of all the £ + 1 rectan-
gles associated with the T;’s. We build an O(¢logn)-bit index for point
enclosure query. For each P[j..m|, we transform its SA range [s, 7] to a
query point z; = (s,r). By Lemmas[)(ii) and [l T; is a prefix of P[j..m]
if and only if the rectangle of T} encloses x;.

Lemma 6. We can build an index for Ty, Ta, ..., Tyy1 using (2+o(1))nlogo +
O(ologn)+O(Llogn) bits. Then, given a pattern P, the occurrences of all T; in
P can be computed in O(mlogo +mlogl+ ) time, where 7y is the total number
of occurrences.
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Proof. First, we can find the SA ranges of all suffixes of P. By Lemma [T, it
takes O(mlogo) time. H contains ¢ + 1 rectangles. By Lemma [3, we can build
an O(¢logn)-bit data structure to answer the point enclosure query of each suffix
of P in O(log ¢+t) time, where ¢ is the number of answers. In summary, the total
time required to find the occurrences of all T; in P is O(mlogo + mlogl + 7).

Repeated Dictionary Matching. Given a pattern P, after we have computed
the v occurrences of the text segments in P, we want to store these results in a
compact way so that they can be retrieved altogether in O() time. It is indeed
relatively simple to derive a scheme using only O(m log¢) bits, i.e., independent
of the size of . Details are as follows.

First, we observe a relationship between all text segments T; that are a prefix
of a particular suffix P[j..m] of P. For any 1 < j < m, let D; be the set
containing all such T;’s. Let Longest(D;) denote the longest T; in the set D;.
Note that a text segment T; is in D; if and only if T; is a prefix of Longest(D;).
Therefore, for each T;, we maintain a set of text segments that are each a prefix
of T;. Then, for each P[j..m], we only need to store Longest(D;). The space
required to store all Longest(D;) for all j is O(mlog¥) bits. To re-generate the
~ answers of the dictionary matching for P, we report all 7;’s that are each a
prefix of Longest(D;) for all j.

It remains to show how to maintain the list of prefix text segments for each T;.
There are several possible ways. Below we make use of a compact trie, which
requires O({log¢) bits. First, we build a compact trie CT for all text segments
{T1$,T58, .., Ty$}. Each T; is associated with a leaf in CT. If text segments are
identical, they are associated with the same leaf. Consider any node w in CT,
we denote path(u) as the concatenation of all edge labels from the root to wu.
For each T;, we mark the node v of CT such that path(v) = T;. Then, for all
nodes, we store a link to its closest marked ancestor. The space required by CT
is O(£log ¢) bits. Given any T;, we can recover the text segments that are a prefix
of T; by traversing the marked nodes from the leaf associated with T; towards
the root. To conclude, the space requirement is dominated by BWT-T'S and the
SA ranges of all T;’s, which is (2 + o(1))nlog o + O(c logn) + O(£logn) bits.

Lemma 7. Using CT, we can retrieve, for any T;, all the text segments that
are each a prefix of T; in O(t) time, where t is the number of results.

4 Matching with Wildcards

Finally we come to the discussion of matching a text 7T containing wildcards.
Assume T = Ty¢M To¢*2 . Typ* Ty, 1, where ky,ka,...,k; > 1, and each T;
contains no wildcards. The basic data structure is BWT-T'S (as defined in
Section [B]), which indexes all the text segments T; of T'. Furthermore, we index
the reverse of each Tj, which is denoted i below. Let TP = ﬁ$ﬁ$...(ﬂ$,
and denote BWT-T' P as the index comprising the BWT of TP and the required
auxiliary data structures (as stated in Section 2.2). BWT-T'S and BWT-T P to-
gether occupy (3 + o(1))nlogo + O(ologn) bits. Note that TP doesn’t have the
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duplicate structure of T'S. We only need BWT-TP to support constant-time
checking whether a string X is a prefix of some (7_’1-, but not vice versa. We also
store the SA ranges of all T;’s with respect to T'S, as well as the SA ranges of
all T;’s with respect to T'P. They require O(¢logn) bits.

Additional auxiliary data structures (such as for indexing the SA ranges of the
T;’s) will be given in the discussion below; they only use o(nlogo) + O(¢logn)
bits.

Let P be a given pattern of m characters. Following Lam et al. [IT], we divide
the problem of matching P with T into three cases.

Type 1: P is a substring of some T, where 1 <i </ + 1.
Type 2: P occurs in T[u..v] which contains exactly one wildcard group ¢*.
Type 3: P occurs in T'[u..v] which contains two or more wildcard groups.

Below we show how to make use of BWT-T'S, BWT-TP and some auxiliary
data structures to match the pattern efficiently in each case.

4.1 Type 1 Matching

This is the simplest case and it does not involve any wildcards. We simply search
for P in BWT-TS. The required SA range can be computed in O(nlog o) time.
The only technical difficulty is how to retrieve the occurrences of P given the
SA range of P with respect to T'S. The problem becomes trivial if we can keep
a suffix array of T'S, which requires O(nlogn) bits. Below we show that with a
suitable sampling of the suffix array, we can reduce the space to o(nlog o), while
allowing each occurrence to be retrieved in O(log' ™ n) time for any € > 0.

Lemma 8. We can build an o(nlogo)-bit auziliary data structure such that,
given the SA range of a pattern P, the occurrences of P in T'S can be reported
in O(occy logctt n) time, where occy is the number of type-1 occurrences.

Proof. Let (8 be the sampling factor. We show that an index of O(Z logn) bits

would allow us to access an value in the suffix array of 'S in O(8logo) time.
Let M be a bit vector of length |T'S|. Initially, M[i] = 0 for all . Then we

mark every M[i] = 1 where SA[i] = kB and 0 < k < [g—‘ We store the tuple
(i, SA[i]) where M[i] is marked with 1 in ascending order of i. Suppose we want
to retrieve S A[j] which has not been stored up. Let jo = j. We will have to find
an index j, such that the tuple (j,, SA[j,]) is stored and SA[jo] — SA[j,] < 5. In
general, we can find the index j, by backward searching BWT-T'S with character
BWT-TS[jy—1]. We recurively obtain ji, jo, js.. until we find j, such that the
tuple (jy, SA[jy]) is stored. Tuple can be retrieved in constant time if a rank and
select data structure has been built on M. Then, we report SA[j] = SA[j,] + v.
The searching time for a character in BWT-T'S is O(log o). Since y < 3, we can
compute SA[j] in O(Blogo) time.

Let 5 = [log® nlog, n] for some € > 0. The space requirement of the sampled
SA plus the rank and select index is o(nlogo). The access time of an entry in
the suffix array becomes O(log' ™ n).
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4.2 Type 2 Matching

For type 2 matching, we are interested in matching a given pattern P[1..m] with
T;p*T;q1 for all 1 < i < £. More specifically, we want to find out whether,
for some 1 < a < m, P[l..a] is a suffix of T;, and Pla + k; + 1..m] is a prefix
of T;11. The first condition can be rewritten as P[1..a] is a prefix of T,. In other
words, both conditions involve prefix matching, so we can exploit BWT-T P and
the SA ranges of Ti’& as well as and BWT-T'S and the SA ranges of T;’s. By
Lemma (i), we would first compute the SA ranges of the suffixes of P and (]3;
then for any fixed ¢ and a, it takes constant time to check whether P[1..a] is a
prefix of 7_’2-, and Pla + k; + 1..m] is a prefix of T;1;. Finding all the SA ranges
requires O(mlog o) time, and then the naive implementation of type-2 matching
requires O(m/) time.

For genomic sequences, we observe that the number of wildcard groups (i.e., £)
is usually not a small constant, but the number of distinct wildcard group sizes k;’s
is a small constant. Recall that the latter is denoted by 0. In fact, it is often the case
that most groups contain only one wildcard. This motivates us to further improve
the time complexity to something depending on 7 instead of £. Below we show how
to index the SA ranges of the T;’s using an orthogonal range search index. Then
the time complexity can be reduced to to O(m(@) log ¢ + occo log® £) time, where
occs is the number of type-2 occurrences of P.

Consider any integer b which is equal to some wildcard group size k;. Let W (b)
denote all the wildcard groups that have size b, i.e., W(b) = {i | k; =band 1 <
e < ¢}. We want to conduct type-2 matching for all the wildcard groups in W (b)
together. Given a position a of P, we want to find, for all ¢ in W (b), whether
P[1..a] is a suffix of T; and Pla+ b+ 1..m] is a prefix of T;41.

Lemma 9. We can build an O(£logn)-bit data structure to store the SA ranges
of (Ti’s and the SA ranges of T;’s. Then, for any wildcard group size b, given
a pattern P[1..m] and a position 1 < a < m, we can find in O(log¥) time the
number of i € W(b) such that P[l..a] is a prefix of T, and Pla+b+ 1..m] is
a prefix of T;y1. Furthermore, if there are t such i’s, we can report them in
O(tlog® ?) time for some € > 0.

Proof. We make use of orthogonal range search on a two-dimensional plane.
Consider any wildcard group size b. We define a set G} of points as follows. For
each wildcard group i € W(b), let the SA range of T, on TP be (s',7") and the
SA range of T;41 on T'S be (s,r). We add the point (s',s) into Gp. Given any
position a on P, let R, be the rectangle (z1,y1) X (z2,y2) where (x1,y1) and
(z2,y2) are the SA range of P[l..a] on TP and the SA range of Pla + b+ 1..m]
on TS, respectively. We find all the points on G that is enclosed by the query
range R,. A point in Gy represents a wildcard group k;, it is enclosed by R, if
and only if the SA range of P[I..a] encloses the SA range of T; and the SA range
of Pla+ b+ 1..m] encloses the SA range of T;11. By Lemmal[2 an O(¢logn)-bit
data structure can be built for all ¢ distinct wildcard group sizes, then we can
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determine the number of points enclosed by R, in O(f +log ¢) time, and retrieve
each point in O(log® ¢) time.

There are £ wildcard groups. The total number of points in all / orthogonal
range search indexes is £. Therefore, the total space required by the orthogonal
range search indexes is O(¢logn) bits.

Let us summarize the computation for type-2 matching for any given pattern P
of m characters. We compute the SA ranges of all P[l..a] with respect to TP
and the SA ranges of all P[a..m] with respect to T'S in O(mlog o) time. There
are min(m, () different b’s for P. For each b, we consider every position a on
P. All type-2 matches can be found in O(mlog¥ + tlog®¢) time, where ¢ is the
number of occurrences. Summing over possible wildcard group size, we obtain
the following lemma.

Lemma 10. Given a pattern of m characters, all type-2 matches can be located
in O(m(log o + min(m, £) log £) + occa log® ) time, where occy is the number of
type-2 occurrences and € is an arbitrary positive constant.

4.3 Type 3 Matching

Type-3 matching occurs when a pattern P matches with a substring T'[5..j + m]
which contains at least two groups of wildcards. In this case, P contains at least a
whole text segment 7T;. Therefore, we will first find out all T; completely included in
P, and then verify whether each such T; can be extended to form a type-3 matching.

The first step is equivalent to performing a dictionary matching to report all
T; that occurs in P. By Lemma [6] we could find all T; that occurs on P in
O(mlogo +mlogl+~) time, where ~ is the total number of occurrences of the
T;’s in P. If T; occurs in P with starting position x, then it is possible that P
occurs in T with starting position y = t; —x + 1, where t; is the starting position
of T; in T. Using BWT-T'S and BWT-T P, we can apply Lemma (i) to verify
each candidate position y in constant time. Details are as follows.

First of all, we collect all the 7 candidate positions y in an array A[l..n]
as follows. Initially, all entries of A are set to zero. We employ the constant
time initialization technique|[I4] on A. The access time to any cell in A remains
constant. Each time we find a candidate position y of P, we increment A[y] by 1.
The working space required by A is O(nlog¢) bits.

Consider each y with A[y] > 0. We want to verify whether P matches T[y..y +
m — 1]. Let Ty be the first text segment whose starting position ¢y > y. Let T,
be the last text segment that ends at or before y+m—1 (i.e., t, < y+m—|T;]).
Note that g > f. A position y defines a type-3 matching of P if and only if the
following three conditions hold.

(1) Alj)=g—f+1.
(2) If y < t; — ky—1 (i-e., the wildcard group ¢*/-1 starts after T[y]), then
P[l..ty —kg_q1 —y] is a suffix of Ty_1, or equivalently, P[1..ty — ky_1 —y] is

a prefix of 7f,1.
(3) If tg41 <y+m —1 (ie., the wildcard group ¢*s ends before Ty + m — 1]),
then Pltg41 —y + 1..m] is a prefix of Tgy.
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Suppose that we have computed the SA ranges of all suffixes of P with respect
to T'S, as well as the SA ranges of all the suffixes of P with respect to TP.
Then, by Lemma Hli), we can make use of BWT-TP and BWT-TS to verify
condition (2) and condition (3) in constant time. We conclude with the following
lemma.

Lemma 11. All type-8 matches can be located in O(mlogo +mlogl+-y) time.
The working space required is O(nlog{ + mlogn) bits.

Theorem 1. Combining the results on type-1, type-2 and type-3 matching, we
can find all occurrences of a given pattern P of m characters in O(m(logo +
min(m, Z) log €) + ocey log®™ n+ ocey log® £+47) time, where ocey and ocey denote
the number of type-1 and 2 occurrences respectively, and vy is the occurrences of
all text segments in P. The index space required is (3+0(1))nlogo+O(o logn)+
O(Llogn) bits. The working space required is O(nlog{ + mlogn) bits.

Reducing the Working Space. The solution to the type-3 matching demands
a working space O(nlog ¢+ mlogn) bits. The first term is way too much. Below
we show how to trade the running time for a solution that requires less working
space. At the end, we obtain a solution that requires only O(nlogo + mlogn)-
bit working space, but the verification time for the + candidates would increase
to O(+ylog, ¢). Intuitively, the idea is to split the array A into a number of
subarrays. Then, we parse the v dictionary matching results several times to
cover all candidate positions.

By Lemma [1 we could retrieve the v matching results for multiple times.
Precisely, we could retrieve the v matching results for d times in O(dvy) time.
Now, we split the entries in the array A into a number of groups. In each group,
there are p = L?lgggﬁj consecutive entries of array A. No entry in A is contained
in more than one group. Therefore, there are O(log,, ¢) groups of entries in total.
Each group corresponds to a range of entries in A.

Let B[l..p] be an array of integers. The space required by B is O(plog{) =
O(nlog o) bits. We repeat the process to mark the candidate positions, however,
we mark the candidate positions on array B instead. We set b = 1,p+ 1,2p +
1,...,plog, £+1. For each b, we mark on the array B by increasing the entry B[j’]
by one if the candidate position 7 = ¢; — k + 1 falls between b and b+ p — 1,
where j' = j — b+ 1. We ignore all candidate positions that do not fall between
b and b+ p — 1. After we have marked array B for all v dictionary matching
occurrences, for each B[j'] > 0, it indicates an candidate position j = j/ +b—1.
Then, we verify the candidate position j as mentioned in previous section. We
repeat the marking process for another b until all positions on T are covered.
The process marks the array for log, ¢ times.

Lemma 12. Type 3 matches can be located in O(mlogo + mlogl + vlog, ¢)
time. The working space required is O(mlogn + nlogo) bits.
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Abstract. Index structures like the suffix tree or the suffix array are of
utmost importance in stringology, most notably in exact string matching.
In the last decade, research on compressed index structures has flourished
because the main problem in many applications is the space consumption
of the index. It is possible to simulate the matching of a pattern against a
suffix tree on an enhanced suffix array by using range minimum queries or
the so-called child table. In this paper, we show that the Super-Cartesian
tree of the LCP-array (with which the suffix array is enhanced) very
naturally explains the child table. More important, however, is the fact
that the balanced parentheses representation of this tree constitutes a
very natural compressed form of the child table which admits to locate
all occ occurrences of pattern P of length m in O(mlog|X| 4 occ) time,
where X' is the underlying alphabet. Our compressed child table uses
less space than previous solutions to the problem. An implementation is
available.

1 Introduction

The suffix tree of a string S is an index structure that can be computed and stored
in O(n) time and space [I], where n = |S|. Once constructed, it can be used to
efficiently solve a “myriad” of string processing problems [23]. Although being
asymptotically linear, the space consumption of a suffix tree is quite large. This is
a drawback in actual implementations. Thus, nowadays many string algorithms
are based on suffix arrays and not on suffix trees. The suffix array specifies the
lexicographic ordering of all suffixes of S, and it was introduced by Manber and
Myers [4]. They showed that all occ occurrences of a pattern P of length m can
be found in O(m log n+occ) time by binary search. Using additional information,
this worst-case time complexity can be improved to O(m + logn + occ); see [4].
The suffix array can be compressed; see e.g. [5/6].

In another line of research, Abouelhoda et al. [7] introduced the concept of lep-
intervals in the LCP-array (the LCP-array stores the lengths of longest common
prefixes of consecutive suffixes in the suffix array; it can also be compressed [89])
and showed that these form a virtual tree (called lep-interval tree) which directly
corresponds to the suffix tree of the string under consideration. To simulate the
string matching of pattern P against a suffix tree, one must be able to solve the
following problem efficiently: Given an lcp-interval [i..j], find its child interval
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© Springer-Verlag Berlin Heidelberg 2009
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(if it exists) that “starts” with a certain character a. The solution of Abouelhoda
et al. [7] uses a so-called child table, which can be precomputed in linear time.
Exact pattern matching then takes O(m|X'|4occ) time, where X is the underlying
alphabet. Other researchers improved this result:

— Kim et al. [I0] showed that pattern matching can be done in O(mlog|X| +
occ) time. This time can even be achieved with a compressed child table; see
Kim and Park [I1].

— Fischer and Heun [I2] pointed out that the child table can be replaced
by constant time range minimum queries, yielding an O(m|X| + occ) time
pattern search algorithm. Very recently, they showed that an improvement
to O(mlog|X| + occ) time is possible by finding range medians of minima
queries, building on the new data structure Super-Cartesian tree; see [13].

In this paper, we show that the Super-Cartesian tree of the LCP-array natu-
rally explains the child table (i.e., the introduction of the child table in [7] was
not as simple as it could have been). More important, however, is the fact that
the balanced parentheses representation of this tree constitutes a very natural
compressed form of the child table which admits to locate all occ occurrences of
pattern P in O(mlog | Y| + occ) time. Our compressed child table requires only
2n + o(n) bits, while Fischer and Heun’s [I3] approach takes 2.54n + o(n) bits
and Kim and Park’s [I1] compressed child table requires 5n + o(n) bits.

As a matter of fact, the combination of a compressed enhanced suffix array
(i.e., both the suffix array [5l6] and the LCP-array are compressed [8I9]) with
the balanced parentheses representation of the Super-Cartesian tree of the LCP-
array yields yet another compressed suffix tree with full functionality; see e.g.
[819] and [14] for an overview of this field.

2 Preliminaries

Let S be a string of length n over the alphabet Y. For every i, 1 < i < n, S;
denotes the i-th suffix S[i..n] of S. The suffix array SA of the string S is an
array of integers in the range 1 to n specifying the lexicographic ordering of
the n suffixes of the string S, that is, it satisfies Ssaj;) < Ssap) < -+ < Ssap)-
As already mentioned, the suffix array was introduced by Manber and Myers
[4]. In 2003, it was shown independently and contemporaneously by Kérkkiinen
& Sanders [15], Kim et al. [16], and Ko & Aluru [I7] that a direct linear time
construction of the suffix array is possible. To date, over 20 different suffix array
construction algorithms are known; see the taxonomy by Puglisi et al. [I8].

The inverse suffic array SA™' is an array of size n such that for any ¢ with
1 < q < n the equality SA™*[SA[q]] = ¢ holds. Moreover, v is defined by t[i] =
SA'[SA[i] + 1] for all i with 1 < i < n if SA[i] # n and SA™'[1] otherwise.

Let lcp(u,v) denote the longest common prefix between two strings v and v.
The suffix array is often enhanced with the so-called LCP-array containing the
lengths of longest common prefixes between consecutive suffixes in SA. Formally,
the LCP-array is an array such that LCP[1] = —1 = LCP[n + 1] and LCP[i] =
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CLD
i SA LCP PSV NSV Ssa[; L R
1 3 -1 aaacatat 11
2 4 2 1 3 aacatat o-[1-.10]
3 1 1 1 7 acaaacatat 2 5 A
4 5 3 3  5acatat b
5 9 1 1 7 at 4 6 1-[1..6] 2-[7..8] 1-[9..10]
6 7 2 5 7 atat
7 2 0 1 11caaacatat 3 9 /;\
8 6 2 7 9 catat 2-[1..2] 3-[3..4] 2-[5..6]
910 O 1 11t 8 10
10 8 1 9 11 tat
11 -1 7

Fig. 1. The enhanced suffix array of the string S = acaaacatat consists of the arrays
SA and LCP. The corresponding lcp-interval tree is shown on the right.

llep(Ssafi—1, Ssaiy)| for 2 < i < n. Kasai et al. [I9] showed that the LCP-array
can be computed in linear time from the suffix array and its inverse.

According to [7], an interval [i..j], where 1 < i < j < n, in an LCP-array is
called an lcp-interval of lep-value £ (denoted by ¢-[i..j]) if

1. LCP[i] < ¢,

9. LCP[k] > ¢ for all k with i +1 < k < j,

3. LCP[k] = ¢ for at least one k with i +1 < k < j,
4. LCP[j +1] < £.

Every index k, i + 1 < k < j, with LCP[k] = ¢ is called ¢-index. Note that each
lcp-interval has at most |X| — 1 many {-indices.

An lcp-interval m-[p..q] is said to be embedded in an lcp-interval ¢-[i..j] if it
is a subinterval of [i..5] (i.e., i < p < ¢ < j) and m > £. The interval [i..j] is
then called the interval enclosing [p..q]. If [i..j] encloses [p..q] and there is no
interval embedded in [i..j] that also encloses [p..q], then [p..q] is called a child
interval of [i..j]. This parent-child relationship constitutes a tree which we call
the lep-interval tree (without singleton intervals). An interval [k..k] is called
singleton interval. The parent interval of such a singleton interval is the smallest
lep-interval [i..5] which contains k.

The child intervals of an lcp-interval can be determined as follows. If i1 < is <
... < i are the f-indices of an lcp-interval ¢-[i..j] in ascending order, then the
child intervals of [i..5] are [i..i1 —1], [i1..92—1], ..., [ix..j] (note that some of them
may be singleton intervals); see [7] for details. With range minimum queries on
the LCP-array, ¢-indices can be computed easily [12]: RMQycp(i + 1, 5) returns
the smallest index k such that LCP[k] = min{LCP[q] | i + 1 < ¢ < j}. Therefore,
it returns the first ¢-index ¢;. Analogously, RMQ cp (i1 + 1, 7) yields the second
{-index ig, etc. In this way, one can simulate a top-down traversal of the lcp-
interval tree, and exact string matching takes O(m|X|) time in the worst case
[7UT2] because an array can be preprocessed in linear time so that range minimum
queries can be answered in constant time [T2J20121].
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The next lemma states how the parent interval of an lcp-interval can be de-
termined; cf. [9]. For any index 2 < i < n, define

PSV[i] = max{j | 1 <j < i and LCP[j] < LCP[{]}
NSV[i] = min{j | ¢ < j < n+1 and LCP[j] < LCP[i]}

Lemma 1. Let £-[i..j] be an lcp-interval with LCP[i] = p and LCP[j + 1] = q. If
p > q, then the parent of [i..j] is the lep-interval [PSV[i]..NSV[i] — 1]. Otherwise,
if p < q, the parent of [i..j] is the lcp-interval [PSV[j + 1]..NSV[j + 1] — 1].

Given an lep-interval [i..j], the smallest lep-interval [p..q] satisfying p < ¥[i] <
Y[j] < q is called the suffiz link interval of [i..j]. For every lcp-interval ¢-[i..j]
the suffix link interval exists and it has lep-value ¢ — 1; see [7] for details.

3 Finding Child Intervals without Range Minimum
Queries

In the top-down traversal of the lcp-interval tree we actually do not need the
rather complex machinery of constant-time range minimum queries. To see this,
we first recall the definition of the Super-Cartesian tree from [13].

Definition 1. Let A[l..r] be an array of elements of a totally ordered set (S, <)
and suppose that the minima of A[l..r] appear at positions p1, pa, ..., px for some
k > 1. The Super-Cartesian tree C5“P(A[l..r]) of A[l..r] is recursively constructed
as follows:

— Ifl > r, then C"P(A[l..r]) is the empty tree.

— Otherwise create k nodes vi,va, ..., vk, label each v; with p;, and for each
j with 1 < j < k the node v; is the right sibling of node v;_1 (in Fig. [3,
node vj_1 is connected with v; by a horizontal edge). Node v1 is the root of
C*“P(All..r]). Recursively construct C; = C*"P(A[l..p1 —1]), C2 = C**P(A[p1 +
1.pa—1]),..., Chp1 = C*P(Alpg + 1..7]). For each j with 1 < j < k, the left
child of v; is the root of C;. The left and right children of vy, are the roots of
Cr and Cy41, respectively.

We would like to emphasize that a node in a Super-Cartesian tree has either
a right sibling or a right child but not both. The Super-Cartesian tree C*“P(A)
of an array A can be build incrementally in O(n) time; see [I3] for details. As
an example, consider the enhanced suffix array of the string S = acaaacatat in
Fig.[[l The Super-Cartesian tree of this LCP-array is depicted in Fig.

We store the Super-Cartesian tree in an additional table CLD, which we call
child table because it can be used to determine child intervals. For didactic
reasons, we will first store the child table CLD in two arrays CLD.L and CLD.R.
We shall see in a moment, however, that one array suffices. By definition, a
node in a Super-Cartesian tree has either a right sibling or a right child but not
both. Therefore, for each node i, we store its left child in CLD[:].L and its right
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Fig. 2. The Super-Cartesian tree of the LCP-array from Fig. [I]

sibling/right child in CLD[¢].R. For example, the child table CLD of the string
S = acaaacatat is depicted in Fig. [1l

As already mentioned, finding all child intervals of an lep-interval ¢-[i..j] boils
down to finding all /-indices of that interval. The following theorem shows where
the first f-index of an lcp-interval ¢-[i..j] can be found in the child table.

Proposition 1. For every lep-interval £-[i..5] we have:

1. If LCP[i] < LCP[j + 1], then CLD[j + 1].L stores the first {-index of the
lep-interval [i..j].

2. If LCP[{] > LCP[j + 1], then CLD[i].R stores the first {-index of the lcp-
interval [i..5].

Now we have all ingredients to realize a top-down traversal of the lcp-interval
tree without range minimum queries. Proposition [ tells us where the first /-
index, say i1, of [i..j] can be found. Using the child table, we find the second
l-index ig by iz = CLD[i1].R, the third ¢-index i3 by i3 = CLD[i2].R, and so
on. The index iy, is the last ¢-index if LCP[igy1] # . Algorithm [I implements
this approach. The procedure getChildIntervals applied to an lep-interval [i..j]
returns the list of all child intervals of [i..5].

Of course, the Super-Cartesian tree is only conceptual, i.e., we can construct
the child table without it. Algorithm [2] uses a stack to do this. The procedures
push (pushes an element onto the stack) and pop() (pops an element from the
stack and returns that element) are the usual stack operations, while top() pro-
vides a pointer to the topmost element of the stack. Moreover, top().idz denotes
the first component of the topmost element of the stack, while top().lcp denotes
the second component.

To reduce the space requirement of the child table, only one array is used in
practice. As a matter of fact, the memory cells of CLD[i].R, which are unused,
can store the values of the CLD.L array. To see this, note that CLD[i +1].L # L
if and only if LCP[{] > LCP[i 4 1]. In this case, however, we have CLD[i].R = L.
In other words, CLD[i].R is empty and can store the value CLD[i + 1].L; see
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Algorithm 1. getChildIntervals applied to an lep-interval [i..5].

intervallList = [ ]

k1

if LCP[i] < LCP[j + 1] then
m — CLD[j + 1].L

else m «— CLD[i].R

£ — LCP[m]

repeat
add(intervalList, [k..m — 1])
k—m
m «— CLD[m].R

until m = L or LCP[m] # ¢

add(intervallist, [k..7])

Algorithm 2. Construction of the child table.
push((1, —1)) /* an element on the stack has the form (idz,lcp) */
for k—2ton+1do

while LCP[k] < top().lep do
last «— pop()
while top().lcp = last.lcp do
CLD[top().idz].R < last.idx
last < pop()
if LCP[k] < top().lcp then
CLD[top().idz].R < last.idx
else CLD[k].L « last.idx
push({k, LCP[k]))

Fig.[Il Finally, for a given index i, one can decide whether CLD[i].R contains the
value CLD[i 4 1].L by testing whether LCP[{] > LCP[i + 1]. To sum up, although
the child table conceptually uses two arrays, only space for one array is actually
required.

4 Balanced Parentheses Representation of the Tree

The Super-Cartesian tree of the LCP-array can be represented by a sequence of
balanced parentheses; see Fig. Bl Again, it turns out that the Super-Cartesian
tree is only conceptual. To be precise, its balanced parentheses representation
can be obtained solely based on the LCP-array; see Algorithm Bl

Each node k, 1 < k£ < n, in the Super-Cartesian tree is represented by the
k-th opening parenthesis (and the matching closing parenthesis). Node n + 1
is not represented. Consequently, the sequence of balanced parentheses has 2n
parentheses, and it can be represented with 2n bits.
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() o)y ce)y)y)y ) ce)y)))
12234456625 37 88 91010 9 7 1
123456 7 8 91011121314 1516 1718 19 20

Fig. 3. Balanced parentheses representation of the Super-Cartesian tree of Fig.

Algorithm 3. Construction of the balanced parentheses representation of the
Super-Cartesian tree of the LCP-array.
push(—1) /* LCP[1] = —1 */
write an opening parenthesis
for k—2ton+1do
while LCP[k] < top() do
pop() and write a closing parenthesis
if Kk #n 41 then
push(LCP[k]) and write an opening parenthesis
else
write a closing parenthesis

Given a balanced parentheses sequence, the following operations can be sup-
ported in constant time with only o(n) bits of extra space [22/2324I25]:

— rank(i): returns the number of opening parentheses up to and including
position i; see Jacobson [22]. rank, (i) is defined analogously.

— select((i): returns the position of the i-th opening parenthesis; see Clark [23].
selecty(i) is defined analogously.

— findclose(i): returns the position of the closing parenthesis matching the
opening parenthesis at position i; see Munro & Raman [24]. findopen(i) is
defined analogously.

— enclose(i): given a parenthesis pair whose opening parenthesis is at position
i, it returns the position of the opening parenthesis corresponding to the
closest matching parenthesis pair enclosing i; see Munro & Raman [24].

Geary et al. [25] provide a simpler o(n) extra space solution for findclose,
findopen, and enclose. In our implementation, we use a data structure which
is similar to that of [25]. That is, our implementation needs 2n + o(n) bits to
support all operations in constant time.

As we have seen, determining the child intervals of an /-interval [i..j] boils
down to finding the ¢-indices of [i..j] in ascending order. On the balanced paren-
theses representation of the Super-Cartesian tree of the LCP-array these can be
found as follows.

Lemma 2. With the balanced parentheses representation, the first £-index k of
an lep-interval [i..j] can be determined in constant time by

[ rank((findopen(select((j + 1) — 1)) , if LCP[i] < LCP[j + 1]
| rank(findopen(findclose(select((i)) — 1)), if LCP[i] > LCP[j + 1]
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Proof. If LCP[i] < LCP[j + 1], then k is the left child of j + 1 in the Super-
Cartesian tree of the LCP-array. In the balanced parentheses representation, the
closing parenthesis matching the k-th opening parenthesis is directly followed by
the (j + 1)-th opening parenthesis. Therefore, k = rank(findopen(select((j +
1) — 1)). If LCP[¢] > LCP[j + 1], then k is the right child of ¢ in the Super-
Cartesian tree of the LCP-array. In the balanced parentheses representation, the
closing parenthesis matching the k-th opening parenthesis is directly followed
by the closing parenthesis matching the i-th opening parenthesis. Thus, k =
rank(findopen(findclose(select((i)) —1)).

If we know an f-index k of an lcp-interval [i..j], then the next ¢-index m (if it
exists) is the right sibling of & in the Super-Cartesian tree of the LCP-array. In the
balanced parentheses representation, the closing parenthesis matching the m-th
opening parenthesis is directly followed by the closing parenthesis matching the
k-th opening parenthesis. So m = rank( findopen(findclose(select(k)) —1)).

Given an f-index k of an lcp-interval [i..j], an algorithm that computes the
next f-index m (if it exists) works as follows. First it tests whether select (k) #
findclose(select((k)) — 1. If this is the case, then k is not a leaf in the Super-
Cartesian tree of the LCP-array (i.e., the k-th opening parenthesis is not directly
followed by a closing parenthesis) and the algorithm further computes m =
rank(findopen(findclose(select((k)) —1)). If LCP[k] = LCP[m], then it returns
m as the next (-index of [i..j]. Otherwise, there is no next ¢-index. It follows as
a consequence that all child intervals of an lep-interval [i..j] can be determined
in O(|X|) time solely based on the balanced parentheses representation of the
Super-Cartesian tree of the LCP-array. That is, one neither needs range minimum
queries nor the child table.

To exemplify our method, we search for the first /-index k of the lcp-interval
1-[1,6] (see Fig.[M): As LCP[1] = —1 < LCP[7] = 0, k is the left child of node 7
in the Super-Cartesian tree of Fig. 2l In the balanced parentheses sequence, we
obtain the position of the 7th opening parenthesis by select((7) = 12; see Fig.[3l
The left child of node 7 is represented by the opening parenthesis matching the
closing parenthesis at position 12—1 = 11, and this opening parenthesis is found
at position findopen(11) = 4. Since rank(4) = 3, we conclude that k = 3. The
next ¢-index (if it exists) corresponds to the right sibling of node k = 3 in the
Super-Cartesian tree. If node k = 3 is not a leaf, then the parenthesis directly
left to the closing parentheses corresponding to k is also a closing parenthesis.
In our example this is the case and therefore rank(findopen(10)) = 5 tells us
that node 5 is either a sibling or a child of node k& = 3. Because LCP[5] = LCP|3],
node 5 is the right sibling. Hence 5 is the next f-index.

In string matching, we search for a specific child interval. To be precise, if
[i..7] is an lcp-interval that represents a string w, we wish to compute the lep-
interval [i’..j'] that represents the string wa for some character a € X. Clearly,
we can enumerate all child intervals [i’..5'] of [i..j] until the one with S[SA[i'] +
lwl]] = ... = S[SA}j’] + |w|] = a is found. This takes O(]X]) time in the worst
case. As a matter of fact, the balanced parentheses representation allows us to
determine such an interval in O(log|X|) time. This goes as follows. The left
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boundary of the interval we are searching for is either 7 or one of the ¢-indices
of the lcp-interval [i..j]. Thus, if S[SA[i] + |w|]] = a, we are done. Otherwise,
one determines the first ¢-index k as in Lemma 21 If S[SA[k] + |w|] = a, we are
done. If not, we determine the position p of the closing parenthesis matching
the k-th opening parenthesis by p = findclose(select((k)). The key observation
is that the remaining (-indices of [i..j] (there are at most |X| — 2 many) are
the siblings of node k in the Super-Cartesian tree and—by construction—the
closing parentheses immediately preceding the closing parenthesis at position p
correspond to these /-indices. Therefore, a binary search on the matching opening
parentheses of the first |X| — 2 closing parentheses immediately preceding the
closing parenthesis at position p (if there are so many closing parentheses at all),
can be used to find the desired interval. First check whether the index m under
consideration satisfies LCP[m] = LCP[k]. If not, we have to search in the right
half. If so, m is another ¢-index and one further compares S[SA[m] + |w|] with
the character a. If the characters coincide, then m is the left boundary of the
interval we are searching for. If S[SA[m] + |w|] < a, we have to search in the
right half, and if S[SA[m] + |w|] > a, we have to search in the left half.

5 Full Functionality

The balanced parentheses representation of the Super-Cartesian tree of the LCP-
array supports all operations of a suffix tree as listed e.g. in [8/9]. Here we
show how the following two crucial operations can be implemented (the other
operations are rather straightforward; cf. [9]):

— parent([i..j]): returns the parent interval of the lcp-interval [i..j].
— slink([i..j]): returns the suffix link interval of the lep-interval [i..5].

According to Lemma [I the parent interval of an lcp-interval can be deter-
mined with the help of PSV and NSV-values. The next lemma shows how these
values can be computed on the balanced parentheses representation.

Lemma 3. Let i be an index with LCP[i] # —1. With the balanced parenthe-
ses representation of the Super-Cartesian tree of the LCP-array, NSV[i] can be
determined in constant time by NSV[i] = rank(findclose(select((i))) + 1 and
PSV[i] can be computed in O(|X|) time by

J < rank(enclose(select((i)))
while LCP[j] = LCP[i] do
j « rank(enclose(select((7)))

It is also possible to compute PSV[i] in O(log|X|) time by a binary search
on the balanced parentheses sequence (similar to the method described above).
Consequently, the parent interval of an lcp-interval can be found in O(log|X|)
time by Lemma [I1

The suffix link interval [p..g| of an lep-interval ¢-[i..j] # 0-[1..n] can be deter-
mined as follows: First, the range minimum query RMQcp(¢[i] + 1,%[j]) yields
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an (¢ — 1)-index of [p..q] (see [7] for details), say index k, and then the bound-
aries of the suffix link interval are determined by p = PSV[k] and ¢ = NSV[k] —1
(this is a direct consequence of the definition of an lcp-interval). Thus, [p..q]
can be computed in O(log|X|) time provided that range minimum queries can
be answered in constant time. However, the ability to answer range minimum
queries in constant time requires a different data structure, and this is disadvan-
tageous in practice. To compute suffix links on our data structure, we introduce
the new operation range-restricted-enclose (rr-enclose for short) on balanced
parentheses sequences: Given two opening parentheses at positions 7 and j such
that findclose(i) < j, the operation rr-enclose(i,j) returns the smallest po-
sition, say k, of an opening parenthesis such that findclose(i) < k < j and
findclose(j) < findclose(k). If such a k does not exist, it returns L.

Theorem 1. Given the balanced parentheses representation of the Super-Cart-
esian tree of the LCP-array and two indices i and j with 1 < i < j < n, let
i" = select((i) and j' = select((j). Then

i, if j* < findclose(i)
RMQcp(i,7) = < 4, if findclose(i') < j' and rr-enclose(i',j') = L
rank((rr-enclose(i’, j')), otherwise

Proof. We use a case differentiation. If j/ < findclose(i’), then i/ < j' <
findclose(j') < findclose(i'), i.e., the parenthesis pair with opening parenthe-
sis at position 7 encloses the other parenthesis pair. This, in turn, means that
LCP[i] < LCP[q] for all ¢ with ¢ < ¢ < j. Hence RMQ_cp(i,7) = 4. Otherwise,
we have findclose(i') < j'. If rr-enclose(i’,j') = L, then there is no parenthe-
sis pair with opening parenthesis at a position > findclose(i) that encloses the
parenthesis pair with opening parenthesis at position j. This means that the
parenthesis pairs are “siblings”. In other words, LCP[¢] is a successor of LCP[j] on
a “left path” in the Super-Cartesian tree of the LCP-array. It follows as a conse-
quence that LCP[g] > LCP[j] for all ¢ with ¢ < ¢ < j. Thus, RMQ_cp(4,5) = j. In
the last case rr-enclose(i’, j') = k, where k is the smallest position of an opening
parenthesis such that findclose(i’) < k < j' and findclose(j') < findclose(k).
So we have i’ < findclose(i') < k < j' < findclose(j') < findclose(k). In the
Super-Cartesian tree of the LCP-array, this corresponds to LCP[q] > LCP[k] for
all ¢ with i < ¢ < k and LCP[k] < LCP]g] for all ¢ with k& < ¢ < j. Therefore,
RMQcp(i,j) = k.

6 Conclusions

The methods described above have been implemented in C4++, and the imple-
mentation is available under the GNU General Public License. In our opinion,
the main advantage of the balanced parentheses representation of the Super-
Cartesian tree of the LCP-array is that child intervals can be computed efficiently.
Thus, it would be natural to compare our implementation experimentally with
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the related methods of Kim and Park [II] and of Fischer and Heun [13]. Unfor-
tunately, for both methods no implementation is available.

On the other hand, our compressed enhanced suffix array has full functionality,
i.e., it supports all operations of a suffix tree and it is natural to compare it
experimentally with implementations of compressed suffix trees with such a full
functionality. Valimiki et al. [26] implemented Sadakane’s compressed suffix tree
[8], and to the best of our knowledge this is the sole implementation which
is available. For a fair comparison, however, both implementations should use
the same compressed suffix array and the same compressed LCP-array. We are
currently working on our own implementation of Sadakane’s compressed suffix
tree [8] and an experimental comparison is forthcoming.

First experiments with texts of size 50MB show that the O(log | X|)-time ver-
sion of the method that determines a specific child interval is two times faster
than the O(]X|)-time version for 20 < |X| < 30 and up to 10 times faster for
90 < |X| < 230. Unsurprisingly, for | X| = 4 (DNA-alphabet) the O(log | X|)-time
version is (slightly) slower than the O(]X)-time version.

References

1. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th IEEE Annual Sym-
posium on Switching and Automata Theory, pp. 1-11 (1973)

2. Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algorithms
on Words, pp. 85-96. Springer, Heidelberg (1985)

3. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York (1997)

4. Manber, U., Myers, E.: Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing 22(5), 935-948 (1993)

5. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In: Proc. ACM Symposium on the Theory
of Computing, pp. 397-406. ACM Press, New York (2000)

6. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. IEEE Symposium on Foundations of Computer Science, pp. 390-398 (2000)

7. Abouelhoda, M., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2, 53-86 (2004)

8. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems 41, 589-607 (2007)

9. Fischer, J., Navarro, G., Mékinen, V.: An(other) entropy bounded compressed
suffix tree. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp.
152-165. Springer, Heidelberg (2008)

10. Kim, D., Jeon, J., Park, H.: An efficient index data structure with the capabilities of
suffix trees and suffix arrays for alphabets of non-negligible size. In: Apostolico, A.,
Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 138-149. Springer, Heidelberg
(2004)

11. Kim, D., Jeon, J., Park, H.: A new compressed suffix tree supporting fast search
and its construction algorithm using optimal working space. In: Apostolico, A.,
Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 33—44. Springer,
Heidelberg (2005)



62

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

E. Ohlebusch and S. Gog

Fischer, J., Heun, V.: A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459-470. Springer, Heidelberg (2007)
Fischer, J., Heun, V.: Range median of minima queries, super-cartesian trees, and
text indexing. In: Proc. 19th International Workshop on Combinatorial Algorithms,
pp. 239-252. College Publications (2008)

Navarro, G., Méakinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39 (2007)

Karkkainen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943-955. Springer, Heidelberg (2003)

Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix ar-
rays. In: Baeza-Yates, R., Chavez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 186-199. Springer, Heidelberg (2003)

Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-
Yates, R., Chavez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp.
200-210. Springer, Heidelberg (2003)

Puglisi, S., Smyth, W., Turpin, A.: A taxonomy of suffix array construction algo-
rithms. ACM Computing Surveys 39(2), 1-31 (2007)

Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181-192. Springer, Heidel-
berg (2001)

Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. STAM
Journal on Computing 13, 338-355 (1984)

Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. STAM Journal on Computing 17, 1253-1262 (1988)

Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th Annual Sym-
posium on Foundations of Computer Science, pp. 549-554. IEEE, Los Alamitos
(1989)

Clark, D.: Compact Pat Trees. PhD thesis, University of Waterloo (1996)

Munro, J., Raman, V.: Succinct representation of balanced parentheses and static
trees. STAM Journal on Computing 31(3), 762-776 (2001)

Geary, R., Raman, R., Raman, V.. Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms 2(4), 510-534 (2006)

Valiméaki, N., Gerlach, W., Dixit, K., Méakinen, V.: Engineering a compressed suffix
tree implementation. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp.
217-228. Springer, Heidelberg (2007)



Compressed Suffix Arrays for Massive Data

Jouni Sirén*

Department of Computer Science, University of Helsinki, Finland
jltsiren@cs.helsinki.fi

Abstract. We present a fast space-efficient algorithm for constructing
compressed suffix arrays (CSA). The algorithm requires O(nlogn) time
in the worst case, and only O(n) bits of extra space in addition to
the CSA. As the basic step, we describe an algorithm for merging two
CSAs. We show that the construction algorithm can be parallelized in
a symmetric multiprocessor system, and discuss the possibility of a dis-
tributed implementation. We also describe a parallel implementation of
the algorithm, capable of indexing several gigabytes per hour.

1 Introduction

Self-indexing [23] is a new approach for storing sequence data. The main idea
is to combine the data and its index in a compressed structure, which provides
random access to the data and supports various pattern matching queries. Some
of the most relevant self-indexes are the compressed suffiz array (CSA) [12] and
the FM-indez |8], both offering suffix array-like functionality.

With the explosive growth of sequential data in many applications such as
genome browsers, version control systems, and online document collections, good
search capabilities are becoming more and more important every day. This
trend is making the self-indexes, combining small size with full-text searching, a
promising approach for indexing large and massive data sets.

Obviously we need efficient practical algorithms for constructing these self-
indexes, if we want them to truly live up to their promises. Unfortunately all the
experiments reported so far have been performed with data sets at most a few
gigabytes in size [5, [7, [14, 116, [17, 24], telling that the construction algorithms
have trouble scaling up for massive data sets.

The typical way to construct a compressed self-index has been to use a regular
suffix array construction algorithm [24]. While these algorithms are fast, they
must store the data and the suffix array in main memory, making the memory
requirements many times the size of the data. This is a major problem, especially
with highly repetitive collections [21,126], where the final index can be more than
a hundred of times smaller than the suffix array.

Other alternatives have been to use secondary memory suffix array construc-
tion algorithms |4, [5], dynamic indexes |3, [11, [19, [20, 125], or algorithms for con-
structing the compressed index directly [13, 115, 22]. While these algorithms are

* Funded by the Academy of Finland under grant 119815. Part of the work was done
while visiting NICTA Neville Roach Laboratory.

J. Karlgren, J. Tarhio, and H. Hyyro (Eds.): SPIRE 2009, LNCS 5721, pp. 63 2009.
© Springer-Verlag Berlin Heidelberg 2009
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often memory efficient, they are also slow. Experiments have reported through-
puts in the order of 100 kilobytes/second, which is more than an order of mag-
nitude slower than the regular suffix array construction algorithms, and clearly
too slow for data sets of tens of gigabytes or more.

The most promising algorithms are the distributed suffix array construction
algorithm by Kulla et al. [17] and the space-efficient Burrows-Wheeler transform
construction algorithm by Karkkéinen [16]. Still, we must store either the suffix
array in distributed memory or the entire data set in local memory, making both
of the algorithms unsatisfactory for highly compressible data sets.

In this paper, we present a fast and space-efficient algorithm for direct CSA
construction. The algorithm is related to the incremental suffix array construc-
tion algorithm by Gonnet et al. |10], as well as to the incremental CSA construc-
tion algorithm by Hon et al. |[13]. Alternatively our algorithm can be thought of
as replacing a dynamic CSA with a static structure and batch updates.

We start by some basic definitions in Sect. 21 Section 3] describes an algorithm
for merging two compressed suffix arrays. Section ] builds upon it, describing a
parallelizable incremental CSA construction algorithm. The details of our imple-
mentation of the algorithm are discussed in Sect. Bl In Sect. [6 we validate the
effectiveness of our algorithm experimentally. Finally, we discuss the possibility
of a distributed implementation in Sect. [7

2 Background Information

A string S = S1,, = s152--- 8, I8 a sequence of symbols (characters, letters).
Each symbol is an element of an alphabet ¥ = {1,2,...,0}. A substring of S
is written as S;; = s;---s;. A substring of type 51 ; is called a prefiz, while
a substring of type S;, is called a suffiz. We often assume that the string is
an array, and refer to its symbols as S[¢], and to its substrings as S[¢, j]. A text
string T = T4 ,, is a sequence terminated by ¢, = $ ¢ X smaller than any symbol
in Y. The lezicographic order”<” among strings is defined in the usual way.

We call a set C of texts TV, T?,...,T" a collection. The collection can be
represented as a string 7 = T'T?---T". We denote the length of each text T
as n;, and the total length of the collection as |C| = |T| = n. Lexicographic
order among such strings is defined in the usual way, except that each of the end
markers $ is considered a different symbol, so that every suffix of every string
will be unique in the collection. If 7[i] = 7[j] = $ and i < j, we define 7[i] <
T[j]. We informally call a collection highly repetitive, if most of its texts are
highly similar to some other text in the collection. Examples of highly repetitive
collections include individual genomes and different versions of a document.

The suffix array SA[1,n] of a string S is an array of pointers to the suffixes
of S in lexicographic order. As an abstract data type, a suffix array is any data
structure providing similar functionality as the concrete suffix array. This can
be defined by the following operations: (a) count the number of occurrences of
a pattern in the string; (b) locate these occurrences (or more generally retrieve
a suffix array value); and (c) display any substring of S.
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The compressed suffix arrays discussed in this paper support these operations.
Their compression is based on the Burrows- Wheeler transform (BWT) 2], a per-
mutation created by sorting cyclical strings. The cyclical strings corresponding
to string S are all strings of the form CS; = 5;,,51,;—1, including C'S; = S. The
BWT is a sequence L such that L[i] = CSj[n], where C'S; is the ith cyclical
string in lexicographic order. If S is a text or a collection, sorting cyclical strings
is the same as sorting suffixes, as the first end marker encountered will end the
comparison between two cyclical strings. In that case the BWT can be defined
as L[i] = S[SA[i] — 1], where S[0] = S[n].

The Burrows-Wheeler transform is reversible. The reverse transform is based
on a function called LF-mapping |2,I8] that is also used extensively in compressed
self-indexes. The mapping is usually described by using an array C]1, 0] such
that C[c] is the number of characters in {$,1,2,...,¢ — 1} occurring in the
collection. With this array and the sequence L, we can define LF-mapping as
LF(i) = C[L[i]] + rankp; (L, i), where rank.(L, ) is the number of occurrences
of character ¢ in the prefix L[1,i]. We leave LF (i) undefined when L[i] = 8, as
each $ is actually a different character. This is not a problem, as LF-mapping
is not used for these positions in CSA operations.

LF-mapping and its inverse function ¥ [12] form the backbone of many
compressed self-indexes. As SA[LF(i)] = SA[i] — 1 [8] and hence SA[¥(i)] =
SA[i]+ 1, we can use these functions to move the suffix array position backward
and forward in the sequence. Both of the functions can be efficiently imple-
mented by adding some extra information to a compressed representation of the
BWT. Standard techniques [23] to support suffix array operations by using these
functions include backward searching [8] for count, and adding a sample of suffix
array values for locate and display.

The regular BWT is based on the cyclical strings of a single string. In this
paper, we generalize the transform by allowing multiple strings, each of which can
be a concatenation of several texts |9]. This makes it easier to merge the BWTs
of two collections. We call the way the texts of a collection A are concatenated
to form strings the structure of A. Collection B contains the structure of A, if
A C B and the texts of A are concatenated to form the same strings in the
structures of A and B.

The position of a character T[j] # $ in the BWT is determined by the
cyclical string of the string containing it starting at T%[j + 1]. As the first end
marker encountered ends any comparison, we only need the suffix T%[j + 1,n;]
to determine the position, as with the regular BWT. The position of the end
marker T%[n;] is determined by the text T following T in the cyclical strings.
As each text is used to determine the position of exactly one end marker in the
BWT, the structure of a collection does not affect its BWT.

3 Merging Compressed Suffix Arrays

Consider the collection {7, T?}, where T' = ababbaa$ and T? = abbaa$. The
BWTs of the texts are aab$bbaa and aab$ba, respectively. Figure [I] shows a
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T a b a b b a a $ a b b a a $
SA 8 14 7 13 6 12 1 3 9 5 11 2 4 10
I 0 1 0 1 0 1 0 0 1 0 1 0 0 1
a a a a b b $ b $ b b a a a

v, 1 1 0 0 0 0 0 0 0 1

v, 0 0 0 0 1 1 0 1 0 1 1 0 0 0

Fig.1. A generalized Burrows-Wheeler transform L and the suffix array SA of col-
lection {T*,T?}. Note that T and T? are separate strings in the structure of the
collection. One can get the regular BWT by changing which $ belongs to which text.

generalized Burrows-Wheeler transform of the collection, where the characters
of text T? are marked with 1-bits in bit vector I.

We see that the marked characters form the BWT of T2, while the other
characters form the BWT of T'. This is true in general as well. Assume we have
two collections A and B, where B contains the structure of A. As the position
of each character of A is determined by the same cyclical string in the BWTs of
A and B, the BWT of A is a subsequence of the BWT of B.

Now let us turn our attention to the bit vectors ¥, marking the occurrences
of character ¢ € X in L. These vectors completely describe the BWT of the
collection. We can perform the rank.(L,:) used in LF-mapping as rank; (¥, ).
We can also compute ¥(j) as selecty (e, j — C|c]), where Clc] < j < Cle+1] and
selecty (W, i) returns the position of the ith 1-bit in ¥.. Hence we can implement
a self-index by compressing the bit vectors ¥,.

In fact, that is exactly what compressed suffix arrays [12], based on the func-
tion ¥, already do. As the values of ¥ form an increasing sequence in the region
of the suffix array corresponding to a character ¢, any representation of that part
of ¥ is also a representation of the bit vector ..

This gives us an idea for an algorithm to merge two compressed suffix arrays.
If we have the CSAs of collections C; and Cy and the bit vector I, we can use
them to build a CSA for the combined collection. For each ¢ € X, we simply take
the ¥, vectors of the two CSAs and merge them. Vector I is used to indicate
how to interleave the bits from the two vectors. Sampled suffix array positions
can be merged in a similar manner.

Let n; = |C;| and n = ny + ng. With a suitable representation of the bit
vectors (as in Sect. [l), we can merge the CSAs in-place in O(|CSA| + ngo) time,
where |CSA| is the size of the resulting CSA. The O(nq0) part comes from the
fact that we have to scan the bit vector I once for every pair of vectors merged.
This is not very efficient for large alphabets.

In such situations, it is better to merge the BWTs instead of the bit vectors.
We can read the BWT of collection C; from its CSA in O(n;) time by using a
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buffer of (o) characters. If we decompress both of the BWTs simultaneously,
merge the buffers, and write the results immediately to the combined CSA, we
can perform the merge in O(n) time and O(clogn) extra space for the buffer
and bookkeeping.

The remaining question is, how to construct the bit vector I, denoting the
ranks of every suffix of B in the combined suffix array. As the rank of a suffix
is the sum of its ranks among the suffixes of A and B [13], we get the following
algorithm for merging two CSAs:

1. Search for the ranks of the suffixes of 5 among the suffixes of A by backward
searching |13]. Store the ranks in an integer array in any order.

2. Sort the array. Increment the values by their positions in the array (by the
ranks of the suffixes of B among themselves) to get I.

3. Merge the BWTs of the two CSAs.

Searching takes O(naty) time, where ty is the cost of one access to ¥. We are
not aware of any upper bounds better than ty = O(logn;) (as in Sect. B with a
logarithmic value for B) for CSAs that allow efficient merging. Array I requires
O(ng log n) bits of space, and sorting it takes O(nz logng) time. Hence the entire
algorithm takes O(|CSA| + n2(o +logn)) or O(n + nglogn) time, and works in
|CSA|+ O(nzlogn) or |CSA|+ O((n2 + o) log n) bits of space, respectively, with
regular and BWT-based merging.

A similar algorithm can be used to remove sequences from the collection. We
search for the positions of the suffixes to be removed, marking them on a bit
vector I. Then we scan the bit vectors ¥., removing bits as indicated by I.

4 CSA Construction

The algorithm for merging two compressed suffix arrays can be used as a building
block for a CSA construction algorithm. The basic idea is to divide the collection
into smaller ones, each of which can be indexed in limited memory, build CSAs
for the parts, and merge the resulting partial indexes by using the algorithm in
the previous section. For each part of the input, we first execute the build phase:

1. Build a CSA for the current input collection.

Then we merge the resulting partial index to the existing CSA by executing the
search, sort, and merge phases.

Assume a collection of size n has been split into p parts of size n/p. Then,
with any O(nlogn) time and space suffix array construction algorithm, the build
phases take a total of O(nlog(n/p)) time and require |CSA|+ O((n/p) log(n/p))
bits of space. By using BWT-based merging, the other three phases require
O(pn +nlogn) time and |[CSA|+ O((n/p + o) logn) bits of space. If we assume
p = O(logn) and o = O(n/p), we get an algorithm requiring O(nlogn) time
and |CSA| 4 O(n) bits of space.
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The algorithm can be parallelized with the following modifications:

1. Build. We can either build indexes for multiple input collections in parallel,
increasing memory usage, or use a parallel suffix array construction algorithm
such as [17].

2. Search. The ranks of the suffixes of a text are independent from the other

texts in the input collection. Hence we can perform the search for multiple

texts in parallel. If there are too few texts to distribute the searches evenly, we
can try to split a search into multiple smaller ones. Assume we are searching
for the ranks of the suffixes of text T backwards from position T'[j]. If we find

a substring T'[i, j] with no occurrences in the index, we can start reporting

the ranks, as the symbols after T'[j] do not affect them.

Sort. Use a parallel sorting algorithm.

4. Merge. Multiple bit vector pairs can be merged in parallel. If there are more
processors than bit vectors, work can be divided by splitting the vectors into
multiple parts.

bt

5 Implementation

We have implemented a sequential version of the algorithm, as well as a parallel
version for symmetric multiprocessor (SMP) systems The implementation is
written in in C4++. The input is assumed to be divided into a number of files,
each of them consisting of concatenated C-style O-terminated strings. Each string
is considered a separate text, with the trailing O interpreted as an end marker.
The build phase is executed for all input files in the beginning of the construction
to save memory. The resulting partial indexes as well as unused parts of the input
are stored in secondary memory until needed.

We use two kinds of bit vectors in the implementation: gap encoded and
run-length encoded. In gap encoding, the vector is encoded as a sequence of
integers denoting the distances between the successive 1-bits, while in run-length
encoding each run of 1s is encoded as the gap after the previous run followed by
the length of the run. In both cases, 6 codes [6] are used to encode the integers.

The compressed bit vectors are divided into blocks of B bytes. For each block,
we sample the first 1-bit in the block, writing down its rank and position in the
vector. Each sample takes 2logu bits, where u is the length of the vector. By
using these samples, we can determine, which block to decompress to answer bit
vector operations such as rank and select.

As a binary search among the samples is quite slow, we speed up the search
by constructing secondary indexes for rank and select when the vector is loaded
into memory. Both indexes consist of about b/5 integers of logb bits, where b
is the number of blocks in the vector. For rank, the ith value is the number of
the the block storing the first 1-bit at or after position ¢ - bu/b. For select, the
jth value is similarly the number of the block storing the 1-bit of rank j - 5n,/b,

! The implementation is available at
http://www.cs.helsinki.fi/group/suds/rlcsa/
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where n, is the number of 1s in the vector. By using these indexes, we can limit
the search to a (typically) small number of samples.

Instead of a compressed bit vector, we use a simpler structure as the indicator
vector I in the merge phase. This structure is just an array of native 32-bit or
64-bit integers in increasing order, each of them indicating a 1-bit in the vector.

Our implementation of CSA is based on the Run-Length Compressed Suffix
Array |21, 126]. We use a run-length encoded bit vector to represent each .
This makes the index most suitable for highly repetitive collections, while some
compression is lost on other types of collections.

Suffix array samples are marked in a gap encoded bit vector and stored as
log(n/d)-bit integers, where n is the size of the collection and d is the sample
rate. Inverse suffix array samples used in display are constructed when the index
is loaded, and stored as another array of log(n/d)-bit integers. The end points
of all sequences in the collection are marked in a gap encoded bit vector F.

The implementation supports multiple parallel queries. Each thread using the
CSA maintains separate state information, while large arrays, such as samples
and bit vector blocks, are shared between the threads. Large queries are not
automatically split into smaller ones, but must be parallelized manually.

Locate queries are optimized for retrieving multiple occurrences simultane-
ously [21]. This greatly reduces the required number of accesses to ¥ and suffix
array samples on highly repetitive collections.

We use the suffix array construction algorithm by Larsson and Sadakane [18]
in the build phase because of its robustness with highly repetitive collections.
The algorithm supports large alphabets, making it possible to use a different
character value for each $ in the collection. By limiting the size of the input files
to less than 2 gigabytes, we can build the CSA for a file of size n; in about 8n;
bytes. We build the indexes for multiple files in parallel, making this phase the
most memory intensive one in the algorithm.

When the partial indexes have been built, we take one of them as the initial
index, and begin merging the other indexes with it one at a time. We distribute
the sequences in the input file dynamically between the threads, and report the
ranks of the suffixes as either 32-bit or 64-bit integers. When all threads have
finished searching, we sort the resulting array, and increment each value by its
position in the array to get the bit vector I used in merging.

We merge the bit vectors instead of the BWTs in our implementation. Suffix
array samples, bit vector E, and each of the bit vectors ¥, are merged as separate
subtasks that are dynamically allocated to available threads. Large subtasks are
not divided into smaller ones, which can be a problem with small alphabets, or
when merging a large number of suffix array samples. In-place merging is not
implemented, doubling the memory usage of the bit vectors being merged.

6 Experiments

We tested the performance of our new algorithms experimentally. The experi-
ments were performed on a 16-core SMP system running Ubuntu Linux. The
system had 128 gigabytes of memory and four quad-core Intel Xeon X7350
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processors running at 2.93 GHz. All programs were compiled with GCC version
4.2.4. OpenMP was used for parallelization. MCSTIR was used to parallelize
std: :sort, as the GCC version in use did not support libstdc++ parallel mode.

Three data sets were used to test our construction algorithms: genome, enwiki,
and fiwiki. Genome is the human reference genome (NCBI build 34), with 25
sequences as individual files for a total of 2.88 gigabytes. Enwiki and fiwiki are
larger text collections downloaded from WikipediaE‘ Enwiki contains a dump of
the current versions of all English language Wikipedia articles (as of 2009-03-
13), while fiwiki is a highly repetitive collection containing all Finnish language
Wikipedia articles with their full version histories (as of 2009-01-22).

The Wikipedia data sets were in XML format, and had to be preprocessed
before indexing. In the enwiki collection, we considered the lines between tags
<page> and </page> as one sequence. In fiwiki, each sequence was contained be-
tween tags <revision> and </revision>. The extracted sequences were written
into 500-megabyte input files. In this final form, enwiki contains 16080833 se-
quences in 85 files for a total of 41.48 gigabytes, while fiwiki contains 5849111
sequences in 87 files for a total of 42.03 gigabytes.

We tested our construction algorithm on the three data sets. The sequential
implementation was used on the smaller genome data set, while the larger enwiki
and fiwiki collections were indexed using the parallel implementation. Index
parameters were mostly set to default ones. We used 32-byte block size on the
run-length encoded ¥, vectors, and 16-byte block size on the gap encoded vectors.
Suffix array sample rate was set to 64 on genome and enwiki data sets, and to
512 on the highly repetitive fiwiki data set. With these parameters, the final
index sizes for genome, enwiki, and fiwiki were 2.18 GB, 17.37 GB, and 2.13
GB, respectively. Table [[l summarizes the construction.

Table 1. Results for index construction. The construction times are in hours, and the
peak memory usage is in gigabytes. Throughput is measured in megabytes / second to
make comparisons with earlier results easier.

Construction Times
Collection Threads Memory Build Search Sort Merge Total MB/s

genome 1 2.9 075 0.86 0.08 0.74 243 0.34
enwiki 8 3637  3.25 1.88 0.37 3.42  9.00 1.31
16 64 297 1.17 0.37 3.35 792 1.49
fiwiki 8 32 5.33 1.75 0.36 2.16  9.60 1.24
16 64 5.01 1.22 0.38 1.99 8.62 1.39

We were able to index the human genome in about 145 minutes using less
than 3 gigabytes of memory. Even considering the improvements in processor
speeds and cache sizes, this is clearly better than the 24 hours and 3.6 gigabytes

2 http://algo2.iti.uni-karlsruhe.de/singler/mcstl/
3http://download.wikipedia.org/
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Table 2. Query times on the three data sets with a different number of (T)hreads.
(C)ount and (D )isplay times are in microseconds / character, while (L)ocate times are
in microseconds / occurrence.

genome enwiki fiwiki
T C L D C L D C L D

1 1.532 34.155 0.611 2.272 10.603 0.992 1.704 37.081 0.829
8 0.238 4.816 0.082 0.337 1475 0.137 0.262 5.163 0.116
16 0.211 2914 0.044 0.221  0.899 0.080 0.177  4.091 0.070

on a 1.7 GHz Pentium 4 system reported by Hon et al. |[14]. By using in-place
merging, we should be able to reduce our memory consumption by the final
size of the largest bit vector (almost 500 megabytes). Further memory would be
saved by replacing the run-length encoded bit vectors with gap encoded ones.

On the the enwiki and fiwiki collections, there was no significant speedup
from 8 to 16 threads. Only the search phase that involves relatively complex
operations on small pieces of data shows major improvement. This behavior is
probably caused by cache and memory bus issues in the other phases that process
large amounts of data sequentially. Another thing to note is that while merging
the small indexes of the highly repetitive fiwiki collection was fast, building the
partial indexes for it was much slower than for the enwiki collection.

We also tested our implementation by performing a large number of count,
locate, and display queries using 1, 8, and 16 threads. We generated a set of
random patterns for count and locate queries for each of the three collections. On
the genome data set, this was 1000 patterns of length 10, with about 15.15 million
total occurrences. We modified one pattern with over 2 million occurrences, as
it dominated the query times in locate. For enwiki and fiwiki, we generated
40 random patterns of length 15 per input file, for a total of 3400 and 3480
patterns, respectively. Patterns with more than 10° occurrences were ignored in
locate, making the total number of reported occurrences 16.89 million and 14.07
million, respectively.

Display queries consist of 10000 random prefixes of at most 10000 characters
each. The total size of the extracted prefixes was 95.37 megabytes for genome,
17.64 megabytes for enwiki, and 38.90 megabytes for fiwiki. Table 2] shows the
average query times. The results are mostly comparable with those in [21]].

The time required for one random access to the CSA is similar in all three
collections. We got a significant improvement from 8 to 16 threads for the same
reasons, as in the search phase of index construction. Locate performance was
similar on genome and fiwiki with different sample rates, because of the opti-
mizations for retrieving multiple occurrences. Enwiki was significantly faster, as
it benefited both from the low sample rate and the optimizations.

We could not directly compare the performance of our algorithm to other
similar algorithms. Of the few known implementations, the one by Hon et al. [14]
is not generally available. While Kéarkk&inen’s space-efficient BWT construction
algorithm [16] is available, we could not compile it in a 64-bit environment.
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Table 3. Construction times for Burrows-Wheeler transform. The BWT is not included
in the memory consumption, as both implementations write it directly to disk.

Our Algorithm Karkkainen’s
5 10 20 128 1024 4096

Time (minutes) 35 41 46 29 46 68
Memory (GB) 1.86 1.29 1.02 2.00 145 1.28

Finally, the dynamic FM-index by Gerlach [9] is outperformed by Kérkkéinen’s
algorithm in BWT construction, making comparisons to it redundant.

With this in mind, we compared our sequential algorithm to Kérkkainen’s
algorithm on BWT construction. The comparison was performed on a 2.66 GHz
Intel Core 2 Duo E6750 desktop system with 4 GB of memory (3.2 GB visible to
0S). We downloaded the 1.10 GB protein sequence collection from the Pizza &
Chili Corpus [7], and split it into 5, 10, and 20 parts for our algorithm. We used
parameter values v = 128 (default), 1024, and 4096 for Karkkéinen’s algorithm.
The results can be seen in Table Bl While Karkkéinen’s algorithm was faster
with default parameters, our algorithm performed better with limited memory.
We also achieved a reasonable speed while using less memory than the input
size, which is impossible with Kéarkkainen’s algorithm.

7 Discussion

We have presented a parallel algorithm for constructing compressed suffix ar-
rays, and demonstrated its practical effectiveness by indexing tens of gigabytes
with a throughput of about 4-5 gigabytes / hour. When the collection is highly
repetitive, this can be done in memory available on today’s high-end desktop
systems, except for the build phase of the algorithm. Hence if we distribute the
building of partial indexes to multiple systems, it should be feasible to index
collections of hundreds of gigabytes in size with the current implementation.

We actually considered indexing the German language Wikipedia with full
version history — a 933 GB highly repetitive collection. The plan was to use two
older SMP systems (both with 8 cores and 32 GB of RAM) to index 10-gigabyte
parts, and to merge the partial indexes on the larger system. Extrapolating from
the results with the Finnish language Wikipedia, this should have taken about
four days. However, due to the need for exclusive access to the systems, the
experiment had to be postponed.

This naturally leads to the question, whether a true distributed implementa-
tion of the algorithm is possible. The answer seems to be yes. In addition to the
build phase, sort and merge phases are also relatively easy to distribute. Sort-
ing is one of the fundamental operations in distributed computing, with many
efficient practical solutions, as is made evident by the Sort Benchmark[] On

4Thttp://www.hpl.hp.com/hosted/sortbenchmark/
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the other hand, merging can easily be split into as many independent tasks as
necessary, making its distribution straightforward.

Search phase is the hardest one to distribute, as solving it will probably require
a distributed CSA. As long as the CSA fits into the memory of a single node,
things are easy. We can just have a copy of the CSA in each node, and distribute
the sequences between the nodes. When the index grows larger, we must either
store it in secondary memory, or distribute it among the nodes (or both in case
of very large collections).

Using secondary memory yields a major performance loss, as we need one
random access to the CSA for each character inserted. While a sequential search
can process more than 1 MB/s, hard disks allow at most a few hundred random
accesses per second. Although modern solid-state drives are much faster, allowing
tens of thousands of random accesses per second, they are still about 30-40 times
slower than the CPU. With one solid-state drive, one might get a 100 megabytes
/ hour throughput, so with many drives reasonable speeds could be attained.

Storing the CSA in distributed memory creates different performance prob-
lems. Network latency becomes the main factor in sequential search speed, as
nodes must communicate with each other to access different parts of the CSA. On
the other hand, large bandwidth makes it possible to search for many sequences
in parallel, alleviating the problem. If many queries directed to the same node
are grouped into one packet, a 5-10 MB/s (logn bits / character) data stream
should be enough for one CPU core.

With this algorithm, distributed construction of CSAs seems feasible for multi-
terabyte collections. Much of the work can even be performed on a production
system, as new data arrives. Significant resources are only required for the final
merging of the indexes. The real question is, can the algorithm be extended for
the other structures required for suffix tree functionality [1]. If the answer is
positive, it could make compressed suffix arrays the data structure of choice for
many applications, such as large-scale analysis of genome data.
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Abstract. A new trend in the field of pattern matching is to design
indexing data structures which take space very close to that required
by the indexed text (in entropy-compressed form) and also simultane-
ously achieve good query performance. Two popular indexes, namely
the FM-index [Ferragina and Manzini, 2005] and the CSA [Grossi and
Vitter 2005], achieve this goal by exploiting the Burrows-Wheeler trans-
form (BWT) [Burrows and Wheeler, 1994]. However, due to the intricate
permutation structure of BWT, no locality of reference can be guaran-
teed when we perform pattern matching with these indexes. Chien et
al. [2008] gave an alternative text index which is based on sparsifying
the traditional suffix tree and maintaining an auxiliary 2-D range query
structure. Given a text T' of length n drawn from a o-sized alphabet set,
they achieved O(nlog o)-bit index for 7" and showed that this index can
preserve locality in pattern matching and hence is amenable to be used
in external-memory settings. We improve upon this index and show how
to apply entropy compression to reduce index space. Our index takes
O(n(Hi + 1)) + o(nlog o) bits of space where Hy, is the kth-order em-
pirical entropy of the text. This is achieved by creating variable length
blocks of text using arithmetic coding.

1 Introduction

Given a text T and a pattern P, finding all occurrences of P in T is the most
fundamental problem in the field of pattern matching. In the data-structural
sense, an index is built over T', and later some pattern P comes as a query; our
target is to solve the above problem more quickly with the help of the index.
Suffix trees [20/16] and suffix arrays [I5] are the most popular indexes which can
answer the query in O(p + occ) time and O(p + logn + occ) time respectively,
where n = |T|, p = |P|, and occ is the number of places where P occurs in 7.
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Historically, these two data structures are considered to consume “linear” space.
However, the notion of space measure here was in terms of memory words. When
measured in terms of bits, these indexes take O(nlogn) bits which is asymp-
totically higher than the n[logo] bits required to store the text in plain form;
here, o denotes the size of the common alphabet set X' from which characters of
T and P are drawn. Practically when we are indexing DNA texts (with o = 4),
these indexes are reported to take 15 to 50 times more space than the original
data. Furthermore, the text T' can often be compressed into nHj, bits by entropy-
compression methods like gzip or bzip, where Hy < logo denotes the kth-order
empirical entropy of the text. Thus, the actual gap between the indexing space
and the storage space is even larger.

A longstanding open question was to develop a text index which takes “truly”
linear space. Grossi and Vitter [10] presented the first text index taking O(n log o)
bits. Simultaneously, Ferragina and Manzini [6] presented an index based on
Burrows-Wheeler transform (BWT) [3] which took O(nHj) bits. Both indexing
schemes were further refined [I8/97] to take nHj, + o(nlog o) bits, and various
space-time trade-offs are also obtained (see [I7] for an excellent survey). One of
the main approach in designing all these indexes is to permute the text according
to the BWT. However, a short-coming of this approach is that BWT permuta-
tion completely shatters the locality of text characters. Each next character of
the pattern being matched can occur at a random location in the BWT. Hence,
no efficient external memory results were possible with such an approach. Chien
et al. [4] took a different approach of sparsifying the suffix tree to achieve space
reduction. The main idea was to combine a few contiguous characters from the
text to create a block, where each block in turn is treated like a new alphabet
symbol (or a meta-character). The index structures then includes the suffix tree
of this blocked text as a component, which is effectively a miniature of the suf-
fix tree of the original text but with fewer suffixes. This leads to an alternative
O(nlogo)-bit index when we set each block to contain roughly d = 0.5log, n
characters.

In this paper, we show the first entropy-compressed index in external memory
which can effectively exploit locality in pattern matching. Our technique is to
improve the blocking technique of Chien et al. [4]. We first introduce a variable-
length blocking technique which is combined with arithmetic coding scheme.
Using this we improve the space from O(nlogo) bits to O(nHy) + o(nlogo)
bits when k& = o(log, n) and o = O(n'=¢) for any fixed ¢ > 0. We first
present an index that works efficiently in the RAM model. Then, we show
how to convert it to work in the external-memory model, and show that by
maintaining an O(n¢)-bit table in RAM, pattern matching queries can be an-
swered in O((plogn)/B + log®n/(log o log B) + occlogg n) 1/0s; here, B de-
notes I/O block size in terms of memory words. This result is further improved
to O(p/(Blog, n) + log* n/loglogn + occlogy n) 1/Os by using O(n)-bit extra
space.

On a related note, there were several attempts at designing compressed in-
dexes in secondary memory based on LZ-indexes. In [2], Arroyuelo and Navarro
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proposed an index whose space is O(nHy) + o(nlogo), but the I/O bounds
for pattern searching were not given. Their work is practical in nature and
claims to answer pattern matching queries in about 20-60 disk accesses. In [§],
Gonzalez and Navarro provided an index which achieves O(p + occ/B) 1/Os for
answering pattern matching query. However, their space usage is O((nlogn) x
Hj log(1/Hy)) bits, which is an O(logn) factor more in terms of the optimal
space complexity. Our techniques of blocking text and encoding blocks (meta-
characters) using arithmetic coding are similar to the ones used in the above
LZ-index line of work [2I8]. The key difference is in the way how the size of the
blocks is controlled to achieve the desired theoretical bounds.

2 Preliminaries

This section introduces a few existing data structures for text indexing and
orthogonal range searching which form the building blocks of our compressed
text indexes. We will briefly explain their roles in our indexes, while a more
detailed description is deferred in later sections. We also give a brief summary
of the external-memory model of [IJ.

Throughout the paper, we use T to denote the text to be indexed, and n = |T|
to denote its length. We use P to denote the pattern which comes as an online
pattern matching query, and p = |P| to denote its length. Further, we assume
the characters of T" and P are both drawn from the same alphabet set X whose
size is o.

2.1 Suffix Trees, Suffix Arrays, and Burrows-Wheeler Transform

Suffix trees [20/16] and suffix arrays [I5] are two well-known and popular text
indexes that support online pattern matching queries in optimal (or nearly opti-
mal) time. For text T'[1...n] to be indexed, each substring T[i..n], with i € [1, n],
is called a suffix of T. The suffix tree for T' is a lexicographic arrangement of
all these n suffixes in a compact trie structure, where the ith leftmost leaf rep-
resents the ith lexicographically smallest suffix. Each edge e in the suffix tree
is labeled by a series of characters, such that if we examine each root-to-leaf
path, the concatenation of the edge labels along the path is exactly equal to the
corresponding suffix represented by the leaf.

Suffix array SA[l..n] is an array of length n, where SA[i] is the starting
position (in T') of the ith lexicographically smallest suffix of T. An important
property of SA is that the starting positions of all suffixes with the same prefix
are always stored in a contiguous region in SA. Based on this property, we define
the suffix range of a pattern P in SA to be the maximal range [¢, r] such that for
all j € [¢,r], SA[j] is the starting point of a suffix of 7" with P as a prefix. Note
that SA can be obtained by traversing the leaves of suffix tree in a left-to-right
order, and outputting the starting position of each leaf (i.e., a suffix of T') along
this traversal. In particular, we have the following technical lemma about suffix
trees, suffix arrays, and suffix ranges.
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Lemma 1. Given a text T of length n, we can index T using suffiz tree and
suffiz array in ©(nlogn) bits such that the suffix range of any input pattern P
can be obtained in O(p) time.

Suffix trees or suffix arrays maintain relevant information of all n suffixes of T’
such that on given any input pattern P, we can easily search for the occurrences
of P simultaneously in each position of T. However, a major drawback is the
blowup in space requirement, from the original @(nlogo) bits of storing the
text in plain form to the @(nlogn) bits of maintaining the indexes. In our
compressed text indexes, we apply a natural and very simple idea to achieve space
reduction, as suggested in [4] by maintaining only a fraction of these suffixes.
The consequence is that we can no longer search all positions of T in a single
pass. Instead, we need multiple passes, thus causing some inefficiency in the
query time. On the other hand, we gain much space reduction by storing fewer
suffixes.

The Burrows-Wheeler transform of a text T' is an array BWT of characters
such that BWTYi] is the character preceding the ith lexicographically smallest
suffix of T. That is, BWTYi] = T[SA[i] — 1].

2.2 External-Memory Model

The external-memory model [I] or I/O model was introduced by Aggarwal and
Vitter in 1988. In this model, the CPU is connected directly to an internal
memory of size M, which is then connected to a much larger and slower disk.
The disk is divided into blocks of B words (i.e., Blogn bits). The CPU can only
operate on data inside the internal memory. So, we need to transfer data between
internal memory and disk through I/O operations, where each I/O may transfer
a block from the disk to the memory (or vice versa). Since internal memory
(RAM) is much faster, operations on data inside this memory are considered
free. Performance of an algorithm in the external-memory model is measured by
the number of I/O operations used.

2.3 String B-Tree

String B-tree (SBT) [5] is an index for a text T that supports efficient online
pattern matching queries in the external-memory setting. Basically, it is a B-
tree over the suffix array SA of T' but with extra information stored in each
B-tree node to facilitate the matching. The performance of SBT is summarized
as follows.

Lemma 2. Given a textT of length n characters , we can index T’ using a string
B-tree in ©(n/B) blocks or ©(nlogn) bits such that the suffic range of any input
pattern P of length p can be obtained in O(p/(Blog, n) + loggn) I/0s. O

In our compressed text index for the external-memory setting, we again achieve
space reduction by maintaining fewer suffixes. Thus, our index includes a spar-
sified version of the SBT as the main component.
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2.4 Orthogonal Range Searching in 2D Grid Using Wavelet Tree

In our compressed text index, in addition to the suffix trees or SBT, another key
component is a data structure to represent some integer array A[l...m|, with each
integer drawn from [1, n], which can efficiently support online 4-sided queries of
the following form:

Input: A position range [¢,r] and a value bound [y, y']
Output: All those z’s in [¢, 7] such that y < A[z] </

The above problem can easily be modeled as a geometric problem as follows.
First, for each ¢ € [1,m], generate a point (i, A[{]) in the 2-dimensional grid
[1,m] x [1,n]. This forms the representation of the array A. Then, for any input
query with position range [¢, r] and value bound [y, y’], the desired output corre-
sponds to all points in the grid that are lying inside the rectangle [¢, ] x [y, y/].

Such a query is called an orthogonal range query in the literature, and many
indexing schemes are devised that have different tradeoffs between index space
and query time. In our compressed text indexes, we will require an index for A
which takes O(mlogn) bits of space, so we select the wavelet tree [TAI2/21] as
our choice, whose results are summarized in the following lemma.

Lemma 3. Given an integer array A of lengthm with values drawn from [1,n], we
can index A in O(mlogn) bits such that the 4-sided query of any position range [¢, ]
and any value bound [y, y'] can be answered in O((occ + 1) logn/loglogn) time in
the RAM model and O((occ + 1) logg n) I/Os in the external-memory model. O

3 The Framework of Our Indexing Scheme

This section first describes the general framework of our index design, which
consists of a combination of the building block data structures mentioned in
Section 2. Afterwards, we will look at the general approach to perform pattern
matching based on our index. The following two sections details with the design
and the analysis of the index performance.

3.1 The Framework of the Index Design

To obtain our compressed index, we perform the following three key steps:

Step 1: Given a text T', we first transform T into an equivalent text T’ such that
T’ consists of at most O((nHy, + o(nlogo))/logn) meta-characters, where each
meta-character represents at most d consecutive characters in the original text
for some threshold d. In addition, we also require that each meta-character can
be described in O(log n) bits, so that T’ can be described in O(nHy) + o(nlog o)
bits.

Step 2: We maintain the suffix tree or String B-Tree for T”, where we consider
each meta-character of T” as a single character from a new alphabet.
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Step 3: We perform the Burrows-Wheeler transform on 7T’ to obtain an array
A. Then we maintain the wavelet tree for A.

3.2 The Framework of the Pattern Matching Algorithm

The suffix tree or SBT in our index will maintain only the suffixes of 7", which
correspond to only a fraction of the original suffixes. Then, when a pattern P
occurs in 7', it will in general match the corresponding meta-characters of 7’ in
the following way:

The first part of P, say P[1..i], matches the suffix of a meta-character
T’[j] and the remainder of P, say P[i + 1..p], matches the prefix
of T'[j + 1..|T"]]. We shall call such an occurrence of P an offset-i
occurrence of P in T

Our pattern matching algorithm is to find the offset-i occurrences of P sepa-
rately for each relevant 7. In our design, each meta-character of T’ represents at
most d original characters of T'. It is therefore sufficient to consider only those
i in [0,d — 1]. This leads to the following pattern matching algorithm, which
consists of two major steps:

Step 1: Compute the suffix range of P[i + 1..n] in the suffix array SA" of T” for
each i € [0,d — 1] using the suffix tree (ST”) or String B-Tree (SBT") of T".

Step 2: For each i € [0, d—1], use the suffix range of P[i+1..n] to issue a 4-sided
query in the wavelet tree of A to find all offset-i occurrences of P. (Details of
how to issue the corresponding 4-sided query are given in the next section.)

4 Index for Internal Memory Model

In this section, we show a simple index based on variable length meta-character
blocking and sparse suffix tree in the internal memory model. Later, in section Q]
we shall show how to extend our results to the external memory model.

4.1 Index Design

In the index given by Chien et al. [], the given text T is converted to an
equivalent text T’ by blocking every d = 0.5 log, n characters. Each block, called
a meta-character, contains fixed number of characters. The transformed text
T’ consists of O(n/log, n) meta-characters. Hence, the suffix tree of 17" takes
O(nlogo) bits spacelll The new index we propose in this paper improves the
space complexity to O(nHy)+ o(nlogo) bits. Here, instead of having each meta-
character contain a fixed number of characters, we allow a variable number
of characters. Each meta-character is encoded in such a way that, its first k
characters are written explicitly (using fixed length encoding) and the rest using
kth-order arithmetic coding. The number of characters within a meta-character
is restricted by the following two conditions.

1 Assuming each integer and each pointer is at most logn bits long.
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— The number of characters should not exceed a threshold d = log®n /logo.
— After encoding, the total length should not exceed 0.5logn bits 3

In our new index, the transformation of T into T’ can be performed as follows.
Start encoding T' from T[1] and get its longest prefix T'[1...5], which satisfies the
conditions of a meta-character. Hence, T'[1...j] in its encoded form is our first
meta-character. After that the remainder of T' is encoded recursively. (Note that
the strings corresponding to distinct meta-characters are not required to be
prefix-free.) The starting position of each meta-character is stored in an array
M such that M[i] corresponds to the starting position of ith meta-character in
T. In other words, the substring T[M (2)...(M[i + 1] — 1)] corresponds to the ith
meta-character. For instance, M[1] = 1 and M|[2] = j + 1. By concatenating all
these meta-characters (in the order in which the corresponding block appears in
T), we obtain the desired string 7.

Since each meta-character corresponds to a maximal substring of T" without
violating the two conditions, a meta-character corresponds either to (i) exactly
d characters of T, or (ii) its encoding is just below 0.5logn in which case the
encoding is of ©(logn) bits and corresponds to ©(log, n) characters of T B Note
that in both cases each meta-character corresponds to 2(log, n) characters.

Direct entropy compression of T would have resulted in nHjy + o(nlogo)-
bit space for T”. But in our scheme, the first k characters are written explic-
itly in each block. This results in an overhead of O(én/ log,n) x klogo) =
o(nlogo) bits to encode T, assuming k = o(log, n)f] Thus, the number of
meta-characters from (i) cannot exceed n/d = o(nlogo/logn), while the num-
ber of meta-characters from (ii) is bounded by O((nHjy + o(nlogo))/logn).
In summary, the length of 7V = nHy + o(nlogo) bits, and there is a total of
O((nHy + o(nlog o))/ logn) meta-characters in 7".

By considering each meta-character as a single character from the new alpha-
bet set, we construct the suffix tree ST’ of T'. As the length of T" is given by
O((nHy + o(nlogo))/logn), so is the number of nodes in ST’. Thus, ST’ takes
O((nHy + o(nlogo))/logn x logn) = O(nHy) + o(nlog o) bits of space.

Lemma 4. The total number of distinct meta-characters is O(y/n).

Proof. Each meta-character has an encoding between 1 and 0.5 logn bits. Thus,
the number of distinct meta-character is at most 302 1°8™ 27 = O(y/n). 0
2 Without loss of generality, we assume here that o < n'/. The parameters can be
appropriately adjusted for the more general case when o = O(n'™) for any fixed
e> 0.

Here, we make a slight modification that one extra bit is spent for each meta-
character, such that if our kth-order encoding of the next o(log, n) characters already
exceeds 0.5logn, we shall instead encode the next 0.5log, n characters (i.e., more
characters) in its plain form. The extra bit is used to indicate whether we use the
plain encoding or the kth-order encoding.

As mentioned, there is also an extra bit overhead per meta-character; however, we
will soon see that the number of meta-characters = O((nHx + o(nlogo))/logn) so
that this overhead is negligible.
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We also construct an auxiliary trie-structure 17 which can be used to rank each of
the meta-characters among all the meta-characters that are constructed from the
text. Let B be a block in T' which corresponds to a meta-character C' in T”, and
let B denote the string obtained by reversing the characters of B. We maintain a
string L which is the concatenation of all distinct B’s in the uncompressed form
and we construct a compact trie I storing all distinct B’s. The edges of IT are
represented using two pointers, which are the starting and ending points of the
corresponding substring in L. String L takes O(y/n x (log?n/logo) x logo) =
o(n) bits and II takes O(y/n x logn) = o(n) bits of space.

Let II(i) represent the ith leftmost leaf of II. Now we shall show how to
obtain an array A from which we construct the wavelet tree. For this, we first
compute BWT of T'. Let BWTY]i] = C, where C is a meta-character and B is
its corresponding character block. Now, search for B in IT and reach a leaf node
I1(5); then we set Ali] = j. That is, A[i] is the leaf-rank of B in II. Finally,
we maintain a wavelet tree of A based on Lemmas 3 and 4, whose space takes
O((nHy +o(nlogo))/logn) x1log(O(y/n)) = O(nHy)+ o(nlogo) bits. The total
space requirement for our index is O(nHy) + o(nlog o) bits.

4.2 Pattern Matching Algorithm

The suffix tree ST’ maintains only the suffixes of T’. Therefore navigating
through ST’ can only report those occurrences of the query pattern P which
start at a meta-character boundary. But in general, P can start anywhere in-
side T', where P[1...9] matches to the suffix of a meta-character 7'[j] and the
remaining of P, P[i+ 1...p] matches the prefix of T'[j +1...|T"|]. We call such an
occurrence of P an offset-i occurrence of P in T'. We need to check for all possible
offset occurrences. Since the number of characters inside a meta-character is at
most d, it is sufficient to check for those offsets ¢ where ¢ = 0,1,2,...,d — 1.

To find offset-i occurrences, we let Pp,. represent the prefix P[1...i] and Pyys
represent the suffix P[i+ 1...p] of the pattern P. We first convert Py, into P, f
by blocking this into meta-characters. Following our convention, we use m to
denote the reverse of P,... Next, we search for m in the compact trie II to
reach a position u* (if exists); note that v* may be an internal node, or within
an edge, rather than a leaf. In any case, we use IT (ije) and II (iyignt) to denote,
the leftmost and rightmost leaves in the subtree of u*.

We are now ready to show how to search for the desired offset-i occurrences of P:

L. Search for Py, in ST' and obtain its suffix range SA'[(...r]. Here P, is of
length at most plogo, hence by assuming standard word length of O(logn)
bits, this matching step can be performed in O(p/log,n) time. But for
matching an ending portion of a pattern, which may be smaller than the
length of a meta-character, we need to perform a “predecessor search” in
order to get the range. Therefore, in general the suffix range can be obtained
in O(p/log, n + logn) time [l

5 More precisely, we maintain the SBT data structure for short patterns as suggested
by Hon et al. [I1] to accomplish the task. We defer the details in the full paper.



On Entropy-Compressed Text Indexing in External Memory 83

2. We need to find out those text positions in SA’[{...r], such that P, occurs
before those positions. This is equivalent to finding all z’s in [¢, 7], such that
ileft < A[Z] < im’ght-

3. Now the search for offset-i occurrences is reduced to an orthogonal range
searching problem in 2D grid. We use the wavelet tree structure of A to solve
this query. According to Lemma 3, this will take O((occ(i)+1) logn/ loglogn)
time, where occ(i) represents the number of offset-i occurrences.

Lemma 5. Based on ST’ and the wavelet tree of A, all the offset-i occurrences
of a pattern P in T, which cross at least one meta-character boundary, can be
reported in O(p/log, n + logn + occ(i) logn/loglogn) time, where occ(i) is the
number of offset-i occurrences of P in T. O

The above steps need to be performed for all possible offsets i, where i =
0,1,...,d — 1. For each offset i we need to convert Py, into P, .. Assum-
ing the conversion is done independently for each offset, it will in total take
O(plogn + dlogn) time. This gives the following lemma.

Lemma 6. A given text T can be indezed in O(nHy) + o(nlogo) bits such that
all the occurrences of a pattern P in T, which crosses at least one meta-character
boundary in T, can be reported in O(plogn + log®n/loga + occlogn/ loglogn)
time. a

4.3 Index for Short Patterns

The methods described before will work only for those occurrences of a pattern
that cross a meta-character boundary. To find those short patterns which start
and end inside the same meta-character, we rely on an auxiliary data struc-
ture which is a generalized suffix tree A of all the distinct meta-characters that
appear. Considering Lemma 4, the space for A can easily be bounded by o(n).

The search begins by matching the pattern P in A to obtain the list L of all
the distinct meta-characters in which P occurs (along with the relative positions
of pattern occurrences inside a given meta-character. Now, on top of this, for
each distinct meta-character C' appearing in the text, we maintain the list Ho
of all the positions in 7" where the meta-character C' occurs. These lists overall
take logn bits per meta-character and hence the total space for the H structure
is bounded by O(nHy)+o(nlog o) bits. Once the list L of meta-characters (along
with the internal positions) is obtained from A we use H as the de-referencing
structure to obtain the final set of positions.

Lemma 7. A given text T can be indezed in O(nHy) + o(nlogo) bits such that
all the occurrences of pattern P in T, which starts and ends inside the same
meta-character in T, can be reported in O(p + occ) time. a

The following theorem concludes our result.

Theorem 1. A text T can be indexed in O(nHy) + o(nlogo) bits space, such
that all the occurrences of a pattern P in T can be reported in O(plogn +
log® n/log o + occlogn/ loglogn) time. O
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5 Extension to External Memory Model

In this section, we extend our results in the RAM model to the external memory
model[§ For this, we replace each data structure in internal memory model with
its external memory counterpart. The sparse suffix tree ST’ will be replaced by
a sparse string B-tree SBT" of T'. The wavelet tree of array A will be replaced
with its external memory version [I2II4]. By performing a similar analysis, and
setting the threshold d to be log? n/logo, the searching for a pattern P in
T will take Z?;OI O(p/(Blog,n) + loggn + occ(i)loggn) = O((plogn)/B +
(logg n)(log” n/ log o) + occloggn) 1/O0s, where occ(i) represents the number
of offset-i occurrences that cross at least one meta-character boundary and occ
represents the total number of such occurrences. The generalized suffix tree for
short patterns will be replaced by string B-tree, which can perform pattern
matching in O(p/B + logg n + occ) 1/Os. Immediately, we have the following
theorem.

Theorem 2. A textT can be indexed in O(nHy)+o(nlog o) bits in the external
memory, such that all occurrences of pattern P can be reported in O((plogn)/B+
log® n/(log o log B) + occlogz n) I/0s.

Indeed, we can reduce the O((plogn)/B) term to O(p/(Blog, n)), if we allow
slightly more index space. This is done by combining our index with Sadakane’s
Compressed Suffix Tree (CST) [19]. Our goal is to avoid repeated pattern match-
ing for various offsets, which is done by using the “suffix link” functionality pro-
vided by CST. The main idea is that if some part of the pattern is matched
during the offset-k search then we avoid re-matching it for offset-(k + 1) search
and onwards; instead we rely on the suffix link to provide information for the
subsequent search.

In the remainder of this section, we sketch how the pattern matching algorithm
can be sped up by storing the CST. Firstly, for any internal node u inside the
suffix tree, let path(u) denote the string obtained by concatenation of edge labels
from root to u. The suffiz link of u is defined to be the (unique) internal node v
such that the removal of the first character of path(u) is exactly the same as
path(v). However, suffix link with respect to the original suffix tree may not
exist in the sparse suffix tree or the sparse string B-tree (simply because some
suffixes are missing).

In our algorithm, the full (non-sparse) suffix tree on 7" must be used, so that
we can follow the original suffix links. To stay within our space bounds of O(nHy,)
we cannot afford to use the regular suffix tree. This explains why we choose the
CST of [19], which provides all suffix tree functionalities in compressed space.

5 Recall that the block size parameter B is measured in terms of memory words while
the pattern length p is measured in terms of characters. Here, we further assume that
the decoding table for arithmetic coding fits in the internal memory. By choosing
appropriate parameters and with the condition that & = o(log, n), we can ensure
that the decoding table size is O(n®) bits.
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5.1 Compressed Suffix Tree

Let us assume we have stored Compressed Suffix Tree CST of the text T. In
addition, all the nodes in C'ST which are also in the sparse suffix tree ST are
marked. For this marking, a bit-vector is maintained in addition to CST. The
nodes in C'ST are considered in pre-order fashion and whenever a marked node is
visited we write “1” or else we write “0”. Thus, this bit-vector B stores marking
information on the top of C'ST.

We shall need the following functionalities provided by the recent CST of [19]
together with our bit-vector B:

Suffix link: Given a node u (by its pre-order rank) in CST, return the suffix
link node v (by its pre-order rank). This function can be done in O(log o)

I/Os.

Highest marked descendant: Given a node u in CST, its highest marked
descendant is defined to be the node v such that v is in the subtree of u,
v is marked, and no nodes between u and v is marked. Such a node v (if
exists) is unique. This is due to the fact that the least common ancestor of
two marked nodes (i.e., the least common ancestor of two sparse suffix tree
nodes) is also marked. Note that this functionality is not directly provided
by CST of [I9] but can easily be implemented in O(1) I/Os by storing a
rank/select data structure over the bit-vector B along with the parentheses
encoding of CST.

Lowest marked ancestor: Given a node u in CST, report its lowest marked
ancestor (if exists). This can be done in O(1) I/Os based on B and its the
rank/select data structure.

Leftmost leaf: Given a node u in CST, locate its leftmost (rightmost) leaf

node in its subtree. This can be done in O(1) I/Os.

String-depth: Given a node u, report the length of path(u). This can be done
in O(log? n/loglogn) 1/Os.

Weighted level ancestor: Given a leaf ¢ and string-depth w, report the
(unique) node u such that u is the first node on the path from root to ¢ with
string-depth > w. This node u must be a lowest common ancestor between
£ and some other leaf £', so that we can find u if ¢’ is determined. Such ¢’
can be found by binary searching all leaves to the right of ¢, and examine
the string-depth of lowest common ancestor of ¢ and the leaf. The process
can be done in O(log®n/loglogn) 1/0s.

5.2 Sparse String B-Tree

Our explanation below shall refer to both the sparse suffix tree and the sparse
string B-tree. However, the sparse suffix tree is never stored and is just for
the sake of notation and the identification of nodes. Firstly, the following two
functionalities of the sparse string-B tree SBT’ will be used. The I/O complexity
for both functions follows directly from the searching strategy of SBT in the
original paper [5].
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1. Given a pattern P, let lcp(P, ST”) be the length of the longest common prefix
of P with any suffix stored in SBT": we can use O(lep(P,ST")/B +logg n)
I/Os to find the node u (by its pre-order ranking in the suffix tree ST")
such that u is the node with smallest string-depth in ST” and lep(P, ST') =
lep (P, path(u)).

2. If we are given a node u in ST’ such that the pattern P is guaranteed to
match up to some length x on path(u), then the above lcp search can be
done in O((lep(P, ST') — x)/B +loggn) I/0s.

5.3 Pattern Matching Algorithm

Now, we are ready to show how we match a pattern P in this combination of
sparse string B-tree and CST. First we start with finding offset-0 occurrences,
then we find offset-1 occurrences, then offset-2 occurrences and so on. Let P;
denote the pattern P with the first ¢ characters deleted. Thus we have to match
Py, P1, Py, ..., Pyj_1 in the string B-tree. Corresponding to each offset i we find
the range [{;, ;] in the sparse string B-tree.

We start matching the pattern P = Py in SBT”; this allows us to find the node
w in ST', such that u is the closest node from root such that lcp(path(u), P) =
lep(P, ST"). If the pattern is matched entirely, then we call this offset a success
and output its range. In this case we set lcp = p, and also obtain the range
[€o,70]. If not, we set lep = lep(P, ST’) and follow the “suffix link”. Let’s first
define the notion of suffix link in the sparse suffix tree ST’ (or SBT").

Definition 1. Given the pair (u,lcp), let pair (v,lep’) be such that (1) lep’ =
lep —t, (2) path(u)[t + 1..Icp] = path(v)[1..lcp’] and (3) t is the smallest integer
> 1 for which such a node v exists in ST'. If more than one v exists in ST, we
set v to be the highest node among them. Then (v,lcp’) as is called t-suffix link

of (u, lep).

Now, we show how to compute t-suffix link for pair (u, lep) in O(t log® n/ loglog n)
I/Os. This is done by using the suffix link functionality provided by C'ST. First, we
use the pre-order rank of u to find the corresponding node in C'ST. Then, inside
CST, we can find u’s ancestor y such that string-depth of y is just more than
lep. This can be done by the weighted level ancestor query in O(log® n/ loglog n)
I/Os. The node y represents the location where P stops in the CST if P were
matched with the CST instead. To proceed for the next offset, we follow the
suffix link from y and reach node w (and increment ¢ by 1). Now, we first find
the lowest marked ancestor m of w in O(1) I/Os and check if its string-depth
is at least lcp — t. If so, we come back to its corresponding node v in ST’ and
set Icp’ = lcp — t. Note that (v,lep’) is the desired t-suffix link of (u, lcp), so
that we can proceed with the pattern matching in sBT'[l Otherwise, if m does
not exist or its string-depth is too small, we find in the subtree of w and try
the highest marked descendant m’ of w in O(1) I/Os. If m’ exists, we come

” Note that when we switch back to a node in SBT’, we choose the top-most node in
SBT’ corresponding to the node v.
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back to its corresponding node v’ in ST’ and set lcp’ = lcp — t, while it follows
that (v', lep’) is the desired t-suffix link of (u, Icp) so that we can again proceed
with the pattern matching in SBT". If there is no such marked descendant m/’,
we follow further the suffix link from w (and increment t), and keep following
suffix links until we reach either a node m or m’ using the above procedure. In
this case, we can be sure that none of the offsets between 1 and ¢ — 1 would
produce any results. Consequently the corresponding (v, lcp’) or (v/, lep’) will
be the desired t-suffix link and we can directly jump to offset-¢t match. This
procedure gives us all the ranges [¢;, r;] for all the possible offsets (up to at most
d of them).

5.4 Analysis

The space taken by both CST and string B-tree is O(nHy, +n) + o(nlog o) bits.
For matching the pattern P, there are d phases. In each phase, we match some
distinct part of P and then spend O(log3 n/loglogn) I/Osin C'ST plus an extra
O(logg n) I/Os (apart from matching characters of P) in SBT’. Thus, in total,
we spend O(dlog®n/loglogn) in addition to the I/O in which the pattern is
matched with the actual text inside the SBT’. On the other hand, since the
characters of P are accessed once and are accessed sequentially, the total I/Os
for matching characters of P can be bounded by O(p/(Blog, n)+dloggn). For
the conversion of the characters in P into the corresponding meta-characters,
we assume that it is done in RAM so that it does not incur additional I/Os.
Overall, this gives us O(p/(Blog, n)+dlog® n/loglogn) 1/Os for finding out all
the ranges [{o, ro], [l1,71], -, [la—1, Td—1]-

Once these ranges are ready, we can use the external memory wavelet tree to
find out the actual occurrences (which cross a meta-character boundary). The
short patterns are handled as before using the generalized suffix tree approach
(except we are using a SBT instead). Since the space of CST is O(nHy +n) bits
which is the bottleneck, we may reduce the blocking factor to be d = 0.5logn
(thus having the effect of more meta-characters in 7’ but faster query) without
affecting the space. The following theorem captures our new result.

Theorem 3. A text T can be indexed in O(nHy, +n) + o(nlogo) bits in exter-
nal memory, such that all occurrences of a pattern P in T can be reported in
O(p/(Blog, n) + log* n/loglogn + occlogg n) 1/0s.

6 Conclusion

We show the first entropy compressed text index in external memory. Our index
is based on the paradigm of using sampled suffixes [I3], and achieves locality
while matching pattern which was lacking in other BWT based indexes. The
main idea here is to partition the text into variable length block according to
their compressibility and then compress each block using arithmetic coding. We
show how this idea can be combined with the notion of suffix links by using CST
of Sadakane[19].
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We achieve optimal query 1/O performance with respect to the length p of
the input query pattern, taking O(p/(Blog, n)) I/Os. As noted by Chien et
al. [], the lower bounds in range searching data structures suggest that the last
term O(occlogp n) cannot be improved to O(occ/B). But, it may be possible to
improve the middle term of polylog(n). Another possible improvement could be
in reducing space term from O(nHy) to strictly nHj.
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Abstract. To compute Burrows-Wheeler Transform (BWT), one usually builds
a suffix array (SA) first, and then obtains BWT using SA, which requires much
redundant working space. In previous studies to compute BWT directly [SV12],
one constructs BWT incrementally, which requires O(nlogn) time where n is
the length of the input text. We present an algorithm for computing BWT directly
in linear time by modifying the suffix array construction algorithm based on in-
duced sorting [13]]. We show that the working space is O(n log o loglog, n) for
any o where o is the alphabet size, which is the smallest among the known linear
time algorithms.

1 Introduction

A Burrows-Wheeler Transform (BWT) [1]] is a transformation from a text to a text,
which is useful for many applications including data compression, compressed full-text
indexing, pattern mining to name a few.

To compute BWT, one usually builds a suffix array (SA) first, and then obtains
BWT from SA. Although both steps can be done in linear time in the length of the
text [8I9410], it requires large working space. Although the space for the result of BWT
isnlgo bits where n is the length of the text, and o is the alphabet size, that for SA is
n lg n bits. For example, in the case of human genomes, n = 3.0 x 10% and ¢ = 4, the
size of BWT is about 750 MB, and that of SA is 12 GB. Therefore, the working space
is about 16 times larger than that for BWT.

Previous studies [SU12]] showed that one can compute BWT without SA by implic-
itly adding suffixes from the shortest ones to longest ones. However, these algorithms
are slow due to the large constant factor, and their computational cost are O(n logn)
time. There also exist other types of algorithms. Hon et al. [6] gave an algorithm
using O(nlogo) space and O(nloglogo) time. Na and Park [I3] gave one using
O(nlogology n) space and O(n) time where o = logs 2.

In this paper, we present an algorithm for computing BWT directly in linear time
using O(nlog o loglog, n)-bit space. Our algorithm is based on the suffix array con-
struction algorithm based on induced sorting [15]]. In original SA algorithm, the whole

"lg x denotes [log, x].

J. Karlgren, J. Tarhio, and H. Hyyrd (Eds.): SPIRE 2009, LNCS 5721, pp. 90 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Time and space complexities. Hy is the order-0 empirical entropy of the string and
Ho <logo. o =logs 2.

Time Space (bits) References

O(n) O(nlogn) [2U8L9ITOIT5] (compute SA)
O(nlogn)  O(nHo) (5

O(nloglogo) O(nlogo) (6l

O(n) O(nlogo) I6] (log o = O((loglogn)*~<))
O(n) O(nlogologon)  [13]

O(n) O(nlogologlog, n) This paper

SA are induced from the carefully sampled SA. Our algorithm simulates this algorithm
by using BWT only, and induces whole BWT from the sampled BWT. Our algorithm
works in linear time and requires the working space close to that for input and output.
Moreover our algorithm is simple and easy to implement. Table [I] gives a comparison
with other algorithms. Our algorithm uses the smallest space among the linear time
algorithms.

2 Preliminaries

Let T'[1, n] be an input text, n its length, and X its alphabet set, with o = | X|. We denote
the i-th character of T by T'[i], and the substring from i-th character to j-th character
for i < j by Ti,j]. We assume that T is followed by a special character T'[n] = $,
which is lexicographically smaller than any other characters in 7', and do not appear in
T elsewhere. We also assume o < n because otherwise nlogo = 2(nlogn).

2.1 Suffix Arrays and Burrows-Wheeler Transform

A suffix of T is T; = T[i,n] (i = 1,...,n). Then, a suffix array of T, SA[1,n] is
defined as an integer array SA[1, 7] of length n such that Ts4p;) < Tgafi41) for all
it =1,...,n — 1 where < between strings denotes the lexicographical order of them.
S A requires n lg n bit of space.

A Burrows-Wheeler Transform (BWT) of a text T', B[1, n] is defined as follows;

([ TISA[] - 1] (SA[i] > 1)
Bi= Az (sl ®

We will denote BWT not only as the transformation, but also the result of the
transformation.

BWT has several characteristics; First, BWT is a reversible transformation. That is,
the original text can be recovered from BWT without any additional information [[1]].
Second, BWT is often easy to compress. For example, by using the compression boost-
ing technique [3]], we can compress BWT in k-th order empirical entropy for any & by
using simple compression algorithms, which does not consider the context information.
Third, BWT can be used for constructing compressed full-text indexes. For example, we
can build a compressed suffix array [4], and a FM-index from BWT in O(n) time [3].
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1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15
T=mmdississiippiis

type L LS* L LS*L LS*S L L L L S*

S i m p s
[1][2 3 4 5 6 7][8 oo ][i2 13 14 15
S* 15 3 609
L 14 13 2 112115 8 4 7
S 9 10 3 6
vV, 1 2 33

T,=3321

Fig. 1. An example of induced sorting for ' = mmississiippii$. S™substrings are located at
positions (15,3,6,9) in T', and their positions are stored in SA. From them, L-type suffixes
(14,13,2,1,12,11,5, 8,4, 7) are induced. Then S-type suffixes (9, 10, 3, 6) are induced from
L-type suffixes. We obtain names V; of the S*substrings, and finally obtain the shortened string
11 = 3321.

Forth, BWT is also useful for many other applications, such as data compression [[1]],
compressed full-text indexes [14]], and pattern mining [11]].

Since BWT is the result of the shuffled input text, the space of BWT is nlg o bits.
Therefore, the space of BWT is much smaller than that for the suffix array when o < n,
such as genome sequences.

To compute BWT, one usually constructs SA first, and then obtains BWT using ().
Although the total computational time is linear in the length of the input text [89U10],
its working space is n lgn bits and is much larger than that for BWT. Previous stud-
ies [SH12] show how to compute BWT without SA. These algorithms incrementally
build BWT by implicitly adding the suffixes from the shortest ones. Although these
algorithms are remarkably simple, they require O(n logn) time and also slow in prac-
tice due to the large constant for keeping dynamic data structures. In another study [[7]],
one divides input into the small blocks according to their first characters in suffixes so
that the working space would be small. However it requires O(n logn) time and relies
on the complex handling of long repetitions. Therefore, no previous work can compute
BWT in linear time using small working space.

2.2 Storing Increasing Sequences

Let sq, s9, ..., s, be a strictly increasing sequence of integers such that 0 < 51 < s9 <
-+ < s, < U. A naive representation of the sequence uses n lg U bits of space. Instead
we can represent it succinctly by using a clever encoding with the following properties,
which is rephrased from [6].

Lemma 1. A sequence sy, Sa, ..., Sy, of n integers such that 0 < s; < s9 < -+ <
sn, < U can be stored in a bit-stream of n(2 + 1g g) bits. The bit-stream can be
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constructed incrementally in O(n) time in the sense that the integers can be given in
arbitrary order, provided that both the value s; and its index i are given. Furthermore,
after O(n) time preprocessing to the bit-stream to construct an auxiliary data structure
of O(nloglogn/logn) bits, the i-th smallest integer s; (1 < i < n) is obtained in
constant time.

Proof. The bit-stream consists of two parts: upper stream and lower stream. Each inte-
ger s; is originally encoded in 1g U bits, and its lower lg g bits are stored in the lower
stream as it is. The upper lgn bits are stored in the upper stream after converting its
original binary encoding to the following one. The upper stream is represented by a 0, 1
vector B[1, 2n], and the i-th number s; is encoded by setting B[i + | %' |] = 1. Itis easy
to show that each bit of B corresponds to at most one number in the sequence, and the
bit position for s; does not depend on other numbers. Therefore the upper stream can
be constructed for any input order of the numbers.

The element s; is obtained from the bit-streams as follows. The upper lgn bits of
the binary encoding of s; are computed by select(B, i) — i, where select (B, i) is the
position of 7-th 1 in Band itis computed in constant time using an auxiliary data structure
of O(nloglogn/logn) bits [16] which is constructed by O(n) time preprocessing. The
lower lg g bits of the binary encoding of s; are obtained directly from the lower stream
in constant time. By concatenating the upper and the lower parts, we obtain s;. O

3 Constructing SA Based on Induced Sorting

Our novel algorithm for computing BWT is based on the liner-time suffix array con-
struction algorithm using purely induced sorting [15]. We will explain their algorithm
here again for the sake of clarity. We call this algorithm SAIS (Suffix Array construction
algorithm based on Induced Sorting).

First, we classify suffixes into two types; S-type, and L-type as follows.

Definition 1. A suffix T; is called S-type if T; < T;11, and called L-type if T; > T;41.
The last suffix is defined as S-type.

We also classify a character T'[i] to be S- or L-type if T} is S- or L-type, respectively.
We can determine the type of each suffixes in O(1) time by scanning T once from right
to left as follows. First, T'[n] is defined as S-type. Next, for ¢ from n—1 to 1, we classify
a suffix by using the following rule;

— Ty is S-type if (T'[i] < T[i + 1)) or (T'[i] = T'[i + 1] and T;41 is S-type).
— T; is L-type otherwise.

Obviously, in S A, the pointers for all the suffixes starting with a same character
must span consecutively. Let’s call a sub-array in S A for all the suffixes with a same
character as a bucket. Specifically, we call c-bucket a bucket starting with a character
c. Further, in the same bucket, all L-type suffixes precede to the S-type suffixes due to
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their definition. Therefore, each bucket can be split into two sub-bucket with respect to
the types of suffixes inside: we call them L- and S-type buckets each.
We also introduce S*-type suffixes.

Definition 2. A suffix T; is called S*-type if T; is S-type and T;_1 is L-type (called
Left-Most-S type in [[15]]). A character T[i] is called S*-type if T; is S*-type.

Then, given sorted S*-type suffixes, we can induce the order of L-type and S-type suf-
fixes as follows. These steps can be done in linear time.

— Given sorted S*suffixes, put all of them into their corresponding S-type buckets in
S A, with their relative orders unchanged.

— Scan SA from the head to the end. For each item SA[i], if ¢ = T[SA[i] — 1] is
L-type, then put SA[i] — 1 to the current head of the L-type c-bucket and forward
the current head one item to the right.

— Scan SA from the end to the head. For each item SA[i], if ¢ = T[SA[i] — 1] is
S-type, put SA[i] — 1 to the current end of the S-type c-bucket and forward the
current end one item to the left.

Next, we explain how to obtain sorted S*suffixes in linear time.
We introduce S*substring.

Definition 3. An S*substring is (i) a substring T'i, j] with both T[i] and Tj] being
S*characters, and there is no other S*character in the substring, for i # j; or (ii) T'[n].

Let we denote these S*substrings in 7" as Ri, Rs, ..., R,, where R; is the ¢-th S*
substring in 7. Let o; be the number of different S*substrings in 7. Then we assign
names V; € [1,01]to R;, (i = 1,...,n')sothat V; < V; if R; < Rj and V; = V; if
R; = R;. Finally, we construct a new text Ty = V1, V5, ..., V,» whose length is n’ and
the alphabet size is o7y.

We recursively apply the linear-time suffix array construction algorithm to 7% and
obtain the order of S*suffixes. Since the relative order of any two S*suffixes in 7" is the
same for corresponding suffixes in 7} [[15], we can determine the order of the S*suffixes
by using the result of the recursive algorithm.

To compute the names of S*substrings, we again use the induced algorithm modi-
fied that input are unsorted S*suffixes; we place unsorted S*suffixes at the end of S-
type buckets, and apply inducing procedure; induce the order of L-type suffixes from
S*suffixes, and the order of S-type suffixes from L-type suffixes. As a result, we obtain
the sorted S*substrings. Then, we can assign names to each S*substring in linear time
by checking their suffixes from the beginning to the ending. An example is shown in
Figure[Il

Finally, to obtain the total computational cost, we use the following lemma;

Lemma 2. [[5|] The length of T} is at most half of that of T'.

The SAIS algorithm for an input of length n requires O(n) time and the time required
to solve the same problem of half the length. Therefore, the total time complexity is

O(n).
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4 Direct Construction of BWT

We explain our algorithm to obtain BWT without SA by modifying SAIS. We use
the same definitions of S-, L-, S*-type suffixes/characters, and S*-substrings as in the
previous section. In addition, we call BWT character B[i| = T[S A[i] — 1] (B[i] = T'[n]
if SA[i] = 1) S-, L-, S*-type if T[S A[i]] is S-, L-, S*-type character. Our idea is that
we can simulate SAIS by using only S*substrings, in that we can induce L-type BWTs
from sorted S*-BWTs and induce S-type BWTs from sorted L-type BWTs. Similarly,
we can determine the order of S*substrings by using the inducing algorithm.

In our algorithm, we do not store S A, but keep S*substrings directly. Specifically,
we keep following arrays, each of which stores the list of substrings for each character
ce .

— S} : Store substrings whose last character is ¢ and S*-type.

L. : Store substrings whose last character is ¢ and L-type.

— LS. : Store substrings whose last character is ¢ and S-type, and the next to the last
character in the original text is L-type.

— 8¢ : Store substrings whose last character is ¢ and S-type and the next to the last
character in the original text is S-type.

These arrays support the following operations.

— A.push back(q) : Add the substring ¢ at the end of the array A.
— A.pop front() : Return the substring at the front of the array A, and remove it.
— A.reverse() : Reverse the order in the array A.

For example, after the operation A.push back(“abc”), A.push back(“becd”),
and A.push back(“cde”), A = {“abc”,“bcd”, “cde”}. The operation results are
A.pop front() = “abc” and A.pop front() = “bed”. We will discuss how to store
these substrings in the section

Note that, since our algorithm only uses these FIFO operations (and reverse opera-
tions. ), we can implement this on external memory architecture easily.

In addition to these arrays, we keep following three arrays to store the result of BWT.

— E[1,n'] : Store the end characters of S*substrings.
— BL, : Store the result of L-type BWT for a c bucket.
— BS. : Store the result of S-type BWT for a ¢ bucket.

The overall algorithm is shown in the algorithm[Il All S*substrings are placed in S,
and then moved to L., LS., and S, in turn, and this is almost the same as in SAIS.

First, an input text 7'[1, n] is decomposed into S*substrings R, Rz, ..., Ry Let o1
be the number of different S*substrings. Then we assign names V; to R;, (i = 1,...,n’)
from1...01sothatV; < V;if R; < Rjand V; = V; if R; = R;. Then, we recursively
call BWT-IS to determine the BWT of T}. Let By[1,n'] be the result of BWT of T3.
Then, we induce the B from Bj. All steps except the assigning of names and induce
are obviously done in linear time. We will see these steps in the following sections.
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Algorithm 1. BWT-IS(T, n, k): The algorithm for computing BWT for T’
Input: 7'[1,n] : An input text
n: An input length
k: A number of alphabets
Scan T once to classify all characters in T" as S- or L-type (Also S*type).
Decompose T into S*substrings R[1,...n'] (R[}] € {1,...,k}")
Name S*substrings by using the result of Induce(R), and get a new shortened string T3 [1,n/],
Ti[i) € {1,...,k'}.
if Each character in 77 is unique then
Directly compute B; from 7T}
else
B1 =BWT-IS(T, '/, k) // recursive call
end if
Decode S*strings By into R'[1,...,n/]
B =Induce(R')
Output: B

4.1 Induce BWT

We explain how to induce B, the BWT of original substring, from B;, the BWT of
S*substrings. The overall algorithm is shown in the algorithm[2]

First we lookup the original S*substrings, and keep the reversed ones. We reverse it
because all operations are represented by pop front and push back only. We do not
require the reverse operation if we replace pop front and push back with pop back
and push front. Each substring is appended the character ¢ = k — 1 which denotes the
sign of the end of the string. We place these substring at S where c is the first character
of the substring.

Second, for each character ¢ from 1 to o, we lookup L; one by one. and check
whether the first character ¢ (Since S*strings are reversed, this corresponds to the last
character in S*strings) is L-type or not. Particularly if ¢ > ¢ then it is L-type and append
it to the array L.. If not, we place it at L.S;. After enumerating all the elements in L;,
we next lookup the substrings in S}, and move it to L. where c is the first character
of each substring. Note that we can omit the check of L-type here because all the last
characters in S} should be L-type.

Third, for each character ¢ from o to 1, we lookup the substrings in the array .S;, and
check whether it is empty or not. If so, we place the last character of I/ (we determine
the position of S*substring) at the end of B.S,. After seeing all elements in S;, we
check L.S; similarly. In this case, we can omit the check whether it is empty because all
substrings in this arrays should not be empty.

After obtaining the L-type and S-type BWTs, we just append these substrings in
order and return it as the result of BWT.

4.2 Assigning Names to S*Strings

Let we explain how to compute the names of S*substrings. This is almost the same
as in the induced algorithm in the previous section. As in SAIS algorithm, we apply
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Algorithm 2. Induce(R): The algorithm for inducing BWT from the S*substrings
Input: R[1,n'] : A list of S*substrings.
fori =1ton' do

U := Reverse(R;)
U.push back(k — 1) // Sentinel
c:=U.pop front().
Sy .push back(U)
end for
fori =1to k do
while U := L;.pop front() do
c:=U.pop front()
BL;.push back(c)
if c < 7 then
LS;.push back(c+ U)
else
Lc.push back(U)
end if
end while
LS; := Reverse(LS;)
while U := S} .pop front() do
c:= U.pop front()
E.push back(c)
Lc.push back(U)
end while
end for
E := Reverse(E)
for i =k to1do
while U := S..pop front() do
c:= U.pop front()
if ¢ < i then
BS;.push front(c)
Se.push back(U)
else
c2 := E..pop front() // Reach the sentinel
BS;.push back(c2)
end if
end while
while U := LS;.pop front() do
c:= U.pop front()
BS;.push back(c)
Sc.push back(U)
end while
end for
fori =1to k do
BS; := Reverse(BS;)
B:=B+ BL; + BS;
end for
QOutput: B
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the algorithm to unsorted S*substrings, and as a result, we obtain sorted S*substrings.
At this time, we do not place the BWT characters, and we keep S*substrings without
removing. This is achieved by changing pop front() operations for the substring U in
the algorithm 2] by the following cycle() operation.

— A.cycle() : Return the character at the front of the array A, and moves it to the end
of A.

For example, for A = “abcd”, A.cycle() = “a” and after this operation A = “beda”.
This cycle operation can be done in O(1) time when the length of substring is O(logn)
bits. Otherwise, we keep pointers and simulate the cycle operation, which is also done
in O(1) time.

Next, given sorted S*substrings, we calculate the names of them, which is trivial, and
we place them in an original order to obtain the shortened string 77 = Vi, Vo, ..., Vjr.
However, since we don’t have S A, we cannot find the original positions of each names
directly.

First, we store positions p1, . . ., p,s of S*substrings in 7" using the data structure of
Lemma[Il Namely, we define ¢; = ¢n + p; fori = 1,...,n’ where ¢ = T[p,], and
store all ¢; by using Lemma [I] using n(2 + log o) + o(n) bits. From ¢;, ¢ and p; are
obtained in constant time by ¢ = |¢;/n] and p; = ¢; mod n. We call this data structure
®. To compute P, for each ¢ € X' we count the number of occurrences of c in 7. This is
done in O(n) time for all ¢ by using an integer array of o logn < nlog o bits because
o < n. Then we scan T from right to left to determine the positions p,/, pn/—1, - .., D1
of S*substrings in this order. For each p; we compute ¢; and store it in ¢. We also
store the S*substring located at p; in a bucket. Namely, we obtain the head character
¢ = T'[p;], and store the substring into bucket for c. Each bucket stores the concatenation
of S*substrings with the same head character. We store a pointer to indicate the position
to append a new S*substring for each bucket. The space for storing all the pointers is
O(ologn) = O(nlogo).

If the length of an S*substring is at most log, n, it is encoded in at most log n bits,
and therefore it takes constant time to append it to the end of a bucket. Otherwise,
instead of storing the S*substring itself, we store the index p; and the length of the
S*substring. Because there exist at most nlogo/logn S*substrings of length more
than log, n, we can store the indexes and lengths in O(n log o) bits.

The S*substrings are sorted by this modified induced-sorting in O(n) time
and O(nlogo)-bit working space. During the modified induced-sorting for sorting
S*substrings, we compute the following function ¥ and store it by the data structure of
Lemmal[ll Assume that in the original algorithm a suffix SA[j] is induced from SA[i],
that is, T[SA[i] — 1] = c and SA[j] belongs to the bucket for c. In our modified algo-
rithm corresponding this, we define ¥[j] = cn + 4. Because this induce-sorting scans
S A from left to right and buckets are sorted with ¢, ¥ is strictly increasing. Therefore
we can store ¥ in n(2 4 logo) + o(n) bits by Lemma [l We also store a bit-vector
Pg-[i] indicating that the i-th suffix in the sorted order corresponds to an S*substring.

After the induced-sorting, we obtain ¥[i] for i = 2,...,n (¥[1] is not defined be-
cause SA[1] is the last suffix.). To compute names of S*substrings, we use another bit-
vector V[i] indicating that the S*substring corresponding to V' [¢] is different from its left
neighbor. To compute V, we scan Pg« to enumerate S*substrings, and if Pg«[i] = 1,
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Fig. 2. An example of our modified induced-sorting corresponding to the original one in Figure[Tl
Positions of S*substrings are stored in &. We also store S™substrings in queues. Then L-type suf-
fixes are induced from them. We actually move the substrings among queues, which are illustrated
by arrows in the figure. The inverse of the movements are memorized as ¥. The bit-vector Ps+
represents where are the S*substrings stored, and the bit-vector V' encodes the names of them.

we compute ¢ := ¥[i] repeatedly until we reach the position ¢ that corresponds to the
head of an S*substring, whose position in 7" is computed by ¥[i]. We can determine
if two adjacent S*substrings in sorted order are different or not in time proportional to
their lengths. Therefore computing V' takes O(n) time because the total length of all the
S*substrings is O(n). If V' is ready, we can compute the name of the S*substring corre-
sponding to Ps-[i] by rank(Pg~, i) which returns the number of 1’s in Pg~«[0,4]. The
rank function is computed in constant time using an O(n log log n/ log n)-bit auxiliary
data structure [16]].

5 Succinct Representation of Substring Information

We explain the data structure for storing the list of (prefix of) S*strings. As noted in the
previous section, these arrays should support push back(q), pop front(), and cycle()
operations. Note that in our algorithm, A.pop front() is not called when A is empty. If
the length of an S*substring is at most log,, o bits, we directly store it and the operations
push back(q) and pop front() are done in constant time. Otherwise, instead of storing
the S*substring itself, we store the index p; and the length of the S*substring. Because
there exist at most n log o/ log n S*substrings of length more than log,. n, we can store
the indexes and lengths in O(n log o) bits.

Next, we estimate the size for BWTs in the recursive steps. It seems that in the worst
case n’ = n/2, the naive encoding of names will cost n’ logn’ = 2(nlog o) bits. To
guarantee that the string 77 = V3, Va, ..., V,s is encoded in O(n log o) bits, we use the
following encoding of the names, which is summarized as follows.



100 D. Okanohara and K. Sadakane

Lemma 3. For a string T of length n with alphabet size o, the shortened string
Ty = V1, Va, ..., Vo is encoded in O(nlogo) bits, and given i, the name of V; and
consecutive O(logn) bits at any position of the S*substring are computed in constant
time. This encoding can be done in O(n) time during the modified induced-sorting.

Proof. The encoding consists of two types of codes; one is for S*strings whose lengths
are at most % log,, n, and the other is for the rest. We call the former short S*strings and
the latter long S*strings. For short S*strings, the code is its binary encoding itself, and
for long S*strings the code is their names. To distinghish the type, we use a bit-vector
F[1,n'] such that F[¢] = 1 indicates V; is a long S*string.

For computing the name V; of a short S*string R;, we obtain %loga n bits of T’
whose position is the beginning of R;. To compute the name from the é log,. n bits, we
construct a decoding table such that for all bit patterns of é log,. n bits which begin with
the code of R; we store the name V;. This table can be constructed in O(n) time in the
modified induced-sorting. We scan S*strings in lexicographic order, and for each one
we obtain its name and its position in 7". From 7" we obtain the code of R;, and fill a part
of the table with the name. The size of the table is O(c2 °8- " logn) = O(y/nlogn)
bits.

For long S*strings, we first construct the bit-vector F' and the auxiliary data structure
for rank. Then during the modified induced-sorting, if there is a long S*substring R;,
we store its name in an array entry W[rank(F, ¢)]. Because there exist at most : 107;0 "

long S*substrings, we can store their names in O(n log o) bits.

To obtain consecutive O(logn) bits at any position of the S*substring, we use an-
other bit-vector G[1, n] such that G[¢] = 1 stands for T'[¢] is the head of an S*substring.
We construct the auxiliary data structure for select. By select (G, i) we obtain the po-
sition of V; in T'. Then it is obvious that any consecutive O(logn) bits are obtained in
constant time. a

6 Time and Space Analysis

Our algorithm for an input of length n requires O(n) time and the problem with the half
length. Obviously, the time complexity is O(n).

Next we analyze the space complexity. At the recursive step, the input space is
O(nlogo) bits using the lemma [3l In addition, at each step, we keep the mapping
information from the name to the original S*substring. We keep this by using an array
list, which requires n lg o bits of space in the worst case.

After 1glg, n steps, the input length becomes n’ = n/2'81°8-™ = n,/log,_ n and the
size of suffix array for this input is n’lgn’ = n/log, n(lgn — lglog, n) < nlgo.
Therefore we can use SAIS using the space less than n 1g o. Therefore the total space is
O(nlogologlog, n) bits.

7 Conclusion

In this paper, we present an algorithm for BWT. Our algorithm directly computes BWT,
and does not require suffix arrays. Our algorithm works in linear time, and requires
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O(nlogo loglog, n) bits of space for any alphabets where n is the length of an original
input space, and o is the alphabet size.

As a next step, we consider how to efficiently build the longest common prefix array,

or compressed suffix trees from BWT only. And we are also interested in the problem,
whether can we compute BWT in linear time using 2n1g o + o(n log o) bits only?
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Abstract. We propose a new sort-based transform for lossless data com-
pression that can replace the BWT transform in the block-sorting data
compression algorithm. The proposed transform is a parametric gener-
alization of the BWT and the RadixZip transform proposed by Vo and
Manku (VLDB, 2008), which is a rather new variation of the BWT. For
a class of parameters, the transform can be performed in time linear in
the data length. We give an asymptotic compression bound attained by
our algorithm.

1 Introduction

The block-sorting data compression algorithm [4] has been analyzed and evalu-
ated both theoretically and empirically by researchers from the fields of informa-
tion theory and algorithms. Several extensions to this algorithm and applications
have been developed for various purposes [I]. Most of these extensions are mod-
ifications and generalizations of the BWT (the Burrows—Wheeler Transform),
which is the core component of the block-sorting data compression algorithm.
Few transformations that are completely different from the BWT have been de-
veloped. One such recent example is the RadizZip Transform proposed by Vo and
Manku [9], which can replace the BWT in the block-sorting data compression
algorithm.

In this paper, we propose a parametric generalization of the following two
different transforms: the BWT and the permute transform in RadixZip. The
proposed transform, called the generalized radiz permute transform, or the GRP
transform, bridges the two existing transforms. It also includes some of the finite-
order variations [§], [7] of the BWT as special cases.

Data compression methods based on these transforms do not perform any
context modeling in an apparent way. They are not classified into the class of
statistical methods that make use of contexts to predict the following symbols.
Actually, however, the transforms gather those symbols that occur in the same
or similar contexts in a source string. In effect, they can be regarded as context
modeling methods, each of which is distinguished in the length, or the order,
of contexts it considers. While the original BWT uses unlimited order contexts,
RadixZip uses the contexts of orders from zero to a predetermined upperbound.

J. Karlgren, J. Tarhio, and H. Hyyré (Eds.): SPIRE 2009, LNCS 5721, pp. 102 2009.
© Springer-Verlag Berlin Heidelberg 2009
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RadixZip begins at the zeroth order context to gather the statistics of source
strings, and it must inevitably include low-order contexts. It tends to fail in
utilizing higher order contexts, on which any high-performance data compression
method should rely.

In our GRP transform, the lowest order at which the encoder begins to obtain
the statistics of source strings can be selected arbitrarily. The transform is more
general than the finite-order variations of the BWT since both the highest and
lowest orders of contexts can be controlled. It uses the contexts from the shortest
to the longest cyclically on the source string to predict the following symbols.
We show that as long as the lowest order remains constant, both the forward
and inverse transformations run in time linear in the string length. Even if the
lowest order is fixed, a compression method combining the GRP transform and
an appropriate second-step encoder can attain an asymptotic compression bound
similar to that obtained on the block-sorting data compression method.

For space reasons, we concentrate only on presenting the GRP transform itself
and its asymptotic analysis in compression performance. The GRP transform can
be applied to any data of any length. However, for simplicity we present a version,
in which we require the data lengths to be integer multiples of a parameter.

2 GRP Transform

2.1 Preliminaries

Let
z[l:n] =z29- - 2y

be an n-symbol string over an ordered alphabet A of size |A|. The string x[i : j]
represents a substring x;---x; for 1 < ¢ < j < n, and the empty string A
for ¢ > j. The string z[i : j] will be denoted also as acf in the later analysis
section. Similarly, a two-dimensional n X m matrix M of symbols is denoted by
M1 :n][1:m)].

Similar to the BWT, the GRP transform converts the input string z[1 : n] to
another string y[1 : n] € A™ and an integer L. The GRP transform has two inte-
ger parameters. The first parameter is called the block length, which is denoted
by £. For simplicity it is assumed that the string length n is an integer multiple
of £, that is, n = b¢ for an integer b.

In our transform, the input string is divided into b non-overlapping blocks of
length ¢, and saved as the column vectors of a matrix as follows:

T1 Te+1 T2e+1 0 T(b—1)e+1
T2 Tyt2 T20+2 °° T(b—1)042

T[L::b=| " . e : (1)
Ty T2 X3¢ The

The second parameter of the GRP transform is called the context order, or
simply order, which is a non-negative integer less than or equal to £. Let d denote
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the order. We first perform a left-cyclic shift of the top d rows of T'[1 : ¢][1 : b] and
insert the results as the bottom rows of T'[1 : ¢][1 : b]. Thus, the GRP transform
is applied to the initial configuration of the (¢ 4+ d) x b matrix given below:

1 Te41r o T(b—1)e+1
T2 Tet2 o T(p—1)e+2
T:l+d1:b)=| ¢ 22 - i : (2)
Te41 T2e41 - 1
L Le+d T204d " T4 ]

As an example, consider the string
x[1 : 15] = hotspotstopshot, (3)

and let £ =3 and d = 2. Then, b =5 and

hstoh

opspo
T[1:5]1:5]=|totst (4)

st ohh

PsSpoo

2.2 Forward Transformation

The forward transformation of the GRP transform proceeds as follows:

1. /« Initialization */
Convert the input string z[1 : n] into a matrix T'=T[1 : £ + d][1 : b];
Set v := the rightmost column vector of T’
Set L :=b;
2. fori:=1toddo
(a) Sort the column vectors of T' in a stable manner according to the symbols
of the ith row;
/* The vector v may have moved to another column. x/
(b) Set L := the current column number of v;
end for
3. fori:=d+1tod+{do
(a) Output the ith row of T’
(b) if i = d + ¢ then break;
(c) Sort the column vectors of T in a stable manner according to the symbols
of the ith row;
end for
4. Concatenate the outputs of Step 3 (a) to form y[l:n| = y1y2-- - yn. The
string y[1 : n] with the value of L is an output of the GRP transform.
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For the string given in (@), the above procedure works as follows:

Step 2: i =1

Perform a stable sort on the columns of T using the first row as the key to
yield

hhost
0Oo0OpEpPS
T=|ttsot
s hhto
poosp

Now, the column v has shifted to the second column. Thus, we have L = 2.
i=2

Perform a stable sort on the columns in 7" by using the second row. This does
not change the value of T since the row was already sorted. Now, L = 2 is stored.

Step 3: 1 =3

The third row of T', ttsot, is outputted. Then, perform a stable sort on the
columns in T by using the third row to yield

s ohht
PpPoOOS
T=|osttt
t hsho
s opop

i1=4
The fourth row of T', thsho, is outputted. Then, perform a stable sort on the
columns in T by using the fourth row to yield

ohths
pPposop
T=|sttto
hhost
oopRPpP S

t=295
The fifth row of T, oopps, is outputted. Since i = £+d (= 5), the concatenation
of the above three outputs and the value of L yield

y[1 : 15] = ttsotthshooopps,
L=2 ()

This is the result of the GRP transform of the string given in (3]).
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2.3 Inverse Transformation

The GRP transform is reversible. The inverse transformation of the GRP trans-
form is more complicated than the forward transformation. Actually, in its de-
scription below, we will introduce a couple of auxiliary matrices that have not
appeared in the forward transformation. However, these matrices are used only
for explaining the transformation and are not essential for the transformation.
The values of the parameters ¢ and d, and the string length n are the same in
both the forward and inverse transformations. Hence, the number of blocks of
the string, b = n/¢, is an integer.

1. /* Initialization */
Store the string y[1 : n] in an £ X b matrix S = S[1 : £][1 : b] according to

Slill] :==yl(i = )b+ 4] for 1 <i<£,1<j<b

Set its £th row to the bottom row of an (£ + d) x b matrix U;
/+ The top £ — 1 rows of U are initialized to be empty. */
2. for j:=1tof¢—1do

(a) Sort the symbols in the (¢ — j)th row of S alphabetically, and put the
result into the (£ + d — j)th row of U;

(b) Sort the columns of U in a stable manner so that its (£ + d — j)th row
corresponds to the (¢ — j)th row of S;

end for

3. (a) Copy the bottom d rows of U into a d x b matrix V;

(b) Considering the bottom row of V to be a significant part of the key,
perform a radix sort on the columns of V' (that is, perform a stable sort
on the columns of V' using the first to dth rows as the keys in this order);

(¢) Stack the matrix V on U;

/* Note that U is now identical to 7" which is obtained immediately after

Step 2 in the forward transformation. x/

4. Let w be the Lth column of U;
Copy w to the bth column of an (¢4 d) x b matrix T';
5. for j:=1tob—1do

(a) From the columns of U that have not been copied to T, select the leftmost
column that has the same d top symbols as the bottom d-symbol column
of w;

(b) Set w := the selected column, and copy it to T" as the jth column;

end for

6. /+ The matrix T in () has been reconstructed. */

Recover the original string by

ali+(G— 1) :=T[][j] for1<i<¢ 1<j<b.

Before giving the general explanation of the reversibility of the above inverse
transformation, we show how it works for the example given in ({).
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Step 1

5th[o opp s]

U:

)

]%U

t tsot
t hsho
O o0opPpPS

|

Step 2: j =1

t hsho
s opop

hhost
oopPpPSs

] |

ttsot
shhto
P oosp

U

—

osttt
t hsho
S opop

U

Step 3

hhost
ooppSs

=]

s hhto
poosp

|

] |

P WP o
n Q0 P
o n.g
S 0 e g
S 0 L m

poosp

|

Step 4

Step 5: j =1
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j=4
hstoh
opspo
T=|totst
s tohh
Pspoo
Step 6

x[1 : 15] = hotspotstopshot.

2.4 Reversibility and Complexity

In order to show the reversibility of the GRP transform, we first note the sym-
metric relation between Step 3 of the forward transformation and Step 2 of the
inverse transformation, which can be stated in the following lemma.

Lemma 1. For i and j such that i+ j = d+ ¢, at the end of the jth iteration
of the loop in Step 2 of the inverse transformation, the bottom j 4+ 1 rows of U
are identical to the bottom d+ € — i+ 1 rows of T in Step 3 (a) of the forward
transformation.

The above lemma can be proved by induction on j. The case of j = 0 corresponds
to the initial state of the loop in Step 2 of the inverse transformation. In this
state, the bottom row of U is simply a copy of the last output of Step 3 of the
forward transformation. From the condition of the lemma, we have i = d + ¢
when j = 0, which corresponds to the last iteration of Step 3 of the forward
transformation. Therefore, the statement of the lemma holds for j = 0. Starting
from this initial state, we can show the validity of the statement from j =1 to
j = ¢ — 1, inductively. Finally, we can show that, at the end of Step 2 of the
inverse transformation, the bottom ¢ rows of U are identical to the bottom ¢ rows
of T that are obtained immediately after Step 2 of the forward transformation.

In the inverse transformation, the process then moves on to Step 3, which
is essentially the same as Step 2 of the forward transformation. Thus, we can
establish the fact written as the comment in Step 3 of the inverse transformation
that U and T are identical. The rest of the inverse transformation, namely Steps
4 and 5, can be easily validated by the stability of the sorting process of Step 2
of the forward transformation. In this way, we can prove the reversibility of the
GRP transform.

Here, we make a brief comment about the time complexity of the GRP trans-
form. We assume that each stable sorting process can be performed linearly by
using bucket sorting. Under this assumption, the forward transformation can be
done in O(b(£ + d)) = O(n + bd) time.

The inverse transformation seems more time-demanding than the forward
transformation since Step 5 of the inverse transformation requires string search-
ing. Actually, however, we can perform this process of string searching in O(bd)
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time by using the result of Step 3 (b). In Step 5, for every column, say w, of U,
we must find a column that has the same d top symbols as the d-symbol bottom
column of w. Step 3 has already established the correspondence between every w
and at least one such column. Moreover, after the step, all columns are arranged
in lexicographic order of the top d-symbols. Therefore, it is not so difficult to
find the column that satisfies the condition of Step 5. The total time required
in Step 5 is proportional to the total number of symbols in the top d rows in 7.
In summary, we can prove the following theorem.

Theorem 1. For any string of length n, both the forward and inverse transfor-
mations run in O(n+0bd) time, where b is the number of blocks of the string, and
d is the context order of the GRP transform. For any fixed order d, therefore,
they run in time linear in the string length n.

Remark: In this paper, we have presented only the case of n = bf. We have
already succeeded in eliminating this assumption. The GRP transform can be
modified to be applicable to any string of any length. We have also assumed
that the order d satisfies 0 < d < ¢. The transform can be extended for larger
values of d than ¢ so that it includes existing transforms as special cases. Specific
correspondences follow.

GRP with ¢ =1 and d = n: BWT;
GRP with ¢ =1 and d < n: ST transform [7],[8];
GRP with d = 0: Permute transform in RadixZip.

3 Information Theoretical Analysis

3.1 Second-Step Algorithm

Similar to the BWT, the GRP transform requires a second-step algorithm for
actual compression. In addition to the same algorithms as those adopted in the
block sorting compression algorithm [I], [5], we may incorporate new encoding
methods that rely on the nature of the GRP transform. For example, the output
string of the GRP transform is a concatenation of ¢ blocks; each block can be
encoded by distinct encoding methods. In this paper, however, we consider only
the simplest case for the analysis of asymptotic performance of the proposed
transform.

We encode the output y[1 : n] of the GRP transform by using the Move-to-
Front (MTF) encoding scheme [3], which produces a list of integers from 1 to the
size |A| of the source alphabet. Then, we encode each integer in the list using
the ¢ code of Elias [6]. The codeword length for integer ¢ is upperbounded by

f(t) =logt+2log(logt+ 1)+ 1 bit, (6)

where all logarithms in this paper are taken to base 2. We will ignore the code-
word for the integer component L of the output, for simplicity.
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3.2 Asymptotic Characterization

The following analysis is based mainly on the model in [2].

Although the order d can be extended to an arbitrary integer as mentioned
above, we restrict its range to 0 < d < £. We first shift the blocks of the input
string by d symbols. That is, we assume z[(j — 1)¢ + d + 1 : j¢ + d] to be the jth
block (1 < j < b—1). Thus, we consider only the substring z[d +1: (b — 1)¢ + d].
We ignore z[1 : d], which serves only as the context to the following symbols in
the first column of matrix T in (), and is encoded in the last column in a virtual
context. We focus on the kth symbol z[(j—1)¢+d+k] in the jth block (1 < k < £).
We define the context of this kth symbol by z[(j — 1)+ 1: (j — 1)+ d+ k —1].
The context of the kth symbol in the jth block is a substring of d4+ k& —1 symbols
that immediately precedes z[(j — 1) + d + k|. In the forward transformation,
each kth symbol appears in the (d + k)th row of T', and is included somewhere
in y[(k—1)b+1: kb] of the transformed string. Note that when the kth sym-
bols {z[(j — 1) + d + k] ;’;% are transformed into y[(k — 1)b+ 1 : kb] in Step 3
of the forward transformation, their contexts are lexicographically arranged as
columns consisting of top d+ k — 1 rows of T'. That is, the same contexts appear
consecutively as columns in T (see Fig.[]).

In Fig. [ ;. is the ith symbol of y[(k — 1)b + 1 : kb] that appeared in context
c. Thus, Yijes Y21e) Y3jes- -+ > YN(e)|c are the symbols that appear sequentially in
this order in context ¢ in the transformed string, where N(c) is the number
of blocks that have the same prefix c. In general, for an arbitrary string af =
ajaz---a; € A* (0 < i < £), N(al) represents the number of blocks appeared
in the entire b — 1 blocks that begin with the prefix a}. For the empty string A,
N()\) equals b — 1. Let z{v(c) = 2122+~ ZN(c) be a sequence of positive integers
that is obtained from yy.y2jc - Yn(c)|c Dy using the MTF scheme. For every

symbol a € A, if y;. equals a with i = 21,2, ..., tx(ca), then we have
Ztl S |A‘7 (7)
zt, < tp—ti—1 for 2 <i < N(ca). (8)
2 ;
/

k=1 | Tg41 -~

k 95/d+k Yile Y2|lc " YN(e)|e

/
L Ta+e

Fig. 1. Matrix T after transformation of kth symbols of blocks in Step 3 of the forward
transformation
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According to the proof of Theorem 1 in [2], the sum of the lengths of the code-
words representing the symbol a in context ¢ can be bounded by

2
Q
8

)
FaD+ 3 £ =t < Neea £V 2. (9)

I|
V)

%

The kth symbols {z[(j — 1) + d + k]}° _1 are transformed into b — 1 symbols
in y[(k—1)b+1:kb], and then converted into a sequence of integers by the
MTF scheme. Let lk(yé’k_)l) denote the sum of the codeword lengths representing
the b — 1 kth symbols. Then, we have the following result, which is a direct
consequence of the inequality ().

Lemma 2. For any fized integer k in [1, €], the kth symbols {z[(j — 1){ +d +
k] ?;% of b—1 blocks can be encoded with the length lk(yg’k_)l), which satisfies

N(a d+k—1 A
wof) < X Y vt (M

d+k 1 agqik

3 N(ag)f(N(aj\;()fA') for i=d+Fk, (10)

al €Al al)

where the second summation is taken over aq+k so that N(a d+k)

ZETo.

s greater than

Suppose that an input string is generated from a stationary and ergodic source
{X;}52, with probability measure p and entropy rate H, where X, takes values in
the alphabet A. Let p(aj") denote the probability that X" is equal to a]* € A™,
and p(an, | al*') denote the conditional probability of a,, € A given a*~' €

A™~1 The conditional entropy is defined by

H m|Xm—1>
- oYl S plan | a7 Ylogplan o). (1)

ap ! p(am|a;” 0

Similarly, (ad+1 | a¢) represents

d+£ - d4i—1 P(adM)
p(a dil | al) Hp(adJrz | af e )= ld . (12)
i=1 pat)

The conditional joint entropy H (inf | X¢) is defined by

d+£ d d+£ d+¢ | d
H(Xg +1 ‘Xl = - Z p(ay) Z p(a dil | al)logp(adil | af).
afeAd p(agiilag)#0
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The entropy rate of a stationary source can be characterized in multiple ways.

H = lim H(X, | X" (13)
1

= lim EH(in’f | X&) for any ¢ (14)
1

= élim p H(ij_‘f | X&) for any d. (15)

For arbitrary fixed integers £ > 0 and b > 1, consider a prefix of length (b—1)¢
that begins at the (d+ 1)th place of an infinite string x over A. Divide the prefix
into b — 1 blocks of non-overlapping substrings each of length £, and let N,(a?)
represent the number of blocks whose prefix is equal to a%, where 0 < i < /.
Define a set

Nx(azi)
b—1

Dy(at, ) = { €A™ — p(al)

> ep<ai>} (16)

for fixed b and € > 0. Moreover, we introduce the following set:

d+¢

Dy(d,t,e) = | J | Do(as, ) (17)

i B
K2 dal

When we encode a bl-symbol prefix of x by using the proposed scheme, we
represent the codeword length corresponding to the substring z[d+1 : (b—1){+d]
by I(y*~1). That is,

4
") =D byl (18)
k=1

We can now bound the codeword length for each source symbol in our encoding
scheme in a series of theorems, which we will present without proofs.

Theorem 2. For any fized £ > 0, k < ¢, d < {, and € > 0, there exists a
positive integer By, = By(d, £, e) such that for any b > By and x ¢ Dy(d, {,ex),

(Y0

1 dtk—1y | 2 gkt A
(b-1)¢ — EH(XLHHXI )+Zlog(H(Xd+k|X1 )+1)+1+€k7
where &, — 0 as € — 0.

Theorem 3. For any fited { > 0, d < ¢, and € > 0, there exists a positive
integer B = B(d, £, &) such that for any b > B and x ¢ Dy(d, ¢, ¢),

= _ 1

1 )
ooy S EH(Xij|Xf)+210g(€H(inf\X{l)+1>+1+s, (19)

where € — 0 as € — 0.
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Theorem 4. For any stationary and ergodic source with entropy rate H, the
codeword length per symbol satisfies

Wy

< H+2log(H +1 1 2
fim < B 2loglH 4 1)+ (20)

with probability one.

The above theorem shows that the symbolwise application of the MTF scheme
followed by Elias’ § code simply yields the same bound as that obtained by the
block-sorting data compression method when used under the same conditions.
Thus, to eliminate the additive terms other than the entropy rate H in (20),
we must incorporate such techniques as alphabet extension into our scheme.
In addition to such theoretical techniques, more practical ones like run length
encoding have been combined with the BWT to improve its actual compression
performance. We have to introduce similar techniques to the proposed scheme
to make it applicable to real data. Furthermore, although the bound in (20)
can be attained by setting, e.g., b = O(y/n) and £ = O(y/n), as n — oo, these
parameters also have to be optimized from a practical viewpoint.

4 Conclusion

We have proposed a sort-based transform, called the GRP transform, which is
a parametric generalization of the BWT. Future work includes efficient imple-
mentation of the transform for d > ¢ and evaluation of practical compression
schemes based on it.
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Abstract. A bitext, or bilingual parallel corpus, consists of two texts, each one
in a different language, that are mutual translations. Bitexts are very useful in
linguistic engineering because they are used as source of knowledge for different
purposes. In this paper we propose a strategy to efficiently compress and use
bitexts, saving, not only space, but also processing time when exploiting them.
Our strategy is based on a two-level structure for the vocabularies, and on the use
of biwords, a pair of associated words, one from each language, as basic symbols
to be encoded with an ETDC [2] compressor. The resulting compressed bitext
needs around 20% of the space and allows more efficient implementations of
the different types of searches and operations that linguistic engineerings need to
perform on them. In this paper we discuss and provide results for compression,
decompression, different types of searches, and bilingual snippets extraction.

1 Introduction

The amount of multilingual texts is growing very fast due to multilingual digital li-
braries and legal requirements in countries and supra-national entities with more than
one official language. Two texts that are mutual translations are usually referred to as
a bilingual parallel corpus or, in short, as a bitext. The growing availability of bitexts
has enabled the development on many natural language processing applications that use
bitexts as source of knowledge.

Usually, bitexts get aligned before exploiting them; a standard text alignment process
allows to establish word correspondences between the two texts of the bitext. Aligned
bitexts can be used in applications involving both languages (machine translation, cross-
language information retrieval, extraction of bilingual lexicons, etc) or in monolingual
applications (syntactic parsing, word sense induction, word sense disambiguation, etc.)
that use the bitexts as a bridge to project the linguistic knowledge available in one
language to another one [[L1].

* Funded by Spanish projects TIN2006-15071-C03-01, TIN2006-15071-C03-02 and TIN2006-
15071-C03-03. The work of Miguel A. Martinez-Prieto is supported by a fellowship granted
by the Regional Government of Castilla y Le6n and the European Social Fund.

J. Karlgren, J. Tarhio, and H. Hyyré (Eds.): SPIRE 2009, LNCS 5721, pp. 1141-121,2009.
(© Springer-Verlag Berlin Heidelberg 2009



A Two-Level Structure for Compressing Aligned Bitexts 115
la casa verde donde te vi se ha derrumbado

the green house where | saw you has collapsed

Fig. 1. Spanish-English word-aligned sentence

We present a strategy to compress bitexts that we called Two-level Compressor for
Aligned Bitexts (2LCAB). Our strategy is designed to facilitate the use of the most in-
teresting features of bitexts, because, in our compressed representation, obtaining the
words in one language aligned with a word in the other language is simply done by
using a vocabulary, instead of processing the whole aligned bitext. In addition, 2LCAB
obtains compression ratios around 20% and allows a more efficient processing of the
aligned bitexts that the uncompressed form.

2 Word-Aligned Bitexts

A bitext is a text written in two languages. In words of Melamed, “bitexts are one of
the richest sources of linguistic knowledge because the translation of a text into another
language can be viewed as a detailed annotation of what that text means” [10].

A bitext in which the translation relationship among the words in one text (left) and
the words in the other text (right) has been established is usually referred to as a word-
aligned bitext; the task of establishing such relationships is known as word alignment.

The word alignment task [15] connects words in the left sentence L with words in
the right sentence R. The result is a bigraph for the words in L and the words in R with
an arc between word [ € L and word r € R if and only if they are mutual translations.
Figure [l shows an example of a Spanish-English word-aligned sentence.

For this research the bigraph representing a word-aligned bitext is stored as a se-
quence of pairs of two words, each one from a different language, that are mutual trans-
lations in the bitext. Therefore, for this research the word-aligned bitext of the example
in Figure[Tlis represented as the following sequence of pairs:

(la,the) (,green) (casa,house) (verde,) (donde,where) (te,) (,I)
(vi,saw) (,you) (se,) (ha,has) (derrumbado,collapsed)

Notice that some words are associated to an “empty word”, e.g. (te, ). This is either
because that word is not aligned with another word in the other text, or because its align-
ment has been discarded due to a crossing, e.g. (, green). In this work we have used
one—to-ﬁ)ne word alignments obtained with the help of the open-source GIZA++ [13]
toolkit

3 Compression of Natural-Language Texts

The key to the success of natural language text compression is the use of a word-based
model, so that the textis regarded as a sequence of words. This poses the overhead of man-
aging a large source alphabet, but in large text collections the vocabulary size is relatively

'"Mttp: //code.google.com/p/giza-pp/
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insignificant because of Heaps Law [3]. In order to be searchable, semi-static models have
been used in compressed text databases, to ensure that the codeword assigned to a word
does not change across the text. Thus, a pattern can be compressed and directly searched
for in the compressed text without decompressing it. This is also essential to allow local
decompression of text passages in order to present them to the final users.

End-Tagged Dense Code (ETDC) [2] is a word-based compression technique where
the first bit of each byte is reserved to flag whether the byte is the last one of its code-
word (stopper) or not (continuer); this flag is enough to ensure that the code is a prefix
code regardless of the content of the other 7. The flag bit in ETDC permits Boyer-
Moore-type searching [1] and random access. Simple encode and decode procedures
can be used to obtain the codeword C; corresponding to a position 4 in the sorted vo-
cabulary (C; = encode(7)) and, symmetrically, to obtain the position ¢ corresponding
to a specific codeword C; (i = decode(C;)).

3.1 Compression of Bitexts

Compression of bitexts is a subfield of natural language text compression. In spite of its
relevance, only few previous works have been found in the literature. In [14] text com-
pression methods are considered for its extension to bitext compression considering
exact correspondences between two words, and synonymy relationships between the
words in both texts (as given by a thesaurus). These parallel predictions are then com-
bined with PPM [3]] ones. The weighting of both models are carefully tuned improving
PPM compression ratios on separate texts.

Text alignment is proposed in [4] as a way to enable multilingual text compression.
The algorithm stores one of the texts (L) as it is, and the other one (R) as a collection
of pointers to the translation of the substring in the L text. These relationships are
determined by means of an alignment algorithm that uses some additional linguistic
resources, such as a lemmata dictionary in L and a bilingual glossary, among others.

4 Two-Level Compressor for Aligned Bitexts (2LCAB)

Our strategy, called Two-Level Compressor for Aligned Bitexts (2LCAB), is based on
two main ideas: (i) the use of biwords [9]], pairs of aligned words, as the basis of the
model, that is, as the symbols to compress, and (ii) the use of a two level structure for
the representation of the vocabularies, where the vocabulary of biwords, at the second
level, is represented in compressed form using the vocabularies of the first level.

Figure 2 shows a conceptual description of this scheme. At the first level two vo-
cabularies are stored, one for each language. Each of them stores the words of the
corresponding language sorted by the number of biwords they take part in. The “empty
word” is also represented in both dictionaries. On the second level, each pair of words
(biword) is represented as the concatenation of the codewords assigned to each word
in the pair using ETDC. That is, each biword is used as a single symbol in the bi-
word vocabulary. In this second-level vocabulary the ranking of biwords is performed
in accordance with their frequencies in the bitext.

Four strings are the output of the compression process. Lv and Rv contain sorted
left and right vocabularies. BWv stores the biword vocabulary where biwords are repre-
sented in compressed form as explained above. These three strings constitute the header
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In all cases €i < encode (i), where encode is the function defined by ETDC to encode a word in a specific rank of the vocabulary.

Fig. 2. Conceptual description of the 2LCAB strategy

of the compressed bitext. The fourth string contains the compressed bitext, where each
pair of words is represented by the codeword corresponding to the ETDC codeword
assigned to its biword from its position in the second level vocabulary.

4.1 Compression and Decompression

Our strategy is based on a semi-static approach; therefore, it is necessary to make two
passes over the (aligned) bitext. In the first one, the aligned bitext is pair-to-pair parsed
and, in addition to the three vocabularies aforementioned, a hash table of pairs (biword,
codeword) is built. In the second pass, the compression process looks for each biword
in the hash table and outputs its corresponding codeword. The compression process is
completed in O(n) time overall, where n is the number of biwords in the bitext.

The decompression process begins by loading the strings Liv and Rv to get the left
and right vocabularies. These strings are stored in vectors V; and V., respectively. Then,
the string BWv is read and V; and V. are used to rebuilt the biword vocabulary, which is
stored in vector Vj,, where each biword is explicitly represented by its pair of words so
as to improve the efficiency of the decompression process. Building V}, takes O(b) time,
where b is the number of entries in the BWv vocabulary. Then, the compressed bitext
is processed by decoding each codeword. Given a codeword C;, the simple decoding
function of the ETDC is used to obtain the corresponding position ¢ = decode(C;) in
the biword vocabulary (V}[¢]). The decompression process is completed in O(T') time,
where 7' is the number of biwords in the bitext.

4.2 Processing the Compressed Bitext

Our representation allows to process the bitext without decompressing it. In fact, only
decompressing small snippets is necessary for most applications, and only when they
need to show the snippet to the user. Semantic relationships between languages in the
bitext suggest specific search possibilities such as: (i) to find all the occurrences of a
word in the bitext, that is, all the occurrences of biwords that include it; and (ii) to find
all the possible translations of a word, that is, all the biwords for a specific word.
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To process the compressed bitext we start loading and storing the strings Lv and
Rv into V} and V,. vectors, respectively. Also, two hash tables are built from Lv and
Rv. Then, the string BWv is read and stored in main memory. To facilitate the searches,
a bitmap with a bit for each byte in BWv is built. In this bitmap 0-bits correspond to
continuer bytes in BWv whereas 1-bits correspond to stopper bytes.

Searching the Occurrences of a Word in the Bitext. This operation is us