
Optimizing MPI Runtime Parameter Settings by

Using Machine Learning�

Simone Pellegrini, Jie Wang, Thomas Fahringer, and Hans Moritsch

University of Innsbruck – Distributed and Parallel Systems Group
Technikerstr. 21A, 6020 Innsbruck, Austria

{spellegrini,wangjie,tf,hans}@dps.uibk.ac.at

Abstract. Manually tuning MPI runtime parameters is a practice com-
monly employed to optimise MPI application performance on a specific
architecture. However, the best setting for these parameters not only de-
pends on the underlying system but also on the application itself and its
input data. This paper introduces a novel approach based on machine
learning techniques to estimate the values of MPI runtime parameters
that tries to achieve optimal speedup for a target architecture and any
unseen input program. The effectiveness of our optimization tool is eval-
uated against two benchmarks executed on a multi-core SMP machine.

Keywords: MPI, optimization, runtime parameter tuning, multi-core.

1 Introduction

Existing MPI implementations allow the tuning of runtime parameters providing
system administrators, end-users and developers the possibility to customise the
MPI environment to suit the specific needs of applications, hardware or operating
environments. An example is the opportunity to change the semantics of point-
to-point communications in relation to the size of the message being transmitted.
According to a threshold (runtime parameter) value the library can use an eager
protocol when small messages are exchanged or the more expensive rendezvous
method for larger messages. A default setting, designed to be a good compromise
between functionalities and performance, is nevertheless provided by the MPI
library to allow easy deployment of MPI applications. Open MPI provides an
entire layer – called Modular Component Architecture (MCA) [1] – with the
purpose of providing a simple interface to tune the runtime environment. The
current development version of Open MPI has several hundred MCA runtime
parameters. This large number of configurable parameters makes the manual
tuning of the Open MPI environment particularly difficult and challenging.

Considering a subset of tunable runtime parameters, determining the values
that optimize the performance of an MPI program on a target system is not
trivial and can depend on several factors (e.g. number of nodes in a cluster, type

� This work is funded by the Tiroler Zukunftsstiftung under contract nr. P7030-015-
024.

M. Ropo et al. (Eds.): EuroPVM/MPI 2009, LNCS 5759, pp. 196–206, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Optimizing MPI Runtime Parameter Settings by Using Machine Learning 197

of network interconnection and layout and amount of shared cache in a single
node). This optimization problem is comparable with the selection of the opti-
mization sequence (usually expressed as a vector of flags) performed by modern
compilers. As the best sequence that reduces the execution time of a program
strongly depends on the underlying architecture, and because the definition of
effective cost models is not always feasible, feedback -driven iterative techniques
(also known as iterative compilation) have been employed [2]. The number of
possible settings (or configurations) of runtime parameters, and thus the cor-
responding optimization space, is too large to be manually explored. For these
reasons, tools have been developed in order to automate the process of evaluating
the execution of an MPI program considering numerous combinations/settings
of these parameters in order to find the one with the best execution time [3].
Even if the process is automated, the exhaustive exploration of the optimization
space could be very expensive in terms of time; and it makes sense only if the
cost of the optimization phase can be amortised over many runs of the program.

In this paper we introduce a mechanism to estimate optimal runtime param-
eter settings for MPI programs running on any hardware architecture. The ap-
proach is based on machine learning (ML) techniques which use specific knowl-
edge of the underlying system (acquired during an off-line training phase) to
build a predictor capable of estimating the best setting for a subset of runtime
parameters for any unseen MPI input program. A program is described by a set
of features extracted both statically by analysing the source code and dynami-
cally by profiling one run of the program. Although our approach is general, we
focus on the optimization of MPI applications running on a multi-core SMP node
as the increased deployment of multi-core systems in clusters makes intra-node
optimizations fundamental in the overall application performance [4]. As a result
of our work we show that despite the information used to describe a program
being rather simple, the estimated optimal settings of the runtime parameters
always outperform the default one and achieve, on average, around 90% of the
available performance improvement. Two ML algorithms (i.e. decision trees and
artificial neural networks) are used, and the accuracy of their prediction is eval-
uated against two different benchmarks: the Jacobi relaxation method [5] and
the Integer Sort (IS) benchmark of the Nas Parallel Benchmarks suite [6].

The rest of the paper is organised as follows. Section 2 depicts the impact of
runtime parameters. In Section 3, we introduce our machine learning framework,
decision trees and artificial neural networks. Section 4 presents the results and
accuracy of the optimal runtime parameter values prediction for the two bench-
marks. Section 5 discusses related work, and Section 6 concludes the paper with
some brief considerations and an outlook to future work.

2 Impact of Runtime Parameter Settings

The motivation behind our work is that the correct setting of runtime parameters
within an application and an architecture can result in a valuable performance gain
of the program itself. Exploring the entire optimization space for MPI applications

198 S. Pellegrini et al.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50 60 70 80

S
p

e
e

d
u

p

Configurations

Jacobi, matrix size 4096x4096 (float)

8 MPI Procs
16 MPI Procs
OMPI default

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 20 40 60 80 100

S
p

e
e

d
u

p

Configurations

NasBench IS, # Procs = 32

CLASS A
CLASS W

OMPI default

Fig. 1. Variation of the speedup of the Jacobi method (on the left) and IS bench-
mark (on the right) against combinations of the runtime parameters using different
communicator (for Jacobi) and problem (for IS) sizes

requires the execution of the same program using a large number of different con-
figurations which exponentially increases with the amount of runtime parameters
considered. Formally, we define a configuration (Cj) of a set of n runtime parame-
ters (p1, p2, . . . , pn) as a vector Cj = (c1,j , c2,j , . . . , cn,j) where ci,j is the value (a
buffer size or a threshold/flag value) associated with the parameter pi.

According to the particular program to optimize and the underlying architec-
ture a pre-selection of interesting tunable runtime parameters can be done. For
example, Open MPI’s MCA provides an entire framework for the optimization of
collective operations (i.e. coll). Although this module offers several parameters
to select which kind of algorithm to use or the maximum depth of the tree em-
ployed to perform reduction operations, it is not useful if the target application
does not contain collective operations.

Fig. 1 depicts the impact of the variation of 4 runtime parameters on the per-
formance of the Jacobi method and IS benchmark. The graph on the left com-
pares the speedup achieved by the Jacobi method (executed with 8 and 16 MPI
processes) considering several configurations. As the values of 4 different runtime
parameters are varied across configurations, vectors of parameter values have been
numbered in order to make a 2-dimensional representation possible. For the Ja-
cobi, configurations that achieve a high speedup using 8 processors turn to be very
inefficient when 16 processes are used (and vice-versa). In addition to the number
of processes being used, the problem size plays an important role. The graph on the
right in Fig. 1 shows the speedup achieved by the IS benchmark using two different
problem sizes (i.e. classes A and W) while varying the configuration of the runtime
parameters. None of the tested configurations outperforms the Open MPI default
for the small problem size (class W). However, for the larger problem size (class A)
some configurations achieve a performance gain of up to 18%.

2.1 Selection of Runtime Parameters

As the focus of our work is the performance optimization of MPI programs
running on a multi-core SMP machine, the optimization space can be reduced

Optimizing MPI Runtime Parameter Settings by Using Machine Learning 199

by selecting those parameters whose effects are relevant in a shared memory
system. Preliminary experiments have been conducted in order to determine the
set of parameters with high impact on the performance of MPI application. Four
parameters have been selected known to have a significant impact on point-to-
point and collective operations:

sm eager limit: threshold (in byte) which decides when the MPI library
switches from eager to rendezvous mode (for Send and Receive operations)

mpi paffinity alone: flag used to enable processor affinity (if enabled (1), each
MPI process is exclusively bound to a specific processor core)

coll sm control size: buffer size (in byte) chosen to optimize collective oper-
ations (usually sized according to the size of the shared cache)

coll tuned use dynamic rules: flag which enables dynamic optimization of
collective operations.

Considering a threshold value and a buffer size in the range of [29, . . . , 228] (a
total of 20 values if power of 2 values are considered) and 2 possible values for the
flags, the number of possible configurations generated by the variation of these
4 parameters is 202 ∗ 22 = 1600. The use of automatic iterative techniques for
finding the best configuration in this four-dimensional space for an application
with an execution time of 5 minutes would take around 5.5 days.

3 Using Machine Learning to Estimate Optimal
Configurations

The challenge is to develop a predictive model that analyses any MPI input
program, and according to the gained knowledge of how the target architecture
behaves, determines the values – for a set of pre-defined runtime parameters –
which achieve optimal speedup. As the prediction depends on the characteristics
of the input program and its input data, we define five program features (see
Table 1), extracted both statically and dynamically, which allow MPI programs
to be classified. Furthermore, the target system has to be described in order to
obtain a configuration of runtime parameters which is optimal for the underlying
architecture. The behaviour of a system is nevertheless non-trivial to model as
several variables (e.g. number of cores, amount of private/shared cache, memory
and network latency/bandwidth) must be considered; additionally, even with the
complete knowledge of the system, interactions between components can not be
described by simple analytical models.

To solve this problem, we use machine learning (ML) techniques; the main
idea is illustrated in Fig. 2. A set of training programs (described by program
features) is executed on the target architecture using several configurations of the
selected runtime parameters (see Section 2.1). Each program of the training set is
executed against a representative set of parameter configurations; the execution
time is measured and compared with the one obtained using the Open MPI’s
default parameter values (baseline). The resulting speedup, together with the
program features and the current configuration, is stored and used to train a

200 S. Pellegrini et al.

Fig. 2. Training and use of the predictor

predictor. This phase, also known as training or learning phase, is executed off-
line and it must be repeated every time the target architecture changes (or when
a prediction for a different system is needed). During the optimization phase,
when an unseen MPI input program is presented to the predictor, its program
features are extracted and used to determine the configuration which optimizes
the execution time of the input program.

We use two standard machine learning techniques, Decision Trees [7] and
Artificial Neural Networks [8]. The construction of the two ML-based predictors
is compared and their accuracy is evaluated using two different benchmarks (i.e.
Jacobi method and IS). This section continues by describing the three key phases
of our approach: (i) MPI program characterisation, (ii) generation of training
data and (iii) prediction model construction.

3.1 Characterising MPI Programs

A program is described by a set of features which is extracted both statically
and dynamically. As the runtime parameters only affect the communication be-
tween processes, a program is described by analysing its MPI statements. The
communication pattern, amount of exchanged data and the communicator size
are extracted from any MPI program by instrumenting and tracing its execution
once. Table 1 displays the features used to characterise the behaviour of MPI
programs.

The set of program features considered in this paper is relatively small as
our goal is to evaluate the suitability of machine learning techniques for the
estimation of MPI runtime parameter values. Furthermore, as the training set
is designed in accordance with program features (see Section 3.2), this char-
acterisation enables a fast training phase. In Section 4 we show that even if
the program characterisation is rather simple, the predicted configurations of
the runtime parameters achieve, on average, 90% of the available performance
improvement.

Optimizing MPI Runtime Parameter Settings by Using Machine Learning 201

Table 1. MPI program features

coll ratio ratio between the amount of collective operations and the total
number of communication operations

coll data average amount of data exchanged in collective operations
p2p ratio ratio between the amount of point-to-point operations and the

total number of communication operations
p2p data average amount of data exchanged in point-to-point operations
comm size number of processes involved in the communication

3.2 Generating Training Data

According to the defined program features, we designed a training set of micro-
benchmarks with the purpose of generating training data. The training-set is
composed of three micro-benchmarks: p2p, coll and mixed.

p2p: measures the execution time of a synchronous send/recv operation be-
tween two processes using different message sizes

coll: measures the execution time of a collective operation, alltoall, varying
the communicator and message sizes

mixed: mixes point-to-point and collective operations varying the message and
communicator sizes

The three training programs have been executed on our target architecture using
several configurations of the 4 selected runtime parameters. Each configuration
was executed 10 times, and the mean value of the measured execution time has
been used to calculate the speedup. The resulting set of training data contains
around 3000 instances.

3.3 Predictor Model Construction

The training data is stored in a repository (also called known behaviour in Fig. 2),
and each entry is encoded as a vector of 10 values:

{(f1,j, . . . , f5,j), (c1,k, . . . , c4,k), speedup}

Each vector represents the speedup achieved by one of the training programs
whose i-th feature values fi,j and was executed using ci,k as the value of the i-th
runtime parameter. The known behaviour is used to build two predictor models
based on different machine learning algorithms.

Decision Trees. We use REPTree, a fast tree learner which uses reduced-error
pruning and can build a regression tree [7], to train a predictor from the reposi-
tory data. The speedups, together with program features (fi,j) and runtime pa-
rameter (ci,k) values are used to model the input/output relationship in the form
of if-then rules. The constructed decision tree is able to estimate the speedup of

202 S. Pellegrini et al.

a program (described by its feature Fi) running with a specific configuration Cj

of the runtime parameters. A formal representation can be given as follows: let dt
be the decision tree model, the predicted speedup S = dt(Fi, Cj). For a specific
input program Fx, the best configuration of the runtime parameters Cbest would
be the one with the highest predicted speedup Smax = dt(Fx, Cbest).

Artificial Neural networks. Artificial Neural Networks (ANNs) [8] are a class
of machine learning models that can map a set of input values to a set of target
values [9]. We use ANNs because are robust to noise and they have been suc-
cessfully used in modeling both linear and non-linear regression problems [9]. As
opposed to decision tree model, ANNs are trained only using the configurations
of runtime parameters with the best speedup for each distinct vector of program
features. Its input/output relationship can be described as follows: let ann be
the ANN model, Cbest = ann(Fx). A three-layer feed-forward back-propagation
network [8] is used and the ANN structure with the best performance for our
problem is chosen as below. The hidden layer of the network contains 10 neurons
and the the transfer function is hyperbolic tangent sigmoid, for the output layer
the logarithmic sigmoid function has been used.

4 Experimental Results

In this section we evaluate the accuracy of the two predictors based respectively
on decision trees and neural networks for the Jacobi method and IS benchmark.
To run the experiments we used a 32-cores Sun X4600 M2 server with AMD
Opteron 8356 (Barcelona) processors. In this system there are 8 sockets with
one processor each. Each chip contains, there are four cores – with private L1
and L2 cache (512 KB) – which share an L3 cache of 2 MB. The system runs
CentOS version 5 (kernel 2.6.18) 64 bits and the Open MPI version used is 1.2.6
(compiled with gcc-4.1.2). We use Weka’s implementation of REPTree [7] and
Matlab’s Neural Network Toolbox [10] for training the ANN-based model.

4.1 Jacobi Relaxation Method

The considered Jacobi implementation uses a 2-dimensional matrix split where
the rows are exchanged synchronously between neighbour processes. At the end
of each iteration, a reduce operation is performed to calculate the residual error.
The values of the program features associated to the Jacobi implementation are
the following. As in each iteration a process performs 4 point-to-point opera-
tions (i.e. 2 sends and 2 receives) and only one collective operation (i.e. reduce)
coll ratio and p2p ratio can be statically evaluated respectively as 4/5 = 0.8
and 1/5 = 0.2 (which means that 80% of the communication time is spent in
point-to-point operations and the remaining 20% in collective ones). The value
p2p data is the size of the exchanged row and thus depends on the problem
size. The Jacobi method has been executed considering different matrix sizes
and varying the number of MPI processes (8, 16 and 32).

Optimizing MPI Runtime Parameter Settings by Using Machine Learning 203

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 10 20 30 40 50 60 70 80

S
p
e
e
d
u
p

Configurations

Jacobi 2048x2048, 8 MPI Procs

Measured
Prediction

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 5 10 15 20 25 30 35 40 45 50

S
p
e
e
d
u
p

Configurations

IS CLASS = A, NPROCS = 32

Measured
Prediction

Fig. 3. Predicted and measured speedup using REPTree

The result of the predictor based on decision trees is depicted in Fig. 3. The
graph on the left compares the predicted and measured speedup for the Jacobi
method using 8 processes (because of space limits predictions for 16 and 32 pro-
cesses are not shown). As stated in the previous sections, the decision tree-based
predictor is capable of estimating the speedup of a program running with a spe-
cific configuration of the runtime parameters. In order to obtain the best setting,
the predictor is queried several times using different values of the runtime param-
eters. The configuration with the highest predicted speedup contains the best
runtime parameter settings for the Jacobi method on the target architecture.
For example, in Fig. 3 the highest predicted speedup is 1.305 which corresponds
to configuration number 46 (the respective values of the runtime parameters are
{262144,1,262144,0}); its measured speedup is 2.3. The best possible speedup
achieved by Jacobi is for configuration number 68 (i.e. {32768,1,2097152,1}),
with a value of 2.48. Therefore, in this case, the trained decision tree predicts
a configuration that gives 95% of the maximum possible performance improve-
ment. The structure of the decision tree built from training data is depicted in
Fig. 4. Because of space limit, the model has been simplified reducing the depth
from 11 to 3. The impact of a specific feature/parameter on the value of speedup
(represented in leafs) depends from its depth in the tree.

The results of the neural network-based predictor are depicted in Table 2. The
table shows Jacobi’s features vector followed by the configuration of the runtime
parameters that gives the best speedup (for the particular feature vector) fol-
lowed by the predicted best configuration with the respective measured speedup.
The speedup achieved by the predicted configurations achieve on average 94%
of the available speedup.

4.2 Integer Sort (IS)

The characterisation of the IS benchmark has been performed by instrumenting
the source code and tracing one run for each problem size (i.e. class A and
B). The core routine of the benchmark contains calls to MPI Alltoallv and
MPI Allreduce operations. As our classification makes no distinction between

204 S. Pellegrini et al.

Fig. 4. Decision tree derived from the training data (depth = 3)

the two, the program has been characterised with coll ratio = 1 (i.e. 100%
of collective operations). The amount of data exchanged by the MPI alltoallv
operation depends on both the problem and the communicator size.

The result of the prediction based on REPTree for problem size A using
32 processes is depicted on the right of Fig. 3. For this benchmark, the pre-
dicted best configuration achieves around 84% of the maximum speedup. The
mpi paffinity alone parameter value plays a key role in this benchmark, con-
figurations with the flag value set to 0 always have better performance com-
pared to the ones where the flag is activated (this behaviour can be observed
in the graph comparing the speedup of two consecutive configurations). How-
ever, the predictor fails to correctly estimate the effect of the parameter on
the speedup as the configurations where the affinity flag is equal to 1 are pre-
dicted to be faster. The other runtime parameter that clearly has effects on the
speedup is the sm eager limit threshold. As the considered problem size re-
quires to exchange around 32 KB of data among the processes, setting a value
of 32 KB for the threshold (from configuration number 22) forces the library
use the eager protocol instead of the more expensive rendezvous. This effect
is correctly estimated by the predictor as the returned best configuration is
{32768,1,2048,1}.

In table 2, the accuracy of the ANN-based predictor is depicted. As for decision
trees, the prediction of the affinity flag is wrong and the accuracy of the two pre-
dictors is comparable. The wrong prediction of the affinity bit can be explained
considering the workload of the IS benchmark. As intra-chip communication
is faster than inter-chip communication in our test system and because of the
nature of the training set (based on point-to-point and collective operations),
the trained predictor always turns on the affinity (see predicted configurations
in Table 2). However, in computation-bound scenarios, affinity scheduling can
cause performance degradation due to the limited amount of shared cache and
available memory bandwidth per chip.

Optimizing MPI Runtime Parameter Settings by Using Machine Learning 205

Table 2. Best measured and predicted configurations using ANN

Jacobi Method

Feature Vector Best conf. speedup Predicted conf. speedup

0.2,1,0.8,1024, 8 32768,1, 512,1 3.83 65536,1, 32768,1 3.74
0.2,1,0.8,1024,16 262144,1, 512,0 1.09 2048,1, 512,0 1.02

0.2,1,0.8,2048, 8 32768,1,2097152,1 2.48 65536,1, 32768,0 2.36
0.2,1,0.8,2048,16 262144,0, 262144,0 1.09 262144,1, 512,0 1.03

0.2,1,0.8,4096, 8 32768,1, 512,0 1.76 32768,1, 32768,0 1.57
0.2,1,0.8,4096,16 262144,1, 262144,0 1.09 512,1,2097152,0 1.03

Integer Sort Benchmark

Feature Vector Best conf. speedup Predicted conf. speedup

1, 262400,0,0,32 32768,0,512,1 1.18 32768,1,32768,0 1.14

1,1024000,0,0,32 32768,0,512,1 1.07 65536,0, 8192,0 1.03

5 Related Work

Most of the work about optimization of MPI applications focuses on collective
operations. STAR-MPI (Self Tuned Adaptive Routines for MPI collective opera-
tions) [11], provides several implementations of the collective operation routines
and it dynamically selects the best performing algorithm (using an empirical
technique) for the application and the specific platform. Jelena et al. [12] also
address the same problem by using machine learning techniques (decision trees).
Compared to our work, these approaches are less general as the optimization is
only limited to collective operations. Furthermore, the significant overhead intro-
duced by the dynamic optimization environment makes these tools not suitable
for short-running MPI programs.

The only work in literature that is comparable with our approach is OPTO [3].
OTPO systematically tests large numbers of combinations of Open MPI’s run-
time parameters for common communication patterns and performance metrics
to determine the best set for a specific benchmark under a given platform. Differ-
ently from our approach, OPTO needs several runs of the application in order to
find the optimal set of the runtime parameters and the search process is helped
by configuration files provided by the user which specify the combinations and
the parameter values that should be tested by the tool.

6 Conclusions and Future Work

This paper presents a novel approach to optimize MPI runtime environments
for any application running on a target architecture. We build two predictors
(based on machine learning techniques) capable of estimating the values, of a
subset of Open MPI runtime parameters, which optimize the performance of
unseen input programs for the underlying architecture. In contrast to existing
optimization tools, our predictor needs only one run of the input program and
no additional knowledge has to be provided by the user. No runtime overhead is

206 S. Pellegrini et al.

introduced as the model is built and trained off-line. Experiments demonstrate
that the predicted optimal settings of runtime parameter for different programs
achieve on average 90% of the maximum performance gain.

Future work will consider a better characterisation of MPI programs to im-
prove the quality of the prediction (e.g. by introducing the computation-to-
communication ratio to predict the affinity flag). Furthermore, we will apply our
predictor to other hardware configurations (e.g. clusters of SMPs).

References

1. Open MPI: Modular Component Architecture, http://www.open-mpi.org
2. Bodin, F., Kisuki, T., Knijnenburg, P., O’Boyle, M., Rohou, E.: Iterative Compi-

lation in a Non-Linear Optimisation Space. In: Proceedings of the Workshop on
Profile Directed Feedback-Compilation (October 1998)

3. Chaarawi, M., Squyres, J.M., Gabriel, E., Feki, S.: A tool for optimizing runtime
parameters of open mpi. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.) Eu-
roPVM/MPI 2008. LNCS, vol. 5205, pp. 210–217. Springer, Heidelberg (2008)

4. Chai, L., Lai, P., Jin, H.W., Panda, D.K.: Designing an efficient kernel-level and
user-level hybrid approach for mpi intra-node communication on multi-core sys-
tems. In: ICPP 2008: Proceedings of the 2008 37th International Conference on
Parallel Processing, Washington, DC, USA. IEEE Computer Society Press, Los
Alamitos (2008)

5. Meijerink, J.A., Vorst, H.A.v.d.: An iterative solution method for linear systems
of which the coefficient matrix is a symmetric m-matrix. Mathematics of Compu-
tation 31(137), 148–162 (1977)

6. der Wijngaart, R.F.V.: Nas Parallel Benchmarks Version 2.4. Technical Report
NAS-02-007, Computer Science Corporation NASA Advanced Supercomputing
(NAS) Division (October 2002)

7. Ian, H., Witten, E.F.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Elsevier, Amsterdam (2005)

8. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1996)

9. Ipek, E., Supinski, B.R., Schulz, M., Mckee, S.A.: An Approach to Performance
Prediction for Parallel Applications. In: Euro-Par Parallel Processing (2005)

10. Matlab: Neural Network Toolbox,
http://www.mathworks.com/products/neuralnet/

11. Faraj, A., Yuan, X., Lowenthal, D.: Star-mpi: self tuned adaptive routines for mpi
collective operations. In: ICS 2006: Proceedings of the 20th annual international
conference on Supercomputing, pp. 199–208. ACM, New York (2006)

12. Fagg, G.E., Angskun, T., Bosilca, G., Dongarra, J.J.: Decision trees and mpi col-
lective algorithm selection problem (2006)

http://www.open-mpi.org
http://www.mathworks.com/products/neuralnet/

	Optimizing MPI Runtime Parameter Settings by Using Machine Learning
	Introduction
	Impact of Runtime Parameter Settings
	Selection of Runtime Parameters

	Using Machine Learning to Estimate Optimal Configurations
	Characterising MPI Programs
	Generating Training Data
	Predictor Model Construction

	Experimental Results
	Jacobi Relaxation Method
	Integer Sort (IS)

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

