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Preface

3D imaging sensors have been investigated for several decades. Recently, im-
provements on classical approaches such as stereo vision and structured light
on the one hand, and novel time-of-flight (ToF) techniques on the other hand
have emerged, leading to 3D vision systems with radically improved characteris-
tics. Presently, these techniques make full-range 3D data available at interactive
frame rates, and thus open the path toward a much broader application of 3D
vision systems.

The workshop on Dynamic 3D Vision (Dyn3D) was held in conjunction
with the annual conference of the German Association of Pattern Recognition
(DAGM) in Jena on September 9, 2009. Previous workshops in this series have
focused on the same topic, i.e., the Dynamic 3D Vision workshop in conjunction
with the DAGM conference in 2007 and the CVPR workshop Time of Flight
Camera-Based Computer Vision (TOF-CV) in 2008. The goal of this year’s
workshop, as for the prior events, was to constitute a platform for researchers
working in the field of real-time range imaging, where all aspects, from sensor
evaluation to application scenarios, are addressed.

After a very competitive and high-quality reviewing process, 13 papers were
accepted for publication in this LNCS issue. The research area on dynamic 3D
vision proved to be extremely lively. Again, as for prior workshops on this field,
numerous new insights and novel approaches on time-of-flight sensors, on real-
time mono- and multidimensional data processing and on various applications
are presented in these workshop proceedings.

We would like to thank all the people who contributed to this event and to
the workshop proceedings at hand. Special thanks go to the organizers of the
DAGM, to the sponsors, to the supporting organizations, and, last but not least,
to the members of the Program Committee.

September 2009 Andreas Kolb
Reinhard Koch
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A Physical Model of Time-of-Flight 3D Imaging
Systems, Including Suppression of

Ambient Light

Mirko Schmidt and Bernd Jähne

Heidelberg Collaboratory for Image Processing (HCI),
Interdisciplinary Center for Scientific Computing (IWR),

University of Heidelberg,
69115 Heidelberg, Germany

{mirko.schmidt,bernd.jaehne}@iwr.uni-heidelberg.de

Abstract. We have developed a physical model of continuous-wave
Time-of-Flight cameras, which focuses on a realistic reproduction of the
sensor data. The derived simulation gives the ability to simulate data
acquired by a ToF system with low computational effort. The model is
able to use an arbitrary optical excitation and to simulate the sampling
of a target response by a two-tap sensor, which can use any switch-
ing function. Nonlinear photo response and pixel saturation, as well as
spatial variations from pixel to pixel like photo response non-uniformity
(PRNU) and dark signal non-uniformity (DSNU) can be modeled. Also
the influence of interfering background light and on-sensor suppression
of ambient light can be simulated.

The model was verified by analyzing two scenarios: The cameras re-
sponse to an increasing, homogeneous irradiation as well as the system-
atic phase deviation caused by higher harmonics of the optical excitation.
In both scenarios the model gave a precise reproduction of the observed
data.

1 Introduction

Time-of-flight (ToF) 3-D cameras measure the distance of the object by deter-
mining the time τd which the light needs to cover the distance from a light source
to the object and from the object to the sensor. With c being the speed of light,
the distance d of the imaged point can be computed as

d =
1
2
· c · τd , (1)

where the light source is assumed to be located near the camera. ToF cam-
eras measure this distance in each pixel - enabling the simultaneous generation
of dense depth maps. Pulse-based and a phase-based ToF cameras have been
realized.

The pulse based method employs discrete pulses of light which are emitted
by a light source and backscattered by the object. In [3] a CMOS sensor was

R. Koch and A. Kolb (Eds.): Dyn3D 2009, LNCS 5742, pp. 1–15, 2009.
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2 M. Schmidt and B. Jähne

presented, which can be shuttered electronically extremely fast and with a very
high precision. Another method was used in [16]: Here a conventional 2D imaging
sensor is combined with a physical shutter, which can be modulated in trans-
missivity. This physical shutter ensures that light reaches the sensor only in a
certain time window, which enables the estimation of the objects distance from
the detected intensity values.

With a continuous-wave, amplitude-modulated light source the depth is de-
termined by measuring the phase-shift between the emitted and the received
optical signal. For a periodical modulation of frequency ν, the phase shift ϕ
corresponds to a temporal shift

τd = ϕ

2πν
, (2)

which gives the distance by using (1):

d = ϕ

4πν
· c . (3)

To measure the phase shift between the reflected optical signal and the electronic
reference signal, special sensors called Photonic Mixing Device (PMD) were de-
veloped. They use pixel with two quantum wells to perform a correlation of both
signals. In 1995 the first sensors using such a pixelwise on-chip correlation were
presented in [14] and [15]. Currently the ToF camera systems of manufacturers
like PMDTec [12], Mesa Imaging [8] and Canesta [4] are using this approach.

The correlation function of a sinusoidal electrooptical signal S(t) with an elec-
tronical reference signal R(t) delayed by a phase angle Θ, assuming an angular
frequency ω and a correlation range of m oscillating periods, is given by

S(t) = G0 +A sin(ωt− ϕ) ,

R(t) = H(sin(ωt+Θ)) ,

I(Θ) = mT
(
A

π
cos(ϕ+Θ) + G0

2

)
.

H is the Heaviside step function, meaning that R(t) is assumed to be rectangular.
The rectangular shaped reference signal is a good approximation of a real PMD
sensor reference signal, which results from a discrete switching of the electrical
field inside the sensor. G0 is a constant describing the offset of the light source,
and A is its amplitude. The full derivation is available for instance in [13].

The PMD-Sensor is able to sample the correlation function at different phas-
ings by electronically delaying the reference signal by angleΘ. Besides the objects
distance, also the intensity of the light source and of a possible background illu-
mination are unknown. Therefore at least three measurements are necessary to
estimate them.

From N equidistant sampling points located at the phase angles Θn, the offset
a0, amplitude a1 and the phase shift ϕ of the electrooptical input signal may
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be estimated. Most available ToF systems use N = 4 samples, but also systems
using more or fewer samples are feasible. As shown e.g. by [10], the optimal
solution in a least square sense is given by (4) - (6) and their variance may
be estimated as shown in (7) - (9). This is derived by using Gaussian error
propagation and assuming an equal variance σ2 of all acquired raw intensity
values In.

However, in practice this simplified assumption does not hold: It does not
account for a variety of factors like

– non sinusoidal light modulation S(t)
– non rectangle switching function R(t)
– non-linear photo-response
– influence of on-sensor suppression of ambient light.

Furthermore spatial variations from pixel to pixel like photo response non-
uniformity (PRNU), dark signal non-uniformity (DSNU), and dark current non-
uniformity (DCNU) (see [2]) must be considered.

a0 = 2
N

N−1∑
n=0

In (4)

a1 = 2π
N

∣∣∣∣∣
N−1∑
n=0

Ine
−i2π(n/N)

∣∣∣∣∣ (5)

ϕ = arg

(
N−1∑
n=0

Ine
−i2π(n/N)

)
(6)

with In = I(Θn)
mT

σ2
a0 = σ

2

4 (7)

σ2
a1 = σ

2

2
(8)

σ2
ϕ = σ

2

2a2
1

(9)

1.1 Motivation and Related Work

To describe these effects, a detailed physical model of a ToF sensor is necessary,
similar to that proposed by [2] for linear 2D-Sensors. With a thorough calibration
this model could help improving current ToF systems.

Our goal is to simulate the data produced by a ToF camera as realistic as
possible, so the optimization of existing ToF systems as well as the prediction
of the characteristics of yet unavailable cameras gets feasible.

Prior models do not include all the effects discussed in the previous section.
They rather focused on the simulation of whole 3D scenes. In [5] a MATLAB-
based approach was chosen, were the resulting point cloud of a 3D scene is
represented as superposition of single point responses. The influence of an area
light source and inhomogeneous illumination of the scene was simulated by [9].
In [6,7] a simulation tool for real-time ToF data was presented. It uses the GPU
to generate synthetic data for whole 3D scenes, which can be static or moving.
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All these approaches focus on the simulation of ToF data for a given 3D
scene. This includes issues of rendering, an adequate camera model, reflectance
characteristics of the imaged objects and the position and size of the light sources.
From the given ideal depth image the simulated samples are generated using
a measured correlation function of a real PMD. A very simple noise model is
employed to simulate the influence of noise on the acquired data. From the noisy
samples, a depth image is computed.

In contrast this paper focuses on the effects influencing the quality of the
generated depth image, and their origin. That means we concentrated on mod-
eling the sensor and its noise sources very carefully. But we made only small
efforts to simulate the imaging of the scene. In fact we use ideal depth maps and
reflectivity maps as input for our model.

The structure of this paper is as follows: In section 2 the physical model of ToF
cameras is presented, starting on a conceptual level and then explaining some
necessary speed-up techniques. This very general model, which is describing
most available phase based ToF systems is extended in section 3 to model a
specific technique of suppressing background light, used by one manufacturer.
We compared the model with a real ToF system in two different scenarios; the
methods and results will be presented in section 4. Section 5 gives an conclusion
and outlook.

2 A Physical Model

2.1 Assumptions

Because the investigation of errors occurring in ToF systems is not possible by
regarding the isolated sensor, we have to model a whole ToF acquisition system,
including a light source, the target response, the image acquisition and analysis.
Our focus lies on the sensor and its noise sources, so we neglected questions
about the appropriate camera model, the shape and position of the light source
and scene-induced interferences like multi-reflections of the active illumination.

Our model does not simulate an area light source but employs a point light
source instead (which was shown by [7] to be a good approximation). We assume
the light source being located at exactly the same position as the sensor. The
model uses maps containing information about the theoretical scene depth, its
reflectivity and the distribution of interfering background light to cover the scene
dependent quantities in a simple way.

2.2 Structure of the Model

A phase based ToF measuring setup is a system consisting of a modulated light
source, a target which has some effect on the light and a ToF camera which
generates data from the detected optical signal.

The model is separated into modules to ensure a high flexibility. In fig. 1 the
structure and the information flow between the different modules is depicted,
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Fig. 1. Schematic representation of the model. Please see text for further information.

where a box stands for a processing unit. These units have different complex-
ity and may consist of sub units, as it is shown for the target response and
sampling module in the figure.

Excitation. The excitation module computes the function which represents the
optical excitation. Furthermore a synchronization-signal is generated, which
will be used in the sampling module.

Light source. Within the light source module, the excitation function is con-
verted into a light signal. The appropriate unit of this signal is “mean num-
ber of detectable photons during one time step”, so we are working with a
temporal density of photons.

Target response. The target response module simulates the response of the
probe. Parameters like the target’s reflectivity are used here and the influ-
ence of additional (non-modulated) background light is taken into account.
Because of the target’s distance from the light source and ToF camera, the
light signal is being shifted here against the synchronization signal.

Sampling. The sampling of the correlation function at different phasings is
performed in the sampling module. Incident photons generate electrons with
a certain ratio η. The conversion of “mean number of present electrons” into
“present electrons” is a Poisson process, so Poisson noise is added here. A
switch sorts the generated electrons into the two quantum wells A and B.
Now dark current electrons are added, which are also affected by Poisson
noise. The sum Σ of all collected electrons of the two taps is converted into
a voltage by two distinct amplification factors KA and KB. This voltage
is transformed by a non-linear function, which simulates the effect of pixel
saturation. Both resulting voltages are digitized and these digital numbers
are given out.

Analysis. From the given samples of the correlation function, the output of the
camera is computed here, e.g. a phase shift and an amplitude.

All modules work on a single vector which contains the signal over time. This
signal can be described as a temporal density of detectable photons, but its
concrete physical meaning slightly changes between the modules.
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Since we want to model phenomena which are faster than one oscillating
period of the light source, we have to set the temporal sampling density to a
value, which is at least one hundred times higher. So for typical integration times
of 106 oscillating periods or more for a single depth image, we get a large vector
containing at least 108 entries.

This might be no problem for simulating a single pixel, but our goal is to
model a whole ToF sensor containing up to millions of pixels, with accept-
able consumption of computing time and memory. Therefore we had to seek for
optimizations.

2.3 Optimizations

In order to simulate a large number of ToF pixels simultaneously it is an inter-
esting question which of the discussed operations are pixel-dependent and which
are identical for all pixels. Because of its size, the processing of the time depen-
dent signal vector consumes a lot of computation time and memory. Therefore it
is desirable to separate it into a part which is equal for all pixels and a difference
term. Since the time dependent signal is affected by noise and therefore differs
randomly from pixel to pixel, this is not trivial. Fortunately it can be shown
that it is possible to separate the noise in an easy way:

The process of adding Poisson noise is a function which generates random
numbers which are distributed according to the Poisson distribution with a pa-
rameter λ. The Poisson distribution is given by

Pλ = λ
k

k!
e−λ .

The parameter λ describes the mean of the values, which is here the number of
generated electrons. Pλ is the probability of detecting k electrons for a given λ.

Since the Poisson distribution is reproductive, which means that

X1 ∼ Pλ1

X2 ∼ Pλ2

⇒ X1 +X2 ∼ Pλ1+λ2 , (10)

several time steps collecting electrons for the same tap can be grouped, and
the addition of the Poisson noise can be applied only once per group. This
“grouping” is exactly what the sorting module does - so it is possible to perform
the switching first, and add the Poisson noise afterwards.

Each tap experiences two Poisson processes, the electrons generated from in-
cident photons plus a certain number of dark current electrons. Both are affected
by Poisson noise and may combined in order to further speed up the simulation.

By separating the time dependent signal from its noise, we have done the
critical part: All other pixel dependent operations like the multiplicative factors
which describe the reflectivity of the target and the quantum efficiency of each
pixel, or the additive factors like the amount of incident background light and
interfering dark current electrons can simply be rearranged.
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Since we now know separating the time dependent signal from its noise is
allowed, it is possible to compute the switching function only once and to use
these values to simulate all pixels. If the excitation function is periodical and
the integration time of a subframe is an integer multiple of a oscillating period,
a further speedup is achieved by computing the switching function for a single
oscillating period only, and multiplying the result by the number of oscillating
periods per subframe.

After rearranging the model according to that explanation, it looks as
shown in fig. 2.

Fig. 2. Schematic representation of the model after combining Poisson processes.

By performing this sampling operation at four different phase angles Θ =
{0, 90, 180, 270}◦ of the input signal, we simulate the acquisition of four sub-
frames, each consisting of two raw images. So we get eight raw images, as typ-
ically produced by a real ToF camera. Each pair of raw images corresponding
to the same phasing, but different channels (one was taken by tap A, the other
by tap B) are summed to decrease the influence of spatial inhomogeneities of
the sensor. Now (6) is used to reconstruct a phase image, from which the depth
image is being computed by using (3).

3 Suppression of Background Light

Due to its flexible structure, the model can easily be extended to describe even
more complex systems. A very interesting question for developers and users of
ToF systems is, how robust the system reacts to non-modulated background
light. This interfering illumination causes an earlier saturation of the quantum
wells, so less of the backscattered active light containing depth information is
being detected, leading to a decreased signal-to-noise ratio (SNR).

So an interesting task for ToF manufacturers is to design systems which ac-
tively decrease the influence of non-modulated light. One system developed by
PMDTec is called Suppression of Background Illumination (SBI), which is im-
plemented in its CamCube ToF camera.
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The manufacturer did not publish detailed information about the SBI, but it
is possible to gather some information by analyzing the data produced by the
camera.

3.1 Observations

When irradiating the cameras sensor with increasing intensities and analyzing
the acquired intensity values of both channels A and B of a subframe of a certain
angle Θ, the following behavior can be observed: For low intensities, there is a
linear relation between the intensity of the light source and the sensors output.
At some point, one of the channels gets saturated, i.e. there is almost no variation
of the raw data while further increasing the intensity of the light source. At the
same point, the output of the other raw-channel starts decreasing, while still
increasing the irradiation level.

This behavior can be explained as follows: The charge stored in the two quan-
tum wells Σ is continuously compared with a reference value nSBI,start. As soon
as the amount of stored charges of one quantum well exceeds this value, i.e. the
difference nΔ of both gets positive, a compensation process is triggered. During
this process, two compensation currents are injected into the quantum wells,
which contain roughly the same charge as the difference nΔ. By doing that, the
quantum well which contained more electrons at the beginning of the process is
reset to nSBI,start. The other quantum well is set to a value which is below its
original value.

No important information is lost due to that process: The most interesting
quantity which is reconstructible from the data is the phase shift ϕ, which gives
the depth information. To estimate ϕ, only the difference of the two channels A
and B is of importance, not their absolute value (see (6)).

3.2 Modeling SBI

These observations were included into the model (see fig. 3): The amount of
charges of the two quantum wells Σ is continuously read into the SBI circuit. It
computes the maximum of both and subtracts a reference value nSBI,start this
difference is, if positive, multiplied by a factor CDK , and an offset CD0 is added.
These parameters were introduced to model eventual deviations from an ideal
system.

The computed and transformed difference value is affected by Poisson noise.
It is fed into two paths, which generate the compensation currents for the two
quantum wells by multiplying with a factor CAK (or CBK) and adding an offset
CA0 (or CB0). The generated compensation currents are also affected by Poisson
noise, which is regarded by the model.

By employing the property of the Poisson distribution of being reproductive
(see (10)), the model can be optimized regarding the speed and memory con-
sumption of a numerical implementation, which leads to the scheme shown in
fig. 4. This model can be simulated much faster, because the SBI compensation
currents are computed only once per quantum well, just before the read out
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Fig. 3. Schematic representation of the model, including a SBI circuit.

Fig. 4. Schematic representation of the model, including a SBI circuit, after combining
Poisson processes.

cycle starts. In a continuous system the quantum well containing more electrons
is kept on a constant level, so the additional noise caused by the SBI is can-
celed out by the controlling loop. We regarded that by setting the quantum well,
which contained the higher number of electrons at the beginning of the SBI, to
nSBI,start at the end of the process.

The model was implemented in heurisko, an image processing script lan-
guage. The simulation of a ToF camera system acquiring one 1000× 1000pixel2
depth image, using four subframes, takes about t = 10s on a Windows XP
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Pentium 4 2, 80GHz machine. The source code was not optimized for high speed
computation yet.

4 Experimental Verification of the Model

4.1 Investigation of Noise

Method. To verify the model we used a setup similar to a radiometric cali-
bration setup for conventional 2D cameras, as described for instance in [2]: We
mounted a PMD CamCube ToF camera on an integrating sphere with a cali-
brated light source, so that the sensor could be illuminated homogeneously with
variable intensities. The radiation energy Q was varied and we observed the
mean gray value μy and the variance σ2

y of the output signal of one raw image1.
For low intensities the camera behaves like a conventional linear camera, be-

cause the SBI is not active. By applying the photon transfer method we were
able to determine the quantities KA, KB and η. The idea of this technique is to
exploit the fact that the detected electrons are affected by Poisson noise, which
has the property of μ = σ2, meaning the mean of the signal is equal the its vari-
ance. So by analyzing the relation of the known number of incident photons, the
generated gray values and their variance we were able to estimate the searched
parameters. Please see [2,1] for further details.

The highest observed mean gray value divided by K gave the parameter
nSBI,Start. The dark currents dcA and dcB and their distribution were esti-
mated from the variance of the dark signal σ2

y,0. All other non-uniformities
were neglected in this simulation; especially the SBI module was set to ideal
parameters.

Results of noise investigation. In fig. 5 the mean gray value minus the
mean dark gray value μy − μy,0 and variance σ2

y were plotted over the radia-
tion energy Q. Also the computed corresponding quantities as a result of the
simulation were plotted in the same figure. It can be seen that model gives a
good explanation for the observed data. The results of the simulation and the
measured quantities are very similar in the linear range up to radiation energies
of Q = 1.7× 107photons/pixel. At this point the SBI is activated, which causes
the sharp bend in the observed and simulated data. With increasing radiation
energies the model still gives a good approximation of the real ToF camera, but
starts to show slight deviations. The observed variance σ2

y is above the simulated
quantity, which was expected, because we simulated an ideal SBI module. Note
that even this ideal SBI module introduces additional noise compared to a ToF
system without SBI.

4.2 Investigation of Systematic Deviations

Setup. We investigated the systematic deviations of depth data predicted by
the simulation and compared them to measured data. We expected a periodical
1 We analyzed the channel A of subframe I0, i.e. Θ = 0◦.
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deviation, called “wiggling”, between the measured depth and the real depth,
which is caused by higher harmonics of the optical signal. A theoretical discussion
of this phenomena can be found in [11].

To determine the phase deviation of the real ToF system we mounted the
camera and a plane target on movable positioning tables. The light source was
demounted from the camera and attached to the target, so the targets surface was
irradiated from a constant distance and the backscattered light was detected by
the camera. This directly illuminated target acts like a plane emitter, which has
a constant irradiance independently of its distance. So the acquired depth data
does not contain deviations caused by near-field effects of the optical systems
(especially the light source) nor effects caused by a varying amplitude of the
optical signal.

The lengthened cable from the camera to the light source introduces an addi-
tional but constant offset of the measured phase, which can easily be corrected.

We used a telephoto lens to image only a small, homogeneously irradiated
area from the middle of the target. By moving the tables to certain positions we
varied the distances between the active target and the camera, and analyzed the
depth data of some center pixels.

To model the periodical deviations we used a fast photo diode (Femto Pho-
toreceiver HCA-S-400M-SI-FS) and measured the shape of the optical signal. To
decrease noise, we averaged the signal over 16 oscillating periods. The measured
temporal modulation of the light source is plotted in fig. 6. This real shape was
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integrated into the model and the simulation was run for a varying distance
between target and camera, i.e. varying phase shifts.

Results of investigation of systematic deviations. In fig. 7 we plotted the
measured and simulated depth deviations over the real depth dreal. The real
depth can be computed from the chosen distance ddistance between camera and
target as:

dreal = 2 · ddistance + dreal,0. (11)

Note that because of the detached light source, the light has to travel the distance
between target and camera only once, which explains factor 2. The distance offset
dreal,0 , which results from the lengthened cable and some camera internal delays
of the signal, is unknown but not important for this investigation. As measured
depth data we used the depth data delivered by the camera of a 10× 10pixel2
array near the optical axis.

The measured depth deviation has a periodical structure with a wavelength
of a quarter of the ambiguity range, i.e. 7.5m/4. Since dreal,0 is unknown, we set
it to a value which fits best to the simulated data. From fig. 7 it can be seen
that the model generated a very well reproduction of the measured deviation:
The wavelength and amplitude of measured and simulated deviation are in very
good agreement.

5 Conclusion and Outlook

We have presented a physical model of continuous-wave ToF cameras, which
offers a very high flexibility. The derived simulation gives the ability to simulate
data acquired by a PMD ToF sensor with low computational effort. An arbitrary
optical excitation may be used to simulate the sampling of a target response by
a two tap sensor, which can use any function as switching function. All spatial
parameters like the reflectivity of the target seen by a single pixel, the local
amount of background light or the quantum efficiency η are treated as maps and
may be specified. We have integrated an additional module to the model which
simulated a circuit for suppressing ambient light.

As a verification we analyzed two scenarios: The cameras response to an
increasing, homogeneous irradiation as well as the systematic phase deviation
caused by higher harmonics of the optical excitation. In both scenarios the model
gave a precise reproduction of the observed data.

As a next step we will model Photo response non-uniformity (PRNU), dark
signal non-uniformity (DSNU) and dark current non-uniformity (DCNU) by
choosing the number of dark current electrons dc, the system gain K and the
nonlinearity parameters like the fullwell capacity independently for each Gate
and each pixel. We are interested in modeling also pulse-based ToF systems
which will require only slight modifications of the presented model.

We see our model as an important element for the development of standards to
characterize and compare Time-of-Flight systems from different manufacturers.
A detailed measurement and comparison of ToF systems may be found in [1].
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We are also interested in using ToF cameras for fluorescence lifetime imaging
(FLI). By modifying the presented model, e.g. changing the input module, we
will be able to simulate FLI systems.

Acknowledgment

This work is partially funded by Sony EuTec Stuttgart and the BMBF project
Lynkeus. We would like to thank Michael Erz for very inspiring discussions and
doing great work when acquiring the data of real ToF Systems. We also would
like to thank the anonymous reviewers for giving detailed constructive and thus
very useful feedback. Furthermore we would like to thank Martin Schmidt for
his support with the drivers of the measurement equipment.

References

1. Erz, M., Jähne, B.: Radiometric, spectrometric and range calibrations of ToF cam-
eras. In: Koch, R., Kolb, A. (eds.) 3rd Workshop on Dynamic 3D Imaging. LNCS,
vol. 5742, pp. 16–27. Springer, Heidelberg (2009)

2. EMVA Standard 1288: EMVA Standard 1288 - Standard for Characterization of
Image Sensors and Cameras. European Machine Vision Association, release 3.0,
draft 1e 2009 edn. (February 2009) (to appear)

3. Elkhalili, O., Schrey, O., Ulfig, W., Brockherde, W., Hosticka, B.J., Mengel, P.,
Listl, L.: A 64x8 pixel 3-D CMOS time-of flight image sensor for car safety appli-
cations (2006)

4. Gokturk, S.B., Yalcin, H., Bamji, C.: A time-of-flight depth sensor - System
description, issues and solutions,
http://www.canesta.com/assets/pdf/technicalpapers/CVPR_Submission_
TOF.pdf

5. Hasouneh, F., Knedlik, S., Peters, V., Loffeld, O.: PMD based mobile node position
monitoring. In: Position, Location, And Navigation Symposium, pp. 569–573. IEEE
Press, New York (2006)

6. Keller, M., Orthmann, J., Kolb, A., Peters, V.: A Simulation Framework for time-
of-flight Sensors. In: Proc. of the Int. IEEE Symp. on Signals, Circuits & Systems
(ISSCS), vol. 1, pp. 125–128 (2007)

7. Keller, M., Kolb, A.: Real-time Simulation of time-of-flight Sensors. Simulation
Practice and Theory 17, 967–978 (2009)

8. Oggier, T., Lehmann, M., Kaufmann, R., Schweizer, M., Richter, M., Metzler, P.,
Lang, G., Lustenberger, F., Blanc, N.: An all-solid-state optical range camera for
3D real-time imaging with sub-centimeter depth resolution (2004)

9. Peters, V., Loffeld, O., Hartmann, K., Knedlik, S.: Modeling and Bistatic Simula-
tion of a High Resolution 3D PMD-Camera. In: EUROSIM 2007 (6th EUROSIM
Congress on Modelling and Simulation), Ljubljana, Slovenia (2007)

10. Plaue, M.: Analysis of the PMD imaging system: Technical report, Interdisciplinary
Center for Scientific Computing (IWR), University of Heidelberg (2006)

11. Rapp, H.: Experimental and Theoretical Investigation of Correlating TOF-Camera
Systems. Diploma thesis, Interdisciplinary Center for Scientific Computing(IWR),
University of Heidelberg (2007)

http://www.canesta.com/assets/pdf/technicalpapers/CVPR_Submission_TOF.pdf
http://www.canesta.com/assets/pdf/technicalpapers/CVPR_Submission_TOF.pdf


A Physical Model of Time-of-Flight 3D Imaging Systems 15

12. Ringbeck, T., Hagebeuker, B.: A 3D time-of-flight camera for object detection
(2007)

13. Schmidt, M.: Spatiotemporal Analysis of Range Imagery. Dissertation, IWR,
Fakultät für Physik und Astronomie, University of Heidelberg (2008)

14. Schwarte, R., Heinol, H.G., Xu, Z., Hartmann, K.: New active 3D vision sys-
tem based on rf-modulation interferometry of incoherent light. In: Casasent, D.P.
(ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Se-
ries, vol. 2588, pp. 126–134 (1995)

15. Spirig, T., Seitz, P., Heitger, F.: The lock-in CCD. Two-dimensional synchronous
detection of light. IEEE J.Quantum Electronics 31, 1705–1708 (1995)

16. Yahav, G., Iddan, G.J., Mandelboum, D.: 3D Imaging Camera for Gaming Appli-
cation (2006),
http://www.3dvsystems.com/technology/3D%20Camera%20for%20Gaming-1.pdf

http://www.3dvsystems.com/technology/3D%20Camera%20for%20Gaming-1.pdf


Compensation of Motion Artifacts for
Time-of-Flight Cameras

Marvin Lindner and Andreas Kolb

Institute for Vision and Graphics
Computer Graphics and Multimedia Systems Group

University of Siegen, Germany
marvin.lindner@uni-siegen.de

Abstract. During the last years, Time-of-Flight sensors achieved a sig-
nificant impact onto research fields in computer vision. For dynamic
scenes however, most sensor’s working principles lead to significant ar-
tifacts in respect to sensor or object motion – artifacts that commonly
affect distance reliability and thus affect downstream processing tasks in
a negative way.

We therefore introduce a compensation approach for sensors based on
the Photonic Mixing Device (PMD). Out technique deals with both, lat-
eral and axial motion artifacts. The lateral compensation tracks object
motion on the level of phase images and accordingly adjusts the depth
image computation in order to reduce artifacts and enhances depth re-
liability. The axial motion compensation is based on an axial motion
estimation and a theoretical model for axial motion deviation errors.
Both components utilize fast optical flow algorithms.

1 Introduction

In the context of computer vision, Time-of-Flight (TOF) sensors like the Pho-
tonic Mixer Device [1, PMD] currently became considerable alternatives to
common 3D sensing devices and are already utilized for e.g. scene acquisition,
obstacle detection, object tracking or gesture recognition. Most interactive ap-
plications as those mentioned before thereby deal with dynamic scenes, i.e. with
moving objects or camera movements. However, due to the sensor’s working prin-
ciple, which is based on subsequent phase image acquisition (see sensor principle
in Sec. 2.1), fast motion leads to artifacts in situations where corresponding
phase images do not align properly with respect to object points and the cam-
era’s per-pixel sampling schema results in a false distance computation.

For this purpose, we present a new compensation approach for motion arti-
facts, that uses optical flow to break up the fixed sample schema and allows the
realignment of corresponding phase images by tracking individual object points
over time. We further introduce an axial motion compensation, that deals with
motion along the viewing direction. In boundary regions, axial motion leads to
mismatching phase values as well. Additionally, we give a theoretical analysis
of the effects of axial motion to the distance measurement and introduce a cor-
rection scheme based on axial motion estimation. A detailed description of the

R. Koch and A. Kolb (Eds.): Dyn3D 2009, LNCS 5742, pp. 16–27, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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compensation approach, i.e. the necessary processing steps to make optical flow
applicable for phase images, is given in Sec. 3. Prior to that, a principle descrip-
tion about TOF sensing and motion artifacts is given in Sec. 2. Implementation
details are finally discussed in Sec. 4 along with two exemplary results in Sec. 5.

2 Technical Background

2.1 PMD-Based TOF-Principle

The main component of common PMD/TOF-cameras is represented by a CMOS
chip consisting of so-called smart pixels, each measuring individual distance in-
formation for an observed scene [2,3,4]. The underlying measurement process
itself is based on the TOF principle as illustrated in Fig. 1.

The illuminating units of the camera emit intensity modulated near infrared
light (NIR). The modulated illumination, driven by the internal signal s, is
reflected at the object surfaces and the resulting optical signal r is detected
by the corresponding smart pixel of the PMD-sensor. Each smart pixel finally
determines the correlation c between the incident optical signal r and the internal
reference signal s additionally shifted by an internal phase offset τ :

c(τ) = r ⊗ s = lim
T→∞

∫ T/2

−T/2
r(t) · s(t + τ) dt. (1)

In most approaches sinusoidal signals are assumed,

s(t) = cos(ωt), r(t) = k + a cos(ωt + φ) (2)

where ω = 2πf is the modulation frequency, a is the amplitude of the incident
optical signal and φ is the phase offset relating to the object distance, finally
yielding

c(τ) =
a

2
cos(ωτ + φ). (3)

Fig. 1. The principle of PMD/TOF-measurement
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By sampling the correlation function four times Ii = c(i · π/2), i = 1 . . . 4, i.e.
taking four sequential phase images with an internal phase delay of τi = i · π/2,
and using simple trigonometry, we can determine a pixel’s phase shift φ ∈ [0, 2π],
the correlation amplitude a and the incident light intensity h as

φ = atan2 (I3 − I1, I0 − I2) + π, h = 1
4

3∑
i=0

Ii,

a = 1
2

√
(I3 − I1)2 + (I0 − I2)2. (4)

Finally, the measured distance to the according object region m is given by
m = clight/4πf · φ, where clight ≈ 3 · 108 m

s represents the speed of light and f
stands for the signal’s modulation frequency. Commonly a modulation frequency
of 20MHz is used, resulting in an unambiguous distance range of 7.5m. Due to
various factors, m is not the extact object distance [5]. Thus, we differentiate
between the measured distance m and the true distance d.

Todays devices offer a resolution of up to 204 × 204px providing distance
information at 25Hz. Due to an automatic suppression of background light,
some TOF-cameras are also suitable for outdoor applications.

2.2 Motion Artifacts

Motion Artifacts typically occur where objects or the camera itself move, while
the consecutive phase images I0 - I3 are taken. They arise from unmatching
phase values during the demodulation process and are more extensive the faster
the object moves or the longer the integration time is. We distinguish between
three error sources:

Lateral Motion which primary result in the mixture of foreground and back-
ground phase values at the boundary of moving objects.

Axial Motion which describe motion along the viewing direction and introduce
additional phase changes due to non-constant object distance.

Texture Changes which occur for objects of varying reflectivity and result in
unmatching phase values even if the object distance does not change for a
given pixel.

A theoretical investigation of discontinuity and texture related motion artifacts
has been published by Schmidt [6]. He assumes that both even as well as odd
correlation samples are taken at the same time, i.e. are related to the same
reflectivity, and describes the theoretical impact of varying intensity onto the
resultant distance information.

Nevertheless, no specific technique to compensate TOF camera related motion
artifacts has been published yet. The only known approach by Lottner et. al [7]
is based on the bilateral filtering of monocular combined 2D/3D TOF images.
However, this approach equals rather an edge preserving image smoothing than
a real motion compensation.
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3 Motion Compensation Based on Optical Flow

As the problem basically arises from unmatching phase images due to non-
constant distance and texture change, our main idea is to discard the fixed
per-pixel sampling schema by tracking individual surface points in all phase
images and select the correct object location in the phase image to determine
the phase values for the final distance calculation. The most universal approach
in this context is optical flow [8,9], as it works on a per pixel basis and allows
unrestricted motion as well as deformation.

3.1 Adopting TOF-Data to Optical Flow

Applying optical flow in combination with variable sampling positions how-
ever requires the following conditions that are not fulfilled by phase images
immediately.

Brightness Constraint. Tracking objects between subsequent images is based on
the assumption that corresponding surface points appear with the same intensity
in subsequent images.

Pixel Homogeneity. Applying the demodulation at different pixel locations re-
quires matching raw values, i.e. a homogeneous sensor behavior, in order to get
the correct phase shift.

Both conditions are not directly met by PMD-based TOF-cameras. Thus, we
next will discuss solutions to this issues in the following paragraphs.

Brightness Constraint. An important precondition of optical flow is the
assumption of constant intensity values between consecutive images. Unfortu-
nately, by taking a look a the phase images Ii, it becomes obvious that objects
appear differently in each phase image due to the internal phase shift and the
applied convolution (see Fig. 2, top).

Fig. 2. PMD Phase Image A−B (top row) and their according intensity images A+B
(bottom row)
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Fig. 3. PMD intensity image before (left) and after homogeneity adjustment (right).
Note the strongly varying intensity of the hand/arm without correction.

However, PMD-based TOF sensors measure two raw images at a time, i.e.

– the shifted reference signal yielding Ai = c(i · π/2ω) as well as
– the inverted signal yielding Bi = c(i · π/2ω + π).

Both raw images are internally subtracted to form the actual phase image Ii =
Ai − Bi in order to reduce production-specific pixel behavior. Accordingly, the
pixel intensity is given analog to Eq. 4 by

h = 1/8 ·
3∑

i=0

(Ai + Bi). (5)

As both signals are inverse to each other, the absolute amount of incident light –
and thus the total intensity I+

i – for a phase image can be computed by the sum
of its raw images (see Fig. 2, bottom), making optical flow estimation finally
applicable.

Pixel Homogeneity. In practice, pixel gain differences as well as a radial
light attenuation towards the image border affects the phase values (see
Fig. 3, left column). Concerning the fixed sampling scheme, these individual pixel
characteristics are simply ignored. For the realigned demodulation, however, the
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inhomogeneity not only influences the optical flow estimation in a negative way
by violating the constant intensity assumption, it also leads to non-matching
raw values during the realigned demodulation since different pixel locations are
getting combined.

Thus, in order to adjust pixel inhomogeneities and consequently improve
the motion compensation, we adapted the intensity-value standardization by
Sturmer [10] to work on raw images. Analog to Sturmer’s intensity standardiza-
tion, planar reference images of different reflectivity have been acquired and serve
as basis for the determination of an appropriate correction term. In our case,
the final raw value adjustment has been obtained via a pixel-wise function fit

fA(Ai) = Ãi, fB(Bi) = B̃i with i = 0 . . . 3 (6)

minimizing
3∑

i=0

(Ãi + B̃i) = href. (7)

Here, the reference intensity href is given by the brightest pixel observing a
homogeneous planar surface. In presence of noise, the reference intensity should
be determined using a small neighborhood.

As the correction fX(Xi) should be smooth and monotonically increasing, we
decided to fit a function of logarithmic form, i.e. fX(Xi) = a

√
Xi + b + cXi + d,

yielding the homogenization results as shown on the right side of Fig. 3.

3.2 Axial Motion

While optical flow handles error sources caused by lateral object shifts, the
impact of axial motion still needs further investigations. Unlike lateral motion
which simply results in a displacement of corresponding phase values, axial mo-
tion introduces additional phase changes due to the varying object displacement.

Assuming a uniform axial motion with an axial depth difference κ = d3 − d0
between phase image I0 and I3, the theoretical correlation samples are given
analog to Eq. 3 by

Ii =
a

2
cos

(
i · π

2
+ φd + κi · π/3.75

)
, κi = i · κ

3
(8)

As a result, the demodulation schema from Eq. 4 gives the phase offset

φm = arctan
sin(φd + aκ) + sin

(
φd + 1

3aκ
)

cos(φd) + cos
(
φd + 2

3aκ
)

= arctan
sin

(
φd + 2

3aκ
)

cos
(
φd + 1

3aκ
) ,

(9)

where a = π/3.75. Thus for known κ and φm = a · m − π, the true phase offset
φd is given by
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d = atan2
(
sin(φm) − cos(φm) sin

(aκ

3

)
, cos(φm) cos

(aκ

3

))
+ π − aκ

3
. (10)

By taking a look on the deviation between the theoretical measured distance
d(φ) and its ground truth distance m (cmp. Fig. 4), it become s obvious that the
deviation smoothly fluctuates about κ/2 with an amplitude of κ/6 not causing
any critical distance jumps.

Regarding a common integration time of 15 ms per raw image, the displace-
ments in Fig. 4 already imply a rather high velocity of 8 km/h and 24 km/h
respectively. For common scenarios axial motion itself therefore generally has
less significant impact on the distance accuracy but is still in the range of cen-
timeters. Additionally, a resizing of object contours occur, which are already
handled by our optical flow based pixel alignment.

4 Implementation Details

The idea of motion compensation via flow estimation is finally realized using the
optical flow implementation of Zach et. al [11]. Zach’s GPU-based implemen-
tation allows discontinuity preserving TV-L1 flow estimation in real time and
currently hold the second place of the Middlebury’s optical flow ranking [12].
As the quality of the motion compensation relies on the underlying flow estima-
tion, our choice should give the best results in respect to accuracy and runtime
currently possible. A complete system overview is given in Fig. 5, consisting of
both a lateral as well as an axial motion compensation.
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Fig. 5. System Overview. The motion compensation consists of two consecutive mod-
ules: the lateral motion and the axial motion compensation. An additional systematic
error correction is necessary to adjust demodulation errors before a correct velocity
estimation can be performed.

4.1 Lateral Motion Compensation

The lateral compensation is done by estimating the optical flow between the
phase intensity images I+

1 − I+
3 and I+

0 and an according resampling of the
corresponding phase images. Before, all raw images are adjusted according to
Sec. 3.1 to eliminate pixel inhomogeneities. The resampled phase images are
then further processed by the fixed standard demodulation schema in order to
calculate the final distance information (upper part of Fig. 5).

4.2 Axial Motion Impact

For depth image sequences an additional compensation approach for axial mo-
tion errors is applied. Here, object velocities are estimated via the previous two
corrected depth images. Knowing the velocity of a surface point, its theoretical
deviation as well as its according correction can be derived from Eq. 9. Once
more, optical flow is used to track individual surface points and gives an accord-
ing distance mapping for the velocity estimation between depth images.

Note that for PMD cameras, the camera’s systematic distance deviation [13]
must be corrected first. Otherwise, the demodulation error will lead to incorrect
object displacements.

For a single depth image, e.g. when motion estimation is not possible, a syn-
thesized intensity image halfway between I+

1 and I+
2 rather than I+

0 should be
considered as optical flow reference. Otherwise, the object contour will not match
its distance information due to the distance shift of κ/2, causing the object to
shrink or expand.
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Fig. 6. Scene 1 before (top) and after motion compensation (middle) as well as the
static reference scene (bottom). Note the motion artifacts due to texture changes of
the box surface.
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Fig. 7. Scene 2 before (top) and after motion compensation (middle) with additional
outlier removal and bilateral filtering (bottom). Note the reduction of artifacts as well
as the sharpened object features.

5 Results

The motion compensation has been tested on two exemplary scenes and achieved
a frame rate of 10 fps. Whereas Scene 1 consists of a simple moving box yielding
only lateral motion artifacts (see Fig. 6), Scene 2 consist of a more complex
moving soft toy, allowing additional deformation (see Fig. 2 and 7). In both
cases, motion artifacts occurred due to contour or texture changes and their
corresponding phase mismatch.
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Table 1. Statistical analysis of Scene 1 stating the number of object and background
pixel as well as the corresponding average distance and its variance

Static Motion Adjusted

Pixel Count
Background 7326 6904 7213

Object 8521 6609 8458
Outliers 3033 5367 3209

Mean Dist. [mm]
Background 2404 2405 2405

Object 1271 1272 1272

Variance [mm]
Background 13.6 14.6 14.0

Object 8.5 9.6 7.9

By applying our compensation approach, most of the arising artifacts has been
satisfactorily removed. Especially the comparison with the static scene, shows
that the re-sampled box for example matches the reference scene very well in
distance information and object size.

A statistical evaluation of the box scene is given in Tab. 1. The detection of
box and background pixels (wall) is done using a clustering approach based on
plane fitting. It can be seen, that the number of detected pixels is extremely
close to the static situation. The variance in the data decreases by applying
the motion compensation. No shift in the average distance for the detected box
or background pixels occur. Note, that the texture-related errors in the object
region are not captured by the variation, since these pixels are classified as
outliers.

6 Conclusions

We presented a technique for the compensation of PMD camera related motion
artifacts. The compensation approach is based on the distinction between lateral
and axial motion effects and treats both effects by applying optical flow results to
consecutive phase images (handling lateral motion and object resizing in respect
to axial motion) as well as depth images (estimation of axial velocity). The
quality and performance of the compensation therefore mainly depends on the
accuracy of the underlying optical flow algorithm. By using the GPU based
implementation of Zach et. al [11], we have been able to produce satisfying
results at a frame rate of about 10 fps.
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Abstract. This paper proposes to extend the EMVA 1288 standard
to characterize the properties and noise of image sensors for ToF cam-
eras. The concepts for radiometric and spectrometric sensitivities were
extended for intensity images recorded by lock-in pixels. The charac-
terization of the distance information was performed by describing the
phase shift analogous to intensities. Results of sensitivity and noise mea-
surements are presented for two ToF cameras: PMDTec CamCube and
MESA Imaging SR3101. Both cameras had no intrinsic filter, so the
quantum efficiency could be measured from UV to IR. The noise in the
phase measurement could be related to the noise in the intensity.

1 Introduction

1.1 Background

Recently, the European Machine Vision Association (EMVA) has released the
standard 1288 [1] to define a unified method to measure, compute and present
specification parameters and characterization data for image sensors relating to
conventional cameras. The standard covers digital cameras with linear photo re-
sponse characteristic. The specifications include sensitivity, noise, dark current,
sensor inhomogeneities and trigger behavior. To the best of our knowledge, no
standard procedure is available, to measure the performance of lock-in pixels
and to relate the statistical uncertainty and systematic errors in the distance
measurements to the statistical properties of the sensor. Concerning sensor the-
ory and calibration, there is a lot of work done in [3,4,5,6,7,8]. The theoretical
response of a PMD sensor for a given 3D scene and given correlation function
was simulated in [9,10]. But gray values of the four phase images were here not
investigated. In this paper, we propose to extend the EMVA 1288 for lock-in
pixels in ToF cameras with the intention to provide a concise description of
measurement process and specification information for an objective comparison
and evaluation.

R. Koch and A. Kolb (Eds.): Dyn3D 2009, LNCS 5742, pp. 28–41, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Radiometric and Spectrometric Calibrations 29

We investigated the applicability of the EMVA 1288 for lock-in pixels with
two potential wells. Such pixels provide the phase shift in the modulated opti-
cal signal additionally to the intensity information. The phase information was
examined analogous to the intensity information. The characterization of the
sensitivity was transferred from the standard to the two potential wells. We
had a special opportunity to use two ToF cameras without intrinsic filters and
with detachable light sources, thus a full radiometric and spectrometric calibra-
tion was possible. Due to the technical features of the cameras the phase noise
characterizations were performed with two different setups but equal evaluation
procedures.

In terms of notation: the symbols μx and σ2
x will denote the mean value und

variance of a quantity x.

1.2 Radiometry and Quantum Efficiency

The intensity characterization is based on measurements of the radiometric and
spectrometric sensitivities. The radiometry deals with electromagnetic radiation
at wavelengths in visible range and also in the UV and the IR range. The fun-
damental quantities in the radiometry are inter alia the irradiance E[W/m2]
and the photon irradiance Ep[photons/(sm2)], which can be converted into each
other as

Ep =
μp

Atexp
=

E

hc/λ
(1)

with the average number of photons μp, pixel area A, exposure time texp, the
speed of light c, the Planck’s constant h and wavelength of the light λ.

The characteristic quantities are the overall system gain K [DN/electrons]
(digits per electrons) and the quantum efficiency η with units electrons/photons.
The quantum efficiency describes the ratio of the average number of electrons μe

produced in the optical sensitive area to the average number of incident photons:

η(λ) =
μe

μp
. (2)

The product

R = Kη (3)

is the responsivity with units DN/photons and describes how the intensity de-
pends on the irradiance. Information about the quantum efficiency should in-
clude the whole sensitive spectral range of the detector material.

The lock-in sensor consists of two potential wells A and B unlike conventional
sensors with just one. Thus, the average number of electrons accumulated during
the exposure time is the sum of electrons from both potential wells

μe = μA
e + μB

e . (4)
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In principle, each potential well has also it’s one gain, thus the overall system
gains KA and KB can be different.

The main question of interest is: how does the gray value and noise behave at
different irradiances E resp. Ep, and how is the quantum efficiency at different
wavelengths λ?

The characterization procedure is presented in sec. 2.1. The measurement
setups are described in sec. 3.1 and 3.2, the results in sec. 4.

1.3 Time-of-Flight and Phase Shift

In ToF measurements with a modulated light source the distance is calculated
from the temporal delay of the signal. Therefore, the characterization of the
phase shift can be representative for the distance characterization. The phase
shift image ϕ [rad] was calculated from the four raw images recorded by the
camera

yA′
at 0◦ ,

yB′
at 180◦ ,

yA′′
at 90◦ and

yB′′
at 270◦

in the sinusoidal optical signal with

ϕ = arctan

(
(yB′ − yB′

dark) − (yA′ − yA′
dark)

(yB′′ − yB′′
dark) − (yA′′ − yA′′

dark)

)
. (5)

A more general formula for computing ϕ from N samples can be found in [11].
Here the question is: how does noise in phase shift images σ2

ϕ [rad2] behave at
different distances and how does it relate to the noise in gray values?

The characterization procedure is presented in sec. 2.2. The two measure-
ment setups for both cameras are described in sections 3.3 and 3.4, the results
in sec. 4.

2 Methods

The characteristic quantities which should reflect the performance of the distance
measurement are not the primary goal of this paper. The systematic errors,
intensity related errors, integration time related errors, flying pixels or problems
with motion compensation were not investigated. The objective of this paper
is the characterization of the radiometric, spectrometric and noise properties of
the lock-in pixel. Only the statistical errors in the measurement of the phase
shift and their relation to the statistical errors in gray values were included. The
systematic errors like

– wiggling error,
– a constant phase deviation per pixel,
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– overexposure and exposure time dependent errors,
– phase drift,
– near field errors due to the extended illumination

were already sophisticated. Before the definition of the extended version of the
EMVA 1288 standard a set of important figures and/or specific sensor char-
acteristic quantities describing the performance of the lock-in sensor must be
established.

The radiometric and spectrometric characterizations of the cameras are made
according to the EMVA 1288 standard [1,2], which is based on the photon trans-
fer method [12,13]. The next section describes this method briefly.

2.1 Radiometric and Spectrometric Sensitivities

A digital image sensor converts photons hitting the optical active pixel area in
a certain time interval into a digital number. A linear signal model is assumed
for this process. That means: the average digital signal μy [DN] is proportional
to the average number of electrons μe being produced by photo effect in the
sensor material. Since a lock-in pixel has two potential wells this process should
be described for each one separately. The following equation can be used

μy = μy,dark + μeK
(2)
= μy,dark + μpη(λ)K , (6)

with the dark signal μy,dark present without light and the overall system gain
K. Generally, the dark signal depends on the exposure time and the ambient
temperature.

In [1] is shown, that the variance of gray values σ2
y [DN2] can be related to

the measured average digital number μy as

σ2
y = σ2

y,0 + (μy − μy,dark)K . (7)

The offset σ2
y,0 depends on the dark signal variance and quantization noise.

For the measurements the camera was illuminated without the optics at dif-
ferent irradiances Ep. The number of photons per pixel was calculated with
Eq. (1). The gray value averaged over all N pixels at certain irradiation levels is
computed from two recorded images y(1) und y2 as

μy =
1

2N

N∑
ij

(y(1)
ij + y

(2)
ij ) . (8)

The variance of gray values is computed as a mean of the squared difference of
the two images. We assume here that the noise is stationary and homogeneous.

σ2
y =

1
2N

N∑
ij

(y(1)
ij − y

(2)
ij )2 . (9)
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The responsivity R = Kη is the slope in Eq. (6) for μp as argument. The overall
system gain K is the slope in Eq. (7) with (μy − μy,dark) as argument. The
quantum efficiency is then equal to η(λ) = R/K. For the computation of K
values of both potential wells were fitted separately.

The signal-to-noise ratio

SNR =
μy − μy,dark

σy
(10)

was computed for data and for linear fits of the data (SNRfit).

2.2 Phase Shift and Distance

The same principle was used for the calculation of the average phase shift μϕ [rad]
and the variance σ2

ϕ [rad2]. The phase images were calculated with Eq. (5). Like
H. Rapp et al. [6] suggested, 100 images were recorded for mean calculation.
Due to nonuniformities in the gray values each pixel has a different phase offset
ϕoffset, which was subtracted from the phase images. Then the average phase
shift results from

μϕ =
1
N

N∑
ij

(
1

100

100∑
k=1

ϕ
(k)
ij − ϕij,offset

)
=

1
N

N∑
ij

(ϕ̄ij − ϕij,offset) (11)

and the variance averaged over all pixels is

σ2
ϕ =

1
N

N∑
ij

(
1

100

100∑
k=1

(
ϕ

(k)
ij − ϕ̄ij

)2
)

. (12)

The average gray value and the variance were computed as

μy =
1

100N

N∑
ij

100∑
k=1

y
(k)
ij (13)

and

σ2
y =

1
100N

100∑
k=1

N∑
ij

(y(k)
ij − μy)2 . (14)

The variance of the phase shift can also be calculated from the variance of the
gray values and the modulation amplitude m0[DN] as

σ2
ϕ,cal =

σ2
y

2m2
0

. (15)

The modulation amplitude can be obtained as

m0 =
1
2

√
(μA′

y − μB′
y )2 + (μA′′

y − μB′′
y )2 . (16)

The average phase shift μϕ and the variance σ2
ϕ were investigated at different

(simulated1) distances. The variances σ2
ϕ and σ2

ϕ,cal were compared.

1 See different setups for PMD CamCube and MESA SR3101.
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3 Measurement Setups

3.1 Radiometric Measurements

For the measurements of the overall system gain K the sensor was illuminated
without a mounted lens by a diffuse disk-shaped light source with a diameter D.
An integrating sphere with built in four blue, green and red LEDs served as a
light source and was positioned at a distance d = 8D (f# = d

D = 8 according to
the EMVA 1288 standard) from the sensor plane. Fig. 1(left) shows the schematic
view of the assembly. The number of photons per area and time interval Ep

was varied by changing the LED current. Before, Ep was characterized with an
absolute calibrated photodiode PD-9306 (1cm2) by Gigahertz-Optik placed at
the sensor plane. The absolute calibration of Ep is a crucial point in this setup
because it depends additionally on the true exposure time of the camera. The
current could be varied between 0 mA and 100 mA with at most 4000 steps.

3.2 Spectrometric Measurements

For the measurements of the quantum efficiency η(λ) the camera was illuminated
with light at different wavelengths coming from an arc lamp. A xenon arc lamp
was used because of its broadband light with a ZEISS concave diffraction grating
as monochromator. The wavelength could be adjusted in the range of 350 nm -
1100 nm with a determined resolution of max. 10 nm. The wavelength calibration
was performed with a spectrometer Maya 2000 Pro by Ocean Optics with an
internal resolution of less then 1 nm. The irradiance at each wavelength was also
calibrated with the photodiode PD-9306 placed at the sensor plane and varied
by using different exposure times of the camera.

Fig. 1. Measurement setup for radiometric calibration according to EMVA 1288: in-
tegrating sphere with built in four blue (470 nm), green (529 nm) and red (629 nm)
LEDs
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3.3 Phase Shift Measurement with MESA SR3101

The big disadvantage of the usual calibration procedures (e.g. by H. Rapp [6])
is that the irradiance drops inversely proportional to distance square. To avoid
this problem, we used two new approaches for calibration of the phase shift. The
first idea is, that the light covers always the same distance and the phase shift
is performed already in the light source (Fig. 2 (left)). Thus, different distances
at a constant irradiance can be simulated.

Fig. 2. Setups for phase measurements: MESA SR3101 with PCO light source (left)
and PMD CamCube with detachable illumination module and target on the large
translation stage (right)

The characterization of the phase information from SR3101 was performed
with the PCO Light Source2 which was developed within the FLICam-Project.
It consists of an 4× 4 LED array. The intensity can be modulated sinusoidal or
rectangular. We used sinusoidal modulation. The modulation frequency can be
varied in the range from 400 kHz to 40 MHz and the phase can be shifted relative
to the trigger signal from 0 rad to 2π rad with a resolution of 14 bit. A trigger
signal coming from the camera was used for the synchronization with the light
source. The light source shifts the phase relatively to the trigger signal coming
from the camera. Thereby the light source simulates the distance corresponding
to this phase shift δϕLS.

In order to achieve a homogeneous illumination a diffusor was mounted be-
tween light source and camera. The camera was also illuminated without a
mounted lens. A schematic view of the assembly is shown in Fig. 2 (left).

3.4 Phase Shift Measurement with PMD CamCube

The characterization of the phase information from CamCube at constant object
radiance was performed on a large translation stage by keeping the distance of
the light source to the target constant. The distance dreal between camera and
2 This light source was especially produced by PCO AG for partners in the FLICam

project.
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target was varied from 0.5 m to 6 m with the accuracy of 1 mm. The planar
target with the size of 76 × 54cm2 was coated with the optical diffuse material
OP.DI.MA from Gigahertz-Optik. The detachable illumination module of the
CamCube was mounted at the target as shown in Fig. 2 (right).

4 Results

The calibration procedures described above are performed for two ToF cameras:
MESA Imaging SR3101 and PMDTec CamCube. The technical details of these
cameras are summarized first, followed by the results of each measurement.

MESA SR3101. The SR3101 by Mesa Imaging is a modified version of SR3000
just without illumination module and filter in front of the sensor. The pixel size
is 40 μm× 40 μm. In this version of the camera the variation of the modula-
tion frequency was also possible3: 20 MHz and 10 MHz/n (n = 1, 2, 3, . . .). All
measurements were done at 20 MHz.

PMD CamCube. The CamCube by PMDTec has a detachable illumination
module and no filter in front of the sensor. The pixel size is 45 μm× 45 μm. The
modulation frequency is fix at 20 MHz.

Radiometric measurements. Both cameras have a feature to suppress light,
which doesn’t come from the light source, e.g. not modulated scattered light.
For the CamCube this feature is called SBI4 (suppression of backlight illumi-
nation). The SBI initiates at a certain gray value, therefore measurements with
continuous illumination described above can be applied in a strictly monotonic
increasing part of the sensitivity only (i.e. at small gray values). For the SR3101
this is the case if μA

y ∧ μB
y < 2200 DN and for CamCube if μA

y < 1900 DN
∧ μB

y < 2000 DN. Both cameras were measured with the red LED, because their
quantum efficiency is the highest in this wavelength range compared to the blue
and green LED.

Results of the radiometric measurements are presented in Fig. 3 for both
cameras and both potential wells separately.

The responsivity R ist the slope of a linear fit in Fig. 3 (top). The difference
between responsivities RA and RB is for CamCube larger as for SR3101, the
deviation from the linearity however vice versa. Gray values must be summated
for the responsivity R of the whole sensor:

(μA
y − μA

y,dark) + (μB
y − μB

y,dark) = μpR . (17)

This graph is not shown in this paper, because it is here just R = RA +RB. The
gray value in SR3101 shows wiggling behavior as a function of irradiance. This
causes major problems to determine the right responsivity.
3 This feature is of interest within the FLICam-Project for fluorescence lifetime

imaging.
4 The acronym SBI will be used in this paper for both cameras to denote the feature

described above without the aim to breach the copyright.
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Fig. 3. Results of the radiometric measurements: average gray value μy vs. irradiance
Ep for one pixel and certain exposure time (top) and variance σ2

y vs. average gray value
(bottom), for MESA SR3101 (left) and for PMD CamCube (right) with the red LED;
for two potential wells A and B, respectively.

The overall system gain K is the slope of the linear fit in Fig. 3 (bottom).
K must be independent on the wavelength λ, but because of possible different
offsets σ2

y,0 (see Eq. (7)) the variance was fitted for A and B separately. For
CamCube this difference is evident. The overall system gain K is then the average
of the two gains

K
∧= KA⊕B =

KA + KB

2
. (18)

Non-linearity at low irradiances is visible corresponding to the non-linearity in
the responsivity graph. The quantum efficiency η was calculated as η = R/K.
The full-well capacity could not be determined because all measurements were
done at low irradiances (below the SBI). Thus, the saturation could not occur.

In Fig. 4 the signal-to-noise ratio is presented for both cameras in the mea-
sured irradiation range. The SNRfit was also calculated for the linear fits of the
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Fig. 4. Results of the radiometric measurements: Signal-to-noise ratio for MESA
SR3101 (left) and for PMD CamCube (right) and for two potential wells A (top)
and B (bottom), respectively; The dashed line is the theoretical limit of √μp

sensitivity and noise within the given irradiation ranges. The dashed line is the
theoretical limit of √μp for an ideal sensor with only shot noise and a quantum
efficiency of one. For CamCube the decline in SNRfit for small irradiances is
caused by negative offset in the linear fit, see Fig. 3 (top right). Both cameras
seem to have nearly the same SNR in the range of 2 ·106 photons/pixel. At lower
irradiances SNR for SR3101 is higher.

Quantum efficiency η(λ) measurements. The quantum efficiency η was
measured at λ = 350 nm to 1050 nm in 530 steps. The results for both cameras
are presented in Fig. 5.

Because of the non-linearity of the sensor the quantum efficiency for SR3101
is very erratic. As mentioned above non-linearity in the sensitivity of the sen-
sor causes problems during the determination of responsivity. Wiggling in the
responsivity (Fig. 3) implicates very erratic determination of the slope and thus
of η. Because of the very small scale (10−5) small changes in the slope already
cause clear changes in the quantum efficiency.

On the other hand the spectrum of the Xe arc-lamp shows very high peaks
in IR range. Thus, the quantum efficiency can be measured only piecewise with
adapted exposure time. Therefore, the non-linearities play again an important
role.
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Fig. 5. Results of the quantum efficiency measurements for MESA SR3101 (left) and
PMD CamCube (right). The blue (470 nm), green (529 nm) and red (629 nm) lines
represent wavelengths of three LEDs built in the integrating sphere.
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The fill factor of the CamCube sensor is about 26% (personal communication
T. Ringbeck from PMDTec), but the maximum quantum efficiency is only about
a half of it, which is a quite good value. Micro lenses would be able to increase
the effective quantum efficiency considerably. The fill factor of the SR3101 sensor
was unknown.

Phase shift measurements. The variance of the phase shift σ2
ϕ was investi-

gated for SR3101 with the setup shown in Fig. 2 (left). The relative phase shift
done by the light source δϕLS was varied in the range 0− 2π rad with 100 steps.

The variance of the phase shift for CamCube was investigated with the setup
shown in Fig. 2 (right). The distance between camera and target was varied
between 0.5 m and 6 m with 200 steps. In Fig. 6 the variance of gray values σ2

y

is shown for both cameras.
The average phase shift μϕ was calculated with Eq. (5). The variance of the

phase shift σ2
ϕ was calculated with Eq. (12) and compared with the theoretical

value σ2
ϕ,cal (see Eq. (15)).
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Fig. 8. The distance measured by CamCube dCam (left) and the wiggling error Δd
(right) vs. the real distance dreal on the large translation stage

The agreement is quite good. The small differences for SR3101 probably trace
back to the non-linearity of the responsibility of the sensor. Outliers for Cam-
Cube between 3 m and 4 m are caused by large variance of the gray values,
which are located outside the plot boundaries. The reason are probably short-
term changes of the ambient light.

Since the description of systematic errors in the distance measurement is not
the goal of this paper, just the wiggling is shown for the CamCube in Fig. 8. It
should demonstrate the advantage of the used setup with constant illumination.

The measured distance dCam [m] is just one half of the real distance dreal[m]
on the large translation stage, because the light covers just half the distance
assumed by the camera for calculations.

Nonuniformities in the data. According to the EMVA 1288 there are three
types of spatialdistributions of gray valueswichwerenot investigated in this paper:

– Dark Signal Nonuniformity, DSNU: the distribution of the dark signal, which
is a part of the dark value μy,dark and well-known as Fixed-Pattern-Noise;
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Fig. 9. Gray values for one row in the image sensor of PMD CamCube at different
irradiances (left) and exemplarily for one pixel (right)

– Photoresponse Nonuniformity PRNU: basically the distribution of the overall
system gain K;

– Dark Current Nonuniformity, DCNU: the distribution of the dark current,
which is a part of the dark value μy,dark and depends on the exposure time
and ambient temperature.

Qualitatively, the nonuniformities DSNU and PRNU are typical distinct for
CMOS sensors. For SR3101 these quantities vary more than for CamCube. For
SR3101 at modulations frequencies lower than 1 MHz synchronization problems
cause the DSNU to vary with time.

Additionally to the nonuniformities presented above differences in the SBI
for each pixel are visible. This is demonstrated for one row of the CamCube
sensor in Fig. 9. The nonuniformity in gray values after the initiation of SBI is
observable. This effects of the SBI are modeled in detail in [11].

5 Conclusion and Future Work

This paper proposed to extend the EMVA 1288 standard for lock-in pixels.
The applicability of procedures described in the standard could be investigated
and confirmed with two ToF cameras: PMDTec CamCube and MESA SR3101.
The characterization of radiometrical and electrometrical sensitivities and of
the noise could be transferred to the lock-in pixels. An adaption of quantum
efficiency definition to the split illumination time was necessary. Because of the
suppression of ambient light in both cameras, the sensitivity could be measured
in the range of only small gray values. Therefore, it was not possible to measure
the full-well capacities. The distance/phase shift and its variance were measured
with both cameras but in different setups. The noise in the phase measurement
could be related to the noise in the intensity. A good agreement was found for
both cameras.

Nonuniformities of the signal included in the EMVA 1288 standard were not
investigated yet. A nonuniformity of the SBI was found additionally to the quan-
tities described in the standard. Also the demodulation contrast was not mea-
sured yet, even though it’s one of the most important quantities.
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Before the definition of the extended version of the EMVA 1288 standard
the general measurement conditions must be clarified, e.g. the target material
used for the distance measurements. Important figures and/or specific sensor
characteristic quantities describing the performance of the lock-in sensor with
respect to distance measurement must be defined.
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Abstract. To capture 3D dynamic scenes, a suitable 3D data structure
is needed that can represent the dynamic scene content. In this contri-
bution we analyse and evaluate different data structures for capturing
time-varying depth and color data of a dynamic scene obtained with
Time-of-Flight and color cameras. The comparison of depth-panoramas,
layered depth images and volumetric structures shows that a volumetric
octree is best suited to fuse time-varying 3D scene data. We exploit the
octree data fusion capabilities for different application scenarios, like 3D
environment building, volumetric object reconstruction, and geometric
interaction.

1 Introduction

Recently, Time-of-Flight- (ToF) cameras have made significant progress as alter-
native to range measurement techniques such as laser scanning, structured-light,
or stereo-camera-systems to name the most popular ones. The ToF-cameras
which are available today offer a resolution of up to 204 × 204 pixel and fram-
erates up to 25 Hz. This results in a large amount of data, especially if every
pixel is seen as an independent measurement of a threedimensional point (one
second of recording produces 1.040.400 points at 25 Hz). ToF-cameras can be
used in different scenarios, in which the camera may be static or moving and
the observed scene is either static or parts of it are dynamic. Each scenario pro-
duces different requirements on the representation of the data. A suitable 3D
datastructure for holding ToF-camera data therefor has to provide the following
properties:

1. Spatiotemporal expandability
2. Inherent data fusion of multiple measurements
3. Representation of geometry and occlusions
4. Possibility to represent dynamic scene content
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5. Hold intensity and depth information simultaneously
6. Hold different data for different spatial viewpoints and points in time
7. Generation of a dense surface
8. Runtime and storage efficiency

In this contribution we will discuss several datastructures for holding ToF-data
and select the most suitable one. Various applications are presented which make
use of the characteristics of the selected datastructure, such as environment
reconstruction (section 5.1), reconstruction of the outer hull of objects (section
5.2), Space-Time-Video (section 5.3) and geometric interaction (section 5.4).

2 Data Capture with ToF- and Color Cameras

2.1 ToF Measurement Principle

The Time-of-Flight-camera is a 2.5D camera which delivers dense depth images
with up to 25 frames per second. The camera actively illuminates the scene by
sending out incoherently modulated light with a modulation frequency between
20 and 31MHz. This light is reflected by 3D scene points and received by the
image sensor, a semiconductor structure based on CCD-/ CMOS-technology
([1],[2]), of the ToF-camera. The received and the emitted signal are correlated
in the camera’s image sensor and the phase shift between the two signals is
determined in every pixel. This phase shift depends on the time-of-flight and
the distance of the scene can therefor be calculated from this phase shift. With
the used modulation frequency of 20MHz the non-ambiguity range of the ToF-
camera is 7.5 meters. Since the resolution of the phase difference measurement is
independent from distance, the achievable depth resolution is independent from
scene depth. This is in contrast to stereo triangulation where depth accuracy is
proportional to inverse depth. However the signal-to-noise ratio decreases with
increasing distance to the camera due to the quadratic light intensity fall off.

2.2 Camera Projection Model

The ToF-camera uses traditional optics and a standard lens and the camera
geometry is therefore characterized by the projection matrix (cf. [3, p.143]):

� = ��
T(� 3| − C) (1)

with � the camera matrix, � the rotation matrix, � a 3 × 3 identity matrix and
C the camera center. The projection matrix maps homogeneous 3D points X to
homogeneous image coordinates x according to:

λ(x)x = �X (2)

Since the depth λ(x) of a pixel x in an image is measured by the ToF-camera,
the homogenous 3D point X can be calculated as:
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X = λ(x)��−1x + C (3)

So for every pixel in a depth image a 3D point can be generated.

2.3 Data Fusion with Color Cameras

For many applications it is necessary to combine the ToF-camera with a standard
color camera. For example environment reconstruction in depth and color, reg-
istration by feature matching, matting in depth and intensity and mixed reality
applications. A good overview of the state-of-the-art of algorithms and applica-
tions with ToF-cameras can be found in [4]. In most cases the color camera has
a much higher resolution than the ToF-camera, e.g. 1600 × 1200 compared to
176× 144 pixel. For metric measurements the ToF-camera has to be calibrated,
which means that the elements of the camera matrix �, such as focal length,
principle point and radial and tangential distortion have to be estimated. To use
the ToF-camera together with the color camera both have to be calibrated and
the relative translation and rotation between the cameras have to be known. Fur-
thermore other error sources distort the depth measurement of the ToF-camera.
These are described in detail in [5] and [6]. The used calibration approach relies
on the method described in [7] and [8] which includes depth error calibration
and intrinsic and extrinsic camera calibration.

For applications which require high resolution depth maps it is necessary to
transfer the depth image of the ToF-camera into the color camera. We use the
efficient way to mesh the depth image on the graphics card and to render it with
the internal and external camera parameters of the intensity camera as described

Fig. 1. Upper row: Camera rig consisting of two color cameras and a Swissranger3000
ToF-camera, current color image (1024x768 px) and current depth image (176x144px),
warped into the view of the color camera. Bottom row: Warped background depth
image, thresholded current depth image and current depth image after erosion.
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in [9]. This way a 2D-3D video stream is obtained, where every pixel holds color
and depth values. In figure 1 the used camera rig, a color image and a warped
depth image are shown in the upper row.

Note that the background and foreground are connected on the left side of the
person in the rightmost image which is obviously wrong. Reduction of this error
and simultaneous foreground segmentation is done by thresholding. The lower
row of figure 1 shows a warped depth image of the background on the left. The
current depth image is thresholded against the background image which almost
completely removes the background. But still the false connection between fore-
ground and background is present at the contour of the person. This is further
addressed by applying a shrinking of the silhouette by erosion.

3 Data Representation Review

In this section we give an overview of the existing representations of ToF-camera
data. The advantages and disadvantages of each representation are discussed.

1. Unstructured 3D Point Cloud
Applying the projection matrix of the ToF-camera and Eq. (3), the delivered
depth image can be transformed into an unstructured 3D point cloud. This
is for example used in [10]. Considering a natural scene, the noise present in
the measurements and the given limited accuracy of the ToF-camera, every
scene point will result in different measurements which will create multiple
3D points for the same scene point. This results in a large amount of points
which do not have any neighboring relations. Additionally closed surfaces are
not represented as such but split up into a number of independent points.
Furthermore, there is no updating of already measured scene points. Aver-
aging over time or measuring points multiple times can increase robustness
towards outliers. Point clouds do not offer such possibilities. Constructing
a (partially-) closed surface from an unstructured point cloud is a very de-
manding task and can often not be solved to satisfaction.

2. 2.5D Panoramic Image (Depth-color panorama)
In [9] and [11] the representation of the data is chosen as a 2.5 dimensional
panoramic image that encodes color and depth in a 2D representation, for
example in planar, cylindrical or spherical coordinates. With panoramic im-
age representation, measurements which are taken with a rotating camera
head can be fused. Multiple measurements of the same points are fused by
averaging in the image, making the result more robust towards outliers. Un-
fortunately, this representation has some disadvantages. It is by nature only
a 2.5 dimensional representation of a threedimensional scene and occlusions
can not be represented. Furthermore, dynamics are not realizable in an ef-
ficient way. An advantage, however, is that from a panoramic depth image
it is easy to construct a (partially-) closed surface representation, such as
a triangle mesh using delaunay triangulation, which can be rendered effi-
ciently on the GPU. An example of panoramic representation is discussed in
section 5.1.
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3. LDI, 2.5D Layered Depth Image
Shade et. al. [12] introduced the layered depth images. A layered depth image
is an image in which at every position multiple depth and color measure-
ments are stored corresponding to the line of sight through that pixel. LDIs
were developed for image-based-rendering, which describes an approach to
generate new interpolated views of a scene. Thus LDIs are capable of rep-
resenting occlusions or dynamics, but not both at the same time. LDIs are
constructed for a distinct camera position. Generating LDIs includes the
warping of all depth images to that camera position. LDIs can be viewed as
generalization of depth panoramas to multiple occlusion layers. Rendering
a scene from a different view requires to perform the incremental warping
procedure (cf.[12]).

4. 3D Volumetric Representation
Volumetric models divide the space into volumetric entities of a given size.
The most widely known and used model is the Voxel representation as used
in [13]. Several tree structures have been discussed (e.g. in [14],[15]), which
are favorable due to their hierarchical nature.

The representation of multiple measurements as point cloud, panoramic image
or LDI is not optimal. The main disadvantages are either the missing fusion of
measurements and the lack of neighboring relations, or the missing possibility to
represent occluded objects and dynamic content. The obvious step towards an
optimal representation is to use a true volumetric representation of the scene.

4 The Octree Datastructure

We conclude from section 3 that a volumetric representation of data is needed
to provide all required characteristics. The octree representation [16] combines
the advantages of a volumetric model with a hierarchical data structure. Fur-
ther advantages are ease of concept and implementation through recursion,
storage efficiency and flexibility concerning volume content. We will therefor
introduce the used octree structure, show how the fusion of measurements is
done and derive why it is in our opinion the optimal data structure to represent
ToF-camera data.

4.1 Building the Octree Structure

The octree data structure is an oriented graph structure which represents a part
of threedimensional space. It is a recursive datastructure in which every octree
has eight octree children and one octree father. Each octree node consists of a
position in 3D, a size and an octree element, representing the information about
space in this volume element.

During initialization the octree holds only one element with a certain size
containing the bounding volume to be modeled. Before adding measurements
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the spatial resolution of the octree has to be defined. This definition is made
from knowledge we have about the used ToF-camera. For current ToF-cameras
the manufacturers promote a repeatability between 5 and 200mm. So this can be
used as guidance to select the minimal octree cell size, which we normally set to
25mm3. To add measurements the algorithm starts at the top node by checking
if the size of the node to add is bigger than half the size of this node. If this
is the case a leaf is reached and the node is inserted here, if not the algorithm
calculates to which child node the node to add belongs. If the child node does
not already exist it is created and this node is used in further branching.

4.2 Measurement Fusion

Depending on the requirements, different elements can be inserted in the octree
branches. This reaches from simple uncolored 3D points over colored points with
normals up to small oriented surface patches with texture. Using natural scenes
and lighting, objects can look different when viewed from different angles, this
can also be included as well as different appearances depending on daytime or
other factors. As every child of an octree is an octree itself, subtrees can easily be
added to the current scene. In contrast to simple point clouds where in general
no measurement fusion is possible, the volumetric representation of the octree
allows to fuse the measurements while adding them. In our experiments we use
simple colored 3D points with an additional radius component as octree elements
and to fuse multiple measurements we average the new and the already existing
position and color.

Fig. 2. Comparison of point rendering (left) and point splatting (right)
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4.3 Rendering / Surface Generation

Rendering octrees is fast and straightforward. It consists of collecting all active
nodes in the octree and rendering them. How the octree elements are rendered
is mainly due to the intended usage. If only a sparse point cloud is needed, the
octree can be rendered as points with color and a certain size. This is shown in
figure 2 in the left column. If a closed surface is needed, e.g for depth testing
many existing approaches are usable. For example point splatting (cf.[17]) is
a feasible method exploiting GPU shader language. Examples of point splat
rendering can be found in figure 2 on the right. Not only point based rendering
methods are applicable, for example in [18] Samet shows how raytracing can be
efficiently performed using octrees.

5 Analysis and Exploitation of Suitable Data Structures

In this section we will analyse and exploit the data structures for their use in
different application scenarios. We look at typical scenarios, like 3D environment
scanning from a rotating camera head (looking inward-out), modeling a volu-
metric object by rotating it in front of the camera head (looking outward-in),
and the analysis and capture of dynamically moving objects (persons) over time.

Environment model generation is the task of capturing and aligning multiple
depth and intensity measurements, and of forming a consistent threedimensional
model from the images taken by a rotating camera head. This is a common
application, in which ToF-cameras can be used due to the instantaneous avail-
ability of depth information and the predominance of ToF-cameras compared
to stereo algorithms in untextured areas. We will introduce the environment
model construction of indoor rooms using texture and depth information. Focus
is laid on the comparison of 2.5D panoramic image representation and hierar-
chical volumetric representation of the data. Both representations are feasible in
this scenario.

In section 5.2, we will discuss volumetric modeling of rigid objects. The camera
head observes a person which is rotating on a swivel chair, and all measurements
are fused into a consistent volumetric model while simultaneously tracking and
compensating the object motion. This approach is feasible only with a volumetric
3D data structure.

In section 5.3, we discuss a dynamic scenario which fully exploits the benefits
of the octree with Space-Time-Video. Space-Time-Video is the recording and
playback of threedimensional video, allowing time-varying objects in the scene.

The last section 5.4 is devoted to geometric interaction and collision detection
using the octree data structure.

In our experiments, a SwissRanger 3000 ToF-camera with a resolution of
176×144 pixel is used together with a CCD-camera with 1024×768 pixel. For the
environment model construction, an integration time of 160ms (6 fps) of the ToF-
camera is used to reduce noise in the images, whereas in the other applications
an integration time of 80ms (12 fps) is used to reduce motion artefacts.
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5.1 Environment Model Reconstruction with Pan-Tilt-Unit

In this experiment, we compare 2.5D panoramic image and octree usage. A cam-
era head with ToF and color camera is mounted on a pan-tilt-head, scanning the
environment. We compare a representation as 2.5D cylindrical depth-panorama
with a 3D octree reconstruction.

The 2.5D panoramic image has a resolution of 2000× 1000 pixel. The images
taken from the two cameras are fused and stitched into the 2.5D panoramic
images which are shown in figure 3.

Fig. 3. 2.5D panoramic images for texture and depth

The depth-color panorama is converted into a trianglemesh using the delaunay
triangulation, and a threedimensional surface representation is generated, as
seen in figure 4. As the camera head is rotating in the middle of the room, the
disadvantages of the 2.5D representation are not important in this case.

The same input images of the camera head were used to construct the octree
model shown in figure 5 where a depth resolution of 25mm has been chosen and
the measurements have been fused in the octree cells while being added to the
octree.

A visual comparison of both models after rendering shows that the surface
mesh is somehow smoother than the octree rendering, but both models are com-
parable in visual quality. The octree processing can also be compared to simple
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Fig. 4. Triangle mesh generated from 2.5D panoramic image. Top Left: View of com-
plete environment model. Others: Three views of the interior.

Fig. 5. Environment model as octree, fused from 115 images, cellsize 25mm3. A slight
degradation due to point rendering is visible.

3D point cloud construction and rendering. Table 1 compares the performance
of the octree for the reconstruction of the indoor scene for different cell sizes
and simple 3D point cloud processing. The scene has been constructed for dif-
ferent cell sizes. Insertion of one image with 176 × 144 pixel and merging it
with existing content is performed in 44ms (100mm3) to 69ms (25mm3). This
includes the computation of 3D points which is also done for the point cloud.
So the real traversal in the tree and the merging takes between 6ms (100mm3)
and 30ms (25mm3). Traversing the tree and collecting all valid elements takes
between 11ms and 192ms and rendering all points takes 2ms to 32ms. From
these numbers it is observable that at a cell size of 50mm3 the octree rendering
is compareable to pure point cloud rendering concerning speed. The tests have
been carried out using an Intel Core2 CPU 6600 @ 2.40GHz with 4GB RAM and
a NVidia GeForce 8800 GTS GPU. The indoor reconstruction scenario shows
the suitability of the octree datastructure to represent ToF-measurements.

Besides the performance the storage efficiency is a crucial point concerning
the choice for a data representation. Comparing image based representations
such as 2.5D panoramic images or LDIs and 3D representations it is obvious that
volumetric representations will require more storage because instead of one value
for depth, three values for the 3D position are saved. The storage comparison is
given in table 2.
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Table 1. Comparison of octree cell size and 3D point cloud performance for the envi-
ronment model. See text for details.

Pointcloud Octree Octree Octree
25mm3 50mm3 100mm3

Nr. of Elements 2 744 772 1 617 140 470 230 98 102
Insert in Octree 38,48 ms 68,80 ms 51,46 ms 44,38 ms
Collect Elements - 191,55 ms 51,32 ms 10,80 ms
Render Elements 59,83 ms 32,30 ms 9,69 ms 2,15 ms

Table 2. Comparison of storage requirements for 2.5D panoramic image, panoramic
image as triangle mesh, pointcloud and octree. Nr.of Elements denotes the number of
points or triangles, The row denoted “In RAM” means the real storage consumption
for loading the data into memory and the row “On disk” is the file size for saving the
data to disk as images (binary), VRML or octree (ASCII).

Panorama Mesh Pointcloud Octree Octree Octree
(VRML) 25mm3 50mm3 100mm3

Nr. of Elements 2 000 000 2 305 030 2 744 772 1 617 140 470 230 98 102
In RAM[MB] - 1 085.85 115.55 735.26 200.02 41.68
On disk[MB] 13.67 136.37 174.18 344.64 100.22 21.19

Two images are used for the panoramic image, one holding the depth values
and one for the intensity information. For depth float values and for intensity
RGB values in unsigned char with one Byte per channel are used, which results in
4 Bytes for a float and 3 Bytes for intensity for every pixel. The generated triangle
mesh is bigger as for every pixel the 3D position and connection information is
saved as well. The texture is saved as an image as above and projected on the
geometry. The storage requirement is dependent on the texture resolution. In
this case full resolution (2000 × 1000) has been used and the storage usage is
over 1 GB. Lower numbers are observable for the pointcloud as only the 3D
position and intensity values are saved. For the octree the 3D position of the
cell, the 3D position of the point, four cornerpoints of each cell, the cell size
and the pointers which connect tree items are necessary. This produces a far
higher memory usage than the representation as pointcloud, but for an octree
with a cellsize of 50mm3 the memory consumption is only moderately increased.
This shows that large data sets which cover large environments, in this case
approximately 5 × 7 × 3 meters and larger, are manageable with a resolution of
25mm3 and smaller using octrees.

5.2 Rigid Object Modeling

In this scenario, we need a true 3D data structure to model closed surfaces. We
want to model the 3D surface geometry of a person by estimating the movement
of the person and by fusing the measurements of ToF- and CCD-camera from
all views into a single model, while the person is turning on a swivel chair in
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front of the cameras. Due to self-occlusions of the object, it is impossible to
use 2.5D panoramic images, whereas the volumetric representation is capable of
representing the data and fusing the multiple measurements. In total 64 images,
one of it is shown in figure 1, have been fused. In this scenario we assume that
the object itself is rigid but may rotate in front of the camera, or the camera
may move around the rigid object.

The motion estimation is based on the tracking of corner features and pose
estimation on 2D-3D correspondences. The foreground object is segmented by
depth keying from background, since the depth gives an easy cue to object seg-
mentation here. In the first image of the sequence, intensity corners are detected
(we use the features described in [19]) and these are tracked in the subsequent
images.
For every 2D feature x the distance λ(x) to the camera center is taken from the
warped and filtered depth image if the feature is on the segmented foreground.
Using equation 3, a homogenous 3D point X is generated for every feature on
the segmented person. From these correspondences, the camera pose is estimated
using the standard camera pose estimation scheme DLT (cf. [3] p.173 and p.73).

Fig. 6. Person model as octree, fused from multiple image pairs. Top left: octree fused
from 5 images. Right: person model fused from 64 image pairs. The missregistration is
mainly due to local motion of the person during recording. Voxel cells were rendered as
point cloud without splatting. Bottom: Fused person model with camera poses drawn
as pyramids.
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After estimating the object pose for every image, the depth and intensity
elements are added into an octree. Figure 6 shows the resulting fused model.
The top left image shows a result after five images, the other images show the
integration of 64 images. Note that the person swayed a little during recording,
which leads to some errors in the fused model. The bottom image shows the re-
constructed person and the estimated camera position as red pyramids, as seen
from the rigid object coordinate system. The fused model still contains some er-
rors, but the objective is to show the advantages of the volumetric representation
compared to other data structures.

5.3 Space-Time-Video

The above scenarios handle rigid objects only. For truly dynamic scenes, local
object deformation must be considered. One way to handle a dynamic scene is
Space-Time-Video, that does not only encode the threedimensional geometry of
the scene but records also the change in time as 4D representation. The replay
of Space-Time-Video should allow to separate 3D space and time, which allows
to render the scene freely from any view point at any time. This requires that
for every time step the full 3D geometry is known. Approaches to Space-Time-
Video include for example the image-based rendering approaches as in [20] and
[21] but these lack the possibility to represent non-rigid objects.

An approach in which human motion is recorded and actions are represented
as Space-Time Shapes can be found in [22]. There, actors are segmented us-
ing silhouette information, and shapes are recorded over time. These shapes are
stored in a volumetric representation and classification of motions is applied. As
ToF-cameras are capable of recording real-time depth image sequences, these
cameras are well suited for recording Space-Time Video. To record and replay
Space-Time Video, we extend the octree datastructure in time and store in every
cell the time at which it is visible. In this example, we show the scene with and
without background. Removal of the background means as well, that the geom-
etry in the back of the person is obviously incomplete. This restricts our camera
movements, which however can be solved by using additional ToF-cameras that
observe the scene from different viewpoints. When adding a new image to the
octree datastructure, the current image number is used as a timecode. If the vol-
ume element is already occupied, the geometric information is calculated as an
average of old and new measurement and the timestamps at which the element
is visible are updated.

As we have a volumetric representation of our scene at hand, we can freely
move the camera around and render our octree by selecting only those cells which
were visible at a given time stamp. Figure 7 show examples of such a Space-Time-
Video sequence, including camera movement. A person is standing in front of the
camera head, swinging the arms. The left image shows all octree elements which
have been filled during the animation sequence which consists of 375 images. The
second image shows a selected frame of the sequence. Image three and four show
one moment in time, recorded by the ToF-Camera and rendered from different
views. By including the object in the environment octree model, the background
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Fig. 7. Space-Time Video: All elements in the octree (left), selected time instance of
the animation sequence (second), rendered views with background (right).

Fig. 8. Left: Accumulated hitcount for video sequence over time, color coded: red
(< 60) - black (>= 360). From left to right: Frame 1; Integration of frame 1 to 120;
integration of frame 1 to 375. Right: Rendering by selection of 3 time frames of the
Space-Time Video.

can be filled as well. An example of model-background integration can be seen
in fig. 9, top.

Figure 8 shows the colorcoded accumulated hitcounts for the above sequence.
The number of times an octree volume element is hit up to the current time
frame is saved and analyzed. This provides information about which parts of the
scene are static and which are dynamic. In the above sequence, the arms of the
person are moving and therefore distinguished from the body. 4D Space-Time
representation also allows to combine 3D information which has been taken at
different points in time. This is the selection of different time slices and the
combination in one 3D shape. An example is shown on the right of figure 8 in
which three points in time have been selected, forming a person with six arms.

5.4 Interaction and Collision Detection

The octree representation allows for fast 3D occupancy detection in the scene,
which can be exploited for collision detection between real and virtual objects.
Collision detection uses the collision check with any occupied node of the octree.
This way collision checks with other threedimensional objects can be performed.
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Fig. 9. Top: Octree of the environment. Shown are the colored (left) and the depth-
coded (right) voxels. Bottom: two frames of the animation sequence.

To show the capabilities of this representation, we present an example of mixing
and interaction of real dynamic content and virtual content. First we build an
environment model as described in section 5.1 and represent it as an octree. Here
we process a volume of 8 × 8 × 8m3 with a minimum element size of (50mm)3,
which is also the bounding box for collision detection. In the interaction phase,
we use this environment model together with dynamic object modeling from
the ToF-camera to detect dynamic objects in the scene. Depth-keying is applied
to segment the object from the background (see [9]). The background model is
rendered on the GPU and the keying is done by thresholding the depth values in
a GPU shader. The segmented dynamic person is also represented as an octree.

While the environment model is computed offline once, the dynamic person
model is updated in each frame as Space-Time-Video to reflect the object motion
and space occupancy. Figure 9 shows the octree volume representation for one
of the frames, including the person’s model. Animation and collision detection
of computer generated elements allow for dynamic interaction of the computer
generated elements with the real scene. As an example, colored balls are dropped
into the scene while the real person is walking around. The virtual balls are
colliding and bounce off the real scene objects. Since the camera observes the
frontal object surface only, there might be some missing collisions at the person’s
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back side, but that does not really harm the visual effect. Figure 9 shows two
frames of the resulting animation sequence. The balls are reflected and even
stirred up by the legs of the walking person.

6 Conclusion

In this work we focused on the discussion and use of data structures for the
representation of ToF-camera data. We defined several requirements that a data
structure has to provide and we concluded that the octree offers best possibili-
ties. We evaluated several scenarios such as environment reconstruction, model
building, Space-Time-Video and interactive collision detection. For environment
reconstruction, octrees can compete with 2.5D panoramic image, although image
blending computes smoother surfaces. For the other scenarios, a full 3D structure
like the octree is necessary.
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Abstract. We present an improved framework for real-time segmenta-
tion and tracking by fusing depth and RGB color data. We are able to
solve common problems seen in tracking and segmentation of RGB im-
ages, such as occlusions, fast motion, and objects of similar color. Our
proposed real-time mean shift based algorithm outperforms the current
state of the art and is significantly better in difficult scenarios.

1 Introduction

Segmentation and tracking are important basic building blocks of many machine
vision applications. Both problems have been the subject of research for many
years. In order to understand an image, it is often crucial to be able to segment
it into separate objects before proceeding with further analysis. The mean shift
algorithm is a popular scheme widely used today to solve these two problems.
Mean shift has a clear advantage over other approaches, in that the number of
clusters does not need to be known beforehand (as in GMMs and K-Means), and
it does not impose any specific shape on the clusters.

In [5], a robust framework for segmentation by combining edge and color
data was presented and [4] applied mean shift to tracking of objects in RGB
color space. However, both of these approaches suffer from the usual problems
associated with the analysis color images. Color-based segmentation does not
work well when the background has a similar color to objects in the scene.
Tracking typically relies on a color based histogram and thus performs poorly
when lighting changes, or when close objects share the same color. Improvements
have been made by adding edge information, a Kalman prediction step [6] or
modifying the kernel applied to the image samples [2], but they still have the
limitation that these measures rely on the same color data. Therefore, it is
desireable to add additional information to the problem at hand [12] in order
to get an improvement, and thus fusing time-of-flight depth data with color can
lead to much better results.

Several other papers deal with fusion of depth with other data derived from
a camera. [16] fuses high-resolution color images with time-of-flight data. [10]
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and [11] use low-resolution time of-flight data to fix discontinuities in the high-
resolution depth data acquired from a stereo camera setup. [7] fused time-of-
flight and color data to segment the background in a video sequence, though
the performance was about 10 frames per second. [8] fused laser range and color
data to train a robot vision system. In [18], local appearance features extracted
from color data are fused with stereo depth data in tracking of objects. Haar-like
features detected in the color data are used to improve noise and low-confidence
regions inherent in depth data produced from stereo cameras. However, the al-
gorithm runs at 15Hz on a powerful PC due to the amount of computation
necessary for extracting the appearance models. In [17], two separate particle
filter trackers, one using color and the other using time-of-flight data, are de-
scribed and compared on a variety of video sequences. Again, the approach for
both trackers is not suitable for real time as it involves heavy processing. The
paper concludes that each performs better in different environments and that
combining the two would be beneficial.

In fact, it is a very natural step to use depth data to compensate for noise
and problematic artifacts present in other data. In the case of standard digi-
tal camera output, the time-of-flight depth data naturally compensates for the
disadvantages and weaknesses of RGB data. For example, the depth image auto-
matically segments background from foreground objects, a very difficult task in
color images. It is also mostly unaffected by light sources, whereas RGB images
recorded with a standard digital camera change color when lighting changes. On
the other hand, depth data tends to be noisy and contain artifacts which need
to be handled.

In this paper we show that the natural fusion of color and depth data can
yield much improved results in both segmentation and tracking. In section 2 we
give an overview of the data used. In section 3 we investigate sensor fusion in
applying mean shift segmentation to a single image. In section 4 we extend this
idea to tracking objects in real time using mean shift. In section 5 we state our
conclusions and future work.

2 Data Stream

For our data, we used 3DV Systems’ ZSense camera [9], which simultaneously
captures both RGB and depth data using the time-of-flight principle. This gives
us a 4-channel image with 8 bits per channel. Although the data is recorded
using 2 separate lenses, the RGB image is already warped to match the depth
image. Thus, there is no need for calibration or matching of the data as in [16].
The ZSense camera has several options for resolution and frequency, and we used
320x240 resolution captured at 30fps. The camera has a range of 0.5-2.5m, a 60o

field of view, with a depth accuracy of a few cm., and RGB data comparable to
a standard webcam.
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3 Mean Shift Segmentation

Although the segmentation problem in image processing is not well defined,
our goal is to cluster the pixels of an image into separate objects in a robust
manner, regardless of the fact that separate objects may share identical colors.
Color-based segmentation does not work well in cases of occlusion, or when
objects in the scene share a similar color with their background. We need to
introduce additional data to the problem, and thus the fusion of time-of-flight
depth data fits naturally in this scheme. However, adding the depth data blindly
as an additional dimension does not necessarily improve the results. Depth data
is noisy and may contain artifacts which can lead to worse results. Thus we must
fuse the data wisely, by deciding when to use depth, and how much weight it
should be given. Usually depth data should carry more weight, as it is lighting
independent, and thus objects in the scene will not share the same color as the
background, but we have to be careful due to the depth sensor’s noise.

3.1 Proposed Algorithm

In [5] the mean shift procedure is applied iteratively to every point in a 5D feature
space. The feature space consists of the color (converted to L*u*v* color space
for a better distance metric) and the 2D lattice coordinates. At each iteration,
the window is moved by a 5D mean shift vector, until convergence, (when shifts
are smaller than a given threshold). In order to modify this algorithm we use
depth data as an additional dimension to the feature space, yielding clusters
which are similar in color as well as in 3D Euclidean space. Thus we extend
the above approach by computing a 6D mean shift vector per iteration. The
algorithm does the following:

1. Convert the color data to L*u*v*.
2. Estimate the noise in the depth data. We use a simple scheme similar to [13],

by applying a smooth function to the depth image D, and then approximat-
ing the residual of the smooth image S and the original image D as noise.

W = |S − D| (1)

This approach yields the over-estimated noise matrix W , but works well in
practice. We use the bilateral filter [15] as a smoother to preserve edges while
removing many unwanted artifacts present in the depth data. (see Fig. 1)

3. When computing the 6D mean shift vector, we scale the original weights
derived in [5] by W , and add an additional scale factor σ so as to give more
overall weight to the depth data when it is not noisy.

w6(x) =
1

W (x) + 1
w6(x)σ (2)
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(a) depth image (b) filtered image (c) noise estimation

Fig. 1. Noise estimation of depth using bilateral filter

(a) color (b) depth

(c) RGB segmentation (d) RGBD segmentation

Fig. 2. Segmentation of image from a fast motion sequence. Note that the arms in (c)
are clustered with the background due to noisy color data. Results are significantly
improved in (d).

where wi is the weight applied to each component of the mean shift vector
(XYRGBD), and w6 is the weight applied to the depth component. In prac-
tice, σ values in the range of 2-5 yielded the best results. In this manner,
mean shift will rely more on the color data in regions where the depth data
is noisy.
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3.2 Results

This scheme performs much better than the pure color-based scheme. In a se-
quence recorded with fast motion (see Fig. 2), the color data is ”smeared” caus-
ing the person’s arms to be incorrectly clustered with the ceiling. Adding the
weighted depth data solves the problem. In an occlusion sequence (see Fig. 3),
parts of the person are incorrectly clustered with the background, whereas adding
the depth solves this problem.

(a) color (b) depth

(c) RGB segmentation (d) RGBD segmentation

Fig. 3. Segmentation of image with partial occlusion. Note the person’s right arm
and left shoulder in (c) are incorrectly clustered with the background. Results are
significantly improved in (d).

4 Mean Shift Tracking

Comaniciu et. al. [4] extend the idea presented in [5] to robust tracking of objects
in time. The mean shift procedure is now applied locally to a window until it
converges on the most probable target. The main idea is to compute an initial
histogram in a small window for the object we wish to track, and then use
mean shift to find where to move the window so that the distance between the
histograms is minimized. While this scheme is robust, we note that it suffers from
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the same disadvantages of other color-based approaches. Naturally, it cannot
track well when objects share a similar color with the background. For example,
the tracker does not perform well when a wall in the background is similar to
the person’s skin color. On the other hand, relying purely on the depth data
has its own share of problems. For example, when hands are close to the body,
there is no variance in the depth window, and thus we have no way to locally
track the hands. It is clearly desirable to fuse the depth and RGB data in order
to achieve optimal results. In the following sections we describe the proposed
tracking algorithm.

4.1 Histograms

Our tracking uses a local mean shift procedure, and we have the freedom to use
different data for each frame of the sequence. Thus we are able to use different
histograms for each new frame depending on several measures in the local win-
dow. The main challenge is to decide when and how to fuse the depth and color
information. This is important for two reasons:

1. In most cases we wish to use both color and depth information. However,
in some cases we may want to drop one of these channels as it can actually
degrade the results. For example, if a white ball is thrown in front of a white
wall, we wish to only use the depth data. On the other hand, when we are
tracking hands which are very close to a person’s body, it is desirable to drop
the depth data. Thus we need a good set of rules to decide what to fuse.

2. Since we are working with a 32 bit image using a bin for each possible
color+depth will yield a histogram of 4 billion bins. Adding additional local
descriptors for robustness [14,1] will make the number of bins even larger.
The number of possible colors at each local iteration is much smaller, so
using the above logic we would get a very sparse histogram. Clearly, we
must quantize each channel, but also drop undesired data to save memory.

We initially ran the algorithm naively with a RGBD histogram of 16x16x16x16
bins, and made the following observations:

1. For most sequences, we get better results immediately.
2. We get worse performance in cases where depth data in the target window

is noisy. We can use our weight map from the previous section in order to
decide if the depth pixels in the target window are noisy, and then rely only
on the color data.

3. When there is not enough information to track well, the number of mean
shift iterations increases significantly. We noticed this both in fast motion
where RGB data was blurry, as well as in cases where both depth and RGB
data in the window neighborhood had low variance. In this case, we can
double the number of bins and use additional robust image descriptors as
well.

Using the above observations, we are now able to apply a robust algorithm which
fuses the depth and color data in an optimal manner.
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4.2 Proposed Algorithm

We use a framework similar to [4], but modify the histogram. Given a distribution
q of the target model and an initial location y0

1. Convert the color data to L*u*v*
2. Apply a bilateral filter to the depth data and compute weight matrix

W (eq. 1)
3. The histogram is computed using color and depth data, quantized so as to

fit in less bins. Each channel is divided by 16, yielding a total of 164 possible
bins instead 2564. If the number of depth pixels in the weight map is above
a threshold, we only use a 163 bin histogram and drop the depth data. In
this way we ignore noise in the depth data.

4. Compute p, the distribution for the target model at y0 using

p̂(y) = ChΣnh
i=1k(‖y − xi

h

2
‖)δ[b(xi) − u] (3)

where k is the Epanechnikov kernel, h is the window radius, {xi}i=1...nh
are

the pixel locations of the target object, δ is the Kronecker delta function,
and b is a function associating a histogram bin with a given pixel. p and
q are density functions for the color/depth feature of the target areas, and
thus we want to find the target position y at which the density functions are
most similar.

5. Evaluate the Bhattacharyya distance [4] between the 2 distributions

ρ[p̂(ŷ0), q̂] = Σm
u=1

√
(p̂u(y0)q̂u) (4)

This distance is a measure we want to minimize in order to pick the best
target candidate

6. Derive the weights for each pixel

wi = Σm
u=1δ[b(xi) − u]

√
q̂u

p̂u(y0)
(5)

7. Compute the mean shift vector (target displacement)

ŷ1 =
Σnh

i=1xiwig(‖ ŷ0−xi

h

2‖)
Σnh

i=1wig(‖ ŷ0−xi

h

2‖)
(6)

where g(x)=-k′(x), and use it to find the new estimated y position.
8. Repeat steps 4-7 until convergence (displacement < threshold).

(a) In most cases, the fusion of RGB and depth data is sufficient, and we
get and average of 5 iterations for convergence.

(b) In the case of low variance in the window region, we typically get a much
larger number of iterations, causing the tracker to sometimes lose the ob-
ject. In order to offset this effect, we keep track of a slightly larger window
of radius l surrounding the original tracking window. If the variance of
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the RGB data is low within this window, we run a SURF detector [1] in
the local window and recompute the histogram function b. The number
of bins is doubled in this case, as each pixel needs to indicate whether it
contains a SURF descriptor or not. In practice, runtime performance is
not largely impacted as this case does not happen often.

4.3 Handling Extreme Cases

We would like our framework to also handle extreme cases, such as turning off
all lights during a sequence, or having a person walk out of the camera’s depth
sensor range. In the previous section, we described how to ignore depth data in
regions containing noisy pixels. We wish to extend this idea in order to handle
other cases where either RGB or depth data is to be ignored in the histogram.
Again, we keep track of a larger window of radius l surrounding the actual
tracking window. At each iteration of the mean shift procedure, we check this
window and compute the sum of the pixel values for each data type respectively:

Srgb = Σnl
i=1(R(xi) + G(xi) + B(xi)) (7)

Sdepth = Σnl

i=1D(xi) (8)

(a) depth image (b) filtered image

Fig. 4. Out of range depth data

Table 1. Performance Statistics (for sequences of 1000 frames)

Sequence Description # of frames us-
ing RGB+D

# of frames us-
ing RGB only

# of frames us-
ing additional
SURF data

slow motion, no occlusion 972 28 0
occlusion with moving hands 914 86 7

occlusion between hand and head 926 74 23
rolled-up sleeves, occlusions 989 11 247
person standing close to wall 752 248 0
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1. In the case of people walking out of the camera’s range, a vast majority of
the depth pixels are zero. Thus, when Sdepth is close to 0, only RGB data is
used in the histogram.

2. In the case of no lights, all pixels in the RGB image are zero. Thus, when
Srgb is close to 0, only depth data is used in the histogram.

This simple heuristic works better on the bilateral filtered depth image, as we
get some noisy pixels when people are close to the depth sensor’s far limit. The
filter removes this noise, and works better in practice (see Fig. 4)

4.4 Results

We tested our algorithm on a set of challenging sequences with both occlusions,
proximity to walls, and fast motion. In all cases, our algorithm outperformed
the color based framework. We show results for a subset of our sequences, focus-
ing on hand tracking in different environments and with complex motions (See
table 1) Fig.5 shows successful tracking of hands completely occluding each other.
Fig. 6 shows an example in which hands were close to the body and sleeves were
rolled up, causing problems for the color tracker. Additional SURF descriptors
were sometimes added to the histogram in order to successfully track the hands.
Fig. 7 shows the number of iterations per frame for a typical sequence. Note that
most frames take a small number of iterations, and additional robust descriptors
were added only for the extreme peaks, improving the tracking results.

Fig. 5. Tracking a sequence with occlusions (a) initial tracking window is intentionally
placed close to the body on left hand to make the tracking harder as variance is low in
the depth image in that window (b) hand is occluding the face, both having a similar
color histogram. Tracking works well with additional depth data, but stays on face
when relying on color only. (c) hands completely occlude each other but continue to
track well afterwards when depth information is added to the histograms. (d) tracking
continues successfully even when close to body, a case in which tracking based on depth
only will fail.
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Fig. 6. Tracking a sequence with rolled-up sleeves, yielding a large region with similar
histogram to that of the target window. The images above show cases in which both
color and depth have a large region with similar depth and color data. Using a naive
RGBD tracker caused instability with the window, moving all over the arm region. In
this case, mean shift results in many iterations. Adding the additional robust SURF
descriptors results in successful tracking throughout the sequence.
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Fig. 7. Number of mean shift iterations per frame for a sample sequence
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5 Conclusions

We have shown how fusion of depth data to color images results in significant
improvements in segmentation and tracking of challenging sequences. The pro-
posed algorithm runs at 45 fps on a single-core 2.4GHz PC, and the number of
iterations is similar to that in the original mean shift implementation.

The algorithm can be further improved by using the robust descriptors gener-
ated by SURF [1] rather than just the detected points, and incorporating them
within the Bhattacharyya distance framework.
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Abstract. In this paper we present a framework for computing depth images
at interactive rates. Our approach is based on combining time-of-flight (TOF)
range data with stereo vision. We use a per-frame confidence map extracted from
the TOF sensor data in two ways for improving the disparity estimation in the
stereo part: first, together with the TOF range data for initializing and constraining
the disparity range; and, second, together with the color image information for
segmenting the data into depth continuous areas, enabling the use of adaptive
windows for the disparity search. The resulting depth images are more accurate
than from either of the sensors. In an example application we use the depth map
to initialize the z-buffer so that virtual objects can be occluded by real objects in
an augmented reality scenario.

1 Introduction

Real time depth imaging is a building block in many interactive vision systems and,
in particular, is necessary for enabling realistic occlusions in augmented reality (AR).
Despite the improved speed of general purposes computing as well as development of
new types of sensors, providing depth images in real time continues to be a challeng-
ing problem. For the purposes of enhancing AR with convincing occlusions current
approaches are limited to either reducing quality in the depth maps [SNV02] or real-
izing occlusions by compositing [VH08]. We are demonstrating a first step toward an
affordable and lightweight solution by fusing information from a low cost but also low
resolution time-of-flight range sensor with standard correlation-based stereo.

Quite generally, we can distinguish active and passive approaches to real time depth
imaging. Active optical techniques involve relighting the scene and usually require an
expensive and heavy setup. Recently, sensors based on the time-of-flight principle for
sensing depth have become affordable and fast with the introduction of photonic mixer
devices (PMD) [MKF+05,XSH+05]: the reflection of modulated IR light is collected in
a CMOS matrix. Comparing the signal to the source modulation yields the phase, which
is a linear function of distance to the reflecting surface. PMD depth imaging works at
interactive rates, but suffers from comparably low spatial resolution of the sensor and
noise in the depth values, especially for surfaces with low reflectance.

Passive techniques, at least when several frames per second are required, are based
on multiple views of scene captured with two or more cameras. We have decided to
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use a single binocular stereo camera, as more not only make the setup more compli-
cated, but also require processing more images. From the large number of stereo vision
approaches [SS02] only local correlation based methods are fast enough for real time
application [FHM+93,Hir01]. This limits the quality of the resulting depth maps, most
obviously in large featureless areas but also at depth discontinuities, where the correla-
tion window might compare different objects because of occlusion.

We combine the camera systems (time-of-flight and stereo) and fuse the data so that
limitations of each of the individual sensors are compensated. Our goal is enhancing the
high resolution color image from one of the stereo camera oculars with depth informa-
tion, gathered from the PMD camera as well as from disparity estimation. The mapping
of the PMD depth image into a color image acquired with another camera (resp. tex-
turing the depth data with the color image) has been analyzed by Reulke [Reu06] and
Lindner et al. [LKH07,LLK07]. Our setup combines the PMD camera with a binocular
stereo camera, similar to [BBK07, GAL07, HA07, NMCR08, KS06, ZWYD08].

For better explaining our choice of algorithm, we need to briefly touch on the setup,
calibration, and properties of the cameras (section 2). The physical properties of the
PMD camera give rise to the preprocessing of its data, most importantly the estimation
of confidence values for each depth value (section 3). Kuhnert and Stommel [KS06],
as well as Netramai et al. [NMCR08] use a similar confidence map to choose either
the depth value acquired with the PMD camera or depth from stereo – we exploit this
depth/confidence map for initializing and steering a local correlation based stereo algo-
rithm (section 4), in particular by choosing adaptive windows for the correlation based
on the information in both the color images and the range image.

In an earlier approach [HA07], we combined the TOF data from the PMD camera
with high resolution images from two photo cameras, using graph cuts to find a globally
optimal solution for a depth map of a single perspective. The use of graph cuts leads to
computation times that are insufficient for real-time video processing. Similarly, Guo-
mundsson et al. [GAL07], Zhu et al. [ZWYD08], and Beder et al. [BBK07] generate
depth images by fusing TOF and stereo data. Their approaches appear to be much faster
than using graph cuts, however, they target single images and provide no information on
the computation times. The choices of stereo algorithm, however, indicate that they are
not amenable to real-time processing in their current form. We explicitly start from the
restrictive setting of real-time applications, which severely restricts the choice of stereo
algorithm, mostly to local correlation with fixed windows. We use the TOF information
particularly to adapt the windows, as fixed windows fail at depth discontinuities. We
believe our approach yields depth images at interactive rates

– that are are more reliable than the information from the PMD camera without com-
promising the interactive frame rate and

– that are more accurate around depth discontinuities than real time stereo vision
approaches based on fixed window correlation.

We demonstrate our use of the system in an augmented reality (AR) scenario for
computing accurate occlusions between virtual and real objects.
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2 Setup

We mount a compact time-of-flight camera PMDTec type [vision]19k, capturing a depth
range of about 7.5 meters at a resolution of 160x120 pixels, together with PointGrey
Bumblebee2 stereo camera capturing color video at a resolution of 640x480, on an
aluminum rack (see Figure 1 for an image of the cameras). Both cameras are aligned to
parallel viewing directions.

2.1 Photonic Mixer Device Depth Camera

Photonic Mixer Devices (PMD) are semiconductor sensors that can be used to mea-
sure distances per pixel based on the time-of-flight principle [XSH+05,MKF+05]. The
camera system includes a light source based on infrared LEDs, illuminating the scene
with a continuously modulated signal at f = 20MHz. The sensor detects the phase shift
between the source and received signal by sampling four values per period. The phase
shift is in principle independent of the amplitudes of the signals, and since modulation
frequency f and speed of light c are constants, it relates linearly to the distance of the
reflecting object.

Measuring phase shifts has several inherent limitations: first, phase shifts have sym-
metries along the signal and are unique only in an interval of π, in this case c/2 f =
7.5m. More subtly, measuring phase shifts assumes perfectly sinusoidal signals, yet this
is not the case. This leads to a “wiggling" error in the depth measurement (see Rapp et
al. [Rap07]). Most importantly, phase shifts can only be measured accurately if the sen-
sor receives the right amount of light. If objects are too dark sensor noise dominates the
signal, while too much light leads to saturation and makes modulation undetectable.
As a consequence, measurements depend on object reflectance and distance to the
light source and camera. The camera allows controlling the integration time (similar to

Fig. 1. All three cameras mounted on an aluminum bar
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exposure time in standard cameras), however, just as in photography it is often impos-
sible to keep all objects captured in the scene within the dynamic range of the sensor.

The camera provides the raw signal samples as well as consolidated amplitude and
depth values computed from the four samples. Interestingly, the consolidated amplitude
value is accurate only as long as the sensor is not being saturated. It is possible to detect
saturation based on the raw signal samples (see Rapp et al. [Rap07]).

The resulting depth images captured with PMD technology are noisy and contain
wrong depth values because of the phase ambiguity and objects reflecting not enough
light; whereas we have eliminated the case of reflecting too much light by adjusting the
integration time.

2.2 Calibration

Sensor fusion requires registration and accurate calibration. For both the intrinsic and
extrinsic calibration we use the calibration algorithm of Zhang [Zha99, Zha00]. The
PMD camera, however, yields intensity images that are too noisy for direct application
and they are preprocessed following the ideas of Reulke [Reu06] as well as Lindner and
Kolb [LK06]. A relevant practical problem for the extrinsic calibration is the misalign-
ment of optical center and zero depth plane of the PMD camera. Interestingly, Gud-
mundsson et al. [GAL07] perform a stereo calibration between all pairs of cameras.
We have found this to be cumbersome, because of the combination of noisy amplitude
images and the mismatch between optical center and depth image for the PMD camera.
We rather consider only the extrinsic calibration between the depth image from PMD
camera and the systems of the color cameras.

The stereo camera color images are rectified to reduce the correspondence problem
to a single line. Our calibration is accurate enough so that the depth difference between
stereo system and the PMD camera is within the accuracy of the PMD camera.

3 Preprocessing and Confidence Estimation

As explained in the last section, the quality of the depth values captured by the PMD
camera depends strongly on the surface of the objects in the scene. Dark and glossy
surfaces lead to artifacts as the modulated IR light is not reflected as expected. Espe-
cially when using the depth values for determining occlusions in AR applications, these
artifacts become clearly visible. We process the data prior to using it with the stereo sys-
tem, trying to improve the data by simply filtering and assigning confidence values to
each depth value. Very low confidence depth values are replaced by interpolated values
with higher confidence.

3.1 Filtering

Reducing the noise or removing outliers is one obvious part of the pre-process. Isolated
outliers can be removed at minimal cost using median filtering. Through experimenta-
tion we have found that a small kernel of 3× 3 pixel is sufficient. This appears to be
due to the outliers being mostly isolated pixels. Larger kernels would lead to longer
processing times without showing a significant improvement.
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(a) Depth image (b) Amplitude image (c) Confidence map

Fig. 2. A checkerboard is difficult to reconstruct using PMD range sensing, because of the insuf-
ficient amount of light reflected by the black areas. The acquired depth image (a) clearly holds
wrong depth values in these black areas. The amplitude image (b) can be used to compute a con-
fidence map (c), which is thresholded to classify depth values as valid (white) or invalid (black)

3.2 Confidence Estimation

As explained in the last section, in our setup, the dominant cause for systematically
wrong depth estimation are objects that have bad reflection properties due to their ma-
terial and color. However, this information is available in form of an amplitude image
of the scene.

Fig. 3. Scanline interpolation of the PMD data using the confidence map. The red line is the
interpolated depth, the dashed line is the original unreliable PMD depth.

The first step in turning the amplitude image into a confidence map is applying a
3× 3 median filter, similar to the process for the depth image. The resulting image is
thresholded, yielding a binary confidence map classifying depth values as either valid or
invalid. Figure 2 highlights the problems resulting from low reflectivity at the example
of a checkerboard and shows the resulting classification of valid and invalid depth values
(while the 3D reconstruction from the wrong depth values can be seen in Fig. 4(a)).

3.3 Interpolation

In all regions marked as confident by the binary map, we will use depth values for
initializing disparities. In most cases the depth values in insufficiently reflecting areas
are far from the truth and it is better to assume continuity in depth.
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(a) Original image (b) With interpolation

Fig. 4. 3D reconstruction of the scene from the depth image (and using the intrinsic camera ge-
ometry). The left image shows the reconstruction from the data in Figure 2(a) and the right image
uses linearly interpolated depth values for elements with low confidence.

As in our case the interpolated depth values will later be corrected using the stereo
information, we opt for a simple approach that is as fast as possible: the depth image is
scanned across horizontal lines. When an invalid segment is encountered it is replaced
by either a line connecting the two valid depth values at the boundary of the segment
or a line with constant depth values at the boundaries of the image (see Figure 3). For
textured planar surfaces (such as the checkerboard, see Figure 4(b)) this provides a
reasonable estimate; if objects of low reflectance differ in depth from the surrounding
they will be assigned wrong depth values, which will be corrected in the stereo part of
the algorithm.

4 Algorithm

In our exemplary AR applications with dynamic occlusions we need to enhance one
color image from the stereo camera with depth information. We compute depth values
at the resolution of the PMD camera. The algorithm we suggest is equally applicable
for computing depth at higher resolution or textured surfaces in other views.

The main steps of assigning depth values to pixels are as follows (see also Figure 5):

1. The pixel coordinates and depth values from the PMD camera are used for gener-
ating a tessellated depth surface (i.e. quad mesh) of the scene from this viewpoint.

2. The surface is transformed into the view space of the cameras. The intersections
of view rays with the surface in this coordinate system define initial disparity val-
ues; the associated confidence values define the possible range. Thresholding the
confidence values yields a set of valid and invalid depth coordinates in the quad
mesh.

3. The areas of pixels associated to valid and invalid depth coordinates are thinned and
serve as the initialization of a segmentation of the color image into depth continuous
regions.
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Fig. 5. Algorithm overview

4. The segmentation steers adaptive windows for the correlation computation in a
standard stereo algorithm, correcting the invalid depth coordinates of the surface
mesh.

In the following, we discuss several details of these steps.

4.1 Mesh Initialization and Projection

The intrinsic calibration of the PMD camera allows computing 3D coordinates from
pixel location in the image plane and the corresponding depth value. For convenience,
we connect the 3D coordinates to a piecewise bilinear mesh. The extrinsic calibration
between the cameras allows transforming the mesh into the coordinate systems of the
stereo camera. The intrinsic calibration of the stereo cameras (including a rectification)
defines a projective transformation, which yields depth and confidence values per pixel.

The labels define two regions in the color images: a region of valid and a region of
invalid pixels, based on the binary confidence map. Figure 6 shows the projection of the
mesh in the left camera. The projection of valid vertices are drawn as gray squares and
invalid pixels are drawn as red squares.



Depth Imaging by Combining Time-of-Flight and On-Demand Stereo 77

(a) Rectified Left View (b) Stereo operation map

Fig. 6. Color coded vertices of the surface mesh, where red vertices are invalid and will be cor-
rected using stereo vision

4.2 On-Demand Stereo with Adaptive Windows

Instead of computing a whole disparity map, the use of our stereo part is computing
depth values only for vertices that are marked invalid. Furthermore, the projection of
these vertices into the two rectified stereo views immediately yields an initial disparity
guess.

An underlying assumption of correlation based stereo algorithms is that depth is un-
ambiguous in the correlation window. This is not the case at depth discontinuities where
objects may be occluded in only one of the views so that correlation of pixel colors fails
to be a good indicator for correspondence (Figure 7(b) illustrates this situation).

A solution to this problem is to adapt the correspondence window to the (likely) ob-
ject boundaries. Kanade and Okutomi [KO94] suggest to adapt the size and shape of
the rectangular correlation window to local disparity characteristics. Boykov et al. gen-
eralize this variable window approach [BVZ98]. They compute for each pixel a new
window. This window contains all pixels with an intensity close to the considered pixel.
This way, they try to model the boundaries of the objects and the depth discontinuities.
Hirschmüller [Hir01] proposes a similar approach using multiple supporting windows.
Unfortunately, all of these techniques are too costly to reach interactive rates at video
resolution of 640 by 480 pixels.

Our main observation is that the object boundaries are only relevant if they are in
regions whose depth values are labeled as invalid – otherwise the depth values have
already been gathered based on TOF. Thus, we can use the information on valid and
invalid regions for initializing a segmentation algorithm in the color images. The seg-
mentation will then define the extent of the correlation windows used in our adaptive
window stereo algorithm. Exploiting the confidence information makes our approach
both much faster and also more robust than only working with the color images.

From the many potential segmentation algorithms we use the marker-controlled wa-
tershed algorithm [RM00], which we have found to be robust while being fast enough
for our application scenario. The idea is that valid and invalid regions serve as mark-
ers for the binary segmentation. Because of errors in the projections for vertices with
incorrect depth (i.e. especially invalid vertices), color pixels are not necessarily labeled
correctly. Consequently, the sets of valid and invalid pixels are eroded independently,



78 U. Hahne and M. Alexa

(a) Full left view (b) Right view (detail) and cost function
(fixed window)

(c) Eroded operation map and segmentation
(both detail)

(d) Right view (detail) and cost function
(adaptive window)

Fig. 7. This figure compares correlation based stereo with fixed windows and with windows
adapted to object boundaries computed from segmenting the color image into depth continuous
regions. The whole scene is shown (a), while we focus on the group of balls and the webcam in
front of the box (b-d). The eroded operation map is used to initialize the watershed segmentation
(c) leading to a mask adapting the stereo correlation windows. The red circle shows the initial
disparity guess and the green circle the disparity corresponding to minimum cost (b+d).

leaving a set of unlabeled pixels in the proximity of object boundaries (see Figure 7(c)).
These sets of valid and invalid pixels serve as the markers that initialize the segmenta-
tion as starting points. If objects have boundaries in the color images, the segmentation
will accurately label pixels as being connected to the valid or invalid pixels. The result-
ing binary map restricts the correlation window.

Figure 7 shows the influence of this border correction filter: an object is too dark
for the PMD camera, yielding wrong depth values and marked as invalid. A correlation
based stereo algorithm with fixed window finds the wrong corresponding point (7(b)).
After eroding the sets of invalid and valid pixels, the watershed algorithm segments the
object along its boundary (7(c)). Restricting the window to the segmented object yields
the correct correspondence (7(d)).
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4.3 Final 3D Mesh

Finally, we replace the PMD depth of each invalid pixel with the computed stereo depth
value. The resulting mesh is rendered into the z-buffer of one of the camera views using
the color values from the camera. This allows using the depth values in interactive
applications.

5 Results

As occlusion is one of the most fundamental factors in monoscopic depth perception,
AR applications become much more immersive if occlusion handling is embedded. This
is demonstrated in Fig. 8 and the accompanying video [htt09]. Our approach makes it
possible to handle dynamic occlusions like a hand in front of the virtual objects, unlike
model based techniques [BWRT96]. This is very practicable as most AR application
focus on manual interaction of virtual and real objects.

(a) no occlusion (b) occlusion

Fig. 8. The occlusion strongly enhances the depth impression of the scene

Other approaches to occlusion handling in AR have used stereo vision [KOTY00] or
PMD depth sensing [FHS07]. We have compared the raw output of the PMD camera
projected into the view of the color image and the raw stereo data with the results of
our approach (see Fig. 9). A dark object in this scene is assigned incorrect depth values
delivered by the PMD camera and, consequently, is mapped to the background through
the interpolation process (Fig. 9(c)). Fig. 9(d) shows the depth map obtained using
correlation based stereo with a fixed window as used in other stereo algorithms aiming
at interactive frame rates. The images in 9(e) and 9(f) show the improved results using
our algorithm. Notice the appearance of dark objects while they are not captured at all
by the PMD camera.

Several parameters influence the performance of our system: the frame rates we ob-
tain are limited by the cameras and the transmission to roughly 11fps on our test system,
an AMD Athlon 2GHz Dual Core Processor with 1GB RAM. The additional cost of our
algorithm depends on the size of the correlation window and the number of depth values



80 U. Hahne and M. Alexa

(a) Left view (b) Right view

(c) Only PMD (bad pixels interpolated) (d) Only Stereo

(e) Stereo and PMD data (f) plus adaptive windows

Fig. 9. In this example we compare the depth map acquired with the PMD camera (c) and using
correlation based stereo (d) with our results, i.e. correcting low confidence areas of the PMD range
image using stereo on-demand with a fixed window approach (e) and using adaptive correlation
windows based on segmentation (f)

that have to be corrected using stereo on-demand. Table 1 compares several situations,
where we have chosen the thresholds so that approximately 250 resp. 500 depth values
were considered invalid. The computation times clearly show that there is a linearity
between time and correlation window size for stereo computation on the one hand and
on the other hand, the ratio between the amount of corrected pixels and computational
timings is linear as well.

6 Discussion

Our system provides a framework for interactive AR applications, where the depth map
is necessary for visual or physical interaction between synthetic and real objects. Our
approach is using low cost, light weight components and exploits the properties of both
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Table 1. Performance on an AMD Athlon 2.00 GHz Dual Core Processor with 1GB RAM. Win-
dow is the size of the correlation window used for stereo. The computation times are compared
for each step while capturing a scene with approx. 250 and 500 corrected pixels.

Acquisition 91 ms
Preprocessing 23 ms

Stereo+PMD Window ≈ 250 px ≈ 500 px
5× 5 9.5 ms 20.5 ms
7× 7 16 ms 33.3 ms
9× 9 25 ms 55 ms
11× 11 42 ms 88 ms

sensor types. In particular, we use range data for narrowing the disparity search and
adapting the correlation windows to potential depth discontinuities.

We demonstrate how the resulting system can be used for handling occlusions. The
depth data can also be used for collision detection and other interactive solutions. Some
of the possible interactions are demonstrated in the accompanying video [htt09]. The
dynamic and global depth map of the scene would also allow computing shadows for
virtual objects, or using higher quality rendering techniques for further improving the
realism of virtual objects [BR05].

Our system can be improved in several aspects. The synchronization of the PMD
camera as part of the software system results in a maximum of 11fps – using a hard-
ware solution would allow exploiting the maximum frame rate of the cameras. The
computations necessary for fusing the data and improving the depth images are easy to
distribute to several cores so that exploiting a higher input frame rate would be easy if
the system were coupled with a modern CPU. As mentioned in section 2.2, the accuracy
is depending on the PMD range data, and we think that future developments in camera
hardware and calibration would lead to an increased working range.

It would be interesting to apply different segmentation algorithms for adapting the
stereo windows. Feris et al. [FRC+05] use region growing in a similar situation. Find-
ing the best balance between performance and accuracy in this step is important future
work. In addition, it might be possible to make use of other information than confidence
and color, such as range data or predictions from preceding frames. Another step in en-
hancing the algorithm would be to define a confidence measure for the stereo data and
use it for further controlling the depth reconstruction. This could reduce the error in
regions where both systems fail, for example large dark and homogeneous objects.
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Abstract. We present a system that allows for changing the major cam-
era parameters after the acquisition of an image. Using the high dynamic
range composition technique and additional range information captured
with a small and low-cost time-of-flight camera, our setup enables us
to set the main parameters of a virtual camera system and to compute
the resulting image. Hence, the aperture size and shape, exposure time,
as well as the focus can be changed in a postprocessing step. Since the
depth-of-field computation is sensitive to proper range data, it is essen-
tial to process the color and depth data in an integrated manner. We use
a non-local filtering approach to denoise and upsample the range data.
The same technique is used to infer missing information regarding depth
and color which occur due to the parallax between both cameras as well
as due to the lens camera model that we use to simulate the depth of
field in a physically correct way.

1 Introduction and Related Work

When photographing certain scenes it is a common stylistic device to limit the
depth-of-field (DoF) in order to accentuate the actual motive and to provide a
sense of depth within the scene. However, the artistic license of the photographer
is often constrained by the capacities of the used camera. Especially with stan-
dard compact cameras the described technique employing a small DoF is only
applicable in settings with very distant foreground and background objects. Of-
ten the aperture of the lens is not sufficient to achieve the desired effects. But
even with high-end SLR cameras, the physical constraints remain valid and if the
distances between fore- and background are not big enough, the whole picture
remains sharp and the scene appears flat. Even in settings where the camera
and the captured scene are suitable, it is often desirable to change the focus
afterwards.

Different algorithms allow for the manipulation of images with respect to the
mentioned degrees of freedom after the acquisition. In their recent work, Bae
and Durand [1] detect depth blur in a single image and estimate the blur kernel
in order to then magnify the amount of blur to achieve the desired DoF effect.
Changing the focus, however, is not possible. Other approaches use a depth from
focus/defocus technique (e.g. [19,15]). One inherent drawback of these methods
is that the depth estimation is inaccurate depending on the surface texture. More
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related to our work is the technique by Moreno-Noguer et al. [16] who change the
focus setting for an all-focused image in a post-processing step. A light pattern
is projected into the scene from which they estimate sparse depth information.
Based on image segmentation into regions of equal depth, the blur effect can be
simulated. However, it is not possible to, e.g., achieve a gradual increase in blur
on surfaces parallel to the viewing direction.

In contrast, with the proposed setup consisting of a standard color camera and
an additional range camera we acquire dense depth information in addition to
the color image. We assume that the color image is all focused – a prerequisite
that can be met by using a small aperture diameter, i.e., a large f-number.
The depth camera illuminates the scene with invisible near-infrared light and
determines the time of flight of the reflected light. Since we obtain a dense depth
map from the sensors it is possible to compute a gradual increase in blur on
surfaces parallel to the viewing direction, for example.

Our processing pipeline incorporates a denoising stage, extending the recently
presented non-local approach [12]. We first prune outlier pixels and secondly fuse
color and depth information in order to enhance the resolution and smooth the
depth map in an integrated manner.

Given correct depth information the depth blur can be simulated using differ-
ent techniques. A good overview is given in [9] and we will use the categorization
established there. The classical approach is the so-called forward-mapped z-buffer
DoF where the circle of confusion is calculated for each pixel and rendered to
the destination image [17]. The result is equivalent to using the reverse-mapped
z-buffer DoF technique where a blur filter with a kernel size depending on the
corresponding depth value is applied to the image. Both techniques do not take
occlusions into account, i.e. no depth test is performed. Therefore blurred back-
ground objects can “leak” into the foreground. The layered DoF algorithm as-
signs pixels of the image to distinct “slices” of depth that can be blurred based on
some representative depth. These layers are composited into a final image and in
this way occlusions between these layers are handled correctly. Moreno-Noguer
et al. [16] apply this technique when performing refocusing.

The exact way for computing DoF is to model the light transport from the
scene to the camera. This is done in distributed ray tracing by casting rays
from across the lens [5]. Equivalently, the scene can be rendered multiple times
from different locations on the lens and accumulating the resulting images [11,4].
This is a correct reproduction of the depth of field effect according to a thin lens
camera model. However, for the simulation, knowledge about the scene geometry
is necessary. Since every point on a real lens sees different parts of the scene, a
single depth map is not sufficient. Therefore, missing structure due to occlusions
in the depth map has to be inferred. Our novel approach is to cast this 3D
problem into the image domain.

The presented technique uses an inpainting algorithm for both color and depth
in order to achieve the realistic depth blur. The inpainting problem was stud-
ied intensively in the last years. In the seminal paper by Efros and Leung [8]
missing pixels are reconstructed using pixels with a similar local neighborhood.
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Extensions were presented e.g. by Wei and Levoy [21]. We use the same non-
local approach employing statistics about the set of patches in the depth map
and the image as is used for denoising. In an integrated manner, these patch
statistics are used to infer missing pixels that occur due to the small parallax
effect between different viewpoints on the lens, similar to the work by Wong and
Orchard [22].

The depth images we acquire with the time-of-flight (ToF) camera are of low
resolution and have to be upsampled to the resolution of the color image. In-
ferring high resolution versions from a given low resolution image is also a long
studied topic and several approaches based on learned dependencies of low and
high resolution example data have been presented (e.g. [10,13]). Here, however,
we are dealing with the super-resolution problem in a sensor fusion framework
where both color and depth are available. We integrate the resolution enhance-
ment into the same non-local technique that is used for denoising. Related to
ours are the approaches based on an extended Markov random field [7] and on
the joint bilateral filter [14].

By varying the exposure time, e.g., with a bracket mode setting, and applying
Debevec and Malik’s composition technique [6] our algorithm correctly computes
the depth blur on the irradiance values of high dynamic range. Therefore, we
are able to reproduce a realistic Bokeh. This term describes the visual quality
of the depth blur effect and is often associated with the occurrence of single
highlighted spots that are characteristic for a certain shape of the aperture.
Commercial tools, e.g. Photoshop’s lens blur filter, only simulate this effect by
“boosting” bright areas in 8bit-images.

In the following section we give a brief overview over the system and explain
the individual steps of our approach in detail. Results from different test scenes
are discussed in Section 3 and we conclude the paper in the last section.

2 Our Approach to Refocusing

2.1 Overview

For the acquisition of a color image with corresponding depth information we
use a setup consisting of a 2 Megapixel standard color camera that is mounted
on top of a time-of-flight camera by PMDTec, resulting in a parallax of about
50mm. The range camera provides depth maps with a resolution of 160 × 120
pixels and an accuracy that highly depends on the scene and the given lighting
conditions. Both cameras are calibrated once with a standard camera calibration
toolkit [2] using the intensity output of the range camera, equivalently to a stereo
setup. Based on the intrinsic calibration, the color images are undistorted prior
to further processing. To circumvent any interpolation of the depth data we
compensate for the distortion of the lens by incorporating these effects in the
backprojection using a precomputed lookup table. An overview of our processing
pipeline is depicted in Figure 1 and explained in the remainder of this section.



Realistic Depth Blur for Images with Range Data 87

Capturing a scene, we take images of the color camera using several exposure
times together with a range image from the ToF camera. In order to obtain an
all-focused image, a small aperture (big f-number) has to be used.

In a postprocessing stage, the color images are composited to a high dynamic
range image using the algorithm developed by Debevec and Malik [6]. Outliers
in the depth data, i.e., pixels where the depth measurement failed due to illumi-
nation conditions or reflection properties, are pruned with a non-local filter [12].
Further, we backproject the depth readings into 3D-space and project them onto
the image plane of the color camera. Due to occlusions and the low resolution
of the range camera, we need to upsample and inpaint the depth map in order
to obtain corresponding range measurements for each image pixel. With a novel
unified approach based on a non-local filter the depth image is denoised at the
same time. We describe this filter in Section 2.2.

The refocusing and simulation of the DoF effect is achieved by integrating
over all possible viewpoints on the lens within the chosen aperture. This is done
by stochastic sampling, i.e., rendering the scene from several randomly chosen
viewpoints and accumulating the views. When the viewpoint changes on the
lens, this small parallax effect results in holes within the image. Therefore, each
rendering pass is followed by an inpainting step. This DoF simulation is described
in detail in Section 2.3.

2.2 Super-Resolution and Inpainting of Depth

Buades recently presented the Non-Local Means (NL-means) filter for image
restoration [3]. It reconstructs pixels using other pixels with similar local neigh-
borhoods, taking into account the self-similarity of the image. Even very fine
details that occur repeatedly can be distinguished from noise. In this man-
ner, NL-means is also closely related to the inpainting algorithm by Efros and
Leung [8]. In its original formulation NL-means reconstructs a pixel by a weighted
average

v′(i) =
1
Zi

∑
j∈Wi

w(i, j)v(j). (1)

of pixels v(j) that share a similar surrounding N. Here, Zi =
∑

j∈Wi
w(i, j)

denotes a normalization constant and Wi is a potentially large search window
around the 2D position i. The similarity weight w is determined as

w(i, j) = e− 1
h

∑
k∈N ξikGa (‖k‖2)(v(i+k)−v(j+k))2 , (2)

with filtering parameter h. The pixel-wise distances are weighted according to
their offset k from the central pixel using a Gaussian kernel Ga with standard
deviation a. In this work we use a variant (see [12]), where the additional factor

ξik = e− (v(i)−v(i+k))2

h (3)

is used to ensure a proper smoothing along strong discontinuities and therefore
accounts for the different characteristics of typical depth maps compared to im-
ages. Outliers are pruned using the conditional probability density p

(
v(i)|v(N

∗
i )

)
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Fig. 1. Pipeline of the proposed system
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modeling the data with a mixture of a normal distribution for valid pixels and
a uniform distribution for outlier pixels according to [12], where N

∗
i = N \ i. In

our setting the outlier removal is performed prior to the transformation into the
color camera frame in order to avoid false occlusions.

Once depth and image information is given in the same reference frame we
smooth and upsample the depth data since depth and color are available in
different resolutions. Using a linear blending we reconstruct the depth values on
the fine grid as

v′uv(i) =
1

Z∗
j

∑
j∈Wi

(
(1 − α)w(i↓, j↓) + αw(u)(i, j)

)
v(j↓), (4)

where Z∗
j denotes the corresponding normalization factor. Here, i↓ are the low

resolution pixels that correspond to pixels i in the high resolution grid. The
image based weights w(u) are defined analogously to the similarity weights w.
Whereas the size of the neighborhoods N for the computation of w(u) is related
to the high resolution image, the neighborhood used in the calculation of w has
to be chosen according to the low resolution depth data.

Individual pixels that were marked outliers in the prior detection step as well
as holes resulting from the transformation between both camera frames can be
reconstructed in the same way. In order to fill missing areas that exceed the
patchsize, the filter is applied iteratively. For each reconstructed pixel we use Z∗

j
as a measure of certainty ζ(j) for the next iteration. Initially, ζ(j) is set to 1 for
valid pixels and 0 otherwise. Equation 2 is modified in order to propagate the
confidence measure into areas of missing pixels:

w(i, j) = ζ(j)e− 1
h

∑
k∈N ξikGa (‖k‖2)ζ(i)ζ(j)(v(i+k)−v(j+k))2 . (5)

Iteratively computing the reconstruction (Eq. 1) for each pixel and storing the
corresponding confidence measures, the depth data can be upsampled to the
resolution of the image data and smoothed laterally as well as in the range
dimension in one unified approach.

2.3 Computing Realistic Depth Blur

To achieve the desired depth-of-field effect, one has to (at least preliminarily)
cede the widely used pinhole camera model. Instead, we have to follow the thin
lens camera model incorporating the aperture size as an additional parameter.

A direct implementation of this model, however, is only possible if the scene
and the occlusions in 3D space are known. Since a single depth map is the only
information about the scene geometry in our setting, we compensate for the
problem of unknown parts of the scene by simulating the thin lens mapping
using several pinhole projections and inpainting resulting holes in the image
domain on each of them. The same inpainting technique as described in the
previous section is used. Holes that occur due to a changed viewpoint are most
probably to be filled extending the adjacent background. Therefore, a prior is
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(a) (b)

Fig. 2. Bokeh: Two different aperture shapes; 6-blade (a) and triangle-shaped (b)

added in Equation 5 that assigns a higher weight to patches of larger depth. We
scale the weight w(i, j) with the corresponding squared depth of the pixel.

In a first step we sample 2D positions s = (sx, sy) on the lens of a virtual
camera using stratified sampling [20,18]. Given the focal length f and the f-
number N chosen by the user, we sample from a disc with diameter c = f/N
that represents the unoccluded part of the lens. Different DoF effects can easily
be achieved by sampling from varying aperture shapes instead.

The pinhole projection for each sample is applied after a transformation of the
camera frame, translating the viewpoint according to the 2D displacement on the
lens (perpendicular to the viewing direction) and perturbating the viewfrustum
such that the image coordinates of points at a chosen distance u (the focus)
remain unchanged. This is done by shearing the scene geometry parallel to the
image plane.

3 Results

We implemented a prototype version of the presented system in C++, perform-
ing the filtering steps on the GPU. For all the examples in the paper we use
256 samples (576 for the close-ups) to integrate over the lens (see Sec. 2.3).
As target resolution we use an image size of up to 1600 × 1200 pixels, i.e., we
upsample the depth data by a factor of 10 in both dimensions.

A scene of complex depth structure is shown in Figure 3a-d. Compared to
the unmodified image (a), the depth perception is significantly enhanced by
introducing depth blur. Using the presented framework we varied the focus to
three different stages: close (b), medium (c) and far (d). At the highlights on the
fire extinguisher one can clearly observe the desired bokeh effect. In the close-up
view in Figure 2 we show the resulting effect using different aperture shapes. The
effect of photometric burnout can be noticed along the branch in the marked
area in (b).
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(a) original (b) focus: 1.5m

(c) focus: 2.0m (d) focus: 3.8m

Fig. 3. Rubber Tree Scene: Refocused with a hexagonal (6-blade) aperture

The second scene depicted in Figure 4 shows how our system handles grad-
ual changes in depth (in contrast to the system presented in [16]). Please note
the continuously increasing amount of depth blur on the checkered table cloth.
Additionally, we show different exposure times and their varying bokeh effects.

A compariso with the commonly used reverse-mapped z-buffer DoF (see Sec-
tion 1) is shown in Figure 5 using a texture-less synthetic scene. Here, some
disturbing artifacts of the reverse-mapping approach can be clearly noticed.
Most prominently, the edge of the blurred red cylinder remains sharp; this is
because the green cylinder (near the focal plane) remains sharp and each pixel
representing the green cylinder therefore is assigned a high accumulation weight.
Correspondingly, a step artifact occurs where the background of the red cylin-
der changes from sharp (the green cylinder) to the blurry background with low
accumulation weight (detail-view in Subfigure (c)). Using the proposed pipeline,
a physically correct photometric burnout occurs and the step artifact at the
changing background (detail-view in Subfigure (d)) is reduced.
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(a) original (b) focus: 5.0m

(c) focus: 2.0m, small aperture (d) focus: 2.0m, wide aperture

Fig. 4. Table Scene: Refocused with a round aperture; varied exposure settings

An important prerequisite for the proposed system is a correct alignment of
depth and color data. A proper calibration of both cameras is therefore essential.
Furthermore, in our experiments we experienced mainly two sources of error.
First, depending on the resolution of the depth sensor and its accuracy, erroneous
distance measurements might be fed into the pipeline. This can lead to the
effect, that parts of the image are blurred whereas they should be in focus and
vice versa. Also, the parallax effects might not be compensated exactly when
transferring the depth data to the color reference frame or when changing the
view point on the lens. Secondly, in the inpainting and super-resolution step,
the algorithm relies on the heuristic that discontinuities in depth and color tend
to coalign. If this does not hold, wrong distance values might be assigned to
the image pixels around edges in depth where the color is similar on both sides.
Consequently, the focus is set incorrectly (see the backrest of the closer chair
in Fig. 4). However, due to the similarity in color, this effect is not always
noticeable.

More results in full resolution as well as a short video illustrating the pipeline
can be found at http://www.gris.uni-tuebingen.de/people/staff/huhle/

http://www.gris.uni-tuebingen.de/people/staff/huhle/
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(a) Reverse-mapped z-buffer
DoF

(b) Our approach

(c) Reverse-mapped z-buffer
DoF (detail)

(d) Our approach (detail)

Fig. 5. Synthetic Scene: Comparison with common filtering approach. The camera is
focused on the green cylinder.

4 Conclusion

The presented system and method allow a user to manipulate the major camera
parameters (aperture shape and size, focus as well as exposure time) after ac-
quisition. We simultaneously capture the scene with a color and a time-of-flight
depth camera. Such range cameras could be manufactured efficiently and hence,
this setup is prospectively also realizable even in price-sensitive systems. The
contribution of our work consists of two main points, namely the preprocessing
step and the actual computation of the depth blur. First, color and depth data
are preprocessed in an integrated manner using a unified non-local filter for de-
noising, upsampling and inpainting of missing information that occurs due to
parallax effects. Secondly, we simulate a thin lens model by sampling the shape
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of the aperture in order to compute the DoF effect. Employing this technique,
the problem of handling occlusions in the scene is cast to inpainting in the image
domain. The physically correct camera model enables us to set the parameters
of our virtual camera exactly as with a real camera. In comparison with state-
of-the-art techniques, our novel approach reduces the artifacts that occur due
to limited knowledge of the scene geometry captured in a single depth map.
However, the prototype system should be considered a proof of concept and the
overall quality of the results will benefit from future improvements concerning
each of the steps in the pipeline. In particular, more effort could be spent on
the sampling issues when transforming depth and image data between different
viewpoints. Regarding the implementation of the system, the individual filter-
ing steps are performed efficiently on the GPU, however, a major part of the
runtime is spent on data transfer between main memory and GPU during the
generation of the depth blur. In future work we plan to minimize this overhead
and to include several other optical effects of real cameras (e.g. spherical and
chromatic abberations).
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Abstract. It has been highlighted by many researchers, that the use of
context information as an additional cue for high-level object recognition
is important to close the gap between human and computer vision. We
present an approach to context extraction in the form of global features
for place recognition. Based on an uncalibrated combination of range
data of a time-of-flight (ToF) camera and images obtained from a visual
sensor, our system is able to classify the environment in predefined places
(e.g. kitchen, corridor, office) by representing the sensor data with vari-
ous global features. Besides state-of-the-art feature types, such as power
spectrum models and Gabor filters, we introduce histograms of surface
normals as a new representation of range images. An evaluation with
different classifiers shows the potential of range data from a ToF camera
as an additional cue for this task.

1 Introduction

The development of time-of-flight (ToF) cameras [1], which provide range infor-
mation in realtime, has led to a large number of applications. Most of them con-
centrate on the support of vision-based systems in tasks like 3D reconstruction
and robot navigation [2]. Alternatively to geometric reconstruction techniques,
we show how to utilize a classification based system for place recognition or
rough self localization of a mobile robot.

Instead of describing the position of a robot in exact geometric terms, it is
often beneficial to use a discretization of predefined places or scenes, e.g. kitchen,
corridor or office. Especially for subsequent object detection tasks [3], informa-
tion about the current place can be used as high-level contextual information [4].
Due to the large variability of scene appearances, the estimation of the most
probable label is a challenging recognition task. For this reason we calculate a
feature representation from ToF range data and from an image obtained using
a standard visual sensor (Fig. 1). This allows to describe a scene using rough
3D information and visual appearance. Furthermore we present a simple method
for feature calculation in range images which describes the image as a collection

R. Koch and A. Kolb (Eds.): Dyn3D 2009, LNCS 5742, pp. 96–109, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.inf-cv.uni-jena.de


Global Context Extraction for Object Recognition 97

Fig. 1. Setup of our place recognition system with a ToF sensor and a visual sensor
mounted on a mobile robot. Data is obtained from both uncalibrated cameras in order
to build the combined feature representation of the current view.

of planar patches. It can be seen as an instance of the bag-of-features concept,
which has been shown to be well suited for scene recognition [5]. Features from
visual images are calculated using two state-of-the-art approaches often used for
the task of scene recognition. Our work extends the scene recognition approach
of [4] to multiple sensors and range data.

The remainder of the paper is organized as follows: First of all, we present
histograms of surface normals as a feature type for range images which is well
suited for the place recognition task. In Sect. 3 we describe state-of-the-art global
feature representations that can be applied to data from the visual and the
range sensor. Classification techniques and details of the feature combination
are explained in Section 4. Experiments in Sect. 5 compare feature types and
different classifiers and show the performance benefit of feature combination
from different sensors. A summary of our findings and a discussion of future
research directions conclude the paper.

2 Histogram of Surface Normals

Range images captured by ToF sensors consist of dense distance measurements
of scene elements in the field of view of the camera. Using a simple histogram
representation of all depth values would be a typical global representation of the
scene. However, for scene and place recognition with standard cameras, feature
types that use aggregated local statistics of pixel neighborhoods showed to be
successful. A simple but efficient approach to incorporate information from a
small environment of a pixel is the representation of a range image as a collection
of small planar patches or patchlets [6]. A statistic of the orientation of such
planar patches then corresponds to local surface characteristics.

Let x be a three dimensional point obtained from the range image and N(x)
the set of all points in the (rectangular) image neighborhood of size P ×P with
center (x1, x2)T .
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Fig. 2. Representation of surface normals in sphere coordinates [7]

In the following we assume orthogonal projection. Note that we will show that
our scene recognition system achieves a suitable performance without the need
for an intrinsic camera calibration. With given camera parameters one can eas-
ily undo the perspective projection, which might result in a better recognition
performance. Nevertheless this influence is not investigated in this paper, be-
cause our results show that despite our severe assumption a histogram of surface
normals can be a useful feature representation (cf. Sect. 5.2).

Each plane that does not intersect the camera center can be described by
nT x = 1, where n = (nx, ny, nz)T denotes the surface normal. We estimate
the parameters of the planar patch in each point xi with Iteratively Reweighted
Least Squares (IRLS) applied to the resulting optimization problem:

ni = argmin
n

∑
x∈N(xi)

|nT x − 1| . (1)

Instead of absolute depth values, we use local surface characteristics as a fea-
ture. Therefore we utilize the normal representation of Hetzel et al. [7], which
transforms ni into a pair of angles (ϕi, θi)T in sphere coordinates, where:

ϕ = arctan
(

nz

ny

)
(2)

θ = arctan

⎛
⎝

√
n2

y + n2
z

nx

⎞
⎠ (3)

as illustrated in Fig. 2. Thus, the resulting representation is a two dimensional
histogram with Bϕ and Bθ bins for φi and θi, and Bϕ × Bθ entries.

3 Visual Features

In the subsequent sections low-level visual features are described, which we utilize
to calculate a feature representation of the data of our visual sensor. Additionally,
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(a) (b)

Fig. 3. Sample image (a) and its (logarithmed) power spectrum representation with
16 sectors (b)

we use the following features to extract second order and structure information
from range images.

3.1 Power Spectrum Features

One famous approach, which was first described by Mezrich et al. [8] in the late
seventies, is to fit the Fourier power spectrum to an isotropic model. Empirical
studies on natural images [8,9] show that the average power spectrum approxi-
mately obeys the power law M(f ) = A · ||f ||−α

2 , with parameter A and α, where
f denotes frequency. Straightforward linear least squares optimization can be
used to estimate the model parameters.

However, Oliva and Torralba [9] empirically show that the power law does not
hold for artificial images. Thus, since we concentrate on indoor environments and
want to calculate features from a single image, it is unlikely that an isotropic
representation is sufficient to properly describe present second order statistics.
We therefore use an extended representation [9], where the power spectrum is
radially divided in Ω non-overlapping sectors. Each sector ω is then assumed to
obey a power law:

Mω(f) =
Aω

||f ||αω
2

1 ≤ ω ≤ Ω . (4)

In order to reduce noise, radially averaging [10] is employed for each sector prior
to model fitting. Note that this anisotropic power spectrum model, which is
illustrated in Fig. 2 does not incorporate phase information.

In the remainder of this paper, a 16-sector model is used which results in a
32-dimensional feature vector (α1, . . . , α16, A1, . . . , A16).
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3.2 Gabor Features

Phase-preserving representations can be computed using properties of the am-
plitude spectra. Gabor filters are selective filters that respond to structures of a
specific range of frequencies and orientations. A bank of Gabor filters, therefore,
can be used as a global image representation. Since the collection of responses is
very high-dimensional, we follow the approach of [11], where subsampled squared
response images are used. This results in substantially reduced feature vectors.
Prior to Gabor filtering, the image is preprocessed by a whitening step, followed
by divisive normalization [12] in order to increase contrast and, thus, amplify
higher-order structures.

4 Classification and Feature Combination

In this paper, four different classifiers were used in order to learn the mapping
between features and scene labels: multi-layer Perceptron (MLP), Parzen classi-
fier, Randomized Decision Forests, and Support Vector Machines. However, for
the sake of brevity, only the latter three classifiers are described here.

4.1 Parzen Classifier Using Kernel Density Estimation

Core of the generative Parzen classifier for Gaussian kernel densities [13,14] is
the estimation of empirical likelihoods for each class κ ∈ {1, . . . , K}:

p(f | Sκ) =
1

Mκ

Mκ∑
i=1

Kκ(f − fi) , (5)

where Kκ is a zero-mean normal density with covariance matrix Σκ and the set
Sκ = {f1, . . . , fMκ} denotes the n-dimensional training data labeled with class
κ. An unseen feature f is then classified using maximum likelihood estimation.

Although the shape of the empirical density is determined by the observed
data Sκ, the smoothness depends solely on the kernel bandwidth parameter Σκ.
The appropriate choice of a bandwidth is the most critical step in kernel density
estimation, since small bandwidths lead to over-fitting, whereas too large band-
widths result in oversmooth densities. In this paper, we use an ad-hoc method for
bandwidth selection known as generalized Scott’s rule [14] for kernel densities:

Σκ ≈ M
− 1

n+4
κ Σ̂

1
2
κ , (6)

where Σ̂κ is the sample covariance with respect to Sκ.

4.2 Randomized Decision Forest

A Randomized Decision Forest (RDF) is a discriminative classifier that can
handle a large set of features without issues due to the curse of dimensional-
ity. Standard decision tree approaches suffer from severe over-fitting problems.
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A RDF overcomes these problems by generating an ensemble (forest) of T deci-
sion trees. During the classification, the overall probability of a class κ given a
feature vector f can be obtained by simple averaging of the posterior probabilities
pτ (·) estimated by each tree of the ensemble:

p(κ | f) =
1
T

T∑
τ=1

pτ (κ | f) . (7)

In contrast to Boosting, the RDF approach uses two types of randomization
to learn the ensemble. The first type of randomization is Bootstrap Aggregat-
ing [15], where each tree is trained with a random fraction of the training data.
Additionally, to reduce training time and to incorporate randomization into the
building process of a tree, the search for the most informative split function in
each inner node is done using only a random fraction of all features [16].

4.3 Support Vector Machines

In the last years, Support Vector Machines (SVM) have emerged to one of the
most popular machine learning techniques. For a basic introduction we refer the
reader to the textbook of Bishop [13] and concentrate on the detailed setup used
for our evaluation.

We train K SVM classifiers using the one-vs.-all principle. All scores are
converted to suitable probabilities using the logistic regression method of Platt et
al. [17]. The classification result is the class with the highest probability (score of
the corresponding binary SVM classifier). Each single classifier uses a radial basis
function kernel with parameter γ and trade-off parameter C [13] optimized with
cross-validation. Instead of simple grid search, we apply cyclic coordinate search
which is faster and yields in our experiments to similar optimal parameters.

4.4 Feature Combination and Temporal Context

In order to combine a set of features F = {f1, . . . , f|F|}, simple concatenation
is performed. To avoid facing the curse of dimensionality, which often occurs
with generative classifiers, a different scheme is used for the Parzen classifier.
In addition to subspace reduction via PCA, we choose a soft voting approach,
where each feature type fi is classified separately. The overall class probability
p(κ|F) is then computed by averaging the separate class probabilities p(κ|fi).

To further improve the classification performance, a hidden Markov model
(HMM) is used to exploit temporally contextual properties. We use the approach
from Torralba et al. [4], but instead of a sparse Parzen classifier, we utilize the
classifiers listed above.

5 Experiments

We experimentally evaluated our approach to illustrate the benefits of the com-
bination of range and visual features for the task of place recognition. In the
next sections the following hypotheses are empirically validated:
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Fig. 4. Example images from different sequences, where each row comprises images
from one scene. In addition to four visual example images, the range image which
corresponds to the rightmost visual image is shown. The scene categories in our setting
are (listed from top to bottom) Corridor, Elevator Area, Entrance Area, PhD Lab,
Kitchen, Robot Lab, and Student Lab.

1. Incorporation of range features improves the recognition performance.
2. The Randomized Decision Forest classifier and the SVM classifier achieve

the best recognition rates with a combination of different feature types.
3. The use of temporal context information by means of hidden Markov models

leads to an important gain in performance.

Our empirical evaluation is based on a place recognition scenario with seven
different rooms (classes). The final dataset consists of eight sequences, where
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Fig. 5. Influence of additional preprocessing of the ToF data: all depth measurements
below a given amplitude threshold are discarded in the computation of range features.
A zero threshold corresponds to raw ToF data.

each sequence was captured by navigating a mobile robot through a subset of the
rooms. Roughly each second, a PMD[vision] 19k camera and a standard CCD
camera obtained range and visual images (Fig. 1). As can be seen in Fig. 4,
visual and range images do not contain exactly the same image sections, which
is due to the different angle of view of the cameras. Note that a calibration of
the cameras was not necessary, because features are calculated from the different
sensor images independently.

Training is done on two chosen sequences, which together cover all classes of
the dataset. The remaining six sequences were then used to test the recognition
performance. To measure recognition performance, unbiased average recognition
rate was computed. Since more than one scene is used for testing, the mean of all
average recognition rates (one for each sequence) is used to evaluate our system.

5.1 Evaluation of Preprocessing Techniques

Due to the severe noise of the ToF range data, one often has to mask outliers
using the amplitude image. All depth measurements with corresponding ampli-
tude value below a predefined threshold are discarded. Nevertheless, we do not
apply this preprocessing technique prior to feature computation because it would
decrease the recognition performance in our setting.

We analyze this surprising effect in the following experiment. The recognition
performance is evaluated for the surface normal feature and the range histogram
feature using the RDF classifier with several values of the amplitude threshold.
A threshold of zero corresponds to raw data without preprocessing.

The results are illustrated in Fig. 5. and show that the recognition rate de-
creases if we discard more and more measurements, even erroneous ones. Our
place recognition system, therefore, seems to benefit also from wrong measure-
ments which are possible cues of black or critical surfaces.
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Table 1. Evaluation of different features types (incl. computation time) with the best
classifier result and HMM integration. Features computed on the range image of the
ToF sensor are tagged with a preceding r−.

Feature type Avg. Recognition Rate Time (in sec)
r−hist 51.8 0.024
r−power 48.5 0.031
r−gabor 45.5 0.140
r−surface 53.8 0.303
power 55.4 0.040
gabor 64.6 0.512
feature combination 67.0 0.839

Table 2. Table of feature type combinations (among the tested subsets), which lead
to the best recognition performances with HMM integration

classifier Gabor power r−Gabor r−power r−hist r−surface result
Parzen × × × 65.4
MLP × × × 65.5
RDF × × × 67.0

SVM × × × × 65.6

5.2 Evaluation of Feature Types and Combinations

In order to evaluate the effects of combined features, we first analyzed the clas-
sification performance on each feature type separately. The recognition results
are illustrated in detail in Fig. 6 and summarized in Table 1, where only the
best (out of four) classifier result is shown. Regarding the range features, our
experiments show that the surface normal histogram (Bϕ = Bθ = 10, P = 3)
achieves the best place recognition result. However, Gabor and power spectrum
features computed using the data from the visual sensor yield a higher recogni-
tion performance.

As can be seen in Table 1, feature combination leads to a substantial perfor-
mance gain over single feature types. The best combination scheme achieved is
a recognition rate of 67.0%.

5.3 Evaluation of Different Classifiers

In the preceding section we showed that the combination of different feature
types can improve the classification performance. However, the amount of per-
formance gain depends on the used classifier. We also observed that the classifiers
achieved best results when only a subset of all feature types were used. By ana-
lyzing either a manually chosen list of feature combinations (for RDF and SVM)
or by applying a greedy search algorithm on the space of combinations (for
Parzen and MLP), we obtained the results shown in Fig. 7 with corresponding
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Fig. 6. Performances of single features types without hidden Markov model (a) and
with hidden Markov model (b)

combinations listed in Table 2. These average recognition rates suggest that the
RDF is the appropriate classifier for our scene recognition task.

In order to further evaluate the power of range information, we removed all
range features from the used feature type subsets mentioned above, i.e. only a
combination of visual features remains. The average recognition rates in Fig. 7
(visual) illustrates a drop in classification performance for all classifiers except
SVM. These results clearly show the advantage of our multi-sensor approach.
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It can be also seen that without the integration of the hidden Markov model
the recognition performance decreases substantially. This observation highlights
the importance of temporally contextual information in our scene recognition
task.

Finally, in order to allow a more detailed analysis of the scene recognition
result obtained by the best feature type combination, we computed the confu-
sion matrix for this setting (averaged over 30 results). As can be seen in Fig. 9,
the recognition rates for six out of eight rooms vary between 76.9% and 85.3%.
The significantly lower overall recognition rate (67.0%) is thus directly related
to the low recognition rates of the remaining two categories PhD Lab and Robot
Lab, which tend to be recognized as Student Lab. This behavior stems from the
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close holistic similarity of these rooms and suggests that more locally receptive
features could be promising in order to differentiate between these similar rooms.

5.4 Influence of the Number of Trees

In our previous experiments we used T = 100 trees for the randomized decision
forest. To investigate the influence of this parameter we perform tests with Gabor
and combined features without HMM. The results can be seen in Fig. 8. To cope
with the randomization, we average the results of 200 runs for each data point.
As can be seen, the generalization performance increases with the number of
trees even beyond T = 100. However, this effect levels out after a specific size of
the forest.

6 Conclusion and Further Work

We presented an approach to place and scene recognition which combines infor-
mation from both a ToF sensor and a standard visual sensor without calibration.
We utilized state-of-the-art feature representations from the field of scene recog-
nition [9,4] and developed a novel description of the range image using planar
patches. To show the applicability of our method, we performed experiments
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with multiple image sequences collected by a mobile robot. The resulting per-
formance gain of the combined feature representation highlights the usefulness
of a ToF sensor for the task of place recognition.

As an interesting direction for future research, our feature description of the
range image as a histogram of surface normals could be used in conjunction with
the principle of spatial pyramid matching [5]. This approach has been shown to
lead to a significant performance gain by incorporating rough spatial information
within images. The most interesting application of our place recognition system
would be to use the probabilities of places as prior information in an object
detection setting as proposed in [11].

Acknowledgements. We would like to thank all four anonymous reviewers
for their valuable comments, which really helped to improve the quality of the
paper.
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Abstract. We present a system for detecting shadows in dynamic out-
door scenes. The technique is based on fusing background subtraction
operations performed on both color and disparity data, respectively. A
simple geometrical analysis results in an ability to classify pixels into
foreground, shadow candidate, and background. The shadow candidates
are further refined by analyzing displacements in log chromaticity space
to find the shadow hue shift with the strongest data support and rul-
ing out other displacements. This makes the shadow detection robust
towards false positives from rain, for example. The techniques employed
allow for 3Hz operation on commodity hardware using a commercially
available dense stereo camera solution.

Keywords: Shadows, stereo, illumination, chromaticity, color.

1 Introduction

Shadows are an inherent part of images. Especially in outdoor vision applica-
tions shadows can be a source of grave problems for the processing and analysis
of video data. For humans, though, shadows represent a significant cue to un-
derstanding the geometry of a scene, and to understanding the illumination con-
ditions, which in turn helps processing the visual data. In this paper we present
an approach to accurately identifying shadow regions in outdoor, daylight video
data in near real-time (presently around 3 Hz, with potential for significant im-
provement). The main contributions of this work lie in utilizing a combination
of color and dense depth data from a stereo rig for an initial, rough shadow de-
tection, combined with a model-based chromaticity analysis for the final, precise
shadow pixel identification.

Work on detection of shadows can be divided into techniques for detecting
dynamic shadows (cast by moving objects) and static shadows (cast by static
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scene objects such as buildings). Static shadow detection work is based on sin-
gle images and is typically more sophisticated in the use of physically based
illumination/reflection. It is also typically computationally heavy techniques.
Dynamic shadow detection work is naturally based on image sequences and uti-
lizes somewhat simplistic illumination models which at best correspond poorly
to real conditions, especially for outdoor scenery. These techniques all employ
background subtraction based on a trained background model, a concept which
is problematic for very long outdoor image sequences due to drastic illumination
changes, precipitation, foliage changes, etc.

The ideas proposed in this paper can be operated in two modes: one based
on background subtraction with a trained model, and one based on image differ-
encing with no training. We shall focus on the former mode in the presentation
and return to the latter mode in section 5.

Detecting static shadows is in principle difficult as it is theoretically impossible
to definitively determine whether a region in an image is a bright surface in
shadow or a dark surface in direct light. Regardless, promising results on single
image shadow detection and removal has been presented over the recent years.
A single image shadow removal technique is presented in [3] but requires a very
high quality, chromatically calibrated camera, and does not handle soft shadows
(penumbra regions). The technique presented in [11] distinguishes between cast
shadows (on a plane) and self-shadowing, but is tested on somewhat simple
scenarios, and it too does not handle soft shadows. Not being able to handle soft
shadows is a severe problem for outdoor scenes in partly overcast conditions.

Single image shadow detection in scenes with soft shadows is addressed in
[9,8], demonstrating successful shadow detection (and removal) on single images
of non-trivial scenes. Unfortunately, the approach requires manual identification
of training areas in the image (areas where the same material is visible in shadow
as well as in direct sunlight).

So, the state-of-the-art in single image shadow work is that it does not re-
ally handle soft shadows, or requires manual training. Our method handles soft
shadows very well, and we demonstrate the even quite subtle shadows in all-
most overcast conditions can be detected. Furthermore we demonstrate that our
method, in the no-background-model mode mentioned above, can generate the
necessary input for the technique described in [8] thus eliminating the need for
manual boot-strapping.

Dynamic shadow detection based on image sequences has recently received
much attention especially in the surveillance literature. Here there is a need
for detecting and tracking objects in a scene and one of the key problems has
turned out to be false positives due to shadows [10,7]. Many of the approaches
suggested for shadow segmentation are based on the idea that a pixel in shadow
has the same color as when not in shadow, but at a lower intensity [10,6,4]. Such
an illumination model is very simplistic (assumes all light sources to be white).
This is a severe assumption, which is totally violated in outdoor scenes, and tests
presented in in these works are also either on indoor scenes or on outdoor scenes
in overcast conditions, where the assumption roughly holds.
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In non-overcast outdoor scenes regions in shadow (blocked from direct sun-
light) exhibit a blue hue shift due to the differences in the spectrum of the light
coming from the sky, and the light coming from the sun. This fact is incorporated
into the work presented in [5], which utilizes the blue shift for outdoor scenes
for separating foreground from shadow using using background subtraction.

All previous work on dynamic shadow detection utilized a trained background
model in some form. By combining depth information with color information
the techniques presented in this paper makes it much simpler to distinguish
between foreground and shadow, allowing us to operate with a much less well-
trained background model (and thus more robust towards illumination changes,
precipitation, etc.). And, as mentioned, we can even detect a substantial part of
the shadows without any kind of background model.

The inspiration for the work presented in this paper came from two sides:
1) in dynamic outdoor scenes (time sequence video of scenes with moving ob-
jects) some shadows will move, which provides a unique opportunity to study
the same pixel under both shadow and non-shadow conditions (making it pos-
sible to estimate the shadow hue shift automatically), and 2) when combining
color information with dense depth information shadow candidate regions can
be identified from the observation that a cast shadow represents a change in
color channel values but not in depth (for shadows that fall on static surfaces in
the scene).

The paper is organized as follows. In section 2 we present the setup used and
give a brief introduction to the methods presented later in the paper. Section 4
describes how the color and depth information is combined to detect shadow can-
didate regions, and how chromaticity analysis is used to finally identify shadow
pixels. We then present and discuss some results in section 5, followed by con-
clusions.

2 Setup and Overview of Approach

The setup for this work is centered around a commercial stereo rig from Point
Grey Research INC., [12], see figure 1. The Bumblebee XB3 real-time dense
stereo camera delivers rectified stereo image pairs via FireWire at up to 16
frames per second, depending on resolution. In this work we operate with a
640x480 resolution, resulting in a stereo frame rate of approx. 10 Hz. Using
the accompanying SDK for the stereo camera disparities can be computed at
a per pixel level using correlation techniques. On an Intel Core Duo 2 2.3 GHz
machine running Windows XP SP2, equipped with 2 GByte RAM, the disparities
are computed in around 50 milliseconds, so the limiting factor is the 10 Hz
transfer of rectified stereo images from the camera. All RGB and disparity images
shown in this paper represent the view of the right camera of the stereo rig. The
disparity values employed in this work are in 16 bit resolution (subpixel disparity
information) as the Bumblebee XB3 SDK offers this functionality.

It is assumed that the camera is static relative to the scene. It is also assumed
that the scene contains a substantial amount of static surfaces (objects that do
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Fig. 1. Top: The commercially available Bumblebee XB3 stereo rig from Point Grey
Research, Inc. at approximately 3000 USD. Bottom left: Pseudo-colored disparity image
of an outdoor scene. The dark red patches represent undetected disparities due to pixels
being over-exposed or under-exposed, lack of texture, or pixels representing scene points
that are not visible in both cameras (occlusion). Bottom right: 3D mesh constructed
from disparity image and textured with the color information from the RGB image.
This scene is a frame with no person.

not move), and that dynamic objects are also present in the scene. In general
the scene will contain shadows cast by static objects, as well as shadows cast
by dynamic objects. The techniques presented in this paper are able to detect
shadows cast by the dynamic objects, although section 5 demonstrates how the
generated results can be used to detect the static shadows as well.

The approach presented here has 4 main steps. First we employ a background
subtraction method on the color information (the RGB image). Next we perform
a similar step on the dense per pixel disparity information, where the background
image in this case represents an acquired depth model of the scene (disparities
are proportional to metric depth, so there is no reason to spend computational
resources on scaling disparities to metric depth unless metric information is
required for some other processing step unrelated to the core shadow detection).
The third step is to combine the results of the two background subtractions
which allows us to interpret the nature of each pixel: foreground, background,
shadow. This is illustrated in figure 2. The fourth and final step is to evaluate
some chromaticity (normalized color channel information) characteristics of the
segmented shadow pixel population to eliminate those pixels that do not conform
to an illumination model which predicts the overall behaviour of regions as they
transition from being exposed to direct sunlight to being in shadow.

Subsequently, the different steps are elaborated in further detail. While we
have an operational C++ real-time implementation of the described approach
some of the results shown in this paper are generated by a similar Matlab
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Fig. 2. Processing results from frame 137 out of a recorded sequence of 200 frames.
Left: The current frame where the person has entered the scene and has splashed water
from the bucket onto several surfaces in the scene. Middle: result from background sub-
traction, segmented into foreground object (grey) and shadow candidate pixels (white),
which include all the detected water splashes since the water has caused the surfaces to
change appearance. Left: pixels identified as being in shadow after chromaticity anal-
ysis. Note that the shadow cast by the camera tripod is a static shadow, and as such
is not detected by the presented approach.

implementation from which we have easier access to specific intermediate re-
sults and can generate illustrative visuals for the paper.

3 Theoretical Framework and Fundamental Assumptions

The work presented in this paper rests on a fundamental radiometric model
of the radiance of points in a scene illuminated by a combination of sunlight
and sky light. This model, together with some assumptions that are made, are
described in this section.

It is assumed that the images represent an outdoor scene subjected to day-
light illumination. It is also necessary to assume that the materials represented
in the scene are predominantly diffuse (exhibit Lambertian reflectance distribu-
tion characteristics). We do not require the albedos (diffuse reflectances) of the
surfaces in the scene to be constant over time. In fact we clearly demonstrate
that our approach can avoid errornously detecting/hallucinating shadows in ar-
eas where the surface has simply changed appearance from suddenly becoming
wet (as they would in rainy conditions).

Concerning the images it is furthermore assumed that they are properly ex-
posed, i.e., important areas in the image are allowed to be neither severely over-
exposed (color channel values near 255) nor severely under-exposed (values near
0). We will also assume that it is a fair assumption that the camera is linear,
in the sense that there is a linear relationship between the radiance of a surface
and the pixel value assigned to the image point of that surface.

For a linear camera the pixel value in some color channel is proportional to
the reflected radiance of the surface being imaged, and radiance is measured in
W/(m2 ·sr). In a setting as described above it is possible to formulate the value,
Pr, of a pixel as follows, using subscript r to indicate elements particular to the
red channel (green and blue channel being similar):
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Pr = cr · ρr · Er · 1
π

(1)

where ρr is the diffuse albedo of the surface point being imaged (ratio of outgoing
radiosity to incoming irradiance), and Er is the incoming irradiance in the red
channel. Thus, ρr ·Er is the reflected radiosity. Dividing this by π [sr] yields the
reflected radiance of the surface (since the radiosity from a diffuse surface is π
times the radiance of the surface). Finally, cr is the (typically unknown) scaling
factor translating the measured radiance into pixel value (0 to 255 range for an
8 bit camera) for a linear camera. This scaling value depends on the aperture of
the lens, the shutter speed, the gain, the white-balancing etc. of the camera.

In the kind of outdoor daylight setting we are addressing in this paper the
total incoming irradiance at a point is a sum of two contributions, Er = Esun

r +
E

sky
r , again using subscript r for red color channel as example. The amount of

irradiance received from the sun, Esun
r , depends on several factors: the radiance

of the sun, how large a fraction of the sun’s disk is visible from the point in
interest (if the sun’s disk is completely occluded the point is in full shadow, also
called umbra), and on the angle between the surface normal at the point and
the direction vector to the sun from the point. If the sun’s disk is only partially
occluded the point is in the penumbra (soft shadow).

We shall return to this formulation in section 4.3, where we use it to justify
our approach to letting shadow candidate pixels vote for a shadow hue shift
which can be used to dismiss pixels that are in fact not in shadow in a particular
frame.

4 Methods

As described in section 2 we initially segment each frame into background,
foreground, and shadow. This is performed by combining the results from a
background subtraction process on both the color image information and on
the disparity image information. The two background subtraction processes are
described below.

4.1 RGB Background Subtraction

We apply the Codebook method [6] since it has been shown to outperform other
background subtraction methods [2]. The method contains three steps: modeling
the background, pixel classification and model updating.

Each pixel is modeled as a group of codewords which constitutes the codebook
for this particular pixel. Each codeword is a cylindrical region in RGB-space and
for each new frame each pixel is compared to its codebook. If the current pixel
value belongs to one of the codewords it is classified as background, otherwise
foreground.

The codebooks are built during training and updated at run-time. The train-
ing phase is similar to the pixel classification except that a foreground pixel
results in the construction of a new codeword and a background pixel is used to
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Fig. 3. Left: Pixels (frame 137) determined by the Codebook method as being different
from the trained color background model. Right: Pixels (also frame 137) determined
as being different from the disparity background model.

modify the codeword it belongs to using a standard temporal weighting scheme.
The codebooks generated in this way during training will typically fall into three
categories:

Static codebook. For example a pixel representing a road with no shadows or
occlusions. Typically only one codeword is used.

Quasi-static codebook. For example a pixel containing the sky, but some-
times occluded by vegetation due to wind gusts. During training typically
two codewords will be constructed for this codebook, one for the sky and
one for the vegetation.

Noisy codebook. One of the above combined with noise in the form of a pedes-
trian, car etc. passing by the pixel or noise due to incorrect segmentation.
The result will be an often high number of codewords for this codebook.

To handle the noisy codebooks a temporal filter is applied. It is based on the
Max Negative Run-Length (MNRL), which is the longest time interval in which
a codeword has not been activated. The filter effectively removes codewords with
little support during the training phase, such as passing pedestrians.

Normally it is difficult to tune the sensitivity of the Codebook method (and
other background subtraction methods for that matter) particularly due to prob-
lems with shadows. In this work, however, this is less of a problem since over-
segmentation is actually a desired effect. We therefore tune the method to detect
even small changes, and we do not train with shadow regions. This effectively
results in a segmentation of the dynamic foreground object including its shadow,
see figure 3 for an example.

4.2 Disparity Background Subtraction

We also apply the Codebook method for depth-based background subtraction.
Here we only apply one codeword per pixel and its value is not the actual depth
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Fig. 4. Classification of pixels into foreground (grey), background (black) and shadow
candidates (white)

value, but rather the disparity. The disparity background model is learned as
the Median of a number of training images.

Normally a disparity map contains undefined pixels, due to e.g., noise. We
therefore smooth the disparity map to obtain more consistent data, and the
pixels classified as different from the background also need some clean-up using
standard morphological operations. We have employed erode followed by dilate
with a radius 5 pixels disk structuring element.

4.3 Shadow Classification

For each pixel in an input image we now have two TRUE/FALSE values with
respect to whether the pixel is different from the RGB background model and
whether it is different from the disparity background model. From this we can
infer the pixel’s type (foreground, background, shadow) as shown in table 1. In
figure 4 a labeling based on table 1 is shown. The rational behind this table
can be formulated as follows: if the color of a pixel has changed, but there is no
change in disparity, then the pixel has gone from direct light to shadow. If there
is a change in disparity but not in color it can be argued whether to classify it is
foreground or background. We have chosen background, since disparity data is
less robust than color data, at any rate if there is not change in color it cannot
represent a shadow.

Table 1. Classification scheme based on results of background subtraction on color
and depth data. It should be noted that only color changes that represent decreased
intensity are valid shadow candidates.

Change in RGB?
Yes No

Change Yes Foreground Background
in depth? No Shadow Background
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Fig. 5. Left: population of shadow pixel candidates after logical classification based
on background subtraction on RGB and disparity data. Right: population of shadow
pixels after analysis of the permissible shift in the log chromaticity plane.

After this logical classification we are left with a population of dynamic (cast
by a dynamic object) shadow candidate pixels for each frame. These pixels are
shadow candidates only. Predominantly two things can cause pixels to falsely be
labeled as shadow pixels: 1) the albedo of the surface changed (for example due
to the surface becoming wet), or 2) imperfections of the disparity data causes
the disparity background subtraction to produce sub-optimal results (see for
example figure 3). All pixels labeled as shadow candidates are shown with their
RGB values in figure 5.

We address the problem of rejecting the non-shadow pixels by returning to
the formulation of the value of a pixel as given in section 3. In log chromaticity
space the pixel values become:

r = log(Pr/Pg)
= log(Pr) − log(Pg)
= log(cr) − log(cg) + log(ρr) − log(ρg) + log(Er) − log(Eg) (2)

b = log(Pb/Pg)
= log(cb) − log(cg) + log(ρb) − log(ρg) + log(Eb) − log(Eg) (3)

The next observation is that the background image depicts the scene free of
dynamic shadows. Thus, if for a given frame a pixel has been classified as a
shadow candidate by applying the rules in table 1, we have the same pixel in
two different versions: 1) a version in direct sun light from the background image,
where E = Esky + Esun, and 2) a version in shadow from the current frame,
where E = Esky (with appropriate indexes for respective color channels). If we
subtract the chromaticity values of these two versions for a given pixel:

rsky − rsun + sky = log

(
E

sky
r

E
sky + sun
r

)
− log

(
E

sky
g

E
sky + sun
g

)
(4)
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Fig. 6. Histogram over chromaticity displacement vector orientations, measured in the
range from -180 degrees to +180 degrees. In this case the histogram has two peaks, one
at around -45 degrees, corresponding to the darkening of the wooden plate as a result
of a water splash, and one at around 90 degrees, corresponding to the actual blue shift
of the shadow.

bsky − bsun + sky = log

⎛
⎝ E

sky
b

E
sky + sun
b

⎞
⎠ − log

(
E

sky
g

E
sky + sun
g

)
(5)

Looking at eqs. 4 and 5 we see that by subtracting the log chromaticity coordi-
nates of the two different versions of a pixel we get a 2D vector in log chromaticity
space which is independent of camera properties (the cr/g/b scaling constants),
and independent of the material properties (the ρr/g/b albedos). The only things
that influence these log chromaticity displacement/hue shift vectors are the ir-
radiances. Furthermore the depth of the shadow (determined by the amount of
sun disk occlusion and the angle between the surface normal and the direction
vector to the sun) only influences the length of this displacement vector, not the
direction.

With these observations we compute the orientations of all these displacement
vectors (one for each of the shadow pixel candidates) and form a histogram of
the orientations in the range from -180 to +180 degrees, see figure 6. The number
of bins in the histogram is set to the number of shadow candidate pixels divided
by 50 to ensure a reasonable number of candidates in each orientation bin. The
minimum number of bins is 10, though, to handle the case of very few detected
shadow candidates.

Since the spectrum of light from the sky is dominated by wavelengths in the
blue channel pixels that go from direct sun light to shadow conditions will un-
dergo a blue shift, which in terms of the histogram in figure 6 corresponds to
displacement orientation near +90 degrees (in rb chromaticity space blue chro-
maticity is upwards). We therefore search the histogram to find a local maximum
near 90 degrees. The chosen peak corresponds to the chromaticity shift pixels
undergo when they transition from shadow to direct light. All pixels whose dis-
placement vectors are not close to (in our system within 20 degrees of) this
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Fig. 7. Left: The detected log chromaticity blue shift direction (in degrees) as a function
of frame number. Right: The number of verified shadow pixels in the scene as a function
of frame number. When there are too few shadow pixels (less than around 500) the
direction cannot be detected robustly.

“most voted for direction” are classified as not shadow pixels and are removed
from the shadow pixel population. The remaining pixels all exhibit the same
behaviour in log chromaticity space and are thus all consistent with the illumi-
nation model. In figure 5 it can be seen how this chromaticity analysis removes
wrongly detected shadow pixels, especially those corresponding to all the water
splashes (which have changed the albedo of the surfaces).

5 Results and Discussion

This section will address a set of relevant issues in relation to the presented
techniques. We take a closer look at the estimated blue shift direction over a
time sequence, we address overlapping shadows, then discuss long time sequences
and demonstrate how this work can be operated in a mode with no background
model, and finally we discuss some of the assumptions made in this work.

5.1 Blue Shift Direction

The proposed automatic approach to finding the blue shift direction is remark-
ably robust. Figure 7 plots the chosen direction for the 200 frame sequence used
in the above description. The same figure also shows the development in the
number of verified shadow pixels per frame through the sequence, and it is es-
sentially seen that the blue shift direction is found robustly whenever there is a
sufficient number of shadow pixels available in the scene.

5.2 No Background Model Mode

Our approach as described this far is based on background subtraction in both
color and disparity data. As a result shadows that are static, i.e., part of the back-
ground image model, do not get detected. Another drawback of using background
subtraction is that for very long image sequences (days, weeks, months ...) it can
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Fig. 8. In partly overcast, windy conditions illumination changes can be drastic. These
two frames are 15 frames apart, corresponding to a time difference of 1.5 second. On
average the latter image is 50% brighter than the former.

be difficult to maintain the background model due to highly varying illumination,
precipitation, seasonal changes, etc. Figure 8 shows how drastically the illumi-
nation can change from one to second to the next, making classical background
subtraction very difficult, if not impossible.

To address this problem we demonstrate that image differencing can be em-
ployed instead of the background subtraction step. The sequences used in this
paper are recorded with 10 frames per second. If we perform image differencing
on color and disparity images by subtracting frame T (current frame) and frame
T − ΔT (some frames old), and perform everything else similar to what has
been described in the paper, we can detect dynamic shadows with no training of
background models at all. Δ can be adjusted to find a compromise between be-
ing very robust towards rapidly changing illumination (small ΔT ) and detecting
all of the shadow area (large ΔT ). If ΔT is small compared to the movements
of shadows in the scene the shadows in the two frames will overlap, and only
part of the shadow will be detected (the part which is in shadow in frame T but
not in frame T − ΔT ). In this paper we have used a ΔT of 0.5 second, i.e., we
perform image differencing with a 5 frame delay. Figure 9 shows some detection
results from a sequence acquired under highly varying illumination conditions.

5.3 Detecting All Shadows

By definition our approach only detects the dynamic shadows, regardless of
using the background model or the image differencing mode. To address this
problem the technique presented here can be combined with an implementation
of the technique described in [8]. That method, as described in section 1, requires
manual initialization (ratios of sky to sun-plus-sky irradiances for each color
channel).

A by-product of the shadow detection technique described here is that it can
provide those ratios. These ratios are straight forward to compute, as they are
just the per color channel averages of the ratios of detected dynamic shadow
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Fig. 9. Dynamic shadow detection based on image differencing (frames 180, 520, and
1741).

pixel values to their non-shadow pixel values. In the case of using the image
differencing mode: if image differencing between frame T and frame T − ΔT
results in a pixel being classified as dynamic shadow, then compute the per
color channel ratio of pixel value in frame T to the pixel value in frame T −ΔT .
For a diffuse surface this ratio equals the sky to sun plus sky irradiance ratio,
see section 3. The average of these ratios for all dynamic shadow pixels in a
given frame provides the initialization information for the graph cuts technique
from [8].

Figure 10 shows the results from using the dynamically detected shadows to
boot-strap the graph cuts based shadow segmentation and removal technique,
which is capable of handling soft shadows.

5.4 Assumptions Revisited

As described in section 3 this work rests on a number of assumption that are
worth discussing. The assumption of the camera being static makes it possible
to employ background models or to use simple image differencing as shown
above. It would be possible to extend this work to a camera placed on a pan-
tilt unit. Omni-directional depth background models are employed in e.g., [1].
If the mounted on a pan-tilt unit a spherical representation of the color and
depth background model could be composed by scanning in all directions. If
using the image differencing mode optical flow techniques could be employed
to compute the overlap between the current frame and the delayed frame used
for subtraction. This way the dynamic shadows in the overlap region could be
detected and the information from the shadow pixels could then be used for
detecting all shadows in the current frame as described in section 5.3.
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Fig. 10. First row: original images from three different sequences. Second row: shadows
detected by approach described in this paper. Third row: shadows removed with graph
cuts based approach. Fourth row: level of shadow (brighter areas represent a deeper
shadow level).

A fundamental assumption for this work is that the surfaces are Lambertian
(diffuse). We have demonstrated on a number of real outdoor sequences that our
model works on a large range of naturally occurring materials in outdoor scenes.
Material such as concrete and grass are far from Lambertian when viewed close-
up, but at a certain distance they overall display diffuse reflection behaviour
because of the surface roughness. Glass and metal surfaces pose a real problem,
but the stereo camera can typically not produce valid disparity information from
such surfaces and the risk of falsely detecting shadows on such materials is not
high (we do not allow a pixel to be classified as shadow if there is no valid
disparity value for it). We are presently working on developing a technique for
detecting, over long image sequences, pixels that do not conform to a diffuse
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reflection assumption (i.e., do not over the entire sequence consistently vote for
the same illumination model as the majority of the pixels in the scene).

Finally, the theoretical framework is based on an assumption of the camera
having a linear response curve, and that the color channels are independent.
This is typically only true for very high quality cameras, and certainly the cam-
eras in the Bumblebee stereo rig are not designed for color vision applications.
Regardless, we have demonstrated that the model works quite well even with
cameras of such low quality.

6 Conclusion

We have presented a technique for detecting shadows in dynamic scenes. The
main contributions lie in the combination of color and disparity data analysis,
and in the use of qualitative chromaticity plane descriptors for ruling out false
positives in the shadow pixel populations. A powerful feature of the proposed
approach is its ability to handle albedo changes in the scene, e.g., its robustness
towards falsely labeling pixels as shadow in situations where surfaces in the scene
have become wet. Another promising feature of the work is that the techniques
employed allow for 3Hz operation on commodity hardware using a commercially
available dense stereo camera solution.

We conjecture that by enabling vision systems to estimate information about
the illumination conditions in the scene the vision systems can be made more
robust. In this paper we have demonstrated that it is possible to estimate pow-
erful information concerning the scene illumination in terms of the illuminant
direction which can be utilized to verify dynamic shadows and to detect static
ones, as well.

Future work will include combining this work with static shadow detection,
working with temporal analysis of the detected shadows and illumination in-
formation, and using this illumination estimation for realistic augmentation of
synthetic objects into the scenes.
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Abstract. This work discusses an approach to seamlessly integrate real
and virtual scene content by on-the-fly 3D scene modeling and dynamic
scene interaction. The key element is a ToF-depth camera, accompanied
by color cameras, mounted on a pan-tilt head. The system allows to scan
the environment for easy 3D reconstruction, and will track and model
dynamically moving objects like human actors in 3D. This allows to
compute mutual occlusions between real and virtual objects and correct
light and shadow generation with mutual light interaction. No dedicated
studio is required, as virtually any room can be turned into a virtual
studio with this approach. Since the complete process operates in 3D
and produces consistent color and depth sequences, this system can be
used for full 3D TV production.

1 Introduction

In movie and television productions, there is a great demand to augment a
captured scene by including virtual objects and computer generated elements.
In movie production, the effects of computer generated augmentation are usually
inserted in post production with very high quality. For TV applications, high-
end post production is often too expensive, or not feasible at all if the effects are
needed on-the-fly during a live broadcast.

For video augmentation, three components are of importance. First, each
frame of a video has to be separated into regions showing virtual content and
into regions which should retain the real scene. This separation-process is called
keying. Furthermore, the tracking of camera motion has to be performed for a
proper alignment of virtual and real content. Finally, the interaction of virtual
and real content through mutual occlusions, correct shadow casting and reflec-
tions is needed for a convincing augmentation. The typical approach to simulta-
neously solve all of these challenges, is to build a studio environment equipped
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with controlled lighting conditions, chroma keying installations, multiple cam-
eras and sophisticated camera tracking systems using markers and sensors. The
construction, maintenance and operation of such studios requires a lot of ex-
perience, is expensive and, in certain circumstances, impractical. Even if such
a studio is available, the issue of mutual interactions between real and virtual
content is unsolved unless a complete 3D scene representation can be computed
on-the-fly.

In this work we therefore propose an approach exploiting the capabilities of
Time-of-Flight depth cameras (ToF-Cameras) [1,2]1. These devices are capable
of providing instantaneous depth maps over a limited field of view (app. 40−50◦)
at high frame rates (up to 25 fps). Using such a depth camera in combination
with a standard or high-definition video camera, our approach is able to pro-
vide all the necessary information to obtain fully automatic 3D object keying
and camera tracking, which allows for real-virtual interaction without the need
of chroma-keying installation, expensive tracking systems or multiple camera
sets. An additional benefit is that each video frame is supplied with full depth
information, giving the system the potential to be applied for 3D television
production.

MixIn3D addresses all of these challenges. In the next section we will present
the system’s architecture and the building blocks. Section 3 details how interac-
tion between real and virtual objects can be performed. The presented results
are discussed in the concluding section 4.

2 System Architecture

The key components of an augmented reality system are keying, camera track-
ing and interaction between real and virtual content [3]. Keying is the process
in which the foreground object regions are separated from the background in an
image. One popular way to achieve this is the chroma keying technique. Here
the foreground object is captured in front of a screen of constant color, typi-
cally green or blue. Under the assumption that the background color is known,
deviation from this assumption can be exploited to detect the image regions oc-
cupied by foreground objects and to extract an alpha matte [4]. In cases where
the screen’s color itself does not fulfill the constant color assumptions, due to
lighting conditions, this extraction process can deliver faulty results. To deal
with this problem, well lit studio setups (virtual studios) can be used. However
these lighting conditions, also captured in the image of the keyed foreground, are
difficult to match with arbitrary virtual surroundings. The BBC therefore de-
veloped True-matting2, a chroma keying approach where the constantly colored
screen is replaced by retro-reflective cloth, which efficiently reflects light only
into the direction, where it was coming from. This way a camera equipped with
a ring of LEDs, emitting colored light of low intensity, can be used to generate
1 Companies producing these devices are represented at: www.3dvsystems.com /

www.canesta.com / www.mesa-imaging.ch / www.pmdtec.com
2 www.bbc.co.uk/rd/projects/virtual/truematte/
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Fig. 1. Major hardware components (left) and their tasks in the system (right)

the required equi-colored background. This technology is expensive and requires
to tightly control the environment for a proper segmentation. In order to grant
more flexibility, different propositions for the extraction of alpha mattes from
images with arbitrary background can be found in the literature [5]. These ap-
proaches typically need an initial segmentation of foreground and background
and are less reliable. In our approach, we replace the color keying with depth
keying, which is discussed in section 2.4.

The 2D keying methods are restricted, since the camera is not allowed to
move. To convey a convincing impression of real and virtual content existing
together, the camera must be allowed to move, while perspectively correct im-
ages of the virtual objects are generated and combined with the real image. This
requires the virtual content to be modeled in three dimensions. Furthermore,
the real camera pose and projection parameters need to be determined online
with the camera motion, so that the virtual object can be rendered perspec-
tively correct. For this purpose, virtual studios are equipped with installations
for camera parameter tracking. This tracking equipment ranges from cameras
moved by a robot, or using expensive and bulky sensors, to more flexible marker
based systems3 [6]. The installation and proper calibration of such systems is
tedious and expensive. Moreover it is required to have a 3D model of the real
environment, which contains the relation between the real (physical) scene and
the tracking coordinate frame in order to properly align the real and virtual
content during the augmentation. In our approach, we automatically model the
real environment of the studio by 3D depth scanning. This allows to seamlessly
integrate and fuse virtual 3D objects in the real environment for augmentation.
Furthermore, the environment model allows for full camera tracking without the
need of dedicated markers or robot cameras. Sections 2.3 and 2.5 will address
these issues.

The key component of our system is a camera head with a ToF depth camera
and a color camera with a field of view of 50◦, rigidly coupled together on a
computer-controlled pan-tilt unit (PTU). The PTU allows for scanning of the
environment in a full sphere of up to 360 × 180◦, to overcome the limited field

3 www.orad.co.il
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of view of the camera images. In addition, a second camera equipped with a
fish-eye lens delivers images with very wide circular field of view of 190◦. The
use of a fish-eye camera facilitates camera head tracking with high reliability, as
noted in [7,8]. Figure 1 on the left shows the camera head with the cameras rigidly
mounted to the PTU. On the left and the right side, two HD color CCD cameras,
one equipped with a fish-eye lense, the other viewing through a standard lens,
are framing the ToF depth camera in the center. The system operates in two
modes, as shown in figure 1 on the right. In an offline phase before the actual
shooting, the 3D environment model is scanned by combining the depth and
color images in a 3D panoramic model. In the online phase, the model is used
for depth keying, camera tracking, content mixing and interaction.

2.1 System Calibration

In order to reliably calibrate the intrinsic and relative extrinsic parameters of all
cameras of the rig, a procedure based on a known planar checkerboard calibration
pattern is applied. We follow the approach discussed in [9] and [10], which was
extended to include the calibration of fish-eye lenses. The procedure starts with
capturing a sequence of calibration images of the planar checkerboard pattern in
different poses and distances. The checkerboard corners are detected and used to
find the extrinsic and intrinsic parameters for each camera individually. At this
stage the parameter of the ToF-camera and the color camera with the standard
lens are computed as in [11,12], while the parameters for the camera with the
fish-eye lens are estimated using the results from [13].

These initial parameter estimates are used as the starting-point for a non
linear optimization over all parameters, integrating the constraints of fixed rel-
ative orientations between all cameras. Furthermore, a final bundle adjustment
step optimizes the parameters in an iterative analysis-by-synthesis approach.
The initial parameters estimated in one iteration are used to synthesize a color
image and a depth image of the known checkerboard pattern. The deviation
between the real images and the synthetic data is used to compute an optimized
set of parameters for the next iteration. Since the synthesized data is free of
noise and every point lying on the checkerboard pattern is contributing to the
optimization, the reliability of the calibration is significantly improved.

The depth measurements of the ToF-camera suffers from systematic errors
[14], which is not only a constant offset but a higher order function [15]. Therefore
the iterative optimization is also estimating the parameters of a spline for depth
correction as described in [10]. After calibration, residual reprojection errors
of 3D scene objects are well below a pixel, yielding sufficient accuracy for our
application.

2.2 Time-of-Flight-Camera (ToF) Principle and Image Fusion

ToF is a sensor principle which delivers dense depth images with up to 25 frames
per second and currently a resolution of 176x144 pixel. The camera actively
illuminates the scene by sending out incoherently modulated light from an LED-
array with a typical modulation frequency of 20 MHz. The light is reflected at the
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Fig. 2. Depth warping of ToF-image (top left) into the color image (bottom right) with
a 3D wire-frame on the GPU (top right)

objects and received by the image sensor of the ToF-camera (cf. [2]). Depending
on the object-camera distance, a phase shift in the reflected signal is observable.
The ToF-camera is able to extract this phase shift in every pixel and to compute
depth from it. For measuring the reflected light, the ToF-camera uses a dedicated
semiconductor structure [1].

The phase difference is measured by cross correlation between the sent and
received modulated signal of the camera’s image sensor. Due to the used modula-
tion frequency, the non-ambiguous range of the ToF-camera is 7.5 meters. From
calibration we know that the depth accuracy of the ToF-camera is 20mm or
better. Since the resolution of the phase difference measurement is independent
from distance, the achievable depth resolution is in a first approximation inde-
pendent from scene depth. However, since the light intensity fall-off is squared
with depth, the signal-noise ratio deteriorates with larger distances and fast sam-
pling rates. Currently we operate the camera with 12.5 fps (80 ms integration
time) to keep the depth noise low.

The depth image must be fused with the color images to obtain a combined
color-depth video stream. Since the color cameras are displaced from the pro-
jection center of the depth camera, a depth-dependent forward-warping is per-
formed that maps the depth pixel into the color camera. We perform the depth
warping on the GPU by generating a 3D mesh from the depth camera image,
whose z-buffer values are then rendered into the view of the color cameras and
scaled for correct depth. This is possible since we obtained all calibration param-
eters, like projection matrices, radial distortion effects and depth correction from
the calibration process with high fidelity. Figure 2 shows an example for depth
warping. A challenge is the low resolution of the depth image in comparison to
our color camera (1024 × 768 pixel), where each depth pixel covers an area of
about 5 × 5 color pixels. Thus, the depth image must be upscaled. Depth up-
scaling to the proper camera viewport is performed automatically during GPU
warping, as the wire-frame depth is interpolated during rendering. The low im-
age resolution of depth is not really a problem, as the spatial depth variation is
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Fig. 3. 3D Panorama of the environment (top row: color and depth) with rendered
views of the resulting textured surface (bottom left). Bottom right is showing the
position of the camera rig during the model generation.

usually of low frequency w.r.t. color spatial frequencies. The only region where
this warping fails are the occlusion regions due to parallax effects of a foreground
object occluding parts of the background, as seen in the color camera. However,
since in our approach we are only interested in the foreground object area and
since we can use the precomputed environment as 3D background model to seg-
ment the foreground object, we can eliminate the parallax error. In section 2.4
we will discuss the foreground-background segmentation in more detail.

2.3 Environment Model Building

The 3D environment model is a key feature of our system, which allows for depth
keying, camera tracking and 3D interaction. During an offline phase before the
actual shooting, a 3D model of the surrounding environment (the studio or any
other room) is built by systematically scanning the room with the camera head
mounted on the PTU. Each view has only a limited field of view, but stitching
together all views will give a complete 3D-color representation of the scene.
The PTU yields a very precise orientation stepping of the camera head, and
the exact camera pose is obtained by the hand-eye calibration of the camera
head. We currently cover an extended field of view of 120 × 100◦ and allow for
image overlap of 50%, which is used for blending of color and depth images.
The resulting 3D model is stored as cylindrical panorama for color and depth,
since the camera head is not moved during scanning. Note that also a spherical
panorama could be used which allows better modeling of floor and ceiling. The
panoramic representation limits the operating range to some extent, since some
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scene parts are occluded, but this does not pose a fundamental limit, and multiple
3D panoramas could be integrated as well. During the online phase, the 3D
panorama is unrolled to a full 3D surface representation.

We have chosen this method since it delivers dense and reliable depth very
fast, basically at the speed of the image acquisition. The complete scanning takes
about 1 minute for the environment. There are, of course, other possibilities to
acquire the environment model. Huhle [16] propose to use a rotation sensor
scharstein01taxonomy and 3D registration for this. Although very flexible, the
danger of errors is high, as the camera motion needs to be computed from the
sequence. Stereo estimation, on the other hand (see [17,18]), might fail in un-
textured regions. A laser scanner, or structured light approaches as presented in
[19], might also solve the problem, but will fail in the online phase for dynamic
object tracking.

Figure 3 shows an environment panorama and the corresponding surface
model. The number of pixels in this panorama can be very high4, which conse-
quently leads to very large triangle meshes. Therefore a reduction of the redun-
dant triangles is applied [20].

2.4 Actor Segmentation by Depth Keying

During the online phase, a scene is shot with actors moving through the studio.
Real-virtual interaction is possible only if we know the 3D position and geometry
of the actors in the room, and if we know the surrounding 3D environment. Both
is now possible with the proposed system, without any special keying modifica-
tion like a blue screen. Since the 3D environment was captured before, and the
actor is currently observed by the color-depth camera head, depth based seg-
mentation is easily obtained in any environment. The 3D model is rendered into
the current camera view and compared with the acquired depth image. Since
the fore- and background are separated in depth and since ToF-cameras capture
the distance of a surface to the camera regardless of its shape and color and
regardless of the lighting conditions, these devices present a good alternative for
color keying, even with cluttered backgrounds and changing illumination.

IfDM is a depthmap fromthebackgroundmodel andDis a corresponding depth
map observed by the ToF-Camera, the resulting mask Dkey is defined as follows:

Dkey(u, v) =
{

D(u, v) , if DM (u, v) − D(u, v) > σ
0 , otherwise

. (1)

Dkey is hereby containing the depth value observed by the ToF-Camera. If the
depth difference exceeds some threshold σ > 0, then the pixel is on the fore-
ground object. This pixel-wise decision is filtered to remove spurious measure-
ment noise.

As discussed in section 2.2, the measurement noise, the low resolution of the
depth camera and the parallax error due to warping attribute to keying errors
at the object boundary. Thus, the object boundary might contain segmentation
4 In this work we use 4096 × 3072 pixel panoramas.



MixIn3D: 3D Mixed Reality with ToF-Camera 133

Fig. 4. Depth keying: Original color and depth image. Bottom: depth-based
segmentation.

errors that will be visible in the final rendering. Due to the low resolution, a 5
pixel boundary error might occur in the segmentation which is not acceptable
for keying. However, we know that we observe an unknown foreground object
superimposed on the known background. Thus, we can compare the current color
image with the background image and obtain an improved object boundary. This
is however sensitive to illumination changes and shadows eventually caused by
the person. As can be seen in figure 4 at the bottom left image the segmentation
is not perfect, mainly due to the signal noise. Situations in which foreground
and background are connected (e.g. the feet of the person) are difficult to handle
and further work is needed. A possible enhancement would be to perform the
refinement in a different colorspace (e.g. HSL) which is more invariant towards
illumination changes. Alternatively a bilateral filter as described in [21] is used
to segment the boundary more precisely. This is very time consuming and not
possible in real-time. Additionally depth super-resolution upsampling like [22]
can help for better segmentation.

Once the object is segmented, a 3D object surface mesh can be computed
since both color and depth is available. This object mesh is later used for in-
teraction with the computer generated elements. By merging the object with
the background scene model, we have a full 3D reconstruction of the real scene
geometry at hand, even the occluded background behind the object.
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2.5 Moving the Camera Head

Free movement of the camera is a prerequisite for a versatile virtual studio.
Virtual studios with provision to move the camera exist but mostly rely on
complex and expensive camera tracking devices [6]. In our approach, we can
relax these requirements by exploiting the known environment model. Köser
et.al. [23] propose to use visual tracking of a previously constructed environment
model with the help of a fish-eye camera. Hereby the tracking does not rely on
any artificial markers, since the model itself is used as 3D reference system. The
wide field of view of the fish-eye lens will show large parts of the tracked model,
even if the camera moves quickly or a dynamic object is occluding parts of the
scene. We follow this approach and apply fish-eye camera pose tracking within
the environment. The camera tracking can be sustained over long sequences
without drift, because the 3D environment model does not change over time.

3 Real-Time 3D Interaction

The previous section described the components of the system. In this section we
will discuss the interaction capabilities.

The ability to combine virtual content with real image footage using key-
ing and camera parameter tracking already extends the possibilities of virtual
studios. However, without a 3D reconstruction of the real part, an interaction
between the real and virtual content is difficult to establish. Regarding [24], the
most important optical interactions, which significantly improve the augmenta-
tion, are occlusions, shadow casting and reflections. It is possible to use a chroma
keyer to segment a real object’s shadows or to key the reflection of the real object
from a shiny surface, but this requires to physically model the real surface. This
might be feasible for floors and walls, however for more complicated objects it
is normally too expensive to manually construct a virtual model and a physical
counterpart for capturing the shadows and reflections, even more so if dynamic
virtual content shall be used.

Furthermore, it is not possible to automatically determine mutual occlusions
between the real and virtual content without extracting their relative depth dis-
tribution w.r.t. the augmented view. Since the content is dynamic and should
be reconstructed in real-time, approaches using passive stereoscopy from images
and laser scanners are at their limits. In virtual studios, shape-from-silhouette
algorithms are used due to their stability and speed, with multiple cameras cap-
turing different views of the dynamic real content. Chroma keying is used to
retrieve view-dependent silhouettes, which are combined to a 3D visual hull.
Although this hull is not as detailed as laser scans, it often suffices to handle
occlusion and to integrate shadow casting. [24] gives an overview on the limi-
tations and variants of this approach. For good results, multiple wide baseline
viewpoints5 have to be calibrated, captured and evaluated simultaneously. An
alternative is provided by the use of ToF-Cameras. As discussed in [25,26] the

5 Following [24] 6 up to 12 cameras are required to deliver reasonable results.
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depth can be used to handle mutual occlusions without complex algorithmic
effort, even without the use of multiple viewpoints. Although simple in its con-
struction and handling, a system using a single viewpoint is only able to deliver
a 2.5D model of the reconstructed object. This restricts the scenarios in which
correct shadow and reflection calculation can be performed. An approach for
visual hull calculation using multiple ToF and color cameras is presented in [27].

We will exploit our proposed system to handle occlusions, shadows, and re-
flections. Most of these tasks can be performed in real-time or near real-time,
allowing instantaneous feedback between director and actor during shooting.
More advanced interactions could be added in a post production phase as the
full 3D geometry is at hand.

3.1 Mutual Occlusions between Background, Objects and CG
Elements

The computation of mutual occlusions between computer generated elements
and background, and between the dynamically moving person and computer
generated elements is straight forward with our approach. The depth keying
delivers all necessary information to compute pixel-accurate depth for the moving
object and the background, and a virtual object will be either occluded by the
person or will occlude the person and the background, depending on the relative
depth w.r.t. the viewing camera. Since the 3D environment was scanned with true
3D metrics, one can locate the computer generated objects at the correct position
and with correct metric size without any problem. The objects are placed onto
the floor by simply dropping them, and gravity and collision detection with the
modeled floor will automatically put the object in place. The camera view is then
augmented by color mixing of the computer generated elements into the image
at positions where the computer generated objects are not occluded. The rest of
the image is taken from the current color image, so consistency is guaranteed,
like the correct shadows of the real person on the real walls. Figure 5 shows
an example of such depth-based color mixing. Note the mutual occlusions: the
statue is occluding the background while being occluded by the real person,
which again is occluded by the artificial plants. In the occluding case, a very
precise depth segmentation is crucial, and measurement noise might degrade
the segmentation. This is also due to the fact that currently our depth camera
delivers 12.5 fps while the color camera is running with 30 fps. This is a technical
problem which will be solved in the near future, since better and synchronized
depth cameras are already announced6. The calibration/registration error is well
below one pixel so a precise pixel mapping between depth and color camera ist
achieved using the mentioned approaches.

Occlusions may appear, but as the baseline of the cameras is small compared
to the scene distance occlusions are small. Alternatively 2D/3D-cameras are

6 New ToF-cameras are announced which allow full synchronized depth images at 25
fps.
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Fig. 5. Color and depth mixing for a frame of an input sequence. Left: Original im-
age of person walking, augmented by virtual objects with mutual occlusion. Right:
corresponding depth map used for mixing.

already in development which use a single lens and a beam splitter for high
resolution intensity and depth information. Using this new camera occlusions
will no longer be an issue.

3.2 Light and Shadow Casting

While correct depth keying is the key to proper occlusion handling, proper light-
ing is important for realistic appearance of the computer generated objects.
Therefore, also the lights must be modeled accordingly so that the computer
generated elements are lit similar to the real scene objects. Furthermore, the
computer generated elements must cast realistic shadows onto the elements of
the real scene (background and person) and vice versa. Correct shadows are of
particular importance for virtual objects placed inside a real scene, since without
correct shadow on the floor, the object seems to float in space.

Light interaction is possible in our system once we add a model of the real light
sources and light source position. Currently, the light source model is defined
manually and the positions of the lights are selected in the background model
by hand, but automated detection of the light source’s position is not difficult.
For example, the linear light arrays in the ceiling are already part of the model
geometry and can be detected easily. Once the light geometry, fraction and
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Fig. 6. Shadow casting. Left: mixed image with added shadows, right: shadow map for
two light sources.

temperature is defined, the geometric scene model allows to cast mutual shadows.
Note that the light sources are only approximated by point lights for simplicity
and real-time capability.

To add the shadows, which are cast by virtual objects onto the real images,
light maps are calculated for each video frame. These maps basically encode how
much light is reaching a particular pixel of the image when virtual content is
present. Each pixel in the light map contains a factor 0 ≤ s ≤ 1, which is used to
scale the RGB color values in the respective augmented image. A scale factor of
1 corresponds to no shadowing, 0 renders a pixel absolutely black and values in
between model partial soft shadowing. The light map operates on the 2D image
and reduces only those image parts, which are visible to the user but shaded by
an object.

The light maps are generated using the shadow mapping technique [28]. For
each light source, a depth map is rendered for all objects that cast shadows.
These are the computer generated objects as well as the dynamically moving
foreground person. Next, the background model and all (real and virtual) ob-
jects are rendered from the camera’s point of view, shading the scene with the
calculated lights’ depth maps using projective texturing.
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This way, for each pixel in the image the distance values R encoded in the
light sources’ depth maps can be compared to the distances D between a light
source and the 3D point corresponding to the pixel. As the light’s depth map
provides us with the distance between the light source and the first intersection
of the light ray with the scene geometry, we can decide whether the pixel is in
shadow (R < D) or receives light from the light source (D = R). Evaluating all
light sources and combining them with an ambient light offset yields the view
dependent light map used for shadow generation as shown in figure 6. The light
maps are additionally filtered with a Gaussian filter to soften the shadows but
no real soft shadows are used due to real-time demands.

One exception is made for the interaction between the real foreground and
background object. In the target image, the real light source already casts a
shadow of the real person onto the background. Hence, the shadow test between
real object and background is disabled, while the shadow casting between the real
and virtual objects is computed. Figure 6 demonstrates this mutual shadowing.
The virtual shadow of the statue of liberty, which is cast onto the back wall, is
consistent with the real shadow of the person. Also, the person casts a shadow
onto the statue and vice versa. In figure 6 (right), the computed shadow masks
can be seen. Only the image areas that are dimmed by the shadows are marked,
hence the foreground image region of the statue and the person is left untouched.
The problem of double shadows remains, as visible in figure 6 at the bottom left,
where the shadows of the Statue of Liberty and of the person are superimposed
and doubling each other at the background. This is a known issue and not
addressed by our approach. In literature methods are described (e.g. in [29] and
[30]) which can be used to solve that issue.

Fig. 7. Object reflection. Right: Dinosaur without (top) and with (bottom) correct
surface reflection in the environment model. Left: Reflective marble floor that reflects
environment and real person model.
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3.3 Surface Reflections

Another cue that is important for correct visual appearance is the reflection of
a (real or virtual) object on a shiny surface (see figure 7). A subtle example
of this reflection is found on the table surfaces of the background model. A
little clay dinosaur is placed onto the table to the right by dropping it there.
When looking at the image, something is wrong, since the dinosaur seems to
float in space (see figure 7, top right), but there are no visible shadow cues as
the light comes from the front. Closer inspection reveals that the table top is
slightly reflective, as can be seen by the reflection of the AC current plug and
cable on the table. Hence, a reflection of the dinosaur will remedy the problem.
In our system, such reflection is easily incorporated, since we know the correct
surface normal of the surface, the camera and light viewing direction, and we
have a complete 3D environment which is mirrored in the surface. Figure 7
(bottom right) shows the effect of adding the reflection for the dinosaur, where
the reflectivity was tuned by hand for this example. Of course, this property
can also be exploited to purposely insert mirrored surfaces. In figure 7 (left)
we inserted an artificial floor patch with some highly reflective marble surface.
Both, environment model and the dynamic person model, are reflected correctly.
This reflection pushes the approach to the limit, since it renders the dynamic
object from a very different perspective. Even slight depth errors will produce
gross reflection errors, so highest depth-quality is needed.

4 Discussion and Future Directions

Based on a Time-of-Flight depth camera, coupled with color cameras onto a
pan-tilt head, we presented a mobile and flexible system for mixed reality ap-
plications: MixIn3D. After systematically scanning the environment to set up a
background model, the system can be used for keying and occlusion determina-
tion between real and virtual objects, for shadowing and reflections.

The major challenge of the current system is to handle correct depth segmen-
tation from the low-resolution depth data of the Time-of-Flight camera. There
is much ongoing research and development activity, and improved cameras are
already announced. Thus, we are convinced that this problem will be solved
in the near future. Also, combining the ToF-data with additional vision-based
segmentation algorithms will likely improve the quality further.

The main advantage of MixIn3D, as compared to other mixed reality systems,
is that all data is fully available in 3D, so that more complicated interactions
are possible - if not in real-time then at least in a post-processing step.
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Abstract. We describe a technique for estimating human pose from an
image sequence captured by a time-of-flight camera. The pose estimation
is derived from a simple model of the human body that we fit to the
data in 3D space. The model is represented by a graph consisting of 44
vertices for the upper torso, head, and arms. The anatomy of these body
parts is encoded by the edges, i.e. an arm is represented by a chain of
pairwise connected vertices whereas the torso consists of a 2-dimensional
grid. The model can easily be extended to the representation of legs by
adding further chains of pairwise connected vertices to the lower torso.
The model is fit to the data in 3D space by employing an iterative update
rule common to self-organizing maps. Despite the simplicity of the model,
it captures the human pose robustly and can thus be used for tracking
the major body parts, such as arms, hands, and head. The accuracy of
the tracking is around 5–6 cm root mean square (RMS) for the head and
shoulders and around 2 cm RMS for the head. The implementation of
the procedure is straightforward and real-time capable.

1 Introduction

A time-of-flight (TOF) camera [1] provides a range map that is perfectly regis-
tered with an intensity image (often referred to as an amplitude image in TOF
nomenclature), making it an attractive sensor for a wide range of applications.

In this paper, we present a technique for estimating human pose in 3D based
on a simple model of the human body. The model consists of a number of vertices
that are connected by edges such that the resulting graph structure resembles
the anatomy of the human body, i.e. the model represents the torso, the head,
and the arms. The model is updated using an iterative learning rule common
to self-organizing maps (SOMs) [2]. The position of certain body parts, such
as the hands, can be obtained from the model as the 3D coordinates of the
corresponding vertices, i.e. the position of the hands in 3D corresponds to the
position of the vertex that terminates the chain representing an arm. Thus, body
parts can be tracked in 3D space.

The estimation of 3D human pose has been addressed in a number of differ-
ent publications. The majority of work focuses on the estimation of pose from
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single images taken with a regular 2D camera, and a number of different algo-
rithmic approaches have been presented. In [3] the pose is recovered from shape
descriptors of image silhouettes. The authors of [4] map low-level visual features
of the segmented body shape to a number of body configurations and identify
the pose as the one corresponding to the most likely body configuration given
the visual features. An approach based on a large database of example images is
presented in [5]. The authors learn a set of parameter-sensitive hashing functions
to retrieve the best match from the database in an efficient way.

Very accurate 3D reconstruction of human motion from multi-view video se-
quences was published in [6]. Based on a segmentation of the subject, the authors
use a multi-layer framework that combines stochastic optimization, filtering, and
local optimization to estimate the pose using a detailed model of the human
body. However, the computational cost is relatively high and the system does
not operate at camera frame rates.

Pose estimation based on 3D data has been addressed in [7]. The 3D volume
of a person is estimated in a multi-camera setup using the shape-from-silhouette
method. A skeleton model is then fit to a 2D projection of the volumetric data.
The 2D projection is obtained by a virtual camera and the model is fit using
certain features of the outer contour. The 3D coordinates of the model are fi-
nally reconstructed by inverting the 2D projection of the virtual camera, i.e. the
vertices of the skeleton are projected back into 3D space using the intrinsic
parameters of the virtual camera.

Another approach to obtaining a skeleton in 3D is to apply a thinning to
volumetric data directly in 3D space [8,9]. The human pose can then be estimated
from the skeleton [10].

Two related methods based on stereo imaging were presented in [11] and [12].
The authors introduce a hierarchical human body model database. For a given
image the algorithm uses both silhouette and depth information to identify the
model pose with the best match.

The work in [13] fuses 2D and 3D information obtained from a stereo rig and a
TOF camera to fit a human body model composed of generalized cylinders. The
system models body joints and uses kinematic constraints to reduce the degrees
of freedom. The 3D data is obtained using a TOF camera and the system runs
at frame rates of 10–14 frames per second.

Another recent approach using TOF cameras was presented in [14]. The
method tracks a number of anatomical landmarks in 3D over time and uses
these to estimate the pose of an articulated human model. The model is in turn
used to resolve disambiguities of the landmark detector and to provide estimates
for undetected landmarks. The entire approach is very detailed and models con-
straints such as joint limit avoidance and self-penetration avoidance. Despite its
complexity, the method runs at a frame rate of approximately 10 frames per
second.

Our approach, in contrast, is a very simple one that demonstrates how effec-
tively TOF cameras can be used to solve relatively complex computer vision tasks.
A general advantage of TOF cameras is that they can provide both range and
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intensity images at high frame rates. The combined use of both types of data was
already used for tracking [15,16] and allows a robust segmentation of the human
body in front of the camera. The range data, representing a 2 1

2D image, can then
be used to obtain a point cloud in 3D representing the visible surface of the person.
Thus, limbs extended towards the camera can still be easily identified while this
proves to be a more difficult task in 2D projections of a scene.

Our approach takes advantage of this property and fits a simple model of the
human body into the resulting point cloud in 3D. The model fitting algorithm
is based on a SOM, can be implemented in a few lines of code, and the method
runs at frame rates up to 25 frames per second on a 2 GHz Intel Core 2 Duo.
The algorithmic approach to this procedure is discussed in Sect. 2. The method
delivers a robust estimation of the human pose, as we show in Sect. 3 for image
data that was acquired using a MESA SR4000 TOF camera.

2 Method

The first step of the proposed procedure is to segment the human body from the
background of the image. We employ a simple thresholding approach that uses
both range and intensity data. The thresholds for the two images are determined
adaptively for each frame.

In case of the amplitude image, the pixel values correspond to the amount
of light of the TOF camera’s active illumination that is reflected back into
the camera. Hence, the amplitude can be considered a confidence measure for
the accuracy of the range measurement because it indicates the measurement’s
signal-to-noise ratio. The attenuation of the amplitude is proportional to the
squared distance of an object to the camera. Thus, objects close to the camera
appear generally much brighter than the background. We use the Otsu thresh-
old [17] to determine an adaptive value for the threshold that separates the dark
background from the brighter foreground. A more accurate segmentation using
thresholding on amplitude data proves to be difficult because the objects may
have different properties of reflecting infrared light.

In case of the range data, this simple assumption of a bimodal distribution
does not hold if multiple objects are located at different distances in front of the
camera. Thus, we construct a histogram of the range values in which every object
can be assumed to result in a peak if the objects are truly at different distances
from the camera. The threshold is determined as the one that separates the peak
corresponding to the closest object from the peaks of the remaining objects.

The final segmented image is obtained as the one where the foreground pixels
have been classified as foreground pixels with respect to both types of data. Fur-
thermore, we identify the largest connected component of foreground pixels and
consider all remaining pixels background. Thus, we obtain a clear segmentation
of a single person closest to the camera in most cases. A sample TOF image and
the resulting segmented image is shown in Fig. 1.

The identified foreground pixels can be assumed to sample the visible sur-
face of the person in front of the camera. Since the intrinsic parameters of the
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Fig. 1. Sample image taken with a MESA SR4000 TOF camera. The leftmost image
shows the amplitude data. The range image is given in the center and the resulting
segmentation is shown on the right.

camera, such as focal length and pixel size, are known, the surface pixels can be
projected back into 3D space. As a result one obtains a point cloud in 3D that
represents the 3-dimensional appearance of the person. This approach has two
major advantages: (i) The representation is scale-invariant due to the fact that
the size of the person in 3D space remains the same independently of the size
of its image; (ii) body parts that are extended towards the camera in front of
the torso can be easily identified due to the variation in distance, whereas this
information is lost in 2D projections of the scene obtained with regular cameras.

Our method aims at fitting a simple graph model representing the anatomy of
the human body into the resulting point cloud in 3D. To this end, we employ a
SOM. We define a graph structure of vertices and edges that resembles a frontal
view of the human body. Body parts, such as arms and torso, are modeled
by explicitly defining the neighborhood structure of the graph, i.e. an arm is
represented by a simple chain of pairwise connected vertices whereas vertices in
the torso are connected to up to four neighbors forming a 2D grid. The resulting
model structure is depicted in Fig. 2.

The SOM is updated by an iterative learning rule for each consecutive frame
of the video sequence. The first frame uses the body posture depicted in Fig. 2
as an initialization of the model. During initialization the model is translated to
the center of gravity of the 3D point cloud. The scale of the model is currently
set manually to a fixed value that corresponds to an average-sized person. We
can report that the scale is not a particularly critical parameter and that the
same fixed scale works for adults of different height. Once the scale is set to
an appropriate value, there is no need to adjust it during run-time due to the
above mentioned scale-invariance of the method. The update of the model for
each consecutive frame then depends on the model that was estimated for the
previous frame.

The adaptation of the model to a new frame involves a complete training of
the SOM, i.e. a pattern-by-pattern learning is performed using the data points
of the 3D point cloud. This iterative procedure selects a sample vector x from
the point cloud at random and updates the model according to the following
learning rule:
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Fig. 2. Graph model of the human body. The edges define the neighborhood structure
for the SOM.

v̂t+1 = v̂t + ε̂t · (x − v̂t) (1)
ṽt+1 = ṽt + ε̃t · (x − ṽt). (2)

Here, v̂ denotes the node that is closest to the sample x with respect to the
distance measure d(x, v) = ‖x − v‖2. The nodes ṽ are the neighbors of v̂ as
defined by the model structure. The learning rates are denoted by ε̂t and ε̃t for
the closest node and its neighbors, respectively. The learning rate ε̂t was set to:

ε̂t = εi · (εf/εi)t/tmax . (3)

Here, t ∈ {0, . . . , tmax} denotes the current adaptation step for this frame and
tmax denotes the total number of adaptation steps performed for this frame. The
initial learning rate εi and the final learning rate εf were set to 0.1 and 0.05.
The learning rate for the neighbors was chosen to be ε̃t = ε̂t/2. This choice
of the learning rate was already proposed in previous work on self-organizing
networks [18]. The initial and final learning rates were set to relatively high
values in order to allow the network to handle fast movements of the person, i.e.
if the limbs are moved quickly the correctional updates for the corresponding
nodes have to be large so that the model can accurately follow.

This update rule does not always guarantee that the topology of the model is
preserved. Here, we refer to topology with respect to the connectivity of the nodes
within body parts such as the arm. Imagine the situation where the subject’s
hands touch in front of the torso. If the hands are separated again, it is possible
that the model uses the last node of the left arm to represent samples that
actually belong to the hand of the right arm. It can thus happen, that the last
node of the left arm may continue to be attracted by the right hand although
both hands have moved apart and, thus, the left arm will extend into empty
space. In principle, the update rules resolve this problem over time. However,
only a small number of updates are performed per frame and this may lead to a
wrong estimation of the topology for a small number of frames.
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To avoid this, we developed a modification of the update rule that speeds up
the learning process by forcing neighboring vertices to stay close together. This
is achieved by the following rule that is applied after the actual learning step if
the distance d(v̂, ṽa) exceeds a certain threshold θ:

v̂ = ṽa + θ · (v̂ − ṽa)
‖v̂ − ṽa‖2

. (4)

Here, ṽa is a specific neighbor of v̂ referred to as an anchor. The rule enforces
that the distance between the vertex v̂ and its anchor is always less than or
equal to θ. The threshold θ depends on the scale of the model. The anchor of
each vertex is defined as the neighbor that has minimal distance to the center
of the torso with respect to the graph structure of the model, i.e. it is the vertex
that is connected to the center of the torso by the smallest number of edges.

3 Results

3.1 Qualitative Evaluation

The proposed method was evaluated using a MESA SR4000 TOF camera. We
operate the camera at a modulation frequency of 30 MHz for the active illumi-
nation. As a result the camera can disambiguate distances in the range of up
to 5 meters. In the following sample images, the person was at a distance of
roughly 2.5 meters from the camera. At that distance the range measurement
has an accuracy of approximately 1 cm.

A sample result of the pose estimation is shown in Fig. 3. The figure depicts
the point cloud of samples in 3D that represent the visual surface of the person in
front of the camera shown in Fig. 1. The model that was fitted to the point cloud
is imprinted into the data. One can observe that the model captures the anatomy
of the person correctly, i.e. the torso is well covered by the 2-dimensional grid, a
number of vertices extend into the head, and the 1-dimensional chains of vertices
follow the arms. Thus, the position of the major body parts, such as the hands,
can be taken directly from the corresponding vertices of the model in 3D.

The data from Fig. 3 is taken from a sequence of images. Further sample
images from this sequence are given in Fig. 4. Each image shows the segmented
amplitude image with the imprinted 2D projection of model. One can observe
that the model follows the movement of the arms accurately, even in difficult
situations where the arms cross closely in front of the torso. Note that the pro-
cedure does not lose the position of the head even though it is occluded to a
large extent in some of the frames. The sample images are taken from a video
sequence, which is available under http://www.artts.eu/demonstrations/

It is important to point out that the method may misinterpret the pose. This
can for example be the case if the arms come too close to the torso. In such a
case the SOM cannot distinguish between points of the arm and the torso within
the 3D point cloud. We can report, however, that the method can recover the true
configuration within a few frames once the arms are extended again in most cases.
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Fig. 3. Point cloud sampling the visible surface of a human upper torso in 3D. The
graph represents the human model that was fitted to the data.

Fig. 4. A selection of frames from a video sequence showing a gesture. The model
estimated by the pose estimation is imprinted in each frame. The edges belonging to
torso and head are colored in white, whereas the arms are colored in black.
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We assume that it is possible to detect and avoid such problems by imposing
a number of constraints on the model, e.g. that the arms may only bend at the
elbows and that the entire model should generally be oriented such that the
head is pointing upwards. However, note that the current results were achieved
without any such constraints.

3.2 Quantitative Evaluation

To evaluate the accuracy of the tracking quantitatively, we acquired sequences
of 5 persons moving in front of the camera; each sequence was around 140 to
200 frames long. In each frame, we hand-labeled the positions of five parts of
the body: the head, the shoulders, and the hands. To obtain three-dimensional
ground-truth data, we looked up the distance of each labeled point in the range
map and used this to compute the position of the point in space. This implies
that the sequences could not contain poses where any of the body parts were
occluded; however, many poses that are challenging to track, such as crossing
the arms in front of the body, were still possible, and we included such poses in
the sequences. (Note that the tracker itself can track poses where, for example,
the head is occluded; see Fig. 4.)

The labeled positions can now be compared with the positions of the corre-
sponding nodes in the tracked model. However, when assessing the accuracy of
the tracking in this way, we run into the problem that we never define explicitly
which part of the body each node should track. For example, though the last
node in each of the arms will typically be located on or near the hand, we do
not know in advance exactly which part of the hand the node will track. This
means that there may be a systematic offset between the position that is la-
beled as “hand” and the position that the hand node tracks. To give a realistic
impression of tracking accuracy, we should eliminate these systematic offsets.

We do this by measuring the average offset between the tracked position and
the labeled position on ten “training” frames; this offset is then used to correct
the tracked position in the remaining “test” frames, on which the accuracy is
measured. Because the orientation of the respective parts of the body can change,
we need to measure the offsets not in the world coordinate system but in a
local coordinate system. For the head and shoulders, we use a coordinate system
where the x-axis points from the left shoulder (of the tracked model) to the right
shoulder, the y-axis is defined so that the head lies in the x-y-plane, and the z-
axis is perpendicular to the other two axes to form a right-handed coordinate
system. For the hands, it is not as easy to define a full coordinate system because
the model only measures the direction in which the forearm is pointing but not
the orientation of the hand. For this reason, we estimate and correct the offset
between tracked and labeled position only along the direction of the forearm,
which we define by the last two nodes in the arm; this is the direction that
accounts for most of the offset. Any offset perpendicular to the direction of the
forearm is not corrected.

Once the tracked positions have been corrected in this way, we can measure
the tracking error. Fig. 5 shows a plot of tracking error over time for one of
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Fig. 5. Plots of tracking error over time for one of the sequences. The horizontal axis
plots frame number, the vertical axis plots tracking error in meters.

the recorded sequences. It is obvious that there is little to no systematic error
remaining; instead, most of the error is due to tracking noise.

Table 1 shows the root mean square (RMS) tracking error, averaged over
all frames and subjects. The average error is around 5 to 6 cm for the hands
and shoulders and around 2 cm for the head. While this degree of accuracy
is not sufficient for tracking very fine movements, it is more than adequate for
determining overall body posture and for recognizing macroscopic gestures. Also,
consider that no smoothing of the tracked positions over time was carried out.

A major advantage of the proposed method is that the training of the model
converges very fast for each new frame. Thus, only a small number of the samples
of the 3D cloud need actually be considered during the update even when the
person performs very fast movements in front of the camera. The sample image
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Table 1. Root mean square (RMS) error between tracked and labeled positions, aver-
aged over all frames and subjects

body part RMS error

left hand 5.90 cm
right hand 5.29 cm
left shoulder 5.32 cm
right shoulder 5.15 cm
head 2.21 cm

in Fig. 1 contains roughly 6500 foreground pixels. However, we use only 10% of
these samples for updating the model, i.e. we select roughly 650 points in 3D
in random order from the point cloud and use these for updating the model by
pattern-by-pattern learning. As a result the computational complexity is very
low, and we achieve frame rates up to 25 frames per second on a 2 GHz PC
while robustly tracking the human pose in scenarios such as the one depicted in
Fig. 4. The use of a higher number of samples for training will further increase
the robustness while at the same time the frame rate will decrease.

4 Discussion

We have presented a simple procedure to estimate human pose from a sequence
of range images. The procedure is especially suitable for TOF cameras as they
can deliver range data in combination with intensity images at high frame rates.
These cameras can be assumed to be available at relatively low costs in the near
future.

The use of a SOM results in a very simple, yet very efficient implementation.
In principle the procedure can be extended easily to any other kind of deformable
object.

A major shortcoming of the current implementation is that the method can-
not deal with multiple persons in front of the camera, i.e. the system always
assumes that the segmented foreground pixels correspond to a single person.
This approach fails for example if two people are at the same distance in front
of the camera and very close together. In that case the segmented foreground
pixels sample the visual surface of both persons. Since the SOM attempts to rep-
resent all samples equally the resulting pose estimation fails. Using the current
approach, this problem must be solved by an improved method for segmentation
that can handle multiple objects in front of the camera. Then, a SOM can be
trained for each segmented object and thus multiple people can be tracked.

This in turn can lead to a related problem that occurs when the segmentation
fails to detect parts of the body due to occlusion, e.g. when the lower part
of an arm is occluded by a second person. In that case the SOM will use the
entire chain of arm nodes to represent the upper part of the arm. Thus, the
node for the hand will be misplaced. To tackle this problem the system needs to
identify the presence of certain body parts based on pose estimates from previous
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frames. In case occluded body parts have been identified, the corresponding
nodes of the SOM must be excluded from training. Instead their location could
be predicted based on the posture of the remaining model. These two issues need
to be addressed in future work.

There exist other approaches that compute a more accurate estimate of human
pose but our goal within this work was to develop a simple method that gives a
rough but robust estimate of human pose at high frame rates.

We intend to use the proposed method of pose estimation for action recogni-
tion and gesture-based man-maschine interaction. Generally, the evaluation of
certain spatio-temporal features for the analysis of video sequences is computa-
tionally expensive. We argue that rough knowledge of the position of landmarks,
such as the hands, can greatly improve the runtime of feature-based action recog-
nition systems, because the features do not have to be evaluated over the entire
video sequence but only at those locations where certain important landmarks
have been detected. Furthermore, these features can be put into a larger context
if their relative location to each other is known.
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Abstract. We present a system that analyzes human gait using a tread-
mill and a Time-of-flight camera. The camera provides spatial data with
local intensity measures of the scene, and data are collected over several
gait cycles. These data are then used to model and analyze the gait. For
each frame the spatial data and the intensity image are used to fit an artic-
ulated model to the data using a Markov random field. To solve occlusion
issues the model movement is smoothened providing the missing data for
the occluded parts. The created model is then cut into cycles, which are
matched and through Fourier fitting a cyclic model is created. The out-
put data are: Speed, Cadence, Step length and Range-of-motion. The de-
scribed output parameters are computed with no user interaction using a
setup with no requirements to neither background nor subject clothing.

Keywords: Time-of-flight camera, Markov random fields, gait analy-
sis, computer vision, motion capture.

1 Introduction

When computer vision is used in the study of biomechanics and motion capture
it often involves complex setups. Different elements such as multiple cameras,
bluescreens, markers and manual annotation along with a calibrated reference
system are core in these setups. Obviously the more controlled the environment
and the more sophisticated the setup the better the precision and thus, resulting
models. This happens at an accordingly higher price and the complexity of the
setups narrows down the application areas. Because of this, several approaches
aim to simplify the tracking of movement.

Medina-Carnicer et al. [8] propose an algorithm that improves on current
automatic detection of markers. This removes the tedious work of manually
annotating markers in each frame.

Using several cameras but without bluescreens or markers Wan et al. [11]
create a visual hull in space from silhouettes by solving a spatial Markov random
field using graph cuts, then fit a model to this hull.

Based on a large database Shakhnarovich et al. [9] find a pose estimate in sub-
linear time relative to the database size. This algorithm uses subsets of features
to find the nearest match in the parameter space.

R. Koch and A. Kolb (Eds.): Dyn3D 2009, LNCS 5742, pp. 154–166, 2009.
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An earlier study by Zhu et al. [13] uses the Time-of-flight (TOF ) camera
estimate pose using key feature points in combination with an articulated model
to solve problems with ambiguous feature detection, self penetration and joint
constraints.

This article aims to deliver a system that analyzes gait without the use of the
before mentioned core elements in the motion capturing.

We propose an adaptation of the Posecut algorithm by Bray et al. [5] for
fitting articulated human models to greyscale image sequences to fitting such
models to TOF camera sequences of spatial data with corresponding intensity.
In particular, we will investigate the use of this TOF data adapted Posecut
algorithm to quantitative gait analysis.

This article is on the progression of our previous work [6], where a simple
model was used to analyze normal gait with a TOF camera. We have used a
newer version of the TOF camera (the SwissRangerTMSR4000 compared to the
SR3000[2]), which improves on issues of reflection and precision. We also benefit
from using a treadmill providing both a better relative subject to pixel resolution
and allows for analysis of numerous steps in the gait instead of just a few when
passing the camera. On a treadmill there is no actual movement in space, which
changes the analysis.

The system requires no user interaction and there are no restrictions on nei-
ther background nor subject clothing and the motivation is to provide a system
for physiotherapists simple enough that it could broaden the range of patients
benefiting from an algorithmic gait analysis.

2 Time-of-Flight Data

The imaging device used is a SwissRangerTMSR4000 [2], which emits a modu-
lated signal from an array of near infrared LEDs surrounding the camera lens.
By measuring the phase shift between the emitted and the recorded signal a
depth map is calculated. The modulated signal has a wavelength of 10 m, which
allows for distance measures of up to 5 m without ambiguity (10 m back and
forth). The camera accuracy of the measured distance is less than 1 cm. Knowing
the lens properties and a pixelwise depth the camera also creates a vertical and
a horizontal map completing the spatial coordinates of the scene. To create an
intensity image the camera uses the amplitude of the modulated signal. Because
the signal from the LEDs and not the ambient light is used, the amplitude is
relative to the square of the distance. An intensity map is provided being the
amplitude times the squared distance as a correction. Figure 1 shows a depth
map with intensity coloring; the vertical and horizontal maps are not shown.

3 Introduction to the Algorithm Finding the Pose

To find the pose of the subject in every frame in a sequence an adaption of the
Posecut algorithm is used on the depth and intensity stream from TOF camera.
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Fig. 1. Depth map with intensity coloring of the scene. The image is rotated to em-
phasize the spatial properties.

The algorithm uses 4 terms to define an energy minimization problem and find
the pose of the subject as well as segmenting between subject and background:

Likelihood term: This term is based on statistics of the background using a
probability function of a given pixel being labeled background.

Smoothness prior: Neighbouring pixels are expected to have the same label
with higher probability than having different labels.

Contrast term: Neighbouring pixels with different labels are expected to have
values in the intensity map that differs from one another. If the values are
very similar but the labels different, this is penalized.

Shape prior: Trying to find the pose of a human, a human shape is used as a
prior.

3.1 Random Fields

A frame in the sequence is considered to be a random field. A random field
consists of a set of discrete random variables {X1, X2, . . . , Xn} defined on the
index set I. In this set each variable Xi takes a value xi from the label set
L = {L1, L2, . . . , Lk} presenting all possible labels. All values of xi, ∀i ∈ I are
represented by the vector x which is the configuration of the random field and
takes values from the label set Ln. In the following the labeling is a binary
problem, where L = {s, b}, where s is subject and b is background.

A neighbourhood system to Xi is defined as N = {Ni|i ∈ I} for which it holds
that i /∈ Ni and i ∈ Nj ⇔ j ∈ Ni. A random field is said to be a Markov field,
if the probability P of any configuration of x satisfies the positivity property:

P (x) > 0 ∀x ∈ Ln (1)
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And the Markovian property:

P (xi|{xj : j ∈ I\{i}}) = P (xi|{xj : j ∈ Ni}) (2)

Or in other words the probability of xi given the index set I\{i} is the same as
the probability given the neighbourhood of i.

3.2 The Likelihood Function

The likelihood energy is based on the negative log likelihood and for the back-
ground distribution defined as:

Φ(D|xi = b) = − log P (D|xi) (3)

Where D is the observed data. Using the Gibbs measure on a background dis-
tribution with mean μb and standard deviation σb without the normalization
constant the energy becomes:

Φ(D|xi = b) =
(D − μb,i)2

σ2
b,i

(4)

With no distribution defined for pixels belonging to the subject, the subject
likelihood function is set to the mean of the background likelihood function. To
estimate a stable background a variety of methods are available. A well known
method models each pixel as a mixture of Gaussians and is also able to update
these estimates on the fly [10]. When using a treadmill the subject stays in the
same place and to avoid subject being modelled as background the background
is simply estimated by computing the median and standard deviation of each
pixel over a number of frames before the subject enters the scene.

3.3 The Smoothness Prior

This term states that generally neighbours have the same label with higher
probability. The generalized Potts model where j ∈ Ni is given by:

ψ(xi, xj) =
{

Kij xi �= xj

0 xi = xj
(5)

This term penalizes neighbours having different labels. In the case of segmenting
between background and subject, the problem is binary and referred to as the
Ising model [4]. The parameter Kij determines the smoothness in the resulting
labeling.

3.4 The Contrast Term

In some areas such as where the feet touches the ground, the subject and back-
ground differs very little in distance. Therefore a contrast term is added, which
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uses the intensity image (grayscale) provided by the TOF camera. It is ex-
pected that two adjacent pixels with the same label have similar intensities,
which implies that adjacent pixels with different labels have different intensities.
By decreasing the cost of neighbouring pixels with different labels exponentially
with an increase in difference in intensity, this term favours neighbouring pixels
with similar intensities to have the same label. This function is defined as:

γ(i, j) = λ exp

(
−g2(i, j)

2σ2
b,i

)
(6)

Where g2(i, j) is the gradient in the intensity map and approximated using con-
volution with gradient filters. The parameter λ controls the cost of the contrast
term, and the contribution to the energy minimization problem becomes:

Φ(D|xi, xj) =
{

γ(i, j) xi �= xj

0 xi = xj
(7)

3.5 The Shape Prior

To ensure that the segmentation is human like and wanting to estimate a human
pose, a human shape model consisting of ellipses and circles is used as a prior.
The model has 19 degrees of freedom coming from the position, the height and
the joint angles. The model is 2-dimensional and to compensate for the difference
of the legs in the frame due to difference in length to the focal point, the legs
are allowed to stretch. The only restriction in the model is that the knee joints
cannot overstretch. The hip joint is simplified such that the hip is connected in
one point as studies shows that a 2-dimensional model can produce good results
in gait analysis [3].

Pixels near the shape model in a frame are more likely to be labeled subject,
while pixels far from the shape are more likely to be background.

The cost function for the shape prior is defined as:

Φ(xi|Θ) = − log(P (xi|Θ)) (8)

Where Θ contains the pose parameters of the shape model (position, height,
joint angles and stretch of legs). The probability P (xi|Θ) of labeling subject or
background is defined as follows:

P (xi = s|Θ) = 1 − P (xi = b|Θ) =
1

1 + exp(μ ∗ (dist(i,Θ) − dr))
(9)

The function dist(i,Θ) is the distance from pixel i to the shape defined by Θ,
dr is the width of the shape, and μ is the magnitude of the penalty given to
points outside the shape. To calculate the distance for all pixels to the model,
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(a) Rasterized model (b) Distance map

Fig. 2. Raster model and the corresponding distance map

the shape model is rasterized and the distance found using the Signed Euclidian
Distance Transform (SEDT ) [12]. Figure 2 shows the rasterized model with the
skeletal structure and the corresponding distance map.

3.6 Energy Minimization

Combining the four energy terms a cost function for the pose and segmentation
becomes:

Ψ(x,Θ) =
∑
i∈V

⎛
⎝Φ(D|xi) + Φ(xi|Θ) +

∑
j∈Ni

(ψ(xi, xj) + Φ(D|xi, xj))

⎞
⎠ (10)

This Markov random field is solved using Graph Cuts [7], and the pose is opti-
mized in each frame using the pose from the previous frame as initialization.

3.7 Initialization

To find an initial frame and a pose, a frame that differs a lot from the background
model is chosen and the difference is summed along the rows and columns. As a
rough guess on where the subject is in this frame, these two sum vectors are used
to guess the first and last rows and columns that contains the subject (Fig 3(a)).
From the initial guess the pose is optimized according to the energy problem by
searching locally. Figure 3(b) shows the optimized pose, where the limbs are
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(a) Initial guess (b) Optimized pose

Fig. 3. Initialization of the algorithm

differentiated based on distance measures to track left and right as described
later.

The pose in the remaining frames is found using the previous frame as an
initial guess and then optimizing on this. This generally works very well, but
sometimes problems arise when the legs pass each other as feet or knees of one
leg tend to get stuck on the wrong side of the other leg. This entanglement is
avoided by not allowing crossed legs as an initial guess and instead using straight
legs close together. When both arms end up in front or behind the torso this
constitutes a local minimum in the energy minimization. This is avoided by
letting one arm lead and one arm follow in the initialization of each frame.

4 Postprocessing

Because the algorithm is initialized using a rough guess, there is no initial knowl-
edge of left and right in the model. The Markov random field used to find the
pose is solved using a binary solution, so this does not provide information about
left and right. Also a few problems occur when limbs are occluded by other limbs.
Therefore some postprocessing must be done to keep track of left and right and
to ensure a smooth movement.

4.1 Tracking Left and Right

When the subject walks facing right in the frame, the right side of the subject
will always be closer to the camera in the depth map. By ensuring that this
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(a) Vertical movement of feet
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(b) Horizontal movement of feet

Fig. 4. 4(a) shows the vertical movement of the foot joints using image notation, where
rows are increased downwards. 4(b) shows the horizontal movement. The scales of
the two plots are not the same, and the vertical movement is much smaller than the
horizontal.

holds true for the median of depth of the rasterized model limbs the tracking of
left and right is constituted.

4.2 Smoothing the Movement

With the tracking of left and right the subject pose is now estimated in every
frame. Our previous study [6] shows that using a smoothness prior on the move-
ment, can improve on the results. The prior that movement is locally smooth
holds true, if the framerate is high enough relative to the movement. A mean
filtering and a piecewise polynomial fitting is used to smoothen the movement.
Figure 4 shows the foot joint movement and the fitting.

5 Analyzing the Gait

With a smooth subject movement, the model is now ready for analysis.

5.1 Output Parameters

With the pose estimated in every frame the gait can now be analyzed. To find
the steps during gait, the frames where the distance between the feet has a local
maximum are used. Combining this with information about which foot is lead-
ing, the foot that is taking a step can be found. From the provided Cartesian
coordinates in space the step lengths are found (Fig. 5(b) and 5(d)). By aligning
the shape throughout the sequence the averages and standard deviations of the
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(a) Left start

 Left Step: 0.60008 m 

(b) Left stop (c) Right start

 Right Step: 0.63967 m 

(d) Right stop

Fig. 5. Step lengths: Left 0.60 m and Right 0.64 m

 

 

Avg Left Step: 0.61183 m
Std Left Step: 0.047341 m

(a) Average left step
 

 

Avg Right Step: 0.66334 m
Std Right Step: 0.051496 m

(b) Average right step

Fig. 6. Average step lengths

 

 

Avg Step: 0.63759 m
Std Step: 0.054292 m
Speed: 1.0975 m/s
Cadence: 103.2759 steps/min

(a) Average step, speed and cadence
 

 

Back: −97o | −86o

Neck: 18o | 59o

Hip:  58o | 111o

Knee: 0o | 68o

Hip:  59o | 110o

Knee: 0o | 72o

(b) Range of motion

Fig. 7. Several gait parameters and the skeletal cyclic alignment
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steps are also found as shown in Fig 6. Notice that the step lengths are almost
identical as expected with a normal persons gait. With a timestamp for each
frame the speed and cadence are found (Fig. 7(a)). The range-of-motion is found
using the minima and maxima of the joints (Fig. 7(b)).

The walking speed found by the algorithm matches the actual speed of the
treadmill very well. The speed found in Fig. 7(a) is 1.10 m/s equal to 3.96 km/h,
and the treadmill was set to 4 km/h. This is a good measure of the correctness
of the system, as the speed is calculated as a sum of all steps in a sequence
over time, and therefore not expected to fluctuate a lot. Measuring the speed in
several sequences showed a very high correlation between the estimated speed
and that of the treadmill.

The range of motion is found as the clockwise angle from the x-axis in pos-
itive direction for the inner limbs (femurs and torso) and the clockwise change
compared to the inner limbs for the outer joints (ankles and head). Figure 7(b)
shows the angles and the model pose throughout the sequence, as expected with
person with normal gait the range of motion is almost identical for both legs.

5.2 A Cyclic Model

The movement is cut into cycles and the shapes aligned such that the different
phases of the cycles match. Figure 8 shows 4 phases of the cyclic alignment used

Fig. 8. Phase aligned shapes with the hip as the center of mass.

Fig. 9. Aligned points and cyclic movement of the feet
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Fig. 10. Model of the subjects gait cycle

in the modeling. Every point in the model is aligned relative to both the hip
and the phase of the movement thus creating a cyclic cloud of points. By fitting
Fourier series to these points the point clouds can be modeled as cycles (Fig. 9
shows the aligned movement of the feet and the modeling of the feet). Looking
at the power of the Fourier series shows that a 9th order series makes a very
good model, and that very little happens at frequencies described by a higher
order. The alignment is done with the hip as a center of mass and therefore a
cyclic movement of the hip has to be added to finalize the modeling. Figure 10
shows the the cyclic model in every phase plotted in the same figure.

6 Conclusion

A system is created that analyzes gait. Using a treadmill the system does the
analysis over several gait cycles producing several gait parameters as well as a
cyclic model of the subjects gait. The camera used is a SwissRangerTMSR4000
[2], which provides spatial data as well as intensity images. Because the tracking
is mainly done in the depth map, there are no requirements to the background
or to the subject clothing.

The system also initializes itself removing the need for user interaction.
Even though the model used is 2-dimensional the output is 3-dimensional, the

joint angles however are solely computed in the plane and therefore dependent
on the camera being perpendicular to the subject. It seems reasonable that a
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single camera setup would always benefit from a camera angle perpendicular to
the gait direction.

Visual inspection of the algorithm output shows a good correlation between
model joints and the subject joints in the images. Our previous studies [6] has
shown that it performs well compared to human annotation. The estimated
subject speed matches that of the treadmill very well. For further testing the
system output should be held against that of a full commercial setup.

The system has been implemented in Matlab using C++ mex-files for the
central parts, it computes a frame in a few seconds making realistically useable
but not exactly realtime.

Acknowledgements

This work was in part financed by the ARTTS [1] project (Action Recognition
and Tracking based on Time-of-Flight Sensors) which is funded by the European
Commission (contract no. IST-34107) within the Information Society Technolo-
gies (IST) priority of the 6th framework Programme. This publication reflects
only the views of the authors, and the Commission cannot be held responsible
for any use of the information contained herein.

References

[1] Artts (2009), http://www.artts.eu
[2] Mesa (2009), http://www.mesa-imaging.ch
[3] Alkjaer, E.B., Simonsen, T., Dygre-Poulsen, P.: Comparison of inverse dynamics

calculated by two- and three-dimensional models during walking. In: 2001 Gait
and Posture, pp. 73–77 (2001)

[4] Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Sta-
tistical Society. Series B (Methodological) 48(3), 259–302 (1986)

[5] Bray, M., Kohli, P., Torr, P.H.S.: Posecut: simultaneous segmentation and 3D pose
estimation of humans using dynamic graph-cuts. In: Leonardis, A., Bischof, H.,
Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 642–655. Springer, Heidelberg
(2006)

[6] Jensen, R.R., Paulsen, R.R., Larsen, R.: Analyzing gait using a time-of-flight
camera. In: Salberg, A.B., Hardeberg, J.Y., Jenssen, Q. (eds.) SCIA 2009. LNCS,
vol. 5575, pp. 21–30. Springer, Heidelberg (2009)

[7] Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2),
147–159 (2004)

[8] Medina-Carnicer, R., Garrido-Castro, J.L., Collantes-Estevez, E., Martinez-
Galisteo, A.: Fast detection of marker pixels in video-based motion capture sys-
tems. Pattern Recognition Letters 30(4), 432–439 (2009)

[9] Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-
sensitive hashing. In: Proceedings Ninth IEEE International Conference on Com-
puter Vision, vol. 2, pp. 750–757 (2003)

http://www.artts.eu
http://www.mesa-imaging.ch


166 R.R. Jensen, R.R. Paulsen, and R. Larsen

[10] Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time
tracking. In: Proceedings. 1999 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (Cat. No PR00149), vol. 2, pp. 246–252 (1999),
ISSN 10636919

[11] Wan, C., Yuan, B., Miao, Z.: Markerless human body motion capture using Markov
random field and dynamic graph cuts. Visual Computer 24(5), 373–380 (2008)

[12] Ye, Q.-Z.: The signed Euclidean distance transform and its applications. In: 1988
Proceedings of 9th International Conference on Pattern Recognition, vol. 1, pp.
495–499 (1988)

[13] Zhu, Y., Dariush, B., Fujimura, K.: Controlled human pose estimation from depth
image streams. In: 2008 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPR Workshops), pp. 1–8 (2008)



Face Detection Using a Time-of-Flight Camera
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Abstract. We adapt the well-known face detection algorithm of Viola
and Jones [1] to work on the range and intensity data from a time-of-
flight camera. The detector trained on the combined data has a higher
detection rate (95.3%) than detectors trained on either type of data alone
(intensity: 93.8%, range: 91.2%). Additionally, the combined detector
uses fewer image features and hence has a shorter running time (5.15 ms
per frame) than the detectors trained on intensity or range individually
(intensity: 10.69 ms, range: 5.51 ms).

1 Introduction

In this paper, we will examine how a time-of-flight camera can be used for face
detection. We will extend the well-known face detection algorithm of Viola and
Jones [1] to time-of-flight (TOF) images; as we will show in the results section,
the detector trained on the combined range and intensity data not only has a
higher detection rate than detectors trained on either type of data alone, but it
also requires fewer features and therefore has a shorter running time.

The Viola-Jones face detector is computationally very efficient while at the
same time achieving good detection rates. This is due to three important char-
acteristics: (i) The detector is based on image features that can be evaluated
quickly and in constant time, independent of the size of the feature; (ii) the
detector selects a set of highly discriminative image features using the AdaBoost
algorithm; (iii) the detector is structured into a cascade of progressively more
sophisticated stages. Since most candidate regions in an image are very dissimi-
lar to a face, the early stages of the cascade can discard these regions with little
computation; the later stages of the cascade, which require more computation,
need to process only a small proportion of candidate regions.

The attractive properties of the Viola-Jones face detector have motivated a
large number of researchers to extend this work in various ways, including the use
of different features, modifications to the AdaBoost algorithm, and the applica-
tion to different types of object detection tasks (see e.g. [2,3,4]). The algorithm
has also already been applied to TOF data [5]. However, this previous work
does not extend the Viola-Jones detector itself to use range features; instead,
a standard Viola-Jones detector trained on images from a conventional camera

R. Koch and A. Kolb (Eds.): Dyn3D 2009, LNCS 5742, pp. 167–176, 2009.
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is used to find candidate faces in the TOF image; a final detector stage then
computes the average distance of each candidate from the range map and re-
jects candidates whose size does not match the expected size of a face at this
distance.

In contrast, the approach we will use in this paper is to include range features
as well as intensity features in the set of features used by the detector. As we
will show in the results section, the features chosen by the resulting detector
consist of an approximately equal number of range and intensity features; the
detector has a higher detection rate and shorter running time than detectors
trained on the same training samples, but using either the range or the intensity
information alone. This underlines previous results (see e.g. [6,7]) showing that
it is the combination of range and intensity data that makes the TOF camera a
valuable tool for object detection tasks.

2 Method

We use the basic face detection method of Viola and Jones [1] (which we will
summarize briefly) but extend the set of features used to both range and intensity
features. Since the method was first described, a number of authors have made
improvements to the method (see e.g. [2,3,4]), but we use the original algorithm
here because we are more interested in the difference made by using range data
rather than in absolute performance.

The Viola-Jones face detector consists of a cascade of stages that typically
become more sophisticated as one progresses through the cascade (see Fig. 1).
The idea is that the overwhelming majority of subregions in an image are non-
faces, and that most of these subregions are “easy”, i.e. they can be identified as
nonfaces with little computation. Thus, the first stage of the detector contains
a computationally efficient classifier that can immediately reject most subre-
gions as being nonfaces; no further processing is carried out on these subregions.
Only a small fraction of subregions (both true faces and “hard” nonfaces) are
passed on to the next stage for further processing. This next stage performs
more computation and, by doing so, can again reject most of the subregions as
being nonfaces, passing only a small fraction of subregions on to the next stage,
and so on. In this way, the average effort per subregion is kept low because the
overwhelming majority of subregions are rejected in the first few stages.

If the detection rate and false-positive rate of the i-th stage (on the input it
receives from the previous stage) are di and fi, then the overall detection and
false-positives rates of an n-stage cascade are D =

∏n
i=1 di and F =

∏n
i=1 fi,

respectively. A common approach is to train each stage to achieve the same
detection rate d and false-positive rate f on its respective input; this results in
overall detection and false-positive rates of D = dn and F = fn.

Each cascade stage is a boosted classifier trained using the AdaBoost al-
gorithm [8]; a boosted classifier combines several weak classifiers (each of
which performs only slightly better than chance) into a strong classifier (which
performs substantially better than the individual weak classifiers). The weak
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Fig. 1. Cascade structure of the Viola-Jones face detector

vertical
two-bar

vertical
three-bar

horizontal
two-bar

horizontal
three-bar chessboard

Fig. 2. Haar-like features used by the Viola-Jones face detector. The feature value is
obtained by summing the pixels in the white rectangle(s), then subtracting the sum of
pixels in the black rectangle(s).

classifiers in the Viola-Jones algorithm are obtained by applying a threshold to
an image feature.

The image features, finally, are composed of adjacent rectangles (see Fig. 2);
the pixels within each rectangle are summed together, and the resulting values
are added or subtracted to obtain the final feature value. For example, the value
of the “vertical two-bar” feature is obtained by summing the pixels in the white
rectangle and subtracting the sum of pixels in the black rectangle. These features
(which are often called Haar-like features) have the advantage that they can be
evaluated in constant time, independent of their size, using a data structure
known as an integral image.

The feature set for training the detector is obtained by scaling these features
to all possible widths and heights and translating them to all possible positions
in the image. Also, each feature (at each size and position) may be evaluated
either on the range data or on the intensity data.

Training of the cascade now proceeds as follows. We begin with a training set
of face and nonface image patches of constant size. These are used to train the
first cascade stage to the desired detection and false-positive rate (evaluated on a
validation set). Now, because the next stage will never see those nonface patches
that the first stage rejects, we discard all nonface samples rejected by the first
stage from the training and validation set, keeping only the false positives. To
bring the training and validation set back to their original sizes, we generate new
nonface samples by scanning the cascade that has been trained so far across a
set of images not containing faces and adding those subregions that the cascade
erroneously classifies as faces to the training or validation set until both have



170 M. Böhme et al.

been replenished. We continue adding stages to the cascade in this way until the
false-positive rate of the cascade reaches a set target.

Detection proceeds by scanning the cascade across the input image in steps
of a certain size. To be able to detect faces of different sizes, the subwindow
processed by the detector, along with the features contained in it, is progressively
scaled up by a certain factor until it reaches the size of the complete image.

3 Results

The training data for the face detector were recorded using a SwissRanger
SR3000 camera [9]. The training set consists of 1310 images (with a resolution of
176 by 144 pixels) showing faces of 17 different persons, in different orientations
and with different facial expressions, as well as 4980 images not containing faces.
Each face image was labelled by hand with a square bounding box containing
the face; some background was included in the bounding box, since previous
researchers had reported that this yielded slightly better results than a more
tighly cropped bounding box (see the discussion in [1, Sect. 5.1]).

The images were split up into a training, validation and test set, containing
70%, 23%, and 7% of the images, respectively. (The training set is used to select
the best weak classifiers for each cascade stage, the validation set is used to
evaluate whether the stage has reached its goal detection rate and false-positive
rate, and the test set is used to test the final cascade after training is completed.)
Face images were cropped to the face bounding box and resized to 24 by 24 pixels
(see Fig. 3 for examples). To increase the number of face images in each set, we
added versions of each image that were rotated left and right by 3 degrees. After
this step, a mirrored version of each face image (including the rotated ones) was
also added to the set. The nonface images were full frames of 176 by 144 pixels;
to generate examples for training the first cascade stage, subimages of 24 by 24
pixels were cut out of the nonface images. For the second and subsequent stages,

Fig. 3. Examples of intensity images from the face training set
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Fig. 4. ROC curves for the detectors trained on the combined range and intensity data
as well as both types of data separately

new negative examples were generated by scanning the cascade trained so far
across the nonface images and collecting false positives (see also Sect. 2).

In all, there were 5412 faces and 3486 nonface images in the training set,
1752 faces and 1145 nonface images in the validation set, and 534 faces and
349 nonface images in the test set. The data set is publicly available at
www.artts.eu/publications/3d_tof_db

We trained a detector on the combined range and intensity data as well as on
the range and intensity data alone. The target detection rate and false-positive
rate for each stage were set to d = 0.995 and f = 0.4, respectively; the target false
positive rate for the complete detector was set to 10−8. The range-and-intensity
detector as well as the range-only detector were successfully trained to this target
rate. Training of the intensity-only detector did not reach the target rate; train-
ing was stopped manually when the detector had added over 1500 features to the
cascade stage it was training and the false-positive rate of the stage had stagnated
without reaching the goal rate. (This is a typical sign that the detector can no
longer generalize from the training to the validation set.) We trained another in-
tensity detector with a lower detection rate per stage of d = 0.99; training for this
detector did complete, but its performance was consistently worse than that of the
detector with d = 0.995 whose training was aborted. For this reason, we will only
use the latter detector in the tests that follow.

Figure 4 shows ROC curves for the three detectors (computed as in [3]).
For false positive rates above 1.5 · 10−6, the intensity-only detector achieves
a slightly higher detection rate than the range-and-intensity detector. Below

www.artts.eu/publications/3d_tof_db
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Table 1. Cascade structure of the detectors

detection rate false-positive rate number of features

Stage individual cumulative individual cumulative total intensity range

in
te

n
si

ty
+

ra
n
ge

0 1.000 1.000 0.000 1.0e-02 2 1 1
1 0.995 0.995 0.165 1.6e-03 2 1 1
2 0.995 0.991 0.138 2.3e-04 2 1 1
3 0.995 0.986 0.394 8.9e-05 7 4 3
4 0.995 0.981 0.290 2.6e-05 7 3 4
5 0.995 0.976 0.385 1.0e-05 12 5 7
6 0.995 0.971 0.334 3.3e-06 12 8 4
7 0.995 0.966 0.381 1.3e-06 15 9 6
8 0.995 0.961 0.380 4.8e-07 20 11 9
9 0.995 0.956 0.380 1.8e-07 22 13 9

10 0.995 0.951 0.368 6.8e-08 27 16 11
11 0.995 0.946 0.365 2.5e-08 44 26 18
12 0.995 0.941 0.391 9.6e-09 49 26 23

in
te

n
si

ty

0 0.999 0.999 0.189 1.9e-01 3 3 0
1 0.995 0.994 0.367 6.9e-02 15 15 0
2 0.995 0.989 0.340 2.4e-02 11 11 0
3 0.998 0.986 0.340 8.0e-03 6 6 0
4 0.997 0.983 0.391 3.1e-03 10 10 0
5 0.995 0.978 0.389 1.2e-03 17 17 0
6 0.995 0.973 0.376 4.6e-04 25 25 0
7 0.995 0.968 0.384 1.8e-04 23 23 0
8 0.995 0.963 0.386 6.8e-05 40 40 0
9 0.995 0.958 0.389 2.6e-05 59 59 0

10 0.995 0.953 0.392 1.0e-05 62 62 0
11 0.995 0.948 0.400 4.1e-06 107 107 0
12 0.995 0.943 0.396 1.6e-06 198 198 0
13 0.995 0.938 0.399 6.5e-07 117 117 0
14 0.995 0.934 0.390 2.5e-07 223 223 0

ra
n
ge

0 0.997 0.997 0.071 7.1e-02 2 0 2
1 0.995 0.992 0.285 2.0e-02 3 0 3
2 1.000 0.992 0.325 6.5e-03 3 0 3
3 0.995 0.987 0.373 2.4e-03 11 0 11
4 0.995 0.983 0.271 6.6e-04 17 0 17
5 0.995 0.978 0.374 2.5e-04 18 0 18
6 0.996 0.974 0.381 9.4e-05 10 0 10
7 0.995 0.969 0.388 3.6e-05 26 0 26
8 0.995 0.964 0.377 1.4e-05 29 0 29
9 0.995 0.959 0.396 5.4e-06 56 0 56

10 0.995 0.954 0.370 2.0e-06 42 0 42
11 0.995 0.949 0.381 7.7e-07 66 0 66
12 0.995 0.944 0.396 3.0e-07 114 0 114
13 0.995 0.940 0.382 1.2e-07 81 0 81
14 0.995 0.935 0.377 4.4e-08 111 0 111
15 0.995 0.930 0.380 1.7e-08 139 0 139

this point, the range-and-intensity detector achieves better detection rates. Both
detectors are markedly better than the range-only detector over the whole range
of false-positive rates shown. All three detectors achieve good detection rates
even for a false-positive rate of zero. This is an indication that our test set
is relatively “easy” compared to, for instance, the MIT+CMU test set [10], on
which the Viola-Jones algorithm produces slightly higher error rates [1]. Whereas
the MIT+CMU test set contains images from a variety of sources, including
text and line drawings, our test set consists solely of images taken with a single
camera. Also, because of the active illumination, the lighting is the same across
all images. We believe these factors combine to make the test set “easier”.
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Fig. 5. Features used by the first stage of the range-and-intensity detector. The blue
(vertical) feature is a range feature; the red (horizontal) feature is an intensity feature.

We will now examine the cascade structure of the detectors, i.e. the number
of features used in each stage together with the detection rate and false-positive
rate for each stage (see Table 1).

The first thing that is noticeable is that the first stage of the range-and-
intensity detector achieves a false-positive rate of 0 on the validation set, i.e. the
false-positive rate was too small to measure on the validation set. When this
first stage was run on the set of full-frame test images, its false positive rate was
0.05%. In other words, the first stage already eliminates 99.95% of nonfaces. For
comparison, the first stages of the other two detectors had false-positive rates of
18.9% (intensity) and 7.1% (range).

To understand why the first stage of the range-and-intensity detector has such
good performance, consider Fig. 5, which shows the features used by this stage:
A vertical three-bar range feature and a horizontal three-bar intensity feature.
From the sample training image underlayed under the features, it is evident
that the range feature responds to the range difference between the face and
the background on either side; the intensity feature seems to respond to the
difference between the eye region (which is typically darker) and the forehead
and cheeks above and below (which are typically lighter).

The fact that the first stage achieves a false-positive rate of zero on the val-
idation set is problematic for computing the false-positive rate of the entire
cascade, which is used during training to decide when the detector has reached
its performance goal. To be able to compute an overall false-positive rate, we
conservatively assumed the false-positive rate for this stage to be 0.01; this as-
sumption is also used in the cumulative rates shown in the table. The assumed
rate of 0.01 is probably quite conservative and only affects the overall false-
positive rate computed during training, but not the selection of weak classifiers
or the false-positive rates computed on the test set.
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Table 2. Performance summary of the detectors on the various types of data. Detection
rates are given for a zero false-positive rate on the test set. Running times include
preprocessing (computation of the integral images).

Detector Detection rate Running time per frame

range + intensity 95.3% 5.15 ms
intensity 93.8% 10.69 ms
range 91.2% 5.51 ms

Turning to the number of features per stage, we note that, in most stages,
the range-and-intensity detector requires noticeably fewer features to reach its
target performance than the other two detectors. Also, note that the range-and-
intensity detector uses an approximately equal number of range and intensity
features in each stage (with a tendency to use slightly more intensity features
in the later stages). This indicates that the range and intensity data contribute
approximately the same amount of information to the face detection task.

Finally, we turn to the running times for the various detectors (Table 2). The
range-and-intensity detector is more than two times faster than the intensity-
only detector and slightly faster than the range-only detector. This reflects the
fact that the intensity-only detector uses more features than the other two de-
tectors in the first few cascade stages, which consume the most processing time.
Note when comparing the timings that the range-and-intensity detector needs
to perform twice the amount of preprocessing (computing the integral images
for both range and intensity) but still ends up faster. The table also summarizes
the detection rates achieved for a zero false-positive rate on the test set.

4 Discussion

We have shown that a face detector trained on the combined range and intensity
data from a TOF camera yields a higher detection rate (95.3%) than a detector
trained on either type of data alone (intensity: 93.8%, range: 91.2%). Further-
more, the range-and-intensity detector requires fewer features than the other two
detectors. This translates into faster running times: The range-and-intensity de-
tector is over twice as fast as the intensity-only detector and slightly faster than
the range-only detector (which misclassifies almost twice as many faces).

The data obtained by the TOF camera is in effect a two-channel image, where
one channel contains the range map and the other contains the intensity image.
If the TOF camera is combined with a grayscale or RGB camera operating in the
visible spectrum (as is the case in the 3DV Systems ZCam [11], for instance),
it would be straightforward to extend the method to the additional channels
obtained in this way.

The detector we used was a “stock” Viola-Jones face detector. Even better
results might be possible using features that are specifically tuned to the type of
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structures typically found in range images. One could also investigate the idea
of combining range and intensity information in a single feature. Additionally,
the many refinements that have been made to the Viola-Jones algorithm since
its inception could be incorporated.

However, we are not primarily interested in the maximum absolute perfor-
mance that a TOF face detector can achieve but rather in the relative difference
in performance between face detection on combined range and intensity data
versus either type of data alone. We believe that the advantage of the combined
range and intensity detector in terms of robustness and speed should be pre-
served when refinements are made to the underlying algorithms; whether this
indeed holds true is a question for future research.
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pp. 97–108 (2005)

10. Rowley, H.A., Baluja, S., Kanade, T.: Neural-network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)

11. ZCam: 3DV Systems, Yokne’am, Israel, http://www.3dvsystems.com.

http://www.3dvsystems.com


Author Index

Alexa, Marc 70

Balasubramanian, Shankkar 110
Bartczak, Bogumil 126
Barth, Erhardt 142, 167
Bleiweiss, Amit 58
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