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Preface

It was an honor and a pleasure to organize the 13th International Conference on
Computer Analysis of Images and Patterns (CAIP 2009) in Münster, Germany.

CAIP has been held biennially since 1985: Berlin (1985), Wismar (1987),
Leipzig (1989), Dresden (1991), Budapest (1993), Prague (1995), Kiel (1997),
Ljubljana (1999), Warsaw (2001), Groningen (2003), Paris (2005), and Vienna
(2007). Initially, this conference series served as a forum for getting together sci-
entists from East and West Europe. Nowadays, CAIP enjoys a high international
visibility and attracts participants from all over the world.

For CAIP 2009 we received a record number of 405 submissions. All papers
were reviewed by two, and in most cases, three reviewers. Finally, 148 papers
were selected for presentation at the conference, resulting in an acceptance rate
of 36%. All Program Committee members and additional reviewers listed here
deserve a great thanks for their timely and competent reviews. The accepted
papers were presented either as oral presentations or posters in a single-track
program. In addition, we were very happy to have Aljoscha Smolic and David G.
Stork as our invited speakers to present their work in two fascinating areas. With
this scientific program we hope to continue the tradition of CAIP in providing
a forum for scientific exchange at a high quality level.

A successful conference like CAIP 2009 would not be possible without the
support of many institutions and people. First of all, we like to thank all the
authors of submitted papers and the invited speakers for their contributions.
The Steering Committee members were always there when advice was needed.
The Publicity Chair, Dacheng Tao, and many colleagues helped to promote the
conference, which resulted in the large number of submissions as the basis for the
excellent scientific program. We are grateful to our sponsors for their direct and
indirect financial support. Also, the cooperation with Münster City Marketing
was very pleasant and helpful. Finally, many thanks go to the members of the
Local Organizing Committee.

We like to thank Springer for giving us the opportunity of continuing to
publish CAIP proceedings in the LNCS series.

Founded in 793, Münster belongs to the historical cities of Germany. It is
most famous as the site of signing the Treaty of Westphalia ending the Thirty
Years’ War in 1648. Today, it is acknowledged as a city of science and learning
(and the capital city of bicycles, Germany’s Climate Protection Capital, and
more). With its almost 40,000 students, the University of Münster is among the
largest universities in Germany. It was our great pleasure to offer the participants
the platform in this multi-faceted city for a lively scientific exchange and many
other relaxed hours. Finally, to the readers of this proceedings book: enjoy!

September 2009 Xiaoyi Jiang
Nicolai Petkov
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Ángel Rodŕıguez
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Abstract. An overview of 3D video and free viewpoint video is given in this 
paper. Free viewpoint video allows the user to freely navigate within real world 
visual scenes, as known from virtual worlds in computer graphics. 3D video 
provides the user with a 3D depth impression of the observed scene, which is 
also known as stereo video. In that sense as functionalities, 3D video and free 
viewpoint video are not mutually exclusive but can very well be combined in a 
single system. Research in this area combines computer graphics, computer vi-
sion and visual communications. It spans the whole media processing chain 
from capture to display and the design of systems has to take all parts into  
account. The conclusion is that the necessary technology including standard 
media formats for 3D video and free viewpoint video is available or will be 
available in the future, and that there is a clear demand from industry and user 
side for such new types of visual media.  

Keywords: 3D video, free viewpoint video, MPEG, 3DTV. 

1   Introduction 

Convergence of technologies from computer graphics, computer vision, multimedia 
and related fields enabled the development of new types of visual media, such as 3D 
video (3DV) and free viewpoint video (FVV) that expand the user’s sensation beyond 
what is offered by traditional 2D video [1]. 3DV, also referred to as stereo, offers a 
3D depth impression of the observed scenery, while FVV allows for an interactive 
selection of viewpoint and direction within a certain operating range, as known from 
computer graphics. Both do not exclude each other. In contrary, they can be very well 
combined within a single system, since they are both based on a suitable 3D scene 
representation (see below). In other words, given a 3D representation of a scene, if a 
stereo pair corresponding to the human eyes can be rendered, the functionality of 
3DV is provided. If a virtual view (i.e., not an available camera view) corresponding 
to an arbitrary viewpoint and viewing direction can be rendered, the functionality of 
FVV is provided. The ideal future visual media system will provide full FVV and 
3DV at the same time. In order to enable 3DV and FVV applications, the whole proc-
essing chain, including acquisition, sender side processing, 3D representation, coding, 
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transmission, rendering and display need to be considered. The 3DV and FVV proc-
essing chain is illustrated in Fig. 1. The design has to take all parts into account, since 
there are strong interrelations between all of them. For instance, an interactive display 
that requires random access to 3D data will affect the performance of a coding 
scheme that is based on data prediction. 

 

Fig. 1. 3DV and FVV processing chain 

2   3D Scene Representation 

The choice of a 3D scene representation format is of central importance for the design 
of any 3DV or FVV system [2]. On the one hand, the 3D scene representation sets the 
requirements for acquisition and signal processing on sender side, e.g. the number and 
setting of cameras and the algorithms to extract the necessary data types. On the other 
hand, the 3D scene representation determines the rendering algorithms (and with that 
also navigation range, quality, etc.), interactivity, as well as coding and transmission. 

In computer graphics literature, methods for 3D scene representation are often 
classified as a continuum in between two extremes as illustrated in Fig. 2 [3]. These 
principles can also be applied for 3DV and FVV. The one extreme is represented by 
classical 3D computer graphics. This approach can also be called geometry-based 
modeling. In most cases scene geometry is described on the basis of 3D meshes. Real 
world objects are reproduced using geometric 3D surfaces with an associated texture 
mapped onto them. More sophisticated attributes can be assigned as well. For in-
stance, appearance properties (opacity, reflectance, specular lights, etc.) can signifi-
cantly enhance the realism of the models.  

The other extreme in 3D scene representations in Fig. 2 is called image-based 
modeling and does not use any 3D geometry at all. In this case virtual intermediate 
views are generated from available natural camera views by interpolation. The main 
advantage is a potentially high quality of virtual view synthesis avoiding any 3D 
scene reconstruction. However, this benefit has to be paid by dense sampling of the 
real world with a sufficiently large number of natural camera view images. In general, 
the synthesis quality increases with the number of available views. Hence, typically a 
large amount of cameras has to be set up to achieve high-performance rendering, and 
a tremendous amount of image data needs to be processed therefore. Contrariwise, if 
the number of used cameras is too low, interpolation and occlusion artifacts will ap-
pear in the synthesized images, possibly affecting the quality. 

In between the two extremes there exists a number of methods that make more or 
less use of both approaches and combine the advantages in some way. Some of these 
representations do not use explicit 3D models but depth or disparity maps. Such maps 
assign a depth value to each pixel of an image (see Fig 5). 
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Fig. 2. 3D scene representations for 3DV and FVV 

3   Acquisition 

In most cases 3DV and FVV approaches rely on specific acquisition systems. Al-
though automatic and interactive 2D-3D conversion (i.e. from 2D video to 3DV or 
FVV) is an important research area for itself. Most 3DV and FVV acquisition systems 
use multiple cameras to capture real world scenery [4]. These are sometimes  
combined with active depth sensors, structured light, etc. in order to capture scene 
geometry. The camera setting (e.g. dome type as in Fig. 3) and density (i.e. number of 
cameras) impose practical limitations on navigation and quality of rendered views at a 
certain virtual position. Therefore, there is a classical trade-off to consider between 
costs (for equipment, cameras, processors, etc.) and quality (navigation range, quality 
of virtual views). Fig. 3 illustrates a dome type multi camera acquisition system and 
captured multi-view video. Such multi-view acquisition is an important and highly 
actual research area [4]. 

 

Fig. 3. Multi-camera setup for 3DVO acquisition and captured multi-view video 

4   Sender Side Processing 

After acquisition, the necessary data as defined by the 3D representation format have 
to be extracted from the multiple video and other captured data. This sender side 
processing can include automatic and interactive steps; it may be real-time or offline. 
Content creation and post processing are included here. Tasks may be divided into 
low-level computer vision algorithms and higher-level 3D reconstruction algorithms. 

Low-level vision may include algorithms like color correction, while balancing, 
normalization, filtering, rectification, segmentation, camera calibration, feature 
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extraction and tracking, etc. 3D reconstruction algorithms include for instance depth 
estimation and visual hull reconstruction to generate 3D mesh models. A general 
problem of 3D reconstruction algorithms is that they are estimations by nature. The 
true information is in general not accessible. Robustness of the estimation depends 
on many theoretical and practical factors. There is always a residual error probabil-
ity which may affect the quality of the finally rendered output views. User-assisted 
content generation is an option for specific applications to improve performance. 
Purely image-based 3D scene representations do not rely on 3D reconstruction algo-
rithms, and therefore do not suffer from such limitations. 

Fig. 4 illustrates different steps of a 3D reconstruction pipeline. This includes vis-
ual hull reconstruction, surface extraction, surface smoothing, and mesh simplifica-
tion [5]. Fig. 5 illustrates video and associated per pixel depth data. 

 

Fig. 4. Different steps of 3D reconstruction 
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Fig. 5. Video and associated per pixel depth data 

5   Coding, Transmission, Decoding 

For transmission over limited channels 3DV and FVV data have to be compressed 
efficiently. This has been widely studied in literature and powerful algorithms are 
available [6]. International standards for content formats and associated coding tech-
nology are necessary to ensure interoperability between different systems. ISO-MPEG 
and ITU-VCEG are international organizations that released a variety of important 
standards for digital media including standards for 3DV and FVV. Classical 2-view 
stereo is already supported by MPEG-2 since the mid 90ies. Current releases of the 
latest video coding standard H.264/AVC also include a variety of highly efficient 
modes to support stereo video. This easily extends to multi-view video coding (MVC) 
with inter-view prediction, a recently released extension of H.264/AVC, which is illus-
trated in Fig. 6 [7]. It is the currently most efficient way to encode 2 or more videos 
showing the same scenery from different viewpoints. 
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Fig. 6. Multi-view video coding (MVC) 

Video plus depth as illustrated in Fig. 5 is already supported by a standard known 
as MPEG-C Part 3. It is an alternative format for 3DV that requires view synthesis at 
the receiver (see next section). Video plus depth supports extended functionality com-
pared to classical 2-view stereo such as baseline adaptation to adjust depth impression 
to different displays and viewing preferences [8]. Currently MPEG prepares a new 
standard that will provide even more extended functionalities by using multi-view 
video plus depth or layered depth video [9]. 

Different model-based or 3D point cloud representations for FVV are supported by 
various tools of the MPEG-4 standard. Fig. 7 illustrates coding and multiplexing of 
dynamic 3D geometry, associated video textures and auxiliary data [10]. 

 

Fig. 7. Coding and multiplexing of dynamic 3D geometry, associated video textures and 
auxiliary data 

6   Rendering 

Rendering is the process of generation of the final output views from data in the 3D 
representation format. Fig. 8 illustrates an interactive 3D scene with a FVV object 
included. The scene further includes a 360° panorama and a computer graphics object. 
In this case rendering is done by classical computer graphics methods. The user can 
navigate freely and watch the dynamic scene from any desired viewpoint and viewing 
direction. 

Fig. 9 illustrates virtual intermediate view synthesis by 3D warping from multiple 
video plus depth data. Any desired view in between available camera views can be 
generated this way to support free viewpoint navigation and advanced 3DV function-
alities [11]. For instance a multi-view auto-stereoscopic display can be supported 
efficiently by rendering 9, 16 or more views from a limited number of multi-view 
video plus depth data (e.g. 2 or 3 video and depth streams). 
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Fig. 8. Integrated interactive 3D scene with FVV 

 

Fig. 9. Intermediate view synthesis from multiple video and depth data 

7   Display 

Finally the rendered output views are presented to the user on a display. FVV requires 
interactive input from the user to select the viewpoint. This can be done by classical 
devices like mouse or joystick. Some systems also track the user (head or gaze) em-
ploying cameras and infrared sensors. 

In order to provide a depth impression 2 or more views have to be presented to the 
user appropriately at the same time using a specific 3D display. Such 3D displays 
ensure that the user perceives a different view with each eye at a time, by filtering the 
displayed views appropriately. If it is a proper stereo pair, the brain will compute a 3D 
depth impression of the observed scene. 

Currently, various types of 3D displays are available and under development [12]. 
Most of them use classical 2-view stereo with one view for each eye and some kind of 
glasses (polarization, shutter, anaglyph) to filter the corresponding view. Then there 
are so called multi-view auto-stereoscopic displays which do not require glasses. 
Here, 2 or more views are displayed at the same time and a lenticular sheet or parallax 
barrier element in front of the light emitters ensures correct view separation for the 
viewer’s eyes. 

Fig. 10 illustrates a 2-view auto-stereoscopic display developed by Fraunhofer 
HHI, which does not require wearing glasses. 2 views are displayed at a time and a 
lenticular sheet projects them into different directions. A camera system tracks the  
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Fig. 10. Auto-stereoscopic display made by Fraunhofer HHI 

user’s gaze direction. A mechanical system orients the display within practical limits 
according to the user’s motion and ensures proper projection of left and right view 
into direction of the corresponding eye. 

8   Summary and Conclusions 

This paper provided an overview of 3DV and FVV. It is meant to be supplemental 
material to the invited talk at the conference. Naturally, different aspects were sum-
marized briefly. For more details the reader is referred to the publications listed be-
low. 

3DV and FVV were introduced as extended visual media that provide new func-
tionalities compared to standard 2D video. Both can very well be provided by a single 
system. New technology spans the whole processing chain from capture to display. 
The 3D scene representation is determining the whole system. Technology for all the 
different parts is available, maturating and further emerging. 

Growing interest for such applications is noticed from industry and users. 3DV is 
well established in cinemas. E.g. Hollywood is producing more and more 3D movies. 
There is a strong push from industry to bring 3DV also to the home, e.g. via Blu-ray 
or 3DTV. FVV is established as post-production technology. FVV end-user mass 
market applications are still to be expected for the future. 
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Abstract. In the past few years, a number of scholars trained in com-
puter vision, pattern recognition, image processing, computer graphics,
and art history have developed rigorous computer methods for addressing
an increasing number of problems in the history of art. In some cases,
these computer methods are more accurate than even highly trained
connoisseurs, art historians and artists. Computer graphics models of
artists’ studios and subjects allow scholars to explore “what if” scenar-
ios and determine artists’ studio praxis. Rigorous computer ray-tracing
software sheds light on claims that some artists employed optical tools.
Computer methods will not replace tradition art historical methods of
connoisseurship but enhance and extend them. As such, for these com-
puter methods to be useful to the art community, they must continue
to be refined through application to a variety of significant art historical
problems.

Keywords: pattern recognition, computer image analysis, brush stroke
analysis, painting analysis, image forensics, compositing, computer graph-
ics reconstructions.

1 Introduction

There is a long history of the use of sophisticated imaging and, in the past several
decades digital imaging, in the study of art. [1] Shortly after the 19th-century
discovery of x-rays such rays were used to reveal underdrawings and pentimenti.
Later, infra-red photography and reflectography were exploited to similar ends;
multispectra, fluoroesence and ultra-violet imaging have become a widespread,
and used in revealing pigment composition and more. [2, 3,4, 5]

In such techniques, the resulting image is generally interpretted by an art
scholar. In the past few years, however, we have entered a new era: one where
some of the image interpretation relies in great part upon sophisticated algo-
rithms developed from computer vision, the discipline seeking to make comput-
ers “see.” [6,7] In some circumstances, computers can analyze certain aspects of
perspective, lighting, color, the subtleties of the shapes of brush strokes better

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 9–24, 2009.
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than even a trained art scholar, artist, or connoisseur. Rather than replacing con-
noisseurship, these methods—like other scientific methods such as imaging and
material studies [8]—hold promise to enhance and extend it, just as microscopes
extend the powers of biologists.

The source of the power of these computer methods arises from the following:

– The computer methods can rely on visual features that are hard to determine
by eye, for instance subtle relationships among the structure of a brush stroke
at different scales or colors, as in Perugino’s Holy family, or lighting in de
la Tour’s Christ in the carpenter’s studio, or perspective anomalies in van
Eyck’s Arnolfini portrait.

– The computer methods can abstract information from lots of visual evidence,
for example, in principle every brush stroke executed by van Gogh and his
contemporaries—a wealth of information that few scholars even experience,
much less fully exploit.

– Computer methods are objective—which need not mean they are “superior”
to subjective methods, but rather promise to extend the language of to
include terms that are not highly ambiguous. While today an art historian
may describe a brush stroke as “bold” or “tentative” or “fluid” someday this
scholar may also use technical terms and mathematical measures derived
from computer image analysis, terms that other scholars will understand as
well.

– Rigorous computer graphics techniques can reveal new three-dimensional
views based on two-dimensional artwork, and provide new views into
tableaus by dewarping the images reflected in mirrors depicted within a
painting.

This brief paper lists some of these new computer techniques and how they have
been used in the study of art. The set of topics and reference works here is by
no means complete but is meant to show art scholars the power of these method
and to encourage art scholars to propose new art historical problems amenable
to attach through computer methods. [9, 10, 11, 12, 13, 14] We shall not consider
many other areas of computer use in arts, for instance computer art databases
and retrieval, nor the task of imaging of art—the lighting, spectral filtering,
exposure, and so on. Instead, we focus on the application of computer vision,
image analysis and computer graphics algorithms to process and understand
digital images of scanned art, particularly paintings and drawings.

We begin by describing traditional point- or pixel-based processes such as color
adjustment, then consider algorithms based on a number of pixels in a digital
image of a painting, and then successively more complex methods of high-level
computer vision and graphics, such as dewarping, perspective analysis, lighting
analysis, and three-dimensional computer modelling.

2 Point-Based Procedures

Here and below we assume we have a digital image of a painting or drawing,
the format required for computer analysis. The conceptually simplest class of
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computer image methods in the study of art are point- or pixel-based processing,
that is, methods to alter the color and brightness of each pixel based solely on the
color of that pixel. Such algorithms are better described as image processing than
as image analysis. [15, 16] Multispectral imaging and processing has been used
for pigment analysis, color rejuvenation and predicting the effects of curatorial
treatment. [17, 18, 19, 20, 21, 22] Pixel-based image processing has been used to
adjust the relative weights of different spectral bands to enhance readability, [23]
as in the Archimedes palimpsest, [24, 25, 26, 27, 28] and to reveal details and
structure in art that otherwise difficult to discern by the unaided eye. [29]

The range of light intensities in the natural world—from a darkened room to
bright sunlight—spans as much as a factor of 1014 while the dynamic range in
oil painting might be a factor of merely 102, even in the works of Caravaggio, de
la Tour, Joseph Wright of Derby and others who exploited chiaroscuro. As such
all artists must compress the luminance range in their works. [30] Graham and
Field explored the nonlinear compression of the dynamic range in several classes
of realist art work, a process that is based on the individual pixel values. [31,32]

3 Area-Based Procedures

A very large class of image processing algorithms involve filtering a source image,
where the color or grayscale value of a pixel is a function of the values of pixels
in an area or region of the input image. In linear filtering the output value (color
or gray level) is a linear combination of the values of the input pixels, while in
non-linear filtering allows arbitrary functions of the input pixels. Typically the
input image is a photograph of a painting and the output image a digital image
processed to reveal some properties that are difficult to discern by unaided eye.
Such filtering can remove gradual variations in the color across a painting and
leave or even enhance the edges or contours as, for instance, the (nonlinear)
Canny edge detector. [33,34,35] The Chamfer transform (or distance transform)
is useful for quantifying similarity or difference between two shapes, for example
when testing the fidelity that artists can achieve using different copying methods.
[36, 37]

Another class of non-linear filters are the morphological operators. Such op-
erators are generally used on binary (black and white) images rather than color
or grayscale, where the shape (rather than the color) is the matter of interest.
For example, a skeletonization operator yields a single-pixel-wide curve down the
center of a black brush stroke, regardless of the varying width of the stroke. [38]
Other popular morphological operators implement erosion, dilation, opening and
closing. For instance, Stork, Meador and Noble compared the shapes of differ-
ent passages of brick work in a painting from the Dutch Golden Age despite
variations and irregularities in the width of the painted lines. To this end they
preprocessed a high-resolution photograph of the painting using a morphologi-
cal filter to create an image where the mortar lines were of uniform thickness.
They then computed the cross-correlation of this image to search for repeated
patterns. [39, 33]
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4 Perspective Analysis

The analysis of perspective, scale and geometry has a long and important his-
tory in the study of realist art, particularly in art history of the Renaissance. [40]
Most of these analytic methods involve simple drawing of perspective lines, finding
horizon lines, vanishing points, and so on and can be done without computers. Re-
cently, however, a number of sophisticated computer-based methods for analysis of
perspective and geometry have been developed. Criminisi and his colleagues have
pioneered rigorous methods for recovering three-dimensional space from single
“uncalibrated” images, such as in paintings. These methods have produced three-
dimensional virtual spaces of artworks such as Masaccio’s Trinità. [41,42,43,44]
Smith, Stork and Zhang reconstructed the three-dimensional space of the tableau
based on multiple views depicted in plane reflections within a single painting. [45]
This method also reveals spatial inconsistencies between direct and reflected views
and thereby sheds light on the artist’s working methods.

While one can use simple commercial software, such as Adobe Photoshop,
to perform perspective transformation between two images or passages—for in-
stance two arms on the chandelier in van Eyck’s Arnolfini portrait [46]—but
such a technique suffers from a number of drawbacks, the most severe is that
the experimenter can arbitrarily choose which portions of one image should
match their partners in the other image. Criminisi derived rigorous, princi-
pled methods for finding optimal transformations that minimized the shape
differences, thus eliminating this drawback. [47, 42, 36] Such analysis of per-
spective, perspective inconsistencies, and subtleties in shape have shed light on
a number of topics, including the question of whether an artist used optical
aids. [48,49,50, 51, 52, 53, 54, 55, 56, 57, 58]

5 Anamorphic Art

Anamorphic art is distorted art that appears distorted when viewed directly but
undistorted when viewed from a special position or in reflection from a curved
surface. Such a mirrored cylinder or cone is called an “anamorphoscope.” The
root word comes from the Greek ανα, “again,” and μoρφη, “form”—the image
in anamorphic art is formed again. The earliest surviving deliberate anamorphic
image appears to be a sketch of a slant anamorphic eye, drawn by Leonardo
around 1485. Perhaps the most celebrated example of such slant anamorphoses
is the skull along the bottom in Hans Holbein’s The ambassadors. [59,60] There
was much experimentation, mathematical analysis and flourishing of anamorphic
art in the seventeenth and eighteenth centuries, particularly in France. Today the
transformations required by anamorphic art are easily performed by computer.
The optics and perspective underlying such art appears in a number of basic
texts, [30, 61] but perhaps the most complete and rigorous explanation is given
by Hunt, Nickel and Gigault. [62, 63]
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6 Dewarping of Curved Art

Many frescos and mosaics on architectural spandrels, barrel vaults and markings
on pottery are curved and warped, and art scholars use computer methods to
dewarp them to better study the images. [64, 65] Often such digital dewarping
requires an estimate of the camera position and the curvature properties of the
surface itself. Another class of dewarping centers on dewarping the virtual image
appearing in depictions of curved mirrors, such as in Parmigianino’s Self portrait
in a convex mirror, van Eyck’s Arnolfini portrait, and Campin’s Heinrich von
Werl and St. John the Baptist. Here one models the optics of the spherical
or parabolic mirror and adjusts parameters to yield an undistorted image. [66,
41, 67] The mirror properties (curvature and focal length) inferred by such a
technique have been used to address claims that artists used such mirrors for
optical projectors. [49, 50, 54, 55] On can also use computer graphics methods
(cf., Sect. 12, below) to dewarp reflected images, for instance in the analysis of
Hans Memling’s van Nieuwenhove Diptych. [67]

7 Analysis of Lighting and Illumination

Some problems in art history require knowing or estimating the position and
direction of lighting in a tableau. Such knowledge can be used for determining
the studio conditions when the painting was executed; significant differences in
the lighting on different subjects within a tableau may indicate the different
studio conditions or presence of different hands, for example. Moreover, this
information may indicate whether the artist used optical aids: if the light source
was local rather than distant solar illumination, for instance, then it is highly
unlikely projections were used. [68]

If the illuminant can be assumed to be small and relatively distant from the
tableau, the simple method of cast-shadow analysis is particularly effective in
locating the illuminant: one merely draws a line from a point on a cast shadow,
through its associated occluder. This line should pass through the position of
the illuminant. [69] Several such lines, from a set of occluder-shadow pairs, will
intersect at the position of the illuminant.

A more sophisticated method, occluding-contour analysis, derives from foren-
sic analysis of digital photographs, and is based on the pattern of light along an
object’s outer boundary or occluding contour. [70] Stork and Johnson recently
extended the technique to apply to the case of diffuse illumination, where the
pattern of illumination along an occluding boundary is described as a weighted
set of spherical harmonics. If two figures in a painting differ significantly in their
sets of coefficients, then they were likely painted under different studio lighting
conditions. They studied the lighting in different figures by realist portraitist
Garth Herrick and showed that different subjects were executed under different
illumination conditions. [71] Stork and Kale modeled the physics flat surfaces,
and thereby inferred the position of the illuminant from the floor in Georges
de la Tour’s Christ in the carpenter’s studio and Caravaggio’s The calling of



14 D.G. Stork

St. Matthew. [72, 73] This analysis showed that the light source in these works
was likely local, rather than distant solar illumination, a result that rebuts claims
that these works were executed by means of optical projections of very bright
tableaus. Bayesian statistical methods can be used to integrate estimates derived
from different sources, for example cast shadows and occluding contours, thereby
refining and improving overall estimates. [74,70]

Computer shape-from-shading methods infer the properties of illumination
given a known or assumed three-dimensional model of objects and a shaded
image of those objects, such as in a highly realistic painting. One can assume
a generic three-dimensional model (for instance the face in Girl with a pearl
earring) and refine both the model and the direction to illumination. [75] Another
method for estimating the lighting in a realist tableau is to create a full computer
graphics model of the scene and adjust the positions of the virtual illuminants
so that the rendered image matches the painting as closely as possible. This
has been used to estimate the direction of illumination in Vermeer’s Girl with a
pearl earring, and Georges de la Tour’s Christ in the carpenter’s studio [75,76],
as described in Sect. 12.

8 Analysis of Brush Strokes and Marks

One of the most extensively explored areas of computer analysis of art is the
analysis of marks and drawing tools. The basic approach is to use techniques
of statistical pattern recognition to learn visual properties of brush strokes that
correspond to a particular painter or marking tool. [33,38,77,78,79,80,81,82,83,
84,85,86,87,88,89,90,91,92,93,94,95] In related techniques, Hedges analyzed the
changes in marks in Renaissance copperplate prints as the plates were cleaned;
his method yielded an image-based “clock” for estimating the age of such prints.
[96, 97] Shahram, Stork and Donoho developed the De-pict algorithm, which
removed successive layers of brush strokes in a digital image of a painting, such
as van Gogh’s Self portrait in a grey felt hat. When such a sequence of images is
displayed in “reverse” (i.e., showing the sequence of brush strokes as likely added
to the painting), scholars can see and better understand the aesthetic choices
made by the artist. [98]

A somewhat separate class of mark analyses are those for the analysis of
dripped painting, particularly in the works of American Abstract Expressionist
Jackson Pollock. Here the analyses are generally based on fractals, a mathemat-
ical structure that exhibits regularities at different scales or sizes. [99] Taylor
and his colleagues first proposed that Pollock’s drip paintings exhibited fractal
structure, [100] though a number of scholars have questioned the recent claim
that simple fractal dimension suffices to distinguish genuine Pollocks from forg-
eries or other apparently random images. [101,102,103,104,105,106] Recent work
has returned to the application of traditional image measures for the analysis of
Pollock’s works, for instance curvature, connected components, and statistical
pattern classification methods. [107, 108]
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9 Optical Analysis of Art

It is well known that some artists used optical aids during the execution of
passages in some of their works, e.g., Canaletto, Thomas Eakins, photo-realists
such as Richard Estes and Robert Bechtle, and many others. Computer image
analysis has addressed claims that some artists used optical aids when executing
some passages in some of their works, for instance that Lorenzo Lotto secretly
used a concave mirror projector to execute Husband and wife, [109] that a wide
range of artists as early as 1430 secretly traced optical images, [110] that Jan
Vermeer traced images projected in a camera obscura, [111] and so on. While
there are a number of perspective and lighting analyses brought to bear on such
claims, [112, 113, 114, 57, 115,42] as well as textual and material analyses, [116,
117] the first and only analysis of paintings done by sophisticated computer ray
tracing programs was by Stork and Robinson. [118, 119] This research analyzed
the aberrations and other properties of the setup in purported use of optics for
Lorenzo Lotto and ultimately questioned the claim he used optics.

10 Analysis of Craquelure

Craquelure is the patternof fine cracks on the surface of paintings and several schol-
ars have used computer image analysis to characterize the patterns for art imagery
retrieval. [120,121,122] There remain opportunities for additional algorithms, for
instance to detect and classify changes to craquelure due to injury to paintings.

11 Analysis of Composition

Many artists have characteristic compositional styles and it is natural that com-
puter methods be applied to learning and classifying these styles. A particularly
attractive oeuvre is that of the neo-plastic abstractionist Piet Mondrian, where
the formal elements are simple (horizontal and vertical lines, rectangles of a small
number of colors, etc.) and the two-dimensional composition of central impor-
tance. A few scholars have approached this problem for Mondrian [123,124] but
there are additional painters whose works might yield information through these
methods, such as the large Abstract Expressionist works of Franz Kline.

12 Computer Graphics

Computer graphics allows scholars to understand realist artists’ working meth-
ods by exploring “what if” scenarios. Note that creating a three-dimensional
model based on a two-dimensional painting is formally “ill-posed,” that is, an
infinite number of three-dimensional tableaus are consistent with a given two-
dimensional projection. [125] As such, the creation of a tableau virtuel is part art,
part science. Nevertheless, the weal the (2D) image information such as occlusion
and physical constraints such as objects toughing or being supported on a given
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floor, and lighting consistency, strongly constrain the three-dimensional models.
It is important that the assumption—for instance that bodies have normal pro-
portions, that faces are approximately left-right symmetric, and so on—not bias
or favor one conclusion over another.

Stork and Furuichi built a full three-dimensional model of Georges de la Tour’s
Christ in the carpenter’s studio and adjusted the location of the virtual illuminant
in the tableau virtuel until the digitally rendered image matched the painting as
closely as possible. In this way, these authors found the illuminant was likely at the
position of the candle, rather than in place of the figures, and thereby rebutted the
claim that painting was executed by means of optical projections. [76] Savarese and
colleagues built a very simple model of the convex mirror and a planar model of the
tableau in the left panel of Hans Memling’s van Nieuwenhove Diptych to test the
consistency between the tableau and the image depicted in the convex mirror. The
discrepancies between the mirror and the simple tableau suggested that Memling
added the mirror later, as an afterthought. [67] Johnson and colleagues built a
computer model of Vermeer’s Girl with a pearl earring to estimate the direction of
illumination. [75] Most recently, Stork and Furuichi created a model of both the
tableau in Diego Velàsquez’ Las meninas as well as the viewer’s space to explore
the relationship between these two spaces, for instance whether the position of the
viewer corresponded to that of the king and queen visible in the plane mirror. [126]

13 Websites

There are a few of websites addressing computer image analysis of art.

– Computer image analysis in the study of art:
www.diatrope.com/stork/FAQs.html

– Digital painting analysis: digitalpaintinganalysis.org
– IAPR computer vision in cultural heritage applications:

iapr-tc19.prip.tuwien.ac.at/
– Antonio Criminisi’s publications:

research.microsoft.com/∼antcrim/papers.htm
– Christopher W. Tyler’s research on perception of art by humans and ma-

chines: www.diatrope.com/projects
– Computers in the history of art: www.chart.ac.uk

Acknowledgments. My thanks to all the scholars who provided references for
this compilation.
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Abstract. Head pose estimation is a crucial step for numerous face ap-
plications such as gaze tracking and face recognition. In this paper, we
introduce a new method to learn the mapping between a set of features
and the corresponding head pose. It combines a filter based feature se-
lection and a Generalized Regression Neural Network where inputs are
sequentially selected through a boosting process. We propose the Fuzzy
Functional Criterion, a new filter used to select relevant features. At each
step, features are evaluated using weights on examples computed using
the error produced by the neural network at the previous step. This
boosting strategy helps to focus on hard examples and selects a set of
complementary features. Results are compared with three state-of-the-
art methods on the Pointing 04 database.

1 Introduction

Head pose estimation is a complex problem and is currently an area of great in-
terest for the face analysis and image processing communities. Numerous meth-
ods have been proposed (please refer to [1] for a complete survey on this area).
The nonlinear regression is one popular approach. It consists of estimating the
mapping from an image or feature data to a head pose direction. Given a set of
labelled image, the relation is learnt using a regression tool such as a multi layer
perceptron [2]. Thus, a continuous head pose can be estimated for any unseen
face image.

Formally, the problem can be stated as follows. We have a set of face images
xi ∈ Rd where d is the image dimension. To each example xi an angle yi ∈ R

is associated that we want to predict. Data are divided into a training set A,
a validation set V and a test set E. A set F of features Hk (1 ≤ k ≤ N)
can be computed for each xi such that hk,i = Hk(xi). F can be extremely
large (typically more than 10 000 elements in our case). The main objective of
our method is to select a subset FS ⊂ F and to learn the functional relation
between the values of this set of features and the head pose.

This paper addresses two main issues: select image features and learn the
required mapping (image to head pose). To achieve these goals, two contributions
are proposed. (i) The boosted stepwise feature selection is combined with the
neural network training (ii) The Fuzzy Functional Criterion (FFC), a new filter
used to measure the functional dependency between two variables.
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2 Regression Based Head Pose Estimation

2.1 Boosted Input Selection Algorithm for Regression

We introduce a new forward feature selection method for regression named
BISAR (Boosted Input Selection Algorithm for Regression). It combines a filter
with the boosting paradigm : (i) A new filter, the Fuzzy Functional Criterion
(FFC) is designed to select relevant features. This criterion measures the func-
tional dependency of the output y on a feature Hk. (ii) A new boosting strategy
selects incrementally new complementary inputs for the regressor. The predic-
tion performance is used to adjust impact of each training example on the choice
of next feature. The detailed algorithm can be found at the end of this section.

2.2 Image Features

First, we describe the four kinds of features we have used. The first three descrip-
tors correspond to the popular Haar like features [3] as depicted in Fig. 1. We
choose these features because of their good performance obtained in related areas
such as face detection [3] and image alignment [4]. Moreover they are simple and
very fast to compute using the integral image [3].
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Fig. 1. Image features. (a) a feature example. (b) Representation of the Haar like
features used in our experiment. (c) The proposed features are the difference between
the sum of the pixels within two non connected rectangular regions.

Another kind of features, we propose here, is the difference between the sum
of the pixels within two non connected rectangular regions. Features are param-
eterized by four values x1, y1, dx and dy. x and y correspond to the horizontal
and vertical positions of the feature in the image respectively. dx and dy are the
width and height of a rectangle. Two extra parameters x2 and y2 are needed to
describe features of the fourth category. They correspond to the position of the
second rectangle in the image (Fig. 1).

2.3 Fuzzy Functional Criterion

The Fuzzy Functional Criterion is like an energy function. The basic idea is: we
want to evaluate the relation between two variables u and v (u is a measure
and v a target to be predicted). We call P the logical proposition “u1 and u2
are close” and Q the logical proposition “v1 and v2 are close”. If there exists a
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functional smooth relation between u and v (i.e. v = F (u) where F is a smooth
continuous function), then we can say that the logical implication P ⇒ Q
is true. If the variable v takes value in a discrete subset of the real numbers
set, we have to adapt the criterion slightly. Using the truth table of the logical
implication, we find it is equivalent to “¬P or Q” or ¬(P and ¬Q). We take the
fuzzy logic formulation of P and Q based on classical triangular shaped functions
[5] denoted by L defined as:

La(e) =
{

1− |e|
a if |e| < a

0 otherwise
(1)

To quantify the fact that “u1 and u2 are close” is true, we just take the value
La(|u1 − u2|), where a is the spread of the triangular function and its value is
discussed later. We can do the same for v and write:

Z = 1− La(|u1 − u2|)(1− Lb(|v1 − v2|)) (2)

Equation 2 is a fuzzy evaluation of our implication “P ⇒ Q” . To build our
criterion, we have to sum up Z over all (u1, u2, v1, v2) (the constant “1” can be
dropped) :

FFC =
∑

i

∑
j

−La(|ui − uj|)(1 − Lb(|vi − vj |)) (3)

The sum is taken over all quadruples. In our case, ui is the value of some feature
Hk for an example xi and vi is the corresponding target value yi (the head pose).
We also introduce weights on examples, wi with

∑
wi = 1. These weights will

be useful in the boosting process. So we can reformulate our criterion as:

FFC(Hk) = −
∑

i

wi

∑
j

La(|Hk(xi)−Hk(xj)|)(1 − Lb(|yi − yj |)) (4)

Modification on these weights does not imply to compute from scratch a new
FFC at each step: it is possible to compute an intermediary form of FFC and to
modulate it with the weights on examples based on the regression error. Equation
4 can be rewritten as:

FFC(Hk) = −
∑

i

wiQ(i) (5)

where :
Q(i) =

∑
j

La(|Hk(xi)−Hk(xj)|)(1− Lb(|yi − yj|)) (6)

Q can be precomputed once. To be selected, a feature Hk must maximize the
criterion FFC(Hk). Two parameters (a and b) control the spread of the L func-
tions and are used to normalize the criterion over all features. In many problems,
the range of u and v variables are bounded and can be determined. We shall
tune a and b as a fixed proportion of these ranges. Experiments have shown that
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the criterion is not too sensitive to this tuning. Another way to cope with the
normalization issue is to replace u values by their rank. In this option, one can
see the rank as a simple normalization: if there are M examples, the number
rank(u)/M is always in the interval [0 1]. Notice that the difference of ranks
divided by the number of examples has the same distribution for all features. It
is also important to see that the proximity of values is taken into account in our
criterion which is not the case for other criteria such as mutual information.

2.4 Regressor

The second element of our system is the regressor and we have used a Generalized
Regression Neural Network (GRNN) which is known for its good properties and
which does not need any training step. The design of each GRNN is done by
using a very simple algorithm, quite similar to that presented in [6].

GRNN is a two layer network. The first layer (hidden layer) has radial basis
neurons, each one representing one prototype. The second layer linearly combines
the targets and the outputs of the first layer i.e. the output of the network is the
normalized sum of the product of “target × output” over all the hidden neurons.
It means that for this network, one does not make a real training step but instead
just keeps all prototypes (in the hidden layer) and all targets (in the second layer
weights). This network can be viewed as a Parzen window procedure applied to
an interpolation task.

2.5 Boosting Strategy

At the beginning, the GRNN starts with only one input cell which corresponds
to the best feature given the criterion according to a uniform weighting function.
In the second step, a new GRNN is trained with two input cells. The new input
corresponds to the second feature which is selected by FFC among all features
(except features already selected) using weights provided by the error of the first
GRNN. It means that examples that are poorly processed by the first GRNN
will receive higher weights than others. The resulting weights, when fed to the
criterion, will lead to choose a new feature fitted to these examples. It is clear
that this boosting paradigm enhances the regression system.

We test two boosting mechanisms. The first one lies on a memoryless process.
Weights at iteration t are only related to the absolute error errt−1

k of the previous
iteration. In our case, we adopted this simple relation:

wt
k =

(errt−1
k )2∑

k(errt−1
k )2

; (7)

The second boosting strategy is cumulative and each example weight depends on
the regression model error and the previous weights. Weights update is inspired
by [7]. In the latter, the threshold on the error is a constant and the accumulation
factor depends on the regression error. In our approach the accumulation factor is
fixed and the threshold depends on the median error. Our strategy is defined by
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w̃t
k =

{
wt−1

k if errt−1
k < mediank(errt−1

k )
max

{
αwt−1

k , wmax

}
otherwise

(8)

wt
k =

w̃t
k∑

k(w̃t
k)

(9)

α corresponds to an accumulation factor and wmax is a constant used to avoid
overfitting. Typically, α is set to 1.1 and wmax to 0.1. The next section presents
a comparison of these boosting approaches.

1. initialization : t = 0
– Set initial values for w0 = ( 1

M
, . . . , 1

M
)

and FS ← ∅
– Compute Q used to evaluate the FFC criterion :

Q(i) =
∑

j La(|hk,i − hk,j |).(1− Lb(|yi − yj |))
2. iteration : t = 1 . . . T

– Evaluate the FFC criterion for each feature :
FFC(Hk) = −

∑
i wiQ(i)

bt = arg maxk∈{1,...,N}(FCC(Hk))
– Add the best feature Hbt to the set of selected features. FS ← FS∪Hbt and

F ← F\Hbt .
– Set the regressor (GRNN) taking (hb1,i, . . . , hbt,i) as input and yi as output

for each example xi.
– Compute the new weight vector

wt+1
k = errt

k∑
k(errt

k
)

– Stop if t ≥ T or errt+1
k − errt

k ≥ 0 on V

Fig. 2. BISAR algorithm

3 Experimental Results

We performed simulation using Pointing 04. It was used to evaluate head pose
estimation systems in the Pointing 2004 Workshop and in the International
Evaluation on Classification of Events Activities and Relationships (CLEAR
2006). The corpus consists of 15 sets of images. Each set contains 2 series of 93
images of the same person at 93 different poses. There are 15 people, male and
female, wearing glasses or not and with various skin color and facial hair. The
pose is determined by 2 angles (h,v), ranging from -90◦to +90◦for the horizontal
angle (pan) and from -60◦to +60◦for the vertical orientation (tilt).

The first series is used for learning (in our case 13 people are in the training
set and the remaining 2 people are in the validation set). Tests are carried out
on the second series.

We present pan and tilt estimation results obtained on the test set. The error
is defined as the mean of absolute deviation from the ground truth.
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3.1 Face Localization

The face localization is a simple algorithm based on skin color. First, frontal
faces are detected in the training database using the Viola-Jones face detector
[3]. Pixels within the detected area are used to build an histogram on H and S
channels of HSV color space. Other pixels are randomly picked outside the face
area in order to built a background histogram. Face pixels are detected in the
test image set with a Bayesian rule based on these skin and non skin histograms.
The face bounding box is proportional to the standard deviation of skin pixels
along X and Y axis. In this method, only frontal faces of the training set are
needed and no manual labelling is required. The main drawback is the accuracy.
For example, pixels of the neck can be included in the bounding box. This poor
localization can greatly affect head pose results. So, results will be presented for
both manual and automatic face localization.

3.2 Boosting Effect

Fig. 3 depicts the evolution of pan error on the manually cropped test database
and presents the effect of boosting technique. The red solid curve corresponds to
the error without any boosting, i.e. weights on examples are constant and equal.
Mean absolute error after 500 iterations is equal to 8.3◦. The green dotted line
highlights the effect of memoryless boosting (cf. equation 7). After 500 iterations,
pan error is 7.4◦, which is 10% better. Results obtained with cumulative boosting
(cf. equation 8) are represented by the blue dashed curve. This technique is less
effective than the memoryless boosting but results are nevertheless better than
without boosting, i.e. weights on example remains constant during iterations.
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Fig. 3. Influence of the different boosting strategies on the test dataset
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Results presented in the rest of this article are obtained with the memoryless
boosting strategy.

3.3 Comparison with Other Methods

Performance are compared with three state-of-the-art methods for this database
[1]. The first one proposed by Voit et al. [2] uses a multi layer perceptron (MLP)
to estimate the pose. First, head is localized using a linear boundary decision
classifier to detect skin color. Head area corresponds to the bounding box sur-
rounding the biggest skin color connected component. Inputs of the MLP are the
gray levels and gradient magnitudes of resized images (64x64 pixels). Continuous
outputs of the network are the estimated head angle values. In Gourier et al. [8],
head poses are computed using Auto Associative Memories (one per orientation).
Head pose is estimated by selecting the auto-associative network with highest
likelihood score. Face was previously located using a skin color based method
quite similar to [2]. The last method is proposed by Tu et al.[9]. The appearance
variation caused by head pose changes is characterized by tensor model. Given
an image patch from the testing set, it is projected into the tensor subspace, and
head pose can be estimated from the tensor coefficients obtained from a High
Order Singular Value Decomposition (HOSVD).

Table 1. Results on tilt and pan estimation and comparison with other methods

Method Tilt error Classification Pan error Classification

Manual face localization
BISAR 8.5◦ 69.2% 7.4◦ 60.0%
High-Order SVD [9] 8.6◦ 75.7% 6.2◦ 72.4%
Automatic face localization
BISAR 11.4◦ 59.6% 11.5◦ 49.3%
High-order SVD [9] 17.9◦ 54.8% 12.9◦ 49.3%
Auto associative memories [8] 12.1◦ 53.8% 7.3◦ 61.3%
Multi layer perceptron [2] 12.8◦ 53.1% 12.3◦ 41.8%
Human performance [8] 9.4◦ 59.0% 11.8◦ 40.7%

Table 1 summarizes results obtained by the BISAR method and the three
related approaches. Score are obtained on the test set using the best regressor
on the validation set. To obtain a classification measure, we have mapped the
output of our GRNN into the head orientation classes provided in the data. When
faces are manually localized, BISAR results are the same on tilt estimation as the
HOSVD method and less accurate on the pan estimation. But HOSVD results
fall when the face is automatically cropped. This method is very sensitive to
the localization accuracy. Auto associative memories outperform BISAR on pan
estimation but the latter obtains a better score for tilt prediction. In comparison
with the multi layer perceptron, BISAR has better results on both tilt and pan
estimation



32 K. Bailly, M. Milgram, and P. Phothisane

Results are also compared to human capability reported in [8]. One can notice
that BISAR and human performance are quite similar.

4 Conclusion

We have presented a new method to estimate head pose in still images. This
method relies on BISAR, a new algorithm used to select a set of image features
and to learn the functional mapping from these features to head pose using a
generalized regression neural network. The latter is designed incrementally with
the help of a boosting strategy and the Fuzzy Functional Criterion (FFC), a
new filter used to measure the functional dependency between two variables.
This approach has been tested on the Pointing 04 database. Comparison with
three related methods has demonstrated state of the art results.
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Abstract. Face Recognition under uncontrolled illumination conditions
is partly an unsolved problem. Several illumination correction methods
have been proposed, but these are usually tested on illumination condi-
tions created in a laboratory. Our focus is more on uncontrolled condi-
tions. We use the Phong model which allows us to model ambient light in
shadow areas. By estimating the face surface and illumination conditions,
we are able to reconstruct a face image containing frontal illumination.
The reconstructed face images give a large improvement in performance
of face recognition in uncontrolled conditions.

1 Introduction

One of the major problems with face recognition in uncontrolled scenarios is the
illumination variation, which is often larger than the variations between individ-
uals. We want to correct for these illumination variations in a single face image.
In literature, several methods have been proposed to make face images invariant
to illumination. These methods can be divided into two categories: The first cat-
egory contains methods that perform preprocessing based on the local regions,
like Histogram Equalization [1] or (Simplified) Local Binary Patterns [2,3]. These
methods are direct and simple, but fail to model the global illumination condi-
tions. The methods in second category estimate a global physical model of the
illumination mechanism and its interaction with the facial surface. One of the
earlier methods in this category is the Quotient Image [4], which estimates illu-
mination in a single image allowing the computation of a quotient image. More
recent correction methods [5,6] are also able to deal with shadows and reflections
using an addition error term. In our experience, these methods work on images
with illumination conditions created in a laboratory, but fail in uncontrolled
scenarios. In [7], 3D morphable models are used to simulate the illumination
conditions in a single images, calculating shadows and reflections properly. The
disadvantage of this method is the computational cost for a single image. In [8],
a illumination normalization is proposed for uncontrolled conditions which re-
quires a color image together a 3D range image.

We developed a new method for illumination correction in [9] which used
only a single grey level image, but this method improved the recognition for
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face images taken under uncontrolled conditions. During these experiments, we
discovered that both our method and [5] have problems modelling shadow areas
which still contain some reflection. This often occurs in face images taken under
uncontrolled conditions. Furthermore, we observed that the found surface nor-
mals were not restricted by the geometrical constrains. In this paper, we tried
to solve these issues by improving our previous method.

2 Illumination Correction Method

2.1 Phong Model

To model the shadow areas that contain some reflections, we use the Phong
model, which explains these areas using the ambient reflection term. In our
previous work and in [5], the Lambertian model with a summed error term was
used to model the shadows. This however fails when both the intensities of the
light source on the face and the reflections in the shadow areas vary. The Phong
model in combination with a shadow expectation is able to model these effects.
If we assume a single diffuse light source l, the Phong model is given by the
following Equation:

b(p) = ca(p)ia + cd(p)n(p)T slid + specular reflections (1)

The image b(p) at location p can be modelled using three parts namely: the
ambient, diffuse and specular reflections. The ambient reflections exist of the
albedo ca(p) and the intensity of the ambient light ia. The ambient reflections
are still visible if there is no diffuse light, for instance in shadow areas which are
not entirely dark. The diffuse reflections are similar to the Lambertian model,
where the surface normals n ∈ R3 define the direction of the reflection and
together with the albedo cd(p) give the shape h(p) = cd(p)n(p)T . The diffuse
light can be modelled by a normalized vector s ∈ R3, which gives the light
direction and the intensity of the diffuse light id. The final term contains the
specular reflections, which explain the highlights in the image, but because this
phenomenon is usually only present in a very small part of the image we will
ignore this term.

The shadow can be modelled as a hard binary decision. If a light source can
not reach a certain region, it makes a shadow. This holds expect for areas which
contain the transition between light and shadow. Using a 3D range map of a
face, we can compute the shadow area given a certain light direction using a ray
tracer. Computing these shadow areas for multiple images, allows us to calculate
an expectation of shadow el(p) on the position p for the light directions sl. This
gives us a user independent shadow model given the light direction.

b(p) = c(p)ia + c(p)n(p)T slidel(p) (2)
b = cia + Hslid � el (3)

In Equation 2, we simplified the Phong model and we added the expectation
term el(p) to model shadows. We also use the same albedo term for ambient and
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diffuse illumination, which is common practice [7]. In Equation 3, we vectorized
all the terms, where the � denotes the Cartesian product. Our goal is to find the
face shape and the light conditions given only a single image.

2.2 Search Strategy for Light Conditions and Face Shape

An method to estimate both the face shape and the light conditions is to vary one
of the variables and calculate the others. In our case, we chose to vary the light
direction allowing us to calculate the other variables. After obtaining the other
variable, e.g. light intensity, surface and albedo, we use an evaluation criteria
to see which light direction gives the best estimates. The pseudo-code of our
correction method is given below:

– For a grid of light directions sl

• Estimate the light intensities ia and id
• Estimate the initial face shape
• Estimate the surface using geometrical constrains and a 3D surface model
• Computing the albedo and its variations
• Evaluation of the found parameters

– Refine the search to find the best light direction.
– Reconstruct a face images under frontal illumination.

We start with a grid where we vary the azimuth and elevation of the light
direction with 20 degrees. The grid allows us to locate the global minimum, from
there we can refine the search using the downhill simplex search method [10]
to find the light direction with an accuracy of ±2 degrees. Using the found
parameters like light conditions and face shape, we can reconstruct a face image
under frontal illumination, which can be used in face recognition. In the next
sections, we will discuss the different components mentioned in the pseudo-code.

2.3 Estimate the Light Intensities

Given the light direction sl and the shadow expectation el(p), we can estimate
the light intensities using the mean face shape h(p) and mean albedo c(p). The
mean face shape and albedo are determined using a set of face images together
with there 3D range maps. This gives us the following linearly solvable equation,
allow us to obtain the light intensities {ia, id}:

{ia, id} = arg min
{ia,id}

∑
p

‖b(p)− c(p)ia − h
T
slidel(p)‖2 (4)

Because this is an over-determined system, we can use the mean face shape and
mean albedo to estimate the light intensities, which still gives a very accurate
estimation. However, this might normalize the difference in intensity of the skin
color. If the light intensities are negative, we skip the rest of the computations.
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2.4 Estimate the Initial Face Shape

To estimate the initial face shape given the light conditions {sl, el(p), ia, id}, we
use the following two assumptions: Firstly, the Phong model must hold, which
gives us the following equations:

b(p) = c(p)ia(p) + hx(p)sx,lidel(p) + hy(p)sy,lidel(p) + hz(p)sz,lidel(p) (5)

Secondly, the face shape should be similar to the mean face shape. This can
be measure by taking the Mahalanobis distance between the face shape h(p)
and the mean face shape h(p). Using Lagrange multipliers, we can minimize
the distance with Equation 5 as a constrain. This allows us to find an initial
face shape ĥ(p), which we will improve in the next steps using a surface model
together with geometrical constrains.

2.5 Estimate Surface Using Geometrical Constrains and a 3D
Surface Model

Given an estimate of the face shape ĥ, we want to determine the surface z,
which is a depth map of the face image. Given a set of 3D range images of faces,
we can calculate depth maps {zt}Tt=1 and we can obtain the mean surface z
and a covariance matrix Σz. Using Principal Component Analysis (PCA), we
computer the subspace by solving the eigenvalue problem:

Λz = ΦT ΣzΦ ẑ = z +
K∑

k=0

Φkuz(k) (6)

where Λz are the eigenvalues and Φ are the eigenvectors of the covariance matrix
Σz, which allows to express the surface in variations uz for the mean surface z.
We also know that hzx(p) = hz(p)

hx(p) = ∇xz(p) and hzy(p) = hz(p)
hy(p) = ∇yz(p)

holds, where ∇x and ∇y denote the gradient in x and y direction. This allows
us to calculate the variations of the surface uz using the following equation:

uz = argminuz ||∇xz +∇xΦuz − ĥzx||2 + ||∇yz +∇yΦuz − ĥzy||2 (7)

The surface ẑ can be found using Equation 6 and from this surface we can also
find the surface normals n(p). In this case, the surface normals are restricted by
geometrical constrains. Using only the geometrical constrains does not have to
be sufficient to determine the face surface, therefore, we use the surface model
to ensure the convergence.

2.6 Computing the Albedo and Its Variations

In the previous sections, we obtained the surface normals n(p) and the illumi-
nation conditions {sl, el(p), ia, id}. This allows us to calculate the albedo c from
Equation 2. In order to find out whether the albedo is correct, we also create
a PCA model of the albedo. Given a set of face images together with their 3D
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range maps, we estimated the albedo, see [9]. Vectorizing the albedo {ct}Tt=1
allows us to calculate a PCA model and find the variations uc, which is also
used for the surface model. Using the variations uc, we calculated also a pro-
jection of albedo ĉ to PCA model. The projection ĉ does not contain all details
necessary for the face recognition. For this reason, we use the albedo ĉ from the
PCA model in the evaluation criteria, while we use the albedo c obtained from
Equation 2 in the reconstructed image.

2.7 Evaluation of the Found Parameters

Because we calculate the face shape for multiple light directions, we have to deter-
mine which light direction results in the best face shape. Furthermore, the down-
hill simplex algorithms also needs an evaluation criteria to be able to find the light
direction more accurately. Using the found light conditions and face shape, we can
reconstruct an image br which should be similar to the original image. This can
be measured using the sum of the square differences between the pixels values.
Minimizing this may cause overfitting of our models at certain light directions.
For this reason, we use the maximum a posterior probability estimator given by
P (uc,uz|b), which can be minimized by the following equations, see [7]:

E =
1
σb

∑
p

‖b(p) + br(p)‖2 +
K∑

k=1

u2
z(k)

λz(k)
+

J∑
j=1

u2
c(j)

λc(j)
(8)

In this case, σb controls the relative weight of the prior probability, which is
the most important factor to minimize. λz and λc are the eigenvalues of the
surface and albedo. The light directions that minimizes Equation 8, give us the
parameters from which we can reconstruct a face image with frontal illumination.

3 Experiments and Results

We correct for illumination by estimating both the illumination conditions and
the face surface. In this section, we will show some of the estimate surfaces
together with their corrected images. The main purpose of the illumination cor-
rection is to improve the performance of the face recognition method. Our goal is
therefore to demonstrate that our face recognition method indeed benefits from
the improvement in the illumination correction. For this purpose, we use the
FRGCv1 database where we have controlled face images in the enrollment and
uncontrolled face images as probe images.

3.1 3D Database to Train the Illumination Correction Models

For our method, a database is needed that contains both face images and 3D
range maps to compute the surface, shape, shadow and albedo models. In this
case, we used the Spring 2003 subset of Face Recognition Grand Challenge
(FRGC) database, which contains face images together with their 3D range
maps. These face images contain almost frontal illumination and no shadows,
making this subset of the database ideal to compute the surface and albedo. The
exact method to retrieve the albedo is describe in [9].
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3.2 Recognition Experiment on FRGCv1 Database

The FRGCv1 database contains frontal face images taken under both controlled
and uncontrolled illumination conditions as is shown in Figure 1. The first image
in Figure 1 is taken under controlled conditions, while the other images are taken
under uncontrolled conditions. For the first person, we show that our method is
able to correct for different unknown illumination conditions. In case of the last
image, we observe more highlighted areas directly under the eyes, this is caused
by the reflection of the glasses which are not modelled by our method.

In order to test if this illumination correction method improves the perfor-
mance in face recognition, we performed the following experiment to see if illumi-
nation conditions are removed in the images taken under uncontrolled conditions.
In this case, we use the images with uncontrolled illumination as probe image
and make one user template for every person with the images taken under con-
trolled conditions. To train our face recognition method, we randomly divided
both the controlled and uncontrolled set of the FRGCv1 database into two parts,
each containing approximately half of the face images. The first halves are used
to train the face recognition method. The second half of the controlled set is
used to compute the user templates, while the second half of the uncontrolled
set is used as probe images. We repeat this experiment 20 times using different
images in both halves to become invariant against statistical fluctuations. The
Receiver operating characteristic (ROC) in Figure 2 is obtained using the PCA-
LDA likelihood ratio [11] for face recognition. The first three lines in Figure 2
are also stated in our previous work [9], where the last line depicts the improve-
ments obtained using the method described in this paper. The ROC curves in
Figure 2 shows only the improvements due to illumination correction. In the

Fig. 1. First row contains the original images from the FRGCv1 database, second and
third row show the resulting surface, the fourth row depicts the reconstructed frontal
illumination
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Fig. 2. ROC on the FRGCv1 database with a comparison to our previous work [9] and
to work of Sim et al [5]

case of our previous method, the False Reject Rate (FRR) becomes significantly
better at a False Accept Rate (FAR) smaller than 1%, while the last line is over-
all better. Most other illumination correction methods like [6,8] evaluated their
method only on a database create in a laboratory or do not perform a recognition
experiment, which makes the comparison with other methods difficult.

4 Discussion

In figure 1, we observe that the phenomenon, where the shadow areas are still not
completely dark, often occurs in uncontrolled illumination conditions. Improv-
ing our model on this point gave also improvements in the recognition results,
which was the main purpose of our illumination correction. We choose to ignore
other illumination effects like specular reflections, because we expected a small
performance gain in face recognition and a large increase in computation time.

The second improvement is a restriction to the face shape by computing the
surface instead of the surface normals, which also slightly improved the face
recognition results. Another benefit is that we obtained an estimation of the
surface of the face, which might be handy in other applications. In our research,
the focus has not been on the quality of the estimated surfaces. Although we
expect that this can be an interesting result to improve for instance 3D face
acquisition and recognition.

5 Conclusion

We present two major improvements for our illumination correction method for
face images, where the purpose of our method is to improve the recognition
results of images taken under uncontrolled illumination conditions. The first
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improvement uses a better illumination model, which allows us to model the
ambient light in the shadow areas. The second improvement computes an es-
timate of the surface given a single face image. This surface gives us a more
accurate face shape and might also be useful in other applications. Because of
both improvements, the performance in face recognition becomes significantly
better for face images with uncontrolled illumination conditions.
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Abstract. A new local feature based image representation method is proposed. 
It is derived from the local Gabor phase difference pattern (LGPDP). This 
method represents images by exploiting relationships of Gabor phase between 
pixel and its neighbors. There are two main contributions: 1) a novel phase dif-
ference measure is defined; 2) new encoding rules to mirror Gabor phase differ-
ence information are designed. Because of them, this method describes Gabor 
phase difference more precisely than the conventional LGPDP. Moreover, it 
could discard useless information and redundancy produced near quadrant 
boundary, which commonly exist in LGPDP. It is shown that the proposed 
method brings higher discriminative ability to Gabor phase based pattern. Ex-
periments are conducted on the FRGC version 2.0 and USTB Ear Database to 
evaluate its validity and generalizability. The proposed method is also com-
pared with several state-of-the-art approaches. It is observed that our method 
achieves the highest recognition rates among them.        

1   Introduction  

Over the last decades, biometrics has gained increasing attention because of its broad 
applications ranged from identification to security. As one of its main research topics, 
face recognition has been developing rapidly. Numerous face recognition methods 
have been put forward and adopted in real-life advanced technologies. Meanwhile, ear 
recognition has also raised interest in research and commercial communities, since 
human ear is one of the representative human identifiers, and ear recognition would 
not encounter facial expression and aging problems [1]. As we know, the main task of 
vision-based biometrics is to extract compact descriptions from images that would 
subsequently be used to confirm the identity [2]. For face recognition, the key prob-
lem is also to represent objects effectively and improve the recognition performance, 
which is the same with that in ear recognition.      

In this paper, a new image representation method is presented based on the Local 
Gabor Phase Difference Pattern (LGPDP) [8]. It captures the Gabor phase difference 
in a novel way to represent images. According to the Gabor function and new phase 
difference definition, we design encoding rules for effective feature extraction. The 
proposed encoding rules have the following characteristics: 1) divide the quadrants 
precisely and encode them by a 2-bit number; and 2) avoid useless patterns that might 
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be produced near the quadrant boundary, which is an unsolved problem in the 
LGPDP. From the results of experiments conducted on the FRGC ver 2.0 database for 
face recognition and USTB ear database for ear recognition, the proposed method is 
observed to further improve the capability of capturing information from the Gabor 
phase. The extension of its application from face recognition to ear recognition also 
achieves impressive results, which demonstrates its ability as a general image repre-
sentation for biometrics. To our best knowledge, this is the first utilization of Gabor 
phase difference in ear image representation.    

2   Background of Methodology 

By now, various image representation methods have been proposed for vision-based 
biometrics. For face recognition, these methods can be generally divided into two 
categories: holistic matching methods and local matching methods. The Local binary 
pattern (LBP) [16], Gabor features and their related methods [3]-[6] have been con-
sidered as promising ways to achieve high recognition rates in face recognition. One 
of the influential local approaches is the histogram of Gabor phase patterns (HGPP) 
[7]. It uses global and local Gabor phase patterns for representation taking advantage 
of the fact that the Gabor phase can provide useful information as well as the Gabor 
magnitude. To avoid the sensitivity of Gabor phase to location variations, the Local 
Gabor Phase Difference Pattern (LGPDP) is put forward later [8]. Unlike the HGPP 
that exploits Gabor phase relationships between neighbors, LGPDP encodes discrimi-
native information in an elaborate way to achieve a better result. However, its encod-
ing rules would result in a loose quadrant division. This might produce useless and 
redundancy patterns near the quadrant boundary, which would bring confounding 
effect and reduce efficiency.       

For ear recognition, research involves 2D ear recognition, 3D ear recognition, ear-
print recognition and so on. Although many approaches have been proposed, such as 
the PCA for ear recognition [9], Linear Discriminant Analysis and their kernel based 
methods [10][11][12][13], 2D ear recognition remains a challenging task in real world 
applications as most of these methods are based on the statistical learning theory, 
which inspires the usage of local based approaches later [14].  

It has been confirmed that the Gabor phase could provide discriminative informa-
tion for classification and the Gabor phase difference has sufficient discriminative 
ability [6][8]. However, the Gabor phase difference should be exploited elaborately to 
avoid useless information. Therefore, we are motivated to give a new phase difference 
definition and design new encoding rules in order to extract features from Gabor 
phase differences effectively.         

3   Gabor Phase Based Image Representation Method 

3.1   Gabor Function as Image Descriptors 

In this section, we present the new local feature based image representation method, 
which also captures Gabor phase differences between the referencing pixel and its 
neighboring pixels at each scale and orientation, but using a new phase difference 
definition and encoding rules.  
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Gabor wavelets are biologically motivated convolution kernels in the shape of 
plane waves, restricted by a Gaussian envelope function [15]. The general form of a 
2D Gabor wavelet is defined as: 
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In this equation, ),( yxz =  is the variable in a complex spatial domain, •  denotes 
the norm operator, σ  is the standard deviation of the Gaussian envelope determining 
the number of oscillations. The wave vector vk ,μ  is defined as μφ
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v fkk max=  and 8πμφμ = , maxk  is the maximum frequency of interest, and f  is 
the spacing factor between kernels in the frequency domain.    

3.2   The Novel Local Gabor Phase Difference Pattern 

Because of the biological relevance with human vision, Gabor wavelets can en-
hance visual properties which are useful for image understanding and recognition 
[4]. Thus, Gabor filter based representations are expected to be robust to unfavor-
able factors, for example, the illumination. The idea that uses Gabor function as 
image descriptor is to enhance discriminative information by the convolution be-
tween the original image and a set of Gabor kernels with different scales and orien-
tations.  

A Gabor wavelet kernel is the product of an elliptical Gaussian envelope and a 
complex plane wave. The Gabor kernels in Equation (1) are all self-similar since they 
can be generated by scaling and rotation via the wave vector vk ,μ . We choose eight 
orientations { }7,...,1,0:μ  and five scales { }4,...1,0:v , thus make a total of 40  Gabor 
kernels. The values of other parameters follow the setting in [4]: πσ 2= ，

2max π=k ， 2=f . The Gabor-based feature is obtained by the convolution of the 
original image )(zI and each Gabor filter )(, zvμΨ :                   

                                             )()()( ,, zzIzO vv μμ Ψ∗= .                                               (2) 

)(, zO vμ is the convolution result corresponding to the Gabor kernel at orientation μ  
and scale v . The magnitude and phase spectrum of the 40  )(, zO vμ  are shown in  
Fig. 1. The magnitude spectrum of )(, zO vμ  is defined as: 
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where ( )⋅Re  and ( )⋅Im  denote the real and imaginary part of the Gabor transformed 
image respectively. Usually, )(, zO vμ  as the magnitude part of )(, zO vμ  is adopted in 
the feature selection [4][17]. But in our case, we choose the phase part of )(, zO vμ  to 
utilize the discriminative power of the Gabor phase which was confirmed in [18]. The 
phase spectrum of )(, zO vμ  is defined as: 
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Fig. 1. Illustrative Gabor magnitude spectrum (left) and Gabor phase spectrum (right) 

Our method is based on the local Gabor phase difference pattern which captures 
discriminative information from the Gabor phase for image representation [8]. In the 
LGPDP, the absolute values of Gabor phase differences, ranged from 0  to π2 , are 
calculated for each pixel in the image. Then they are reformulated to a 1-bit number: 
1 denotes phase differences from 0  to 2π , and 0  denotes phase differences from 

2π  to π2 . This pattern has two shortages: 1) the division of quadrant is loose, so 
only 43  of the quadrant would be encoded as an 1-bit number; 2) as phase differ-
ences are taken by ( )zv,μθΔ , Gabor phase differences near π2  are almost useless. To 
increase the efficiency of the Gabor phase based pattern, in our method, we define the 
phase difference as: ( ) ( ){ }zz vv ,, 2,min μμ θπθ Δ−Δ . Thus, the values of Gabor phase 
differences are ranged in [ ]π,0 , and would be reformulated to a 2-bit number by en-
coding rules:  

, 

where pC  denotes the new coding. In this way, the range of the Gabor phase differ-
ence is concentrated from ]2,0[ π  to ],0[ π . Thus, each 4π  of the half quadrant can 
be encoded to be a 2-bit number, which is more precise than the LGPDP which di-
vides the quadrant into two unequal parts. Meanwhile, the new definition of phase 
difference would discard useless information near the quadrant boundary. In this way, 
the coding of eight neighbors can be combined to be a 16-bit binary string for each 
pixel and converted to a decimal number ranged in [0,255]. This process is described 
in Fig. 2. The eight 2-bit numbers are concatenated into a 16-bit number without 
weight, so that the histogram would not be strongly dependent on the ordering of 
neighbors (clockwise in LGPDP). Each of these values represents a mode how the 
Gabor phase of the reference pixel is different from that of its neighbors and what is 
the range between them. Fig. 2 gives an example of the pattern. The visualizations of 
the new pattern and the LGPDP are illustrated in Fig. 3. The μ  and v  are selected 
randomly.     

The histograms (256 bins) of Gabor phase differences at different scales and ori-
entations are calculated and concatenated to form the image representation. As a 
single histogram suffers from losing spatial structure information, images are  
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decomposed into sub-regions, from which local features are extracted. To capture 
both the global and local information, these histograms are concatenated to an ex-
tended histogram for each scale and orientation. The discriminative capability of 
this pattern could be observed from the results of histogram distance comparison 
( 90=μ , 47.5=v ), listed in Table 1 and 2. xS1 )2,1( =x  and yS2 )2,1( =y are four 
images for two subjects. 

Table 1. The histogram distances of four images for two subjects using the proposed pattern  

Subjects S11 S12 S21 S22 
S11 0 2556 3986 5144 
S12 -- 0 3702 5308 
S21 -- -- 0 2826 
S22 -- -- -- 0 

Table 2. The histogram distances of four images for two subjects using the LGPDP  

Subjects S11 S12 S21 S22 
S11 0 3216 3630 4166 
S12 -- 0 3300 3788 
S21 -- -- 0 2932 
S22 -- -- -- 0 

  

Fig. 2. Quadrant bit coding and an example of the new Gabor phase difference pattern. The first 
8-neighborhood records coefficients of π  that describe neighborhood Gabor phases. The sec-
ond one records coefficients of π  that describe neighborhood Gabor phase differences using 
the new definition. The third one records corresponding binary numbers according to the new 
encoding rules. The binary string is 1110001011010010 . The decimal number corresponding to 
this string is then normalized to the range of [0,255].  

   

                                           

Fig. 3. Illustrative samples of resultant results when convoluting an image with Gabor filters 
( )20.8,47.5=v  using the proposed pattern (left) and the LGPDP (right)    
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4   Experiments 

The proposed method is tested on the FRGC ver 2.0 database [19] and the USTB ear 
database [13] for face recognition and ear recognition, respectively. The classifier is 
the simplest classification scheme: nearest neighbour classifier in the image space 
with Chi square statistics as a similarity measure.    

4.1   Experiments on the FRGC ver 2.0 Database 

To evaluate the performance of the proposed method in face recognition, we conduct 
experiments on the FRGC version 2.0 database which is one of the most challenging 
face databases [19]. The images are normalized and cropped to the size of 120120 ×  
using the provided eye coordinates. Some samples are shown in Fig. 4.  

 

Fig. 4. Face images from the FRGC 2.0 database 

In FRGC 2.0 database, there are 12776 images taken from 222 subjects in the train-
ing set and 16028 images in the target set. We conduct Experiment 1 and Experiment 
4 protocols to evaluate the performance of different approaches. In Experiment 1, 
there are 16028 query images taken under the controlled illumination condition. The 
goal of Experiment 1 is to test the basic recognition ability of approaches. In Experi-
ment 4, there are 8014 query images taken under the uncontrolled illumination condi-
tion. Experiment 4 is the most challenging protocol in FRGC because uncontrolled 
large illumination variations bring significant difficulties to achieve high recognition 
rate. The experimental results on the FRGC 2.0 database in Experiment 1 and 4 are 
evaluated by Receiving Operator Characteristics (ROC), which is face verification 
rate (FVR) versus false accept rate (FAR). Tables 3 and 4 list the performance of 
different approaches on face verification rate (FVR) at false accept rate (FAR) of 
0.1% in Experiment 1 and 4.  

From experimental results listed in Table 3 and 4, the proposed method achieves 
the best performance, which demonstrates its basic abilities in face recognition.  
Table 5 exhibits results of the comparison with some well-known approaches. The 
images are uniformly divided into 64 sub-regions in local based methods. The data-
base used in experiments for Gabor + Fisher Linear Discriminant Analysis (FLDA) 
and Local Gabor Binary Patterns (LGBP) are reported to be a subset of FRGC 2.0 
[20], while the whole database is used for others. It is observed that our pattern has 
high discriminative ability and could improve face recognition performance.    

Table 3. The FVR values in Experiment 1 of the FRGC 2.0 database 

FVR at FAR = 0.1% (in %) Methods 
ROC 1 ROC 2 ROC 3 

BEE Baseline [19] 77.63 75.13 70.88 
LBP [16] 86.24 83.84 79.72 
Our method 98.38 95.14 93.05 
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Table 4. The FVR values in Experiment 4 of the FRGC 2.0 database 

FVR at FAR = 0.1% (in %) Methods 
ROC 1 ROC 2 ROC 3 

BEE Baseline [19] 17.13 15.22 13.98 
LBP [16] 58.49 54.18 52.17 
Our method 82.82 80.74 78.36 

Table 5. The ROC 3 on the FRGC 2.0 in Experiment 4 

Methods ROC 3, FVR at FAR = 0.1% (in %) 
BEE Baseline [19] 13.98 
Gabor + FLDA [20] 48.84 
LBP [16] 52.17 
LGBP [20] 52.88 
LGPDP [8] 69.92 
Our method 78.36 

4.2   Experiments on the USTB Ear Database 

For ear recognition, experiments are conducted on a subset (40 subjects) of the USTB 
ear database that contains 308 images of 77 subjects [13]. These images are taken under 
3 viewing conditions (azimuth { }30,0,30−∈α ) and different illumination conditions. 
The original images, with a resolution of 400300 × , are cropped to grayscale images 
with a resolution of 360270 × . Sample images for two subjects are shown in Fig. 5. In 
this experiment, three images of one subject are taken as the training set and the remain-
ing one serves as the testing set. Considering that complex information is contained in 
the ear print area, we divide images into sub-regions with 5-pixel overlapping.   

   

Fig. 5. Ear images from the USTB ear database for two subjects  

As in other local feature based methods, recognition performance can be improved 
by image division. Here we divide images uniformly into nine sub-regions with small 
overlapping. The spatially enhanced histogram is defined as the combination of fea-
tures extracted from each sub-region. In this way, the texture of image could be locally 
encoded by micro-patterns and the ear shape could be recovered by the construction of 
feature histograms.  

To evaluate the performance of the proposed method in ear recognition, it is com-
pared with some widely-used methods: Principal Components Analysis (PCA) for ear 
recognition, Fisher Discriminant Analysis, rotation invariant descriptor, Local binary 
pattern and LGPDP. The average recognition rates (in %) using cross validation are 
listed in Table 6. From experimental results, we can observe that the proposed pattern 
performs well in ear recognition, which demonstrate its efficiency and generalizability 
as an image representation for biometrics.   
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Table 6. Experimental results of ear recognition 

Methods Recognition rate (in %) 
PCA [9] 78.68 
FDA [10] 85.71 
Rotation invariant descriptor [12] 88.32 
LBP [16] 89.79 
LGPDP [8] 89.53 
Our method  92.45 

5   Conclusions 

In this paper, we propose a new Gabor phase based image representation method, which 
is based on the local Gabor phase difference pattern (LGPDP). There are two disadvan-
tages of the conventional LGPDP: 1) 43  of the quadrant is encoded as an 1-bit number 
because of its loose quadrant division; and 2) Gabor phase difference patterns near π2  
are almost useless because the phase difference is defined as the absolute value of phase 
distance between neighbors, which might bring confounding effects to image represen-
tation. Therefore, we propose a new local feature for effective image representation, 
which could discard useless information by defining the phase difference measure in a 
novel way. Moreover, new encoding rules are designed to provide more precise quad-
rant division than the LGPDP. In virtue of these two contributions, the discriminative 
ability of the Gabor phase based pattern can be significantly improved. This method is 
evaluated on both the FRGC version 2.0 database and the USTB ear database. It is also 
compared with several state-of-the-art approaches and achieves the highest recognition 
rates among them. The experimental results could demonstrate its capability and gener-
alizability as an image representation.    
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Abstract. Palmprint as a new biometric has received great research attention in 
the past decades. It owns many merits, such as robustness, low cost, user friend-
liness, and high accuracy. Most of the current palmprint recognition systems 
use an active light to acquire clear palmprint images. Thus, light source is a key 
component in the system to capture enough of discriminant information for 
palmprint recognition. To the best of our knowledge, white light is the most 
widely used light source. However, little work has been done on investigating 
whether white light is the best illumination for palmprint recognition. In this 
study, we empirically compared palmprint recognition accuracy using white 
light and other six different color lights. The experiments on a large database 
show that white light is not the optimal illumination for palmprint recognition. 
This finding will be useful to future palmprint recognition system design. 

Keywords: Biometrics, Palmprint recognition, (2D)2PCA, Illumination. 

1   Introduction 

Automatic authentication using biometric characteristics, as a replacement or com-
plement to traditional personal authentication, is becoming more and more popular in 
the current e-world. Biometrics is the study of methods for uniquely recognizing hu-
mans based on one or more intrinsic physical or behavioral traits [1]. As an important 
member of the biometric characteristics, palmprint has merits such as robustness, 
user-friendliness, high accuracy, and cost-effectiveness. Because of these good prop-
erties, palmprint recognition has received a lot of research attention and many systems 
have been proposed.  

In the early stage, most of works focus on offline palmprint images [2-3]. With the 
development of digital image acquisition devices, many online palmprint systems 
have been proposed [4-12]. There are mainly three kinds of online palmprint image 
acquisition systems: desktop scanner [4-6], Charge Coupled Device (CCD) camera or 
Complementary Metal-Oxide-Semiconductor (CMOS) camera with passive illumina-
tion [7-8], and CCD or CMOS with active illumination [9-12]. 

Desktop scanner could provide high quality palmprint images [4-6] with different 
resolutions. However, it may suffer from the slow speed and requires the full touch 
with whole hand which may bring sanitary issues during data collection. Using CCD 
or CMOS with uncontrolled ambient lighting [7-8] does not have the above problems. 
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However, the image quality may not be very good so that the recognition accuracy 
may not be high enough. Because CCD or CMOS camera mounted with active light 
could collect image data quickly with good image quality and does not require the full 
touch with the device, this kind of system have been attracting much attention [9-12]. 
Although all of these studies [9-12] used white light source to enhance the palmprint 
line and texture information, to the best of knowledge, no work has been done to 
systematically validate whether white light is the optimal light for palmprint recogni-
tion. This study focused on this problem through a series of experiments on a large 
multispectral palmprint database we established [17]. 

In general, there are mainly two kinds of approaches to pattern recognition and 
analysis: structural and statistical methods. Because the statistical methods are more 
computational effective and are straightforward to implement, many algorithms have 
been proposed, such as Principal Component Analysis (PCA) [5-6, 14], Locality Pre-
serving Projection [7, 13]. In this study, we employ the (2D)2PCA method [15-16] to 
extract palmprint features in order for feature extraction and matching. The (2D)2PCA 
method can alleviate much the small sample size problem in subspace analysis and 
can better preserve the image local structural information than PCA. 

The rest of this paper is organized as follows. Section 2 describes our data collec-
tion. Section 3 briefly introduces the (2D)2PCA algorithm. Section 4 presents the 
experimental results and Section 5 concludes the paper. 

2   Multispectral Palmprint Data Collection 

It is known that Red, Green, and Blue are the three primary colors (refer to Fig. 1), the 
combination of which could result in many different colors in the visible spectrum. 
We designed a multispectral palmprint data collection device which includes the three 
primary color illumination sources (LED light sources). By using this device we can 
simulate different illumination conditions. For example, when the red and green LEDs 
are switched on simultaneously, the yellow like light could be generated. Totally our 
device could collect palmprint images under seven different color illuminations: red, 
green, blue, cyan, yellow, magenta and white. 

The device is mainly composed of a monochrome CCD camera, a lens, an A/D 
converter, a light controller and multispectral light sources. To fairly study the illumi-
nation effect, the lens, A/D converter and CCD camera are selected according to  
 

 

Fig. 1. Additive Color Mixing: adding red to green yields yellow, adding all three primary 
colors together yields white 
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previous palmprint scanning [18] to remove the influence of scanner devices, and 
resolutions. The illuminator is a LED array, which is arranged in a circle to provide a 
uniform illumination. The peak spectrums of red, green, and blue LEDs are 660nm, 
525nm, and 470 nm respectively. The LED array can switch to different light in about 
100ms. The light controller is used to switch on or off the different color LEDs.  

As shown in Fig. 2, in data collection the user is asked to put his/her palm on the 
device. The device could collect a multispectral palmprint cube, including seven dif-
ferent palmprint images, in less 2 seconds. Fig. 3 shows examples of the collected 
images by different illuminations. 

 

Fig. 2. The prototype device 

    

a) Red b) Green c) Blue d) Yellow 

   

e) Magenta f) Cyan g) White 

Fig. 3. A sample of collected image of one palm with different illuminations 

3   Feature Extraction 

In this study, we employ the (2D)2PCA method [15-16] to extract palmprint features. 
The (2D)2PCA method can much alleviate the small sample size problem in subspace 
analysis and can well preserve the image local structural information.  



 Is White Light the Best Illumination for Palmprint Recognition? 53 

Suppose we have M subjects and each subject has S sessions in the training data 
set, i.e. S multispectral palmprint cube were acquired at different times for each sub-
ject. Then, we denote by b

msX  the bth band image for the mth individual in the sth ses-

sion. b
msX  is an *r cI I  matrix, where rI  and cI  represent the numbers of rows and 

columns of the image. The covariance matrices along the row and column directions 
are computed as: 
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where 11 12 1, ,...,
c

b b b
Iλ λ λ  are the first cI  biggest eigenvalues of 1

bG , 21 22 2, ,...,
r

b b b
Iλ λ λ  are 

the first rI  biggest eigenvalues of 2
bG , and uC  is a pre-set threshold. 

For each given band bth, the test image bT  is projected to bT  by 1
bV  and 2

bV . The 

distance of the projection result to the thm  individual is defined as: 

2 1
b bT b b b
ms msd V T V X= −  (3) 

where 2 1
b bT b b
ms msX V X V=  is the projection data from the training set. Then the classifi-

cation decision of a test band image is made as: 

arg min , 1,2,..., , 1, 2,...,b b
ms

m
c d m M s S= = =  (4) 

4   Experiment Results 

We collected multispectral palmprint images from 250 subjects using the developed 
data acquisition device. The subjects were mainly volunteers from our institute. In the 
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database, 195 people are male and the age distribution is from 20 to 60 years old. We 
collected the multispectral palmprint images on two separate sessions. The average 
time interval between the two occasions is 9 days. On each session, the subject was 
asked to provide 6 samples of each of his/her left and right palms. So our database 
contains 6,000 images for each band from 500 different palms. For each shot, the 
device collected 7 images from different bands (Red, Green, Blue, Cyan, Yellow, 
Magenta, and White) in less than two seconds. In palmprint acquisition, the users are 
asked to keep their palms stable on the device. The resolution of the images is 
352*288 (<100 DPI). 

After obtaining the multispectral cube, a local coordinate of the palmprint image is 
established [9] from the blue band, and then a Region of Interest (ROI) is cropped from 
each band based on the local coordinate. For the convenience of analysis, we normal-
ized these ROIs to a size of 128*128. To remove the global intensity and contrast effect, 
all images are normalized to have a mean of 128 and standard deviation of 20.  

The whole database is partitioned into two parts, training set and test set. The train-
ing set is used to estimate the projection matrix and is taken as gallery samples. The 
test samples are matched with the training samples, and Eq. 4 is used to decide the 
recognition output. The ratio of the number of correct matches to the number of test 
samples, i.e. the recognition accuracy, is used as the evaluation criteria. To reduce the 
dependency of experimental results on training sample selection, we designed the 
experiments as follows. Firstly, the first three samples in the first session are chosen 
as training set and the remaining samples are used as test set. Secondly, the first three 
samples in the second session are chosen as training set, and the remaining samples 
are used as test set. Finally, the average accuracy is computed. 

Fig. 4 shows the accuracies of different spectrum with different cumulant Eigen-
value threshoslds, uC . Several findings could be found from Fig. 4. 
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Fig. 4. Recognition Accuracy under different uC  
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First, recognition accuracy is dependent with threshold. As threshold increases, the 
accuracy increases to a peak, then drops a little. The highest accuracy with the thresh-
old for each color is listed in Table 1. 

Table 1. The highest accuracy with threshold for each color 

Color Highest accuracy Corresponding uC  

Blue 97.2000 0.75 
Cyan 96.8777 0.75 
Green 96.6334 0.80 
Magenta 97.4333 0.80 
Yellow 97.8777 0.80 
Red 97.3555 0.80 
White 97.6334 0.80 

 
Second, no single spectrum could compete with all the others for all thresholds. 

This is mainly because different light could enhance different features of palms, while 
these different features have different intensity distributions which are in favor of 
different parameters.  

Third, among the three primary colors, Red has a little higher accuracy than Blue 
and Green. This is mainly because Red could not only capture most of the palm line 
information, but also capture some palm vein structures as shown in Fig. 3. This addi-
tional palm vein information helps classify those palms with similar palm lines. It 
could also explain why those composite colors Magenta, Yellow, White get better 
accuracy than Cyan.  

Finally, White color could not get higher accuracy than Yellow color. This is 
probably because Blue and Green collect redundant information for palm skin. As 
shown in Fig. 3, the palmprint images under Blue and Green illumination are more 
similar to each other than to the image under Red illumination. The redundancy 
makes White color fail to capture more information than the Yellow color, and some-
times the accuracy drops a little. 

5   Conclusion 

Palmprint recognition has been attracting lots of research attention in the past decade 
and many novel data collection devices have been proposed. Because the good image 
quality and capture speed, CCD or CMOS camera mounted with active lighting 
source is the most popular device configuration. All these devices use white light as 
the illumination source but there was no systematic analysis on whether the White 
light is the optimal light source for palmprint recognition. This paper made a good 
effort on this problem by establishing a large multispectral palmprint database using 
our developed device. With the database we empirically evaluated the recognition 
accuracies of palmprint images under seven different colors. Our experimental results 
showed that the White color is not the optimal color for palmprint recognition and the 
Yellow color could achieve higher accuracy than the White color. In the future, other 
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feature extraction methods, such as structural and texture coding methods will be used 
to further investigate the best illumination conditions of palmprint recognition.  
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Abstract. Most biometric authentication algorithms make use of a similarity 
score that defines how similar two templates are according to a threshold and the 
accuracy of the results are expressed in terms of a False Reject Rate (FRR) or 
False Accept Rate (FAR) that is estimated using the training data set. A confi-
dence interval is assigned to any claim of accuracy with 90% being commonly 
assumed for biometric-based authentication systems. However, these confidence 
intervals may not be as accurate as is presumed. In this paper, we report the re-
sults of experiments measuring the performance of the widely-used subset 
bootstrap approach to estimating the confidence interval of  FAR. We find that 
the coverage of the FAR confidence intervals estimated by the subset bootstrap 
approach is reduced by the dependence between two similarities when they come 
from two individual pairs shared with a common individual. This is because 
subset bootstrap requires the independence of different subsets. To deal with this, 
we present a second-level partition to the similarity score set between different 
individuals, producing what we call a subset false accept rate (SFAR) bootstrap 
estimation. The experimental results show that the proposed procedures greatly 
increase the coverage of the FAR confidence intervals.  

Keywords: Biometric, performance evaluation, bootstrap, confidence interval. 

1   Introduction 

A biometric authentication system verifies the identity of an individual by using bio-
metric features such as palmprints, fingerprints, the face, or iris. Systems do this by 
matching template samples of an individual’s features and accepting or rejecting them. 
Most biometric authentication algorithms make use of a similarity score that defines 
how similar two templates are. The score makes use of a threshold but the setting of that 
threshold still allows systems to erroneously either accept or reject a particular match. 
The accuracy of a biometric authentication system, expressed in terms of these two 
error rates, the False Reject Rate (FRR) and False Accept Rate (FAR) [1][2][4][5][7], is 
estimated using the training data set and  a confidence interval is assigned to any claim 
of accuracy with a confidence interval of 90% being commonly assumed for biomet-
ric-based authentication systems. We use the statistics coverage to evaluate how much 
real-world FRR/FAR can be cover with the estimated FRR/FAR confidence intervals.  
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Most methods for estimating error rate confidence intervals are either parametric or 
non-parametric. The parametric methods are based on the probability distribution of the 
similarity score between two patterns. Various such methods [1][10][11][12][13] as-
sume the score distributions conform to an i.i.d. Gaussian distribution  but in practical 
applications the distribution of the score is often unknown. In contrast, non-parametric 
methods do not require knowledge of distribution of the similarity score.  The most 
widely used of the non-parametric methods is bootstrap, which has been shown to be 
robust when handling unknown similarity score distributions [6]. A thorough descrip-
tion of bootstrap methods can be found in [3]. Bolle et al. [6][8] applied bootstrap to 
estimating FRR and FAR confidence intervals and found it superior to the parametric 
methods. The bootstrap method still requires the i.i.d. score distribution while the 
dependence between similarities which come from a same pair of individual will lead to 
the unconformity of i.i.d.. Subset bootstrap [9] partition the dataset into subset by the 
individual pairs so that it can handle this kind of dependency between similarities 
scores of the same individual pairs. Two-level bootstrap [14] improved on subset 
bootstrap in that it allowed faster convergence. However, there is another kind of de-
pendence between two similarities when they come from two individual pairs which 
share a common individual. For example we have A,B,C three persons. The similarity 
between A, B and the similarity between A,C are dependent because (A,B) and (A,C) 
share the common person A. This kind of dependence can not be avoided by both of the 
subset bootstrap approach and the two-level bootstrap. This reduces the coverage of 
FAR confidence interval, for the subset bootstrap required the independence of dif-
ferent subsets as we know in [9]. 

In this work, we first give brief introduction to the subset bootstrap method We then 
propose a second-level partition to the individual pairs which separate the dependent 
individual pairs. This then allows us to estimate the FAR confidence intervals using 
what we refer to as Subset FAR (SFAR). Finally, we compared the proposed methods 
against subset bootstrap, using Recognition Algorithm Testing Engine (RATE) [15], 
which is an online testing system for the biometric algorithms, and found that the 
proposed procedures greatly increase the coverage of the FAR confidence intervals.  

The rest of this paper is organized as follows: Section 2 formulates the problem of 
establishing a suitable confidence interval of the FAR and provides a formulation for 
the problem of subset bootstrap estimation [6].  Section 3 presents a second-level par-
tition to the individual pairs and proposes the use of Subset FAR (SFAR) to estimate 
the FAR confidence intervals. Section 4 provides the experimental results of  
second-level partition and SFAR approach for FAR confidence interval estimation. 
Section 5 offers our Conclusion. 

2   Subset Bootstrap Estimation  

2.1   Preliminaries  

Most biometric authentication algorithms define a similarity score s which is used in 
deciding how similar two templates are. A threshold t is specified to decide the rejection 
and acceptance which will cause the False Reject Rate (FRR) and False Accept Rate 
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(FAR). FRR and FAR are expressions of statistical random variables for each threshold t. 
Real-world applications use the training data set to estimate these random variables and 
thereby describe the accuracy of the biometric authentication system. As 100% accuracy 
of the FRR and FAR is impossible, claims of accuracy are set within a (1-α)100% con-
fidence interval. The (1-α)100% confidence level FRR confidence interval [FRRu(t), 
FRRd(t)] and FAR confidence interval [FARu (t), FARd(t)] are defined as follows: 

P(FRRu(t)<FRR(t)<FRRd(t))>1-α (1) 

P(FARu(t)<FAR(t)<FARd(t))>1-α (2) 

α is the probability that the real-world FRR/FAR are outside the estimated interval.  

2.2   Subset Bootstrap Estimation 

Subset bootstrap estimation [9] can be formulated as follows. 
Suppose we have N individuals and we acquire d sample templates from each indi-

vidual, giving Nd templates. These generate 1)/2Nd(d −  self-similar match scores (a 

comparison of an individual’s own templates) and 2/d)1N(N 2−  mismatch scores 

between the templates of different individuals.  
We denotes the collection of mismatch scores between different individuals by S and 

partition S into N(N-1)/2 subset according to different individual index pairs. That is 

2)/1N(N-   MS[M],     ...]2S[]1S[S =∪∪∪=  (3) 

The Subset Bootstrap estimation of the FAR confidence interval in is described as 
following steps: 

Step1) Divide the mismatch scores set S into M subset S[i], i=1,2,…,M according 
different individual index pairs so that M=N(N-1)/2 

 

Step2) Do B times (k=1 to B): 

i) Generate random integer array M21 r,...,r,r  with replacement from {1,2,…,M} 

ii) Generate the bootstrap resample set U
M

1i
ik ]r[SS

=

=  

iii) Calculate the ( )tFARk
 using the equations:  

∑
∈

<
−

=
kSs

2k }ts{I
2/)1N(Nd

1
)t(FAR  (4) 

iv) Sort the B bootstrap estimates )t(FAR k
k=1,2,…,B by 

)t(FAR...)t(FAR)t(FAR *
B

*
2

*
1 ≤≤≤  

Step 3) Eliminate the bottom α/2 and the top α/2 of the B bootstrap estimations. The 
margin of the leftover estimations gives the (1-α)100% confidence intervals. That is 

⎡ ⎤ ⎣ ⎦ )]t(FAR),t(FAR[ *
B)2/1(

*
B)2/( α−α  
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3   Second-Level Partition and SFAR Estimation 

The subset bootstrap FAR confidence interval estimation partition the mismatch score 
set to N(N-1)/2 subsets and assuming they are independent. However, if we denote that 
S[i,j] is the similarity score set of two different individual i,j. for three different indi-
viduals i, j, k, we cannot assume S[i,j] and S[j,k] are independent because they have a 
common individual j.  

In this section we will present a second-level partition to S so that we can handle the 
second-level subsets separately to avoid the dependence. 

Suppose m is a integer which can divide N(N-1)/2 exactly , K=N(N-1)/2m. 
The second-level partition is as follows: 

]j,i[S...]j,i[S]j,i[SS )k(
m

)k(
m

)k(
1

)k(
1

)k(
1

)k(
1

)k( ∪∪∪=  (5) 

U
K

1k

)k(SS
=

=  (6) 

Here, k=1,2,…,K. 

For each k=1,2,…, K, if the index )k(
m

)k(
m

)k(
2

)k(
2

)k(
1

)k(
1 j,i,...,j,i,j,i are exactly 2m dif-

ferent integers, we call the partition (6) an independent partition. We indicate Subset 

False Accept Rate(SFAR) for each subset )k(S : 

)Ss|ts(P)t(SFAR )k()k( ∈>=  (7) 

Notice that 

∑
=

∈∈∈>=∈>=
K

1k

)k()k( )Ss|Ss(P)Ss|tS(P)Ss|ts(P)t(FAR     Thus, 

c

 
(8) 

Then, we can estimate the FAR confidence interval by the K SFAR confidence in-
tervals. 

For each k=1,2,…, K, the subset bootstrap estimation in Section 2 can work inde-
pendently according to the partition (3). Thus, we have K SFAR bootstrap 90% con-
fidence intervals: )]t(SFAR),t(SFAR[ u

)k(
d

)k( , k=1,2,…,K 

Let 

∑
=

=
K

1k

d
)k(

d )t(SFAR
K

1
)t(FAR  (9) 
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∑
=

=
K

1k

u
)k(

u )t(SFAR
K

1
)t(FAR  (10) 

Then [FARd(t),FARu(t)] is the 90% confidence interval of FAR(t). 

The steps of the second-level partition and SFAR estimation can be illustrated in 
Fig. 1. 

When implementing the second-level partition (6), the immediate question is how to 
partition it independently such that: )k(

m
)k(

m
)k(

2
)k(

2
)k(

1
)k(

1 j,i,...,j,i,j,i  are 2m different inte-

gers. One way is to use the following partition: 

1. if N is an odd number: U
Nji1

)N (mod1kji

)k( j]S[i,S
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With this method, we can avoid the dependence between two similarities when they 
come from two individual pairs which share a common individual. The coverage is 
higher than 90% when the training data size is above 100, as shown in Section 4. 

Training Data
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Second-level Partition
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Subset Bootstrap

[SFAR(2)
d, SFAR(2)

u]
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Subset Bootstrap
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[FARd, FARu]
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[FARd, FARu]  

Fig. 1. Steps of the second-level partition and SFAR estimation 
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4   Experimental Results 

Recognition Algorithm Testing Engine (RATE) [15] is an online performance evalua-
tion system for pattern recognition algorithms. It was developed by the AI-lab of  
Peking University [16] and offers three different palmprint databases DATA1, 
DATA2, DATA3, allowing the users to submit their biometric algorithm and see the 
testing results. DATA1 were acquired from the AI-lab [16] and DATA2 and DATA3 
were acquired from Biometric Centre of the Hong Kong Polytechnic University [17]. 
Images of the palmprint in these databases, which are the central parts extracted from 
the original images, are 128×128 and 200dpi. Table 1 shows the number of individuals 
and templates in the databases.  

Table 1. Number of individuals and templates in the databases 

 DATA0 DATA1 DATA2 
N 51 213 261 
d 15 4 10 

 N denotes the number of individuals 
 d denotes the number of templates for each individual 

We submit 4 different palmprint recognition algorithms “fft”, ”surface”, ”texture” 
and “wavelet” developed by Li [18][19][20]. We choose the 40% sample size from 
the dataset as a training set to estimate the confidence interval. It is repeated 100 
times.  To calculate the coverage, we use the method described in Section 2, choosing 
80% sample size as a testing set and including the training set. Tables 2 shows the 
coverage of the FAR confidence interval using the subset bootstrap method described 
in Section 2. 

Table 2. Coverage of the FAR confidence interval using the subset bootstrap 

 DATA1 DATA2 DATA3 
fft 69% 18% 7% 
surface 48% 11% 6% 
texture 24% 51% 1% 
wavelet 49% 21% 15% 

We can see the coverage decreases while the sample size increases. This is probably 
because the dependence between two similarities when they come from two individual 
pairs which share a common individual increasing along with the sample size. 

Tables 3 shows the results for FAR confidence interval estimated when using sec-
ond-level partition and SFAR estimation, as described in Section 3.  

The coverage of the FAR confidence interval estimated using SFAR bootstrap is 
much higher than when using subset bootstrap. The coverage was more than 90% on 
DATA3, which has a training set larger than 100.  
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Table 3. Coverage of the FAR confidence interval using second-level partition and SFAR 
estimation 

 DATA1 DATA2 DATA3 
fft 21% 60% 99% 
surface 100% 77% 92% 
texture 92% 99% 100% 
wavelet 84% 96% 90% 

5   Conclusion 

In this paper, we introduced a second-level partition to the mismatch similarity score 
set and present a SFAR bootstrap confidence interval estimation that allows us to avoid 
dependence between two similarities when they come from two individual pairs which 
shared a common individual. Experimental results show that applying the second-level 
partition greatly improves the coverage of confidence intervals when compared with 
conventional subset bootstrap estimation.  

In fact, our approach takes the FAR as the average of SFARs. But it is doubtful that 
the average of the SFARs confidence interval will automatically generate the confi-
dence interval of FAR. An issue for future work is to demonstrate the average of the 
SFAR confidence intervals will generate the FAR confidence interval.  

The experiment in this paper is based on palmprint database and with small sample 
size. Thus another future work is to extend this work to other biometric databases and 
larger sample sizes. 
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Abstract. In this paper,wepropose a supervised SmoothMulti-Manifold
Embedding (SMME) method for robust identity-independent head pose
estimation. In order to handle the appearance variations caused by iden-
tity, we consider the pose data space as multiple manifolds in which each
manifold characterizes the underlying subspace of subjects with similar
appearance. We then propose a novel embedding criterion to learn each
manifold from the exemplar-centered local structure of subjects. The ex-
periment results on the standard databases demonstrates that the SMME
is robust to variations of identities and achieves high pose estimation
accuracy.

1 Introduction

Head pose estimation from images or videos is a classical problem in computer
vision [1]. Robust identity-independent head pose estimation plays a significant
role in many human-centered computing applications such as view-independent
face detection systems and multi-view face recognition systems.

After neuroscientists emphasized manifold ways of visual perception [2], many
researchers indicated that the variations of head pose can be visualized as data
points lying on a low-dimensional manifold in the image space of a high dimension-
ality [3,4]. However, how to extract effective pose features for the low-dimensional
manifold, and synchronously ignore appearance variations like changes in identity,
scale, illumination, etc [5], remain to be challenging problems due to the nonlinear
and high data dimensionality. The focus of this paper is to seek the optimal low-
dimensional manifold describing the intrinsical pose variations and to provide a
robust identity-independent pose estimator.

The changes of pose images due to identity changes are usually larger than
that caused by different poses of same person. Thus, it is difficult to obtain the
identity-independent manifold embedding which preserves the pose differences.
In this paper, we present a Smooth Multi-Manifold Embedding (SMME) method,
which considers the pose data space as multiple manifolds. Each manifold char-
acterizes the underlying subspace of the local structure of subjects with similar
appearance. We propose a novel embedding criterion to learn each manifold from
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the exemplar-centered local structure of subjects. The embedding method is su-
pervised by both pose and identity information. Each learned manifold with a
unique geometric structure is smooth and discriminative. The proposed SMME
method aims to provide intra-class compactness and inter-class separability in
low-dimensional pose space. For new images of a new subject, we first locate
their nearest exemplar, then embed them into the corresponding manifold, and
finally decide the pose angle by its k nearest neighbors in the projected subspace.

2 Related Work

The effective manifold learning methods [4,5,6,7,8] for head pose estimation seek
a low-dimensional continuous manifold, and new images can then be embedded
into these manifolds to estimate the pose. The embedding can be learned by
many approaches, such as Locally Embedded Analysis (LEA) [4], and Locality
Preserving Projections (LPP) [6]. To incorporate the pose labels that are usually
available during training phase, Balasubramanian et al. [7] presented a frame-
work based on pose information to compute a biased neighborhood. Yan et al. [8]
proposed a synchronized manifold embedding method. They all demonstrated
their effectiveness for head pose estimation. However, many methods proposed
to capture the structure of the pose manifold are local. Thus, they fail to handle
new samples without the consistent local information. In addition, they use a
single manifold to represent the pose space. In this paper, we use multi-manifold
to represent the feature space by a novel embedding method.

Several multi-subspace methods have been proposed in the literature [9,10,11].
Kim et al. [9] presented locally linear discriminant analysis for face recognition
with a single model image. Vidal et al. [10] proposed an algebraic geometric
approach to estimate a mixture of subspaces. Tipping et al. [11] proposed a mix-
ture model of probabilistic principal component analyzers for face recognition.
The parameters of the mixture model are determined using an EM algorithm.
They have high computing complexity for the iterative solution methods.

The major contribution of this paper is to introduce the Affinity Propagation
(AP) [12] method to obtain local structures of subjects with similar appearance
which are used to construct multiple manifolds. Another contribution is the
novel formation of the discriminative embedding using the exemplars solved in
a closed-form instead of a iterative method.

3 Multi-Manifold Embedding for Head Pose Estimation

Assume that the training data are X = [x1
1, x

1
2, · · · , x1

P , · · · , xS
1 , xS

2 , · · · , xS
P ]M×N ,

where xs
p ∈ RM , s = 1, 2, · · · , S, p = 1, 2, · · · , P , S is the number of subjects,

and P is the number of poses for a subject αs, and there are N = S×P samples
in total. The pose angle of the sample xs

p is denoted as βp. We aim to seeking a
discriminative embedding that mapping the original M dimensional image space
into an m dimensional feature space with m	M .
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Fig. 1. The 3-dimensional embedding of the pose data by LLE. (a) 2 subjects with
dissimilar individual appearance. (b) 2 subjects with similar individual appearance.

3.1 Motivations

The changes of pose images due to identity changes are usually larger than that
caused by different poses of same subject. Thus, for head pose estimation, it is
crucial to obtain the identity-independent manifold embedding which preserves
the pose differences. The SMME method is motivated by two observations: (1)
The appearance variations caused by identity lead to translation, rotation and
warp changes of the subject’s embeddings. Two subjects with similar individ-
ual appearance almost lie on a same continuous manifold by Locally Linear
Embedding (LLE) [13] shown in Fig. 1-(b). Otherwise, Fig. 1-(a) shows that
the embeddings may not be close from two subjects with dissimilar individual
appearance. (2) It is difficult to make sure that the pose data lie on a single
continuous manifold for the individual variations.

3.2 Smooth Multi-Manifold Embedding

Taking account of the effect caused by the appearance variations from different
subjects, we first group subjects in the training data set into clusters (represented
by their exemplar), and then seek a discriminative embedding for each cluster
supervised by both pose and identity information. Finally, we estimate the pose
by the k nearest neighbors in the low-dimensional embedding space.

Clustering Using Affinity Propagation. Frey and Dueck [12] proposed the
Affinity Propagation (AP) algorithm which is capable of finding an optimal set of
clusters with representative exemplars. Compared with other clustering methods,
AP do not preset the number of clusters and has good clustering performance.
In our scheme, AP is used to seek the local structures of subjects with similar
embeddings in the low-dimensional pose space.

For two head images xs
p and xs′

p′ , we compute the similarity as follows

sim(xs
p, x

s′
p′) = −‖xs

p − xs′
p′‖2. (1)

Then, we define the similarity of the two subjects αi and αk as

s(i, k) =
∑

p

sim(xi
p, x

k
p). (2)
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The parameter responsibility of AP can be determined experimentally by
cross-validation. The output is the clusters {X1, X2, · · · , XK} with the corre-
sponding exemplars {x1, x2, · · · , xK}. Later experiments show that each cluster
with a exemplar can be used to seek a discriminative embedding.

Embedding Method. For each local structure we seek a low-dimensional
embedding to provide intra-class compactness and inter-class separability in
the low-dimensional pose subspace. The optimization of the projection is syn-
chronous as follows: (1) Intra-class Compactness: For each pose, the projection
minimizes the distances between the embeddings of the exemplar and the other
subjects. (2) Inter-class Separability: For each subject, the projection maximizes
the distances between the embeddings of the different poses.

To obtain a low-dimensional pose space that is good for pose estimation, it
is desirable to minimize the intra-class compactness. We formulate it as the
distances between the embeddings of the exemplar and the other subjects for
each pose. Namely, we should minimize∑

p

∑
i∈Xc

‖yi
p − yc

p‖2, (3)

where yc
p is the embedding of the head image xc

p that is the exemplar of the
cluster Xc with the pose angle βp.

At the same time, we promote the inter-class separability of different poses
by maximizing the distances between the embedding of the different poses for
each subject. Namely, we maximize∑

s

∑
i�=j

‖ys
i − ys

j‖2Tij , (4)

where Tij is a penalty for poses i and j. We introduce a heavy penalty to penalize
the poses i and j when they are close to each other, this is given as Tij =
exp(−‖βi−βj‖2)/

∑
i exp(−‖βi−βj‖2). To combine (3) and (4) simultaneously,

we minimize the following objective

J =

∑
p

∑
i∈Xc ‖yi

p − yc
p‖2∑

s

∑
i�=j ‖ys

i − ys
j‖2Tij

, (5)

where J is the objective to seek the embedding ys
p of the head pose xs

p.
Fig. 2 (a) shows the intrinsical embeddings from a local structure of four

subjects (three subjects denoted by circles and an exemplar denoted by star).
The optimization for the projection is to minimize the distances between the
exemplar and the other subjects with a same pose and maximize the distances
between different poses of a subject. Fig. 2 (b) shows the corresponding embed-
dings which minimized the distances denoted by the dashed lines and maximized
the distances denoted by the solid lines. The objective of the embedding is to
generate many pose clusters each corresponding to a specific pose angle.

In this paper, we employ a linear projection approach, namely, the embedding
is achieved by seeking a projection matrix W ∈ RM×m (m 	 M) such that
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(a) (b) 

Fig. 2. Illustration of the embedding method. (a) shows the intrinsical embeddings
from a local structure of four subjects (three subjects denoted by circles and an ex-
emplar denoted by star). (b) shows the embeddings which minimized the distances
denoted by the dashed lines and maximized the distances by the solid lines.

ys
p = WT xs

p, where ys
p ∈ Rm is the low-dimensional embedding of xs

p ∈ RM .
Then, W is obtained by the following optimization

W ∗ = argmin
W

∑
p

∑
i∈Xc ‖WT xi

p −WT xc
p‖2∑

s

∑
i�=j ‖WT xs

i −WT xs
j‖2Tij

. (6)

It is not difficult to see that the objective function can be transformed into

W ∗ = arg max
W

Tr(WT S2W )
Tr(WT S1W )

, (7)

where Tr(·) means the trace of a square matrix, and

S1 =
∑

p

∑
i∈C

(xi
p − xc

p)(x
i
p − xc

p)
T , S2 =

∑
s

∑
i�=j

(xs
i − xs

j)(x
s
i − xs

j)
T Tij . (8)

The objective function in (7) can be solved with the generalized eigenvalue
decomposition method as S2Wi = λiS1Wi, where the vector Wi is the eigenvector
corresponding to the i-th largest eigenvalue λi, and it constitutes the i-th column
vector of the projection matrix W .

4 Experiments and Results

The proposed SMME method was validated using the FacePix database [14],
which contains 5430 head images spanning −90◦ to +90◦ in yaw at 1◦ inter-
vals. We also collected head pose images from the Pointing’04 database [15] for
testing. The images were equalized and sub-sampled to 32x32 resolution, and
preprocessed by the Laplacian of Gaussian (LoG) filter to capture the edge map
that is directly related to pose variations [7].
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To evaluate the performance of our system, we use the Mean Absolute Error
(MAE) [1] which is computed by averaging the difference between expected pose
and estimated pose for all images. To test the generalization ability, we use the
leave-one-out strategy [8] (one subject in turn as the testing data and all the
remaining subjects for the embedding learning).

4.1 Embedding Space

We use the proposed SMME method on the data sets mentioned above to show
the embeddings. Fig. 3-(a) shows two 3-dimensional manifold embeddings from
two clusters of 4 subjects with pose variations from [−75◦ + 75◦] at 4◦ intervals.
The result has much better smoothness, intra-class compactness and inter-class
separability in the low-dimensional embedding space. And the embedding man-
ifold curves have different geometrical structures and different locations which
indicates the multi-manifold representation is benefit for pose estimation.

Fig. 3-(b) shows the distance difference between the image and embedding
space for similar poses of the same subject and different subjects with the same
pose (We fix the subject 1 with pose 30◦, and locate another points by the
distance from it). We can see that the distance between images from different
subjects with the same pose becomes less than the distance between images from
the same subject with similar poses in the low-dimensional embedding space. It
indicates that the SMME provides better discriminability for pose estimation.
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2
-2

-1

0

1

(a)
0  1.20                    10.80 

Embedding space:  
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Subject 2 
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Pose 35°°°° 
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0        4.75                           17.13 

(b)

Fig. 3. Illustration of smoothness and discriminability of the embedding space. (a)
shows two 3-dimensional manifold embeddings from two cluster. (b) shows the distance
difference between the image and embedding space.

4.2 Comparison of SMME with Other Methods

We compare SMME with other pose estimation methods: the global-based PCA
method, the local-based manifold learning LPP methods [6] and Marginal Fisher
Analysis (MFA) [16] methods. Fig. 4 (a) shows the pose estimation results in
different dimensionalities. It shows that the proposed SMME method signifi-
cantly improves the estimation performance compared to other methods. Fig. 4
(b) shows the MAE with pose variations from [−90◦ + 90◦] at 1◦ intervals. The
result shows that the accuracy of the proposed SMME method is still in general
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Fig. 4. Comparison of our method against other methods. (a) The MAE in different
dimensionality. (b)The MAE under different poses.

better than other methods. We notice that the MAE curve of SMME is much
more flat than other methods within a relative wide range of the frontal view
[−50◦ + 50◦], this implies that SMME is more robust in [−50◦ + 50◦].

4.3 Robustness against Different Identities

In order to test the robustness of SMME against different identities, we use the
samples of one subject in turn as the testing data and use all the remaining
subjects for embedding learning to compute the MAE of each subjects. The
proposed SMME method achieves the average MAE of 3.64◦ and the variance
(for MAE of different subjects) of 1.13 shown in Table 1, which shows that the
SMME method can provide more robust and accurate identity-independent head
pose estimation than other methods.

Table 1. The MAE of all subjects and the variance of MAE for different subjects

Methods PCA MFA LPP SMME
MAE 5.32 5.41 4.96 3.64

Variance 4.66 4.79 3.21 1.13

5 Conclusions

In this paper, we present the SMME method for robust head pose estimation
which provides better intra-class compactness and inter-class separability in low-
dimensional pose subspace than traditional methods. For identity-independent
head pose estimation, we achieved the MAE of about 3◦ on the standard
databases, and even lower MAE can be achieved on larger data sets. In addition,
the method has been demonstrated as more robust to individual variations for
new identities than the traditional methods. In future, we plan to evaluate the
proposed method in terms of feasibility for more complex real world scenarios,
and develop auto-adaptive multi-manifold embedding method.
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Regression Problems 

Yangjing Long 

Max Planck Institute for Mathematics in the Sciences 
27 Inselstrasse, Leipzig, Germany 
long.yangjing@hotmail.com 

Abstract. The estimation of human age from face images is an interesting prob-
lem in computer vision. We proposed a general distance metric learning scheme 
for regression problems, which utilizes not only data themselves, but also their 
corresponding labels to strengthen the credibility of distances. This metric could 
be learned by solving an optimization problem. Furthermore, the test data could 
be projected to this metric by a simple linear transformation and it is feasible to 
be combined with manifold learning algorithms to improve their performance. 
Experiments are conducted on the public FG-NET database by Gaussian proc-
ess regression in the learned metric to validate our framework, which shows 
that the performance is improved over traditional methods. 

Keywords: Age Estimation, Metric Learning, Regression. 

1   Introduction 

The estimation of human age from face images is an interesting problem in computer 
vision. As an important hint for human communication, facial images comprehend 
lots of useful information including gender, expression, age, pose, etc. Unfortunately, 
compared with other cognition problems, age estimation from face images is still very 
challenging. This is mainly due to the fact that, aging progress is influenced by not 
only personal gene but also many external factors. Physical condition, living style etc. 
may accelerate or slower aging process. Besides, since aging process is slow and with 
long duration, collecting sufficient data for training is a fairly strenuous work. 

[10,17] formulated human ages as a quadratic function. Yan et al. [27,28] modeled 
the age value as the square norm of a matrix where age labels were treated as a non-
negative interval instead of a certain fixed value. However, all of them regarded age 
estimation as a regression problem without special concern about the own characteris-
tics of aging variation. As Deffenbacher [8] stated, the aging factor has its own essen-
tial sequential patterns. For example, aging is irreversible, which is expressed as a 
trend of growing older along the time axis. Such general evolution of aging course is 
beneficial to age estimation, especially when training data are limited and distributed 
unbalanced over each age range. 

Geng et al. [13,12] firstly made some pioneer research on seeking for the underly-
ing aging patterns by projecting each face in their aging pattern subspace (AGES). 

Retracted: Human Age Estimation by Metric 
Learning for 
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Guo et al. [16] proposed a scheme based on Orthogonal Locality Preserving Projec-
tions (OLPP) [5] for aging manifold learning and get the state-of-art results. In [16], 
SVR (Support Vector Regression) is used to estimate ages on such a manifold and the 
result is locally adjusted by SVM. However, they only tested their OLPP-based 
method on a private large database consisting of only Japanese people, and no  
dimension reduction work was done to exact the so-called aging trend on the public 
available FG-NET database [1]. A possible reason is that, FG-NET database may not 
supply enough samples to recover the intrinsic structure of data. The lack of sufficient 
data is a prominent barrier in age estimation. 

We propose a new framework aiming to learn a special metric for regression prob-
lems. Age is predicted based on the learned metric rather than the traditional Euclid-
ean distance. We accomplish this idea by formulating an optimization problem, which 
approximates a special designed distance that scaled by a factor determined according 
to the labels of data. In this way, the metric measuring the similarity of samples is 
strengthened. More importantly, since labels are incorporated to depict the underlying 
sample distribution tendency, which signifies the inclusion of more information, a 
smaller amount of training data is required. Unlike the nonlinear manifold learning 
where it is repeated to find its low dimensional embedding, a merit of our framework 
is that, a full metric over the input space is learned and expressed as a linear transfor-
mation, and it is easy to project a novel data into this metric. Moreover, the proposed 
framework may also be used as a pre-processing step to assist those unsupervised 
manifold learning algorithms to find a better solution. 

2   Metric Learning for Regression 

Let S = (Xi, yi) (1≤i≤N) denotes a training set of N observations with inputs Xi∈Rd 
and their corresponding non negative labels yi. Our goal is to rearrange these data in 
high-dimensional space with a distinct trend as what their labels characterize. In other 
words, we hope to find a linear transformation T: Rd→Rd, after applying which, the 
distances between each pair-wise observation may be measured as: 

2ˆ( , ) || ( ) ||i j i jd X X T X X= −                                              (1) 

2.1   Problem Formulation 

Metrics is a general concept, as a function giving a generalized scalar distance be-
tween two argument patterns [11]. Straightforwardly, different distances are also 
possible to depict the tendency of a data set. Similar to Weinberger et al. [25] and 
Xing et al. [26], we consider learning a distance metric of the form 

( , ) ( ) ( )T
A i j i j i jd X X X X A X X= − −                                    (2) 

But unlike their works for classification problems, in regression problems, every 
two observations are of different classes. Better metrics over their inputs are expected 
and a new metric learning strategy ought to be established. 
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Suppose given certain well-defined distance ˆ ˆ( , )ij i jd d X X=  ideally delineating the 

data trend, our target is to approximate ˆ
ijd  by ( , )A i jd X X  minimizing the energy 

function   ( )2

,

ˆ( ) ( , ) ( )p p
A i j ij

i j

A d X X dε = −∑                                 (3) 

To promise that A is a metric, A is restricted to be symmetric and positive semi-
definite. For simplicity, p is assigned to be 2. This metric learning task is formulated 
as an optimization problem with the form below 

( )2
2

,

ˆmin ( ) ( ) ( )T
i j i j ij

i j

X X A X X d− − −∑                                   (4) 

satisfying the matrix A is symmetric and positive semi- definite. And there exists a 
unique lower triangular L with positive diagonal entries such that A=LLT [15]. Hence 
learning the distance metric A is equivalent to finding a linear transform LT projecting 
observation data from the original Euclidean metric to a new one by 

TX L X=                                                                  (5) 

2.2   Distance with Label Information 

In practical application, Euclidean distance is not always capable to guarantee the 
rational relationship among input data. Although manifold learning algorithms may 
discover the intrinsic low-dimensional parameterizations of the high dimensional data 
space, at the outset, it also requires Euclidean distance to apply k-Nearest Neighbors 
to know the local structure of the original space. On the other hand, manifold learning 
demands a large amount of samples, which is not available in some circumstances. 

For many regression and classification problems, it is in fact a waste of information 
if only data Xi is utilized but with their associated labels yi ignored in the training 
stage. Balasubramanian et al. [2] proposed a biased manifold embedding framework 
to estimate head poses. In their work, the distance between data is modified by a fac-
tor of the dissimilarities fetched from labels. The basic form of this modified distance 

is   
,

( , )
'( , ) ( , )

max ( , ) ( , )m n

P i j
d i j d i j

P m n P i j

β ×= ×
−

                                (6) 

where d(i, j) is the Euclidean distance between two samples Xi and Xj . P(i, j) is the 
difference of poses between Xi and Xj. 

Through incorporating the label information to adjust Euclidean distance, the 
modified distances are prone to give rise to the true tendency of data variation i.e. if 
the distance of two observations is large, then the distance of their labels is also large, 
vice versa. Hence it is intuitively that the biased distance is a good choice for ˆ

ijd  in 

Eq.(3):   | ( , ) |ˆ( , ) ( , )
( , )

p
L i j

d i j d i j
C L i j

β⎛ ⎞×= ×⎜ ⎟−⎝ ⎠
                                        (7) 

Analogously, L(i, j) is the label difference between two data. C is a constant greater 
than any label value in a train set and p is selected to make data easier to discriminate. 
d(i, j) is the Euclidean distance between two samples Xiψand Xj. 
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2.3   Optimization Strategy 

Since the energy function is not convex, it is a non-convex optimization and conse-
quently it is impossible to find a closed form solution. The metric A is with the prop-
erty to be symmetric and positive semi-definite, so it is natural to compute a numeri-
cal solution to Eq.(4) using the Newton’s method. Similar to [26], in each iteration, a 
gradient descent step is employed to update A. The iteration algorithm is summarized 
as follows: 

1. Initialize A and step length α; 
2. Enforce A to be symmetric by A←(A+AT)/2; 
3. The Singular Value Decomposition of A=LT∆L, where the diagonal matrix ∆ con-
sists of the eigenvalues λ1,…,λn of A and columns of L contains the corresponding 
eigenvectors; 
4. Ensure A to be positive semi-definite by A←LT∆'L, where ∆'=diag(max(λ1,0),…, 
max(λn, 0)); 

5. Update A'←A − ( )A Aα ε∇ , where ( )A Aε∇  is the gradient of the energy function 

in Eq.(3) w.r.t. A; 
6. Compare the energy function ε(A) with ε(A') in Eq.(3), if ε(A)<ε(A'), then augment 
the step length α with a momentum to accelerate the optimization process; otherwise, 
shrink α to assure a local minimum is not overpassed. 
7. If A has converged or the maximum iteration times are reached, terminate; other-
wise go back to Step 2. 

3   Gaussian Process Regression 

Given a training set S = (Xi, yi) (1≤i≤N) as described in Section II and a sample X* for 
query, GPR predicts its output y* by putting a Gaussian process prior on this function 
f(·), assuming that all sample points evaluated from the function have a multivariate 
Gaussian density [20]. 

Let X=[X1,…,XN] and Y=[y1,…,yN]T, the Gaussian predictive distribution of y* is 
derived of the form 

p(y*|X*,X,Y,Θ)~N(μ(X*),V(X*))                                             (8) 

The mean prediction and covariance matrix in Eq.(8) are 

μ(X*)=k(X*,X)[K+σ2I]-1Y                                             (9) 

V(X*)=k(X*,X*)-k(X*,X)T[K+σ2I]-1k(X*,X)                                              (10) 

where k(·,·) is the covariance function, K is the covariance matrix of X and σ2 is the 
variance of noise. 

Another way to perceive and thus rewrite Eq.(9) is to treat the mean prediction as a 
linear combination of N kernel functions: 

   * *

1

( ) k( , )
N

C c
c

X X xμ α
=

=∑                                              (11) 
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where α=(K+σ2I)-1Y 
Gaussian kernel is a good choice for the covariance function 

k(Xi,Xj)=v2exp(-||Xi-Xj||
2/2l2+σ2σXiXj)                                              (12) 

In respect that the proposed learned metric encodes label information implicitly, it 
is bestowed as the similarity measure and Eq.(12) becomes 

k(Xi,Xj)=v2exp(-(Xi-Xj)
TA(Xi-Xj)/2l2+σ2σXiXj)                                (13) 

4   Experimental Results 

Age estimation is carried on the public FG-NET Aging Database [1] by the regression 
strategy on the basis of the proposed metric. The database contains totally 1002 color 
or gray images from 82 people. Each person has around 10 face images with the 
ranges from 0 to 69 with labeled ground truth. These images are taken under varying 
lighting condition, poses and expressions. Each image is labeled by 68 points charac-
terizing its shape features. Similar to [13,16,27,28], input features are selected to be 
the parameters of AAMs [6]. 

Firstly we hope to testify that the proposed metric is able to disinter some internal 
patterns of human’s aging progression. We randomly choose 300 images out of all the 
1002 images in FG-NET Database as training samples, and the rest as test samples. 
The parameters in Eq.(7) are chosen as C=100, β=1 and p=1. The energy function is 
converged after 50 iterations or so. Figure 1(a) and 1(b) portrays the positional rela-
tionship among training samples in the hyper-space measured by Euclidean distance 
and the learned metric A. The 2D view is acquired by Multi-Dimensional Scaling 
(MDS) [7]. Figure 2 plots the relative position of the remaining 702 image samples 
for test. Contrast to Figure 1, manifold learning algorithms like Isomap, LLE and 
OLPP fails to predicate the aging trend sometimes. Furthermore, though only 30% of 
the entire data set is directed for learning the aging trend is effectually set up. 

 
                                MDS based on the Euclidean distance   MDS based on the learned metric 

 
(a)    (b) 

Fig. 1. 2-D view of the clustering effects of the 300 training samples by metric learning. It 
illustrates the 2 dimensional embedding of the training data sampled from FG-NET Aging 
Database by MDS. Points of age from 0 to 69 are marked from blue to red. It is seen that, the 
distance calculated based on our learned metric in Figure (b) preserves local proximity of sam-
ples with close labels better than that based on the traditional Euclidean distance in Figure (a). 
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MDS based on the Euclidean distance   MDS based on the learned metric 

 
(a)    (b) 

Fig. 2. 2-D view of the clustering effects of the 702 testing samples by metric learning, corre-
sponding to Figure 1. It is obvious that, the actual aging trend is, to some extended, manifested 
in the hyper-space based on our learned metric. 

Isomap age manifold on learned metric  LLE age manifold on learned metric  OLPP age manifold on learned metric 

 

Fig. 3. 2D age manifolds. This figure illustrates the 2 dimensional embedding of FG-NET 
Aging Database by Isomap, LLE and OLPP algorithms based on our learned metric. 

As in Eq.(5), the original parameters from AAMs can be linearly transformed into 
a hyper-space based on our learned metric, by multiplying LT satisfying A=LLT. Fig-
ure 3 draws the 2D aging manifold inputted with the transformed data. Compared to 
Figure 1, the linear transform LT is salutary for other manifold algorithms to find an 
improved aging trend. 

Then, age estimation of our methodology is compared with the performance of 
some state-of-art approaches. The Leave- One-Person-Out mode [13,16,27,28] is the 
mechanism for experimentation, i.e. each time we choose one person for testing and 
all others for training. The same as in [13,16,27, 28], two criteria are adopted for 
performance evaluation. One is the Mean Absolute Value (MAE), which is defined as 

1

| | /
N

ii
i

MAE age age N
=

= −∑                                             (14) 

where for each Xi, iage  is its labeled ground truth and iage  is the estimated age. N 

is the number of testing images. 
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Another widely acknowledged criterion is the cumulative score at error level l [13] 

CumScore(l)=Nerror ≤ l /N×100%                                        (15) 

In respect that, when a face image is labeled as O years old, the person is customarily 
thought to be [O,O+1) years old [27], thus the error less than a specified number of 
years is by and large neglectable in practical application. Eq.(15) is an indicator of the 
algorithmic correct rate. 
The parameters in Eq.(7) are rectified to be C=80, β=1 and p=0.6. Table 1 lists the 
MAE of different approaches. The MAE of the proposed method is almost the same 
as the best one [16]. However, unlike their LARR, we simply predict ages in a new 
metric by regression without any local refinement. LARR slides the estimated age up 
and down by checking different age values to see if it can come up with a better pre-
diction [16]. The parameters defining the search range is determined manually, which 
is at least not convenient and automatic enough, and may be laborious and not feasi-
ble in some real-world applications. Table 2 details Table 1 with separate MAEs over 
different age range. The MAE of our method in younger people is slightly higher than 
other recent methods. As compensation, an outstanding improvement is achieved in 
the larger age range. This trait is fairly attractive considering the fact that, people over 
30 years old account for less than 15% of the whole FG-NET database. Even if there 
are only a few samples (for example, there are only 8 images out of 1002 over 60 
years old), a relatively acceptable age prediction can be obtained. 

 

Table 1. MAE comparison of different methods 

Reference Method MAE 
[13] AGES 6.77 
[12] KAGES 6.18 
[27] RUN1 5.78 
[28] RUN2 5.33 
[16] LARR 5.07 

Proposed Metric learning+GPR 5.08 

Table 2. MAEs over various age ranges on FG-NET Database for the proposed method, GPR 
and RUN. In the first column, the value in the parenthesis stands for the proportion 
(percentage) for each age group out of the whole database. 

Age Range Proposed GPR RUN[27] 
0-9(37.0%) 2.99 3.55 2.51 

10-19(33.8%) 4.19 4.34 3.76 
20-29(14.4%) 5.34 5.09 6.38 
30-39(7.9%) 9.28 9.04 12.51 
40-49(4.6%) 13.52 14.65 20.09 
50-59(1.5%) 17.79 19.77 28.07 
60-69(0.8%) 22.68 31.76 42.50 

Average 5.08 5.45 5.78 
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5   Conclusions 

In this paper, a new metric learning framework is proposed to resolve regression 
problems. It is feasible to be applied to many other problems in machine learning or 
computer vision. No assumptions about the structure or distribution of the samples are 
made, and a relatively small quantity of training samples is required to learn their 
underlying variation trend. Experiments shows the effectiveness of the learned metric 
to restore the intrinsic infrastructure of input sample data and encouraging perform-
ance is acquired on a widely used public face aging database. 
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Abstract. In this paper, we consider the problem of face detection un-
der pose variations. Unlike other contributions, a focus of this work re-
sides within efficient implementation utilizing the computational powers
of modern graphics cards. The proposed system consists of a parallelized
implementation of convolutional neural networks (CNNs) with a special
emphasize on also parallelizing the detection process. Experimental vali-
dation in a smart conference room with 4 active ceiling-mounted cameras
shows a dramatic speed-gain under real-life conditions.

1 Introduction

The past years yielded increasing interest in transfering costly computations to
Graphics Processing Units (GPUs). Due to parallel execution of commands this
often results in a massive speedup. However, it also requires a carefull adaption
and parallelization of the algorithm to be implemented. As noted in [1], convo-
lutional neural networks (CNNs) [8,2,4,3] offer state of the art recognizers for
a variety of problems. However, they can be difficult to implement and can be
slower than other classifiers, e.g. traditional multi-layer perceptrons. The focus
of this paper resides within the implementation details of parallelizing CNNs
for the task of face detection and pose estimation and evaluating its run-time
performance. In contrast to [1], where GPU optimized CNNs were adapted for
document processing, the considered face detection task requires additional con-
siderations: In detail, the contributions of this paper are (a) extension of the face
recognition (and pose estimation) system in [3] by parallelizing important parts
of the computational process and implementing it on a graphics card, and (b)
further enhancing the system by an optimized detector. Experimental validation
takes place in a multi-camera environment and shows accurate detection and
high performance under real-life conditions.

The remainder of this paper is organized as follows: In Section 2 we give a
brief introduction to convolutional networks and how they are used in this work.
Section 3 explains in detail the process of face detection using CVs, and Section 4
shows how this process can be efficiently parallelized. In Section 5 we present
experimental results of the proposed optimized face detection approach. Finally
we conclude this paper in Section 6.
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2 Convolutional Neural Networks

In the following we will briefly introduce convolutional neural networks
(CNNs) [8,2,4,3]. In a nutshell, a CNN classifies an input pattern by a set of
several concatenated operations, i.e. convolutions, subsamplings and full con-
nections. Figure 1 shows a simple example for a CNN as it was used in [8]. For
practical reasons the net is organized in successive layers (L1 to L4). On the left
side we see an input image, in our case a monochromatic 20 × 20 pixel image.
Each subsequent layer consist of several fields of the same size which represent
the intermediate results within the net. Each directed edge stands for a partic-
ular operation which is applied on a field of a preceding layer and its result is
stored into another field of a successive layer. In the case that more than one
edge directs to a field, the results of the operations are summed. After each layer
a bias is added to every pixel (which may be different for each field) and the
result is passed through a sigmoid function, e.g. s(x) = a · tanh(b · x), to finally
perform a mapping onto an output variable.

Each convolution uses a different two-dimensional set of filter coefficients.
Note that in case of a convolution the size of the successive field shrinks because
the border cases are skipped. For subsampling operations a simple method is
used which halves the dimensions of an image by summing up the values of
disjunct 2x2-subimages and weighting each result value with the same factor.
The term ”‘full connection”’ describes a function, in which each output value
is the weighted sum over all input values. Note that a full connection can be
described as a set of convolutions where each field of the preceding layer is
connected with every field of the successive layer and the filters have the same
size as the input image. Thus, we do not treat full connections as a separate case
here. The last layer forms the output vector. In the given example the output
consists of a single value which finally classifies a given input image.

20x20 4x16x16 4x8x8 4x1x1 1x1

pattern

input L1 L4=outputL2 L3

con-
volutions, 
5x5-filters

sub-
samplings

convolutions,
8x8-filters

full
connection

Fig. 1. Structure of a simple convolutional net



Face Detection Using GPU-Based Convolutional Neural Networks 85

An important attribute of CNNs is the availability of an efficient training
method. Since CNNs are based on the classical neural networks, each pixel of a
field can be represented by a neuron and the all afore mentioned operations can
be modeled by connections between neurons. For training, a modified version
of a standard backpropagation algorithm can be applied. For further details on
CNNs we recommend [2].

3 The Detection Process

For object/face detection we are usually interested in detecting all occurancies
of an object in a given image. For a trained CNN, we can use a simple sliding
window approach over a variety of scaled input images, see also Figure 2(a). The
window is shifted above the image to get one result at each position. To search
inside a specified size range the process is repeated with different scaling factors.
In the given example the image is downscaled each time with the factor 1/

√
2.

By choosing this factor we make the assumption that the trained CNN is robust
against variation in size at the range between two scaling steps.

One of the key advantages of CNNs are the inherent possibility for parallelizing
the computational process when used as a detector. If a neural net is repeatedly
applied on overlapping image areas redundancies in calculation occur. This is the
case for convolutions as well as subsamplings in all layers. A significant speed gain
is reached by avoiding these redundancies. We accomplished this by applying
each operation within the net on the whole image at once instead repeatingly on
all subimages. In the case of a subsampling operation four different offsets have
to be considered depending on whether the 2x2-subimages start with odd or
even coordinates in horizontal or vertical direction respectively. For the example
given in figure 1 and an input image of size 320x240 this leads to a scheme as
shown in figure 2(b). To assemble the four output images to one the coordinates
have to be multiplied by two and the spatial offset given in the last row must

slide window original image

scaling steps

1

2
1

1

2

1

2 2

x

y

(a)

input image
320x240

(even,even)
(odd,even) (even,odd)

(odd,odd)

L1

L2

L3

L4

offset

layer

4x316x236

(0,0)

4x158x118

4x151x111

151x111

(1,0)

4x156x118

4x149x111

149x111

(0,1)

4x158x116

4x151x109

151x109

(1,1)

4x156x116

4x149x109

149x109

(b)

Fig. 2. Figure 2(a) shows a slide-window on an input image with different scaling
factors. Figure 2(b) shows the scheme of the location process for the CNN from Figure 1
and an input image of size 320x240 px.
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be added. Note that at the expense of precision the calculation of some paths in
the tree may be skipped. The assumption by doing so is that the trained CNN
is robust against small spatial shifts.

4 Parallelization of the Detection

The shown detection process was implemented and evaluated for the Nvidia
GeForce 8800 GT GPU using the CUDA-architecture, which allows using the
processing power of the graphics card for the purposes of scientific research. Note
that also the following method is dedicated to CUDA-devices, similar approaches
can be applied to other multi-core devices. According to the number of cores the
architecture consists of multiple threads each with its own set of registers. An
important task for the design of the parallel algorithm is to take the memory
hierarchy into account. Thus, figure 3 shows an overview. The host system (i.e.
the pc) as well as the threads have access to the global main memory of the
graphics card. Furthermore the threads are grouped into so called blocks. The
threads of a block share a small and fast memory bank.

The different bandwidths of the memory interfaces leads to the following
strategy: The data transfer between the host system and the main memory has
a low bandwidth. Thus, the communication here has to be minimized. At the
beginning the net parameters are loaded once from the host system into the main
memory. The same is done for every new input image. At the end of the detection
process the results are written back to the host. For the threads the access time
to the memory banks is much faster than to the main memory. Therefore most
of the calculation should be done with the data stored in the local memory
banks. Because for a convolution the pixel values have to be read several times
this brings a significant speed gain. Normally an input image is to large to be
stored in one memory bank, thus it is divided into equidistant rectangles. Each
rectangles is loaded from the main memory into another memory bank and the
partial images are treated by the threads of the according block. For the example
given above this approach is shown in figure 4. In this cutout one of the four
fields of Layer S2 is calculated.

At first the filter for the convolution is loaded from the main memory in ev-
ery block (1). Next, the rectangles are copied (2). Note, that the subimages are
overlapping according to the size of the filter. Next the filter and the subimage
are convolved parallely in each bank and the result is stored in local memory
(3). If the result field has more than one input edge (as in L3) step one to three
can be repeated with other input images and filters. Than the results can be
summed directly on the spot. In spite of writing the results of Layer S1 back
to the main memory it is kept in local memory and the subsampling from layer
L1 to L2 is done. After that the pieces are assembled in the main memory (4).
How many steps can be accomplished without writing data back to the main
memory or sharing data between blocks depends on the net structure and can
be optimized for a particular net. Not mentioned so far is the addition of a bias
and the use of a sigmoid function after each layer. For every thread the bias
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main memory
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Fig. 3. Memory hierarchy for the CUDA architecture
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Fig. 4. Parallelizazion by dividing the input image into several rectangles

value is kept in a register (not shown in fig. 3). The sigmoid function is applied
before writing the result value from a register back to local memory. Therefore
no additional reading operation on the local memory is required. Nvidia GPUs
support a complex instruction set with any kind of trigonometric or hyperbolic
functions respectively. Nevertheless, if you use a hardware device without or
with slow support for a particular function required for the sigmoid function, we
recommend the use of a taylor approximation, e.g. tanh(x/2) ≈ (d− 6)/(d + 6)
with d = 6 + x · (6 + x · (3 + x)). Another important aspect not mentioned
yet is how a convolution between a subimage and a filter is handled in detail.
Note, that especially for convolutions concurrencies can form the bottleneck of
the feasible speed gain. According to fig. 3 each subimage is treated by sev-
eral threads with reading access to the same memory bank. Thus, each thread
computes a subset of result values. Hence to the parallel execution concurrency
between reading accesses occur. Each thread needs to read the whole filter and
threads who compute neighboring values need access to overlapping image areas.
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A

B C

A
B

C

filter

subimage

a) b)

Fig. 5. Reading access for a convolution with three threads A,B and C. a) lexicographic
access. b) spatially distributed access.

To reduce latency hence to a limited fan in, reading accesses should be spread.
This proceeding is demonstrated in figure 5 for an example with three threads
(A, B and C). Part a) shows the proceeding when the computation is done in
lexicographic order, as it is commonly done for a single process. When a thread
has finished one result it continues at the next position in line of the subimage
and restarts walking through the filter from the upper left corner. This causes
a strong likelihood for latencies during the whole process. A better approach is
shown in part b). Here the computation is spatially distributed over the subimage
as well as over the filter.

5 Experiments

In order to test our accelerated detector under real-time-conditions, we imple-
mented a recognition system for faceswithvariation of pose based on the researches
of [3]. According to fig. 6 a) the CNN we used consists of 42.750 parameters and
it was trained with 6.000 non-faces and 6.000 faces with annotated poses (6 b).
The system was applied in a smart conference room with 4 active ceiling-mounted
cameras (6 c,d).

Although the main focus of this paper resides within an efficient implemen-
tation, we still want to briefly report on the detection rates here. Given a
frontal/side view of a persons face the system is able to detect multiple per-
sons with an average accuracy of 80%-90% percent and occasional occuring false
positives (evaluated on a per frame basis for four longer sequences containing
multiple persons). For a better detection we added additional training material
for this particular environment, resulting in a well functional and usable system.
For sake of completeness we also evaluated the proposed system on three stan-
dard data-sets [7,5,6]. We get the following average detection rates : 81% [7],
75% [5], and 83% [6] (with an average of 8 false positives). Note that we did
not try to maximize detection rates for these data-sets since the applicability of
convolutional neural networks for face detection was already sufficiently shown
in [3].
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Fig. 6. Face detection system. a) CNN structure. b) annotation example. c) and d)
indoor-environment for testing.

0 1 2 3 4 5 6 7 8
800x600 GPU 318 488 581 619 647 672 695 715 733

CPU 4123 6165 7047 7554 7761 7858 7878 7885 7888
640x480 GPU 209 312 373 407 434 456 477 497 -

CPU 2637 3933 4490 4811 4915 4959 4996 5044 -
378x278 GPU 73 109 137 162 184 203 222 - -

CPU 851 1276 1470 1541 1557 1575 1594 - -

Fig. 7. Runtime measurements for CPU and GPU (average milliseconds per frame)

To get an insight of the feasible acceleration by using a graphics card, we
compared the parallel method with a corresponding single-CPU implementation
(without a specific processor optimization). The GPU (Nvidia GeForce 8800 GT)
comes with 14 Multiprocessors each composed of 8 processors with a clock rate
about 600 MHz, while the CPU (Intel Pentium 4) comes with a clock rate about
3,4 GHz. Hence, the expected speed gain by full parallelization is about a factor
of 19,76. In practice the gain is smaller, because of above mentioned latencies
and additional overhead (e.g. loading data into the memory banks).
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Fig. 7 shows the runtimes for our implementation. We tested three different
image sizes and according to fig. 2(a) we measured the runtime after each scaling
step (up to eight). The given values specify the averagely elapsed milliseconds
per frame. As we can see the actual speed gain is depending on the image size
and number of scaling steps about a factor of ca. 11 up to 13.

6 Conclusions

We presented an parallelized implementation of convolutional neural networks
for the task of face detection and pose estimation. The proposed high perfor-
mance implementation showed a dramatic speedup compared to a conventional
CPU based implementation. Given reasonable image sizes and image scaling
steps we can expect speed gains about a factor of 11-13. Note that these speed
gains are very likely to increase with the next generations of GPUs (since we
effectively used an older generation of graphics cards, we expect further speedup
using the currently available Nvidia GTX 280 cards).
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Abstract. This paper proposes Gaussian weak classifiers (GWCs) for use in real-
time face detection systems. GWCs are based on Haar-like features (HFs) with
four rectangles (HF4s), which constitute the majority of the HFs used to train
a face detector. To label an image as face or clutter (non-face), GWC uses the
responses of the two HF2s in a HF4 to compute a Mahalanobis distance which is
later compared to a threshold to make decisions. For a fixed accuracy on the face
class, GWCs can classify clutter images with more accuracy than the existing
weak classifier types. Our experiments compare the accuracy and speed of the
face detectors built with four different weak classifier types: GWCs, Viola &
Jones’s, Rasolzadeh et al. ’s and Mita et al. ’s. On the standard MIT+CMU image
database, the GWC-based face detector provided 40% less false positives and
required 32% less time for the scanning process when compared to the detector
that used Viola & Jones’s weak classifiers. When compared to detectors that used
Rasolzadeh et al. ’s and Mita et al. ’s weak classifiers, the GWC-based detector
produced 11% and 9% fewer false positives. Simultaneously, it required 37% and
42% less time for the scanning process.

1 Introduction

Classifiers based on Haar-like features (HFs) [7] have been successful in building face
detectors that are both fast and accurate [11]. This is mainly due to the fact that the
classifiers based on HFs provide an attractive trade-off between evaluation speed and
accuracy. Using a HF-based classifier that takes 60 microprocessor instructions to eval-
uate, Viola & Jones [11] achieved 1% false negatives and 40% false positives for the
face detection problem.

This paper proposes Gaussian weak classifiers (GWCs) as an alternative to the weak
classifiers proposed by Viola & Jones [11], Rasolzadeh et al. [8] and Mita et al. [6].
GWCs are based on Haar-like features with four rectangles (See Fig. 1c), which form
the majority of the HFs that are used to train a face detector. GWC, in comparison
to existing weak classifiers, are capable of classifying clutter (non-face) images more
accurately.

� This work was partially funded by grant TEC2006-03617/TCM, from the Spanish Ministry
of Innovation & Science, and grants FIT-360000-2006-55 and FIT-360005-2007-9 from the
Spanish Ministry of Industry.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 91–98, 2009.
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Fig. 1. Examples of Haar-like features with (a) two, (b) three and (c) four rectangles. The numbers
within the rectangles indicate the weight assigned to them. Although, in theory, any number of
rectangular regions can be used to form a HF, for practical reasons, the number of rectangles used
are restricted to two (HF2), three (HF3) or four (HF4). If n is the number of distinct rectangles
that can be fit in a template of given size, then the number of HF2s, HF3s, and HF4s that can be
constructed is of the order O(n2), O(n3), and O(n4), respectively.

GWCs classify an image as face or clutter in two steps. Firstly, the response of a
HF4 is split into two components, each belonging to a HF2. As discussed in Section 4,
the motivation behind the split is to take advantage of the compact and Gaussian-like
distribution of feature values from the face class images. Secondly, the responses of
HF2s are used to compute a Mahalanobis distance which is compared to a threshold
to make decisions. In our experiments, we compare the speed and the accuracy of the
GWC-based face detector with equivalent detectors that use weak classifiers proposed
by Viola & Jones [11], Rasolzadeh et al. [8] and Mita et al. [6]. Our results, presented
in Section 5, show that GWC-based face detectors provide the best trade-off between
speed and accuracy.

2 Related Work

The seminal paper by Viola & Jones [11] spurred a lot of interest in object detection.
Thereafter, several papers were published, mainly focussing on the following three par-
allel lines of improvements.

1. The geometrical diversity of the HFs was increased to obtain better performance
both in terms of accuracy and speed [2][3][5].

2. The AdaBoost [10] procedure used to select weak classifiers in [11] was improved
in [3][4][12].

3. The linear weak classifiers used by Viola and Jones were replaced by weak classi-
fiers that provided a better accuracy-speed trade-off. Rasolzadeh et al. [8] demon-
strated that more accurate pedestrian detectors can be achieved by increasing the
discriminating strength of the individual weak classifiers. Their weak classifiers
were obtained through response binning [8], which can be thought of as assigning
multiple thresholds to the response of HFs. Viola & Jones, in comparison, use a
single threshold on the feature value of the HFs to make decisions. Mita et al. [6]
fuse outputs of multiple linear weak classifiers to form more powerful ones. Their
weak classifiers produce lower error rates than the Viola and Jones’s linear weak
classifiers. The GWCs, that are proposed in this paper, fall into the third category
of improvements.
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3 Weak Classifiers Based on HFs

Haar-like features [7], shown in Fig. 1, consist of two or more rectangular regions en-
closed in a template. Such features, when evaluated on an image, produce a feature
value as in (1).

ft =
q∑

i=1

w(i) · μ(i) (1)

where i is an iterator that iterates through all the q rectangles of the HF. The quantity μ(i)

represents the mean intensity of the pixels in image x enclosed within the ith rectangle.
Every rectangle in the HF is assigned a weight that is represented by w(i). The weights
are set to default integer numbers such that

∑q
i=1 w(i) = 0 is satisfied. For example, the

rectangles of a HF2 as in Fig. 1a are assigned default weights 1 and−1. The rectangles
of a HF3 as in Fig. 1b are assigned default weights 1, −2 and 1.

Viola & Jones’s weak classifiers (hvj(x)) compare the feature value ft to a threshold
θ according to (2).

hvj(x) =

{
1, face, ft · p ≤ θ · p
−1, clutter, otherwise

(2)

Here, p ∈ {1,−1} is a polarity term, which can be used to invert the inequality rela-
tionship between ft and θ.

Rasolzadeh et al. ’s weak classifier [8] (hr(x)) compares ft to two threshold values
(θ1 and θ2) as shown in (3).

hr(x) =

{
1, face, θ1 ≤ ft ≤ θ2

−1, clutter, otherwise
(3)

Mita et al. ’s weak classifier [6] (hm(x)) fuses k Viola and Jones’s weak classifiers to
make decisions as shown in (4).

hm(x) =

⎧⎪⎨⎪⎩1, face,
k∑

i=1

2k−ih
(i)
vj (x) ≥ θ

−1, clutter, otherwise

(4)

3.1 Gaussian Weak Classifiers

As stated earlier, we define GWCs using HF4s. A HF4 (Fig. 1c) can be considered
to be a combination of two HF2s (Fig. 1a). Therefore, the feature value ft of a HF4
can be split into two components, f1 =

∑2
i=1 w(i) · μ(i) and f2 =

∑4
i=3 w(i) · μ(i),

each belonging to a HF2. Classification by GWC is performed in two steps. Firstly,
a Mahalanobis distance d is computed using f = [f1 f2] as shown in (5). Secondly,
the computed distance is compared to a threshold to make decision on whether the test
image belongs to face or clutter as in (6).
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Algorithm 1. Computation of f̄ , Σ (left), dt and p (right)
Input: Face class training images:

x(i), i ∈ {1, . . . , m}
Input: Weights assigned to images of the

face class: z(i), i ∈ {1, . . . , m},

such that
m∑

i=1

z(i) = 1

Input: Weak classifier: h
begin

Evaluate the HF associated with h on
all face class images to get f (i) =
[f (i)

1 f
(i)
2 ], i ∈ {1, . . . , m}.

Compute the weighted mean of fea-

ture values: f̄ =
m∑

i=1

z(i) · f (i)

Compute the weighted covari-
ance matrix (Σ): Σ(a,b) =
m∑

i=i

z(i)(f (i)
a − f̄a)(f (i)

b − f̄b)

where a, b ∈ {1, 2}.
end
Output: f̄ , Σ

Input: Training images (both face and
clutter): x(i), i ∈ {1, . . . , m}

Input: Training labels: y(i) ∈
{1,−1}, i ∈ {1, . . . , m}

Input: Weights for each training image:
z(i) ∈ �, i ∈ {1, . . . , m}

Input: Weak classifier to be trained: h
Input: f̄ and Σ
begin

Evaluate the HF associated with h on
all face class images to get f (i) =
[f (i)

1 f
(i)
2 ], i ∈ {1, . . . , m}.

Compute distance d(i) ∈ d: d(i) =
2
√(

f (i) − f̄
)T

Σ−1
(
f (i) − f̄

)
Find dt and p that minimize the train-
ing error: [dt, p] = arg min

[dt∈d,p∈{−1,1}]
ε

where, ε =
m∑

i=1

z(i)|h(x(i))− y(i)|

end
Output: dt, p

The quantities f̄ and Σ in (5) are the mean and the covariance matrix obtained from f
computed on a database of face class training images. The computation of these quanti-
ties are shown in Algorithm 1 (left). Conceptually, the distance d measures how different
a test image is from a mean instance of the images from the face class. In (6), d is com-
pared to a threshold value dt to decide whether the image belongs to the face or to the
clutter class. The quantities dt and p are determined as shown in Algorithm 1 (right).

d = 2
√(

f − f̄
)T

Σ−1
(
f − f̄

)
(5)

h(x) =

{
1, face, d · p ≤ dt · p
−1, clutter, otherwise

(6)

Comparing (2), (3), (4) to (5) and (6), it can be noted that GWCs are computationally
more expensive owing to additional subtraction, matrix multiplication and the square
root operation. The question of whether its accuracy is adequate to provide a better
accuracy-speed trade-off still remains to be seen.

4 Motivation for Using Gaussian Weak Classifiers

Rasolzadeh et al. [8] experimentally observed that the distribution of the feature values
of HFs when evaluated on an object and clutter class images resemble a Gaussian dis-
tribution. Two-dimensional joint feature spaces spanned by the feature values, f1 and
f2, from three arbitrarily chosen pairs of HF2s are shown in Fig. 2.
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Fig. 2. Joint distribution of feature values, f1 and f2, obtained from two HF2s when evaluated
on face (top row) and clutter images (bottom row). The HF2s used to generate the plot have been
super-imposed on the face and clutter class images. As face class images are correlated with each
other, we observe that the distribution of feature values from the face class are more compact than
those obtained from the clutter class.

Fig. 3. A geometrical view of the performance of GWC and the weak classifiers used by Viola &
Jones [11], Rasolzadeh et al. [8] and Mita et al. [6]. (a) shows a hypothetical joint feature space
formed by the feature values f1 and f2. (b) shows the partitioned feature space using GWC.
(c) shows the projection of 2D space formed by f1 and f2 onto a 1D space, which represents
the feature value of a HF4 computed in the traditional way. To train a weak classifier used by
Viola & Jones, a threshold θ is found to separate face from clutter. (d) shows the corresponding
partitioned feature space. (e) shows a geometrical view of the Rasolzadeh et al. ’s weak classifiers
which use two thresholds to separate face from clutter; the corresponding partitioned feature
space is shown in (f). Mita et al. ’s weak classifier that fuses two HF2s is illustrated in (g) and
(h). The feature values f1 and f2 from the two HF2s are used to construct independent weak
classifiers whose results are fused to generate the decision space shown in (h).
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Consider a hypothetical feature space as in Fig. 3a where the measurements from
face and clutter class images are overlapped. Geometrically, the computation of feature
value ft of a HF4, can be understood as a projection of the 2D feature space on to a
1D space as shown in Fig. 3c. To train a Viola and Jones’s type weak classifier, a scalar
value θ is found such that face and clutter distributions are best separated. As shown
in the Fig. 3(d), θ partitions the feature space into two regions; the face region, coded
white, and the clutter region, coded black. The decision space of the GWC and weak
classifiers proposed by Rasolzadeh et al. and Mita et al. are shown in Figs. 3b, 3f and
3h, respectively. Among the existing weak classifiers, GWC has the potential to extract
the maximum discrimination ability from a HF4. As HF4s form the majority of HFs
in the feature pool that is used to train the face detector, the classification power of a
majority of the weak classifiers can be potentially increased by using GWCs.

5 Results

In the following experiments, we compare the speed and the accuracy of the face detec-
tors constructed with GWCs and the weak classifiers proposed by Viola & Jones [11],
Rasolzadeh et al. [8] and Mita et al. [6].

To train the face detector, two databases, face and clutter, were collected. The frontal
face database was composed of 5, 000 images. The facial regions were cropped manually
and resized to images of size 20 × 20 pixels. For the clutter image database, a total of
27, 000 images were downloaded from the internet. These images did not contain faces.

Four face detectors were built. They differed only in the type of weak classifier used
to construct them. The weak classifiers used were:

1. GWC: Proposed weak classifiers as in (6).
2. VJ: Viola & Jones’s [11] weak classifiers as in (2).
3. RPP: Rasolzadeh et al. ’s [8] weak classifiers as in (3).
4. MKSH: Mita et al. ’s [6] weak classifiers as in (4).

The face detectors were constructed based on a feature pool containing 175, 429 HF4s.
From this feature pool, 2, 255 weak-classifiers were selected and arranged into 14
nodes. The GWC and MKSH-type weak classifiers split the response of a HF4 into
two HF2s, and perform classification as defined by (6) and (4). Readers are referred to
Viola and Jones’s paper [11] for details on how the features are selected and arranged
into nodes. The first five nodes of the face detectors were assigned one weak classifier
each, and the rest were assigned (nn−5)∗50 weak classifiers. Here, nn stands for node
number. Every node of the rejection cascade was trained so that their false rejection rate
on a database of face class validation set is at most 0.01.

The accuracy and speed of the face detectors were compared on the MIT+CMU face
database [9]. Fig. 4 shows the Receiver Operating Characteristics (ROC) curves ob-
tained by testing the face detectors on this database. Each point on the ROC curve was
generated by varying the number of nodes in the face detector. As the false rejection rate
of each node was pre-set to a constant value during training, we observe that the face
detectors, at each operating point, have similar true positive rates. A rectangular bound-
ing box has been used to group ROC points generated using face detectors working at
similar operating points, i.e, with the same number of nodes and weak classifiers.
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Fig. 4. Comparison of ROC curves of face detectors constructed with GWC, VJ, RPP, and
MKSH-type weak classifiers. The detectors were tested at different operating points which were
defined by the number of nodes in them. The ROC points generated at equivalent operating points,
i.e, with same number of nodes and weak classifiers, have been bounded by a rectangular box.
The numbers (separated by a semicolon) beside the bounding box indicate the number of nodes
and the number of weak classifiers used to build them. The inset shows a zoomed version of the
ROC curves for the operating points defined by 12, 13 and 14 nodes. The average time, in mi-
croseconds, required to process an image sub-region of the MIT+CMU database (excluding the
time required to compute integral images) is listed along with the legend.

During the testing phase, the face detectors perform two tasks: 1) computation of
integral image and integral image square (See [11]). In our implementation, the com-
putation of integral images was done using Intel R©Integrated Performance Primitives
6.0 [1]. 2) scan through all possible sub-regions of a test image. The time taken to
compute the two integral images constituted less than 1% of the total time required to
process a 352 × 288 image at 10 resolutions. The rest of the time, ∼ 99%, was spent
in scanning the image. The time taken to compute integral images is a common over-
head for all four detectors. The scanning time, on the other hand, is dependent on the
computational efficiency with which a detector can process clutter images [11], which
is dependent on the type of weak classifier used. Assuming that the integral images
have been pre-computed, we measured the average time required to label an image sub-
region of the MIT+CMU database. The average times are shown along with the legend
in Fig. 4.

The GWC-based face detector outperformed the rest significantly both in accuracy
and evaluation time. Although GWCs are computationally more expensive to evaluate
(See Sec. 3.1), a GWC-based face detector is able to scan through test images faster
than those built with the traditional weak classifiers. This is because GWCs, on average,
require fewer classifiers to label a clutter image.
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6 Conclusions

This paper proposes Gaussian weak classifiers (GWCs) as an alternative to the tra-
ditional ones proposed by Viola & Jones, Rasolzadeh et al. and Mita et al. GWCs are
formulated based on Haar-like features with four rectangles (HF4s). To make a decision
using GWC, the feature values of the two HF2s in a HF4 are compared to a 2D non-
linear decision boundary, which is learnt in a supervised manner using images from face
and clutter class. Our results on the MIT+CMU face database show that GWC-based
face detectors produce at least 40% less false positives and require 32% less time for
the scanning process when compared to Viola & Jones’s face detector. In comparison
to face detectors based on Rasolzadeh et al. ’s and Mita et al. ’s weak classifiers, the
decrease in false positives was at least 11% and 10% respectively. Simultaneously, the
GWC-based detector was faster by 37% and 42% to make decisions.
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Abstract. This paper describes a comprehensive approach to extract a
common feature set from the image sequences. We use simple features
which are easily extracted from a 3D wireframe model and efficiently
used for different applications on a benchmark database. Features ver-
stality is experimented on facial expressions recognition, face reognition
and gender classification. We experiment different combinations of the
features and find reasonable results with a combined features approach
which contain structural, textural and temporal variations. The idea fol-
lows in fitting a model to human face images and extracting shape and
texture information. We parametrize these extracted information from
the image sequences using active appearance model (AAM) approach.
We further compute temporal parameters using optical flow to consider
local feature variations. Finally we combine these parameters to form a
feature vector for all the images in our database. These features are then
experimented with binary decision tree (BDT) and Bayesian Network
(BN) for classification. We evaluated our results on image sequences of
Cohn Kanade Facial Expression Database (CKFED). The proposed sys-
tem produced very promising recognition rates for our applications with
same set of features and classifiers. The system is also realtime capable
and automatic.

Keywords: Feature Extraction, Face Image Analysis, Face Recognition,
Facial Expressions Recognition, Human Robot Interaction.

1 Introduction

In the recent decade model based image analysis of human faces has become
a challenging field due to its capability to deal with the real world scenarios.
Further it outperforms the previous techniques which were constrained to user
intervention with the system either to manually interact with system or to be
frontal to the camera. Currently available model based techniques are trying
to deal with some of the future challenges like developing state-of-the-art algo-
rithms, improving efficiency, fully automated system development and verstality
under different applications. In this paper we deal with some of these challenges.
We focus on feature extraction technique which is fully automatic and verstile
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c© Springer-Verlag Berlin Heidelberg 2009
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enough for different applications like face recognition, facial expressions recogni-
tion and gender classification. These capabilities of the system suggest to apply
it in interactive secnarios like human machine interaction, security of personal-
ized utilities like tokenless devices, facial analysis for person behavior and person
security.

Model-based image interpretation techniques extract information about fa-
cial expression, person identitiy and gender classification from images of human
faces via facial changes. Models take benefit of the prior knowledge of the ob-
ject shape and hence try to match themselves with the object in an image for
which they are designed. Face models impose knowledge about human faces and
reduce high dimensional image data to a small number of expressive model pa-
rameters. We integrate the three-dimensional Candide-3 face model [8] that
has been specifically designed for observing facial features variations defined by
facial action coding system (FACS) [13]. The model parameters together with
extracted texture and motion information is utilized to train classifiers that de-
termine person-specific information. A combination of different facial features is
used for classifiers to classify six basic facial expressoins i.e. anger, fear, surprise,
saddness, laugh and disgust, facial identitly and gender classification.

Our feature vector for each image consists of structral, textural and temporal
variations of the faces in the image sequence. Shape and textural parameters de-
fine active appearance models (AAM) in partial 3D space with shape parameters
extracted from 3D landmarks and texture from 2D image. Temporal features are
extracted using optical flow. These extracted features are more informative than
AAM parameters since we consider local motion patterns in the image sequences
in the form temporal parameters.

The remainder of this paper is divided in four main sections. In section 2,
related work to our applications is discussed. In section 3 we discuss our ap-
proach in detail. In section 4 higher level features extraction from model based
image interpretation is described. This includes description from model fitting
to face image to feature vector formation. Section 5 discusses about evaluation
of our results on the database. Finally we conclude our results with some future
directions.

2 Related Work

We initiate with a three step approach that has been suggested by Pantic et al. [1]
for facial expression recognition. However, the generality of this approach makes
it applicable not only to facial expression estimation but also to apply it for per-
son identification and gender classification at the same time. The first step aims at
determining the position and shape of the face in the image by fitting a model. De-
scriptive features are extracted in the second step. In the third step a classifier is ap-
plied to the features to determine high level information from the features. Several
face models and fitting approaches have been presented in the recent years. Cootes
et al. [5] introduced modeling face shapes with Active Contours. Further enhance-
ments included the idea of expanding shape models with texture information [6]. In
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contrast, three-dimensional shapemodels such as theCandide-3 facemodel consid-
eres the real-world face structure rather than the appearance in the image. Blanz
et al. propose a face model that consideres both, the three-dimensional structur as
well as its texture [7]. However, model parameters that describe the current image
content need to be determined in order to extract high-level information, a process
known as model fitting. In order to fit a model to an image. Van Ginneken et al.
learned local objective functions from annotated training images [18]. In this work,
image features are obtained by approximating the pixel values in a region around
a pixel of interest The learning algorithm use to map images features to objective
values is a k-Nearest-Neighbor classifier (kNN) learned from the data. We used
similar methodology developed by Wimmer et al. [4] which combines multitude
of qualitatively different features [19], determines the most relevant features using
machine learning and learns objective functions from annotated images [18]. To
extract discriptive features from the image, Michel et al. [14] extracted the loca-
tion of 22 feature points within the face and determine their motion between an
image that shows the neutral state of the face and an image that represents a facial
expression. The very similar approach of Cohn et al. [15] uses hierarchical optical
flow in order to determine the motion of 30 feature points. A set of training data
formed from the extracted features is utilized to learn on a classifier. For facial ex-
pressions, some approaches infer the expressions from rules stated by Ekman and
Friesen [13]. This approach is applied by Kotsia et al. [16] to design Support Vec-
tor Machines (SVM) for classification. Michel et al. [14] train a Support Vector
Machine (SVM) that determines the visible facial expression within the video se-
quences of the Cohn-Kanade Facial Expression Database by comparing the first
frame with the neutral expression to the last frame with the peak expression. In or-
der to perform face recognition applications many researchers have applied model
based approaches. Edwards et al [2] use weighted distance classifier called Maha-
lanobis distance measure for AAM parameters. However, they isolate the sources
of variation by maximizing the inter class variations using Linear Discriminant
Analysis (LDA), a holistic approach which was used for Fisherfaces representation
[3]. However they do not discuss face recognition under facial expression. Riaz et al
[17] apply similar features for explaining face recognition using bayesian networks.
However results are limited to face recognition application only. They used expres-
sion invariant technique for face recognition, which is also used in 3D scenarios by
Bronstein et al [9] without 3D reconstruction of the faces and using geodesic dis-
tance. Park et. al. [10] apply 3D model for face recognition on videos from CMU
Face in Action (FIA) database. They reconstruct a 3D model acquiring views from
2D model fitting to the images.

3 Our Approach

In this section we explain in detail the approach adopted in this paper including
model fitting, image warping and parameters extraction for shape, texture and
temporal information.
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Fig. 1. Our Approach: Sequential flow for feature extraction

Weuse awireframe3D facemodelknownas candide-III [8].Themodel is fitted to
the face image using objective function approach [4]. After fitting the model to the
example face image, we use the projections of the 3D landmarks in 2D for texture
mapping. Texture information is mapped from the example image to a reference
shape which is the mean shape of all the shapes available in database. However the
choice of mean shape is arbitrary. Image texture is extracted using planar subdi-
visions of the reference and the example shapes. We use delauny triangulations of
the distribution of our model points. Texture warping between the trigulations is
performed using affine transformation. Principal Component Analysis (PCA) is
used to obtain the texture and shape parameters of the example image. This ap-
proach is similar to extracting AAM parameters. In addition to AAM parameters,
temporal features of the facial changes are also calculated. Local motion of the fea-
ture points is observed using optical flow. We use reduced descriptors by trading
off between accuracy and run time performance. These features are then used for
classification. Our approach achieves real-time performance and provides robust-
ness against facial expressions in real-world scenarios. This computer vision task
comprises of various phases shown in Figure 1 for which it exploits model-based
techniques that accurately localize facial features, seamlessly track them through
image sequences, and finally infer facial features. We specifically adapt state-of-
the-art techniques to each of these challenging phases.

4 Determining High-Level Information

In order to initialize, We apply the algorithm of Viola et al. [20] to roughly
detect the face position within the image. Then, model parameters are estimated
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by applying the approach of Wimmer et al. [4] because it is able to robustly
determine model parameters in real-time.

To extract descriptive features, the model parameters are exploited. The
model configuration represents information about various facial features, such as
lips, eye brows or eyes and therefore contributes to the extracted features. These
structural features include both, information about the person’s face structure
that helps to determine person-specific information such as gender or identity.
Furthermore, changes in these features indicates shape changes and therefore
contributes to the recognition of facial expressions.

The shape x is parametrized by using mean shape xm and matrix of eigen-
vectors Ps to obtain the parameter vector bs [11].

x = xm + Psbs (1)

The extracted texture is parametrized using PCA by using mean texture
gmand matrix of eigenvectors Pgto obtain the parameter vector bg [11]. Figure 2
shows shape model fitting and texture extracted from face image.

g = gm + Pgbg (2)

Further, temporal features of the facial changes are also calculated that take
movement over time into consideration. Local motion of feature points is ob-
served using optical flow. We do not specify the location of these feature points
manually but distribute equally in the whole face region. The number of feature
points is chosen in a way that the system is still capable of performing in real time
and therefore inherits a trade off between accuracy and runtime performance.
Figure 3 shows motion patterns for some of the images from database.

Fig. 2. Texture information is represented by an appearance model. Model parameters
of the fitted model are extracted to represent single image information.
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Fig. 3. Motion patterns within the image are extracted and the temporal features are
calculated from them. These features are descriptive for a sequence of images rather
than single images.

We combine all extracted features into a single feature vector. Single image
information is considered by the structural and textural features whereas image
sequence information is considered by the temporal features. The overall feature
vector becomes:

u = (bs1, ...., bsm, bg1, ...., bgn, bt1, ...., btp, ) (3)

Where bs, bg and bt are shape, textural and temporal parameters respectively.
We extract 85 structural features, 74 textural features and 12 temporal fea-

tures textural parameters to form a combined feature vector for each image.
These features are then used for binary decision tree (BDT) and bayesian net-
work (BN) for different classifications. The face feature vector consists of the
shape, texture and temporal variations, which sufficiently defines global and
local variations of the face. All the subjects in the database are labeled for
classification.

5 Experimental Evaluations

For experimentation purposes, we benchmark our results on Cohn Kanade Fa-
cial Expression Database (CKFED). The database contains 488 short image se-
quences of 97 different persons performing six universal facial expressions [12].
It provides researchers with a large dataset for experimenting and benchmarking
purpose. Each sequence shows a neutral face at the beginning and then devel-
ops into the peak expression. Furthermore, a set of action units (AUs) has been
manually specified by licensed Facial Expressions Coding System (FACS) [13]
experts for each sequence. Note that this database does not contain natural facial
expressions, but volunteers were asked to act. Furthermore, the image sequences
are taken in a laboratory environment with predefined illumination conditions,
solid background and frontal face views.

In order to experiment feature verstality we use two different classifiers with
same feature set on three different applications: face recognition, facial expres-
sions recognition and gender classification. The results are evaluated using clas-
sifiers from weka [21] with 10-fold cross validation. Table 1 shows different
recognition rates achieved during experimentations. In all three cases BDT out-
performs BN.
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Table 1. Comparison of Extracted Features

BDT BN
Face Recognition 98.49% 90.66%

Facial Expressions Recognition 85.70% 80.57%
Gender Classification 99.08% 89.70%

6 Conclusions

We introduced a technique to develop a set of feature vectors which consist of
three types of facial information. The features set is applied to three different
applications: face recognition, facial expressions recognition and gender classifi-
cation, which produced the reasonable results in all three cases for CKFED. We
consider different classifiers for checking the versatility of our extracted features.
We use two different classifiers with same specifications which evidence simplicity
of our approach however, the results can be further optimized by trying other
classifiers. The database consists of frontal views with uniform illuminations.
Since the algorithm is working in real time, hence it is suitable to apply it in
real time environment keeping in consideration the limitation of database. Fur-
ther extensions of this work is to enhance the feature sets to include information
about pose and lighting variations.
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Abstract. We propose a new method for analyzing the dynamics of facial
expressions to identify persons using Active Appearance Models and accu-
rate facial feature point tracking. Several methods have been proposed to
identify persons using facial images. In most methods, variations in facial
expressions are one trouble factor. However, the dynamics of facial expres-
sions are one measure of personal characteristics. In the proposed method,
facial feature points are automatically extracted using Active Appearance
Models in the first frame of each video. They are then tracked using the
Lucas-Kanade based feature point tracking method. Next, a temporal in-
terval is extracted from the beginning time to the ending time of facial
expression changes. Finally, a feature vector is obtained. In the identifica-
tion phase, an input feature vector is classified by calculating the distance
between the input vector and the training vectors using dynamic program-
ming matching. We show the effectiveness of the proposed method using
smile videos from the MMI Facial Expression Database.

Keywords: facial expression analysis, AAMs, LK-based feature point
tracking, DP matching, person identification.

1 Introduction

Facial expression analysis is utilized in man-machine interfaces such as human-
robot interactions. Most previous research in this field has tried to classify facial
expressions into fundamental categories based on emotions. However, facial ex-
pressions contain not only expressions of emotions but also individual differences
over time [1]. In this paper, we focus on the individual differences and propose a
new method for analyzing the dynamics of facial expressions to identify persons.

To achieve biometric identification services, we consider that various physical
features have to be fused and that facial expression is one of them. Since facial
expression might not provide enough discriminating power, this research is con-
sidered as a type of soft biometrics. Figure 1 shows an example of using facial
expressions for person identification service at a high-class membership club. At
the entrance, a robot approaches the members and communicates with them
while the identification process is performed.

In most person identification methods using facial images, the variations in
facial expressions are one of the factors that lower the discriminating power.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 107–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Person identification
service at a high class mem-
bership club

Fig. 2. Flow of proposed method

A number of methods [2, 3, 4] have been developed to address this problem.
In the case of facial expression videos, however, person identification can be
performed by using individual differences behind the facial expressions.

Previous research in the area of person identification using facial expressions
is very limited. Ning et al. [5] generated features by summing up the flow fields
over time using smile videos. In this method, the dynamics of facial expressions
were not well described because features were generated by summing up the
flow fields over time. Also, optical flow was calculated for whole facial images
and did not accurately show the background regions of the images. This lowers
the discriminating power. Further, facial feature points were manually extracted
to normalize the facial images. Chen et al. [6] constructed a high-dimensional
feature vector that concatenated a sequence of motion flow fields using videos
of persons speaking. In this method, the dynamics of facial expressions were
described. However, optical flow was calculated for whole facial images and facial
feature points were manually extracted.

In contrast, we propose a novel method that analyzes the dynamics of facial
expressions to identify persons using Active Appearance Models (AAMs) and
accurate facial feature point tracking. The next section provides an overview of
the proposed method and details its facial feature point extraction, feature point
tracking, facial normalization, temporal interval extraction and identification
processes. Section 3 demonstrates the method’s effectiveness using smile videos
from a published facial expression database. In Section 4, we offer conclusions
pertaining to our work.

2 Proposed Method

The proposed method consists of two phases: “the learning phase,” and “the
identification phase.” Figure 2 shows the flow of the method. In the learning
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phase, facial feature points (eyebrow, eye, nose, mouth, and facial contour parts)
are automatically extracted using AAMs in the first frame of the facial expression
videos. The feature points are then tracked using the Lucas-Kanade based feature
point tracking method (LK-based feature point tracking). Each facial image is
normalized using three facial feature points to account for the variations in the
object’s head pose and those in the distance from face to camera. Temporal
intervals are extracted from the difference between the feature points’ position
in the current frame and that in the previous frame. A feature vector is also
generated and stored with the name label. In the identification phase, an input
feature vector is generated as in the learning phase and classified by calculating
the distance between the input vector and the training vectors using dynamic
programming (DP) matching. The next subsections detail each process.

2.1 Facial Feature Point Extraction

To extract facial feature points in the first frame of each video, we use AAMs [7].
AAMs are generative and parametric models of a certain visual phenomenon
that shows both shape and grey-level appearance variations. These variations
are represented by a linear model.

Initially, grey-level variance independent from shape variance is needed for
learning the correlation between shape and grey-level. The training data for
AAMs is a set of images and coordinate values of feature points on the images.
A shape vector s is composed of coordinate values on feature points. A grey-level
vector g is composed of intensity values in a warped image, which is obtained by
extracting the face region from an image along its feature points and normalizing
its shape into a mean shape s̄ of the normalized shapes.

Next, the distribution and correlation between shapes and grey-level is cal-
culated. Principal Component Analysis (PCA) is performed on a set of shape
vectors s and grey-level vectors g in training data.

s = s̄ + Pscs, g = ḡ + Pgcg (1)

where s̄ is a mean vector of s, ḡ is a mean vector of g, Ps and Pg are orthogonal
matrixes where each column vector is a base vector, and cs and cg are coefficients
of the base vector. Since there may be correlations between the shape and grey-
level variations, PCA is performed again. If an input image and the training
model are given, we can treat facial feature point extraction as an optimization
problem in which we minimize the grey-level difference between an input image
and a synthesized image using the parameter vector d∗.

d∗ = argmin
d
| gi − gm |2 (2)

where d is a parameter vector controlling both the shape and greylevels of the
model, gi is a warped input image and gm is a synthesized image. | gi− gm | are
iteratively minimized and we get the optimization result d∗. From the vector d∗,
the shape vector of an input image is obtained. Figure 3 shows an example of a
training image. We put 65 feature points on the image.
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Fig. 3. An example of a train-
ing image for AAMs

(a) AAM tracking (b) LK-based tracking

Fig. 4. Comparison of facial feature point tracking
results

2.2 Feature Point Tracking

In each video, we need to track the facial feature points that are extracted in the
first frame using AAMs. AAM tracking (part of AAM-API) is a training-based
feature point tracking method in which it is necessary to make many training
images to track the movement of facial feature points accurately. It is also known
that AAM tracking based on a large number of datasets has difficulties in track-
ing accuracy because of local minimums [8]. In case we make training images
consisting of a neutral face, the feature point tracking fails (around the mouth)
as shown in Fig.4 (a). In our method, we use the feature point tracking method
developed by Lien [9], which we call “LK-based feature point tracking,” to track
the feature points accurately. The goal of feature point tracking is to find the
best matching positions between an N x N window R in the t frame and those
in the t + 1 frame that minimize the cost function E of the weighted sum of
squared differences (SSD) as follows:

E(εx) =
∑
x∈R

ωx · [It(x) − It+1(x− εx)]2 (3)

where It(x) denotes the grey value of the pixel position x in the t frame, εx is the
motion vector of x between two consecutive frames, and ωx is a window function
for weighting the squared differences in E, which are defined by LK-based weight.
Here, this weight is empirically determined. In our method, the feature point
tracking is robustly performed against illumination variations because we use a
part of the facial edge (facial feature points). The feature point tracking result
using the LK-based feature point tracking method is shown in Fig.4 (b) . From
this figure, we can see that the feature points are accurately tracked when the
facial expression is changed.

2.3 Facial Normalization

To account for the object’s head pose movements and the different distances
from the object’s face to the camera, each facial image is normalized. In our
method, we use three facial feature points (two inner canthi and a philtrum)
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to align each facial image. These three points are extracted in the first frame
of each video using AAMs and then tracked using the LK-based feature point
tracking method. These three points are then moved into the aligned positions.
Facial images are aligned by 2D affine transformation with respect to these three
points. The inner canthi and philtrum of all aligned facial images have the same
coordinate values. After alignment, facial images are cropped and resized. In our
experiment, the resized image size is 128 x 128 pixels.

2.4 Temporal Interval Extraction

To determine the frames that encompass the duration of facial expression changes,
the starting and ending frames are extracted in each video. Frames that do not
contain any facial expression changes will be abandoned because these frames will
lower the discriminating power. In our method, the starting and ending frames are
extracted by differences in the facial feature points between two successive frames
as follows:

F (xt) =| f(xt)− f(xt−1) |, f(xt) =
K∑

i=1

| xt
i − x0

i | (4)

(
ts = t if F (xt) > Thperiod

te = t if t > ts and F (xt) < Thperiod

)
where F (xt) denotes the differences between the coordinate values of the facial
feature points in the t frame and those in the t− 1 frame, K is the total number
of facial feature points, xt

i denotes the coordinate values of the ith feature points
in the t frame, ts and te are the starting and ending frames, and Thperiod is the
threshold value. Here, Thperiod is empirically determined depending on the ex-
perimental environment because Thperiod is mainly affected by the illumination
variations in the experimental environment. In our experiment, facial expression
changes always start from a neutral face.

After this process, we can obtain a feature vector. It consists of the 2D co-
ordinate sequence of facial feature points and the vector dimensions total 2D
coordinate x 65 points x (te-ts) frames.

2.5 Identification

Identification is performed by classifying an input feature vector. Because tem-
poral intervals of facial expression changes will not be the same between different
individuals and will not be constant at all times even for the same person, we
need to absorb the variations. There are many matching algorithms to compare
the patterns whose temporal intervals are different. In our method, we use con-
ventional dynamic programming (DP) matching to compare an input feature
vector with the training feature vectors. In detail, the distance G(i, j) between
an input feature vector A = (a1, a2, . . . , ai, . . . , aT1) and the training feature
vector B = (b1, b2, . . . , bj, . . . , bT2) is calculated as follows:



112 H. Tanaka and H. Saito

G(i, j) = min

(G(i− 1, j) + D(i, j)
G(i− 1, j − 1) + 2D(i, j)
G(i, j − 1) + D(i, j)

)
(5)

where D(i, j) denotes the Euclidian distance between ai and bj . The calculated
distance is normalized by the length of the input vector and the training vector
(T1 + T2) and the DP distance is obtained. In identification, the input vector is
classified by the threshold value.

3 Experiments

To show the effectiveness of our method, we conducted experiments using smile
videos from the MMI Facial Expression Database [10]. In our experiments, the
resolution of the videos is 720 x 576 pixels and the frame rate is 25 frames/second.
Facial expression changes start with a neutral face, move to a smile, and then
go back again to the neutral face. We selected 48 smile videos (12 persons, 4
videos/person) from the database to evaluate. All videos were very nearly frontal
facial images, and so ideally suit our facial normalization method.

We first evaluate the discriminating power of our method using all facial
feature points, comparing them with the previous method. Then, we evaluate
the discriminating power of our method for each facial part. For evaluation
purposes, we considered that one video was for test data and that the other
videos were for training data. To evaluate the discriminating power, we used the
equal error rate (EER) and the recognition rate (RR). EER is the probability
that the false acceptance rate (FAR) and the false rejection rate (FRR) are
equal. In general, the discriminating power is high when EER is lower and RR is
higher.

3.1 Discriminating Power of a Whole Face

In this experiment, we first show the discriminating power of our method with all
facial feature points (65 points) using smile videos. Figure 5 shows the tracking
results of three persons in smile videos. From this figure, we can see individual
differences in smile dynamics. From the evaluation results, the EER value was
14.0% and the RR value was 92.5%. This shows that smile dynamics represented
by our method have high discriminating power.

To compare the discriminating power of our method with that of the previous
method, we applied the optical-flow based method to the same datasets. In
this experiment, each facial image was sampled into 64 points evenly spaced
over a whole facial image for computing the optical flow field, and optical-flow
was calculated against the points. A feature vector was obtained after temporal
interval extraction. The identification was performed in the same way as in
our method. From the evaluation results, the EER value was 36.8% and the
RR value was 62.3%. These results show that the discriminating power of our
method is higher than that of the optical-flow based method. Here, the factor
that lowers the discriminating power in the optical-flow based method was some
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Fig. 5. Tracking results of three persons in smile videos (Every three frames from a
neutral face to a smile face)

unexpected flows found in the background regions of the facial image. In contrast,
in our method, we extract the facial feature points of the facial image and the
background regions of the image do not affect the tracking process.

3.2 Discriminating Power in Each Facial Part

In this experiment, we show the discriminating power of our method in each facial
part (eyebrow, eye, nose, mouth, and facial contour parts) using smile videos.
We also show the differences in the discriminating power by temporal interval
extraction because temporal interval plays an important role in the dynamics of
facial expressions. First, we use the same temporal interval as in the previous
experiments (temporal interval extraction by all facial feature points). Table 1
shows EER and RR results obtained for each facial part. From this table, we
can see that the EER value of the eyebrow part is lowest and the RR value of
the eyebrow part is highest. From this result, it can be said that the eyebrow
part had higher discriminating power than the other parts in these datasets.
On the other hand, we can also see that the EER values of the eye part and
those of the mouth part are higher and that the RR values of the eye part and
those of the mouth part are lower. From this result, it can be said that the
eye and mouth parts have less discriminating power than the other parts, while
wrinkling around the corners of the eyes and a rising in the corners of the mouth
are characteristic movements in smiles.

Next, we use the temporal interval extracted by each facial feature point. Ta-
ble 2 shows EER and RR results obtained for each facial part. From this table,
we can see that the EER values of all parts in Table 2 are higher than those in
Table 1 and the RR values of all parts in Table 2 are mostly lower than those in
Table 1. From this result, it can be said that temporal interval extraction by all
facial feature points had higher discriminating power than that by each facial
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Table 1. EER and RR in each facial part
(Temporal interval is extracted by all fa-
cial feature points)

facial part EER[%] RR[%]
eyebrow 15.2 88.7

eye 24.4 71.7
nose 21.7 70.7

mouth 24.7 64.2
facial contour 17.0 81.1

Table 2. EER and RR in each facial part
(Temporal interval is extracted by each
facial feature points)

facial part EER[%] RR[%]
eyebrow 17.3 77.4

eye 31.0 67.9
nose 22.5 81.1

mouth 27.6 62.3
facial contour 19.0 67.0

feature point. In other words, the combination of facial parts’ movements over
time had individual differences.

4 Conclusions

In this paper, we proposed a method for analyzing the dynamics of facial expres-
sions to identify persons. We automatically extracted facial feature points and
accurately tracked them. We evaluated the discriminating power of our method
using 48 smile videos from the MMI Facial Expression Database. The evaluation
results showed that the EER value was 14.0% and the RR value was 92.5% and
the discriminating power of our method was higher than that of the previous
method. We also found that the eyebrow part had higher discriminating power
than the other parts of the face and that the eye and mouth parts had less
discriminating power than the other parts even though these parts are charac-
teristic parts in smiles. Further, the combination of facial parts’ movements over
time had individual differences.

In future work, we plan to generate a feature vector while considering the ap-
pearance of facial images and evaluate our method using other facial expression
videos.
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Abstract. We propose a low-complexity face synthesis technique which
transforms a 2D frontal view image into views at specific poses, without
recourse to computationally expensive 3D analysis or iterative fitting
techniques that may fail to converge. The method first divides a given
image into multiple overlapping blocks, followed by synthesising a non-
frontal representation through applying a multivariate linear regression
model on a low-dimensional representation of each block. To demonstrate
one application of the proposed technique, we augment a frontal face ver-
ification system by incorporating multi-view reference (gallery) images
synthesised from the frontal view. Experiments on the pose subset of the
FERET database show considerable reductions in error rates, especially
for large deviations from the frontal view.

1 Introduction

Face based identity inference subject to pose variations is a challenging prob-
lem, as previously studied and documented in FRVT test reports [1]. In certain
applications the only reference (gallery) face images available are in one pose —
e.g. frontal passport photos. Under typical surveillance conditions, CCTV cam-
eras are unable to provide good quality frontal face images, largely due to the
positioning of the cameras. In such situations an identity inference system based
on frontal reference views will tend to have poor accuracy, unless extra process-
ing is used to reduce the pose mismatch between the reference and acquired
surveillance images.

The mismatch reduction can be accomplished through transforming the ac-
quired surveillance images to be of the same pose as the reference image, or vice-
versa. Recent face transformation methods include techniques based on Active
Appearance Models (AAMs) [2,3] and fitting a 2D image into a 3D morphable
model [4,5]. The AAM based synthesis approach requires an initialisation stage
to label the important facial features (e.g. ∼ 60 points). The initialisation can be
done manually or automatically, where it may fail to converge. The morphable
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W(x,y)

original frontal view synthesised pose view

Fig. 1. Conceptual example of block-by-block image synthesis. The transformation
matrix W (x,y) is specific to location (x, y).

model based approach estimates the 3D shape and texture from a single im-
age, with the fitting process taking about 4.5 minutes on a 2 GHz Pentium 4
workstation.

In this paper we propose a low-complexity, non-iterative face synthesis tech-
nique which transforms a given frontal view image into views at specific poses,
without recourse to computationally expensive 3D analysis or fitting techniques
that may fail to converge. The method first divides a given image into multiple
overlapping blocks, followed by applying a multivariate linear regression model
on a low-dimensional representation of each block. A conceptual example of this
process is shown in Fig. 1. We demonstrate an application of the technique by
augmenting a frontal face verification system with artificial multi-view reference
(gallery) images synthesised from the frontal view.

We continue as follows. The details of the face synthesis method are described
in Section 2. A preliminary comparison with AAM based image synthesis is given
in Section 3. Identity verification experiments on the pose subset of the FERET
database are given in Section 4. Conclusions and an outlook are presented in
Section 5.

2 Face Synthesis with Multivariate Linear Regression

The proposed face synthesis method is a non-iterative process comprised of five
steps: (1) block-based image analysis, (2) low-dimensional representation of
each block, (3) transformation with multivariate linear regression, (4) block
reconstruction, (5) block-based image synthesis. The steps are elaborated below,
followed by a subsection which explores the effects of several parameters.

1. A given frontal image, X[frontal] , is analysed on an overlapping block-by-
block basis, resulting in a set of 2D blocks,

{
b[frontal]
(p,q) , b[frontal]

(r,s) , · · ·
}
, where

the subscript indicates the position of the block within the image. Based on
preliminary experiments (using face images with a size of 64 × 64 pixels),
each block has a size of 8× 8 pixels.

2. To ameliorate dimensionality problems described later, each block b[frontal]
(x,y)

is represented by a vector of coefficients, v[frontal]
(x,y) , resulting from the 2D
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Discrete Cosine Transform (DCT) [6]. To achieve dimensionality reduction,
only the lower order coefficients are retained (specifically, to reduce the di-
mensionality from 64 to 16, coefficients are taken from the top-left 4 × 4
sub-matrix of the 8× 8 coefficient matrix).

3. Each vector obtained from the frontal view is then transformed to represent
a non-frontal view Θ using:

v
[Θ]
(x,y) =

[
1

(
v[frontal]

(x,y)

)T
]

W
[Θ]
(x,y) (1)

where W
[Θ]
(x,y) is a transformation matrix specific to view Θ and location (x, y).

Two sets of training vectors, obtained from frontal and non-frontal faces, are
required to obtain W

[Θ]

(x,y)
. In each set the vectors are also specific to location

(x, y). Let us place the training frontal vectors into an extended matrix A
and the training non-frontal vectors into matrix B. If both matrices are
constrained to have N number of vectors, we can define a linear regression
model as follows:

B(x,y) = A(x,y) W
[Θ]

(x,y) (2)⎡⎢⎢⎢⎣
bT
1

bT
2

...
bT

N

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 aT

1

1 aT
2

...
1 aT

N

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

w1,1 · · · w1,D

w2,1 · · · w2,D

...
...

...
wD+1,1 · · · wD+1,D

⎤⎥⎥⎥⎦ (3)

where D is the dimensionality of the vectors and N > D + 1. Under the
sum-of-least-squares regression criterion, W

[Θ]
(x,y) can be found using [7]:

W
[Θ]

(x,y) =
(
AT

(x,y)A(x,y)

)−1

AT
(x,y)B(x,y) (4)

Due to the constraint on N , the higher the dimensionality of the vectors, the
more training faces are required. Given that there might be a limited number
of such faces, or there might be memory constraints for solving Eqn. (4), it
is preferable to keep the dimensionality low.

4. Each synthesised non-frontal vector v
[Θ]

(x,y)
is converted to a non-frontal block

b
[Θ]
(x,y) through an inverse 2D DCT. The omitted DCT coefficients are set

to zero.

5. A synthesised image X [Θ] for non-frontal view Θ is constructed from blocks{
b[Θ]
(p,q), b

[Θ]
(r,s), · · ·

}
through an averaging operation. An auxiliary matrix, C ,

is used for keeping the count of pixels placed at each location. Elements of
X [Θ] and C are first set to zero. A block b[Θ]

(x,y) is placed into X [Θ] at location
(x, y) by adding to the elements already present in X [Θ]. The corresponding
elements of C are increased by one. This process is repeated until all the
blocks have been placed. Finally, each element of X [Θ] is divided by the
corresponding element in C .
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2.1 Effects of Vector Dimensionality and Degree of Block Overlap

In this section we show the effects of the degree of dimensionality reduction as
well as the amount of block overlap. For evaluation we use frontal and non-frontal
faces from subset b of the FERET dataset [8]. The subset has 200 persons in
9 views (frontal, ±60o, ±40o, ±25o and ±15o). Each image was size normalised
and cropped so that the eyes were at the same positions in all images. The
resulting image size was 64× 64 pixels. 100 randomly selected persons were used
to train the transformation matrices for each pose angle. Frontal images from
the remaining 100 persons were then fed to the proposed synthesis technique.

Examples of typical effects of the amount of block overlap are shown in Fig. 2,
where a frontal face is transformed to a synthetic +40o view. 25% of the DCT
coefficients were retained (i.e. 16 out of 64) for each block. The block overlap
varied from 0% to 87.5%. A 50% overlap indicates that each 8× 8 pixel block
overlapped its neighbours by 4 pixels.

The quality of the synthesised images improves remarkably as the overlap
increases. This can be attributed to the considerable increase in the number of
transformation matrices (from 64 in the 0% overlap case to 3249 in the 87.5%
case), leading to the overall image transformation being much more detailed.
Furthermore, mistakes in the synthesis of individual blocks tend to be reduced
through the averaging process described in step 5 of the algorithm.

The effect of the degree of dimensionality reduction is shown qualitatively in
Fig. 3 and quantitatively in Fig. 4. The optimal amount of retained coefficients
appears to be around 25%, which has the effect of removing high frequencies.
Using more than 25% of the coefficients results in poorer quality images — this
can be attributed to the dimensionality being too high in relation to the available
number of training examples.

Fig. 4 shows the relative reduction in pixel based mean square error (MSE)
for faces not used during training, which can be used to quantitatively gauge the
improvement in image quality. Here a baseline MSE was obtained by comparing
the frontal image with the real side image for each person. A secondary MSE was
then obtained by comparing real side images with corresponding synthesised side

Frontal view
(input)

Side view
(real)

0% overlap 50% overlap 75% overlap 87.5% overlap︸ ︷︷ ︸
Synthesised

Fig. 2. Examples of non-frontal (side view) face synthesis with various degrees of block
overlap. The images are synthesised from the frontal input image. The real side view,
for the person depicted in the frontal image, is never used by the system. 25% of the
DCT coefficients were retained.
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25% retained 50% retained

75% retained 100% retained

Fig. 3. Examples of face syn-
thesis with various amounts
of retained DCT coefficients.
There is a maximum of 64 co-
efficients per block. The block
overlap was set to 87.5%.
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Fig. 4. Synthesis improvement (quality) for various
amounts of retained DCT coefficients. A baseline
mean square error (MSE) was obtained by compar-
ing each frontal image with the corresponding real
side image. A secondary MSE was then obtained by
comparing real side images with corresponding syn-
thesised side images. The improvement is how much
smaller the secondary MSE is compared to the base-
line (i.e. relative reduction).

images. We define the relative reduction in MSE as how much smaller the sec-
ondary MSE is compared to the baseline MSE. The quantitative results presented
in Fig. 4 confirm the qualitative results shown in Fig. 3, where using 25% of the
DCT coefficients is better than using 100%. It can also be observed that the best
improvement occurs for high pose angles (±60o).

3 Comparison with AAM Based Image Synthesis

The Active Appearance Model (AAM) based image synthesis approach [2,3]
requires a initialisation stage to label important facial features (e.g. ∼ 60 points).
The initialisation can be done manually or automatically, where it can fail to
converge. This is in contrast the proposed technique, which only requires the
positions of the eyes — this can be obtained automatically and relatively robustly
by modern face localisation (detection) algorithms [9].

Fig. 5 shows a preliminary and qualitative comparison of image synthesis using
the proposed regression based technique and the AAM based method described
in [3]. We follow the setup described in [3], which is similar to that of Section 2.1.
The main difference is that side view images are transformed to a frontal view
rather than vice-versa.
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Non-frontal
input image

Real frontal
view

AAM based
synthesis of
frontal view

Regression
based synthesis
of frontal view

Fig. 5. Comparison of frontal view synthesis from non-frontal input view. Results for
the AAM based approach taken from [3].

On first sight, the synthesised image produced by the regression method ap-
pears to be less defined than the AAM generated image. However, facial features
such as the eyes and nose are actually better approximated when compared di-
rectly with the real frontal view image. Specifically, the eyes synthesised by the
regression method retain their overall shape (outer edges are pointing down-
wards) and the nose remains thin. This is not the case for the AAM-based
technique, where the eyes lose much of their original shape and the nose is con-
siderably wider.

4 Face Verification with Synthesised Non-frontal Images

This section shows an application of the proposed face synthesis technique. Syn-
thesised faces are used to build a multi-angle model to address the pose mismatch
problem described in Section 1. As the baseline we use the PCA/GMM face veri-
fication system described in [10], which is easily extendable to multi-angle models
while remaining in a probabilistic framework.

The first step is Principal Component Analysis (PCA) based feature extrac-
tion. Briefly, a given face image is represented by a matrix containing grey pixel
values. The matrix is converted to a face vector, f , by column concatenation.
A D-dimensional feature vector, x, is obtained by:

x = UT (
f − fμ

)
(5)

where U contains D eigenvectors (corresponding to the D largest eigenvalues)
of the training data covariance matrix and fμ is the mean of training face vec-
tors [11].

In the verification task we wish to find out whether a given biometric sample
belongs to the true claimant or an impostor. A claim for the identity of person C
is classified as coming from the that person (i.e. the true claimant) when

p(x|λC)
p(x|λimpostor)

> t (6)

and as coming from an impostor otherwise. Here t is a decision threshold, λC

is the model for person C and λimpostor is the approximate impostor model. The
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distribution of feature vectors is described by a Gaussian Mixture Model (GMM):

p (x|λ) =
∑NG

g=1
wgN

(
x|μg , Σg

)
(7)

where λ =
{
wg, μg, Σg

}NG

g=1
and N (x|μ, Σ) is a D-dimensional Gaussian function

with mean μ and diagonal covariance matrix Σ. NG is the number of Gaussians
and wg is the weight for Gaussian g (with constraints

∑NG
g=1 wg = 1) [11,12]. Due

to the relatively small amount of training data for each person (i.e. one frontal
image), a common covariance matrix is used for all Gaussians and all models.

Frontal face models, for each person enrolled in the system, are comprised of
one Gaussian. The Gaussian’s mean is equal to the PCA-derived feature vector
obtained from the frontal face. In a similar manner, the approximate impostor
model is comprised of 32 Gaussians, where the Gaussian means are taken to be
equal to the PCA-derived feature vectors of 32 randomly selected persons. The
weights are all equal.

4.1 Synthesised Multi-angle Models

In order for the system to automatically handle non-frontal views, each frontal
face model is extended by concatenating it with models generated from synthe-
sised non-frontal views. Formally, an extended (or multi-angle) model for person
C is created using:

λ
[extended]
C = λ

[frontal]
C � λ

[+60o]
C � λ

[+40o]
C · · · � λ

[−40o]
C � λ

[−60o]
C (8)

= �i∈Φλ
[i]
C (9)

where λ
[frontal]
C represents the frontal model, Φ is a set of angles, e.g.

Φ = {±15o,±25o,±40o,±60o}, and � is an operator for joining GMM parame-
ter sets, defined as follows. Let us suppose we have two GMM parameter sets,
λ[a] and λ[b], comprised of parameters for N

[a]
G and N

[b]
G Gaussians, respectively.

The � operator is defined as follows:

λ[joined] = λ[a] � λ[b] =
{

αw[a]
g , μ[a]

g , Σ [a]
g

}N
[a]
G

g=1
∪

{
βw[b]

g , μ[b]
g , Σ [b]

g

}N
[b]
G

g=1
(10)

where α = N
[a]
G /

(
N

[a]
G + N

[b]
G

)
and β = 1− α.

4.2 Experiments and Results

The experiments were done1 using data from two subsets of the FERET dataset.
Subset f was used to train the PCA based feature extractor (i.e. U and f μ) and to
obtain the common covariance matrix for the GMMs. Faces for λimpostor were also
selected from this subset. Subset b was randomly split into three disjoint groups:
group A, group B and an impostor group. Group A had 100 persons and was
used to train the transformation matrices for each pose view (i.e. from frontal
to dedicated pose). Group B had 80 persons and the remaining 20 persons were

1 The experiments were performed with the aid of the Armadillo C++ linear algebra
library, available from http://arma.sourceforge.net
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placed in the impostor group. The latter two groups were used in verification
tests, which were comprised of 80 true claims and 20×80 = 1600 impostor attacks
per view angle.
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Fig. 6. Verification error rates using frontal and
multi-angle models. The latter use synthesised
non-frontal faces.

Two systems were evaluated:
(1) frontal models and (2) syn-
thesised multi-angle models. In
the latter case each person’s
model had 9 Gaussians, with each
Gaussian representing a particu-
lar view (i.e. the original frontal
and synthesised ±15o, ±25o, ±40o,
±60o views). For each angle the
results are reported in terms of
the Equal Error Rate (EER) [12].

The results, shown in Fig. 6,
demonstrate considerable error
reductions across all pose views.
The largest improvement in per-
formance occurs for large de-
viations from the frontal view
(±60o), where the errors are re-
markably reduced by an absolute difference of about 15 percentage points, or a
relative difference of about 30%.

5 Conclusions and Outlook

In this paper we proposed a low-complexity face synthesis technique which trans-
forms a 2D frontal view image into views at specific poses, without recourse
to computationally expensive 3D analysis or iterative fitting techniques that
may fail to converge (as used by Active Appearance Models [3]). The proposed
method first divides a given image into multiple overlapping blocks, followed by
synthesising a non-frontal representation through applying a multivariate linear
regression model on a low-dimensional representation of each block.

The proposed synthesis method is relatively straightforward, with low compu-
tational requirements for both training and image synthesis. Using 100 persons
for training, learning the regression matrices took about 3 seconds on a 2 GHz
Intel Core 2 processor. Synthesis of 1 test image took less than 0.04 seconds
(C++ implementation, gcc 4.1.2, Linux 2.6.26).

To demonstrate one application of the proposed technique, we augmented a
frontal face verification system by incorporating multi-view reference (gallery)
images synthesised from the frontal view. Experiments on the pose subset of the
FERET database indicate considerable reductions in error rates, especially for
large deviations from the frontal view.

Improvements in synthesis quality could be obtained through a more precise
low-dimensional representation of each block. For example, rather than using
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the generic 2D DCT, a position dependent local PCA could be employed, which
may have the additional advantage of further reducing the dimensionality.
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Abstract. Palmprint authentication is becoming one of the most important bio-
metric techniques because of its high accuracy and ease to use. The features on
palm, including the palm lines, ridges and textures, etc., are resulted from the gray
scale variance of the palmprint images. This paper characterizes these variance
using different order differential operations. To avoid the effect of the illumina-
tion variance, only the signs of the pixel values of the differential images are
used to encode palmprint to form palmprint differential code (PDC). In match-
ing stage, normalized Hamming distance is employed to measure the similarity
between different PDCs. The experimental results demonstrate that the proposed
approach outperforms the existing palmprint authentication algorithms in terms
of the accuracy, speed and storage requirement and the differential operations may
be considered as one of the standard methods for palmprint feature extraction.

1 Introduction

Computer-aided personal recognition is becoming increasingly important in our infor-
mation society. Biometrics is one of the most important and reliable methods in this
field [1,2]. The palmprint is a relatively new biometric feature and has many advan-
tages for personal authentication [3]. Palmprint recognition is becoming a hotspot in
biometrics field.

Han et al. [4] used Sobel and morphological operations to extract line-like features
from palmprints. Similarly, for verification, Kumar et al. [5] used other directional
masks to extract line-like features. Zhang et al. [6,7] used 2-D Gabor filters to extract the
phase information (called PalmCode) from low-resolution palmprint images. Wu et al.
[8] extract the palm lines and authenticate persons according to the line structure. Jia et
al. [9] used a modified finite Radon transform to compute the line direction of palmprint
and employed pixel to region matching for verification. Kong and Zhang [10] defined an
orientation for each pixel using a bank of Gabor filters and matched palmprint by com-
pute the angular distance (called CompCode). Sun et al. [11] extract orthogonal line
ordinal features (called OrdnCode) to represent palmprint. Up to now, the CompCode
and OrdnCode are the most effective algorithms for palmprint authentication.

Different algorithms extract different features from palmprint. Actually, all features
on palm, such as palm lines, ridge and textures, etc., are resulted from the gray scale

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 125–132, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) Original Palmprint (b) Cropped Image

Fig. 1. A palmprint and the preprocessed image

variance of the palmprint image. The derivative of an image naturally and effectively
reflect these variance, which motivates us to investigate differential feature of palmprint
for personal authentication.

The palmprints used in this paper are from the Polyu Palmprint Database [12]. We
use the technique in [6] to preprocess a palmprint and crop the central part of the image
to represent the whole palmprint. Figure 1 shows a palmprint and its cropped image.

2 Gaussian Derivative Filters (GDF)

Let G(x, y, σ) denote a 2-D Gaussian function with variance σ, which is defined as
following:

G(x, y, σ) = exp (−x2 + y2

2σ2 ) (1)

The nth-order Gaussian derivative filters (n-GDF) can be obtained by computing the
nth-order derivatives of the Gaussian function. For simplification, this paper just con-
siders the derivatives along x and y axis. Therefore, the 1st to 3rd-order Gaussian
derivative filters along the x axis are computed as following equations:

1st-order GDF:

Gx(1)(x, y, σ) = − x

σ2 exp (−x2 + y2

2σ2 ) (2)

2nd-order GDF:

Gx(2)(x, y, σ) = (− 1
σ2 +

x2

σ4 ) exp (−x2 + y2

2σ2 ) (3)

3rd-order GDF:

Gx(3)(x, y, σ) = (
3x

σ4 −
x3

σ6 ) exp (−x2 + y2

2σ2 ) (4)

The different order Gaussian derivative filters along y axis, Gy(1)(x, y, σ), Gy(2)(x, y, σ)
and Gy(3)(x, y, σ), can also be computed by exchanging the positions of variable x and
y at the right of the above corresponding equations.
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3 Palmprint Differential Code (PDC) Extraction

As mentioned above, all features on palms are resulted from the gray scale variance of
palmprint images and the derivative is an effective way to capture these variance. We
can compute the derivative of a palmprint by convolving it with the corresponding GDF.

Denote I as a preprocessed palmprint image and denote Gx(k) and Gy(k) as the kth
order Gaussian derivative filters. The kth order derivative of I in x and y directions can
be computed as following:

Ix(k) = I ∗Gx(k) (5)

Iy(k) = I ∗Gy(k) (6)

where ”∗” is the convolving operation.
To avoid the effect of the illuminance variance, we only use the signs of pixel values

of the filtered images to encode the palmprint:

Cx(k)(i, j) =
{

1, if Ix(k) > 0;
0, otherwise.

(7)

Cy(k)(i, j) =
{

1, if Iy(k) > 0;
0, otherwise.

(8)

C = (Cx(k) , Cy(k)) is called the kth order palmprint differential code (k-PDC).
Figure 2 shows some examples of different order PDCs. This figure demonstrates some
properties of the PDCs. The 1-PDCs contain the most prominent features of palmprint,
such as the principal lines, but miss most of the details. The 2-PDCs contain both the
remarkable features and the most of the palmprint details. Though the 3-PDCs con-
tain more details of the palmprints, they also contain so much noise which can ruin the
palmprint features. From these evidences, we can deduce that the higher order PDCs
should contain much more noises and cannot be used for palmprint authentication.

In Figure 2, the last two palmprints are captured from the same palm and the first one
is from a different palm. From this figure, we can intuitively find that the PDCs from
the same palm are more similar than those from different palm. Therefore, the PDCs
can be used to distinguish different palms.

4 Similarity Measurement of PDCs

Denote C1 = (C1
xk , C1

yk) and C2 = (C2
xk , C2

yk) as the k-PDCs of two palmprint im-
ages. The normalized Hamming distance between C1 and C2 is defined as following:

D(C1, C2) =
M∑
i=1

N∑
j=1

[
C1

xk(i, j)⊗ C2
xk(i, j) + C1

yk(i, j)⊗ C2
yk(i, j)

]
M ×N

(9)

where M and N are the dimension of palmprint image and ”⊗” is the logical XOR
operation.
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(a) Original palmprint

(b) 1-PDC

(c) 2-PDC

(d) 3-PDC

Fig. 2. Some examples of PDC with different order
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The similarity between C1 and C2 can be measured using a matching score S which
computed as following:

S(C1, C2) = 1−D(C1, C2) (10)

Obviously, 0 � S(C1, C2) � 1. The larger S(C1, C2) is, the more similar C1 and C2
are. If C1 and C2 are exactly same, which means the perfect matching, S(C1, C2) = 1.
Because of imperfect preprocessing, there may still be a little translation between the
palmprints captured from the same palm at different times. To overcome this problem,
we vertically and horizontally translate C1 a few points to get the translated C1, and
then, at each translated position, compute the matching score between the translated C1
and C2. Finally, the final matching score is taken to be the maximum matching score of
all the translated positions.

Table 1 lists the matching scores between the PDCs shown in Figure 2. From this
table, we also can find that the scores between the PDCs from the same palm (> 0.8)
are much larger than those from different palms (< 0.6).

Table 1. The matching scores between the PDCs shown in Figure 2

PDC Column Left Middle Right

Left 1 0.5682 0.5600
1-PDC Middle - 1 0.8452

Right - - 1
Left 1 0.5595 0.5650

2-PDC Middle - 1 0.8169
Right - - 1
Left 1 0.5852 0.5691

3-PDC Middle - 1 0.8218
Right - - 1

5 Experimental Results and Analysis

5.1 Database

We employed the PolyU Palmprint Database [12] for testing and comparison. This
database contains 7752 grayscale images captured from 386 different palms by a CCD-
based device. About 20 images are captured from each palm. The size of the images
is 384 × 284 pixels. Using the preprocessing technique described in [6], the central
128× 128 part of the image was cropped to represent the whole palmprint.

5.2 Matching Test

To investigate the performance of the proposed approach, each sample in the database is
matched against the other samples. Therefore, a total of 30, 042, 876 (7752× 7751/2)
matchings have been performed, in which 74068 matchings are genuine matchings.
Figure 3 shows the genuine and impostor matching score distribution of the different
order PDCs. There are two distinct peaks in the distributions of the matching score for
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Fig. 3. Matching score distribution

each order PDCs. These two peaks are widely separated and the distribution curve of
the genuine matching scores intersects very little with that of impostor matching scores.
Therefore, the different order PDCs can effectively discriminate between the palmprints
from different palms.

5.3 Accuracy

To evaluate the accuracy of the proposed approach, each sample is matched against
the other palmprints and the ROC curves of the different order PDCs are shown in
Figure 4. For comparison, the competitive code (CompCode) [10] and ordinal filters
(OrdnCode) [11] based method are also implemented and tested on this database. Their
ROC curves are also plotted in Figure 4. According to this figure, the 2-PDC’s ROC
curve is under the curves of the 1-PDC and 3-PDC and the 3-PDC’s curve is under
that of the 1-PDC. Therefore, among these three order PDCs, the 2-PDC obtains the
highest accuracy while the 1-PDC get the lowest accuracy. Also from this figure, the
performance of 2-PDC is also better than the CompCode and OrdnCode algorithms.
The accuracy of the CompCode algorithm is similar with that of the 3-PDC and the
EER of the OrdnCode method is similar with that of the 1-PDC.
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Fig. 4. The ROC curves of different palmprint algorithms
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Table 2. Comparisons of different palmprint algorithms

EER Feature Extracting Matching
(%) Size Time(ms) Time(ms)

1-PDC 0.1462 256 9.6 0.09
2-PDC 0.0759 256 10.1 0.09
3-PDC 0.0965 256 10.3 0.09

CompCode 0.1160 384 70 0.18
OrdnCode 0.1676 384 58 0.18

The PDC approach, CompCode algorithm and OrdnCode method are compared in
Table 2 in terms of accuracy, feature size and speed. From this table, the proposed PDC
approach outperforms other two in all of these aspects.

5.4 Discussion

According to the experimental results, the accuracy of the PDC is higher than the Com-
pCode and OrdnCode, which may be for the following reasons. Both the CompCode
and the OrdnCode methods extracted the orientation information of each pixel on the
palmprint while the PDC approach captured the grayscale variance tendencies. Obvi-
ously, the orientation information is much more sensitive to the rotation of the palm
than the grayscale variance tendency. Hence, the PDC approach performs better on the
palmprints with some rotation than the CompCode and OrdnCode methods. Although
the preprocessing removes most of the rotation between the palmprints of the same
palms, there may still remain a little. Therefore, the PDC approach can get a higher
accuracy. The proposed approach demonstrates the power of the differential operations
for palmprint authentication.

Actually, most of the existing palmprint recognition methods can be looked as the
differential operations based methods. Since the Gabor filters can be regarded as the
weighted 2nd or 3rd-order Gaussian derivative filters, the Gabor filters based methods,
such as CompCode [10], PalmCode [6] and FusionCode [7], etc., can be considered
as the differential operations based methods. The orthogonal line ordinal filter used for
OrdnCode extraction [11] is a kind of the 1st-differtinal operator. And the Sobel opera-
tors based methods [4] are also based on the 1st-differential operations. Therefore, the
differential operations may be considered as one of the standard methods for palmprint
feature extraction.

6 Conclusions and Future Work

This paper encodes the palmprint image using the different order differential operations.
This approach can capture the typical character of the palmprint and can effectively
distinguish palmprints from different palms. The 2nd order derivative of palmprint is
the most distinguishable. Compared with the existing palmprint methods, the proposed
approach can get a higher accuracy with less storage requirement and less response
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time. The differential operations may be considered as one of the standard methods for
palmprint feature extraction.

In the future, we will investigate the PDC with different directions and study the
multiscale PDC for palmprint recognition.

Acknowledgment

Portions of the work were tested on the PolyU Palmprint Database. The work is supported
by the Natural Science Foundation of China (NSFC) under Contract No. 60873140,
60602038 and 60620160097, the National High-Tech Research and Development Plan
of China (863) under Contract No. 2007AA01Z195, the Program for New Century Ex-
cellent Talents in University under Contract No. NCET-08-0155 and NCET-08-0156, and
the Natural Science Foundation of Hei Longjiang Province of China under Contract No.
F2007- 04.

References

1. Zhang, D.: Automated Biometrics–Technologies and Systems. Kluwer Academic Publishers,
Dordrecht (2000)

2. Jain, A., Bolle, R., Pankanti, S.: Biometrics: Personal Identification in Networked Society.
Kluwer Academic Publishers, Dordrecht (1999)

3. Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans.
Circuits Syst. Video Technol. 14(1), 4–20 (2004)

4. Han, C., Chen, H., Lin, C., Fan, K.: Personal authentication using palm-print features. Pattern
Recognition 36(2), 371–381 (2003)

5. Kumar, A., Wong, D., Shen, H., Jain, A.: Personal verification using palmprint and hand
geometry biometric. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp.
668–678. Springer, Heidelberg (2003)

6. Zhang, D., Kong, W., You, J., Wong, M.: Online palmprint identification. IEEE Trans. Pattern
Anal. Machine Intell. 25(9), 1041–1050 (2003)

7. Kong, A.W.-K., Zhang, D.: Feature-level fusion for effective palmprint authentication. In:
Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 761–767. Springer, Heidelberg
(2004)

8. Wu, X., Zhang, D., Wang, K.: Palm-line extraction and matching for personal authentication.
IEEE Trans. Syst., Man, Cybern. A 36(5), 978–987 (2006)

9. Jiaa, W., Huanga, D.S., Zhang, D.: Palmprint verification based on robust line orientation
code. Pattern Recognition 41(5), 1504–1513 (2008)

10. Kong, A., Zhang, D.: Competitive coding scheme for palmprint verification. In: IEEE Inter-
national Conference on Pattern Recognition, pp. 520–523 (2004)

11. Sun, Z., Tan, T., Wang, Y., Li, S.Z.: Ordinal palmprint represention for personal identifica-
tion. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, CVPR 2005 (2005)

12. PolyU Palmprint Database, http://www.comp.polyu.edu.hk/˜biometrics/

http://www.comp.polyu.edu.hk/~biometrics/


Combining Facial Appearance and Dynamics for
Face Recognition

Ning Ye and Terence Sim

School of Computing, National University of Singapore,
COM1, 13 Computing Drive, Singapore 117417

{yening,tsim}@comp.nus.edu.sg
http://www.comp.nus.edu.sg/ face/

Abstract. In this paper, we present a novel hybrid feature for face
recognition. This hybrid feature is created by combining the traditional
holistic facial appearance feature with a recently proposed facial dynam-
ics feature. We measure and compare the inherent discriminating power
of this hybrid feature and the holistic facial appearance feature by the
statistical separability between genuine feature distance and impostor
feature distance. Our measurement indicates that the hybrid feature is
more discriminative than the appearance feature.

Keywords: face, biometrics, appearance, dynamics.

1 Introduction

In face recognition, the holistic facial appearance feature is one of the most pop-
ular features used by researchers. A variety of pattern classification approaches
have been used on it, including PCA (Principal Component Analysis) [1], LDA
(Linear Discriminant Analysis) [2], SVM (Support Vector Machine) [3], evo-
lutionary pursuit [4], nearest feature line [5], ICA (Independent Components
Analysis) [6] and probabilistic decision-based neural networks [7], etc.

In comparison, for a long time, facial motion (e.g. facial expression) has been
considered as a hindrance to face recognition. Similar to pose and illumination
variation, facial motion is to be removed in traditional methods [8,9]. However,
recent advances in studies of facial motion (from both psychology and computer
vision communities) have revealed that some types of facial motion are identity-
specific [10,11,12,13]. Thus, rather than ignoring facial motion, we can use it to
facilitate face recognition.

Motion-based face recognition techniques came to be used only recently. Chen
et al . [14] used the visual cues observed in speeches to recognize a person. Facial
dynamics was extracted by computing a dense motion flow field from each video
clip. Zhang et al . [15] estimated the elasticity of masseter muscle from a pair
of side-view face range images (neutral and mouth-open faces) to characterize a
face. They said that this muscular elasticity could be used as a biometric trait.
Pamudurthy et al . [16] used the facial deformation observed in a subtle smile
to recognize a person. A dense displacement vector field was computed from
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each pair of images (neutral face and subtle smile). This vector field was claimed
to be very much unaffected by face makeup. Tulyakov et al . [13] extracted the
displacement of a set of key points from a pair of face images (neutral and
smile) and concatenated the displacement vectors to make a feature vector. They
concluded that this feature could be used as a soft biometric trait. Ye and Sim
[17] used the dynamics of smile for face recognition. A dense optical flow field
was computed from each video clip and summed over time to generate a motion
feature vector. They claimed that this feature could be used as a biometric trait.

Aforementioned works have shown that certain types of facial motion are dis-
criminative to some extent. In this paper, we are going to show that by combin-
ing appearance and dynamics, we may be able to achieve more. Specifically, we
combine the traditional holistic facial appearance feature and the smile dynamics
feature proposed by Ye and Sim [17] to generate a novel hybrid feature. Please
note that we have NOT built a complete face recognition system which usually
has two major components, feature extraction and classification. Instead, in this
paper, we focus on feature analysis only. Specifically, we measure and compare
the discriminating power of the appearance feature and the hybrid feature. The
discriminating power is measured by the separability between the distribution
of genuine distance, i.e. the distance between any two faces belonging to one
subject, and the distribution of impostor distance, i.e. the distance between any
two faces belonging to two different subjects. To the best of our knowledge,
we are the first to combine facial appearance and facial motion/dynamics for
face recognition. Our measurement on the discriminating power shows that the
hybrid feature is more discriminative than the appearance feature.

2 The Dataset

We merge the smile videos of three databases into one dataset in our research.
The three databases are the FEEDTUM video database [18], the MMI face
database [19] and the NUS smile video database [17]. The FEEDTUM database
contains 18 subjects, with three smile videos per subject. The MMI database
contains 17 subjects, with one to 16 smile videos per subject. The NUS database
contains 10 subjects, with around 30 smile videos per subject. After eliminating
those unusable videos (mainly due to excessive out-of-plane head motion), we
end up with a dataset which consists of 45 subjects and 435 videos in total. Each
video clip is a frontal-view recording of a subject performing a facial expression
from neutral to smile and back to neutral. In pre-processing the data, faces
are aligned by the positions of eyes. After alignment, face regions are cropped,
converted to gray scale and resized to 81 by 91 pixels.

3 The Features

3.1 Holistic Facial Appearance Feature

Let ua denote a column vector made by stacking all the pixel values of the first
frame of a video clip, which is a static neutral face image (Figure 1(a)). Then
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(a) Appearance (b) Dynamics (c) Hybrid (d) Zoom-in

Fig. 1. The three types of features examined in our study: readers may want to zoom
in on (b) (c) to see the motion flows clearly

the appearance feature va is computed as,

va = P a
ka (ua − ua), (1)

where P a
ka is the projection matrix which consists of the first ka principal com-

ponents after applying PCA on all ua; ua denotes the mean of ua.

3.2 Smile Dynamics Feature

Smile dynamics [17] summarize pixel-wise observations of the facial motion from
a neutral expression to a smile apex (Figure 1(b)). Mathematically,

F (z) =
N−1∑
t=1

f t(z), (2)

where z is a pixel; f t(z) denotes the motion flow observed at z in the t-th frame,
which is computed by applying optical flow algorithm [20] on the t-th and (t+1)-
th frames; the N -th frame contains the smile apex while the first frame contains
a neutral face; F (z) is the smile dynamics observed at z. Let um denote a column
vector made by stacking all pixel-wise F (z) computed from one video clip. Then
the smile dynamics feature vm is computed as,

vm = Pm
km(um − um), (3)

where Pm
km is the projection matrix which consists of the first km principal

components after applying PCA on all um; um denotes the mean of um. Please
note that this feature is purely motion-based (constructed from motion flows).
No appearance information is involved.

3.3 Hybrid Feature

Figure 1(c) illustrates our hybrid feature. Mathematically, we construct the hy-
brid feature vh by fusing appearance and smile dynamics as follows,

uh =
(

(1 − w)ua/α
wum/β

)
, (4)

vh = P h
kh(uh − uh), (5)
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where 0 ≤ w ≤ 1 denotes the weight of smile dynamics in the hybrid feature; α
and β are two scalars used for normalizing the scales of ua and um, respectively
(in our experiment, α and β are set to the medians of the l2-norm of all ua and
all um, respectively); P h

kh is the projection matrix which consists of the first kh

principal components after applying PCA on all uh; uh denotes the mean of uh.

4 Discriminating Power Measurement

We measure the discriminating power of a feature by the statistical separability
between the distribution of genuine distance and the distribution of impostor
distance. Given a set of feature vectors with identity labels, the genuine distance
set DG and the impostor distance set DI are defined as follow,

DG = {‖vi − vj‖2}, L(vi) = L(vj), i �= j, (6)
DI = {‖vi − vj‖2}, L(vi) �= L(vj), i �= j, (7)

where vi and vj are two feature vectors; L(vi) and L(vj) are the identity labels
of vi and vj , respectively; ‖ ◦ ‖2 denotes the l2-norm. From our dataset, we
manage to compute 5886 genuine distances and 88509 impostor distances, i.e.
|DG| = 5886, |DI | = 88509.

The separability of the two distributions underlying those two distance sets
indicates the discriminating power of the feature. Bayes’ error is the ideal tool for
measuring the separability, because it is the theoretical minimum error rate that
any classifier can achieve in classifying the two distances. In other words, Bayes’
error is determined by the feature. However, computing Bayes’ error directly is
difficult in practice, because the exact probability density functions are usually
unknown, as in our case. In our research, we use the Bhattacharyya coefficient
[21], denoted by ρ, to estimate the Bayes’ error,

ρ =
∑

x

√
pDG(x)pDI (x), (8)

where pDG(x) and pDI (x) denote the two discrete probability density functions
underlying DG and DI , respectively. In our experiment, we approximate pDG(x)
and pDI (x) using the histograms constructed from DG and DI , respectively.
Please note that 0 ≤ ρ ≤ 1, where ρ = 0 implies a complete separation between
the two distributions and ρ = 1 implies a complete overlap between the two
distributions. The smaller the ρ is, the more separable the two distributions are
and therefore the more discriminative the feature is. Bhattacharyya coefficient
is an upper bound of Bayes’ error in two-category classification problems,

R = ρ/2 ≥ EBayes. (9)

In our experiment, we use R, i.e. the upper bound of Bayes’ error, as the mea-
surement of the discriminating power of feature v. Note that 0 ≤ R ≤ 0.5 where
a smaller R indicates stronger discriminating power of v. We use Ra, Rm, Rh to
denote the measurement computed from the holistic facial appearance feature
(va), the smile dynamics feature (vm) and the hybrid feature (vh), respectively.
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4.1 Appearance Feature vs. Smile Dynamics Feature

Figure 2(a) shows Ra and Rm with varying dimensions of the feature vectors
(ka in Eq.(1) and km in Eq.(3)). Ra hits its minimum of 0.028 at ka = 16. Rm

hits its minimum of 0.127 at km = 13. And almost at any dimension, Ra is at
least three times smaller than Rm. This observation implies that, with respect
to our current dataset, the appearance feature can be at least three times more
discriminative than the smile dynamics feature.

Figure 2(c) and Figure 2(d) show the distributions of genuine distance and
impostor distance computed from the appearance feature vectors and the smile
dynamics feature vectors at ka = 16 and km = 13, respectively. We can see
that the overlap in Figure 2(c) is much smaller than the overlap in Figure 2(d).
Since the overlap is directly related to the Bayes’ error [21], this observation
also implies that the appearance feature is more discriminative than the smile
dynamics feature.

4.2 Appearance Feature vs. Hybrid Feature

Since the appearance feature outperforms the smile dynamics feature consider-
ably, we compare the hybrid feature with the appearance feature only.

Figure 2(b) shows Rh with varying w (the weight of the smile dynamics feature
in the combination, see Eq.(4)). We vary w from 0 to 1 with an increment of
0.005 in each step. And since the appearance feature performs best at ka = 16,
we fix kh = 16 so that the comparison between the appearance feature and the
hybrid feature is fair. In Figure 2(b), we can see that Rh keeps going down as
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w grows, until w = 0.135. After that, adding more smile dynamics causes Rh

to increase. At w = 0.135, Rh hits its minimum of 0.014, which is a half of
0.028, the minimum of Ra. This observation implies that with respect to our
current dataset, the hybrid feature can be twice more discriminative than the
appearance feature.

Figure 2(e) shows the distributions of genuine distance and impostor distance
computed from the hybrid feature at kh = 16, w = 0.135. Compared with Figure
2(c), the overlap between the two distributions becomes smaller, which implies
stronger discriminating power of the hybrid feature compared with the appear-
ance feature.

5 An Attempt on the Identical Twins Problem

The identical twins problem is the Holy Grail in face recognition. In the following
experiment, we make an attempt on it. Although our identical twin dataset is too
small (only one pair of identical twin brothers) for us to draw any statistically
convincing conclusion, the experiment results do encourage us to continue our
journey along this way.

We collect around 20 smile video clips from each of a pair of identical twin
brothers (Figure 3(a)) and add those videos into the previous dataset. We train
two Bayes classifiers on the whole dataset. One of them uses the appearance
feature and the other uses the hybrid feature. We test the two classifiers on the
same dataset as used for training. For each classifier, two sets of FAR (False
Accept Rate) and FRR (False Reject Rate) are computed, one from classifying
the data of all the ordinary subjects only and the other from classifying the data
of the identical twins only.

The FARs and FRRs have been shown in Table 1. The most interesting results
are found in the third column of the table, the two FARs computed from classify-
ing the data of the identical twins. The FAR (twins) of the hybrid-feature-based
classifier is smaller than the FAR (twins) of the appearance-feature-based clas-
sifier by an order of magnitude. Please note that the FAR (twins) represents the
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Table 1. FRRs and FARs of two Bayes classifiers applied on the identical twins data

FRR (twins) FAR (twins) FRR (ordinary
subjects)

FAR (ordinary
subjects)

Appearance
feature based

0% 25.53% 1.34% 1.51%

Hybrid feature
based

0% 2.11% 0.48% 0.48%

chances of taking two identical twins as one person. Visually, by comparing Figure
3(b) and Figure 3(c), we can see that with the hybrid feature, the distribution of
impostor distance between the twin brothers shifts towards the right side of the
Bayes decision boundary (ideally, the distribution of impostor distance should be
all to the right side of the decision boundary so that the FAR is zero).

Readers may ask why we do not train the classifiers on the data of twins only
and then test their performance and compute the FAR (twins). The reason is
that in the real world, a face recognition system can never know beforehand if
the two faces in question are from a pair of identical twins or not. If the system
knows that they are identical twins, then it already knows that they are from two
different persons. Thus, the system will never choose to use a classifier trained
specifically for identical twins. The best we can do is to build one system and
try to make it applicable to both ordinary people and identical twins. This is
the way we have followed in this trial.

6 Conclusions

In this paper, we propose a novel feature for face recognition by fusing facial
appearance and facial dynamics. We measure and compare the discriminating
power of this hybrid feature and the appearance feature by the statistical separa-
bility between genuine feature distance and impostor feature distance. In terms
of Bayes’ error, the discriminating power of this hybrid feature can be twice
stronger than that of the appearance feature.

In the future, we are going to build a complete face recognition system based
on this hybrid face feature. We are also going to study other types of facial motion
features, their combination with traditional facial appearance features and their
applications in face recognition problems. Moreover, we wish to run our experi-
ment on a larger dataset, especially, if possible, on a larger identical twins dataset.
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Abstract. This paper investigates a new automated personal authentication 
technique using finger-knuckle-print (FKP) imaging. First, a specific data  
acquisition device is developed to capture the FKP images. The local convex  
direction map of the FKP image is then extracted, based on which a coordinate 
system is defined to align the images and a region of interest (ROI) is cropped 
for feature extraction and matching. To match two FKPs, we present a Band-
Limited Phase-Only Correlation (BLPOC) based method to register the images 
and further to evaluate their similarity. An FKP database is established to exam-
ine the performance of the proposed method, and the promising experimental 
results demonstrated its advantage over the existing finger-back surface based 
biometric systems. 

Keywords: Biometrics, finger-knuckle-print, personal authentication. 

1   Introduction 

Personal authentication is a common concern to both industries and academic re-
search due to its numerous applications. Biometrics, which refers to the unique phy-
siological or behavioral characteristics of human beings, can be used to distinguish 
between individuals. In the past three decades, researchers have exhaustively investi-
gated the use of a number of biometric characteristics [1].  

Recently, it has been noticed that the texture in the outer finger surface has the po-
tential to do personal authentication. Woodward et al. [2-3] set up a 3-D hand data-
base with the Minolta 900/910 sensor and they extracted 3-D features from finger 
surface to identify a person’s identity. However, they did not provide a practical solu-
tion to establishing an efficient system using the outer finger surface features. The 
cost, size and weight of the Minolta 900/910 sensor limit the use of it in a practical 
biometric system, and the time-consuming 3-D data acquisition and processing limit 
its use in real-time applications. Later, Kumar and Ravikanth [4-5] proposed another 
approach to personal authentication by using 2-D finger-back surface imaging. They 
developed a device to capture hand-back images and then extracted the finger knuckle 
areas by some preprocessing steps. The subspace analysis methods such as PCA, 
LDA and ICA were combined to do feature extraction and matching. With Kumar  
et al.’s design, the acquisition device is doomed to have a large size because nearly 
the whole hand back area has to be captured, despite the fact that the finger knuckle 
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area only occupies a small portion of the acquired image. Furthermore, subspace 
analysis methods may be effective for face recognition but they may not be able to 
effectively extract the distinctive line features from the finger knuckle surface.  

This paper presents a novel system for online personal authentication based on fin-
ger-knuckle-print (FKP), which refers to the inherent skin pattern of the outer surface 
around the phalangeal joint of one’s finger. A specially designed acquisition device is 
constructed to collect FKP images. Unlike the systems in [3] and [5] which first cap-
ture the image of the whole hand and then extract the finger or finger knuckle surface 
areas, the proposed system captures the image around the finger knuckle area of a 
finger directly, which largely simplifies the following data preprocessing steps. 
Meanwhile, with such a design the size of the imaging system can be greatly reduced, 
which improves much its applicability. Since the finger knuckle will be slightly bent 
when being imaged in the proposed system, the inherent finger knuckle print patterns 
can be clearly captured and hence the unique features of FKP can be better exploited. 
For matching FKPs, we present an efficient and effective Band-Limited Phase-Only 
Correlation based method. Compared with the existing finger knuckle surface based 
biometric systems [2-5], the proposed system performs much better in terms of both 
recognition accuracy and speed. 

The rest of this paper is organized as follows. Section 2 introduces the design and 
structure of the FKP image acquisition device. Section 3 describes the FKP image 
preprocessing and ROI extraction methods. Section 4 investigates the BLPOC-based 
FKP matching. Section 5 reports the experimental results. Finally, conclusions are 
presented in section 6. 

2   The FKP Recognition System 

The proposed FKP recognition system is composed of an FKP image acquisition 
device and a data processing module. The device (referring to Fig. 1-a) is composed 
of a finger bracket, a ring LED light source, a lens, a CCD camera and a frame grab-
ber. The captured FKP image is inputted to the data processing module, which com-
prises three basic steps: ROI (region of interest) extraction, feature extraction, and 
feature matching. Refer to Fig. 1-a, a basal block and a triangular block are used to fix 
the position of the finger joint. The vertical view of the triangular block is illustrated 
in Fig. 1-b. Fig. 2-a shows a sample image acquired by the developed device. 

 

  
(a) (b) 

Fig. 1. FKP image acquisition device 
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                                  (a)                       (b) 

Fig. 2. (a) is a sample FKP image; (b) is the ROI image of (a) 

3   ROI Extraction 

It is necessary to construct a local coordinate system for each FKP image. With such a 
coordinate system, an ROI can be cropped from the original image for reliable feature 
extraction. The detailed steps for setting up such a coordinate system are as follows. 

Step 1: determine the X-axis of the coordinate system. The bottom boundary of the 
finger can be easily extracted by a Canny edge detector. Actually, this bottom bound-
ary is nearly consistent to all FKP images because all the fingers are put flatly on the 
basal block in data acquisition. By fitting this boundary as a straight line, the X-axis of 
the local coordinate system is determined.  

Step 2: crop a sub-image IS. The left and right boundaries of IS are two fixed val-
ues evaluated empirically. The top and bottom boundaries are estimated according to 
the boundary of real fingers and they can be obtained by a Canny edge detector.  

Step 3: Canny edge detection. Apply the Canny edge detector to IS to obtain the 
edge map IE.  

Step 4: convex direction coding for IE. We define an ideal model for FKP 
“curves”. In this model, an FKP “curve” is either convex leftward or convex right-
ward. We code the pixels on convex leftward curves as “1”, pixels on convex right-
ward curves as “-1”, and the other pixels not on any curves as “0”. 

Step 5: determine the Y-axis of the coordinate system. For an FKP image, 
“curves” on the left part of phalangeal joint are mostly convex leftward and those on 
the right part are mostly convex rightward. Meanwhile, “curves” in a small area 
around the phalangeal joint do not have obvious convex directions. Based on this 
observation, at a horizontal position x (x represents the column) of an FKP image, we 
define the “convexity magnitude” as: 

 

 
 

Fig. 3. Illustration for convex direction coding scheme 

Fig. 3 illustrates this convex direction coding scheme and the pseudo codes are 
presented as follows: 



144 L. Zhang, L. Zhang, and D. Zhang 

Convex_Direction_Coding( EI ) 

Output: CDI  (convex direction code map) 

/ 2mid Ey height of I=   ; 

for each ( , )EI i j : 

if ( , )EI i j  = 0 

    ( , ) 0CDI i j = ; 

else if ( 1, 1) 1 ( 1, 1) 1E EI i j and I i j+ − =   + + =   

    ( , ) 0CDI i j = ; 

else if ( ( 1, 1) 1 )E midI i j and i y or+ − =   <=  ( ( 1, 1) 1 )E midI i j and i y+ + =   >  

    ( , ) 1CDI i j = ; 

else if ( ( 1, 1) 1 )E midI i j and i y or+ + =   <=  ( ( 1, 1) 1 )E midI i j and i y+ − =   >  

    ( , ) 1CDI i j = − ; 

    end if 
end for 

 

( )
CD

W

conMag x abs I= ⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  (1)

where W is a window being symmetrical about the axis X = x. W is of the size d×h, 
where h is the height of IS. The characteristic of the FKP image suggests that con-
Mag(x) will reach a minimum around the center of the phalangeal joint and this posi-
tion can be used to set the Y-axis of the coordinate system. Let  

( )'
0 arg min ( )

x

x conMag x=  (2)

Then '
0X x=  is set as the Y-axis.  

Step 6: crop the ROI image. Now that we have fixed the X-axis and Y-axis, the lo-
cal coordinate system can then be determined and the ROI sub-image IROI can be 
extracted with a fixed size. Fig. 2-b shows an example of the extracted ROI images. 

4   BLPOC-Based FKP Matching 

Given two FKP ROIs, a matching algorithm determines their degree of similarity. A 
BLPOC based FKP matching algorithm is presented in this section.  

4.1   Phase-Only Correlation (POC) 

Phase-Only Correlation (POC) has been widely used for image registration tasks  
[6-8], and recently it has been adopted in some biometric systems as a similarity 
measure [9-11]. POC based method relies on the translation property of the Fourier 
transform. Let f and g be the two images that differ only by a displacement (x0, y0) i.e. 

0 0( , ) ( , )g x y f x x y y= − −  (3)
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Their corresponding Fourier transforms G(u,v) and F(u,v) will be related by 

0 02 ( )( , ) ( , )j ux vyG u v e F u vπ− +=  (4)

The cross-phase spectrum RGF(u,v) between G(u,v) and F(u,v) is given by 

0 0

*
2 ( )

*

( , ) ( , )
( , )

( , ) ( , )
j ux vy

GF

G u v F u v
R u v e

G u v F u v
π− += =  (5)

where F* is the complex conjugate of F. By taking inverse Fourier transform of RGF  
back to the time domain, we will have a Dirac impulse centered on (x0, y0). 

In practice, we should consider the finite discrete representations. Consider two 
M×N images, f(m,n) and g(m,n), where the index ranges are m=-M0,…,M0 (M0 > 0) 
and n=-N0,…,N0 (N0 > 0), and M = 2M0+1 and N = 2N0+1. Denote by F(u,v) and 
G(u,v) the 2D DFTs of the two images and they are given by 

0 0

0 0

2
( , )( , ) ( , ) ( , ) F

mu nvM N j
j u vM N

F
m M n N

F u v f m n e A u v e
π

φ
⎛ ⎞− +⎜ ⎟
⎝ ⎠

=− =−

= =∑ ∑  (6)

0 0

0 0

2
( , )( , ) ( , ) ( , ) G

mu nvM N j
j u vM N

G
m M n N

G u v g m n e A u v e
π

φ
⎛ ⎞− +⎜ ⎟
⎝ ⎠

=− =−

= =∑ ∑  (7)

where u=-M0,…,M0, v=-N0,…,N0, AF(u,v) and AG(u,v) are amplitude components, 
andφF(u,v) andφG(u,v) are phase components. Then, the cross-phase spectrum 
RGF(u,v) between G(u,v) and F(u,v) is given by 

*
{ ( , ) ( , )}

*

( , ) ( , )
( , )

( , ) ( , )
G Fj u v u v

GF

G u v F u v
R u v e

G u v F u v
φ φ−= =  (8)

The POC function pgf (m,n) is the 2D Inverse DFT (IDFT) of RGF(u,v): 

0 0

0 0

21
( , ) ( , )

mu nvM N j
M N

gf GF
u M v N

p m n R u v e
MN

π ⎛ ⎞+⎜ ⎟
⎝ ⎠

=− =−

= ∑ ∑  (9)

If the two images f and g are similar, their POC function will give a distinct sharp 
peak. On the contrary, if they are not similar, the peak value will drop significantly. 
Thus, the height of the peak value can be used as a similarity measure, and the loca-
tion of the peak shows the translational displacement between the two images. 

4.2   Band-Limited Phase-Only Correlation (BLPOC) 

In the POC-based image matching method, all the frequency components are in-
volved. However, high frequency tends to emphasize detail information and can be 
prone to noise. To eliminate meaningless high frequency components, K. Ito et al. [9] 
proposed the Band-Limited Phase-Only Correlation (BLPOC). 

The BLPOC limits the range of the spectrum of the given FKP image. Assume that 
the ranges of the inherent frequency band of FKP texture are given by u=-U0,…,U0 
and v=-V0,…V0, where 0<=U0<=M0, 0<=V0<=N0. Thus, the effective size of spectrum 
is given by L1=2U0+1 and L2=2V0+1. The BLPOC function is defined as 
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0 0

1 20 0

0 0

2

1 2

1
( , ) ( , )

mu nvU V j
L LU V

gf GF
u U v V

p m n R u v e
L L

π
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

=− =−

= ∑ ∑  (10)

where m=-U0,…,U0 and n=-V0,…,V0. When two images are similar, their BLPOC 
function gives a distinct sharp peak. Also, the translational displacement between the 
two images can be estimated by the correlation peak position. Experiments indicate 
that the BLPOC function provides a much higher discrimination capability than the 
original POC function. 

4.3   BLPOC-Based FKP Matching 

Given two FKP ROIs f(m,n) and g(m,n), we assume that there is only translational 
displacement between them. Thus, the BLPOC-based FKP matching process is quite 
straightforward and is summarized as follows: 

 
FKP_Matching( f(m, n), g(m, n)) 
Output: matching_score  
 
register f and g based on BLPOC method; 
extract overlapping areas 'f  and 'g from registered f and g, respectively; 

if area( 'f ) / area( f ) < threshold 
     P = BLPOC( f , g );   
else 
     P = BLPOC( 'f , 'g );   
end  
matching_score = max(P); 

5   Experimental Results 

Database establishment. An FKP database was established. The FKP images were 
collected from 165 volunteers, including 125 males and 40 females. Among them, 
143 subjects are 20~30 years old and the others are 30~50 years old. We collected the 
images in two separate sessions. In each session, the subject was asked to provide 6 
images for each of the left index finger, the left middle finger, the right index finger 
and the right middle finger. Therefore, 48 images from 4 fingers were collected from 
each subject. In total, the database contains 7,920 images from 660 different fingers.  

Experiment 1. In the first experiment, we took images captured in the first session 
as the gallery set and images captured in the second session as the probe set. There-
fore, there were 660 classes and 3,960 images in the gallery set and the probe set 
each. Each image in the probe set was matched against the all the images in the 
gallery set. A match was counted as genuine if the two FKPs were from the same 
finger; otherwise the match was counted as imposter. As a result, the numbers of 
genuine matches and imposter matches were 23,760 and 7,828,920, respectively. 
The EER (Equal Error Rate) wet got was 1.68%, which was quite promising.  
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Fig. 4a depicts the corresponding FAR (False Acceptance Rate) and FRR (False 
Rejection Rate) curves. The distance distributions of genuine matching and impos-
ter matching obtained in this experiment are plotted in Fig. 4b. Experimental results 
indicate that the proposed system has a good capability to verify a person’s identity. 

 

 
(a) (b) 

Fig. 4. (a) FAR and FRR curves obtained in experiment 1. (b) Distance distributions of genuine 
matching and imposter matching obtained in experiment 1. 

Experiment 2. The goal of this experiment was to investigate the system’s perform-
ance when we fuse information from 2 or more fingers of a person. In fact, at such a 
case the system works as a kind of multi-modal system with a single biometric trait 
but multiple units. We adopt the SUM fusing rule as follows: 

sum is s=∑  (11) 

where si is the matching score of the client’s ith finger. 

Table 1. Experimental results in experiment 2 

Method gallery  
classes 

gallery  
samples 

probe 
classes 

probe 
samples 

Finger types for fusion EER 
(%) 

Ours 165 990 165 990 l-index, l-middle 0.72 
Ours 165 990 165 990 r-index, r-middle 0.31 
Ours 165 990 165 990 l-index, r-index 0.40 
Ours 165 990 165 990 l-middle, r-middle 0.31 
Woodward [3] 132 660 177 531 r-index, r-middle, r-ring 5.50 
Kumar [5] 105 420 105 210 index, middle, ring, little 1.39 

 
We tested several different fusions of fingers and the results are presented in  

Table 1, from which it can be easily observed that by integrating information from 
more fingers the recognition performance of the system could be largely improved. 
We also present the results extracted from [3] and [5] in Table 1 for comparison. It is 
clearly shown that the proposed system performed much better even though we incor-
porated information from fewer fingers. 
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Speed. The software was implemented with Visual C#.Net 2005 on a Dell Inspiron 
530s PC embedded Intel E6500 process and 2G RAM. The execution time for data 
preprocessing and ROI extraction was 216ms. The time for one BLPOC-based match-
ing was 4.2ms. Thus, the total execution time for one verification operation was less 
than 0.3s in our prototype system, which was fast enough for real-time applications. 

6   Conclusions 

This paper presented a new approach to online personal authentication using finger-
knuckle-print (FKP), which has distinctive line features. A cost-effective FKP system, 
including a novel image acquisition device and the associated data processing algo-
rithms, was developed. To efficiently match the FKPs, we proposed a BLPOC based 
FKP matching method. Extensive experiments demonstrated the efficiency and effec-
tiveness of the proposed technique. Compared with other existing finger back surface 
based systems, the proposed FKP authentication has merits of high accuracy, high 
speed, small size and cost-effective.  
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Abstract. To calibrate radially symmetric distortion of omnidirectional
cameras such as fish-eye lenses, calibration parameters are usually esti-
mated so that lines, which are supposed to be straight in the 3D real
scene, are mapped to straight lines in the calibrated image. In this pa-
per, this problem is treated as a fitting problem of the principal compo-
nent in uncalibrated images, and an estimation procedure of calibration
parameters is proposed based on the principal component analysis. Ex-
perimental results for synthetic data and real images are presented to
demonstrate the performance of our calibration method.

Keywords: camera calibration, fish-eye lens, principal component
analysis.

1 Introduction

There is a growing interest in panoramic imagery, which has many potential ap-
plications such as security, 3D reconstruction, medical surgery and single view
metrology. For those applications, cameras with fish-eye lenses are often em-
ployed because they can realize a quite large field of view. Since images taken
with these cameras usually have significant distortions, they have to be trans-
formed into perspective projection plane images in a distortion free manner.
There are a lot of sources of distortions, and they can be classified into three
categories: radial distortion, decentering distortion, and thin prism distortion [1].
In the case of perfectly centered fish-eye lenses, their geometrical distortion is
mainly caused by the shape of lenses, and thus the radial distortion is dominant.
Calibration of the radial distortion has been actively studied [2],[3],[4],[5],[6], and
most of those studies are based on the fact that straight lines in the real scene
should be straight in the perspective projection plane [7].

This paper deals with the problem of estimating the non-linear transformation
that maps points in the distorted observation plane to points in the undistorted
(calibrated) plane. In this paper, we discuss the radial distortion with a perfectly

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 149–156, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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centered lens model. Let rd be the distance between a point (x, y) and the center
in the distorted observation plane, and let ru be the distance in the undistorted
plane, that is, the distance in the perspective projection plane between the point
corresponding to (x, y) and the center. We can formulate the calibration problem
as determination of a calibration function f : rd �→ ru. We model this function f
by a linear combination of basis functions as f(r) =

∑N
n=1 cnfn(r), and estimate

its coefficients {cn}Nn=1. We will show that this estimation is formulated as a
linear fitting problem in the perspective projection plane, and reduced to solving
two eigen value problems of matrices.

The rest of this paper is organized as follows. In section 2, the camera model
treated in this paper is explained. In section 3, an algebraic method of camera
calibration is proposed. The method is validated by experiments with synthetic
data and real world image taken by a camera with a fish-eye lens in section 4,
and section 5 is devoted to discussion and concluding remarks.

2 Fish-Eye Imaging Model

In this section, we briefly explain the camera model adopted in this paper. Here-
after, we assume that the center of the radially symmetric distortion coincides
with the center of the observation image. We note that the calibration of dis-
tortion center can be done using the method proposed in [3], for example. Let
x ∈ R2 be a point in the observation plane, and φ(x) ∈ R2 be a point in the cor-
responding perspective projection plane. Under the assumption of radially sym-
metric distortion, the mapping φ(x) is represented by a function f(r) : R → R

which only depend on the radius r:

φ(x) = f(r)
x

||x|| =
f(r)

r
x, ||x|| = r. (1)

Figure 1 depicts the correspondence between the observation plane and the per-
spective projection plane. In this paper, we consider the case that the calibra-
tion function can be approximated by a linear combination of basis functions
{fn(r)}Nn=1 as

f(r) =
N∑

n=1

cnfn(r). (2)

Consequently, the calibration of the radially symmetric distortion is conducted
by determining the coefficients ci, i = 1, . . . , N using given data points. Usually,
a 3D real scene contains a number of straight lines, and these lines are observed
with distortion caused by the fish-eye lens. We suppose that there are S distorted
lines in the observation plane, and denote data points on one of those lines as
{xs

[d]}
Ds

d=1, s = 1, . . . , S, which means the s-th line includes Ds data points. We
also suppose that S is more than N , the number of basis of the calibration
function.



Calibration of Radially Symmetric Distortion 151

Fig. 1. Camera model. Left: Correspondence between an object in scene, observation
plane, and perspective projection plane. Right: Cross section view.

3 Calibration of Radially Symmetric Distortion

In this section, we derive a non-iterative method for estimating the coefficient
vector c = (c1, . . . , cN ) of the calibration function (2). In the following discussion,
all the vectors are regarded as column vectors.

We first consider points {x[d]}Dd=1 on a line. We can rewrite the mapping as

φ(x[d]) =
N∑

n=1

cn φn(x[d]) = P (x[d])c, (3)

where φn(x) = fn(||x||) x
||x|| and

P (x[d])
(2×N)

=
(
φ1(x[d]) · · · φN (x[d])

)
. (4)

Because all points φ(x[d]), d = 1, . . . , D should lie on the same line, we get D
constraints using a normal vector a and an intercept b of the line as

(a)�φ(x[d]) + b = (a)�P (x[d])c + b

= (c ⊗ a)�
(
vecP (x[d])

)
+ b = 0, d = 1, . . . , D, (5)

where vecX denotes a column vector expansion (column span) of a matrix X .
Using homogeneous coordinates

Φ(x) =
(
vecP (x)� 1

)� ∈ R2N+1, (6)

and letting C =
(
(c⊗ a)� b

)� ∈ R2N+1, the constraint (5) is written as

Φ�(x[d])C = 0. (7)
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Combining all the points on the line as Φ =
(
Φ(x[1]) · · · Φ(x[D])

)
, we get a

line-constraint equation

Φ�C = 0D, (8)

where 0D denotes the D dimensional zero vector. In real images, there exist
inevitable noises, and equation (8) only approximately holds. Hence, to obtain
an approximated solution of C, we solve an optimization problem in the sense
of minimum square error as

min
C

C�ΦΦ�C subject to ||C|| = 1, (9)

where its solution is given by the unit eigen vector of a matrix ΦΦ� corre-
sponding to the minimum eigen value. Solving optimization problems (9) for
all S lines, we get S estimates Cs =

(
(c⊗ as)� bs

)�
, s = 1, . . . , S. We note

that the unknown coefficient c is common for all S estimates. When we write
A(2×S) =

(
a1 · · · aS

)
, from the property of the Kronecker product, an identity

c⊗A
(2N×S)

=
(
c⊗ a1 · · · c⊗ aS

)
(10)

holds. We further transform this matrix c ⊗ A by an operator H for (2N × S)
matrix defined as follows. Let M be a matrix with even dimensional rows

M
(2N×S)

=
(
m1 m2 · · · m2N

)�
,

where mi, i = 1, . . . , 2N are S dimensional column vectors. Then the operator
H is defined by

H(M)
(N×S)

:=
(
(m1 + m2) · · · (m2N−1 + m2N )

)� = (In ⊗ 1�
2 )M, (11)

where In is an n× n identity matrix and 1n is an n dimensional column vector
with one for all entries. With this operator H, we see that

H(c⊗A)
(N×S)

= (In ⊗ 1�
2 )(c ⊗A) = (Inc)⊗ (1�

2 A) = c H(A)
(N×1) (1×S)

. (12)

Because of the estimation error for {Cs}Ss=1, equation (12) will hold only ap-
proximately. We need to find a decomposition of H(c ⊗ A) into c and H(A)
which approximate (12). When we let Ψ := H(c ⊗ A), then the decomposition
of Ψ is, up to an arbitrary non-zero multiplicative factor, approximated by the
solution of the following optimization problem

max
c

c�ΨΨ�c subject to ||c|| = 1, (13)

where its solution is given by the unit eigen vector of a matrix ΨΨ� correspond-
ing to the largest eigen value. We note that Loan and Pitsianis [8] have proposed
a general method for approximating a matrix A ∈ Rm×n with m = m1m2 and
n = n1n2 by Kronecker product of matrices B ∈ Rm1×n1 and C ∈ Rm2×n2 so
that the Frobenius norm ||A−B⊗C||F is minimized. For our aim, however, the
decomposition method H(c⊗A) � cH(A) is simpler and sufficient.
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4 Experimental Results

With simulated data and real images taken by a camera with a fish-eye lens, we
carried out a number of experiments to assess the performance of our calibration
algorithm.

4.1 Simulation Result

The proposed calibration method is based on the fact that straight lines in the
3D real scene must be straight in the perspective projection plane. Therefore,
one of the measure of the performance of the calibration method is the linearity
of calibrated points. That is, how accurately the points on a line in the 3D real
scene are projected to points on a line in the perspective projection plane. This
linearity can be measured by the contribution ratio of the first eigen value to the
sum of all eigen values of the variance-covariance matrix of the projected points
on a line.

We generated points on lines in [−3, 3]× [−3, 3] region on the perspective pro-
jection plane (Fig. 2 (a), plotted with ◦). Then, using the inverse of a calibration
function f(r) = 0.7r +0.7r3, the points on the lines are mapped on the observa-
tion plane (plotted with �). In this preliminary experiment, we used the same
basis functions {f1(r) = r, f2(r) = r3} for calibration. The estimated parameter
should be nearly equal to c = (c1, c2) = (0.7, 0.7) up to constant. In a column
named as “no noise” of Table 1, we show the average contribution ratio of the
first eigen value of the variance-covariance matrix of the calibrated points, and
the ratio of the parameters c1/c2 . The figures in Table 1 are means and one
standard deviations of 100 trials.

An example of the calibration is shown in Fig. 2 (b). In the figure, the points
on the observation plane and the points on the perspective projection plane are
simultaneously plotted on the same plane with different marks. The observed
points are mapped to the perspective projection plane (plotted with •) by the
estimated calibration function.

To see the effect of the noise in the observation images, we also conduct
experiments with noisy observations. Gaussian noises with zero-mean and σ2

variance are added to the observed points. The noise level σ is set to 1/300 for
an experiment with small Gaussian noises, and set to 1/100 for an experiment
with large Gaussian noises. Examples of the calibration with noised data are
also shown in Fig. 2, (c) is an example of a small noise, and (d) is an example of
a large noise experiment. The contribution ratios and the estimated parameter
ratios for experiments with noisy data are shown in Table 1. From these results,
we see that the contribution ratio is nearly equal to one even with large Gaussian
noises, so the linearity of the calibrated points are well recovered by the proposed
method. We also see from Fig. 2 (d) that calibrated points show some dispersions
when there are large noises in the observed points. In the concluding remark, we
will briefly note the idea to make our method robust.
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(c) : With small Gaussian noises
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(d) : With large Gaussian noises
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Fig. 2. Samples of calibration results for various noise levels. The observation plane
and the perspective projection plane are superimposed on the same plane. (a) : Points
on lines in perspective projection plane (◦) are mapped to points on observation plane
(
). (b) : Observed points (
) are mapped to the perspective projection plane (•) with
the estimated calibration function. (c) : Small Gaussian noise is added to the observed
points. (d) : Large Gaussian noise is added to the observed points.

Table 1. Contribution ratio of the first eigen value and parameter estimation

no noise small Gaussian large Gaussian
Contribution ratio 1± 0 0.99997 ± 0.00002 0.99918 ± 0.00525
Parameter ratio 0.99994 ± 0.00012 1.01390 ± 0.08042 1.07099 ± 0.59017

4.2 Real Images

We demonstrate an experiment with real image taken by a fish-eye lens to con-
firm the validity of our proposed method. The fish-eye lens used here is FUJINON
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(a) Distorted Image (b) Calibrated Image

Fig. 3. (a) : An image taken by fish-eye camera. (b) : A calibrated image with our
proposed method.

YV2.2x1.4A2 with field angle 185 degrees, mounted on Watec WAT-221S digital
camera. A fish-eye image taken with this fish-eye camera for calibration is shown
in Fig. 3 (a). The original resolution of the fish-eye image is 752× 596, though,
for the presentation purpose, we cropped the region of interest of the image.
From this fish-eye image, 2 image curves and total amount of 46 sample points
on these lines are chosen using the KLT feature tracker[9]. The coefficients c of
the calibration function are estimated using the proposed calibration method.
In this experiment, we adopted a polynomial model as

f(r) = c1r + c5r
5, (14)

which acquires the best estimation performance in our preliminary experiments.
The estimated parameter was c = (c1, c2) = (0.13726, 0.99054). Then, we apply
these estimated parameters to undistort the fish-eye image, and the calibrated
image is obtained as shown in Fig. 3 (b).

5 Conclusion

In this paper, we proposed a novel calibration method for radially symmetric
distortion lenses based on the principal component fitting in a projected plane.
The most closely related work is presented in [3], in which they made use of the
coplanarity condition of observed points on a line to calibrate radially symmetric
distortion. A distinguished feature of our method is adopting the division model
[10]. In the division model, the coplanarity condition used in [3] is difficult to
apply because we need to solve quadratic equations for calibration parameters.
The proposed method is simple and completely algebraic and contains no iter-
ation, so the solution is free from local optima. The comparative study on the
proposed method and other existing calibration methods remains as our future
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work. The proposed method is shown to work properly by experiments with syn-
thetic data and a real distorted image. The proposed method did not perform
well in the presence of large noise, thus an effort to make our method robust
to noises and outliers using random sampling methods and statistical tests (see
[11] for example) is ongoing.

In this paper, we only showed that the proposed calibration method can find
a good estimate of the coefficients of an assumed bases {fn(r)}Nn=1 in equation
(2). The choice of bases for approximating the calibration function is a very
important problem, and we can make use of properties of the eigen values for
the model selection before calibration. The minimum eigen value of the matrix
ΦΦ� indicates the ability of the adopted bases to map observed data to the
perspective projection plane so as to lie on a straight line. We can estimate the
adequacy of bases by comparing the minimum eigen values of the matrices ΦΦ�

for different basis sets. We can expect and select the combination of bases from
candidates {fn(r)}Nn=1 such that the minimum eigen value is the smallest. This
model selection scheme must be useful for finding good bases to calibrate real
images which are distorted by unknown mechanism, and thorough investigation
of the optimality of the selected bases is our future work.
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Abstract. This paper reports about a method for calibrating rotating senors,
namely, rotating sensor-line cameras and laser range-finders. Both together are
used to reconstruct accurately 3D environments, such as, for example, large
buildings. One of the important steps in the 3D reconstruction pipeline is the
fusion of data. This requires an understanding of spatial relationships among the
acquired data. Sensor calibration is the key to accurate 3D models.

1 Sensors

Since the 1990s, theoretical studies by various authors (e.g., [2,4,6]) pointed out that
the use of a rotating sensor-line camera, where panoramas are recorded line by line,
each line with its own projective center, allows us to control conditions for improved
stereo analysis or stereo viewing. Basically, this was the start into a new category of
digital panoramas defined by super-high resolution and geometric accuracy. Actually,
sensor-line cameras had been designed for digital aerial imaging (using a push-broom
technique [1]) since the early 1980s.

A laser range-finder (LRF) or laser scanner determines distances to opaque objects;
it is also known as LIDAR (laser imaging detection and ranging). It records distances
at accurate horizontal and vertical angular increments, between projection center and
visible surfaces, which generates a range-scan. A produced range-scan is a (noisy)
“cloud” of points in 3D space which represent visible surfaces at discrete positions.
Figure 1 shows a partial view of a building (at Tamaki campus, The University of
Auckland), a partial range scan, and two frames of its 3D animation. The range
scan shows millions of measured 3D points by means of a gray-level depth map.
These isolated points need to be mapped into meshed (e.g., triangulated) surfaces,
geometrically filtered, and rendered using (e.g.) high resolution color panoramic images
captured by a rotating sensor-line camera. Various algorithms have been developed for
visualizing clouds of 3D points. In this paper, rather than on visualization, we elaborate
on the geometric calibration issue of sensors and specify some details that readers of
[2] have been asking for.

The scan geometries of range-finder and rotating sensor-line camera are very similar,
and this supports accurate rendering of 3D surfaces, generated from range-scans,
using color panoramic images, recorded with a rotating sensor-line camera. The fusion
problem of image data and LRF depth data has also been discussed in [5], but for the
use of a regular digital camera attached to the LRF’s turntable. The same technology
is illustrated with Figure 1; the build-in camera only provides low quality color data.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 157–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. A building at Tamaki campus, The University of Auckland. Left: color image of a build-in
camera. Middle: partial depth map. Right: 3D animated depth map.

In this paper we assume two independently rotating panoramic high-accuracy sensors,
capturing data at different times.

Different camera calibration approaches have been proposed for panoramic imaging
sensors. A model equipped with fish-eye lens on a rotating rig is able to capture
high-resolution full spherical panorama images. Hirota et al. [3] proposed a method
to calibrate such spherical panorama images. Smadja et al. [7] dealt with calibrating
cameras capturing cylindrical panoramic images, and their method is similar to the one
discussed in this paper. However, these two calibration methods assume single-center
projection geometry. This case is hardly do achieve in practice; rotation occurs off-axis,
resulting into multiple projection centers. This paper discusses calibration for the
multi-center case.

Rotating Sensor-Line Cameras. As the camera is rotated 360 degrees around an axis,
the trajectory of the camera’s projection center defines ideally a circle, called base
circle, illustrated by a bold dashed line in Figure 2. We assume that the plane of the base
circle is perpendicular to the rotation axis, the camera’s optical axis remains coplanar
to the base circle at all of its positions during the rotation, and the sensor-cell array is
configured parallel to the rotation axis. Through such a 360◦-rotation, the sensor-cell
array of the camera describes (in some abstract sense) a cylindric surface. This image
cylinder identifies the locations of the rotating tri-linear (i.e., R,G, and B sensor line)

Pw

C
Xo

Yo

Zo

Yc

Zc

Xc
O

Xw

Zw

W
Yw

R , t0

vj

Fig. 2. Local sensor coordinate system (with origin at O), camera coordinate system (with origin
at C), and world coordinate system (with origin at W)
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sensor. The rotation axis is the axis of the image cylinder, and point O on the axis
denotes the center of base circle. The base circle has a radius R, which is called
the off-axis distance. To distinguish different camera positions on the base circle, the
subscript i is used, where i also indicates the ith column of the resulting panoramic
image. The optical axis of a camera at position Ci forms a principle angle ω with the ray
emitting from O and passing through Ci. Finally, f denotes the camera’s focal length.
We assume that f and ω remain constant during a rotation of a sensor-line camera.

Laser Range-Finder. Today’s laser scanners may have different scan geometries (i.e.,
how the rays are progressing and positioned during a single scan of a 3D scene). We
refer to the following scan geometry: angular increments between rays are uniformly
defined in two dimensions, which are vertically by a rotating deflecting mirror, and
horizontally by rotating the whole measuring system (e.g., the vertical scan range of the
IMAGER 5003 is 310◦, and the horizontal scan range is 360◦). This scan geometry
is similar to the one known for theodolites, which are traditional instruments for
measuring (manually) both horizontal and vertical angles.

2 Coordinate Systems for Sensors

In case of a camera with a single (tri-linear) sensor-line, we use index j to identify
different pixel locations. An image vector vj points from the (current) camera’s
projection center C to the image point (sensor element, pixel) of index j. We have

vj =

⎛⎝ 0
jτ − y0

f

⎞⎠
where τ is the height of the pixel (assuming squared pixel), and y0 denotes the central
point of the image (intersection point of the sensor-line with the camera’s optical axis).

A local 3D sensor coordinate system (with origin at O) is used to describe the
orientation and position of the sensor-line camera in relation to a defined world
coordinate system (with origin at W).1 The Yo-axis of the sensor coordinate system
coincides with the rotation axis (pointing downward; see Figure 2). Let R denote
the rotation matrix, and t0 denotes the translation vector between sensor and world
coordinates systems.

Rotation angle ϕ is defined to be the angle between the Zo-axis and line segment OC.
A rotation matrix Rϕ(i) is used to describe the camera’s orientation at Ci with respect
to the local sensor coordinate system. A 3D point with respect to the world coordinate
system Pw can be expressed by its corresponding image vector vj as follows:

Pw = t0 + RRϕ(i)

⎡⎣λRω

⎛⎝ 0
jτ − y0

f

⎞⎠ + R

⎛⎝0
0
1

⎞⎠⎤⎦
where matrix Rω specifies the additional rotation of the sensor-line when ω �= 0.

1 It is possible to assume that the world coordinate system coincides with the range-finder’s
coordinate system, or, if some special calibration object is used, then it is preferred to assume
that the world coordinate system is defined by this calibration object.
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Rotation axis

Optic
axis

Ri

R

Yc

Xo

Yo
x

Zc

f

Zo

RGB

Fig. 3. The sensor coordinate system of the rotating line camera: the optical axis identifies the
central point x0, y0 and is tilted by Rξ and Rω; each tri-linear RGB line has a constant distance
Δ between a central point (on the green line) and the red or blue line. The tilt of the sensor-line
with respect to the optical axis is specified by Ri(α, β, δ).

Figure 3 illustrates the general case of a rotating RGB sensor-line camera. In
applications we also have to model the following deviations:

– At any discrete moment i of time, the sensor-line is tilted (within the local
coordinate system) by three angles which define a time-dependent rotation matrix
Ri(α, β, δ); this defines the inner pose of a sensor-line about all three axes with
respect to the central point x0, y0.

– The red and blue lines have an offset Δ with respect to the central point on the
green line.

– The optical axis is rotated by ξ about the Xo-axis.
– The optical axis is rotated by the fixed principle angle ω about the Yo-axis.
– The sensor-line is rotating with an eccentricity or a desired off-axis distance R > 0.

Practically, the inner pose Ri(α, β, δ), the central point (x0, y0), and the off-set Δ are
sufficient to describe the positioning of the sensor line in any case. The image vector vj

is split into two terms as follows:

vj = vj,Δ + vf = (Δx − x0, jτ + Δy − y0, 0)T + (0, 0, f)T

Altogether, the coordinate transform is now the following:

Pw = t0 + RRϕ(i)

⎡⎣λRξRω

⎡⎣Ri

⎛⎝ Δx − x0
jτ + Δy − y0

Δz

⎞⎠ +

⎛⎝ 0
0
f

⎞⎠⎤⎦ +

⎛⎝ 0
0
R

⎞⎠⎤⎦ (1)

This equation is used for sensor calibration.
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3 Sensor Calibration

The common camera or sensor parameter calibration approach is a point-based
approach, aiming at a minimization of differences between ideal and actual projections
of known 3D points, such as calibration marks on a calibration object, or localized
points in the 3D scene. By taking many images of calibration marks, we are able to
apply a least-square error (LSE) optimization procedure.

Parameters and Objective Functions. In the sequel, we describe a standard
least-square approach, as known from photogrammetry, but adapted to a rotating
sensor-line camera. This approach determines unknown extrinsic parameters of the
sensor, which are matrices R, Rξ , t0, and off-axis distance R and principle angle ω.

It also determines the intrinsic parameters, which are matrix Ri(α, β, δ), describing
the tilt of the sensor, the focal length f , and the sensor’s central point x0, y0; the latter
one also written as vector Δ.

The rotation angle ϕ of the rotating sensor (sensor-line camera) may be measured
using an internal measuring system of the turntable. Modern technology allows that the
angle is determined with an accuracy of 1/1000 degree at least.

Note that the frequently needed recalculation of a “focal length” (i.e., of the camera
constant) aims at an exact determination of the (typically unknown) virtual projection
center of a pinhole-type model, namely the distance between the entrance pupil to a
virtual sensor plane which fulfills the linear imaging assumption.

An observation is a recorded calibration mark (with physically measured
coordinates, identified with a point (X, Y, Z) such as, e.g., the centroid of the
mark) at corresponding image coordinates i and j (i.e., pixel (i, j) for the rotating
sensor-line camera, when projecting point (X, Y, Z) into the cylindric panorama). Note
that two observations are derivable for one calibration mark because of using two
collinearity equations (i.e., one observation is given by two collinearity equations and
the corresponding residues).

We have a linear system of n equations with m unknown; the sth observation is given
by ls. The sum of all equations can be written in this form:

n∑
s=0

ls = a11 · x1 + a12 · x2 + . . . + asm · xm

Observations are considered to be the residues of an iterative Taylor approximation of
kth order (which defines a Newton method):

l = F (u)−∇F k(û)Δu

For the determination of extrinsic parameters and the calibration of intrinsic parameters
of a sensor, we place various calibration marks “around the sensor” in the scene. Some
of them are projected into image data (depending on visibility), and we assume that all
projected calibration marks can be uniquely identified in resulting image data (e.g., in
the panoramic image).

Assume that we have m unknowns in total (i.e., elements in matrices, vectors, and
parameters), and given are n observations, with n ≥ m.



162 K. Scheibe, F. Huang, and R. Klette

General Error Criterion. We use Equation (1) to model the geometric mapping of 3D
points into the sensor coordinate system. By substituting A = RRϕ(i), B = RξRω, and
C = BRi (with matrix elements A = a11, ..., a33, B = b11, ..., b33 and so forth), where
vj,Δ is the image vector:

vj,Δ =

⎛⎝ Δx − x0
jτ + Δy − y0

Δz

⎞⎠
This vector is also written in vectorial components as vj,Δ = (vx, vy, vz)T .

After those substitutions, the general mapping equation is now given as follows:

Pw = t0 + A(λB(Rivj,Δ + fz◦) + Rz◦)
A−1(Pw − t0)−Rz◦ = λCvj,Δ + Bfz◦

We rewrite this for all three components of this equation, using P̃ = Pw − t0:

a11P̃x + a21P̃y + a31P̃z = λ(c11vx + c12vy + c13vz + b13f)
a12P̃x + a22P̃y + a32P̃z = λ(c23vx + c22vy + c23vz + b23f)

a13P̃x + a23P̃y + a33P̃z −R = λ(c31vx + c32vy + c33vz + b33f)

The matrix of coefficients a11, ..., a33 is finally transposed because of the inversion of
the matrix A. (Recall that, for a rotation matrix, E = R · RT is the unit matrix, and,
consequently, R−1 = RT .)

By dividing these equations we may eliminate the scaling factor λ, and we obtain,
from the left-hand sides of those three equations, the following two equations:

Fx/z :=
a11(P̃x) + a21(P̃y) + a31(P̃z)

a13(P̃x) + a23(P̃y) + a33(P̃z)−R

and

Fy/z :=
a12(P̃x) + a22(P̃y) + a32(P̃z)

a13(P̃x) + a23(P̃y) + a33(P̃z)−R

For the right-hand sides we obtain that

Gx/z :=
c11vx + c12vy + c13vz + b13f

c31vx + c32vy + c33vz + b33f

and

Gy/z :=
c23vx + c22vy + c23vz + b23f

c31vx + c32vy + c33vz + b33f

These are the general collinearities, and we also express them by Fx/z = Gx/z and
Fy/z = Gy/z in short form.

By linearization of these equations it is now possible to estimate iteratively the
unknown parameters
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u = (tx0, ty0, tz0, ψ, φ, κ, R)

for the left-hand sides Fx/z and Fy/z , and

u = (ξ, α, β, δ, ω, f, y0, x0)

for the right-hand sides Gx/z and Gy/z , respectively. The three unknowns ψ, φ, κ
specify the rotation angles about the x-, y-, and z-axis, respectively. (Note that R
= Rx(ψ) · Ry(φ) · Rz(κ).) The upper index k is the number of the iteration step.
The linearization is given as follows:

∇(Gx/z − Fx/z) =
(

∂Gx/z

∂u1
−

∂Fx/z

∂u1
,
∂Gx/z

∂u2
−

∂Fx/z

∂u2
, ...,

∂Gx/z

∂um
−

∂Fx/z

∂um

)

F k
x,z −Gk

x,z = ∇(Gx,z − Fx,z)k ·Δu

l = M ·Δu

For n = m, the solution is uniquely given by

Δu = M−1 · l

assuming linear independence between equations.
For n > m observations (i.e., a typical adjustment problem), we apply now the

method of least-square error minimization. The error is given as follows:

v = M ·Δû− l

The error function (which needs to be minimized) is defined as follows:

min = vT v

= (M ·Δû− l)T (M ·Δû− l)

= ΔûT MT M ·Δû− 2lT M ·Δû + lT l

For identifying the minimum, we differentiate and have the resulting function equal to
zero:

∂
(
vT v

)
∂Δû

= 2ΔûT MT M− 2lT M = 0

This leads to the following solution:

Δû =
(
MT M

)−1
MT l (2)

The Jacobian matrix M contains all first-order partial derivatives, and l are the residues
as defined above. This is solved by means of iterations; the vector Δu contains the
corrections of of each unknown. A minimum is found if the unknowns do not change

significantly anymore (e.g.,
m∑

s=0
|Δus| < ε , with ε = 10−9).
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Fig. 4. Left: calibration marks are distributed around a courtyard at TFH Berlin. Right: deviations
between calculated image coordinates and their actual reference coordinates in this courtyard
(listed values in subpixels).

4 Conclusions

Some kind of human intervention is in general required for this calibration approach
for identifying the projections of those 3D points in a real scene (e.g., the projected
points) used as calibration marks, possibly supported by some SIFT feature detector
or moment-based sub-pixel accuracy point locator. If a specially designed calibration
object is used, this process can be supported by an automatic calibration mark detection
algorithm, where marks are located with sub-pixel accuracy (using, e.g., centroid
calculation within a mark’s region, or intersection points of approximated straight lines
when using a checkerboard).

The described least-square approach was used in many applications of panoramic
sensors, and is so far our recommended way for calibrating all the mentioned
parameters, possibly also including a tilt of the rotation axis of the sensor. Our
experimental results in Figure 4 show that this approach is capable to achieve accuracy
with less than one pixel error.
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Abstract. In this paper, we propose a new approach on segmentation and rec-
ognition of off-line unconstrained Arabic handwritten numerals, which failed to 
be segmented with connected component analysis. In our approach, the touch-
ing numerals are automatically segmented when a set of parameters is chosen. 
Models with different sets of parameters for each numeral pair are designed for 
recognition. Each image in each model is recognized as an isolated numeral. 
After normalizing and binarizing the images, gradient features are extracted and 
recognized using SVMs. Finally, a post-processing is proposed by based on the 
optimal combinations of the recognition probabilities for each model. Experi-
ments were conducted on the CENPARMI Arabic, Dari, and Urdu touching 
numeral pair databases [1,12]. 

Keywords: Numeral pair segmentation, Arabic Digit Recognition, Gradient 
features. 

1   Introduction 

Recognition of handwritten numeral strings is a very important branch of the hand-
written recognition field. This is due to its heavy involvement in many important 
applications, such as automatic processing of bank cheques, postal code recognition, 
reading of tax forms, and the recognition of other specifically designed forms [10]. 
The varieties in handwriting styles, the low quality of some types of paper, and all 
other factors have made the recognition of handwritten numeral strings quite chal-
lenging. Various approaches and techniques have been developed to solve the prob-
lems of segmentation and recognition of numeral strings. In general, we can classify 
all of the different approaches into one of the following categories: holistic ap-
proaches [15], segmentation-then-recognition [11], and segmentation-based recogni-
tion [5]. Holistic approaches attempt to recognize the whole numeral string as a one 
unit. On the other hand, the second two categories segment a numeral string image 
into a sequence of constituents and each constituent is classified into one of the ten 
classes {0,1,..,9}. However, the segmentation process is not a trivial task since over-
lapped or touched digits may frequently exist in the numeral strings. In our work, we 
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focus on solving the problem of segmenting numeral strings that are completely 
touching and cannot be segmented through basic connected component analysis. 
Given an input image of a numeral touching pair, we extract the two regions that 
could represent the digits in the image, each one individually, by searching a 2-
dimentional parameter space. The search results in a set of candidate regions for each 
digit in the image. Then, the extracted regions are scaled and preprocessed to be ready 
for the recognition stage. For classification, we have developed an SVM classifier for 
recognition. The classifier has been separately trained on the CENPARMI Arabic, 
Urdu and Dari Isolated Digit Databases. To test the proposed segmentation method, 
we have used a subset of the CENPARMI Arabic, Dari, and Urdu Numeral String 
Databases [1,12]. The used subsets include only samples of complete touching digits. 
Examples of Arabic touching pairs are shown in Figure 1. 

This paper is organized as follows: Related work is reviewed in Section 2. Then, 
the segmentation approach is presented in Section 3. The isolated digit classification, 
gradient feature extraction, training and recognition are carried out in Section 4. Post 
processing is explained in Section 5. Databases are presented in Section 6 followed by 
experiments and results in Section 7. Finally, conclusions are presented in Section 8. 

 
97 97 48 52 22 82 20 27 86 79 29 

           

Fig. 1. Samples of Touched Pairs from the CENPARMI Arabic Numeral Dataset and the 
equivalent Latin Digits 

2   Related Work 

In the last decade, there has been more research addressing the problem of Arabic 
handwritten digit recognition [2,8]. More recent works have reported high recognition 
rates. In 2004, Harifi et al. [6] proposed an asymmetrical segmentation pattern to 
obtain a feature vector for the recognition of handwritten Persian/Arabic digits. A 
recognition rate of 97.6 % was reported on a database of around 730 digits written by 
73 participants. Sameh et al. (2009) [3] proposed a multiple feature/resolution scheme 
for Arabic numeral recognition using Hidden Markov Models (HHMs). The multiple 
features included gradient, structural, and concavity features. The proposed scheme 
was tested on a database of 21,120 digits written by 44 writers with 48 samples per 
digit and an average recognition rate of 99% was achieved. For numeral string seg-
mentation problems, many approaches have been proposed [7,9,11].  

However, for the problem of touching or overlaped cases, few works has been pub-
lished. In 2006, Dipankar et al. [5] proposed an approach for the segmentation and 
recognition of unconstrained off-line Bangla handwritten numerals. A projection 
profile-based heuristic technique was used to segment the numerals. The method was 
tested on 500 Bangla numerals. A total of 89% of the touching pairs were segmented 
correctly with a 10% rejection ratio. Wang et al. (2008), [15] proposed a model-based 
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holistic approach to recognize handwritten numeral touching pairs. The models of 
numeral pairs were generated as the combinations of two corresponding numerals. 
Each numeral was modeled as a set of polygonal lines and the corresponding best 
recognition rate of 93.6% was achieved on 1000 of these test images from the NIST 
SD19 database.  

3   Segmentation of Touching Pairs 

In this work, we focus on solving the problem of numeral touching pair segmentation 
and recognition. Our Segmentation of touching pairs begins by extracting the bound-
ing box to eliminate the unwanted white area around the image, thereby reducing the 
search space, and placing the touching digits in the center of the image. We can think 
of each digit in the image as being surrounded by a rectangular box. We used the 
searching technique presented in [15] to find a rectangular box in a 2-dimensional 
space. In order to do that, we needed to determine its dimensions, height and width. 
Therefore, we considered two parameters. The first parameter, let it be α, is the ratio 
of the first digit width (Wf) to the whole image width (Wi). The second parameter, let 
it be β, is the horizontal distance between the first digit and the second one. Using a 
set of values for α and β, we could calculate the dimensions for the rectangular boxes 
[15]. As shown in Figure 2, an image with (Wi) width, we calculate the first digit 
width (Wf), and the second digit width (Ws) as follows: 

        Wf = α. Wi           (1) 

                     Ws = Wi - α. Wi – β          (2) 

The height of the bounding box around each digit (Hf and Hs) can be defined as 
the vertical distance between the lower-pixel and the higher-pixel in the correspond-
ing area of the image (see Figure 2). Accordingly, by searching different values of (αi, 
βj), we generate segmented candidate images. For feasible computation, i = 0,…,5, 
and j = 0,…,5. Therefore, 25 different models are extracted to individually represent 
the two digits in the image, where each model represents all the images with the same 
(αi, βj). 

 

Fig. 2. Example of Two Rectangular Boxes Representing the Digits in a Touching Pair  
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4   Isolated Digit Recognition 

Recognition of each image in each model is the same as recognizing the isolated nu-
meral in Arabic. In image pre-processing, we perform noise removal, grayscale nor-
malization, size normalization, and binarization of the grayscale images. For feature 
extraction, gradient features [13] are extracted on grayscale images. The Robert's 
Cross operator uses the diagonal directions to calculate the gradient vector. For exam-
ple, the gradient magnitude and direction of pixel g(m,n) are calculated as follows: 
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where θ (m,n) and s(m,n)  specify the direction and gradient magnitude of pixel (m,n), 
respectively.  

The direction of the gradient on each pixel is quantized to 32 levels with an  
interval of 16/π . The normalized character image is divided into 81 (9×9) blocks. 
After extracting the strengths and directions in each image, the spatial resolution is 
reduced from 9×9 to 5×5 by down sampling every two horizontal and every two 
vertical blocks with a 5×5 Gaussian filter. Similarly, the directional resolution is 
reduced from 32 to 16 levels by down sampling with a weight vector [1 4 6 4 1] T, 
to produce a feature vector of size 400(5×5×16). Moreover, the transformation y = x 
0.4 is applied to make the distribution of the features Gaussian-like. Finally, we scale 
the feature vectors by a constant factor so that the values of feature components 
range from 0 to1. 

For the classification stage, Support Vector Machines (SVMs)[14] were chosen as 
the classifier. SVMs with different kernel functions can transform a non-linear sepa-
rable problem into a linear separable one by projecting data into the feature space, and 
then SVMs can find the optimal separating hyperplane. The Radial Basis Function 
(RBF) was chosen as the kernel in this research. LibSVM [4] is simple, easy-to-use, 
and efficient software for SVM classification and regression. It was possible to train 
our model for probability estimates and predict the test samples with probability val-
ues as well. According to the probability values, post-processing can be implemented 
and enhance the recognition results.  

The outputs of LibSVM represent probabilities information in its classification re-
sults. LibSVM applies one against one (pair-wise) strategy in a multi-class problem. 
In the pairwise approach, K2 support vector machines are trained for a k-class prob-
lem. Given k classes of data, for any test sample x, the goal is to estimate pi, which is 
obtained from all rij. In this case, rij is a one-against-one class probability and is ob-
tained from the known training data by solving the following optimization problem: 
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5   Post Processing Module 

In each model, all segmented images are recognized by the designed classifier, as 
described in the previous section. Since the output of each image has confidence  
values (probabilities) on all classes, a post processing is applied based on the given 
probabilities of different models. This module is able to verify and improve the final 
recognition rates. When the highest probability of the given input in all 25 models is 
greater than a certain threshold (Th), the final result is based on the recognition result 
with the highest probability. Otherwise, the final recognition result is based on rank-
ing the outputs of all the other models by using different ranking schemes. Finally, the 
output with the highest rank is chosen. One ranking scheme ranks the results based on 
the majority votes (M_V). It chooses the result with the highest number of votes from 
25 models. The second ranking scheme considers the estimated probability from each 
result of the different models and chooses the result with the highest probability 
(H_P) as the final one. The third voting scheme is a combination of both the probabil-
ity estimation and the majority vote schemes (H_P + M_V).  

6   Databases 

In order to test the proposed approach, we applied it on the CENPARMI Arabic, 
Urdu, and Dari Numeral String Databases [1,12]. Each database includes samples of 
handwritten words, characters, isolated digits, numeral strings, dates and special sym-
bols. We conducted the recognition experiments on the isolated digit and numeral 
string datasets from these databases. The total number of isolated digits in each data-
base is: 30,983 in Arabic, 29,069 in Dari and 60,329 in Urdu. Each database was 
divided into training and testing sets. The total number of samples in both sets for 
each language is presented in Table 1. For segmentation, we only selected the touch-
ing pairs from the numeral string databases. We applied the segmentation method 
based on connected component analysis on the numeral string databases, and the ones 
that could not be segmented were selected to test our method. A total of 721 touching 
pairs were found in the databases. There were 400 pairs from the Dari database, 189 
pairs from the Urdu database and 132 pairs from the Arabic database. Table 2 shows 
the basic isolated digits in each language and the matched Latin numerals. As shown, 
three languages share some numerals.  

Table 1. No. of Samples in Various Isolated Numeral Databases  

 Arabic Dari Urdu 
Training Set 24784 23255 47151 

Testing Set 6199 5814 13178 
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Table 2. The Basic Isolated Digits in Each Language and The Equivalent English Digits 

     0   1   2   3   4  5   6  7  8   9 
Arabic           
Dari           
Urdu                         

7   Experiments and Results 

First, our SVMs classifier was individually trained and tested on the isolated digit 
database of each language. There were two parameters in RBF to be optimized: c and 
λ. Where c>0 was the penalty parameter of the error term, and λ was the parameter in 
RBF. These two parameters were optimally chosen by the cross-validation. For 
example, when lg(c) = 1 and lg(λ)= -7, the performance on the Arabic training set 
achieved the highest recognition rate (98.0471%). Thus, we set c = 2 and λ = 
0.0078125, and then we tested it on the testing set. The recognition results on the 
testing sets in each database were 98.48%, 98.66%, and 98.61% for Arabic, Dari and 
Urdu databases, respectively (see Table 3).   

Table 3. Recognition Rates on Testing Sets of Three Isolated Numeral Databases 

 Arabic Dari Urdu 
Recognition Rate on Test Set 98.48% 98.66% 98.61% 

 
For the segmentation, the first step was choosing a set of values for the parameters 

α and β. For feasible computation, a set of five values was chosen for each parameter. 
The chosen sets are [0.3, 0.4, 0.5, 0.6, 0.7] for α and [-6, -3, 0, 3, 6] for β. We 
searched each image using all the different compilations of the chosen values. As a 
result, 25 different models are detected and extracted to individually represent each 
numeral. Afterwards, each model as passed to the isolated digit classifier for the clas-
sification. The highest recognition rates were: Arabic 85.50% for the model 12 (α = 
0.5, β = 0.0), Urdu 84.57% for model (α = 0.5, β = 0.0) 12 and Dari 79.07% for model 
13 (α = 0.5, β = -3). Table 4 illustrates the recognition results for six different models in 
each language.  

For post processing, as described in Section 4, the model that gives the highest 
recognition rate is chosen as the default final output if its estimated probability is 
higher than a certain threshold Th. Otherwise, the post processing module will be 
activated and a scoring scheme will be applied to choose the final recognition output.  
We applied three different scoring schemes. First, we applied (M_V) and (H_P) scor-
ing schemes, using the outputs from all of the 25 models. Both scoring schemes were 
able to improve the overall recognition rate, and the highest recognition rates were: 
88.55 % in Arabic, 88.03% in Dari and 89% in Urdu datasets.  Then, we applied a 
scoring scheme based on a combination of both of the (M_V) and the (H_P) using 
only the outputs for five models; M5, M10, M12, M16, and M21. The choice of the best 
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model, the different values for (Th) and the five models were all validated with the 
experimental results on the Arabic dataset. The Urdu and Dari datasets were used to 
test the final choices for the different parameters. From Table 5, we can see that the 
best recognition rates were: 92.22%, 90.43%, and 86.09% in Arabic, Urdu and Dari, 
respectively. They are achieved by applying the scoring scheme (H_P+ M_V) on the 
chosen five models and by applying (Th = 0.95).  

Table 4. The Recognition Results for Six Different Models for Each Language 

 M5 M10 M12 M13 M16 M21 
 α = 0.3 

β = -6 
α = 0.4 
β = -3 

α = 0.5 
β = 0.0 

α = 0.5 
β = -3 

α = 0.6 
β = -6 

α =0.7 
β = -6 

ARABIC 60.31% 77.48% 85.50% 84.73% 83.21% 62.21% 
URDU 68.09% 80.31% 84.57% 84.04% 72.87% 60.90% 
DARI 56.64% 72.81% 78.82% 79.07% 75.70% 62.91% 

Table 5. Recognition Rates on Three Different Numeral (Touching Pair) Databases 

25 Models Combination of 5 Models Language   Th The Best  
Result(M12) H_P M_V H_P+ M_V 

0.500 84.732% 86.6412% 87.7863% 88.1679% 
0.8755 84.732% 88.1679% 88.1679% 91.6031% 
0.9000 84.732% 88.5496% 88.5496% 91.6031% 

A
R

A
B

IC
 

0.95 84.732% 88.5496% 87.4046% 92.2214% 

0.500 84.5745% 85.6383% 85.1064% 86.7021% 
0.9000 84.5745% 88.0319% 86.4362% 87.2340% 
0.9044 84.5745% 88.2979% 86.4362% 89.2340% 

U
R

D
U

 

0.95 84.5745% 89.8936% 86.4362% 90.4255% 

0.500 79.0727% 82.3308% 80.0752% 82.2055% 
0.8795 79.0727% 85.7143% 81.3283% 86.0902% 
0.9000 79.0727% 88.0319% 88.0319% 85.5890% D

A
R

I 

0.95 79.0727% 85.4637% 80.9524% 84.7118% 

8   Conclusion  

In this paper, we have addressed the problem of segmentation and recognition of 
handwritten numeral touching strings in three Arabic-script databases. For the  
segmentation process, we have generated 25 models with different segmentation pa-
rameters. We have developed an SVM classifier, which has been trained on isolated 
numerals, to recognize each image in each model. Moreover, we have designed a post 
processing module to verify and improve the recognition results with the confidence 
values from different models and to predict the final recognition results. As a result, 
the average recognition rate was 98% in isolated digits, and the performances on these 
digits as completely touching numeral pairs were 92.22%, 90.43%, and 86.09% in 
Arabic, Urdu and Dari, respectively. All of the images failed to be segmented and 
recognized with connected component analysis. In the future, different combination 
schemes may be designed and applied.  
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Abstract. As compared to scanners, cameras offer fast, flexible and
non-contact document imaging, but with distortions like uneven shading
and warped shape. Therefore, camera-captured document images need
preprocessing steps like binarization and textline detection for dewarp-
ing so that traditional document image processing steps can be applied
on them. Previous approaches of binarization and curled textline detec-
tion are sensitive to distortions and loose some crucial image information
during each step, which badly affects dewarping and further processing.
Here we introduce a novel algorithm for curled textline region detection
directly from a grayscale camera-captured document image, in which
matched filter bank approach is used for enhancing textline structure
and then ridges detection is applied for finding central line of curled
textlines. The resulting ridges can be potentially used for binarization,
dewarping or designing new techniques for camera-captured document
image processing. Our approach is robust against bad shading and high
degrees of curl. We have achieved around 91% detection accuracy on the
dataset of CBDAR 2007 document image dewarping contest.

Keywords: Curled Textline Finding, Camera-Captured Document
Images, Grayscale Document Images, Ridges, Anisotropic Gaussian
Smoothing.

1 Introduction

Since decades, scanners are being used for capturing document images. Nowa-
days, cameras are considered as a potential substitute of scanners due to their
high production and low cost. Together with high production and low cost,
cameras also offer long-ranged, non-contact and fast capturing as compared to
scanners. These features speed up the traditional document image capturing
and open doors for new versatile applications, like mobile OCR, digitizing thick
books, digitizing fragile historical documents, etc.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 173–180, 2009.
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Document imaging with hand-held camera is typically done in an uncontrolled
environment, which induces several types of distortions in the captured image.
Some of major distortions are: motion blur, low resolution, uneven light shading,
under-exposure, over-exposure, perspective distortion and non-planar shape. Be-
cause of these distortions, traditional document image processing algorithms can
not be applied directly to camera-captured document images.

Tremendous research is being devoted to make camera-captured document
images suitable for traditional algorithms, by using dewarping techniques. Bi-
narization and curled textline detection are the main steps of dewarping. Re-
searchers use well known thresholding techniques [1] for binarization and have
developed many new techniques for curled textline detection. Previous tech-
niques of curled textline detection can be classified into two main categories: a)
heuristic search [2,3,4,5,6,7] and b) active contours (snakes) [8,9].

Heuristic search based approaches start from a single connected component
and search other components of a textline in a growing neighborhood region.
These approaches use complex and rule-based criteria for textline searching.
Active contours (snakes) have been used in [8,9] for curled textline segmenta-
tion. These approaches start with initializing open-curved snakes over connected
components and result in textlines detection by deforming snakes in vertical di-
rections only. In general, both heuristic search and active contours (snakes) ap-
proaches rely on adaptive thresholding for the binarization of camera-captured
document image before textline detection. Binarization may give poor results,
especially under the problems of uneven shading, low resolution, motion blur and
under- or over-exposure, as shown in Figure 1. Poor binarization (Figure 1(b))
can negatively affect the textline detection results and later on text recognition
results.

In this paper we introduce a novel approach for curled textlines regions detec-
tion directly from grayscale camera-captured document images. Therefore, our
method does not use binarization before textline detection. The method starts
by enhancing the curled textline structure of a grayscale document image using
multi-oriented multi-scale anisotropic Gaussian smoothing based on matched fil-
ter bank approach as in [10]. Then ridges detection [11,12] technique is applied on

(a) (b)

Fig. 1. a) Grayscale camera-captured document image portion from CDBAR 2007
dewarping contest dataset. b) Poor binarization (adaptive thresholding) result; which
has lost most of its details.
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the smoothed image. Resulting ridges represent the complete unbroken central
line regions of curled textlines.

We make the following contributions in this paper. The method presented
here works directly on grayscale camera-captured document image and is there-
fore independent of binarization and its errors under the problems of uneven
shading, low resolution, motion blur and under- or over-exposure. Together with
the independence of binarization, our method is robust against the problems of
low resolution, motion blur and under- or over-exposure and detects textlines
accurately under these problems. Furthermore, unlike previous approaches of
curled textline detection, our method is also robust against high degrees of curl,
variable directions of curl, different line spacing and font sizes problems.

2 Curled Textline Detection

As a first step, we apply matched filter bank approach from [10] for curl textlines
enhancement of grayscale camera-captured document images. The main idea is
to use oriented anisotropic Gaussian smoothing filter (Equation 2) to generate
the set of Gaussian smoothing windows from the ranges of horizontal and vertical
standard deviations (scales) and orientation.

g(x, y; σx, σy , θ) =
1

2πσxσy
exp{−1

2
(
(xcosθ + ysinθ)2

σx
2 +

(−xsinθ + ycosθ)2

σy
2 )}

The reason of considering ranges for scales and orientation is because of vari-
able font sizes and high degrees of multi-oriented curls within an image, respec-
tively. To achieve this, we define an automatic way of selecting the ranges for
σx, σy and θ. The same range is selected for both σx and σy, which is a function
of the height of the document image (H), that is aH to bH with a < b. The
suitable range for θ is from -45 to 45 degrees. The set of filters is defined by
selecting all possible combinations of σx, σy and θ, from their ranges. It covers
all typical font sizes and curl conditions in an image. The set of filters is applied
on each pixel of grayscale document image and then the maximum resulting
value among all the resulting values is selected for the final smoothed image.
Multi-oriented multi-scale anisotropic Gaussian smoothing enhances the curled
textlines structure well, which is clearly visible in Figure 2(b).

The next step is to detect textlines from the smoothed image. Some re-
searchers [13,14] use adaptive thresholding of the smoothed image to detect
the textlines or the portions of textlines and then perform heuristic postpro-
cessing steps to join neighboring portions. Our method breaks this tradition and
uses ridges detection for finding textlines form smoothed image. Firstly, adaptive
thresholding of smoothed grayscale image gives poor results and misses textlines
or portions of textlines, as shown in Figure 2(c). Secondly, we do not want to
use any type of heuristic postprocessing steps.

Ridges are primary type of features, which provides important information
about the existence of objects together with the symmetrical axes of these ob-
jects. Since decades, ridges detection has been used popularly for producing
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(a) (b)

(c) (d) (e)

Fig. 2. a) Grayscale camera-captured document image from CDBAR 2007 dewarping
contest dataset. b) Smoothed image : Enhanced curled textlines structure. c) Poor bi-
narization (adaptive thresholding) result of smoothed image. d) Detected ridges from
smooth image which are mapped over document image with different colors; repre-
sent curled textlines regions. e) Curled textlines detection result : Detected ridges are
mapped over the binarized image (given in the dataset) and assign the corresponding
ridges label to connected components.

rich description of significant features from smoothed grayscale images [11] and
speech-energy representation in time-frequency domain [12]. In this paper we
are interested in detecting the central line regions of curl textlines. Ridges detec-
tion can do this efficiently by estimating the symmetrical axes from smoothed
textlines structure. We have seen in the previous section that multi-oriented
multi-scale anisotropic Gaussian smoothing generates well enhanced textlines
structure. Therefore, ridges detection over smoothed image can produce unbro-
ken central lines structure of textlines. Here, Horn-Riley [11,12] based ridges
detection approach is used. This approach is based on the informations of local
direction of gradient and second derivatives as the measure of curvature. From
this information, which is calculated by Hessian matrix, ridges are detected by
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finding the zero-crossing of the appropriate directional derivatives of smoothed
image. Detected Ridges over the smoothed image of Figure 2(b) are shown in
Figure 2(d). It is clearly visible in the Figure 2(d) that each ridge covers the
complete central line region of a textline, which results in textlines detection.

3 Experiments and Performance Evaluation

To demonstrate the performance of presented approach, we evaluate it on the
real-world hand-held camera-captured document images dataset used in CB-
DAR 2007 for document image dewarping contest [15]. This dataset consists of
102 grayscale and their binarized images, with ground truth of binarized im-
ages in color coded format. Previously, researchers have used only the binarized
images and corresponding ground truth from this dataset, for the development
and evaluation of their algorithms. We use grayscale images from this dataset.
But, there is no direct evaluation method for grayscale textline detection results.
Therefore, the ridges detected from grayscale image are mapped over its cleaned-
up binarized image and the corresponding ridges label are assigned to connected
components, as shown in Figure 2(e). Now we can compare this textlines de-
tection result with ground truth. Here we use two different standard textline
detection evaluation methods [16,17]. Evaluation method presented in [17] is
designed for handwritten textline segmentation without any background noise,
therefore we are using 91 manually cleaned-up document images from the CB-
DAR 2007 dataset1.

Descriptions of performance evaluation metrics for textline segmentation based
on [18,16] are as follows. Consider we have two segmented images, the ground truth
G and hypothesized snake-segmentation H. We can compute a weighted bipar-
tite graph called “pixel-correspondence graph” [19] between G and H for evaluat-
ing the quality of the segmentation algorithm. Each node in G or H represents a
segmented component. An edge is constructed between two nodes such that the
weight of the edge equals the number of foreground pixels in the intersection of
the regions covered by the two segments represented by the nodes. The matching
between G and H is perfect if there is only one edge incident on each component
of G or H, otherwise it is not perfect, i.e. each node in G or H may have multiple
edges. The edge incident on a node is significant if the value of (wi/P ) meets some
thresholding criteria, where wi is the edge-weight and P is the number of pixels
corresponding to a node (segment).

On the basis of the above description the performance evaluation metrics are:

– Correct segmentation (Nc): the total number of G and H components’
pairs which have only one significant edge in between.

– Total oversegmentations (Ntos): the total number of significant edges
that ground truth lines have, minus the number of ground truth lines.

– Total undersegmentations (Ntus): the total number of significant edges
that segmented lines have, minus the number of segmented lines.

1 The cleaned-up data set and ground truth are available by contacting the authors.



178 S.S. Bukhari, F. Shafait, and T.M. Breuel

Table 1. Performance evaluation results based on [16]

Number of ground truth lines (Ng) 2713
Number of segmented lines (Ns) 2704
Number of correct segmentation (Nc) 2455
Total oversegmentations (Ntos) 105
Total undersegmentations (Ntus) 99
Oversegmented components (Noc) 99
Undersegmented components (Nus) 93
Missed components (Nmc) 6
Correct segmentation accuracy (100 ∗Nc/Ng) 90.50%

– Oversegmented components (Noc): the number of ground truth lines
having more than one significant edge.

– Undersegmented components (Nuc): the number of segmented lines hav-
ing more than one significant edge.

– Missed components (Nmc): the number of ground truth components that
matched the background in the hypothesized segmentation.

Performance evaluation results of our textline segmentation algorithm, based on
the above metrics, are given in a Table 1.

According to the methodology [17], the matching score is equal to or above a
specified acceptance threshold (i.e. 95%), where matching score is defined as:

MatchScore(i, j) = T (Gj ∩Ri ∩ I)/T (Gj ∪Ri ∪ I) (1)

where I is the set of all image pixels, Gj and Ri are the sets of all pixels covering
the jth ground truth region and ith result region respectively. Based on the
matching scores, detection rate (DR), recognition accuracy (RA) and combine
performance metric FM are calculated as follows:

DR = w1
o2o

N
+ w2

g o2m

N
+ w3

g m2o

N
(2)

RA = w4
o2o

M
+ w5

d o2m

M
+ w6

d m2o

M
(3)

where N and M are the total number of ground truth and result ele-
ments respectively, w1(1), w2(0.25), w3(0.25), w4(1), w5(0.25), w6(0.25) are pre-
determined weights, o2o is one to one match, g o2m is one ground truth to
many detected, g m2o is many ground truth to one detected, d o2m one de-
tected to many ground truth and d m2o is many detected to one ground truth.
Performance evaluation results based on equations (1), (2) and (3) are given in
Table 2.
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Table 2. Performance evaluation results based on [17]

Ground truth elements (N) 2749
Detected elements (M) 2717
One to one match (o2o) 2503
One ground truth to many detected (g o2m) 64
Many ground truth to one detected (g m2o) 127
One detected to many ground truth (do2m) 62
Many detected to one ground truth (dm2o) 130
Detection rate (DR) 92.79%
Recognition accuracy (RA) 93.89%
FM = (2 ∗DR ∗RA)/(DR + RA) 93.34%
Correct segmentation accuracy (100 ∗ o2o/N) 91.05%

4 Discussion

We have proposed a novel approach for curled textlines regions detection from
grayscale camera-captured document images. We introduced a combination of
multi-scale multi-oriented Gaussian smoothing and ridges detection for finding
curled textlines directly from grayscale intensity values of camera-captured doc-
ument images. Therefore, our approach does not use binarization and is indepen-
dent of binarization errors. We have achieved around 91% of one-to-one correct
segmentation textline detection accuracy on the dataset of CDBAR 2007 doc-
ument image dewarping contest, which proves the effectiveness of our method.
The 9% of errors are mainly because of oversegmentation, that is more than
one textline detected for a single ground truth textline. These oversegmentation
errors can be easily overcome by grouping ridges in horizontal neighborhood re-
gion, as a post-processing step. Our approach is robust against uneven shading,
low resolution, motion blur, under- or over-exposure, high degrees of curl, vari-
able directions of curl, different line spacing and font sizes problems and detects
textlines under these problems. Therefore, our method can be integrated with
vareity of camera devices (from low to high image quality) and can be used under
vareity of image capturing environment (from rough and uncontrolled to highly
controlled environment). The textline detection results of presented method can
be used for image dewarping, developing efficient binarization techniques and
introducing new grayscale OCR algorithms.
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Abstract. In this paper, we propose Kernel Principal Component Anal-
ysis as a feature selection method for offline cursive handwriting recog-
nition based on Hidden Markov Models. In contrast to formerly used
feature selection methods, namely standard Principal Component Anal-
ysis and Independent Component Analysis, nonlinearity is achieved by
making use of a radial basis function kernel. In an experimental study
we demonstrate that the proposed nonlinear method has a great poten-
tial to improve cursive handwriting recognition systems and is able to
significantly outperform linear feature selection methods. We consider
two diverse datasets of isolated handwritten words for the experimental
evaluation, the first consisting of modern English words, and the second
consisting of medieval Middle High German words.

1 Introduction

Offline recognition of unconstrained cursively handwritten text is still a widely
unsolved problem in computer science and an active area of research. In con-
trast to online recognition, where time information about the writing process
is available, offline recognition is performed solely on text images. Here, a high
recognition accuracy can be achieved for small, specific domains such as address
or bankcheck reading. When it comes to unconstrained text recognition, only
few systems exist that are able to cope with a high variety of writing styles and
an extensive vocabulary. For a survey, see [1]. A widely used type of recognizer
suited for this task is Hidden Markov Models (HMM). Examples of HMM-based
recognition systems can be found in [2,3].

In this paper, we aim at improving handwriting recognition by feature se-
lection. 1 Feature selection can be used to improve the quality of the features
used, thereby often reducing the number of features in order to eliminate noise.
Standard methods include removing linear correlations among the features by
means of Principal Component Analysis (PCA) or Linear Discriminant Analysis
(LDA) and, as a more general approach, finding independent feature sources by
means of Independent Component Analysis (ICA) [4]. In [3], PCA and ICA were
used to improve HMM-based cursive handwriting recognition.
1 Note that the term ‘feature selection’ is used in a broad sense in this paper including

feature space transformation.
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The main restriction of the feature selection methods mentioned is their as-
sumption of linearity. PCA does not take into account nonlinear correlations
among the features and ICA performs a linear transform in order to maximize
the independency of the features in the new feature space. With the introduction
of kernel methods [5], nonlinear transformations have come within the reach of
efficient computability. Kernelizable algorithms are executed in high dimensional
feature spaces based only on the dot product, using kernel functions that can
often be computed efficiently even for nonlinear feature space mappings.

Since the introduction of kernel PCA (KPCA) about a decade ago [6], this
powerful nonlinear technique has been successfully applied to several pattern
recognition tasks including, for example, face detection [7] and palmprint recog-
nition [8]. In [9], KPCA was used for Chinese character recognition. Here, images
of single characters are recognized that are, in contrast, not available for Roman
cursive handwriting recognition where whole words and sentences are considered
without character segmentation. In the domain of speech recognition, which is
closely related to cursive handwriting recognition, a successful application was
reported in [10] for an HMM-based recognition system.

In this paper, we apply KPCA feature selection with a radial basis function
(RBF) kernel to HMM-based cursive handwriting recognition. On a set of nine
geometrical features presented in [2] and two diverse datasets, we demonstrate
that KPCA is able to significantly increase the accuracy of handwriting recog-
nition and outperform standard linear feature selection methods, i.e. PCA and
ICA. The first datased considered for experimental evaluation consists of iso-
lated, modern English words taken from the publicly available IAM database [11]
and the second dataset consists of medieval Middle High German words taken
from the Parzival database recently presented in [12].

The remainder of this paper is organized as follows. In Section 2, HMM-based
recognition is introduced, Section 3 presents the feature selection methods ap-
plied, Section 4 describes the underlying two datasets and discusses the experi-
mental results, and Section 5 draws some conclusions.

2 HMM Recognition

We use an HMM-based system for cursive handwriting recognition as presented
in [2]. In the following, the different stages of the recognition process are briefly
discussed, i.e. image preprocessing, feature extraction, and HMM application.

2.1 Preprocessing and Feature Extraction

The input for the recognizer are binary images of cursively handwritten words.
They have been isolated from textline images after correction of the skew and the
slant, vertical scaling with respect to the upper and lower baseline, and horizontal
scaling with respect to the mean black-white transitions. This normalization
allows the recognizer to cope with different writing styles.

From the normalized word images, a sequence of feature vectors is extracted
with a sliding window approach. A window with width of one pixel and height
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of the image is moved from left to right over the word and at each step, a set of
nine geometrical features x ∈ IR9 is calculated from the enclosed pixels. Three
global features capture the fraction of black pixels, the center of gravity, and the
second order moment. The remaining six local features consist of the position of
the upper and lower contour, the gradient of the contours, the number of black-
white transitions, and the fraction of black pixels between the contours [2].

2.2 Hidden Markov Models

In the HMM-based approach, each letter is modeled with a number of hidden
states si arranged in a linear topology. The states emit observable feature vectors
with output probability distributions psi(x) given by a mixture of Gaussians.
Starting from the first state s1, the model either rests in a state or changes to
the next state with transition probabilities P (si, si) and P (si, si+1), respectively.
After an appropriate initialization, the output probability distributions and the
transition probabilities are trained with the Baum-Welch algorithm [13].

For isolated word recognition, all possible words are modeled by an HMM
built from the trained letter HMMs and the most probable word is chosen with
the Viterbi algorithm [13] for a given word image. In this paper, we follow a
closed vocabulary assumption by taking only words into account that exist in
the dataset and treat them with equal probability, i.e. no language model is used.

3 Feature Selection

After feature extraction using a sliding window, feature selection is applied to
the feature vector sequence. In general, the ground truth of the training samples
contains only the transcription, i.e. the sequence of letters, but not the start
and end position of the letters within the feature vector sequence. Therefore,
class labels are not given for the single feature vectors and feature selection is
constrained to unsupervised methods. In this section, PCA and ICA are pre-
sented as two standard linear methods and KPCA as the new nonlinear method
of interest for handwriting recognition.

3.1 Principal Component Analysis

Principal component analysis (PCA) applies a linear transform y = Wx to
the original feature vectors x = (x1, . . . , xn) ∈ IRn in order to remove linear
correlation among the new features y = (y1, . . . , ym) ∈ IRm and to reduce the
dimension to m ≤ n features that capture most of the variance. For data centered
around the mean vector, the mapping is given by an orthogonal transform where
each row in matrix W is an eigenvector of the covariance matrix in the original
feature space. The eigenvectors, called principal components p1, . . . , pn, can be
found by eigenvalue decomposition and can be ordered by variance such that
σ2

1 ≥ . . . ≥ σ2
n. By choosing only the first m ≤ n principal components, the

dimensionality is reduced while maximum variance is captured.
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The omitted dimensions with low variance can be regarded as noise. For
HMM-based recognition, the output probability distributions of the HMM states
are often modeled with diagonal covariance matrices in order to reduce the num-
ber of parameters to train. The features obtained with PCA conform to this im-
plicit assumption of uncorrelated features. Reducing the feature space dimension
also reduces the computational complexity of HMM-based recognition.

3.2 Independent Component Analysis

In contrast to PCA, Independent component analysis (ICA) aims not only at
finding linearly uncorrelated components, but also statistically independent com-
ponents by optimizing the parameters of a linear transform y = Wx. Statisti-
cally independent features are uncorrelated, but the reverse does not hold true
in general. For joint normal distribution, however, uncorrelated features are al-
ready independent. In this case, the application of ICA is not expected to further
improve the feature space when compared to PCA.

In fact, measures of non-Gaussianity, a property expressing how different a
given distribution is from a normal distribution, are often used as contrast func-
tions to optimize the parameters of the matrix W . A widely used measure of
non-Gaussianity is negentropy given by

J(yi) = H(yi,Gauss)−H(yi)

where H(yi) = −
∫

p(yi) log p(yi)dyi is the entropy with density function p(yi)
and a Gaussian variable yi,Gauss with the same covariance and mean as the
single feature yi. From information theory it is known that maximum negen-
tropy means maximum independency for uncorrelated features. Thus, indepen-
dent components can be found in the directions of maximum negentropy. An
efficient solution for ICA is given by the FastICA algorithm [4] where uncorre-
lated features with unit variance are found first, thereby reducing the problem
to optimizing an orthogonal matrix W , before the independent components are
found with respect to an approximated negentropy function.

Independent features are expected to capture distinct properties of the un-
derlying patterns and therefore should be well-suited for pattern recognition.
Furthermore, the feature space can also be reduced to m ≤ n dimensions in
order to eliminate noise and to reduce the computational complexity.

3.3 Kernel PCA

Kernel methods [5] are based on the idea of mapping feature vectors into a
higher dimensional feature space φ : IRn → F . Instead of an explicit mapping,
only the dot product of two feature vectors is calculated as the kernel function
κ(x1,x2) = φ(x1) · φ(x2). Often, this dot product can be calculated efficiently
even for nonlinear mappings φ. Many kernelizable algorithms do not rely on the
feature vectors, but can be rewritten in terms of dot products only, also known
as the kernel trick. If valid kernel functions are used other than the standard dot
product, the algorithm is effectively performed in the feature space F .
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PCA is kernelizable as shown in [6]. For kernel PCA (KPCA), the projection
of a mapped feature vector φ(x) onto a principal component pi of the feature
space is given by

pi · φ(x) =
N∑

j=1

αi
jκ(xj ,x)

where xj is one out of N training feature vectors and αi is an eigenvector of the
training kernel matrix K[l, m] = κ(xl,xm), 1 ≤ l, m ≤ N . The final transform of
x is then given by y = (p1 · φ(x), . . . ,pN · φ(x)). Note that the centering of the
data around the mean vector in the feature space can also be done in terms of
dot products only and the principal components can still be ordered such that
the first m ≤ N components capture most of the variance in F .

In this paper, we apply KPCA with the well-known radial basis function
(RBF) kernel

κ(x1,x2) = exp(−γ · ||x1 − x2||2), γ > 0

While linear correlations are removed in the feature space F , the transform of the
original feature vector x ∈ IRn into the new feature vector y ∈ IRm is nonlinear.
As a main advantage over PCA and ICA, nonlinear correlations are taken into
account. The reduced dimension m ≤ N can also be higher than the original
dimension n making it possible to effectively increase the feature dimension.

4 Experimental Results

KPCA feature selection for HMM-based recognition is applied to two datasets of
isolated, handwritten words and the results are compared with PCA and ICA.

The first dataset contains words taken from the IAM database presented
in [11]. This publicly available database contains handwritings of English sen-
tences from several hundred writers. The second dataset contains words taken
from the recently presented Parzival database [12] that consists of word images of
Medieval handwritings from the 13th century. In order to keep the computational
effort within reasonable bounds, a subset including all different writing styles is
considered for both databases. Table 1 summarizes the statistics of the datasets
and Figures 1a and 1b show some sample word images after preprocessing.

4.1 Experimental Setup

For both datasets, the words are first divided into a training, validation, and
a test set. Half of the words, i.e. each second word, is used for training and a

Table 1. Statistics of the datasets

Dataset Word Instances Word Classes Letters

IAM 12,265 2,460 66
Parzival 11,743 3,177 87
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(a) IAM (b) Parzival

Fig. 1. Sample images of the datasets

quarter of the words for validation and testing, respectively. The HMMs are then
trained with an optimized number of states for each letter based on the mean
width of the letters [2,12]. The optimal number of Gaussian mixtures for the
HMM output probability densities, ranging from 1 to 30, is found with respect
to the word accuracy on the validation set.

For the feature selection, the optimal dimensionality of the new feature vectors
is also found with respect to the validation accuracy, ranging from 1 to 9 for
PCA as well as for ICA, and up to 19 for KPCA. The RBF kernel parameter γ
is validated over a logarithmic range from 10−2 up to over 103. While for PCA
and ICA the whole training set is used, the training of the KPCA is constrained
to the feature vector sequences of each 100th word due to computational reasons,
similarly to [10]. Still, several thousand feature vectors are considered in order
to find the principal components of the feature space.

4.2 Results

The results of the experimental evaluation on the test set are given in Table 2.
For both datasets, the word accuracy is given for the reference system [2] us-
ing the nine geometrical features without feature selection as well as for the
three feature selection methods PCA, ICA, and KPCA, respectively. The opti-
mal KPCA parameter values are indicated in the three right-most columns, i.e.
the dimension of the feature vectors, the γ parameter of the RBF kernel, and
the number of Gaussian mixtures (GM) of the HMM recognizer.

The improvements of the word accuracy are all statistically significant (t-
test with α = 0.05) except for PCA when compared to the Parzival reference
system. In particular, ICA achieved statistically better results than PCA and
KPCA achieved statistically better results than ICA. Figure 2 illustrates the

Table 2. Experimental results (word accuracy). Improvements marked with a star (*)
are statistically significant over the value in the preceding column (t-test, α = 0.05).

Dataset Ref. PCA ICA KPCA Dim. γ GM

IAM 73.91 75.77* 77.56* 79.65* 13 102 28
Parzival 88.69 88.76 89.88* 91.38* 7 103 22
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Fig. 2. Experimental results (word error reduction)

word error rate reduction of the feature selection methods. For both datasets,
KPCA reduced the reference word error rate by over 20 percent.

Regarding the KPCA parameters, a dimension increase from 9 to 13 dimen-
sions was optimal or the IAM dataset. The γ parameter had a high impact on
the word accuracy and was validated over a rather large logarithmic scale.

5 Conclusions

The nonlinear KPCA feature selection method was successfully applied to cur-
sive handwriting recognition and compared with two standard linear methods,
namely PCA and ICA. Unsupervised feature selection was performed on feature
vector sequences of nine geometrical features extracted by a sliding window.
Then, an HMM-based recognizer was applied to two diverse datasets of isolated,
handwritten word images, one with modern English words (IAM database) and
one with medieval Middle High German words (Parzival database).

In accordance with previous work, the experimental results show that feature
selection has a great potential to improve cursive handwriting recognition. The
word accuracy of an HMM recognizer could be improved with statistical signif-
icance using PCA and ICA. With the independent ICA features, significantly
better results were achieved than with the linearly uncorrelated PCA features.

As a main contribution, we show that KPCA is able to further improve the
word accuracy significantly. By using KPCA with an RBF kernel, the linear PCA
transform in the feature space corresponds to an efficient nonlinear transform
of the original feature vectors, thus overcoming the limitation of linearity of the
standard feature selection methods. For both datasets under consideration, the
original word error rate was reduced by over 20 percent with KPCA features
outperforming PCA and ICA significantly. To the knowledge of the authors, this
is the first time that KPCA has been applied to cursive handwriting recognition.
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Future work includes the extension of the scope of features, kernels, and rec-
ognizers under consideration, investigating other kernel methods such as kernel
ICA, and the combination of recognizers trained in different feature spaces.
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Abstract. Handwritten word recognition has received a substantial a-
mount of attention in the past. Neural Networks as well as discrimina-
tively trained Maximum Margin Hidden Markov Models have emerged as
cutting-edge alternatives to the commonly used Hidden Markov Models.
In this paper, we analyze the combination of these classifiers with respect
to their potential for improving recognition performance. It is shown that
a significant improvement can in fact be achieved, although the individ-
ual recognizers are highly optimized state-of-the-art systems. Also, it is
demonstrated that the diversity of the recognizers has a profound impact
on the improvement that can be achieved by the combination.

1 Introduction

The automatic recognition of handwritten text has been a focus of intensive
research for several decades [1]. Yet the problem is far from being solved, espe-
cially in the field of unconstrained handwritten word recognition. This problem
occurs, for example, in automatic postal address or form reading [2], or in the
transcription of unconstrained text after text lines have been extracted from a
page and segmented into individual words [3].

A common and widely used approach to handwritten word recognition is
based on Hidden Markov Models (HMM). However, novel recognizers have been
developed recently that clearly outperform HMMs. Among the most promis-
ing ones are recognizers based on Maximum Margin Hidden Markov Models
(MMHMM) [4] and novel recurrent neural network architectures (NN) [5].

The availability of these novel types of recognizers raises the question whether
it is possible to exploit their different nature and to build a multiple classifier
system (MCS) to further increase the performance. The potential of MCSs in
various pattern recognition tasks has been impressively demonstrated [6,7], yet
it is unclear for a specific task what the optimal combination strategy is and
what performance increase one can expect.
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The research that has been done to combine classifiers for offline word recog-
nition, e.g. [8,9,10], focuses mostly on the combination of similar underlying base
recognizers. By contrast, we aim at utilizing base recognizers of different archi-
tectures (i.e. HMM, NN and MMHMM). From such a combination, a higher
degree of diversity and, consequently, a greater reduction of the error rate can
be expected.

The rest of the paper is structured as follows. The three base recognizers,
HMM, MMHMM, and NN, are described in Section 2. Various combination
methods investigated in this paper are introduced in Section 3. An experimental
evaluation is presented in Section 4 and the paper concludes with Section 5.

2 Preprocessing and Base Classifiers

The task at hand is recognizing scanned images of hand-written words. In our
case the words come from the IAM database [11]. They have been binarized via
a gray scale value threshold, corrected (skew and slant) and normalized (height
and width). After these steps, a horizontally sliding window with a width of one
pixel is used to extract nine geometric features at each position. The 0th, 1st and
2nd moment of the black pixels’ distribution within the window, the top-most
and bottom-most black pixel, the inclination of the top and bottom contour,
the number of vertical black/white transitions, and the average grey scale value
between the top-most and bottom-most black pixel. For details on these steps,
we refer to [12].

2.1 Hidden Markov Models

Hidden Markov Modes are a statistical model to analyze sequences and are
therefore well suited for handwritten text recognition. Assuming that a statistical
process created the observed sequence, one is interested in identifying the internal
states of the creating process at each time step. These internal states can then
be mapped to a sequence of letters which constitute the recognized word. A
detailed description of the HMM based recognizer we use in the work described
in this paper can be found in [12].

2.2 Maximum Margin Hidden Markov Models

The traditional Maximum Likelihood Estimation learning strategy for Hidden
Markov Models does not focus on minimizing the classification error rate and a
number of attempts have been made to develop discriminative learning methods
for HMMs. Recently, large margin learning of HMMs has been investigated [13]
and shown to significantly outperform these discriminant methods [14]. Yet
none of the already proposed large margin training algorithms actually handles
the full problem of maximum margin learning for HMM parameters. Methods
are limited to simple HMMs only or are dedicated to learn mean parameters
only, etc.
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We use here a new technique for maximum margin learning of HMM models
whose efficiency has been investigated on both on-line handwritten digit recog-
nition and on off-line handwritten word recognition tasks (see [4,15] for details).

2.3 Neural Networks

The neural network based recognizer used in this paper is a recently developed re-
current neural network, termed bidirectional long short-term memory (BLSTM)
neural network [16]. The output of the network is a sequence of output ac-
tivations. Each node represents one character and its activation indicates the
probability that the corresponding character is present at that position. Given
an input word, the probability of that word being the origin on the sequence can
be computed using the Connectionist Temporal Classification Token Passing
algorithm [5].

2.4 Diversity Analysis

Combining recognizers can only improve the recognition accuracy if a wrong
output from one recognizer is corrected with the correct output from a differ-
ent recognizer. Obviously, this is only possible if the recognizers are not too
similar. A diversity measure indicates how different the individual recognizers
of an ensemble are. Of course, a high diversity does not automatically guaran-
tee an improvement of the recognition rate. Nevertheless, it still contains useful
information about promising combinations. There exists two types of diversity
measures, pairwise and non-pairwise [17]. In this paper, we focus on two popular
pairwise measures, namely Correlation and Disagreement.

To formally describe these measures, consider two recognizers R1 and R2 and
the four possible recognition probabilities: both correct (a), R1 wrong and R2
correct (b), R1 correct and R2 wrong (c), and both wrong (c). With these values,
the diversity measures can be calculated:

CorrelationR1,R2 =
ad− bc√

(a + b)(c + d)(a + c)(b + d)
DissagreementR1,R2

= b + c

To extend these diversity measures to ensembles containing more than two rec-
ognizers, the mean of all pairwise diversity measures is used.

3 Combination Methods

We investigated eight methods for combining two or three recognizers, namely
Voting, Borda Count, Exponentiated Borda Count, Average Likelihood, Class
Reduced Average Likelihood, Maximum Likelihood, Maximum Likelihood Margin,
and Meta Voting [7]. All these combination methods have been tested in a simple
unweighted version and two weighted versions. The perf-weighted version uses
the performance, i.e. the recognition rate on an independent validation set for
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each base recognizer as a weight. The ga-weighted version optimizes the weights
on the validation set using a genetic algorithm [8].

Voting considers the output of each recognizer and returns the most frequent
word. In case of a tie, the word is chosen randomly among the recognizers’
outputs. In the weighted versions, a recognizer’s vote counts as much as its
weight. For combining recognizers with Borda Count, each recognizer’s n-best
list is used and the word at position i on the list is given the score n− i+ 1. For
each word in the dictionary, the score is summed up over each recognizer’s list and
the word with the highest score is returned. The weighted versions apply weights
to each list in the final summation. We also investigated a novel method, called
Exponentiated Borda Count, where the score function changes to (n − i + 1)p,
with p being a constant that is optimized on an independent validation set. This
method accounts for the fact that the probability of the correct word being at
postion i seems to decrease faster than linear as i increases.

While Borda Count and Exponentiated Borda Count need just a ranked list
of classes from each recognizer, other methods require that a recognizer returns
a likelihood value for each word in the dictionary. However, since the values
returned by the MMHMMs and HMM are fundamentally different from the
values returned by the NN, all output values are normalized. The Maximum
Likelihood and Average Likelihood combination methods are common approaches
that consider the maximum (average) of the normalized likelihood values among
all recognizers for each word in the dictionary and return the word having the
largest value. The Class Reduced Average Likelihood follows the same procedure,
but considers only the words occurring in the 1-best lists of the recognizers. The
weighted versions multiply weights to the normalized likelihoods before taking
the maximum and the average, respectively.

The Maximum Likelihood Margin method uses only the top two words from
each recognizer and their normalized likelihood values. The difference of the top
word’s value to the following word’s value, the likelihood margin, decides which
word is returned. Obviously, a weighted version can be introduced by multiplying
weights to the margins.

Meta Voting, in which the best versions (found on the validation set) of all
seven of the previously described combination methods vote on the output was
also investigated. These outputs were combined with unweighted and ga-weighted
voting.

4 Experimental Evaluation

We experimentally evaluated the impact of classifier combination on a subset of
the IAM Handwriting Database [11]1. The words consist of the 26 lower case
letters of the Roman alphabet. The complete set of words was split up in a
test (9,674 words), a validation (5,164 words), and a training set (34,557 words)
contributed by different writers each. (Hence, a writer independent recognition
task was considered.) On the training set, an HMM, an MMHMM and an NN
1 http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
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Fig. 1. The recognition rate of all combination methods for combining HMM,
MMHMM and NN compared to the best base classifier’s performance (horizontal line).
Bars not shown are below the range of the diagram.

were trained and validated separately. For testing, a dictionary containing all
words that occur in the three sets was used.

The performance of the three individual classifiers is shown in Fig. 2 (three left-
most columns). A 20-best list for each recognizer was used to analyze the different
combination methods. We first show the resulting recognition accuracies for the
combination of all three recognizers (the combination results involving two rec-
ognizers are similar). In Fig. 1, the different recognition rates are compared to
the best base recognizer (NN, recognition rate of 0.8432), indicated by the hor-
izontal dotted line. The other two recognizers with a recognition rate of 0.7475
(HMM) and 0.7605 (MMHMM) perform below the range of the diagram. First
of all, it becomes obvious that the choice of a proper combination method is of
paramount importance, as some combinations lead to a deterioration of the recog-
nition rate while others achieve a substantial increase. Secondly, the versions with
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methods. All differences are statistically significant.
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Fig. 3. A scatter plot to compare combinations of two recognizers. The x-axis is the
diversity coefficient while the y-axis displays the reduction of error rate (average error
rate of the two base classifiers vs. error rate of the best combination).

optimized weights outperform the other versions almost always. All improvements
over the NN base recognizer are statistically significant2. It turns out that Meta
Voting with optimized weights is the best combinationmethod for the case of three
recognizers.

Next, also combinations of two recognizers are analyzed. In this case, only the
method performing best on an independent validation set is considered for each
combination. A direct comparison can be seen in Fig. 2. The neural network is
the best performing base recognizer and achieves a higher recognition rate than
the HMM and MMHMM combination. Combining the NN with the HMM or
with the MMHMM increases the recognition rate. The combination of all three
recognizers outperforms all other systems significantly.

The following table shows the different diversitymeasures applied to all pairwise
combinations. It can be seen that combinations including the neural network based
recognizer are substantially more diverse than the HMM and MMHMM combi-
nation, since the Correlation coefficients are much lower while the Disagreement
coefficients are higher than the ones for the MMHMM and HMM combination.

These coefficients also indicate that the MMHMM is slightly more similar to
the NN than the HMM is. This might explain why the neural network com-
bined with HMM outperforms the combination with the MMHMM although the
MMHMM base recognizer performes better than the HMM base recognizer. This
effect can be seen more clearly in Fig. 3. It shows a scatter plot of the two di-
versity measures on one axis and the relative reduction of the recognizer’s error
rate on the other axis. The relative error reduction is the decrease of the aver-
aged error rate of the base recognizers as compared to the error rate of the best

2 A standard z-test was conducted for α = 0.05.
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combination method. These results clearly indicate that combinations having a
higher correlation or a smaller disagreement among the base recognizers do not
reduce the error rate as much as combinations with diverse recognizers.

Combined Recognizers Correlation Disagreement
MMHMM & HMM 0.5187 0.1787

NN & HMM 0.4022 0.2031
NN & MMHMM 0.4181 0.1914

5 Conclusion

We investigated various methods to combine classic Hidden Markov Models with
novel Maximum Margin Hidden Markov Models and Neural Networks for hand-
written text recognition. Methods to combine two of these recognizers as well
as all three recognizers were tested and compared. Among the most promis-
ing combination methods are weighted versions of Exponentiated Borda Count,
Maximum Likelihood Margin and Meta Voting. It turned out that a significant
increase of the recognition rate can be achieved, although already highly opti-
mized state-of-the-art recognizers are used as the base recognizers. In fact, using
the combination of all three recognizers resulted in an error reduction of 19.33%
as compared to the best base classifier (NN).

Diversity analysis shows that combinations including the neural network based
recognizer are substantially more diverse than combinations including the HMM
and MMHMM based recognizer. We furthermore demonstrated that the lower a
combination’s correlation anddisagreement coefficient is, the higher is its error rate
reduction. The neural network’s inherent difference to the other two recognizers,
therefore, enables the construction of a combined system with high performance.

Future work will include experiments with recognizer combinations using ad-
ditional base recognizers. These could be modified or enhanced versions of the
recognizers considered in this paper as well as recognizers based on completely
different techniques, e.g. dynamic time warping. Also combination methods, such
as bagging, boosting and entropy based decision rules are of potential interest.
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Abstract. Hidden Markov Models (HMMs) are now widely used in off-line
handwritten text recognition. As in speech recognition, they are usually built from
shared, embedded HMMs at symbol level, in which state-conditional probabil-
ity density functions are modelled with Gaussian mixtures. In contrast to speech
recognition, however, it is unclear which kind of real-valued features should be
used and, indeed, very different features sets are in use today. In this paper, we
propose to by-pass feature extraction and directly fed columns of raw, binary im-
age pixels into embedded Bernoulli mixture HMMs, that is, embedded HMMs
in which the emission probabilities are modelled with Bernoulli mixtures. The
idea is to ensure that no discriminative information is filtered out during feature
extraction, which in some sense is integrated into the recognition model. Good
empirical results are reported on the well-known IAM database.

Keywords: HMMs, Bernoulli Mixtures, Handwritten Text Recognition.

1 Introduction

Handwritten Text Recognition (HTR) is now usually approached by using technology
imported from speech recognition; that is, HMM-based text image modelling and n-
gram language modelling [1,2,3]. In contrast to speech recognition, however, there is
no a de-facto standard regarding the kind of features that should be computed when
transforming the input (image) signal into a sequence of feature vectors [1,2].

In [4,5], an isolated handwritten word recogniser is proposed in which binary image
pixels are directly fed into word-conditional embedded Bernoulli mixture HMMs, that
is, embedded HMMs in which the emission probabilities are modelled with Bernoulli
mixtures. As in [6], the basic idea is to ensure that no discriminative information is
filtered out during feature extraction, which in some sense is integrated into the recog-
nition model. In this paper, this idea is extended to general, continuous handwritten text
recognition; that is, whole sentences instead of isolated words. Good empirical results
are reported on the well-known IAM database.

The paper is organised as follows. In Sections 2, 3 and 4, we review plain Bernoulli
mixtures, Bernoulli mixture HMMs and embedded Bernoulli mixture HMMs. While
� Work supported by the EC (FEDER) and the Spanish MEC under the MIPRCV “Con-

solider Ingenio 2010” research programme (CSD2007-00018), the iTransDoc research project
(TIN2006-15694-CO2-01), and the FPU grant AP2005-1840.
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their estimation by maximum likelihood is described in Section 5. In Section 6, empir-
ical results are reported. Concluding remarks are discussed in Section 7.

2 Bernoulli Mixture

Let o be a D-dimensional feature vector. A finite mixture is a probability (density)
function of the form:

pΘ(o) =
K∑

k=1

πk pΘ′(o | k) , (1)

where K is the number of mixture components, πk is the kth component coefficient,
and pΘ′(o | k) is the kth component-conditional probability (density) function. The
mixture is controlled by a parameter vector Θ comprising the mixture coefficients and
a parameter vector for the components, Θ′. It can be seen as a generative model that
first selects the kth component with probability πk and then generates o in accordance
with pΘ′(o | k).

A Bernoulli mixture model is a particular case of (1) in which each component k has
a D-dimensional Bernoulli probability function governed by its own vector of parame-
ters or prototype pk = (pk1, . . . , pkD)t ∈ [0, 1]D,

pΘ′(o | k) =
D∏

d=1

pod

kd (1− pkd)1−od , (2)

where pkd is the probability for bit d to be 1. Note that this equation is just the product
of independent, unidimensional Bernoulli probability functions. Therefore, for a fixed
k, it can not capture any kind of dependencies or correlations between individual bits.

Consider the example given in Fig. 1. Three binary images (a, b and c) are shown as
being generated from a Bernoulli prototype depicted as a grey image (black=1, white=0,
grey=0.5). The prototype has been obtained by averaging images a and c, and it is the
best approximate solution to assign a high, equal probability to these images. However,
as individual pixel probabilities are not conditioned to other pixel values, there are 26 =
64 different binary images (including a, b and c) into which the whole probability mass
is uniformly distributed. It is then not possible, using a single Bernoulli prototype, to
assign a probability of 0.5 to a and c, and null probability to any other image such as b.
Nevertheless, this limitation can be easily overcome by using a Bernoulli mixture and
allowing a different prototype to each different image shape. That is, in our example, a
two-component mixture of equal coefficients, and prototypes a and b, does the job.

3 Bernoulli Mixture HMM

Let O = (o1, . . . , oT ) be a sequence of feature vectors. An HMM is a probability
(density) function of the form:

pΘ(O) =
∑

I,q1,...,qT ,F

aIq1

[
T−1∏
t=1

aqtqt+1

]
aqT F

T∏
t=1

bqt(ot) , (3)
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a© b© c©

Fig. 1. Three binary images (a, b and c) are shown as being generated from a Bernoulli prototype
depicted as a grey image (black=1, white=0, grey=0.5)
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Fig. 2. Example of embedded Bernoulli mixture HMMs for the numbers 3 (left) and 31 (right),
and binary images generated from them. Note that a shared Bernoulli mixture HMM for digit 3
is used.

where I and F are the special states for start and stop respectively, aij is the state-
transition probability between states i and j, bj is the observation probability (density)
function in state j, and qt denotes the state at time t.

A Bernoulli mixture HMM is an HMM in which the probability of observing ot,
when qt = j, is given by a Bernoulli mixture probability function for the state j:

bj(ot) =
K∑

k=1

πjk

D∏
d=1

potd

jkd (1− pjkd)1−otd , (4)

where πj are the priors of the jth state mixture components, and pjk is the kth compo-
nent prototype in state j.
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Consider the left part of Fig. 2, where a Bernoulli mixture HMM for number 3 is
shown, together with a binary image generated from it. It is a two-state model with a
single prototype attached to state 1, and a two-component mixture assigned to state 2. In
contrast to the example in Fig. 1, prototypes do not account for whole digit realisations,
but only for single columns. This column-by-column emission of feature vectors at-
tempts to better model horizontal distortions at symbol level and, indeed, it is the usual
approach in both speech and handwriting recognition when continuous-density (Gaus-
sian mixture) HMMs are used. The reader can easily check that, by direct application
of Eq. (3), the probability of generating the binary image is 0.02835.

4 Embedded Bernoulli Mixture HMM

Let C be the number of different characters (symbols) from which words are formed,
and assume that each character c is modelled with a different HMM of parameter vector
λc. Let Λ = {λ1, . . . , λC}, and let O = (o1, . . . , oT ) be a sequence of feature vectors
generated from a word formed by a sequence of symbols S = (s1, . . . , sL), with L ≤
T . The probability (density) of O can be calculated, using embedded HMMs for its
symbols, as:

pΛ(O | S) =
∑

i1,...,iL+1

L∏
l=1

pλsl
(oil

, . . . , oil+1−1) , (5)

where the sum is carried out over all possible segmentations of O into L segments,
that is, all sequences of indices i1, . . . , iL+1 such that 1 = i1 < · · · < iL < iL+1 =
T + 1; and pλsl

(oil
, . . . , oil+1−1) refers to the probability (density) of the lth segment,

as given by (3) using the HMM associated with symbol sl.
Consider now the right part of Fig. 2. An embedded Bernoulli mixture HMM for

number 31 is shown, which is the result of concatenating Bernoulli mixture HMMs for
digit 3, blank space and digit 1, in that order. Note that the HMMs for blank space
and digit 1 are simpler than that for digit 3. Also note that the HMM for digit 3 is
shared between the two embedded HMMs shown in the Figure. The binary image of
the number 31 shown above can only be generated from the segmentation represented
as arrows connecting prototypes to image columns. This is due to the fact that all but
the rightmost prototype are 0 − 1 column prototypes that can only emit themselves as
binary columns. It is straightforward to check that, according to (5), the probability of
generating this image of number 31 is 0.020412.

As with conventional HMMs, the exact probability (density) of an observation can
be efficiently computing by dynamic programming. For each time t, symbol sl and state
j from the HMM for symbol sl, define αlt(j) as:

αlt(j) = pΛ(Ot
1, qt = (l, j) | S) , (6)

that is, the probability (density) of generating O up to its tth element and ending at state
j from the HMM for symbol sl. This definition includes (5) as the particular case in
which t = T , l = L and j = FsL ; that is,

pΛ(O | S) = αLT (FsL
) . (7)
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To compute αLT (FsL
), we must first take into account that, for each position l in S

except for the first, the initial state of the HMM for sl is joined with final state of its
preceding HMM, i.e.

αlt(Isl
) = αl−1t(Fsl−1)

1 < l ≤ L
1 ≤ t ≤ T . (8)

Having (8) in mind, we can proceed at symbol level as with conventional HMMs. In the
case of final states, we have:

αlt(Fsl
) =

Msl∑
j=1

αlt(j)asljFsl

1 ≤ l ≤ L
1 ≤ t ≤ T , (9)

while, for regular states, 1 ≤ j ≤Msl
, we have:

αlt(j) =

⎡⎣ ∑
i∈{Isl

,1,...,Msl
}

αlt−1(i)aslij

⎤⎦ bslj(ot) , (10)

with 1 ≤ l ≤ L and 1 < t ≤ T . The base case is for t = 1:

αl1(i) =

{
as1Is1 i bs1i(o1) l = 1, 1 ≤ i ≤Ms1

0 otherwise
. (11)

5 Maximum Likelihood Estimation

Maximum likelihood estimation of the parameters governing an embedded Bernoulli
mixture HMM does not differ significantly from the conventional Gaussian case, and
it can be carried out using the well-known EM (Baum-Welch) re-estimation formu-
lae [3,7]. Let (O1, S1), . . . , (ON , SN), be a collection of N training samples in which
the nth observation has length Tn, On = (on1, . . . , onTn), and was generated from a
sequence of Ln symbols (Ln ≤ Tn), Sn = (sn1, . . . , snLn). At iteration r, the E step
requires the computation, for each training sample n, of their corresponding forward
and backward probabilities (see (6) and [3,7]), as well as the expected value for its
tth feature vector to be generated from kth component of the state j in the HMM for
symbol sl,

z
(r)
nltk(j) =

π
(r)
snljk

∏D
d=1 p

(r)
snljkd

ontd

(1− p
(r)
snljkd)

1−ontd

b
(r)
snlj

(ont)
,

for each t, k, j and l.
In the M step, the Bernoulli prototype corresponding to the kth component of the

state j in the HMM for character c has to be updated as:

p
(r+1)
cjk =

1
γck(j)

∑
n

∑
l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)ont

P (On | Sn, λC
1 )

, (12)

where γck(j) is a normalisation factor,
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γck(j) =
∑

n

∑
l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn, λC
1 )

, (13)

and ξ
(r)
nltk(j) the probability for the tth feature vector of the nth sample, to be generated

from the kth component of the state j in the HMM for symbol sl,

ξ
(r)
nltk(j) = α

(r)
nlt(j)z

(r)
nltk(j)β(r)

nlt(j) . (14)

Similarly, the kth component coefficient of the state j in the HMM for character c has
to be updated as:

π
(r+1)
cjk =

1
γc(j)

∑
n

∑
l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn, λC
1 )

, (15)

where γc(j) is a normalisation factor,

γc(j) =
∑

n

∑
l:snl=c

∑Tn

t=1 α
(r)
nlt(j)β

(r)
nlt(j)

P (On | Sn, λC
1 )

. (16)

To avoid null probabilities in Bernoulli prototypes, they can be smoothed by linear
interpolation with a flat (uniform) prototype, 0.5, and using δ = 10−6,

p̃ = (1 − δ)p + δ 0.5 . (17)

6 Experiments

Experiments have been carried out using the IAM database [8]. This corpus contains
forms of unconstrained handwritten English text. All texts were extracted from the LOB
corpus. A total of 657 writers contributed. Different datasets were obtained by using
segmentation techniques and, in particular, we have used the handwritten text lines
dataset. More precisely, we have used the partition described in [1]. This partition is
split into three sets. The training set consists of 6161 samples written by 283 writers;
to the validation set 56 writers have contributed with 920 samples, while the test set
contains 2781 samples by 161 writers.

All input gray level images were preprocessed before transforming them into se-
quences of feature vectors. Preprocessing consisted of three steps: gray level normali-
sation, deslanting, and size normalisation of ascenders and descenders [2]. As in [4,5],
feature extraction has been carried out by rescaling the image to height 20 while re-
specting the original aspect ratio, and applying an Otsu binarisation to the resulting
image. Therefore, the observation sequence is in fact a binary image of height 20.

The language model is derived from three different English text corpora (LOB cor-
pus, Brown corpus and Wellington corpus) in a similar way as described in [1]. The
underlying vocabulary consists about 34000 words, that is, words with at least 4 occur-
rences. Note, that the vocabulary is not closed over the test set. Thus, the most optimistic
result that we can obtain is a Word Error Rate (WER) of 4.51%.
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Fig. 3. WER as a function of the number of states, for varying number of components (K)

The validation set has been used in order to adjust an appropriate number of states
per HMM, Q ∈ {4,6,8, 10, 12}, and the number of mixture components per state,
K ∈ {1, 4, 16, 64}. For K = 1, the recogniser was initialised by first segmenting the
training set using a “neutral” model, and then using the resulting segments to perform a
Viterbi initialisation. For K > 1, it was initialised by splitting the mixture components
of the trained model with K/4 mixture components per state. The results obtained are
shown in Fig. 3. A Grammar Scale Factor of 4 and a Word Insertion Penalty of−2 was
used in all cases.

From the results in Fig. 3, it becomes clear that appropriate values for Q and K are
6 and 64 respectively. Using these values, our continuous handwritten text recogniser
attains a comparatively good 34.6% of WER on the validation set. Also using these
values of Q and K , the text recogniser was applied to the test set and a WER of 42.1%
was obtained. This result is not as good as the 35.5% WER reported in [1], which is
obtained with a similar system based on Gaussian HMMs, geometrical features and
flexible number of states. It is also worth noting that our 42.1% of WER is the very first
result we have obtained in continuous handwritten text recognition, and thus we think
that there is still room to significantly improve this WER.

7 Concluding Remarks and Future Work

Embedded Bernoulli mixture HMMs have been proposed for Continuous Handwritten
Text Recognition and comparatively good results have been obtained on the well-known
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IAM database. In particular, a 42.1% of test-set WER has been achieved, which is the
very first result we have obtained in continuous handwritten text recognition, and thus
we think that there is still room to improve it.

In order to improve the above result, we plan to study a number of ideas including:
the dimension of the feature vectors, multiple-column feature vectors, flexible (variable)
number of states, etc. Moreover, we also plan to use new Bernoulli-based models in
which geometrical image invariances are explicitly modelled.
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Abstract. Segmentation of Nom characters from body text regions of
stele images is a challenging problem due to the confusing spatial distri-
bution of the connected components composing these characters. In this
paper, for each vertical text line, area Voronoi diagram is employed to
represent the neighborhood of the connected components and Voronoi
edges are used as nonlinear segmentation hypotheses. Characters are
then segmented by selecting appropriate adjacent Voronoi regions. For
this purpose, we utilize the information about the horizontal overlap of
connected components and the recognition distances of candidate char-
acters provided by an OCR engine. Experimental results show that the
proposed method is highly accurate and robust to various types of stele.

Keywords: Recognition-based segmentation, area Voronoi diagram, stele
images, Nom characters, horizontal overlap, segmentation graph.

1 Introduction

Stone steles in Vietnam usually contain Nom characters, a derivative of Chinese
which was used before the 20th century describing important historical events.
Today, the exploitation of these steles is necessary to better understand the his-
tory and form a solid base for future development. Automatic processing of stele
images composes of three sub-problems: extraction of body text regions, segmen-
tation of Nom characters, and finally representation of these Nom characters in
a database allowing search for information. The first one has been tackled using
the information about the thickness of connected components [1]. Fig. 1(a)-1(b)
show an example of a stele image and its extracted body text region respectively.

As shown in Fig. 1(b), Nom characters are engraved on stone steles in verti-
cal text line from right to left and each character may be composed of several
connected components. In each text line, the gaps between characters is in-
distinguishable from the gaps between connected components belonging to one
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Scientific Cooperation Program (PICS: 2007-2009).

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 205–212, 2009.
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(a) (b)

Fig. 1. A stele image (a) and its extracted body text region (b)

character. This makes segmentation of Nom characters a challenging problem to
be dealt with in this paper.

There exists many methods in literature for character segmentation. Lu [2],
Lu and Shridhar [3] reviewed methods for character segmentation in machine
printed documents and handwritten works. Casey and Lecolinet [4] classified
existing methods into three strategies: dissection, recognition-based, and holistic.
The first strategy decomposes the image into a sequence of sub-images using
general features like character height, width and white space between characters.
In the second strategy, the system searches the image for components that match
classes in its alphabet. The third strategy seeks to recognize the words as a whole
avoiding the need to segment into characters. This strategy is inappropriate for
Nom characters as each Nom character has its own meaning.

Tseng and Chen [5] proposed a method for Chinese character segmentation
by first generating bounding boxes for character strokes then using knowledge-
based merging operations to merge these bounding boxes into candidate boxes
and finally applying dynamic programming algorithm to determine optimal seg-
mentation paths. However, the assumption of similarity on character sizes makes
this method unsuitable for Nom characters written vertically. Viterbi algorithm
and background thinning method were used in [6,7] to locate nonlinear segmen-
tation hypotheses separating handwritten Chinese characters. These methods
are also inappropriate for Nom characters as there may exist horizontal gaps in-
side a character separating its connected components and connected components
from neighboring characters on the same line may horizontally overlap.

Area Voronoi diagram has been used by some researchers for document image
analysis. For example, Kise et al. [8] and Lu et al. [9] used area Voronoi dia-
gram for page segmentation and word grouping in document images respectively
using the distance and area ratio between neighboring connected components.
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However, these methods work only for alphanumeric documents in which each
character is represented as a connected components.

In this paper, we propose an efficient method combining dissection and
recognition-based strategies. For each vertical text line extracted from the body
text region using vertical projection profile, area Voronoi diagram is employed
to represent the neighborhood of connected components and Voronoi edges are
used as nonlinear segmentation hypotheses. Adjacent Voronoi regions are first
grouped using the information about the horizontal overlap of connected com-
ponents. The remaining Voronoi edges are used as vertices in a segmentation
graph in which the arcs’ weights are the recognition distances of the correspond-
ing candidate characters using an OCR engine. The vertices in the shortest path
detected from the segmentation graph represent the optimal segmentation paths.

The remainder of this paper is organized as follows. Section 2 briefly gives a
basic definition of area Voronoi diagram. Section 3 presents a method to group
adjacent Voronoi regions using horizontal overlap of connected components. Sec-
tion 4 describes the details of the algorithm determining optimal segmentation
paths using recognition distances of candidate characters. Experimental results
are given in Section 5, and finally conclusions are drawn in Section 6.

2 Area Voronoi Diagram

Let G = {g1, . . . , gn} be a set of non-overlapping connected components in the
two dimensional plane, and let d(p, gi) be the Euclidean distance between a
point p and a connected component gi defined by d(p, gi) = minq∈gi d(p, q), then
Voronoi region V (gi) and area Voronoi diagram V (G) are defined by:

V (gi) = {p | d(p, gi) ≤ d(p, gj), ∀j �= i}
V (G) = {V (g1), . . . , V (gn)}

The Voronoi region of each image component corresponds to a portion of the
two dimensional plane. It consists of the points from which the distance to the
corresponding component is less than or equal to the distance to any other image
components. The boundaries of Voronoi regions, which are always curves, are
called Voronoi edges.

To construct area Voronoi diagram, we utilize the approach represented in [10]
that first labels the image components and then applies morphological operations
to expand their boundaries until two expanding labels are met. Fig. 2(a)-2(d)
show the area Voronoi diagram for a column text line extracted from the body
text region in Fig. 1(b). Original text line I is given in Fig. 2(a). Fig. 2(b)
demonstrates the Euclidean distance map in which the gray value of each pixel is
proportional to the distance from that pixel to the nearest connected component.
The area Voronoi diagram V of I is shown in Fig. 2(c). Voronoi regions with
their corresponding connected components are given in Fig. 2(d).

As shown in Fig. 2(d), each connected component is represented by one
Voronoi region and Voronoi edges can be used as nonlinear segmentation hy-
potheses. The process of character segmentation is then considered as the process
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Fig. 2. Steps in segmenting Nom characters from one vertical text line

of grouping adjacent Voronoi regions representing one character. In this paper,
we propose to group adjacent Voronoi regions in two steps:

- Step 1 : Voronoi regions are first grouped using the criteria based on the de-
gree of horizontal overlap of their corresponding connected components. We
argue that connected components from one vertical text line overlapped hor-
izontally to a certain degree should belong to one character. This algorithm
is described in Section 3.

- Step 2 : As each Nom character may be composed of several connected com-
ponents and there may exist horizontal gaps between these connected com-
ponents, the above algorithm does not guarantee a grouped Voronoi region
for each character. We further group Voronoi regions using the recognition
distances of candidate characters in Section 4.



Recognition-Based Segmentation of Nom Characters 209

3 Grouping of Voronoi Regions Using Horizontal
Overlapping Profile of Connected Components

In order to calculate the degree of horizontal overlap of two connected compo-
nents, we define Ti and Bi as the top and bottom coordinates of the bounding
box of the connected component gi (Bi > Ti). The degree of horizontal overlap
V Oij of two connected components gi and gj is calculated as:

V Oij =
max{min(Bi − Tj , Bj − Ti), 0}

min(Bi − Ti, Bj − Tj)
(1)

The numerator of (1) is interpreted as the length of the overlapping segment and
V Oij is the proportion of the shorter connected component being overlapped.
Thus two connected components gi and gj which have V Oij ≥ V Othr are con-
sidered as belonging to one character and their corresponding Voronoi regions
are grouped. Fig. 2(e) provides the horizontal projections of the bounding boxes
of connected components in Fig. 2(a) with each vertical line corresponds to one
connected component. The grouped Voronoi regions are shown in Fig. 2(f) and
adjacent lines correspond to each grouped Voronoi region are labeled using the
same color in Fig. 2(e).

By observation of Fig. 2(d) we realize that if each Nom character is repre-
sented by one group of Voronoi regions, these grouped region should span from
the left border of the text line to its right border. From this viewpoint, those
Voronoi regions that do not span from left to right in Fig. 2(f) need to be further
grouped to one of its adjacent regions. We propose to use the distance dij be-
tween neighboring connected components gi and gj as the criterion of grouping:

dij = min
pi∈gi,pj∈gj

d(pi, pj)

where d(pi, pj) is the Euclidean distance between pi and pj . Thus, for each
Voronoi region i to be further grouped, we select a region j from a set of its
adjacent regions D by j = argmink∈D dik and then group region i with region
j. The resulting grouped Voronoi regions are provided in Fig. 2(g).

4 Recognition-Based Determination of Optimal
Segmentation Paths

The validity of segmentation hypotheses in Fig. 2(g) is verified by feeding can-
didate characters into an OCR engine and using their recognition distances to
determine the optimal segmentation paths. A segmentation graph is constructed
by using the segmentation hypotheses as its vertices and recognition distance of
the candidate character corresponding to vertex i and vertex j as the weight
of the arc connecting i and j. The segmentation graph in Fig. 2(h) has 31 ver-
tices corresponding to 29 segmentation hypotheses in Fig. 2(g) plus the top and
bottom lines. Assuming that a lower value of recognition distance corresponds
to higher confidence of the OCR engine in the candidate character, the optimal
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Fig. 3. (a) A line segment of Fig. 2(g), (b) Its corresponding segmentation graph

segmentation paths are thus determined by finding the shortest path in the seg-
mentation graph. For the graph in Fig. 2(h), we need to find the shortest path
from vertex 1 to 31.

In updating the weights of the graph, instead of feeding all candidate char-
acters into the OCR engine, we only feed candidate characters that have the
character-like feature H ≤ HthrW where H and W are the height and width of
the candidate character. By doing this, candidate character covering at least two
Nom characters are mostly discarded. The arcs shown in Fig. 2(h) correspond
to all candidate characters that have the character-like feature.

As there exists no OCR engine for Nom characters, we employ a Chinese OCR
engine [11] admitting that not all Nom characters are recognizable by the engine.
However, as the proportion of Nom characters that are not Chinese characters
are small, the shortest path algorithm can overcome the case in which one non-
Chinese character lies between two Chinese characters. An example of a line seg-
ment of Nom characters along with its segmentation graph are given in Fig. 3(b)
and 3(a) respectively. The optimal segmentation paths in this case contains ver-
tices {22, 24, 26, 28}.

For the full segmentation graph in Fig. 2(h), directly applying a shortest path
algorithm to the may result in error due to the inappropriateness of the OCR
engine, we propose here a three-steps algorithm to find the shortest path of the
segmentation graph:

– Find cut vertices (sky blue vertices in Fig. 2(h)): a cut vertex is a vertex the
removal of which disconnect the remaining graph, the shortest path of the
graph must contain cut vertices.

– Find arcs having corresponding candidate characters of high confidence (read
arcs in Fig. 2(h)): candidate characters that have recognition distances less
than RDthr are said to be of high confidence and the arcs corresponding to
these characters should be included in the shortest path.

– Find the shortest paths of the remaining subgraphs.

The final optimal segmentation paths are shown in Fig. 2(i).
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5 Experimental Results

In order to determine the appropriate values of V Othr and Hthr, a learning set
of 16 Nom text lines containing 280 characters have been used for the evaluation
of the proposed algorithm’s accuracy at different threshold values. According to
Fig. 4, the values of V Othr and Hthr are selected as 0.4 and 1.25 respectively
corresponding to the maxima of the curves. The value of RDthr, which depends
on the OCR engine, is selected experimentally as 0.06.
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Fig. 4. Algorithm’s accuracy at different values of V Othr and Hthr

Out of 205 stele images provided by EFEO (The French School of Asian
Studies) for evaluation, only 40 images are eligible for the proposed algorithm.
The remaining images are regarded as insufficient because of their too noisy
body text regions or their poor resolution. We have randomly selected 20 stele
images containing 4998 Nom characters for experiment. The ground truth for
these characters are defined by hand. Table 1 summarizes the experimental re-
sults. The accuracy which is defined as the percentage of characters that are
segmented correctly has the value 89.14%. There are two sources of error: one is
missing and the other is incorrect grouping. The error of missing concerns with
characters that are classified as background noise. In incorrect grouping, each
segmented character is not composed of all the connected components from one
Nom character, its connected components may come from background noise or
neighboring Nom characters.

Table 1. Performance of Nom character segmentation

EFEO database
Accuracy(%) 89.14
Missing(%) 0.84
Incorrect grouping(%) 10.02

A considerable amount of error comes from the steles which contain characters
of various sizes and curved text lines in their body text regions. The layout of
these steles thus cannot be aligned into vertical straight lines. This results in error
in the extraction of text lines from body text regions using vertical projection
profile and consequently the segmented characters will be inaccurate.
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6 Conclusions

In this paper, area Voronoi diagram has demonstrated to be effective in repre-
senting the neighborhood of connected components in digital images. Voronoi
edges then function as nonlinear segmentation hypotheses that need to be vali-
dated. Adjacent Voronoi regions have been first grouped using the information
about the vertical overlap of connected components. The remaining Voronoi
edges are used as vertices in a segmentation graph in which the weight of each
arc is the recognition distance of the corresponding candidate character provided
by an OCR engine. The vertices in the shortest path of the segmentation graph
represent the optimal segmentation paths. Experimental results on a number of
stele images show that the proposed method is highly accurate. Further work
will employ a curved text line extraction algorithm [12] to increase the accuracy
and represent each Nom character in a database for later retrieval. Moreover,
poor-resolution images will be re-scanned and noise in body text regions will be
removed to make this method more applicable.
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Abstract. Edit distance matching has been used in literature for word spotting 
with characters taken as primitives. The recognition rate however, is limited by 
the segmentation inconsistencies of characters (broken or merged) caused by 
noisy images or distorted characters. In this paper, we have proposed a Merge-
split edit distance which overcomes these segmentation problems by incorporat-
ing a multi-purpose merge cost function. The system is based on the extraction 
of words and characters in the text and then attributing each character with a set 
of features. Characters are matched by comparing their extracted feature sets 
using Dynamic Time Warping (DTW) while the words are matched by compar-
ing the strings of characters using the proposed Merge-Split Edit distance algo-
rithm. Evaluation of the method on 19th century historical document images 
exhibits extremely promising results. 

Keywords: Word Spotting, Edit Distance, Dynamic Time warping. 

1   Introduction 

Word spotting on Latin alphabets has received considerable attention over the last few 
years. A wide variety of techniques have been proposed in literature but the field still 
remains inviting and challenging specially if the document base comprises low quality 
images of historical documents. There are plenty of issues and problems related to 
ancient printed documents which are discussed in detail in [4] and [5]. These include 
physical issues such as quality of the documents, the marks and strains of liquids, inks 
and dust etc; and semantic issues such as foreground entity labeling. In this paper 
though, we will concentrate only on the segmentation related problems. The main 
focus of this paper will be the improvements in word spotting to make it clear of a 
good character segmentation requirement, so that if we do not get a good segmenta-
tion, we can still obtain better word retrieval rates. A brief account of some state of 
the art methods in word spotting that inspired our own work is given here: 

Adamek et al. [2] introduced an approach based on the matching of word contours 
for holistic word recognition in historical handwritten manuscripts. The closed word 
contours are extracted and their multiscale contour-based descriptors are matched 
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using a Dynamic Time Warping (DTW) based elastic contour matching technique. In 
[12], Rath et al. argued that word spotting using profile feature matching gives better 
results. Words are extracted from the text and are represented by a set of four profile 
features. Feature matching is performed using the scale invariant DTW algorithm. In 
[9], we showed that, for historical printed documents, instead of using word features, 
character features give a better and distinct representation of a word. Two words are 
compared by matching their character features using DTW [8]. The method can be 
improved by adding Edit distance matching for the words. It means that the features 
of two characters are matched using DTW while track of these character matching 
costs between the two strings is kept by Edit distance. Addition of the Edit distance 
stage significantly reduced the number of false positives while improving the recogni-
tion rate as later shown in results. However, if the character segmentation is not good 
there will be a significant drop in retrieval rate as the classic edit distance does not 
cater for merged and broken characters.  

Different variations of Edit distance have been proposed in literature for different 
matching applications [3,7,11,13]. Kaygin et al. introduced a variation of Edit dis-
tance for shape recognition in which polygon vertices are taken as primitives and are 
matched using the modified Edit distance. The operations of inserting and deleting a 
vertex represent the cost of splitting and combining the line segments respectively [7]. 
A minimal edit distance method for word recognition has been proposed by [13]. 
Complex substitution costs have been defined for the Edit distance function and 
string-to-string matching has been done by explicitly segmenting the characters of the 
words. Another recent variant of Edit distance has been proposed in [11] where apart 
from the classic substitution costs, two new operations namely combination and split 
are supported.  

This paper presents an effective way for word spotting in historical printed docu-
ments using a combination of our merge-split Edit distance variant and an elastic 
DTW algorithm. Main aim of this work is to be able to match words without the need 
of having perfect character segmentation a priori. Paper is divided into multiple sec-
tions beginning with the overview of the proposed system in the next section. This is 
followed by description of method and its different stages and the results achieved. 

2   Proposed Method 

The model is based on the extraction of a multi-dimensional feature set for the charac-
ter images. As opposed to [12] where features are extracted at word level, we define 
features at character level, thus giving more precision in word spotting [8].  

Figure 1 illustrates the different stages of our system. Document image is binarized 
using NICK algorithm [10]. Text in the document image is separated from graphics 
and words in the text area are extracted by applying a horizontal RLSA [14] and find-
ing the connected components in that RLSA image. Characters in a word image are 
found by performing its connected component analysis followed by a 3-step post-
processing stage. For each character, we define 6 feature sequences which represents 
a character’s overall form. Query word is searched within candidate words by a com-
bination of our Merge-split Edit distance at word level and DTW at character level 
which allows us to spot even the words with improper character segmentation.  
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Fig. 1. a) Document image Indexing involving character segmentation and feature extraction.  
b) Word retrieval using a combination of DTW and Merge-split edit distance. 

3   Document Indexing 

In this section, we only give an overview of the indexing process involving character 
segmentation and feature extraction.  

The connected components (CCs) of the binary image do not always correspond to 
characters. A character may be broken into multiple components or multiple characters 
may form a single component. For that, we have a 3-pass processing stage for the CCs 
in a word component to get the characters. In the first pass, components on the top of 
each other are assigned to the same character (fig 2a). In the 2nd pass, overlapping com-
ponents are merged into a single character (fig 2a). In the 3rd pass, the punctuation 
marks (like ‘,’ ‘.’) are detected using size and location criteria and are removed from the 
word (fig 2b). After the three passes, there still remain some improperly extracted char-
acters which are of main interest in this paper (fig 2c,3). 

Each character is represented by a sequence of six feature vectors. The length of 
each of the six vectors associated with a character is equal to the width of the charac-
ter bounding box. The six features we use are Vertical projection profile (on gray 
level image), Upper character profile position, Lower character profile position, 
Vertical histogram, Number of ink/non-ink transitions and Middle row transition state  
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Fig. 2. a) Pass 1 & 2  b) Pass 3  c) Some examples of the remaining unfixed characters 

 (on binary image). Document processing/indexing is done offline, creating an index 
file for each document image. The coordinates of each word, number of characters in 
the word, the position and the features of each character are stored in the index files. 
One advantage of having an index file is that the query word can now be crisply se-
lected by just clicking on the word in the GUI of our document processing system. 
This query word is processed in the same way to extract character features. We can 
also type in the input query word instead of a click-selection. In that case, features of 
the prototype characters (selected manually offline) are used for matching. The seg-
mentation of the query characters is perfect in this case. 

4   Word Retrieval 

For word spotting, we have proposed a two step retrieval system. In the first step, a 
length-ratio filter finds all eligible word candidates for the query word. For two words 
to be considered eligible for matching, we have set bounds on the ratio of their 
lengths. If this ratio does not lie within a specific interval, we do not consider this 
word as a candidate. Through this step, we are on average able to eliminate more than 
65% of the words. In the second step, the query word and candidate word are matched 
using a multi-stage method in which the characters of the two words are matched 
using the Merge-Split Edit distance algorithm while features of the two characters are 
matched using elastic DTW method coupled with Euclidean distance. The need for an 
algorithm catering for the merge and split of characters arises because we may not 
have 100% accurate segmentation of characters all the time (fig 3).  
 

 
 

 
m (split) 

 
 

 
FI (merged) 

Fig. 3. Query words and some instances of them which were not spotted without Merge-split 

4.1   Word Matching – Merge Split Edit Distance 

To address character segmentation issues, we have introduced two new merge-based 
character matching operations Merge1 and Merge2 that enable to model a merge and 
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split capability respectively in Edit distance, thus overcoming the limitation of having 
a perfect character segmentation by catering for the broken and merged characters 
during word matching.  

Consider 2 words A and B; A, the query word, having s characters while B, the test 
word, having t characters. We treat both words as two series of characters, A = (a1 ... 
as) and B = (b1 ... bt). To determine the distance/cost between these two character 
series, we find the Edit matrix W which shows the cost of aligning the two subse-
quences. Apart from the three classic Edit operations, we have introduced two new 
operations ai→(bj+bj+1) and (ai+ai+1)→bj which represent merge1 and merge2 respec-
tively. Merge1 function allows one character of the query word to be matched against 
two characters of the current test word, while merge2 function allows one character of 
the test word to be matched against a combination of two query word characters thus 
modeling a split bj. Combination of two characters is done by concatenating the 6 
feature sequences of both of them. The entries of matrix W initialized by +infinity are 
calculated as: 
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Here, Λ is an empty character with all feature vector values set to 0. γ(ai → bj) is the 
cost of changing ai to bj. γ(ai → Λ) is the cost of deleting ai and  γ (Λ → bj) is the cost 
of inserting bj.  

γ(ai→(bj+bj+1)) shows the cost of changing character ai of query word to two char-
acter components bj+bj+1 of the test word. It means that if the character bj was broken 
into two components bj and bj+1, we would be able to match this with ai using Merge1 
function. The feature sequences of bj and bj+1 are concatenated and are matched with 
the feature vectors of ai to get W(i,j). Once W(i,j) is calculated, we copy the same 
value of W(i,j) to the cell W(i,j+1) signifying that we had used the merge function.  

Similarly, γ((ai+ai+1)→bj) shows the cost of changing two characters of query word 
to one character of test word. It means that if bj was infact a component having two 
characters merged into one, we would be able to detect and match that with 
ai+ai+1using our Merge2 function. Here, instead of splitting the feature vectors of bj 

(which is more difficult as we do not know exactly where to split), we merge the 
query word characters, thus emulating the split function. W(i,j) is calculated the same 
way and it is copied to the cell W(i+1,j) signifying the use of  the split function. 

4.2   Character Matching Cost - DTW 

All the character matching costs are calculated by matching the feature sequences of 
two character components using DTW. The advantage of using DTW here is that it is 
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able to account for the nonlinear stretch and compression of characters. Hence two 
same characters differing in dimension will be matched correctly.  

Two characters X and Y of widths m and n respectively are represented by vector 
sequences X = (x1 ... xm) and Y = (y1 ... yn) where xi and yj are vectors of length 6 (= 
No. of features). To determine the DTW distance between these two sequences, we 
find a matrix D of m x n order which shows the cost of aligning the two subse-
quences. The entries of the matrix D are found as: 
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Here for d (xi , yj), we have used the Euclidean distance in the feature space:  
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where p represents the number of features which in  our case is six.  
The entry D(m , n) of the matrix D contains the cost of matching the two charac-

ters. To normalize this value, we divide the final cost D(m , n) by the average width 
of the two characters.  

Final char-cost = D(m,n) / [(m+n)/2] (4) 

4.3   Final Word Distance  

Once all the values of W are calculated, the warping path is determined by backtrack-
ing along the minimum cost path starting from (s , t) while taking into the account the 
number of merge/split functions used in the way. The normalization factor K is found 
by subtracting the number of merge/split functions from the total number of steps in 
the warping path. The final matching cost of the two words is:  

Final word-cost = W(s,t) / K (5) 

Two words are ranked similar if this final matching cost is less than an empirically 
determined threshold. 
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Fig. 4. Calculating Edit Matrix W for two similar words of lengths 4 and 3, and their final cost 
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Figure 4 shows an example of matching two words of lengths 4 and 3. The query 
word is well segmented while the last two characters in the test word are merged into 
one. While finding W, we see that one merge operation is used for matching ‘ur’ with 
‘u’, thus decrementing the value of K by one. 

5   Experimental Results 

The comparison of character-feature based matching technique with other methods 
(method in [12] and correlation based matching method) has already been done in [9]. 
Here we compare our merge-split Edit distance based matching method with a similar 
method but using classic Edit distance in place (we will refer to it as [Ed]) and also 
with [9] to show the improvement in results. We also give the results of a professional 
OCR software Abbyy FineReader [1] on the same data set. Experiments were carried 
out on the document images provided by BIUM [6]. For experiments, we chose 48 
pages from 12 different books (4 images from each book), having a total of more than 
17,000 words in all. For testing, 60 different query lexiques having 435 instances in 
total were selected based on their varied lengths, styles and also context of the book. 
Table 1 summarizes the results of word spotting. 

Table 1. Result Summary of Word matching algorithms 

 Method 
in [9] 

Classic 
Edit [Ed]

Our 
method 

ABBYY 
[1] 

#query word instances 435 435 435 435 
#words detected perfectly 401 406 427 422 
#words missed 34 29 8 13 
#False positives 51 16 4 0 
Precision % 88.71% 96.20% 99.01% 100% 
Recall % 92.18% 93.34% 98.16% 97.01% 
F-Measure 90.41% 94.75% 98.58% 98.48% 

 
We can see from the above table that the presented  merge-split Edit distance based 

method achieves a much higher recognition rate while maintaining a better precision 
than [9] and [Ed]. This is due to the fact that we are able to spot even those words 
where the segmentation of characters is not good. The layout of the pages used was 
not difficult to manage for a professional OCR. So on the same data-set, [1] produced 
a precision of 100% but we still obtained a better recall rate than it. 

We also analyzed the effect of word length on the Edit distance threshold, learning 
that for smaller words (with lesser number of characters), a lower threshold gives 
better precision and recall rates, while for longer words, a higher threshold value 
proves to be more effective. This is because for longer words, it is more unlikely to 
find similar words; so we can allow a bit more relaxation in threshold value. Another 
thing we learned is that the time taken to search a query increases linearly with the 
number of documents searched.  

Considering optimum threshold values (found empirically), our system achieves a 
precision of 99% while obtaining an overall recognition rate of 98.16%. 
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6   Conclusion 

We have proposed a new approach for word spotting based on the matching of char-
acter features by employing a combination of DTW and Merge-Split Edit distance. 
The main objective of this approach is to cater for the improper segmented characters 
during the matching process. Results obtained using this method are very encourag-
ing. The number of query words missed is very less as compared to [9] and [Ed] 
which shows the prospects of taking this method even further by improving different 
stages and adding more features to achieve even higher percentages.  
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Abstract. In this paper we propose a new approach to improve elec-
tronic editions of literary corpus, providing an efficient estimation of
manuscripts pages structure. In any handwriting documents analysis pro-
cess, structure recognition is an important issue. The presence of variable
inter-line spaces, of inconstant base-line skews, overlappings and occlu-
sions in unconstrained ancient 19th handwritten documents complicates
the structure recognition task. Text line and fragment extraction is based
on the connexity labelling of the adjacency graph at different resolution
levels, for borders, lines and fragments extraction.

Keywords: text lines and fragments extraction, graph, handwriting.

1 Introduction

Our work takes place in an human science project which aims at the realization
of an electronic edition of the ”dossiers de Bouvard et Pécuchet” corpus. This
corpus is composed by french 19th century manuscripts gathered by Gustave
Flaubert who intends to prepare the redaction of a second volume to his novel
”Bouvard et Pécuchet”. Corpus contents are diversified in term of sense as well
as in term of shape (different writers, styles and layouts). Besides, the corpus is
mainly composed by text fragments (Newspapers extracts, various notes, etc.)
put together by Flaubert. To produce the electronic edition we must consider
the particular framework of the corpus : structure informations must be known
in order to reproduce as well as possible its primary state. The main goal of this
work is to retrieve as many structural information as possible in order to provide
a good estimation of handwritten document pages structure. The document
structure is mainly composed by pages, fragments, lines, words and characters.
Our proposition consists in representing the overall page layout with and oriented
adjacency graph that contains all information relative to the page content. This
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paper is organized as follows : section 2 details previous works on text line
extraction and structure recognition, section 3 presents our approach for text
lines and fragments extraction, section 4 provides results and perspectives and
section 5 gives concluding remarks.

2 Related Works

Handwritten text line segmentation and structure recognition are still challeng-
ing tasks in ancient handwritten document image analysis. Most of works based
on text line segmentation can be roughly categorized as bottom-up or top-down
approaches. In the top-down methodology, a document page is first segmented
into zones, and a zone is then segmented into lines, and so on. Projection based
methods is one of the most successful top-down algorithm for printed documents
and it can be applied on handwritings only if gaps between two neighboring
handwritten lines are sufficient [1]. Connected component based methods is a
popular bottom-up method : connected components are grouped into lines, and
lines into blocks. In [2] and [3] the algorithms for text lines extraction are based
on connected components grouping coupled with Hough Transform are exposed.
Likforman-Sulem et al. [5] give an overview of all text lines segmentation meth-
ods. In [6], Yi Li et al. propose a curvilinear text lines extraction algorithm based
on level-set method. This algorithm uses no prior knowledge, and achieves high
accuracy text line detection.

Most of works on document structure recognition are performed on machine-
printed texts. In [7] T.M.Breuel presents algorithms for machine-printed doc-
uments layout analysis. Theses algorithms are noise resistant and adapted to
different layouts and languages. Kise et.al [8] propose an algorithm for machine
printed pages layout analysis based on Voronoi diagrams and successfully achieve
segmentation of document components in non-manhattan documents. Lemaitre
et. al in [4] propose an application of Voronoi tessellation for handwritten doc-
uments recognition. It is not trivial to extend machine printed documents al-
gorithms to handwritten documents, especially when handwritten text lines are
curvilinear and when neighboring handwritten text lines may be close or touch
each other. In [9], L.O’Gorman’s Docstrum allows to retrieve layout structure of
handwritten pages with regular layouts. S.Nicolas et al. in [10] and [11] propose
an Hidden Markov Model based algorithm for manuscript page segmentation :
6 classes are extracted on a page representing background, textual components,
erasures, diacritics, interline and interword spaces.

3 Our Graph Based Approach

3.1 Connected Components Distance Measure

We introduce at first our connected components distance measure : let’s consider
two handwritten shapes A and B that can represent words, word fragments or
characters. The distance between A and B is given by the smallest edge to edge
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Fig. 1. Connected components distance

distance (dedges). This measure is more representative of page structure than a
simple Euclidean distance from center to center and provide an estimation of
interwords and interline spaces (figure 1).

To be consistent with orientation variation in handwritten documents we
weight our measure with and orientation coefficient. This coefficient, based on
the fact that orientation remain mainly constant in a line or a fragment is com-
puted using orientation of the two connected components : θ1 and θ2.

ΔΘ = α ∗ (1 + | |θ1| − |θ2||θ1|+ |θ2| |) (1)

Orientation is estimated using Hough transform at low resolution. We com-
pute an orientation map of extracted hough lines and each connected component
gets its orientation from the associate line in orientation map. Our distance can
be summarize with the following statement :

D(A, B) = ΔΘ ∗min(dedges(A, B)) (2)

Figure 1 shows baselines in blue and minimal edge to edge distances between
connected components in red. As D(A, B) represents the distance between two
connected components and not between their contour edges, the three distance
properties can be simply demonstrated. For the graph construction and labelling
we use this distance to find nearest neighbours of each connected component in
different orientations ranges to build the adjacency graph and perform lines and
fragments extraction.

3.2 Graph Construction

For each connected component we search for the nearest neighbour in four di-
rection of space : top, down, left and right. Exact directions are provided by the
orientation estimation described in 3.2 : nearest neighbour research is performed
around hough direction, orthogonal hough direction, inverse hough direction
and inverse orthogonal hough direction. Once the four neighbours are computed
for each connected component we build a weighted directed graph G = (V, A).
V = {v1, v2, ..., vn} with vi representing a connected component of our page.
Outdegree of G is 4 : each vertex is the tail of up to four arcs (ei = (vi, vj)),
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Fig. 2. Reprojected graph, 1f188r

representing the link between the connected component and its neighbours :
A = {e1, e2, ..., en} is the arc set of our graph. Arc weights are provided by the
real distance between connected components. This graph can be reprojected on
a manuscript image as shown on figure2. Right arcs (direct hough direction) are
colored in cyan, left arcs (inverse hough direction) are colored in black, top arcs
(orthogonal hough direction) are colored in red or blue depending of the weight
and down arcs (inverse orthogonal hough direction) are colored in blue. When
two arcs are superposed only tops and rights arcs are represented. We can also
observe that several arcs can converge to a single connected component. This
single connected component is generally a long connexity ( a long connected
word, a straight line or underline).
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3.3 Graph Labelling for a Multi Level Layout Structure Analysis

Arcs weight analysis. In order to set thresholds for borders, text lines and
fragments extraction we compute an histogram of arcs weights only in top and
down directions. Figure 3 represents the histogram of cumulated distances. In-
terline spaces clearly appears between 30 and 120 whereas interfragment spaces
are above 120. Threshold values for text lines, borders and fragments extraction
are computed from this histogram by considering the highest local gradient of
the histogram.

Fig. 3. Arcs weights histogram

Text borders extraction. The purpose of this step is to label each vertex of G
with his corresponding label in the five classes described in figure 4. Adjacency
function is a simple function, computed on an arc which returns a value corre-
sponding to the direction of the arc (DirectHough = 1, InverseHough = 2, Orth-
Hough = 3, InvOrthHough =4, NoArc = 0). To extract text borders, adjacency
function also used the maximum range value computed above. In practice, the
graph labelling is based on a simple evaluation of the neighbourood of a vertex.
If the outdegree of the vertex is equal to 4, it represents an inner-text connected
component. If the outdegree is less than 4, the label is computed given the result

Fig. 4. Borders extraction results
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of adjacency function on each arc. We use the following color scale on figure 4 to
show the results of border extraction : yellow for left components, red for rights,
blue for tops, green for downs and black for inner-text ones.

Text lines extraction. The text line is an important structural element : the
knowledge of text-lines positions and shapes is an essential step that allows to
perform the alignment between handwritten images fragments and ASCII tran-
scriptions. It also gives us a partial knowledge of page structure and therefore a
good a priori for fragments extraction. The result of border extraction is used as
an initialization. To be consistent with latine script direction a line starts with
a left border component and ends with a right border component. Line extrac-
tion is performed using a shortest path research between left and right borders on
the previously described graph. A postprocessing step is performed to include a
missed component positioned between two components of the same line.

Fragments extraction. The text fragment is the highest structural element
extracted in the page. Textual fragment extraction has been developed to fit with
the particular framework of our corpus, mainly composed by text fragments. Text
fragments extraction is done by line grouping with simple rules based on interline
space and orientation variation coupled with fragment contours computation
by a best path research between top, down, left and right vertices. The path
starts and ends on the same vertice and describe the fragment contour. Cost
function for best path computation is based on distance values and transition
costs between tops, downs, lefts and rights vertices. Threshold values are given by
the distance histogram described above. Figure 2 shows interline space variation
: large interline spaces arcs are colored in blue and green whereas small interline
spaces arcs are colored in yellow or red. Figure 5 presents the results of fragments
extraction.

4 Results and Perspectives

The proposed algorithm for text lines extraction has been tested on a sample
set of the “dossiers de Bouvard et Pécuchet” Corpus. A few number of ground-
truthed images are currently available. Evaluation has been performed on pages
of different shapes and layout in order to be representative of the corpus. A line
is considered as wrong when less than 75 per cent of the line is included in the
line bounding box. Overlapping between lines makes the two overlapped lines
count as wrong. Table 1 shows the text lines extraction results for sample pages
of the corpus.

Figure 5 shows results of text fragments extraction on a sample page of our
corpus. Five of the six textual fragments of this page are correctly extracted.
Our algorithm based on interlinespace and baseline orientation comparison per-
forms well on page of simple layout. Some limitations appears on page of more
complex layouts : errors can occurs when two fragments are adjacent with a
small orientation variation or when topological configuration of space cannot be
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Table 1. Line extraction results

Page Wrong Lines Correct Lines
1 f 179 r 1 15
1 f 007 v 4 27

228 f 020 r 2 21
4 f 234 r 0 24

1 f 188 r(fig 5) 1 24
Simple Layout Pages 14 198

Complex Layout Pages 39 216

describe with our distance. Those limitations can be seen on figure 5. Our graph
based approach remains insensible to classic connected components approach
limitations such as connected components overlapping or inclusions.

Graph based representation is an intuitive multiscale representation which
allows us to describe and extract the layout of complex handwritten pages. It
also allows to identify special configurations of space, such as underlines or in-
cluded connected components. Theses configurations could be used to improve
the results of lines and fragments extraction.

Fig. 5. Fragment extraction, 1f188r : Ground Truth (Left), Simulation (Right)

5 Concluding Remarks

In this paper, we proposed a dedicated text lines and fragments segmentation
approach for author’s draft handwritings. Knowing that fragments extraction
on an humanist corpus is usually a costly and time-consuming hand-made task,
it is necessary to provide useful tools for the pre-extraction of fragments in
drafts documents. Experiments of our approach show that our proposition is
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really consistent regarding the complexity of many page layouts in the corpus.
Our edge to edge distance allow us to face some classic limitation of connected
components based approach like the included connected component problem.
Our methodology should be compared to conventional text lines segmentation
methods, such as [6] or [5]. Due to the difference in segmentation goals, the
comparison required some adaptations.

These studies had the support of the Rhone-Alpes region in the context of
cluster project. We also want to acknowledge the consortium of the ”Bouvard et
Pécuchet” ANR Project.
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on voronöı tessellation with DMOS, a generic method for structured document
recognition. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 267–
278. Springer, Heidelberg (2006)

5. Likforman Sulem, L., Zahour, A., Taconet, B.: Text line segmentation of historical
documents: a survey. IJDAR 9(2-4), 123–138 (2007)

6. Li, Y., Zheng, Y.F., Doermann, D., Jaeger, S.: Script-independent text line seg-
mentation in freestyle handwritten documents. IEEE Trans. on Pattern Analysis
and Machine Intelligence 30(8), 1313–1329 (2008)

7. Breuel, T.M.: High performance document layout analysis. In: SDIUT 2003 (2003)
8. Kise, K., Sato, A., Iwata, M.: Segmentation of page images using the area voronoi

diagram. CVIU 70(3), 370–382 (1998)
9. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Trans. on

Pattern Analysis and Machine Intelligence 15(11), 1162–1173 (1993)
10. Nicolas, S., Paquet, T., Heutte, L.: A markovian approach for handwritten docu-

ment segmentation. In: ICPR 2006, pp. III: 292–III: 295(2006)
11. Nicolas, S., Paquet, T., Heutte, L.: Complex handwritten page segmentation using

contextual models. In: DIAL 2006, pp. 46–59 (2006)
12. Etemad, K., Doermann, D., Chellappa, R.: Page segmentation using decision inte-

gration and wavelet packets. In: ICPR 1994, pp. B:345–B:349 (1994)



Camera-Based Online Signature Verification
with Sequential Marginal Likelihood Change

Detector

Daigo Muramatsu1, Kumiko Yasuda2, Satoshi Shirato2,
and Takashi Matsumoto2

1 Department of Electrical and Mechanical Engineering, Seikei University
3-3-1 Kichijouji-kitamachi, Musashino-shi, Tokyo, 180-8633, Japan

muramatsu@st.seikei.ac.jp
2 Department of Electrical Engineering and Bioscience, Waseda University

3-4-1, Okubo Shinjuku-ku, Tokyo, 169-8555, Japan
{yasuda06,shirato08,takashi}@matsumoto.elec.waseda.ac.jp

Abstract. Several online signature verification systems that use cam-
eras have been proposed. These systems obtain online signature data
from video images by tracking the pen tip. Such systems are very use-
ful because special devices such as pen-operated digital tablets are not
necessary. One drawback, however, is that if the captured images are
blurred, pen tip tracking may fail, which causes performance degrada-
tion. To solve this problem, here we propose a scheme to detect such
images and re-estimate the pen tip position associated with the blurred
images. Our pen tracking algorithm is implemented by using the sequen-
tial Monte Carlo method, and a sequential marginal likelihood is used
for blurred image detection. Preliminary experiments were performed
using private data consisting of 390 genuine signatures and 1560 forged
signatures. The experimental results show that the proposed algorithm
improved performance in terms of verification accuracy.

1 Introduction

Online signature verification is a biometric person authentication technology
that uses data obtained while a signature is being written, and it is a promising
candidate for several reasons. First, handwritten signatures are widely accepted
as means of authentication in many countries for various purposes. Second, be-
cause online signature verification can incorporate dynamic information about
a handwritten signature, it can achieve higher accuracy than verification using
static signatures [1]. Finally, a person can modify his or her signature if it is
stolen. This is a notable feature because physiological biometrics such as finger-
prints or irises cannot be modified or renewed1.

Several data acquisition devices are used for online signature verification, for
example, pen-operated digital tablets, Tablet PCs, PDAs, data acquisition pens,
1 In order to solve this problem, several template protection methods have been pro-

posed [2].

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 229–236, 2009.
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and cameras. Among them, pen-operated digital tablets are the most common
device for data acquisition in online signature verification. However, because
tablets are not ubiquitous, they must be specially provided for online signature
verification. On the other hand, web cameras have become relatively widespread
these days. Therefore, online signature verification systems using web cameras
for data acquisition[3,4] are very promising.

However, they also have some drawbacks. A camera-based online signature
verification system obtains online signature data as trajectories of the pen tip
position by tracking the pen tip in video images (time-series images). If one or
more of the images are blurred, the system may fail to obtain the correct pen
tip position. If the detected pen tip position is not correct, this can cause perfor-
mance degradation. To reduce this degradation, we propose a method involving
detecting such blurred images and re-estimating the pen tip positions in the
blurred images. We used a sequential marginal likelihood for blurred image de-
tection. We assumed that the estimated pen tip position at time t associated with
the blurred image is questionable. Thus, the pen tip position is re-estimated us-
ing estimated pen tip positions around that time. By these processes, the online
signature data are corrected, and the corrected data are used for verification.

Preliminary experiments were performed to evaluate the proposed algorithm.
Experimental results showed that the equal error rate (EER) was improved from
3.8% to 3.2%.

2 Overview of the System

Figure 1 shows an overview of the system. There are two phases in the algorithm:

(i) Enrollment phase
The user signs for enrollment. The raw online signature data is obtained from
the images captured by a camera by tracking the pen tip. Then, the system
checks the obtained online signature data set, and parts of the raw signature
data are re-estimated if necessary. After preprocessing and feature extraction, a
set of extracted time-series features is enrolled as a reference signature.
(ii) Verification phase
The user submits his/her identity and signs for verification. The raw online
signature data is obtained from camera images, and if necessary, parts of the
raw signature data are re-estimated, similarly to the enrollment phase. After
preprocessing and feature extraction, time-series features are compared with
reference signatures and several dissimilarity scores are computed. These scores
are combined, and a decision is made by using the combined score.

The enrollment and verification phases involve all or some of the following
stages: (a) pen tip tracking, (b) data evaluation, (c) re-estimation, (d) prepro-
cessing, (e) feature extraction, (f) dissimilarity calculation, and (g) decision mak-
ing. We describe each stage below.
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Fig. 1. Overview of the system

Fig. 2. Images obtained by the camera

Fig. 3. Trajectories of raw signature data

2.1 Pen Tip Tracking

In this system, a camera is placed to the side of the hand, and time-series im-
ages, such as those shown in Fig.2, are captured. A rectangular area (width=w,
height=h) centered around the pen tip is considered as a template for pen tip
tracking. An initial point of the template is given manually in this paper.

Let Yt be a grayscale image at time t and Y1:t = {Y1, Y2, ..., Yt} be the image
datasets acquired up to time t. Let Xt be the center coordinates of a rectangle
(width=w, height=h) in image Yt.

When, image datasets are given, we estimate the pen tip position X̂t = (xt, yt)
as

X̂t =
∫

XtP (Xt|Y1:t)dXt, (1)

where P (Xt|Y1:t) is the posterior distribution of the pen tip position at time t,
which follows from the Bayes formula

P (Xt|Y1:t) =
P (Yt|Xt)P (Xt|Y1:t−1)

P (Yt|Y1:t−1)
. (2)

Here, the likelihood function P (Yt|Xt) is defined in this paper by

P (Yt|Xt) =
(

λt

2π

)hw
2

exp
[
−λt

2
× scoreSSD

]
, (3)

where scoreSSD in (3) is the sum of square difference (SSD) between the template
and a rectangular area (whose center coordinates are Xt) in image Yt, and λt is
a hyperparameter to be learned online.
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In this paper, sequential Monte Carlo (SMC) [5] is used to approximate (1)
and to learn λt in (3). Let Q(Xt) be a proposal distribution, and let

Xn
t ∼ Q (Xt|Y1:t−1) , n = 1, 2, ..., N (4)

be a set of N samples from Q(Xt). The importance weights are defined by

ω(Xn
t ) =

P (Yt|Xn
t )P (Xn

t |Y1:t−1)
Q(Xn

t |Y1:t−1)
, n = 1, 2, ..., N. (5)

and normalized importance weights are calculated by

ω̃(Xn
t ) =

ω(Xn
t )∑N

n=1 ω(Xn
t )

. (6)

Using the N samples Xn
t and normalized importance weights, equation(1) is

approximated by

X̂t =
N∑

n=1

ω̃(Xn
t )Xn

t . (7)

Figure 3 shows trajectories of obtained raw signature data. Details of the pen
tracking algorithm are described in [4].

2.2 Data Evaluation

As stated in section 1, a system can fail to detect the pen tip correctly if the
captured image is blurred. Figure 4 and 5 show samples of a non-blurred image
and a blurred image. In Fig. 5, we can observe that the pen tip is not detected
correctly, whereas it is correctly detected in Fig.4. The incorrect pen tip position
causes performance degradation. To avoid this type of degradation, first, we need
to know which image is blurred. To detect such an image automatically, we used
a sequential marginal likelihood defined by

P (Yt|Y1:t−1) =
∫

P (Yt|Xt)P (Xt|Y1:t−1)dXt. (8)

Fig. 4. Non-blurred image Fig. 5. Blurred image
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Fig. 6. Cumulative error and P (Yt|Y1:t−1)

This likelihood has been successfully used for change detection problems[6,7].
In order to explain why (8) is used in our attempt to perform blurred image
detection, let us consider a general likelihood function P (Yt|z), where z denotes
any quantity associated with the model structure underlying the data Yt. Recall
that the given data Yt := Y ∗

t gives information about z. More precisely, the
likelihood function P (Yt = Y ∗

t |z) quantifies the appropriateness of z for the
given data Y ∗

t . Another interpretation is that P (Yt = Y ∗
t |z) gives the degree

of appropriateness of the data with respect to z. In (8), z = Y1:t−1, so that it
quantifies the degree of appropriateness of the new data Yt := Y ∗

t with respect
to the preceding sequential data Y1:t−1. Figure 6 shows the cumulative error
of pen tip tracking together with the changes of sequential marginal likelihood
P (Yt|Y1:t−1). The system fails to detect the pen tip position at t = 57 because
the image Yt is blurred. Thus, the cumulative error increases abruptly at t = 57.
We can also observe a discernible dip in P (Yt|Y1:t−1) at t = 57. Therefore,
P (Yt|Y1:t−1) can be useful for this blurred image detection. We assume that

image Yt =
{

blurred if P (Yt|Y1:t−1) < TRDlk

non-blurred otherwise
. (9)

Here, TRDlk is a threshold value. The issue of how to set the threshold is a
difficult problem[6]. Therefore, in this paper, we set the threshold empirically.

In the case of a blurred image, we assumed that the estimated pen tip posi-
tion X̂t associated with the blurred image is questionable. Then, this estimated
position is re-estimated in the next stage.

2.3 Re-estimation

The re-estimation stage is performed after the pen tip positions at all times are
estimated.

Let Ytb
be a blurred image, Ytb−Δtp be the last non-blurred image prior to tb,

and Ytb+Δtf
be the closest non-blurred image after tb. Let the estimated pen tip

positions at each time be X̂tb
, X̂tb−Δtp , and X̂tb+Δtf

, respectively. The pen tip
position at time tb is re-estimated and updated by

X̂tb
←

ΔtpX̂tb+Δtf
+ Δtf X̂tb−Δtp

Δtp + Δtf
. (10)
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Only the estimated pen positions associated with the blurred image Yt are re-
estimated.

2.4 Preprocessing

After online signature data X̂t = (xt, yt), t = 1, 2, ..., T are obtained, the follow-
ing transformation is performed on the signature data:

xt =
xt − xg

xmax − xmin
, yt =

yt − yg

ymax − ymin
, (11)

where

xg =
1
T

T∑
t=1

xt, yg =
1
T

T∑
t=1

yt.

xmin = min
t

xt, xmax = max
t

xt, ymin = min t yt, ymax = max
t

yt.

2.5 Feature Extraction

The following three additional features are calculated:

Lt =
√

x2
t + y2

t , θt = tan−1 yt

xt
, V θt =

{
0 if t = 1
tan−1 yt−yt−1

xt−xt−1
otherwise

(12)

2.6 Distance Calculation

Five types of time-series feature data (xt, yt, Lt, θt, V θt) are considered in this
paper, and five distances Dn, n = 1, 2, ..., 5 are calculated independently by using
dynamic time warping[8]. See [4] for details.

Then, dissimilarity scores dsn, n = 1, 2, ..., 5 are calculated by

dsn =
Dn

Tref , Zn
. (13)

Here, Tref is the data length of a reference signature, and Zn are the normaliza-
tion constants. In this paper, Zn is calculated by using reference signatures.

2.7 Decision Making

A combined dissimilarity score Scorevf is calculated by

Scorevf =
5∑

n=1

dsn, (14)

and a final decision is made based on the following rule:

input signature is
{

Accepted if Scorevf ≤ THRvf

Rejected otherwise (15)
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3 Experiment

3.1 Data Collection

Online signature data was collected from thirteen students. All of the students
were right-handed. Each student wrote ten genuine signatures in first, second,
and third sessions. In total, thirty genuine signatures were collected from each
student. As for forgery data, four different students imitated genuine signatures
to produce forgery data. The forgers could see videos of genuine signatures cap-
tured by the camera. Thus, they could see dynamic information of the genuine
signatures that they had to imitate. Each forger produced 30 forgeries for each
genuine user, and a total of 120 forgeries for each genuine user were collected.

The first 5 genuine signatures collected in the first session were used for en-
rollment, and the remaining 25 genuine signatures and 120 forgeries were used
for evaluation.

3.2 Experimental Settings and Results

The cameras had a resolution of 320×240 pixels. The number of samples N was
4000, and the width and height of the rectangular area were w = 10 and h = 10.
The experimental results are shown in Fig. 7. For comparison purposes, a system
that did not have the re-estimation stage was evaluated as a baseline system.
From Fig.7, we can observe that the performance of the proposed system was
improved, as indicated by the equal error rate, which dropped to 3.2%.

Fig. 7. Error trade-off curve
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4 Conclusion and Future Work

In camera-based online signature verification, blurred images cause failure of
pen tip detection, and this failure results in performance degradation. In this
paper, we propose a camera-based online signature verification algorithm that
can detect blurred images and re-estimate the pen tip position associated with
the blurred images. Data evaluation and re-estimation stages are included in the
proposed algorithm. By including these stages, the equal error rate was improved
from 3.8% to 3.2%, indicating that the proposed algorithm is promising. Error
rates of biometric systems are dependant on the database, and especially on
its number of users. Thus, we need to evaluate the proposed system against a
bigger database. In this proposed algorithm, linear interpolation is used for re-
estimation, and dynamical information such as velocity and acceleration is not
considered. Therefore, improvement of the re-estimation method will be the topic
of a future project. Several dissimilarity scores are combined by a summation
rule in this paper. More useful fusion strategies described in [9], will also be the
subject of future work.
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Abstract. In this paper, we propose an approach for the separation
of overlapping and touching lines within handwritten Arabic documents.
Our approach is based on the morphology analysis of the terminal letters
of Arabic words. Starting from 4 categories of possible endings, we use
the angular variance to follow the connection and separate the endings.
The proposed separation scheme has been evaluated on 100 documents
contains 640 overlapping and touching occurrences reaching an accuracy
of about 96.88%.

Keywords: Handwriting line segmentation, Arabic documents, Over-
lapping and Touching lines, Calligraph morphology.

1 Introduction

The text line and word extraction from a handwritten document, is seen as
a labored task. The difficulty rises from the characteristics of the handwritten
documents especially when they are ancient. These documents present irregular
spacing between the text lines. The lines can overlap or touch when their as-
cenders and descenders regions belong to each other (see figure 1). Furthermore,
the lines can be skewed which constitutes new orientations.

In the literature, several methods have been proposed dealing with skewed
lines [5,6,7,8,9]. Few methods have been proposed for the separation of connected
words in the adjacent lines. From them, an Independent Component Analysis
(ICA [4]) segmentation algorithm is proposed by Chen et al. in [1]. The ICA
converts the original connected words into a blind source matrix and calculates
the weighted value matrix before the values are re-evaluated using a fast model.

Fig. 1. Extract of a document representing some overlapping and touching lines
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The readjusted weighted value matrix is applied to the blind source matrix in
order to separate the word components. Louloudis et al. propose in [2] a skeleton-
based algorithm. In [3], Takru and Leedham propose a technique that employs
structural knowledge on handwriting styles where overlap is frequently observed.
All above approaches are applicable to Latin scripts which are not easy adaptable
to Arabic because of specific morphology.

In this paper, we propose a novel method considering the morphology of the
terminal letters in the PAWs. The rest of the paper is organized as follows: over-
lapping and touching types in the Arabic document are listed in section 2. The
Arabic script morphology is discussed in section 3. In section 4, our separation
approach is detailed. Experiments results are showed in section 5 and last section
concludes the paper.

2 Overlapping/Touching Types

The Arabic alphabet is composed of 28 letters. Among of them, 21 letters have
an ascender (alif �, Ta �, DHa ��, kaf �, lam �, heh �), right descender (ra �,
z̈ın ��, s̈ın �, sḧın 	�, Sad 
, Dad �
, qaf ��, mı̈m , nün ��, waw �, yeh �� ) or

left descender (j̈ım �� , h.a �, kha �, ‘ain �, ghain
��) causing the connecting lines

(left or right indicates the descender starting, see figure 2.a). The connection
in Arabic documents can happen in two cases: when the interlines spacing is
small (see figure 2.b) or when we use a calligraph with big jambs (descenders)
as Diwani (see figure 2.c).

Statistically, we have found 4 overlapping/touching types in handwritten Ara-
bic documents. In the first type (see table 1.a), a right descender with a loop
overlaps/touches a vertical ascender. In the second type (see table 1.b), a left
descender with a loop overlaps/touches a vertical ascender. In the third type (see
table 1.c), a right descender overlaps/touches the curving top of lower letter. In

Fig. 2. (a) The Arabic alphabet chart (arrow indicates the writing direction,
source: [14]), (b) Connection is due to the small interlines spacing, (c) Overlap-
ping/touching due to the script type (Diwani)
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Table 1. The 4 overlapping/touching types in the handwritten Arabic documents

Types Terminal Letters Overlapping/ Samples
Touching Zones

a Top: �� , �, ��, ��, ��, �, 	
, 
, ��, �
Bottom: �, , ��, �, �

b Top:
��, �, �, �, ��

Bottom: �, , ��, �, �

c Top: �, �, ��, �
Bottom: �, ��, �

d Top:
��, �, �, �, ��

Bottom: �

the fourth type (see table 1.d), a left descender overlaps/touches the curving top
of lower letter. In each type, the top letters stretches out to overlap/touch the
bottom letters.

3 Arabic Morphology Analysis

In all cases of connection, we notice the presence of a descender connecting a
lower terminal letter (see table 1, column overlapping/touching zones). These
descenders are clustered in two categories : (a,c) when the descender comes from
right and (b,d) when the descender comes from left. To face this connection
problem, the analysis will be focused on the connection zones (see figure 3).

The zones are determined considering a rectangle around the intersection
point Sp of the two connected components which size is fixed manually (see
section 4.2). The starting ligature point Bp is the highest point in the zone close
to the baseline. The descender direction is determined according to Bp relative
to Sp (see section 4.2).

According to these characteristics, our idea consists to follow the skeleton pix-
els within the zone using the starting point Bp and the right descender direction.
The follow-up will then cross the intersection point Sp and continues in the right
direction that we have to determine.

Fig. 3. Overlapping/touching connected components zones and descenders direction
(rectangles represent the connection zones, right direction indicated by red arrow and
the false by blue)
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3.1 Right Follow-Up Direction

The determination of the right direction follow-up requires the study of curves
in the skeleton image (i.e. each zone in the figure 3 has two curves).

In the literature, there are two main categories of curve detection methods [11].
In the first category, the Generalized Hough Transform (GHT) is used [12]. This
technique is not efficient in our case because the present curves have few points
and GHT needs much points for correct detection. In the second category, the
chains (some of connected skeleton pixels) of points, or segments yielded by the
polygonal approximation of such chains are used. The basic idea is to compute
an estimation of the curvature for these chains [13]. This technique is insufficient
because it does not study the continuity and the morphology of the curve.

The proposed method is based on the skeleton pixels follow-up and the angular
variance. The follow-up starts from Bp and continues to the intersection point Sp.
At this point Sp, the follow-up continues in multiple directions (see figure 4.a).
The follow-up continues in each direction to extract the possible curves (C1+2,
C1+3 and C1+4). The next step is to find the curve that represents the descender
terminal letter. By experience, we found that the Arabic terminal letters have
a minimum angular variance. This is explained by the fact that the terminal
Arabic letters have the same orientation angle along the descender curve.

3.1.1 Angular Variance
The angular variance represents the dispersion of the orientation angles along
the curve. It is estimated using the statistical variance formula:

V ar(Θ) =
n∑

i=1

(θi − μ)2 (1)

where Θ is the angles variation vector of the curve and μ is the average of Θ.

Fig. 4. (a) Example of Arabic overlapping connected components (”ra �” overlaps

”alif �”), (b) Angles variation vector estimation algorithm
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The angles variation vector Θ of the curve is estimated using an iterative
algorithm that calculates the angle θi between two successive pixels pi and pi+2
using the formula below (see figure 4.b):

θi =
∣∣∣∣Arctan

(
dyi,i+2

dxi,i+2

)∣∣∣∣ (2)

Because of the symmetric branches, the angle value must be always positive.
For example, in figure 4, the angular variances are: V ar(C1+2) = 703.19,
V ar(C1+3) = 299, V ar(C1+4) = 572.37. In this example, the minimum angular
variance V ar(C1+3) is given by the right follow-up direction.

4 Proposed Method

The method involves four steps as follows:

4.1 Step 1: Overlapping and Touching Connected Components
Detection

The present paper is a continuation of our work published in [9]. The lines are
extracted in [9] from the handwritten Arabic documents. Some adjacent lines can
be connected in one or more connected components. This components belonging
to two adjacent lines are considered as connected (see figure 5.a).

4.2 Step 2: Curve Detection

To detect the curves, the skeleton is first extracted using a thinning algorithm
descried in [10]. Then, the intersection points of each connected component are
detected (see figure 5.b). An intersection point is a pixel that has at least three
neighbor pixels. As in Arabic script, the overlapping or touching may occur at
just one intersection point Sp near the minima axis (valley between two con-
nected lines in the projection histogram of the document, see figure 5.c). For
this, Sp is the nearest point of the minima axis (see figure 5.d). Once the Sp

is located, we look for the connected components zone. The center of this zone
is Sp and its width (resp. height) is equal to wccx/4 (resp. hccx/4) where wccx

(resp. hccx) is the width (resp. height) of the overlapping or touching connected
component (4 is a determined experimentally). Since this zone is extracted from
the initial document, it is cleaned by removing the small connected components.
To do it, the connected components are labeled and we keep only the connected
component containing Sp (see figure 5.e). After the pre-processing, the skeleton
of the zone is extracted and an skeleton follow-up algorithm is applied using the
descender follow-up starting point Bp (the pixel that has the minimum yi in the
zone) and the direction follow-up (right to left if x(Bp) > x(Sp) and left to right
if x(Bp) < x(Sp), see figure 5.f).
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Fig. 5. Separation of overlapping and touching connected components approach steps

4.3 Step 3: Curve Angular Variance Estimation

The angular variance of each curve is estimated using the algorithm detailed in
the section 3.1.1. In the figure 5.f, the first touching components have V (C1) =
538.2099 and V (C2) = 754.2284. The C1 having the minimum angular variance
is the descender. The second overlapping components have V (C1) = 1160.8,
V (C2) = 438.4 and V (C3) = 1208. The C2 having the minimum angular mini-
mum variance is the descender.

4.4 Step 4: Pixels Assignment

In the figure 5.g, there are two curves and three different pixels types (intersection
point ”by red”, first connected component ”by green” and second connected
component ”by blue”). This step consists in assigning each black pixel in the
initial image (see figure 5.e) to its appropriate curve. To do it, the image is
scanned pixel by pixel and the 48-connected pixels of each image pixel pi are
regarded in the skeleton image. The closest branches pixel value is assigned to
the initial image pixel (see figure 5.h). Finally, the pixels assigning is done at
the initial document in order to obtain the final result (see figure 5.i).

5 Experimental Results and Discussion

The approach was applied to 100 handwritten Arabic documents belonging to the
Tunisian National Library, National Library of Medicine in the USA, National
Library and Archives of Egypt that contain 640 overlapping and touching con-
nected components. The tests were prepared after a manual indexing step of the
overlapping and touching connected components of each document. Then, these
components are clustered in 4 types (see section 2): 253 occurrences of type (a),
194 occurrences of (b), 117 occurrences of (c), 76 occurrences of (d) have been
detected. The Table 2 describes the results for each type. The weighted mean of
these results is equal to 96.88%. The 3.12% rate error is due to the intersection
point detection algorithm because in some cases the overlapping/touching do
not hold near the minima, and to the angular variance criterion because in some
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Table 2. Results of the separation of overlapping and touching connected components
approach

Overlapping/ Occurrences Connections Separations Correctly
touching types missed failed separations rate %

a 253 2 3 98.02%
b 194 4 2 96.90%
c 117 3 1 95.73%
d 76 1 2 94.75%

Fig. 6. Samples of our results

cases the minimum angular variance can occur for a false direction. Figure 6
illustrates the effectiveness of the algorithm on a sample of 12 representative
connected components chosen from 640 occurrences.

6 Conclusion and Future Trends

An original method of separation overlapping and touching connected compo-
nents in the adjacent text lines from the handwritten Arabic documents has been
proposed in this paper. The proposed method is based on the Arabic calligraph
where overlapping and touching is most frequently observed. The approach is
armed by statistical informations about Arabic writing structures. Experiments
showed the efficiency and the performance of our approach. The future step of
this work is related to the segmentation of the lines into single words.
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Abstract. This paper presents an effective method for writer recognition in 
handwritten documents. We have introduced a set of features that are extracted 
from two different representations of the contours of handwritten images. These 
features mainly capture the orientation and curvature information at different 
levels of observation, first from the chain code sequence of the contours and 
then from a set of polygons approximating these contours. Two writings are 
then compared by computing the distances between their respective features. 
The system trained and tested on a data set of 650 writers exhibited promising 
results on writer identification and verification. 

Keywords: Writer Recognition, Freeman Chain Code, Polygonization. 

1   Introduction 

Among the expressive behaviors of human, handwriting carries the richest informa-
tion to gain insight into the physical, mental, and emotional states of the writer. Each 
written movement or stroke reveals a specific personality trait, the neuro-muscular 
movement tendencies being correlated with specific observable personality features 
[2]. This explains the stability in the writing style of an individual and the variability 
between the writings of different writers, making it possible to identify the author for 
which one has already seen a written text. This automatic writer recognition serves as 
a valuable solution for the document examiners, paleographers and forensic experts. 
In the context of handwriting recognition, identifying the author of a given sample 
allows adaptation of the system to the type of writer [10]. 

Writer recognition comprises the tasks of writer identification and verification. 
Writer Identification involves finding the author of a query document given a refer-
ence base with documents of known writers. Writer verification on the other hand 
determines whether two samples have been written by the same person or not. The 
techniques proposed for writer recognition are traditionally classified into text-
dependent [15,17] and text-independent methods, which can make use of global 
[5,11] or local [4,6] features. Combining the global and local features is also known to 
improve the writer recognition performance [7,13,15]. Lately, the methods that com-
pare a set of patterns (a writer specific or a universal code book) to a questioned writ-
ing have shown promising results as well [4,13]. These methods however rely on 
handwriting segmentation and defining an optimal segmentation remains a problem. 
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In this paper1, we present a system for offline writer recognition using a set of sim-
ple contour based features extracted by changing the scale of observation as well as 
the level of detail in the writing. We first compute a set of features from the chain 
code sequence representing the contours, at a global as well as at a local level. We 
then extract another set of features from the line segments estimating the contours of 
handwritten text. Finally we perform a comparative evaluation of the different types 
of features and explore their various combinations as presented in the following. 

2   Feature Extraction 

For feature extraction, we have chosen to work on the contours of the text images as 
they eliminate the writing instrument dependency while preserving the writer-
dependent variations between character shapes. We start with the gray scale input 
image, binarize it using the Otsu’s global thresholding algorithm and extract the  
contours of the handwritten text. We then represent the contours in two ways: by a 
sequence of Freeman chain codes and by a set of polygons obtained by applying a 
polygonization algorithm to the contours. We then proceed to the extraction of fea-
tures that capture the orientation and curvature information of writing; the two most 
important visual aspects that enable humans instinctively discriminate between two 
writings. These features have been discussed in the sections to follow where we first 
discuss the chain code based features and then we present how we have modeled 
some loss of details keeping only a general and simple view of the writing. 

2.1   Chain Code Based Features 

Chain codes have shown effective performance for shape registration [1] and object 
recognition [3] and since the handwritten characters issued by a particular writer have 
a specific shape, chain code based features are likely to perform well on tasks like 
writer recognition. We therefore compute a set of features from the chain code se-
quence of the text contours first at a global level and then from the stroke fragments 
within small observation windows. 

2.1.1   Global Features 
At the global level, in order to capture the orientation information, we start with the 
well-known histogram of all the chain codes/slopes (slope density function f1) of the 
contours where the bins of the histogram represent the percentage contributions of the 
eight principal directions. In addition, we also find the histograms of the first (and 
second) order differential chain codes that are computed by subtracting each element 
of the chain code from the previous one and taking the result modulo connectivity. 
These histograms (f2 & f3) represent the distribution of the angles between successive 
text pixels (f2) and the variations of these angles (f3) as the stroke progresses.  

                                                           
1  This study has been carried out in the framework of the project ANR GRAPHEM: ANR-07-

MDCO-006-04. 
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The distributions of chain codes and their differentials give a crude idea about the 
writing shapes but they might not be very effective in capturing the fine details in 
writing; we thus propose to count not only the occurrences of the individual chain 
code directions but also the chain code pairs, in a histogram f4, illustrated for two 
writings in figure 1. The bin (i,j) of the (8x8) histogram represents the percentage 
contribution of the pair i,j in the chain code sequence of the contours. Employing the 
same principle, we also compute the (8x8x8) histogram of chain code triplets f5. It is 
important to precise that all the 64 possible pairs and 512 possible triplets cannot exist 
while tracing the contours and we can have a total of 44 pairs and 236 triplets.  

 

  

  

Fig. 1. Two writings and their respective distributions of chain code pairs 

Finally, for the purpose of comparison, we use an estimate of curvature computed 
from the histograms of contour chain code, presented in [3] for object recognition. A 
correlation measure between the distribution of directions on both sides (forward and 
backward) of a contour pixel pc is used to approximate the curvature at pc and it is the 
distribution of these estimates which is used to characterize an author (f6). 

2.1.2   Local Features 
The features f1 – f6, although computed locally, capture the global aspects of writing 
thus the relative stroke information is lost. We therefore chose to carry out an analysis 
of small stroke fragments as well. Employing an adaptive window positioning algo-
rithm [13], we divide the writing into a large number of small square windows, the 
window size being fixed empirically to 13x13. Within each window, we find the per-
centage contribution of each of the eight directions (chain codes), the percentages 
being quantized into ten percentiles. These contributions are counted in a histogram 
(f7): the bin (i,j) is incremented by one if the direction i is represented in the jth per-
centile. Figure 2 shows the windows positioned over an image and the contribution of 
one of the windows to the histogram where the three direction codes present in the 
window lead to three contributions to the histogram. The process is carried out for all 
the windows and the distribution is finally normalized. This distribution (f7) thus, can 
be considered as a window-based local variant of f1. Using the same idea, we also 
compute f2 and f3 locally, represented by the distributions f8 and f9 respectively. 
These distributions have been discussed in detail in [14]. 
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Dir Pixels Percentage Percentile Bin 

5 4 9 1 5,1 

6 2 5 1 6,1 

7 36 86 9 7,9 

 42 100   
 

Fig. 2. Windows positioned over the chain-coded image and the contribution of one of the 
windows to the distribution f7 

These chain code based features compute the orientation and curvature information 
of writing, however, these estimates are computed from raw pixels and it would  
be interesting to carry out a similar analysis at a different observation level. We there-
fore propose to estimate the contours by a set of polygons and then proceed to feature 
extraction (a set of global features) which not only corresponds to a distant scale of 
observation but the computed features are also more robust to noise distortions.  

2.2   Polygon Based Features 

These features are aimed at keeping only the significant characteristics of writing 
discarding the minute details. Employing the sequential polygonization algorithm 
presented in [16], we carry out an estimation of the contours by a set of line segments. 
The algorithm requires a user defined parameter T that controls the accuracy of ap-
proximation. Larger values of T create longer segments at the cost of character shape 
degradation and vice versa. Figure 3 shows the polygon estimation of the contours of 
a handwritten word for different values of T. For our system, we have used a value of 
T equal to 2, chosen empirically on a validation set. We then extract a set of features 
from these line segments. 

 

T=1 T=2 T=3 T=5 

Fig. 3. Polygonization at different values of T 

We first compute the slope of each of the line segments and employ their distribu-
tion (f10) for characterizing the writer. Each line is identified as belonging to one of 
the bins (classes) illustrated in figure 4. These bins are chosen in such a way that the 
lines having nearly the same orientations as the principal directions (vertical, horizon-
tal etc) fall in their respective classes. For example, all the segments in the range -12° 
to 12° are classified as (nearly) horizontal and so on. 
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Not only the number of slopes in a particular direction is important but their corre-
sponding lengths as well, so in order to complement the distribution f10, we also 
compute a length-weighted distribution of slopes (f11), where for each segment at 
slope i, the bin i in f11 is incremented by the length of the segment. The distribution is 
finally normalized by the total length of segments in the image. 

 

 

 
Bin Class 

1 Horizontal (H) 

2 Vertical (V) 

3 Left Diagonal (LD) 

4 LD Inclined towards Horizontal (LDH) 

5 LD Inclined towards vertical (LDV) 

6 Right Diagonal (RD) 

7 RD Inclined towards Horizontal (RDH) 

8 RD Inclined towards Vertical (RDV) 
 

Fig. 4. Division of slopes (-90° to 90°) into bins and the corresponding segment classes 

We next estimate the curvature by computing the angle between two connected 
segments and use the distribution of these angles as our next feature (f12). The angle 
bins are divided in a similar fashion as for the slopes. Similarly, in order to take into 
account the lengths of the segments forming a particular angle, a length weighted 
version of f12, f13 is also computed. 

Finally, irrespective of the orientation, it would be interesting to analyze the distri-
bution of the lengths of segments in a writing. Generally, smooth strokes will lead to 
longer and fewer segments while shaky stokes will result in many small segments, 
thus the straight segment lengths could be useful in distinguishing the writings of 
different authors. We therefore use the distribution of these lengths (f14) as a writer 
specific feature, the number and partitioning of bins being determined by analyzing 
the distribution of lengths in writings of the validation set. 

We thus extract a set of fourteen (normalized) distributions to represent a docu-
ment image. The distributions for which the number of bins is not discussed explicitly 
have been partitioned empirically on the validation set. Table 1 summarizes the pro-
posed features with the dimensionalities of each. 

Table 1. Dimensionalities of the proposed features 

Feature f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 
Dim 8 7 8 44 236 11 80 70 80 8 8 8 8 10 

3   Writer Recognition 

The dissimilarity between two writing samples is defined by computing a distance 
between their respective features. We tested a number of distance measures including: 

1 

2 

2 

3 
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Euclidean, χ2, Bhattacharyya and Hamming distance, χ2 distance reading the best 
results in our evaluations. Writer Identification is performed by computing the dis-
tance between the query image Q and all the images in the data set, the writer of Q 
being identified as the writer of the document that reports the minimum distance. For 
writer verification, the Receiver Operating Characteristic (ROC) curves are computed 
by varying the acceptance threshold, verification performance being quantified by the 
Equal Error Rate (EER). The identification and verification results have been pre-
sented in the following section. 

4   Experimental Results 

For the experimental study of our system, we have chosen the IAM [8] data set which 
contains samples of unconstrained handwritten text from 650 different writers. This 
data set contains a variable number of handwritten images per writer with 350 writers 
having contributed only one page. In order to fit in all the 650 writers in our experi-
ments, we keep only the first two images for the writers having more than two pages 
and split the image roughly in half for writers who contributed a single page thus 
ensuring two images per writer, one used in training while the other in testing.  

We carried out an extensive series of experiments evaluating the performance of 
individual features and their various combinations. We will report only a sub-set of 
results presented for the three types of features and their combinations in figure 5. It 
can be observed that the combined performance of each type of features is more or 
less the same with the combination of polygon based features performing slightly 
better (82.3% against 81.5% & 81.1%). Combining two types of features boosts the 
identification rates to around 84-85% which rises to 89% when using all the features. 
Similarly for writer verification we achieve an equal error rate of as low as 2.5%. 

Table 2. Comparison of writer identification methods 

  Writers Samples/ 
writer 

Performance 

Marti et al. (2001)  [9] 20 5 90.7% 
Bensefia et al. (2004)  [4] 150 2 86% 
Schlapbach and Bunke (2006) [12] 100 5/4 98.46% 
Bulacu and Schomaker (2007) [7] 650 2 89% 
Our method  150 2 94% 
  650 2 89% / 86.5% 

 
We finally present a comparative overview of the results of recent studies on writer 

identification task on the IAM data set (Table 2). Although identification rates of as 
high as 98% have been reported, they are based on a smaller number of writers. Bu-
lacu and Schomaker [7] currently hold the best results reading 89% on 650 writers 
and we have achieved the same identification rate with the proposed features. It is 
however, important to precise that we distinguish the training and test sets while in [7] 
the authors have used a leave-one-out approach on the entire data set. Thus, in order 
to present a true comparison we also carried out a similar experimentation and 
achieved an identification rate of 86.5%. We hope to improve the performance of the 
system by optimizing the selection of the proposed features. 
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a) Chain Code (CC) Features (Global) b) CC Based Local Features (Window Based) 
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c) Polygon Based Features d) Combining three types of features 
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Fig. 5. Writer Identification and Verification Results 
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5   Conclusion 

We have presented an effective method for writer recognition that relies on extracting 
a set of features from the contours of text images. These features are simple to com-
pute and are very effective, realizing promising results on writer recognition. We have 
shown that recognition rates can be improved by modeling a vision with fewer details 
(polygonized writing) than the original digitized image. In our future research, we 
intend to extract and compare these features separately for different parts of words 
(baseline, ascenders & descenders) as well as at different image resolutions. We also 
plan to employ a more sophisticated feature selection mechanism and these additions 
are likely to enhance the recognition performance of the system. 
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Abstract. An important point in pattern recognition and image anal-
ysis is the study of properties of the shapes used to represent an object
in an image. Particularly, an interesting measure of a shape is its level
of complexity, a value that can be obtained from its fractal dimension.
Many methods were developed for estimating the fractal dimensions of
shapes but none of these are efficient for every situation. This work pro-
poses a novel approach to estimate the fractal dimension from shape
contour by using Curvature Scale Space (CSS). Efficiency of the tech-
nique in comparison to the well-known method of Bouligand-Minkowski.
Results show that the use of CSS yields fractal dimension values robust
to several shape transformations (such as rotation, scale and presence of
noise), so providing interesting results for a process of classification of
shapes based on this measure.

Keywords: shape analysis, curvature, complexity, fractal dimension.

1 Introduction

Shape plays an important role in pattern recognition and image analysis. It is
the characteristic that provides the most relevant information about an object,
thus allowing its characterization and identification. Literature presents many
approaches to extract information from the geometric aspect of the shape [1,2]
and one of these approaches is the complexity.

Complexity is a term that lacks of formal definition, although it is widely
used in literature for many applications. In shape analysis, it is straight related
to shape irregularity and space occupation level. One interesting approach to
estimate shape complexity is using the Fractal dimension, a property from fractal
objects, which describes, by using a fractionary value, how complex and self-
similar an object is [3,4,5].
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Another property straight connected to shape aspect is the curvature. Given
a shape contour, curvature outputs a curve associated to concave and convex
regions of the contour, i.e., maximum and minimum local points of the curve
correspond to the direction changes in the shape contour [6]. Curvature is a
property associated to the human perception of shapes, and it presents good
tolerance to rotation and scale variations.

In this paper, we propose a novel approach to estimate the fractal dimension
based on the curvature. Using Curvature Scale Space (CSS) [4,7,8] it is possible
to analyze how shape changes along the scale, so providing an estimation of its
complexity that is tolerance to shape transformations.

So, the paper starts with a brief review of complexity and fractal dimension
(Section 2). The theory about Curvature Scale Space is presented in Section 3.
In Section 4, we present our approach to estimate fractal dimension from the cur-
vature of a shape contour. The proposed approach is compared with Bouligand-
Minkowski fractal dimension method [5] and results are shown in Section 5. Finally,
in Section 6, the conclusions and future works for the method are discussed.

2 Shape and Complexity

Since Mandelbrodt [9], fractal geometry has presented significant advances in
the study and representation of shapes, which cannot be perfectly modeled by
the Euclidean geometry, such as objects commonly found in the Nature.

A fractal can be defined as an object constructed by applying a simple con-
struction rule iteratively over an original simple object. At each iteration, the
original object is transformed (for example, copied and scaled) to become part
of a more complex object [9,5]. This process generates fractal objects, which
are self-similar at an infinite level. However, objects found in the Nature do not
present self-similarity at an infinite level. However, they can be approximated
by a fractal entity without a significant loss of information.

The fractal dimension is a very useful property from fractal objects. Unlike
the Euclidean concept of integer dimension, fractal dimension is a real number
expressing the level of self-similarity of a fractal object. The fractal dimension
can also measure the spatial occupation and complexity of a shape, even when
this shape is not a true fractal object, as the objects studied in this work [10]. In
fact, the literature [9,5] shows that the larger the value of the fractal dimension
is, the most complex is the shape.

3 Curvature Scale Space

Considering a curve as a parametric vector C(t) = (x(u), y(u)), curvature is
defined in terms of derivative as

k(t) =
x(1)(t)y(2)(t)− x(2)(t)y(1)(t)

(x(1)(t)2 + y(1)(t)2)3/2 ,
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where (1) and (2) denotes the first and second derivatives, respectively.
Curvature is a powerful tool in shape analysis that allows the study of the be-

havior of a curve by its changes in orientation. However, in many situations it is
interesting to analyze the curvature properties along the scales. These situations
can be handled by applying a multi-scale transform over the original signal. A
frequently used multi-scale transform is the space-scale transform [4,7,8], which
employs the convolution of a Gaussian function g(t, σ) over the signal to reduce
the effects of noise and high frequency information before curvature measure-
ment:

X(t, σ) = x(t) ∗ g(t, σ),

Y (t, σ) = y(t) ∗ g(t, σ),

where
g(t, σ) =

1
σ
√

2π
exp

−t2

2σ2 ,

is the Gaussian function with standard deviation σ. By using convolution prop-
erties, it is possible to compute derivatives components from Gaussian function,
instead of the original signal:

X(1)(t, σ) = x(1)(t) ∗ g(t, σ) = (x(t) ∗ g(t, σ))(1) = x(t) ∗ g(1)(t, σ),

X(2)(t, σ) = x(2)(t) ∗ g(t, σ) = (x(t) ∗ g(t, σ))(2) = x(t) ∗ g(2)(t, σ).

In this way, it is possible to rewrite curvature equation considering the scale
evolution as

k(t, σ) =
X(1)(t, σ)Y (2)(t, σ)−X(2)(t, σ)Y (1)(t, σ)

(X(1)(t, σ)2 + Y (1)(t, σ)2)3/2 ,

By increasing linearly the value of σ, a set of curves is achieved. These curves
compose an image named Curvature Scale Space (CSS), which is widely used to
represent curves and shapes in different applications.

4 Proposed Approach

Through multi-scale transform, it is possible to analyze a curve along scale. Each
scale is represented by a different smoothing level computed using the Gaussian
function, which reduces the amount of high frequencies information and noise.
As the smoothing level increases, the curve information is reduced and more
similar to a circle the curve becomes (Figure 1). This process reflects in the
complexity of the curve, so that, curvature scale space can be used to estimate
the fractal dimension of a curve.

Considering the curvature of a given curve at scale σ, we define the amount
of curvature as the sum of the module of all curvature coefficients as

S(σ) =
∑

t

|k(t, σ)|
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Fig. 1. Smoothing effect performed over a curve using different σ values

where S(σ) represents the resulting orientation of the curve at scale σ.
As in CSS method, σ is linearly increased, so resulting in a set of S(σ) values.

By accumulating these values, it is possible to create a relation of dependence
among scales, where posterior scales are influenced by previous scales. Thus, the
accumulated amount of curvature is defined as

A(σ) =
σ∑

i=0

S(i).

It is possible to quantify the degree of space filling of a curve by considering its
order of growth. By analyzing the behavior of σ×A(σ) curve in the logarithmic
scale, we note that it obeys a power law.Literature [5] shows that this power law
can be used to estimate the fractal dimension of the original curve:

D = lim
σ→0

log A(σ)
log σ

.

From the log-log plot of σ ×A(σ), it is possible to estimate a straight line with
slope α, where D = α is the estimated fractal dimension for the closed curve
C(t).

5 Experiments

The proposed method was experimented with shapes under different types of
transformations. Figure 2 shows the original set of shape images considered. This
was performed, so that, properties such as rotation, scale and noise tolerance
could be evaluated. We also compared results obtained by our proposed method
with the Bouligand-Minkowski method, which is considered by literature one of
the most accurate methods to estimate the fractal dimension from shapes [5].

5.1 Rotation and Scale Tolerance

Variations in size and orientation are a very common issue in image analysis
applications. A robust method must be tolerant to these transformations in
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Set of fish images considered during the experiments

order to characterize and identify an object. Thus, given an original image,
different rotated and scaled versions of the image were generated and the fractal
dimension computed using the proposed method and the Bouligand-Minkowski
method. For this experiment, 5 rotation angles (7 ◦, 35 ◦, 132 ◦, 201 ◦ and 298 ◦)
and 5 scales factor (1.25×, 1.50×, 1.75×, 2.00× and 2.25×) were used.

Table 1 presents the fractal dimension values computed for a given image under
rotation transform. We note that, independently of the angle employed in the rota-
tion transform, the estimated fractal dimension remains constant. This is most due
to the fact that curvature is not sensitive to orientation changes in the shape. Cur-
vature value is a measure of curve orientation at a specific point, i.e., the changes
in the direction inside the curve. Bouligand-Minkowski method is also tolerant to
rotation. This method uses the Euclidean distance to compute the influence area of
the shape, a distancemeasure that isnot affectedby transformations in orientation.

In Table 2, we have the fractal dimension values as the scale factor increases.
As we can see, the proposed approach is also tolerant to scales changes. The
proposed approach uses the sum of the module of the curvature coefficients as
the basis to estimate the shape complexity. Figure 3 shows that this sum does

Table 1. Comparison between proposed approach and Bouligand-Minkowski for dif-
ferent orientations of a shape

Fractal Dimension: Curvature (Bouligand-Minkowski)
Shape 7 ◦ 35 ◦ 132 ◦ 201 ◦ 298 ◦

(a) 1.448(1.448) 1.452(1.448) 1.449(1.448) 1.445(1.447) 1.459(1.448)
(b) 1.372(1.374) 1.375(1.375) 1.366(1.374) 1.395(1.374) 1.376(1.374)
(c) 1.526(1.525) 1.529(1.525) 1.535(1.525) 1.530(1.525) 1.519(1.525)
(d) 1.577(1.579) 1.581(1.579) 1.573(1.578) 1.580(1.578) 1.582(1.579)
(e) 1.390(1.389) 1.395(1.389) 1.378(1.389) 1.382(1.388) 1.382(1.389)
(f) 1.445(1.446) 1.465(1.446) 1.445(1.447) 1.471(1.447) 1.447(1.447)
(g) 1.429(1.432) 1.422(1.434) 1.433(1.433) 1.432(1.433) 1.433(1.433)
(h) 1.404(1.403) 1.397(1.404) 1.399(1.403) 1.408(1.403) 1.392(1.403)
(i) 1.337(1.338) 1.354(1.339) 1.337(1.339) 1.342(1.338) 1.337(1.339)
(j) 1.474(1.471) 1.467(1.471) 1.463(1.471) 1.500(1.470) 1.453(1.471)
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Table 2. Comparison between proposed approach and Bouligand-Minkowski for dif-
ferent scale factors

Fractal Dimension: Curvature (Bouligand-Minkowski)
Shape 1.25× 1.50× 1.75× 2.00× 2.25×

(a) 1.459(1.509) 1.452(1.558) 1.455(1.596) 1.458(1.626) 1.459(1.652)
(b) 1.370(1.424) 1.374(1.465) 1.370(1.494) 1.374(1.514) 1.372(1.531)
(c) 1.525(1.582) 1.527(1.625) 1.522(1.659) 1.519(1.686) 1.522(1.709)
(d) 1.578(1.635) 1.582(1.678) 1.578(1.710) 1.580(1.737) 1.579(1.758)
(e) 1.390(1.457) 1.380(1.510) 1.377(1.552) 1.378(1.587) 1.385(1.616)
(f) 1.448(1.507) 1.440(1.553) 1.434(1.591) 1.436(1.623) 1.442(1.649)
(g) 1.406(1.504) 1.442(1.556) 1.444(1.598) 1.423(1.634) 1.413(1.663)
(h) 1.400(1.466) 1.398(1.516) 1.390(1.556) 1.388(1.590) 1.394(1.619)
(i) 1.339(1.407) 1.336(1.461) 1.332(1.504) 1.335(1.540) 1.337(1.571)
(j) 1.465(1.536) 1.466(1.586) 1.455(1.625) 1.449(1.656) 1.458(1.682)

Fig. 3. Curvature and the sum of its coefficients for a contour and its scaled version
(2.00×)

not change as the size of the object changes. As the size of the shape increases,
also increases the number of points in its contour. However, the relation among
minimum and maximum local points and the direction changes in the contour is
preserved, so as the estimated fractal dimension. The same is not valid for the
Bouligand-Minkowski method, where the influence area depends on a dilation
radius which depends on the shape size.

5.2 Noise Tolerance

At first, different noise levels were added to a given a contour shape. The noise
consisted of a random signal with the same length of the contour and whose
values range from [−d, +d], where d is an integer number which defines the noise
intensity (Figure 4).
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(a) (b) (c)

Fig. 4. Process of noisy shapes generation: (a) Original contour; (b) Random signal
ranging from [−d, +d], for d = 4; (c) Resulting noisy contour

Table 3. Comparison between proposed approach and Bouligand-Minkowski for dif-
ferent noise levels

Fractal Dimension: Curvature (Bouligand-Minkowski)
Shape d = 0 d = 1 d = 2 d = 3 d = 4

(a) 1.458(1.447) 1.458(1.449) 1.458(1.449) 1.462(1.453) 1.456(1.456)
(b) 1.374(1.372) 1.372(1.378) 1.377(1.378) 1.367(1.383) 1.374(1.394)
(c) 1.519(1.525) 1.520(1.526) 1.517(1.528) 1.516(1.531) 1.528(1.532)
(d) 1.580(1.578) 1.579(1.577) 1.580(1.579) 1.584(1.582) 1.576(1.583)
(e) 1.378(1.388) 1.379(1.390) 1.377(1.392) 1.381(1.394) 1.382(1.400)
(f) 1.436(1.446) 1.432(1.447) 1.442(1.449) 1.426(1.453) 1.450(1.459)
(g) 1.423(1.433) 1.437(1.434) 1.434(1.436) 1.456(1.434) 1.360(1.438)
(h) 1.388(1.403) 1.388(1.404) 1.390(1.408) 1.392(1.413) 1.392(1.416)
(i) 1.336(1.338) 1.342(1.341) 1.338(1.345) 1.352(1.350) 1.337(1.351)
(j) 1.450(1.471) 1.444(1.472) 1.455(1.472) 1.453(1.476) 1.472(1.478)

Table 3 shows the estimated fractal dimension as the noise levels increases.
Four different noise levels, d = {1, 2, 3, 4}, were considered for this experiment
and d = 0 represents the original shape (without noise). Results show that pro-
posed method presents a good noise tolerance in comparison to the Bouligand-
Minkowski method. Most of its tolerance is due to the use of a Gaussian filter
during the calculus of the CSS, which acts reducing the importance of this type
of information as the smoothing level increases. On the other hand, high noise
levels may change the geometric patterns in the shape and the smoothing pro-
cess is not capable of correcting such changes. This explains the small changes
in the fractal dimension value.

6 Conclusion

From the results, we note that the estimative of fractal dimension by CSS
shows a good precision when in comparison to the well-known method of
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Bouligand-Minkowski. Besides, CSS presents some advantages over Bouligand-
Minkowski when the shape is scaled, as it commonly occurs in real situations.

These facts suggest strongly the use of CSS as an interesting new approach
for the estimative of fractal dimension and its application to the characterization
of shapes with a variable level of complexity and aspect. Such characterization
can be used in the solution of a large amount of problems in Computer Science,
particularly in pattern recognition and computer vision.

As future works, we suggest a deeper study of CSS fractal dimension applied
to different problems of shape analysis and characterization. One can apply the
CSS fractal dimension to the characterization of the shape used, for instance, in
a classification process. Several data sets can be classified by this technique and
the results can be analyzed.
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Abstract. In this paper we validate a new model of bottom-up saliency
based in the decorrelation and the distinctiveness of local responses. The
model is simple and light, and is based on biologically plausible mecha-
nisms. Decorrelation is achieved by applying principal components analy-
sis over a set of multiscale low level features. Distinctiveness is measured
using the Hotelling’s T2 statistic. The presented approach provides a
suitable framework for the incorporation of top-down processes like con-
textual priors, but also learning and recognition. We show its capability
of reproducing human fixations on an open access image dataset and we
compare it with other recently proposed models of the state of the art.

Keywords: saliency, bottom-up, attention, eye-fixations.

1 Introduction

It is well known, from the analysis of visual search problems, that vision pro-
cesses have to face a huge computational complexity [1] . The Human Visual
System (HVS) tackles this challenge through the selection of information with
several mechanisms, starting from foveation. In the basis of this selection is the
visual attention, including its data-driven component leading to the so called
bottom-up saliency. In the last decades, the interest in the understanding of
saliency mechanisms and the appraisal of its relative importance in relation to
the top-down (knowledge-based) relevance, has constantly raised. Besides, atten-
tion models can facilitate a solution of technical problems, ranging from robotics
navigation [2] to image compression or object recognition [3].

Recently, several approaches to bottom-up saliency have been proposed based
on similarity and local information measures. In these models local distinctive-
ness is obtained either from self-information [4][5], mutual information [6][7], or
from dissimilarity [8], using different decomposition and competition schemes.

In this paper, we propose a new model of bottom-up saliency, simple and
with low computational complexity. To achieve this, we take into account the
decorrelation of neural responses when considering the behavior of a popula-
tion of neurons subject to stimuli of a natural image [9]. This is believed to be
closely related to the important role of non classical receptive fields (NCRF)
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in the functioning of HVS. Therefore, we start from a multiscale decomposi-
tion on two feature dimensions: local orientation energy and color. We obtain
the decorrelated responses applying PCA to the multiscale features. Then, we
measure the statistical distance of each feature to the center of the distribution
as the Hotelling’s T2 distance. Finally, we apply normalization and Gaussian
smoothing to gain robustness. The resulting maps are firstly summed, delivering
local energy and color conspicuities, and then they are normalized and averaged,
producing the final saliency map.

In order to achieve a psychophysical validation, most models of bottom-up
saliency assess their performance in predicting human fixations, and compare
their results with those provided by other previous models. The most frequent
comparison method consists in the use of the receiver-operator-curve (ROC)
and the corresponding value of the area under the curve (AUC), as a measure
of predictive power [5][6][8]. The use of Kullback-Leibler (K-L) divergence to
compare priority and saliency maps is also found on related literature [10]. From
the use of both methods, we obtain results that match or improve those achieved
with models of the state of the art. Moreover, ruling out the use of center-
surround differences we definitely improve the results respect to those obtained
with a previous proposal [11].

The paper is developed as follows. Section 2 is devoted to overview the visual
attention model. In Section 3 we present and discuss the experimental work
carried out, and the achieved results. Finally, Section 4 summarizes the paper.

2 Model

Our model takes as input a color image codified using the Lab color model. Un-
like other implementations of saliency [6][12] this election is based on a widely
used psychophysical standard. We decompose the luminance image by means of a
Gabor-like bank of filters, in agreement with the standard model of V1. Since ori-
entation selectivity is very weakly associated with color selectivity, the opponent
color components a and b simply undergo a multiscale decomposition. Hence,
we employ two feature dimensions: color and local energy. By decorrelating the
multiscale responses, extracting from them a local measure of variability, and
further performing a local averaging, we obtain a unified and efficient measure
of saliency.

2.1 Local Energy and Color Maps

Local energy is extracted applying a bank of log Gabor filters [13] to the lumi-
nance component. In the frequency domain, the log Gabor function takes the
expression:

logGabor (ρ, α; ρi, αi) = e
− (log(ρ/ρi))

2

2(log(σρi/ρi))2 e
− (α−αi)

2

2(σα)2 . (1)

where (ρ, α) are polar frequency coordinates and (ρi, αi) is the central frequency
of the filter. Log Gabor filters, unlike Gabor, have no DC or negative frequency



Saliency Based on Decorrelation and Distinctiveness of Local Responses 263

components, therefore avoiding artifacts. Their long tail towards the high fre-
quencies improves its localization. In the spatial domain, they are complex valued
functions (with no analytical expression), whose components are a pair of filters
in phase quadrature, f and h. Thus for each scale s and orientation o, we obtain
a complex response. Its modulus is a measure of the local energy of the input
associated to the corresponding frequency band [14] [15] .

eso(x, y) =
√

(L ∗ fso)2 + (L ∗ hso)2. (2)

Regarding the color dimension, we obtain a multiscale representation both for
a and b, from the responses to a bank of log Gaussian filters.

logGauss(ρ) = e
− (log(ρ))2

2(log(2nσ))2 . (3)

Thus, for each scale and color opponent component we get a real valued
response. The parameters used here were: 8 scales spaced by one octave, 4 ori-
entations (for local energy), minimum wavelength of 2 pixels, angular standard
deviation of σα = 37.5o, and a frequency bandwidth of 2 octaves.

2.2 Measurement of Distinctiveness

Observations from neurobiology show decorrelation of neural responses, as well
as an increased population sparseness in comparison to what can be expected
from a standard Gabor-like representation [16]. Accordingly we decorrelate the
multiscale information of each sub-feature (orientations and color components)
through a PCA on the corresponding set of scales. On the other hand, vari-
ability and richness of structural content have been proven as driving attention
[17]. Therefore, we have chosen a measure of distance between local and global
structure to represent distinctiveness. Once scales are decorrelated, we extract
the statistical distance at each point as the Hotelling’s T2 statistic:

X =

⎛⎜⎝x11 . . . x1N

...
...

...
xS1 . . . xSN

⎞⎟⎠ → (PCA) → T2 =
(
T 2

1 , · · · , T 2
N

)
. (4)

That is, being S the number of scales (original coordinates) and N the number
of pixels (samples), we compute the statistical distance of each pixel (sample)
in the decorrelated coordinates. Given the covariance matrix (W), T2 is defined
as:

T 2
i = (xi − x̄)’W−1(xi − x̄). (5)

This is the key point of our approach to the integration process. This multivariate
measure of the distance from a feature vector associated to a point in the image,
to the average feature vector of the global scene, is in fact, a measure of the local
feature contrast [18].
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Fig. 1. Bottom-up Saliency Model

Final Map. The final saliency map is obtained normalizing to [0,1], smoothing,
and summing the extracted maps, first within each feature dimension and next
with the resulting local energy conspicuity and color conspicuity maps. In this
way we obtain a unique measure of saliency for each point of the image.

Computational Complexity. The whole process involves two kinds of oper-
ations. Firstly, filtering for decomposition and smoothing, has been realized in
the frequency domain, as the product of the transfer functions of the input and
the filters, using the Fast Fourier Transform (FFT) and its inverse (IFFT). This
implies a computational complexity of O(N log(N) + N), being N the number of
pixels of the image. The other operation is PCA with a complexity of O(S3 + S2

N), being S the number of scales (dimensionality) and N the number of pixels
(samples) [19]. We are interested in the dependency on the number of pixels,
being O(N), since the number of scales remains constant. Therefore, the overall
complexity is given by O( N log(N) ).

3 Experimental Results and Discussion

In this work we demonstrate the efficiency of the model predicting eye fixations
in natural images. In Section 3.1 we show the performance of the model in terms
of AUC values from ROC analysis, on a public image dataset. We compare these
results with those obtained by other models representative of the state of the
art. Moreover, we discuss the details of this procedure, as well as the difficulties
and limitations that it poses. This last issue motivates Section 3.2, where we use
a metric based on the K-L divergence.

3.1 ROC Values

In this experiment we employ an image dataset published by Bruce & Tsotsos.
It is made up of 120 images, and the corresponding fixation data for 20 different
subjects. A detailed description of the eye-tracking experiment can be found
in [4].
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Fig. 2. Results of the model (T2) with three of the images used. Results for other
models, have been obtained with the corresponding open access version.

Table 1. AUC average values from computed like in [6]. (*published by the authors)

Model AUC std
T2-Based 0.791 0.080
Gao et al. [6]* 0.769 ---
GBVS [8] 0.688 0.119

The details of AUC computation from ROC analysis face a difficulty from the
beginning. Bruce & Tsotsos construct one unique ROC curve for the complete
set of images, with the corresponding AUC. The uncertainty is provided, based
on the proposal of Cortes & Mohri [20]. They give a value for their model and the
model of Itti et al. [12]. On the other hand Gao et al. compare these results with
those obtained by their model, but with another procedure. They construct one
ROC curve and extract the corresponding AUC for each image. They take the
average of the AUC as the overall value, but they don’t provide any estimation
of uncertainty. The same averaging procedure is employed by Harel et al. but on
a different set of images [8].

When computing AUC with the average procedure we find a problem: stan-
dard deviation is larger than the differences between models, although these
differences can be also large. This is reflected in table 1. The model of Gao et al.
should have a similar value of standard deviation, since partial graphical values
are similar to the models of Bruce & Tsotsos and Itti et al. [6].

Instead, we can proceed like Bruce & Tsotsos, who obtain a much tighter value
for a 95% uncertainty, while the AUC is very similar (slightly lower). Thus, this
would make it possible to rank the models by their overall behavior on the whole
dataset. Results are shown in table 2. Our model has equivalent results to Bruce
& Tsotsos, improving the performance of all of the other models.

However, this approach hides a problem. We are analyzing all the scenes as a
unique sample, instead of considering each scene separately. Hence, the approach
of Bruce & Tsotsos means to loose the inter-scene variance, performing a global
assessment. Then, a question arises: does the kind of scene affect the ranking
of models?. That is, could there be scene-biased models? If the kind of scene is
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Table 2. AUC computed from a unique ROC curve (*values provided by [5])

Model AUC std
T2-Based 0.776 0.008
AIM [9]* 0.781 0.008
Itti et al. [12]* 0.728 0.008
GBVS [8] 0.675 0.008
STB [21] 0.569 0.011

important, probably this dataset is not representative enough of natural images.
In fact, urban and man-made scenes are clearly predominant. For instance, there
is no landscape, and there is only one image with an animal (but in an indoor
environment).

This fact could help to explain the results reported by Harel et al. [8], that
show a higher (and excellent) performance compared to models of Bruce & Tsot-
sos and Itti et al., using a different image dataset. We must notice here that these
other images were gray-level (without color information), and were mainly im-
ages of plants.

3.2 K-L Divergence Values

In this Section we employ the K-L divergence to compare priority maps from
fixations with saliency maps, similarly to [10]. As priority maps we use the
density maps computed by Bruce & Tsotsos to reflect the foveated region with
each fixation.

The priority map can be interpreted as a measure of the probability of each
point to attract gaze, and the saliency map can be viewed, in turn, as a prediction
of that probability. Hence, it makes sense to compare both distributions through
the K-L divergence. It is worth noting that, instead of gray levels probabilities
[5], we compare distributions of probabilities in the space.

Table 3. K-L comparison. Other models have been executed using their default values.

Model K-L std
T2-Based 1.3 0.3
AIM [9] 1.7 0.3
GBVS [8] 2.1 0.6
STB [21] 13.0 1.6

With this aim, we obtain probability maps simply dividing a given map by
the sum of its gray-level values. We denote by hi = h(x, y) and mi = m(x, y)
the priority map from fixations and the saliency map from each model (taken as
probability distributions) respectively. Then, being N the number of pixels, we
compute the K-L divergences:

DKL(h, m) =
N∑

i=1

hi · log
hi

mi
(6)
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It is possible to use other procedures to construct the priority maps, to take
into account other parameters like the duration of fixations, and not merely
their positions [22]. Therefore, this metric should be viewed as an interesting
complement to ROC analysis.

Nevertheless, the results shown in table 2, lead to a similar interpretation to
that derived from analysis of ROC curves. Standard deviations are similar in
relative order of magnitude. Our model exhibits an slightly better performance
than the model of Bruce & Tsotsos [5], and again clearly better than the model
proposed by Harel et al [8]. The implementation proposed by Walther [21] of the
model of Itti & Koch [23] exhibits again the worst result.

4 Conclusions

In this work we have shown a simple and light model of saliency, that resorts to
the decorrelation of the responses to a Gabor-like bank of filters. This mechanism
is biologically plausible and could have an important role in the influence of
NCRF when V1 cells are subjected to natural stimuli [9][16].

We have validated the model, comparing its performance with others, in the
prediction of human fixations. Using ROC analysis we have obtained a result
equivalent to that achieved by Bruce & Tsotsos [5], after the optimization of their
decomposition process. With the same model in a previous work they obtained
an AUC value of 0.7288 [4], clearly lower. On the other hand, using a different
metric based on K-L divergence, that takes into account the area of foveation of
each fixation, the model performs slightly better than the approach of Bruce &
Tsotsos. Other models [6][8][21] deliver worse results in both comparisons.

Similarly to Bruce & Tsotsos [5], we avoid any parameterization of the process,
beyond the initial decomposition of the image. However, this decomposition
remains ordered and suitable for the incorporation, from the beginning, of top-
down influences. Finally, our model of saliency presents a lower computational
complexity than models that are benchmarks for psychophysical plausibility.
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Abstract. Most object detection techniques discussed in the literature are based
solely on texture-based features that capture the global or local appearance of an
object. While results indicate their ability to effectively represent an object class,
these features can be detected repeatably only in the object interior, and so cannot
effectively exploit the powerful recognition cue of contour. Since generic object
classes can be characterized by shape and appearance, this paper has formulated
a method to combine these attributes to enhance the object model. We present an
approach for incorporating the recently introduced shape-based features called k-
Adjacent-Segments (kAS) in our appearance-based framework based on dense
SIFT features. Class-specific kAS features are detected in an arbitrary image
to form a shape map that is then employed in two novel ways to augment the
appearance-based technique. This is shown to improve the detection performance
for all classes in the challenging 3D dataset by 3-18% and the PASCAL VOC
2006 by 5%.

1 Introduction

Appearance-based techniques for object detection have been very popular in the liter-
ature because many objects are well represented by their texture. Texture is typically
captured using local features obtained by extracting image patches either randomly [1],
from a dense grid of image locations [2] or by employing a salient interest point de-
tector [3][4]. Certain objects, however, are better characterized by their shape rather
than their appearance. Recently, efforts have been made to develop shape-based fea-
tures that exploit contour cues and represent the underlying object using these contours
[5][6][7][8].

Shotton et al. [5] and Opelt et al. [6] independently proposed to construct contour
fragments tailored to a specific class. The idea is to extract class-discriminative bound-
ary fragments and use the object’s boundary to detect object regions in an image. [7]
introduced a class of shape-based salient regions that captures local shape convexities in
the form of circular arcs of edgels. Ferrari et al. presented a family of local contour fea-
tures that are obtained by connecting k adjacent segments (kAS) detected on a contour
segment network (CSN) of the image [8].

Recently, the complementary information provided by shape-based and appearance-
based features has been combined into a common framework [9][10][11]. This permits
recognition of generic object classes that could be characterized by shape, appearance
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or both. In [9], a shape context operator applied to points derived from the Canny edge
detector is used to describe the global shape of an object while Difference-of-Gaussian
[12] features described using PCA-SIFT represent the local features. Opelt et al. [10]
extend their boundary fragment model [6] by adding the appearance patches and learn-
ing the best features from a pool of patches and boundaries. Similarly, Shotton et al.
[11] combine their contour fragments [5] with texton features obtained by clustering
the response of training images to a bank of filters.

This paper presents an approach to incorporate shape-based features (called k-
Adjacent-Segments [8]) within our appearance-based framework based on densely sam-
pled SIFT features [2]. The aim is to exploit shape cues to capture variations in generic
object classes and strengthen the object model.

The main idea is to determine those kAS features that are discriminative with re-
spect to a given object class. These features can then be detected in an arbitrary image
to produce a shape map that indicates the locations containing class-specific shape in-
formation. This paper describes two novel ways of exploiting the shape map to enhance
the representational power of the appearance-based object model. The first overlays the
shape map onto the image to augment the edges on the object and uses the resulting
edge-augmented image to compute SIFT descriptors. The second assigns a shape score
to each detected window which measures how closely the shape of the detected object
matches that of the actual object.

The paper begins with a brief description of our appearance-based object model [2]
in section 2. Section 3 describes the method for generating the shape map and the two
methods for employing it in conjunction with the appearance-based approach. In sec-
tion 4, the shape-based augmentation is evaluated on challenging image databases 3D
dataset [4] and two classes from PASCAL VOC 2006 [13]. Lastly, section 5 presents
the conclusions.

2 Appearance-Based Object Model

In this section, we briefly describe our appearance-based object model [2] that is created
using training images from both the object and background classes. In this model, the
object is divided into different spatial regions, where each one is associated with an
object part. The appearance of each object part is represented by a dense set of local
features that are described using a SIFT descriptor [12].

The distribution of these features across the training images is then described in a
lower dimensional space using supervised Locally Linear Embedding [14]. Each object
part (spatial region) is essentially represented by a spatial cluster in the embedding
space. Additionally, spatial relationships between object parts are established and used
during the detection stage to localize instances of the object class in a novel image.

The unique aspect of this model is that all object parts and the background class are
created simultaneously in the same underlying lower dimensional space. Spatial clusters
represent the former while the latter is represented by a single background cluster in the
embedding space.

Our approach obtains viewpoint invariance by dividing the view-sphere into a dis-
crete number of view segments. Several spatial clusters represent the object in each view
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segment. All spatial clusters can be represented in just a single embedding space or, al-
ternatively, multiple view models can be constructed by representing spatial clusters of
different views in multiple embedding spaces.

The object model can be applied to an image containing an arbitrary amount of back-
ground clutter to detect instances of the object class present in any view. The detection
scheme is based on hypothesizing object parts in a test image and then finding those
that are spatially consistent to estimate the location of the object. Experiments on the
challenging 3D dataset [4] and PASCAL VOC 2006 [13] produced encouraging results
in [2]. They also indicated that the performance based on multiple embedding spaces
is always superior to that based on a single embedding space. In this paper, we report
results based on multiple embedding spaces only.

3 Incorporating Shape-Based Features

In this section, we discuss incorporating a family of local contour features called k-
Adjacent-Segments (kAS) [8] into our appearance-based framework [2]. kAS consists
of k approximately straight contour segments that mainly cover object boundary with-
out including nearby edge clutter. Each kAS has a well-defined location and scale and is
described by a low dimensional translation and scale invariant descriptor. The descriptor
encodes the geometric properties of the segments and of their spatial arrangement.

The aim of this paper is to augment the appearance-based local SIFT features with
these local contour features. We accomplish this primarily by finding class-specific
kAS: those kAS features that occur more frequently on a particular object than else-
where. We next present the method for finding class-specific kAS and then describe
two novel ways in which these features are incorporated in the appearance-based frame-
work.

The methodology adopted to find class-specific kAS follows the method of Vidal et
al. for finding informative image patches called fragments [1]. A kAS feature, described
by feature vector f , is said to be detected in an image I if the distance D(f, I) of the
feature vector f to the kAS feature vectors in the image I is below a certain threshold
θ. In contrast to using mutual information (as in [1]), this paper uses the likelihood ratio
L(θ) [3] to measure the discriminability of the kAS feature vector f , given threshold θ.
Essentially, L(θ) represents the ratio of the frequency of detecting feature f in object
training images to the frequency of detecting it in background training images.

The maximum likelihood value M(f) = max(L(θ)) is the information score asso-
ciated with the feature f . The larger this value, the more discriminative is the feature.
The detection threshold θf = arg{max

θ
(L(θ))} for feature f is computed so as to max-

imize the discriminability of the feature with respect to the class. This is the maximum
distance D the feature can have within an image for it to be detected.

According to the procedure outlined above, all kAS features in each object training
image are assigned an information score. We regard all features whose information
score is above a certain threshold θI as discriminative features.

Discriminative features are usually similar across the object training images. These
are therefore clustered using a clique partitioning algorithm [8] to yield representative
discriminative kAS (RDkAS) for the object class. Note that RDkAS are computed for
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(a) Shape map showing the seg-
ments constituting the detected
RD3AS features

(b) The test image is edge-
augmented with the segments in
the shape map

Fig. 1. Example of detecting RDkAS on a test image of a car viewed from the back side. Some
features in the background are also detected. (Best viewed with magnification)

each view-segment separately and then pooled to form a set of discriminative features
representing the object across all views.

Based on the detection threshold θf , each RDkAS is tested for detection in a given
image. Typically, a small fraction of the RDkAS is detected. Recall that each RDkAS
is a collection of k segments (by definition of kAS). Figure 1(a) shows the shape map
produced by the segments constituting the detected RDkAS. The shape map shows the
segments displayed according to their strength (all segments are associated with the
average strength of the edgels forming the segment [8]). We use the shape map in two
novel ways as discussed in the next section.

3.1 Employing Shape Map

The first method for employing the shape map simply overlays the detected segments
onto the original image so as to emphasize the edge information. Note that in this
method all segments are overlaid in black, regardless of their strength. This is done to
highlight edge information independent of contrast in the image. The SIFT descriptors
are then computed over the edge-augmented image (figure 1(b)) instead of the original
image. The resulting SIFT descriptor is more distinctive than pure appearance-based
features and also robust to background variations. Edge augmentation is applied to all
training images and the object model is then constructed in exactly the same way as
described in section 2 (see [2] for details).

The detection algorithm is applied onto the edge-augmented test images with the
output being a set of object windows, each with a detection score. We refer to this
detection score as the “Appearance with kAS Score” (AkS) to distinguish it from the
Appearance Score (AS) obtained using the original formulation in section 2.

The second method for employing the shape map assigns a shape score to the object
windows generated by the detection algorithm. The scoring scheme is based on the
intuition that most of the discriminative shape features found in the test image must
belong to the true positive. On the other hand, a false positive should not contain many
discriminative shape features. Consequently, a detected window can be assigned a shape
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score (SS) defined as the ratio of number of segments within the detected window w
and the total number of segments in the test image I , each weighted by the strength of
the respective segments (see first term in equation 1).

This intuition is based on the assumption that the object is present in the image.
When this is not true, even a false-positive can get a high score. To account for this, we
first make an observation regarding the segments detected in a non-object image: These
segments do not often lie in a localized region and the output windows usually contains
a small number of them. Consequently, the number of segments in a given detection
window w would be less in non-object images than object images. Thus the number of
segments inside a false-positive would be less than the number of segments within a
true-positive. Therefore, based on a threshold on this number, the shape score could be
suitably modified as explained next.

During the training stage, the average number of segments ŝ detected on the object
is computed. Let nw denote the number of segments in the window w detected in a test
image. The shape score for this window is modified based on the intuition that nw must
be comparable to or greater than ŝ for an object to exist. The final form of the shape
score is given by:

SS(w) =

∑
t∈w

p(t)∑
t∈I

p(t)
. min

(
1,

nw

ŝ

)
(1)

where p(.) denotes the strength of the segment. In practice, ŝ is computed by construct-
ing an histogram of the number of segments detected across all training object instances
and finding its mode.

It is worth noting that the shape score is computed over the window locations pro-
vided by the appearance-based algorithm (which can be implemented with or without
edge-augmentation). The cumulative detection score for each window location can be
written as a linear combination of the appearance and shape scores: DS = w1 ∗AS +
w2∗SS, where w1 and w2 are weights. As a matter of notation, if the edge-augmentation
step was used, the scores are represented with a subscript k as AkS and SSk. We obtain
DS using (w1, w2) = (1, 0); (1, 1). In other words, we will compare results obtained
using the following detection scores: (AS, AS +SS, AkS, AkS +SSk). The detection
score DS permits us to examine the effect of employing the two ways of incorporating
shape information, either individually or cumulatively. This is explored next.

4 Experiments and Results

For these experiments, all of the parameters involved in the appearance-based technique
were kept exactly the same as in [2]. The distribution of training and test images was
also unchanged. The aim was only to evaluate whether any performance enhancement
prevailed due to the incorporation of kAS features. The detection and classification per-
formance were, respectively, evaluated using Average Precision (AP) from the Recall-
Precision Curve (RPC) and area-under-ROC-curve (AUC) [13].

Throughout the experiments presented in this section, only 3AS features were de-
tected. Other kAS features were not used due to the following reasons. 2AS features are
not very discriminative while 4AS features turn out to be very object-specific and thus
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Table 1. Comparison of the detection performance (AP) obtained using the different detection
scores in the multiple embedding spaces

Bicycle Car Cell phone Iron Mouse Shoe Stapler Toaster

AS 74.1 72.6 18.9 36.2 7.4 28.9 28.6 72.6

AS + SS 78.6 79.9 22.5 43.1 13.5 39.5 40.4 79.0

AkS 79.8 72.3 10.7 43.3 4.7 37.4 25 71.0

AkS + SSk 85.7 84.0 19.3 40.7 16.3 46.8 35.5 74.4

Table 2. Comparison of the classification performance (AUC) obtained using the different detec-
tion scores in the multiple embedding spaces

Bicycle Car Cell phone Iron Mouse Shoe Stapler Toaster

[4] 82.9 73.7 77.5 79.4 83.5 68.0 75.4 73.6

AS 97.4 95.8 73.9 90.2 77.0 86.3 74.8 95.3

AS + SS 98.6 98.1 74.4 87.0 79.6 81.1 88.5 97.0

AkS 98.3 97.2 71.6 87.5 61.6 76.7 87.3 94.8

AkS + SSk 98.8 98.1 69.9 87.1 60.3 89.2 81.9 97.4

difficult to detect in novel images (such an observation was also made in [8]). Moreover,
since the segments of the discriminative kAS features form the shape map and they are
mostly shared between 3AS and 4AS, there is not much difference between detecting
3AS and 4AS.

In this paper, we have chosen θI = 2 as the threshold to determine whether a feature
is discriminative. As mentioned in section 3, all discriminative features are clustered to
yield representative discriminative kAS (RDkAS). The number of RDkAS differs with
view and the object class. For example, some classes such as car have 60 RDkAS in
a given view-segment while others like iron have 20. Since each RDkAS is tested for
detection in an image, it is likely that a larger number of RDkAS features will detect
more segments not belonging to the object. At the same time, it has been observed that
the number of segments found on the object does not typically change. This is because
segments can be shared across different kAS features and a segment is considered de-
tected even if one of the kAS features is detected. Taking this into consideration and
to maintain uniformity across all object classes, only the top 10 RDkAS in a given
view-segment of the object class were selected. Next, we investigate the role played by
edge-augmentation and shape score on the 3D dataset [4].

Effect of edge-augmentation (comparing AS with AkS): From table 1, it can be ob-
served that the edge-augmentation step improves the detection performance for three
classes (bicycle, iron and shoe) and reduces it for four (cell phone, stapler, mouse and
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(a) Bicycle (b) Car

Fig. 2. Comparing RPC curves and Average Precision (AP) obtained by different detection scores
for two classes from the VOC 2006 dataset [13]. For reference, AP for car class in [13] is 16
(MIT fergus) and 21.7 (MIT torralba).

toaster). The primary reason for the decrease in the detection performance in the latter
cases can be attributed to the simplistic edge structure of these objects. Discriminative
features of one object class are easily found in others and thus edges are augmented
in all of these classes. As a result, the edge-augmentation step makes the local SIFT
features even less distinctive than when solely appearance is used. In contrast, aug-
menting edges in the classes having complex edge structure produces more distinctive
SIFT features, which leads to improvement in detection performance.

Effect of shape score (comparing AS with AS + SS and AkS with AkS + SSk):
Table 1 shows that adding shape score (SS) to the original appearance score (AS)
improves the detection performance of all of the object classes. Similar improvement
in the detection performance is observed by adding the shape score (SSk) to the edge-
augmented appearance score (AkS) except for the iron class, which shows a slight
reduction in performance. On the average, there is an improvement of 7% by AS + SS
over AS and 8% by AkS + SSk over AkS.

Effect of edge-augmentation and shape score (comparing AS with AkS + SSk):
Table 1 shows that the detection performance obtained with AkS + SSk is better than
AS for all object classes. The improvement is conspicuous for the bicycle (11.6%), car
(11.4%) and shoe (17.9%) classes.

It is clear from the above analysis that the shape score definitely improves the de-
tection performance whereas edge-augmentation only improves it for classes having
distinctive edge structure. The classification performance (table 2) is also improved for
all classes except for iron. Specifically, AS +SS and AkS +SSk each achieve the best
performance in three classes and the same performance for the car class. The method
presented in this paper outperforms [4] (which report only the classification results) on
6 classes by a margin varying between 6− 24% (based on AkS + SSk).

Lastly, we compare the results obtained on the VOC 2006 dataset [13]. As in [2], the
appearance-based model learnt from the 3D dataset is applied to the VOC 2006 dataset.
Figure 2 shows the RPC curves corresponding to each combination of the detection scores
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for the two classes. For either class, AS + SS yields the best performance with an aver-
age improvement of approximately 5% over the original appearance score AS. Similar
improvement is observed by adding the shape score SSk to the edge-augmented appear-
ance score AkS. These results underline the success in assigning a shape score to each
detected window to measure how closely it conforms to the shape of the actual object.

5 Conclusion

This paper presents two simple ways of incorporating shape information into the ap-
pearance based framework proposed in [2]. The results are in agreement with various
other approaches in the literature that show improvement in detection performance by
combining shape- and appearance-based features. The efficacy of assigning a shape
score to a detected window based on its conformity to the shape of the actual object
is demonstrated for various object classes. Further, it has been shown that augmenting
the edges of certain object classes that have distinctive edge structure also improves
detection performance.
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Abstract. In this paper, a novel method is presented, which detects
symmetry axes for multi-object. It uses vertical line detection method
in local polar coordinate. The approach costs little computation and
can get efficient results, which means that it can be used in database
applications.

1 Introduction

Many images, including synthetic figures and natural pictures, have symmetries
Fig.1. It is an important feature for a lot of practical applications, including
object alignment, recognition and segmentation. The image might be affected
by illumination variation or changes in other conditions, which makes symmetry
axes hard to detect.

(a) papercut (b) butterfly (c) steps (d) toy cars

Fig. 1. Some images with kinds of symmetries

Actually, there are many kinds of symmetries and they can be classified into
different classes. According to the theory of wallpaper groups [1], there are ex-
actly seventeen different plane symmetry groups, which can be classified into
translation symmetry, reflection symmetry, rotation symmetry and glide reflec-
tion symmetry. From another perspective, they can also be divided into perfect
symmetry and almost symmetry. The third kind of classification is local sym-
metry and global symmetry. The general shapes of objects in images maybe
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have global symmetries, but not perfect symmetries when their details show up.
From the view of components in images, there are symmetries for sigle object
Fig.1(a,b,c) and multi-object Fig.1(d).

In the paper, we propose a new method to detect symmetry axes for multi-
object in one image.

1.1 Previous Work

Early papers focused on detecting exact symmetry[2], which limited their appli-
cations in more complex objects′ analysis. Marola adopted a maximization of a
specially defined coefficient of symmetry to find all the axes of symmetry of sym-
metric and almost symmetric planar images with nonuniform gray-level (inten-
sity images)[3]. Zabrodsky et al proposed a method for approximate symmetry
detection and defined SD (Symmetry Distance) [4]. Reisfeld et al. described a
method that does not require prior segmentation or knowledge. An objection to
this method was that it was dependent on the contrast of the feature in addition
to its geometric shape[5]. The symmetry of a one-dimensional function can be
measured in the frequency domain as the fraction of its energy that resides in the
symmetric Fourier basis functions. The approach was extended into two dimen-
sions [6]. C.Sun et al used an orientation histogram for symmetry detection [7,10].
Peter Kovesi started to use Log Gabor functions and local phase information for
symmetry detection [8]. Atsushi Imiya et al proposed a randomized method to
speed up the detection [9]. Qiong Yang et al proposed a method by combining
PCA with the even-odd decomposition principle [11]. Prasad et al addressed the
bilateral symmetry detection problem in images. In their work, edge-gradient in-
formation was used to achieve robustness to variation in illumination [12]. Jingrui
et al proposed an optimization-based approach for automatic peak number detec-
tion, based on which they design a new feature to depict image symmetry property
[13]. Jun Wu et al used phase information of original images instead of gradient
information [14]. Thrun et al proposed an approach which identifies all of prob-
able symmetries and used them to extend the partial 3-D shape model into the
occluded space[15]. Keller et al presented an algorithm that detected rotational
and reflectional symmetries of two-dimensional objects using the angular correla-
tion (AC) [16]. Loy et al present a method for grouping feature points on the ba-
sis of their underlying symmetry and their characterizing the symmetries present
in an image[17]. Niloy et al presented a new algorithm that processed geometric
models and efficiently discovers and extracts a compact representation of their Eu-
clidean symmetries. Based on matching simple local shape signatures in pairs, the
method used these matches to accumulate evidence for symmetries in an appropri-
ate transformation space[18]. Joshua et al described a planar reflective symmetry
transform (PRST) that captured a continuous measure of the reflectional symme-
try of a shape with respect to all possible planes and used Monte Carlo framework
to improve computation[19,20,21]. Niloy et al formulated symmetrizing deforma-
tions as an optimization process that couples the spatial domain with a transfor-
mation configuration space, where symmetries were expressed more naturally and
compactly as parameterized point pair mappings[22].
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Zhitao et al gave a comparison between gradient based methods and phase
based methods after analyzing typical image symmetry detectors[25]. Park et al
gave an evaluation methodology of methods used in [17] and Digital Papercutting
(SIGGRAPH 2005) and another evaluation methodology of methods used in [17]
and Detecting Rotational Symmetries (ICCV05)[26] for rotation symmetry.

2 Our Method

Previous works mainly focus on a single object in images. Even the approach
used in [14] can detect symmetry axes for mulit-objects, it treats the image only
as a set of pixels, not considering its geometric information. Therefore, it costs
too much computation that it can’t be used in any database application. In this
paper, local geometric information is used to find symmetry axes of multi-objects
in an image. Our method costs less compuation, which makes sure that it can
be used in many database applications.

2.1 Object Localization

Mathematical morphology is used to locate objects in our work. Mathematical
morphology is well-studied for image processing. The basic idea in binary mor-
phology is to probe an image with a simple, pre-defined shape, drawing conclu-
sions on how this shape fits or misses the shapes in the image. This simple ”probe”
is called structuring element. Let Er denote a structuring element. In our work,
we let Er be an open disk of radius r, centered at the origin. The following steps
are used to locate objects. � Edge detection with Canny to turn the input im-
age I(x, y) into binary image f(x, y). � Closing operation with f(x, y) by E5 . �
Fill holes in objects. � Opening operation with f(x, y) by E5. � Closing opera-
tion with f(x, y) by E5. � Label connected components for multi-objects Fig.2(b).
The change of the parameter 5 here wouldn’t affect the final result because of basic
properties of morphology operations. More about the method’s robustness with
parameters’ variance can be found in the ’robust’ subsection.

(a) original image (b) object location (c) result

Fig. 2. An example

2.2 Local Polar Coordinate

Our work is based on the Theorem 1. Since it is well-accepted, the proof process
is omitted.
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(a) original image (b) object location (c) one component

(d) spectrum (e) polar coordinate (f) vertical lines

Fig. 3. Pipeline of our method

Theorem. Let y = k(x−xc)+yc be a symmetry axis through the object’s center
(xc, yc) in the original image, then y = kx will be a symmetry axis through the
origin in the corresponding magnitude spectrum of Fourier Transformation. �
Theorem 1 is the footstone of our approach. Let I(x, y) be the input image. Let
f(x, y) be its labeled binary image and there are n components in f(x, y). For
each pixel of a labeled connected component, its value is j (j = 1, · · ·n). The
connected component is denoted by fj(x, y). The object’s center is calculated

using xc =
∑

x× fj(x, y)∑
fj(x, y)

and yc =
∑

y × fj(x, y)∑
fj(x, y)

. It’s also easy to find two

integers m, n such that a rectangle R(x, y) with left-top coordinate (xc− m
2 , yc +

n
2 ) and right-bottom coordinate (xc + m

2 , yc − n
2 ) only contains the jth object.

That is:

R(x, y) =

{
I(x, y) if f(x, y) = j

0 otherwise
(1)

We can asume the symmetry axes equation as y = k(x− xc) + yc in the original
image, because it must cross the center of the object. Our main task is to estimate
the parameter k in the equation.

We calculate the gradient G of R(x, y) to get robustness from illumination’s
variation.

G(x, y) =
∂R(x, y)

∂x
+ i

∂R(x, y)
∂y

(2)

Then we get the magnitude M(x, y) of Fourier Transformation of G(x, y)

M(x, y) = |FFT (G(x, y))| (3)

From theorem 1, we know that y = kx is a symmetry axes in M(x, y). A rea-
sonable idea is to use a line detection method to find lines in M(x, y). But the
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method can’t guarantee that all of these lines cross the original. Georgios et al
suggest using the presentation of M(x, y) in the polar coordinate with original at
(xc, yc) to overcome the problem [23]. Let H(γ, θ) be the presentation of M(x, y)
in the polar coordinate with original at (xc, yc). They use the singular value de-
composition (SVD) method to find a proper radius in the polar coordinate and
then treat it as a peak detection problem. But it’s obvious that Georgios et al’s
method is sensitive to noise. In our study, we pay special attention on θ. For a
fixed θ′, H(γ, θ) is relatively stable. So line detection techniques can be used for
parameters estimation.

For more accurate k, some pixels around the origin should be removed by a
threshold δ1. If γ < δ1, H(γ, θ) = 0. Then we use Standard Hough Transform to
detect lines. It’s easy to see that only vertical lines cross the origin. So we set
another threshold δ2 to make sure all of the lines are vertical. For a line ended
with two points (xa, ya) and (xb, yb), if |xa−xb| < δ2, the line has to be removed
from the result. For each line ended with point (xa, ya) and point (xb, yb) in the
result, we construct a set E0 containing (xa + xb)/2.

Each vertical line in the result, which is in correspond to a symmetry axis
and also a number in E0, might be missed by the line detection method. From
above, it is known that if k ∈ E0 then k + pi (mod 2π) should also have been in
E0. This property of E0 can be used to find back the missed lines and get more
accurate k. The following algorithm is used for this purpose.

Algorithm
(1)Initialize E with ∅ and give a threshold δ3.
(2)∀k ∈ E0,

if ∃k′ s.t.|k′ − (k + π)|(mod 2π) < δ3

then k+k′±π
2 |(mod 2π) should be added into E.

otherwise, k and k + π(mod 2π) should be added into E.
Then, the symmetry axes can be estimated as y = yc + k(x− xc), k ∈ E.

2.3 Robust

Our method is not sensitive to parameters′ variation. Let E be the result and
E′ be the result with some parameter changed or the image noised. Then a
measurement is defined as:

m =
1
s

s∑
i=1

|ei − e′i|
ei + e′i

(4)

where ei ∈ E is the ith largest in E and e′i ∈ E′ is the ith largest in E′. s is the
number of elements in E.

There are three parameters in our method, δ1, δ2, δ3. For δ1, it is a threshold
to remove inaccuracy data. It’s obvious that δ1 doesn’t affect the result if it’s not
small enough. In our experiment, δ1 varies from 0.1 to 0.6, shown in Fig.4(a).
For δ2, it is used to make sure only vertical lines detected. It doesn’t affect the
result if it’s not large enough. In our experiment, δ2 varies from 3 to 33, shown
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(a) δ1 (b) δ2 (c) δ3 (d) noise

Fig. 4. Results affected by parameters and two kinds of noises

in Fig.4(b). For δ3, it is used to merge the two lines which are in close to each
other. In our experiment, δ3 varies from 0.1 to 1, shown in Fig.4(c). The effection
of two kinds of noises, Gaussian noise and proper salt noise, is also presented in
Fig.4(d), where abscissa t stands for noise intensity.

2.4 Fast

The algorithm is implemented in a Matlab 2008a’s script on a PC with an intel
CPU E2200. The computation time is shown in Tab.1. When being used in
database applications, the method should be implemented in C++ and the time
costs will be significantly reduced.

Table 1. Time costs

image size (number of objects) 640*638(3) 800*800(5) 498*433(2)
time 0.316690 0.729246 0.210623

(a) paper (b) icons (c) T-shirts (d) watches

(e) toys (f) objects (g) watches (h) toys

Fig. 5. Experiment results



Symmetry Detection for Multi-object Using Local Polar Coordinate 283

2.5 Efficient

Experiment results can be found in Fig.5. Actually, there are two kinds of evi-
dence for symmetry detection in our method. One is shape (or called contour)
information and the other is texture information. For objects with less texture
Fig.5(a, b), their symmetry axes are decided by shape information. For com-
plex objects Fig.5(f, g, h), texture information is the main factor. Our method
achieves implicit balance between the two kinds of information because of the
gradient information we adopted Eq.2.

3 Conclusion and Future Work

In this paper, we propose a new symmtry detection method for multi-object
using local coordinate and a vertical line detection method. Our method has
been proved to be robust, fast and efficient.

In the future work, the method will be tested on our image database. Fur-
thermore, symmetry detection for multi-object with overlap is hard for segmen-
tation and also symmtry detection. More study is needed in the area because
our method proposed in this paper couldn’t solve the problem.
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Abstract. In this work we present the Rack algorithm for the detection
of optimal non-convex contours in an image. It represents a combination
of an user-driven image transformation and dynamic programming. The
goal is to detect a closed contour in a scene based on the image’s edge
strength. For this, we introduce a graph construction technique based on
a “rack” and derive the image as a directed acyclic graph (DAG). In this
graph, the shortest path with respect to an adequate cost function can
be calculated efficiently via dynamic programming. Results demonstrate
that this approach works well for a certain range of images and has big
potential for most other images.

Keywords: Contour Detection, Shortest Path, Dynamic Programming,
Rack.

1 Introduction

Finding contours of non-convex objects is an important and challenging task in
the field of image analysis. We address this task with a new approach that will
be called the Rack algorithm and is an extension of the well-known dynamic
programming (DP) algorithm for detecting closed contours in color images. The
idea is to specify the general shape of the desired object by using a “rack” (see
Fig. 5(c)). This rack is used to model the image as a directed acyclic graph that
is likely to contain a path matching the object contour. With the image’s edge
strength as graph weights, an optimal contour can be defined as a the shortest
path with respect to some cost function. We construct a cost function that
is independent of the path length but can be globally minimized via dynamic
programming.

The Rack algorithm forms a combination of different well-known approaches
in image analysis. With a user-driven image transformation, the contour detec-
tion process in a 2D-image is reduced to an 1D-optimization problem that can
be solved via DP. This transformation is profoundly anisotropic and a direct ap-
plication would result in a loss of precision. To avoid this, the image is modeled
as a DAG representing this transformation.

The algorithm is useful for detecting objects that are distinguishable from the
background by some variation in color or brightness along the object border. This
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Section 2.1 Section 2.2 Section 2.3

Fig. 1. Outline of the Rack algorithm

may include objects that consist of multiple segments with completely different
texture. The Rack algorithm can be applied in situations where some user
interaction is acceptable, e.g. image processing tools, or when a priori knowledge
about the image (like the position or general shape of the object) is available.

The method of dynamic programming was introduced by Bellman [1]. An
overview on edge-based image segmentation in general can be found in [2]. Other
methods that utilize DP for contour detection include Intelligent Scissors [3] or
boundary templates. While the Rack algorithm calculates globally optimal con-
tours for a user-defined search direction, Intelligent Scissors form an interactive
contour tracing tool that uses 2-D dynamic programming to compute piece-wise
optimal contour segments. Corridor Scissors [4] are similar to this approach, but
use a search corridor instead of interactive contour tracing.

The remainder of this work is organized as follows. In Sec. 2, we will describe
our algorithm according to the three steps shown in Fig. 1: The image is first
modeled as an undirected graph and then turned into a DAG. As a third step,
the shortest path under certain constraints is calculated in this DAG, which
represents an optimal contour. After presenting further extension to the general
Rack algorithm, some results are shown in Sec. 3. Finally, we conclude with a
discussion in Sec. 4.

2 The Rack Algorithm

As a motivation for the Rack algorithm, we may regard the popular method
for detecting star-shaped contours by transforming the image into the polar
coordinate space. Let z0 denote the origin of the polar coordinate system. A
point (x, y) in Cartesian coordinates can be expressed as a complex number and
has the polar coordinates (r, θ) with z0 + reiθ = x+ iy. An optimal contour with
strictly increasing θ-values relates to a star-shaped contour in Cartesian space.

This approach has two disadvantages: It can only detect star-shaped contours
and the transformation process results in an uneven resolution of different image
regions. To avoid the latter problem, we first model the image and its edge
strengths as a graph (Sec. 2.1). We then define the Rack transformation (similar
to polar coordinates) which can handle non-convex shapes. The graph is turned
into a DAG that represents this transformation (Sec. 2.2). An optimal contour
is defined as the shortest path in this DAG with respect to some cost function
(Sec. 2.3). Finally, we discuss the time complexity (Sec. 2.4) and present some
extensions (Sec. 2.5).
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2.1 Graph Representation of an Image

Figure 2 illustrates how an image of size M ×N is modeled by a grid graph of
size (M +1)×(N +1). A contour in the image can be expressed by a path in this
graph. As each vertex represents a boundary point between adjacent pixels, a
closed path will divide the image into two regions, the object and the background.

A weight w is assigned to each graph edge which indicates the image’s edge
strength at the corresponding position in the image, e.g. the value of the Sobel
operator. For simplicity we use the distance of the color values in the CIELab
color space for all examples in this work. We assume that the weight is normal-
ized, i.e. we have a function w : E → [0, 1]. Figure 2(c) illustrates the weight for
each graph edge as grayscale highlights, where black indicates areas of high edge
strength. This grid graph therefore is a weighted undirected graph G = (V, E, w).

We assume that a weight of 0 means highest image edge strength and a value
of 1 indicates completely homogeneous areas. Hence, finding a contour with high
edge strengths is equivalent to calculating a path in the graph with low weights.

(a) Example image (b) Grid graph (c) Edge strengths

Fig. 2. Graph representation of an image

2.2 Construction of a DAG (The Rack Transformation)

In order to be able to search a path with low weights in a grid graph via DP, the
graph has to be turned into a DAG. This is done by postulating a vertex order
ρ (1) similar to the angle θ of polar coordinates. This vertex order is calculated
based on a user defined intuitive structure (2): the rack. Finally, the graph is
modified to contain only paths with strictly increasing ρ values (3).

(1) Vertex order ρ. Similar to polar coordinates we construct a function
ρ : R2 −→ [0, 1) and regard paths with strictly increasing ρ values. This function
implicitly defines the shape of the contours that can be detected by the Rack
algorithm. In order to receive a broad range of contours, the following character-
istics should be given: (i) ρ is smooth and has a small number of local extrema,
and (ii) the ρ values for all vertices in the grid graph are evenly spread in [0, 1).
In the next paragraph, we explain how to realize these properties using a rack.

(2) The Rack. To construct a ρ function that is able to represent non-convex
contours, we define another graph that will be called a rack. This structure
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p2

p3

p5

p4

p1

p6

(a) Rack of six vertices

∇dR

∇ρ

(b) Distance map (c) Values for ρ

Fig. 3. The rack transformation

is a user defined planar graph in continuous space without cycles. Figure 3(a)
shows such a rack with six vertices. Similar to polar coordinates where contours
are searched that traverse around the origin, a rack is used to find contours that
enclose this rack. The ρ function corresponding to a rack R will be defined via the
distance function dR (see Fig. 3(b)). ρ is constructed in such a way that at each
point x where dR is differentiable, ρ is also differentiable and 〈∇ρ(x),∇dR(x)〉 =
0. The values of the resulting ρ function are displayed in Fig. 3(c). The dashed
arrow shows an example for a path with strictly increasing ρ values.

The explicit calculation of ρ is realized by assigning linear functions fk to the
rack components (half edges and connection vertices between half edges). For a
given point p, ρ(p) is defined by calculating the closest point on the rack and
using the function fk of the according rack component. Hence, the value of fk

either represents the relative position of the nearest point on a half edge or the
relative angle of the point in case that the closest rack component is a vertex.

(3) Turn graph into DAG. Instead of actually transforming the image, the ρ
function will be used as a vertex order to create a DAG. Figure 4(a) illustrates
the values of ρ for a rack with three points.

Each vertex v in a grid graph lies at a certain position (xv, yv) in image
coordinates. Hence, we can define ρ(v) := ρ(xv, yv) as illustrated in Fig. 4(b).
The edge set E of the graph is then reduced to graph edges (a, b) with ρ(a) <
ρ(b), i.e. ρ induces a (complete) strict partial order “<” on the vertices. The
resulting graph is shown in 4(c), where graph edges crossing the rack and between
the “end” and “start” of the ρ function have also been removed. This new edge
set will be denoted with Ẽ.

2.3 Calculate the Shortest Path

Together with the weight function w from Sec. 2.1, we now have a directed
acyclic weighted graph G = (V, Ẽ, w) that will be referred to as an image graph.
Figure 5(a) shows such an image graph based on a simple rack for the example
from Fig. 2. We define an optimal contour as the shortest “closed” path in G with
respect to some cost function. This cost function should fulfill the important
property to be independent of the path length. The weighted cost for a path
(v1, . . . , vn) will therefore be defined as
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(a) ρ values for a simple
rack

(b) ρ values for the ver-
tices of a grid graph

(c) DAG constructed
from (b)

Fig. 4. DAG from vertex order ρ

(a) Image Graph (b) Optimal contour (c) Contour in the image

Fig. 5. Optimal contour in the DAG

J(v1, . . . , vn) :=
n−1∑
i=1

(ρ(vi+1)− ρ(vi))w(vi, vi+1). (1)

The optimal contour p∗ for G is defined as

p∗ := argmin
{

J(v1, . . . , vn) | ∀i : (vi, vi+1) ∈ Ẽ, v1 and vn are adjacent
}

. (2)

The imprecise term “adjacent” in Eq. (2) is used for simplicity. In our imple-
mentation, we construct additional vertices that allow us to express all closed
paths enclosing the rack as paths (v1, . . . , vn) with ρ(v1) = 0 and ρ(vn) = 1,
where v1 and vn represent the same points in the image.

2.4 Computational Complexity

For a rack with K components, the calculation of ρ for all vertices is in O(K|V |).
To calculate the the global minimum for Eq. (2) via dynamic programming, the
vertices in V have to be sorted by ρ, which can be done in O(|V | log |V |) time.
The simple shortest path with respect to Eq. (1) can then be calculated in
O(|V |). In order to receive a closed path as in Eq. (2), the DP algorithm needs
to be performed multiple times. It appears that the method proposed by Farin
and de With [5] can be applied to our graph. Their algorithm has a worst-case
complexity of O(|V | log |V |) and a practical computation time of O(|V |) for most
cases. Hence, the whole Rack algorithm can perform in O(|V | log |V |).



290 A. Große, K. Rothaus, and X. Jiang

2.5 Extensions

In its basic form, the Rack algorithm is capable of detecting objects that can
be characterized by high edge strength at their border. For situations where the
user’s intention is slightly different, we introduced additional parameter to give
the algorithm more flexibility.

Including information about the objects interior. In many cases an object
does not only have some contrast to the background, but also posses a more or
less homogeneous texture. Let h(p) be an measure for the homogeneity of the
area inside a path p. This could for example be received by texture analysis. An
modified cost function that includes a measure of the object’s homogeneity is

Jψ(p) := (1 − ψ)J(p) + ψh(p), ψ ∈ [0, 1]. (3)

For each path in the graph, we can determine the region that will lie between
the path and the rack, i.e. inside the object. Hence, Jψ can be minimized via
DP in the same way as Eq. (1).

Automatic Rack Construction. In order to segment the desired object, a
suitable rack has to be designed by the user or from some a-priori knowledge.
We have tested different approaches to automatically construct a rack for the
most prominent structure in the image or to improve an initial rack. A detailed
discussion of this would go beyond the scope of this paper, but some results can
be found at http://cvpr.uni-muenster.de/research/rack/.

3 Results

Figure 6 shows the results for different test images. The images 6(a)-(f) are taken
from the Berkeley segmentation dataset [6]. Each image shows the rack that has
been used and the detected contour. The images (a), (f), (g) are well suited for
the Rack approach. The object is distinguishable by an edge along its border,
although it might consist of different textures as in (g). The contour found in
example (b) contains local errors due to the fact that the object consists of very
different textures and at the same time the background is quite scattered. The
scene (c) represents a problematic type of image for the Rack algorithm: most
parts of the object border have lower edge strength than the textures of the
background and the object’s interior. Image (d) presents a rack which requires
many vertices to specify the desired object. In the case (e), the contour also has
local errors due to high edge strengths inside the object. This situation would
profit from more sophisticated edge measures based on texture analysis.

All in all it can be observed that the algorithm produces good results on images
where the border of the desired object mostly consists of segments with high edge
strength. On objects where several parts of the border have low contrast to the
background, the general shape can be found in most cases but, the contour
contains local errors. Most problematic are images with textures of high edge
strength throughout the whole image area – in this case, normally no useful
results can be obtained.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 6. Segmentation results for the Rack algorithm

4 Discussion and Conclusions

We have developed an algorithm to combine dynamic programming with a user-
driven image transformation. The Rack algorithm can detect globally optimal
closed contours in O(|V | log |V |) time. It combines an acceptable amount of user
interaction with generally good segmentation results. This is useful for images
where some user input is indispensable to specify the desired object.

An advantage of the Rack algorithm compared to boundary-template based
tools is that the object of interest can be sketched very roughly. While an ap-
proximation of the object border might be very tedious on complex contours,
placing a rack somewhere more or less centered inside the object requires far
less precision. As the border of most real objects has limited complexity while
still being slightly non-starshaped, a simple rack generally is both necessary and
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sufficient. Compared to tools like Intelligent Scissors, which use the sum of lo-
cal edge costs for the optimal path calculation, the weighted sum of the Rack
algorithm in Eq. (1) does less likely create “shortcuts” in the contour.

On the other hand, the Rack algorithm is not suited for objects with holes,
and complex structures like tree branches would require a very detailed rack.
Another drawback is that the user has no direct influence on the contour detec-
tion process, i.e. there are no mechanism to adjust single parts of the contour
that do not match the user’s expectation.

There is some room for improvement, mainly in the area of the edge measure.
Currently we simply used the Sobel operator on the different CIELab canals to
calculate the image’s edge strength. On complex images, the performance of the
algorithm could probably be greatly improved by using preprocessing techniques
like denoising or texture analysis.

Due to the graph representation of the image, the contour might sometimes
traverse almost perpendicular to the rack. To receive a smoother contour, the
direction of search can be further restricted: Instead of considering all graph
edges (a, b) with ρ(a) < ρ(b), we can enforce the additional constraint〈

b− a

‖b − a‖2
,
∇ρ(a)
‖∇ρ(a)‖2

〉
≥ ω, ω ∈ [0, 1].

Another interesting idea would be to let the user construct the rack as a contin-
uous stroke instead of a graph to receive a smoother ρ function.
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Abstract. In this paper we studied the geometry of a three-dimensional tableau 
from a single realist painting – Scott Fraser’s Three way vanitas (2006). The 
tableau contains a carefully chosen complex arrangement of objects including a 
moth, egg, cup, and strand of string, glass of water, bone, and hand mirror. Each 
of the three plane mirrors presents a different view of the tableau from a virtual 
camera behind each mirror and symmetric to the artist’s viewing point. Our new 
contribution was to incorporate single-view geometric information extracted 
from the direct image of the wooden mirror frames in order to obtain the  
camera models of both the real camera and the three virtual cameras. Both the 
intrinsic and extrinsic parameters are estimated for the direct image and the im-
ages in three plane mirrors depicted within the painting. 

Keywords: camera calibration, perspective geometry, art analysis. 

1   Introduction 

The problem of reconstructing a three-dimensional scene from multiple views is well 
explored, and a number of general methods, such as those based on correlation, re-
laxation, dynamic programming, have been developed and fully characterized [5, 6]. 
Three-dimensional reconstruction and metrology can be based on single views as well 
[3, 1]. Criminisi and his colleagues [2] have recently applied such techniques to the 
analysis of paintings, for instance reconstructing the virtual spaces in Masacio’s Holy 
Trinity (c. 1425), Piero della Francesca’s Flagellation of Christ (c. 1453), Hendrick 
V. Steenwick’s St. Jerome in his study (1630), Jan Vermeer’s A lady at the Virginals 
with a gentleman (1662-1665), and others. These methods reveal both the high geo-
metric accuracies in some passages, and the geometric inconsistencies in others, prop-
erties that are nearly impossible to determine by eye. Such analyses shed new light on 
these works and the artists’ working methods, for instance revealing whether an artist 
likely used geometrical aids during the execution of their work.  

Recently Smith, Stork and Zhang reconstructed the three-dimensional space de-
picted in a highly realistic modern painting, Scott Fraser’s Three way vanitas (Fig. 1) 
using traditional multiple-view reconstruction methods applied to the direct view and 
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a view visible in a depicted mirror [11].  Even though using reflected images by mir-
rors is a very popular approach for stereo vision in computer vision [7, 9, 10, 12], it 
was the first time to analyze a painting with such a setup. However, there were some 
limitations in that previous work as well as unexplored opportunities. For instance, the 
images of the frames of the mirrors provide geometric constraints about the centers of 
projection of the images depicted within each mirror, and the earlier scholarship did not 
incorporate that information when reconstructing the three-dimensional space.  

Section 2 describes the painting, previous scholarship and an overview of our new 
approach to camera parameter estimation. Section 3 introduces some notations and 
constraints used in the paper. Sections 4 to 7 describe the details of estimating both 
intrinsic and extrinsic parameters of the main and virtual cameras: finding image 
center, estimating focal length, representing mirror planes and locating virtual cam-
eras. Section 8 gives a brief summary and discussion. 
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Fig. 1. The work, the notations and the constraints 

2   The Work and Problem Addressed 

Fig. 1 shows the work we consider, Scott Fraser’s Three way vanitas (2006). This 
painting was commissioned as part of The Object Project, in which fifteen artists were 
commissioned to create works, each containing five specified objects: hand mirror, 
bone, moth, ball of string and drinking glass [4]. Our method for estimating the cam-
era models for the virtual cameras is based on the single-image information of the 
mirror frames in the primary image of the painting; the image seen from the artist’s 
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viewing point (the main camera). We construct geometric invariants such as horizon-
tal/vertical lines and vanishing points from the locations of the vertices of its frame, to 
estimate the focal length, the center of projection of the main “camera”, and the loca-
tion and orientation of each mirror. Then, we use the pose information of each mirror 
to compute the location and orientation of the virtual camera by finding its coordinate 
system that is symmetric to the artist’s viewing point in the plane of the mirror. Using 
the knowledge of the mirror frames, both the intrinsic and extrinsic parameters be-
tween a pair of stereo cameras can be found. This is difficult if basic fundamental 
matrix method is used, as in [11], which used only limited number of points on the 
table in both the real image and the mirror images. 

3   Notations and Constraints 

We label the mirrors, reading right to left, Mi, their associated reflected images Ii, and 
corresponding centers of projection Ci, for i = 1, 2, 3. The middle frame is labeled as 
M0. Let’s use the mirror M1 as an example. Each of the four vertices of the frame 
rectangle, Pi has a corresponding image point pi = (ai, bi, f), i = 1, 2, 3, 4. These image 
points can also be viewed as vectors from the optical center O to those points. Since 
P1P2 || P3P4, the direction of the parallel lines can be estimated as 

( ) ( )21431 ppppv ×××=  . (1) 

Since P1P3 || P2P4 , the direction of the parallel lines can be estimated as 

)()( 13242 ppppv ×××=  . (2) 

The normal of the rectangular mirror surface is  

213 vvv ×=  . (3) 

Here are a few notes:  

1. Point (ai, bi) should be measured in the xoy coordinate system that is aligned with 
the main camera coordinate system O-XYZ.  Therefore the image center o should 
be estimated first for using the above equations.  

2. The focal length f is unknown and should be estimated first to use Eqs. (1) – (3). 
3. If the projections of a pair of parallel lines are not parallel in the image, such as 

p1p2 and p3p4, the direction of the pair can be calculated through their vanishing 
point in the image plane, (v1x, v1y, f), therefore  

),,( 111 fvvv yx≅  . (4) 

Otherwise, the vanishing point is in infinite, and the third dimension of the direction 
vector such as v2 should be zero. This is the advantage to use Eqs. (1) to (3) to find 
directions of parallel lines instead of using vanishing point estimation.  

In the following, we will describe methods in estimating the following parameters 
of the real camera and the three virtual cameras created by the three mirrors: 1). the 
image center o(cx,cy); 2). the focal length f; 3). the plane equation of each mirror; and 
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4). the pose of the three virtual cameras related to the real camera (the artist’s eye). 
The four cameras share the same focal length and the same image center, but the 
images of the three mirrored cameras are reversed in the x direction. The intrinsic 
geometric constraints (assumptions) we use are the following:  

1. All three mirrors are rectangular.  
2. The two flanking plane mirrors have the same inherent shape and are arranged 

vertically, each rotated by an unknown angle, and that the central plane mirror is 
viewed frontally, tipped forward by an unknown angle.  

3. The back edges of the two flanking mirrors are at the same distance.  
4. The aspect ratio of the image is 1:1. 

In addition to the above constraints, by analyzing the images of the frames and mir-
rors, we have also observed that the left and right flanking mirrors (M3 and M1) and 
the central frame (M0) are vertical, and the middle inset mirror (M1) is only tilted in 
the y direction.  

4   Finding Image Center 

To find the image center, we will need to have both a set of 3D horizontal lines and a 
set of vertical lines whose projections are not parallel in the image. By finding the 
vanishing point of the two pairs of horizontal edges of the left and right flanking mir-
rors, (vlx, vly) and (vrx, vry), the y coordinate of the image center can be determined as 
cy =( vly + vry)/2 . By finding the vanishing point of the two vertical edges of the inset 
mirror, (vvx, vvy), the y coordinate of the image center can be determined as cx = vvx. 
In Fig. 2, using the digital image coordinate system (xi, yi) as shown in Fig. 2, we 
obtain the results in Table 1: 

(vlx , vly) 

(vvx , vvy)
yi 

xi 

(vrx , vry) 

 

Fig. 2. Estimating image center using vanishing points 

Table 1. Vanishing points portrayed in Fig. 2 

Using left mirror Using right mirror Using middle mirror 
(3219.8, 572.1) (-1360.0, 519.7) (868.6, 6524.3) 
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5   Estimating Focal Length 

The focal length estimation is the most critical step. Once we find f, the rest of steps 
will be rather straightforward. We can find the focal length f by using the fact that the 
left and right flanking mirrors have exactly the same width, i.e. W1 = W2 in Fig. 3.  
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Fig. 3. Focal length estimation using the equal-width constraint 

We scaled the mirrors into pixel representation so the distance of the two back 
edges (m1 and n1) are f (refer to Fig. 1). The directions of n1n’2 and m1m’2 can be 
represented by the vanishing points, vm = (vmx, vmy, f) = (2228.6, 7.2, f), generated 
from the two sets of horizontal edges. The dot product of normalized vm and the X-
axis (1, 0, 0) should be vm / |vm| · (1, 0, 0) = cosθ1, assuming that vm is in the horizon-
tal plane as the X-axis (from assumption No 2). We can derive a similar relation for 
vn. Therefore, the angles θ1 and θ2 can be represented as functions of f: 

|)|/(tan   |),|/(tan 1
2

1
1 nxmx vfvf −− == θθ .

  (5) 

From the image, location m1, m2 and n1, n2 can be measured (in the x direction, refer 
to Fig. 1). Therefore, the two distances w1 and w2 can be calculated as w1= |m2-m1|, 
w2= |n2-n1|. The two angles β1  and β2 can be also represented as functions of f: 

|)|/(tan   |),|/(tan 2
1

22
1

1 nfmf −− == ββ .  (6) 

Using the sine law with triangles n1n2n’2 and m1m2m’2, and using the fact that W1 = 
W2, we can derive that: 
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Using the measurements from the image, we obtain f = 2050.7 (pixels) Note that 
this method does not work if the two mirrors are symmetric. We calculated the two 
angles using Eq. (5): oo 36.39|)|/(tan   ,62.42|)|/(tan 1

2
1

1 ==== −−
nxmx vfvf θθ .The 

two mirrors have different flanking angles, so they are not symmetric, therefore we 
can obtain the focal length estimation. 

6   Representing Mirror Planes 

Once we obtain the value of the focal length f, we can use the general equations (1) to 
(3) to calculate the directions of the two edges of each mirror Mi, and its normal ni. 
These equations work for all the cases no matter if we can find vanishing points or 
not. The results of the rotation matrices for Mi (i=0, 1, 2, 3) are listed in Table 2. 

Table 2. The rotation matrices (2nd row) and angles (3rd row, in degrees) of Mi (i = 0, 1, 2, 3) 

M0 M1 M2 M3 
 
 0.9999   -0.0054   0.0129 
 0.0053    0.9999   0.0112 
-0.0130   -0.0114  0.9999  
 

 
 0.7363   0.0157   -0.66765 
 0.0201   0.9988    0.0451 
 0.6764  -0.0468    0.7350 

 
1.0000   -0.0028    0.0054 
0.0009    0.9455    0.3257 
-0.0060   -0.3257   0.9454 

 
 0.7743  -0.0046   0.6328 
 0.0028    1.0000  -0.0038 
-0.6328    -0.0012   0.7743 

 (0.66, -0.76, 0.31)  (3.59, 43.16, 1.26)  (19.38, -0.32, 0.16) (0.29, -39.84, 0.35) 

 
From the rotation matrices it can be seen that the three angles of the middle frame 

M0 are almost zero degrees, the middle inset mirror M2 is mainly tipped forward, the 
right mirror M1 and the left mirror M2 mainly have flanking angles consistent with the 
results obtained by using Eq.  (5). The results highly agree with our assumptions of 
the intrinsic geometry constraints in Section 2. 

The plane equation of the mirror can be represented as  

0=+• ici dPn  . (8) 

where Pc = ( Xc, Yc, Zc)
t is represented in the camera coordinate system O-XYZ. In 

order to find di, and further find the virtual camera parameters mirrored by each mir-
ror, we will build a world coordinate system on each mirror. For example, for mirror 
M1, after we find the three vectors and then normalized them into column unit vectors, 
still represented in v1, v2 and v3, we can define a world coordinate system using the 
middle of the mirror plane as its origin, and the three vectors as its three coordinate 
axes. The transformation between the camera coordinate system and the world coor-
dinate system of the ith mirror Mi (i = 0, 1, 2, 3) can be represented as  

iwic PP 11 TR +=  .
 

(9) 

where Pc =( Xc, Yc, Zc)
t,  Pw =( Xw, Yw, Zw)t , R1i = (rpq)3x3, which is (v1, v2, v3) for 

M1, and T1i to be determined. The projection of Pc into the image of the main camera  
is (x, y) = (f Xc/Zc, f Yc/Zc). 
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To find the translational vectors for all the three mirrors, we use the dimension of 
the middle frame M0 as a reference. To calculate the translations for mirrors M1 and 
M3, we use their heights h= 566.464 pixels, which can be measured in image with 
respect to the height H of the middle frame, since they are at about the same distance. 
Similarly, to calculate the translation for the middle inset mirror, we use its width w = 
461.5911 pixels, which can be measured against the width W.  

Table 3. The translations and the distances of M0 to M3 

Mirror T1i (i = 0, 1, 2, 3) d i (i = 0, 1, 2, 3) 
M0 (-51.3, -176.1, 2048.5) 2045.6 
M1 (-430.1, -215.7, 1929.7) 1802.8 
M2 (-50.9, -182.6,2051.1) 1879.5 
M3 (340.5, -214.6, 1968.0) 1801.1 

7   Locating Virtual Cameras 

After we obtain the plane equation for each mirror (Eq. (8), the mirrored coordinate 
system, i.e., the virtual camera Ci, can be easily obtained, as in [9]. Here we use a 
coordinate transformation method to find the relation between each virtual camera Ci 
and the real camera C, by finding the rotation matrix Ri and translational vector Ti (i = 
1, 2, 3). In our implementation, we use Eq. (9) to represent the origin and the three 
axes of the camera coordinate system in the world coordinate system XwYwZw of each 
mirror Mi. Since XwOYw is the mirror plane, the mirrored origin and axes can be sim-
ply obtained by changing the signs of their Zw components. Then we do a similar 
procedure as in Eq. (9) to find the transformation (characterized by R2i and T2i, i = 1, 
2, 3) between the world coordinate system Mi and the virtual camera Ci:   

iiiw PP 22 TR +=  . (10) 

Combining Eqs (9) and (10), we can find the transformation between the real cam-
era and the virtual camera: 

iiic PP TR +=  . (11) 

iiiiii i 12121 , TTRTRRR +==  . (12) 

Table 4 shows the estimated results. Using the full 6 degree-of-freedom (DOF) re-
lation between each virtual camera and the main camera, stereo reconstruction can be 
performed, and the accuracy of the painting can be analyzed.  

Table 4. The transformations between virtual camera Ci (i = 1, 2, 3) and the main camera 

Mi M1 M2 M3 
 

Ri 
 

 
-0.0846    0.0610    0.9945 
-0.0610    0.9959   -0.0663 
-0.9945   -0.0663   -0.0806 
 

 
-0.9999   -0.0035  -0.0103 
 0.0035    0.7878   -0.6159 
 0.0103   -0.6159   -0.7877 
 

 
-0.1992   -0.0049  -0.9800 
 0.0049    1.0000   -0.0059 
 0.9800   -0.0059   -0.1991 
 

Ti  (-2299.7, 153.4,2498.7) (20.4, 1224.4, 3553.8) (2200.2, 13.3, 2692.3) 
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8   Conclusions and Discussions 

Our method for estimating the camera models for the virtual cameras was based on 
single-view analysis. The relative 3D structures of the rectangles mirrors and frames 
are estimated by using their perspective analysis with a few assumptions. The camera 
calibration for the cameras is then successfully performed. Its results can then be used 
for 3D reconstruction and painting analysis, which is described in an accompanying 
paper [8]. The 3D estimates of both the frames and regular objects are consistent 
among the single-view analysis, and results from multiple stereo triangulations. How-
ever, there are some stereo and perspective inconsistencies across four views. These 
could either be the accuracies of the perspective distortions, orientations and sizes of 
the mirrors, or of the locations of objects inside the mirrors, which cannot be easily 
observed by eye. As such, our work extends the new discipline of computer vision 
applied to the study of fine art. 
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Abstract. Saliency mechanism has been considered crucial in the hu-
man visual system and helpful to object detection and recognition. This
paper addresses an information theoretic model for visual saliency detec-
tion. It consists of two steps: first, using the Non-negative Matrix Factor-
ization with sparseness constraints (NMFsc) algorithm to learn the basis
functions from a set of randomly sampled natural image patches; and
then, applying information theoretic principle to generate the saliency
map by the Salient Information (SI) which is calculated from the coef-
ficients represented by basis functions. We compare our model with the
previous methods on natural images. Experimental results show that our
model performs better than existing approaches.

Keywords: Saliency Detection, NMFsc algorithm, Salient Information.

1 Introduction

Most of the traditional object detectors require training sets to detect specific
object categories [1]. However, because of the training complexity and innumer-
able categories of visual patterns, there is a significant bottleneck to expand
these models to generalized tasks. Taking notice of the biological vision, human
can rapidly orientate towards salient objects in a cluttered visual scene, which is
due to the existence of a saliency mechanism. Furthermore, with this mechanism,
human vision has several advantages (e.g. robustness, flexibility and etc.) over
computer vision. From this point, a general purpose saliency detector is needed
to combine with traditional model.

During the past decade, several computational models have been invented to
simulate human visual attention. Inspired by the feature-integration theory [2],
Itti [3] proposed one of the earliest bottom-up selective attention model by utiliz-
ing color, intensity and orientation of images. Oliva [4] applied the global distribu-
tions of low-level features to detect the potential location of target objects. Harel
[5] presented a graph-based visual saliency model (GBVS), which employed the
graph theory to concentrate mass on activation maps and to form them from raw
features. Bruce [6] introduced the idea of using Shannon’s self-information to mea-
sure the perceptual saliency. More recently, Hou [7] proposed a Spectral Residual
(SR) approach to calculate the saliency map based on Fourier Transform.
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In this paper, we build on the work of Bruce [6] in extending the information
theoretic principle for estimating the saliency maps. Specifically, we apply the
NMFsc algorithm [8] to learn the basis functions from images patches instead
of ICA, and define the saliency by the Salient Information (SI), which is cal-
culated from the coefficients represented by basis functions, as the residual of
self-information and entropy.

The organization of the paper is as follows: in Section 2, we introduce the
NMFsc algorithm and use it to learn the basis functions from image patches.
Then, estimate the saliency map from the residual of self-information and en-
tropy that are obtained from the basis coefficients. Section 3 presents the exper-
imental results of comparison between our model and three previous methods,
and the conclusions and discussions are given in Section 4.

2 The Model

2.1 Image Representation via NMFsc

Sparse coding strategy [9] suggests that a good objective for an efficient coding of
natural scenes should maximize the sparseness of the representation. It is shown
that the NMFsc algorithm is a successful method in producing a representation of
multidimensional data as sparse coding. Moreover, many evidences have showed
that NMFsc has several advantages for simulating the behavior of the simple-
cells than Independent Component Analysis (ICA)[10].

Only considering of linearity, the basic idea of sparse coding by NMFsc is
relatively simple: a vectorized image patch, V(x), can be represented in terms of
a linear superposition of (not necessarily orthogonal) basis functions ai(x). The
linear generative form is:

V(x) =
n∑

i=1

ai(x)si (1)

where the coefficients, si, are stochastic and dynamic variables that change from
the input images. Sparseness is a property independent of scale, and implies that
si have probability densities with a high peak at zero and heavy tails.

Arranging all the input V(x) into the columns of matrix V ; the basis functions
ai(x) into the matrix A; and the corresponding coefficients si into the matrix S,
so the linear representative form of the model is given:

V = AS (2)

W = A−1 (3)

S =WV (4)

where all the entries of both A and S to be non-negative.



A Model for Saliency Detection Using NMFsc Algorithm 303

With a purpose of making the features sparse, the optional sparseness measure
is given based on the relationship between the L1 norm and the L2 norm, and
it is defined as:

sparseness(x) =
√

n− (
∑
|xi|)/

√∑
xi

2
√

n− 1
(5)

where n is the dimensionality of x. Particularly, we only set the sparseness of S
to 0.85, so the x in Eq. 5 denotes each row of S.

2.2 Learning the Basis Functions

Since there exists a ‘color opponent-component’ system in human brain, which
facilitate that red/green, green/red, blue/yellow and yellow/blue are color pairs
inhibited by each other [11], we decompose a RGB image into three parallel
channels as red/green (RG), blue/yellow (BY) and intensity (I):

O1 : RG = R− G (6)

O2 : BY = B − Y (7)

O3 : I = (r + b + g)/3 (8)

whereR = r−(b+g)/2, G = g−(r+b)/2, B = b−(r+g)/2, Y = r+g−|r−g|/2−b.
Before learning the basis functions, we take measures to the original nature im-

ages. At first, we randomly sample n × n image patches M times from a set of
nature images (we set n = 8 and M = 100000 in this paper), and then separate
them into three channels. After that, for each channel, we convert each image patch
into one column. Thus, the image patches are represented by three matrixes with
the size of N ×M(N = n2). Finally, we train the three matrixes respectively, the
results of three N ×N (N = 64) basis functions are shown in Fig. 1.

Fig. 1. Basis functions trained from natural images patches

2.3 Estimating Saliency Map

Guided by the insights of previous work [6,12], we propose a measure of maxi-
mizing response information to estimate the saliency.
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Suppose a N×M sample matrix V = [v1, v2, v3. . . vm], where v is a vectorized
image patch. We project V into basis space by the inverse matrix of the learned
basis set (W) with a size of N×N(Eq. 4). Then we obtain the coefficients matrix
S, which describes the contribution from each basis function or the responses of
simple-cells in the point of view on biological vision.

Finally, we compute the average response probability function from each row
in S as:

pi =

∑m
j=1 |sij |∑m

j=1
∑n

i=1 |sij |
(9)

According to Shannon’s information theory [13], we can measure the information
of possible events whose probabilities of occurrence are p1, p2, p3. . . pn from the
quantities of the form

H(p) = −
n∑
i

pi log(pi) (10)

where H is recognized as entropy, and the self-information is defined as:

I(pi) = − log(pi) (11)

which is inversely proportional to the information of observing event.
For each p in (Eq. 9), we calculate the self-information I(pi) and the entropy

H(p), considering the Salient Information (SI ) as:

SI(i) = − log(pi)−H(p) (12)

where SI(i) denotes the uniqueness of the ith basis vector relative to all of the
basis functions.

It is clearly shown that a feature is salient only when it can offer more
unique information. With this general intuition of saliency, we neglect the non-
uniqueness basis described as below the zero (SI(i) < 0), and set them to zero
(SI(i) = 0). After that, we quantify the Salient Response: SR = [r1, r2, r3. . . rm]
as follows:

rj = max
i=1→n

(SI(i) · sij) (13)

then, we transform SR into image space with a Gaussian filter and finally gen-
erate the Saliency Map (sM).

Given a color image, there will be three saliency maps (sMBY,sMRG,sMI)
that are needed to combine into one conspicuous map sM as:

sM = (sMBY + sMRG + sMI)/3 (14)

where the maximum of sM defines the most salient object in the image.

3 Experimental Results and Analysis

In our experiment, the basis functions are trained from the nature image database
collected by [14] and all the other the test images are taken from previous work [7].
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We sequentially sample all over the possible image patches with a 8 × 8 window
and compare our method with Bruce’s approach (Self-info) [6], SR algorithm [7]
and Itti’s model (using the SaliencyToolBox (STB) [15]) at MATLAB2007a envi-
ronment on Windows platform.

3.1 Evaluating the Result

In order to appropriately evaluate our model, we not only use the Hit Rate
(HR) and False Alarm Rate (FAR) approach introduced in [7], but also test the
Receiver Operating Characteristic (ROC) curve [16] performance on a human
eye fixations database called DOVES, which is collected by van der Linde [17]
and is available at the website1.

HR/FAR Performance: In this part of the experiment, 10 subjects are pro-
vided to specify salient objects in 100 images by drawing contours. For each
image, a binary label is given to indicate the pixels whether or not belongs to
the salient objects, and a binary image Bi(x) is obtained as:

Bi(x) =

{
1 pixels ∈ salient objects

0 otherwise

Considering all the subjects, the average Bi(x) can be calculated as:

Bi(x) =
1
m

m∑
i=1

Bi(x) (m = 10) (15)

Given the generated saliency map sMi, the HR and FAR are defined by:

HR =
1
n

n∑
i=1

E{Bi(x) · sMi} (n = 100) (16)

FAR =
1
n

n∑
i=1

E{(1− Bi(x)) · sMi} (n = 100) (17)

where E{I(x)} is the average intensity of the saliency map.
In order to make the comparison, we use the ratio (r) of the HR and FAR

instead of adjusting the intensity of the saliency map which can also evaluate
the performance of salient objects detection in images.

r =
HR

FAR
(18)

The results of the ratio and the Average Time Cost (ATC) are shown in Table 1.
From the results, we note that our method performs the overall the best

among the three methods, achieving the highest ratio of (HR) and (FAR).

1 http://live.ece.utexas.edu/research/doves

http://live.ece.utexas.edu/research/doves
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Table 1. HR/FAR performance of the three methods

Our method Self-info SR STB
r 2.997 2.913 2.895 1.785

ATC(s) 0.3373 6.4753 0.0618 1.3427

ROC Analysis: In this part of the experiment, we use DOVES as a benchmark
for comparison. The data set contains a collection of eye movements from 29
human observers as they viewed 101 natural calibrated images of size 1024×768.
We down-sample each image to an appropriate scale (256×192, 1

4 of the original
size). Fig. 2 shows an actual image with the resulting saliency maps, and mean
ROC area scores of three models are indicated in Table 2.

Fig. 2. (a) An image from the data set with the fixations indicated using red solid
circles (b) The saliency map of our method (c) The saliency map generated by Bruce’s
approach (d) The saliency map of SR (e) The saliency map generated by STB

Table 2. ROC scores of the three methods

Our method Self-info SR STB
ROC 0.6545 0.6142 0.5691 0.5903

According to the definition of ROC curve, it provides a measure summarizing
performance across all possible thresholds. For perfect prediction, the ROC area
under the curve will be 1.0; for opportunistic performance, the value will be 0.5,
and when the system is predicting worse than chance, the area will be less than
0.5. Our implementation of the mean ROC area is 0.6545, which is higher than
the performance of the other three methods. Thus, it is shown that our method
can predict human fixations more reliably.

In addition, we show the performance metric of mean ROC and ‘inter-subject
ROC’ [5]. To compute an inter-subject ROC score, we use the fixations from
5 subjects on a single image, and calculate the mean (across subjects) ROC
metric between a single subject’s fixations and a heat map generated from the
remaining fixations of subjects, which is called a ‘leave-one-out’ procedure. Fig.
3 demonstrates the effective performance of our method contrasted against the
other three approaches, for our curve is more close to the upper bound.
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Fig. 3. Comparison of predictive power among three methods. Our curve is more close
to the upper bound.

4 Conclusions and Discussions

We presented a model to estimate saliency map with the purpose of object
detection. The method uses NMFsc algorithm to represent an image as a linear
combination of sparse basis based on sparse coding strategy, and to generate the
saliency map from the informative responses of basis functions, which is defined
as Salient Information (SI). We experimentally compared our method with the
previous methods. The experimental results show that our model performs more
accurately than the other methods to find the salient objects in images (see
Fig. 4).

Fig. 4. The results of our model in comparison with Self-info approach, SR method
and Itti’s method(STB)

In future work, we plan to incorporate motion information into our method,
which is also an important feature to attract human attention. Furthermore, we
are extending our model to multidimensional space for simulating the nonlinear
properties of complex-cells in V1. In addition, it is necessary to combine with
the traditional model for developing a more robust object detector in general
purpose application.
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Abstract. A directional relationship (e.g., right, above) to a reference object can 
be modeled by a directional map – an image where the value of each point 
represents how well the relationship holds between the point and the object. As 
we showed in previous work, such a map can be derived from a force field cre-
ated by the object (which is seen as a physical entity). This force field-based 
model, defined by equations in the continuous domain, shows unique character-
istics. However, the approximation algorithms that were proposed in the case of 
2-D raster data lack efficiency and accuracy. We introduce here new algorithms 
that correct this flaw, and we illustrate the potential of the force field-based ap-
proach through an application to scene matching. 

Keywords: spatial relationships, force fields, directional maps, scene matching. 

1   Introduction 

Research on the modeling of spatial relationships raises two questions: (a) How to 
identify the relationships between two given objects [1,2]? (b) How to identify, in a 
scene, the object that best satisfies a given relationship to a reference object [3]? The 
second question defines an object localization task. One theory supported by cogni-
tive experiments is that people accomplish this task by parsing space around the refer-
ence object into good regions (where the object being sought is more likely to be), 
acceptable and unacceptable regions (where the object being sought cannot be) [4,5]. 
These regions form a so-called spatial template [5,6], which assigns each point in 
space a value between 0 (unacceptable region) and 1 (good region).  

When focusing on directional (also called projective [7] or cardinal [8]) relation-
ships (e.g., front, south, above), spatial templates can be referred to as directional 
maps [9] (or as fuzzy landscapes [3]). A directional map is an image where the value 
of each point reflects the degree to which the point satisfies some directional relation-
ship to a reference object.  

The map as defined in [3] takes the object’s shape into account and depends  
essentially on angular deviation (two characteristics supported by cognitive studies). 
We call it the standard map, SδR, where δ represents the directional relationship and R 
the reference object. Two algorithms have been designed for fast calculation of SδR: 
the first one is based on a propagation technique [3] and the second one on partition-
ing the image into parallel lines [10].  
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Matsakis et al. [9] proposed another model (Section 2), which relies on the idea of 
considering the reference object as a physical entity that creates a force field. All 
directional maps induced by the object can then be derived from the force field. Com-
pared with standard maps, force field-based maps better cope with outliers, elongated 
objects and concavities [9]. However, the algorithm for force field computation de-
scribed in [9] is slow. Moreover, although the directional maps induced by the object 
can be derived from the force field in negligible time, their calculation lacks accuracy. 
Indeed, the maps depend on a supremum that can only be estimated, and which, in 
[9], is often greatly overestimated. We introduce here new algorithms that correct 
these flaws (Section 3) and we illustrate the potential of the force field-based ap-
proach through an application to scene matching (Section 4). Note that directional 
maps can be used for many tasks, including spatial reasoning, object localization and 
identification, structural and model-based pattern recognition [11,12,13,14].  

2   Force Field-Based Maps 

The notations used in the rest of the paper are as follows. Z+ is the set of positive 
integers. P is the Euclidean plane. For any points p and q of P, pq is the vector from p 
to q with norm |pq|. δ  is the unit vector pointing at direction δ∈[0,2π). The radian 
measure in [0,π] of the angle between two nonzero vectors u and v  is denoted by 
∠( u , v ). An object R is a subset of P, bounded, closed, with area |R|≠0. We have 
R(p)=1 if p∈R and R(p)=0 if p∉R.  

We assume that point q exerts on point p a force of magnitude 1/|pq|r in the direc-
tion of pq, where r is a given real number. The force ( )R

r qΦ that q exerts on R is the 
integration of the forces that q exerts on all the points of R: 

1

( )
( ) d d

| || | | |
R
r r rp p R

R p pq pq
q p p

pqpq pq +∈ ∈
Φ = =∫ ∫P . (1) 

R
rΦ is called the force field created by R [9]. Note that the algorithm for force field 

computation described in [9] is rather slow. A much more efficient algorithm is intro-
duced in Section 3.1. The force field-based map δR

rΦ in direction δ can be defined by, 
e.g., δR

rΦ (q)=μ(∠( ( )R
r qΦ , δ )), with μ(x)=max{0,1−2x/π}, or: 

δ ( ) max{0, ( ( ) δ) / (sup ( ) δ)}R R R
r r p rq q p∈Φ = Φ ⋅ Φ ⋅P . (2) 

We focus here on (2), which explicitly takes account of distance information (when 
r≠0). Unfortunately, supp∈P ( ) δR

r pΦ ⋅ cannot be easily determined (unless r=0). In [9], 
Matsakis et al. replaced it with an upper bound that was determined analytically. 
However, this upper bound is often much higher than the supremum itself. As a result, 
the calculated value for δ ( )R

r qΦ  is often unreasonably low. In Section 3.2, we show 
that supp∈P ( ) δR

r pΦ ⋅ can be better estimated using a heuristic search algorithm. 

3   Implementation 

Here, we see an object R in a digital image G as a surface covered by pixels (of size 
1×1), not as a discrete cloud of points like in [9]. The force that one pixel exerts on 
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another is defined based upon the following considerations. First, we draw a horizon-
tal axis X and a vertical axis Y. For any two distinct points p and q of P, let θ∈[0,2π) 
be the angle between pq and X, pX and qX be the projections of p and q on X, and pY 
and qY be their projections on Y. Thus, the magnitude of the force that q exerts on p 
can also be computed as: 1/|pq|r = |cosθ|r/|pXqX|r if θ∈Θh=[0,π/4]∪[3π/4,5π/4]∪ 
[7π/4,2π); and 1/|pq|r=|sinθ|r/|pYqY|r if θ∈Θv=(π/4,3π/4)∪(5π/4,7π/4). See Fig. 1(a). 
Now, consider p and q two distinct pixels in G centered at points (xp,yp) and (xq,yq). 
We define that the force pixel q exerts on pixel p is in the direction of (xq−xp,yq−yp), 
and has the magnitude: Fr(p,q)=|cosθ|rfr(|xq−xp|) if θ∈Θh; and Fr(p,q)=|sinθ|rfr(|yq−yp|) 
if θ∈Θv, where θ is the angle between (xq−xp,yq−yp) and X. Now, let us only consider 
the case that θ∈Θh. The value of 1/|pXqX|r mentioned above in fact is the magnitude of 
the force between the projections of the points p and q on X, pX and qX, which are 
points too. When p and q are pixels, their projections on X, I and J, are unit line seg-
ments (instead of points), as shown in Fig. 1(b). It is therefore natural to define fr(s), 
s∈Z+, as the sum of the forces that the points of J exert on the points of I, i.e., 

1 1

0 0
( ) 1 ( ) d dr

rf s y x s x y= − +∫ ∫ . (3) 

Function fr is well defined on Z+ when r<2, and the double integral can be solved 
analytically. When p=q, we set Fr(p,q)=0 indicating that the forces that a pixel exerts 
on itself are balanced out. Having defined the force between two pixels, the force that 
one pixel q exerts on a raster object R (i.e., a set of pixels) can be computed as:  

( ) ( ) ( , )( , )/ | ( , ) |R
r r q p q p q p q ppq R p F p q x x y y x x y y∈Φ = − − − −∑ G . (4) 

3.1   An Algorithm for Approximating R
rΦ  

For any image G of size N=m×n, Equation (4) calculates ( )R
r qΦ in O(N), i.e., it calcu-

lates the entire force field R
rΦ in O(N2). Here, we propose an algorithm for fast ap-

proximating R
rΦ . Let q be the origin of P, i.e., q=(0,0). By rewriting (1) using the 

polar coordinates (θ, ) of p, we have: 

2π 1

0 0
( ) (0,0) (θ, )( cosθ, sinθ) / d dθR R r

r rq R
+∞ −Φ = Φ = − −∫ ∫ . (5) 

By letting =s/|cosθ| for θ∈Θh and =s/|sinθ| for θ∈Θv, (5) becomes: 

h

v

2 1

θ 0

2 1

θ 0

( ) | cosθ | ( cosθ, sinθ)[ (θ, /|cosθ|) / d ]dθ

           | sinθ | ( cosθ, sinθ)[ (θ, /|sin θ|) / d ]dθ

R r r
r

r r

q R s s s

R s s s

+∞− −
∈Θ

+∞− −
∈Θ

Φ = − −

+ − −

∫ ∫

∫ ∫
. (6) 

In (6), point p=(θ,s/|cosθ|) (or (θ,s/|sinθ|)) lies on the line that starts from q and points 
at direction θ, and 1/sr−1 is the magnitude of the force between the projects of p and q 
on axis X (or Y). According to the discussion made above, we can transform (6) to 
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h +

+

2
θ, 1θ

2
θ, 1θ

( ) | cosθ | ( cosθ, sin θ)[ ( ) ( )] θ

           | sin θ | ( cosθ, sinθ)[ ( ) ( )] θ
v

R r
r s rs

r
s rs

q R p f s

R p f s

−
−∈Θ ∈

−
−∈Θ ∈

Φ = − − Δ

+ − − Δ

∑ ∑

∑ ∑
Z

, (7) 

for handling raster data. In (7), θ belongs to a set {2πk/K}k∈0..K−1 of K reference direc-
tions, and therefore Δθ is 2π/K. pθ,0=q, pθ,1, pθ,2, etc., are the pixels successively en-
countered on the rasterization of the line Λθ(ω), which starts from an edge pixel ω 
of G and points at direction θ. See Fig. 1(c). Since R is crisp, which means each 
R(pθ,s) is either 1 or 0, expression ∑s∈Z+R(pθ,s)fr−1(s) in (7) can then be written as: 

+

1 1 1
θ, 1 11 1 0

( ) ( ) ( ) 1/ ( ) d dii

i i

bM b M r
s r rs i s a i a

R p f s f s y x x y
+ −

− −∈ = = == = −∑ ∑ ∑ ∑ ∫ ∫Z . (8) 

M here is the number of segments of R on the line Λθ(ω) encountered after q. When R 
is convex, M≤1 for any θ and q. In (8), the rightmost double integral can again be 
analytically solved. Equations (7,8) then calculate ( )R

r qΦ in O(KM), and calculate 
R
rΦ in O(KMN)+O(KN)=O(KMN), where O(KN) time is required to rasterize the 

lines Λθ(ω) (for all θ and ω) in G, and to determine the segments of R on those lines. 
In practice, the value of M is usually small, however, in the worst case, the value of M 
can reach √N, which raises the complexity up to O(KN√N). When R is fuzzy, the 
manipulation of R can always be reduced to that of its level-cuts, which are crisp. 
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Fig. 1. (a) The force between two points; (b) The force between two pixels; (c) The rasteriza-

tion of the line Λθ(ω); (d) The searching territory PST. 

3.2   Estimation of supp∈P ( ) δR
r pΦ ⋅  

When r=0, we have supp∈P 0 ( ) δR pΦ ⋅ =|R| [9]. For r≠0, we develop an algorithm which 
searches in a pre-determined territory for the point pmax, such that max( ) δR

r pΦ ⋅ forms a 
good approximation of supp∈P ( ) δR

r pΦ ⋅ . Equation (2) can then be replaced with: 

δ
max( ) max{0,min{1, ( ( ) δ) / ( ( ) δ)}}R R R

r r rq q pΦ = Φ ⋅ Φ ⋅ . (9) 

For easy illustration, we express P in terms of polar coordinates (θ, ) and set the ori-
gin (0,0) at the centroid of R. The searching territory (Fig. 1(d)) is defined as: PST = 
[δ−π/2,δ+π/2]×[0,dST]⊂P. dST=α+β/√r, where α=2∫θ∫ R(θ, )| cos(θ−δ)|/|R|d dθ and 
β=2∫θ∫ R(θ, )| sin(θ−δ)|/|R|d dθ, is the pre-determined searching distance. The search-
ing algorithm is given as follows: 
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δ′=δ; d=dST; /*The initial searching direction and distance are δ and dST.*/ 
s_p=5;  /*The searching speed is set to 5*/ 
Δδ=0.001; /* the minimum angle difference is set to 0.001*/ 
FOR each iteration   /*The number of iterations is set to 5*/ 

δa=δ′−π/2, δb=δ′+π/2;  
WHILE δb−δa ≥ Δδ  /*Search on the curve defined by [δa,δb]×{d} */ 

pa=(δa,d) and pb=(δb,d); 
IF ( ) δR

r apΦ ⋅ < ( ) δR
r bpΦ ⋅ : δa=δa+(δb−δa)/s_p; ELSE: δb=δb−(δb−δa)/s_p; 

δ′=δb, da=0 and db=dST; /*δ′ is the adjusted searching direction*/ 
WHILE db − da ≥ 1  /*Search on the line defined by {δ′}×[da,db] */ 

pa=(δ′,da) and pb=(δ′,db); 
IF ( ) δR

r apΦ ⋅ < ( ) δR
r bpΦ ⋅ : da=da+(db−da)/s_p; ELSE: db=db−(db−da)/s_p; 

d =db;    /*d is the adjusted searching distance*/ 
IF sup < ( ) δR

r bpΦ ⋅ : sup = ( ) δR
r bpΦ ⋅ ; /* sup is initially set to 0 */ 

ELSE: RETURN pmax= pb;   /* Nothing to update means we found pmax = pb */ 
RETURN pmax= pb;     /*After all iterations, we let pmax = pb */ 

3.3   Experiments 

Let R
rΦ be the exact force field calculated according to (4), and K R

rΦ  be the force field 
computed using (7,8). The difference between R

rΦ and K R
rΦ is measured by the differ-

ence ratio (DR), which takes on values in [0,1], and is 0 iff R
rΦ = K R

rΦ : 

( | ( ) ( ) |) / (| ( ) | | ( ) |)R K R R K R
r r r rq qDR q q q q= Φ − Φ Φ + Φ∑ ∑ . (10) 

The force field K R
rΦ approximates R

rΦ . The accuracy of the approximation increases 
with K (Fig. 2(b)) and is quite high (DR is less than 0.5%) even when K is relatively 
small (K=90). The accuracy also depends on the image size N and on r (Figs. 2(b,c)). 
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Fig. 2. Experiments. S1
δR and S2

δR in (f) are the standard maps generated using the first [3] and 
the second algorithms [10] (Section 1). All algorithms were implemented in C. 
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Let K R
rΦ  be the force field computed using the algorithm proposed in [9]. Fig. 2(d) 

shows that the processing times of K R
rΦ and K R

rΦ both increase with K and N, but at 
different rates. Computing K R

rΦ is far more efficient than computing K R
rΦ and R

rΦ . 
Once the force field is calculated, directional maps δR

rΦ  in various δ can be computed 
using (9). The Computation is generally fast, unless r takes some arbitrarily small 
positive value (like 10−5) (Fig. 2(e)). Fig. 2(f) shows that the computation of 

δR
rΦ ( K R

rΦ plus δR
rΦ ) is comparably efficient to that of the standard map SδR. 

Let δR
rΦ be the force field-based map generated by the second transformation 

proposed in [9]. Consider the case that R is a concentric shell, r=1, and δ=0. The 
values of 0

1
RΦ are all fairly low ( 0

1
RΦ appears dark in Fig.2 (g)) due to the overesti-

mation problem mentioned in Section 2. This raises some serious issues. For exam-
ple, according to intuition, pixel q (in Fig.2 (g)) is perfectly close to and to the right 
of R. However, 0

1
RΦ somewhat denies this perception since 0

1 ( )R qΦ =0.5. In the map 
generated using (9), 0

1
RΦ (Fig.2 (h)), such issue does not exist and 0

1 ( )R qΦ =1. 

4   Application 

Here, we illustrate the potential of the force field-based approach through a scene 
matching task. Consider a target scene depicting a number of objects. As an exam-
ple, the scene in Fig. 3(a) contains 21 disconnected objects, Figs. 3(b,c) show two 
(hand-drawn) query scenes, and the task is to determine if there exists a match be-
tween query and target. Note that for our purposes, a ‘match’ exists when there are 
objects in the target scene whose relative positions correspond to those found be-
tween the objects in the query scene. Furthermore, we want matching to be invari-
ant to scaling and rotation. What follows is a description of how this task can be 
performed. 

Consider a reference object R and a number of located objects Li with i=1..n. Ob-
ject R’s view histogram in direction δ, δ

Rh , is a function from {tk=k/P}k=0..P to [0,1]: 

δR δR
δ

{  | | ( ) | min | ( ) |} 1 1( ) [( ( )) / ]
r k j r j

n n
R k i iq q t q t i ih t L q LΦ − = Φ − = == ∑ ∑ ∑ . (11) 

δ ( )R kh t  counts (in a normalized way) the pixels q in the located objects such that 
δ ( )R
r qΦ is best approximated by tk. Now, assume there are n objects in the query 

scene Q. One of them is selected as the reference object R, the others are the located 
objects. Here, R is the object whose centroid is closest to the centroid of the entire 
scene. Then, for each view direction δi=2πi/D with i=0..D−1, four view histograms 
of R are computed in Q: 

δ δ δ π /2 δ π δ 3π /2( , , , )i i i i i
R R R R RQ h h h h+ + += . (12) 

Assume there are m≥n objects in the target scene T. The matching between T and Q is 
conducted in an exhaustive way: 
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FOR each object O in T: 
Let O be the reference object; 
List all the possible ways of drawing n−1 objects from the other m−1 objects in 
T; 
FOR each drawing: 

Let the n−1 objects be the located objects, which, together with the refer-
ence object O, form a sub-scene T′ of T; 
Compute O’s view histograms in the sub-scene: 0 π /2 π 3π /2( , , , )O O O O OT h h h h′ = ; 
FOR each δi

RQ : 
Compute the similarity degree between OT ′ and δi

RQ , δ( , )i
O Rsim T Q′ . 

Let δmax=δk such that δ( , )k
O Rsim T Q′ = maxi{

δ( , )i
O Rsim T Q′ }, and Let 

maxδ( , )O Rsim T Q′  be the degree of matching between Q and T′. 

The similarity degree between OT ′  and δi
RQ , δ( , )i

O Rsim T Q′ , is computed as: 

δ δ π /2π /2
0..3( , ) min { ( , )}i i jj

O R j O Rsim T Q d h h +
=′ = , (13) 

where d(h1,h2)=max{0,1−∑k|h1(tk)−h2(tk)|} measures the similarity between the view 
histograms h1 and h2. Note that d(h1,h2)=1 iff h1=h2. Finally, we present the sub-scenes 
T′ that best match Q (the sub-scenes with highest degrees maxδ( , )O Rsim T Q′ ). 

sim=0.81, δmax=1°

sim=0.77, δmax=172°

sim=0.71, δmax=344°

sim=0.74, δmax=2°

sim=0.74, δmax=325°
sim=0.62, δmax=320°

(b) QueryQ1

(d) (e)

(c) QueryQ2

(a) Target Scene T

 

Fig. 3. A scene matching task. (a) A hand-segmented laser radar range image of the power-
plant at China Lake, CA. The image was used by Matsakis, Keller et al. in [15]. (d) The sub-
scenes of T that best match Q1, and (e) those that best match Q2, where sim is the similarity 
degree between a query and a sub-scene (after counterclockwise rotation by δmax).  

 
As shown by Fig. 3, the proposed algorithm generates reasonable results. In this 

experiment, P=100, D=360, and each force field-based map was computed using the 
algorithm defined by (7,8,9) with r=0 and K=90. Under this configuration, for each of 
the query scenes in Figs. 3(b,c), the matching algorithm finishes within one minute. 
Of course, smaller values of P, D and K can be chosen to compromise precision for 
speed. Readers may ask whether standard maps can be applied to scene matching 
tasks like the one presented here. The answer is negative. Since standard maps rely 
merely on angular deviation, they lack representation power for dimension and dis-
tance information, which is critical to these tasks. 
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5   Conclusions 

In [9], Matsakis et al. developed a new quantitative model of the directional relation-
ships to a reference object. The model relies on the idea that all directional maps  
induced by the object can be derived from a force field. However, the proposed algo-
rithms lack efficiency and accuracy. In this paper, we have introduced algorithms that 
correct this flaw and we have demonstrated the potential of the force field-based ap-
proach through an application to scene matching. In future work, we will further ex-
plore the idea of using directional maps as a tool for pattern recognition and scene 
understanding. 
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Abstract. It is proposed to extract multi-location image features at maxima points 
of a spatio-temporal attention operator, which indicates locations with high inten-
sity contrast, region homogeneity, shape saliency and temporal change. The scale-
adaptive estimation of local change (motion) and its aggregation with the region 
shape saliency contribute to robust detection of moving objects. Experiments on 
the accuracy of interest-point detection have proved the operator consistency and 
its high potential for object detection in image sequences.  

Keywords: feature extraction, visual attention, motion detection, local scale. 

1   Introduction  

The object recognition from images and image sequences (video) is usually preceded by 
a feature extraction procedure since the decision is based on object-relevant image de-
scriptors called object features. There are two major ways of image feature extraction 
for object recognition: global approach with a single (and long) vector of global features 
[1, 2] and multi-location approach with a set (or a relationship graph) of local feature 
vectors [3]. Since the image may contain many different objects of interest (moving and 
stationary) with different spatial extents, many local image features have to be extracted 
for object recognition. The second approach is preferred in practice because of its high 
descriptive power, stability to distortions, and resistance to occlusions.  

The use of a visual attention operator is a time-efficient solution of object recogni-
tion problems by feature extraction in multiple image locations containing potential 
objects of interest [4-9]. The greater part of the attention operators is based on the 
image spatial differentiation and integration [6-8], while some of them involve meas-
urements of local symmetry [5]. An important characteristic of many operators is the 
local scale concept and its selection method [8-11].  

More recently, a temporal domain extension of the visual attention approach has 
been made to rapidly detect moving object and temporal changes. An example of the 
integration of temporal attention with spatial saliency information is the attention 
pyramid method [12]. The temporal differentiation in the form of a novelty map is 
used to detect motion, which is linearly aggregated with the spatial saliency map. 
However, no local scale concept is involved. A new operator for the detection of 
space-time interest points has been proposed [13]. It is based on the idea of the Harris 
and Forstner interest-point operators [5] and detects local structures in space-time 
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domain where the image has significant local variations both in space and time. How-
ever, the direct integration of temporal differentiation with spatial derivative functions 
in the 3x3 operator matrix provides little contribution to effective motion detection. 
The local scale selection is complicated by the involvement of other scale variables 
that results in a computationally extensive method. Another existing spatio-temporal 
operator is the spatio-velocity contrast sensitivity function (CSF) as an attention 
model of the human visual system [14]. The advantageous feature of this model is the 
involvement of relative (object-to-retina) movement of stimuli in the attention model-
ing. Its utility in the multi-location feature extraction is limited by the absence of a 
time-efficient implementation scheme.  

In order to properly design our spatio-temporal operator, formal requirements for 
attention-point conditions of image locations are formulated in the form of attention 
tokens (Section 2). The proposed morphological (region-based) scale definition with 
its fast estimation algorithm contributes to reliable detection of interest points. In our 
approach, temporal change detection is scale-adaptive and is performed in locations 
with high local contrast and region homogeneity. In this way, a particular operator of 
the multi-scale spatio-temporal attention – Spatio-Temporal Isotropic Attention 
(STIA) operator – has been designed to rapidly extract object-relevant features from a 
sequence of images (Section 3).  This method is an extension to temporal axis of 
another spatial attention operator, which is based on the multi-scale matched filtering 
[15]. Experimental results of the interest-point detection (Section 4) confirm the op-
erator consistency and its high potential for image feature extraction.  

2   Design Requirements for Spatio-Temporal Visual Attention 

In order to achieve an effective feature extraction, the proposed STIA operator has to 
be designed in accordance with some basic requirements for its reliability and effec-
tiveness. Similarly to other attention operators, the object features are estimated at the 
STIA local maxima called attention points [9-12]. Moreover, the operator’s values are 
proportional to the relevance or saliency of image fragments centered at the maxima 
points. The local scale determines the fragment size. We adopted the scale 
morphological definition [10] where the scale estimation consists in selecting the 
greatest structuring element Sr centered at (i,j) and inscribed into the fragment’s 
central homogeneous region. The scale value is the diameter r of the structuring 
element in pixels. The attention points are extracted as consecutive local maxima of 
the attention operator in a viewing area A and observation period T as follows: 

{ }1
,),(

),()],,,(),,,([maxarg),,( −∈∈
Γ∉Φ= p

TkAji
p jikjikjiftyx ρ ,            (1) 

where f(i,j,k) is the image intensity in the point (i,j) of the kth frame, Φ[f(i,j,k),ρ(i,j,k)] 
is the STIA function at the local scale ρ(i,j,k), and (x,y,t)p are the coordinates of the 
pth local maximum. The region Γp-1 in Eq. (1) is the masking region that excludes 
areas around the previously determined maxima from further extraction. By the feature-
extraction problem statement, this operator has to perform a data-driven multi-scale 
attention since the object-relevant features can be extracted only after the operator  
computation. The data-driven definition of the visual attention as well as the required 
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stability to distortions and invariance to image transformations imply the following 
basic conditions in the operator’s design. 

1) Sensitivity to local regional contrast and homogeneity is necessary for a reli-
able feature extraction in variable conditions of image acquisition. This  
requirement is equivalent to the high signal-to-noise ratio condition for the 
stability of signal detection.  

2) Multi-scale and isotropic image analysis is requested since objects of interest 
(homogeneous regions) may have different sizes and orientations.  

3) Selectivity to high radial symmetry of a region shape allows object-relevant 
details to be distinguished from other less relevant locations with the same 
high contrast and homogeneity.  It determines the local uniqueness for the at-
tention points. The operator’s maxima have to be located on the median lines 
of homogeneous regions including corners as opposed to simple edges. 

4) Scale-adaptive detection of temporal changes is necessary for motion integra-
tion with the multi-scale spatial saliency of the corresponding location.  
Temporal changes indicate image locations of high relevance, which usually 
correspond to moving objects of interest. 

5) Fast implementation capability implies the computational complexity of the 
multi-scale operator has to be independent from the scale size. 

3   Multi-scale Spatio-Temporal Isotropic Operator 

The spatio-temporal isotropic operator proposed in this article is a generic attention 
operator, which assumes local maxima in image fragments of a variable size at the 
center of homogeneous regions with a high contrast and temporal change presence. It 
fulfills all the design conditions disclosed in Section 2. 

The local scale ρ has to be estimated before the attention function Φ[f(i,j,k), 
ρ(i,j,k)] and is computed by maximizing the local isotropic contrast with a homogene-
ity constraint over a scale range R:  

{ }),,,(),,,(maxarg),,(
1

rkjidrkjickji
Rr

⋅−=
≤≤

αρ ,      (2) 

where c(i,j,k,r) is an estimate of the local isotropic contrast at (i,j,k), d(i,j,k,r) is an 
estimate of the region non-homogeneity, r is the diameter of the disk structuring ele-
ment Sr in the uniform scale system [10], and α  is the homogeneity weight coeffi-
cient. The quantification of the attention requirements (Section 2) provides attention 
tokens as functions of the local scale, image coordinates and time, which are aggre-
gated in the STIA operator with weight coefficients: 

),,,(),,,(),,,()],,(),,,([ ρβραρρ kjiekjidkjickjikjif ⋅+⋅−=Φ ,          (3) 

where the variables c(i,j,k, ρ) and d(i,j,k, ρ) and α  have the same meaning as in Eq. (2), 
ρ is the local scale value, e(i,j,k,ρ) is the temporal change estimate between kth and (k-
1)th frames, and β is the temporal change coefficient. An estimate for the optimal values 
of α and β in the maximum-likelihood sense can be computed assuming appropriate 
distributions of the three terms in Eq. (3) as random independent variables [9]. 
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(a)     (b) 
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Fig. 1. Estimation of the local isotropic contrast and temporal change: (a) case of a rigid mo-
tion; (b) case of a region shrink deformation 

 
The first term in Eq. (2) is defined in such a way that it includes two tokens: local 

contrast and shape symmetry. Two isotropic estimation regions are involved in the 
estimation of the local isotropic contrast based on the structuring element Sρ:  disc 
region Qρ=Sρ and ring region Pρ=Sρ+1\Sρ (Fig. 1). The local isotropic contrast 
c(i,j,k,ρ) at the ρth scale in (i,j,k) is estimated as the mean square deviation in the ring 
region Pρ(i,j) with respect to the mean intensity of the disk region Qρ(i,j): 

2

),(,

2 )),,(),,,((
1

),,,( knmfkjif
P

kjic
jiPnm

∑
∈

−=
ρ

ρρ
ρ

,       (4) 

where f(i,j,k,ρ) stands for the mean value of f(i,j,k) in Qρ(i,j) and |Pρ| is the total num-
ber of grid points in Pρ(i,j). The intensity deviation in the ring Pρ will be proportional 
to the amount of contact edge points of the greatest inscribed structuring element Sρ 
since the region Pρ(i,j) will include some background points near the region border. It 
measures the level of radial symmetry around (i,j) (Fig. 2). The number of back-
ground pixels in Pρ(i,j) is equal to zero for the interior region while a round object 
such as the disk in Fig. 2e gives the maximum of the radial symmetry measure in Eq. 
(4).  As an estimate of the region non-homogeneity, d(i,j,k,ρ), the mean intensity 
deviation within the disk region Qρ(i,j) have been used in Eq. (3). Another option for 
estimating homogeneity is to use the sum of the intensity first derivatives as it is im-
plemented in the existing operators of the Harris and Forstner type [5, 13]. The third 
term in Eq. (3) is the temporal change token, which corresponds to the fourth re-
quirement for our spatio-temporal operator design (Section 2). A temporal differentia-
tion is performed at the first step: h(i,j,k)=| f(i,j,k)- f(i,j,k-1)|. At the second step, a 
scale-adaptive linear filtering (e.g., a simple averaging) is applied to the difference 
image h(i,j,k) in order to scale-adaptively estimate the temporal change e(i,j,k,ρ). The 
diameter σ of the structuring element Sσ(i,j) for the averaging at the point (i,j) is larger 
than the local scale ρ at (i,j) in order to capture different types of temporal changes 
(Fig. 1).  The diameter difference, σ-ρ, is proportional to the potential change amount 
or motion velocity. The integration of the temporal differentiation pixels over the disc 
region Sσ(i,j) assumes local maxima at the centers of moving homogeneous regions 
(Fig. 1).  
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(a)  (b)  (c)  (d)  (e) 

edge bar corner diskinterior

 

Fig. 2. Examples of synthetic image fragments with various levels of radial symmetry 

In comparison with the conventional differentiation approach, the scale-adaptive 
estimation of the temporal change and its integration with the spatial saliency in Eq. 
(3) has two advantages. First, it provides the location of a moving-object region at its 
geometrical center whereas the direct differentiation usually gives the region edges in 
the motion direction. Second, its response to weak temporal changes will be strong 
due to the scale-adaptive change integration within Sσ(i,j).  

The general approach to fast recursive computation of the function Φ[f(i,j,k), 
ρ(i,j,k)] is to represent it in the form of combinations of linear filters having the 
impulse responses as primitive kernel functions [16]. The kernel of the averaging 
filter used in the recursive implementation of the STIA operator is a zero-order 
primitive kernel function since it is a constant. The STIA complexity was reduced 
to O(R) operations per pixel by combining recursive implementations of the averag-
ing filters, where R is the total number of scales and O(.) is the standard big “O” 
function. 

4   Experimental Results 

4.1   Accuracy and Invariance of the Attention-Point Extraction  

The experiments with the STIA operators have been related to biometrical identifica-
tion, gesture recognition and video surveillance. The goal of the experiments was to 
investigate the accuracy (invariance) of attention points coordinates when images 
were subjected to similarity transformations (translation, scaling and rotation) and to 
intensity linear transformations simultaneously with random distortions.  The test 
images were transformed by one of the transformations at a time and the STIA opera-
tor was applied to find the attention points. To estimate the extraction error, the atten-
tion point coordinates were back-transformed to the initial image plane and the mean 
of the displacements was calculated with respect to the initial coordinates.  

As an example, a test image of hand (Fig. 3) has been submitted with different 
poses (transformation parameters are known) of the palm on the image plane (rota-
tions, scaling and translations are included).  The results of the rotational invariance 
testing for this example are given in Fig. 4a. Some results of the accuracy testing are 
disclosed in Fig. 4b. The level of random distortions is characterized by the contrast-
to-noise ratio where the noise level is its mean square deviation. The final error esti-
mate is averaged over single-point errors from 16 first local maxima of the STIA 
operator. In these examples, the STIA operator was implemented for a large scale 
range using eighty consecutive and uniform scales (R=80) since the hand palm region  
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                              (a)                (b)        (c) 

Fig. 3. Examples of rotated images and extracted attention points 
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     (a) random intensity transformations  (b) image rotation transformations 

Fig. 4. Experimental evaluation of the STIA operator accuracy in the attention-point extraction 

has the local size significantly greater than that of the fingers. The following weight 
coefficients have been involved in the STIA: α=0.9 and β-=2.9. 

4.2   Experiments on Moving Object Detection  

The goal of the experiments was the accuracy evaluation of the attention points ex-
traction for moving object detection using the STIA approach. For this purpose, first 
global STIA maxima satisfying the saliency tests and the local maxima condition 
were chosen as the attention points for the evaluation of the correct detection rate and 
false alarm rate.  The motion will be correctly detected (i.e., true positive result), if 
the current attention point is located at the moving region center and not at its border. 
The false alarm case in the motion detection using the STIA operator is the attention-
point positions on stationary image fragments (with high intensity saliency), ghost 
(inexistent) objects and regional border locations.  The experiments were conducted 
on moving hand sequences (Fig. 5). The following weight coefficients have been 
involved in the STIA: α=0.7 and β-=3.5. 

The performance of this method was numerically evaluated in the form of the re-
ceiver operating characteristic (ROC) curve, i.e., the plot of the true positive rate 
versus the false alarm rate (Fig. 6). The shape of the ROC curve in Fig. 6 and the 
large area under the curve confirm the favorable relationship between the two rates: 
true positive vs. false positive. 
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        (a)              (b)                           (c) 
 

                     
(d)        (e)             (f) 

Fig. 5. Results of attention-point extraction in a hand gesture sequence:  (a) previous frame 
from image sequence; (b) temporal differentiation; (c) STIA operator; attention points with 
lower (d) and larger (e) scale ranges; (f) result of the MIMF operator 
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Fig. 6. ROC of the attention-point extraction using the STIA operator 

Theoretical and experimental comparison of the STIA operator with the similar ex-
isting attention operators [6, 11, 15] shows the STIA advantage in more effective 
estimation of the local contrast using Eq. 4. It is capable to detect multi-level homo-
geneous regions with intensity and shape saliency whereas the MIMF operator [15] 
can affectively extract only two-level homogeneous regions and edges (Fig. 5f). 

5   Conclusions 

A novel spatio-temporal attention operator for features extraction from image se-
quences is proposed. It scale-adaptively integrates the local change estimate with 
multi-scale saliency tokens such as the intensity contrast, region homogeneity, and 
radial symmetry. The operator has the following advantages in the context of multi-
scale and multi-location feature extraction: invariance to translations, scaling and 
rotations; invariance to intensity linear transformations; reliable extraction of motion 
features; fast recursive implementation for multi-scale image analysis.  
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Abstract. Homological characteristics of digital objects can be obtained
in a straightforward manner computing an algebraic map φ over a finite
cell complex K (with coefficients in the finite field F2 = {0, 1}) which
represents the digital object [9]. Computable homological information in-
cludes the Euler characteristic, homology generators and representative
cycles, higher (co)homology operations, etc. This algebraic map φ is de-
scribed in combinatorial terms using a mixed three-level forest. Different
strategies changing only two parameters of this algorithm for computing
φ are presented. Each one of those strategies gives rise to different maps,
although all of them provides the same homological information for K.
For example, tree-based structures useful in image analysis like topolog-
ical skeletons and pyramids can be obtained as subgraphs of this forest.

Keywords: Cell complex, chain homotopy, digital volume, homology,
gradient vector field, image pyramid, tree, skeleton.

1 Introduction

A finite cell complex K is a graded set formed of cells, with an operator ∂ de-
scribing the boundary of each cell in terms of linear combination of its faces. The
finite linear combination (with coefficients in F2 = {0, 1}) of cells form a graded
vector space called chain complex associated to K and denoted by C∗(K; F2). In
[9] the solution to the homology computation problem (calculating n-dimensional
holes) of K is described in the following terms: to find a concrete linear map
φ : C∗(K; F2) → C∗+1(K; F2), increasing the dimension by one and satisfying
that φφ = 0, φ∂φ = φ and ∂φ∂ = ∂. In [10], a map φ of this kind is called
homology gradient vector field (hgvf). This datum φ is, in fact, a chain homo-
topy operator on K (a purely homological algebra notion) and it is immediate
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to establish a strong algebraic link between the cell complex associate to K and
its homology groups (H0(K), H1(K), H2(K)).

This approach is followed here as a solution to the homology computation
problem. We will codify the deformation process φ to a minimal homological
expression in terms of graphs. In [9] the input of the algorithm for computing
homology information is a filtered finite chain complex. This input filter and the
choice of a homological face for each cell-step are the two parameters of this
algorithm. Different useful strategies in digital imagery (segmentation, analy-
sis, topological skeleton, multiresolution analysis,...) can be performed running
this algorithm. The final result depends on suitable choices of these two factors.
Concerning the output, we will express the resulting homology gvfs of the al-
gorithm as a three-level forest data structure which geometrically represent the
underlying acyclic submodule Im φ = {x ∈ C(K; F2) : x = φ(y), for some y}.
This connectivity encoding method is susceptible to be generalized to any sub-
division representation scheme, higher dimension and coefficient ring. Different
modalities of this process are presented here showing its versatility.

2 Obtaining Homological Information

Some notions about algebraic topology must be introduced. A q–chain a of a
three-dimensional cell complex K is a formal sum of cells of K(q) (q = 0, 1, 2, 3).
Let us consider the ground ring as the finite field F2 = {0, 1}. The q–chains
form a group with respect to the component–wise addition; this group is the
qth chain complex of K, denoted by Cq(K). There is a chain group for every
integer q ≥ 0, but for a complex in R3, only the ones for 0 ≤ q ≤ 3 may be
non–trivial. The boundary map ∂q : Cq(K) → Cq−1(K) applied to a q–cell σ
gives us the collection of all its (q−1)–faces which is a (q−1)–chain. By linearity,
the boundary operator ∂q can be extended to q–chains, and satisfies ∂q−1∂q = 0.
From now on, a cell complex will be denoted by (K, ∂). A chain a ∈ Cq(K) is
called a q–cycle if ∂q(a) = 0. If a = ∂q+1(a′) for some a′ ∈ Cq+1(K) then a is
called a q–boundary. Define the qth homology group to be the quotient group of
q–cycles and q–boundaries, denoted by Hq(K).

Let (K, d) be a finite cell complex. A linear map of chains φ : C∗(K) →
C∗+1(K) is a combinatorial gradient vector field (or, shortly, combinatorial gvf)
on K if the following conditions hold: (1) For any cell a ∈ Kq, φ(a) is a q +1-cell
b; (2) φ2 = 0. Removing the first condition, φ will be called an algebraic gradient
vector field. An algebraic gvf satisfying the conditions φdφ = φ and dφd = d
will be called a homology gvf [9]. If φ is a combinatorial gvf which is only non-
null for a unique cell a ∈ Kq and satisfying the extra-condition φ∂φ = φ, then
it is called a (combinatorial) integral operator [6]. An algebraic gvf φ is called
strongly nilpotent if it satisfies the following property: Given any u ∈ K(q), if
φ(u) =

∑r
i=1 vi then φ(vi) = 0 for all i = 1, . . . , r. We say that a linear map

f : C∗(K) → C∗(K) is strongly null over an algebraic gradient vector field φ if
given any u ∈ K(q), if φ(u) =

∑r
i=1 vi then f(vi) = 0 for all i = 1, . . . , r.

Using homological algebra arguments, it is possible to deduce that a ho-
mology gvf φ determines a strong algebraic relationship connecting C(K) and
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its homology vector space H(K). Let us define a chain contraction (f, g, φ) :
(C, ∂) => (C′, ∂′) between two chain complexes as a triple of linear maps such
that f : C∗ → C′∗, g : C′∗ → C∗ and φ : C∗ → C∗+1 and they satisfy the follow-
ing conditions: (a) idC − gf = ∂φ + φ∂; (b)f g = idC′ ; (c) f φ = 0; (d) φ g = 0;
(e) φφ = 0. Given a chain contraction (f, g, φ), elementary homological algebra
results are: (a) Ker φ = Img

⊕
Imφ (direct sum); (b) Imφ is acyclic (i.e, it has

null homology); (c) Ker ∂ = Img
⊕

Im∂ (direct sum).

Proposition 1 (see [9]). Let (K, ∂) be a finite cell complex. A homology gvf
φ: C∗(K) → C∗+1(K) over K gives rise to a chain contraction (π, ι, φ) from
C(K) onto its chain subcomplex isomorphic to the homology of K, where π =
idC(K) + φ∂ + ∂φ is a projection and ι is the inclusion map. Reciprocally, if
(f, g, φ) is a chain contraction from C(K) to its homology H(K), then φ is a
homology gvf.

Given a cell complex (K, ∂), an ordered set of cells K = 〈c1, . . . , cm〉 is called
a filter for K if {c1, . . . , cm} =

⋃
q∈Z

K(q), and for each j = 1, . . . , m, all the
faces of cj are contained in the subset {c1, . . . , cj−1}. A straightforward filter
for K can be consider all the 0–cells, then all the 1–cells, and so on. Another
important example is to consider a spanning tree strategy as a filter for a one-
dimensional cell complex or a topological graph G = (V, E). It is a classical
result that the edges of E \ E′ determine the homologically different 1-cycles
for G. A generalization of a spanning tree technique for higher dimensional cell
complexes [11] can be applied for determining filters with interesting homological
properties. The algorithm proposed in [10,9] for calculating in an incremental
way a F2-homology gvf is the following one:

Algorithm 1 (see [10,9]). Let (K, ∂) be a finite cell complex with the filter
Km = 〈c0, . . . , cm〉 . For each i = 0, . . . , m, we represent the cell subcomplex
of K by the filter Ki := 〈c0, . . . , ci〉, with the boundary map ∂i. Let H be the
homology chain complex (that is, a chain complex with the zero boundary map)
associated to (K, ∂).

φ0(c0) := 0.
For i := 1 to m do

define c̄i := ci + φi−1∂i(ci)
∀esj ∈ Ki−1 such that ∂i(ci) =

∑r
j=1 λjesj

define ēsj := (idC(Ki−1) − φi−1∂i−1 − ∂i−1φi−1)(esj ) ∀j = 1, . . . , r
φi(ci) := 0,
If ∂ic̄i = 0 then

For j := 0 to i− 1 do
φi(cj) := φi−1(cj).

Otherwise choose an element ēsk
�= 0 and define φ̃(ēsk

) := c̄i

and zero otherwise.
For j := 0 to i− 1 do
φi(cj) := (φi−1 + φ̃(idC(Ki) + φi−1∂i + ∂i−1φi−1))(cj),

Output: a homology gradient vector field φm for K.
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The key idea of this algorithm is the same as in [4]: in the ith step, the element
ci of the filter is added and a homology class is created or destroyed. Let us note
that the homology of (K, ∂) is given by the set H := Im (1Km +φm∂m +∂mφm).

Algorithm 1 essentially depends on two parameters (framed in the algorithm):
the filter and the choice of a homological face for each cell step. Concerning the
filter parameter, different orders of the cells as an input of the algorithm give
rise to different homology gradient vector fields, although they all provide the
same homological results. The homological face choice parameter involves the
selected cell ¯esk

used to define φ̃, in order to “kill” the cell c̄i.
Focussing our interest in the output of the Algorithm 1 and based on ex-

perimental results, it can be conjectured that the underlying structure of the
homology gvf φm is a suitable generalization to cell complexes of the notion of
the spanning forest for a topological graph [11]. The following result is the key
for determining the graph-based nature of a homology gradient vector field. This
can be easily proved using induction on i.

Proposition 2. In Algorithm 1, the homology gradient vector field φm is strongly
nilpotent and the map πm = 1 + ∂φm + φm∂ is strongly null over φm. Moreover,
if φm(c) =

∑t
j=1 cj (cj being a cell of K), then cj = φm(ej), for some ej ∈ C(K)

and ∀j = 1, . . . , t.

In fact, these properties establishing the combinatorial nature of φm and the fact
that Imφm is a acyclic vector subspace guarantee that φ in each level (levels 0,1
and 2) can be represented as a kind of spanning forest (T (φm)0, T1(φm), T2(φm))
for the cell complex K called homological forest of the homology gvf φm. This
structure is a mixed graph in each level (that is, some edges are undirected and
others are arcs). We use here the notation e ∈ h(v), whenever the element e
appears as a summand of the linear map h applied to v.

1. Let us form the forest T0(φm) = (V0, E0) (called the vertex homological
forest), in which V0 = V 0

0 ∪ V 1
0 (red and blue vertices of T0(φm)), with

V 0
0 = K0, V 1

0 = {e ∈ K1 / e ∈ φ(v), for some v ∈ K0} and E0 is composed
of all the unordered pairs {v, e}, where v is a vertex of K appearing as a
summand in the boundary of e (that is, v ∈ ∂e).

2. Let us form the forest T1(φm) = (V1, E1) (called the edge homological forest),
in which V1 = V 0

1 ∪V 1
1 (red and blue vertices of T1(φm)), with V 0

1 = (K1\V 1
0 ),

V 1
1 = {e ∈ K2 / e ∈ φ(v), for some v ∈ V 0

1 } and E1 is composed of all
the unordered pairs {v, e}, where v is an edge of V 0

1 ⊂ K1 appearing as a
summand in the boundary of the 2-cell e.

3. Let us form the forest T2(φm) = (V2, E2) (called the face homological forest),
in which V2 = V 0

2 ∪V 1
2 (red and blue vertices of T2(φm)), with V 0

2 = (K2\V 1
1 ),

V 1
2 = {K3} and E2 is composed of all the unordered pairs {v, e}, where v is

a 2-cell belonging to K2 \ V 1
1 appearing as a summand in the boundary of

the 3-cell e.

The edges of the set Ei (i = 0, 1, 2) connect a red vertex with a blue one.
Moreover, we establish an arc in Ti(φm) (i = 0, 1, 2) from the red vertex v to
the blue vertex e, if e ∈ φm(v).
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Proposition 3. The filter and the homological face choice at each cell step in
Algorithm 1, can be determined in order to obtain as an output a homological
forest of the homology gvf φm.

3 Homological Strategies

The versatility of Algorithm 1 is shown throughout this section. Taking into ac-
count different variations of the two parameters, useful results for segmentation,
analysis, recognition, compression, etc. are presented here.

3.1 Topological Skeleton

The aim of topological thinning is to reduce the image content to its essentials.
Thinning an image consists in eliminating border voxels until only a skeleton of
the original image remains. We consider a border point of one direction if its
adjacent point in this direction is white.

Considering a filter over the cells in a way that each step of Algorithm 1
takes a border cell ci and one of its faces ēsk

satisfying some conditions: we
are performing a topological thinning of the initial object.The main idea is to
apply the chain homotopy operator φ corresponding to cell collapsing [6] on
each direction of the 3D volume, reducing the initial cell complex.Applying this
operator to border points satisfying some requirement, we obtain a medial axis
skeleton of the 3D initial volume. This requirements can be seen as a selection of
those border cells ēsk

which belong to a higher dimension cell ci, being ēsk
a free

face of ci (non-shared with other cells). In that case we will assign φ̃ (ēsk
) = ci.

In fact cell collapse operations are seen here from a purely algebraic point of
view. Each one of them is a chain homotopy equivalence algebraically connecting
the object, before and after the collapsing process. The complete thinning will
be considered as a composition of these chain homotopies. In order to preserve
the shape of the object, we need additional criteria for deleting points which
prevent excessive shrinking.

A special kind of skeleton called Reeb graph can be also obtained using Algo-
rithm 1. Reeb graphs are skeleton graphs that provide a way to understand the
intrinsic topological structure of a shape. If we proceed filtering the volume by
subdividing it into 2 dimensional slices, the minimum homological representa-
tion of each connected component in the slice will be the result of applying the

Fig. 1. Topological skeleton strategy showing the T0 and T1 forests and the skeleton
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Fig. 2. Segmentation-based strategy showing the T0 and T1 forests and the final result

Fig. 3. Segmentation based on connected components of a trabecular bone volume
(courtesy of the Institute of Biomechanics, Zurich, Swiss)

algorithm to this 2D images. After processing all the cells belonging to each slice,
cells joining different slices will be taken into account. These cells will join each
graph with its correspondences (same connected component) in the slices above
and below. The result is the Reeb graph with loops codifying the topological
structure of the volume.

3.2 Segmentation Strategy

The goal of segmentation is to partition the image into regions with homogeneous
properties. A segmentation of an initial volume V can be achieved using the
homology gvf algorithm. The filter restrictions used for this aim, is completely
different to the one used in Section 1. In this case inner cells of the complex will
be included in the algorithm before the ones in the border. Selecting a shared-
face ēsk

of an inner cell ci and considering φ̃ (ēsk
) = ci , the resultant complex

after this iteration will contain a cell which is the merge of both cells sharing us.
Repeating this process until no more inner cells exists on the complex, the final

result will be a big cell which is the result of merging all the cells belonging to the
same region. This segmentation can be done in terms of different criterions, like
connected components, color segmentation, etc. An example of this algorithm
segmenting a 3–dimensional image is shown in Fig. 3.

3.3 Topological Pyramids

Image Pyramids are hierarchical structures widely used in Image Analysis [1].
They are made of multiple copies of the same cellular structure, in which the
number of cell is reduced from copy to copy (levels of the pyramid). Irregular
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graph pyramids are defined as a stack of successively reduced graphs [8] where
each level represents an arbitrary partition of the pixel set into cells. An image
is transformed into a graph such that, for each pixel a vertex is associated,
and pixels that are neighbors are joint by an edge. The graph which represent
the pixels is denoted by G = (V, E). It is called primal graph and it divides
the plane into faces. Let denote each face by a new vertex and connect the
faces that are neighbors (sharing the same edge) by a new edge. These vertices
and edges added, compose a new graph G, which is the dual graph of G. The
edges of G represent the borders of the cells of G, including so called pseudo
edges needed to represent neighborhood relations to a cell completely enclosed
by another cell. A level of a dual graph pyramid consists of a pair (Gk, Gk) of
plane graphs, in order to represent the embedding of the graph in the plane. A
cell on level k + 1 (parent) is a union of neighboring cells on level k (children).
Every parent computes its values independently of other cells on the same level.
The union of cells is controlled by so called contraction kernels and the only
operations used are removal and contraction [8]. The contraction operation is
defined informally as the removal of the i-cell and the merging of two (i− 1)-cells,
effectively removing one of these (i− 1)-cells. E.g. when contracting an edge, the
two bounding vertices of this edge are merged into a single vertex, removing one
of the vertices. The connecting edge is also removed in the process. Because
a contraction operation merges two (i− 1)-cells, only cells of dimension i ≥ 1
may be contracted. Intuitively and in a general way for an n-dimensional space,
the removal of an i -cell consists in removing this cell and in merging its two
incidents (i + 1)-cells: so removal can be defined for 0 . . . (n− 1)-cells. According
to [2],[3] the removal operation is the dual counterpart to a contraction.

As mentioned in [5], the two operations used to construct an irregular graph
pyramid are integral operators satisfying the chain-homotopy property. Follow-
ing this lemma, an irregular graph pyramid can be directly built using Algorithm
1. We can combine one of the existing algorithms for constructing an image pyra-
mid [7], but updating at each step the resulting gvf following Algorithm 1. For
example, given two cells ci and cj sharing a face us, and defining φ̃(us) = ci,
the cell us will be removed and ci and cj will be merged, performing in that
way a removal operation. Similar situation occurs with cell contractions. The
advantage of using this algorithm for building a pyramid is the complete topo-
logical control during the whole process, and the possibility of directly compute
topological invariants at each level of the pyramid.

4 Conclusions and Future Work

Roughly speaking, in order to progress in homological knowledge for a finite cell
complex, we determine here two operators on C∗(K; F2): a boundary operator,
∂ : C∗(K; F2) → C∗−1(K; F2), decreasing the dimension by one and measuring
in algebraic terms the boundary of any set of cells; and a “coboundary” operator
φ : C∗(K; F2) → C∗+1(K; F2), increasing the dimension by one and measuring
in some sort the degree of acyclicity (a space is acyclic is it has the same ho-
mology than a point) of any set of cells. In particular, we have seen that the
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map 1K + ∂φ + φ∂ applied to every cell provides us representative cycles for all
the homology generators of K. In fact, having this information at hand, it is
possible to compute finer topological invariants for K (relations between the ho-
mology generators, cohomology algebra, (co)homology operations, . . .) as well as
partially or full homologically equivalent graph features (topological skeletons,
Reeb graphs, contraction kernels, . . .). In combinatorial terms, we specify for the
acyclicity operator φ a homological forest. As future work, we plan to explore
the possibilities of this forest for 3D and 4D geo-topological (saving essential
geometric and topological information) representation as well as its robustness
with regards to small changes (deformation, noise,...) in the object.
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Abstract. A new type of affine moment invariants for color images is
proposed in this paper. The traditional affine moment invariants can be
computed on each color channel separately, yet when the channels are
transformed together, by the same affine transform, additional invariants
can be computed. They have low order and therefore high robustness to
noise. The new invariants are compared with another set of invariants
for color images using second powers of the image function. The basic
properties of the new features are tested on real images in a numerical
experiment.

1 Introduction

The pattern recognition of objects on images distorted by affine transform has
been studied for many years. Affine moment invariants showed suitability for this
purpose, however they are typically computed from binary or gray-level images.
In case of color images, additional features can be computed using color.

Certain satellites are capable of capturing a large number (let us say n) of
spectral bands (often infrared, less commonly ultraviolet or visible), the image
from one spectral band is called channel. Ordinary color photographs are much
more readily accessible, and since they contain 3 visible spectral bands they can
be considered multi-channel images with n = 3. Typically, the color is used for
better segmentation and invariants are computed from binary silhouettes of the
segmented objects, in certain cases the first principal component with zeroed
background is used.

In pattern recognition the following rule applies and must be satisfied: the
number i of independent invariants equals the number m of independent mea-
surements of a certain object (the number of moments in our case) minus the
number t of independent constraints(see e.g. [1]). In most cases it equals the
number of parameters of the transformation, in case of the affine transform,
t = 6, thus this rule can be rewritten as i = m− t.

If we decide to compute the invariants directly from channels, we can use each
channel separately and obtain triple (n-fold) features. Nevertheless, if we use m
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of the Czech Republic.
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moments of each n channels and t parameters of the transform, then we obtain
i = n(m− t) independent invariants of separate channels.

In case of multi-channel images, where there is no geometric transform be-
tween channels, we can suppose a two-dimensional affine transform with identical
parameters in each channel. In this case, we could obtain nm − t independent
invariants, and thus t(n− 1) additional invariants, t for each additional channel.

Mindru et al published a series of conference contributions, e.g. [2] and [3]
including a survey in the journal paper [4] with the combined invariants to the
affine transform and illumination changes, where moments computed from a
certain power of the channels were utilized. Their generalized color moment of
order s = p + q and degree d = α + β + γ of a certain object Ω is then defined

Mαβγ
pq =

∫ ∫
Ω

xpyq(R(x, y))α(G(x, y))β(B(x, y))γdxdy , (1)

where R, G, and B are three color channels. The authors use these moments for
the construction of combined invariants to the affine transform of coordinates
and contrast changes. In their most complex version, they suppose a general
affine transform of RGB values.

In the case of an infinite set of moments of all orders, only the moments
where d = 1 are independent, e.g. if we know Mαβγ

pq for s = 0 and α, β, γ =
0, 1, . . . , 255, we could theoretically reconstruct the complete 3D histogram. This
redundancy decreases as the maximum order of moments decreases, for low-
order moments this method may yield meaningful results. However, even for low
orders, using higher powers of brightness in individual channels is more sensitive
to nonlinearity of the contrast changes and may lead to misclassification.

The problematic issue in certain applications is not illumination changes, but
exclusively or almost exclusively the geometric distortion. In such cases using
traditional moments with d = 1 is more suitable and construction of a commen-
surate feature set is the theme of this contribution.

2 Moment Invariants of Multi-channel Images

Affine transformation is a general linear transform of space coordinates of an
image. It can be expressed as

u = a0 + a1x + a2y
v = b0 + b1x + b2y.

(2)

An exact model of photographing a planar scene by a pin-hole camera whose
optical axis is not perpendicular to the scene is a projective transform. Since the
projective transform is not linear, its Jacobian is a function of spatial coordinates
and projective moment invariants from a finite number of moments cannot exist.
The perspective effect is negligible for small objects and large camera-to-scene
distances and thus the affine transform can be used as good approximation of
the projective transform.
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The geometric moment mpq of the order s = p + q of an integrable image
function f(x, y) is defined as

m(f)
pq =

∫ ∞

−∞

∫ ∞

−∞
xpyqf(x, y)dxdy . (3)

If the coordinates are translated so their origin appears the centroid of the image
x

(f)
c = m

(f)
10 /m

(f)
00 , y

(f)
c = m

(f)
01 /m

(f)
00 , they are called central moments

μ(f)
pq =

∫ ∞

−∞

∫ ∞

−∞
(x− xc)p(y − yc)qf(x, y)dxdy . (4)

The first few affine moment invariants, the derivation of which can be found in
e.g. [5], [6], or [7], are as follows:

I1 = (μ20μ02 − μ2
11)/μ4

00
I2 = (−μ2

30μ
2
03 + 6μ30μ21μ12μ03 − 4μ30μ

3
12 − 4μ3

21μ03 + 3μ2
21μ

2
12)/μ10

00
I3 = (μ20μ21μ03 − μ20μ

2
12 − μ11μ30μ03 + μ11μ21μ12 + μ02μ30μ12 − μ02μ

2
21)/μ7

00
I4 = (−μ3

20μ
2
03 + 6μ2

20μ11μ12μ03 − 3μ2
20μ02μ

2
12 − 6μ20μ

2
11μ21μ03 − 6μ20μ

2
11μ

2
12

+12μ20μ11μ02μ21μ12 − 3μ20μ
2
02μ

2
21 + 2μ3

11μ30μ03 + 6μ3
11μ21μ12

−6μ2
11μ02μ30μ12 − 6μ2

11μ02μ
2
21 + 6μ11μ

2
02μ30μ21 − μ3

02μ
2
30)/μ11

00.

The index (f) can be omitted, if the invariants are computed from one channel
only. The theory of algebraic invariants (e.g. [8] among many others) offers using
simultaneous invariants, i.e. invariants from moments of more than one order.
They preserve their invariance even if we compute the moments of different or-
ders on different objects, the only constraint is the common affine transform of
the objects. We can choose two channels (let us label them a and b), take an
arbitrary simultaneous invariant, e.g. I3, and substitute second-order moments
computed on one channel and third-order moments computed on the other chan-
nel

I
(a,b)
C23 = (μ(a)

20 μ
(b)
21 μ

(b)
03 − μ

(a)
20 (μ(b)

12 )2 − μ
(a)
11 μ

(b)
30 μ

(b)
03 + μ

(a)
11 μ

(b)
21 μ

(b)
12 + μ

(a)
02 μ

(b)
30 μ

(b)
12−

−μ
(a)
02 (μ(b)

21 )2)/μ7
00,

where μ00 = μ
(a)
00 +μ

(b)
00 . The letter C in the index represents a common invariant

of more channels (or color invariant) and the numbers stand for orders of the
moments. We can also utilize algebraic invariants of two or more binary forms
with the same order. An example of such an invariant is of the second order

I
(a,b)
C2 = (μ(a)

20 μ
(b)
02 + μ

(b)
20 μ

(a)
02 − 2μ

(a)
11 μ

(b)
11 )/μ4

00.

If we use moments of one channel only (i.e. a = b), we obtain essentially I1.
Another such invariant is of the third order

I
(a,b)
C3 = (μ(a)

30 μ
(b)
03 − 3μ

(a)
21 μ

(b)
12 + 3μ

(b)
21 μ

(a)
12 − μ

(b)
30 μ

(a)
03 )/μ5

00.
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If we use moments of one channel only, it becomes zero. The third-order invariant
of degree two from one channel does not exist, while that from two channels does
exist. An example of three-channel fourth-order symmetric invariant is as follows

I
(a,b,c)
C4 = (μ(a)

40 μ
(b)
22 μ

(c)
04 + μ

(a)
40 μ

(c)
22 μ

(b)
04 + μ

(b)
40 μ

(a)
22 μ

(c)
04 + μ

(b)
40 μ

(c)
22 μ

(a)
04 +

+μ
(c)
40 μ

(a)
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(b)
04 + μ

(c)
40 μ

(b)
22 μ

(a)
04 − 2μ

(a)
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(b)
13 μ

(c)
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(b)
40 μ

(a)
13 μ

(c)
13 − 2μ

(c)
40 μ

(a)
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(b)
13−

−2μ
(a)
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(b)
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(c)
04 − 2μ

(a)
31 μ

(c)
31 μ

(b)
04 − 2μ

(b)
31 μ

(c)
31 μ

(a)
04 + 2μ

(a)
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(b)
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(c)
13 + 2μ

(a)
31 μ
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22 μ

(b)
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+2μ
(b)
31 μ

(a)
22 μ

(c)
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(b)
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(c)
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(a)
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(c)
31 μ

(a)
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(b)
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(c)
31 μ

(b)
22 μ

(a)
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−6μ
(a)
22 μ

(b)
22 μ

(c)
22 )/μ9

00.

In this case μ00 = μ
(a)
00 + μ

(b)
00 + μ

(c)
00 . The term ”symmetric” here means that the

formula is equivalent for each channel, if we permute the channels, we obtain
the same formula.

We need some common μ00 and centroid of all channels, the simplest unifica-
tion of that from individual channels is

m00 = m
(a)
00 + m

(b)
00 + . . . ,

xc = (m(a)
10 + m

(b)
10 + . . .)/m00, yc = (m(a)

01 + m
(b)
01 + . . .)/m00.

(5)

The central moments are centered with respect to the common centroid

μ(a)
pq =

∞∫
−∞

∞∫
−∞

(x− xc)p(y − yc)qa(x, y)dxdy p, q = 0, 1, 2, . . . . (6)

Now, channel centroids x
(k)
c = m

(k)
10 /m

(k)
00 , y

(k)
c = m

(k)
01 /m

(k)
00 , k=a,b,. . . can differ

from the common centroid xc, yc. First-order moments need not be zero and we
can use them for the construction of additional invariants, e.g.

I
(a,b)
C1 = (μ(a)

10 μ
(b)
01 − μ

(b)
10 μ

(a)
01 )/μ3

00.

The value is zero, if computed from two channels only, m00, xc and yc (5) must
include a certain third channel for a non-zero result. Another example of a
simultaneous invariant of first and second orders

I
(a,b)
C12 = (μ(a)

20 (μ(b)
01 )2 + μ

(a)
02 (μ(b)

10 )2 − 2μ
(a)
11 μ

(b)
10 μ

(b)
01 )/μ5

00.

Even zero-order two-channel affine invariant does exist:

I
(a,b)
C0 = μ

(a)
00 /μ

(b)
00 .

The rule concerning the number of invariants goes through the wringer, indices
0,0 really satisfy five constraints at the same time - all except scaling. If we
compute affine moment invariants from a color photograph, we can use 12 ad-
ditional invariants computed from more than one channel. Generally, if we have
a multi-channel image with more than three channels, we can use 6 additional
invariants per channel.
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3 Numerical Experiment

The goal of this experiment is to show properties of the new moment invariants
in pattern recognition. We have photographed a series of cards used in a game
called mastercards (also pexeso), where the objective is to find the same pairs of
cards turned face-down. Cards from each of the ten pairs are shown on Fig. 1.

Fig. 1. The mastercards. First row from left: Girl, Old scratch, Tyre-ride, Room-bell
and Fireplace, second row: Winter cottage, Spring cottage, Summer cottage, Bell and
Star.

Each card was captured eight times, rotated by approximately 45◦ between
consecutive snaps. An example of the rotation of a pair of cards is shown on
Fig. 2. Any small deviation from the perpendicular direction during capturing
carried a small projective distortion that can be approximated by the affine
transform. The cards were snapped on a dark background and segmented by
region growing while small objects (less than 10000 pixels) were removed. The
first snap of each card was used as a representative of its class and the fol-
lowing seven snaps were recognized by the minimum-distance classifier, so the
theoretical maximum number of errors is 140.

Our feature set includes I1, I2, I3, I4 and I
(a,a)
C12 from each channel, I

(R,G)
C0 ,

I
(B,G)
C0 , I

(R,B)
C1 , I

(R,B)
C12 , I

(R,G)
C2 and I

(B,G)
C2 , i.e. 21 invariants. The complete set

should include additional 3 invariants, e.g. I
(R,B)
C23 , I

(R,G)
C3 and I

(B,G)
C3 , we omitted

them because of the comparison with the same number of invariants from the
other set. The moments are always centered to the common center of all 3 chan-
nels. The invariants are normalized to magnitude by the following procedure.
The moments are first normalized to scaling

μ̃pq =
μpq

μ
p+q
2 +1

00

, (7)
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Fig. 2. The card ”Summer cottage” with all rotations. The third and fourth rows
contain the other card from the pair.

then to the magnitude

μ̂pq = π
p+q
2

(
p + q

2
+ 1

)
μ̃pq , (8)

and then the invariants are computed and normalized to the degree

Î = sign(I)|I| 1r , (9)

where r is the degree of the invariant, i.e. the number of moments in one term.
The minimum distance classifier was used. The cards were classified correctly,
without an error. The classification of a card as the other card from the pair was
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not considered an error. Nevertheless, we can see the feature space of the zeroth-
order invariants on Fig. 3 and some clusters are divided into two subclusters, i.e.
the cards from that pair were distinct, while other pairs create compact clusters.
Together 102 (73%) cards were assigned to the correct card from the pair, while
38 (27%) cards were assigned to the other card from the pair, but this datum
depends not only on the quality of the features, but also on the actual differences
of both cards.
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Fig. 3. The mastercards. Legend: – Girl, – Old scratch, – Tyre-ride, – Room-
bell and – Fireplace, – Winter cottage, – Spring cottage, – Summer cottage,

– Bell and – Star. A card from each pair is expressed by the black symbol while
the other card is expressed by the magenta (gray) symbol.

Next, we carried out the experiment with one-channel invariants I1, I2, I3
and I4 only, i.e. 12 features together, centered to the centroid of each chan-
nel separately. The cards were classified with 3 errors (2.1%), which means
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the new invariants bring better discriminability and consequently improve the
recognition.

For comparison, the same experiment was repeated with the invariants from
[2], labeled ”GPD invariants” in [4]. The number of invariants was the same as
in the first experiment, i.e. 21, they were normalized by the standard deviation
through the whole set and provided classification of the objects with 6 errors
(4.3%). This can still be considered a good result, but obviously, new invariants
can improve the recognition, when the illumination changes are small.

4 Conclusion

A new type of affine moment invariants for multi-channel images was proposed
primarily for color images. They yield better results than the current invariants
combining affine invariance with invariance to illumination changes. Neverthe-
less, the new invariants can be normalized to simple contrast changes as well.

The new invariants have a low order and therefore high robustness to noise,
and include even zeroth-order invariants, which does not exist in the case of
one-channel invariants.
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Abstract. In this paper we propose the application of the generalized
median graph in a graph-based k -means clustering algorithm. In the
graph-based k -means algorithm, the centers of the clusters have been
traditionally represented using the set median graph. We propose an
approximate method for the generalized median graph computation that
allows to use it to represent the centers of the clusters. Experiments on
three databases show that using the generalized median graph as the
clusters representative yields better results than the set median graph.

1 Introduction

Clustering with graphs is a well studied topic in the literature, and various
approaches have been proposed up to now. The classical paradigm in those
approaches is to treat the entire clustering problem as a graph, that is, each
element to be clustered is represented as a node and the distance between two
elements is modeled by a certain weight on the edge linking the nodes [1]. Some
other recent approaches propose to perform clustering directly on graph-based
data. For instance in [2], the graph edit distance and the weighted mean of
a pair of graphs were used to cluster graph-based data under an extension of
self-organizing maps (SOMs). In [3], the authors investigated the clustering of
attributed graphs by means of Function-Described Graphs (FDGs) to obtain
representatives of clusters. Trees have also been used for clustering purposes.
For instance, in [4] the clustering of shock trees using the tree edit distance was
introduced. Finally, the extension of the k -means clustering algorithm to graph
based representations was introduced in [5].
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In this later approach the set median graph [6] has been used to represent
the center of each cluster. Nevertheless, the concept of the generalized median
graph [6] seems to be more adequate to represent the data of each cluster. Given
a set of graphs, the generalized median graph [6] is defined as the graph that
has the minimum sum of distances to all graphs in the set. It can be seen as the
representative of the set. Thus it has a large number of potential applications
in many classical algorithms for learning, clustering and classification, usually
executed in the vector domain. However, its computation is exponential both in
the number of input graphs and their size [7]. A number of algorithms for the
generalized median graph computation have been reported in the past [6,8,9],
but in general they suffer from either a large complexity or are restricted to
special types of graphs.

In this paper we propose, for the first time, the use of the generalized median
graph as the representative of a cluster in a graph-based version of the k -means
algorithm. To deal with the high time and space complexity of the median graph
computation, a new approximate method based on graph embedding in vector
spaces is also proposed. First, we map each graph into a vector space using
an approach similar to [10]. The median of the set of vectors obtained with this
mapping can be easily computed in the vector space. Then, using the two closest
points in the vector space and the weighted mean of a pair of graphs [11] we
obtain an approximation of the median graph as the final result.

The experiments reported in this paper focus on running the k -means algo-
rithm using the set median and the generalized median as the cluster repre-
sentatives and comparing the two approaches to each other. To this end, three
different databases (two of them containing real-world data) have been used. The
results are evaluated through two standard clustering performance measures (the
Rand index and the Dunn index). The results show that the generalized median
graph yields better results than the set median graph when it is taken as the
representative of a cluster. Furthermore, our procedure potentially allows us to
transfer any machine learning algorithm that uses a median from the vector to
the graph domain.

The rest of this paper is organized as follows. In the next section we introduce
the basic concepts used in the paper. Then in Section 3 the proposed method for
the median computation is described. Section 4 reports a number of experiments
and present results achieved with our method. Finally, in Section 5 we draw some
conclusions.

2 Background

2.1 The Graph-Based k-Means Clustering Algorithm

The k -means clustering algorithm is one of the most simple and straightforward
methods for clustering data [12]. The usual way is to represent the data items
as a collection of n numeric values usually arranged into a vector form in the
space Rn. Then, the Euclidean distance in this space and the centroid of a set
of vectors are used to compute the mean of the data in the cluster.
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A graph-based version of the classic k -means clustering algorithm has been
presented in [5]. The main differences consist in the distance and the centroid
computation. In the former, the graph edit distance [13] is used instead of the
Euclidean distance. In the latter, in order to obtain a representative of each clus-
ter, the set median graph (see definition below) is used instead of the centroid.

2.2 Median Graph

The median graph has been proposed as a useful tool to compute a representative
of a set of graphs [6]. Let U be the set of graphs that can be constructed using a
given set of labels L. Given S = {g1, g2, ..., gn} ⊆ U , we can distiguish between
the set median graph ĝ, and the generalized median graph ḡ of S:

ĝ = arg min
g∈S

∑
gi∈S

d(g, gi), ḡ = arg min
g∈U

∑
gi∈S

d(g, gi)

where d denotes a distance or a dissimilarity measure between graphs, in our
case the graph edit distance [13,14].

The set median graph ĝ is a graph g belonging to the training set S that
suitably represents it. However, if we extend the search space to the whole set
U , it is natural to think that a better representative (the generalized median
graph) can be obtained.

The computation of the generalized median graph is a higly complex task, as
any graph in U is a potential candidate. This makes its computation exponential
in both the number and size of graphs [7]. The existing exact algorithms can only
be applied to small sets of graphs with a very small number of nodes. Approx-
imate algorithms are therefore needed [6,9]. Thus, graph embedding techniques
have been recently used to solve graph matching problems more efficiently.

2.3 Graph Embedding

Graph embedding [15] aims to convert graphs into another structure, for ex-
ample, real vectors, and then operate in the associated space to make easier
some typical graph-based tasks, such as matching and clustering. A first group
of embedding techniques are based on spectral graph theory. For instance, a rel-
atively early approach based on the adjacency matrix of a graph is proposed in
[16]. Another similar approach has been presented in [17], where the authors use
the coefficients of some symmetric polynomials constructed from the spectral
features of the Laplacian matrix, to convert the graphs into a vectorial form.
Finally, in a recent approach [18], the idea is to embed the nodes of a graph
into a metric space and view the graph edge set as geodesics between pairs of
points on a Riemannian manifold. In this work we will use another class of graph
embedding procedures based on the selection of some prototypes and graph edit
distance computation. This approach, which we explain in more detail in the
next section, was first presented in [10], and it is based on the work proposed in
[19]. The basic intuition is that the description of the regularities in observations
of classes and objects is the basis to perform pattern classification. Thus, based
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on the selection of a number of prototypes, each object is embedded into a vector
space by taking its distance to all these prototypes.

3 Median Graph via Embedding

In this section we propose a novel approach for the approximate computation
of the median graph based on graph embedding in a vector space. A similar
approach has been presented in [20]. Nevetheless in the present procedure, only
two graphs (instead of three as in [20]) are used to recover the median graph,
which simplifies this task. This new procedure consists of three steps.

In a first step, graphs are embedded into a vector space using a variation of the
novel approach proposed in [10]. In that work, a set T of prototypes is used to
embed each graph in a vector space. In our case, the set of prototypes is exactly
the same set S = {g1, g2, ..., gn} of training graphs that are used to compute the
median graph. We therefore compute the graph edit distance between every pair
of graphs in the set S. Since computing the graph edit distance is a NP-complete
problem, in this work we have used the suboptimal methods presented in [21,22].
The resulting distances are arranged in a distance matrix. Each row (column)
of the matrix can be seen as an n-dimensional vector. Since each row (column)
of the distance matrix is assigned to one graph, such an n-dimensional vector is
the vectorial representation of the corresponding graph.

Once all the graphs have been embedded in the vector space, the median
vector is computed. To this end we use the concept of Euclidean Median. Given
a set X , the Euclidean Median is a point y ∈ Rn that minimizes the sum of
the Euclidean distances to all the points in the set. The Euclidean median has
been chosen as the representative in the vector domain for two reasons. The first
reason is that the median of a set of objects is one of the most promising ways
to obtain the representative of such a set. The second is that, since the median
graph is defined in a way very close to the median vector, we expect the median
vector to represent accurately the vectorial representation of the median graph,
and then, from the median vector to obtain a good approximation of the median
graph. In this work we have used the most common approximate algorithm for
the computation of the Euclidean median, that is, the Weiszfeld’s algorithm [23].

Finally, in order to obtain the median graph, the last step is to transform the
Euclidean median into a graph. Such a graph will be considered as an approx-
imation of the median graph of the set S. To this end we will use a procedure
based on the weighted mean of a pair of graphs [11].

The weighed mean of two graphs g and g′ is a graph g′′ such that d(g, g′′) = a,
d(g′′, g′) = b and d(g, g′) = a + b for any two constants a and b with 0 ≤ a, b ≤
d(g, g′). That is, g′′ is a graph in between the graphs g and g′ along the edit
path between them. Figure 1 illustrates this idea.

To transform the median vector obtained in step 2 into a graph, we propose a
strategy that uses two points in the vector space. The idea is the following (see
Figure 2). Once the median vector vm is computed, we choose its two closest
points (v1 and v2 in Figure 2). Then, we compute the median vector of these two
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g g′g′′

a b

Fig. 1. Example of the weighted mean of a pair of graphs

v1, g1

v2, g2
v′m

vm

Fig. 2. Illustration of the two-point based procedure

points obtaining v′m. This point v′m is used to obtain the approximate median
graph. To this end, we first compute the distance of v1 and v2 to v′m, and
then, with these distances we apply the weighted mean of a pair of graphs,
between g1 and g2 (which correspond to v1 and v2 respectively), to obtain g′m,
the approximate median graph.

4 Application to Graph-Based k-Means Clustering

In this section we propose to use the approximate method for the median graph
computation to obtain the representatives of the clusters in a graph-based k -
means algorithm.

4.1 Experimental Setup

To perform the clustering experiments, we used the Molecule, the Webpage
and the GREC datasets from [24]. For each dataset, the experiments consisted
in computing the centers of the clusters using the set median (SM) and the
generalized median (GM) with the method introduced in Section 3. The num-
ber k of clusters were set according to the number of classes in the dataset.
Table 1 summarizes some basic parameters of each dataset. In order to evalu-
ate the obtained results we performed 10 repetitions of each experiment. The
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Table 1. Number of classes and number of elements per class for each database

Dataset #Classes Elements/Class
Molecules 2 100
Webpages 6 30
GREC 32 20

clustering performance was evaluated using two standard clustering performance
measures, namely the Rand index and the Dunn index.

The Rand index R [25] measures how closely the clusters created by the
clustering algorithm match the ground truth. It produces measures with values
in the interval [0, 1], with 1 meaning a perfect match between the result of the
clustering algorithm and the ground truth.

The Dunn index D [26] is a measure of the compactness and separation of the
clusters. It is not an accuracy measure like the Rand Index. It is rather based on
the assumption that in a ”perfect” clustering, items in the same cluster should
be similar (i.e. should have a small distance) and items in different clusters
should be dissimilar (i.e. should have a large distance). Higher values of the
Dunn Index indicate a better clustering. Unlike the Rand Index, the Dunn Index
is not bounded in the interval [0, 1] but in the interval [0,∞).

4.2 Results

The results for this experiment are summarized in Tables 2 and 3. In each table
the minimum, mean and maximum values for the Rand Index (Table 2) and
the Dunn Index (Table 3) for each dataset are shown. In both tables, the best
results are marked in bold face.

Results based on the Rand Index show that in almost all cases the GM method
obtains better results than the set median graph. More concretely, seven out of
the nine best results in Table 2 correspond to the GM method. Since the Rand
Index is a measure of how similar the clusters are to the ground truth, these over-
all results demonstrate the idea that the median graph is a good representative
of a given set, better than the set median graph.

Results based on the Dunn Index are shown in Table 3. Differently from the
Rand Index, which is bound in between 0 and 1, the Dunn Index is not bounded.
Thus, for the Rand Index it is relatively easy to interpret the value, because 0

Table 2. Minimum, average and maximum values of the Rand index for different
datasets

Minimum Average Maximum
SM GM SM GM SM GM

Molecule 0.5072 0.5545 0.5620 0.5952 0.6205 0.6860
Webpages 0.6841 0.8332 0.8083 0.8773 0.8558 0.9133
GREC 0.9410 0.9340 0.9506 0.9513 0.9602 0.9566
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Table 3. Minimum, average and maximum values of the Dunn index for different
datasets

Minimum Average Maximum
SM GM SM GM SM GM GT

Molecule 0.0113 0.0272 0.034 0.0288 0.0909 0.0431 0.0182
Webpages 0.2039 0.1028 0.2448 0.2027 0.6046 0.5784 0.1835
GREC 0.0411 0.0423 0.0503 0.0507 0.0651 0.0569 0.0619

means a completely uncorrelated result with respect to the groundtruth and 1
means a perfect match between the result and the groundtruth independently
of the dataset used. However, the same reasoning is not possible for the Dunn
Index. That is, we cannot say how good a result x for the Dunn Index is unless
the Dunn Index for the groundtruth is given. For this reason, we have also
computed the Dunn Index for the groundtruth (GT).

The results for each method are shown in Table 3. In this case the majority
of the best results correspond to the set median. At first glance, these results
could be interpreted in the sense that the set median reflects better the ideal
cluster. Actually, however, they show that the set median graph obtains a better
separation of the data into compact clusters. Yet, the results of the Dunn Index
for the groundtruth show very low values. That means that the original datasets
have low separability and compactness. In this sense, the GM method has more
similar results to the GT than the set median. That means that it is able to
better capture the original information of the clusters.

5 Conclusions

In this paper we have presented, for the first time, the use of the generalized
median graph to obtain the centers of the clusters in a graph-based k -means
algorithm using real-world data. To deal with the high computational require-
ments of the median graph computation, a new approximate method based on
graph embedding in vector spaces has also been presented.

We performed a series of clustering experiments using three different databases.
To evaluate the results, two standard clustering performancemeasures, namely the
Rand Index and theDunn Index have been used. Results in terms of theRand Index
show that with the median graph we obtain clusters closer to the groundtruth than
using the setmedian graph. In addition, results given by theDunn Index show that,
although the set median graph obtains higher scores, the median graph obtains
again results closer to the groundtruth.

With these results, we have shown that the median graph can be a better
representative of a set of graphs. Furthermore, this new approximate procedure
potentially allows the use of the median graph in other applications such as
classification using real data.
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Abstract. Measures of central tendency for graphs are important for
protoype construction, frequent substructure mining, and multiple align-
ment of protein structures. This contribution proposes subgradient-based
methods for determining a sample mean of graphs. We assess the perfor-
mance of the proposed algorithms in a comparative empirical study.

1 Introduction

Measures of central tendency (MCT) for structures like the sample mean of
graphs [5] or the generalized median graph [6] find their applications in central
clustering of structures in computer vision [3], multiple alignment of protein
structures [4], and frequent substructure mining [9]. A key problem is the expo-
nential complexity of determining a MCT for graphs. Thus to apply a MCT in a
practical setting, approximate algorithms are usually preferred. Almost all algo-
rithms reported in the literature have been devised for the generalized median
graph, where the underlying graph edit distance can be discontinuous [1].

In this contribution, we focus on the problem of sample mean of graphs. A
sample mean is a graph that minimizes the sum of squared distances (SSD) to the
sample graphs. The underlying distance measure is a pointwise minimizer of a set
of geometric distance function. This formulation of a sample mean amounts in a
MCT that summarizes a sample of graphs by recording the relative frequencies
of common vertices and edges within their structural context. Since the SSD is
locally Lipschitz [5] it admits the concept of generalized gradient from nonsmooth
analysis and provides access to efficient techniques from nonsmooth optimization
[8]. Using theoretical results from [5], we propose different subgradient algorithms
for approximating a sample mean of structures. The proposed algorithms are
variants of batch subgradient, incremental subgradient, and guide tree methods.
We perform a comparative empirical study to assess the performance of the
proposed algorithms.

2 The Sample Mean of Graphs

This section introduces the sample mean of graphs and provides some results
proved in [5]. To approach the structural version of the sample mean in a prin-
cipled way, we first introduce the concept of T -space.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 351–359, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Let E be a d-dimensional Euclidean vector space. An (attributed) graph is a
triple X = (V, E, α) consisting of a finite nonempty set V of vertices, a set E ⊆
V × V of edges, and an attribute function α : V × V → E, such that α(i, j) �= 0
for each edge and α(i, j) = 0 for each non-edge. Attributes α(i, i) of vertices
i may take any value from E. For simplifying the mathematical treatment, we
assume that all graphs are of order n, where n is chosen to be sufficiently large.
Graphs of order less than n can be extended to order n by including isolated
vertices with attribute zero.

A graph X is completely specified by its matrix representation X = (xij)
with elements xij = α(i, j) for all 1 ≤ i, j ≤ n. By concatenating the columns of
X, we obtain a vector representation x of X . Let X = En×n be the Euclidean
space of all (n × n)-matrices and let T denote a subset of the set Pn of all
(n × n)-permutation matrices. Two matrices X ∈ X and X′ ∈ X are said to
be equivalent, if there is a permutation matrix P ∈ T such that P TXP =
X′. The quotient set XT = X/T = {[X] : X ∈ X} is the T -Space over the
representation space X . A T -space is a relaxation of the set GT = G/T of all
abstract graphs [X], where X is a matrix representation of graph X . In the
remainder, we identify X with EN (N = n2) and consider vector- rather than
matrix representations of abstract graphs. By abuse of notation, we sometimes
identify X with [x] and write x ∈ X instead of x ∈ [x].

Next, we equip a T -space with a metric related to the Euclidean metric. Sup-
pose that d is an Euclidean metric on X induced by some inner product. Then the
distance function D(X, Y ) = min {d(x, y) : x ∈ X, y ∈ Y } is a metric with the
same geometric properties as d. A pair (x, y) ∈ X × Y of vector representations
is called optimal alignment if D(X, Y ) = d(x, y).

Using the metric D on XT , we can now define the concept of sample mean.
Suppose that DT = (X1, . . . , Xk) is a sample of k abstract graphs from GT ⊆ XT .
A sample mean of DT is any solution of the optimization problem

(P )
min F (X) = 1

2

∑k
i=1 D(X, Xi)2

s.t. X ∈ XT
.

The cost function F is the sum of squared distances (SSD) to the sample graphs.
Here, the problem is to find a solution from an uncountable infinite set XT . A
simpler problem is to restrict the set XT of feasible solutions to the finite sample
DT ⊆ XT . A set mean graph ofDT is defined by X = arg min {F (X) : X ∈ DT }.

We summarize the most important results from [5] for deriving subgradient-
based algorithms for solving problem (P ).

Theorem 1. Let DT = (X1, . . . , Xk) ⊆ GT be a sample of k abstract graphs.

1. Problem (P ) has a solution. The solutions are abstract graphs from GT .
2. The SSD function F is locally Lipschitz.
3. A vector representation m of a sample mean M ∈ XT of DT is of the form

m =
1
k

k∑
i=1

xi,
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where d(xi, m) = D(Xi, M) for all i ∈ {1, . . . , k}. We call (x1, . . . , xk) ∈
X1 × · · · ×Xk an optimal multiple alignment of DT .

4. Let (x1, . . . , xk) be an optimal multiple alignment of DT . Then

k∑
i=1

k∑
j=i+1

〈xi, xj〉 ≥
k∑

i=1

k∑
j=i+1

〈
x′

i, x
′
j

〉
for all vector representations x′

1 ∈ X1, . . . , x
′
k ∈ Xk.

The first statement ensures that problem (P ) can be solved and has feasible
solutions. Since the SSD satisfies the locally Lipschitz condition, we can apply
generalized gradient techniques from nonsmooth optimization for minimizing the
SSD [8]. The third statement shows that a vector representation of a structural
sample mean is the standard sample mean of certain vector representations of
the sample graphs. In addition, we see that problem (P ) is a discrete rather than
a continuous optimization problem, where a solution can be chosen from the fi-
nite set X1×· · ·×Xk = {(x1, . . . , xk) : xi ∈ Xi}. The latter property combined
with the fourth statement can be exploited for constructing search algorithms
or meta-heuristics like genetic algorithms. The fourth statement asks for maxi-
mizing the sum of pairwise similarities (SPS). The standard sample mean of a
vector representation maximizing the SPS is a vector representation of a struc-
tural sample mean. Apart from this, the fourth property provides a geometric
characterization stating that an optimal multiple alignment has minimal volume
within the subspace spanned by the vector representations. In the case that D
is derived from the maximum common subgraph problem, the fourth property
says that an optimal multiple alignment maximizes the sum of common edges of
the sample graphs. This in turn indicates that computation of the sample mean
has potential applications in frequent substructure mining.

3 Algorithms

This section proposes different algorithms for approximating a sample mean of
a sample DT = (X1, . . . , Xk) of k graphs .

Generic Subgradient Method. Suppose that we want to minimize a locally
Lipschitz function f on X . Then f admits a generalized gradient at each point.
The generalized gradient coincides with the gradient at differentiable points and
is a convex set of points, called subgradients, at non-differentiable points. The
basic idea of subgradient methods is to generalize the methods for smooth prob-
lems by replacing the gradient by an arbitrary subgradient. Algorithm 1 outlines
the basic procedure of a generic subgradient method.

At differentiable points, direction finding generates a descent direction d by
exploiting the fact that the direction opposite to the gradient of f is locally
the steepest descent direction. At non-differentiable points, direction finding
amounts in generating an arbitrary subgradient. The problem is that a sub-
gradient at a non-differentiable point is not necessarily a direction of descent.
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Algorithm 1. (Generic Subgradient Method)

01 set t := 0 and choose starting point xt ∈ X
02 repeat
03 Direction finding:
04 determine d ∈ X and η > 0 such that f(xt + ηd) < f(f(xt)
05 Line search:
06 find step size η∗ > 0 such that η∗ ≈ arg minη>0 f(xt + ηd)
07 Updating:
08 set xt+1 := xt + η∗d

09 set t := t + 1
10 until some termination criterion is satisfied

But according to Rademacher’s Theorem, the set of non-differentiable points is
a set of Lebesgue measure zero. Line search determines a step size η∗ > 0 with
which the current solution xt is moved along direction d in the updating step.
Subgradient methods use predetermined step sizes ηt,i, instead of some efficient
univariate smooth optimization method or polynomial interpolation as in gra-
dient descent methods. One reason for this is that a subgradient determined
in the direction finding step is not necessarily a direction of descent. Thus, the
viability of subgradient methods depend critically on the sequence of step sizes.
Updating moves the current solution xt to the next solution xt + η∗d. Since the
subgradient method is not a descent method, it is common to keep track of the
best point found so far, i.e., the one with smallest function value. For more de-
tails on subgradient methods and more advanced techniques to minimize locally
Lipschitz functions, we refer to [8].

Batch Subgradient Methods

BSG – Batch Subgradient Method. Minimizing the SSD can be achieved using
a batch subgradient algorithm. Successive estimates mt ∈ M t of the vector
representations of a sample mean are computed using the following formula

mt+1 = mt − ηt (mt − d
)

=
(
1− ηt)mt − ηt

k∑
i=1

xi

where ηt is the step size and (xi, m
t) are optimal alignments for all i ∈ {1, . . . , k}.

The direction graph represented by the vector d is a subgradient of F at M t.

BAM – Batch Arithmetic Mean. As a variant of the BSG algorithm, batch arith-
metic mean emulates the standard formulation of the sample mean

m =
1
k

k∑
i=1

xi,

where x1, . . . , xk are optimally aligned with some randomly chosen vector rep-
resentation xi. BAM terminates after one iteration through the sample. This pro-
cedure is justified by Theorem 1.3.
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BEM – Batch Expectation-Maximization. The batch expectation-maximization
method repeatedly applies the BAM algorithm until two consecutive solutions do
not differ by more than a prespecified threshold. The E-step aligns the vector
representations of the sample graphs against the vector representation of the
current sample mean as in the BAM method. The M-step readjusts the vector
representation of the current sample mean given the alignment of the sample
graphs in the E-Step.

Incremental Subgradient Methods

ISG – Incremental Subgradient Method. The elementary incremental subgradient
method randomly chooses a sample graph Xi from DT at each iteration and
updates the estimates mt ∈M t of the vector representations of a sample mean
according to the formula

mt+1 = mt − ηt
(
mt − xi

)
,

where ηt is the step size and (xi, m
t) is an optimal alignment.

IAM – Incremental Arithmetic Mean. As a special case of the ISG algorithm,
the incremental arithmetic mean method emulates the incremental calculation
of the standard sample mean. First the order of the sample graphs from DT is
randomly permuted. Then a sample mean is estimates according to the formula

m1 = x1

mk =
k − 1

k
mk−1 +

1
k

xk for k > 1

where
(
xi, m

i−1
)

is an optimal alignment for all i > 1. As BAM, this procedure
is justified by Theorem 1.3 and requires only one iteration through the sample.

IMJ – Incremental Median Joining. While IAM randomly chooses the next sample
graph for determining a sample mean, incremental median joining orders the
sample graphs with increasing distance to the set mean graph. To determine the
set median graph and the order with which the graphs are chosen, this procedure
requires all pairwise distances between the sample graphs.

Guide Tree Methods. Guide tree methods perform agglomerative clustering
on the sample graphs to construct a dendogram, called guide tree. The leaves
of the guide tree represent the individual graphs from DT . The inner nodes
represent a weighted mean of its child nodes such that the root node represents
a sample mean of DT . Starting with the leaves, a guide tree determines the order
of how two child nodes in the tree are merged to a weighted mean represented
by their parent node. As IMJ, guide trees require all pairwise distances between
the sample graphs. Algorithm 2 outlines a generic guide tree method.

We augment each node Nα of the guide tree by a weight α. Leaves have
weight 1. The weight of an inner node is the sum of the weights of its child
nodes. The root node has weight k. If we regard the nodes as representations
of clusters, then the weights represent the cardinality of the respective clusters.
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Algorithm 2. (Generic Guide Tree Method)

01 set N =
{
N1

1 , . . . .N1
k

}
, where N1

i = Xi

01 calculate pairwise distance matrix D = (dij) of N
01 repeat
06 Find pair (r, s) = arg mini,j dij with lowest value in D
07 remove Nα

r and Nβ
s from N

07 compute weighted mean Nγ
rs =

(
αNα

r ⊕ βNβ
s

)
/γ, where γ = α + β

07 recalculate distances of nodes from N to new node Nγ
rs

07 insert new node Nγ
rs into N

10 until |N | = 1

Guide tree methods differ in the way they recalculate the distance matrix. Here,
we consider two approaches, the neighbor joining and weighted centroid method.
GNJ – Neighbor Joining. The neighbor joining method is frequently used in
bioinformatics, for the construction of phylogenetic trees and for multiple align-
ment of protein structures. We therefore refer to [10] for a detailed description
of how the distances are recalculated.
GWC – Weighted Centroid Method. The weighted centroid method recalculates
the distances to the new node using the distance function D.

4 Experiments

To assess the performance and to investigate the behavior of the sample mean
algorithms described in Section 3, we conducted an empirical comparison on
random graphs, letter graphs, and chemical graphs. For computing approximate
subgradients we applied the graduated assignment (GA) algorithm. For datasets
consisting of small graphs, we also applied a depth first search (DF) algorithm
that guarantees to return an exact subgradient.

Data

Random Graphs. The first data set consists of randomly generated graphs. We
sampled k graphs by distorting a given initial graph according to the following
scheme: First, we randomly generated an initial graph M0 with 6 vertices and
edge density 0.5. Next, we assigned a feature vector to each vertex and edge of M0
drawn from a uniform distribution over [0, 1]d (d = 3). Given M0, we randomly
generated k distorted graphs as follows: Each vertex and edge was deleted with
20% probability. A new vertex was inserted with 10% probability and randomly
connected to other vertices with 50% probability. Uniform noise from [0, 1]d

with standard deviation σ ∈ [0, 1] was imposed to all feature vectors. Finally,
the vertices of the distorted graphs were randomly permuted. We generated
500 samples each consisting of k = 10 graphs. For each sample the noise level
σ ∈ [0, 1] was randomly prespecified.
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Table 1. Average SSD μ and standard deviations σ

BSG BAM BEM ISG IAM IMJ GNJ GWC

Random Graphs set mean = 42.97 (±7.5)

DF μ 30.0 31.5 31.4 29.6 29.3 29.1 29.7 29.1
σ ±5.5 ±6.0 ±5.9 ±5.3 ±5.2 ±5.1 ±5.3 ±5.1

GA μ 33.1 34.4 34.5 34.5 33.8 32.2 33.2 31.9
σ ±6.7 ±7.3 ±7.0 ±6.6 ±6.0 ±6.8 ±6.8 ±5.9

Letter Graphs (A, medium) set mean = 60.5 (±16.6)

DF μ 45.1 46.0 45.2 42.3 42.4 42.2 43.2 42.5
σ ±11.5 ±11.7 ±11.5 ±10.1 ±10.3 ±10.1 ±10.3 ±10.1

GA μ 44.5 46.7 44.6 43.9 44.2 44.0 46.0 44.1
σ ±11.6 ±12.8 ±11.6 ±11.1 1±1.3 ±11.3 ±12.4 ±10.7

Chemical Graphs set mean = 338.0 (±115.0)

GA μ 286.0 289.3 288.6 262.2 269.2 267.6 282.7 276.6
σ ±112.9 ±114.0 ±114.3 ±113.6 ±113.7 ±115.2 ±116.2 ±113.6

Letter Graphs. The letter graphs were taken from the IAM Graph Database
Repository.1 The graphs represent distorted letter drawings from the Roman
alphabet that consist of straight lines only. Lines of a letter are represented by
edges and ending points of lines by vertices. Each vertex is labeled with a two-
dimensional vector giving the position of its end point relative to a reference
coordinate system. Edges are labeled with weight 1. We considered the 150
letter graphs representing the capital letter A at a medium distortion level. We
generated 100 samples each consisting or k = 10 letter graphs drawn from a
uniform distribution over the dataset of 150 graph letters representing letter A
at a medium distortion level.

Chemical Graphs. The chemical compound database was taken from the URL2.
The dataset contains 340 chemical compounds, 66 atom types, and 4 types of
bonds. On average a chemical compound consists of 27 vertices and 28 edges.
Atoms are represented by vertices and bonds between atoms by edges. As at-
tributes for atom types and type of bonds, we used a 1-to-k binary encoding,
where k = 66 for encoding atom types and k = 4 for encoding types of bonds.
We generated 100 samples each consisting of k = 10 chemical graphs drawn from
a uniform distribution over the dataset of 340 chemical graphs.

Results. Table 1 shows the average SSD obtained by the different sample mean
algorithms. Average SSD of the set mean graphs serve as reference values. Table
2 presents the average number of graph matching problems solved by each algo-
rithm in order to approximate a sample mean. The approximated sample means
1 URL = http://www.iam.unibe.ch/fki/databases/iam-graph-database
2 http://www.xifengyan.net/software/gSpan.htm
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Table 2. Average time μ and standard deviations σ. Time is measured in number of
graph matching problems solved to obtain an approximate solution.

BSG BAM BEM ISG IAM IMJ GNJ GWC

Random Graphs

DF μ 48.7 9.0 36.6 68.4 9.0 54.0 54.0 90.0
σ ±28.5 ±0.0 ±6.5 ±18.9 ±0.0 ±0.0 ±0.0 ±0.0

GA μ 61.3 9.0 40.9 71.8 9.0 54.0 54.0 90.0
σ ±24.7 ±0.0 ±6.0 ±19.2 ±0.0 ±0.0 ±0.0 ±0.0

Letter Graphs (A, medium)

DF μ 34.7 9.0 30.6 112.5 9.0 54.0 54.0 90.0
σ ±20.8 ±0.0 ±10.4 ±42.7 ±0.0 ±0.0 ±0.0 ±0.0

GA μ 36.8 9.0 31.1 161.7 9.0 54.0 54.0 90.0
σ ±23.2 ±0.0 ±9.5 ±65.3 ±0.0 ±0.0 ±0.0 ±0.0

Chemical Graphs

GA μ 44.3 9.0 40.9 64.5 9.0 54.0 54.0 90.0
σ ±15.6 ±0.0 ±3.2 ±21.7 ±0.0 ±0.0 ±0.0 ±0.0

have lower average SSD than the corresponding set mean graphs indicating that
all subgradient methods yield reasonable SSD solutions. By Theorem 1.4, the
subgradient-based algorithms yield multiple alignment of chemical graphs with
larger sum of common edges than a multiple alignment against the set mean
graph. This result indicates that the sample mean is a potential candidate for
frequent substructure mining. In almost all cases sample mean algorithms em-
ploying depth first (DF) return better approximations than the same algorithms
using an approximate graph matching procedure. On average, incremental meth-
ods perform best and batch methods worse. The reason is that batch methods
align graphs independently against the current estimate of a sample mean. BSG
and ISG suffer from slow convergence. Merging graphs in the order of their sim-
ilarities turned out to be a computationally inefficient heuristic without gain-
ing improved solutions. Incremental arithmetic mean (IAM) best trades solution
quality against computation time.

5 Conclusion

We presented different versions of subgradient-based methods for approximating
a sample mean of graphs. Incremental subgradient methods performed best with
respect to solution quality while batch method performed worse. It turned out
that incremental arithmetic mean is an efficient method that best trades solution
quality against computation time and therefore is a good candidate for potential
applications such as central clustering or frequent subgraph mining.
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Abstract. In this paper, we introduce a prototype-based clustering al-
gorithm dealing with graphs. We propose a hypergraph-based model for
graph data sets by allowing clusters overlapping. More precisely, in this
representation one graph can be assigned to more than one cluster. Us-
ing the concept of the graph median and a given threshold, the pro-
posed algorithm detects automatically the number of classes in the graph
database. We consider clusters as hyperedges in our hypergraph model
and we define a retrieval technique indexing the database with hyperedge
centroids. This model is interesting to travel the data set and efficient to
cluster and retrieve graphs.

1 Introduction

Graphs give a universal and flexible framework to describe the structure and
the relationship between objects. They are useful in many different application
domains like pattern recognition, computer vision and image analysis. For exam-
ple in the context of content-based image retrieval, the user formulate a visual
query. The user’s target is seldom represented by a whole image which should
not be processed like a one unit, because it is generally composed by a set of
visual regions carrying out some semantics. Then, the graphs, by their natures,
propose an adjusted solution for this task. Moreover, to reduce the number of
graphs to be computed for matching or indexing tasks it is generally required
to cluster objects. By this way, clustering similar images becomes equivalent to
look for those graph representations that are similar to each other in a database.
In this context, it is natural to apply clustering techniques to graphs. Clustering
large set of graphs is still widely unexplored and is one of the most challenging
problems in structural pattern recognition. In the recent years, some investiga-
tions on graph clustering and the organization of graph databases have been
revitalized in [6,10,13,22]. Graph clustering problems rely in the organization of
large structural databases, in discovering shape categories and view structure of
objects, or in the construction of nearest neighbor classifiers. In this perspective,
we propose a hypergraph model to cluster a set of graphs. A hypergraph [3]
H=(ϑ, ξ) consists of a set of vertices ϑ and a set of hyperedges ξ; each hyper-
edge is a subset of vertices. We can note that the difference between an edge in
a graph and a hyperedge in a hypergraph is that the former is always a subset of

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 360–368, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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one or two vertices, and in the latter, the subset of vertices can be of arbitrary
cardinality. In our model, we represent each graph by a vertex and each cluster
by a hyperedge. The degree of a vertex is the number of hyperedges it belongs
to, and the degree of a hyperedge is the number of vertices it contains. We de-
note the maximum degree of a vertex v by Δϑ(v) and the maximum degree of a
hyperedge h by Δξ(h). Recently, the hypergraph has been used, in the pattern
recognition domain, for object representation [15], similarity measures [5], and
object clustering [1]. In this paper we establish a hypergraph-based model for
a graph database, we process as follows: firstly, a clustering technique based on
the prototype selection is proposed to cluster the graph set into k independent
clusters (k is detected automatically using a given threshold). Secondly, these
clusters will be overlapped to define the final hypergraph structure. The idea of
clusters overlapping is in the same vein as the works in [4,24] but the represen-
tation is different here. In fact from a set of experiments, we have remarked that
the hypergraph structure provides a framework to retrieve and to browse graphs.
This also leads to high clustering rate and improves the retrieval performance.

2 The Proposed Hypergraph Model

Since, we have focus our work in that one graph can belongs to several clus-
ters, we consider that the proposed hypergraph is connected (1-edge-connected).
Therefore, each graph Gi in the proposed structure is assigned to Δϑ(Gi) clusters
and each cluster Cj contains Δξ(Cj) graphs. However, a key problem in struc-
turing a set of graphs into a hypergraph is the determination of the number of
clusters (hyperedges) and the determination of related graphs (similar graphs)
that can be grouped as hyperedges. In this perspective, we consider that the
number of hyperedges is equal to the size of a representative set, defined on a
selection of the most representative graphs in the whole set. We denote each
selected graph as a hyperedge centroid. The selection of these graphs is similar
to the problem of Prototype Selection [2,17,23]. K. Riesen and al. [17] enumer-
ate some techniques to select prototypes from a training set. These techniques
require a specification of the number of prototypes and there are no premises
for determining automatically this number. Therefore, if we are in a unsuper-
vised context where no information about the number of representative graphs is
available, this number will be determined empirically. In this perspective, Spath
[23] proposes an algorithm using leaders and distance based threshold where the
number of selected prototype is inversely proportional to the selected threshold.
However, the Leader algorithm [23] is sensitive to the selection of the initial
prototype which is selected randomly among the input data. To overcome this
problem, we introduce a representative graphs (hyperedge centroids) selection
based on a peeling-off strategy. This method can be viewed as an improvement
of the Leader algorithm and the K -Centers. After the selection of the hyperedge
centroids, we define the hypergraph structure by assigning each graph to the
corresponding hyperedges. Then the browsing and the retrieval of the graphs
will be transposed into the hypergraph structure.
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Hyperedge centroids selection. As stated above, the hyperedge centroids se-
lection is similar to the Prototype Selection problem. Therefore, we aim to select
a set of graphs which capture the most significant aspects of a set of graphs. We
introduce an improvement for the Leader algorithm [23]. The proposed algorithm
proceeds as follows:

1. Select the median graph [11] Gm from the unassigned graphs in the whole
set of graphs S. Then the furthest graph Gpk

(which has not been previ-
ously assigned) to Gm, becomes the centroids of the cluster Ck. In the first
iteration, the graph Gpk

is the initial selected prototype.
2. Distances of every unassigned graph gi ∈ S�{Gpk

} are compared with that
of the last selected prototype Gpk

. If the distances d(gi, Gpk
) and d(gi, gj

∈Ck
) are less than a predefined threshold T, the graph gi is assigned to the

cluster Ck with the centroid Gpk
, and gi is tagged as assigned.

3. Recompute the median graph Gmk
of Ck, if Gmk

�= Gpk
, replace Gpk

by
Gmk

. If any replacements is done, go to the next step, otherwise all gj are
tagged as unassigned, ∀gj ∈ Ck, then return to step 2.

4. While S contains an unassigned graphs return to step 1, otherwise stop.

Given a threshold T, the algorithm clusters the set of graphs with an intra-
class inertia (Ii) less or equal to T. This property is performed on the step 2.
In addition, this algorithm ensures the selection of the prototypes which are
given by the centers of the resulted clusters. Futhermore, it guarantees a certain
separability between classes of one partition. By using an edit distance d, we can
formulate the between-class inertia (Ib) of a partition C composed of two classes
C1,C2 by the Ward [25] criterion:

Ib(C1, C2) =
η1 × η2

η1 + η2
d2

gc1,gc2
(1)

where gci is the centroid of the class Ci and ηi is the number of members of Ci.
The analysis of this formula shows that there is a strong dependence between the
interclass inertia and the centroid. However, we know that the distance between
two centroids is higher than the threshold T and Ii ≤ T. Moreover, by fixing
the initial selected prototype as the furthest graph to the median graph of the
graph set, multiple runs of the algorithm produce identical results. We denote
this clustering algorithm by D-hypergraph (disconnected hypergraph).

The hypergraph-based representation. Let S be the whole set of graphs and
P be the set of selected prototypes P (P⊂S ). Classical clustering techniques find
for each graph g∈ S�P its nearest neighbor pi ∈ P and add the graph to the
cluster Ci corresponding to the prototype pi. In fact, if a graph g presents a
similar distances to two prototypes pi and pj , g is added to the cluster with the
nearest prototype even though the difference between the two distances is very
minor. Moreover, the provided clusters are disjoint and can be exploited for a
retrieval task as used in [18,19,20,21], but it will be difficult to find an algorithm
for browsing the whole set of graphs through disjoint clusters.
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On the contrary, we propose a hypergraph-based model which allows the over-
lapping of clusters. In fact, henceforth the clusters will be viewed as hyperedges
of hypergraph and the graphs as the vertices. Firstly, for each selected proto-
type pi a hyperedge hi is defined with a centroid pi. Secondly, every hyperedge
is defined as follows : each graph g∈ S�P is added to the hyperedges with the
nearest prototypes to g (their distances to g is less than the threshold T used in
the previous algorithm). We denote this procedure by C-hypergraph (connected
hypergraph).

Figure 1(a) illustrates our motivation. In the leftmost part of the figure
di=d(pi, g1) and we suppose that d1 and d2 are less or equal than T, so the
graph g1 shares some informations with p1 and p2 (informations are illustrated
in colors). With the hypergraph model we will able to assign g1 to the both
hyperedges h1 and h2. The rightmost part of the figure 1(a) describes how two
hyperedges (clusters) can overlap with one graph in common. Here, Δϑ(g1)=2
and Δξ(h1)=Δξ(h2)=2.

(a) (b)

Fig. 1. Illustration of the hypergraph-based representation

Once all the hyperedges are defined from the graphs, we recompute, for each
hyperedge, the generalized median graph which will be the new hyperedge cen-
troids. The aim of this step is to update the hyperedge centroid after the hy-
pergraph construction step and to maintain it including as much information
as possible of the graphs in the corresponding hyperedge. We have chosen to
use the generalized median graph to define the centroid of a cluster (unlike the
Minimum Common Supergraph [6]) because it is less expensive in a viewpoint
of computational time.

Interrogation and Navigation of hypergraph-based model of a set of
graphs. Classically, interrogation of a set of graphs consists in searching the
most similar graphs to a given query. This retrieval task ranks the graphs in an
increasing distance order from the query. As remarked by a few works in the
literature [18,19,20,21], this method do not exploit sophistically the distances,
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and the authors propose a clustering-based retrieval technique to improve the
retrieval results. Here, we introduce a procedure which involves the hypergraph-
based model presented previously. The main idea is to find the most similar
hyperedge centroid to a given graph query. Then, we look for the most similar
graphs within the hyperedge which it centroid is the most similar to the query.
We can describe the retrieval procedure into the hypergraph model as follows:

1. For a query graph gq, compute the set of distances between gq and each
hyperedge centroid.

2. Get the nearest hyperedge centroid pi to gq.
3. Retrieve the most similar graphs gj to gq, where gj ∈ hi and hi is the

hyperedge with the centroid pi.

This hypergraph-based model can be exploited to travel through the hypergraph.
Once the previous retrieval procedure is performed, the user can browse the set
of graphs, through a graphical interface (see figure 1(b), where the clusters (hy-
peredges) are represented by overlapped ellipses), by performing a walk among
the hyperedges.

3 Experiments

The clustering evaluation. In this first part of the experiments, our contri-
bution is evaluated in a graph clustering context. Here, our contribution is used
within two algorithms. The first one is the prototype-based clustering with-
out connection of the hyperedges in the hypergraph (denoted D-Hypergraph
as disconnected hypergraph). The second one allows the overlapping of the hy-
peredges (denoted C-Hypergraph as connected hypergraph). We drawn a com-
parison within a K-means algorithm. To this aim we have used three image
databases, the first one is the well-known COIL database [14] which contains
different views of 3D objects. The images in COIL are converted into graphs by
feature points extraction using the Harris interest points [9] and Delaunay tri-
angulation. The second is the well-known GREC [16,7] database which consists
of graphs representing symbols from architectural and electronic drawings. Here
the ending points (ie corners, intersections and circles) are represented by nodes
which are connected by undirected edges and labeled as lines or arcs. Finally,
we have performed the clustering evaluation on an ornamental letters data set
which contains lettrine (graphical object) extracted from digitized ancient doc-
uments 1. Since one lettrine contains a lot of information (i.e. texture, decorated
background, letters), the graphs are extracted from a region-based segmentation
[8] of the lettrine. The nodes of the graph are represented by the regions and the
edges describe their adjacency relationships. The graph distance measure used
on the clustering is the graph matching measure based on the node signatures
[12]. The clustering results are evaluated by the Rand index, the Dunn index and

1 Provided by the CESR - University of Tours on the context of the ANR Navidomass
project http://l3iexp.univ-lr.fr/navidomass/

http://l3iexp.univ-lr.fr/navidomass/
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the Davies-Bouldin index. The Rand index measures how closely the clusters cre-
ated by the clustering algorithm match the ground truth. The Dunn index is a
measure of the compactness and separation of the clusters and unlike the Rand
index, the Dunn index is not normalized. The Davies-Bouldin index is a function
of intra-cluster compactness and inter-cluster separation. We note that a good
clustering provides a smaller Davies-Bouldin index and a higher Rand and Dunn
indexes. In this experiment the threshold T, used by our method, is defined as
the mean of distances between graphs in the same database. The number of
classes k used by the K-means is defined in accordance with the ground truth.

Table 1 shows the results of the three cluster validity indexes. From these
results, it is clear that our disconnected hypergraph produces clusters more com-
pact and well separated. We note that when the C-Hypergraph is performed the
Dunn index take the value 0, because some graphs share clusters and the mini-
mum between-class distance becomes 0. Moreover, in a viewpoint of similarity to
the ground truth, our model provides better results for the GREC and the Let-
trine database, and we can remark also that the Rand index of the C-Hypergraph
for the three databases are higher than the Rand index of the D-Hypergraph.
Therefore, the connected hypergraph fits better the ground truth and encourages
us to exploit the hypergraph-based structure for the graph retrieval problem.

Table 1. Clustering evaluation and comparison with K-means (Nc: the number of
detected clusters)

K-means D-Hypergraph C-Hypergraph

COIL Database k=100 T=18.66, Nc=276 T=18.66

Rand Index 0.75 0.74 0.75

Dunn Index 0.03 0.04 0.00
DB Index 0.98 0.88 1.25
GREC Database k=22 T=6.20, Nc=21 T=6.20

Rand Index 0.86 0.88 0.91

Dunn Index 0.01 0.04 0.00
DB Index 0.83 0.76 0.94
Lettrine Database k=4 T=53.20, Nc=4 T=53.20

Rand Index 0.64 0.68 0.69

Dunn Index 0.10 0.13 0.00
DB Index 0.81 0.61 0.92

Evaluation of the retrieval with the hypergraph-based model. In this
part of the experiments, we investigate the retrieval in the hypergraphs by per-
forming the algorithm detailed previously on the Ornamental letters database.
We provide a comparison with a classical retrieval task in which the graph query
is compared to all the graphs in the database and then the most similar (the
nearest ones) are retrieved. In the proposed approach, the hyperedges centroids
are the entries of the database. That is to say, firstly the query graph is com-
pared only to the hyperedge centroids. Then, the retrieval is performed among
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Fig. 2. Precision-Recall curves: comparison between classical retrieval and hypergraph-
based retrieval

the graphs which belong to the hyperedge with the nearest centroid to the query.
We used the receiver-operating curve (ROC) to measure retrieval performances.
The ROC curves are formed by Precision rate against Recall rate, and drawn
in the figure 2. By analyzing the two curves, we can remark that the results are
better when the retrieval is performed only in one hyperedge. Furthermore, the
hypergraph-based model is less time-consuming than the classic technique since
it does not compare the query with all graphs in the set but only with graphs
in an appropriate clusters.

4 Conclusion

In this paper we have investigated how the hypergraph structure can be used for
the purpose of graph database representation. We have proposed a prototype-
based method to cluster graphs and to select automatically the prototypes which
collect as much information as possible from the graph set without a predefined
number of clusters. The major task of this work is to allow the multi-assignment
of one graph, i.e. one graph can be assigned to more than one cluster. We have
also shown that our hypergraph-based model improve the retrieval and can be
used to navigate into a graph database.
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Abstract. In this paper we make a characteristic polynomial analysis on hyper-
graphs for the purpose of clustering. Our starting point is the Ihara zeta function
[8] which captures the cycle structure for hypergraphs. The Ihara zeta function
for a hypergraph can be expressed in a determinant form as the reciprocal of the
characteristic polynomial of the adjacency matrix for a transformed graph rep-
resentation. Our hypergraph characterization is based on the coefficients of the
characteristic polynomial, and can be used to construct feature vectors for hyper-
graphs. In the experimental evaluation, we demonstrate the effectiveness of the
proposed characterization for clustering hypergraphs.

1 Introduction

There has recently been an increasing interest in hypergraph-based methods for rep-
resenting and processing visual information extracted from images. The main reason
for this is that hypergraph representations allow nodes to be multiply connected by
edges, and can hence capture multiple relationships between features. To the best of
our knowledge, the first attempt for representing visual objects using hypergraphs dates
back to Wong et al.’s [9] framework for 3D object recognition. Here a 3D object model
based on a hypergraph representation is constructed, and this encodes the geometric
and shape information of polyhedrons as vertices and hyperedges. Object synthesis and
recognition tasks are performed by merging and partitioning the hyperedge and vertex
set. The method is realized by using set operations and the hypergraphs are not char-
acterized in a mathematically consistent way. Later Bretto et al. [2] have introduced a
hypergraph model for image representation, where they successfully solved the prob-
lems of image segmentation, noise reduction and edge detection. However, their method
also relies on a crude form of set manipulation. Recently Bunke et al. [3] have devel-
oped a hypergraph matching algorithm for object recognition, where consistency checks
are conducted on hyperedges. The computational paradigm underlying their method is
based on tree search operations. Hypergraphs have also been represented using matri-
ces. For instance, Zass et al. [10] have presented a matrix representation for regular
hypergraphs and used them for correspondence matching. However, the method has not
been investigated for irregular hypergraphs.

One common feature of existing hypergraph-based methods is that they exploit do-
main specific and goal directed representations, and do not lend themselves to gen-
eralization. The reason for this lies in the difficulty in formulating a hypergraph in a
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mathematically uniform way for computation. There has yet to be a widely accepted
and uniform way for representing and characterizing hypergraphs, and this remains an
open problem with exploiting hypergraphs for machine learning. Moreover, to be eas-
ily manipulated, hypergraphs must be represented in an mathematically consistent way,
using structures such as matrices or vectors.

Since Chung’s [4] definition of the Laplacian matrix for k-uniform hypergraghs,
there have been several attempts to develop matrix representations of hypergraphs [5][7]
[11]. These hypergraph representations have found widespread applications in categor-
ical data analysis. Recently, we have shown that matrix representation are also suitable
for image processing [6], and have proposed an improved hypergraph Laplacian based
on the developments of Zhou et al.’s method [11]. However, this method is based on
a relatively impoverished spectral characterization and overlooks much of the detail of
hypergraph-structure.

In this paper, we make a first attempt to characterize hypergraphs using character-
istic polynomials. Specifically, we use the Ihara coefficients, which are the polynomial
coefficients of the reciprocal Ihara zeta function for a hypergraph. The Ihara zeta func-
tion for a hypergraph has been detailed by Storm [8]. Based on this work, we establish
feature vectors using the Ihara coefficients. We apply our feature vectors to cluster-
ing hypergraphs extracted from images of different object views and demonstrate their
effectiveness in hypergraph characterization.

2 Hypergraph Laplacian Spectrum

A hypergraph is normally defined as a pair H(V, EH) where V is a set of elements,
called nodes or vertices, and E is a set of non-empty subsets of V called hyperedges.
The incidence matrix H of H(V, EH) is a |EH(H)| × |V (H)| matrix with the (i, j)th
entry 1 if the vertex vj ∈ V (H) is contained in the hyperedge ei ∈ EH and 0 otherwise.
For H(V, EH), one of the alternative definitions of the adjacency matrix and the corre-
sponding Laplacian matrix is AH = HHT −DH and LH = DH −AH = 2DH −HHT

respectively, where DH is the diagonal vertex degree matrix whose diagonal element
d(vi) is the summation of the ith row of H [6]. The eigenvalues of LH is referred
to as the hypergraph Laplacian spectrum and are straightforward characteristics from
H(V, EH). We will use this spectral characterization for experimental comparison in
Section 5.

3 Ihara Zeta Function for a Hypergraph

The definition of the Ihara zeta function for a hypergraph H(V, EH) is as follows [8]:

ζH(u) =
∏

p∈PH

(
1− u|p|

)−1
. (1)

Here PH is the set of the equivalence classes of prime cycles in the hypergraph
H(V, EH). A prime cycle in a hypergraph is a closed path with no backtracking, that
is, no hyperedge is traversed twice in the prime cycle.
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The Ihara zeta function for a hypergraph in the form of (1) is generally an infinite
product. However, one of its elegant features is that it can be collapsed down into a ra-
tional function, which renders it of practical utility. To recast the hypergraph Ihara zeta
function as a rational function, the graph representation of hypergraph is needed. There
are several ways in which a hypergraph can be transformed into a graph representation.
One of the most useful representations is the clique expansion, to which we turn our
attention in more detail in the following section. Agarwal et al. [1] has reviewed the al-
ternative graph representations of hypergraphs and detailed their relationships with each
other with a particular emphasis on machine learning. To obtain the rational expression
for the hypergraph Ihara zeta function, we make use of the bipartite graph representation
of hypergraphs. To establish the associated bipartite graph, we use a dual representation
in which each hyperedge is represented by a new vertex. The new vertex is incident
to every original vertex encompassed by the corresponding hyperedge. The new vertex
set and together with the original vertex set constitute the associated bipartite graph;
the new vertices corresponding to hyperedges in one partition and the original vertices
to the second partition. To provide an example, the bipartite graph associated with the
hypergraph in Fig. 1 is shown in Fig. 2.

The Ihara zeta function for the hypergraph H(V, EH) can be equivalently expressed
in a rational form as follow [8]:

ζH(u) = (1− u)χ(BG)det
(
I|V (H)|+|EH(H)| −

√
uABG + uQBG

)−1
(2)

where χ(BG) = |V | is the Euler Number which equals the difference between the car-
dinalities of vertex set and edge set of the associated bipartite graph, ABG its adjacency
matrix and QBG = DBG − I|V (H)|+|EH(H)|.

4 Perron-Frobenius Operator for Hypergraphs

From (1) it is clear that the Ihara zeta function for a hypergraph can be rewritten in the
form of the reciprocal of a polynomial. Although the Ihara zeta function can be eval-
uated efficiently using (2), the task of enumerating the coefficients of the polynomial
appearing in the denominator of the Ihara zeta function (2) is difficult, except by resort-
ing to software for symbolic calculation. To efficiently compute these coefficients, we
adopt the determinant expression of the Ihara zeta function for a hypergraph H(V, EH)
[8]:

ζH(u) = det(IH − uTH)−1
. (3)

Here TH is a square matrix which is referred to as the Perron-Frobenius operator of the
hypergraph H(V, EH). It is the adjacency matrix of the oriented line graph associated
with H(V, EH).

The establishment of the oriented line graph associated with H(V, EH) commences
by constructing an |ei|-clique by connecting each pair of vertices in the ei through an
edge for each hyperedge ei ∈ EH . The resulting graph is denoted by GH(V, EG). For
the example hypergraph in Fig. 1, the associated GH(V, EG) is shown in Fig. 3. In
this example, the oriented edges derived from the same hyperedge are colored the same
while from different hyperedges are colored differently.
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Fig. 1. Hypergraph Fig. 2. Bipartite Graph

Fig. 3. Clique Fig. 4. Di-clique Fig. 5. Oriented Line Graph

For the graph GH(V, EG), the associated symmetric digraph DGH(V, Ed) can
be obtained by replacing each edge of GH(V, EG) by an arc (oriented edge) pair in
which the two arcs are inverse to each other. For GH(V, EG) in Fig. 3, the associated
DGH(V, Ed) is shown in Fig. 4. Finally, we can establish the oriented line graph of
the hypergraph based on the symmetric digraph. The vertex set and edge set of the the
oriented line graph are defined as follows:{

Vol = Ed(DGH)
Eol = {(ed(u, v), ed(v, w)) ∈ Ed × Ed ; u ∪ w �⊂ EH}.

(4)

The oriented line graph of the hypergraph in Fig. 1 is shown in Fig. 5. Here what we
should note is that the oriented edges in the same clique of DGH can not establish
an oriented edge in the oriented line graph. For instance, in Fig. 4 the terminus of the
arc ed5 points to the origin of the arc ed6. However, there is no oriented edge between
vertices ed5 and ed6 in Fig. 5 because they are derived from the same hyperedge e1 in
Fig. 1. Therefore, this constraint prevents connections between any nodes with the same
color in Fig. 5.

To establish feature vectors from the hypergraph Ihara zeta function for the pur-
poses of characterizing hypergraphs in machine learning, it is natural to consider taking
function samples as the vector elements. Although the function values at most of the
sampling points will perform well in distinguishing hypergraphs, there is the possibility
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of sampling at poles giving rise to meaningless infinities. Hence, the feature vectors
consisting of function samples are potentially unstable representations of hypergraphs,
since the distribution of poles is unknown beforehand.

On the other hand, from (3) it is clear that the reciprocal of the hypergraph Ihara
zeta function is the characteristic polynomial of the Perron-Frobenius operator TH and
it can be deployed as:

ζ−1
H (u) = c0 + c1u + · · ·+ cM−1u

M−1 + cMuM (5)

where M is the dimensionality of the square matrix TH . Each coefficient can be com-
puted from the elementary symmetric polynomials of the eigenvalue set {λ̃1, λ̃2 ... λ̃n}
of TH as follows:

cr = (−1)r
∑

k1<k2< ... <kr

λ̃k1 λ̃k2 ... λ̃kr . (6)

The characteristic polynomial coefficients in (5) do not give rise to infinities. Further-
more, these coefficients highly relate to the hypergraph-structure since the Ihara zeta
function records the information about prime cycles in the hypergraphs. We refer to
the set of characteristic polynomial coefficients as Ihara coefficients. We use the Ihara
coefficients as the elements of the feature vector for a hypergraph and then apply them
to clustering hypergraphs.

5 Experimental Evaluation

We apply the proposed feature vectors to two hypergraph datasets extracted from im-
ages of different object views. The first set of hypergraphs are extracted from house
images in the CMU, MOVI and Chalet sequences (samples are shown in Fig. 6(a)) and
the second set are extracted from images of eight objects in COIL dataset (samples are
shown in Fig. 6(b)). To establish hypergraphs on the objects, we first extract feature
points using the Harris detector as the vertices of hypergraphs. Let c(vi) denote the spa-
tial coordinate of the feature point vi in an image, I(vi) denote the intensity of vi. For
each image, we construct the hypergraph using the method introduced in [6], where an
element of incidence matrix is denoted as:

H(i, j) =
{

1 if ‖c(vi)− c(vj)‖ ≤ Thj1 and if | I(vi)− I(vj) |≤ Thj2
0 otherwise. (7)

Here Thj1 is a fixed value which represents the distance threshold for neighborhood
and is set to 1/4 the size of the image, and Thj2 is the similarity threshold, which
is determined by the standard deviation of the intensities of the feature points in the
neighborhood of vj .

We compute the Ihara coefficients as introduced in Section 4, generating the feature
vector in the form of vI = [c3, c4, ln(|cM−3|), ln(|cM−2|), ln(|cM−1|), ln(|cM |)]T .
The last four components of the feature vector are manipulated in a logarithmic way to
avoid problems of dynamic range. Fig. 7 shows the PCA projection of the hypergraphs
from the Chalet images based on Ihara coefficients. Each point in the pattern space is
marked with a view number which corresponds to the camera angle. The coefficients
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(a) Houses

(b) COIL

Fig. 6. Dataset
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Table 1. Rand Indices

Feature Vector
Number of Object Classes

5 6 7 8

Spectra 0.8574 0.8564 0.8454 0.8449
Ihara Coefficients 0.9355 0.8859 0.8716 0.8812

produce a clear trajectory and the neighboring images in the sequence are generally
close together in the eigenspace.

Fig. 8 illustrates the behavior of the coefficient ln(|cM |) of the first four objects in
the COIL dataset. The four dotted lines represent the coefficient ln(|cM |) of the four
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Fig. 9. Clusters for Three Classes of Houses
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Fig. 10. Clusters for Four Objects in COIL Dataset

objects separately. The coefficients of the different objects are well separated, thus in-
dicating that the objects are well clustered. We then embed the feature vectors into a
three-dimensional space using PCA for visualization. Figs. 9(a) and 9(b) indicate the
results of the three classes of houses in Fig. 6(a) by using the feature vector consisting
of the first through to sixth nonzero Laplacian eigenvalues and the proposed feature
vector consisting of the Ihara coefficients respectively. Figs. 10(a) and 10(b) indicate
the results for the first four objects in COIL dataset by using the feature vector con-
sisting of the first through to sixth nonzero Laplacian eigenvalues and the proposed
feature vector consisting of the Ihara coefficients respectively. From Fig. 9 and 10 we
can see the proposed method is superior to the truncated Laplacian spectra in clustering
hypergraphs.

To take the quantitative evaluation of the feature vectors one step further, we con-
centrate our attention on the COIL dataset, and evaluate the clustering performance
obtained with different numbers of object classes. After performing PCA on the fea-
ture vectors, we locate the clusters using the K-means method and calculate the Rand
index for the resulting clusters. The Rand indices for the truncated Laplacian spectra
and for the Ihara coefficients are listed in Table 1. It is clear that the Ihara coefficients
outperform the truncated Laplacian spectra for all numbers of object classes studied.
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6 Conclusion and Future Work

We have performed a characteristic polynomial analysis on hypergraphs and character-
ize hypergraphs based on the Ihara zeta function. We have used the Ihara coefficients
as the elements in the feature vector. Experimental results show the effectiveness of the
proposed method.

However, the reason why the Ihara coefficients are superior to the Laplacian spectra in
representing hypergraphs still needs to be further investigated. Moreover, the manipula-
tions on the Perron-Frobenius operator for a hypergraph are computationally expensive
and a more efficient computing method is needed for obtaining the Ihara coefficients.
Therefore, our future research focuses on theoretically explaining the effectiveness of
the Ihara coefficients and seeking a more efficient computation method.
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Abstract. Graphs provide us with a powerful and flexible representa-
tion formalism for pattern recognition. Yet, the vast majority of pattern
recognition algorithms rely on vectorial data descriptions and cannot di-
rectly be applied to graphs. In order to overcome this severe limitation,
an embedding of the underlying graphs in a vector space Rn is employed.
The basic idea is to regard the dissimilarities of a graph g to a number of
prototype graphs as numerical features of g. In previous works, the pro-
totypes are selected beforehand with selection strategies based on some
heuristics. In the present paper we take a more fundamental approach
and regard the problem of prototype selection as a feature selection prob-
lem, for which many methods are available. With several experimental
results we show the feasibility of graph embedding based on prototypes
obtained from feature selection algorithms.

1 Introduction

A crucial question in pattern recognition is how one describes the objects under
consideration adequately. In statistical pattern recognition an object x is for-
mally represented as a vector of n measurements, or features, i.e. x = (x1, . . . ,
xn) ∈ Rn. Due to the mathematical wealth of operations available in a vec-
tor space, a huge amount of pattern recognition algorithms for objects given in
terms of feature vectors have been developed in recent years. Yet, the use of
feature vectors implicates two limitations. First, as vectors always represent a
predefined set of features, all vectors in a particular application have to preserve
the same length. Furthermore, there is no direct possibility to describe binary
relationships among different parts of an object.

Both constraints can be overcome by graph based representations [1]. As a
matter of fact, graphs are not only able to describe properties of an object but
also binary relationships among different parts. Furthermore, graphs are not
constrained to a fixed size, i.e. the number of nodes and edges is not limited a
priori and can be adapted to the size or the complexity of each individual object
under consideration.

One of the major drawbacks of graphs is that there is little mathematical
structure in the graph domain. That is, most of the basic mathematical oper-
ations available for vectors do not exist for graphs (e.g. computing the sum or
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the product of two graphs). Nevertheless, in the last decades a number of graph
matching methods have been proposed, which can be employed to measure the
dissimilarity, or distance, of graphs (see [1] for a survey). In this paper the edit
distance of graphs is used as a basic dissimilarity measure [2]. Yet, being able to
measure dissimilarities between graphs is still not sufficient for most standard
pattern recognition algorithms, and edit distance based classification is basically
limited to nearest-neighbor approaches.

A promising direction to overcome the lack of algorithmic tools for graph based
pattern recognition is graph embedding. A prominent class of graph embedding is
based on spectral methods (e.g. [3,4]). The basic idea is to represent graphs by the
eigendecomposition of their adjacency or their Laplacian matrix. The resulting
representation exhibits interesting properties. However, spectral methods are
not fully able to cope with larger amounts of structural noise, such as missing
or spurious nodes or edges. Furthermore, most spectral approaches are only
applicable to unlabeled graphs or graphs with constrained label alphabets.

The present paper considers a new class of graph embedding procedures in-
spired by the idea of mapping feature vectors into dissimilarity spaces [5]. This
idea was recently generalized to the domain of graphs [6]. The key idea of this
approach is to use the distances of an input graph g to n prototype graphs
P = {p1, . . . , pn} as a vectorial description of g. Due to the general applicability
of graph edit distance (which is used to derive the pairwise dissimilarities), the
proposed embedding approach is able to cope with structural errors as well as
with various kinds of graphs with unconstrained label alphabets.

Apparently, the definition of the prototype set P is a critical issue since the
graphs in P affect the resulting vectors in the embedding space. Thus, a good
selection of prototypes is crucial to succeed with the algorithm to be applied.
Commonly, the prototypes are selected from a training set T before the embed-
ding is carried out. In previous works, this prototype selection uses some heuris-
tics based on graph edit distances between the members of T [6]. In the present
paper, however, a new approach is proposed where all available elements from
the training set are used as prototypes, i.e. P = T , and well known feature sub-
set selection algorithms [7,8] are applied to the vector space embedded graphs.
In other words, rather than selecting the prototypes beforehand, the embedding
is carried out first and then the problem of prototype selection is reduced to a
feature subset selection problem. This process is much more principled than the
previous approach [6] and allows us to completely avoid the difficult problem of
heuristic prototype selection.

2 Dissimilarity Space Embeddings Applied on Graphs

Assume we have a labeled set of sample graphs, T = {p1, . . . , pN}, and a graph
dissimilarity measure d(g, g′). We compute the dissimilarity of a given input
graph g to each graph pi ∈ T . Note that g can be an element of T or any other
graph. This leads to N dissimilarities, d1 = d(g, p1), . . . , dN = d(g, pN), which
can be arranged in an N -dimensional vector (d1, . . . , dN ). Note that in theory T
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can be any kind of graph set. The samples in T can even be synthesized graphs.
However, for the sake of convenience, T is often defined as a set of existing
training graphs.

Definition 1 (Graph Embedding). Let G be a finite or infinite set of graphs
and T = {p1, . . . , pN} ⊂ G be a set of prototype graphs. Then, the mapping
ϕT

N : G → Rn is defined as the function ϕT
N (g) �→ (d(g, p1), . . . , d(g, pN)), where

d(g, pi) is any graph dissimilarity measure between graph g and the i-th prototype
graph.

Obviously, the range of function ϕT
N is a vector space where each dimension

corresponds to a prototype pi and the coordinate values of the embedded graph
g are the distances from g to pi.

The embedding procedure proposed in this paper makes use of graph edit
distance [2] as a basic dissimilarity model. The key idea of graph edit distance
is to define edit operations on the graphs to be matched. A standard set of edit
operations is given by insertions, deletions, and substitutions of both nodes and
edges. A sequence of edit operations e1, . . . , ek that transform a graph g into
another graph g′ is commonly referred to as an edit path between g and g′.
Obviously, for every pair of graphs (g, g′), there exist a number of different edit
paths transforming g into g′. Let Υ (g, g′) denote the set of all such edit paths.
To find the most suitable edit path out of Υ (g, g′), one introduces a cost for each
edit operation, measuring the strength of the corresponding operation. The idea
of such cost functions is to define whether or not an edit operation represents a
strong modification of the graph. The edit distance of graphs is then defined as
the cost of the minimum cost edit path.

Since the exact computation of graph edit distance is exponential in the
number of nodes for general graphs, the complexity of the graph embedding
procedure introduced in Def. 1 is exponential as well. However, there exist a
number of efficient approximation algorithms for graph edit distance compu-
tation (e.g. [9] with cubic time complexity). Consequently, the embedding of
one particular graph is established by means of N distance computations with
polynomial time.

3 Feature Subset Selection

3.1 General Approach

The graph embedding framework presented so far uses all available training
graphs from T . This approach has two severe shortcomings. First, the dimen-
sionality of the resulting vector space is equal to the size N of the training set T .
Consequently, if the training set is large, the mapping results in (possibly too)
high dimensional feature vectors. Secondly, the presence of similar prototypes as
well as outlier graphs in the training set T is most likely. Therefore, redundant
and noisy or irrelevant information will be captured in the feature vectors. The
inclusion of irrelevant and redundant information may harm the performance of
pattern recognition algorithms [10].
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To overcome this problem, in previous works on the novel graph embedding
framework, prototype selection methods are employed [6]. That is, a prototype
set P with n ≤ N prototype graphs is defined as a subset of the training set
of graphs T , i.e. P ⊆ T . In [6] different prototype selection algorithms are
discussed. These prototype selection strategies use some heuristics based on the
underlying dissimilarities in the original graph domain. It turns out that none
of them is globally best, i.e. the quality of a prototype selector depends on the
underlying data set.

In this paper we propose a new approach where we use all available elements
from the training set of prototypes, i.e. P = T , and subsequently apply feature
subset selection methods to the resulting feature vectors. Feature subset selec-
tion aims at selecting a suitable subset of features such that the performance of a
classification or clustering algorithm is improved [8,11]. By means of forward se-
lection search strategies, the search starts with an empty set and iteratively adds
useful features to this set. Conversely, backward elimination refers to the pro-
cess of iteratively removing useless features starting with the full set of features.
Also floating search methods are available, where alternately useful features are
added and useless features are removed. For a review on searching strategies for
feature subset selection we refer to [11].

In order to evaluate the quality of subsets of features, two general strategies,
viz. filters and wrappers, exist. The former approach evaluates the individual
features by giving them a score according to general characteristics of the train-
ing set [10]. In the latter approach the classification accuracy of the underlying
classification algorithm is used as a criterion for feature subset evaluation [8]. In
the present paper a combination of both approaches is carried out. The combi-
nation consists of two stages, the first involving a filter and the second a wrapper
step.

In the filter step feature-ranking techniques are applied. Commonly, a fixed
number of top ranked features, or alternatively, only features whose score exceeds
a predefined threshold on the criterion, are selected for further analysis. In the
present paper the feature ranking is used to define nested subsets of features F1 ⊂
F2 ⊂ . . . ⊂ F , where |F1| = 1, F denotes the full set of features {x1, . . . , xN},
and |Fi+1| = |Fi| + 1. An optimal subset of features can eventually be found
by varying a single parameter, viz. the number of features. For this second step,
the classifier’s accuracy serves us as a quality criterion, i.e. a wrapper strategy is
applied. The classifier used in the wrapper step (and also in our final classification
system) is the support vector machine (SVM). Of course, any other statistical
classifier could be used for this purpose as well. However, we feel that the SVM
is particularly suitable because of its theoretical advantages and its superior
performance that has been empirically confirmed in many practical classification
problems.

3.2 Feature Ranking Algorithms

For feature ranking, two different methods are employed, viz. mRMR [12] and
SVM-RFE [13]. The former uses a forward selection strategy, while the latter
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implements a backward feature elimination strategy. Both procedures are de-
scribed in detail below.

mRMR Ranking Method. This feature ranking algorithm is based on mutual
information, which is a widely used measure to analyze the dependency of vari-
ables. The mutual information of an individual feature x ∈ F and the ground
truth y is defined in terms of their probability density functions p(x), p(y), and
p(x, y):

I(x, y) =
∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy

For discrete feature variables, the integral operation reduces to summation. In
terms of mutual information, the purpose of feature selection is to find a feature
subset Fi ⊂ F whose features jointly have the largest relevance to the target
class y [12]. In the present paper, the mean value of all mutual information values
between individual feature x ∈ Fi and class y is used as a quality criterion for a
certain feature subset Fi. Formally,

A =
1
|Fi|

∑
x∈Fi

I(x, y) .

A feature subset Fi that maximizes criterion A is referred to as maximal-
relevance feature subset, or MR for short. Obviously, pairwise features selected
by this criterion can have a large degree of redundancy, i.e. the dependency
among the features x ∈ Fi can be large. In order to select mutually independent
features, we introduce the following criterion B for a certain feature subset Fi.

B =
1
|Fi|2

∑
x,x′∈Fi

I(x, x′)

A feature subset Fi that minimizes criterion B is referred to as minimal-
redundancy feature subset, or mR for short.

In order to define our final feature ranking, an incremental greedy search
method is employed where both criteria A and B are optimized simultaneously.
Consider the case where a feature set Fn−1 with n−1 features is already defined.
The task is now to select the n-th feature from the remaining features F \Fn−1.
That is, the respective incremental algorithm selects the feature that optimizes
the following condition [12]:

max
x′∈F\Fn−1

[
I(x′, y)

1
n−1

∑
x∈Fn−1

I(x′, x)

]
.

We refer to this feature ranking algorithm as mRMR [12].

SVM-RFE Ranking Method. In [13] a feature ranking method based on SVM
classifiers is introduced. The basic idea of this approach is to use the weights w
of a classifier’s hyperplane g(x) = 〈w,x〉+b, where w ∈ Rn and b ∈ R, as feature
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ranking criterion. The rationale is that the inputs that are weighted by the largest
value have the most influence on the classification decision. Consequently, if the
classifier performs well, those inputs with the largest weights correspond to the
most informative features [13]. In the case of SVMs, the term to be optimized
is J = minw∈Rn

1
2 ||w||2. We therefore use (wi)2 as feature ranking criterion.

Particularly, the authors in [13] propose to use a recursive feature elimination
procedure (RFE) to define the feature ranking. RFE is an instance of backward
feature elimination that iteratively proceeds as follows.

1. Train the SVM, i.e. optimize the weights wi with respect to J .
2. Compute the ranking criterion (wi)2 for all features.
3. Remove the feature with smallest ranking criterion.

Obviously, top ranked features correspond to features eliminated last. We refer
to this method as SVM-RFE.

4 Experimental Evaluation

The experimental evaluation of the proposed embedding procedure is based on
graph based pattern classification. We consider four different graph data sets from
the IAM graph database repository for graph based pattern recognition and ma-
chine learning1. Each of our graph sets is divided into three disjoint subsets, viz.
a training, a validation, and a test set. In our experiments we use graphs repre-
senting distorted letter line drawings out of 15 classes (Letter), molecular com-
pounds with activity against HIV or not (AIDS), fingerprint images out of four
classes (Fingerprint), and webpages that originate from 20 different categories
(Webpage). For a thorough description of these data sets we refer to [14].

The classifier in the embedding space is an SVM with RBF-kernel. That is,
besides the weighting parameter C, which controls whether the maximization
of the margin or the minimization of the error is more important, the meta
parameter γ > 0 in the kernel function k(x,x′) = exp

(
−γ||x− x′||2

)
has to be

optimized. Both parameters are tuned on the independent validation set.
One of the few classifiers directly applicable to arbitrary graphs is the k-

nearest-neighbor classifier (k-NN) in conjunction with graph edit distance. This
classifier in the graph domain will serve us as our first reference system. The
second reference method is, similarly to our novel procedure, an SVM with RBF-
kernel applied to dissimilarity space embedded graphs. However, in contrast
to our novel approach, the prototypes are defined beforehand by a heuristic
selector [6]. The prototype selector applied is based on k-medoids clustering.
After application of the clustering procedure, the cluster centers are selected
as prototypes. The final number of prototypes (i.e. the dimensionality) is also
evaluated by means of the target classifier in a wrapper approach. We refer to
this method as k-Med.
1 Note that all data sets used in the present work are publicly available under
http://www.iam.unibe.ch/fki/databases/iam-graph-database
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Table 1. Experimental Results

Ref. Systems Proposed Method

Data Set k-NN k-Med mRMR SVM-REF

Letter 90.00 92.40 92.27 92.00
AIDS 97.27 97.27 97.40 98.00
Fingerprint 77.60 77.70 82.40 82.20
Webpage 80.26 81.92 80.26 81.79

In Table 1 the classification results of all reference systems and the proposed
approach using the feature subset selection algorithms are given. Comparing the
results of our novel approach with the results achieved by the first reference
system, it clearly turns out that the novel procedure is much more powerful
than the traditional k-NN in the graph domain. In seven out of eight cases the
embedding in conjunction with feature subset selection algorithms outperforms
the first reference system’s classification results and in one case equal accuracies
are achieved. Note that at least one of the improvements per data set achieved
by mRMR or SVM-RFE is statistically significant (Z-test, α = 0.05).

Regarding the results achieved by the second reference system (k-Med), we
observe that our approach using feature subset selection algorithms rather than
heuristic prototype selection achieves better results on half of the data sets (AIDS
and Fingerprint). Note that two out of four improvements are statistically signif-
icant, but none of the deteriorations. Moreover, we note that k-Med outperforms
the first reference system only in two out of four cases with statistical significance
(Letter and Webpage). Our novel procedure, however, achieves improvements
with statistical significance on all data sets. Hence one can conclude that the
novel approach using feature subset selection strengthens the former framework
of graph embedding based on prototype selection.

5 Conclusions

Graphs are a versatile alternative to feature vectors, and are known to be a
powerful and flexible representation formalism. However, graph based object
representation suffers from a rather limited repository of algorithmic tools in
the graph domain. A solution to this problem is graph embedding in real vector
spaces. In the present paper a novel approach to graph embedding, using proto-
types and dissimilarities, is proposed. The basic idea of the embedding method
is to map a graph g to a vector space by arranging the edit distances of g to a set
of prototypes as a vector. Previous work on graph embedding depends on the se-
lection of suitable prototypes. With the method proposed in this paper we avoid
the critical task of prototype selection by taking all available graphs from the
training set as prototypes and eventually apply powerful feature subset selection
strategies, viz. mRMR and SVM-RFE. From the experimental evaluation one
can draw the following conclusions. Classifiers using the embedded graphs out-
perform classification systems using the original graph edit distances. Moreover,
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the more fundamental approach of feature subset selection rather than heuristic
prototype selection is clearly beneficial. That is, by means of our novel approach
the powerful embedding framework is further improved.
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Abstract. We are interested in the problem of discovering the set of object
classes present in a database of images using a weakly supervised graph-based
framework. Rather than making use of the ”Bag-of-Features (BoF)” approach
widely used in current work on object recognition, we represent each image by
a graph using a group of selected local invariant features. Using local feature
matching and iterative Procrustes alignment, we perform graph matching and
compute a similarity measure. Borrowing the idea of query expansion , we de-
velop a similarity propagation based graph clustering (SPGC) method. Using this
method class specific clusters of the graphs can be obtained. Such a cluster can be
generally represented by using a higher level graph model whose vertices are the
clustered graphs, and the edge weights are determined by the pairwise similarity
measure. Experiments are performed on a dataset, in which the number of images
increases from 1 to 50K and the number of objects increases from 1 to over 500.
Some objects have been discovered with total recall and a precision 1 in a single
cluster.

1 Introduction

In the statistical text analysis community, latent topic models such as probabilistic La-
tent Semantic Analysis (pLSA) [1] and Latent Dirichlet Allocation (LDA) [2] have had
significant impact as methods for ”semantic” clustering. Given a collection of docu-
ments, with each document represented by a ”Bag-of-Words (BoW)” vector, the models
are able to learn common topics such as ”biology” or ”astronomy”.

Given the success of these models, several papers in computer vision [3][4][5][6]
have applied them to the visual domain, replacing text words with visual features [7][8].
This approach is usually referred to as the ”Bag-of-Features (BoF)” method. Rather than
discovering topics, the BoF method aims to discover visual categories, such as cars or
bikes in the image database. However, in the visual domain there are strong geometric
relations within images, which do not exist in the text domain. There have been several
attempts to learn visual categories in an unsupervised manner by jointly modeling the
appearance of local patches and their spatial arrangement [9][10][11][12]. Examples
include the rotation, translation and scale invariant pLSA (RTSI-pLSA) model proposed
by Li et al [9] and the geometric LDA (gLDA) model proposed by Philbin et al [10].
These methods can be regarded as extensions of the basic BoF based method. However,
there are three basic problems which may compromise their modeling or recognition
performance: a) local invariant features in the vision domain do not operate at the same

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 385–393, 2009.
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semantic level as words in text domain; b) local features are not object specific; and c)
visual vocabulary needs to be incrementally adapted as more data becomes available.

Although the BoF method has demonstrated impressive levels of performance and
provides arguably the most successful paradigm for object discovery and recognition,
because of the shortcomings listed above, in this paper we offer an alternative to the BoF
model. We regard a group of local features together with their spatial arrangement as a
visual entity. If such a visual entity is of a certain semantic meaning, e.g. corresponding
to a car, then it is placed at the word-level in text domain. Since each visual entity
is represented by structured data, a more versatile and expressive representational tool
is provided by attributed graphs [13]. Hence we simply term such a visual entity as
a graph, which takes the place of a BoF based vector. We thus demonstrate how to
implement object discovery and recognition without using the BoF model.

2 Ingredients of a Scalable Search Engine

Image representation. For each image in the dataset local invariant features are de-
tected. A variety of feature detectors have been developed [14][15][16][17], and these
include SIFT [14] and SURF ( Speeded Up Robust Features ) [15]. Here we use method
previously described in [18] to extract a manageable number of salient SIFT features.
Using this method, the SIFT features of an image I are ranked in order according to
their decreasing matching frequency. We select the T top ranked SIFT features, de-

noted as V={Vt, t = 1, 2, ...,T }, where Vt = ((
−→
Xt)T , (

−→
Dt)T , (

−→
Ut)T )T . Here,

−→
X t is the

location,
−→
Dt is the direction vector and

−→
Ut is the set of descriptors of a SIFT feature.

In our experiments, T is set to 40. If there are less than this number of feature points
present then all available SIFT features in an image are selected.

We regard the above selected local features together with their spatial arrangement as
a semantic visual entity, which is placed at the word-level in text domain. This kind of
structured data can be represented by using attributed graphs G [13] (hereafter simply
graphs). We can obtain a set of graphs G ={Gl, l = 1, 2, ...,N} from a set of images.

Pairwise graph matching for spatial verification and similarity measure. As shown
in [8][11][12], the recognition or retrieval results can be significantly improved using
the geometry of spatial feature arrangement to verify consistency. In our approach, on
the other hand, each image is represented by a graph. As a result the spatial verification
problem becomes one of pairwise graph matching (PGM). We perform PGM with the
aim of finding a maximum common subgraph (MCS) between two graphs Gl and Gq,
and the result is denoted as MCS (Gl,Gq). There are a plethora of available methods
for finding matching features consistent with a given set of geometric constraints, and
the problem has been proven to be NP-hard. RANSAC provides one popular set of
methods, however their implementation is slow [19]. In [20], pairwise graph matching
is achieved by combining SIFT feature matching and iterative Procrustes alignment
[21]. The method can not only be used to align the feature points, but can also be used
to discard those features that do not satisfy the spatial arrangement constraints. Given
MCS (Gl,Gq) obtained by PGM, they define a similarity measure between the graphs
Gl and Gq as follows:
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R(Gl,Gq) = ‖MCS (Gl,Gq)‖ × ( exp(− e(Xl, Xq)) )κ. (1)

Here a) ‖MCS (Gl,Gq)‖ is the cardinality of the MCS of Gl and Gq, b) κ is the num-
ber of roughly mismatched feature pairs by SIFT matching, which is used to amplify
the influence of the geometric dissimilarity between Xl and Xq, and c) Xl and Xq are
respectively the position coordinates in graphs Gl and Gq corresponding to the vertexes
of MCS (Gl,Gq).

This similarity measure is significantly different from the BoF similarity measure
which is based on the L1 or L2 distance between vectors [8][11][12][22], and captures
both the similarity of local appearance and global spatial consistency.

Clustering of feature descriptors. For BoF based methods, the vector quantization of
feature descriptors has been used by Sivic and Zisserman [8]. Here small vocabular-
ies were generated using the k-means clustering method. It was subsequently shown
in [12][22][23] that for large scale cases a more discriminative vocabulary is neces-
sary. In [22], hierarchical k-means (HKM) and in [12] a KD-forest approximation were
explored as possible refinements of the method. The aim of using these clustering meth-
ods is to obtain the visual vocabulary for construction of a BoF vector. Each image is
then represented by a high dimensional tf-idf (Term Frequency-Inverse Document Fre-
quency ) [12][22][23] weighted BoF vector.

Although we represent images by graphs, we still require means of clustering the
local feature descriptors. We use a SOM neural net based tree clustering method (termed
a RSOM tree) proposed in [24] for learning a large corpus of SIFT descriptors. The
RSOM tree can be incrementally trained since it utilizes a self-organizing divide-and-
conquer architecture. It is also important to stress that though the leaf nodes in an RSOM
tree are a quantization of the descriptors, we do not regard such a quantization as a visual
vocabulary. We simply use the RSOM tree to efficiently retrieve candidate matching
graphs, in the manner detailed in the following paragraphs.

Search engine. Given a graph set G ={Gq, q = 1, 2, ...,N}, for each graph Gl ∈ G, and
the remaining graphs in the set (∀Gq ∈ G), we obtain the pairwise graph similarity
measures R(Gl,Gq) defined in Equation (1). Using the similarity measures we rank the
graphs Gq in decreasing order. The K top-ranked graphs are defined as the generalized
K-nearest neighbor graphs (KNNG) of graph Gl, denoted as K{Gl}.

With increasing size of the graph dataset, it becomes time consuming to obtainK{Gl}
if a sequential search strategy is adopted. Fortunately, for a large graph set, most of the
similarity measures are low. For a single graph Gl, if we can efficiently find a subset G′

with significant similarity values as a pre-filtering stage, then we only need to perform
pairwise graph matching on this subset. To this end, we use the above mentioned RSOM
clustering tree.

To obtain K{Gl} for each sample graph using a trained RSOM tree we proceed as
follows. Given a graph Gl, we find the winner of the leaf nodes for each descriptor of
this graph and define the union of all graphs for the winners as follows:

UG{Gl} = { Gq | U j
q ∈ Gq,U

j
q ∈ WL{Ut

l },U
t
l ∈ Gl}. (2)

where WL{Ut
l } is the winner of the leaf nodes for descriptor Ut

l . The frequency of graph
Gq, denoted as Hq, represents the number of roughly matched descriptors between two
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graphs. Since we aim to obtainK{Gl}, we need not process all graphs in the set UG{Gl}.
We rank the graphs in UG{Gl} according to decreasing frequency Hq. From the ranked
list, we select the first K graphs, denoted by K

′ {Gl} as follows:

K
′ {Gl} = { Gq | Gq ∈ UG{Gl},Hq > Hq+1, q = 1, 2, ...,K.}. (3)

For each graph Gq in K
′ {Gl}, we obtain the similarity measure according to Equation

(1) and then K{Gl} can be obtained. Using this method, we can efficiently obtain K{Gl}.
As a result, it is not necessary to use a search engine constructed from BoF vectors,
which is the usual practice in the text domain. Hence, the method can be easily adapted
to incremental learning settings.

3 Object Discovery and Model Learning

This section commences by presenting a new graph clustering method developed by
borrowing the widely used idea of query expansion from text query. We then explain
how the method can be used to discover object classes and learn object class models.

3.1 Similarity Propagation Based Graph Clustering

In the text retrieval literature, a standard method for improving performance is query
expansion, where a number of the highly ranked documents from the original query
are reissued as a new query. This allows the retrieval system to use relevant terms not
present in the original query. In [11][12], query expansion was imported into the visual
processing domain using spatial constraints to improve the accuracy of each returned
image. Our query, on the other hand, expansion method is based on the RSOM tree and
the set K{Gl} for each graph, obtained in the training stage. The method is based on a
pairwise similarity propagation algorithm for graph clustering (SPGC). Stated simply,
the method is as follows. A group of graphs are referred to as siblings of a given graph
Gl provided they satisfy the following condition:

S {Gl} = {Gq ∈ K{Gl} | R(Gl,Gq) ≥ Rτ} � S Rτ{Gl}. (4)

We use the definition to recursively obtain the family tree for the graph Gl, and this is
formally defined as follows.

Family Tree of a Graph (FTOG). For any given similarity threshold Rτ, an FTOG of
Gl with k generations and denoted as M{Gl, k}, is defined as follows:

M{Gl, k} = M{Gl, k − 1}
⋃

Gq∈L{Gl ,k−1}
S Rτ {Gq}. (5)

where, if k = 1, M{Gl, 1} = M{Gl, 0}
⋃

S {Gl} and M{Gl, 0}= {Gl}; and the process stops
when M{Gl, k} = M{Gl, k + 1}. An FTOG, whose graphs satisfy the restriction defined
in Equation (4), can be regarded as a cluster of graphs. However, it must be stressed
that this is not a clustering method based on a central prototype. Instead, graphs are
clustered using the similarity propagation strategy.
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3.2 Weakly Supervised Object Discovery and Model Learning

The clustering process is controlled by the threshold Rτ. By varying the parameter, we
can represent images using canonical graphs constructed from a number of selected
local invariant features so that most of the graphs belonging to an identical object form
a single FTOG.

In this case, the FTOG is class specific. From the perspective of fault tolerance, the
precision does not necessarily need to be 100%.

According to our experiments, if Rτ ≥ 10.0 is large then the corresponding FTOG
will have high precision (close to 1). With this setting, we can obtain a number of
disjoint FTOG’s from a large graph dataset (in each FTOG, there are at least 2 graphs.).
We use these FTOG’s as cluster seeds. For each FTOG, in a weak supervision stage, we
manually assign a groundtruth object label (or name) to a cluster. We can also manually
adjust the threshold to obtain a better cluster containing more graphs belonging to the
same object class. We denote the similarity threshold for the corresponding FTOG’s as
Rτ1(Ml{Gq}). In this way each cluster corresponds to an object class discovered from
the data, and the corresponding FTOG is the class model. However, a single object may
be split between multiple clusters.

If we regard each graph in an FTOG as a vertex in a higher level graph, for a pair
of vertexes an edge, weighted by the similarity measure, is defined iff their similarity
measure is subject to the given similarity constraint, an FTOG can be further regarded
as a class specific graph (CSG) model.

Given that c FTOGs have been detected for a single object-class in a dataset, i.e.
∃Gli , i = 1, 2, ..., c, subject to M{Gli , g}

⋂
M{Glj , g} = ∅, i � j, i, j ∈ {1, 2, ..., c },

then we uniquely label the corresponding FTOG’s as L1, L2, ..., Lc. We denote the set of
clusters for a single discovered object model as follows:

CRτ = { MRτ {Gl,∞}} � { Ml | l ∈ {L1, L2, ..., Lc} }. (6)

A set of class specific FTOGs of an object can also be regarded as class specific
graph models and still termed CSG model. Ideally a single object has one corresponding
FOTG, that is c = 1. However, in an incremental learning setting, each object will tend
to have more than one FTOG. With an increasing size of the dataset it is likely that two
disjoint FTOG’s will become merged when intermediate graphs are encountered. In an
incremental learning setting, a new graph Gl is added to its discovered model according
to the following rules:

1. If ∃ more than one graph Gq, s.t. R(Gl,Gq) ≥ Rτ0 , Gl is processed as a redundant
duplicate graph of Gq, in our settings, Rτ0 = 18.

2. If ∃ Gq0 , s.t. R(Gl,Gq0) ≥ Rτ1 (Ml{Gq0 }), Gl is incremented as an irreducible graph
of Ml{Gq0 }; If there is another graph Gq1 ∈ Ml{Gq1 }, Ml{Gq0 } and Ml{Gq1 } come from
different classes, Gl then is marked as an ambiguous graph. If Ml{Gq0 } and Ml{Gq1 }
belong to the same class, then we merge these two FTOG’s.

3. If max{R(Gl,Gq)} < Rτ1(Ml{Gq}), create a new FTOG Ml{Gl}.
Once a CSG model is trained, for a test graph Gl, we can obtain Kτ{Gl} and use a

k-nearest neighbor weighted voting recognition strategy, using the similarity measure
R(Gl,Gq) as a weight.
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4 Experimental Results

We have collected 53536 training images, some examples of which are shown in
Figure 1, as training data. The data spans more than 500 objects including human faces
and natural scenes. For each of these images, we extract ranked SIFT features using the
method presented in [18]. Of these at most 40 highly ranked SIFT features are selected
to construct a graph. We have collected over 2,140,000 SIFT features and 53536 graphs
for the training set. We have trained an RSOM clustering tree with 25334 leaf nodes
for the SIFT descriptors using the incremental RSOM training method. In this stage,
we have also obtained K{Gl} for each of the graphs. We use the 68 objects (detailed in
Fig. 1) to test our object class discovery method.

The object discovery results for the 68 object problem are shown in Fig. 2, it is
clear that for most of the objects sampled under controlled imaging conditions, ideal
performance has been achieved. For 35 objects in COIL 100, 35 models are individually
discovered with total recall and precision of unit in one FTOG. For 13 objects, 6 models
are discovered. Each group of objects in Fig. 3 (A)(B)(C)(D) are actually identical in
shape but color. Since it only uses gray scale information in SIFT, our method fails in
this case. We hence regard these objects in the four groups as being correctly discovered
according to shape.

Unfortunately, in most practical situations, the images of an object are likely to be
obtained with large variations of imaging conditions and are more likely to be clustered
into several FTOGs. As a result, each object gives rise to multiple clusters. For objects
51 to 58 there are no more than 30 images with large variations in viewing conditions,

(a) 50 objects in Coil 100 (b) Unlabeled sample images.

(c) 8 objects in[19] (d) 10 objects collected by the authors.

Fig. 1. Image data sets.a: 3600 images of 50 objects in COIL 100, labeled as A1∼A50; b: 29875
unlabeled images from many other standard datasets, e.g. Caltech101 [3] and Google images,
covering over 450 objects and used as negative samples; c: 161 images of 8 objects used in [19],
labeled as C1 to C8; d: 20000 images of 10 objects collected by us, labeled as D1 to D10. For
each of the objects in D1 to D9, we collect 1500 images which traverse a large variation of
imaging conditions, and similarly 6500 images for D10. For simple description, the 4 dada sets
are denoted as A to D. The objects in Figure 1a,Figure 1c and Figure 1d are numbered from left
to right and then from top to bottom as shown in the corresponding figures, e.g. A1 to A50 in
Figure 1a. As a whole, the 68 objects are also identified as Object 1 to Object 68.
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Fig. 2. Results of object discovery. In the above table, ID is the Object ID; Ni is the number of the
initial images of an object; Nd is the number of images discovered by using our method; N+d is the
number of correctly discovered images; p is the precision defined as N+d /Nd; r is recall defined as
N+d /Ni. Nc is the number of discovered clusters of each object.

Fig. 3. 6 groups of objects are overlapping-clustered into 6 clusters

and the images are not representative enough to perform ideal recognition. However, for
objects 59 to 68, the images clustered together are sufficient to form an effective object
model which can be used for recognition. For object 68, since there are thousands of
images, the different views form a single cluster.

It is worth pointing out that all of these experiments are implemented in an incremen-
tal learning setting. We commenced by using 3600 images of 50 objects in the COIL
100 database as the first batch of images. From which, the models of these 50 objects
are discovered. With the increase of additional training images, the discovered models
of the 50 objects have not been changed. We than trained a second batch of samples
containing instances of Object 51 to Object 68, and their corresponding models are dis-
covered. The number of images is than increased to over 50K by including over 450
other objects. From the third stage database, we re-discovered the same models of the
above 68 objects. Compare to the up-to-date BoF based methods, the size of the RSOM
clustering tree is dynamic, the scale of the image corpus is also dynamic. The discov-
ered model keeps stable and can be refined in the incremental settings.

5 Conclusion

In this paper, we have presented a scalable framework for learning object classes (ob-
ject discovery). The method is graph-based and makes use of the RSOM tree clustering
of local feature descriptors and graph clustering using similarity propagation (SPGC).
As such it is therefore distinct from current state-of-the-art ”Bag-of-Feature” based
methods. Using the object models learned using our technique we can potentially si-
multaneously effect object detection, recognition and annotation. We will explore these
problems in future work.
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Abstract. In this paper, we make use of the theory of Clifford algebras
for anisotropic smoothing of vector-valued data. It provides a common
framework to smooth functions, tangent vector fields and mappings tak-
ing values in so(m), the Lie algebra of SO(m), defined on surfaces and
more generally on Riemannian manifolds. Smoothing process arises from
a convolution with a kernel associated to a second order differential op-
erator: the Hodge Laplacian. It generalizes the Beltrami flow in the sense
that the Laplace-Beltrami operator is the restriction to functions of mi-
nus the Hodge operator. We obtain a common framework for anisotropic
smoothing of images, vector fields and oriented orthonormal frame fields
defined on the charts.

Keywords: Anisotropic diffusion, Vector-valued data, Clifford algebras,
Differential Geometry, Heat equations.

1 Introduction

Most multivalued image smoothing process are based on PDE’s of the form

∂Ii

∂t
=

2∑
j,k=1

fjk
∂2Ii

∂j ∂k
+ first-order part

where I : (x, y) �−→ (I1(0, x), · · · , In(0, x)) is a n-channels image, and fjk are
real functions. We refer to [4] for an overview on related works. From a theo-
retical point of view, the set of right terms, for i = 1 · · ·n, may be viewed as
a second-order differential operator acting on sections of a vector bundle over
a Riemannian manifold, namely a generalized Laplacian H [6]. As a con-
sequence, it ensures existence and unicity of a kernel Kt(x, y, H) generating a
solution of the corresponding heat equation. For arbitrary Riemannian mani-
fold X and vector bundle E, it is usually impossible to find a closed form for
this kernel. However, for many problems, the use of an approximate solution
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is sufficient. On the vector bundle C∞(X) of smooth functions on X , there is
a canonical generalized Laplacian: the Laplace-Beltrami operator. Considering
each component Ik of a nD-image as a function over a well-chosen Riemannian
manifold, we obtain the Beltrami flow of Sochen et al. [2]. The aim of this paper
is to extend this flow to tangent vector fields on X and mappings from X to
so(m). The former is devoted to anisotropic smoothing of vector fields on the
charts of X , i.e. some domains of Rm, the latter to anisotropic smoothing of
mappings from the charts to SO(m), such as oriented orthonormal frame fields
[1],[3],[5]. A natural extension is to consider the Hodge Laplacian Δ operating
on sections of the Clifford bundle Cl(X) of X . Indeed, functions, tangent vector
fields and mappings from X to so(m) and SO(m) may be viewed as sections of
Cl(X) and the Hodge Laplacian, restricted to functions, corresponds to minus
the Laplace-Beltrami operator. In this paper, we use existing estimates formula
of heat kernels to compute an approximation, for small t, of the solution of the
heat equation:

∂s

∂t
+ Δs = 0 (1)

where s(x) = s(0, x) is a given section of Cl(X).
In Section 2., we introduce the notion of heat kernel of generalized Laplacian,

and give some of its properties. Section 3. is devoted to the Hodge Laplacian
on Clifford bundles. In Section 4., we study the case m = 2 and illustrate it by
anisotropic smoothings of a color image and a vector field related to this image.

2 Heat Kernels of Generalized Laplacians

We refer to [7] for an introduction to differential geometry. For a smooth vector
bundle E over a manifold X , the symbol Γ (E) denotes the space of smooth
sections of E. For x ∈ X , Ex denotes the fiber over x.

Definition 1. Generalized Laplacian
Let E be a vector bundle over a Riemannian manifold (X, g). A generalized
Laplacian on E is a second-order differential operator H , that may be written

H = −
∑
ij

gij(x)∂i ∂j + first-order part

in any local coordinates system, where (gij(x)) is the inverse of the matrix
g(x) = (gij(x)).

In this paper, we make use of the following result:
To any generalized Laplacian H , one may associate an operator e−tH : Γ (E) −→
Γ (E), for t > 0, which is a smoothing operator with the property that if I ∈
Γ (E), then I(t, x) = e−tHI(x) satisfies the heat equation ∂I/∂t + HI = 0.

We shall define e−tH as an integral operator of the form

(e−tHI)(x) =
∫

X

Kt(x, y, H)I(y)dy



396 T. Batard and M. Berthier

where Kt(x, y, H) : Ey −→ Ex is a linear map depending smoothly on x, y and
t. This kernel K is called the heat kernel for H [8].

In the following theorem, we give some results on approximations of the heat
kernel and solutions of the heat equation. See [6] for details.

Theorem 1
Let n = dim(X). Let ε chosen smaller than the injectivy radius of X . Let
Ψ : R+ −→ [0, 1] be a smooth function such that Ψ(s) = 1 if s < ε2/4 and
Ψ(s) = 0 if s > ε2.

Let τ(x, y) : Ey −→ Ex be the parallel transport along the unique geodesic
curve joining y and x, and d(x, y) its length.

There exist functions J and sections Φi such that the kernel KN
t (x, y, H)

defined by ( 1
4πt

)n
2
e−d(x,y)2/4t Ψ(d(x, y)2)

N∑
i=0

tiΦi(x, y, H)J(x, y)−
1
2

satisfies

1. For every N > n/2, the kernel KN
t (x, y, H) is asymptotic to Kt(x, y, H):∥∥∥∂k

t [ Kt(x, y, H)−KN
t (x, y, H) ]

∥∥∥
l
= O(tN−n/2−l/2−k)

where ‖ ‖l is a norm on Cl sections.

2. Let us denote by kN
t the operator defined by

(kN
t I)(x) =

∫
X

KN
t (x, y, H)I(y)dy

Then for every N , limt→0 ‖kN
t I − I‖l = 0.

In what follows, we need the following properties:

(P1). J(x, y) = 1 + O(‖y‖2) where y are the normal coordinates of y around x.

(P2). Φ0(x, y) = τ(x, y).

For the applications we propose in this paper, the base manifold is of dimen-
sion 2. Therefore, the kernel KN

t is asymptotic to the heat kernel for N ≥ 1.
However, for the sake of simplicity, we restrict to the computation of the leading
term K0

t (x, y), as it is done for the short time Beltrami kernel [2]. Moreover, we
approximate J(x, y) by 1. As a consequence, the smoothing will be performed
by the operator k0

t defined by

(k0
t u)(x) =

∫
X

K0
t (x, y)u(y)dy

and the discrete convolution will be made with small masks because of (P1).
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3 The Hodge Laplacian on Clifford Bundles

The Hodge Laplacian Δ is a generalized Laplacian acting on differential forms
of a Riemannian manifold. It is defined by Δ = dδ + δd, where d is the exterior
derivative operator and δ its formal adjoint [9]. In particular, when applied to
0-forms, i.e. functions, Δ corresponds to the Laplace-Beltrami operator.

The Hodge Laplacian can be applied to tangent vector fields on the manifold,
i.e. sections of the tangent bundle, by considering the Clifford bundle of the
manifold. Let us first recall briefly some properties of Clifford algebras. We refer
to [8] for details.

Definition 2. Clifford algebra
Let V be a vector space of finite dimension m over a field K, and equipped with a
quadratic form Q. Let (e1, · · · , em) be a Q-orthonormal basis of V . The Clifford
algebra of (V, Q), denoted by Cl(V, Q), is an algebra over K of dimension 2m of
basis

(1, e1, · · · , em, e1e2, · · · , em−1em, · · · , e1 · · · em) (2)

with the relations e2
i = −Q(ei) and eiej = −ejei.

In particular, V and K are embedded into Cl(V, Q). In (2), e1, · · · , em denote
the images of elements of the orthonormal basis mentionned above, whereas 1
denotes the image of the unit element of K.

As a consequence of Definition 2, we can identify the exterior algebra
∧

V ∗ of
the dual space of V and Cl(V, Q) by mapping ei1 ∧ ei2 ∧ · · · ∧ eik to ei1ei2 · · · eik

,
for i1 < · · · < ik.

Definition 3. Clifford bundle of a Riemannian manifold
Given a Riemannian manifold (X, g), the tangent space T (p) over p ∈ X is
an euclidean vector space (T (p), g(p)). Then, it generates a Clifford algebra
Cl(T (p), g(p)) over R. The set {Cl(T (p), g(p)), p ∈ X} is called the Clifford
bundle of (X, g), and will be noted Cl(X).

From the embedding of T (p) into Cl(T (p), g(p)), we see that any tangent vector
field on a Riemannian manifold may be viewed as a section of its Clifford bundle.
Moreover, from the embedding of R into Cl(T (p), g(p)), functions may also be
viewed as sections of the Clifford bundle. More precisely, let (e1, · · · , em) be an
orthonormal frame field on (X, g). Then, any section s of Cl(X) takes the form

s(p) = s1(p)1(p) + s2(p)e1(p) + sm+1(p)em(p) + · · ·+ s2m(p)e1 · · · em(p)

We deduce the identification between differential forms on a Riemannian mani-
fold and sections of its Clifford bundle. It is given by

k-form :
∑

i1<···<ik

1≤ik≤m

ωi1···ik
ei1 ∧ · · · ∧ eik ←→

∑
i1<···<ik

1≤ik≤m

ωi1···ik
ei1 · · · eik

0-form : f ←→ f1
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From this identification, the Hodge Laplacian may be applied to sections of
the Clifford bundle, and in particular on vector fields and functions. Then, for
I0 ∈ Γ (Cl(X)), we define the Clifford-Hodge flow of I0 as the solution of the
heat equation

∂I

∂t
+ ΔI = 0 (3)

of initial condition I|t=0 = I0.

4 Application: The Case m = 2

First, let us introduce the group Spin(2) and its Lie algebra spin(2). Under the
identification of R2 and its embedding into Cl(R2, ‖ ‖2), the rotation of angle θ
is the map

r(θ) : v = v1e1 + v2e2 �−→ (cos(θ) + sin(θ)e1e2) (v1e1 + v2e2)

The set {
cos(θ) + sin(θ)e1e2, θ ∈ [0, 2π[

}
is called the spin group, and is denoted by Spin(2).

We have Spin(2) � S1 � SO(2), from which we deduce that spin(2) � so(2).
The Lie algebra of Spin(2) is the one-dimensional subspace generated by e1e2,
and the exponential map exp of Spin(2) is the ordinary exponential function.
Therefore, we have exp(θ e1e2) = cos(θ) + sin(θ)e1e2.

Given a function, vector field, or SO(2)-valued mapping defined on Ω ⊂ R2,
where (ϕ, Ω) is a chart of a Riemannian manifold (X, g) of dimension 2, we aim
at smoothing it in a anisotropic way with respect to the geometry of X . From the
previous Sections, we just need to consider it as a section of Cl(X), as follows.

By definition, a function on a manifold is given by its values on charts. There-
fore, given a function f on Ω, it defines the local section f 1 of Cl(X).

Let v = (v1, v2) be a vector field on Ω. Using the chart, v may be viewed
as a local tangent vector field on X of coordinates (v1, v2) in the frame field
(∂/∂x, ∂/∂y) given by a coordinates system. Let (ṽ1, ṽ2) be its coordinates in
the orthonormal frame field (e1, e2), then v is the section ṽ1e1 + ṽ2e2 of Cl(X).

Let R be a SO(2)-valued mapping on Ω, e.g. a direction field or an oriented
orthonormal frame field. From the identification of SO(2) and Spin(2) seen above,
R may be viewed as a Spin(2)-valued mapping on X . The Hodge Laplacian does
not preserve the Spin(2) structure, then we can not smooth a Spin(2)-valued
mapping by applying the Clifford-Hodge flow on it. However, it preserves the
spin(2) structure. As a consequence, a Spin(2)-valued mapping may be smoothed
through the smoothing of a corresponding spin(2)-valued mapping and the use
of the exponential map. This is the Clifford algebra framework counterpart of
the problem of orientations diffusion [10].

Let us give some precisions about the parallel transport map on Cl(X), needed
to smooth sections of Cl(X). Indeed, as mentionned in Section 2., we compute
an approximating solution of (3) by convolving I0 with the leading term of the
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heat kernel Kt(x, y, Δ). It is determined by geodesic distances on X and the
parallel transport map on Cl(X).

Proposition 1. Parallel transport on Cl(X)
Let γ : J ⊂ R −→ X be C1 curve where γ(0) = p, and Y0 = Y 1

0 1(p)+Y 2
0 e1(p)+

Y 3
0 e2(p) + Y 4

0 e1e2(p) ∈ Cl(T (p), g(p)). Then, the parallel transport of Y0 along
γ is Y (t) = Y1(t) 1(γ(t))+Y2(t) e1(γ(t))+Y3(t) e2(γ(t))+Y4(t) e1e2(γ(t)) where

Y1(t) = Y 1
0 Y4(t) = Y 4

0

and Y2, Y3 satisfy

Y2(t) + i Y3(t) = exp
(
i

∫ t

0

∂γ1

∂s
(s)Γ 2

11(s) +
∂γ2

∂s
(s)Γ 2

21(s) ds
)
(Y 2

0 + i Y 3
0 )

Note that ∂ γi/∂s and the Christoffel symbols Γ k
ij are given with respect to the

orthonormal frame field (e1, e2).
Let I : Ω ⊂ R2 −→ Rn be a nD image of components (I1, · · · , In). I defines

a surface S embedded in Rn+2, parametrized by

ϕ : (x, y) �−→ (x, y, I1(x, y), I2(x, y), · · · , In(x, y))

Any definite positive scalar product h on Rn+2 induces a metric g on S and makes
the couple (S, g) be a Riemannian manifold of dimension 2 of chart (ϕ, Ω).

For color images (n=3), a suitable choice for h is

h =
(

1 0
0 1

)
⊕

⎛⎝λ 0 0
0 λ 0
0 0 λ

⎞⎠
where λ is a positive function. In the Beltrami framework of Sochen et al. [2],
each component Ik is considered as a function over (S, g). Then, the so-called
Beltrami flow is obtained by solving the PDE’s ∂Ik/∂t = ΔgIk, where Δg is
the Laplace-Beltrami operator. Then, considering the functions Ik as sections of
Cl(S) of the form Ĩk = Ik1, the Clifford-Hodge flow (3) of Ĩk is equivalent to
the Beltrami flow of Ik.

Fig. 1 is an illustration of the Clifford-Hodge flow on functions, that provides
an anisotropic smoothing of images. Fig. 1(a) is a natural color image taken
from the Berkeley image segmentation database [11]. Fig. 1(b) is the result of
the Clifford-Hodge flow after 5 iterations, for λ = 0.01 and t = 0.3.

Fig. 2 is an illustration of the Clifford-Hodge flow on tangent vector fields,
that provides an anisotropic smoothing of vector fields on the charts. Fig. 2(a) is
the field of unit vectors indicating the directions of lowest variations around the
hat of Fig. 1(b). Fig. 2(b) is the result of the Clifford-Hodge after 99 iterations,
for λ = 0.01 and t = 0.3. We see that it tends to preserve the vector field on
high edges of the image, conversely to vanish it on low edges.



400 T. Batard and M. Berthier

(a) Original image (b) Anisotropic Clifford-Hodge flow

Fig. 1. Clifford-Hodge flow on functions

(a) Original vector field (b) Anisotropic Clifford-Hodge flow

Fig. 2. Clifford-Hodge flow on tangent vector fields

5 Conclusion

We introduced the Hodge Laplacian for anisotropic smoothing of vector-valued
data. From this point of view, the anisotropy is related to the metric of a Rie-
mannian manifold. Smoothing process is provided by the solution of the corre-
sponding heat equation. It results from a convolution with a kernel generalizing
the gaussian kernel to non-flat spaces by computation of geodesic distances and
transport parallel map. Strictly speaking, the Hodge Laplacian acts on differen-
tial forms of a Riemannian manifold. Identifying the bundle of differential forms
and the Clifford bundle, the Hodge Laplacian may be applied to tangent vector
fields and functions. It allows anisotropic smoothing of vector fields and nD im-
ages defined on a domain of R2. Moreover, from the identification of Spin(2) and
SO(2), and the embedding of spin(2) into Cl(R2, ‖ ‖2), we have shown that Clif-
ford bundles also provide a framework to smooth SO(2)-valued mappings such as
direction fields and oriented orthonormal frame fields. Finally, we obtain a gen-
eral framework for anisotropic smoothing of data of different natur on R2. From
Section 3. and so(m) � spin(m) ⊂ Cl(Rm, ‖ ‖2), the generalization for m ≥ 3 is
straightforward. In particular, smoothing of volumetric data may be envisaged.
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Speedup of Color Palette Indexing in
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Abstract. Based on the self–organization of Kohonen feature map
(SOFM), recently, Pei et al. presented an efficient color palette indexing
method to construct a color table for compression. Taking their palette
indexing method as a representative, this paper presents two new strate-
gies, the pruning–based search strategy and the lookup table (LUT)–based
update strategy, to speed up the learning process in the SOFM. Based on
four typical testing images, experimental results demonstrate that our pro-
posed two strategies have 35% execution–time improvement ratio in aver-
age. In fact, our proposed two strategies could beused to speed up the other
SOFM–based learning processes in different applications.

Keywords: Color palette indexing, lateral update interaction, learning
process, lookup table, SOFM, speedup, winning neuron.

1 Introduction

In order to achieve good compression performance by using image compression
standards, such as JPEG–LS [3], JPEG–2000 [4], and PNG [5], how to design
a good color palette table is an important issue. In 1981, Kohonen presented a
pioneer work, self–organization of Kohonen feature map (SOFM) [1], which is
a powerful unsupervised neuron learning model. The SOFM has been studied
extensively in the applications such as color quantization, color palette indexing
design, clustering, data mining, pattern recognition, and so on.

In this paper, we take Pei et al.’s color palette indexing method [2] as the rep-
resentative to demonstrate two computational bottlenecks existed in the SOFM.
In order to alleviate the two bottlenecks, for each training vector, we first present
a pruning–based search strategy to speed up the process for finding the winning
neuron in each iteration; further, a lookup table (LUT) strategy is presented
to speed up the lateral update interaction between the winning neuron and its
neighboring neurons. Based on four typical testing images, experimental results
demonstrate that our proposed two strategies have 35% execution–time improve-
ment ratio in average while preserving the same result as in the SOFM. Precisely
� Corresponding author. Email: k.l.chung@mail.ntust.edu.tw. Supported by the Na-

tional Science Council of R. O. C. under the contract NSC97–2221–E–011–128.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 402–409, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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speaking, the first strategy has 19% execution–time improvement ratio; the sec-
ond strategy has 16% execution–time improvement ratio.

2 The Palette Indexing Method by Pei et al. and Two
Computational Bottlenecks

In this section, we first introduce the palette indexing method by Pei et al. [2],
then we point out two computational bottlenecks in their SOFM–based learning
model.

2.1 SOFM–Based Learning Model

As shown in Fig. 1, the 1–D SOFM used in Pei et al.’s method has two layers,
namely the input layer and the output layer. The output layer has N neurons
u1, u2, ..., and uN ; the initial triple weight of the i–th neuron ui in the neural
network, 1 ≤ i ≤ N , is set to

μi = [ri(0), gi(0), bi(0)]T

= [(i− 1) ∗ 256/N, (i− 1) ∗ 256/N, (i− 1) ∗ 256/N ]T (1)

where ri(0), gi(0), and bi(0) indicate the red value, green value, and blue value at
the 0–th iteration, i.e. at the initial iteration in the i–th neuron; ‘256’ indicates
the maximal allowable number of indices in the palette. From the input layer, we
feed each pixel x = [rx, gx, bx]T in the input color image as the training vector
to feed into the SOFM for training a good color palette table.

In the training process of the SOFM, M training vectors are required in each
sweep. In order to maximize the randomness of the input training vectors, avoid
biased training, and avoid some clusters being overtrained during the training
process, Pei et al. presented an effective butterfly–jumping sequence to gener-
ate the input training vectors for each training sweep. Based on the butterfly–
jumping sequence, all pixels in the W ×H input image is separated into W×H

M
training sets S1, S2, ... , and SW×H

M
. Each set contains M training vector to be

used in a training sweep.
For the m–th training sweep, 1 ≤ m ≤ W×H

M , each training vector x in Sm

is fed into the SOFM to search the best matched neuron uc, 1 ≤ c ≤ N , i.e.

2 3 N1

xbxgxr

Fig. 1. The used 1–D SOFM
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the winning neuron, in the output layer based on the following square Euclidean
distance function:

c = arg min
1≤i≤N

‖x− μi‖2 = arg min
1≤i≤N

[(rx − ri)2 + (gx − gi)2 + (bx − bi)2]. (2)

Based on the input vector x and the winning neuron uc with weight μc =
[rc, gc, bc]T , the output layer therefore updates the weight of the winning neuron
and simultaneously performs the lateral update interaction between the winning
neuron uc and its neighboring neurons by the following learning function:

μi(m,n + 1) =
{

μi(m, n) + α(m) · g(i, c, σ(m)) · [x− μi(m,n)], if |i− c| ≤ �σ(m)�
μi(m, n), otherwise (3)

where m and n denotes the sweep number and the iteration number, respec-
tively; g(i, c, σ(m)) is the neighboring function providing the lateral interaction
between ui and uc; σ(m) and α(m) denote the width of neighboring function and
scalar gain function used in the m–th sweep, respectively. g(i, c, σ(m)), σ(m),
and α(m) are defined by

g(i, c, σ(m)) = exp(−|i− c|2/σ2(m)), (4)
σ(m) = σ(0)× km

1 , and (5)
α(m) = α(0)× km

2 , (6)

respectively, where k1 and k2 are set to values in [0.8, 0.99]. By Eq. (5) and (6),
σ(m) and α(m) are decreasing functions in terms of sweep number m. σ(0) is
set to a value in [1, 10] and α(0) is set to a value less than one initially. In our
implementation, we set σ(0) = 10, α(0) = 0.1, k1 = 0.8, and k2 = 0.8 initially.

After updating the weights of neurons in the output layer, the next training
vector in Sm will be fed into the SOFM to search the best matched neuron by Eq.
(2) and update the weights of relevant neurons by Eq. (3). The above training
process is performed iteratively until α(m) becomes small enough. The stopping
rule of the learning process is set to that if the condition α(m) ≤ 4.05648×10−5

is held in the m-th sweep. From the stopping rule, we find that the number of
sweeps Ns can be set to 35 since α(35) satisfies the stopping rule.

2.2 Two Computational Bottlenecks

From the description in last subsection, we now discuss two concerned computa-
tional bottlenecks. The first computational bottleneck occurs in the process for
searching the winning neuron. In each sweep, we have M training vectors and
for each training vector, Eq. (2) is performed to calculate N square Euclidean
distances to select the minimal one, and then determine the winning neuron.
In Eq. (2), it needs three subtractions, two additions, and three square opera-
tions for calculating each square Euclidean distance and from the N calculated
Euclidean distances, N − 1 comparisons are required to find the winning neuron
with minimal Euclidean distance. Overall, each sweep needs to calculate Eq.
(2) M times. Let Tadd, Tsub, Tsq , and Tcmp denote the time required to per-
form one addition, one subtraction, one square operation, and one comparison,
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respectively. From the state of the art in VLSI technology, one addition, one
subtraction, and one square operation can be performed using almost the same
time. Therefore, we can use Tadd to instead of each one of Tsub and Tsq since
Tadd = Tsub = Tsq. Further, one comparison is composed of one subtraction and
one sign test. Thus, we assume Tcmp = 2Tadd for convenience. By setting the
number of sweeps performed in the SOFM to be 35, i.e. Ns = 35, we have the
following proposition.

Proposition 1. For each training vector, finding the winning neuron takes TW

= (10N − 2) × Tadd (= N × (3Tsub + 2Tadd + 3Tsq) + (N − 1) × Tcmp) time.
For each sweep, it takes M ×TW time to find M winning neurons. For an input
color image, it takes T I

W = Ns ×M × TW time to find all winning neurons. For
the case Ns = 35, we have T I

W = (350MN − 70M)× Tadd.

The second computational bottleneck occurs in the process for updating the
weights of winning neuron and its neighbors. For each determined winning neu-
ron, (2#σ(m)$ + 1) neurons must be updated by Eq. (3) where #·$ denotes the
floor operation. From Eq. (3), it needs three additions and four multiplications to
sum up the four terms μi(m, n), [x−μi(m, n)], g(i, c, σ(m)), and α(m); the term
[x−μi(m, n)] needs three subtractions; the neighboring function g(i, c, σ(m)) de-
fined in Eq. (4) needs one subtraction, one multiplication, two square operations,
one division, and one exponentiation operation.

Further, each sweep also needs two multiplications to calculate σ(m) and α(m)
by Eq. (5) and Eq. (6), respectively. Let Tmul, Texp, and Tdiv denote the time
required to perform one multiplication, one exponentiation operation, and one
division, respectively. In our experiments, we have Tmul = Tadd, Texp = 160Tadd,
and Tdiv = 10Tadd. We thus have the following proposition.

Proposition 2. For each winning neuron in the m–th sweep, it takes T m
U =

(2#σ(m)$+1)×(14Tadd+Tdiv +Texp) (= (2#σ(m)$+1)×(3Tadd+5Tmul+4Tsub+
2Tsq +Tdiv +Texp)) time to update the weights of (2#σ(m)$+1) neurons. For the
m–th sweep, it takes M × T m

U + 2Tadd (= M × T m
U + 2Tmul) time for updating

M winning neurons. For an input color image, it takes T I
U = M

∑Ns

m=1 T m
U +

Ns × 2Tadd time to update the weights of all concerned neurons. For the case
Ns = 35, we have

∑35
1 #σ(m)$ = 33 and it leads to T I

U = (18584M + 70)× Tadd

(= (1414M + 70)× Tadd + 101M × (Tdiv + Texp)).

3 The Proposed Faster Learning Process

The above two propositions lead to two motivations of our research. From Propo-
sition 1, Subsection 3.1 presents an efficient pruning–based search strategy to
speed up the process for finding the winning neuron in each iteration. From
Proposition 2, Subsection 3.2 presents a lookup table (LUT) strategy to speed
up the lateral update interaction between the winning neuron and its neighboring
neurons.
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3.1 Pruning–Based Search Strategy for Finding Winning Neurons

By Proposition 1, in order to reduce the time complexity, we build up a mean
pyramid structure for the i–th neuron, 1 ≤ i ≤ N . The base of pyramid saves
the three entries of μi, i.e. ri, gi, and bi; the apex of pyramid saves the mean of
μi, i.e. μi = 1

3 (ri + gi + bi). Totally, N mean pyramids are constructed for the
N neurons. For the input training vector x = [rx, gx, bx]T , we also construct a
mean pyramid and x = 1

3 (rx + gx + bx).
Let D2

b (x, μi) (= (rx − ri)2 + (gx − gi)2 + (bx − bi)2) denotes the squared
Euclidean distance between x and μi; let D2

t (x, μi) (= (x − μi)2 = 1
9 (rx − ri +

gx − gi + bx − bi)2) denotes the squared Euclidean distance between the x and
μi, respectively. We have the following theorem.

Theorem 1. D2
b (x, μi) ≥ 3D2

t (x, μi).

Proof. Let dr = rx − ri, dg = gx − gi, and bx = xb − bi. It yields to 3(d2
r + d2

g +
d2

b)− (dr + dg + db)2 = (dr − dg)2 + (dr − db)2 + (dg − db)2 ≥ 0. It further yields
to d2

r + d2
g + d2

b ≥ 3 × 1
9 (dr + dg + db)2. We thus have D2

b (x, μi) ≥ 3D2
t (x, μi).

We complete the proof. Following the similar proving technique, it yields to
D2

b (X, Y ) ≥ pD2
t (X, Y ) where X = [x1, x2, ..., xp]T , Y = [y1, y2, ..., yp]T , X =

1
p

∑p
i=1 xi, and Y = 1

p

∑p
i=1 yi.

By Theorem 1, for the input training vector x, our proposed pruning–based
search strategy for finding the winning neuron is shown below.

Step 1: Construct the mean pyramid for the input training vector x(=
[rx, gx, bx]T ).

Step 2: Take the mean of x, i.e. x, as the key, we find the closed μc (c =
arg min1≤i≤N D2

t (x, μi)). Then we calculate the squared Euclidean distance
between x and μc as the value of D2

min (= D2
b (x, μc)).

Step 3: Initially, we set j = 1.
3.1: If j > N , then stop Step 3. If D2

t (x, μj) ≥ 1
3D2

min, then we reject the
neuron uj , set j = j + 1, and go to step 3.1; otherwise, go to step 3.2.

3.2: Calculate D2
b (x, μj). If D2

b (x, μj) ≥ D2
min, then we reject the neuron

uj , set j = j + 1, and go to step 3.1; otherwise, set uj to be the winning
neuron, set D2

min = D2
b (x, μj), set j = j + 1, and go to step 3.1.

The speedup efficiency of our proposed algorithm is dependent of the number
of discarded neurons before computing the actual squared Euclidean distances
between bases of the mean pyramids and the given input training vectors x.
Moreover, in each iteration, only the neurons involved in the learning function
defined by Eq. (3) are needed to update their mean pyramids.

Return to Subsection 2.1, Eq. (1) shows that initially for each neuron ui, the
values of ri, gi, and bi in μi are the same, and thus we can construct the mean
pyramid of μi without any operations. In the m–th sweep, for each input training
vector x, Step 1 takes 3Tadd (= 2Tadd+Tmul) time to construct mean pyramid. In
Step 2, the term c = arg min1≤i≤N D2

t (x, μi) takes N×2Tadd (= N×(Tsub+Tsq))
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time to calculate D2
t (x, μi)’s and (2N − 2) × Tadd (=(N − 1) × Tcmp) time to

find the minimal one from D2
t (x, μi)’s. Further, 8Tadd (= 3Tsub + 2Tadd + 3Tsq)

time is needed for calculating the distance D2
b (x, μc). In Step 3.1, the term

D2
t (x, μj) ≥ 1

3D2
min takes 2Tadd (= Tcmp) time to compare D2

t (x, μi) and 1
3D2

min.
Step 3.2 takes 8Tadd (=3Tsub + 2Tadd + 3Tsq) time to calculate D2

b (x, μj) and
takes 2Tadd (= Tcmp) time for checking the condition D2

b (x, μj) ≥ D2
min. For

1 ≤ j ≤ N , we totally perform Step 3.1 N times and Step 3.2 R ×N times for
0 ≤ R ≤ 1. After finding the winning neuron, the learning function in Eq. (3) is
used to update the weights of 2#σ(m)$+1 neurons, and thus (2#σ(m)$+1)×3Tadd

(= (2#σ(m)$ + 1) × (2Tadd + Tmul)) time is needed for updating 2#σ(m)$ + 1
mean pyramids. In our experiments, we find that R = 0.15 in average. Thus, we
have the following proposition.

Proposition 3. For each iteration in the m–the sweep, the proposed pruning–
based search strategy takes T m

W ′ = (7.5N +6#σ(m)$+12)×Tadd time for finding
the winning neuron. For the m–the sweep, it takes M × T m

W ′ time to find M

winner neurons. For an input color image, it takes T I
W ′ = M

∑Ns

m=1 T m
W ′ time

for finding all winner neurons. For the case Ns = 35, we have
∑35

1 #σ(m)$ = 33
and it leads to T I

W ′ = (262.5MN + 618M)× Tadd.

The computational advantage of our proposed pruning–based search strategy can
be verified from Proposition 1 and Proposition 3. Suppose that the SOFM has
256 neurons and each sweep contains 256 training vectors, i.e. N = 256 and M =
256, and then we have T I

W = 22919680Tadd and T I
W ′ = 17361408Tadd. Thus, the

theoretical execution–time improvement ratio of our proposed pruning–based
search strategy over the traditional search strategy is 0.24 (= T I

W −T I
W ′

T I
W

). From

Proposition 2, we can obtain T I
U = 4757574Tadd and it leads to that the time

required for searching all winning neurons over the total time required in the
SOFM–based training process is 83% (= T I

W

T I
W +T I

U

). Consequentially, we have the
result.

Theorem 2. The theoretical execution–time improvement ratio of our proposed
pruning–based search strategy over the SOFM–based training process is 0.20 (=
0.24× 83%).

3.2 LUT–Based Lateral Update Interaction

From Eqs. (3)–(6), it is observed that g(i1, c1, σ(m)) ·α(m) and σ(m) relative to
the sweep number m and independent of the input image. Further, g(i1, c1, σ(m))
is equal to g(i2, c2, σ(m)) if the condition |i1 − c1| = |i2 − c2| is held. Thus,
two LUTs, L1 and L2, where L1 is an 1–D LUT relative to m and L2 is a 2–
D LUT relative to m and |i − c|, can be constructed in advance to reduce the
computational effort required in the lateral update interaction. In L1, each entry
L1(i1), 1 ≤ i ≤ Ns (= 35), is set to #σ(i1)$. In L2, each entry L2(i1, i2) can be
calculated by
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L2(i1, i2) =
{

α(i1) · exp(−i22/σ2(i1)), if i2 ≤ #σ(i1)$
0, otherwise (7)

where 1 ≤ i1 ≤ Ns, 0 ≤ i2 ≤ σ(1), and σ(1) = 8 (= σ(0)× k = 10× 0.8).
For each training vector in the m–th sweep, the weight of the winning neuron

and its neighbors in current iteration are updated by

μi(m, n + 1) =
{

μi(m, n) + L2(m, |i− c|) · [xi(n)− μi(m,n)], if |i− c| ≤ L1(m)
μi(m, n), otherwise (8)

In Eq. (8), it takes 10Tadd + Tabs (= 3Tadd + 3Tmul + 4Tsub + Tabs) time
to update the weights of each concerned neuron where Tabs denote the time
required to perform one absolute operation. Further, the absolute operation is
composed of one sign testing process for the input values and one sign flipping
process if the result of sign testing process is negative. We thus set Tabs = 2Tadd

for convenience and 10Tadd + Tabs can be replaced by 12Tadd. For each iteration
in the m–th sweep, 2#σ(m)$ + 1 neurons are needed to be updated by Eq. (8).
Thus, we have the following proposition.

Proposition 4. Based on the proposed LUT–based update strategy, each itera-
tion in the m–th sweep takes T m

U ′ = (24#σ(m)$ + 12)× Tadd time to update the
weights of concerned neurons. For the m–th sweep, it takes M × T m

U ′ time for
updating M winner neurons. For an input color image, it takes M

∑Ns

1 T m
U ′ time

to update the weights of all concerned neurons. For the case Ns = 35, we have∑35
1 #σ(m)$ = 33 and it leads to T I

U ′ = 1212M × Tadd.

The computation advantage of our proposed LUT–based update strategy can
be verified from Proposition 2 and Proposition 4. Suppose N = 256 and M =
256, we have T I

U = 4757574Tadd and T I
U ′ = 310272Tadd. Thus, the theoretical

execution–time improvement ratio of our proposed LUT–based update strat-
egy over the traditional update strategy is 0.93 (= T I

U−T I
U′

T I
U

). Due to T I
W =

22919680Tadd and T I
U = 4757574Tadd, the time required in the update process of

all concerned neurons over the total time required in the SOFM training process
is 17% (= T I

U

T I
W +T I

U

). Consequentially, we have the result.

Theorem 3. The theoretical execution–time improvement ratio of the LUT–
based update strategy over the SOFM training process is 0.16 (= 0.93× 17%).

4 Experimental Results

In this section, some experimental results are demonstrated to show the com-
putational advantage of our proposed pruning–based search strategy and the
LUT–based update strategy. All the concerned experiments are performed on
the Intel Core2 Duo Processor E7400 with 2.8 GHz and 2 GB RAM. The op-
erating system is MS–Windows XP and the program developing environment
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is Borland C++ Builder 6.0. Surprisingly, the theoretical execution–time im-
provement ratios of our proposed two strategies mentioned in Theorem 2 and
Theorem 3 are close to the practical ones.

Four popular testing images, namely Baboon, Lena, Airplane, and Pepper, are
used to evaluate the performance of the four concerned methods. Our experimen-
tal results demonstrate that under the same peak signal-to-noise ratio (PSNR),
our proposed pruning–based search strategy has 18.7% average execution–time
improvement ratio and it is close to the theoretical execution–time improve-
ment ratio 20%; our proposed LUT–based update strategy has 15.6% average
execution–time improvement ratio and it is close to the theoretical execution–
time improvement ratio 16%. Overall, our proposed two strategies has 34.3%
execution–time improvement ratio in average while preserving the same result
as in the traditional method.

5 Conclusions

In the SOFM, the iterative learning process is the kernel process, but it is
very time–consuming. In order to alleviate this time–consuming problem, taking
Pei et al.’s SOFM–based palette color indexing method as a representative, we
have presented the proposed novel two new strategies, the pruning–based search
strategy and the LUT–based update strategy, to speed up the learning process
significantly while keeping the same image quality. Based on four testing im-
ages, experimental results indicate that our proposed two strategies have 35%
execution–time improvement ratio in average. It is a future research issue to
apply our results to speed up other SOFM–based applications.

References

1. Kohonen, T.: Construction of similarity diagrams for phonemes by a self-organizing
algorithm. Technical Report TKK-F-A463, Helsinki University of Technology, Es-
poo, Finland (1981)

2. Pei, S.C., Chuang, Y.T., Chuang, W.H.: Effective palette indexing for image com-
pression using self-organization of Kohonen feature map. IEEE Transactions on
Image Processing 15(9), 52–61 (2006)

3. Information Technology–Lossless and Near-Lossless Compression of Continuous-
Tone Still Images, ISO/IEC Standard 14 495–1 (1999)

4. Information Technology–JPEG 2000 Image Coding System. ISO/IEC Standard 15
444–1 (2000)

5. Roleof, G.: PNG: The Definitive Guide, 2nd edn. Greeg Roelof, San Jose (2003),
http://www.libpng.org/pub/png/book/

http://www.libpng.org/pub/png/book/


Probabilistic Satellite Image Fusion

Farid Flitti1, Mohammed Bennamoun1, Du Huynh1, Amine Bermak2,
and Christophe Collet3

1 The University of western Australia�, Auatralia
2 The Hong Kong University of Science and Technology, Hong Kong

3 Strasbourg University, France

Abstract. Remote sensing satellite images play an important role in
many applications such as environment and agriculture lands monitor-
ing. In such images the scene is usually observed with different modal-
ities, e.g. wavelengths. Image Fusion is an important analysis tool that
summarizes the available information in a unique composite image. This
paper proposes a new transform domain image fusion (IF) algorithm
based on a hierarchical vector hidden Markov model (HHMM) and the
mixture of probabilistic principal component analysers. Results on real
Landsat images, quantified subjectively and using objective measures,
are very satisfactory.

1 Introduction

Remote sensing earth monitoring has gained an increasing interest in the last
decades. A lot of applications in agriculture, forest resources management and
water studies benefit nowadays from such tools. Usually satellite imagers observe
earth in various spectral domains to provide a richer description of the scene.
However, the benefit from available diverse information requires the ability to
provide an efficient summary of the observed scene that avoids the exhaustive
examination of all individual spectral bands. Image Fusion (IF) techniques aim
to summarise the whole collected information and a built a unique composite
image [1]. The book of Blum and Liu [1] provides a good survey of this research
area. The authors identify two main categories of IF techniques depending on
whether the combination of the input images is done in the original input space
(i.e., gray level) or in a Multiscale Analysis (MA) domain. MA based techniques
combine the MAs of the inputs to obtain a composite multiscale representation,
of which the reconstruction gives the desired fused image. Generally, non-MA
based techniques seek for a mapping (linear or not) from an ND space to a 1D
space, N being the number of input images [2,3,4,5,6].

A collection of local mappings, based on either principal component analysis
(PCA) or self organizedmaps (SOM), was used in [7] for the fusion of multispectral
Landsat images and compared to global PCA and SOM. The author concluded
that using local projections gives a better contrast in the fusion result. We propose

� This work is sponsored by the Australian Research Council (ARC) DP0771294.
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to use the mixture of probabilistic PCA, (MPPCA), on the Laplacian Pyramids
(LP) of the input images, with a unique Hidden Markov Tree (HMT) Model as reg-
ularisation of the mixture, to provide a fusion model that accounts for all different
kind of correlations between the MA coefficients. In fact, MA coefficients exhibits
three kinds of correlations, namely inter-scale, intra-scale and inter input images
[8,9]. This model was used successfully for multi-component image segmentation
[1] and is extended in this work to provide an intuitive way to infer the fusion re-
sult composite MA representation. In [10] a forest of HMT modeling the input
image MAs separately was used. This model neither encloses a projection model
nor considers the existing correlationbetween the different input images. However,
a projection model is suitable for IF, and correlation between observations of the
input images exists always. In [8] we proposed an IF algorithm for astronomical
images with different data driven model and no included mapping. Besides, this
work aimed the detection and fusion of the astronomical object, therefore only sig-
nificant MA coefficients, corresponding to real objects, were used for the fusion.
This is completely different from the context and the methods of this work.

The paper is organized as follows. In section 2, the LP analysis and its statisti-
cal properties are recalled. The regularised MPPCA model is detailed in section
3. The proposed IF algorithm is presented in section 4. Section 5 is reserved to
experimental results and conclusions.

2 The Laplacian Pyramid

A basic iteration of the Laplacian Pyramid LP [11] involves two steps: reduction
and expansion. Given the approximation cj of the original signal at resolution
j, the reduction step computes the approximation cj+1 by lowpass filtering and
downsampling cj . The expansion step predicts cj by upsampling and filtering cj+1
and then computes the details coefficients wj+1 as the difference between the cj

signal and its prediction1. Despite its simplicity, this approach is efficient for im-
age modeling. The reconstruction proceeds with iterations of one step. Given the
details and approximation at scale j +1, the approximation cj , at scale j, is com-
puted by upsampling and filtering cj+1 and adding the result to wj+1.

For an input band Fi of size T 2, one operates separately on the rows and
then on the columns as for 1D signal analysis. Thus, for each scale j, we obtain
a lattice Wj of size 4R−j , where R = ln(T )/ln(2). The set of scales {Wj}0≤j≤R

composes the pyramidWi of details coefficients corresponding to Fi. Combining
all pyramids of the N input bands leads to a unique Vectorial Pyramid (VP)W ,
where detail coefficients, w1

j (k), · · · , wN
j (k), at the space location k and the scale

j form a unique multidimensional vector Wjk. The objective of image fusion is
to combine this VP in a single composite pyramid for which the reconstruction
gives a unique image more suitable for human perception and giving an efficient
summary of the whole information existing in all input images.

To simplify notations, we adopt the following convention. As the VP pyramid
is naturally partitioned into scales, VP= S = S0 ∪ S1 . . . ∪ SR, from the highest
1 Thi procedure is initialised by choosing c0 equal to the original signal.
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to the lowest resolution, the coefficient vectorWjk at the scale j and the spatial
location k is denoted Ws, where s ∈ Sj . Therefore, we note:

Ws =Wjk ≡ (w1
s , · · · , wN

s ) = (w1
j (k), · · · , wN

j (k)) (1)

The detail coefficients of a single LP exhibit some well known properties [9,12],
namely the non gaussianity, persistence and local correlation. In addition, the
VP exhibits an inter-band correlation between the details coefficients belonging
to the same vector in the VP., i.e., coefficients from the LPs of different bands
and situated at the same scale, and the same spacial location. In the next section
the regularised MPPCA model is detailed and linked to the properties of VP.

3 The Regularised MPPCA Model

The PPCA model. The PPCA is a statistical formulation of the well known
PCA [13]. It links each N × 1 observed vector Ws to a q × 1 latent vector ts,
q < N , as follows:

Ws = Ats + μ + ε (2)

where A is a N × q matrix, μ the observed data mean and ε is an isotropic
Gaussian noise, i.e., N (0, σ2I), I being the N × N identity matrix. Thus, the
probability distribution of Ws given ts is Gaussian N (Ws; Ats + μ, σ2I).

Using a Gaussian prior, N (ts; 0, I) , for ts, the marginal distribution of Ws

is the Gaussian N (Ws; μ, C), where C = σ2I + AAt is an N × N matrix [14].
Bayes rule gives the a posteriori probability of ts [14]:

p(ts|Ws) = N (ts; M−1At(Ws − μ), M−1) (3)

where M = σ2I −AtA is a q × q matrix.
The maximization of the data log-likelihood for the scale Sj, L =

∑
s∈Sj ln

{p(Ws)} gives the following parameter estimators [14]:

μ̂ =
∑

s∈Sj Ws

|Sj | ; σ̂2 =
1

D − q

D∑
j=q+1

λj ; Â = Uq(Λq − σ2I)
1
2 R. (4)

where λj are the eigenvalues of the data covariance matrix, Σ = 1
|Sj |

∑
s∈Sj

(Ws − μ)(Ws − μ)t, given in descending order (λ1 ≥ · · · ≥ λq), Λq is a di-
agonal matrix of the q largest eigenvalues, Uq the matrix of the corresponding
eigenvectors, and R is an arbitrary orthogonal rotation matrix.

The regularised MPPCA. The mixture of Probabilistic Principal Component
Analyzers (MPPCA) [14] was introduced to model complex data structures as
a mixture of local PPCAs. For a K component MPPCA, the distribution of
the observations is P (Ws) =

∑K
i=1 ΠiP (Ws|Xs = γi), where the local PPCA

corresponding to the cluster γi is characterized by the mean μi, the variance σ2
i ,

the projection matrix Ai and the prior Πi. The label variable Xs indicates to
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which cluster the observation vector Ws belongs. Note that in this formulation
the prior Πi is not informative about the location of s.

The EM algorithm is used to iteratively estimate the mixture parameters [14]:

Π̂i =
∑

s∈Sj Υsi

|Sj| ; μ̂i =
∑

s∈Sj ΥsiWs∑
s∈Sj Υsi

, (5)

where Υsi = P (Xs = γi|Ws) = P (Ws|Xs=γi)Πi

P (Ws) ; Âi and σ̂2
i are given, in the same

way of Eq. 4, by eigen decomposition of the a posteriori responsibility-weighted
covariance matrix:

Σi =
∑

s∈Sj Υsi(Ws − μ̂i)(Wn − μ̂i)t∑
s∈Sj Υsi

. (6)

The use of the MPPCA model in each scale of the VP deals with the non
gaussianity and the inter-band correlation properties. To model persistence and
local correlation, we change the non informative prior by a Hidden Markov Tree
(HMT). The observation probability becomes:

P (Ws) =
K∑

i=1

P (Xs = γi)P (Ws|Xs = γi), (7)

where X = {Xs; s ∈ S} is a HMT and each class γi is spanned by a local PPCA.
The likelihood of Ws, s ∈ Sj , wrt the local PPCA corresponding to the class
γi, P (Ws|Xs = γi), is given by N (Ws; μi, Ci), where the matrix Ci is obtained
in similar manner to Eq. 4 by eigen-decomposition of the weighted covariance
matrix:

Σi =
∑

s∈Sj P (Xs = γi|W)(Ws − μ̂i)(Ws − μ̂i)t∑
s∈Sj P (Xs = γi|W)

; (8)

with μ̂i =
∑

s∈Sj P (Xs=γi|W)Ws∑
s∈Sj P (Xs=γi|W) .

The HMT a priori. The HMT is probabilistic model that define a set of
statistical independencies in order to facilitate the computation of the joint dis-
tribution of the involved variables, i.e., the observation vectors Ws and their
labels Xs, s ∈ S, also called hidden states (HS). Each Ws has a unique HS Xs.
Each Xs, apart from Xr, has a unique direct parent Xs− , on the path to the
root. Every node Xs, apart from the leaves (i.e.,the terminal ones), has four.

The hidden state Xs takes two possible values : γ2 = 1 ifWs is significant(i.e.,
with large magnitude) and γ1 = 0 otherwise. Given the HMT model, the vector
Ws is independent from all the remaining variables conditionally to its hidden
state Xs, i.e., P (Ws|X) = P (Ws|Xs). Thus, the likelihood of each vector is
expressed as a mixture of two densities as follows:

P (Ws) =
2∑

i=1

P (Ws|Xs = γi)P (Xs = γi). (9)
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This actually captures the non gaussianity property of the detail coefficient
distribution. In practice, the observations are introduced on J scales in the
quadtree, for the other scale the likelihood is set to be equal to 1 : ∀ j > J ,
∀ Ws ∈ Sn, ∀ i: fi,j(Ws) = 1.

To deal with the inter-scale dependencies, each hidden state is assumed to be
independent from all its ascendants given its parent, therefore the joint proba-
bility of the hidden states becomes [15,9]:P (X) = P (Xr)

∏
s	=r

P (Xs|Xs−), where

Xr is the root node. It is important to note that since each four neighbor hidden
states share the same parent at the next higher scale, the HMT allows also the
capture of local inter-scale correlation.

From the assumptions above, it can be easily established that the joint dis-
tribution P (X,W) can be expressed as [15,9]:

P (X,W) = P (Xr)
∏

s∈S, s	=r

P (Xs|Xs−)
∏
s∈S

P (Ws|Xs), (10)

where P (Xr) stands for the a priori and P (Xs|Xs−) stands for the parent to
child transition probability.

This formulation of P (X,W) is interesting as it allows to compute exactly
and efficiently P (Xs = γi|W), s ∈ S, the Marginal a posteriori probability of
the hidden state Xs to be equal to i given all the coefficients in the VP W by
alternating two passes on the HMT [16]

4 The Proposed Image Fusion Algorithm

The proposed approach is illustrated in (Fig.1) for the case of two input bands.
Each detail vector Ws, s ∈ Sj, j = 0, · · · , J , is modeled using a regularised
MMPCA (Eq. 9), where each local PPCA defines a local mapping (Eq. 2) on a
lower dimensionality space. Therefore, a natural way for fusing the VP is then
to infer the value of the hidden vector t̂s associated with the local PPCAs, for
each Ws, s ∈ Sj , j = 0, · · · , J . The best estimate t̂is of ts given the ith PPCA
and the detail vector Ws is the mean of the a posteriori distribution of ts given
this local PPCA (Eq. 3). In addition, due to the fact that projection axis could
be oriented in the N-dimensional space which may cause an undesired artefact in
the output, we constraint the the sign of all elements of the projection vectors to
be positive [7]. Accordingly, the global estimate given the regularised MMPCA
is computed as follows:

t̂s =
2∑

i=1

‖M−1
i At

i‖(Ws − μi)P (Xs = γi|W) (11)

where Mi = σ2
i I−At

iAi and ‖.‖means that the elements of the matrix are turned
to positive. We keep only the first element in t̂s corresponding the PPCA axis
with the largest eigenvalue. This is a reasonable operation since the representa-
tion in the LP domain is more parsimonious, especially in the case of two input
images. This was confirmed by our experiments.
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Fig. 1. A flowchart of the image fusion algorithm. The Laplacian Pyramid analyzes
the N = 2 input images separately (on the left). This leads to a multiscale pyramid of
detail coefficients for each band, up to a fixed scale J , J = 4 in this example. Then, all
pyramids are converted to a unique Vectorial Pyramid (VP) which is modeled using the
Regularised MPPCA Model. The a posteriori probability of the local PPCA’s is used
to fuse the VP, and the resulting pyramid, with the average of coarsest approximations
are used to reconstruct the fused output image.

In addition, to be more robust against additive noise, we consider that each
observed details coefficient is the sum of a noise free (i.e., true) coefficient
and a gaussian noise. Thus, we operate a soft shrinking of the observed coef-
ficients [17] before the fusion using Eq. 11. Each shrinked coefficient is given by
[17]:W̃s = σs

σs+σn
Ws, where σs is the standard deviation of the signal (noise free

detail coefficient) and σn is the standard deviation of the additive noise which
is assumed to be gaussian. This estimator of the noise free detail coefficient W̃s,
s ∈ Sj , j = 0, · · · , J , is called oracle since the variances of the noise and the sig-
nal are usually unknown as the observation is the addition of the signal and the
noise. In the context of the regularised MPPCA model (see the PPCA model in
Eq. 2) we propose empirical estimations of these standard deviations. We choose
σs as the variance of the first axis of the corresponding PPCA, which is equal
to the square root of the largest eigenvalue

√
λi

1. The noise variance σn is given
by the sum of the variances of the remaining axis and the variance σi of the
additive noise in the local PPCA model used in the projection. Therefore, the
noise free coefficient given the ith local PPCA is:

W̃s =

√
λi

1

σi +
∑q

j=1

√
λi

j

Ws. (12)

The new fusion formula using the noise free detail coefficients is then:

t̃s =
2∑

i=1

√
λi

1

σi +
∑q

j=1

√
λi

j

‖M−1
i At

i‖(Ws − μi)P (Xs = γi|W). (13)
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The fused detail coefficients t̃s, s ∈ Sj, j = 0, · · · , J , with the results of the
averaging of the coarsest approximation (see Fig. 1) give the composite fused
pyramid of which the reconstruction gives the desired fused output image. Ex-
perimental results on the proposed fusion technique are given in next section.

5 Results and Conclusion

We tested our methode on a Thematic Mapper image from the Huntsville area,
Alabama, USA, containing seven bands of 512x512 images from the U.S. Landsat
series of satellites2. We fused the seven bands to obtain a unique fused gray
level image. We compared the fusion performances of our method, the simple
averaging, and the local and global PCA and SOM in [7]. Visually the results
of our method and the average look much better than the results in [7], with a
slight advantage to our method, Fig. 2. The superiority of our fusion to the result
in [7], even though both use collection of linear projections (especially for the
case of local PCAs), could be explained be explained by the fact that we perform
our fusion in the MA domain where the representation is more compact while
this is done in the gray level (GL) domain in [7]. Therefore the first eigenvalue
of the PCA is more predominant in the MA domain than the GL domain, and
the projection on the first axis gives less error with our technique. The other
aspect of this comparison is the unexpected well performance of the averaging.
This could be explained by the high redundancy of the information enclosed in
the seven bands. However, the superiority of our fusion is demonstrated in the
presence of noise. The last two images in Fig. 2 show the better performance
of our method in presence of noise. To avoid that the noise fits perfectly to
the Regularised PPCA model which is the core of our method, we simulate the
noise as the addition of Gaussain and uniform noises with the same energy. The
corresponding Signal to Noise Ratio (SNR) is 5db. Finally we used the average
cross-entropy (CE) between the fused images and the inputs [1] as an objective
measure to compare the results. The less the average, the better the results. For
the noise free test, we obtain a CE equal to 1.23 with our method while the CE
is 1.27 for the result of the averaging. We compute the CE of both techniques in
the case of noised inputs. The CE for our method is 1.66 with our algorithm and
1.94 with the averaging. Thus, the objective measure confirms the performance
of our proposed algorithm.

In conclusion, an image fusion algorithm, based on the use of a Hidden Markov
Tree regularisation of the mixture of PPCA modeling the detail coefficients of
the Laplacian Pyramid transform, was presented. This model accounts of all
kind of correlation of the input images and allows a Bayesian inference of the
fusion image. Results on Landsat images, evaluated using both subjective and
objective measures, showed the effectiveness of the proposed algorithm and its
robustness.

2 The authors would like to thank Professor P. Scheunders for providing the the Land-
sat image with seven bands.
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Fig. 2. Landsat remote sensing images. From the top left to bottom right, the seven
originals original bands, the fusion result using the proposed method and the fusion
result using the mean. The two last images are the results of the fusion after adding
noise (SNR 5db) to all seven bands using our method and the averaging, respectively.
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Abstract. We study a well-known scalar quantity in differential geom-
etry, the Ricci scalar, in the context of Diffusion Tensor Imaging (DTI).
We explore the relation between the Ricci scalar and the two most popu-
lar scalar measures in DTI: Mean Diffusivity and Fractional Anisotropy.
We discuss results of computing the Ricci scalar on synthetic as well as
real DTI data.

1 Introduction

Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging technique that
measures diffusion of water molecules in tissue in a non-invasive way [1,2,3]. It is
mostly used for the study of brain white matter. DTI is used in clinical research
e.g. for localization of brain tumors in relation to white matter tracts, assisting in
surgical planning and in the assessment of white matter maturation in children.
Information about the white matter architecture and integrity can be extracted
from the so-called diffusion tensor.

Different scalar measures (scalar quantities constructed from the diffusion
tensor) have been proposed in the literature, aiming to reveal information about
the underlying diffusion process and tissue structure. Scalar measures are also
studied to relate the state of white matter to different pathologies. The most
common ones are the mean diffusivity (MD) and fractional anisotropy (FA) [4].

Mean diffusivity can be interpreted as average diffusion per imaged voxel. In
general, MD is smaller in areas with organized tissue. This allows mean diffusivity
images to show main white matter tracts but no detailed structure. Fractional
anisotropy measures the anisotropy of the diffusion. Roughly speaking, there
is more diffusion along elongated structures than across them. High FA values
typically indicate the presence of such an elongated structure while low values
relate to isotropic diffusion and scarcity or absence of structures. However, low
FA values are also found in voxels with complicated fiber architecture such as
crossings [5]. Both MD and FA give relevant information about white matter
but have limitations as well. It is therefore also worth to study other scalar DTI
measures which could improve the clinical utility of DTI.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 419–426, 2009.
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In this paper we consider a well-known scalar quantity in differential geometry,
the Ricci scalar, in the context of DTI. The Ricci scalar has been used in 2D
image processing for curvature analysis [6]. The goal of this research is to evaluate
whether the Ricci scalar can provide additional information on white matter
structures w.r.t. the usual scalar measures. We found promising preliminary
results on simulated and phantom data showing high negative values of the
Ricci scalar at voxels with crossing structures.

2 Theory

In the DTI model diffusion is represented by the diffusion tensor D. This is a
symmetric, positive definite second-order tensor in dimension three constructed
from the DTI measurements. On the other hand, a metric tensor g (see, for exam-
ple, [7]) is a second-order symmetric positive definite tensor field on a manifold
which defines the inner product of two tangent vectors v, w as

〈v, w〉 = gijv
iwj (1)

The relation between a Riemannian metric and its inverse is1

gikgkj = δj
i (2)

The diffusion tensor can naturally be associated to (the inverse of) a Riemannian
metric tensor in dimension three [8]:

Dij = gij , i, j = 1, 2, 3 (3)

In this way large diffusion in a certain direction corresponds to a short distance
in the metric space. A number of authors have studied DTI in the Riemannian
framework [9,10,11,12].

Different scalar quantities can be constructed from contractions of the metric
and its curvature tensors. The simplest of those is the so-called Ricci scalar,
intrinsically related to the geometry of the metric space. The Ricci scalar is
given by (see, for example, [13]):

R = gijRij (4)

where Rij is the Ricci curvature tensor (see Appendix). Unlike the metric, the
Ricci tensor is not positive definite, allowing for both positive and negative values
of the Ricci scalar. This is a major difference with respect to the usual DTI scalar
measures, which are always positive. In fact, the Ricci scalar in dimension two
is twice the Gaussian curvature. For example, the Ricci scalar on a unit sphere
is a positive quantity: R = 2. On the other hand, on a saddle surface the Ricci
scalar is negative everywhere (except at the origin). In dimension three the Ricci
scalar does not completely characterize the curvature but represents instead the
average of the characterizing curvatures.
1 In this paper we use Einstein’s summation convention, aia

i =
∑

i aia
i.
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2.1 Ricci Scalar and Mean Diffusivity

The Ricci scalar is related to the mean diffusivity (MD):

MD =
1
3
(λ1 + λ2 + λ3) (5)

where the λ’s are the eigenvalues of the diffusion tensor. Indeed, we can write:

R = gijRij
(3)
= DijRij = D̃ijR̃ij = λ1R̃11 + λ2R̃22 + λ3R̃33 (6)

The last two equalities follow from the fact that R is a scalar quantity and thus
independent of the used coordinate system; we choose the coordinate system
in which the diffusion tensor is diagonal, and denote tensors in this coordinate
system with a tilde. Comparing (6) to (5) it is clear that we can think of the
Ricci scalar as a kind of curvature-weighted mean diffusivity.

2.2 Ricci Scalar and Fractional Anisotropy

The Ricci scalar is intrinsically different from the fractional anisotropy in the
following sense. A zero FA value indicates (perfect) isotropic diffusion (see Fig. 1
top left) while a non-zero value indicates anisotropy to some degree, i.e., the
presence of structures obstructing the diffusion process. On the other hand, a
zero Ricci scalar can indicate both isotropy or anisotropy (see Fig. 1 top left and
right). The same is true for a non-zero Ricci scalar (see Fig. 1 bottom left and
right).

More precisely, a homogeneous isotropic diffusion corresponds to the case
where

λ1 = λ2 = λ3 = λ (7)

In this case the fractional anisotropy

FA =
√

3√
2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2√

(λ1)2 + (λ2)2 + (λ3)2
(8)

is just zero. The Riemannian metric and inverse metric associated to the isotropic
diffusion tensor are Euclidean:

gij =
1
λ

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ , gij = λ

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ (9)

The Riemann tensor of a Euclidean metric is zero. It is clear from equation (10)
that the Ricci tensor will also be zero, and so will be the Ricci scalar. In this
way we have shown that homogeneous isotropic diffusion implies a zero Ricci
scalar. However, this is not the only case where the Ricci scalar is zero. Another
situation in which this happens is when the diffusion tensor field is homogeneous
and anisotropic. Note that FA in this case would be different from zero.

We conclude that the Ricci scalar and fractional anisotropy certainly have a
different character. The zeros (non-zeros) of the Ricci scalar cannot be always
related to isotropic (anisotropic) diffusion as in the case of FA.
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Fig. 1. Top left: Homogeneous isotropic tensor field: R = FA = 0. Top right: Homo-
geneous anisotropic case: R = 0, FA �= 0. Bottom left: Inhomogeneous isotropic case:
R �= 0, FA = 0. Bottom right: Inhomogeneous anisotropic case: R �= 0, FA �= 0.

3 Experiments

In order to explore the geometric significance of the Ricci scalar, we have exper-
imented with simulated, phantom and real data.

Simulated Data

To get a quick insight in what the Ricci scalar can detect in a tensor field, we
refer to Fig. 2, where we have simulated a crossing of orthogonally oriented sets
of tensors, modeling homogeneous diffusion tensors corresponding to two fiber
bundles. The voxels where the Ricci scalar is non-zero are colored according to
its sign. In the crossing region of this tensor field, the Ricci scalar tends to be
large and negative. Since the Ricci scalar involves second order derivatives (see
Appendix), the minimum size of the region to be considered depends on the scale
of the Gaussian differential operator [14] [15] [16].

Phantom Data

We computed Ricci scalars on a real phantom data consisting of cylinder con-
taining a water solution, three sets of crossing synthetic fiber bundles and three
supporting pillars on the boundary. In Fig. 3 we see that in the region where
the fiber bundles cross Ricci scalars have relatively large negative values, despite
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Fig. 2. Left: A simulated crossing of tensors. Middle: Ricci scalars computed on the
tensor field, blue for negative- and red for positive values. Right: Voxels where the
absolute value of Ricci scalar is the highest.

Fig. 3. Top left: Mean diffusivity on a trans-axial slice of the cylinder. Top right:
A temperature map of Ricci scalars on the same slice. Blue indicates negative values.
Bottom left: Mean diffusivity on an axial slice containing crossing fiber bundles. Bottom
right: Ricci scalars on the same slice. Large negative values found in the crossing.

of the noisy nature of the DTI-data. This might be explained by the fact that
crossings can be related to saddle shaped structures [17], for which the Ricci
scalar has a negative value.



424 A. Fuster, L. Astola, and L. Florack

Real Data

We have also experimented with real DTI data of a rat brain. We plotted the
Ricci scalars in a temperature map, to emphasize the differences in sign. We
identified positive (negative) outliers of the Ricci scalar data with maximum
(minimum) values of the rest of the data. The Ricci scalar gives information
about the variations in diffusion tensor orientations unlike FA, which will identify
tensors with similar anisotropy even though their orientation may differ. This
can be seen e.g. in the boxed region in Fig. 4, which is known to have complex
structure [18].

Fig. 4. Left: Ricci scalars on a slice of the rat brain DTI image. Middle: Fractional
anisotropy. Right: Mean diffusivity.

4 Discussion

The Ricci scalar on real DTI images show rough structures in a similar way to
FA and MD. The more complex curvature related information cannot be fully
appreciated with a 2D visualization, since both the Ricci scalar and DTI data
are intrinsically 3D. Work in progress includes the integration of the Ricci scalar
into a 3D DTI visualization toolkit, which can also render the so-called high
angular resolution diffusion images (HARDI) [19]. The simulated and phantom
data images show large negative values of the Ricci scalar at fiber crossings. The
theoretical explanation for this fact should be refined. Therefore, more work is
needed to investigate whether the Ricci scalar can be used in the detection of
fiber crossings in DTI data. If this indeed is the case, besides in fiber tracking
it would be helpful for voxel classification [20], where the regions with single
orientation could be identified as the regular DTI data (second order tensors),
and higher order models (e.g. fourth order tensors) could be used in regions
where inhomogeneous fiber population is anticipated. It could also be useful in
the so-called splitting tracking method in HARDI framework [21], by indicating
the potential bifurcation points of fiber bundles with large negative values.
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Appendix

The Ricci tensor is a symmetric second-order tensor given by:

Rij = Rk
ikj =

∂Γ k
ij

∂xk
− ∂Γ k

ik

∂xj
+ Γ k

klΓ
l
ij − Γ k

jlΓ
l
ik (10)

where Ri
jkl is the Riemann tensor and the Γ ’s are the Christoffel symbols:

Γ i
jk =

1
2
gil(∂kglj + ∂jglk − ∂lgjk) (11)
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Abstract. Smoothing of biomedical images should preserve gray-level
transitions between adjacent tissues, while restoring contours consistent
with anatomical structures. Anisotropic diffusion operators are based on
image appearance discontinuities (either local or contextual) and might
fail at weak inter-tissue transitions. Meanwhile, the output of block-wise
and morphological operations is prone to present a block structure due
to the shape and size of the considered pixel neighborhood.

In this contribution, we use differential geometry concepts to define
a diffusion operator that restricts to image consistent level-sets. In this
manner, the final state is a non-uniform intensity image presenting ho-
mogeneous inter-tissue transitions along anatomical structures, while
smoothing intra-structure texture. Experiments on different types of
medical images (magnetic resonance, computerized tomography) illus-
trate its benefit on a further process (such as segmentation) of images.

Keywords: non-linear smoothing, differential geometry, anatomical
structures segmentation, cardiac magnetic resonance, computerized
tomography.

1 Introduction

By the sensitivity of medical imaging scanners to tissue physical and chemical
properties, the appearance of anatomical structures should be uniform. However,
the presence of radiological noise (among other artifacts) disturbs structures
homogeneity and suggests an image smoothing before further segmentation of
anatomical structures. Medical imaging smoothing should homogenize the in-
tensity inside anatomical structures, while preserving intensity changes at their
boundaries without altering their shape. Existing smoothing methods for pre-
serving image features (edges and corners) might be grouped into block-wise and
differential operators.

Block-wise operators (like median [1], morphological [1], mean shift [2] or
Kuwahara inspired [3]) replace the pixel intensity by a function (usually statis-
tical [2, 3]) of neighboring values. Since they can be related to image level-sets
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evolution (rather than image intensity evolution) they naturally preserve con-
trast changes. The counterpart is that evolution of image contours alters their
shape. Contours in filtered images deform according to the shape of the structure
element defining the pixel neighborhood. In many cases [3,1], even the smoothed
image might present a block-wise appearance congruent with the shape of such
structure element.

Non-linear anisotropic filtering methods [4, 5, 6] use the formulation of heat
diffusion to evolve image intensity. Operators are designed to slow down diffusion
across structures and features of interest, which are determined by measures of
image appearance discontinuity. Common trends are either the norm of image
derivatives (1st order for edges [4] and 2nd order for ridges [6]) or global contex-
tual discontinuities [5]. In order to ensure stability of the diffusion process [7],
heat diffuses on the whole image plane, which implies convergence to a uniform
intensity image [4,7]. This fact forces adding close-to-data constraints or relying
on a given number of iterations (termination problem) to ensure preservation of
the image most relevant features [4,8].

In this paper we introduce a differential operator, the Structure-Preserving
Diffusion, SPD, which restricts diffusion to a smooth approximation of image
contours. Differential geometry arguments [9] ensure stability of the diffusion
process. A main contribution is that SPD homogenizes gray-level along regular
image contours without altering their shape. In this manner, SPD converges
(i.e. the iterative scheme stabilizes) towards a non-uniform image presenting
a uniform gray-level inside anatomical structures, while preserving inter tissue
transitions.

2 Structure-Preserving Diffusion

Solutions to the heat diffusion equation with initial condition a given image,
I0(x, y), provide a time (scale) dependant family, I(x, y, t), of smoothed versions
of I0(x, y). Heat diffusion is given in divergence form as:

It(x, y, t) = div(J∇I), I(x, y, 0) = I0(x, y) (1)

where ∇I = (Ix, Iy) is the image gradient, div is the divergence operator and J
is a 2-dimensional symmetric (semi) positive defined tensor that locally describes
the way gray level re distributes.

Any symmetric matrix, considered as linear map, diagonalizes [10] in an or-
thonormal basis:

J = QΛQt =
(

ξ1 −ξ2
ξ2 ξ1

)(
λ1 0
0 λ2

)(
ξ1 ξ1
−ξ2 ξ2

)
for λ1 > λ2 >= 0, J eigenvalues and ξ = (ξ1, ξ2) and its perpendicular ξ⊥ =
(−ξ2, ξ1) J eigenvectors. Symmetric semi-positive defined tensors define a metric
in Euclidean space. The unitary vectors associated to the metric are an ellipse
with axis of length λ1, λ2 oriented along ξ, ξ⊥. The shape of such ellipse describes
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the preferred diffusion of heat. In this sense, we can talk about isotropic diffu-
sion (equal eigenvalues) and anisotropic diffusion (distinct and strictly positive
eigenvalues). By general theory of partial differential equations [7], equation (1)
has a unique solution provided that λ1, λ2 do not vanish. However, in such case,
I(x, y, t) converges to a constant image [4], so that the diffusion time (iterations
in numeric implementations) is a critical issue for restoring an image preserving
meaningful structures (termination problem [5]).

In [9], the authors showed that, for null eigenvalues, existence and uniqueness
of solutions to (1) is guaranteed as long as the eigenvector of positive eigenvalue
defines a differentiable curve. In this case, J represents the projection matrix onto
the positive eigenvector and diffusion restricts to its integral curves. It follows
that I(x, y, t) converges towards a collection of curves of uniform gray level [9],
so that the iterative scheme stabilizes at a non-uniform intensity image. Level-
curves of the steady state approximate the original image contours, provided
that the positive eigenvector represents their tangent space.

The second moment matrix [11] or structure tensor [12] provides a good de-
scription of local image structures. The structure tensor matrix describes the
gradient distribution in a local neighborhood of each pixel by averaging the
projection matrices onto the image gradient:

ST (ρ, σ) = gρ ∗
[(

Ix(σ)
Iy(σ)

)
(Ix(σ), Iy(σ))

]
=

(
gρ ∗ I2

x(σ) gρ ∗ Ix(σ)Iy(σ)
gρ ∗ Ix(σ)Iy(σ) gρ ∗ I2

y (σ)

)
Image derivatives are computed using gaussian kernels, gσ, of variance σ (differ-
entiation scale):

Ix(σ) = g(σ)x ∗ I and Iy(σ) = g(σ)y ∗ I

The projection matrix onto (Ix(σ), Iy(σ)) is averaged using a gaussian of vari-
ance ρ (integration scale). Since ST (ρ, σ) is the solution to the heat equation
with initial condition the projection matrix, its eigenvectors are differentiable
(smooth) vector fields that represent image level sets normal (principal eigen-
vector, ξ) and tangent (secondary eigenvector, ξ⊥) spaces. In the absence of
corners (like anatomical contours in bottom right image in fig.1), the vector ξ⊥

is oriented along image consistent contours (in the sense of regular differentiable
curves [13]). At textured or noisy regions, ξ⊥ is randomly distributed (upper
right image in fig.1).

Our Structure-Preserving Diffusion is given by:

It = div(QΛQt∇I), I(x, y, 0) = I0(x, y) (2)

with:

Q =
(
ξ⊥, ξ

)
and Λ =

(
1 0
0 0

)
for ξ the principal eigenvector of ST (ρ, σ). By ξ⊥ distribution (fig.1), SPD
smoothes image gray values along regular structures (bottom right image in
fig.1) and performs like a gaussian filter at textured and noisy regions (upper
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Fig. 1. Vector field representing level curves of an angiography for a vessel (bottom-
right image) and a background structure-less area (upper-right image)

right image in fig.1). Its geometric nature makes our restricted diffusion evolution
equation converge to a non trivial image that preserves the original image main
features as curves of uniform gray level [9]. In this manner, SPD output achieves
a uniform response to local image descriptors suitable for a further detection
and segmentation of image (anatomical) regions.

3 Results

The goal of our experiments is to show the improvement in quality of SPD images
(compared to other filtering approaches) for a further identification of anatomical
structures. For the limited length of this communication we have compared SPD
to 2 representative techniques: anisotropic and median filtering. SPD has been ap-
plied until stabilization of the iterative process, anisotropic diffusion was stopped
after 20 iterations and median filter used a 5 × 5 window. Smoothing techniques
have been applied to cardiac Magnetic Resonance (MR) images in short axis (SA)
and long axis (LA) views. Image regions segmented using a k-means unsupervised
clustering have been compared to manual segmentations in terms of region over-
lap between two segmentations, X and Y . In particular we have used the Jaccard
measure [14] given by JC := |X ∩ Y |/|X ∪ Y |, for | · | the number of pixels.

Fig.2 shows gray-level images and region segmentation with the correspond-
ing manual contours for LA (top rows) and SA (bottom rows) views for, from left
to right, non-processed, SPD, Anisotropic Filtering (AF), and Median Filtering
(MF). We have segmented three regions: blood (shown in white), myocardial walls
(shown in gray) and background (shown in black). Spurious pixels wrongly clas-
sified in original views are removed in all filtered images. However, the geometry
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Fig. 2. Performance of smoothing approaches on cardiac magnetic resonance images

Table 1. Jaccard Measure Ranges

Original SPD Anisotropic Median
Blood Wall Blood Wall Blood Wall Blood Wall

LA 0.7± 0.2 0.2± 0.3 0.8 ± 0.1 0.5± 0.2 0.8± 0.1 0.4 ± 0.3 0.8± 0.1 0.3± 0.3
SA 0.7± 0.2 0.5± 0.3 0.7 ± 0.2 0.7± 0.1 0.7± 0.2 0.5 ± 0.3 0.7± 0.2 0.5± 0.3

of anatomical structures varies across the smoothing type. For LA views the infe-
rior wall of the Left Ventricle (LV) is identified as background in AF images and
merged with the adjacent tissue in MF images. Also we observe that the Right
Ventricle (RV) blood pool (close to LV inferior wall) merges with LV blood in AF
and MF images. SPD images are the only ones preserving the original anatomi-
cal structures. Concerning SA views, trabeculae (upper part of LV) and RV wall
(left-side of images) are missing in MF images and distorted in AF images. Like
in LA views, SPD restores the proper geometry.

Table 1 reports JC statistical ranges for blood and myocardial wall in LA and
SA views. For original images blood detection rate is similar in both views, while
myocardial wall detection significantly decreases in LA views. For smoothed
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images, blood detection is similar for all methods and close to original image
ranges. Regarding detection of myocardial walls, median and anisotropic smooth-
ing behave similarly and only improve detections (an increase of JC around 0.12)
in the case of LA views. SPD images classification rate is the highest one in both
views, increasing the average JC 0.3 in LA views and 0.15 in SA views. It is
worth to mention the significant reduction in JC variability for SPD images.

4 Application to Extraction of Plant’s Xylem Network

The xylem of plants is a tissue consisting of a tubular network that provides the
main pathway for long distance transport of water from roots to leaves [15]. Its
properties determine how much water can be transported, as well as, the vulner-
ability to transport dysfunctions (the formation and propagation of emboli) asso-
ciated to important stress factors, such as droughts and frost. Recent studies [16]
link the topology of the xylem network to its overall transport properties including
its vulnerability to the propagation of embolism through the system. Thus, mod-
elling the xylem system for representative plant species would help in developing
realistic predictive models of their behavior under extreme drought conditions, a
key element to forecast vegetation responses under climate change [17].

The size (∼ microns) and distribution of the conduits, the size of the pores
that connect them and the connectivity of the system (i.e., the average number
of neighbors per conduit) determine the hydraulic properties of the xylem. X-ray
computed micro-tomography (micro-CT) is one of the few imaging techniques al-
lowing high resolution imaging of the 3D xylem network [18]. Left images in fig.3
show a tomographic section of a wooden segment from Fraxinus americana and

Fig. 3. Benefits of SPD on micro-CT slices of wooden segment: non-processed and SPD
images (left) and their intensity histograms (right)
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Fig. 4. 3D-Reconstruction of xylem: binary CT-slice, (a) and labelled tubes, (b)

its processed SPD output. Xylem conduits correspond to darker elliptic structures
and might appear either isolated or in small (connected) groups separated by a
(lighter) thin cell wall. Right plots in fig.3 show gray-level intensity histograms
for non-processed (up) and SPD (bottom) images. In the SPD processed image,
even the smallest conduits (like the one in square 1) are clearly outlined from the
background and there is no loss (i.e. conduit merging) in their connectivity (see
the two neighbors in square 2). Furthermore, SPD homogenization of structure
intensity produces a bi-modal distribution in histograms separating xylem tubes
from background. We have used this property to obtain a detailed 3D reconstruc-
tion of the xylem system by simple image processing operators.

Otsu’s thresholding method applied to each CT-slice histogram gives the gray-
value (vertical dashed line in bottom-right histogram of fig.3) that best separates
the two distributions. Morphological operations on binary images are used to
remove small structures and close tube holes. Fig.4(a) shows the final binary
image representing xylem tubes from SPD image in fig.3. A labelling of the
binary 3D block provides the xylem network (as shown in fig.4(b)) and allows
the computation of the network connectivity by morphological opening with a
structure element of size the maximum separation between connected tubes.
These results provide one of the first direct measurements of the connectivity of
the xylem network (consistent with previous manual measurements attempts)
in any plant species.

5 Discussion and Conclusions

We have presented a diffusion scheme that converges to non-uniform images
which present homogenous inter-tissue transitions at consistent anatomical
structures and are smooth everywhere else. In order to illustrate independence
with respect anatomical shape and medical image modality, we have applied to
MR LA and SA views of the heart and to micro-CT of woody segments.
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Experiments on MR show that SPD smoothes textured regions similarly to
existing methods (blood classification rate in Table 1), while it enhances de-
tection of anatomical contours (myocardial walls statistics in Table 1). A main
advantage of SPD is its ability to preserve thin structures (like RV walls in fig.2
or cell walls in fig.4(a)).
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Abstract. We present an optimal approach to unsupervised color image cluster-
ing, suited for high resolution images based on mode seeking by mediod shifts. 
It is shown that automatic detection of total number of clusters depends upon 
overall image statistics as well as the bandwidth of the underlying probability 
density function. An optimized adaptive mode seeking algorithm based on  
reverse parallel tree traversal is proposed. This work has contribution in three 
aspects. 1) Adaptive bandwidth for kernel function is proposed based on the 
overall image statistics; 2) A novel reverse parallel tree traversing approach for 
mode seeking is presented which drastically reduces number of computational 
steps as compared to traditional tree traversing. 3) For high resolution images 
block clustering based optimized Adaptive Mediod Shift (AMS) is proposed 
where mode seeking is done in blocks and then the local modes are merged 
globally. The proposed method has made it possible to perform clustering on 
variety of high resolution images. Experimental results have shown our algo-
rithm time efficient and robust.  

Keywords: Color Image Clustering, Reverse Parallel Tree Traversing,  
Adaptive Mediod Shift Algorithm. 

1   Introduction 

All computer vision tasks/applications depend upon identification of true number of 
clusters and assignment of given data points to their respective clusters [1]. Tech-
niques proposed for partition of data into clusters can be mainly categorized into  
supervised [2] and unsupervised approaches [3, 4]. Considering solutions to real life 
problems, more research emphasis has been given to later approaches. In unsuper-
vised approaches, Mean Shift [5,6,7] is a popular non-parametric clustering algorithm 
based on the idea of associating each data point to a mode of the underlying probabil-
ity density function but the limitation is the requirement of prerequisite definition of 
mean. To overcome the shortcomings in Mean Shift, an algorithm for mode seeking 
based on mediod shift [8] was proposed in which instead of locating the mean, data 
points themselves were searched. The computations performed during an earlier  
clustering were invariant to incidence or exitance of samples. Moreover, the need for 
heuristic terminating conditions in mean shift is eliminated. The method faced two se-
rious drawbacks; first, the bandwidth of the underlying density function was globally 
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fixed and had to be set manually for every data set; second, high computational com-
plexity depending upon the number of data points. Furthermore, it employed the con-
ventional sequential method of tree traversing for seeking of modes. Due to these 
drawbacks, this algorithm can not be used for high resolution images. 

A variation to this approach, “Adaptive Mediod Shift (AMS)” was introduced in 
[9,10] by converting the fixed global bandwidth of underlying density function to 
adaptive local bandwidth using k-fixed point sample estimator as k-nearest neighbors. 
A value of k=10 is fixed based on empirical results. Fixed k parameter is good for sta-
tistically compact natural images (Figure 1) but increases Root Mean Square (RMS) 
error in dispersed images. Another common drawback of both the methods is a huge 
drain on active memory resources for high resolution images.  

The contribution of our work is in three folds. First, we give a mathematical insight 
for the correctness of k=10 for most of the natural images and propose an adaptive 
data driven k parameter based on the image statistics which reduces the RMS error in 
the resultant clustered image. Second, a new concept of reverse tree traversal has been 
introduced, in which the complexity is a function of the height of each independent 
tree. We prove that in best case as well as worst case scenario the computational 
complexity of our proposed method is far less than that of AMS. Third, we propose a 
fast block clustering based optimized AMS where mode seeking is done in blocks and 
then the local modes are merged globally. This method improves the efficiency of 
AMS and does away with the memory drain problem. Experiments have proved our 
algorithm to be robust and time efficient. 

2   Overview of Adaptive Mediod Shift Algorithm 

Mode seeking by mediod shifts was originally proposed in [8] wherein the bandwidth 
of the density function is globally fixed. AMS was later proposed in [9,10] which in-
troduces a variable bandwidth for each data point using the concept of k- nearest 
neighbors [11,12].  The authors have used a value of k=10 after performing tests on 
several images. Thus, the variable bandwidth hi is defined as, 

1,kiii xxh −= , i=1,2,3…..,n  (1) 

where xi is a data point, xi,k are the k-nearest data points and n is the total number of 
data points. xi is defined as: 

{ } nix d
i ,,1, L=ℜ∈  (2) 

The bandwidth of the underlying density function is directly proportional to k and 
as the value of k increases the number of modes (clusters) found decreases and vice-
versa. The method calculates a weighted medoid yk+1 for every sample data point until 
the mode is obtained (as proposed originally by [8]), 
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where K[.] is a parzen function. Tree traversal is used to find the unique root (or 
mode) for all points found in (4). This process is both sequential and iterative. Each 
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data point is visited and a corresponding unique mode is searched using sequential 
tree traversal. The heuristic is terminated when yk+1= yk. The computational complex-
ity of this algorithm ranges from Θ(dN2 +N2.38) to Θ(dN2 +N3) depending upon the 
implementation [13]. 

3   Adaptive k Parameter 

A fixed k parameter selects the nearest k-neighbors of a data point and uses them to 
calculate the bandwidth of the underlying density function as is clear from (3). How-
ever, this does not take into account the spatial diversity of each data set and hence, 
while a fixed value might be optimal for some natural images, in others, it creates a 
huge bandwidth increasing the RMS error in the resulting clusters.  RMS error for a 
cluster [14] is defined as, 
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where M is the total number of clusters found using AMS, X is the data set from (2), 
mi is the mode of the ith cluster and p is the number of data points in a cluster. If p=1 
RMS error is considered to be zero. RMS error for the complete image/ data set is 
Mean (RMSi). 

We introduce an adaptive k parameter to cater for the dispersion of data. First the 
Euclidian distance d between each data point and its next nearest neighbor is calcu-
lated as: 
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where n is the total number of data points, max
ix  is data point having maximum corre-

lation with the current data point and is given by, 
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and E[XY] is the correlation [14] of X and Y given by, 
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Minimum value of di =1 if the next nearest neighbor of a data point falls with its 
first neighborhood. By using function floor in (6) all distance values are rounded off 
to the next higher integer value.  Next the k parameter is calculated by taking inverse 
of the distance found in (6) and generalizing it over the first neighborhood (kernel of 
3 x3) by multiplying with a factor of 9. Most of the natural images are statistically 
compact as shown in Fig 1(a). Hence, for such images d=1 and the inverse general-
ized over first neighborhood comes out to be 9. This is the reason why a value of 
k=10 works optimally for most of the natural images. For statistically disperse images 
our method will result in a smaller value of k yielding optimally ‘alike’ clusters and 
reducing the RMS error of the resultant clusters. 
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       (a)             (b)   (c)                 (d) 

Fig. 1. (a) Image-1, a statistically compact image with small spatial color variance (b) Zoomed 
in version of Image-1 with current pixel shown as ‘x’. (c) Image-2, a statistically well dispersed 
image with more spatial color variance. (d) Zoomed in version of Image-1 with current pixel 
shown as ‘x’.  

Figure 1 (a) and (c) show two statistically different images. Figure 1 (a) shows 
(Image-1) shows a compact image with most of the neighbors falling within first 
neighborhood (3 x 3 kernel). This is evident from its ‘zoomed in’ version in Figure 
1(c) where the current pixel is shown in ‘x’, the nearest neighbor in ‘+’ and the next 
8 neighbors in ‘.’. Image-2 in Figure 1(c) is disperse which is apparent from its 
‘zoomed in’ version in Figure 1(d) where none of the nearest neighbors of the  
current pixel ‘x’ fall within a kernel of 3x3. The statistical properties of both images 
are proven by Figure 1(e) which depicts the distance to next neighbor for both  
images.  

The k parameter can be made adaptive for each data point or the complete data set. 
In case of adaptive k for each data point we find that the distance di of each data point 
to its nearest neighbor can be different and hence affects the bandwidth of its underly-
ing function.  Therefore, each data point can have its own adaptive bandwidth. The 
inverse of its distance to the nearest neighbor can be generalized over first neighbor-
hood (kernel of 3x3) to obtain the adaptive k-parameter, defined as: 

)91( ×=
i

dround
i

k ,  i=1,2,3,..,n 
(8) 

where n  is the total number of data points and di >0 and given by (6). The adaptive 
bandwidth can be found by replacing k in (1) with ki and thus we have: 

1
, ikixixih −=  

(9) 

For an adaptive k parameter for the complete data set we take help from the ‘law of 
large numbers’ [14]. It can be assumed that the mean of all distances di for a very 
large data set can represent the distance to the next nearest neighbor of the complete 
image. In this case the k-parameter is given by:- 
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Mean(di) >0.  The adaptive bandwidth is then given by (1). 
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4   Reverse Parallel Tree Traversing 

The complete data set/ image can be considered as a forest of free trees (clusters) each 
with a unique root ‘r’ (i.e. the Mode). Mode seeking has been performed through tree 
traversal using depth first search technique in [8,9,10] going from each child to its 
parent node. A unique feature of the tree formed by minimizing (4) for all data points 
is that each parent node points directly to its child nodes and vice-versa [15]. Using 
this feature we perform reverse parallel tree traversing in two steps. 

4.1   Step-1 

Let ‘I’ be a set of locations where the argument below is minimized based on (4). 
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where X is the data set and the argument is minimized for all data points. Then ‘M’ is 
a set of modes given by:- 

{ }iImandImmM i =∈⊂= :  (12) 

where i is the index location and I is given by (12). 

4.2   Step-2 

For each mode found in Step-1 carry out reverse Tree Traversal going from each par-
ent node to all of its child nodes, to find all data points affiliated with the mode. Let 
Yk,i= Mi , i=1, 2, 3 , ….., Nm , where Nm is the total number of modes found in step-1. 
Then, 
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where k= 1,2,3,…,hi and hi is the height of the ith tree. Yk+1,i is a vector of all locations 
where Yk, i matches the set I. The traversing for a mode stops when Yk+1,i = Yk. 

4.3   Computational Complexity 

Let hi denote the height of a tree associated with mode i where i=1 ,2 3, ……,Nm. 
From (14) it is clear that the computational complexity of finding all data points asso-
ciated with a mode i is a function of the height of the tree created by that mode. Hence 
the complexity of finding association of all data points will simply be the sum of the 
heights of all free trees representing the set I (12). Let, 
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Then the complexity of reverse tree traversing is only, 



440 Z. Gilani and N.I. Rao 

( )Ψ+Θ= 1complexity  (15) 

where the complexity of step-1 of finding all modes as is clear from (13) is only 1. If 
Nm>>1 then the complexity can be simplified as Θ(ψ). We now compare the com-
plexity of both the methods of tree traversing and prove that the complexity of reverse 
parallel tree traversing is always less than that of forward sequential traversing. 

Best Case Scenario. There are no clusters in the data and all data points are the 
modes themselves as shown in figure 2(c). In this case the complexity of sequential 
forward traversing will be Θ(N), where N is the total number of data points. Since 
there are no trees in the data hi=0 and ψ in (16) is also zero. Hence Θ(1+ψ) << Θ(N). 

Worst Case Scenario. There is only one central mode and all data samples point to it 
through their neighbor as shown in figure 2(d). In the case of sequential traversing 
each data point will iteratively point to its neighbor and the complexity will be 
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1
, where N is the total number of data points. However, in case of reverse 

traversing the tree will consist of one root and the height will be h=N. Therefore (16) 
yields the complexity as Θ(1+N) and if N>>1 the comparison would result in 
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             (a)            (b)         (d) 

Fig. 2. (a) Steps Comparison between forward sequential tree traversing (solid line) and reverse 
parallel traversing for the image-1(Fig 1a). (b) Reverse Tree Traversing for an arbitrary mode 
with height h=2. (c)Best case scenario for mode seeking. All data points are the modes them-
selves. (d)Worst case scenario for mode seeking. There is only one central mode and all data 
samples point to it through their neighbor. 

Figure 2(a) shows the comparison between sequential forward and parallel reverse 
traversing for steps needed to converge (4) for all iterations for image-1 (Figure 1a). 
The sequential forward traversing technique converges in 22323 steps whereas it 
takes only 3758 steps for parallel reverse traversing to find all modes in 11 iterations. 
Figure 2(b) depicts the reverse traversing method where the search begins from the 
root /mode. Height h of the tree is 2. Mode is found in the first step and each height is 
traversed in a single step thus finding all data samples pointing to the mode in 3 steps 
only. Figures 2(c) and (d) depict the best and the worst case scenarios for mode seek-
ing discussed in section 4.3. 
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5   Fast Block Clustering Based AMS 

The technique is based on using AMS in blocks instead of processing the complete 
data. The image/data is divided into blocks of size m x n. 

dd
kB ℜ⊆  , k=1,2,…,b (16) 

where b is the total number of blocks, d is the number of dimensions. AMS is run on 
each block separately. A local data set x is made as in (2) and mapped to the global 
data set X. Mapping xi→X, 

{ }ℜ∈∈= XandBxxX kii : , i=1,2,.., NB  (17) 

where NB is the total number of data points in a block, xi is the local data point and X 
is the global data set. Mode seeking is performed for each block and the local modes 
are then mapped to global modes M. In order to avoid over segmentation, a global 
mode merging is performed on all modes found during block clustering.  

The computational complexity of the original algorithm proposed in [8] was a 
function of total number of data points in the image. However, the complexity of our 
proposed method is a function of only the total number of data points in a block and is 

given by, )( 38.2N Bb Θ×  where b is the total number of blocks. Furthermore, the 

number of data points in a block is always much less than the total number of data 
points. Thus NB << N. 

6   Results 

Experiments have been carried out on 500 images from Flicker, Corel and Labelme 
data sets. Both, statistically compact as well as disperse images of different varieties 
have been chosen. The images have been chosen such that a comparison analysis be-
tween fix k parameter and adaptive k can be carried out in detail. Natural images as 
well as daily life images have been used for experimentation. 

Fig 3(a) shows 10 natural statistically compact as well as disperse images. Time 
taken to cluster these images using conventional AMS is shown in (c) whereas time 
taken by our proposed method is shown in (d). The difference in time is in the order 
or 5000-9000 seconds. Time taken to cluster 500 experimental images is shown in (b). 
Most of the images yielded clustering results within 4-5 seconds. (e) depicts the mean 
of all next neighborhood distances for all the images. A value of 1 indicates that the 
images were statistically compact. Thus a value of k=9 is suited for such images. 
RMS error in the resulting clusters for all images is shown in (f). RMS error increases 
with fix k=10 (solid line) whereas for variable k most of the images have low RMS 
error. Finally, a comparison of computational steps taken in case of forward sequen-
tial and reverse parallel tree traversing is depicted in (g). In case of traditional tree 
traversing (4) converges in 15000 to 30000 steps while less than 5000 steps are re-
quired for this purpose in our proposed method. (h) Displays a compact natural image 
while (i) is the result of performing block based AMS clustering on the image. 
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(a) 

  

                 (b)                     (c)                (d)      (e) 

 

             (f)    (g)  (h)  (i)    

Fig. 3. (a) 10 natural compact and disperse images (b) Time taken to cluster 500 images using 
our approach (c) Time taken to cluster 10 images using conventional AMS and (d) our pro-
posed method. (e) Mean of all next neighborhood distances (f) RMS Error with fix and variable 
k (g) computational steps in forward and reverse parallel tree traversing.(h) A natural image (i) 
AMS Color clustering result. 
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Color Me Right–Seamless Image Compositing
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Abstract. This paper introduces an approach of creating an image
composite by seamlessly blending a region of interest from an image
onto another while faithfully preserving the color of regions specified
by user markup. With different regions marked for color-preserving, our
approach provides users the flexibility in creating different composites.
The experiment results demonstrate the effectiveness of the proposed
approach in creating seamless image composite with color preserved.

Keywords: Seamless image compositing, Color preserving, Gradient-
based image editing.

1 Introduction and Background

Digital image compositing is a process of blending a region of interest (ROI)
from a source image onto a target image. An example of image compositing is
shown in Fig. 11. An ROI containing a window frame is selected by a user, as
shown inside the yellow line in Fig. 1(a). The ROI is then blended onto the target
image (Fig. 1(b)) to produce the final composite (Fig. 1(c)).

Poisson image editing (PIE) [1] proposed by Pérez et al . is a method to
seamlessly blend ROI onto the target image. In PIE, the gradient of ROI is
pasted onto that of the target image. Then, the result image is reconstructed
from the gradient domain by solving a Poisson equation. The main advantage
of PIE is the seamless boundary around the pasted ROI in result images. To
achieve this goal, the gradient inside ROI is to be kept unchanged to make the
result visually similar as the source image. On the other hand, a hard constraint
along the boundary is enforced to make the boundary of pasted ROI agree with
the target image. PIE keeps the relative values in ROI; however, the absolute
values (the color) of ROI may shift in the process of blending. In some cases, the
color shift of ROI is desirable (some examples demonstrated in [1,2]) because
this makes the tone of pasted ROI similar to the target image. However, the
amount of the color change depends on the difference of boundaries of ROI in
the source and that in target image, which is uncontrollable by users. Despite the
case of tone matching, color shift is usually undesirable. As shown in Fig. 1(e),

1 All the images in this paper are colored and high-resolution. For a better under-
standing, the reader may be interested in viewing these images on the monitor.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 444–451, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c)

(d) (e) (f)
Fig. 1. An example of image compositing. (a) The source image. ROI is the region
inside yellow line. (b) The target image. (c) The final composite of our proposed ap-
proach by pasting the window from (a) onto (b). (d) User markup (the red scribbles)
used in our approach. (e) Composite of Poisson image editing. Note the color shift in
the ROI. (f) Composite of Poisson image editing with color constraint by user markup
in (d). Note the halo effects around the scribbles. See the text for details.

PIE produced a large color shift in the result. The window and the flower in ROI
was expected to be the same as in the source image; however, the whole ROI
became reddish.

An improvement of PIE, proposed by Jia et al . [2], solved a problem of PIE
producing unnatural blurring artifacts when the boundary of ROI does not meet
the target image very well. However, in this paper, we do not address this prob-
lem. Instead, the aim of this paper is to find a way of producing seamless image
composite while preserving the color.

Image matting, such as [3,4], and image segmentation techniques, such as [5,6],
are commonly used to extract objects from an image. The extracted objects can
be pasted onto a target image to produce a composite. These techniques are
suitable for foreground and background being clearly separated. However, in
many cases, the foreground interacts with the surroundings, without obvious
boundaries, e.g. the shadow region below the window frame shown in Fig 1.
These techniques are not suitable.

Another approach, interactive digital photomontage [7], aims to assemble im-
ages of the same or similar scenes together. Regions from different images are
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picked out by users and the seams among different regions are minimized with
Graph-cut. The final composite keeps the color from each source images. How-
ever, if the source images are different from each other, it is difficult to find
invisible seams to stitch the images together.

In this paper, our approach take the advantage of

Ω

∂Ω
C

Fig. 2. Illustration of
notations

gradient-based editing to produce a seamless com-
posite. We use weighted least squares in reconstruct-
ing the final composite from the gradient domain.
With the boundary of ROI and the user markup
being the hard constraints, the colors are faithfully
preserved in specified regions. The idea of employ-
ing weighted least squares to enforce the similarity
within a region can be also found in some previous
works, such as colorization [8], tone adjustment [9]
and edge-preserving image decomposition [10].

Contribution. In this paper, we present an ap-
proach of creating an image composite by seam-
lessly blending an ROI onto a target image with the color preserved in specified
regions. In addition, with different markups, users have the flexibility in creat-
ing different composites by choosing different regions for color-preserving. The
solution of our approach can be formulated as a sparse linear system which can
be efficiently solved.

2 Color-Preserving Image Compositing

The goal of image compositing is to blend the region of interest (ROI) from
the source onto the target image. In the final composite, only the region pasted
from the source image is unknown, while the rest is directly from the target. As
illustrated in Fig. 2, we use Ω denote the unknown region in the final composite
C, with ∂Ω being the boundary. The value of (C −Ω) is from the target image
t. We use r denote the pixel value of Ω, which are the unknowns to be solved; s
denotes the corresponding values of the same image.

2.1 Poisson Image Editing

In Poisson image editing [1], the difference between gradient of r and that of s
is minimized, while the value r on the boundary ∂Ω is enforced to be the same
with t. Thus, r is the solution of the following minimization problem,

min
r

∫
|∇r −∇s|2 with r|∂Ω = t|∂Ω, (1)

where∇ is the gradient operator. The solution to Eq. (1) is given by the following
Poisson equation with Dirichlet boundary conditions,

�r = �s with r|∂Ω = t|∂Ω, (2)

here � is the Laplacian operator.
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Fig. 3. An illustration of Poisson image editing (PIE) and the proposed approach in
1D case. (a) Red: the source “signal”. Blue: the target “signal”. Green: result of PIE.
Note the color shift from r down to s. Cyan: the result of PIE fixing the middle value
of r to s and the boundary. This creates a halo effect. (b) Red, green, blue: same as in
(a). Black: the result of our proposed approach. Note that the middle part of r is well
preserved, while r is seamlessly connected to t.

We use a 1D example illustrate this idea, as shown in Fig. 3(a). The horizontal
axis denotes the pixel position, while the vertical axis denotes the pixel value.
The region of blue lines is (C − Ω), and the region of the green line is Ω. The
red line is the source “signal”, s. The middle part of s, which has larger value
larger than the surroundings, indicates the object to be pasted. Usually, the ROI
selected is slightly larger than the object inside. The result of PIE is shown as
the green line, which fits two ends of the blue lines and keeps the gradient of s. It
appears that PIE successfully blended s onto t without visible seams. However,
the absolute value of reconstructed “signal” r shifts quite a bit from the source
s. In image domain, this results in a color shift of the ROI in the process of
blending, as shown in Fig. 1(e).

2.2 User Markup Constraints

To correct the color shift, an intuitive way is adding additional constraints: user
markup indicating the foreground that should be the same as in the source image,
s. If there are holes in the foreground, extra user markup should be involved
indicating the holes (as background) as well. These constraints are added as
hard constraints, i.e.

r|M1 = s|M1 and r|M2 = t|M2 , (3)

where M1 and M2 denote markup of foreground and background, respectively.
In the 1D example, a point in the middle of Ω is used as user markup of

foreground. The result of Eq. (2) with additional constraints of Eq. (3) is shown
as the cyan line in Fig. 3(a). With the user markup as hard constraints, the
error of the objective function usually becomes much larger. In PIE, this error
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is evenly spread on each pixel position, resulting in a gradual change in r. The
result “signal” r is more similar to the red line s when the position is nearer to
the user markup, otherwise more similar to the green line (the result without
user markup). In the image domain, the gradual change will undesirably result
in a halo effect around the user markup.

2.3 Weighted Least Squares

The main idea to reconstruct r from the gradient domain is to minimize the
error between ∇r and ∇s with hard constraints of ∂Ω and user markup. Instead
of spreading the error evenly on each pixel in PIE, we add different weights to
different pixel positions to control the desired similarity between ∇r and ∇s.

Ideally, the color of the regions from the foreground should be preserved during
compositing; and color preserving should be restricted to these regions only. For
a “region”, we mean an area where the colors are similar. Within a region, small
gradients in the source image shouldd be more likely to be kept small in the
result. In other words, the larger the gradient of a pixel in s is, the more this
pixel should share the error from the overall minimization error.

In 2D image domain, r is given by the solving the following minimization
problem,

min
r

∑
p∈Ω

(
α(p)

(
rx(p)− sx(p)

)2 + β(p)
(
ry(p)− sy(p)

)2
)

with r|∂Ω∪M2 = t|∂Ω∪M2 and r|M1 = s|M1 ,
(4)

where {.}x and {.}y denote the partial derivative of {.} along x and y coordi-
nates respectively, while α(.) and β(.) are two weights controlling the similarity
between the gradient of r and s. The hard constraints are the same as discussed
before. The weights, α, β, are defined according to above analysis, i.e.

α(p) =
1

|sx(p)|γ + ε
, β(p) =

1
|sy(p)|γ + ε

(5)

where ε is a small constant preventing division by zero, and the exponent γ is the
sensitivity of enforcing the similarity. A similar way of defining the two weights
can be found in [9] and [10].

The solution of Eq. (4) is given by the following linear system,

for each p ∈ Ω,∑
q∈N (p)

r(p)− r(q)
|s(p)− s(q)|γ + ε

=
∑

q∈N (p)

s(p)− s(q)
|s(p)− s(q)|γ + ε

, (6)

with hard constraints, {
r(p) = t(p) p ∈ ∂Ω ∪M2
r(p) = s(p) p ∈M1

, (7)
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(a) (b)
Fig. 4. A new image composite result created with a different user markup. (a) User
markup. One more stroke on the side of the window frame, compared to Fig. 1(d).
(b) Image composite with user markup of (a). Note that the color of the inside of the
window frame has been changed to blue from yellow( Fig. 1(c)).

where N (p) denotes four neighbors of p. By substituting the hard constraints
(7) into (6), the linear system can be solved.

In the 1D example previously discussed, we still use only the middle point
as user markup. As shown in Fig. 3(b), the resultant curve r (the black line)
is obtained via Eq. (6) by setting γ = 4.0. The middle part of r is kept almost
the same to s, while two ends of r are seamlessly connected to t. As expected,
the value of the region marked by user is preserved and no halo effects exist. A
2D example has been shown in Fig. 1(c). The final composite was seamless and
natural, while the color was well preserved.

3 Experiments and Results

Fig. 5 shows an example of image compositing by blending a bear from the sea to
a swimming pool. In the result of Poisson image editing, the pasted bear in the
final composite appeared pale. By adding additional constraints of user markup
on the body of the bear, the result of PIE produced a halo effect around the
markup. In contrast, the final composite of our proposed approach preserved the
look and feel of the bear in the source image. Also, the boundary of the pasted
bear was seamless.

Another example is shown in Fig. 6. The motorcyclist consists of a lot of
different colors. Thus, a bit more user markup are required to cover each compo-
nent. As shown in Fig. 5a, nine strokes were marked on different parts, including
one indicating the background where a hole exists between the motorcyclist’s
arms and the motorcycle. In the result of PIE, the motorcyclist became reddish.
PIE with markup still produced obvious halo effect. The result of our proposed
approach faithfully preserved the color of the motorcyclist.

With our proposed approach, a user can create different image composites
by choosing different regions for color-preserving. We show this with the wall
example in Fig. 1. The source and target image are the same as before. The new
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(a) (b) (c)

(d) (e)
( ) (

Fig. 5. Image compositing of a bear. (a) The source image with selected ROI (yellow
boundary)and user markup (red strokes). (b) The target image. (c) Result of Poisson
image editing. Note the color shift of the bear from original brown to pale. (d) Result
of PIE with constraints by user markup. Note the halo effects around the head of the
bear. (e) The result of our proposed approach without color shift or halo effect. The
images are from [1].

(a) (b) (c)

(d) (e)

Fig. 6. Image compositing of a motorcyclist. (a) The source image with ROI and user
markup of the foreground (red) and background (blue). (b) The target image. (c)
Result of PIE. Note the color shift on the helmet. (d) Result of PIE with constraints
by user markup. Note the halo effect around the foreground. (e) Result of our proposed
approach.
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user markup (Fig. 4(a)) contained one more stroke on the side of the window
frame. With the new markup, the side of the window frame was kept the same
as the source image, with the color being blue, instead of the previous “yellow”.
Still, there is not any artifact produced in the final composite.

4 Conclusion and Future Work

In this paper, we have presented an approach of creating seamless image composite
with the color of specified region faithfully preserved. The main idea is simple yet
powerful. By adding different weights to the minimization term, smaller gradient
is more likely to be kept small. Thus the color within a region is kept similar in the
final composite. By adding user markup, the color in specified regions is preserved
in the final composite. With different markups, users have the flexibility in creat-
ing different image composites by choosing different regions for color-preserving.
Experiment results have demonstrated the effectiveness of our approach.

Since the user should add background markup to the holes of the object in
ROI, the marking process could be time-consuming if the object consists of
many holes. One future work could be automatically detecting the holes and
then keep these hole regions similar to the background in the final composite.
One possible solution may be adding global color constraints to keep similar
color being similar in the final composite.

The authors acknowledge the generous support of NUS (Research Grant #R-
252-000-383-112).
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Abstract. Video fingerprinting is introduced as an effective tool for identifica-
tion and recognition of video content even after putative modifications. In this 
paper, we present a video fingerprinting scheme based on non-negative matrix 
factorization (NMF). NMF is shown to be capable of generating discriminative, 
parts-based representations while reducing the dimensionality of the data. 
NMF’s representation capacity can be fortified by incorporating geometric 
transformational duplicates of the base vectors into the factorization. Factorized 
base vectors are used as content based, representative features that uniquely de-
scribe the video content. Obtaining such base vectors by transformational NMF 
(T-NMF) is furthermore versatile in recognizing the attacked contents as copies 
of the original instead of considering them as a new content. Thus a novel ap-
proach for fingerprinting of video content based on T-NMF is introduced in this 
work and experimental results obtained on TRECVID data set are presented to 
demonstrate the robustness to geometric attacks and the improvement in the 
representation. 

Keywords: Video fingerprinting, non-negative matrix factorization, transfor-
mation invariance. 

1   Introduction 

Increasing amount of video data, which is encouraged by the improvements in shar-
ing, storage and accessing capabilities, emerged interest on video search and retrieval 
techniques. Besides the techniques based on cryptographic hashes and digital water-
marking, video fingerprinting is proposed as superior to its predecessors in extracting 
and transforming characteristic features of a video. It is possible to identify a video 
content easily and uniquely by a small amount of data which is called “video  
fingerprint”. Unlike to other techniques, video fingerprinting has not to be applied at  
production level and is not affected by natural distortions (compression, coding) or 
malicious attacks (logo addition, geometric distortions) unless they do alter the visual 
content [1]. 

Most of the video fingerprinting systems in literature are proposed in recent years [2]. 
While in [1], key-frame based local fingerprints are calculated from the orientation 
histograms of the local points, in [3] transformation domain features are extracted as 
video fingerprints where distorted content is included in the transformation. Although 
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first method is robust to Divx compression and has a moderate performance on scaling 
and motion blur, it is not robust to spatial blurring. Key-frame repeatability is also an-
other issue that has to be considered in [1]. Second approach stores the transformation 
domain representations obtained by 2D oriented PCA (2D-OPCA) as video fingerprints. 
Robustness of this method to geometric transformations basically relies on finding the 
affine covariant regions before applying 2D-OPCA. 

Our video fingerprinting scheme generates fingerprints using a variation of non-
negative matrix factorization (NMF). NMF was first proposed by Paatero and Tapper 
[4] but improved and became popular by the work of Lee and Seung [5]. In our previ-
ous works, [6,7,8] we have shown that besides its rank reduction and content repre-
sentation capabilities, NMF is highly suited for the video content representation by 
non-negativity constraint which results in parts-based representations [5]. 

In this paper, we propose a new video fingerprinting scheme that benefits from the 
transformation-invariant NMF which is proposed by Eggert et al. [9]. The matrices 
for geometric transformations such as shift, flip, rotate and scale are calculated and 
applied by transformational NMF (T-NMF) so that resultant base vectors are not only 
robust to global illumination changes but also will be capable of representing geomet-
rically distorted samples. The proposed method, in a novel way, enables to add ro-
bustness against geometric attacks to the global descriptors of a video frame. 

This paper is organized as follows: Section 2 describes the conventional and trans-
formational NMF together with the formulations of the transformation matrices, adapta-
tion of base vectors that are generated by T-NMF for robust video fingerprinting is 
explained in section 3, experimental results of the proposed video fingerprinting scheme 
is detailed in section 4 and conclusion and future work is summarized in section 5. 

In all equations, italic, double indices represent a matrix element, an uppercase letter 
with one index represents a column vector, a bold uppercase letter is equivalent to the 
whole matrix and a lowercase italic letter with an index determines a vector element. 

2   Transformation-Invariant NMF 

2.1   Conventional NMF 

NMF aims to decompose the data matrix p qR ×∈V  into two matrices, p rR ×∈W  

and r qR ×∈H . W contains the base/mixing vectors for linear approximation of V, and 
H is the coefficient matrix used in adding up the base vectors of W to reconstruct the 
matrix V.  The non-negativity constraints of NMF allow only additive combinations 
of the bases. The additive property ensures a powerful content representation capabil-
ity of NMF, which is due to the base vectors property of representing local compo-
nents of the original data.  

The conventional NMF iteratively updates W and H matrices in order to satisfy the 
minimization of a cost function. A simple and efficient cost function is the squared 
reconstruction error and it is given by Eq.(1).  

( )2
i i i j

1 1
V R ,      R W   .

2 2 ji
i j

F HV WH= − = − =∑ ∑  (1) 
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Minimization of the cost function with respect to the H and W matrices separately 
is modified by Lee and Seung [5] and their approach brings forth  the multiplicative 
update rules given in Eq.(2) and Eq.(3), which are easy to implement and work well 
in practice.  

T

T

V W
 .

R W
i j

ji ji
i j

H H←  (2) 

V
W W   .

R
ji ii

j j
ji ii

H

H
← ∑

∑  (3) 

2.2   Transformational NMF 

NMF’s representation capacity can be fortified by incorporating geometric transfor-
mational duplicates of the base vectors into the factorization. Eggert et al. [9] intro-
duced the contribution of transformation matrices to the conventional NMF’s cost 
function in order to gain robustness to translational changes in the input data. Thus the 
cost function and update rules of H and W matrices, which are given in Eq.(4), Eq.(5) 
and Eq.(6), respectively, are modified with the introduction of transformation matrix 
Tm where m refers to the considered transformation. A penalizing term is added to the 
cost function in Eq.(4) to prevent trivial solutions and achieve more localized, parts-
based and sparse representations [9].  

( )2

, ,

W1 ˆ ˆV R ,     R W ,     W   .
2 W

jm m
i i ji i ji j ji j m

ji j m

F H H mT= − + = =∑ ∑ ∑∑  (4) 

T

T

ˆV W
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ˆR W
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ji ji
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H H
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m

T

T
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ji i ji i j ji m

j j
m m
ji i ji i j ji m

H H
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T T
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⎡ ⎤⎡ ⎤+ ∇⎣ ⎦⎣ ⎦

∑ ∑
∑ ∑

 (6) 

In the next section the proposed video fingerprinting scheme by focusing on the in-
fluence of the Tm matrices will be explained. 

3   Extraction of Robust Video Fingerprints 

We propose a key-frame based video fingerprinting scheme that can be integrated by 
any of the key-frame selection scheme proposed in literature [1,10,11]. In the pro-
posed method, the video fingerprints are obtained as follows: For each selected key 
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video frame vi, a set of M geometrically transformed versions, { }
1

v
Mm i

m =
, together 

with the original frame form the input matrix V so it contains geometrically translated 
versions of a sample frame. T-NMF is then applied to V matrix using the equations 
given in the previous section. Factorized base matrix, Wi, where upper index specifies 
the selected key frame, is used as content based, representative feature that belongs to 
vi and uniquely describes its content. 

By the influence of the Tm matrices, geometrically distorted, similar contents in the 
input data are not reflected to the base vectors so they do not contain redundant in-
formation. Instead, the basic content, which is included in most of the transforma-
tional versions of the input frame, is revealed in the base vectors, thus it is possible to 
build transformed video inputs only with necessary information. 

 

     
a)  b)  c)  d)  e) 

     
f)  g)  h)  i)  j) 

Fig. 1. Geometrically transformed input images: a)untransformed, b)flip horizontal, c)flip 
vertical, d)shift down, e)shift left, f)shift right, g)shift up, h)pic-in-pic (scale 2-D), i)ratio (scale 
1-D), j)rotate 

The M different Tm matrices generate Mxr transformed versions of the base vectors 
that are added up by Hm coefficient matrices to reconstruct the input samples. In 
terms of the robustness of our video fingerprinting scheme to geometric distortions, 
we will focus on the structure and functionality of the Tm matrices. The geometric 
transformations that are used to generate the video fingerprint of a video frame based 
on both NMF and T-NMF are shown in Fig.1. Each image in Fig.1 forms one column 
of the input matrix V for the factorizations.  

Fig.2 gives structures of some of the Tm matrices that are used in the factorization. 
An important property of the Tm matrices is they are orthogonal matrices so, the geo-
metrically inverse of the transformation, which is also achieved by a Tm, can be sim-
ply obtained with the transpose of the associated Tm matrix. This property explains 
the effect of the Tm matrices during the update process as in these equations Vi and Ri 
vectors are back-transformed geometrically. 

The proposed video fingerprinting scheme not only takes the heritage of the con-
ventional NMF as a good content representation and robustness to global luminance 
distortions, but also combines robustness to geometric attacks by fairly translating the 
geometric distortions to the extracted representation by the help of the Tm matrices. 
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a)                                    b)                                    c)                                 d) 

Fig. 2. Structures of some of the Tm matrices used in the factorization: a)flip horizontal b)flip 
vertical c)shift k columns left d)shift k columns right. E, Z and I correspond to exchange, full 
zero and identity matrices, respectively. The k→I  shows an identity matrix that is shifted k 
columns in the direction of the arrow. 

The video fingerprinting database is constructed by storing the representative base 
matrix, Wj, for every selected key frame of the reference video clips, alongside the m 
different transformation matrices, Tm, which do not change from frame to frame and 
are used in reconstruction-based matching process. 

4   Test Results 

NMF and T-NMF representation capabilities under geometric and non-geometric 
distortions are compared by means of both reconstruction errors and reconstructed 
image qualities on video frames that are taken from TRECVID 2007-08 database[12]. 

After NMF and T-NMF is applied separately to the input matrix V which includes 
the transformed images shown in Fig.1, the resultant base vectors are presented in 
Fig.3. For this experiment 10 different geometric transformations are considered and 
rank r is set to 2 for both of the factorizations. The difference of the visual quality 
between NMF (Fig.3.a and Fig.3.b) and the T-NMF (Fig.3.c and Fig.3.d) base vector 
images can be observed explicitly. 

 

    
a)  b)  c)  d) 

Fig. 3. Base vectors of a-b) conventional NMF and c-d) transformational NMF that are gener-
ated by the factorization of 10 geometrically transformed input images. Rank is set to 2 for both 
of the factorizations. 

To evaluate performance of the introduced video fingerprinting algorithm first we 
have examined the reconstruction capability of the T-NMF. Thus a sample video 
frame vi is first projected and hij is calculated using the Wj, and then back-
projected/reconstructed as rij by the multiplication of Wj and hij. Projection step can 
be carried out either by calculating the pseudo-inverse or by the iterative updates with 
fixed Wj. We preferred the second approach as the calculation of pseudo-inverse may 
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cause negative values in the projection vector which is not suited to the characteristic 
of the data. The NMF and T-NMF reconstruction vectors, rij, and the reconstruction 
error, recErr(i,j), for a sample vector vi and a base matrix Wj are calculated by Eq.(7) 
and Eq.(8), respectively, where k varies from 1 to the rank and l varies from 1 to the 
total number of pixels in a sample video frame. 

r W ,      r W   .ij j ij ij j mij
k k k k

k k m

h hmT= ⋅ = ⋅∑ ∑∑  (7) 

2
( , )   .i ij

l l
l

recE rr i j v r= −∑  (8) 

The reconstructed images of the untransformed, flip vertical, shift left, ratio and ro-
tate transformations obtained from Fig.1 are demonstrated in Fig.4. The images on 
each row are formed by T-NMF and NMF base vectors, respectively.  

 

     
a)  b)  c)  d)  e) 

     
f)  g)  h)  i)  j) 

Fig. 4. Reconstructed images: a-f) untransformed, b-g) flip vertical, c-h) shift left, d-i) ratio, e-j) 
rotate. First row is generated by T-NMF base vectors and the second row is generated by con-
ventional NMF. The input frames are chosen from Fig.1. a), c), e), i) and j), respectively. 

Video frames from 10 different video scenes are chosen to demonstrate the dis-
criminative property of the extracted video fingerprints. Fig.5 illustrates selected 
frames. Note that some of the frames have semantically very close visual content 
(Fig.5.f and Fig.5.g). 

We have ranked the matching scores in terms of the normalized reconstruction er-
ror. Table 1 presents the results. For this experiment key frame “man2” (Fig.5.g) is 
selected as query example and name of the transformations applied to the input video 
frame “man2” are listed at the first column of Table 1. All the other columns corre-
spond to different Wj matrices that are used to calculate the reconstruction error 
scores for the input image as described in Eq.(8). While upper part of Table 1 contains 
the results that are obtained by T-NMF base matrices, reconstruction errors of NMF 
base matrices are listed at the lower part. 
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a)  b)  c)  d)  e) 

     
f)  g)  h)  i)  j) 

Fig. 5. Original key frames extracted from different video scenes: a)cartoon, b)sea, c)painting, 
d)flower, e)baby, f)man1 g)man2 h)train i)woman, j)canal. Note that although the frames at f) 
and g) are taken from different scenes, they have semantically close visual contents.   

Table 1. Normalized reconstruction error(recErr) between test frame Fig.5.g)man2, its trans-
formed frames (flip vertical, gamma correlation (G) with a factor of 1.75, shift left 15%, rotate 
left 30 degrees, blurring (B) and noise (N)), and 10 different key frame. Base vectors obtained 
by NMF and T-NMF are used for projection.  

man2 cartoon sea painting flower baby man1 man2 train woman canal

Untransformed 0,97 0,80 1,18 1,15 0,93 0,77 0,00 0,97 1,06 0,96

G+B+N 1,19 0,85 1,61 1,46 1,06 0,97 0,16 1,14 1,30 1,18

FlipV 1,01 0,89 1,21 1,26 1,16 1,05 0,00 1,23 1,23 1,19

FlipV+G+B+N 1,14 0,91 1,53 1,51 1,35 1,51 0,18 1,52 1,51 1,44

ShiftL50 0,78 0,66 0,87 0,87 0,77 0,66 0,04 0,77 0,89 0,79

ShiftL50+G+B+N 0,95 0,67 1,08 1,08 0,88 0,90 0,18 0,88 1,16 0,97

RotateL30 1,00 0,74 1,03 1,02 0,90 0,74 0,04 1,00 1,05 0,92

T
N
M
F

RotateL30+G+B+N 1,20 0,75 1,26 1,24 1,01 1,00 0,21 1,23 1,35 1,06

Untransformed 1,21 0,95 1,38 1,28 1,09 0,84 0,41 1,05 1,21 1,16

G+B+N 1,66 1,01 1,82 1,59 1,23 1,09 0,48 1,21 1,47 1,37

FlipV 1,10 1,06 1,30 1,34 1,25 1,17 0,46 1,43 1,37 1,32

FlipV+G+B+N 1,26 1,26 1,64 1,70 1,53 1,76 0,86 1,86 1,72 1,71

ShiftL50 0,94 0,79 0,92 0,95 0,83 0,75 0,74 0,84 0,96 0,90

ShiftL50+G+B+N 1,21 0,95 1,14 1,20 0,91 1,08 1,08 0,98 1,26 1,12

RotateL30 1,03 1,02 1,06 1,09 0,97 0,97 0,65 1,06 1,15 1,00

N
M
F

RotateL30+G+B+N 1,32 1,18 1,29 1,37 1,13 1,30 0,92 1,33 1,50 1,15
 

The bold faced column in Table 1 contains the lowest reconstruction error scores as it 
is expected to get best scores when base matrix, Wj, of the video frame “man2“ is used 
to calculate the reconstruction error for the selected query images. Although good re-
construction error scores can be obtained for non-geometrical (G+B+N) transformations 
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or untransformed query images with NMF base matrices, reconstruction errors for geo-
metric transformations are not discriminative. On the other hand reconstruction error 
scores of T-NMF base matrices are not affected by geometric transformations and are 
always the lowest. 

5   Conclusions 

In this paper, a novel robust video fingerprinting scheme based on transformational 
NMF is proposed. The proposed method takes advantage of the indexed geometric 
transformation matrices while generating content representative base vectors.  

Preliminary results show that T matrices increase the reconstruction performance 
in terms of the Euclidean cost and influence the base vectors to resemble the untrans-
formed input image more than conventional NMF bases. The experimental results 
also reveal that the proposed method is robust against non-geometric distortions as 
well as geometric transformations.  

Future work will be focusing on storage, search and matching strategies of the ex-
tracted fingerprints which will lead us to extent the test dataset.  
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Abstract. Based on an analysis on the spatial distribution property of virtual 
features, we propose that the shapes of the best focused image regions in multi-
focal catadioptric images can be modeled by a series of neighboring concentric 
annuluses. Based on this model, an over-all well focused image can be obtained 
by combining the best focused regions from a set of multi-focal images in a fast 
and reliable manner. A robust algorithm for estimating the model parameters is 
presented. Experiments with real catadioptric images under a variety of scenes 
verify the validity of the model and the robust performance of the algorithm. 

Keywords: Catadioptric system, multi-focal images, well-focused image. 

1   Introduction 

Being able to capture a wide field of view, catadioptric systems consisting of curved 
mirrors and conventional lens based cameras have been increasingly popular in many 
computer vision applications. A frequently observed problem in a catadioptric image 
is that while some image regions are well focused, some other regions might not be 
focused as well, which leads to difficulties in the subsequent image processing proce-
dures. While most existing works on catadioptric systems have focused on mirror 
design[1-3], calibration[4,5], or applications [6], little attention has been paid towards 
understanding the effects of curved mirrors on the formation of a well-focused image. 
In this work, we explore the related properties of geometric optics and propose a 
model based method that combines a set of multi-focal images to obtain an over-all 
well focused image within which all objects are clearly focused. 

Among the several related works, an earlier one was done by Baker and Nayar [1]. 
The authors studied the defocus blur phenomenon and illustrate the field curvature 
effects [7] by a numerical simulation on a set of sample points. Ishiguro [8] discussed 
the case of compact catadioptric systems. The author stated that if the depth of field 
(DOF) of the camera could cover the region where the virtual features of all object 
                                                           
* Corresponding author. 
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points reside, the image would appear clearly focused for all objects. Recently, Swa-
minathan [9] explicitly derived the positions of virtual features and found that the 
infinite range of scene depth is limited to a finite extent of virtual features which is 
named caustic volume. Therefore, according to the previous researches, as long as the 
camera DOF is wide enough to contain the entire caustic volume, all objects can be 
clearly captured by just one single catadioptric image.  

However, there are still many cases where the camera DOF is not wide. One ex-
ample is compact catadioptric systems[8], where the cameras are typically mounted at 
a close distance to the mirror. According to geometrical optics [7], a close object 
distance leads to a small DOF. Another example is the systems where the cameras 
work with large apertures [10] to allow efficient photography, which also leads to a 
small DOF. In these situations, the object points whose virtual features are beyond the 
DOF would still appear out-of-focus. Since one single shot cannot capture a clear 
image for all objects, a reasonable option is to combine a set of multi-focal images. 

Methods using multi-focal images to obtain an over-all well focused image have 
been extensively studied for lens based cameras in micro or close-up photography to 
extend the DOF[11]. Such approaches typically segment the best focused image 
patches from multi-focal images and merge them into an output image. As local focus 
measurement has to be evaluated through the entire set of images and optimized with 
spatial consistency constraints, these methods can be time consuming and error prone.  

Different from these methods, we explore the geometric optics in catadioptric sys-
tems [9] and propose a model based method, which models the shapes of the best 
focused image regions in multi-focal images by a series of neighboring concentric 
annuluses. Based on this model, segmenting the best focused image regions is simpli-
fied to estimating the model parameters, which is much more robust to noise. The 
model parameters are also found to be independent of the scene structure. Therefore 
once the model is estimated, no computation is needed for different scenes, which 
endows this method with a fast performance.  

An algorithm for estimating the model parameters is presented. This algorithm 
does not need the mirror shape nor the system parameters to be known as prior, thus is 
not prone to calibration errors. The focal distance settings for the set of multi-focal 
images are also not necessary to be known, which makes this algorithm highly auto-
matic. Experiments with real catadioptric images under a variety of scenes verify the 
validity of the proposed model and the robust performance of the algorithm.  

2   The Proposed Model 

2.1   Shape of Well Focused Image Region in One Catadioptric Image 

We start by discussing the model for one catadioptric image. Considering the imaging 
process in a catadioptric system, 3D object points are first reflected by the curved 
mirror and form virtual features. Then the camera captures these virtual features to 
form an output image. Therefore the well focused image regions correspond to the 
object points whose virtual features are within the camera DOF. 

Recently, Swaminathan [9] explicitly derives the locations of virtual features and 
finds that virtual features of all object points are located within a finite space which is 
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named caustic volume. Fig. 1 plots an illustrative sketch for the imaging process. As 
is shown, caustic volume is the space between the mirror surface and a virtual surface 
which is the caustic volume boundary (CVB). In this work, we further find that the 
spatial distribution of virtual features within the caustic volume is non-uniform and 
the majority of virtual features can be regarded to locate on the CVB. Based on the 
work [9], we explicitly compute the locations of virtual features for a variety of quad-
ric mirror based catadioptric systems, whose eccentricities range from 0.8 to 1.2, 
heights from the mirror apex to the camera lens range from 5.9mm to 114.7mm, and 
the diameters of the mirror range from 4.6mm to 136.0mm. This set of parameters 
covers a typical production list of catadioptric sensor producers such as ACCOWLE 
Co. Ltd [12]. According to the computation, when an object point is farther than 1 
meter to the system, it will have its virtual feature locate within a narrow neighbor-
hood of the CVB whose width is 5% of the distance from CVB to the mirror surface. 
In most applications, as the points of interests usually lie at a certain distance, the 
great majority of virtual features can be considered to be located on the CVB.  

Following this conclusion, the virtual features that can be clearly focused should be 
located on the CVB surface and between the front end and rear end of the DOF, 
which can be modeled as two parallel planes perpendicular with the optical axis. As 
the system and the CVB is rotational symmetric, the projection of this region onto the 
CCD sensor is an annulus. Therefore, this work uses this annulus to model the shape 
of well focused region in a catadioptric image. 

Since the CVB and DOF are determined only by the mirror shape and the system 
setup, the shape of well focused region is independent of the 3D scene structures, 
which is essentially different from the situation in a conventional dioptric system. 

2.2   Shapes of Best Focused Image Regions in Multi-focal Images 

Denote the CVB as 3V ⊂ . Let { }iI I= be a set of N multi-focal catadioptric im-

ages, which is taken at the same view point for the same scene, yet with different 
focal distance settings{ ( )}if I , where 1 2( ) ( ) ... ( )Nf I f I f I< < < . Note that when a 

camera with image-space telecentric feature [13] is used, the scene content in each 

image is the same. Denote the DOF of iI as ( )id I , which is as shown in Fig. 1. To 

make sure all scene objects are clearly recorded in at least one of the images, I should 
satisfy the following conditions: (1) ( ) ( )p qd I d I ≠ ∅∩  for ,p qI I I∀ ∈ , 1q p= + , 

and (2) 
1

( )
N

ii
V d I

=
⊂∪ . Condition (1) can be met by making the focal distance incre-

ment at sufficiently small steps. Condition (2) can be met by letting 1( )d I lie before 

V and ( )Nd I lie behind V, which can be easily examined by visually checking 

whether both 1I and NI are over-all out-of-focus images.  

The images of interests in I are a subset of M partly focused images 
' { ' }kI I I= ⊂  that satisfy ( ' )kd I V ≠ ∅∩ . Also assume

1 2( ' ) ( ' ) ... ( ' )Mf I f I f I< < < . 

As V is a limited space, M can be expected to be a small number. Denote the circular  
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Fig. 1. A sketch of the imaging process of a typical catadioptric system. Since almost all virtual 
features locate on the caustic volume boundary, the shapes of the best focused image regions in 
multi-focal catadioptric images can be modeled by a set of neighboring concentric annuluses. 

image region corresponding to the mirror surface as ( ')s I . Note that 
since 'I I⊂ , ( ) ( ')s I s I= . It can be seen that any part in the image domain of 

( ')s I would be clearly recorded in at least one of the images in 'I . 
Extending the model in section 2.1, the best focused regions in 'I can be modeled 

by M neighboring concentric annuluses. From the central to the peripheral, 

let ( ')s I be divided into M concentric annular areas { }kA A= , where 
1

( ')
M

kk
A s I

=
=∪  

and
p qA A = ∅∩ , for p qA A∀ ≠ , ,p qA A A∈ . Determined by the order of ( ' )kf I , 

kA is the best focused in image 'kI as shown in Fig. 1. Each annulus kA can be de-

scribed by the two concentric circles enclosing it, whose radius are 1kr − and kr . 

Therefore, the model { }kA A= can be parameterized as a set of M+1 ra-

dius 0 1 2{ , , ,..., }Mr r r r , where 0 1 2 ,..., Mr r r r< < < < . Here, 0r is radius of the circu-

lar area in the image central part where the scene is occluded by the camera, which is 

plotted as the black circle in Fig. 1. Mr is radius of the circular view boundary of the 

mirror surface in the image. As 0r and Mr are determined by the system setup, there are 

M-1 free parameters to be estimated, which is denoted as 1 2 1{ , ,..., }MR r r r −= . The 

final out put image Î is simply obtained by combining the best focused area in 'kI so 

that ˆ( ) ' ( )k k kI A I A= . 

Note that as R is only determined by the system setup and focal distance settings 

of 'kI , the same R is applicable for images of arbitrary scenes in spite of their differ-

ent 3D structures. This is verified by experiments in section 4. 
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3   Model Estimation Algorithm 

The input of the model estimation algorithm is a set of multi-focal images I as intro-
duced in section 2. The algorithm first identifies the set of partly focused images 'I . 
Then the model parameters 1 2 1{ , ,..., }MR r r r −= are estimated using an optimization 

approach that search the parameters that best fits the data observation.  
A partly focused image is identified by examining whether it contains a number of 

best focused image points among all images. To evaluate the degree of focus for a 

point ( )p s I∈ in image iI , a measurement ( ; )iF p I is needed. Considering the 

balance between performance and computational efficiency, we adopt the high order 
statistics (HOS) [14] as ( ; )iF p I . Denote { } ( )jP p s I= ⊂ as a set of uniformly dis-

tributed sample points. Then wI contains jp as a best-focused point (BFP) 

when
1( ; ) max ( ; )N

j w i j iF p I F p I== . Therefore, partly focused images are identified 

as the images that have a significantly larger number of BFP. In this work, one half of 
the largest number of BFP contained in an image is used as the threshold. 

Given the set of M partly focused images ' { ' }iI I= , the model parameters to be 

estimated are: 1 2 1{ , ,..., }MR r r r −= . Here we define a model estimation error func-

tion ( )E R between the model estimation R and the image observation 'I as: 

1
1

( ) (arg(max ( ; ' )) )
j k

M
M
i j i

k p P A

E R F p I kδ =
= ∈

= ≠∑ ∑
∩  .

 (1) 

where ( ) 1sδ = when s is true and ( ) 0sδ = when s is false. { } ( ')jP p s I= ⊂
 
is a 

set of uniformly distributed sample points in ( ')s I . In this function, 

1arg(max ( ; ' ))M
i j iF p I= gives index of the image where point jp in area kA is con-

sidered best focused by the focus measurement in 'I . On the other hand, according to 

the model in section 2.2, any point jp in area kA must be best focused in image 'kI . 

Therefore, ( )E R actually counts the number of sample points whose image observa-

tions are not consistent with the model predictions. Then the optimal model estima-

tion R̂  is given by minimizing ( )E R so that: ˆ( ) min( ( ))
R

E R E R= . 

The algorithm obtains R̂ with the following procedures: 

(1) For each jp , find 1( ) arg(max ( ; ' ))M
j i j iB p F p I== . 

(2) Denote the distance from a pixel p to the image center as ( )rad p . For all the 

pixels in P that satisfy ( )jB p k= , the average of ( )jrad p is supposed to be a 

value ( )a k  between 1kr − and kr . As 0 1 2 ,..., Mr r r r< < < < , some erroneous es-

timations of ( )jB p can be rejected by using the following iteration:  
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(a) Estimate ( )a k for each kA .  

(b) Find the points that simultaneously satisfy the following two conditions: (i) 
( ) ( ) ( 1)ja k rad p a k< < + ;  (ii) ( )jB p k< or ( ) 1jB p k> + . 

(c) If no points are found in (b), finish the loop. If else, go to (d). 
(d) Eliminate the points found in (b) and go back to (a). 

(3) For the model 1 2 1{ , ,..., }MR r r r −= to be estimated, ( ( ), ( 1))kr a k a k∈ + . Since the 

solution space for R is not large, we traverse the entire solution space to find a 

global optimal estimation R̂ that minimize ( )E R . 

As ordering constraints is used in step (2) and an optimal estimation is searched, this 
method still works well with the presence of noise.  

After the model parameters are estimated, the left work is to combine the best fo-

cused regions into a single image Î  so that ˆ( ) ' ( )k k kI A I A= . Note that, 

as ( ' ) ( ' )p qd I d I ≠ ∅∩ for ' , ' 'p qI I I∀ ∈ , the image pixels in 'kI  within a 

neighborhood of kA can still be supposed to be well focused.  

4   Experiments 

The proposed method is tested with a real catadioptric system, where a Canon Power-
Shot S50 digital camera is mounted toward a hyperbolic mirror surface with the  
camera optical axis coincident with the mirror axis. The circular image region of the 
mirror surface has a radius of 850 pixels. We observe that when the F number is 3.2 
and the shutter speed is 1/400 second, it is difficult to capture one overall well fo-
cused image with any focal distance setting, which indicates the camera DOF is not 
wide enough to contain the CVB. With the above setting, 10 multi-focal images 

{ }iI I= are captured, whose focal distances are manually set from 10cm to 28cm 

with an interval of about 2cm. Other number of images and focal distance settings can 
also be used as long as the obtained images satisfy the two conditions in section 2.2. 
Guaranteed by the image-space telecentric feature [13], the scene contents in the im-
ages are exactly identical despite of the different focal distances.  

With the method in section 3, I4, I5 and I6 are found to contain a significantly 
higher number of BFP and are therefore selected as the set of partly focused images 

1 2 3 4 5 6' { ' , ' , ' } { , , }I I I I I I I= = , as shown in Figure 2. As three partly focused im-

ages are involved, two model parameters {r1, r2} need to be estimated. With the pro-
posed method, a set of 5076 uniformly distributed grid sample points are used and 
r1=418(pixels), r2=619(pixels). Different numbers of noise points from 800 to 4800 
are added, for which the image where each noise point is best focused is randomly 
assigned. Though the number of noise points increases to as large as 94% of the sam-
ple points, the maximum deviation of the estimated model parameter is 3.97% for r1 
and 1.46% for r2, which illustrates the robustness of the model estimation algorithm. 
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Fig. 2. Number of the best focused points (BFP) in each input image 

By combining the best focused regions, an overall well-focused image is obtained 
as the output image. Harris corner extraction algorithm extracts at least 24.1% more 
corner points from this image than those from any single partly focused image. 

The model estimation algorithm is tested in six different scenes with the same sys-
tem setting and image capturing procedure. For each scene, three partly focused im-
ages are extracted. In Figure 3, one of the partly focused images for each scene is 
presented in the first row, under each of which a subfigure displays the sample points. 
According to results from the focus degree measurement function (given in section 3), 
a sample point is plotted blue if best focused in

1'I , green if in 
2'I , and red if in 

3'I . 

The model {r1, r2} is superimposed on each figure as the two circles. For 85.8 % of 
the sample points, the model gives the same results as those given by the focus meas-
urement function. It can be intuitively observed that {r1, r2} are quite consistent with 
the raw focus measurement. The inconsistent cases are due to the erroneous estima-
tions from the focus measurement function, which may result from local texture less 
regions, sensor internal reflections, and low SNR in dark regions. In comparison, the 
proposed model based method can well deal with these local noises. 

Notice that though the scene structure changes significantly, the shapes of the best 
focused regions and the model parameters remain the same. The maximum model 
parameter deviation is 2.25% for r1 and 1.59% for r2 respectively. Therefore, the 
model parameters can be deemed to be independent from the scene 3D structures.  

 

 

Fig. 3. Model parameters estimated under six different scenes 

This feature guarantees that, once estimated, the model parameters are still applicable 
for other scenes as long as the system setups and imaging parameters do not change. 
Many modern cameras are able to store the imaging parameters on-chip, which much 
facilitate the employment of this method. Therefore, an overall well-focused image can 
be simply obtained by cropping and putting together the annular regions without addi-
tional computational load, making the procedure operate very fast. 
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5   Concluding Remarks and Discussions 

This work presents a model based method that obtains an over-all well focused cata-
dioptric image by combining multi-focal images in a fast and reliable manner. The 
resulting images would benefit the applications where high image resolutions are 
desirable over a large field of view such as open environment image acquisition, large 
area 3D structure measurement, and artistic landscape photography. Experiments with 
real catadioptric images verify the model and the algorithm. In practice, many off-the-
shelf cameras are equipped with the focus-bracketing function, with which the  
proposed method can be easily employed by many existing catadioptric systems to 
improve the image quality in terms of focus. Note that focus-bracketing requires time 
for multi-exposure, which might hinder the approach from dynamic environments. 
However, this problem would be alleviated as newer cameras are ever increasing their 
frame rate such as Casio EX-F1, which can capture 60fps at 6MP.  
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Abstract. Traditional monochrome image colorization techniques require con-
siderable user interaction and a lot of time. The segment-based colorization 
works fast but at the expense of detail loss because of the large segmentation; 
while the optimization based method looks much more continuous but takes 
longer time. This paper proposed a novel approach: Segmentation colorization 
based on random walks, which is a fast segmentation technique and can naturally 
handle multi-label segmentation problems. It can maintain smoothness almost 
everywhere except for the sharp discontinuity at the boundaries in the images. 
Firstly, with the few seeds of pixels set manually scribbled by the user, a global 
energy is set up according to the spatial information and statistical grayscale in-
formation. Then, with random walks, the global optimal segmentation is ob-
tained fast and efficiently. Finally, a banded graph cut based refine procedure is 
applied to deal with ambiguous regions of the previous segmentation. Several 
results are shown to demonstrate the effectiveness of the proposed method. 

Keywords: colorization, random walks, graph cut, image segmentation. 

1   Introduction 

Colorization is the technique for adding color to monochrome images. It is an active 
and challenging area of research problem. In addition to the intentions of coloring old 
pictures and movies, colorization has also been applied into several other applications 
such as color changing (editing). This technique may also be used for efficiently en-
coding and decoding by separating the grayscale and color information. 

However, colorization is traditionally very time-consuming. For example, in order 
to colorize an image, an artist typically begins by segmenting the image into regions, 
and then assign a color to each region. Unfortunately, fuzzy or complex region 
boundaries are very difficult to cope with for automatic segmentation methods. Thus, 
the artist often have to delineate complicated boundaries between different regions 
manually. 

Due to the shortcoming of automatic segmentation methods, several researchers 
have proposed user guided interactive methods. Levin et al.[1] proposed a simple yet 
effective user-guided colorization method. In this method the user is required to 
scribble the desired colors in the interiors of the various regions. These constraints are 
formulated as a least-squares optimization problem that automatically propagates the 
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scribbled colors to produce a completely colorized image. Other algorithms based on 
color scribbles have subsequently been proposed [2-4]. While these approaches hasve 
produced some impressive colorizations from a small amount of user input, they may 
still require a large amount of carefully placed scribbles for complex images. Qu et al. 
[5] proposed a colorization technique that propagates color over regions exhibiting 
pattern-continuity as well as intensity-continuity. The method works effectively on 
colorizing black-and-white manga which contains intensive amount of strokes, hatch-
ing, halftoning and screening. In [6], Takahiko et al. utilize seeded region growing 
segmentation alike method to colorize with weighted propagation of seed pixels. 
Irony et al. [7] presented a novel method to colorize grayscale images by transferring 
color from a segmented example image. Oscar et al. proposed a colorization method 
based on Bayesian segmentation [8]. 

Our work is based on the observations: 1) Most part of a grayscale image can be 
faithfully colorized with little user scribbles. 2) Most existing colorization method 
needs special deal to avoid the color mixing problem near object border. The reason 
lies in the fact that the important geometry information (edge) is often ignored during 
the colorization in previous methods. In this paper, we introduce a new colorization 
method. Our method utilizes edge information explicitly during colorization. Spe-
cially, similar to the method of Levin et al. [1], our approach starts with a few user 
scribbles. Then, the grayscale image is segmented into regions using random walk 
method [9, 10] with the constraints of user scribbles. The random walk is a multi-
label, interactive segmentation method [9, 10], achieves segmentation by solving a 
PDE equation of discrete Direchlet problem. Since random walk is a probabilistic 
based segmentation method, and the final segmentation of pixels with low probability 
is not faithful, we utilize banded graph cut to refine these regions and produce the 
final colorization. 

2   Colorization with Random Walks 

The whole process of our method begins by a user scribbling on regions of interest. 
The proposed method consists of two steps: a quick color propagation step and a 
boundary refine step. The first step, color propagation works at a coarse scale, which 
utilizes the random walks to segment the image into regions. The second step, bound-
ary refinement, utilizes banded graph cut to segment problematic regions. 

Our method inherits the advantages of region-based and boundary-based methods 
in two steps. The first step is intuitive and quick for faithful segmentation and colori-
zation, while the second step is efficient for accurate boundary control. 

Random walks [9, 10] is used for segmentation in our method, so we give a review of 
it here. Suppose that the image is represented by a graph ( , )G V E= , with vertices 

(nodes) v V∈  and edges e E V V∈ ⊆ × . An edge, e, spanning two vertices, vi and vj, is 
denoted by eij . A weighted graph assigns a value to each edge called weight. The 
weight of an edge, eij , is denoted by w(eij) or wij. The degree of a vertex is 

( )i ijd w e=∑ for all edges eij incident on vi. In order to interpret wij as the bias affecting 

a random walker’s choice, wij > 0 is required. The graph is assumed to be connected and 
undirected (i.e., ij jiw w= ). The random walk problem is to assign probabilities to each 
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node the probabilities which reaches each seeded nodes. The random walk probabilities 
problem has the same solution as the combinatorial Dirichlet problem [9]. Below, we 
give a short review of the combinatorial Dirichlet problem. 

Given a weighted graph, a set of marked (labeled) nodes, VM, and a set of un-
marked nodes, VU, such that M UV V V∪ =  and M UV V∩ = ∅ , we would like to label 

each node i Uv V∈  with a label from the set 1 2{ , , , }kC c c c= K  having cardinality 

k C= . Assume that each node i Mv V∈  has already been assigned a label, ix C∈ . 

The random walks approach to this problem given in [9, 10] is to assign to each node, 

i Uv V∈ , the probability, s
ix , that a random walk starting from that node first reaches a 

marked node, j Mv V∈ , assigned to label cs. The segmentation is then completed by 

assigning each free node to the label for which it has the highest probability, 
i.e., max s

i s ix x= . 

It is known [9, 10] that the minimization of  

                                                    
sT s

spatialE x Lx=  (1) 

for an n×1, real-valued vector xs, defined over the set of nodes yields the probabil-
ity, s

ix , that a random walks starting from node vi, first reaches a node j Mv V∈  with 

label cs (set to 1S
jx = ), as opposed to first reaching a node, j Mv V∈ , with label 

q sc ≠ (set to 0q
jx = ), where L represents the combinatorial Laplacian matrix [9]. 

In this paper, we will concentrate on how to augment the minimization problem 
with user input. We refer readers to [9] for a detailed formulation of problem and how 
to solve it. In the original random walk algorithm, only pixel spatial information is 
utilized for the segment. If the user input is not just a few pixels for each label, the 
important statistical information of seeds should be used. Later, in [11], label prior 
information of pixel intensity is integrated in random walks method to free user inter-
action. The minimizing problem becomes  

                                            
s s s
Total spatial aspatialE E Eγ= +  (2) 

where γ  is a free parameter and s
aspatialE  is the aspatial energy function. 

In Equation (2), s
spatialE  encodes the spatial information of a node, as in the original 

random walks method. s
aspatialE  encodes the aspatial information of a node, represented 

by the density estimation. In [11], simple Gaussian kernel is used to produce the den-
sities corresponding to each of the k labels. In our method, to use the statistical infor-
mation of each class label cs, we cluster the intensity in seeds of each class cs by the 
K-means method firstly. The mean intensity of the clusters of each labels are denoted 
as { s

nK }. The K-means method is initialized to have 4 clusters in our experiments. 

Then, for each node iv , we compute the minimum distance from its intensity ( )I i  to 

each label cs as min ( )s s
i n

n
d I i K= − . Therefore, the probability, s

iλ , that node vi is 

generated from the distribution corresponding to label cs is generated through 
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( )1
s
id

s
i s

e
Z

σλ
−

=
 (3) 

where σ is a free parameter and sZ is a normalizing constant for label cs equal to 

                                                  1

( )
qk

s i

q

d
Z e

σ=

= −∑  (4) 

As in [11], the aspatial function is defined as  

                      1,

( ) ( 1) ( 1)
k

s s qT q q s T s s
aspatial

q q s

E x x x x x
= ≠

= Λ + − Λ −∑  (5) 

To energy in Equation (2) can be minimized as in the original random walks algo-
rithm.  

3   Deambiguous Refining 

Although the random walk segment preserves the object boundary as accurately as 
possible, for it is a probabilistic method, there still exist some errors, especially 
around ambiguous and low contrast edge boundaries. Therefore, we utilize banded 
graph cut to refine the ambiguous boundary. Firstly, the ambiguous regions are  
located by their probabilities. A pixel is considered as ambiguous if the difference 
between its two biggest probabilities is less than a threshold δ . The threshold δ  

depends on the number of labels (typically 
1

10k
 for k different labels). The refine 

process is dealted as a binary labeling problem. The denoted ambiguous regions are 
first merged into big regions: if two ambiguous regions are in neighborhood and their 
largest two probabilities labels are the same, they are merged. For each ambiguous 
region Rt, let its largest two probabilities belong to label u and v, the banded graph cut 
problem is constructed on pixels belongs to u and v. The labeling problem is to assign 
a unique label xi for each node ti R∈ , i.e. { ( 1), ( 0)}ix u v∈ = = . The solution { }iX x=  

can be obtained by minimizing a Gibbs energy E(X): 

                                       
1 2

( , )

( ) ( ) ( , )
t

i i j
i R i j

E X E x E x x
ε

λ
∈ ∈

= +∑ ∑  (6) 

where 1( )iE x  is the likelihood energy, encoding the cost when the label of node i is xi, 

and 2 ( , )i jE x x  is the prior energy, denoting the cost when the labels of adjacent nodes 

i and j are xi and xj respectively. 
After the random walks procedure, a straightforward choice for likelihood energy 

E1 is to use the output of random walks. 1 ( )iE x  is defined as follows: 
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1 1

1 1
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+

⎧
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⎪ ∀ ∈
⎪⎩

 (7) 

Here, U is the set of pixels belonging to label u, and V is the set of pixels belonging to 
label v, and u

ip  and v
ip  is the calculated probabilities of node i belonging to label u 

and v respectively during the random walk process. The first two equations guarantee 
that the nodes in U and V will always have the label consistent with confident random 
walks output. The third equation encourages the nodes in ambiguous region to have 
the label with larger probabilities. 

We use E2 to represent the energy due to the gradient along the object boundary. 
We define E2 as a function of the intensity gradient between two nodes i and j: 

                         
2 2

1
( , ) ( )

( ) ( ) 1
i j i j ij i jE x x x x g I x x

G i G j
= − ⋅ = − ⋅

− +  
(8)

 

where 
1

( )
1

g x
x

=
+

and ijI  is the intensity difference between two pixels i and j. Note 

that i jx x−  allows us to capture the gradient information only along the segmenta-

tion boundary. In other words, 2E  is a penalty term when adjacent nodes are assigned 

with different labels. The more similar the intensities of the two nodes are, the larger 
E2 is, and thus the less likely the edge is on the object boundary. 

To minimize the energy E(X) in Equation (6), we use the maxflow algorithm in 
[12]. This algorithm is specially designed for vision problems. Although it is time 
consuming to run graph cut on a whole image, we run graph cut only on ambiguous 
region and with banded graph cut, running time is significantly reduced. 

4   Experiment Results 

We now present examples of our image colorization technique. The proposed algo-
rithm has been implemented in Matlab. For timing we used an Intel Pentium-M 
1.7GHz CPU and 1G RAM running under Windows XP. Fig.1 shows examples of 
images colorization using our proposed algorithm. The algorithm run time for the 
examples in Fig.1, measured once the images were loaded into memory, is less than 
30 us per pixel. 

Figs.2 and 3 compare our method with the one recently proposed by Levin et al. 
[1]. The method minimizes the difference between a pixel’s color and the weighted 
average color of its neighboring pixels. The weights are provided by the luminance 
channel. The minimization is an optimization problem, subject to constraints supplied 
by the user as chrominance scribbles. First, in Fig.2, we observe that we can achieve a  
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Fig. 1. Image colorization examples. Given a grayscale image, the user marks chrominance 
scribbles (left), our method segment the image with user provided scribbles (middle), and col-
orized images (right). 

(a) (b) 

(c) (d)  
Fig. 2. Comparison of user effort with the technique proposed in [1]. (a) Given grayscale image with 
user scribbles in [1]; (b) the colorization result in [1]; (c) user scribbles of our method; (d) coloriza-
tion result of our method. We observe the similar quality at a significantly reduced user effort. 
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similar visual quality with less user input than in [1]. In our method, with the usage of 
statistical information of user scribbles, our segmentation based method can utilize 
spatial and aspatial information simultaneously and so even pixels with large spatial 
distance but similar grayscale value can be colored with user scribbles. On the whole, 
the method proposed in [1] performs very well on many images, yet it performs 
poorly sometimes when colorizing pixels relatively far away from the provided color 
constrains, as can be seen in Fig.3. As our method explicitly deal with object border 
information, even far away pixels will receive color from the scribbles in our ap-
proach. We also observed that the inspiring technique developed in [1] often fails at 
strong edges, since these provide zero or very limited weight/influence in their formu-
lation, also pointed out by [3]. While in our method, due to the explicitly process of 
edge, our method can avoid this problem, as can be seen in Fig.3. 

 

(a) (b) 

(c) (d) (e) 

Fig. 3. Comparison of visual quality with the technique proposed in [1]. (a) Given grayscale 
image; (b) the user marks chrominance scribbles; (c) colorization result of our method; (d) 
Levin et al. approach with fast implementation of multigrid solver; (e) Levin et al. approach 
with exact Matlab least squares solver. 

5   Conclusion 

Despite considerable progress in image processing since 1970, colorization remains a 
manually intensive and time consuming process. In this paper, we have introduced a 
new colorization method based on random walks segmentation method. With graph 
cut based deambiguous refinement, the proposed approach needs less manual effort 
than previous techniques and can colorize a grayscale image within seconds. 
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Abstract. It is well-known that edges contain semantically important
image information. In this paper we present a lossy compression method
for cartoon-like images that exploits information at image edges. These
edges are extracted with the Marr–Hildreth operator followed by hys-
teresis thresholding. Their locations are stored in a lossless way using
JBIG. Moreover, we encode the grey or colour values at both sides of
each edge by applying quantisation, subsampling and PAQ coding. In
the decoding step, information outside these encoded data is recovered
by solving the Laplace equation, i.e. we inpaint with the steady state of a
homogeneous diffusion process. Our experiments show that the suggested
method outperforms the widely-used JPEG standard and can even beat
the advanced JPEG2000 standard for cartoon-like images.

Keywords: image compression, partial differential equations (PDEs),
Laplace equation, contour coding.

1 Introduction

Edges are not only semantically important for humans, they also play a central
role in image processing and computer vision. Edge detection can be regarded
as an intermediate step from a pixel-based to a semantic image representation.
Since it is more compact to describe an image by a few contours than by many
pixels, an edge representation is also of potential interest for image compression.

One of the classical edge detectors is based on the Marr-Hildreth operator [1],
which extracts edges as zero-crossings of the Laplacian of a Gaussian-smoothed
version of the image. Numerous theoretical and experimental papers have been
written that investigate if reconstructions from these zero-crossings are possible
[2,3,4,5,6,7,8,9,10,11,12]. Unfortunately, it turned out that specifying only the
zero-crossing locations is insufficient for typical real-world images. Thus, it has
been suggested that one should supplement additional information such as the
image gradient, grey values adjacent to the edge, subsampled image data, or
scale information. However, none of the before mentioned publications has led
to an image compression method that yields results which are competitive to
modern compression standards such as JPEG [13] or JPEG2000 [14]: Either the
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required data cannot be encoded in a sufficiently compact way, or the results
turn out to be of inferior quality.

The goal of the present paper is to address this problem. We provide a proof
of concept that information on the edge location together with the adjacent grey
or colour values is sufficient to reconstruct cartoon-like images in high quality
when the unspecified locations are filled in by the steady state of a homogeneous
diffusion process. Moreover, by using state-of-the-art techniques for encoding
the edge locations and the adjacent grey/colour values, our method may even
outperform the quality of leading compression standards such as JPEG2000.

Our semantic image compression approach can be regarded as a specific im-
plementation of a recent result on optimal point selection for compression with
homogeneous diffusion: In [15] it is proven that one should preferently store pix-
els with large modulus of the Laplacian. For a piecewise constant image this
comes down to the pixels left and right of an edge contour. It should be noted
that contours can be encoded more efficiently than the same number of individ-
ual pixels, and they avoid visually unpleasant singularities of the fundamental
solution of the Laplace equation. Moreover, by using homogeneous diffusion, our
method is simpler and potentially faster than recent compression methods based
on nonlinear anisotropic diffusion processes [16].

The structure of our paper is as follows: In Section 2, we present the encoding
algorithm of our lossy compression scheme. Section 3 explains how to decode and
reconstruct the image information by means of interpolation with homogeneous
diffusion. Experiments and a comparison to JPEG and JPEG2000 are presented
in Sect. 4. Finally, the paper is concluded with a summary in Sect. 5.

2 Encoding

Step 1: Detecting Edges. Our encoding of an image starts with an edge
detection. We use the Marr-Hildreth edge detector [1] combined with a hysteresis
thresholding as suggested by Canny [17].

To this end, we extract the zero-crossings of the Laplacian of a Gaussian-
smoothed image. To remove zero-crossings that have no obvious perceptual sig-
nificance, we apply hysteresis thresholding: Pixels obtained by the Marr-Hildreth
edge detector with a gradient magnitude that is larger than a lower threshold are
considered as edge candidates. All edge candidates with a gradient magnitude
that is larger than a higher threshold become seed points for relevant edges and
are automatically edge pixels of the final edge image. In order to keep edge pixels
still connected as much as possible, we recursively add all edge candidates that
are adjacent to final edge pixels.

For cartoon-like images this algorithm gives well-localised contours that are
often closed. However, we are not necessarily bound to the suggested edge detec-
tor: For images that contain blurry edges, closed contours may be less important,
and the original Canny edge detector [17] can give better results. Choosing al-
ternative edge detectors can also be advantageous regarding noisy images. In our
experiments we focus on the edge detector described above.
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Fig. 1. Zoom (120 × 160) into the image comic (a) Original image. (b) Edge image.
(c) Colours next to the edges and image boundary. (d) Interpolated version using
homogeneous diffusion.

Step 2: Encoding the Contour Location. The result of the edge detection
step can be regarded as a bi-level edge image as is illustrated in Fig. 1(b). This
bi-level image encodes indirectly the location that is used for interpolation later
on. We store this image by using the JBIG (Joint Bi-level Image Experts Group)
standard [18]. It has been developed as a specialised routine for lossless as well
as for lossy compression of bi-level images, particularly with regard to textual
images for fax transmission.

In this paper we are interested in lossless compression with JBIG. We use
the JBIG-KIT [19], which is a free C implementation of the JBIG encoder and
decoder. The JBIG standard relies on a context-based arithmetic coding. Two
prediction steps are applied beforehand to except pixels from arithmetic coding
that can be encoded more efficiently by other methods. In our case only the
so-called typical prediction applies since we do not use the progressive mode of
JBIG.

Step 3: Encoding the Contour Pixel Values. Next, we consider the pixel
values we want to store. Since edges usually split areas of different brightness or
colour, we do not use the pixel values that lie directly on the edge, but store the
values from both sides of the edge instead (see Fig. 1(c) and [7]). Additionally,
all pixel values from the border of the image domain are stored such that these
values are also available as Dirichlet boundary for the diffusion-based filling-in
later on.

Compression methods are often based on the fact that most differences be-
tween consecutive values within a signal are small. In our case we know that the
pixel values along a contour usually change only gradually. Thus, it is reasonable
to store the pixel values by the order of their occurrence along the edge.

The extracted pixel values can be uniformly quantised to 2q different values,
where q ∈ {1, . . . , 8}. The parameter q can be chosen by the user depending on
compression requirements. For RGB colour images, all channels are quantised
equally.
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A second compression parameter is the sampling distance d: For d > 1 a
subsampling on the pixel values is performed, i.e. only every d-th value along
an edge is stored. As already stated, the pixel values change only marginally
along an edge. In contrast, the pixel values of distinct edges might differ by a
significant amount. Thus, it is indispensable to subsample each edge separately
to obtain feasible reconstruction results.

The quantised and subsampled pixel value signal is then compressed by a
PAQ compression method [20]. PAQ describes a family of lossless data com-
pression archivers, which are licensed under GPL. At the expense of run time
and memory requirements, the compression rates of PAQ outperform those of
other compression programmes such as the well-established data compression
algorithm bzip2. PAQ uses a context mixing algorithm, which is related to Pre-
diction by Partial Matching (PPM) [21]. The compression algorithm is divided
into a predictor and an arithmetic coder. For the prediction, PAQ is provided
with a large number of models conditioned on different contexts often tuned to
special file formats. In this paper we use PowerPAQ which is a command line
and GUI front end using PAQ8o6 for 32 and 64 bit Linux [22].

Step 4: Storing the Encoded Data. Now that we have encoded the contour
location and pixel values, we want to consider the final image format. Obviously,
we need to store the quantisation parameter q and the sampling distance d as
header data. Furthermore, we store the size of the JBIG data part in order to be
able to split the JBIG data from the PAQ data when decoding. The number of
channels (1 or 3) has to be stored explicitly for decoding the PAQ part, whereas
the image size is automatically encoded in the JBIG data part.

Our entire coded image format is then given by the following representation.

3 Decoding

Step 1: Decoding the Contour Location and Pixel Values. As a first
step of the decoding phase, we split our encoded file into the JBIG data and
PAQ data part. Both parts are then decoded by using the JBIG and the PAQ
method, respectively.

We reconstruct the quantised colours obtained by the PAQ part. The pixel
values between the sampled points are computed by using linear interpolation
along each edge. Higher order interpolations do not give any advantage since the
pixel values hardly vary along an edge.

The decoded pixel values have to be placed at their corresponding positions
in the final image: The JBIG data provides a bi-level edge image of the original
image size. Given the image size and the edge pixel positions, the pixel values are
arranged around the edges in the same order in which they have been encoded.
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Step 2: Reconstructing Missing Data. So far, we have decoded the edge
locations and the pixel values surrounding the edges. The idea is now to apply
interpolation to reconstruct grey/colour values of pixels that lie between edges.
We keep the pixel values at the positions obtained in Step 1 and use homoge-
neous diffusion for interpolation. This is the simplest and computationally most
favourable inpainting approach based on partial differential equations (PDEs)
[23]. Missing data is reconstructed by computing the steady state of the diffusion
equation [24]

∂tu = Δu , (1)

where the given pixel values are considered to form Dirichlet boundaries. Thus,
the reconstructed data satisfies the Laplace equation Δu = 0 (see also [7]). Such
a PDE can be discretised in a straightforward way by finite differences [25].

Interestingly, diffusion-based inpainting from image edges resembles a classical
finding in biological vision: Already in 1935 Werner made the hypothesis that a
contour-based filling-in process is responsible for the human perception of surface
brightness and colour [26].

4 Experiments

Let us now investigate the capabilities of the suggested compression method.
Figure 2 shows different test images and their compressed versions using JPEG,
JPEG2000, and the suggested PDE-based approach. The compression rates lie
between 0.20 and 0.35 bits per pixel (bpp). Since the original colour images use
24 bits per pixel, this comes down to compression ratios of 120:1 to roughly 70:1.

The compression ratio for the PDE-based approach can be influenced by the
sampling distance d and the quantisation parameter q but also by the underly-
ing edge image. However, for cartoon-like images, there is most often only one
reasonable edge set. All parameters were chosen to give visually pleasant results.
Experiments have shown that it suffices to set the quantisation parameter q to 4
or 5, i.e. 16 or 32 different pixel values per channel. The sampling distance should
be chosen depending on how detailed the input image is. For simple images such
as comic we could use d = 30 without getting obvious visible degradations in the
reconstruction. However, common image manipulation and display programmes
are not able to create JPEG2000 images with such high compression rates. Thus,
for the sake of comparability all given examples use d = 5.

In Figure 2 we observe that JPEG as well as JPEG2000 coding suffers from se-
vere ringing artifacts in regions of edges (see comic, and zoomed region thereof).
This is a result of their quantisation in the frequency domain and the following
back transformation. In the JPEG images block artifacts appear because the
discrete cosine transform is computed within blocks of 8× 8 pixels. Thus, JPEG
cannot even properly describe the smooth gradient in the background of svalbard
and comic. In contrast, our method stores edges explicitly and interpolates in re-
gions between edges. As a result, edges are well-preserved and smooth gradients
can still be represented. Visually, this gives the most appealing results.
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Fig. 2. Comparison of compression methods for different test images. Rows from top
to bottom: coppit (256× 256), svalbard (380× 431), comic (512× 512), comic (detail)
(100× 100). Columns from left to right: original image, JPEG, JPEG2000, and PDE-
based compression using contours (sampling distance d from top to bottom: 5, 5, 5;
quantisation parameter q: 4, 5, 5).

Table 1. Comparison of the PSNR for different images (see Fig. 2) and different
compression methods

image coppit svalbard comic

compression rate 0.34 bpp 0.23 bpp 0.21 bpp
JPEG 26.14 26.91 25.54

JPEG2000 27.56 30.06 27.44
our method 30.16 30.21 30.31
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For a quantitative comparison, we use the peak-signal-to-noise ratio (PSNR),
a common error measure for the qualitative analysis of images. It is defined as
follows: Let m be the maximal possible pixel value, which is 255 in our case. Fur-
thermore, let N be the number of image pixels and (fi)i=1..N and (gi)i=1..N the
pixel values of the original image and its reconstructed/decompressed version,
respectively. The PSNR is then defined via the mean squared error (MSE):

PSNR := 10 · log10

(
m2

MSE

)
[dB] with MSE :=

1
N

N∑
i=1

(fi − gi)2 . (2)

Table 1 shows the results for the images presented in Fig. 2 and confirms our
visual impression.

5 Summary

It is surprising that after almost three decades of intensive research on image
reconstruction from the zero-crossings of the Laplacian, substantial progress can
be made by a conceptually simple, but carefully engineered approach. By ex-
tracting the information on both sides of the zero-crossings, encoding it in an
efficient way, and decoding with homogeneous diffusion inpainting, we have pre-
sented a codec that can even beat JPEG2000 for cartoon-like images. This was
out of reach for all previous methods on edge-based image reconstruction.

Since none of the steps in our codec is highly complex, we are currently per-
forming research on real-time algorithms for sequential and distributed archi-
tectures. Moreover, we are investigating extensions that are also optimised for
edges with very smooth slope as well as for highly textured images.

Acknowledgements. We thank Anna Mainberger for providing the image
comic.
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Color Quantization Based on PCA and Kohonen SOFM 
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Abstract. A method for initializing optimally Kohonen’s Self-Organizing  
Feature Maps (SOFM) of a fixed zero neighborhood radius for use in color 
quantization is presented. Standard SOFM is applied to the projection of the  
input image pixels onto the plane spanned by the two largest principal compo-
nents and to pixels of the original image defined by the smallest principal com-
ponent via a thresholding procedure. The neuron values which emerge initialize 
the final SOFM of a fixed zero neighborhood radius that performs the color 
quantization of the original image. Experimental results show that the proposed 
method is able to produce smaller quantization errors than standard SOFM and 
other existing color quantization methods.  

Keywords: Color quantization, neural networks, self-organizing feature maps. 

1   Introduction 

Color quantization is an image processing technique whose purpose is to reduce the 
colors of digital images to a small limited number in such a way that a measure of 
difference between the original image and the color quantized one is minimized. 

The color quantization techniques can be classified into major categories. First, it is 
the class of splitting algorithms where the color space is divided into disjoined regions 
by consecutively splitting up the color space and then choosing a color to represent 
the region in the color palette e.g. median-cut [10], variance-based algorithm [19], 
Octree [1]. They are considered to be fast algorithms, however better quality results 
are usually obtained by methods of the second major class which are based on cluster 
analysis of the color space. The methods of SOFM [12], [13], Growing Neural Gas 
(GNG) [8], Adaptive Color Reduction (ACR) [16], Self-Growing and Self-Organized 
neural network (SGONG) [2], Fuzzy ART [4], Fuzzy C-Means (FCM) [3], [15] be-
long to this category. In these methods the cluster representatives,  chosen so that a 
within-cluster distance criterion (average, nearest neighbor, centroid) is minimized 
and a between-cluster linkage distance (single, complete, average, centroid) is maxi-
mized, are continuously adapted to the color content of the original image achieving 
this way a statistically analogue color distribution and good quality results. 

The optimal number of image dominant colors can be estimated initially [2], [16]. 
The presented method in this paper quantizes an image to a priori fixed number of 
colors. It is based on a combination of PCA and Kohonen’s SOFM.  
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Output layer 

Input layer 
 

Fig. 1. A two dimensional SOFM neural network with an input layer of three neurons for use in 
color quantization 

2   Self-organizing Feature Map 

Kohonen’s SOFM [12], [13] (Fig. 1) is a well known unsupervised neural network 
classifier. It consists of two separate layers of neurons, the input and output layer. The 
input layer operates as a buffer for the input vectors which are parallelly transmitted 
to all neurons of the output layer. The number of neurons and the connections be-
tween them are user defined and fixed, shaping a linear, planar or multidimensional 
lattice, independent of the input vectors dimension.  

One of the main characteristics of SOFM is that it is topology preserving, meaning 
that close input signals are mapped to neurons which are close in the lattice structure 
and conversely, close neurons in the lattice structure come from close input signals in 
the input space. That makes SOFM a desirable classifier for use in color quantization. 

The main steps for using SOFM to perform color quantization to N colors are: 
Step 1: Define the output layer structure of the N neurons forming it.  Initialize the 

neuron weights wi = [Wi1, Wi2, Wi3]
T, 0 ≤ i < N randomly selecting N input vectors (N 

pixel values xk = [rk, gk, bk]
T from the input image).  Reset variable t which increases 

on every new input vector xk = [rk, gk, bk]
T from the input image. Reset epochs variable 

ep which increases on every m consecutive input vectors. Initialize the neighborhood 
radius r and define a neighborhood function nei(wi, ep), which includes the closest 
neighboring neurons to wi, in radius r, at the output layer structure. Initialize learning 
rate ε1(ep) for the winner neuron and learning rate ε2(ep) for it’s neighboring neurons. 

Step 2: Get a new input vector xk=[rk, gk, bk]
T and find the neuron(s) wcj for which 

the square of the Euclidean distance in RGB color space is minimal as follows: 

d(xk, wcj)
2 = mini((rk - Wi1)

2 + (gk - Wi2)
2 + (bk - Wi3)

2), 0  ≤  i  <  N . (1) 

Get the sole solution or pick randomly one of the neurons wcj as winner neuron wc. 
Step 3: The winner neuron wc and it’s neighboring neurons wb defined from nei(wc, 

ep) are biased towards the input vector xk=[rk, gk, bk]
T as follows: 

wc(t+1) = wc(t) + ε1(ep)( xk - wc(t)) . (2) 

wb(t+1) = wb(t) + ε2(ep)( xk – wb(t)) . (3) 

Step 4: If m consecutive vectors are inputted, increase ep variable by 1. In this case 
decrease also the values of learning rates ε1(ep) and ε2(ep) and the radius of the 
neighborhood domain. 
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Step 5: Repeat from step 2 until either the maximum difference of the correspon-
dent weight values of each neuron wi from epoch to epoch is below a threshold, or a 
maximum number of epochs is reached. 

Step 6: Construct the quantized output image using Euclidean distance metric on 
the generated color palette and the pixels of the input image. 

There exist several variants of SOFM neural network. A criterion of the frequency 
a neuron is chosen, in order to form equal-sized classes and to avoid underutilization 
is proposed in [6], [5], [20]. Besides color, local spatial features are considered in 
ACR [16]. Hybrid methods are also proposed, as in SGONG [2] where the neural 
network uses the GNG [8] mechanism of growing the neural lattice and the SOFM 
learning adaptation algorithm. 

3   SOFM Initialization Based on Principal Component Analysis 

When the SOFM was introduced for the first time, it was shown that the initial values 
of it’s models in the learning process can be selected as random vectors, however the 
quality and speed of the convergence of the neurons are sensitive to initialization 
values. In general, it is considered to be a good initialization if the initial weights of 
the neurons are made to match the input image color distribution more closely.  
Kohonen in [12] mentions accordingly that the training process could be faster if the 
point density of the initial models approaches that of the input data and [14] recom-
mends choosing the initial models as a regular array of vectors on the hyperplane 
spanned by the two largest principal components of input data. 

On this basis a two-stage image segmentation is proposed in [11] where the input 
image is coarsely quantized capturing the dominant colors which are fed afterwards to 
an SOFM performing the final segmentation. In [17], it is proposed to initialize 
SOFM distributing the neurons uniformly along the luminance axis of RGB cube. An 
extension of this method is presented in [21] where a color group of neurons distrib-
uted uniformly throughout the RGB cube is added to the previous gray group. 

A new initialization scheme (Fig. 2) of SOFM of a fixed zero neighborhood radius 
for color quantization to N colors is proposed. Let k1 be the number of neurons to 
initialize so that their weights approach the input image color distribution, (k1 ≤  N), 
then as proposed in [14] for performing such an initialization, an SOFM with an out-
put layer of k1 neurons is applied to the projection of the input image pixels onto the 
plane spanned by the two largest principal components. The weights of the k1 neu-
rons, after applying the first SOFM, are the intended initialization of k1 neurons of the 
final fixed zero neighborhood radius SOFM. 

However, the rest k2  neurons of the final SOFM (k1 + k2 = N) are initialized based 
on a contrary in principle method. The smallest principal component of the input 
image is used, considering this way the color information of pixels with less contribu-
tion to the input image color content. Namely, an SOFM with an output layer of k2 
neurons is applied to pixels of the input image defined by the smallest principal  
component. This selection of the input image pixels is carried out by means of thresh-
olding the projection of the input image pixels onto the smallest principal component. 
The weights of the k2  neurons, after applying the SOFM, are the intended initialization 
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Fig. 2. Depiction of the proposed SOFM initialization method, 1, k1, k2 and N (N=k1+k2), are 
the number of neurons at the output layer of the respective SOFM neural networks 

of the rest k2 neurons of the final SOFM. Experimental results show that, depending 
on the values of k1 and k2, this initialization scheme can lead to more equal-sized 
classes compared to standard SOFM and better quality convergence than standard 
SOFM and other existing color quantization methods. 

The main steps for using the proposed method (Fig. 2) to perform color quantiza-
tion to N colors are: 

Step 1: A Principal Component Analysis (PCA) method is performed. A single-
layer feedforward neural network is used (Fig. 3), which is trained using the General-
ized Hebbian Algorithm (GHA) [18], [9], [7]. This is an unsupervised learning algo-
rithm based on the Hebbian learning rule which states that if two neurons on either 
side of a synapse are activated simultaneously, the strength of that synapse is selec-
tively increased, otherwise it is weakened or eliminated. Let t be a variable which 
increases on every new input vector (a new pixel value xk = [rk, gk, bk]

T from the input 
image 3-feature vectors X), w the matrix of PCA coefficients, y = [y0, y1, y2]

T the 
neural network’s output computed by the relation y = wX, Wi = [Wi0, Wi1, Wi2]

T, 0 ≤ i ≤ 
2 the neuron weights vectors, n a small enough learning rate parameter. An advantage 
of using a PCA neural network is that it can be directly applied to large scale prob-
lems without explicitly computing the data covariance matrix. 

Each principal component can be extracted from the respective neuron’s weight 
vector as follows: 
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ii xtWy )(= , X∈kx , 0 ≤ i ≤ 2 . (4) 
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Fig. 3. Principal Component Analysis performed by a neural network implementing GHA 

Step 2:  Get  the  color  projection  X0,1  of  the  input  image  pixels  onto  the plane 
spanned by the two largest principal components and the color projection X2 of the 
input image pixels onto the smallest principal component: 

1100 WyWy +=0,1X , 
k

T
ii xtWy )(= ,  0 ≤ i ≤ 1 . (5) 

222 Wy=X , 
k

T xtWy )(22 =  . (6) 

Step 3: Perform thresholding to the color projection X2 of the input image pixels 
onto the smallest principal component, using an SOFM with a single neuron at the 
output layer. 

Step 4: Choose the input image pixels p(x,y) based on the following criterion: the 
correspondent pixel p2(x,y) on color projection X2  has one of it’s R, G, B values 
greater than the respective R, G, B value of the threshold found on step 3. 

Step 5: Set parameter value k1 of the number of neurons initialized using the 
method involving the two largest principal components and parameter value k2 of the 
number of neurons initialized using the smallest principal component. 

Step 6: Perform color quantization on the color projection X0,1, using an SOFM 
with k1 neurons at the output layer. 

Step 7: Perform color quantization only on pixels of the input image defined on 
step 4, using an SOFM with k2 neurons at the output layer. 

Step 8: Initialize the final’s SOFM neuron weights using the k1 and k2 neuron 
weights from step 7 and step 8. Perform color quantization on the input image to N 
colors. Fixing the final SOFM’s neighborhood radius to zero ensures that the classes 
will not influence each other, taking full advantage of the initialization process. 

4   Experimental Results 

In order to test the performance of the proposed initialization and compare it to other 
color quantization methods, the following nine images from Ohio State University 
Signal Analysis and Machine Perception Laboratory webpage (http://sampl.eng.ohio-
state.edu) were used: “frymire”, “girl”, “peppers”, “lena”, “mandrill”, “home3”, 
“monarch”, “sails” and “tulips”. As a measure of quality of the quantization, Mean 
Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) (definition e.g. in [2]), 
commonly used for measuring statistical color quantization errors, were employed. 
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The methods compared to the proposed SOFM initialization, denoted as PCA-INIT 
SOFM, are: SOFM [12], [13] as described in section 2, ACR [16], SGONG [2], GNG 
[8] and FCM [3]. To define an epoch, m=20 different sets of 3000 samples are col-
lected from the input image with a maximum of 1000 epochs. The applied settings for 
the algorithms are as in [2] for comparison reasons and set as follows: 

SOFM: A one dimensional grid topology is used for the output layer, ε1(ep) = 
ε2(ep) and both learning rates are linearly decreased from 0.02 to 0.0005 reaching 
their minimum value after 150 epochs from the beginning of the training procedure. 
The radius of the neighbourhood domain of the winner neuron is initially equal to 
67% of the total number of output neurons and it linearly decreases to zero within 150 
epochs. The training procedure has 1000 epochs. In each epoch m=20 different sets of 
3000 samples are collected from the input image. 

ACR: The SOFM settings for ACR are the same with SOFM in the previous para-
graph. For the splitting and merging conditions: minimum number of pixels in each 
class is set to greater than 100 and minimum number of samples in each node of the 
tree is set to greater than 20. No other conditions for splitting (e.g variance based) or 
merging of the classes are set. 

SGONG, GNG and FCM parameters are set as in [2]. 
PCA-INIT SOFM: After performing PCA, the parameters used for SOFM are set 

as described in previous SOFM paragraph. An exception is made to the maximum 
number of epochs which is limited to 300 and the neighborhood radius of the final’s 
SOFM which is fixed to 0. 

Table 1. Comparative quantization error results after quantizing the initial images to 16 colors. 
Parameters k1 and k2 for obtaining smaller quantization errors using PCA-INIT SOFM were set 
as follows: “frymire”, “girl”, “home3” k1=13 and k2=3, “monarch” k1=12 and k2=4, “mandrill”, 
“sail”, “tulips” , k1=10 and k2=6, “lena”, “peppers” k1=8 and k2=8. 

 PCA-
INIT 
SOFM 

SOFM ACR SGONG GNG FCM 

frymire MSE 1335.522 1427.828 1396.897 1449.214 1427.742 1331.241 
 PSNR 49.841 49.172 49.391 49.024 49.173 49.873 
girl MSE 63.466 73.567 81.858 69.148 107.079 86.997 
 PSNR 79.816 78.339 77.271 78.959 74.586 76.663 
lena MSE 208.903 215.806 216.066 209.772 215.683 211.998 
 PSNR 65.598 65.273 65.260 65.557 65.279 65.452 
mandrill MSE 627.452 633.958 629.804 628.259 651.224 633.788 
 PSNR 56.905 56.801 56.867 56.892 56.533 56.804 
monarch MSE 254.858 259.082 261.738 258.467 269.133 255.983 
 PSNR 64.837 64.673 64,570 64.697 64.292 64.793 
peppers MSE 370.211 379.565 374.679 377.123 392.961 372.182 
 PSNR 62.618 62.369 62.498 62.433 62.022 62.565 
sail MSE 279.602 282.726 281.238 280.551 300.569 281.690 
 PSNR 64.203 64.092 64.145 64.169 63.480 64.128 
tulips MSE 444.969 559.485 474.775 445.848 467.762 460.935 
 PSNR 60.170 57.880 59.522 60.151 59.671 59.818 
home3 MSE 170.138 175.094 175.509 179.223 178.552 176.510 
 PSNR 67.524 67.237 67.213 67.004 67.042 67.157 
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In Table 1, quantization error results are presented for color quantization to 16 col-
ors at the first execution of the algorithm. PCA-INIT parameter values of k1 and k2 are 
set, so that best quantization results are obtained. In Table 2, mean values, best and 
worst quantization error results are shown for five executions of PCA-INIT algorithm. 
Parameter values of k1 and k2 are set as in Table 1.  

The method can be used for color quantization to a different number of colors and 
achieve analogue quality error results. It can also lead to more equal-sized classes 
compared to standard SOFM as described in section 2. 

The proposed method was implemented in software that can be downloaded from 
http://ipml.ee.duth.gr/~papamark. 

Table 2. Quantization error results on quantizing the initial images to 16 colors after executing 
PCA-INIT SOFM algorithm five times 

PCA-INIT SOFM Mean Value Worst Value Best  Value 
frymire k1=13 MSE 1381.027 1428.846 1335.522 
 k2=3 PSNR 49.508 49.165 49.841 
girl k1=13 MSE 63.479 63.502 63.446 
 k2=3 PSNR 79.814 79.811 79.816 
lena k1=8 MSE 211.834 216.214 208.901 
 k2=8 PSNR 65.460 65.254 65.598 
mandrill k1=10 MSE 627.475 627.510 627.439 
 k2=6 PSNR 56.904 56.904 56.905 
monarch k1=12 MSE 257.164 260.609 254.858 
 k2=4 PSNR 64.748 64.614 64.837 
peppers k1=8 MSE 370.267 370.350 370.211 
 k2=8 PSNR 62.617 62.615 62.618 
sail k1=10 MSE 279.719 280.188 279.580 
 k2=6 PSNR 64.199 64.182 64.204 
tulips k1=10 MSE 453.308 460.280 444.969 
 k2=6 PSNR 59.985 59.832 60.170 
home3 k1=13 MSE 172.206 175.339 170.129 
 k2=3 PSNR 67.405 67.223 67.525 

5   Conclusion 

A method is proposed for color quantization which is based on PCA initialization of a 
Kohonen’s SOFM of a fixed zero neighborhood radius. A number of the SOFM’s 
neurons is initialized based on the color distribution of the input image, by means of 
applying standard SOFM on the projection of the input image pixels onto the plane 
spanned by the two largest principal components. The remaining neurons are initial-
ized considering pixels with minor contribution to the color information of the input 
image, by means of using the smallest principal component and thresholding. This 
novel approach, for initializing the neuron weights of an SOFM of a fixed zero 
neighborhood radius to perform color quantization, is able to lead to smaller quantiza-
tion errors than standard SOFM and other color quantization methods. 
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Abstract. This paper presents an adaptation of the tensor voting frame-
work for color image denoising, while preserving edges. Tensors are used
in order to encode the CIELAB color channels, the uniformity and the
edginess of image pixels. A specific voting process is proposed in order to
propagate color from a pixel to its neighbors by considering the distance
between pixels, the perceptual color difference (by using an optimized
version of CIEDE2000), a uniformity measurement and the likelihood
of the pixels being impulse noise. The original colors are corrected with
those encoded by the tensors obtained after the voting process. Peak to
noise ratios and visual inspection show that the proposed methodology
has a better performance than state-of-the-art techniques.

1 Introduction

Color image denoising is an important task in computer vision and image pro-
cessing, as images acquired through color image sensors are usually contaminated
by noise. The main goal of color image denoising is to eliminate noise from color
images while preserving their features, such as meaningful edges or texture de-
tails, as much as possible.

Two main approaches have been followed in color image denoising. The first
approach, spatial domain filtering, filters the input image by using the color in-
formation of every pixel and its neighbors. The main problem of these filters
is their tendency to blur the images. Classical filters, such as mean, median or
Gaussian filters, non-local means [1], anisotropic diffusion [2], and conditional
random fields [3], among many other methods, follow this approach. The second
approach, transform-domain filtering, transforms the input image to a different
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space, typically to the wavelet domain, filters the transformed image and ap-
plies the inverse transformation to the result. Despite its good edge preservation
properties, the major criticism to this approach is the introduction of undesirable
artifacts. Methods based on wavelets shrinkage [4] and Gaussian scale mixtures
[5], among many others, follow the second approach.

This paper proposes a different solution for color image denoising in the spatial
domain by adapting the tensor voting framework (TVF) [6] to handle color
information. Such an adaptation is necessary as the voting fields proposed in
[6] are only valid for problems that can be modeled in terms of the surface
reconstruction problem, which is not the case of color image denoising.

The paper is organized as follows. Section 2 details the adaptation of the TVF
to image denoising. Section 3 shows a comparative analysis of the proposed
method against the state-of-the-art. Finally, Section 4 discusses the obtained
results and makes some final remarks.

2 The TVF for Color Image Denoising

The input of the proposed method is the set of pixels of a color image. Thus,
positional and color information is available for every input pixel. Positional
information is used to determine the neighborhood of every pixel, while color in-
formation is used to define the tensors in the encoding step. The next subsections
describe the details of the proposed color image denoising method.

2.1 Encoding of Color Information

Before applying the proposed method, color is converted to the CIELAB space.
Every CIELAB channel (L, a and b) is then normalized in the range [0, π/2]. In
the first step of the method, the information of every pixel is encoded through
three second order 2D tensors, one for each normalized CIELAB color channel.
These tensors are represented by 2× 2 symmetric positive semidefinite matrices
that can be graphically represented by 2D ellipses. There are two extreme cases
for the proposed tensors: stick tensors, which are stick -shaped ellipses with a sin-
gle eigenvalue, λ1, different from zero, and ball tensors, which are circumference-
shaped ellipses whose λ1 and λ2 eigenvalues are equal to each other.

Three perceptual measures are encoded in the tensors associated with every
input pixel, namely: the most likely normalized noiseless color at the pixel (in
the specific channel), a metric of local uniformity (how edgeless its neighbor-
hood is), and an estimation of edginess (how likely finding edges or texture at
the pixel’s location is). Figure 1 shows the graphical interpretation of a tensor
for channel L. The most likely normalized noiseless color is encoded by the angle
α between the x axis, which represents the lowest possible color value in the
corresponding channel, and the eigenvector corresponding to the largest eigen-
value. For example, in channel L, a tensor with α = 0 encodes black, whereas a
tensor with α = π

2 encodes white. In addition, local uniformity and edginess are
encoded by means of the normalized ŝ1 = (λ1−λ2)/λ1 and ŝ2 = λ2/λ1 saliencies
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Fig. 1. Encoding process for channel L. Color, uniformity and edginess are encoded by
means of α and the normalized ŝ1 = (λ1−λ2)/λ1 and ŝ2 = λ2/λ1 saliencies respectively.

respectively. Thus, a pixel located at a completely uniform region is represented
by means of three stick tensors, one for each color channel. In contrast, a pixel
located at an ideal edge is represented by means of three ball tensors.

Before applying the voting process, it is necessary to initialize the tensors
associated with every pixel. The most likely noiseless colors can be initialized
with the colors of the input pixels encoded by means of the angle α between the
x axis and the principal eigenvector, as described before. However, since metrics
of uniformity and edginess are usually unavailable at the beginning of the voting
process, normalized saliency ŝ1 is initialized to one and normalized saliency ŝ2
is initialized to zero. These initializations allow the method to estimate more
appropriate values for the normalized saliencies in the next stages, as described
in Subsect. 2.3. Hence, the initial color information of a pixel is encoded through
three stick tensors oriented along the directions that represent that color in the
normalized CIELAB channels: Tc(p) = tc(p) tc(p)T , where Tc(p) is the tensor of
the c-th color channel (L, a and b) at pixel p, tc(p) = [cos (Cc(p)) sin (Cc(p))]

T ,
and Cc(p) is the normalized value of the c-th color channel at p.

2.2 Voting Process

In this step, the tensors associated with every pixel are propagated to their
neighbors through a convolution-like process. This step is independently applied
to the tensors of every channel (L, a and b). Instead of using the voting fields
proposed in [6], the proposed voting process uses specially designed tensorial
functions referred to as propagation functions, which take into account not only
the information encoded in the tensors but also the local relations between neigh-
bors. Two propagation functions are proposed for image denoising: a stick and a
ball propagation function. The stick propagation function is used to propagate
the most likely noiseless color of a pixel, while the ball propagation function is
used to increase edginess where necessary. The application of these functions
leads to stick and ball votes respectively. Stick votes are used to eliminate noise
and increase the edginess where the color of the voter and the voted pixels are
different. Ball votes are used to increase the relevance of the most important
edges. The proposed voting process is carried out at every pixel by adding all
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the stick and ball votes propagated towards it from its neighbors, by applying
the propagation functions. Thus, the total vote received at a pixel p for each
color channel c, TVc(p), is given by: TVc(p) =

∑
q∈neigh(p) Sc(p, q) + Bc(p, q),

where Sc(p, q) and Bc(p, q) are the propagation functions that allow a pixel q to
cast stick and ball votes to a neighboring pixel p for channel c respectively.

After applying the voting process at every pixel p, eigenvectors and eigenval-
ues of TVL(p), TVa(p) and TVb(p) are calculated in order to analyze its local
perceptual information. The TVF defines a standard way to interpret the voting
results: uniformity increases with the normalized ŝ1 saliency and the likelihood
of a point belonging to an edge increases as the normalized ŝ2 saliency becomes
greater than the normalized ŝ1 saliency. Additionally, the most likely normal-
ized color at a pixel for each color channel is given by the angle between the first
eigenvector of the corresponding tensor and the x axis. These three angles are
then used to correct the color of every pixel with the most likely one, reducing
in such a way the noise of the image.

2.3 Propagation Functions for Image Denoising

This paper proposes propagation functions that require three measurements for
every pair of pixels p and q: the perceptual color difference, ΔEpq ; the joint
uniformity measurement, Uc(p, q), used to determine if both pixels belong to the
same region; and the likelihood of a pixel being impulse noise, ηc(p). ΔEpq is
calculated through CIEDE2000 [7], while Uc(p, q) = ŝ1c(p) ŝ1c(q), and ηc(p) =
ŝ2c(p) − μ ˆs2c(p) if p is located at a local maximum and zero otherwise, where
μ ˆs2c(p) represents the mean of ŝ2c over the neighborhood of p.

A stick vote is a stick -shaped tensor, STc(q), with a strength modulated by
three scalar factors. The proposed stick propagation function is given by:

Sc(p, q) = GS(p, q) ηc(q) SV ′
c(p, q) STc(q), (1)

with STc(q), GS(p, q), ηc(q) and SV ′
c(p, q) being defined as follows. First, the ten-

sor STc(q) encodes the most likely normalized noiseless color at q. Thus, STc(q)
is defined as the tensorized eigenvector corresponding to the largest eigenvalue
of the voter pixel, that is, STc(q) = e1c(q) e1c(q)T , being e1c(q) the eigenvector
with the largest eigenvalue of the tensor associated with channel c at q. Second,
the three scalar factors in (1), each ranging between zero and one, are defined as
follows. The first factor, GS(p, q), models the influence of the distance between
p and q in the vote strength. Thus, GS(p, q) = Gσs(||p − q||), where Gσs(·) is a
decaying Gaussian function with zero mean and a user-defined standard devia-
tion σs. The second factor, ηc(q) defined as ηc(q) = 1 − ηc(q), is introduced in
order to prevent a pixel q previously classified as impulse noise from propagating
its information. The third factor, SV ′

c, takes into account the influence of the
perceptual color difference, the uniformity and the noisiness of the voted pixel.
This factor is given by:

SV ′
c(p, q) = ηc(p) SV c(p, q) + ηc(p), (2)
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where: SV c(p, q) = [Gσd
(ΔEpq)+Uc(p, q)]/2. SV c(p, q) allows a pixel q to cast a

stronger stick vote to p either if both pixels belong to the same uniform region,
or if the perceptual color difference between them is small. That behavior is
achieved by means of the factors Uc(p, q) and the decaying Gaussian function
on ΔEpq with a user-defined standard deviation σd. A normalizing factor of two
is used in order to make SV c(p, q) to vary from zero to one. The term ηc(p)
in (2) makes noisy voted pixels, p, to adopt the color of their voting neighbors,
q, disregarding local uniformity measurements and perceptual color differences
between p and q. The term ηc(p) in (2) makes SV ′

c to vary from zero to one. As
expected, the effect of ηc(p) and ηc(p) on the strength of the stick vote received
at a noiseless pixel p is null.

In turn, a ball vote is a ball -shaped tensor, BT(q), with a strength controlled
by the scalar factors GS(p, q), ηc(q) and BV c(p, q), each varying between zero
and one. The ball propagation function is given by:

Bc(p, q) = GS(p, q) ηc(q) BV c(p, q) BT(q), (3)

with BT(q), GS(p, q), ηc(q) and BV c(p, q) being defined as follows. First, the
tensor represented by the identity matrix is the only possible tensor for BT(q),
since it is the only tensor that complies with the two main design restrictions:
a ball vote must be equivalent to casting stick votes for all possible colors using
the hypothesis that all of them are equally likely and, the normalized ŝ1 saliency
must be zero when only ball votes are received at a pixel. Second, GS(p, q) and
ηc(q) are the same as the factors introduced in (1) for the stick propagation
function. They are included for similar reasons to those given in the definition of
the stick propagation function. Finally, the scalar factor BV c(p, q) is given by:

BV c(p, q) =
Gσd

(ΔEpq) + Uc(p, q) +Gσd
(ΔEc

pq)
3

, (4)

where Gσd
(·) = 1 − Gσd

(·) and Uc(p, q) = 1 − Uc(p, q). BV c(p, q) models the
fact that a pixel q must reinforce the edginess at the voted pixel p either if there
is a big perceptual color difference between p and q, or if p and q are not in a
uniform region. This behavior is modeled by means of Gσd

(ΔEpq) and Uc(p, q).
The additional term Gσd

(ΔEc
pq) is introduced in order to increase the edginess

of pixels in which the only noisy channel is c, where ΔEc
pq denotes the perceptual

color difference only measured in the specific color channel c. The normalizing
factor of three in (4) allows the ball propagation function to cast ball votes with
a strength between zero and one.

The proposed propagation functions require to apply the voting process twice.
The first application is used to obtain an initial estimation of the normalized
ŝ1 and ŝ2 saliencies, as they are necessary to calculate Uc(p, q) and ηc(p). For
this first application, only perceptual color differences and spatial distances are
taken into account. At the second application, the tensors at every pixel are first
initialized with the tensors obtained after the first application, and then, (1) and
(3) are applied in their full definition, since all necessary data are available.
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2.4 Adjustment of the CIEDE2000 Formula

The CIEDE2000 formula [7], which estimates the perceptual color difference
between two pixels p and q, ΔEpq , has three parameters, kL, kC and kH , to
weight the differences in CIELAB luminance, chroma and hue respectively. They
can be adjusted to make the CIEDE2000 formula more suitable for every specific
application by taking into account factors such as noise or background luminance,
since those factors were not explicitly taken into account in the definition of the
formula. These parameters must be greater than or equal to one. Based on [8],
the following equations for these parameters are proposed:

kL = FBLFηL , kC = FBCFηC , kH = FBh
Fηh

, (5)

where FBm are factors that take into account the influence of the background
color on the calculation of color differences for the color component m (L, C and
h) and Fηm are factors that take into account the influence of noise on the calcu-
lation of color differences in componentm. On the one hand, big color differences
in chromatic channels become less perceptually visible as background luminance
decreases. Thus, the influence of the background on the CIEDE2000 formula can
be modeled by FBL = 1 and FBC = FBh

= 1 + 3 (1− YB), where YB is the local
mean of the background luminance. On the other hand, big color differences
become less perceptually visible as noise increases. The influence of noise on
CIEDE2000 can be modeled by means of Fηm = MAD(I)m−MAD(G)m−Jm,
where I is the image, G is a Gaussian blurred version of I, MAD(·)m is the me-
dian absolute difference (MAD) calculated on component m and Jm are param-
eters to control the degree of preservation of texture. Fηm is set to 1 in noiseless
regions. We have obtained good results with JC = Jh = 0 and JL ∈ [5, 10].

3 Experimental Results

One hundred outdoor images from the Berkeley segmentation data set [9] have
been contaminated with various amounts of noise according to the methodology
proposed in [3] for simulating realistic noise. This methodology aims at accu-
rately reproducing the real noise generated by cameras, taking into account not
only the noise generated by CCD sensors, which is mainly Gaussian, but also
the necessary processes for converting raw data into images, such as demosaicing
and Gamma correction.

The proposed technique has been compared to the methods proposed by [1]
(based on non-local means), [2] (based on partial differential equations), and [5]
(based on wavelets). These methods will be referred to as NLM, PDE and GSM
respectively. The default parameters of NLM and PDE have been used. GSM has
been applied with σ = 20, since its best overall performance was attained with
this parameter. GSM has been applied to the threeRGB channels independently,
since this algorithm was designed for grey level images. The algorithm proposed
in this paper, referred to as the tensor voting denoiser (TVD), has been run with
standard deviations σs = 1.3 for the Gaussian Gσs , σd = 1.0 for the Gaussian
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Fig. 2. PSNR vs. amount of noise for tested methods
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Fig. 3. Denoising results. The first row shows the original images. The second row
shows the noisy images (noise=10%). Rows three to six show the denoised images after
applying NLM, PDE, GSM, and TVD respectively. High-resolution images are available
at http://deim.urv.cat/~rivi/denoising.html
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Gσd
, and the parameters JL = 7.0, JC = 0, and Jh = 0. All the algorithms have

successively been applied ten times to every input image for different amounts of
noise. The output image with the highest PSNR was selected for every amount
of noise. The selected images have been used to compare the performance of
the algorithms. No pre or post-processing stages have been applied to the im-
ages in order to evaluate the ability of the algorithms to remove noise without
any help. Figure 2 shows the plot of PSNR vs. amount of noise for all the
methods.

NLM, PDE and TVD have almost the same performance for a noise of 2.5%.
TVD has the best performance for larger amounts of noise followed by PDE.
NLM and GSM have similar performances for amounts of noise greater than
2.5%. Figure 3 shows some denoised images. It can be seen that NLM generates
undesirable quantization artifacts and colored spots. PDE generates cross-shaped
artifacts. GSM has the worst performance among all the algorithms as the filtered
images have a noisy appearance. TVD produces fewer artifacts than the other
algorithms, yielding more appealing results.

4 Concluding Remarks

A new method to denoise color images while preserving edges has been proposed
based on an adaptation of the TVF originally proposed in [6] for surface recon-
struction. New specific encoding and voting processes, and propagation func-
tions have been proposed for image denoising. The CIEDE2000 has also been
adjusted for this application. The results show that the proposed adaptation
makes the TVF a powerful tool for image denoising. Synthetic realistic noise has
been added to natural images and PNSR and visual inspection have been used
to determine the performance of the tested algorithms. The proposed method
has been compared against some of the state-of-the art color image denoising
algorithms, producing better results than them. Future work will include the
utilization of the TVF for segmentation of noisy color images.
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Abstract. This paper presents the analysis of the usage of the Struc-
tural Similarity (SSIM) index for the quality assessment of the colour
images with variable size of the sliding window. The experiments have
been performed using the LIVE Image Quality Assessment Database in
order to compare the linear correlation of achieved results with the Diffe-
rential Mean Opinion Score (DMOS) values. The calculations have been
done using the value (brightness) channel from the HSV (HSB) colour
space as well as commonly used YUV/YIQ luminance channel and the
average of the RGB channels. The analysis of the image resolution’s influ-
ence on the correlation between the SSIM and DMOS values for varying
size of the sliding window is also presented as well as some results ob-
tained using the nonlinear mapping based on the logistic function.

Keywords: colour image quality assessment, Structural Similarity.

1 Introduction

The development of some new colour image and video processing algorithms,
related to nonlinear filtration, reconstruction, lossy compression etc., requires
the reliable quality assessment of the resulting images. Such assessment should
not be based only on the analysis of the greyscale images, especially because of
the relevant differences between some greyscale image processing algorithms and
their colour equivalents. A good example is the median filtration as there are
many different approaches for the multichannel median filtering, starting from
the Vector Median Filter (VMF) to much more sophisticated methods proposed
in recent years.

Nevertheless, many researchers still use not only some metrics developed for
the greyscale images but also often some classical ones, which are poorly corre-
lated with the subjective evaluation of images by human observers. The examples
of such traditional metrics may be the Mean Square Error (MSE), the Peak Sig-
nal to Noise Ratio (PSNR) and many similar ones [2]. Regardless of the fact that
for some applications the image quality assessment based only on the luminance
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channel is enough, some new colour image quality assessment methods are also
needed, which should be well correlated with the human perception and rela-
tively easy to calculate. A popular colour image quality metric is the Normalised
Colour Difference (NCD) defined in the CIE Lab or CIE Luv colour spaces but
its correlation with the Human Visual System (HVS) is at least doubtful.

A promising direction of the research seems to be the no-reference (blind)
image quality assessment. Nevertheless, currently available blind methods are
rather specialised for the detection of one or two types of distortions e.g. block
effects on JPEG compression [4] or image blurring [3] so they cannot be used as
the universal techniques, similarly as some reduced-reference metrics [1], which
use only a partial information from the original image.

The requirement of the universality of the image quality metrics with their
independence on the image content and preferred dynamic range from 0 to 1 (or
from −1 to 1 as in the SSIM) has caused the noticeable progress of some modern
full-reference image quality metrics in recent years. Apart from some computa-
tionally demanding methods based on the Singular Value Decomposition [8] or
transforms, the most popular approach seems to be the Structural Similarity
index [10] as the extension of the previously proposed Universal Image Quality
Index [9]. Nevertheless, there are also some other full-reference metrics, usually
sensitive only to some chosen types of distortions e.g. JPEG compression and
Gaussian noise or changes of the luminance and the impulse noise.

It is worth noticing that the correlation of results obtained using such a mea-
sure with the results of subjective evaluations by human observers should be
preferably linear. The application of the nonlinear mapping based on the logis-
tic function, as suggested by the Video Quality Experts Group (VQEG), can
increase the correlation coefficient by several percent but the proper choice of
the function’s coefficients require the usage of some additional optimisation pro-
cedures as shown e.g. in the paper [6]. One of the typical methods of image qua-
lity measures’ verification is the usage of the Differential Mean Opinion Score
(DMOS) based on the analysis of the questionnaires filled by human observers
for the images with various types of contaminations. Probably the best source
of such results is the LIVE database [7] containing the DMOS values for nearly
1000 images with five types of distortions: JPEG2000 and JPEG compression,
white Gaussian noise, Gaussian blur and JPEG2000 compressed images trans-
mitted over simulated fast fading Rayleigh channel with bit errors typical for
the wireless transmission. All the images are 24-bit colour ones, but many re-
searchers treat them as greyscale ones analysing the luminance channel only or
converting them before the analysis.

In this paper the analysis of the correlations between the DMOS values men-
tioned above and the values of the SSIM index calculated for the HSV (HSB)
value (brightness), YUV/YIQ luminance and the average of the RGB channels
is presented for the varying size of the sliding window used inside the calcula-
tion procedure for the SSIM index. The three channels specified above has been
chosen on the basis of some previously obtained results for the constant 11× 11
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pixels Gaussian window as suggested by the authors of the paper [10] with the
use of various colour spaces [5].

2 Application of the Structural Similarity

The Structural Similarity Index considered in the paper originates from the
Universal Image Quality Index [9] defined for M ×N pixels window as:

Q =
4σxyx̄ȳ

(σ2
x + σ2

y) · [(x̄)2 + (ȳ)2]
=
σxy

σxσy
· 2x̄ȳ
(x̄)2 + (ȳ)2

· 2σxσy

σ2
x + σ2

y

, (1)

where x and y denote the original and distorted image respectively, x̄ and ȳ
stand for the average values, σ2

x, σ2
y and σxy are the respective variances and

the covariance for the fragments of both compared images inside the current
window.

As the definition (1) is actual for the local quality index, the overall quality
index is calculated as the average value from the quality map obtained by using
a sliding 8 × 8 pixels rectangular window for the whole image. The resolution
of the quality map is reduced almost unnoticeable in comparison to the original
image (byK−1 pixels in the horizontal and vertical direction assuming theK×K
pixels sliding window). An interesting feature of that metric is its sensitivity to
three common types of distortions: the loss of correlation, luminance distortions
and the loss of contrast.

Considering the possibility of division by zero, especially for dark large regions
of the same colour, the protecting constants should be used, what leads to the
extension of the method into the Structural Similarity with the additional change
of the sliding window’s shape from rectangular into Gaussian one. The resulting
formula for the local quality index is as follows:

SSIM =
(2 · x̄ · ȳ + C1) · (2 · σxy + C2)

(σ2
x + σ2

y + C1) · [(x̄)2 + (ȳ)2 + C2]
, (2)

where C1 and C2 are chosen in the way that they do not introduce signifi-
cant changes of the results but prevent the division by zero. The default va-
lues suggested by the authors of the paper [10] are C1 = (0.01 × 255)2 and
C2 = (0.03× 255)2 with the size of the sliding window equal to 11× 11 pixels.

3 Calculations and Results

The calculations of the Structural Similarity index have been performed for all
the images from the LIVE database using the Gaussian window size from 7× 7
to 19× 19 pixels for the value (brightness) from the HSV (HSB) colour space as
well as for the luminance from the YUV and YIQ and the average of the RGB
channels. The application of some other channels, especially CIE Lab luminance
has been omitted because of the poor correlation with the DMOS values obtained
on some earlier experiments presented in the paper [5].
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Table 1. The absolute values of the linear correlation coefficients between the DMOS
and SSIM for various size of the sliding window for the YUV/YIQ luminance

Window JPEG2000 JPEG White Gaussian Fast fading All
size noise blur Rayleigh
7× 7 0.8833 0.8442 0.9623 0.7822 0.8861 0.7085
9× 9 0.8931 0.8505 0.9633 0.8230 0.8962 0.7273

11× 11 0.8974 0.8503 0.9644 0.8486 0.9008 0.7364
13× 13 0.8988 0.8477 0.9652 0.8650 0.9025 0.7403
15× 15 0.8986 0.8442 0.9658 0.8758 0.9025 0.7412
17× 17 0.8975 0.8406 0.9663 0.8829 0.9016 0.7405
19× 19 0.8959 0.8370 0.9666 0.8874 0.9002 0.7387

Table 2. The absolute values of the linear correlation coefficients between the DMOS
and SSIM for various size of the sliding window - the smallest images (class A)

Window JPEG2000 JPEG White Gaussian Fast fading All
size noise blur Rayleigh

Value (Brightness) - HSV (HSB)
7× 7 0.9845 0.9065 0.9900 0.9893 0.9895 0.7714
9× 9 0.9802 0.8902 0.9909 0.9865 0.9869 0.7770

11× 11 0.9752 0.8767 0.9907 0.9831 0.9818 0.7755
13× 13 0.9702 0.8661 0.9900 0.9803 0.9760 0.7708
15× 15 0.9651 0.8577 0.9891 0.9780 0.9705 0.7645
17× 17 0.9601 0.8511 0.9880 0.9762 0.9655 0.7574
19× 19 0.9551 0.8458 0.9867 0.9749 0.9612 0.7499

Luminance - YUV/YIQ
7× 7 0.9815 0.8982 0.9842 0.9883 0.9932 0.7710
9× 9 0.9753 0.8790 0.9846 0.9852 0.9866 0.7784

11× 11 0.9683 0.8627 0.9844 0.9817 0.9777 0.7775
13× 13 0.9613 0.8493 0.9836 0.9787 0.9686 0.7728
15× 15 0.9545 0.8385 0.9825 0.9764 0.9605 0.7664
17× 17 0.9477 0.8296 0.9811 0.9746 0.9534 0.7591
19× 19 0.9412 0.8222 0.9795 0.9733 0.9476 0.7515

Average - RGB channels
7× 7 0.9828 0.8988 0.9855 0.9879 0.9927 0.7959
9× 9 0.9772 0.8804 0.9850 0.9850 0.9872 0.8028

11× 11 0.9708 0.8646 0.9838 0.9816 0.9795 0.8017
13× 13 0.9643 0.8518 0.9822 0.9786 0.9716 0.7970
15× 15 0.9578 0.8414 0.9802 0.9763 0.9643 0.7906
17× 17 0.9515 0.8329 0.9780 0.9745 0.9579 0.7834
19× 19 0.9452 0.8258 0.9756 0.9732 0.9525 0.7758

All the results obtained for the original images present in the database have
been eliminated and then the absolute values of the Pearson’s correlation co-
efficients between the DMOS and the SSIM index have been computed (using
Matlab’s corrcoef function) for each type of distortion as well as for the all
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Table 3. The absolute values of the linear correlation coefficients between the DMOS
and SSIM for various size of the sliding window - the biggest images (class D)

Window JPEG2000 JPEG White Gaussian Fast fading All
size noise blur Rayleigh

Value (Brightness) - HSV (HSB)
7× 7 0.8772 0.8538 0.9489 0.7405 0.8400 0.6540
9× 9 0.8886 0.8658 0.9535 0.7856 0.8566 0.6772

11× 11 0.8946 0.8693 0.9567 0.8138 0.8657 0.6899
13× 13 0.8977 0.8692 0.9593 0.8320 0.8706 0.6970
15× 15 0.8991 0.8674 0.9614 0.8439 0.8729 0.7006
17× 17 0.8994 0.8649 0.9631 0.8519 0.8737 0.7021
19× 19 0.8990 0.8621 0.9647 0.8572 0.8736 0.7022

Luminance - YUV/YIQ
7× 7 0.8745 0.8450 0.9620 0.7312 0.8412 0.6732
9× 9 0.8853 0.8562 0.9633 0.7773 0.8574 0.6954

11× 11 0.8909 0.8589 0.9646 0.8066 0.8662 0.7073
13× 13 0.8935 0.8580 0.9657 0.8257 0.8710 0.7136
15× 15 0.8946 0.8555 0.9667 0.8386 0.8734 0.7167
17× 17 0.8946 0.8524 0.9674 0.8474 0.8742 0.7177
19× 19 0.8941 0.8490 0.9680 0.8536 0.8741 0.7175

Average - RGB channels
7× 7 0.8744 0.8477 0.9676 0.7266 0.8394 0.6965
9× 9 0.8857 0.8595 0.9684 0.7732 0.8563 0.7186

11× 11 0.8915 0.8627 0.9692 0.8029 0.8657 0.7306
13× 13 0.8945 0.8622 0.9699 0.8224 0.8709 0.7370
15× 15 0.8958 0.8601 0.9703 0.8356 0.8734 0.7402
17× 17 0.8962 0.8573 0.9706 0.8447 0.8745 0.7414
19× 19 0.8959 0.8542 0.9708 0.8511 0.8745 0.7414

distorted images from the whole database. Obtained results are presented in the
Table 1. It is worth noticing that for four from five types of distortions the best
results have been obtained for the value (brightness) channel but the overall
correlation coefficient is the lowest one. This phenomenon and relatively low
overall values of the correlation coefficients are caused by their linearity. Adding
the nonlinear mapping e.g. according to the logistic function would increase also
the overall correlations to over 90% (as shown further) but the main goal of the
paper is to find the possibly highest linear correlation of the SSIM index with
varying sliding window size with the DMOS values.

The usage of the 11×11 pixels Gaussian window, as suggested in the paper [10]
leads to the best results only for one type of distortions (JPEG compressed ima-
ges) regardless of the channel used during the computations. The highest overall
index has been obtained for 15 × 15 pixels window in each case so the addi-
tional analysis should be performed depending on the resolution of processed
images. For that purpose the correlation coefficients have been computed sepa-
rately for four classes of images present in the LIVE database with the following
resolutions:
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Fig. 1. Correlations between the SSIM and DMOS values for various distortions cal-
culated for the luminance (Y)

– class A: 634× 438 pixels and 618× 453 pixels,
– class B: 610× 488 pixels, 627× 482 pixels and 632× 505 pixels,
– class C: 480× 720 pixels,
– class D: 768× 512 pixels.

The results obtained for the highly differing classes A and D are presented in
Tables 2 and 3. The additional illustration of the results achieved for all four
classes using the luminance (Y) channel is presented in Fig. 1.

Analysing the results obtained for the different resolutions it can be easily
observed that for the higher resolution images the usage of the wider windows
leads to better results. It may lead to the conclusion related to the choice of
the default size of the sliding Gaussian window as well suited for some typical
512×512 pixels test images but not necessarily for the quality assessment of the
high resolution images e.g. from the digital cameras or even the HDTV.

Relatively low values of the linear correlation coefficients are caused not only
by the linearity but also by removing all original images from the database. Many
authors, even using the logistic function in order to introduce the nonlinearity
between their metrics and DMOS values, optimise the coefficients of the mapping
function for the whole set of values present in the LIVE database. Such approach
cause the unreasonable increase of the correlation values, while a good image
quality metric should be well correlated with the human observations primarily
for distorted images, as the results obtained for the originals are predictable. As
the illustration of the influence of the nonlinear mapping based on the logistic
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Table 4. The absolute values of the correlation coefficients between the DMOS and
nonlinear mapped SSIM for various size of the sliding window

Window JPEG2000 JPEG White Gaussian Fast fading All
size noise blur Rayleigh

Value (Brightness) - HSV (HSB)
7× 7 0.9169 0.9141 0.9504 0.8194 0.9196 0.8173
9× 9 0.9303 0.9276 0.9543 0.8564 0.9330 0.8346

11× 11 0.9383 0.9336 0.9569 0.8790 0.9412 0.8445
13× 13 0.9433 0.9362 0.9588 0.8934 0.9466 0.8504
15× 15 0.9464 0.9372 0.9606 0.9033 0.9502 0.8541
17× 17 0.9483 0.9374 0.9620 0.9102 0.9528 0.8565
19× 19 0.9495 0.9372 0.9631 0.9150 0.9545 0.8581

Luminance - YUV/YIQ
7× 7 0.9160 0.9102 0.9624 0.8125 0.9244 0.8393
9× 9 0.9288 0.9236 0.9638 0.8501 0.9372 0.8547

11× 11 0.9364 0.9294 0.9651 0.8734 0.9449 0.8632
13× 13 0.9410 0.9318 0.9662 0.8885 0.9499 0.8681
15× 15 0.9438 0.9325 0.9672 0.8990 0.9532 0.8711
17× 17 0.9455 0.9324 0.9680 0.9064 0.9555 0.8728
19× 19 0.9464 0.9318 0.9651 0.9117 0.9572 0.8739

Average - RGB channels
7× 7 0.9148 0.9100 0.9684 0.8084 0.9208 0.8524
9× 9 0.9279 0.9236 0.9693 0.8466 0.9343 0.8678

11× 11 0.9357 0.9296 0.9701 0.8702 0.9425 0.8445
13× 13 0.9405 0.9321 0.9707 0.8856 0.9478 0.8814
15× 15 0.9434 0.9329 0.9711 0.8962 0.9513 0.8844
17× 17 0.9452 0.9329 0.9717 0.9038 0.9538 0.8862
19× 19 0.9462 0.9325 0.9701 0.9092 0.9555 0.8873

function on the correlation between the SSIM and DMOS the optimisation of
that function has been performed independently for each window size and type
of distortions. The mapping function has been defined as:

SSIMnonlinear = β1 · logistic(β2, SSIM − β3) + β4 · SSIM + β5 , (3)

where
logistic(τ, x) =

1
2
− 1

1 + exp(xτ)
. (4)

The fitting (optimisation of the five parameters β) has been performed using
MATLAB’s fminunc and fminsearch functions and the resulting correlation co-
efficients obtained after the nonlinear mapping are presented in Table 4.

Analysing the results it can be easily noticed that the best correlation is
obtained not for the typical 11 × 11 pixels windows but for much wider ones.
Nevertheless those results are harder for the comparisons because of the different
values of the parameters β used for the nonlinear SSIM mapping for each window
size and each type of distortion as the result of optimisation.
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4 Summary and Future Work

Some experimental results presented in the paper can be treated as a partial
verification of the usefulness of the Structural Similarity index and its correlation
with the subjective evaluation of the digital image quality. Further analysis would
require much more results of the subjective evaluations, also related to some
other types of contaminations. In the future work a method for choosing the
optimum size and type of the sliding window for the SSIM can be defined,
depending on the resolution and the colour model of the image, extending the
experiments into chrominance components, also using the nonlinear mapping.
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Reduced Inverse Distance Weighting
Interpolation for Painterly Rendering
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Abstract. The interpolation problem of irregularly distributed data in
a multidimensional domain is considered. A modification of the inverse
distance weighting interpolation formula is proposed, making computa-
tion time independent of the number of data points. Only the first K
neighbors of a given point are considered, instead of the entire dataset.
Additional factors are introduced, preventing discontinuities on points
where the set of local neighbors changes. Theoretical analysis provides
conditions which guarantee continuity. The proposed approach is efficient
and free from magic numbers. Unlike many existing algorithms based on
the k-nearest neighbors, the number of neighbors is derived from theo-
retical principles. The method has been applied to the problem of vector
field generation in the context of artistic imaging. Experimental results
show its ability to produce brush strokes oriented along object contours
and to effectively render meaningful texture details.

1 Introduction

Interpolating data consists in finding a smooth function whose values are known
only on some data points. This problem arises in several fields of science, such as
geophysics [1], oceanography [2], meteorology [3], super-resolution [4], or video
coding [5]. A large amount of different techniques have been proposed in the
literature for this task such as polynomial spline [6], wavelets [4], or variational
approaches [3]. In this paper we are interested to the interpolation of irregularly
scattered data over a multidimensional domain. The best known techniques for
this task are thin plate spline (TSP) [7], multiquadric surfaces (MQS) [8], inverse
distance weighting (IDW) [9], and natural neighbor interpolation (NNI) [10].

In TSP and MQS, the interpolant is expressed as a linear combination of
radial functions centered on the data sites. While they give very good results,
especially for geophysical applications, determining the coefficients of the lin-
ear combination is computationally expensive. Moreover, these functions have
a scale parameter, which is usually optimized with cross-validation [11], thus
requiring further computation. In IDW, the interpolating function is expressed
as a weighted average of the data values, where the weights are inverse functions
of the distances from the data sites. While IDW is simpler than TSP and MQS,
its computation time still increases as the number of data points grows. In NNI,
similar weights are computed in terms of the so called natural neighbor coordi-
nates, which are interesting from the theoretical point of view [12], but efficient
implementations are hardly provided, especially for high dimensional data.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 509–516, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper we propose a simple modification of IDW, whose computation
time does not depend on the number of data points. The idea is to limit the
average to the first K neighbors and to introduce additional factors in order to
prevent discontinuities when the set of local neighbors changes. We also present
a simple theoretical analysis of the method, which tells the minimum number
of neighbors to consider in order to guarantee continuity everywhere. As an
application, we use the proposed interpolation formula for vector field generation
in the context of automatic painterly rendering.

2 Proposed Interpolation Formula

Given a set S = {r1, ..., rN} of data sites and a set of F = {f1, ..., fN} of data
values, the interpolation and extrapolation problem we are interested to consists
in finding a continuous function F̃ : IRn �→ IR such that:

F̃ (ri) = fi, ∀ri ∈ S. (1)

We will first review the IDW formula (Section 2.1), and then we will present our
interpolation technique called reduced IDW, which reduces the computational
complexity of IDW (Sections 2.2 and 2.3).

2.1 IDW Interpolation Formula

Given a set S of N points in IRn, let qk(r) be the k-th nearest neighbor of r
among points of S and let dk(r) be the Euclidean distance between r and qk(r),
as illustrated in Fig. 1. We also construct a piece-wise constant function fk(r)
which takes the value fi every time qk(r) = ri. With this notation, the IDW
interpolation formula is written as follows:

f̃K(r) �
∑K

k=1 fk(r)[dk(r)]−p∑K
k=1[dk(r)]−p

(2)

where p > 0 is an input parameter. The interpolant f̃K has cusps on the data
sites rk for p ≤ 1 while it is smooth for p > 1. Usually the value p = 2 is chosen.

It is easy to show that the interpolating function f̃K(r) defined in (2) takes the
values fi for r = ri, as required in (1). However, it is continuous everywhere only
if the number K of neighbors is equal to the total number N of points in S. In
fact, forK < N , the set of neighbors qk(r) which are involved in the computation
of f̃K(r) would change as r moves in IRn, thus giving rise to discontinuities in the
interpolating function. This has the obvious consequence to make the method
computationally demanding as N increases.

2.2 Reduced IDW Interpolation Formula

We now propose a simple modification of (2) which makes it continuous every-
where while keeping K independent of N . Let

Γk(r) � {q1(r), ...qk(r)} (3)
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Fig. 1. Illustration of the functions qk(r) and dk(r) defined above

be the set of the first k neighbors of r, which is a piece-wise constant function of r,
and let γk be the set of the discontinuity points of Γk(r). We observe that the rank
order of the neighbors qj(r), (i = 1, .., k), does not affect the definition of Γk(r).
Thus, referring to Fig. 2c, we have, e.g., Γ2(ξ) = {A,B} = {B,A} = Γ2(η);
therefore, the boundary between the regions with {q1(r) = A,q2(r) = B} and
{q1(r) = B,q2(r) = A} does not belong to γ2. It is easy to show that the
interpolating function f̃k(r) defined above is discontinuous on γk and γk only.

Now, let δk(r) be the Euclidean distance between r and its first neighbor
among the points of γk, δk(r) � minρ ||r − ρ|| as shown in Fig. 2b. With this
notation, we propose the following interpolation formula:

F̃K(r) �
∑K

k=1 f̃k(r)δk(r)∑K
k=1 δk(r)

(4)

It is easy to see that for points r ∈ γk, on which f̃k(r) is discontinuous, the
function δk(r) vanishes, thus each term in the sum at the numerator of (4) is
continuous everywhere. On the other hand, it can be easily shown that if K is
sufficiently large, the sum at the denominator is never equal to zero (See Section
2.3 for details). Consequently, the interpolating function F̃K(r) defined in (4) is
continuous everywhere in IRn. Moreover, since the condition f̃k(ri) = fi, ∀ri ∈ S
holds for all k, we also have F̃K(ri) = fi, thus proving that (4) meets the
requirement (1) to be an interpolation formula.

2.3 Theoretical Analysis and Automatic Choice of K

In this subsection, we perform a brief theoretical analysis of the behavior of the
interpolating function F̃K(r) defined in (4), and we show how many neighbors
must be taken into account in order to guarantee continuity everywhere.

Let S be a point set in IRn and let us consider its Voronoi tessellation [13].
Then, let Bε(r) be a sphere centered in r with infinitesimal radius ε, and let V(r)
be the set of centroids of the Voronoi cells covered by Bε(r), as shown in Fig. 3
for points ξ, η, and ζ. We indicate by m(r) the cardinality of V(r).
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Illustration of the function Γk(r) (first column) and the set γk (second column),
k = 1, 2, 3, for a simple set of four points. (a,c,e): values of the function Γ1(r), Γ2(r),
Γ3(r). (b,d,f): discontinuity sets γ1, γ2, γ3.
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Fig. 3. Illustration of the function m(r) defined above for a simple point set S =
{A, B, C, D}

We will prove that the function Γk defined in (3) is continuous in r for k =
m(r). In fact, since ε is infinitesimal, it is easy to prove that the first k neighbors
of a point ρ ∈ Bε(r) are just the centroids of the Voronoi cells covered by Bε(r).
This implies that Γk=m(r)(ρ) is constant for ρ ∈ Bε(r), thus proving the required
continuity. The same does not hold for k < m(r), since Γk(ρ) would be a subset
of V(r), which in general depends on ρ.

Since Γk(r) and the corresponding term f̃k(r) of the sum in (4) are discon-
tinuous at the same points, the proposed interpolating function is continuous
everywhere iff K is greater of equal to the maximum value taken by m(r):

K ≥ max
r∈IRn

m(r) (5)

It is easy to show that such a maximum is equal to the maximum number of
edges of the Voronoi tessellation which intersect at the same cell vertex. In IR2,
for randomly scattered data sites, this is usually equal to K = 3.

3 Results, Discussion and Conclusions

In order to test the proposed interpolation formula, we used random data sites
S = {r1, ..., rN} ⊂ IR2 and data values F = {f1, ..., fN}. We have interpolated
them both with IDW and reduced IDW, for the same value of K (K = 4), which
has been computed as in (5). The resulting functions are plotted in Fig. 6. As
we see, reduced IDW produces a continuous function, whereas IDW gives rise to
discontinuities on some edges of the Voronoi tessellation of the input point set.

As an application, we use our interpolation formula for unsupervised painterly
rendering. The idea, illustrated in Fig. 5, is first to compute a vector field v(r),
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Fig. 4. Top: input data. bottom: output of (left) IDW and (right) reduced IDW.

Fig. 5. Proposed approach for automatic painterly rendering

Fig. 6. From left to right: input image, edge map, and output of the proposed operator

which determins the local brush stroke orientation, and then to render elongated
curved brush strokes oriented along v(r). Brush strokes are rendered by means of
the operator desribed in [16, 17], which is based on the theory of Glass patterns.
With respect to other algorithms for brush strokes simulation, the one proposed
in [16, 17] has the advantage to be fast and free from and magic numbers.

In generating v(r), the first step is edge detection. For simplicity, we use the
Canny edge detector [14], where the Gaussian gradient is replaced with the color
gradient proposed in [15]. Let b � {r1, ..., rm} be the set of the detected edge
pixels and let φ1, ..., φm be the local orientation of each edge point. Let also be
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Fig. 7. From left to right: input image, edge map, and output of the proposed operator

vi � [a cosφi, a sinφi]T , where the input parameter a controls the brush strokes
length. Then the vector field v(r) is obtained by interpolating the vectors vi,
plcaed on points ri ∈ b with our interpolation formula, first for the x and then
for the y component. Examples of how the method works is illustrated in Fig. 6
for a synthetic image and in Fig 7 for natural images.

To summarize, we have proposed a simple modification of IDW interpolation
which makes its computational complexity independent on the number N of data
sites, while avoiding undesired discontinuities. We observe that the importance
of avoiding undesired discontinuities goes beyond the specific computer graphics
application described above. An attempt to reduce the complexity of IDW was
proposed in [9], by limiting the sum (2) to those neighbors that fall inside a
circlecentered on r. However, this would result in several magic numbers and
”ad hoc” functions with no theoretical justification. In contrast, the proposed
method has no input parameters from the user. In particular, unlike many ex-
isting algorithms based on the k-nearest neighbors, the number of neighbors is
derived from theoretical principles. Though the IDW formula is quite old, we are
not aware of other modification of it propsed in the last fourty years. We have
applied our interpolation formula to the problem of vector field generation in
the context of artistic imaging. Our results show that the method is able both to
produce brush strokes oriented along object contours, even in presence of sharp
corners (Fig. 6), and to effectively render meaningful texture details, such as the
hair of the lady shown in Fig. 7.
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for Image Segmentation
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Abstract. Nonlinear diffusion filtering seeks to improve images quali-
tatively by removing noise while preserving details and even enhancing
edges. However, well known implementations are sensitive to param-
eters which are necessarily tuned to sharpen a narrow range of edge
slopes. In this work, we have selected a nonlinear diffusion filter without
control parameters. It has been guided searching the optimum balance
between time performance and resulting quality suitable for automatic
segmentation tasks. Using a semi-implicit numerical scheme, we have de-
termined the relationship between the slope range to sharpen and the
diffusion time. It has also been selected the diffusivity with optimum per-
formances. Several diffusion filters have been applied to noisy computed
tomography images and evaluated for their suitability to the medical im-
age segmentation. Experimental results show that our proposal of filter
performs quite well in relation to others.

Keywords: nonlinear diffusion filter, segmentation, 3D medical image.

1 Introduction

For improving the segmentation task, a pre-processing filter has to be applied
to the original image in order to remove the noise from homogeneous area while
keeping clear and sharp the edges. In the field of image processing, several fil-
tering methods are available for this purpose[1]. Convolutions and rank filters
(median filter, mean filter, etc.) reduce the image noise, but they did not pre-
serve the details and tended to blur the edges. Nonlinear filters smooth the
noise while maintaining clear edges. We have selected a nonlinear diffusion fil-
ter without control parameters, searching the optimum balance between time
performance and resulting quality suitable for automatic segmentation tasks.

The paper is organized as follows: in section 2, we explain our theoretical
framework, which analyzes a diffusivity without tuning parameters and its prop-
erties. In section 3, we show the numerical algorithm for nonlinear diffusion and
determine the time needed for area smoothing and edge enhancement purposes.
Finally, in section 4, some diffusion filters are compared on computed tomog-
raphy images with a rich variety of features and edge types but also with a
significant noise level. Experiments demonstrate that our proposal of filter per-
forms quite well compared to others.
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2 Nonlinear Diffusion without Control Parameters

Starting with an initial image u0 : Ω → R defined over a domain Ω ⊂ Rm,
another image u(x) is obtained as the solution of a nonlinear diffusion equation
with initial and Neumann boundary conditions:

ut = div (g(‖∇u‖)∇u) , x ∈ Ω, t > 0, (1)

with u(x, 0) = u0(x) when x ∈ Ω as initial condition and un = 0 when x ∈
∂Ω as boundary condition, with g(‖∇u‖) further representing diffusivity. We
have chosen a diffusivity which balances between sharpen edges over a wide
range of selected slopes and reduce noise conservatively with dissipation along
feature boundaries. Specifically, the range of sharpned edge slopes is widened
as backward diffusion normal to level sets is balanced with forward diffusion
tangent to level set. Our family of diffusivity, as in the TV flow case, is free from
parameters, but allows backward diffusion along the gradient direction and it is
therefore edge enhancing [2][3]:

g(‖∇u‖) =
1

‖∇u‖p , p > 1. (2)

The diffusion properties of these filters can be showed when set out in a new
orthonormal basis in which one of the axes is determined by the gradient vec-
tor η = ∇u/‖∇u‖ where ‖∇u‖ �= 0, which together with ξ and ζ form the
curve/surface at a level perpendicular to η[4]:

ut = g(‖∇u‖) (uξξ + uζζ) + [ g(‖∇u‖) + g′(‖∇u‖) · ‖∇u‖ ]uηη (3)

where uηη represents the second derivative of u in the direction of η. Thus,
tangential diffusion is always forward since g(‖∇u‖) > 0 and normal diffusion is
always backward since

[g(‖∇u‖) + g′(‖∇u‖) · ‖∇u‖ ] =
1− p
‖∇u‖ < 0. (4)

Continuum level analysis of smooth images shows that diffusivity should be cho-
sen so edge slopes with ‖uη‖ ≤ αth must be blurred and edges slopes with
‖uη‖ > αth must be heightened at a locally maximal rate which leads to sharp-
ening and avoiding staircasing, where αth is the threshold slope on which en-
hancement is achieved. Open questions are: 1) what is the optimum value of p?
and 2) given a particular value of αth, what is the diffusion time required for the
selected edge enhancement task? In the continuum domain, this approach gives
rise to an ill-posed problem[5,6]. However, in the discrete scheme, under certain
data conditions, we can obtain the convergent solutions as referred to in [5]. For
more detail see [7].

As we stated above, for enhancement process the uηη coefficient left to be
positive, so this implies that differential operator in (3), loses the necessary
conditions for a well-posed problem. An introduction about this topic can be
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found in a classical Weickert’s paper [8] and the references therein cited. However
with the Perona-Malik filter [9] in (1) we also get an ill-posed problem, but
discretization has a stabilizing effect over this equation [7]. We follow this pattern
for the proposed diffusivity (2). Therefore, we apply the Method of Lines to
transform the original equation (1) into a semi-discrete problem and a well-
posed system of ordinary differential equations using the scale-space framework
proposed by Weickert [7]. This also implies some kind of regularization in order
to avoid unbounded diffusivity (2), when the gradient tends to 0, and hence to
keep the system of ordinary differential equations continuously differentiable as
function in u.

With this aim, we use an approximation on finite differences based on the
average distance between pixels, which subsequently gives rise to an autonomous
system of ordinary differential equations:

u̇i(t) = hp−2
[
ui+1(t)− ui(t)
|ui+1(t)− ui(t)|p

− ui(t)− ui−1(t)
|ui(t)− ui−1(t)|p

]
(5)

with h = Δx, i = 2, . . . , n − 1. On carrying out the operation we get an au-
tonomous matrix ordinary differential expression of the type dU

dt (t) = f(U(t)) =
A(U(t))U (t). The generalisation to highest dimension is straightforward [10].

3 Numerical Methods

Numerical methods have a decisive effect on the outcome of nonlinear diffusion
regarding both quality and computation speed. With spatial discretization, the
differential equation has been ported to the pixel grid. An explicit Euler method
can be computed by an iterative scheme. For stability it has been assumed that
diffusivity is limited, however, edge enhancing flow causes unbounded diffusivity
when the gradient tends to 0. A popular solution to this problem is the regulariza-
tion of the diffusivity by a small positive constant ε, taking gε(s) = 1

(s+ε)p ≤ 1
εp

with s ≥ 0, hence gε → g when ε → 0. The regularization limits the diffusivity
and hence the explicit scheme becomes very slow. The stability condition on the
time step size can be lifted with a semi-implicit scheme. With this aim, spatial
discretization is accomplished with finite difference and the temporal discretiza-
tion is accomplished with semi-implicit time stepping. All pixels are assumed to
have unit aspect ratios and width h and the kth time level is t = kτ ,

uk+1
i − uk

i

τ
= hp−2

[
uk+1

i+1 − uk+1
i

|uk
i+1 − uk

i |p
−
uk+1

i − uk+1
i−1

|uk
i − uk

i−1|p

]
. (6)

Using matrix-vector notation, it results an inversion matrix that has to be solved
at each iteration:

(I − τA(Uk))Uk+1 = Uk (7)

where I is the identity matrix and A(Uk) is a matrix of the same size, with the
following entries:
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aij =

⎧⎨⎩
gi∼j h

−2 if j ∈ N(i)
−

∑
l∈N(i) gi∼l h

−2 if j = i

0 otherwise.
(8)

Here, gi∼j denotes the diffusivity between the pixel i and j, N(i) are the neighbors
of pixel i. The matrix (I − τA) is a sparse, positive definite and diagonally
dominant matrix. Such a tridiagonal matrix can be solved efficiently with the
Thomas algorithm. For its implementation in the scope of nonlinear diffusion
see [10].

The gray evolution of a pixel depends on the whole of the pixels. For simpli-
fication, it would be interesting to observe the interaction with only three pixels
within the established dynamic. Applying the semi-implicit Euler method on
three pixels, the matrix is inverted giving the expression⎡⎣uk+1

1
uk+1

2
uk+1

3

⎤⎦ =
1
d
B

⎡⎣uk
1
uk

2
uk

3

⎤⎦ (9)

with

B =

⎡⎢⎢⎣
αpβp + 2rαp + rβp + r2 r(βp + r) r2

r(βp + r) αpβp + rαp + rβp + r2 r(αp + r)

r2 r(αp + r) αpβp + rαp + 2rβp + r2

⎤⎥⎥⎦
(10)

where α = |uk
2 − uk

1 | �= 0, β = |uk
3 − uk

2 | �= 0, r = τ hp−2 and d = αpβp +
2rαp + 2rβp + 3r2. For initial arbitrary value of the 3-pixels, and a finite time,
the matrix coefficients are all equal to 1/3. It confirms the stability properties
for r > 0. However, the issue lies in how to determine the nonlinear diffusion
time so that it produces diffusion between the low gradient module pixels without
transferring diffusion to the pixels that have a high value of the gradient module.
Without loss of overall applicability, in (9) it is imposed α& β, so as to spread
forward diffusion between pixels 2 and 3 while keeping the value of the pixel 1.

This evolution means that the matrix (9) tends to be
⎡⎣1 0 0

0 1/2 1/2
0 1/2 1/2

⎤⎦ , which forces

r < 2αp. This inequality has been used to determinate the balance between
forward and backward diffusion. It has been observed experimentally that this
conclusion can be extended to n-pixels [11], obtaining as optimum value p = 3.
For h = 1, we obtained the following expression for the time step:

τ =
αp

th

5 · niter
(11)

where niter denotes the number of iterations (at least four iterations) and αth is
the absolute value of the difference between pixels, this being the slope threshold
on which enhancement is achieved. Extension to a higher dimension is carried
out by applying AOS (Additive Operator Splitting) [10]. Moreover, the numerical
method allows parallel and distributed computing.
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4 Computational Results

In order to show the performance of our proposal, it has been compared to Gauss
(p = 0), TV (p = 1) and BFB (p = 2)[3] filters. In all cases, the time step was

Fig. 1. Some slices over abdominal CT and their histograms a)Original, b)TV, c)BFB,
d)p = 3
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calculated by (11) and a semi-implicit scheme was implemented following (7).
The filters have been applied over CT images for liver segmentation task. The
images were taken from [12]. It is a training data set that includes both images
and binary masks of the segmentations of the structures of interest, produced
by human experts. There are 20 CT images. The proposed procedure is to apply
the same segmentation algorithm over filtering images. The following two metrics
have been commonly used to evaluate the quality of segmentation:

1. Volume overlap m1:

m1 =
(

1− V olseg

⋂
V olref

V olseg

⋃
V olref

)
× 100% (12)

where V olseg denotes segmented volume. V olref denotes reference volume.
2. Relative absolute volume difference m2

m2 =
|V olseg − V olref |

V olref
× 100% (13)

To test the approaches, we apply a simple threshold technique. It uses gray
level data, in order to validate the proposed image processing technique. We
assume that the liver density function follows a normal,N(μliver , σ

2
liver)[13]. The

estimation of the gaussian parameters are obtained through histogram analysis.
The two thresholds for the liver have been determined by two offsets from liver
mean based on the standard deviation of the gray level of the liver. Figure 1
shows the original CT and its processed images. It also depicts the contour of
the manual segmentation and the image histograms. The table summarizes the
experimental results. For all experiments were used the following values: niter =
5, αth = 70HU, ε = 0.35HU(HU ≡ Hounsfield Units). Firstly, it is observed
that the numerical method used is a conservative procedure. Independent of
the filter type, it is noted that μ̂liver remains almost constant. Secondly, the
σ̂liver decreases with increasing value of p. This means removing the noise from
homogenous areas while keeping clear and sharp edges. Finally, the segmentation
error measures, m1 and m2, show a downward trend with increasing value of p.
We have seen that the increase of p inhibits the staircase effect but also gives
rise to a reduction in the signal dynamic range. Furthermore, the validity of
equation (11) is based on the approximation between the model and numerical

Table 1. Experimental results

μ̂liver (HU) σ̂liver (HU) m1 (%) m2 (%)
Type min mean max min mean max min mean max min mean max

Original 83 123 181 9.3 25.3 56.0 34.9 42.1 55.3 38.0 57.8 88.2
Gauss 83 125 181 11.7 22.3 46.6 27.4 42.3 78.1 30.3 52.6 70.6
TV 82 126 180 9.2 19.1 39.6 23.1 35.3 42.9 24.6 43.3 65.8
BFB 82 126 180 4.6 14.8 32 16.5 29.6 42.9 16.8 34.3 60.1
p = 3 82 126 187 4.6 9.1 21 9.3 22.4 34.3 9.6 23.7 36.5
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scheme and on which basis we conclude that a compromise value should be
p = 3. Experiments demonstrate that our proposal of filter performs quite well
in relation to others.

5 Conclusions

A new nonlinear diffusion filter has been developed, which sharpens edges over
a wide range of slopes and reduce noise conservatively with dissipation along
homogeneous regions. It can be implemented efficiently and absolutely stable
with a semi-implicit scheme and ε-regularization. Based on the discrete evolu-
tion of three pixels, we have determined the diffusion time required for the edge
enhancement from a predetermined threshold. So, edge slopes below the thresh-
old must be blurred and those above the threshold should be sharpened and
trying to avoid staircase effect. Using the given time step, some diffusion filters
are compared to computed tomography images for segmentation tasks. Experi-
ments demonstrate that our proposal of filter performs quite well compared to
others.
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Color Quantization by Multiresolution Analysis 
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Abstract. A color quantization method is presented, which is based on the 
analysis of the histogram at different resolutions computed on a Gaussian 
pyramid of the input image. Criteria based on persistence and dominance of 
peaks and pits of the histograms are introduced to detect the modes in the histo-
gram of the input image and to define the reduced colormap. Important features 
of the method are, besides its limited computational cost, the possibility to ob-
tain quantized images with a variable number of colors, depending on the user’s 
need, and that the number of colors in the resulting image does not need to be a 
priori fixed.  

Keywords: histogram analysis, color quantization, pyramids. 

1   Introduction 

Color image quantization is a process that enables an efficient compression of color 
images by reducing the number of distinct colors present in the images. This process, 
also known as color reduction, is aimed at producing a new version of the input image 
that, though employing a smaller number of colors, is still visually similar to the 
original image. Color quantization has a key role both for image display [1], espe-
cially in the presence of devices that can display only a limited number of colors due 
to memory limitations, and for image compression [2], especially when multimedia 
data of considerably large size have to be recorded or transmitted. Another important 
application of color quantization regards color based indexing and retrieval from 
image databases [3]. 

A number of color quantization methods are available in the literature [1,4-13]. The 
standard approach is based on the interpretation of color quantization as a clustering 
problem in the 3D space, where the three axes are the three color channels and the 
points represent the various colors found in the image. Points are grouped into clusters, 
by using any clustering technique, and the representative color for each cluster is gener-
ally obtained as the average of the points in the cluster [4-6]. Since the problem of find-
ing the optimum clustering is generally NP-hard [4,14], many algorithms have been 
suggested to build a colormap with an a priori fixed number of colors. One of the first 
methods to build a reduced colormap is the population or popularity method. This 
method, suggested by Boyle and Lippman in 1978, has been implemented a few years 
later and is known as the median cut algorithm [1]. Another well-known method is the 
octree quantization algorithm [7]. Other approaches are based on histogram analysis  
[8-10], fuzzy logic [11], neural network [12] and multiresolution analysis [10,13]. 
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Methods such as [1,5,7,9] produce quantized images with low computational load 
independently of the images they are applied to, but require that the number of colors 
in the final image is a priori fixed by the user. Methods, producing quantized images 
with higher quality, build the set of representative colors according to the spatial color 
distribution in the input image, where the chosen quantization regions are of different 
size and are selected according to a given criterion. These methods are image-
dependent [4,6,8,10,11-13]. 

Due to the high number of colors generally present in the input image, which 
makes quantization a complex task, most color quantization methods include a pre-
processing step to reduce the data that will be processed by the quantization algo-
rithms, e.g., by reducing the range of each coordinate in the color space [5,10]. 

In this paper, we suggest a color quantization algorithm that can be framed in the 
category of image-dependent methods. The algorithm is based on color distribution 
and on the use of multiresolution image representation. The histograms at different 
resolutions are examined and the peaks and pits persisting at all resolutions or domi-
nating in the histogram of the input image are used to determine the colormap. Thus, 
the number of colors in the colormap does not need to be fixed by the user and is 
automatically detected, based on the number of persistent or dominating peaks and 
pits. The number of colors depends on the distribution of colors in the input image as 
well as on the number of resolutions taken into account to select significant peaks and 
pits. The method allows to obtain different colormaps by using an increasing number 
of considered resolutions. Clearly, the number of colors diminishes, but color distor-
tion increases, when the number of considered resolutions increases. Finally, we re-
mark that our method does not require any pre-quantization to reduce the data. 

Some notions are given in Section 2; the method is described in Section 3 and experi-
mental results are discussed in Section 4. Concluding remarks are given in Section 5. 

2   Notions 

Different color spaces can be used when working with color images. In this paper, we 
work with RGB images, even if our method can equally be applied in other color 
spaces. We interpret colors as three-dimensional vectors, with each vector element 
having an 8-bit dynamic range.  

The human visual system, though able to distinguish a very large number of colors, 
generally groups colors with similar tonality for image understanding, since a few 
colors are often enough to this aim [15]. Analogously, color quantization reduces the 
set of colors in a digital image to a smaller set of representative colors. 

The histogram of an image is useful to analyze the distribution of the pixels values 
within the image, so as to identify values that could be grouped together and could be 
replaced in the image by a unique representative value. For color images the histo-
gram is a multidimensional structure and its analysis is rather complex [16]. A few 
attempts to work with multidimensional histograms can be found in the literature, see 
e.g., [9-10]. In turn, a color image can be interpreted as decomposed into three gray-
level images, so that the analysis of the three one-dimensional histograms associated 
to the three color channels can be done instead of analyzing the complex histogram of 
colors. We use this kind of independent analysis of the three histograms, as it is 
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mostly done in the literature, though we are aware that some important information 
contained in the dependence among the channels may be lost.  

For one-dimensional histograms, the list of its modes, i.e., the intervals of values 
occurring the most frequently, can be efficiently used to perform quantization. If the 
peaks in the histogram are detected together with the pits separating them, each set of 
values from a pit to the successive pit can be seen as corresponding to a mode and all 
the values can be quantized in a single representative value, e.g., the value of the peak 
placed in between the delimiting pits. In general, peaks and pits may consist of more 
than one single value (i.e., they can be shaped as plateaux). Moreover, a generally 
large number of peaks and pits, not all equally meaningful, exist in the histogram. 
Thus, some criteria should be adopted to detect peaks and pits in the presence of pla-
teaux and to remove those peaks or pits that are regarded as scarcely meaningful from 
a perceptual point of view. 

Multiresolution representation of an image is useful in different application con-
texts, as it provides differently condensed representations of the information contents 
of the image. Pyramids are among the structures most often used for multiresolution 
representation. They are generally built by using a uniform subdivision rule that 
summarizes fixed sized regions in the image. A Gaussian pyramid can be built by 
creating a series of images, which are weighted down using a Gaussian average and 
scaled down. By doing the same process multiple times, a stack of successively 
smaller images is created. Also discrete methods exist in the literature to build pyra-
mids. For example, in [17] a subdivision of the image into non-overlapping 2×2 
blocks is performed to obtain a smaller image having as many pixels as many are the 
blocks into which the image is divided. The value of each pixel in the smaller size 
image is computed by using a multiplicative mask of weights centered on one of the 
pixels in the corresponding block. The process is repeated to obtain all desired pyra-
mid levels. In this paper, we use the Gaussian pyramid based on a 5×5 support. 

3   The Color Quantization Algorithm 

Our color quantization method can be sketched as follows. Given a color image with 
resolution M×N, the pyramid is built. Actually, the number of pyramid levels to be 
built is fixed by the user, depending on the color distortion that is regarded as accept-
able in the quantization. A large number of pyramid levels will produce a colormap 
with a smaller number of colors, but the resulting image will be less visually similar 
to the input. Let L denote the number of levels selected for the pyramid. For each 
color channel and for each pyramid level, the corresponding histogram is computed. 
Minima and maxima are determined on the histograms. The histograms at different 
resolution levels for each channel F (where F is R, G or B) are compared to identify 
the minima and maxima persistent along all levels. The persistent minima and 
maxima in the histograms and the minima and maxima dominating a significant sup-
port in the histogram of the input image are retained, while all other minima and 
maxima are disregarded. The polygonal line connecting the retained successive min-
ima and maxima is processed to simplify the structure of the histogram. The vertices 
of the so obtained polygonal line are used to determine the modes of the histogram of 
the channel F. Then, a representative value for each mode is computed. 
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We will focus in the following on the process done on the histograms and will de-
scribe the process for one channel only. 

3.1   Simplifying the Histogram 

The histogram generally includes a large number of peaks and pits. The following 
process is aimed at simplifying the histogram by detecting only the peaks and pits 
regarded as significant for the quantization. 

Let Hi, i=1,…,L be the histograms computed on the L levels of the pyramid for the 
channel F. On each Hi, peaks and pits are detected, respectively as relative local 
maxima and relative local minima, i.e., p is a peak (pit) if height(p-1)≤ height(p) and 
height(p+1) ≤ height(p) (height(p)≤ height(p-1) and height(p) ≤ height(p+1)), where 
p-1 and p+1 are the values immediately before and immediately after p in the histo-
gram. On H1, i.e., the histogram of the M×N image, two values v1 and vn are identi-
fied, respectively coinciding with the first pit to the left coming immediately before 
the first peak with reasonable height, and with the pit immediately following the last 
peak with reasonable height. Here, we regard as reasonable the height of a peak if it is 
at least 1% of the maximal peak height. Only the portion of Hi, i=1,…,L, between v1 
and vn is taken into account.  

Let v1, v2…, vn be the list of peaks and pits (also called vertices) of H1. Each vertex 
vi is associated with three parameters [18], namely the area of the region of the histo-
gram dominated by vi (actually, the area of the triangle with vertices vi-1, vi and vi+1), 
the cosine of the angle formed by the straight lines joining vi-1 with vi and vi with vi+1, 
and the distance of vi from the straight line joining vi-1  and vi+1. Let A be the average 
area of all triangles. 

We compare H1 with the histograms Hj, j=2,…,L and remove from the list of verti-
ces of H1 any vi for which the area of the associated triangle is smaller than A and 
which is not present in all histograms. Once all vertices have been examined, the 
values of the three parameters for all surviving vertices of H1 and the average area A 
are updated. Then, we also remove from the list of vertices of H1 all successive verti-
ces such that their associated triangles all have area smaller than A and such that the 
value of at least one of the three parameters is the same for all successive vertices. 
The last step of histogram simplification is devoted to maintaining in the list of verti-
ces only those that are still peaks or pits.  

3.2   Finding the Histogram Modes 

Each pair of successive pits identifies a mode of the histogram of F, independently of 
whether a peak is included between them. The successive step of the process is aimed 
at computing the representative value for each mode. Three cases are possible: 

Case 1 – One single peak is in between the two pits delimiting the mode. Then, the 
representative value of the mode is the value of the peak. 

Case 2 – No peak is included in between the two pits delimiting the mode. Then, if 
the two pits have different height, the representative value of the mode is the value of 
the pit with smaller height. Otherwise, if the two pits have the same height, the value 
of the leftmost pit between the two pits delimiting the mode is used for the representa-
tive value of the mode. 
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Case 3 – A number of peaks exists in between the two pits delimiting the mode. Then, 
the value of the peak with maximal height is assigned to the representative value of 
the mode. If a series of successive peaks exists where all peaks have the same height, 
only the leftmost peak of the series is taken into account in the maximal peak height 
computation. 

The image used as running example (24 bits image “yacht” with 150053 original 
colors), the modes found on the R, G, and B histograms, and the image resulting after 
quantization for L=3 are shown in Fig. 1. 

   

Fig. 1. An input image with 150053 colors, left, the modes for its R, G and B histograms,  
middle, and the image resulting after color compression for L=3 with 2696 representative col-
ors, right 

4   Experimental Results 

We have applied our quantization algorithm to a large number of images with differ-
ent size and color distribution, taken from available databases for color images [19-
20]. A small dataset taken from [20] and including seven 512×480 color images (24 
bits) is given in Fig. 2. This dataset is used to show the performance of the method in 
terms of quantitative measures, namely the number of representative colors RC 
(which accounts for the degree of color compression), the compression ratio CR, 
computed as the ratio between the size of the output stream and the input stream ex-
pressed in bit per pixel (bpp) [21], the Peak Signal to Noise Ratio PSNR [21], the 
Structural SIMilarity SSIM [22-23], which quantitatively accounts for the similarity 
between the input image and its quantized version, and the colorloss CL, based on the 
Euclidean color distance [9,10,24].  

 

             

Fig. 2. A set of 512×480 color images 
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The quantization algorithm has been tested for different values of the number L of 
considered levels of the Gaussian pyramid. In Table 1 and Table 2 the results obtained 
on the above dataset for L=3 and L=5 are shown. The number of colors in the original 
images, OC, is also given to better appreciate the obtained color reduction.  

Table 1. Results of quantization for L=3 

 OC RC CR PSNR SSIM CL 
cablecar 130416 1472 0,62 30,4991 0,9064 10,3697 
cornfield 134514 3901 0,70 31,6933 0,9480 9,1101 
flower 111841 1274 0,62 31,9328 0,9093 9,0898 
fruits 160476 3422 0,68 31,6469 0,8982 9,2494 
pens 121057 1583 0,63 31,1158 0,8966 10,2792 
soccer 139156 3149 0,68 31,8542 0,9447 8,9239 
yacht 150053 2696 0,66 31,9205 0,9233 8,9934 

Table 2. Results of quantization for L=5 

 OC RC CR PSNR SSIM CL 
cablecar 130416 258 0,47 21,2468 0,7860 25,6635  
cornfield 134514 1753 0,63 27,2728 0,9025 16,4103  
flower 111841 506 0,54 29,0611 0,8575 12,8794  
fruits 160476 936 0,57 21,9970 0,7863 28,3888  
pens 121057 320 0,49 24,4638 0,7672 20,2832  
soccer 139156 594 0,54 24,2289 0,8471 19,0933  
yacht 150053 637 0,54 26,6588 0,8347 17,0297  

 
We note that the average compression ratio is equal to 0.66 for quantization obtained 

with L=3 and 0.54 for L=5, i.e., color information occupies in the average 66% and 54% 
of its original size after compression, respectively. Of course, the average SSIM and 
PSNR slightly diminish when passing from L=3 to L=5, though they still indicate a 
good similarity between the input image and its quantized version. Finally, the average 
colorloss increases when using L=5, as expected due to the higher compression. 

For the running example yacht, the quantized images obtained for L=2, 4, 5 are 
shown in Fig. 3. The quantization for L=3 has already been given in Fig. 1 right. 

 

   
L=2, RC=3995   L=4, RC=1020   L=5, RC=637 

Fig. 3. Quantized images resulting for different values of L. In all cases, the number RC of 
representative colors is considerably smaller than the number OC of original colors 
(OC=150053) 
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5   Concluding Remarks 

We have introduced a lossy method to reduce the number of colors in an image, while 
maintaining the visual aspect of the quantized image satisfactory enough. The algo-
rithm is based on the analysis of the histograms at different resolution levels of the 
Gaussian pyramid built from the input image. Only peaks and pits persistent at all 
resolutions or dominating in the histogram of the input image are considered as sig-
nificant to identify the modes in the histogram of the input image. Each mode of the 
histogram is associated with a single representative value. 

The use of multiresolution representation has the advantage that different quantiza-
tions can be obtained for the same image, depending on the number L of resolution 
levels that are taken into account for the histogram analysis. The larger is L, the 
smaller is the number of representative colors. Obviously, the quality of the obtained 
quantized image decreases when L increases; the value L=3 can be used as a default 
value. The method is particularly useful for progressive transmission, where an image 
characterized by strong color reduction, i.e., quantized with a large value of L, can be 
initially transmitted and better versions can be provided if demanded by the receiver. 

The algorithm has a limited computational cost, does not require pre-quantization 
and does not require to fix a priori the number of representative values. It has been 
applied to a large set of images, producing satisfactory results both in terms of com-
pression ratio and space saving, and in terms of image quality (evaluated by PSNR, 
SSIM and colorloss).  

Though illustrated with reference to color images in the RGB color space and 
Gaussian pyramids, the algorithm can be used also in different color spaces and by 
employing different multiresolution structures. Future work will deal with multi-
dimensional histogram analysis. 
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Abstract. This paper deals with denoising of density images with bad
Poisson statistics (low count rates), where the reconstruction of the ma-
jor structures seems the only reasonable task. Obtaining the structures
with sharp edges can also be a prerequisite for further processing, e.g.
segmentation of objects.

A variety of approaches exists in the case of Gaussian noise, but only
a few in the Poisson case. We propose some total variation (TV) based
regularization techniques adapted to the case of Poisson data, which we
derive from approximations of logarithmic a-posteriori probabilities. In
order to guarantee sharp edges we avoid the smoothing of the total vari-
ation and use a dual approach for the numerical solution. We illustrate
and test the feasibility of our approaches for data in positron emission
tomography, namely reconstructions of cardiac structures with 18F-FDG
and H2

15O tracers, respectively.

Keywords: Denoising, Poisson noise, Total variation, Regularization
techniques, Positron emission tomography, Segmentation.

1 Introduction

In this paper we shall discuss some approaches to denoising density images with
Poisson statistics, with particular focus on cartoon reconstruction. The latter
seems particularly reasonable for low count rates, where the effective SNR is too
low to compute further details in the image. Moreover, appropriate cartoons are
important for subsequent tasks such as segmentation of objects in the images or
further quantitative analysis. For this sake we shall employ variational methods
based on penalization by total variation (or related penalization functionals of
�1 or L1-type), which has become a standard approach for such tasks in the
frequently investigated case of additive Gaussian noise.

Variational methods in the case of Gaussian noise [1], [2], can be written as
minimizing an energy functional of the form

1
2

∫
Ω

(u − f)2 dμ + α R(u) → min
u
, (1)
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in order to obtain a denoised version u of a given image f , where Ω is the image
domain and α is a positive regularization parameter. The first, so-called data
fidelity term, penalizes the deviation from the noisy image f and can be de-
rived from the log-likelihood for the noise model (cf. [1], [2]). R is an energy
functional that inserts a priori information about the favoured type of smooth-
ness of solutions. The minimization (1) results in suppression of noise in u if
R is smoothing, while u is fitted to f . The choice of the regularization term R
is important for structure of solutions. Often functionals R(u) =

∫
Ω |∇u|p for

p > 1 are used, where ∇ denotes the gradient and |.| the Euclidean norm. The
simplest choice p = 2 results in a scheme equivalent to a linear filter, which
can be implemented very efficiently via a fast Fourier transform. However, such
regularization approaches always lead to blurring of images, in particular they
cannot yield results with sharp edges.

In order to preserve edges and obtain appropriate structures, we use an ap-
proach based on total variation (TV) as regularization functional. TV regular-
ization was derived as a denoising technique in [3] and generalized to various
other imaging tasks subsequently. The exact definition of TV [4] is

R(u) = |u|BV := sup
g∈C∞

0 (Ω,Rd), ||g||∞≤1

∫
Ω

u divg , (2)

which is formally (true if u is sufficiently regular) |u|BV =
∫

Ω |∇u|. The space
of integrable functions with bounded (total) variation is denoted by BV (Ω) (cf.
[4], [5]). The variational problem (1) with TV as regularization functional is the
Rudin-Osher-Fatemi (ROF) model. The motivation for using TV is the effec-
tive suppression of noise and the realization of almost homogeneous regions with
sharp edges. These features are particularly attractive for a posterior segmenta-
tion and quantitative evaluations on structures.

Images with Poisson statistics arise in various applications, e.g. in positron
emission tomography (PET), in optical microscopy or in CCD cameras. In most
of these cases, the raw data (positron or photon counts) are related to the images
via some integral operator, which first needs to be (approximately) inverted in
order to obtain an image. Recently, variational methods derived from Bayesian
models have been combined with the reconstruction process [6],∫

Σ

(Ku− g logKu) dμ + α |u|BV → min
u∈BV (Ω)

, u ≥ 0 , (3)

where g are the Poisson distributed raw data, Σ is the data domain and K is
a linear operator that transforms the spatial distribution of desired object into
sampled signals on the detectors. If K = Id, (3) becomes a denoising model,
where g is the known noisy image. In the absence of regularization (α = 0) in
(3) the EM algorithm [7], [8], has become a standard reconstruction scheme in
problems with incomplete data corrupted by Poisson noise, which is however
difficult to be generalized to the regularized case. Robust iterative methods for
minimizing (3) have been derived by the authors recently (cf. [9], [10], [11]),
but in any case a minimization of (3) requires significant computational effort.
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In order to obtain similar results faster, we investigate a natural alternative
scheme, namely the postprocessing of reconstructions with EM methods based
on a variational denoising model. This posterior denoising step needs to take into
account that the reconstructed image still behaves like an image with Poisson
noise and thus particular schemes need to be constructed.

In [12], a TV based variational model to denoise an image corrupted by Poisson
noise is proposed,∫

Ω

(u− f log u) dμ + α |u|BV → min
u∈BV (Ω)

, u ≥ 0 . (4)

A particular complication of (4) compared to (1) is the strong nonlinearity in the
data fidelity term and resulting issues in the computation of minimizers. Due to
TV the variational problem (4) is non differentiable and the authors in [12] use an
approximation of TV by differentiable functionals

∫
Ω

√
|∇u|2 + ε for any ε > 0.

This approach leads to blurring of edges and due to an additional parameter
dependence on ε such algorithms are even less robust. Here, we propose a robust
algorithm for (4) without approximation of TV, i.e. we use (2) respectively a
dual version. This allows to realize cartoon images with sharp edges. Moreover,
we investigate a quadratic approximation of the fidelity term, which yields very
similar results as (4) with a more straight-forward numerical solution.

The challenges of this work are that the Poisson based data-fidelity term in
(4) and (3) is highly nonlinear and that the functionals to be minimized are non-
differentiable. We propose robust minimization schemes using dual approaches
for an appropriate treatment of the total variation. To illustrate the behavior of
the proposed methods, we evaluate cardiac H2

15O and 18F-FDG PET measure-
ments with low SNR.

2 Methods

2.1 EM and EM-TV Reconstruction

In this section we briefly discuss reconstruction methods based on Expectation-
Maximization (EM, cf. [8]) and regularized EM methods. We consider the
variational problem (3). A standard reconstruction scheme in the absence of
regularization (α = 0) is the EM method introduced by Shepp and Vardi [7],

uk+1 = uk
K∗

K∗1

(
g

Kuk

)
, (5)

an approach which is reasonably easy to implement, K∗ is the adjoint opera-
tor of K [2]. However, suitable reconstructions can only be obtained for good
statistics, and hence either additional postprocessing by variational methods or
additional regularization in the functional (cf. [13], [14]) is needed. For the latter
we proposed in [9] and [10] a semi-implicit iteration scheme minimizing (3). This
scheme can be realized as a nested two step iteration



536 A. Sawatzky et al.

⎧⎨⎩ uk+ 1
2

= uk
K∗

K∗1

(
g

Kuk

)
(EM step)

uk+1 = uk+ 1
2
− α̃ uk pk+1 (TV step)

⎫⎬⎭ (6)

with pk+1 ∈ ∂|uk+1|BV and α̃ := α
K∗1 , where ∂ denotes the subdifferential [2]

and generalizes the notion of derivative. The first step in (6) is a single step of
the EM algorithm (5). The more involved second step for TV correction in (6)
can be realized by solving

uk+1 = argmin
u∈BV (Ω)

{
1
2

∫
Ω

(u − uk+ 1
2
)2

uk
+ α̃ |u|BV

}
. (7)

Inspecting the first order optimality condition confirms the equivalence of this
minimization with the TV correction step in (6). Problem (7) is just a modified
version of the ROF model, with weight 1

uk
in the fidelity term. This analogy

creates the opportunity to carry over efficient numerical schemes known for the
ROF model and actually to realize cartoon reconstructions with sharp edges. For
a detailed analytical examination of EM-TV we refer to [11]. Since the coupled
model needs several iteration steps and thus several solutions of (7), it becomes
computationally rather involved. Therefore, we study a simple postprocessing
strategy based on first computing a reconstruction of visually bad quality via a
simple EM algorithm and postprocessing with total variation, which we expect to
recover the major structures in the image at least for a certain range of statistics.

2.2 Denoising Images with Poisson Statistics

The straight-forward approach to denoising is based on maximizing the logarith-
mic a-posteriori probability, i.e. solving (4) (cf. [12]), whose optimality condition
is given by

u (1 − f

u
+ αp) = 0 , p ∈ ∂|u|BV . (8)

Since the reconstruction model (3) coincides in the case of K being the identity
operator with (4), we can use the iteration scheme from the previous section,
which simply results in (note that uk+ 1

2
= f in this case)

uk+1 = f − α̃ uk pk+1 . (9)

As noticed above, we can realize this iteration step by solving the modified ver-
sion of the ROF model (7). Note that (9) is a semi-implicit iteration scheme with
respect to the optimality condition (8) and thus actually computes a denoised
image in the Poisson case.

The iteration scheme (9) solves the denoising problem (4) by a sequence of
modified ROF variational models. In this way one obtains an MAP estimate, but
again at the price of high computational effort. Together with the reconstruction
via the EM method, the effort is comparable to the incorporated EM-TV scheme.
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Hence we introduce a further approximation of the denoising problem, which is
based on a second order Taylor approximation of the data fidelity term in (4),

u = argmin
u∈BV (Ω)

{
1
2

∫
Ω

(u− f)2
f

+ α̃ |u|BV

}
. (10)

In this case we can compute the postprocessing by solving a single modified ROF
model.

2.3 Computational Approach

Finally we briefly discuss the numerical solution of the minimization problem

u = arg min
u∈BV (Ω)

{
1
2

∫
Ω

(u− v)2
w

+ α̃ |u|BV

}
, (11)

which is the most general form of all schemes above with appropriate setting
of v and the weight w. Most computational schemes for the ROF model can be
adapted to this weighted modification, here we use a dual approach that does not
need any smoothing of the total variation. Our approach is analogous to the one
in [15], using a characterization of subgradients of total variations as divergences
of vector fields with supremum norm less or equal one. We thus compute the
primal variable from the optimality condition with g̃ to be determined as a
minimizer of a dual problem

u = v − α̃ w divg̃ , g̃ = argmin
g, ‖g‖∞≤1

∫
Ω

(α̃ w divg − v)2 . (12)

This problem can be solved with projected gradient-type algorithms, we use

gn+1 =
gn + τ ∇(α̃ w divgn − v)
1 + τ |∇(α̃ w divgn − v)| , 0 < τ <

1
4 α̃ w

, (13)

with the damping parameter τ to ensure convergence of the algorithm.

3 Results

We illustrate our techniques at a simple synthetic object, see Fig. 1, and by eval-
uation of cardiac H2

15O and 18F-FDG measurements obtained with positron
emission tomography (PET) [16], [17]. In this modality, a specific radioactive
tracer, binding to the molecules to be studied, is injected into blood circulation.
H2

15O is used for the quantification of myocardial blood flow [18]. This quan-
tification needs a segmentation of myocardial tissue, left and right ventricle [18],
[19], which is extremely difficult to realize due to very low SNR of H2

15O data.
In order to obtain the tracer intensity in the left ventricle we take a fixed

2D layer in a suitable time frame, see Fig. 2. To illustrate the SNR issue we
present reconstructions with the EM algorithm (A). As expected, the results
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Fig. 1. Synthetic object: results of different reconstruction methods and Kullback-
Leibler distances to true image. A: EM reconstruction, 18 its. B: EM, 18 its, with
Gaussian smoothing any 5th step. C: A with standard ROF smoothing, (1) with (2).
D: A with weighted ROF smoothing (10). E: A with iterative weighted ROF smoothing
(9), 30 its. F: Nested EM-TV algorithm (6), 30 its.

Fig. 2. Cardiac H2
15O PET measurements: tracer intensity results of different recon-

struction methods in the left ventricle. A-F: as in Fig. 1, but all with 20 its. G, H: D,
E scaled to maximum intensity of F.

suffer from unsatisfactory quality and are impossible to interpret. We hence
take EM reconstrutions with Gaussian smoothing (B) as a reference. The next
results (C - E) show different approaches of TV smoothing with the (weighted)
ROF model. The result C demonstrates the approach with the standard ROF
model, the result D is generated with the weighted ROF model (10) and E with
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Fig. 3. Cardiac 18F-FDG 3D PET measurements: reconstruction results from two
different viewing angles (upper and bottom row). A: EM recontruction, 20 its, with
Gaussian smoothing any 10th step after 20 minutes data acquisition. B: As A but after
5 seconds data acquisition. C: B with weighted ROF smoothing (10) and α̃ = 0.3. D:
As C but with α̃ = 0.5.

the MAP estimate (4). The approach with the nested EM-TV algorithm (6)
is presented in F. The reconstructions G and H are the same results as in D
and E appropriate, but the images are scaled to the maximum intensity of F,
such that a comparison is possible also for quantitative values. One observes
that the results without or with standard smoothing are unsatisfactory, while
all total variation techniques yield reasonable reconstructions of the structures.
Quantitative values are usually more realistic for the nested EM-TV methods.

In Figure 3, we provide 3D postprocessing results generated with total vari-
ation using cardiac 18F-FDG measurements. This tracer is an important radio-
pharmaceutical and is used for measuring glucose metabolism, e.g in brain, in
heart or in cancer. For the illustration of a 3D data set, we take the projections
of two fixed viewing angles. The EM reconstruction after a data acquisition of
20 minutes is shown in A as a ground truth for very high count rates. To sim-
ulate low count rates, we take the measurements after the first 5 seconds only.
The corresponding EM reconstruction is illustrated in B. The results C and D
show a postprocessing of B with the weighted ROF model (10) for two different
regularization parameters α̃ = 0.3 and α̃ = 0.5. One observes that the major
structures are well reconstructed by this approach also for low count rates.
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Fast Trilateral Filtering

Tobi Vaudrey and Reinhard Klette
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Abstract. This paper compares the original implementation of the trilateral filter
with two proposed speed improvements. One is using simple look-up-tables,
and leads to exactly the same results as the original filter. The other technique
is using a novel way of truncating the look-up-table (LUT) to a user specified
required accuracy. Here, results differ from those of the original filter, but to a
very minor extent. The paper shows that measured speed improvements of this
second technique are in the order of several magnitudes, compared to the original
or LUT trilateral filter.

1 Introduction

Many smoothing filters have been introduced, varying from the simple mean and
median filtering to more complex filters such as anisotropic filtering [2]. These filters
aim at smoothing the image to remove some form of noise.

The trilateral filter [1] was introduced as a means to reduce impulse noise in
images. The principles of the filter were based on the bilateral filter [7], which
is an edge-preserving Gaussian filter. The trilateral filter was extended to be a
gradient-preserving filter, including the local image gradient (signal plane) into the
filtering process. Figure 1 demonstrates this process using a geometric sketch. This filter
has the added benefit that it requires only two user-set parameters (the starting bilateral
filter size and a constant that is predefined from [1]), and the rest are self-tuning to the
image.

The original paper [1] demonstrated that this filter could be used for 2D images, to
reduce contrast of images and make them clearer to a user. It went on to highlight that the

Fig. 1. Illustration of the filtering process using (from left to right) unilateral (Gaussian), bilateral,
or trilateral filtering (figure from [1])
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filter could also be used to denoise 3D images quite accurately. Recent applications of
trilateral filtering have shown that it is also very applicable to biomedical imaging [10].
It decreases noise while still preserving fine details. The trilateral filter has also been
used to create residual images (illumination invariant images), to increase the quality of
optical flow and stereo matching [9]. Using only one pass produces sufficient results.

Unfortunately, the filter is very slow and requires large local search regions when the
image has a low gradient. This issue only gets worse with increasing image sizes, due to
the fact that the running time increases super quadratically with image size. This makes
large 2D or 3D images very slow to compute. Also, for smaller images, the use of this
filter for real-time applications (such as driver assistance systems and security cameras)
is limited. In [6] a method was presented for a 15-25 times speed improvement. This
paper presents a novel method that provides a speed improvement of several orders of
magnitude (100-1000 times faster; from hours down to seconds).

The proposed approach increases the speed of the filter dramatically while still
maintaining high accuracy. The filter does not use parallel processing, but can
still be parallalised to further increase speed. The approach requires one additional
user parameter, required accuracy. Furthermore, we have implemented the trilateral
algorithm for standard 2D images, which has been made publicly available [8].

We first introduce the original trilateral filter, followed by a simple speed up
technique that does not generate data loss (look up tables). We then present our novel
approach, using kernel truncation based on required data accuracy. This is followed
by results demonstrating the speed improvements, and the differences in results to the
original filter.

2 Definition of Trilateral Filter

An image is defined by f(x) ∈ Rn (n = dimensionality), where x ∈ Ω is the pixel
position in image domainΩ. Generally speaking, an n-D (n-dimensional) pixel-discrete
image has an image domain defined as, ∅ ⊂ Ω ⊆ Xn ⊂ Nn (Xn is our maximum
discrete index set of the image domain in dimensionn). A smoothing operator will reduce
an image to a smoothed version of itself, specifically S(f) = s, where s is in the same
image domain as f . To introduce the trilateral filter, we must first define the bilateral case;
we will then go on to define the traditional trilateral filter using this notation.

2.1 Bilateral Filter

A bilateral filter is actually an edge-preserving Gaussian filter. Of course, the same
technique could be used with any type of simple filter (e.g., median or mean). Offset
vectors a and position-dependent real weights w1(a) (spatial smoothing) define a local
convolution, and the weights w1(a) are further scaled by a second weight function w2
(range/luminance smoothing), defined on the differences f(x + a)− f(x):

s(x) =
1
k(x)

∫
Ω

f(x + a) · w1(a) · w2

(
f(x + a)− f(x)

)
da (1)

k(x) =
∫

Ω

w1(a) · w2

(
f(x + a)− f(x)

)
da
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Function k(x) is used for normalization. The weights w1 and w2 are defined by
Gaussian functions with standard deviations σ1 (range) and σ2 (spatial), respectively
(another filter can be substituted, but will provide different results). The smoothed
function s equals SBL(f). The bilateral filter requires a specification of parameters
σ1, σ2, and the size of the used filter kernel 2m + 1 in f (m is the half kernel size and
is n-dimensional). Of course, the size of the kernel can be selected using σ1 and σ2.

2.2 Trilateral Filter

The trilateral filter is a “gradient-preserving” filter. It aims at applying a bilateral
filter on the current plane of the image signal. The trilateral case only requires the
specification of one parameter σ1. At first, a bilateral filter is applied on the derivatives
of f (i.e., the gradients):

gf (x) =
1

k∇(x)

∫
Ω

∇f(x + a) · w1(a) · w2 (||∇f(x + a)−∇f(x)||) da (2)

k∇(x) =
∫

Ω

w1(a) · w2 (||∇f(x + a)−∇f(x)||) da

To approximate ∇f(x), forward differences are used, and more advanced techniques
(e.g., Sobel gradients, 5-point stencil) are left for future studies. For the subsequent
second bilateral filter, [1] suggested the use of the smoothed gradient gf (x) [instead of
∇f(x)] for estimating an approximating plane

pf (x,a) = f(x) + gf(x) · a (3)

Let f�(x,a) = f(x + a)− pf (x,a). Furthermore, a neighbourhood function

N(x,a) =
{

1 if |gf (x + a)− gf (x)| < c
0 otherwise

(4)

is used for the second weighting. Parameter c specifies the adaptive region and is
discussed further below. Finally,

s(x) = f(x) +
1

k�(x)

∫
Ω

f�(x,a) · w1(a) · w2(f�(x,a)) ·N(x, a) da (5)

k�(x) =
∫

Ω

w1(a) · w2(f�(x,a)) ·N(x, a) da

The smoothed function s equals STL(f).
Again, w1 and w2 are assumed to be Gaussian functions, with standard deviations

σ1 and σ2, respectively. The method requires specification of parameter σ1 only, which
is at first used to be the diameter of circular neighbourhoods at x in f ; let gf (x) be
the mean gradient of f in such a neighbourhood. The parameter for w2 is defined as
follows:

σ2 = β ·
∣∣∣∣max
x∈Ω

gf (x)−min
x∈Ω

gf (x
∣∣∣∣ (6)

(β = 0.15 was recommended in [1]). Finally, c = σ2.
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3 Numerical Speed Improvements

In the previous section, we defined the trilateral filter in a continuous domain. But as we
are all aware, the numerical approximation needs to be implemented in real-life. And
obviously, this filter takes a lot of processing to work. This section aims at showing how
numerical implementations are improved dramatically.

In practice w1 (the spatial weight) from Equation (2) can be pre-calculated using
a look-up-table (LUT), as it only depends on σ1, m (kernel size), and a (offset from
central pixel). As this function is Gaussian, the LUT is computed as follows:

W1(i) = exp

(
−‖i‖2

2σ2
1

)
(7)

where 0 ≤ i ≤ m (usually i ∈ Nn, but can also approximate vectors in Qn using
interpolation).W1 is used by simple referencing usingW1(|a|),1 which approximates a
quarter of the Gaussian kernel (as the Gaussian function is symmetric). Unfortunately,
the intensity weight w2 can not use a look up table, as it depends on the local properties
of the image.

Similar principles can be applied to Equation (3). In this equation, w1 depends
on a local adaptive neighbourhood A, depending on the magnitude of the gradients.
However, the function is only dependent on the distance from the central pixel a, and
since the maximum of A is known, the LUT can be computed as in Equation (7), but
where 0 ≤ i ≤ max(A). Again,w2 depends on local information, no LUT can be used.
This approach is called the LUT-trilateral filter.

From here, to improve speed, there need to be numerical approximations. The
presented approach is a smart truncation of the kernel to a defined accuracy ε ∈ Q+,
and 0 < ε < 1. We know that the function is Gaussian so we shall use this for our
truncation. If we want to ignore any values below ε, then only values above this should
be used:

ε ≤ exp

(
−‖i‖2

2σ2
1

)
which leads to ‖i‖ ≤ σ1

√
−2 ln(ε) = T

where T is the threshold. (Note that ln(ε) is strictly negative, so T is strictly positive.)
In practice, this means that we can compute a look up table as defined in Equation (7),
where 0 ≤ ||i|| ≤ T . This approach could be applied to a bilateral filter, but does not
really benefit it. However, when dealing with the trilateral filter, this reduces the number
of equations dramatically (as the largest kernel size is equal to the size of the smallest
dimension minn(Xn) in the image). This truncation will increase the error, but only
by, at most, ε (minn(Xn))2. We call this method the fast-trilateral filter. Note that this
filter has only two parameters (which are both logical); σ1 (the initial kernel diameter)
and ε (the required accuracy).

Note that this does not exploit any parallel processing, but is open to massive parallel
processing potential, as every pixel is independent within the iteration of trilateral
filtering. This is especially noticeable for GPU programming, where the truncated LUT
can be saved to texture memory [5].

1 |a| is here short for (|a1|, . . . , |an|), and ||a|| is the L2-norm.
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4 Experimental Results of Filter

We have implemented the trilateral algorithm for standard 2D images, which has been
made publicly available [8]. The experiments of this section were performed on a
Intel Core 2 Due 3G Hz processor, with 4GB memory, on a Windows Vista platform.
Parallel processing was not exploited (e.g., OpenMP or GPU). Of course, further speed
improvements can be gained by doing so.

4.1 Dataset

We illustrate our arguments with the 2005 and 2006 Middlebury stereo datasets [4],
provided by [3]. We selected a sample set to use for our experiments: Art, Books, Dolls,
Reindeer and Baby1. For each image from this dataset, we use the full resolution image
(approx. 1350× 1110). We then scale down the image by 50% in both directions, and
repeat this 5 times (i.e., 50%, 25%, 13%, 6%, and 3% of original image size), see right
part of Figure 2 for example of images used. This allows us to demonstrate running
times for differing image sizes.

4.2 Comparison of Running Time

Figure 2 shows the running times of the algorithms on the Art images. The results
compare two σ1 values of 3 and 9, and the fast trilateral filter uses ε = 10−12.
There is obviously a massive improvement when using trilateral-LUT compared to
the original (especially with larger images). With smaller images, the improvement is
under 1 magnitude, but increases quickly up to around 1 magnitude improvement (see
1390× 1110 results). There is no reason to use the original method instead of the LUT,
as there is no accuracy loss with the LUT (the memory usage is negligible compared to
calculating image pyramids).

The fast-trilateral filter shows a massive improvement over the other methods (except
43 × 34, which is not a practical image size). The improvement only gets better as
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Fig. 2. Running times for Art image (left) for different scales of an image (right); displayed in
log10 scale. Note: original was not run for σ = 9 on largest image, nor on second largest image
(due to time). For the fast trilateral results, ε = 10−12.
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Fig. 3. Average running times for fast-trilateral filter on the dataset of images at maximum
resolution. Shows the results for varying kernel sizes σ1 and accuracy ε.

the size of the image increases; for the largest image size the difference is 46 hours
(original) and 5 hours (LUT), compared to 86 seconds for the fast-trilateral filter. That
is a dramatic decrease (several orders of magnitude) in computation time.

From these results, we can infer that the improvements will only get better when
extending the filter to 3-dimensions (e.g., filtering noisy 3D-meshes), as the number of
pixels (or voxels) increases further.

When using the fast-trilateral filter, the user selects the required accuracy. The less
accuracy wanted, the faster the filter runs. The comparison in Figure 2 is for the highest
accuracy (ε = 10−12), which highlights the improvement over the other filters. To show
the effect of reducing the accuracy, compared to running time, we ran the filter across
the dataset (at maximum resolution, i.e., approx. 1350×1110) and averaged the running
times. Figure 3 shows the results of the fast-trilateral filter for this test using varying
kernel sizes (σ1). This graph shows that the improvements with decreasing accuracy
are linear (within each σ1). A point to note is that when using σ1 = 9, the difference in
running time goes from 700 seconds (ε = 10−12), down to 290 (ε = 10−4). The next
section demonstrates that the results from the fast-trilateral filter are very close to the
original (and LUT) filter, showing that this speed improvement is for almost no penalty.

4.3 Accuracy Results

A difference image d is the absolute difference between two images,

D(s, s∗) = d with d(x) = | s(x)− s∗(x) | (8)

where s is the fast-trilateral result, and s∗ is the result from the LUT-trilateral (original)
filter. Using this we can calculate the maximum difference maxx∈Ω(d), in the image.
An example of difference images can be seen in Figure 4. This figure illustrates that
there are some subtle differences between the LUT-trilateral filter and the fast-trilateral
filter, but they are actually minor. When using ε = 10−12, the differences are too
negligible to even count. As for using ε = 10−4, the differences are still very small
(maximum error is still less than half an intensity value).
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Fig. 4. Left: Art image that has been smoothed. Centre and Right: difference image between
LUT and fast-trilateral filter, using ε = 10−4 (centre, max(d) = 0.36) and ε = 10−12 (right,
max(d) = 3.1 × 10−5), with σ1 = 9. Difference images scaled for visability, white↔ black
into 0↔ max(d).

To assess the quality of an image, there needs to be an error metric. A common metric
is the Root Mean Squared (RMS) Error, defined by

ERMS(d) =

√
1
|Ω|

∑
x∈Ω

(
d(x)2

)
(9)

where |Ω| is the cardinality of the image domain. The standard RMS error gives an
approximate average error for the entire signal, taking every pixel’s error independently.

The second metric we use is the normalised cross correlation (NCC) percentage

C(s, s∗) =
1
|Ω|

∑
x∈Ω

(
s(x) − μ(s)

) (
s∗(x) − μ(s∗)

)
σ(s)σ(s∗)

× 100% (10)

where μ(h) and σ(h) are the mean and standard deviation of image h, respectively. An
NCC of 100% means that the images are (almost) identical, and an NCC of 0 means
that the images have very large differences.

We calculated the NCC, max(d) and RMS for the entire dataset, the summary of
results can be seen in the table below (∗ is the don’t-care character):

Average Minimum at (σ1, ε) Maximum at (σ1, ε)
NCC (%) 100 99.994 at (9, 10−4) 100 at (∗, ∗)
RMS (px) 8.7× 10−5 < 10−12 at (3, 10−12) 0.0016 at (9, 10−4)
max(d) (px) 0.36 < 10−12 at (3, 10−12) 5.3 at (9, ∗)

From this table it is very apparent that the fast-trilateral filter retains the smoothing
properties of the LUT (original) version. The difference is only apparent when using
high kernel values σ1 and also low accuracy values (high ε). Even then, the errors are
negligible. In fact, the maximum difference of any individual pixel was only 5.3, with
an average maximum of 0.36 pixels.
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5 Conclusions and Future Research

In this paper we have covered the original implementation of the trilateral filter. We
have suggested two speed improvements. One is using simple look-up-tables, and the
other is using a novel way of truncating the look-up-table to a user specified required
accuracy.

The speed improvements were shown to be drastic (in the order of several
magnitudes) compared to the original or LUT trilateral filter. We identified that the
fast-trilateral filter provides very accurate (almost identical) results, compared to the
original (and LUT) trilateral filter. This massive speed gain for a very small difference
in results is a huge benefit, and thus makes the trilateral filter more usable.

Future work will be to improve speed using parallel architecture (e.g., GPU, Cell
Processors, or OpenMP). Also, further applications of the trilateral filter have not been
recognised as yet.

Acknowledgment. The authors would like to thank Prasun Choudhury (Adobe
Systems, Inc., USA) and Jack Tumblin (EECS, Northwestern University, USA) for their
original implementation of the trilateral filter.
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Joint Affine and Radiometric Registration Using
Kernel Operators

Boaz Vigdor and Joseph M. Francos
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Abstract. A new global method for image registration in the presence
of affine and radiometric deformations is introduced. The method pro-
posed utilizes kernel operators in order to find corresponding regions
without using local features. Application of polynomial type kernel func-
tions results in a low complexity algorithm, allowing estimation of the
radiometric deformation regardless of the affine geometric transforma-
tion. Preliminary experimentation shows high registration accuracy for
the joint task, given real images with varying illuminations.

Keywords: Image Registration, Global Invariants.

1 Introduction

Registration of images is an important task in a vast number of applications
such as object recognition, navigation, etc. In many of these applications, the
deformations that an object undergoes can be roughly divided into radiomet-
ric and geometric. The geometric deformations occur as a result of the object
movement in space, as it is projected on the imaging device’s coordinate system.
The radiometric deformations are a result of several factors. Among them are
the changes in illumination sources and the reflectance properties of the object.

Image registration can be divided into two main categories: local and global.
The former, such as SIFT [1] and MSER [2] identify small regions by various
local features and perform registration by solving the correspondence between
matching regions. These methods can tackle changes in global uniform illumi-
nation gain, but are sensitive to non-global effects resulting from changes in the
illumination source direction. These methods are also sensitive to noisy mea-
surements and require previous knowledge of the object structure.

Global methods, on the other hand, use the entire observation in order to
extract various types of invariants to geometric deformations, such as MSA [3],
CW [4], or extract the geometric transformation parameters [5]. As of today,
there are relatively few studies which address joint registration of geometrically
affine and radiometric deformations via moments or invariants. In general, the
global methods are less sensitive to noise, but require object segmentation and
are sensitive to partial occlusions.

In this paper, a new approach for joint affine and radiometric registration
by kernel operators is introduced. In the next section, we elaborate on the reg-
istration problem, followed by the kernel operators definition and discussion,
experimentation and conclusions.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 549–556, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Problem Definition

In the current work we shall assume the following:
1. The observation does not include additional surface not seen in the template,
nor it is missing any due to occlusion. In practice, the model is still valid if the
occluded area is small in comparison with the image area.
2. The object size is small compared with the distance to the imaging device.
3. The radiometric deformation can be approximated as a linear combination
of basis images. This approximation is theoretically valid only for Lambertian
surface [6], but in practice, it can sometimes approximate glossy surface quite
well.

Under these assumptions, the geometric deformation of a rigid object can
be approximated well by an affine transformation. The radiometric deformation
can be modeled as a linear combination of template images taken in different
controlled illumination conditions. Let f(x) be the observation and fi(x), i =
1, 2, ..., I the templates, all bounded and having bounded support functions.
Then the radiometric deformation can be modeled as

f(x) =
I∑

i=1

αifi(x). (1)

Under the previous assumption the geometric deformation can be modeled as an
inner composition x→ φ(x, θ), φ ∈ Φ. In this paper we address the case where Φ
is the affine group, i.e. φ(x, (A,b)) = Ax+b. Combining the illumination model
with the geometric one results in

f(x) =
I∑

i=1

αifi(Ax + b). (2)

The task of registration is defined as estimation of the geometric deformation φ
and the illumination coefficients αi. Integrating (2)∫

RN

f(x)dx = |A−1|
I∑

i=1

αi

∫
RN

fi(y)dy (3)

leads to a linear constraint for the illumination coefficients αi’s given the deter-
minant |A−1|. We are interested in finding enough independent constraints in
the form (3) so that given the Jacobian, the illumination coefficients αi’s can be
estimated by standard linear analysis. In order to do so, we need to find new
sets of integrable functions gj , gij in the form (2)

gj(x) =
I∑

i=1

αigij(Ax + b), j = 1, 2, ..., J(J > I). (4)

such that integration would produce large enough a number of independent linear
equations in order to estimate the illumination coefficients αi. We shall utilize
kernel operator to synthesize these functions.
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3 Kernel Operators

A necessary condition for the desired operators T is to commute with addition
and scalar multiplication, i.e. T are linear operators. We exclude the differential
operators because of their high sensitivity to noise. The family of kernel operators
is a broad family of linear operators which are robust to noise, due to integration
over the function domain. Kernel operators are operators in the form of

g(y) = Tf(x) =
∫

IRN

k(x,y)f(x)dx. (5)

These operators are clearly linear. We seek kernel functions k(x,y) that satisfies
the following conditions:
1. Map the transformation φ(·, θ) into the transformation ψ(·, θ), i.e.

f(x) = fi(φ(x, θ))⇒ g(y) = (Tf)(y) = (Tfi)(ψ(y, θ)) = g(ψ(y, θ)) (6)

This condition can be described in the following commutative diagram:

f
φ→ fi

↓ T ↓ T
g

ψ→ gi

2. All the new functions are be integrable, i.e,
∫
g(y)dy,

∫
gi(y)dy <∞.

Theorem 1. Let k(x,y) be a bounded function differentiable almost everywhere.
Assume that f(x) and fi(x), i = 1, 2, ..., N are measurable, bounded, and having
a bounded support. Let φ(·, θ) and ψ(·, θ) be two differentiable transformation
groups. Let g(y) = Tf(y) =

∫
RM

k(x,y)f(x)dx. Then

f(x) = fi(φ(x, θ))⇒ g(y) = gi(ψ(y, θ)) , ∀x,y, θ
(

k(x,y) = Jφ(x)k (φ (x, θ) , ψ (y, θ)) , ∀x, y, θ
(7)

where Jφ(x) is the Jacobian of φ and the equalities are almost everywhere.

Proof. see [7]

Examples:
1. Let φ(x, s) = x + s, ψ(y, s) = y + s. Then any kernel of the form k(x, y) =
ξ(x − y) maps φ into ψ (Shift Invariant operators), since k (φ (x) , ψ (y)) =
ξ ((x+ s)− (y + s)) = ξ (x− y) = k(x, y).
2. Let φ(x, A) = Ax, ψ(y, A) = A−T y,x,y ∈ IRn, A,B ∈ GLn(IR). Any kernel
of the form k(x,y) = ξ(xT y) maps φ into ψ since k (φ (x) , ψ (y)) =
ξ
(
(Ax)T (

A−T y
))

= ξ
(
xT y

)
= k(x, y) (a special case is the Multi-dimensional

Fourier Transform).
The necessary and sufficient condition in Theorem 1 can be used to synthesize

appropriate kernel functions for many scenarios. In the current work we shall
address the affine transformations and use Kernel operators of the type k(x,y) =
ξ(xT y).
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3.1 Creating Partial Support Functions Using Kernel Operators

In the following sections we shall assume that the objects are segmented from
the background and that we can use support functions

Sf (x) =
{

1 f (x) > 0
0 f (x) = 0 (8)

of the template and the observation. Initially, both the templates and the obser-
vation are translated in order to have their center-of-mass at the origin of the
coodrinate system. This reduces the affine transformation into a linear one. The
limited registration problem at hand is

f(x) =
I∑

i=1

αifi(Ax). (9)

All the template functions fi(x) have the same support since they represent
the same object under different lighting conditions. According to (2), all these
functions are geometrically deformed by the same affine transformation. For
simplicity we shall denote the support of these functions as Sf1 Therefore, from
the definition of the support function it is clear that

Sf (x) = Sf1 (Ax) . (10)

In the method proposed we shall use the supports in order to construct new Par-
tial Support (PS) function that are deformed by the same affine transformation.
We shall construct new functions PSj

f , PS
j
f1
j = 1, 2, ..., J such that

PSj
f (x) = PSj

f1
(Ax) . (11)

Each Partial Support pair PSj
f , PS

j
f1

can be used to construct new functions for
the registration problem at hand. Multiplying by (2) with PSj

f results in

PSj
f (x)f(x) = PSj

f (x)
I∑

i=1
αifi(Ax) =

I∑
i=1
αifi(Ax)PSj

fi
(Ax). (12)

Integration yields as many linear equations of the required illumination as the
number of PS functions.
The Partial Support functions are created using two types of operations:
1. Kernel operators.
2. Left composition with a measurable bounded function ω : ω(0) = 0. The left
composition operation is suitable to attain additional equations for registration
of geometrically deformed objects. For further elaboration see [5].
First, we apply kernel operators of the type k(x,y) = ξ(xT y) on the support
functions Sf , Sf1 twice

PSf = T (T (Sf)) = T 2(Sf ), PSf1 = T 2(Sf1 ). (13)
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As seen in Example 2, the kernel k(x,y) = ξ(xT y) maps the linear transforma-
tion Ax into A−T x. Since (A−T )−T = A the functions obtained are deformed
by the original linear transformation, so that PSf (x) = PSf1 (Ax). Second, In
order to achieve many equations, left composition with ω is performed so that

ω ◦ PSj
f (x) = ω ◦ PSj

f1
(Ax) . (14)

Each composition function ω creates new functions that are deformed by the
original linear transformation. In the current work we used ω having the range
set of {0, 1}. The functions obtained can be interpreted as partial supports of
the images. In general, other compositions can be used in the same manner.
Figure 1 shows a template, a linearly transformed observation and chosen Partial
Supports for different kernel operators.

Using a variety of kernel functions and composition functions provides a board
family of Partial Support functions, and as a result, many constraints in the
form of (3), enabling the estimation of the illumination coefficients αi via Least-
Squares estimation.

3.2 Efficient Computation of Kernel Operator

For two-dimensional images with resolution of m ∗ n pixels, the computational
complexity of the kernel operator is O(n2m2) if the kernel operator is performed
element-wise and the kernel function has to be re-calculated element-wise. In
order to reduce this high complexity we can use polynomial kernels kN (x,y) =
(xT y)N . The Operator can be decomposed into the form

Fig. 1. Template (top left) and observation (bottom left). Template and observation
multiplied by a Partial Support function using a linear kernel (top middle and bottom
middle) and using a quadratic kernel (top right and bottom right).
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Fig. 2. Normalized Mean Square Error of illumination deformation for increasing basis
order

Fig. 3. Difference image between the supports of the observation and estimated Affine
registered image

Tf(y1, y2) =
∫

IR2

f(x1, x2)(x1y1 + x2y2)
Ndx1dx2 =

=
N∑

n=0

N !
n!(N−n)!y1

ny2
N−n

∫
IR2

x1
nx2

N−nf(x1, x2)dx1dx2

(15)
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where the coefficients are moments of f(x1, x2) and can be calculated once and
offline. Using the polynomial kernels reduces the computational complexity into
O(nm).

4 Experimentation

In a designated dark room, we constructed an array of 14 light sources in order
to variously illuminate target objects. In the current study, we chose a doll head
as the target object. In the learning stage, 149 grey-scale images under various
random illumination and constant pose were taken. These images are available in
the website [8]. PCA was performed to create 20 basis images. These functions
were used as the templates fi, i = 1, ..., 20.

In the test stage, an image, denoted as fR was chosen. In order to generate
an observation f we synthesized random Linear transformations of the form

A =
(
α1 0
0 α2

)(
cosφ sinφ
− sinφ cosφ

)
where α1, α2 and φ were uniformly distributed in the intervals [0.8, 1.2] and
[0, 2π], respectively. 100 random observations were synthesized in this manner.
We used polynomial kernels of orders 1,2 and 3 with 24,12 and 22 composi-
tion functions, respectively, to a total of 58 linear equations. The illumination
coefficients α̂i were estimated via Least-Squares.

An estimated template was reconstructed as f̂R =
20∑

i=1
α̂ifi. We compared the

estimated template f̂R to the observation prior to the affine transformation fR

in order to assess the illumination estimation. The average Normalized MSE

NMSE =

∫ (
fR − f̂R

)2

Sf

for increasing basis order is shown in Figure 2. Estimation using 4 to 10 basis
images yields the highest accuracy for the illumination registration.

The estimation of the geometric parameters was done similarly to the illu-
mination coefficients using first order moments and assuming 10 basis images.
Given the real transformation and the estimated one Â, the matrix I − A−1Â
was calculated for each observation. The bias and variance of the estimated
parameters are summarized in the following matrices

Bias =
(

0−.018 −0.0009
0.017 −0.014

)
, V ariance = 10−3

(
0.087 0.62
0.029 0.03

)
A sample difference image between an the supports of the observation and the
registered estimation image is shown in Figure (3).
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5 Conclusions

The utilization of kernel operator family for registration was introduced. The
joint registration for affine geometric and radiometric using kernel operators
was elaborated and demonstrated by experimentation. Though the registration
results for the geometric synthetic case are promising, the relative high bias
of the estimated geometric parameters is troubling and requires further study.
Nonetheless, the kernel operators show a promising potential in solving the dif-
ficult task of joint affine and illumination registration.
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Abstract. When using a non-rigid registration scheme, it is possible
that bias is introduced during the registration process of consecutive
sections. This bias can accumulate when large series of sections are to
be registered and can cause substantial distortions of the scale space of
individual sections thus leading to significant measurement bias. This pa-
per presents an automated scheme based on Markov Chain Monte Carlo
(MCMC) techniques to estimate and eliminate registration bias. For this
purpose, a hierarchical model is used based on the assumption that (a)
each section has the same, independent probability to be deformed by
the sectioning and therefore the subsequent registration process and (b)
the varying bias introduced by the registration process has to be bal-
anced such that the average section area is preserved forcing the average
scale parameters to have a mean value of 1.0.

Keywords: image registration, scale bias, MCMC, hierarchical model,
stochastic simulation.

1 Introduction

Quantifying morphological parameters is of increasing importance when it comes
to studying the relationship between shape and function of biological structures.
This is in particular true when it comes to the analysis of small structures such
as synapses and key drivers of synaptic transmission (e.g. vesicles, active zones)
from 3D reconstructions [1,2]. Because of the resolution required to unequivocally
identify these tiny structures, 3D reconstructions from series of electron micro-
scopical ultrathin sections are still the method of choice. This requires physical
sectioning on the limit of what is mechanically possible making this technique
more amenable to distortions than normal semi-thin or even thick histologi-
cal sections. Furthermore, there is no registration method that will consistently
succeed in aligning arbitrary image data with arbitrary deformations [2] thus
requiring user-input to the semi-automated registration process using intrinsic
or imposed fiducial markers [2,3]. Usually, global rigid (translation, rotation)
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c© Springer-Verlag Berlin Heidelberg 2009



558 H. Zhang et al.

transformations can be employed for the preliminary registration process [4].
However, isotropic and anisotropic scale changes can occur between successive
sections, which is particularly true when the volume of interest used for com-
plete reconstructions as well as the number of ultrathin sections that have to be
registered is increasing. Moreover, the chosen registration procedure can cause
an accumulation of errors whilst processing the sections sequentially [5]. There-
fore, the potential influence of the registration bias is amplified putting us in a
situation were non-rigid registration schemes need to be employed to restore the
relative orientation between consecutive sections. At the same time, however, we
have to consider that by using such registration schemes we are altering the scale
space of each section and small errors might accumulate across large numbers of
sections. These alterations of scale space can then have a substantial influence on
the results obtained from subsequent quantitative and morphometric analysis.

We will show that by employing only a simple linear but non-rigid registra-
tion scheme, already great care has to be taken such that the altered scale space
in each individual section does indeed not accumulate across a large series of
sections used for complete 3-D reconstructions. Depending on the underlying
structure, the effects can be very dramatic and the scale space of individual sec-
tions can be altered substantially in particular where data is collected manually
(see Fig. 1). To avoid this source of bias, we propose a statistical equalization
scheme that re-distributes small registration errors that cause the described dra-
matic multiplicative effect on scale space. We implement this scheme by using
a hierarchical linear model that estimates the source of bias using MCMC tech-
niques. We will use several complete 3D data sets to show the scale space effects
of linear non-rigid transforms and our proposed equalization scheme on quanti-
tative measurements on large serial reconstructions from electron microscopical
ultra-thin sections.

This paper is organized as follows. In Section 2, a hierarchical model based on
MCMC techniques for addressing the accumulated bias is proposed. Experimen-
tal results are given in Section 3. We conclude the paper with a brief discussion
and ideas for future work in Section 4.

2 Proposed Approach and the Hierarchical Model

2.1 The MCMC Technique

The primary goal of Monte Carlo techniques is to solve the following problems:

(i) To generate a number of independent samples {x(r)}Rr=1 from the desired
distribution p(x).

(ii) To estimate expectations of functions under this distribution or calculate
some integrals, such that

Φ =< φ(x) >=
∫
dNxp(x)φ(x) (1)



MCMC-Based Algorithm to Adjust Scale Bias 559

Fig. 1. (A) Shows the original data set. The rigid registration does not compensate
for distortions between consecutive sections as can be seen as jitter along the surface of
the reconstructed neuron. (B) Shows the data set after non-rigid linear transformations
have been applied. The surface is now much smoother, but the scale space of each
section has been altered and partly deviates substantially from the ideal value 1.0
representing to original section size (see respective graphs in panels A and B).

where Φ is the expectation value for a random function φ(x). Solving the sam-
pling problem leads to a straightforward estimation of the expectation value
by simply averaging the function values at the sampling points. Based on the
Monte Carlo methodology, the MCMC technique aims to simulate the posterior
distribution given a prior so that various sampling algorithms can be developed
depending on the scheme used for prior analysis. Since consecutive samples are
correlated, techniques have been developed to ensure that the Markov Chain
will effectively generate independent samples from the given distribution in ac-
ceptable time. There are various ways this strategy can be implemented, such
as the Gibbs sampler [10] and the Metropolis method [6]. In our case, the un-
known mean scale bias can be generated by using MCMC methods to estimate
the expectation value by eq. (1).

There are several software implementations for MCMC algorithms. BUGS
(Bayesian inference Using Gibbs Sampling) is a freely available software package
developed by Spiegelhalter and co-workers [6,9]. We use this tool to generate the
prior distribution from some input data that is used to estimate the parameter
set needed for compensating the accumulated scale bias.

2.2 Preliminary Analysis and Prior Information

As discussed in Section 1, the equalization scheme aims to adjust the anisotropic
registration bias. The following analysis will present a random model that ac-
counts for the additive bias derived from some manually obtained ground truth
data sets (e.g. see Fig. 2A).

Since a section transform is affected by the transformations of previous sec-
tions, the current section v obtains the error gain field from previous operations.
We denote Gk = T1Ss,1T2Ss,2...TkTs,k, where Ti, i = 1...k is the translation and
rotation between consecutive sections and Ss,i, i = 1...k is the section scale trans-
form for anisotropic changes between consecutive sections defined as follows:
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Ss,i =

⎛⎝uicosαi sinαi 0
−sinαi wicosαi 0

0 0 1

⎞⎠
where ui and wi are the scale parameters and αi is the angle of Ss,i. Hence, Gk

is the global transformation of the kth section.
On one hand, ui and wi should not deviate strongly from the ideal value

1.0. On the other hand, the global transformation Gk should not deviate signif-
icantly from a rigid linear transform which only accounts for translations and
rotations. In addition to these general assumptions, we postulate that the sec-
tioning process itself leads to distortions which are mainly volume conserving.
Thus, an object with a circular shaped cross section will be transformed into an
elliptically shaped cross section of about the same area. Therefore, we define the
eccentricity of the local linear transform to be ei = ui ∗wi and the corresponding
global eccentricity Ek for the global transform Gk by looking at its Eigenvalues
in the plane (denoted as smin,k and smax,k), leading to Ei = smin,k ∗ smax,k.

Because the transformation of the current section impacts on the next one,
we have to consider the multiplicative effect of subsequent matrix transforma-
tions for serial sections. The corresponding error can be expressed as Xk =
Xv1Xv2 ...Xvk

, where Xvi is a random variable accounting for the bias being re-
sponsible in the transformation TkSs,k, and Xk is a random variable accounting
for the total bias of section v from the previous transforms. Applying a logarith-
mic operator to the multiplicative formula, we obtain an additive bias model:

xk = xv1 + xv2 + ...+ xvk
, xvi = ln(Xvi) (2)

where xk is a random variable accounting for the additive bias. Eq. (2) still
remains a valid additive model even if we apply a simple transformation to
the input data (such as multiplying each value by 10). This means that we
successfully converted our multiplicate problem into an additive model.

The following assumptions were made to solve the problem at hand:

(a) Normal hypothesis for bias variable: The accumulated bias variable
should follow the normal distribution.

(b) Volume conservation: Due to the physical sectioning process used to ob-
tain the serial sections it seems reasonable to assume a-priori that the volume
of each section is preserved (= area × average section thickness).

(c) Additive tendency of bias: In general, the bias will be increasing from
the first section to the last one.

2.3 The Hierarchical Model and Its Simulation Strategy

As discussed above, we need to conserve the volume of the transformed section
which usually is to keep the value smin,i ∗ smax,i around 1 by altering the local
scale parameters, ui and wi, slightly at the equalization stage. Here, smin,i and
smax,i are the scale parameters of the global transformation Gi. In practice,
the values of smin,i and smax,i are adjusted manually (see Fig. 2A) so that this
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process can correct for the slight bias introduced in each section in a large series
of transformations and leads to a reliable 3-D reconstruction that can be used
for morphological parameter extraction. Here, we focus on the adjustment of the
scale parameters smin,i and smax,i only using above approach as follows:

As input data we use the transformation parameters obtained from manu-
ally aligning consecutive sections allowing linear non-rigid transformations only
(scale changes and shearing, see 2B for an example). This data has to be sub-
divided into a discrete number of levels used in our hierarchical model. The
number l of levels is estimated and mainly depends on the size of the input data
(roughly 30 ∼ 50 sections per level). Each measured parameter yi is assumed
to be drawn from one of these levels; Gi, i = 1 . . . l is the ith observation group,
where group Gi has a normal distribution with mean λi and precision τ (we
assume the same variance for different levels and its value is given according to
the input data). The unknown percentage of observations Pk falling into level
k satisfies the equation

∑l
k=1 Pk = 1 for all observations P = (P1, . . . , Pl). The

principal model is thus:

yi ∼ Normal(λTi , τTi)
Gi ∼ Categorical(P ) (3)

The mean value λk of all observations yi that fall into level k will be different
reflecting the variability of the input data. We assume that the mean of the
subsequent level can be calculated as λk+1 = λk + ρ ∗ πk, k = 1 . . . l, where πk is
an informative prior which counteracts the accumulated bias by incorporating
the bias information obtained using eq. (2); ρ is a constant which balances the
gap between different levels. The other priors in the model are estimated as
follows: P follows a uniform distribution in (0, 1); λi is initialized by the mean
of the input data; the precision τ is computed by using the variance σ of the
input data using the formula τ = 1/σ2.

The main steps of the simulation procedure are as follows:

(1) Initialize the values for all parameters.
(2) Construct a full conditional distribution for each parameter.
(3) Choose a reasonable length for the ‘burn-in’ and the total run length.
(4) Compute a summary statistics for the true values of each parameter.
(5) Check the goodness-of-fit of the model.

For the latter, we use a standardized residual ri = yi−uk

σk
, i = 1 . . .N, k = 1 . . . l

with mean 0 and variance 1 given a normal data. uk is the estimated mean
of level k of all observations yi belonging to this level and σk is the standard
deviation. The mean fourth moment of the standardized residual is as follows:

s4,y =
1
N

∑
i

r4i (4)

If the error distribution is truly normal then s4 should be close to 3 [6]. Thus,
checking this statistic will provide fairly good evidence for the goodness of fit
for the simulation model.
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Fig. 2. (A) Shows the manuall corrected data set. (B) Shows the result obtained when
applying our MCMC method to estimate and correct for the scale bias in the series of
sections.

Table 1. Summary of results and error estimates for parameter smin using manually
obtained ground truth data

smin DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
P1 0.30693 0.4551 0.35113 0.22738 0.25676 0.46508 0.34167 0.24729
P2 0.35043 0.18716 0.35463 0.39451 0.45 0.23351 0.55294 0.35356
P3 0.34264 0.35774 0.29424 0.3781 0.29323 0.30141 0.10539 0.39915
λ1 0.96726 0.97773 0.9556 0.99236 1.01131 0.87664 0.95299 0.96304
λ2 0.90899 1.02897 0.96434 1.02428 0.96074 0.95533 0.92617 0.83552
λ3 1.00221 1.10582 0.94686 1.05618 1.05178 0.89238 0.8457 0.92054

Save 1.1868 1.5113 2.4890 2.4271 3.8669 1.9203 1.6880 1.6120
ε 0.0372 0.0301 0.0277 0.0670 0.0512 0.0177 0.0572 0.0620

For assessing the actual simulation results, we compare our simulation results
for parameter yest (see e.g. Fig. 2B) with manually adjusted ground truth data
ygt (see Fig. 2A) by using the absolute error of parameter y is εy = |ygt−yest

ygt
|

(see also Tab. 1).

3 Implementation and Results

We tested our approach in 9 data sets of large series of electromicroscopical
ultra-thin sections, which were previously used for 3-D reconstructions and sub-
sequent quantitative morphological analysis (see [7,8]). The largest series is used
throughout this publication to illustrate our approach (DS9, 270 serial sections).
The analysis refers to the results of all datasets. After logarithmic transforma-
tion as described previously, the input data is subdivided into 5 levels according
to the tendency of the scale mean.

Based on the analysis of the input data, we construct eq. (5) that describes the
mean of parameter smin at 5 different levels (λ1, λ2, λ3, λ4, λ5); our hierarchical
model will integrate the general model from eq. (3) with the model for the mean
value in eq. (5).
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λ2 = λ1 − 3.5 ∗ σ, λ3 = λ2 − 2.5 ∗ σ, λ4 = λ3 − σ, λ5 = λ4 + σ, θ = 0.05 (5)

For parameter, smax, this looks as follows:

λ2 = λ1 − 8.5 ∗ σ, λ3 = λ2 − 5.5 ∗ σ, λ4 = λ3 + σ, λ5 = λ4 + 5 ∗ σ, θ = 0.02 (6)

The preceeding parameter models (5) and (6) have been used in formula (3)
for initializing the simulation. We then executed the simulation using WinBUGS
starting with the input data including some unknown registration bias. In Win-
BUGS, the shape and rate parameters of the Γ -distribution are set to 1000 and
2 in accordance with the average of σ. Using the error value ε as described at
the end of Section 2.3, we see that the changes between the manually obtained
ground truth data and the automatically computed ones (see Fig. 2) are very
small (εsmin = 0.0626; εsmax = 0.0635; εE = 0.0749).

Numerical summaries are not included for the large data set in below table,
but are shown graphically in Fig. 2. For this we use the volume conservation
parameter E as defined above. The 3D reconstructions used in Fig. 2 show that
after applying our method, the shape of the input data can be restored by also
improving the surface jitter (see Fig. 1A and Fig. 2B). For the remaining 8 data
sets, we will summarize the results obtained for Tab. 1. These data sets were
smaller in size and therefore the hierarchical models only comprised 3 levels
instead of the 5 levels used for DS9. Due to space limitations, we only show
experimental results for the simulated scale Eigenvalue smin. Save stands for the
average value of statistics s4,ssmin for all 3 levels.

4 Discussions and Conclusion

We have shown that when non-rigid transformations are introduced into the
registration process of large series of histological sections, the scale space of each
individual section can be substantially altered depending on the underlying im-
age structure of the data set used. The proposed volume conservation and scale
balancing scheme therefore offers a way to treat this problem in a mathematical
way. We proposed a two step method, where in step one, the registration process
is performed by minimizing the jitter between consecutive sections either manu-
ally or with any other image based or landmark based registration method (e.g.
ITK [12]). In a second, subsequent step, the scales are analyzed and the data
subdivided into several levels depending on the size of the data set. After this
manual initialization step, a MCMC based simulation is performed and the scale
bias is estimated and corrected for. We have demonstrated the feasibility of our
method using 9 large data sets that were generated from electron microscopical
ultra-thin sections.

The current method can be improved in several aspects. Firstly, the number
of levels used for the subdivision and the initialization of the simulation param-
eters needs to be completely estimated in an automated fashion using the input
data only. Secondly, other registrationparameters such as rotation and translation
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should also be incorporated into the simulation process. This, however, requires
that a suitable quantifiable minimization criterion is to be computed either based
on image or landmark information. This then converts our registration problem
to a multi-objective optimization setting, where competing objectives (minimiza-
tion of registration error and balancing of scale parameters according to our vol-
ume conservation and scale balancing criteria) have to be considered. This implies
that our proposed MCMC method can potentially be used to solve the registra-
tion process in an algorithm that offers an alternative way to other multi-objective
minimization methods such as ant colonies or genetic algorithms [13].
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Campus de Beaulieu, 35042 RENNES Cedex, France
{Pham.Nguyen Khang,Annie.Morin}@irisa.fr

http://www.irisa.fr
2 Cantho University

1, Ly Tu Trong street, Cantho, Vietnam
pnkhang@cit.ctu.edu.vn

3 INRIA
Campus de Beaulieu, 35042 RENNES Cedex, France

Patrick.Gros@inria.fr

http://www.inria.fr

Abstract. We are interested in the intensive use of Factorial Corre-
spondence Analysis (FCA) for large-scale content-based image retrieval.
Factorial Correspondence Analysis, is a useful method for analyzing tex-
tual data, and we adapt it to images using the SIFT local descriptors.
FCA is used to reduce dimensions and to limit the number of images to
be considered during the search. Graphics Processing Units (GPU) are
fast emerging as inexpensive parallel processors due to their high compu-
tation power and low price. The G80 family of Nvidia GPUs provides the
CUDA programming model that treats the GPU as a SIMD processor
array. We present two very fast algorithms on GPU for image retrieval
using FCA: the first one is a parallel incremental algorithm for FCA and
the second one is an extension of the filtering algorithm in our previous
work for filtering step.

Our implementation is able to scale up the FCA computation a factor
of 30 compared to the CPU version. For retrieval tasks, the parallel ver-
sion on GPU performs 10 times faster than the one on CPU. Retrieving
images in a database of 1 million images is done in about 8 milliseconds.

Keywords: Factorial correspondence analysis, Image retrieval, SIFT,
GPU, CUDA, CUBLAS.

1 Introduction

The goal of Content-Based Image Retrieval (CBIR) systems is to operate on col-
lections of images and, in response to visual queries, to retrieve relevant images.
This task is not easy because of two gaps: the sensory gap and the semantic
gap [1]. Recently, image analysis was improved when using local descriptors.
Initially, voting-based methods have been used for image retrieval. Images are
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described as a set of local descriptors at interest points. Voting is performed
on individual results of descriptor matching [2, 3, 4]. Later, text-based meth-
ods such as tf–idf (term frequency – inverse document frequency) weighting [5],
PLSA (Probabilistic Latent Semantic Analysis) [6], LDA (Latent Dirichlet Allo-
cation) [7] have been adapted to images [8, 9, 10]. In textual data analysis, these
methods use bag-of-words models. The input of such methods is a two-way table,
often called contingency table crossing documents and words. When adapting
these previous methods to images, the documents are the images and we need to
define the “visual words” [8, 9, 10, 11]. These methods consist of two steps: an
analysis step and a strictly speaking search step. In the analysis step, the meth-
ods like PLSA, and LDA perform a dimensionality reduction and become very
costly in time and/or in memory when dealing with huge image databases. For
the search step, many efforts have been made for finding efficient similarity search
algorithms (with sub-linear complexity) [12, 13]. Based on the cost model in [14]
the authors prove that under certain assumptions, above certain dimensionality
(e.g. 16), no index structure can perform efficiently a k-nearest neighbors search.
Therefore, accelerating sequential searches methods have been proposed instead
[15, 16]. For sparse data, inverted file-based methods are alternatives [5, 17]. An-
other interesting approach is the parallel processing of nearest-neighbor queries
in high-dimensional space.

In November 2006, NVIDIA introduced CUDATM, a general purpose parallel
computing architecture, with a new parallel programming model and instruction
set architecture, that leverages the parallel compute engine in NVIDIA GPU to
solve many complex computational problems in a more efficient way than on a
CPU. CUDA comes with a software environment that allows developers to use
C as a high-level programming language. In CUDA, the GPU is a device that
can execute multiple concurrent threads. The CUDA software stack consists of
a hardware driver, an API, its runtime and higher-level mathematical libraries
of common usage, e.g., an implementation of Basic Linear Algebra Subprograms
(CUBLAS). The CUBLAS library allows access to the computational resources
of NVIDIA GPUs.

In this paper, we focus on the parallelization of both steps in image retrieval
using FCA. The organization of the paper is the following: section 2 is devoted
to a short presentation of FCA. In section 3, we describe a parallel incremental
version of the FCA algorithm. Section 4 present a parallel filtering algorithm
and in section 5, we use the previous results to large-scale image retrieval. We
show some experimental results before concluding.

2 Factorial Correspondence Analysis

FCA is an exploratory data analytic technique designed to analyze simple two-
way and multi-way tables containing some measure of correspondence between
the rows and columns. It was developed by Benzécri [18] in textual data anal-
ysis. FCA on a table crossing documents and words allows us to answer the
following questions: Are there proximities between some words ? Are there prox-
imities between some documents ? Are there some relationships between words
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and documents ? FCA such as factorial methods is based on a singular value
decomposition of a matrix and permits the display of words and documents
in a low-dimensional space. This reduced subspace is such that the inertia of
projected points (documents or words) is maximum.

Let F = {fij}M,N be a contingency table with dimensions M ×N (N < M).
We normalize F and get X = {xij}M,N by:

xij =
fij

s
, s =

M∑
i=1

N∑
j=1

fij (1)

and let’s note:

pi =
N∑

j=1

xij , ∀i = 1..M , qj =
M∑
i=1

xij , ∀j = 1..N

P = diag(p1 . . . pM ) , Q = diag(q1 . . . qN ) (2)

where diag(.) denotes the diagonal matrix.
To determine the best reduced subspace where the data are projected, we

compute the eigenvalues λ, and the eigenvectors μ, of the matrix V of N ×N :

V = XTP−1XQ−1 (3)

where XT is the transposed matrix of X .
We only keep the first K(K < N) largest eigenvalues and the associated

eigenvectors1. These K eigenvectors define an orthonormal basis of the reduced
subspace (also called factor space). The number of dimensions of the problem is
reduced from N to K. Images are projected in the new reduced space:

Z = P−1XA (4)

where P−1X represents the row profiles and A = Q−1μ is the transition matrix
associated to FCA.

A new document (i.e. the query) r = [r1 r2 · · · rN ] will be projected in the
factor space through the transformation formula 4:

Zr = r̂A where r̂i =
ri∑N

j=1 rj
∀i = 1..N (5)

3 Parallel Incremental FCA Algorithm

As mentioned in section 2, the FCA problem seeks to find the eigenvectors and
eigenvalues of an particular matrix V (formula 3). In the case of large scale
databases, the matrix X is too large to load entirely into memory. In [19], we

1 Like other dimension reduction methods, K is chosen empirically (e.g. by the way
of cross-validation).
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have proposed an incremental algorithm for FCA which can deal with huge
databases on a PC. The algorithm is briefly described as following.

Let’s first rewrite formula 3:

V = V0Q
−1 where (6)

V0 = XTP−1X (7)

Matrix X is divided into B blocks by rows (i.e. X[1], . . . , X[B]).
Then we compute P[1], P[2], . . . , P[B] and Q[1], Q[2], . . . , Q[B] in the same way

for Q and P by replacing X with X[i] for all i ∈ [1;B] (cf. formula 2). It is clear
that:

P =

⎛⎜⎝P[1] 0
. . .

0 P[B]

⎞⎟⎠ and Q =
B∑

i=1

Q[i]. (8)

If we note:

V[i] = XT
[i]P

−1
[i] X[i] (9)

then

V0 =
B∑

i=1

V[i]. (10)

Two formulas 8 and 10 are key parts for the incremental algorithm. Once V is
constructed, the eigen problem is performed on a small matrix. Since only some
first eigenvectors are used for projection, this problem can be resolved efficiently
by some advanced algorithms like LAPACK [20]. The projection step in which
images are mapped into the factor space (cf. formula 4) can be performed in the
same way of constructing V i.e. the new image representation Z is computed by
blocks.

The incremental FCA algorithm described above is able to deal with very
large datasets on a PC. However it only runs on one single machine. We have
extended it to build a parallel version using a GPU (graphics processing unit)
to gain high performance at low cost. The parallel incremental implementation
of FCA algorithm using the CUBLAS library (described in algorithm 1) per-
forms matrix computations on the GPU massively parallel computing architec-
ture. Note that in CUDA/CUBLAS, the GPU can execute multiple concurrent
threads. Therefore, parallel computations are done in the implicit way.

First, we split a large matrix X into small blocks of rows X[i]. For each
incremental step, a data block X[i] is loaded to the CPU memory; a data transfer
task copies X[i] from CPU to GPU memory; and then formulas 8 and 10 are
computed in a parallel manner on GPU. When the incremental step (lines 3–8)
finishes, V is also computed on GPU after formula 6 (line 9) before being copied
back to CPU memory (line 10). Next, first K eigenvectors and eigenvalue of V
are computed in CPU (line 11) and the eigenvectors, μ, are copied to GPU for
computing the transition matrix A (line 12). The projection step is performed by
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Algorithm 1. Parallel incremental FCA algorithm
Q = 01

V0 = 02

for i = 1 to B do3

load block X[i] into CPU memory4

copy X[i] to GPU memory5

compute P[i], Q[i] from X[i]6

Q = Q + Q[i]7

V0 = V0 + XT
[i]P

−1
[i] X[i]8

V = V0Q
−19

copy V back to CPU memory10

compute K eigenvalues λ and eigenvectors μ of V on CPU11

copy μ to GPU memory and compute the transition matrix A = Q−1μ12

for i = 1 to B do13

load block X[i] into CPU memory14

compute P[i] from X[i]15

Z[i] = P−1
[i]

X[i]A16

copy Z[i] back to CPU memory and write it to output17

loading every blockX[i] on CPU memory; copying it to GPU memory; computing
P[i] and the projection of X[i] (i.e. Z[i]), by the transition formula 4; copying Z[i]
back to CPU memory an writing it to output (lines 13–17). The accuracy of the
new algorithm is exactly the same as the original one.

4 Parallel Filtering Algorithm

In previous works [11, 19], we have also proposed an inverted file-based method
for accelerating image search using the the quality of representation issued from
FCA which is defined by:

cos2j(i) =
Z2

ij∑K
k=1 Z

2
ik

(11)

where Zij is the coordinate of the images i on axis j.
The method consists of a filtering step and a refine step. In the filtering step,

we first choose the axes on which the projection of query is well represented
(the threshold is chosen equal to the average quality of representation , i.e.
1/K) and take corresponding inverted files2. These inverted files are then merged
to compute the frequency of images in the merged list. Finally, some images
with high frequency (e.g. 500 images) are kept for the refining step. The search
performance is improved by a factor of 10 in comparison to a sequential scan
2 An inverted file associated to the positive (negative) part of an axis contains all

images well represented on this axis and lying on the positive (negative) part.
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Fig. 1. Computation time for the filtering and refining steps in a 1M database

Fig. 2. Parallel computation of frequency of images on GPU: every thread computes
for 8 images

without loosing quality. However, in a large database, most time is used for
filtering images (cf. Figure 1). This motivates us to parallel this step. An inverted
file is represented by a vector of bits, F+

j (F−
j )3. If an image i belongs to an

inverted file F+
j , then the bit i of F+

j is set to 1. Such a representation allows
compressing inverted files fitted the GPU memory and computing the merged
list in a parallel way. Each thread of GPU computes independently the frequency
of 8 images (cf. Figure 2).

5 Numerical Results

We have experimented our methods on the Nistér Stewénius dataset [17], namely
N-S dataset. This dataset consists of 2 550 scenes, each of which being taken
from 4 different view-points. Hence the dataset contains 10 200 images. We
used the extract feature program of Mikolajczyk [21] to extract and com-
pute local descriptors by the Hessian-affine detector and the SIFT descriptor.
The number of visual words is fixed to 5 000. To evaluate the scalability of
our approach, we merged the N-S dataset with one million images downloaded
from FlickR. All programs are write in C++, using LAPACK [20] for finding
eigenvalues/eigenvectors. The parallel FCA algorithm and filtering algorithm
are implemented on a NVIDIA graphic card GTX 280. The precision at first 4
returned images, P@4 (including the image used for the query) is used to eval-
uate different retrieval methods. As there are only 4 relevant images for a given
3 F+

j (res. F−
j ) is the inverted file for the positive (res. negative) part of the axis j.
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Table 1. Time comparison of FCA computation. (a): times for matrix construction
and projection; (b): eigenvalues/eigenvectors computation time; (c) = (a) + (b).

Database GPU (s) CPU (s) Gains
size (a) (b) (c) (a) (b) (c) (a) (c)
100K 4.2 64 68.2 346.0 64 410.0 82.5 6.0
200K 8.0 64 72.0 658.2 64 722.2 82.2 10.0
500K 19.3 64 83.3 1602.3 64 1666.3 83.0 20.0
1M 38.2 64 102.2 3163.4 64 3227.4 82.8 31.6

Table 2. Comparison of search algorithms

Database GPU CPU Full search
size time(ms) P@4 time(ms) P@4 time(ms) P@4
100K 1.47 0.761 7.56 0.761 94.32 0.757
200K 2.09 0.749 13.53 0.749 179.76 0.745
500K 1.17 0.731 33.07 0.731 435.00 0.729
1M 7.53 0.719 79.99 0.719 860.884 0.717

query, P@4 is equal to the recall at first 4 returned images and also equal to 1
4

of the N-S score (i.e. number of relevant images in first 4 returned images) [17].
Table 1 presents the computation times obtained by GPU and CPU imple-
mentations of the incremental FCA algorithm on different database sizes. The
parallel algorithm performs about 80 times faster on the construction of matrix
V and yields 30 times faster than the nonparallel one for all computation. It
is due to the computation of eigenvalues/eigenvectors on CPU. Note that the
computation time of eigenvalues/eigenvectors is constant for all database. For
search algorithms, results are shown on table 2. the parallel filtering algorithm
performs 10 times faster than the nonparallel filtering algorithm and about 114
times faster than a sequential scan on 1M images database. The numerical test
results showed the effectiveness of the new algorithms to deal with very large
databases on GPU.

6 Conclusion and Future Works

We have presented two parallel algorithms for images retrieval using FCA on
GPU. The first one is an parallel incremental FCA algorithm for huge databases.
Our algorithm avoids loading the whole dataset in main memory: only subsets
of the data are considered at any one time and update the solution in growing
training set. The second one is a parallel filtering algorithm used in the search
step. The parallelization is based on GPU to gain high performance at low cost.
Numerical results have shown that the parallel FCA algorithm performed 30
times faster the non parallel one. The parallel algorithm for filtering step runs
about 10 times faster the CPU version and about 114 times faster a sequential
scan without loosing quality. Since the parallel search algorithm performs very
fast (e.g. 7.53ms), it is possible to apply our method for applications which
require retrieval results in a short time like video copy detection.



572 N.-K. Pham, A. Morin, and P. Gros

References

[1] Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based
image retrieval at the end of the early years. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 22(12), 1349–1380 (2000)

[2] Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In:
Proc. of ICCV 2001, vol. 1, pp. 525–531 (2001)

[3] Schaffalitzky, F., Zisserman, A.: Automated location matching in movies. Com-
puter Vision and Image Understanding 92, 236–264 (2003)

[4] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60(2), 91–110 (2004)

[5] Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing & Management 24(5), 513–523 (1988)

[6] Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of the 15th Confer-
ence on Uncertainty in Artificial Intelligence (UAI 1999), pp. 289–296 (1999)

[7] Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

[8] Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object match-
ing in videos. In: Proc. of ICCV 2003, vol. 2, pp. 1470–1477 (2003)
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Martin.Solli@itn.liu.se, Reiner.Lenz@itn.liu.se

Abstract. In this paper we describe how to include high level semantic
information, such as aesthetics and emotions, into Content Based Image
Retrieval. We present a color-based emotion-related image descriptor
that can be used for describing the emotional content of images. The
color emotion metric used is derived from psychophysical experiments
and based on three variables: activity, weight and heat. It was originally
designed for single-colors, but recent research has shown that the same
emotion estimates can be applied in the retrieval of multi-colored im-
ages. Here we describe a new approach, based on the assumption that
perceived color emotions in images are mainly affected by homogenous
regions, defined by the emotion metric, and transitions between regions.
RGB coordinates are converted to emotion coordinates, and for each
emotion channel, statistical measurements of gradient magnitudes within
a stack of low-pass filtered images are used for finding interest points
corresponding to homogeneous regions and transitions between regions.
Emotion characteristics are derived for patches surrounding each interest
point, and saved in a bag-of-emotions, that, for instance, can be used for
retrieving images based on emotional content.

1 Introduction

Distributions of colors, described in various color spaces, have frequently been
used to characterize image content. Similarity between images is then defined
based on the distributions of these color descriptors in the images. A limitation
of most color spaces, and their usage in Content Based Image Retrieval (CBIR),
is that they seldom define similarity in a semantic way. In recent years, the in-
terest for image retrieval methods based on high-level semantic concepts, such
as aesthetical measurements or emotions, has increased (see for instance Datta
et al. [1]). Here we propose a novel approach using color emotions in CBIR. Our
method is based on the assumption that perceived color emotions in images are
mainly affected by homogenous emotion regions and transitions between emo-
tion regions, measuring the spatial transitions of emotion values. Our design is
motivated by the observation that the human visual system has a reduced color
sensitivity in those areas of the visual field that contain high frequency content
(see for instance Fairchild [2]). Therefore, we try to avoid ”cluttered” image
regions characterized by high frequency variations. The method is a continua-
tion of the studies in [3] and [4], where global emotion histograms measure the
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amount of emotional content in an image. With the bags-of-emotions approach,
described here, we create a method that also includes the relationship between
neighboring emotion values. The proposed algorithm is inspired by the bag of
keypoints method by Csurka et al. [5]. The method is developed and evaluated
with a test database containing 5000 images, both photos and graphics.

2 Related Work

Research on color emotions for single colors and two-color combinations is an
established research area. In a series of papers, Ou et al. [6] use psychophysi-
cal experiments to derive color emotion models for single colors and two-color
combinations. Observers were asked to assess single colors on ten color emotion
scales. Using factor analysis they reduce the number of color emotions scales to
only three categories, or color emotion factors: activity, weight and heat. They
conclude that the three factors agree well with studies done by others, for in-
stance Kobayashi [7] and Sato et al. [8]. In this study we will use those emotion
factors when investigating color emotions for multi-colored images.

There are few papers addressing the problem of including color emotions in
image retrieval. The methods presented are often focusing on semantic image re-
trieval in a more general way. Two similar approaches focusing on color content
are described by Wang and Yu [9], and Corridoni et al. [10]. Both are using clus-
tering in the color space for segmenting images into regions with homogeneous
colors. Regions are then converted to semantic terms, and used for indexing
images. Wang et al. [11] present an annotating and retrieval method using a
three-dimensional emotional space (with some similarities to the emotion space
used in this paper). From histogram features, emotional factors are predicted
using a Support Vector Machine. The method was developed and evaluated for
paintings. Another approach is presented by Cho and Lee [12], where features
are extracted from average colors and wavelet coefficients.

Related to emotions are the concepts of harmony (see an example by Cohen-Or
et al. [13]) and aesthetics. In [14][15] Datta et al. study aesthetics in images from
an online photo sharing website. These images were peer-rated in the categories
aesthetics and originality. Image features corresponding to visual or aesthetical
attributes (like Exposure, Colorfulness, etc.) are extracted, and compared to
observer ratings using Support Vector Machines and classification trees. In [16]
Datta et al. introduce the phrase ”aesthetic gap”, and report on their effort to
build a real-world dataset for testing and comparison of algorithms.

3 Color Emotions

Color emotions can be described as emotional feelings evoked by single colors or
color combinations, typically expressed with semantic words, such as ”warm”,
”soft”, ”active”, etc. As mentioned in the previous section, Ou et al. [6] in-
vestigated the relationship between color emotion and color preference. Color
emotion models for single-colors and two color-combinations are derived from
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psychophysical experiments, resulting in three color emotion factors: activity,
weight and heat :

activity = −2.1 + 0.06×
[
(L∗ − 50)2 + (a∗ − 3)2 +

(
b∗ − 17

1.4

)2
] 1

2

(1)

weight = −1.8 + 0.04(100− L∗) + 0.45 cos(h− 100◦) (2)

heat = −0.5 + 0.02(C∗)1.07 cos(h− 50◦) (3)

L∗, a∗ and b∗ are CIELAB coordinates, h is the CIELAB hue angle and C∗ is
CIELAB chroma [2]. The presented color emotion model was not developed for
multi-colored images of potentially very complex structure. It is therefore easy
to construct images were it will fail. We will, however demonstrate that these
techniques provide statistical characterizations useful for CBIR.

4 Bags-of-Emotions

A bag-of-emotions corresponds to a histogram of the number of occurrences of
particular emotion patterns in an image. The main steps for creating a bag-of-
emotions are:

1. Convert the RGB image to an emotion image with 3 channels: activity, weight
and heat

2. For each emotion channel, create a stack of low-pass filtered images (a scale
space representation)

3. Derive the gradient magnitude for each image in the stack, and use statistical
measurements of gradient magnitudes to detect interest points corresponding
to homogeneous emotion areas and transitions between emotion areas

4. Derive emotion characteristics for patches surrounding each interest point
5. Construct a bag-of-emotions containing emotion characteristics

Notice the difference to other popular methods for extracting interest points,
some of them mentioned in Mikolajczyk et al. [17]. There, keypoints related
to corners, etc. are extracted, while we try extract homogeneous regions and
transitions between regions.

Since the proposed method should be applicable to any image database, in-
cluding public search engines and thumbnail databases, we are forced to make
some assumptions and simplifications. We assume images are saved in the sRGB
color space, and we use the standard illumination D50 when transforming sRGB
values to CIELAB values. The image size is restricted to a maximum of 128
pixels (height or width), corresponding to the size of a typical thumbnail image.
Images of larger size are scaled with bilinear interpolation. Using Eqs. (1-3),
each pixel in the RGB image, imrgbn(x, y), is converted to a three dimensional
color emotion representation, imen(x, y). Channel n = {1, 2, 3} in imen(x, y)
corresponds to the emotion activity, weight or heat. For ordinary RGB images
with 8bit pixel values, the emotion values are located within the following inter-
vals: activity: [−2.09, 4.79], weight : [−2.24, 2.64], and heat : [−1.86, 2.43]. These
interval boundaries are used for normalizing individual emotion channels.
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4.1 Scale Space Representation

A stack of low-pass filtered images is created for each emotion channel. We de-
scribe how simple statistical measurements in each stack are used for finding
interest points corresponding to homogeneous emotion areas and transitions be-
tween emotion areas. For simplicity, the terminology used is adopted from scale
space theory. However, notice that the scale space representation is only used
initially. Interest points are detected in another representation, derived from the
scale space. The scale space representation used for each channel n, in the emo-
tion image imen(x, y), is composed of a set of derived signals Ln(x, y, t), defined
by the convolution of imen(x, y) with the Gaussian kernel g(x, y, t), such that
Ln(x, y, t) = (g(t) ∗ imen)(x, y), where t indicates the scale level. Increasing t
will add more and more smoothing to imen(x, y). In the proposed method the
scale space is composed of d = 4 images, the original image (t = 0) together with
three levels of scaling. Scaling is performed with matlabPyrTools1, a Matlab
toolbox for multi-scale image processing. The default Gaussian kernel is used as
the filter kernel. Notice that the scale space representation is thus a Gaussian
pyramid with different image size in each scale level t. Before continuing, the
image in each level t is scaled to the same size as the original image, resulting in
a stack of low-pass filtered images. For each level t in the stack, we combine the
local derivative in x- and y-direction, Lnx(x, y, t) and Lny(x, y, t), to obtain the

gradient magnitude Mn(x, y, t) =
√
L2

nx(x, y, t) + L2
ny(x, y, t). In each position

(x, y), the mean, M̂n(x, y), and variance, Vn(x, y), along dimension t is computed

M̂n(x, y) =
1
d

d∑
t=1

Mn(x, y, t) (4)

Vn(x, y) =
1

d− 1

d∑
t=1

(Mn(x, y, t)− M̂n(x, y))2 (5)

For the proposed method, M̂n(x, y) and Vn(x, y) need to have values within
approximately the same interval. Theoretically, with d = 4, and the above def-
inition of the gradient magnitude, the possible value intervals are [0,

√
2] and

[0, 2/3] for M̂n(x, y) and Vn(x, y) respectively. A straight-forward approach is to
perform a normalization based on the maximum in each interval. However, real-
world values for Vn(x, y) are usually much closer to 0 than 2/3. Consequently,
we use a normalization method based on statistics from the test database. The
mean Vn(x, y) and M̂n(x, y) are derived for 5000 images, and the ratio between
mean values are used for scaling Vn(x, y).

4.2 Homogeneous Emotion Regions

In a homogeneous emotion region both M̂n(x, y) and Vn(x, y) should be small.
Consequently, we can define Hn(x, y) = M̂n(x, y) + Vn(x, y) and character-
ize interest points as local minima in Hn(x, y). Instead of using the common
1 http://www.cns.nyu.edu/∼eero/software.php
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Activity Weight Heat

Fig. 1. Detected interest points in channels activity, weigth and heat. Green dots cor-
respond to homogeneous regions, and red dots correspond to emotion transitions. The
original RGB image can be seen in Fig. 2. (Color images in the online version)

approach of representing each homogeneous region with a single point, several
interest points can be included in the same region, functioning as a simple mea-
sure of the region size. A block processing is utilized, where the minimum in each
distinct (no overlapping) 15× 15 block of Hn(x, y) is used. Depending on image
size, blocks located at image borders may contain less than 15× 15 pixels. If the
minimum is below a pre-defined threshold value, the location of the minimum is
saved as an interest point. The proposed approach ensures that large homoge-
neous regions will be described by several interest points, and at the same time
limits the maximum amount of possible interest points. Since the maximum im-
age size is set to 128 pixels (as motivated in Sec. 4), it is feasible to use a fixed
block size. Found interest points for an example image are shown in Fig. 1.

Interest points are obtained for emotion channels n = {1, 2, 3} individually.
For all interest points, a 7× 7 window, centered at the point, is extracted from
the equivalent position in the RGB image, imrgbn(x, y). The obtained RGB
values, from all emotion channels, are gathered in a temporary image, and used
as input to the emotion histogram method presented in [3]. The result is a 64
bins color emotion histogram, hh, describing the emotional content obtained
from homogeneous regions in the image.

4.3 Transitions between Emotions

We detect transitions between emotion regions, by looking for points with a
strong M̂n(x, y). If we also favor low values for Vn(x, y), ”cluttered” image regions
are avoided. Hence, we introduce Tn(x, y) = M̂n(x, y) − Vn(x, y), and detect
interest points using the block processing described in the previous section, now
searching for maxima in Tn(x, y) greater than a pre-defined threshold value.
Found interest points for an example image are shown in Fig. 1.

Working with each emotion channel separately, a 7 × 7 spatial area sur-
rounding each interest point is extracted from imen(x, y), and the orientation of
the transition is classified as one of four possible orientations: Horizontal (0◦),
vertical(90◦), or one of the two diagonals (45◦ or 135◦). Based on the orientation,
and the direction of the gradient, the extracted area is divided into two equally
sized regions. For each extracted area, a pair of emotion values is derived: From
the region with the highest mean value, the average value eh of the three pixels
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with the highest emotion values are derived, and the average value el of the
three pixels with the lowest emotion values are derived from the opposite region.
For each emotion channel, the distribution of emotion pairs is represented with
a 2-dimensional, 4 × 4 bins, histogram, htn, where each dimension represents a
quantization of distributions obtained from eh and el respectively. Bin intervals
are decided empirically based on statistical measurements of the test database.

We now have a 64 bins histogram, hh, describing the distribution of emotion
values for homogeneous image regions, together with three 16 bins histograms,
ht1−3, describing emotion transitions for emotion channels n = {1, 2, 3}. A
weighted combination of histograms defines our bag-of-emotions. In the next
section we give an example of how to use those histograms in image retrieval.

5 Retrieval with Bags-of-Emotions

To illustrate that the proposed method results in useful image descriptors, images
are retrieved based on the calculated distance between bags-of-emotions. Using
the L2-norm as distance metric between different emotion histograms, or bags-of-
emotions, we obtain the results shown in Fig. 2. A few more search results based
on bags-of-emotions are shown in Fig. 3. In the interpretation of these figures
one has to take into account that the similarity is based on color emotions.
Some colors, for instance shades of red and yellow, are closer in the emotion
space than in frequently used color spaces. Another difference can be studied in

Fig. 2. Retrieval results based on different types of histograms. From row 1 to 5: 1)
Homogeneous regions 2) Transitions between regions 3) A combination of homoge-
neous regions and transitions (bags-of-emotions) 4) Emotion histograms from [3] 5) A
weighted combination of all histograms used above. (Color images in online version)
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Fig. 3. Retrieval based on bags-of-emotions. (Color images in the online version)

the bottom right corner of Fig. 3, illustrating that colors rather far from each
other in an ordinary color space (like RGB), can be located in the same region
in the emotion space (in this example images contain mainly active colors). All
experiments are conducted with the test database containing 5000 images.

These search results are only illustrations. An objective measure of perfor-
mance (for instance by measuring Precision and Recall, plotting ROC curves,
etc.) is difficult to design since emotion related properties are hard to define nu-
merically. However, the connection between multi-colored images and the three
emotion factors used has been evaluated in psychophysical experiments in [4].
The findings show that people do perceive color emotions for multi-colored im-
ages in similar ways, and that activity, weight and heat can be used in CBIR.
A visual evaluation (made by the authors) of search results indicates that for
most images, the bags-of-emotions descriptor performs better than the histogram
method presented in [3]. Both methods are implemented in our publicly available
demo search engine2, where visitors can compare and evaluate retrieval results.

6 Conclusions

A novel attempt using a color emotion metric in CBIR is presented. The color
emotion metric, derived from psychophysical experiments, uses three scales: ac-
tivity, weight and heat. The presented algorithm is based on the assumption that
perceived color emotions in images are mainly affected by homogenous emotion
regions and transitions between emotion regions. It was shown that statistical
measurements in a stack of low-pass filtered emotion images can be used for
finding interest points corresponding to homogeneous emotion regions and tran-
sitions between regions. Emotion characteristics for patches surrounding each
interest point are saved in a bag-of-emotions, that can be used for retrieving im-
ages based on emotional content. Experiments with a small database containing
5000 images show promising results, indicating that the method can be used in
much larger databases.

This presentation is a first step towards a broader use of emotion related prop-
erties in image retrieval. Future research will extend the use of bags-of-emotions to
2 http://media-vibrance.itn.liu.se/imemo/
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semantic image classification and automatic labeling with color emotion words. In
a retrieval task, one can also think of including the ability to design queries based
on both single color emotion words and a combination of words (a semantic query).
Bags-of-emotions can also be used for clustering in large image databases. A spe-
cific topic for future research is the use of statistical measurements of images to dy-
namically adjust the weighting of different types of emotion histograms (hh, ht1−3
and the histogram from [3]). Also the use of different distance measures should
be investigated further. Examples are positive-definite quadratic form based dis-
tances, different kinds of adaptive distance measures, and combinations of those.
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Abstract. There is an increasing emphasis on including semantic con-
cept detection as part of video retrieval. This represents a modality for
retrieval quite different from metadata-based and keyframe similarity-
based approaches. One of the premises on which the success of this is
based, is that good quality detection is available in order to guarantee re-
trieval quality. But how good does the feature detection actually need to
be? Is it possible to achieve good retrieval quality, even with poor quality
concept detection and if so then what is the “tipping point” below which
detection accuracy proves not to be beneficial? In this paper we explore
this question using a collection of rushes video where we artificially vary
the quality of detection of semantic features and we study the impact
on the resulting retrieval. Our results show that the impact of improving
or degrading performance of concept detectors is not directly reflected
as retrieval performance and this raises interesting questions about how
accurate concept detection really needs to be.

1 Introduction and Background

The automatic detection of semantic concepts from video is opening up a com-
pletely new modality for supporting content-based operations like search, sum-
marisation, and directed browsing. This approach to managing content compli-
ments using video metadata and using keyframe similarity and is being enabled
by improvements in the accuracy, and the number of, such detectors or classi-
fiers by many research groups. This can be seen in the recent development in
activities such as TRECVid [1] where it is now realised that retrieval systems
based on low-level features like colour and texture do not succeed in describing
high-level concepts as a human would do.

Various authors are now making efforts on optimizing automatic detection of
semantic concepts for use in applications such as retrieval. However, it is not

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 581–589, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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clear what is the real impact of improving the accuracy of the detection process,
i.e. whether a significant improvement in the performance of detection will yield
better quality retrieval. There have been some previous studies of the efficiency
of using concepts in retrieval [2,3,4]. Recently, Snoek et al. [5] analyzed whether
increasing the number of concept detectors as well as their combination would
improve the performance of retrieval and found that it does.

Wang and Hua study how to improve the performance of combining video
concept detectors when dealing with a large number of them by following a
Bottom-Up Incremental Fusion (BUIF) approach [6], but they do not deal with
the issue of assessing detectors’ real influence in retrieval. Thus it appears there
is no work studying the relationship between the quality of detectors and re-
trieval performance. The work here explores the relationship between concept
detection performance and content-based retrieval and to examine whether im-
proving detection will yield an improvement at the retrieval stage, or whether
this is worth the effort.

2 Materials and Methods

We now detail how we set up an experimental environment for video retrieval
using semantic concepts. Controlled noise in concept detection is introduced so as
to improve or worsen it, allowing performance of retrieval to be measured. Section
3 presents experiments together with the analysis and conclusions reached.

2.1 Concept Detection

The first step is to set up a system to extract concepts from shots. In our work
we used the TRECVid [7] 2006 rushes collection of 27 hours which gave rise to
approximately 2,900 shots. The concepts selected to work with are defined from
within LSCOM-Lite, a reduced version of the 449 Large Scale Concept Ontology
for Multimedia [8] annotated concepts that form LSCOM.

The concept detection process is broken into several steps. First, a preprocess-
ing stage extracts keyframes that represent the video content. These are then
filtered in order to discard shots such as calibration charts, black frames and so
on. We then extract low-level features for these keyframes which are then used as
the input to the 39 classifiers. More details of the keyframe extraction and filter-
ing stages can be found in [9]. Finally, Support Vector Machines (SVM) provided
by Dublin City University from our high level feature detection submission in
TRECVid 2006 are used, using low-level primitive features like colour and tex-
ture, extracted by the AceToolbox [10]. The concept classifiers each provide a
certainty value Ci ∈ [−1, 1] that each of the shots’ keyframes in the original
video contains each of the concepts and we use these as baseline examples of the
accuracy of a real implementation of concept detection.

2.2 Interactive Concept-Based Retrieval Engine

An interactive video retrieval system is used in order to test the relationship
between the quality of detected concepts and retrieval performance. This allows
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Fig. 1. Retrieval example using weighted concepts

a user to select which of the available concepts should be used in retrieval, as well
as fixing Wi weights for each of the concepts. These are positive if the concept
is relevant for the query, and if its absence is relevant to the query it will be
negative, else it will be 0. The retrieval engine will assign a value scorei for each
shot so a sorted list of results can be presented to the user. Assuming there are
N concepts the following is how we obtain a score for each shot:

shoti = {Ci1, Ci2, . . . , CiN} , Cij ∈ [−1, 1] (1)

scorei =
∑N

i=1Wi · Ci

N
, Wij ∈ [−1, 1] (2)

As was previously stated, other approaches to combining concept features in
retrieval are possible, such as proposed by Wang and Hua [6] or by Snoek and
Worring [5], but in our present work we were not interested in addressing the
detector fusion method. Figure 1 shows a retrieval result based on 8 concepts
selected by the user. On the left side, 8 sliding bars allow a user to adjust weights
for each concept and a visualization of the top-ranked shots is also shown.

2.3 Degradation and Improvement of Concept Detection

Performing an artificial degradation or improvement of concept detection qual-
ity can be achieved by introducing noise into the concept detector output, so
the certainty value is increased or decreased as needed. However, rather than
depend on the accuracy of automatic detection only, the existence of a ground
truth allows us to faithfully simulate improvement and degradation of concept



584 P. Toharia et al.

Table 1. Concepts used in experiments

Concept Description
Building Shots of an exterior of a building
Car Shots of a car
Crowd Shots depicting a crowd
Outdoor Shots of Outdoor locations
Person Shots depicting a person. The face may be partially visible
Road Shots depicting a road
Sky Shots depicting sky
Vegetation Shots depicting natural or artificial greenery, vegetation woods, etc.

detection. To obtain this, a manual process of double annotation of each of the
concepts over the whole collection was performed.

To vary detection quality, a percentage P of shots from the collection are
randomly selected and their certainty degree is modified for each detector. To
improve performance, a value A is added to the certainty value of shots from
the ground truth in which the concept is known to be present. If a shot does not
contain the concept, the value A will be subtracted from the certainty value. In
case of degrading the detectors’ performance, the process is reversed.

In measuring the impact of concept detection on retrieval, we use an offline
retrieval proces. We use the keyframes of the shots selected to initiate a low-
level retrieval process using the low-level image characteristics used as input to
concept recognition, to perform keyframe similarity. This generates a content-
based ranking of shots for each topic. A concept-based retrieval ranking is also
generated using the weights selected by the users and degrading/upgrading the
performance of the detectors accordingly. The results of both retrieval rankings
are normalized and combined in a 50:50 ratio to give the final retrieval output.
While this may seem like diluting the impact of concept retrieval, and concept
detection accuracy, it reflects the true way in which video retrieval is carried out
in practice. Retrieval performance is evaluated using Mean Average Precision
(MAP) over the set of topics and thus by varying the parameters A and P , a
change in retrieval MAP should be obtained for each concept.

For our experiments we concentrated on a subset of concepts from LSCOM-
Lite, shown in Table 1, chosen because they occur throughout the whole video
dataset whereas others occur much less frequently. Our experiments are carried
out in two parts, an online part working with non-expert users who perform
iterative retrieval, and an automated offline part using results from the user
retrieval and performing more exhaustive tests varying concept detection quality.
This is shown in Figure 2.

2.4 Experimental Methodology

Our experimental methodology is as follows. In the first stage a user searches for
shots given a topic using the interactive system and the concept-based retrieval
engine described earlier. Topics have been constructed in such a way that they
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Fig. 2. Experimental framework

require iterations of the retrieval system to refine and adjust topic weights until
they are optimal, and that they use concepts both in a positive or negative way.
Topics are shown in Table 2, along with their number of relevant shots.

Topics will use available concepts in positive or negative ways, depending on
the subject matter. Topic 6 can be associated with negative weighting of the
concept “Outdoor”, since the aim is that action takes place inside a building.
Table 3 shows the ways that the set of 9 users use topics in positive or negative
ways. For example for Topic 2, 4 users used the concept “Car” in a positive way
and 2 used “Sky” in a negative way. Some aspects of some topics may not be
addressable in query formulation with the available concepts and while this may
seem a limiting factor, it is also representative of a real world search where there
will never be enough appropriate concepts for the variety of user search topics.

For our experiments, 9 users without any professional experience of searching
were recruited. Each user was given an introduction to the system, and the 7
topics were presented in a rotating order to avoid bias. Each user adjusted con-
cept weights for each of the topics and a retrieval operation was performed with
the user marking relevant shots or adjusting concept weights and performing a
new search. Once the sets of relevant shots had been identified, we can calculate
retrieval rankings based on combined weighted concept-based and content-based

Table 2. Search topics

Topic Description: “Find shots containing . . . " # rel. shots
1 . . . open-sea views 33
2 . . . 2 or more people with plants in an urban area 243
3 . . . desert-like landscapes 55
4 . . . village settlements on the coast 73
5 . . . 2 or more people interacting in a natural environment 91
6 . . . a person talking to an audience inside a building 39
7 . . . people sailing 42
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Table 3. Use of concepts in Topics

Building Car Crowd Outdoor Person Road Sky Vegetation
Topic 1: 6(-) 6(-) 3(-) 9(+) 2(-) 5(-) 7(+) 5(-)
Topic 2: 9(+) 4(+) 9(+) 2(+) 7(+) 6(+) 2(-) 9(+)
Topic 3: 7(-) 5(-) 3(-) 9(+) 3(+) 4(-) 9(+) 9(-)
Topic 4: 8(+) 3(+) 2(+) 9(+) 3(+) 5(-) 8(+) 5(+)
Topic 5: 5(-) 3(-) 8(+) 9(+) 8(+) 3(-) 4(+) 8(+)
Topic 6: 5(+) 4(-) 9(+) 9(-) 7(+) 6(-) 6(-) 3(-)
Topic 7: 6(-) 5(-) 5(+) 9(+) 8(+) 7(-) 9(+) 5(+)

techniques and calculate MAP retrieval performance by measuring against an
exhaustive manual assessment of shot relevance, our ground truth for retrieval.
We can examine the effect of detector quality on retrieval performance by intro-
ducing noise into the output of the concept detectors as described in section 2.3.
Each variation on the parameters that results in degraded or improved detec-
tors gives a new list of ranked shots which can be evaluated against the ground
truth, and MAP calculated. Combining the different options available, we have
a total of 9 users, each running 7 queries with improvements and degradations
on 8 concepts, to be evaluated.

3 Results and Discussion

3.1 Performance of Retrieval

Table 4 shows the average MAP percentage variations when we degrade or im-
prove the quality of the underlying concept detection above or below the level
of concept detection performance obtained from the automatic DCU concept
detection. Thus we use the real performance figures as a baseline and vary de-
tection quality above and below this. The MAP performance using unmodified
concept detection performance is 0.0254.

What these results tell us, for example, is that when we degrade concept de-
tection performance for all concepts by reducing the certainty value for detection
by 0.5 (on a scale of -1 to 1) for 50% of the shots, we get a net drop in MAP
performance for retrieval of only 5.69% (bolded entry in Table 4).

Table 5 collects the average Coefficient of Variation values considering the
results achieved by all users and among all topics. Coefficient of Variation values

Table 4. MAP variation average for retrieval introducing controlled noise into detector
performance

(a) Degradation

P/A -0.1 -0.3 -0.5
10% -0.10% -0.74% -1.23%
30% -0.67% -2.61% -4.25%
50% -0.92% -3.42% -5.69%

(b) Improvement

P/A +0.1 +0.3 +0.5
10% 0.10% 0.19% 0.53%
30% 0.45% 1.20% 2.16%
50% 0.81% 2.12% 3.98%
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Table 5. Avg. Coefficients of Variation considering responses by users, all topics

(a) Per user

Degradation
P/A -0.1 -0.3 -0.5
10% 5.277 0.638 0.723
30% 1.156 0.327 0.350
50% 1.299 0.453 0.414

Improvement
P/A +0.1 +0.3 +0.5
10% 2.454 8.337 5.078
30% 1.960 1.764 1.285
50% 1.081 1.105 0.929

(b) Per topic

Degradation
P/A -0.1 -0.3 -0.5
10% 8.361 1.794 1.835
30% 1.881 1.182 1.231
50% 1.620 1.195 1.214

Improvement
P/A +0.1 +0.3 +0.5
10% 6.052 12.117 7.205
30% 2.511 2.523 2.043
50% 1.372 1.276 0.986
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Fig. 3. MAP variations for detection and retrieval, varying A and P
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are more stable across users rather than across topics, but the worst cases appear
for the lower values of P and A variables because the average variations are very
low (Table 4). This can be due to the user interaction with the retrieval engine
and to the random controlled noise introduced.

3.2 Detector Performance versus the Retrieval Task

Figure 3 shows MAP variations when fixing one of the parameters, either A or
P , for both detection performance and for concept retrieval performance. The
x-axis depicts A or P values for improvement (represented as positive values
of the scale) or degradation (negative values). The y-axis shows the variation
of the MAP in percentages. The curves show similar trends for both A and P
transformations for all the tests shown. However, Figures 3(a) and 3(b) (A as
parameter) show different range values for positive (improvement) and negative
(degradation) intervals, being the variation most noticeable in the improvement
transformation. On the other hand, both the tendency and the interval of Figures
3(c) and 3(d) (P as parameter) are very similar. Overall, however, we can say
that the impact of detection accuracy is far less pronounced than we would
expect, indicating that even poor detection accuracy provides useful retrieval.

4 Conclusions

We have implemented a methodology to analyze the impact of concept detec-
tion accuracy on video retrieval on a collection of rushes video. We found that
even poor quality detection can yield good retrieval and that as the quality of
detection improves the quality of retrieval does not rise accordingly. While this
may appear as just an interesting exercise and the results do depend on the
set of concepts used, it does represent the state of the art in using concepts
in retrieval, as shown in TRECVid, where it is shown that exploiting the de-
pendencies among concepts is non-existent. For future work we plan to further
investigate how detection performance is impacted when semantic dependencies
among concepts (e.g. “Outdoor/Building” and “Person/Crowd”) and this will
integrate concept ontologies into our work. Other work will be to extend the
number of concepts to see if similar results are obtained for concepts which do
not occur as frequently in the video as the ones used here.
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Abstract. In nano-medicine, mesoporous silicon particles provide effi-
cient vehicles for the dissemination and delivery of key proteins at the
micron scale. We propose a new quality-control method for the nanopore
structure of these particles, based on image analysis software developed
to automatically inspect scanning electronic microscopy (SEM) images of
nanoparticles in a fully automated fashion. Our algorithm first identifies
the precise position and shape of each nanopore, then generates a graphic
display of these nanopores and of their boundaries. This is essentially a
texture segmentation task, and a key quality-control requirement is fast
computing speed. Our software then computes key shape characteristics
of individual nanopores, such as area, outer diameter, eccentricity, etc.,
and then generates means, standard deviations, and histograms of each
pore-shape feature. Thus, the image analysis algorithms automatically
produce a vector from each image which contains relevant nanoparticle
quality control characteristics, either for comparison to pre-established
acceptability thresholds, or for the analysis of homogeneity and the de-
tection of outliers among families of nanoparticles.

1 SEM Image Data and Quality Control Targets

Quality control in the production of nanostructures poses a challenge for image
processing, because it requires interpreting high-resolution images which may be
plagued by substantial amounts of noise of various characteristics, and because
the material is by design heterogeneous and thus requires flexible analysis algo-
rithms. We present new algorithms for SEM images analysis focused on quality
control of porous silicon (pSi) and associated microparticles (PSMs).

Visual inspection of nanoparticles is performed on 24bit SEM images typically
of size 1024×768. Each nanoparticle occupies an image surface of approximately
500 × 500 pixels, has dimensions of the order of 3× 3 microns and gathers be-
tween 500 and 1000 nanopores having similar shapes. The main goal of our
algorithmic image analysis is first to identify the precise positions and shapes
of each nanopore and its boundary in a fully automated fashion, and generate
a graphic display of these nanopores and boundaries. This is essentially a tex-
ture segmentation task, and a key quality control requirement is fast computing

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 590–597, 2009.
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(a) SEM Image (b) Region of Interest (c) Segmented Pores

Fig. 1. Example nanoparticle AN24-GP-12

speed. Then a second algorithm automatically analyzes the shapes of the de-
tected nanopores in order to compute key shape characteristics of nanopores,
such as area, outer diameter, eccentricity, boundary thickness, etc.); we thus
generate for each nanoparticle a database of roughly 500 to 1000 vectors of indi-
vidual pore features. At the level of each nanoparticle, we then launch automatic
extraction of statistical characteristics of this database, to compute the means,
standard deviations, and histograms of each type of shape feature. This defines
a vector of nanoparticle characteristics, which thus provides very natural quality
control features, either for comparison to pre-established acceptability thresh-
olds, or to analyze homogeneity and outliers among families of nanoparticles.

2 Porous Silicon Microparticles and Nanomedicine
Applications

Since the initial proof of its biocompatibility [1] porous silicon has been actively
researched as a biomaterial[2,3,4,5,6]. Porous silicon microparticles (PSMs) have
demonstrated their efficacy as delivery vectors for therapeutics. PSMs obtained
by sonication or ball milling of pSi layers successfully acted as loading and release
agents for different drug molecules, encompassing a wide spectrum of solubility
and acid/base characteristics[7]. Proteins were also successfully loaded and re-
leased from PSM[8]. Oral delivery of pSi has been proven safe[9] and paracellular
drug delivery by means of PSMs has been demonstrated in vitro [10]. However,
the size and shape polydispersion of PSMs obtained by sonication or ball milling
forbids their use as vascular delivery systems. Our group has successfully devel-
oped a strategy based on mathematical models [11,12,13], to produce monodis-
perse porous silicon microparticles of tailored pore size, shape, and porosity
(porous silicon elements, PSEs)[14]. We have proven short term safety of PSEs
upon injection [15], and demonstrated their suitability as primary vectors in a
multi-stage delivery system [16]. The porous silicon elements are produced in a
silicon fabrication environment using a top-down approach resulting in selective
porosification of bulk silicon wafers. The fabrication process involves multiple
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steps: thin film deposition, photolithography, selective dry etch, electrochemical
etch, etc. The process is subject to batch-to-batch variations that may influence
the final product. Variations in lithographic steps may lead to a different PSE
size or shape, and hence to variation of pore size and porosity. But to guarantee
the PSEs efficacy as primary delivery vectors, their size, shape, and pore sizes
must be reproduced within stringent limits to avoid modifying their flow and
margination characteristics , altering the payload biodistribution and release
profile due to different diffusion characteristics [17] and pSi degradation kinetics
[16]. Currently, quality assessment for PSEs is a two step process. Initially a
statistically relevant sample of particles from a single production lot is analyzed
by expert interactive measurements on SEM images to assess size and shape
uniformity. Secondly ten or more production lots are joined to obtain the mini-
mum 10mg sample size necessary for nitrogen absorption/desorption analysis of
pore size and porosity. This latter step risks rejection of good quality lots (rep-
resenting significant time and resources spent) due to necessarily mixing with
other lots. The alternative software based algorithmic image analysis we propose
here for quality control of PSEs is much faster and generates robust quantitative
evaluations of pore sizes and shapes.

3 Image Analysis

3.1 Algorithmic Outline

We first process a high resolution SEM image (e.g. Figure 1a) to compute a
graphic display of pore locations, which may, when required by the user, be
spatially restricted to circular bands within the nanoparticle. Below are our
main algorithmic steps :

– Step 1: ROI extraction We isolate the nanoparticle of interest, by cen-
tering on a region of interest (ROI) labeled I0. This step is still interactive,
but will be easily automatized within a future quality control software. The
SEM image as seen in Figure 1a is then cropped, resulting in Figure 1b, and
masked to a subimage I0.

– Step 2: Histogram equalization We compute the intensity histograms
H1, H2, . . . , on small overlapping image patches of identical sizes R1, R2,
. . . , covering our ROI. Local intensities are then distorted nonlinearly in
order to equalize and requantize all local histograms H1, H2, . . . . This step
generates an image with more uniform distributions of intensities depicted
in Figure 2b.

– Step 3: Pore segmentation A number of morphological and statistical
operations are performed to isolate the individual nanopores within the ROI.
This key segmentation algorithm is detailed below.

– Step 4: Extraction of pore features Following segmentation, each in-
dividual pore and its boundary are determined as associated subregions of
the ROI image. Classical shape analysis techniques are applied to each one
of these subregions in order to compute, for each pore, its area, perimeter,
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(a) ROI detail (b) Processed detail (c) Final Boundary (d) Pore mask

Fig. 2. Pore shape localization: A detail from the middle of an ROI is shown in (a).
The ROI is locally equalized and re-quantized based (b), the pore boundaries are found
(c) and finally a mask geometrically identifying all individual pores is created (d).

outer diameter, and boundary thickness, and to evaluate the degree of elon-
gation of the pore, modeled by the eccentricity of an elliptic shape fitted to
the pore.

– Step 5: Nanoparticle quality control features Within the approxi-
mately circular nanoparticle, we analyze shape features statistics for all
pores, computing the mean, standard deviation, and histogram of each pore
shape feature extracted at step 4. This process can be carried out globally
for each particle, or repeated for only those pores situated within concentric
rings of user selected radius. Thus on each circular ring, the characteristics
may be compared giving us the ability to perform both inter- and intra-pore
comparisons. Furthermore, the cumulative statistics from one set of particles
may be compared with those of another set, as appropriate.

3.2 Segmenting the Nanopores

Our pore segmentation algorithm is deliberately localized to better to variations
in pore depths, pore shapes, and boundary wall thicknesses. This adaptivity lead
us below to implement spatially variable morphological operators, as in [18]. We
begin with an image subpatch of the raw ROI I0, as in Figure 2a, which is then
broken into overlapping square regions Rj (with dimensions roughly equal to
30× 30 pixels in the cases shown here, determined by a rough estimate of pore
size set to be a box of 3 times the typical pore diameter, which will vary with
resolution and physical pore size). These regions are histogram equalized and
requantized, then merged into a single image I1 (e.g. Figure 2b).

On each region Rj of I1 the ”skeleton” of Rj is computed relative to the me-
dian (local to Rj), computed by a morphological algorithm [19]. Note that due
to localized equalization processing, the merged skeleton of I1 does not suffer
from intensity fluctuations present in the original image. We then automati-
cally bridge each skeleton gap between the neighboring ends of any two skeleton
branches that are not 4-connected. This extended skeleton is then refined by
removing spurs and isolated pixels. The final skeleton is then used to mask I1
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(a) Region (b) Initial Skeleton (c) Refined Skeleton (d) Boundary

Fig. 3. Pore Segmentation steps: (a) locally processed region has (b) initial skeleton
which leads to (c) refined skeleton used to find local intensity threshold yielding (d)
boundary. Finally, the pores are defined as connected components separated by this
boundary, as in Figure 2d.

and we compute the mean and standard deviation μskel, σskel of pixel intensities
over the final skeleton skelj. These values are used to compute a well adapted
local intensity threshold thrj on Rj separating intensity values within pores from
those on pore boundaries. Using skelj and thrj to compute a first version of pore
boundaries in Rj , we generate a first map of all pore boundaries (e.g. Figure 2c).
This pore boundaries map PB is then cleaned of spurious pixels, and each con-
nected component of I1 − PB is identified with an individual pore; this defines
the final pore map (e.g. Figure 2d). Figure 3 shows details of the skeletonization
process and boundary definition on a particularly clear case. The region shown
is much larger than Rj boundaries, demonstrating that appropriate partitioning
has been performed and does not introduce boundary artifacts.

4 Experimental Results

After a nanoparticle has been processed with the pore segmentation algorithm,
the resulting pore map is automatically analyzed as described above in Step 4
to compute a vector of shape features for each pore. An automated statistical
analysis of this family of 500 to 1000 vectors of pore shape features computes
means and standard deviations of these feature vectors to generate and display a
vector of mean quality-control characteristics for the nanoparticle just analyzed.

Our goal was to prove feasibility of software based automated quality control
to efficiently monitor the production of nanoparticles, as well as to enable rig-
orous quantified descriptions of the nanoparticles pore structure. First, we want
to quantify the pore-shape homogeneity within a single nanoparticle. Second,
we want to compare nanoparticles from the same population to see how consis-
tent the production is. Finally, we would like to quantify the difference between
nanoparticles coming from different populations.

To evaluate pore shape variation from the center of the nanoparticle to its
natural roughly circular boundary, we mask off several rings within the nanopar-
ticle.To compare these sub-populations of pores within the nanoparticle, we need
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Fig. 4. Several example particles shown with 1:1 pixel dimensions, demonstrating the
variability of inputs

Table 1. Estimated values of several features (area, perimeter length, etc.) For pores in
the region of interest for several sets of particles. Values are given along with standard
error of the mean. The first grouping shows individual sets of similar particles, the
three sets in the final grouping are larger collections of particles roughly grouped by
size (“Large Pores” LP, and “Extra Large Pores” XLP).

Dataset Long Axis Area Perimeter Short Axis
Name [nm] [nm2] [nm] [nm]

AG 44 ± 0.18 1100 ± 7.57 100 ± 0.47 34 ± 0.10
AN 75 ± 0.59 3400 ± 47.01 200 ± 1.68 54 ± 0.38
AO 73 ± 0.43 3300 ± 38.71 200 ± 1.32 53 ± 0.32
E18/19 46 ± 0.23 1300 ± 11.07 110 ± 0.63 36 ± 0.14
F2 55 ± 0.80 1800 ± 47.48 140 ± 2.38 40 ± 0.40
F4 55 ± 0.58 1700 ± 26.66 130 ± 1.56 38 ± 0.25
F5 46 ± 0.39 1300 ± 17.79 110 ± 1.11 35 ± 0.23
2 μm 50 ± 0.30 1500 ± 14.53 120 ± 0.83 37 ± 0.19

LP1 51 ± 0.32 1500 ± 15.23 130 ± 0.95 36 ± 0.15
LP2 46 ± 0.13 1300 ± 6.12 110 ± 0.36 35 ± 0.08
XLP1 74 ± 0.32 3400 ± 27.48 200 ± 0.95 54 ± 0.23

to compute robust estimates for the average values of pore shape features over
different rings. We first eliminate (and also identify) outliers by quantile analysis
on the histograms of pore features values, and thus generate robust estimates of
the mean features. Outliers, which are essentially the most oddly shaped pores,
can then also displayed for visual inspection by the user.

We have applied our prototype quality control algorithms to SEM imaged
samples of various particles production processes. Table 1 collects results from
several sets of particles. A typical histogram of three of these features is show in
Figure, 5 for one of the data sets.

These results on the statistical distributions of pore characteristics confirms
the homogeneity of pore shapes between particles of the same type (i.e gener-
ated by the same process). We have studied 8 such groups of between 2 and 4
particles, and within each group, relative variations between particles of mean
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Fig. 5. Relative histograms for three features of the AN set of particles

pore characteristics is small: 5–10% for area, 3–10 % for perimeter, 3–7 % for
long axis. The relative accuracy of our estimates of mean pore characteristics
for each particle, evaluated by the ratio of standard error over mean, is 0.7–2.5
% for area, 0.5–2 % for perimeter, 0.4–1.4 % for long axis.Thus the accuracy of
our estimates is much smaller than the variability between particles of the same
type which is a favorable feature for quality control applications.

For difficult SEM images (exhibiting defects such as high oscillations of image
intensities, poor adjustment of intensities dynamics, saturation zones, extremely
blurred zones) our algorithm still does a very good detection job on 90% of the
homogeneous porous area of the particle, and hence the computation of mean
pore-shape features remains quite reliable.

For each SEM image of a nanoparticle, roughly 15 seconds of CPU (AMD
4200) are required to generate the tables of mean pore-shape features, the graphic
display of pore maps, and the localization of pore outliers. These outputs rep-
resent the typical outputs we expect from our future quality control software.
Speed of computation could easily be significantly accelerated, since our com-
puting algorithms are highly parallelizable by multi-node treatment

5 Conclusions and Future Research

With these algorithms to analyze individual nanoparticles, we intend to validate
our study on a broader collection of SEM images of nanoparticles, to evaluate
how processing characteristics during the generation of nanoparticles may or
may not affect the pore shapes and pore boundaries. Our research has focused
on fast and accurate segmentation/identification of nanopores, combined with
extraction of mean pore shapes features and pore homogeneity evaluation. This
has immediate applications to specify and implement a future fast and reliable
quality control software to monitor quality in nanoparticle production.
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Abstract. Motion estimation is an important topic in medical image
analysis. The investigation and quantification of, e.g., the cardiac move-
ment is important for assessment of cardiac abnormalities and to get an
indication of response to therapy. In this paper we present a new aper-
ture problem-free method to track cardiac motion from 2-dimensional
MR tagged images and corresponding sine-phase images. Tracking is
achieved by following the movement of scale-space critical points such
as maxima, minima and saddles. Reconstruction of dense velocity field is
carried out by minimizing an energy functional with regularization term
influenced by covariant derivatives gauged by a prior assumption.

MR tags deform along with the tissue, a combination of MR tagged
images and sine-phase images was employed to produce a regular grid
from which the scale-space critical points were retrieved. Experiments
were carried out on real image data, and on artificial phantom data from
which the ground truth is known. A comparison between our new method
and a similar technique based on homogeneous diffusion regularization
and standard derivatives shows increase in performance. Qualitative and
quantitative evaluation emphasize the reliability of dense motion field
allowing further analysis of deformation and torsion of the cardiac wall.

1 Introduction

In modern society cardiac diseases have emerged as the major cause of death
in developed countries [1]. Characterizing the heart’s behavior, such as acquir-
ing information from extraction and quantification of cardiac motion, can help
in formulating early diagnosis and/or suggesting therapy treatments. Among
the available techniques, optic flow of tagged MR acquisitions is a non-invasive
method that can be employed to retrieve cardiac movement. Optic flow provides
information about the displacement field between two consecutive frames, that
is, it measures the apparent motion of moving patterns in image sequences. In
several optic flow methods it is assumed that brightness does not change along
the displacement field and the motion is estimated by solving the so-called Optic
Flow Constraint Equation (OFCE):

Lxu+ Lyv + Lt = 0 (1)

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 598–605, 2009.
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where L(x, y, t) : R3 → R is an image sequence, Lx, Ly, Lt are the spatiotem-
poral derivatives, u(x, y, t), v(x, y, t) : R3 → R are unknown velocity vectors
and x, y and t are the spatial and temporal coordinates respectively. Equation
(1) is ill-posed since its solution is not unique, due to the unknown velocities u
and v. This has been referred to as the ”aperture problem”. In order to over-
come the problem, Horn and Schunck [2] introduced a gradient constraint in the
global smoothness term, finding the solution by minimizing an energy functional.
Lately results were impressively improved by Bruhn et al. [3], who combined the
robustness of local methods with the full density of global techniques using a
multigrid approach. Motion estimation also has been performed by means of
feature tracking. Thyrion [4] investigated a technique, where the brightness is
preserved and the features are driven to the most likely positions by forces. C.
C. Cheng and H. T. Li [5] explored optic flow methods where features are ex-
tracted taking into account scatter of brightness, edge acquisition and features
orientation. A multi-scale approach to equation (1) has been first proposed by
Florack et al. [6] and extension to the technique and an application to cardiac
MR images has been investigated by Van Assen et al. and Florack and Van Assen
[7,8]. In this paper we estimate 2-dimensional cardiac wall motion by employing
an optic flow method based on features points such as maxima, minima and
saddles. The features have been calculated in the robust scale-space framework,
which is inspired by findings from human visual system. Moreover, our technique
does not suffer from the aperture problem and is also not dependent on the con-
stant brightness assumption, since we assume that critical points retrieved at
tag crossings, such as from the grid pattern described in section 2, still remain
critical points after a displacement, even in presence of fading. Therefore, the
algorithm can be robustly applied on image sequences, such as the tagged MR
images, where the intensity constancy is not preserved. The reconstruction of the
velocity field has been carried out by variational methods and the regularization
component is described in terms of covariant derivatives biased by a gauge field.
This operation adds vector field information from previous frames and allows a
better velocity field reconstruction with respect to the one provided by similar
techniques which employ standard derivatives. Tests have been carried out on
phantom image sequences with a known ground truth and real images from a
volunteer. The outcomes emphasize the reliability of the vector field. In section
2 the image data-set and the preprocessing approach used in the experiments is
presented. In section 3 the multi-scale framework and the topological number,
introduced as a convenient technique for extracting multi-scale features, are ex-
plored. In section 4 and 5, we present the calculation of a sparse velocity vector
field and the dense flow’s reconstruction technique. Finally, in section 6 and 7
the evaluation, the results and the future directions are discussed.

2 Image Data-Set and Preprocessing Approach

Tagging is a method for noninvasive assessment of myocardial motion. An artifi-
cial brightness pattern, represented as dark stripes, is superimposed on images by
spatially modulating magnetization with the aim to improve the visualization
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Fig. 1. Column 1: Short axis view of a volunteer’s left ventricle. Column 2. The tagged
MR images have been filtered in the Fourier domain. Successively inverse Fourier trans-
form and sine function have been applied. Column 3. Image obtained by combination
of sine-phase images. The image provides a new pattern from which the feature points
have been retrieved.

of intramyocardial motion [9] (Figure 1 column 1). In 1999 Osman et al. [10]
introduced the so-called harmonic phase (HARP) technique which overcomes
the fading problem by taking into account the spatial information from inverse
Fourier transform of filtered images. The experiments have been carried out by
employing a similar technique based on Gabor filters [11]. After acquisition of
two tagged image series with mutually perpendicular tag lines(Figure 1 column
1), the first harmonic peak has been retained using a band-pass filter in the
Fourier domain and the inverse Fourier transform has been applied to the re-
sulting image spectrum. The filtered images present a saw tooth pattern, whose
phase varies from 0 to 2π. In the experiments a sine function has been applied
to the phase images to avoid spatial discontinuities due to the saw tooth pattern
(Figure 1 column 2). A combination of sine phase frames generate a grid from
which the critical feature points (maxima, minima, saddles) have been extracted
(Figure 1 column 3).

3 Extraction of Scale-Space Critical Points

In the real world, objects are processed by the visual system at different scale
levels. Given a static 2-dimensional image f(x, y) ∈ L2(R2), its scale space rep-
resentation L(x, y; s) ∈ L2(R2×R+) is generated by the spatial convolution with
a Gaussian kernel φ(x, y; s) = 1

4πs exp(−x2+y2

4s ) such that

L(x, y; s) = (f ∗ φ)(x, y; s) (2)

where x and y are the spatial coordinates, and s ∈ R+ denotes the scale. Equa-
tion (2) generates a family of a blurred version of the image, where the degree
of blurring varies with respect to the scale [12,13,14].

Extraction and classification of critical points is carried out at different scales
by computing the so-called topological number [15]. In two-dimensional images
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the topological number is referred to as the winding number and denotes the
integrated change of angle of the gradient when traversing a closed curve in a
plane. The winding number is always an integer multiple of 2π and its value
provides information of the detected critical point. The winding number is zero
for regular points, it is +2π for extrema, and −2π for saddle points.

4 Sparse Feature Point Velocity Estimation

MR tags have the property to move along with the moving tissue, critical points
are located on and between the tag’s crossing and therefore also move along
with tissue. At a critical point’s position the image gradient vanishes. Tag fading,
which is a typical artifact in MR images, leaves this property intact, hence critical
points satisfy equation (3) over time

∇L(x(t), y(t), t) = 0 (3)

where ∇ represents the spatial gradient and L(x(t), y(t), t) denotes intensity at
position x, y and time t. If we differentiate equation (3) with respect to time t
and apply the chain rule for implicit functions, we obtain

d

dt
[∇L(x(t), y(t), t)] =

[
Lxxui + Lxyvi + Lxt

Lyxui + Lyyvi + Lyt

]
= 0 (4)

where d
dt is the total time derivative, and where we have dropped space-time

arguments on the r.h.s. in favor of readability. Equation (4) can also be written
as: [

ui

vi

]
= −H−1∂∇L

∂t
(5)

where H represents the Hessian matrix of L(x(t), y(t), t). Equation (5) provides
the velocity field at critical point positions. The scalars ui, vi represent the
horizontal and vertical components of a sparse velocity vector at position xi and
yi, with i = 1...N where N denotes the amount of critical points.

5 Reconstruction of Dense Velocity Field

We aim to reconstruct a dense motion field that provides the most accurate
approximation of the true velocity field making use of sparse velocities calculated
by equation (5). In literature, examples of velocity field reconstruction as well as
image reconstruction techniques based on features can be found in [16,17,18,19].
Given the horizontal and vertical components of the true dense velocity field utf

and vtf , we extract a set of velocity features at scale si, such that ui = (φi, utf)
and vi = (φi, vtf ), where (., .)L2 denotes the L2 inner product, φi is the Gaussian
kernel φi(xi, yi; si) = 1

4πs exp(− (x−xi)2+(y−yi)2

4s ). We look for the functions U and
V such that (φi, U)L2 ≈ (φi, utf )L2 and (φi, V )L2 ≈ (φi, vtf )L2 , and minimize the
energy functional
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E(U, V ) =
N∑

i=1

αi((φi, U)L2 − ui)2 + αi((φi, V )L2 − vi)2+

λ

2

∫
R2
‖∇U‖2 + ‖∇V ‖2dxdy

(6)

where αi ∈ R+ is a weighting factor for each feature and the parameter λ ∈ R+

controls the quality of the approximation. As λ increases, the smoothness degree
in vector field increases, reducing the influence of the sparse velocity vectors. The
minimization of equation (6) is carried out by solving the corresponding Euler-
Lagrange equations. In equation (6) we have chosen a weighting factor αi ∈ R+,
such that, αi(ci, β) = 1−exp( −β

(ci−1)2 ). The weighting factor α ranges from 0 to 1
and depends on an arbitrary parameter β ∈ R+ and on ci, the condition number
of the Hessian matrix in equation (5). The condition number of a matrix M is
defined as c(M) = ‖M−1‖ ·‖M‖ [20]. Its value varies from 1 to infinity and gives
an indication of sensitivity of a matrix to numerical operations. In case of high
condition number, the solution of equation (5) is less accurate and the retrieved
velocities are weighted by a small α.

A refinement of equation (6) can be performed by replacing the gradient of
the regularization term with a covariant derivative DAh biased by a gauge field
h ∈ H2(R2), hence

E(U, V ) =
N∑

i=1

αi((φi, U)L2 − ui)2 + αi((φi, V )L2 − vi)2+

λ

2

∫
R2
‖DAhU‖2 + ‖DAhV ‖2dxdy

(7)

where Ah represents a covector field selected due to gauge field h, such that
DAhh = (∇ + Ah)h = 0. In equation (6) the regularization term selects U
and V from all possible approximations to the solution such that they are as
smooth as possible (gradient is minimized). In the regularization term of equation
(7) gauge field h is used to tune the covariant derivatives, therefore deviations
from the gauge field are penalized. This means, that in case the gauge field
presents already a vector field that is similar to what we are expecting, the
regularization term will take into account this information, and therefore may
provide a better reconstruction of U and V. A detailed description of the method
for image reconstruction is given in [21].

In the evaluation, we first compute motion field using equation (6) and we use
the vector field at frame j as a gauge field h. The gauge field is then applied to
equation (7), whose information influences the reconstruction of vector field at
frame j + 1. In the same way, vector field at frame j + 1 computed by equation
(7) is used as gauge field h and provides information to construct velocity field
at frame j + 2. The process is performed for all frames in the sequence.
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6 Evaluation

We compare the performance of our optic flow algorithm with reconstruction
technique based on covariant derivatives gauged as described in the section 5
with a similar method based on conventional derivatives. The accuracy of the
retrieved vector fields has been assessed by analyzing a contracting and expand-
ing artificial phantom of 19 frames and resolution of 99×99 pixels. The artificial
phantom presents pattern similar to figure 1 column 3 and deforms according
to the analytic function { (x−l)(m−2n·t)

(l+(m−n·t)t) ,
(y−l)(m−2n·t)
(l+(m−n·t)t) }, which provides also the

vector field’s ground truth. The variables x, y, t represent the spatial and tem-
poral coordinates, whereas l,m, n are constant parameters set to 50, 5, and 0.25
respectively. Retrieved vector field and the true vector field of frame 6 are dis-
played in figure 2, row 1, column 1 and 2 respectively. In the tests we have
employed feature points such as maxima, minima and saddles at 4 spatial scales
σ = {1, 1.3, 1.6, 2.} and time scale 1. In order to reduce the influence of velocity
outliers during the reconstruction process, sparse velocity vectors extracted us-
ing equation (5) have been weighted by employing the weighting function α(c, β)
dependent on condition number c and parameter β, which we set to 50. Figure 2,
row 1 column 3 and 4 illustrates the effects of the weighting function on frame 5 of
the real sequence. Moreover, the smoothing parameter λ has been optimized for
equation (6) and (7), namely best performance has been achieved with λ = 10−2

and λ = 10−0.5 respectively. In order to avoid outlier vectors at the boundaries,
the two reconstruction methods have been assessed from frame 5 to frame 9, and
10 pixels distant from the boundaries. Test evaluation has been conducted by
comparing extracted flow field with the correspondent ground truth, where accu-
racy in the results has been described in terms of the so-called Angular Error [22].

Fig. 2. Vector Fields. Row 1 Column 1 and 2. Plots depict vector field of frame 6
extracted from artificial phantom and ground truth of frame 6. Vector fields on row 1,
column 3 and 4, represent the motion field of frame 5 retrieved from real data before
and after the weighting procedure. Weighing factor α penalizes outliers present in row
1 column 1. Row 2 from left to right vector fields of frames 5, 6, 7 and 8, extracted
from sequence of sine HARP images of real data. The direction of the velocity vectors
is color-encoded, that is, regions in the motion field with the same color show vectors
that are pointing in the same direction.



604 A. Becciu et al.

Table 1. Performance of the vector field reconstruction methods based on conven-
tional derivatives and covariant derivatives. The methods have been tested on artificial
contracting phantom using maxima, minima and saddles as feature points at spatial
scales σ = {1, 1.3, 1.6, 2.} and time scale 1. Accuracy of the method has been de-
scribed in terms of average angular error (AAE) and standard deviation (Std) both
expressed in degrees. Best performance has been achieved by the employment of covari-
ant derivatives after 1 iteration with AAE = {1.88◦, 1.53◦, 1.33◦} for maxima, minima
and saddles respectively.

Feature Maxima Minima Saddles
AAE Std AAE Std AAE Std

Conventional Derivatives 2.35◦ 1.72◦ 3.15◦ 1.47◦ 1.54◦ 2.06◦

Covariant Derivatives 1.90◦ 2.11◦ 1.55◦ 1.00◦ 1.34◦ 1.12◦

Covariant Derivatives 1 Iterations 1.88◦ 1.07◦ 1.53◦ 1.00◦ 1.33◦ 1.12◦

Outcomes, illustrated in table 1, emphasize an increase in performance for our
optic flow algorithm with reconstruction technique based on covariant deriva-
tives. Moreover, once we reconstruct the vector field for all image sequence us-
ing equation (7), we can employ this new motion field as gauge fields and apply
equation (7) again. Outcomes of this process have shown further improvements
in the accuracy for our tests. This procedure can be carried out iteratively.

We have also applied our optic flow method on a real sequence of 11 tagged
MR images with resolution of 86×86 pixels, which depicts the left ventricle of a
volunteer in phase of contraction. Filtered vector fields on sine HARP frame 5,
6, 7, and 8 are displayed in figure 2, row 2. Plots are color encoded, where the
color gives information of the vector direction.

7 Conclusion

We analyze cardiac motion by employing a new optic flow feature based method
with regularization term described by covariant derivatives influenced by a gauge
field. We have tested the technique on an artificial contracting and expanding
phantom from which we know the ground truth, using maxima, minima and
saddles as feature points. Outcomes of comparison with a similar approach,
based on conventional derivatives, emphasize high improvements in the accuracy
reconstruction provided by our new method. We have also shown that further
improvements in the accuracy are achieved, in case the method is repeated one
second time with gauge field based on vector field calculated using covariant
derivatives. We have applied moreover the technique to a real tagged MR image
sequence displaying a heart in phase of contraction. Qualitative results highlight
the reliability of the extracted vector field. Finally, in test evaluation we calculate
velocity fields at fixed scales, where the most suitable scale is chosen according
to the performance with respect to the ground truth. However, deformations
of the cardiac walls differs in different regions, therefore feature belonging to
two different regions may present best performance at different scales. In future
experiments, we will select scales according to the performance of each singular
feature, which may provide a better reconstruction of the vector field.
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Abstract. The Fuzzy C-Means algorithm is a widely used and flexible
approach for brain tissue segmentation from 3D MRI. Despite its re-
cent enrichment by addition of a spatial dependency to its formulation,
it remains quite sensitive to noise. In order to improve its reliability
in noisy contexts, we propose a way to select the most suitable exam-
ple regions for regularisation. This approach inspired by the Non-Local
Mean strategy used in image restoration is based on the computation of
weights modelling the grey-level similarity between the neighbourhoods
being compared. Experiments were performed on MRI data and results
illustrate the usefulness of the approach in the context of brain tissue
classification.

Keywords: fuzzy clustering, regularisation, non-local processing, image
segmentation, MRI.

1 Introduction

Segmentation methods of brain MRI can be categorised into 3 groups: classi-
fication methods, region-based methods and boundary-based methods. A very
popular one is the K-mean algorithm which has been extended to fuzzy segmen-
tation by Pham et al. in [10]. This so called Fuzzy C-Means (FCM) clustering
algorithm is a powerful tool for MRI analysis since it authorises voxels to belong
to several clusters with varying degrees of membership. Due to its flexibility, this
segmentation framework has been intensively extended, for instance by including
topological properties [2], DTI handling [1] or prior knowledge.

A main drawback of the standard FCM algorithm remains its sensitivity to
noise in medical images. Many pixel-based regularisation term have been pro-
posed such as Tikhonov regularisation [12], Markov Random Field (MRF), a
priori image model or variational approaches. Inspired by works developed on
MRF basics, Pham has proposed [9] a spatial model to improve the robustness to
noise of FCM. However, the use of such pixel based regularisation terms assumes
a specific image model: for instance, variational approaches can be based on the
hypothesis that images are made of smooth regions separated by sharp edges.
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Recently, a non-local framework has been proposed to handle more efficiently
repetitive structures and textures, for denoising purpose [4] or inverse problems
[3,8,11]. In this work, we propose to introduce this non-local framework into the
regularisation term of the FCM algorithm.

The sequel of this article is organised as follows. In Section 2, we present the
segmentation problem and provide a short overview about FCM and regulari-
sation. Section 3 details the new non-local approach for image segmentation. In
Section 4, results obtained on the Brainweb database [5] are presented. Finally,
Section 5 discusses these results and brings up to further work.

2 Background

2.1 Fuzzy C-Means (FCM)

The basics of this algorithm have been presented in [10] and make the segmen-
tation equivalent to the minimisation of an energy function:

JFCM =
∑
j∈Ω

C∑
k=1

uq
jk‖yj − vk‖22. (1)

This formulation is used to perform a C-classes segmentation. The parameter
ujk represents the membership of the kth class into the jth voxel of the image,
the parameter q controls the “fuzziness” of the segmentation (if q gets close to 1,
the segmentation becomes more crisp and close to a binary result), vk represents
the centroid of the kth component and yj represents the grey-level of the jth

voxel of the image. ‖yj − vk‖2 represents the Euclidean distance between the
voxel’s grey level and the considered centroid. The proportions are constrained
so that:

∑C
k=1 ujk = 1.

Although this method has a fast convergence and provides reliable results in
a convenient environment (low level of noise), the performance of this approach
strongly decreases for noisy images. In such cases, anatomically hazardous struc-
tures may appear, for instance grey matter voxels among white matter volumes.
However, FCM has shown to be easily extended and several approaches have
been proposed in order to improve the robustness of FCM by introducing the
idea of regularisation into the segmentation framework.

2.2 Regularisation

Regularisation is a classic method in inverse problem to determine the most
accurate solution among many possible ones [12]. It introduces constraints to
eliminate irrelevant solutions. In particular, Pham et al. in [9] added a regu-
larisation term in Equation (1) to penalise unlikely configurations that can be
met in the image. They called this method: Robust Fuzzy C-Means Algorithm
(RFCM). The expression of the obtained energy function is then:

JRFCM =
∑
j∈Ω

C∑
k=1

uq
jk‖yj − vk‖22 +

β

2

∑
j∈Ω

C∑
k=1

uq
jk

∑
l∈Nj

∑
m∈Mk

uq
lm (2)
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where Nj is the set of the neighbours of voxel j and Mk = {1, . . . , C}\{k}. The
new penalty term is minimised when the membership value for a particular class
is large and the membership values for the other classes at neighbouring pixels
are small (and vice versa).

The parameter β controls the trade-off between the data-term and the smooth-
ing term. Note that if β = 0, we retrieve the classic FCM algorithm without any
regularisation term. If β > 0, the dependency on the neighbours causes ujk to be
large when the neighbouring membership values of the other classes are small.
The result is a smoothing effect that causes neighbouring membership values
of a class to be negatively correlated with the membership values of the other
classes. In [9], Pham et al. have proposed to estimate β using cross-validation to
obtain near-optimal performances, and they worked with a neighbourhood (Nj)
composed of the points 6-adjacent to the current point j. In the work proposed
hereafter, we focus on the use of a larger weighted neighbourhood relying on a
non-local framework.

3 Non-Local Regularisation

3.1 Non-Local Approach

The Non-Local (NL) Regularisation is a strategy that has been proposed first as
a denoising tool [4] and named as NL Mean denoising. Basically, it tries to take
advantage of the redundancy of any natural image, broadly speaking a small
neighbourhood around a voxel may match neighbourhoods around other voxels
of the same image.

The non-local framework proposed by Buades et al. [4] relies on a weighted
graph w that links together voxels over the image domain. The computation of
this graph w is based on the similarity between neighbourhoods of voxels (see
illustration in Fig. 1).

In the sequel, we will call such a neighbourhood a patch and denote the patch
around voxel j as Pj . The similarity of two voxels is defined as the similarity

(a) (b)

Fig. 1. Comparison of the RFCM [9] (a) and the NL approach (b). In this example,
the area around the voxel j is more similar to the one of voxel k than the one of voxels
m and l. Therefore, the weight wjk will be higher than the weights wjm and wjl.
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of the grey-levels contained into Pi and Pj . This similarity can be computed as
a Gaussian weighted Euclidean distance, but it has been shown that a simple
Euclidean distance is reliable enough [6]. The weight for the voxels i and j is
defined as follows:

wij =
1
Zi
e−

‖y(Pi)−y(Pj )‖2
2

h2 (3)

where Zi is a normalisation constant and h is a smoothing parameter. The
distance between patches is defined as follows:

‖y(Pi)− y(Pj)‖22 =
|Pi|∑
p=1

(y(p)(Pi)− y(p)(Pj))2 (4)

where y(Pi) is the vector containing the grey-levels of the neighbourhood and
y(p)(Pi) is the pth component of this vector.

Note that it is possible to set the parameter h automatically [6] by setting:
h2 = 2ασ2|Pi|. The parameter σ2, namely the standard deviation of the noise,
can be computed directly from the image. If the noise in the image is Gaussian,
we can set the parameter α to 1 [6]. Otherwise, it can be adjusted to get a more
accurate result.

The NL Regularisation approach has already been successfully applied to
different kinds of image processing problems. Mignotte [8] used this procedure
to constrain a deconvolution process, Bougleux et al. [3] integrated it into the
resolution of inverse problems and Rousseau [11] applied it for super-resolution
reconstruction techniques.

3.2 Non-Local Fuzzy C-Means Algorithm (NL-FCM)

The key point of the NL approach is the capacity to handle a large neighbour-
hood without prior knowledge. We show in this work that such methodology
can be easily introduced into the FCM framework. We investigate larger neigh-
bourhoods to provide more information for the regularisation. Moreover, the
underlying assumption is that voxels who have similar patches in the research
area belong to the same tissue as shown in Fig. 1(b). We propose to define a NL
version of FCM as follows:

JNL−FCM =
∑
j∈Ω

C∑
k=1

uq
jk‖yj − vk‖2 +

β

2

∑
j∈Ω

C∑
k=1

uq
jk

∑
l∈Nj

wjl

∑
m∈Mk

uq
lm . (5)

Compared to Equation (2), a weight parameter is introduced in order to auto-
matically balance the influence of voxels in the neighbourhood Nj . Note also
that contrary to Pham et al. [9] where Nj was a six-neighbourhood system, we
investigate in this work larger neighbourhood systems such as the ones used in
non-local denoising approach of Buades et al. [4].

The regularisation term of the energy function defined in Equation (5) takes
into account the image content in an adaptive and flexible manner to smooth
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the current segmentation map. In other words, if two voxels neighbourhoods are
similar, there might be a chance that they belong to the same tissue and so, the
weight wjl increases. Conversely, if two voxels in the original image are quite
different, it is normal to decrease the influence of the regularisation term since
there is a lower probability that this voxel might have a good influence on the
classification of the current one.

The proposed method (and the other ones considered for validation: FCM and
RFCM) were optimised through Pham’s way [9]: we used the same analytical
expressions for the calculation of the centroids and of the membership functions.

4 Results

4.1 Influence of the Non-Local Parameters (α, Nj)

Experiments have been carried out on simulated brain MRI images provided
by the Brainweb database [5]. Notice that we perform a 3-class segmentation
(Cerebro Spinal Fluid (CSF), Grey Matter (GM), White Matter (WM)) on a
T1-weighted image corrupted by a 9 % Rician noise (characteristic from MRI
images) [7].

The Brainweb ground truth is used to assess the influence of parameters
(α,Nj) of the proposed non-local method. In order to quantify the quality of
the segmentation results, we use the following overlap measure:

KI =
2.TP

2.TP + FP + FN
(6)

where TP is the amount of true positives, FP is the amount of false positives
and FN , the amount of false negatives.

In this work, Nj is considered as a cubic neighbourhood. Results for different
sizes of Nj (from 3 × 3 × 3 up to 13 × 13 × 13 voxels) are stated in Fig. 3(a).
These experiments emphasise that considering extended neighbourhoods is a
way to improve the segmentation results. Nevertheless, increasing Nj above a
5×5×5 size does not refine the segmentation results and slows the computation
down. Therefore, we chose to run the validations in subsection 4.2 with a 5×5×5
neighbourhood.

We have also investigated the influence of the smoothing parameter α (defined
in Section 3.1) on the segmentation results. Fig. 3(b) shows that, in agreement
with Buades et al. [4], values of α around 1 provide the best results. Moreover,
the graph shows that the algorithm is not sensitive to this parameter if its value
is set slightly above 1 (α is set to 1.1 for the validations in subsection 4.2).

4.2 Evaluation of the Contribution of the Non-Local Framework

To evaluate the contribution of the non-local framework to the efficiency of the
segmentation process, we have also compared the following versions of FCM:

1. classic FCM [10];
2. RFCM [9];



A Non-Local Fuzzy Segmentation Method: Application to Brain MRI 611

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 2. Results of segmentations using a T1-weighted image with a 9 % Rician noise. (a)
Original image with zoom area, (b) Brainweb’s ground truth, (c) simple FCM segmen-
tation, (d) RFCM segmentation, (e) NL-FCM segmentation, (f) zoom on Brainweb’s
ground truth, (g) zoom on RFCM segmentation, (h) zoom on NLFCM segmentation.
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Fig. 3. Influence of the different parameters. Application on a Brainweb T1-weighted
image with 9 % Rician noise. (a) Overlap rate to the Size of Search Area Nj and (b)
overlap rate to Smooth parameter α. Legend: GM (◦), WM (�), CSF (×).

Table 1. Application of different segmentations on a Brainweb T1-weighted image
with a 9 % Rician noise. Comparison of the different overlap rates for CSF, GM and
WM.

Methods CSF GM WM
Classic FCM [10] 90.4635 84.3567 85.4812
RFCM without weights [9] 92.0914 91.1193 92.9095
RFCM with weights 92.7614 91.0874 92.4898
NL-FCM without weights 92.2247 92.2154 94.1175
NL-FCM with weights 93.6307 93.3486 94.7661
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Fig. 4. Application of different techniques on the same Brainweb T1-weighted image
with different noise level. (a) Overlap rate of GM, (b) overlap rate of WM. Legend:
NL-FCM (◦), RFCM (�) [9], FCM (+) [10].

3. RFCM with adaptive weights;
4. NL-FCM with fixed weights; and
5. NL-FCM with adaptive weights.

The results are reported in Table 1. The NL Regularisation approach improves
the segmentation results with respect to classic FCM and RFCM. The compar-
ison between RFCM and NL-FCM without weights shows that using a larger
neighbourhood leads to significant improvements especially for GM and WM
(approx. 1 %). Moreover, considering extended neighbourhood, introducing NL
approach results in a better overlap rate.

Fig. 2 provides a visual insight of these improvements, especially on GM and
CSF. This may be due to the low contrast between CSF and GM on a noisy image
which can however be correctly handled by the NL regularisation framework. In
addition, we observe that NL-FCM results resolve fine structure more clearly
such as the borders between ventricles and GM, and around cortical sulci as
shown by the zooms done on RFCM segmentation in Fig. 2(g) and on NL-FCM
segmentation in Fig. 2(h) compared to the ground truth in Fig. 2(f).

We carried out complementary experiments to determine the robustness to
noise for classic FCM [10], RFCM [9] and NL-FCM with Brainweb T1-weighted
images with varying noise levels (see Fig. 4). It can be seen that NL-FCM begins
to emerge as a strong approach at noise levels of 3 % and above, and becomes
more accurate compared to RFCM approach at a 5 % noise.

5 Conclusion

In this article, an extension of the Robust Fuzzy C-Means Algorithm method
[9] has been proposed, by introducing a non-local approach in the regularisa-
tion term, and by considering adaptive (i.e. possibly large) neighbourhoods for
computing this term. The method depends on parameters which do not require
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a very fine setting. Experiments performed on several noisy brain MR images
(up to 9 % Rician noise) from the Brainweb database emphasise the usefulness
of this extension. Additional experiments are also needed to evaluate how the
regularisation strength is related to the underlying spatial resolution of the re-
constructed imaging data. Overall, this new approach may be particularly useful
in more challenging imaging applications such as those limited by the imaging
time, for example in imaging the moving human foetus.
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Abstract. Medical surgical procedures have not changed much during the past 
century due to the lack of accurate low-cost workbench for testing any new im-
provement. The increasingly cheaper and powerful computer technologies have 
made computer-based surgery planning and training feasible. In our work, we 
have developed an accurate 3D stomach model, which aims to improve the sur-
gical procedure that treats the infant pediatric and neonatal gastro-esophageal 
reflux disease (GERD). We generate the 3-D infant stomach model based on in 
vivo computer tomography (CT) scans of an infant. CT is a widely used clinical 
imaging modality that is cheap, but with low spatial resolution. To improve the 
model accuracy, we use the high resolution Visible Human Project (VHP) in 
model building. Next, we add soft muscle material properties to make the 3D 
model deformable. Then we use virtual reality techniques such as haptic de-
vices to make the 3D stomach model deform upon touching force. This accurate 
3D stomach model provides a workbench for testing new GERD treatment sur-
gical procedures. It has the potential to reduce or eliminate the extensive cost 
associated with animal testing when improving any surgical procedure, and ul-
timately, to reduce the risk associated with infant GERD surgery.  

Keywords: Computer-Based Surgery Planning and Training, Image  
Guided Surgery, Medical Image Processing, Image Registration, Computer  
Tomography, Morphing, and Visualization. 

1   Introduction 

Gastroesophageal reflux disease (GERD) is caused by gastric acid flowing from the 
stomach into the esophagus. Under healthy conditions, a physiologic barrier called the 
lower esophageal sphincter (LES) prevents pathologic reflux of stomach contents into 
the esophagus. GERD is an extremely common disease, affecting between 60 and 70 
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million people in the United States [2]. Chronic and extreme cases of GERD in infants 
can cause failure to thrive and damage the esophagus. When medical management fails, 
a surgical procedure called a fundoplication is performed.  The most common fundopli-
cation is the Nissen fundoplication, in which the fundus of the stomach is wrapped 
around the lower esophagus 360 degrees.. This procedure is often performed using 
laparoscopic (minimally-invasive) surgical techniques.  The procedure is not perfect and 
there is a recurrence rate of 10-15%, especially in infants.  The surgeons at Emory Chil-
dren’s Hospital would like to improve the long-term results [2] of fundoplication using 
low risk system for testing first. We have formed an interdisciplinary team to design 
such system to meet the medical needs. 

We first build two 3D stomach models from in vivo CT scan of an infant, and 
Visible Human Project (VHP) data provided by the National Library of Medicine [1] 
(see Figures 1 and 2). Because CT has low spatial resolution, the infant stomach 
model is coarse. Thus, we improve CT model using the surface normal based morph-
ing [5] and interpolation techniques with high resolution VHP model.  Next, we use 
spring-mass system [4] to model stomach muscle deformation, and use virtual reality 
haptic device to control deformation upon touching force. To study infant stomach 3D 
deformation properties, we use videos of infant fundoplications.  

 

Fig. 1. Few images representing original axial image and segmented stomach walls from VHP. 
The Figure shows sequence of axial slices from top to bottom (actual data set contains more 
than 300 slices in stomach region).  

 

Fig. 2. Segmented stomach from infant CT scan data. The Figure shows sequence of axial 
slices from top to bottom (actual data set contains 21 slices in stomach region). 
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2   Materials and Methods 

We use two datasets for our work. The first dataset contains 300+ axial thorax ana-
tomical images from VHP [1] male, with a spatial resolution of 2048x1216 pixels in 
the cryo-section. We use standard image processing techniques to semi-
automatically segment these images into binary representation of stomach walls as 
shown in Figure 1. The second dataset contains approximately 20 CT axial scans of 
an infant stomach. The normal configuration of CT generates images in DICOM 
format with a spatial resolution of 512x512 pixels. We also segment these images 
as shown in Figure 2. 

Next, we use VTK [3] to develop 3D geometric models of stomach. That is, we use 
segmented images to create VTK volume and render the volume with smooth surface 
shading. Figure 3 shows the workflow of the whole process. Figure 4 shows the dif-
ference in model accuracy. The VHP model is created from 300+ images and is 
highly detailed, while the infant stomach model is created from ~20 CT scan images 
and suffers from the loss of details. Thus, the infant model cannot be directly used as 
a workbench to test new GERD surgical procedures, and has to be improved for more 
accuracy. In infant stomach CT scans, large variations exist among all successive 
slices. With many details missing, we decide to use high resolution VHP model to 
improve the infant stomach model accuracy. 

Segmenting axial
images to get

stomach  walls

Extracting

skin surface

Converting to
VTK volume 

format

Rendering

3D models

Interacting 

3D models 
Collecting data
through 
interface

 

Fig. 3. VTK workflow for creation and interactivity with stomach model 

To transform the high resolution 3D VHP male model to best approximate the 3D 
infant stomach model, rigid registration is needed to align both, and non-rigid regis-
tration is needed to cater for local variations. Rigid registration requires a set of points 
that correspond to each other in both models. So we develop an interface in VTK 
based on shooting ray method. Shooting ray draws a line from the mouse pointer to 
the model surface while keeping the camera direction in consideration. The points on 
the surface will then be used to compute rigid affine transformation. Because the two 
models originate from two different human subjects (a male adult and an infant), 
significant morphological differences exist and result in large variation in post-rigid 
transformation slices.  
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Fig. 4. (a) VHP stomach model; (b) Infant stomach model based on CT scans. VHP data-based 
model is highly detailed and smooth, and the CT-based model is coarse and distorted due to the 
lack of data and resolution. 

As shown in Figure 5(a) and 5(b), without deforming the model, when we align 
one part of the model based on the contour centroid in Figure 5(b), the other parts in 
the model may be totally misaligned as in Figure 5(a). In addition, certain regions 
(e.g., stomach outer wall) represented by a single contour in one model, may appear 
to be two in another model as shown in Figure 5(c). Thus, the two models cannot be 
registered using only rigid and nonrigid registration techniques. 

a

b

c

MODEL1 

MODEL2 

 

Fig. 5. (a) and (b) Sections of two models after rigid registration (c) Dissimilarity in two mod-
els resulting in single versus dual contour representation in certain regions 

To address these problems, we have decided to use surface normal based morphing 
[5] plus information obtained from VHP data, to interpolate images between successive 
slices of the infant’s stomach model. Because an object in one slice may correspond to 
two objects in the adjacent slice, based on the number of objects in consecutive slices, 
we classify the morphing into four cases as the following:  
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Case I: This is the simplest case where consecutive two slices have only one contour 
with shape variation as shown in Figure 6(a)). We first trace the boundary of both 
contours and compute the normal at each point on the contour as in Figure 7 in an 
between the two contours.  In the next step, between each pair of corresponding 
points, we compute a series of points based on constant velocity linear interpolation to 
generate multiple interpolating images between the slices. This leads to a smooth 
transition from one slice to the other.  

Case II: Considering the two consecutive CT images in Figure 6 (b), the first slice has 
only one contour and the second slice has two. From the accurate VHP model, we 
know that one contour slice contains esophagus only, while the other slice also con-
tains main stomach body that just appears in addition to the esophagus. Therefore, we 
morph the first contour in the first slice to the first contour of the second slice to  
construct esophagus. For the second contour that does not exist in the first slice, we 
introduce the centroid of the second contour as the starting point in the first slice. 
Morphing from this centroid in the first slice to the boundary of the second contour in 
the second slice generates smooth transition similar to the VHP model. 

a b

c d

 

Fig. 6. Different cases for morphing based on number of objects in consecutive slices. Each 
case is treated separately as explained in relevant section a) Case I, b) Case II  c) Case III  d) 
Case IV. 

Case III: The third case in developing the infant’s stomach model is when both con-
secutive slices have two contours shown in Figure 6 (c). In this case, both contours of 
the first slice are morphed to the corresponding contours on the second slice.  

Case IV: In the last case shown in Figure 6 (d), the first slice has two contours while 
the second contains only one contour. The knowledge from the VHP stomach model 
suggests that the two contours in first slice are going to merge into one contour. 
Therefore, before morphing, we merge the two contours into one by creating a line 
between the closest points on both contours as shown in Figure 7. Then we treat them 
as single contour to compute interpolating images as explained in Case I.   
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Fig. 7. For Case IV where two contours are mapped to one. The contours are merged first (L), 
treated as single contour and morphed to single contour (R) Surface normals are shown in blue.  

 

Fig. 8. (a) Original infant’s stomach model, (b) Improved infant’s stomach model by introduc-
ing intermediate slices based on morphing and interpolation 

 

After computing all the interpolating images, we use VTK to visualize the high reso-
lution version of the infant stomach model. Figure 8 shows the new model developed by 
morphed interpolation and its comparison with the initial infant stomach model.  

Having developed a reasonably accurate model of the infant stomach, our next step 
is to create a 3D interactive model that reflects stomach deformation upon touching 
force. More specifically, we want to deform the model surface using 3D interactive 
devices like haptic device. We first step is to construct 3D stomach model by extract-
ing isosurface. In order to achieve real-time interaction while maintaining smooth 
movement, we reduce the number of vertices in the model to 1,000. We establish and 
maintain the connectivity information in a vertex table, where each triplet in this table 
represents a triangle in the model. Using this information, we then construct a simpli-
fied mass-spring system for entire model as shown in Figure 9.  

Every vertex is connected to its neighboring vertices with spring that has a rest-
length measured by Euclidian distance between vertices. The force exerted on one 
vertex is a sum of forces from all its neighboring vertices. The total force F  is de-

termined by: 
0

n

i
i

F f
=

=∑
       

( )i s c r d sf k L L k v= − +  

where 
sk is the spring constant, 

cL , 
rL is the current and rest length of the spring re-

spectively, 
dk is the damping constant and 

sv is the velocity of the spring. In our  
 



620 Q. Chaudry et al. 

 

 

Fig. 9. (a) Mass-Spring model. Every vertex is connected to its neighboring vertices with 
springs that have rest-length measured by Euclidian distance between vertices. (b) Illustration 
of the return spring. The vertices moved to “Current Position” at application of force and will 
return back to “Home Position” when force is removed and return springs length become zero 
(rest length). 

 

Fig. 10. (a) Stomach model with 1,000 vertices (b) Pushing force is applied and model defor-
mation seen in the region marked red. (c) Pulling force is applied and model deformation seen 
in the region marked green. 

model 
rL  and 

cL are assigned as Euclidian distance between two vertices at the initial 

frame and the current frame of the simulation respectively. Figure 9 shows the de-
formable modeling using spring-damper mass system.   

During the simulation, to prevent vertices from spreading out, we add “return 
spring” proposed by [4]. Return springs have “zero” rest length. They make every 
vertex return to their home position if there is any discrepancy between the home 
position and the current position. Figure 10 shows the stomach deformation under two 
different type of touching forces by haptic devices: pushing and pulling.   

We execute the simulation on Intel Pentium Core 2 Duo 1.5Ghz CPU, with 2GB of 
RAM, Windows XP as the OS and Microsoft Visual C++ 8.0 as the development 
language. The haptic device we use is a Phantom Omni. We have achieved overall 60 
fps with a stomach model consisting of 1,000 vertices.  

3   Conclusion  

In this paper, we have successfully developed a high quality infant stomach model 
from a low resolution CT scan data by incorporating anatomy information from high 
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resolution VHP stomach data. We have also successfully simulated the stomach de-
formation upon touch force using a haptic device. By introducing more realistic sur-
face properties to our models, we expect the future models to contain more detailed 
properties for use in surgical planning. 
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Abstract. In this paper, we propose a novel method for automatic detection of
the lumen diameter and intima-media thickness from dynamic B-mode sono-
graphic image sequences with and without plaques. There are two phases in this
algorithm. In the first phase a dual dynamic programming (DDP) is applied to
detect the far wall IMT and near wall IMT. The general median curves are then
calculated. In the second phase, the DDP is applied again using the median curves
as the knowledge to obtain a more informed search and to potentially correct er-
rors from the first phase. All results are visually controlled by professional physi-
cians. Based on our experiments, this system can replace the experts’ manual
work, which is time-consuming and not repeatable.

1 Introduction

Arterial IMT analysis. Common carotid artery intima-media thickness (CCA-IMT)
measurements have been confirmed to be an early marker of atherosclerosis [1] and
have been associated with a higher risk of stroke [2] and myocardial infarction [3]. The
non-invasive sonographic examination has demonstrated its potential in early predicting
cardiovascular diseases. The IMT is an important index in modern medicine and can be
measured either manually [4] or automatically [5,6,7,8,9,10,11].

Arterial elasticity analysis. Moreover, the carotid artery stiffness (CS) (or elasticity) is
one of the important factors for predicting cardio-vascular (CV) events [12]. The factor
CS can be measured via measuring the systolic and diastolic carotid diameter on the dis-
tal wall of the CCA, 1 to 2 cm beneath the bifurcation with high-precision sonographic
modality. Firstly, carotid distensibility (CDist) is estimated through the variations in
arterial cross-sectional area and blood pressure (BP) during systole based on the as-
sumption of a circular lumen. CDist is calculated as CDist=ΔA/A · ΔP , where A is
diastolic lumen area and ΔA is the maximum area change during a systolic-diastolic
cycle, andΔP is the local blood pressure change measured by an applanation tonome-
ter. This pressure change can be approximated by the pressure change measured on the
arm in case that the applanation tonometer is deficient. This can be easily done in the
routine examination. The CDist can be converted to CS by giving CS=(CDist)−1/2 [12].

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 622–630, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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The automatic methods have the potential in reproducing results and eliminating
the strong variations made by manual tracings of different observers. Moreover, the
processing time can be considerably reduced. The motivation of this study is to develop
a confidential system which is able to detect the intima and adventitia of both near and
far artery walls, with or without plaques, automatically even under strong speckle noises
using dynamic B-mode sonographic image sequences. This system can identify not only
the IMT but also the lumen diameter (LD) during systolic and diastolic cycles, from
which the artery elasticity can be potentially calculated. Via this system, the dynamic
process of carotid artery (CA) can be represented by some parameters such as IMT
variation, lumen diameter variation, and IMT compression ratio.

This study provides a new technique for detecting the IMT and the LD changes
along a section of CCA, which is in general different from previously published works.
The proposed system contains two phases. In the first phase, a novel dual dynamic
programming (DDP) combined with some anatomic knowledge makes the detection
more robust against the speckle noises. In the second phase, the generalized median
filter is applied and the median curves are calculated, which are fed backwards to the
system and the DDP is applied again having the median curves as knowledge to correct
its results fully automatically. The proposed scheme has the following steps:

Phase 1

1. Input image Ik; 1 ≤ k ≤ K .
2. If k=1, manually select a rectangle r1; else, track rk using knowledge r1. (Sec.2.3)
3. Extract feature image gk from Ik having a rectangle rk. (Sec.2.4)
4. Apply DDP on gk to detect the dual curves (intima and adventitia). Output cIk and
cAk . (Sec.2.5)

5. Goto Step 1 until k > K .

Phase 2

1. Input cIk and cAk , 1 ≤ k ≤ K , calculate dual median curvesMI and MA and their
corresponding translation tIk and tAk . (Sec.2.6)

2. Apply DDP onto gk with guides (MI , MA, tIk, tAk ) and output the final intima and
adventitia curves for each image Ik; 1 ≤ k ≤ K . (Sec.2.7)

The rest part of this paper is organized as follows. In Section 2.1 we address how the
image sequences are acquired. The problems of this study are illustrated in Sec. 2.2.
The methods are described in Sec. 2.3 to 2.7. Then, results are demonstrated (Sec. 3),
discussion and conclusion are given in Sec. 4 and Sec. 5, respectively.

2 Materials and Methods

2.1 Image Acquisition

After at least 15 minutes of rest in the supine position, the ultrasonic examinations of
the right and left CCA were performed. An Esaote Mylab 25 ultrasound scanner with
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a high-resolution and digital beam former was used with a linear variable band 10-13
MHz transducer. The necks of the study subjects were turned slightly to the left or right
side. The transducer was positioned at the anterior-lateral side of the neck. The lumen
was maximized in the longitudinal plane with an optimal image of the near and the far
vessel wall of the CCA or carotid bifurcation. Thus, typical double lines could be seen as
the intima-media layer of the artery. Plaques were scanned in a longitudinal and cross-
sectional plane showing the highest diameter. At least two heart cycles of every subject
were acquired for measurement of the IMT or plaque, respectively. All sequences were
stored digitally in the ultrasound device and transferred to a commercially available
computer for further image analysis.

2.2 Problem Statement

Figure 1 shows a typical image made by our sonographic modality. The first problem
is the impact of speckle noises. It is very common that there are speckle noises in the
artery lumen. In general, the noises on the near-wall side are stronger than the noises on
the far-wall side. It makes the detection of near wall intima much more difficult, com-
paring to the detection of far wall intima. Second, some diseases such as atherosclerotic
plaques change the structure of IM complex or the intimal layer. Some changes result
in strong echoes such as calcification. When the intima is damaged, there are nearly
no echoes on the damaged part. In this case, the adventitia might be exposed on the
artery lumen. Third, we found the plaque might cause in different echoes in the same
places in the dynamic B-mode sonography, which might cause ambiguity in adventitia
recognition. This problem is indicated in Fig.1(b), (c), and Fig.2(h). There is an echo
near the adventitia, which is absent on the most images. The DDP detects it because it
does exist some echoes. However, according to the human beings judgment, since the
majority has no such echo so the majority wins. This detection as shown in Fig.1(b)
and (c) would be judged to be false. Finally, the target we are processing is moving
during the image sequence since it is made by dynamic B-mode sonography. There-
fore we have to deal with the tracking problem. Fortunately, the target we are tracking
does not change its shape in a large scale. We assume that the artery movement is only
in longitudinal direction, although there is less movement in horizontal direction. This
movement is due to the systolic and diastolic cycle. Moreover, there is no overlapping
or shadow problems, which might happen very often in the camera videos. In order to
conquer problems listed above, we propose the novel scheme as follows.

(a) (b) (c)

�� ��

Fig. 1. A typical B-mode sonographic image. (a) A sub-image from a dynamic image sequence.
(b) The DDP result superimposed on the sub-image of Frame No. 43. (c) The DDP result on
Frame No. 45.
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2.3 Artery Movement Tracking

Since the artery is moving during heart cycles in the dynamic B-mode sonography, the
artery tracking is an important issue. It is assumed that the artery has 1D movement, i.e.,
in the vertical direction. This movement is actually an extension of the artery lumen in
the heart systolic cycle. In addition, the whole artery might have a shift in the vertical
direction in a whole heart cycle. This system needs only one single manual input in
the beginning. The user has to select a rectangle area to cover the section area to be
measured. However, the artery might move out of this given rectangle in the subsequent
images. Therefore, a simple automated tracking algorithm is combined to help the sys-
tem finding the correct artery position in each image. Due to page limitation, details are
omitted here and the readers are referred to [13].

2.4 Image Features

The objective of this study is to detect the intima, adventitia of CA, and plaque outline
if any. There are many kinds of methods achieving the same goal. Some used gray level
or the gradient of gray level as features [7,11,6]. In this study, we use a simple feature
extraction method which is able to detect the intima and adventitia of both near and far
wall as well as plaques of CCA in dynamic B-mode sonography [11,14,13]. Here we
do not repeat the feature extraction process.

2.5 Dual Dynamic Programming (DDP)

In our previous study [11] we have developed dual dynamic programming (DDP) for
IMT detection. Some following works are based on this method which are able to detect
the IMT and the lumen diameters [14,13]. Let gk(x, y) denote the k-th feature image
grid of size M × N , where M and N are the number of rows and columns, respec-
tively. Assume the DDP running from left to right in order to find dual curves intima
and adventitia of the far wall. The DDP intends to find the global maximum, which
is the summation of the feature values on the grid where the dual curves go through.
The dual curves can be denoted as a point set {(i, y1i), (i, y2i)}, 1 ≤ i ≤ N , and its
corresponding feature values are {gk(i, y1i), gk(i, y2i)}. The cost function finding the
k-th dual curves can finally be defined as:

Ji(y1, y2) = min
j1,j2∈

{−dr,··· ,dr}
{Ji−1(y1 + j1, y2 + j2) + gk(i, y1)

+ gk(i, y2) + λ1|wi − wi−1|+ λ2(|j1|+ |j2|))}
subject to dmin ≤ y1 + j1 − y2 − j2 ≤ dmax,

dr ≥ |y1i − y1 i−1|, dr ≥ |y2i − y2 i−1| and 2 ≤ i ≤ N.

(1)

where λ1 and λ2 are weighting factors of the curve smoothness. The parameters y1,
y2 are the short form of y1i, y2i, respectively. All tuples (y1, y2) are tested if they fit
the constraint given in Eq.(1). The following steps including the initialisation and back-
wards tracing the dual paths can be found in [13]. The output (y∗1 , y∗2) which satisfies
the global maximization is then redefined to (yA

k , y
I
k) for following steps.
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2.6 Generalized Median Filter

In this section, we address a clinical application of generalized median filter [15] to pro-
duce a median curve representing either detected intimal or adventitial curve. Suppose
we have a sequence having K images, from each image the intimal layer is detected and
represented by cIk, where k = 1, 2, · · · ,K denotes the k-th image. Since the curve goes
from left to right, the x-coordinate is in an ascending order. The important information
is the y-coordinate which is represented by yI

k of the corresponding curve cIk. The goal
is to find a generalized median curveMI which has the minimum error to all these de-
tected curves cIk. However, since the artery has movement because the heart cycle, there
is another parameter tIk representing the translation of the corresponding intimal curve
on the k-th image. Therefore, the cost function to find out the generalized median curve
of intima is defined as follows:

f(MI , TI) =
K∑

k=1

N∑
i=1

(yI
ki − yI

i − tIk)2 (2)

where

MI = {yI
i |1 ≤ i ≤ N} is the median curve,N is the curve length;

yI
k is the y-coordinate of the k-th curve cIk which has n points;
TI = {tIk|1 ≤ k ≤ K} is the composition of all translations for each curve cIk.
Through some derivations, one can easily obtain:

tIk =
1
N

N∑
i=1

(yI
ki − yI

i ) (3)

yI
i =

1
K

K∑
k=1

(yI
ki − tIk) (4)

which can be solved iteratively by an EM algorithm. The calculations ofMA ={yA
i |1 ≤

i ≤ N} and TA for adventitia are similar.

2.7 Dual Dynamic Programming with Guides

Here we briefly describe how DDP uses median curves as guides. Let gk(x, y) denote
the k-th feature image grid as defined in Sec.2.5.

The anatomic knowledge (y1 > y2, dmin, and dmax), the guides by the median
curves (yI for intima and yA for adventitia) and the translations tIk and tAk are then
embedded into the DDP structure. The cost function finding the k-th dual curves can
finally be defined as:

Ji(y1, y2|yI , yA, tIk, t
A
k )= min

j1,j2∈
{−dr,··· ,dr}

{Ji−1(y1 + j1, y2+j2|yI , yA, tIk, t
A
k )+gk(i, y1)

+ gk(i, y2) + λ1|wi − wi−1|+ λ2(|j1|+ |j2|) + λ3(|y1 + j1 − (yA − tAk )|
+ |y2 + j2 − (yI − tIk)|)}
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subject to dmin ≤ y1 + j1 − y2 − j2 ≤ dmax,

dr ≥ |y1i − y1 i−1|, dr ≥ |y2i − y2 i−1|, and 2 ≤ i ≤ N.
(5)

where λ1 and λ2 are weighting factors of the curve smoothness; λ3 is the weighting for
median curves. The parameters y1, y2, yA, and yI are the short form of y1i, y2i, yA

i , and
yI

i , respectively. All tuples (y1, y2) are tested if they fit the constraint given in Eq.(2.7).
The following steps including the initialisation and backwards tracing the dual paths
can be found in [13]. The output (y∗1 , y

∗
2) which satisfies the global maximization are

the adventitia and intima of the corresponding k-th image.

3 Results

Figure 2 demonstrates the IMT and a plaque detection on the far wall. The problem
we want to solve in this paper is indicated in Fig. 2(h). There is an echo existing near
adventitia in the frames from frame number 40 to 46. We illustrate only frame num-
ber 41 and 44 as examples. With single DDP it can detect the adventitia as shown in

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

���� ��

Fig. 2. The far wall IMT and plaque detection: The first column are the raw sub-images; they are
frame No. 38, 41, 44, and 47, respectively. The second column are the results of DDP superim-
posed on the raw sub-images. The third column are the results of proposed scheme superimposed
on the raw sub-images.
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(a) (b)

(c) (d)

Fig. 3. Results of proposed method: From (a)-(d) are Frame No. 42, 43, 45, and 46

the second column. However, these results are judged to be wrong by an experienced
physician. This is because in the rest frames there existed no such an echo, which are
in majority. The generalized median filter uses the property that the majority wins so
that it can simulate human beings judgment. It obtains the correct results as shown in
the third column. Due to page limitation, all results cannot be displayed here. However,
the results made by single DDP are similar to Fig.2(e) and (h) from frame No. 40 to
46. The results made by this proposed scheme are similar to Fig.2(f) and (i) from frame
No. 40 to 46 as shown in Fig.3.

4 Discussion

The programs are setup on the Matlab platform. Some kernel functions are written
in C to speedup the whole process. The parameters used in this paper are: dr = 1,
dmin = 4 in IMT detection, dmin = 20 in LD detection, dmax = 40 in IMT detection,
dmax = 0.9 ·M in LD detection, and λ1 = λ2 = 0.1, and λ3 = 0.05. The computer
has Intel Core(TM)2 T5600 CPU with 1.83GHz, 2GB RAM. The computation time for
IMT detection is around 1.2 sec for the DDP with guides.

The novel system is able to detect the near and far wall IMT and the lumen diameter
of CCA in the B-mode sonographic videos, with and without plaques. Having these
results, we can provide physicians the CCA diameter changes during the heart cycle,
the compression rate of IMT, the plaque thickness and shape morphology. Furthermore,
in the future we are able to build the blood flow model to predict the shear stress on the
artery wall, which is a critical index for the vascular diseases.

5 Conclusion

In this paper we propose an intelligent method to detect the near and far wall IMT
as well as the LD of CCA in dynamic B-mode sonography, with and without plaques.
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Based on the experiments, the detection results are correct and do not need any
manual correction. This system is fully automated except it needs an initial rectan-
gle area selected by the user. In the future work, we will explore the relationship
between some diseases and the parameters extracted from the dynamic IMT and LD
by our system.
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14. Cheng, D.C., Pu, Q., Schmidt-Trucksäess, A., Liu, C.H.: A novel method in detecting CCA
lumen diameter and IMT in dynamic B-mode sonography. In: The 13th International Con-
ference on Biomedical Engineering, pp. 734–737 (2008)

15. Wattuya, P., Jiang, X.: A class of generalized median contour problem with exact solution.
In: Proc. of 11th Int. Workshop on Structural Pattern Recognition, Hong Kong (2006)



Parcellation of the Auditory Cortex into
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Abstract. We propose a method for the automated delineation of corti-
cal regions of interest as a basis for the anatomo–functional parcellation
of the human auditory cortex using neuroimaging. Our algorithm uses the
properties of the cortical surface, and employs a recent hierarchical part–
based pattern recognition strategy for a semantically correct labelling of
the temporal lobe. The anatomical landmarks are finally combined to
obtain an accurate separation and parametrisation of two auditory cor-
tical regions. Experimental results show the good performance of the
approach that was automated using simplified atlas information.

1 Introduction

The variability of the sulco–gyral patterns of the human cortex remains a chal-
lenging issue in analysing the correspondence between brain anatomy and func-
tion, e.g. using anatomical and functional MRI. There is evidence that at least
in some regions macro–anatomical landmarks are related to the individual un-
derlying cytoarchitectonic and thus functional organisation of the brain [2,3,1].
Therefore, annotating brain regions of interest (ROI) based on anatomical land-
marks is one promising approach to overcome the problem of inter–individual
variation. However, the manual definition of ROI is tedious and time–consuming,
and the reproducibility in highly variable brain regions, such as the auditory
cortex (AC), is not satisfactory [2]. Hence there has recently been great inter-
est within the brain imaging community in developing image analysis methods
for identifying anatomical landmarks as a starting point for brain functional
mapping. The popular warping methods map individual brains onto a labelled
reference brain, or atlas, using image–based features [1, 4, 5, 6], or manually la-
belled landmarks [7] to drive the registration. Topography–based parcellation
methods use graph–based descriptions of an atlas brain and the individual cor-
tices [10, 11, 12, 13, 8, 9, 14] for identifying regions of specific functionality. Even
though some of the methods provide good results, the high inter–subject and
inter–hemisphere variability in shape, topology and structural configurations of
the cortical folds may prevent an automatic and semantically correct parcellation
at the desired level of detail [2].

This paper aims at the detailed parcellation of the human auditory cortex.
Parcellation of the AC is difficult, since it includes identification and discrimina-
tion of specific supratemporal structures, e.g. Heschl’s gyrus, from similar shapes

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 631–638, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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within each individual cortical hemisphere. As the cortical surfaces provide too
little semantics in terms of curvature, an appropriate parcellation strategy must
allow deformable object recognition, and must apply to surface–based represen-
tations of the data. In contrast to the brain warping approach and topography–
based parcellation methods (e.g. [12]), our method directly employs a model
of the variability in the AC folds and their configuration for mapping of corti-
cal regions and their annotations. As shown in [16], anatomical labelling can for
now only be partially automated using a contextual pattern recognition method.
Hence our algorithm for parcellation relies on a two–stage strategy. First, we ren-
der the deformable prototype–based recognition method presented in [16] more
application–specific by adding basic atlas information. In contrast to [13], this
should not require extensive training, but constrain the search space to a certain
portion of the cortical surface containing the temporal lobe, and automate the
localisation of the desired anatomical landmarks (Sect. 2.1). Second, from the
gyral and sulcal labels we parcellate the AC into the desired landmark–oriented
ROI (Sect. 2.2). The local anatomical landmarks further provide an anatomically
meaningful parametrisation of the surface–based ROI, which does, in contrast
to e.g. [4], not require a warping of the individual surfaces.

2 Method

Our parcellation method uses the properties of the inner cortical surface (grey-
white matter boundary) that is represented as a triangular mesh V = {ϕk},
and exists in the folded and flattened states. The cortical surfaces were obtained
from the T1–weighted anatomical MR data sets using segmentations of the white
matter, corrected for topological errors and flattened using the software pack-
age BrainvoyagerQX (http://www.brainvoyager.com). By using the meshes in
their flattened configurations, variability related to the 3D–embedding of the
cortical landmarks is eliminated and labelling becomes less complicated (Fig. 1).

(a) (b) (c)

Fig. 1. Automatic labelling is easier in 2D, because the intrinsic anatomical variability
can be estimated by comparing two folds on the planar projection space (a). Figure
1b shows a portion of a cortical flat map, where color indicates gyri (light) and sulci
(dark) (cf. Eq. 1). Since each flat map vertex ϕk is associated with its position on the
3D folded cortical surface, assigned labels (b) can be projected back into 3D space (c).
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2.1 Anatomical Labelling

An empirical system of landmark–related ROI serves to parcellate the
AC into areas with known differential activation [15]. The ROI form adjacent
territories in the individual temporal lobes in relation to anatomical landmarks.
As depicted in Figures 2b and 2c, territory T1 follows the course of the most
anterior transverse gyrus, or Heschl’s gyrus (HG), on its anteromedial rim and
extends on the lateral aspect of gyrus temporalis superior (lGTS). T2 is centered
to Heschl’s sulcus (HS) and borders the anterior planum temporale (PT).

Identification of the anatomical landmarks uses an abstract decomposition of
the auditory cortical folding pattern into the different gyri and sulci in terms
of a hierarchical shape model suitable for part–based object recognition [16]. As
illustrated in Figure 2d, the lower level of the shape–structure hierarchy captures
the morphology of the single folds, namely HG - which may or may not show
a sulcus intermedius (SI) -, Sylvian Fissure (SF) and sulcus temporalis supe-
rior (STS), while their structural configurations are represented at the top level.
The high inter–subject variability in shape and configuration of the folds of the
temporal lobe [17] is accounted for first by combining non–specific morphologi-
cal Finite Element Models (FEM) of the single folds to construct class–specific
AC models that arrange HG (and HG plus SI, resp.) nearly orthogonal to the
two surrounding parallel sulci. Second, the variable topology of SF and STS is
adopted by using a single line–shaped FEM to represent a sulcus. This morpho-
logical shape model shall bridge over possible interruptions and must not follow
the highly variable side branches of a specific sulcus.

Automatic labelling of the landmarks. In the individual flat maps is ac-
complished by combining the hierarchical model of the AC folding pattern with
an evolutionary deformable shape search strategy, as described in [18]. At each
step of the fit the instances of the morphological shape models are aligned to
the top level model by top–down propagating the displacements of specific link
nodes. Then by searching for the best values of the desired image features the
FEM iteratively adapt to the local conditions in the data. The bottom–up flow

(a) (b) (c) (d)

Fig. 2. The segmentation of the landmark–related auditory ROI T1 and T2 utilises
the properties of 2D cortical flat maps. The hierarchical shape model (d) represents
Heschl’s gyrus (HG) as the central part of the auditory folding pattern located in the
temporal region (detailed in b-d).
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of information between the two levels of the model is implemented using the
hierarchy of external forces derived from the underlying curvature maps. Opti-
misation uses an objective function that incorporates both internal (degree of
deformation) and external energies (data mismatch) of the hierarchical model.

The curvature maps K(ϕk) are computed using an operator that separates
convex regions (gyri) and concave regions (sulci) in the folded surfaces (Figs.
1b, 1c, Fig. 2). The boolean mean curvature operator relies on the weighted sum
of vectors rij = ϕj − ϕi from vertex i to its neighbours j ∈ Ni, i.e. κ(ϕi) =∑

j∈Ni
(cotαj + cotβj)rij , where αj and βj are angles opposite to the edge

through vertices i and j w.r.t. its adjacent faces [19], such that

K(ϕi) =
{

0, κ(ϕi) · ni ≤ 0 (sulcal region),
1, otherwise, (1)

where ni is the surface normal at ϕi. Since discrete curvature estimates are
sensitive to high–frequency details, the cortical regions are separated as desired
only for smoothed curvature maps. We employ a discrete approximation of a
heat diffusion kernel, whose weights gσ are calculated based on geodesic inter–
vertex distances dij = |ϕi − ϕj |2, approximated by the length of the shortest
path between the vertices according to Dijkstra’s algorithm. Let N∗

i be the set of
ϕi and neighbours ϕj , for which dij < 3σ. Assuming a sufficiently small kernel
bandwidth σ (in our case σ = 2mm) and small inter–vertex distances,

gσ(ϕi, ϕj) = exp(−dij(2σ)−2)
( ∑

j∈N∗
i

exp(−dij(2σ)−2)
)−1

. (2)

The discrete convolution gσ ∗ K(ϕi) =
∑

j∈N∗
i
gσ(ϕi, ϕj)K(ϕj) is then repeated

τ times, e.g. τ = 2, to obtain a smoothed curvature map from which external
model forces can be computed by linear filtering.

The Finite Element Method yields an algebraic function that relates the de-
formed positions of all finite element nodes to the forces acting on the deformable
shape model [20],

fb(t) + f(t) = K(xt − x0). (3)

K encapsulates the stiffness properties as well as the type of mesh and discreti-
sation used, xt denotes the nodal positions at time t ≥ 0 of the simulation, and
fb represents the body forces. Using a map D(K,x) of the distance of each point
x to the closest relevant surface point (at which, e.g., the response to a linear
filter is high), the dynamic load is f(t) ∝ λD(K,xt), λ > 0 (Figure 3a).

Since we are interested in segmenting the ROI T1 and T2 (Fig. 2b), the
labelling of HS, the anteromedial rim of HG (aHG) and lGTS completes our
parcellation. HG and STS – which are segmented in the recognition step of our
algorithm – define expectation maps for the segmentation of the adjacent HS,
aHG and lGTS. These are likewise represented as morphological FEM to match
the individual curvature pattern. Our algorithm initialises the FEM based on
the parametrisation of the HG and STS model. More specifically, as HS repre-
sents the posterolateral border of HG, and STS defines the inferior border of
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(a) (b) (c) (d)

Fig. 3. The local deformation of the morphological FEM depends on external forces
computed from the curvature maps (a). For example, for each boundary node (black
dot) we interpolate from D the vector to the nearest vertex (white arrow) with maxi-
mum gradient magnitude |∇̂K|2, and use as nodal force a scaled version of its radial
component (black arrow). Fig. 3b shows a flat map with a color–coded overlay of the
segmented folds f , from which the landmark–related ROI T2 can be constructed. A
local coordinate system is established by finite element mapping (c) of quasi landmarks
that describe the ROI. Fig. 3d shows the deformed FEM TT2 (cf. Sect. 2.2).

GTS, we use the final position of their boundary nodes as displacement bound-
ary conditions for the following shape fit. Using this segmentation procedure,
geometrical and anatomical labels are combined, i.e. each flat map vertex which
contributes to one of the folds f ∈ {aHG,HG, SI,HS, SF, STS, lGTS}, is assigned
an additional label ϕk = lf (Figure 3b).

Atlas–based Restriction of the Search Space. Due to the difficulty of
defining specific cortical folds from a purely geometric point of view, we cannot
use the above strategy for a completely automated parcellation procedure (a
correct labelling is provided with a probability of 60 − 70% [16]). As detailed
in [18] model instances are initialised by an Euclidean transformation from the
model coordinate frame to the flat map coordinate frame. Since it constrains the
relative position of the folds, we only need to find a proper transformation of
the top–level shape model. The search space (spanned by the affine parameters
of the model instance in the image) is reduced using the 2D cartesian flat map
coordinate system for storing prior statistics about the parcellation labels. We
use N = 10 flat maps, which were constructed from MR data sets warped into
Talairach reference space [21], and contain the parcellation labels for the sulcal
landmarks SF and STS. The prior probability of parcellation label lf occurring
at atlas location ψ(x) is

p(P(x) = lf ) = card({lf |ψ(x)})N−1, (4)

where card returns the set size, and ψ describes a Talairach transform.

2.2 Parcellation and Parametrisation of the ROI

A ROI–based coordinate system is established in two steps. First, we construct
the landmark–oriented auditory ROI T1 and T2 based on the obtained segmen-
tations. The deformed FEM identify the starting and ending points for each
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landmark as well as a number of border points where two or more landmarks
meet. Based on these points, the surface patches labelled aHG, HG and HS are
combined with portions of the patches labelled SF and lGTS. Finally, T1 and T2
can be separated by the medial axis nodes of the HG model (and supplementary
SI, resp.), which extends from the medial tip of HG to its lateral intersection
with lGTS (Figs. 2, 3b). Splitting curves between the border points are then
parametrised with a predetermined number of points added between them. This
results in a set of quasi landmarks Pi, which can be used for assigning labels
ϕk = lr, r = T1,T2, to the vertices enclosed by the curves (Fig. 3d).

Flattening comprises unfolding the surface and mapping its vertices onto
the plane. This introduces geometric distortions that affect the constrained
parametrisation of the resulting surface patches based on the deformed shape
models. To reduce this effect as much as possible we match a quadrilateral FEM
Tr to the folded surface, using the point sets Pi to drive the registration. As
a result the associated natural 2D–local coordinate system is related with the
deformed shapes Tr embedded in 3D (Figs. 3c, 3d), allowing the interpolation
of the associated field variables over the mesh [20].

3 Experimental Evaluation

The two auditory ROI in the left and right hemispheres were parcellated for 16
subjects. A gold standard was given in terms of manual segmentations of the
ROI in the flat maps provided by two experts.

Typical results of our parcellation method are shown in Figure 4. In con-
trast to the results reported in [16] the anatomical landmarks were correctly
identified with no false positives. From the small average and maximum bound-
ary error of 1.3±0.2mm and 2.8±0.4mm, respectively, in comparison with expert
segmentations we can conclude that the individual parcellations were both ac-
curate and reproducible. The boundary error was slightly higher in the right
hemispheres, but at the order of the inter–rater difference (and local average
inter–vertex distance, respectively). The simplified sulcal shape models allowed
to bridge over interruptions and match the main branches as desired (Sect. 2.1).
For example, STS is often splitted into two segments, while in these cases the

Fig. 4. Parcellation of the left auditory ROI T1 (blue) and T2 (red) for three different
subjects
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more prominent part, which defines the inferior border of GTS [2], was always
segmented by our algorithm (Figure 3b). Our model–based approach further
offers a characterisation of the fitted shapes and implies classification. We ap-
plied two different class–specific shape models to each data set and compared
the quality of the resulting segmentations as described in [18]. This strategy
allowed automatically deciding upon the existence of a sulcus intermedius in
94% of all cases. The almost automatic classification is of advantage since this
specific landmark is considered an additional border between the primary (T1)
and secondary auditory cortex (T2) [15] (see Figure 1c for an example).

Advantages of the atlas–based labelling. Our method produced similar
results independent from the quality of the atlas, which was varied according to
Sect. 2.1 using N = 1, 10 and 20. A Talairach transform into the atlas space not
necessarily relates the semantics of coordinates across subjects. More specifically,
in our case for N = 10 only a small portion of the atlas surface contained values
p(P(x) = lf ) > 0.5 and no vertex was assigned the value 1. It was therefore
sufficient to align the MR data sets w.r.t. the commissura anterior (i.e. the
origin of the Talairach space [21]) instead of deforming the individual cortices to
precisely match the atlas. The required user interaction was thereby reduced to
identifying SF and STS in an example surface of each hemisphere and labelling
the voxel representing the commissura anterior in all data sets. Nevertheless,
this additional information rendered the deformable shape search more efficient
compared to [16]. Our results indicated 60% savings in computation time.

4 Conclusion and Outlook

Individual landmark–related ROI can be segmented almost automatically and
very precisely using a deformable model of the auditory cortical folding pattern
to adapt to the low resolution curvature information provided by the cortical
surfaces. By constraining the parametrisation of the shape models according
to promising atlas regions of two sulcal landmarks, the shape search for the
auditory temporal subregions was rendered both more efficient and successful
over [16]. Since in our case prior information regarding spatial relationships
between parcellation labels is incorporated into the shape model, we can use
a very simple atlas. This reduces the required user interaction to a minimum.

Results shown in [22] indicate that a regional, anatomically constrained
parametrisation supports functional localisation. Our method will now be vali-
dated for a larger set of anatomical data – and possible macro–anatomical vari-
ations – for assessing its utility in view of clarifying the correlation between the
(individual) anatomical configuration and functional organisation of the brain.
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Abstract. A realistic head model is needed for source localization methods used 
for the study of epilepsy in neonates applying Electroencephalographic (EEG) 
measurements from the scalp. The earliest models consider the head as a series of 
concentric spheres, each layer corresponding to a different tissue whose 
conductivity is assumed to be homogeneous. The results of the source reconstruc-
tion depend highly on the electric conductivities of the tissues forming the 
head.The most used model is constituted of three layers (scalp, skull, and 
intracranial). Most of the major bones of the neonates’ skull are ossified at birth 
but can slightly move relative to each other. This is due to the sutures, fibrous 
membranes that at this stage of development connect the already ossified flat 
bones of the neurocranium. These weak parts of the neurocranium are called fon-
tanels. Thus it is important to enter the exact geometry of fontaneles and flat bone 
in a source reconstruction because they show pronounced in conductivity. Com-
puter Tomography (CT) imaging provides an excellent tool for non-invasive in-
vestigation of the skull which expresses itself in high contrast to all other tissues 
while the fontanels only can be identified as absence of bone,  gaps in the skull 
formed by flat bone. Therefore, the aim of this paper is to extract the fontanels 
from CT images applying a variational level set method. We applied the proposed 
method to CT-images of five different subjects. The automatically extracted fon-
tanels show good agreement with the manually extracted ones.  

Keywords: newborns, fontanel, source reconstruction, level set, segmentation. 

1   Introduction 

The electroencephalogram (EEG) measures ongoing electrical activity of the brain re-
corded from electrodes placed on the scalp. It is widely used in clinical setting for the 
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diagnosis and management of epilepsy in adults and children. EEG provides the neces-
sary data for non-invasive estimation of the location of electrical sources in the brain. 
For these estimates inverse methods are used where location, amplitude, and orientation 
of a dipole source is adjusted to a model of the head to obtain the best fit between the 
measured EEG’s and those produced by the source in the model [1-3]. In addition to 
other factors such as noise, errors of location measurement, etc., the accuracy of these 
estimates depends highly on the accuracy of the head model [4]. Magnetic resonance 
imaging (MRI) and computed tomography (CT) are the two major neuroimaging mo-
dalities that can be used for multi-component head model construction. 

While MRI provides an excellent tool for non-invasive study of brain tissues it is 
not suitable for accurate skull extraction especially in newborns which have a very 
thin skull in comparison to adults. CT scan uses X-ray beams passing through the 
sample at a series of different angles. Based on the attenuation of these beams, an 
image can be constructed. Due to high its attenuation, the bone appears bright in CT 
images. Therefore, CT provides an excellent non-invasive tool for skull study and 
modeling. 

Most of the major bones of the neonates’ skull are ossified at birth but can slightly 
move relative to each other. This is due to the sutures, fibrous membranes that at this 
stage of development connect the already ossified flat bones of the neurocranium. These 
weak parts of the neurocranium are called fontanels [5]. Thus, fontanels are the narrow 
seams of fibrous connective tissue that separate the flat bones of the skull. They can be 
identified as gaps between two cranial bones in newborns' CT images. Newborns have 
six fontanels: the anterior and the posterior, two mastoid, and two sphenoid ones [5]. 
These fontanels have different electrical properties, conductivities, in comparison to the 
cortical bone. This difference may have not neglectable influence on the localization of 
the electrical sources in the brain [6]. Thus, accurate modeling of the fontanels will 
improve the results of source localization for newborns' brain. 

The present study aimed to extract the cortical bone and fontanels from newborns' 
CT images. The extracted tissues then can be combined with the extracted brain tis-
sues from MRI to construct a complete realistic 3D head model for newborns.  

The rest of the paper is organized as follows. Section 2 presents our method of cor-
tical bone and fontanel extraction from CT images. The extracted fontanels and 
evaluation results are presented in section 3. Finally concluding remarks and discus-
sion are given in section 4. 

2   Materials and Methods 

Figure 1 shows the block diagram of our method for bone and fontanel extraction 
from newborns' CT images. As shown, the cortical bone is extracted from CT images 
applying an automatic thresholding method. Then, the level set  method of minimal 
surface reconstruction as proposed by Zhao et al., [7] is used to determine the inner 
and outer surface of a closed skull model based on the before extracted cortical bone. 
Finally, the fontanels can be extracted by removing the bone from the constructed 
closed skull model. 

 



 Automatic Fontanel Extraction from Newborns’ CT Images 641 

 

Fig. 1. Cortical bone and fontanel extraction method 

2.1   Data Acquisition  

The developed method has been applied to the 3D volumetric CT images of five new-
borns aged between 40 and 42 weeks at the date of examination (gestational age). The 
CT images have axial orientation with data matrix of 256×256 pixels and voxel size 
0.75×0.75×1.25 mm3. 

2.2   Cortical Bone Extraction 

Due to the high contrast between bone and adjacent tissues in CT images of the head, 
cortical bones can be extracted by simple automatic histogram thresholding [8]. The 
extracted bones are labeled Vbone and used to construct the inner and outer skull surface. 

2.3   Skull Surface Reconstruction 

In order to reconstruct the inner and outer skull (bone and fontanel) surfaces from 
extracted cortical bones, the variational level set method and tagging algorithm pro-
posed by Zhao et al. [7] are applied. The method originally developed for surface 
reconstruction from unorganized data.  

Minimum surface-like model. Let S denote the data set which includes the before 
determined cortical bone surface patches. So, the basic problem is determining an N 
dimensional surface Γ which minimizes the following energy functional: 
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where d(x) is the distance function (dist(x, S)) from the point x to S, Γ is an arbitrary 
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As derived in [7], the variational level set formulation for energy functional (1) is: 
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where δ(x) is the one-dimensional delta function and ( ( )) ( ) dδ ϕ ϕ∇x x x  is the surface 
area element at the zero level set of φ. With the corresponding gradient flow for φ and 

extending the motion to all level sets by replacing δ(φ) with ϕ∇ , the level set formu-
lation for gradient flow will obtain as follow: 
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Though this level set can be used to smooth the implicit surface. For more and fast 
post smoothing, the level set proposed by Whitaker [9] is used using the variational 
level set formulation. Let φ0 denote the initial level set function whose zero level set is 
the surface to be smoothed. The smoothed implicit surface is defined as the zero level 
set of φ that minimizes the following functional: 

,)())()((
2

1 2
0 dxdxHH φφδεφφ ∇+−∫ ∫   (6) 

where H(x) is the one dimensional Heaviside function. The first term in the above 
energy functional is a fidelity term that measures the symmetric volume difference 
between two closed surfaces. The second integral in the above functional is the sur-
face area of the zero level set ofφ , which is a regularization term that minimizes the 

surface area of the smoothed surface. The constant ε is a parameter that controls the 
balance between the fidelity and the regularization. We again find the minimizer by 
following the gradient flow of (6), whose level set formulation is: 
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Initial surface. The surface reconstruction can be started with a simple initial surface 
such as cube or a sphere. However, if the initial surface is too far from the real shape, 
the PDE evolution takes a long time and computational cost. Therefore, a good initial 
surface helps to speed up convergence to the equilibrium surface. On a rectangular 
grid, an implicit surface can be used as an interface that separates the exterior grids 
from the interior grids.  

The tagging algorithm proposed by Zhao [10] aims to identify as many correct ex-
terior grids as possible and hence provides a good initial implicit surface. Since the 
size of the images in our application is rather big, applying this algorithm becomes 
very time consuming, therefore, we introduce here our modified tagging algorithm. 
We start from any initial exterior region that is a subset of the true exterior region. All 
grids that are not in the initial exterior region are labeled as interior grids. Those inte-
rior grids that have at least one exterior neighbor are labeled as temporary boundary 
grids. Now to march the temporary boundary, the Euclidean distance between all 
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grids and the extracted newborns' cortical bones is computed. Then all temporary 
boundary voxels which are not on the data sets are checked one by one. If it has an 
interior neighbor with a large or equal distance, this temporary boundary point will be 
considered as a final boundary point. Otherwise, this temporary boundary point will 
be returned into an exterior point. 

Reconstruction of inner and outer skull surface. The described level set method is 
applied to reconstruct the inner and outer skull surfaces (Γin and Γout respectively) 
based on the extracted cortical bones. The inner surface (Γin) is extracted by initializ-
ing the zero level set of function ),( txinφ inside the skull. According to equation (3), 

),( txinφ is negative inside Γin and positive outside Γin. Thus a negative value 

for ),( txinφ indicates the intracranial volume which is named VIC. Accordingly, the 

outer skull surface Γout is extracted by initializing the zero level set of func-
tion ),( txoutφ outside the skull. Here a negative value of ),( txoutφ indicates the intrac-

ranial (IC) and skull volume (VIC-skull). 

2.4   Fontanel Extraction 

In order to extract the fontanels, the obtained VIC and Vbone are combined and a mor-
phological filling filter is applied to fill eventual holes (VIC-bone). Then, by removing 
VIC-bone from VIC-skull the fontanels are extracted (Vfontanel). 
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2.5   Evaluation 

Quantitative evaluation of the results has been performed by calculating the similarity 
between the automatically extracted fontanels (La) and the corresponding manually 
extracted ones (ground truth, Lm). The results were evaluated using the following 
similarity index (SI):  
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( ) ( )ma
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Ln+Ln

LL
=SI

∩2n  (9)

3   Results 

The obtained results demonstrate that the developed method reliably extracts fontan-
els from newborns' CT images. Figure 2 shows the CT image of a selected subject, its 
extracted cortical bone, inner and outer skull surfaces and finally the extracted fon-
tanel. As can be seen in Figures 2.c and 2.e, the inner and outer surfaces are closed 
surfaces. The fontanels are closing smoothly the gaps left by the before detected flat 
bones, both forming together the closed skull model. Therefore, by removing these 
bones from the closed skull, the fontanels can be obtained (Figure 2.h).  
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(h)

(e)

(a) (b)

(c) (d)

(f)

(g)
 

Fig. 2. Fontanel extraction. (a) Input CT image, (b) cortical bone after automatic thresholding, 
(c) final inner skull surface, (d) VIC, (e) final outer skull surface, (f) VIC-skull, (g) skull volume 
including extracted fontanels and bone, (h) manually extracted fontanels. 

 



 Automatic Fontanel Extraction from Newborns’ CT Images 645 

Table 1 shows the quantitative results for three subjects obtained according to the 
similarity index. The results show 76±4% similarity for the automatically extracted 
fontanels with the corresponding ground truth. 

Table 1. Similarity index, providing a measure for the similarity between automatically and 
manually extracted fontanels from newborns' CT images applying variational level set 

 Similarity Index 

Subject 1 0.74 

Subject 2 0.75 

Subject 3 0.72 

Subject 4 0.80 

Subject 5 0.82 

4   Discussion and Conclusion 

In this paper we presented our approach for extracting fontanels from newborns' CT 
images based on variational level set method. Quantitative and qualitative results dem-
onstrate the accuracy of the developed method for fontanel extraction from newborns. 

The extracted fontanels and cortical bone in conjunction with the brain tissue mod-
els (after coregistration) may provide a realistic head model that can be used for ap-
plications such as source localization in newborns. This is important because of  
the different electrical conductivity of fontanels with respect to bone. In addition, the 
automatically extracted fontanels can be used for determining growth patterns for the 
newborns' skull. 

Acknowledgment 

This work was partially supported by the Center for International Research & Col-
laboration of Iran (ISMO) under the grant number 86/13 and EGIDE France under the 
grant number 18639PL (Jundi Shapour scientific collaboration program). 

References 

1. Mosher, J.C., Leahy, R.M.: Recursive MUSIC: A Framework for EEG and MEG Source 
Localization. IEEE Trans. on Biomedical Engineering 45(11) (November 1998) 

2. Liu, H., Gao, X., Schimpf, P.H., Yang, F., Gao, S.: A Recursive Algorithm for the Three-
Dimensional Imaging of Brain Electric Activity: Shrinking LORETA-FOCUSS. IEEE 
Trans. on Biomedical Engineering 51(10) (October 2004) 

3. Baillet, S., Riere, J.J., Marin, G., Mangin, J.F., Aubert, J., Garnero, L.: Evaluation of in-
verse methods and head models foe EEG source localization using a human skull phantom. 
Physics in Medicine and Biology 46(1), 77–96 (2001) 



646 K. Kazemi et al. 

4. Cuffin, B.N.: EEG Localization Accuracy Improvements Using Realistically Shaped Head 
Models. IEEE Trans. on Biomedical Imaging 43(3) (March 1996) 

5. Kiesler, J., Richer, R.: The Abnormal Fontanel. American Family Physician 67(12) (June 
2003) 

6. Roche-Labarbe, N., Aarabi, A., Kongolo, G., Gondry-Jouet, C., Dümpelmann, M., Grebe, 
R., Wallois, F.: High-resolution EEG and source localization in neonates. Human Brain 
Mapping 29(2), 167–176 (2008) 

7. Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and non-parametric shape recon-
struction from unorganized points using variational level set method. Computer Vision and 
Image Understanding 80(3), 295–319 (2000) 

8. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. 
Cyber. 9, 62–66 (1979) 

9. Whitaker., R.: A level set approach to 3D reconstruction from range data. International 
Journal of Computer Vision (1997) 

10. Zhao, H., Osher, S.: Contributed chapter. In: Osher, S., Paragios, N. (eds.) Geometric 
Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2002) 



Modeling and Measurement of 3D Deformation
of Scoliotic Spine Using 2D X-ray Images�

Hao Li1, Wee Kheng Leow1, Chao-Hui Huang1, and Tet Sen Howe2

1 Dept. of Computer Science, National University of Singapore, Singapore
2 Dept. of Orthopaedics, Singapore General Hospital, Singapore
{lihao,leowwk,huangch}@comp.nus.edu.sg, tshowe@sgh.com.sg

Abstract. Scoliosis causes deformations such as twisting and lateral
bending of the spine. To correct scoliotic deformation, the extents of 3D
spinal deformation need to be measured. This paper studies the modeling
and measurement of scoliotic spine based on 3D curve model. Through
modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic
spine can be recovered by obtaining the minimum potential energy reg-
istration of the rod to the scoliotic spine in the x-ray image. Test results
show that it is possible to obtain accurate 3D reconstruction using only
the landmarks in a single view, provided that appropriate boundary con-
ditions and elastic properties are included as constraints.

Keywords: Scoliosis, spine, 3D reconstruction, modeling and measure-
ment, deformation, Cosserat rod.

1 Introduction

Scoliosis is a disease that causes deformations such as twisting and lateral bend-
ing of the spine. To correct scoliotic deformations by surgery and spinal fixation,
the extents of 3D spinal deformations need to be measured [1,2]. In principle,
these measurements can be made on the 3D model reconstructed from the pa-
tient’s CT volume image of the spine. However, the radiation dosage of the
patient in such a CT scan is too high. Therefore, x-ray imaging is currently the
imaging technique of choice for the diagnosis and treatment of scoliosis. Multiple
views of the patient’s spine can be taken at the same time using biplanar radio-
graphy [3] or at different time using conventional radiography, with the patient
turning to the side. Biplanar radiographic machines are bulky and inflexible. As
they have limited use in clinical practice, they have been replaced by CT scan-
ners. Therefore, conventional radiography is more commonly used for capturing
x-ray images of scoliotic spines. A comparison of radiographic and CT methods
for measuring vertebral rotation is given in [4].

There is a wide spectrum of existing works on the measurement of 3D scoliotic
deformations based on x-ray images. In one extreme, a 3D curve is regarded as
a simplified model of the spine, and it is registered to the spine in the x-ray

� This research is supported by A*STAR SERC 0521010103 (NUS R-252-000-319-305).

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 647–654, 2009.
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image [5,6,7]. This approach is efficient but its accuracy is not guaranteed due
to the simplicity of the model. In the other extreme, detailed patient-specific 3D
models of vertebrae are reconstructed from biplanar radiography and then reg-
istered to the vertebrae in conventional radiographic images [8,9,10]. In theory,
this approach should yield the most accurate measurements. However, it can be
tedious and computationally very expensive.

From the anatomical point of view, the spine is a chain of rigid bodies (the
vertebrae) that can rotate about their articulated joints within physical lim-
its. Whereas a 3D curve may be too simplified a model for the spine, detailed
patient-specific 3D models of vertebrae most likely contain too much redundant
information for accurate measurement of scoliotic deformations. By determining
the simplest model that produce accurate results, an efficient and less tedious
approach for the measurement of scoliotic deformations can be identified. In this
paper, we present an initial effort in determining the optimal model that bal-
ances accuracy and efficiency of measurement. Due to page limit constraint, this
paper will focus on studying methods based on 3D curves. Methods based on
detailed vertebra models will be studied in a follow-up paper.

2 Related Work

Existing work on the measurement of 3D deformations of scoliotic spine can be
categorized according to the spine model used: (1) 3D curve and (2) detailed
3D model. For 3D curve-based approach, [5,6] provides a GUI for the user to
manually fit a 3D Bezier curve with 18 control points to the centerline of the
spine in biplanar x-ray images. The fitted 3D curve is then used to perform
Lenke and King classification of the type of scoliotic deformities [11,12]. In [7],
the user manually fits a 3D Bezier curve with 6 control points to the centerline
of the spine in biplanar x-ray images. In addition, the user identifies landmarks
on key vertebrae in the images, and the algorithm interpolates the landmarks of
other vertebrae based on the fitted 3D curve. The landmarks of the vertebrae are
then used to compute the 3D positions and orientations of the vertebrae. These
methods are computationally efficient but they require a lot of user inputs and
interactions. Their accuracy depends on the expertise of the user.

For detailed model-based approach, the method of [8,9] first extracts the cen-
terline of the spine based on the segmentation algorithm of [13], which is used
to compute the global positions of the vertebrae in the image. Then, it locally
deforms a statistical vertebra model to register to the edges of individual ver-
tebra in the x-ray image, subject to the constraint that the vertebra models
form a smooth spine model. The statistical model is learned from a set of train-
ing scoliotic vertebrae [14]. The registered vertebra models can then be used to
measure scoliotic deformations. Novosad et al. [10] fits patient-specific vertebra
models reconstructed from biplanar radiography. The models are registered to
the manually identified landmarks of the vertebrae in a single lateral bending
x-ray image, subject to the constraint that the vertebra models form a smooth
spine. In principle, this approach can be very accurate, with a reported mean
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accuracy of about 1mm on reconstructing a vertebra [3,15]. However, it is very
tedious and computationally very expensive, especially for the reconstruction of
patient-specific model of each vertebra of the spine.

3 Modeling Scoliotic Deformations

Our approach models a spine by a 3D curve with elastic properties called a
Cosserat rod [16] (Sec. 3.1). The model is registered to the spine in x-ray images
to recover the 3D structure of a scoliotic spine (Sec. 3.2). After registration,
twisting and lateral bending of the model are computed and serve as the corre-
sponding measurements of the patient’s spine.

3.1 3D Spine Model Representation

The spine is represented by a sequence of points ri on the spinal centerline. Each
point ri corresponds to the mid-point on the top end of a vertebra (Fig. 1(d)).
When projected to 2D, this point remains in the middle of the top end of the
vertebra, which is easy to identify (Fig. 1(e)).

Attached to each point ri are the directors dik, k ∈ {1, 2, 3}, which represent
the 3D orientation of the vertebra (Fig. 1(d)). The director di3 is the tangent
direction of the centerline at ri. di1 and di2 are the frontal and lateral directions
of the vertebra that are always orthogonal to di3. The set of parameters {ri,dik}
specifies the configuration of the model M .

According to the theory of Cosserat rod [16], the bending and twisting of the
model can be defined based on the linear strain vector vi and angular strain
vector ui such that

vi = ∂sri, ∂sdik = ui × dik, k ∈ {1, 2, 3}. (1)

(a) (b) (c) (d) (e)

Fig. 1. Generic spine model. (a) Anterior view. (b) Lateral view. (c) Posterior view.
(d) Vertebra with its directors. Triad indicates position and directors of vertebra. (e)
Manually identified landmarks on the x-ray image. The landmarks are identified in the
middle of the top end of each vertebra.
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The strain vectors ui and vi can be resolved into three components by the
directors dik to compute the strain variables uik and vik:

uik = ui · dik, vik = vi · dik, k ∈ {1, 2, 3}. (2)

The components ui1 and ui2 are the curvatures along directors di1 and di2. They
measure the postero-anterior bending and lateral bending of the vertebra. The
component ui3 measures twisting, whereas vi1 and vi2 measure shear, and vi3
measures stretching.

3.2 3D-2D Non-rigid Registration

The most common radiographic imaging technique in clinical practice captures
the postero-anterior and lateral views of a patient’s spine at different time. It
is humanly impossible for the patient to keep exactly the same posture during
the two captures. To accommodate such clinical practice, landmarks mi are
manually placed only on the vertebrae in the postero-anterior view.

The directors dik of the first and last vertebrae derived from the postero-
anterior and lateral views serve as the boundary conditions. In Section 4, we
will show that these data from the two views are sufficient to yield an accurate
reconstruction of the 3D model of the patient’s spine.

Non-rigid registration is performed by determining the configuration {ri,dik}
of the model M that minimizes the cost function:

E = Ef + EI (3)

subject to the boundary conditions. Quasi-Newton algorithm [17] is applied to
optimize the cost function.

The term Ef is the 3D-2D registration error:

Ef =
∑
i∈L

‖P(ri)−mi‖22, (4)

where P is the projection matrix that projects the 3D point ri = (xi, yi, zi) onto
the image plane. For simplicity, we assume weak perspective projection of the
x-ray images and the postero-anterior image plane is parallel to the x-y plane
of the world coordinate frame in which the 3D spine model resides. Therefore,
the image plane and the world coordinate frame are related by scaling s and
translation T. The 3D-2D registration error is thus:

Ef =
∑

i

∥∥∥∥s [xi

yi

]
+ T−mi

∥∥∥∥2

2
. (5)

The potential energy EI that constrains the bending and twisting of the spine
is defined according to the Cosserat rod theory:

EI =
∑

i

3∑
j=1

[αij(uij − u0
ij)

2 + βij(vij − v0ij)2], (6)
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where u0
ij and v0ij are the strain variables in the initial configuration of the spine.

They represent the natural bending and twisting of a normal spine. The stiffness
coefficients αij and βij of the corresponding strains are dependent on the elastic
properties and the geometrical properties of the model. The elastic properties,
including the Young’s modulus Y and shear modulus G, are determined by ap-
plying Monte Carlo technique on a set of training data. In this way, the bending
and twisting of the model will be consistent with those of actual spines.

4 Experiments and Discussion

Experiments were conducted to evaluate the proposed model, and to examine the
necessary inputs for accurately reconstructing and measuring 3D scoliotic spine.
Qualitative tests were performed on 30 pairs of real x-ray images (Sec. 4.1). For
quantitative evaluation of the proposed model (Sec. 4.2), thirty sets of synthetic
data were generated by manually adjusting the generic spine model to emulate
different but realistic scoliotic spines in the real x-ray images.

Note that a spine has a total of 24 vertebrae. Medical assessment of scoliosis
does not include the cervical vertebrae (Fig. 1, C3–C7). So, landmarks are not
placed on them in the x-ray images. They are placed only on the thoracic ver-
tebrae (T1–T12) and the lumbar vertebrae (L1–L5). In fact, some x-ray images
do not contain cervical vertebrae.

4.1 Tests on Real x-Ray Images

In the qualitative tests, for each test set, a pair of postero-anterior and lateral x-
ray images of scoliosis patient were provided. The landmarks on the vertebrae of
the postero-anterior view were identified manually. The boundary conditions of
the spine, i.e., the position ri and directors dik of T1 and L5 were derived from
the user specified points on both postero-anterior and lateral views. For each
patient with a pair of x-ray image, the number of input points was 21 in total.
The proposed model took on the average 15 seconds to fit the landmarks in the
x-ray image, thus reconstructing the 3D patient-specific model of scoliotic spine.
The average registration error (Eq. 4) is 0.228mm, which means the projection
of the 3D model is very close to the landmarks in the postero-anterior view.

Three examples of the fitting results are illustrated in Figure 2, where the
amount of lateral bending of the vertebrae are shaded in color. Note that al-
though the lateral views provide only boundary conditions for the inputs, our
reconstructed models can still fit the whole spines in the lateral views well.
Therefore, our approach, with the trained elastic properties, is able to correctly
model the bending and twisting of the actual spine. Since the lateral view was
not scanned at the same time as the postero-anterior view, the posture of the
patient may change between views. Thus, some of the reconstructed vertebra
models do not align very well in the lateral views. On the other hand, since
the landmarks in the postero-anterior views were given, the projections of the
reconstructed spine models fit quite well with the postero-anterior x-ray images.
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(a) (b)

Fig. 2. 3D reconstruction results. Each row shows the results of a test set. (a) Postero-
anterior view. (b) Lateral view. X-ray images and 3D models are overlapped and
zoomed in to illustrate the fitting results. Zoomed-in 3D models in the overlapping
images are set to transparent blue color. Vertebrae are shaded in red to illustrate the
amount of lateral bending.
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Fig. 3. Reconstruction errors for different number of input landmarks. (a) Mean fitting
error of vertebra. PA: landmarks on postero-anterior view. PA+L: landmarks on PA
and lateral view. LB: lower bound [3,15]. (b) Mean error of bending and twisting. -B:
bending error. -T: twisting error.

4.2 Quantitative Tests with Synthetic Data

Thirty sets of synthetic data were generated for quantitative evaluation of the
proposed model. For each test set, the ground truth spine model was obtained
by manually adjusting the generic spine model to emulate a different but real-
istic scoliotic spine in the x-ray images. Eight test cases were performed with
boundary conditions for T1 and L5 and varying number of postero-anterior land-
marks (PA in Fig. 3(a)). For comparison, another test case was performed with
17 postero-anterior and 17 lateral landmarks (PA+L in Fig. 3(a)). For each test
case, 3D reconstruction error, bending error, and twisting error averaged over
30 test sets were measured.

Figure 3(a) shows that the 3D reconstruction error decreases with increasing
number of landmarks. For accurate reconstruction, e.g., error ≤ 2.3mm, 15–17
landmarks are required. With 17 postero-anterior landmarks, the reconstruction
error is close to that obtained with 17 postero-anterior and 17 lateral land-
marks. This indicates that the lateral landmarks are mostly redundant since the
boundary conditions and elastic properties provide sufficient constraints to ob-
tain accurate reconstruction. The reconstruction error of 2.114mm for the PA-17
case is also close to the theoretical lower bound of 1mm reported in [3,15].

Figure 3(b) shows that twisting error is not as strongly affected by the number
of landmarks as the bending error. This is reasonable because the spine can bend
more easily than it can twist. For accurate measurement of bending, sufficient
number of landmarks, e.g., 15–17, are required.

5 Conclusion

This paper studies the modeling and measurement of scoliotic spine based on
3D curve model. The proposed method models a scoliotic spine as a 3D Cosserat
rod. The reconstruction of the 3D scoliotic spine is achieved by obtaining the
minimum potential energy registration of the rod to the scoliotic spine in the
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x-ray image. Experimental results show that it is possible to obtain accurate 3D
reconstruction using only the landmarks in a simple view, provided that appro-
priate boundary conditions and elastic properties are included as constraints.
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Abstract. This paper presents a comparative study on five feature selection
heuristics applied to a retinal image database called DRIVE. Features are cho-
sen from a feature vector (encoding local information, but as well information
from structures and shapes available in the image) constructed for each pixel in
the field of view (FOV) of the image. After selecting the most discriminatory fea-
tures, an AdaBoost classifier is applied for training. The results of classifications
are used to compare the effectiveness of the five feature selection methods.

Keywords: Retinal images, vessel segmentation, AdaBoost classifier, feature
selection.

1 Introduction

Automatic vessel segmentation in retinal images is very important, as the retinal vascu-
lature may reveal vascular and nonvascular pathologies.

In the literature supervised methods have been used for vessel segmentation. Pixel
classification based on supervised methods require hand-labeled ground truth images
for training. Sinthanayothin et al. in [13] classify pixels using a multilayer percep-
tron neural net, for which the inputs were derived from a principal component analysis
(PCA) of the image and edge detection of the first component of PCA. In [12] a sim-
ple feature vector is extracted for each pixel from the green plane and then a K-nearest
neighbor (kNN) is used to evince the probability of being a vessel pixel. Another super-
vised method, called primitive-based method, was proposed in [16]. This algorithm is
based on the extraction of image ridges (expected to coincide with vessel centerlines)
used as primitives for describing linear segments, named line elements. Consequently,
each pixel is assigned to the nearest line element to form image patches and then clas-
sified using a set of features from the corresponding line and image patch. The feature
vectors are classified using a kNN-classifier. The method presented by Soares et al.
in [14] produces also a segmentation after a supervised classification. Each image pixel
is classified as vessel or non-vessel based on the pixel feature vector, which is com-
posed of the pixel intensity and two-dimensional Gabor wavelet transform responses
taken at multiple scales. A Gaussian mixture model (a Bayesian classifier in which
each class-conditional probability density function is described as a linear combination
of Gaussian functions) classifier is then applied to obtain a final segmentation. Feature
selection is applied only by Staal et al. in [16]. The scheme used is the sequential for-
ward selection method. The selection method starts with a null feature set and at each

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 655–662, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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step, the best feature that satisfies the criterion function (the area under the receiver
operating characteristic curve) is added to the feature set. The set with the best perfor-
mance is chosen, after all features have been included.

Feature selection is used as a preprocessing step to machine learning, because is
effective in reducing dimensionality, removing irrelevant data and increasing learning
accuracy. Algorithms that perform feature selection can be divided into two categories:
the filter model and the wrapper model. The filter model is computationally efficient
especially when the number of features is very large, because it doesn’t involve any
learning algorithm when selecting features. It relies only on general characteristics of
the training data, while the wrapper model needs one predetermined learning algorithm
in feature selection and uses its performance in order to evaluate and determine which
features are selected.

We have developed a new supervised method for retinal vessel segmentation called
FABC. The method is based on computing feature vectors for every pixel in the image
and training an AdaBoost classifier with manually labeled images. The feature vector
is a collection of measurements at different scales taken from the output of filters (the
Gaussian and its derivatives up to the 2 order, matched filters and two-dimensional Ga-
bor wavelet transform responses), from the identification of edge and ridge pixels and
from other local information which are extracted after computing the Hessian of the
image for each pixel. The basic idea is to encode in the feature vector local information
(pixel’s intensity, Hessian-based measures), spatial properties (the gray-level profile of
the cross-section of a vessel can be approximated by a Gaussian curve) and structural in-
formation (vessels are geometrical structures which can be seen as tubular). We used an
AdaBoost classifier to divide pixels into two classes, i.e., vessels and non-vessel pixels.

In order to analyze the improvement of the computational time, as well as of the
accuracy and the performance of the classification, we decided to perform a compara-
tive study on feature selection methods applied as a preprocessing step to the AdaBoost
classification of the vessel and non-vessel pixels. In this paper we present five feature
selection heuristics, which are evaluating the goodness of features through feature sub-
sets. All five methods are subset search algorithms based on the filter model (as the filter
model is computationally less expensive than the wrapper model).

2 Database and Features

2.1 Database

The database we use for testing and evaluating the methods is the public database named
DRIVE (Digital Retinal Images for Vessel Extraction). The photographs for the DRIVE
database were obtained from a diabetic retinopathy screening program in The Nether-
lands. Each image has been JPG compressed. The images were acquired using a Canon
CR5 non-mydriatic 3CCD camera with a 45 degree field of view (FOV). Each image
was captured using 8 bits per color plane at 768 by 584 pixels. The FOV of each image
is circular with a diameter of approximately 540 pixels. For this database, the images
have been cropped around the FOV. For each image, a mask image is provided that
delineates the FOV and also a ground truth segmentation of the vessels (Figure 1). The
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(a) (b) (c)

Fig. 1. Retinal image (a), mask image (b) and ground truth segmentation of the vessels (c)

data set includes 40 584 × 565 fundus images, divided into a training and test set,
each containing 20 images. All images are available for download at the web site of
the Image Sciences Institute of the University Medical Center Utrecht http://www.
isi.uu.nl/Research/Databases/DRIVE/download.php.

2.2 Pixel Features

Features are extracted from the green plane of the retinal images, because in the green
plane the contrast between vessel and background is higher than in the blue or red plane.

The feature vector consists of the output of filters (items 1 and 2 in the list below),
vesselness and ridgeness measures based on eigen-decomposition of the Hessian com-
puted at each image pixel (items 3, 4 and 5), and the output of a two-dimensional Ga-
bor wavelet transform taken at multiple scales (item 6). Moreover the feature vector
includes the principal curvatures, the mean curvature and the values of principal direc-
tions of the intensity surface computed at each pixel of the green plane image. The value
of the root mean square gradient and the intensity within the green plane at each pixel
are also included in the feature vector (items 7 and 8). The total number of features
composing the feature vector at each image pixel is 41. Four scales are used to detect
vessels of different width:

√
2, 2, 2

√
2 and 4.

We give below the list of components of the feature vector.

1. Gaussian and its derivatives up to order 2. (features 1st − 24th in Table 3)
2. Green channel intensity of each pixel. (feature 25th in Table 3)
3. Multiscale matched filter for vessels using a Gaussian vessel profile. [15] (feature

26th in Table 3)
4. Frangi’s vesselness measure. [3] (features 27th − 28th in Table 3)
5. Lindeberg’s ridge strengths. [9] (features 29th − 31st in Table 3)
6. Staal’s ridges. [16] (feature 32nd in Table 3)
7. Two-dimensional Gabor wavelet transform response taken at multiple scales. [14]

(feature 33rd in Table 3)
8. Values of the principal curvatures (features 34th − 35th in Table 3), of the mean

curvature (feature 36th in Table 3), of the principal directions (features 37th−40th

in Table 3) and of the root mean square gradient (feature 41st in Table 3) of the
image.

http://www.isi.uu.nl/Research/Databases/DRIVE/download.php
http://www.isi.uu.nl/Research/Databases/DRIVE/download.php
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3 Sample Selection

The training set within the DRIVE database consists of 20 images of size 584 × 565
pixels, hence for training we had to choose from 6, 599, 200 pixels (but we considered
only the pixels inside the FOV which are 4, 449, 836). Due to the large number of
pixels, only 789, 914 pixel samples where randomly chosen to train the classifier, i.e.,
789, 914/20 pixels from each image, keeping the same proportion as in the ground-
truth image between vessel and non-vessel pixels. The sample size was computed with
a Z-test, considering a confidence level of 95% and a margin of error of 10%.

4 Feature Selection Heuristics

Feature selection is applied prior to classification, with the purpose to find a subset of
features that optimizes the classification process, in terms of accuracy, performance and
computational time.

As described in [6], Correlation-based Feature Selection (CFS) first calculates a ma-
trix of feature-class and feature-feature correlations from training data. Based on these
matrices a heuristic for evaluating the merit of a subset of features is computed. The
heuristic takes into account the usefulness of individual features and in the same time
the level of intercorrelation among them. The hypothesis on which the heuristic is based
is: Good feature subsets contain features highly correlated with the class, yet uncorre-
lated with each other.

The following equation (as in [4]) formalizes the heuristic:

MeritS =
krcf√

k + k(k − 1)rff

where MeritS is the heuristic merit of a feature subset S containing k features, rcf is
the average feature-class correlation, and rff is the average feature-feature intercorre-
lation. The numerator gives an indication of how predictive a group of features are; the
denominator of how much redundancy there is among them.

4.1 Correlation-Based Feature Selection with Hill-Climbing Search Strategy
(Heuristic H1)

In order to find the best subset that has the higher merit without trying all possible sub-
sets, hill-climbing search strategy may be used. The algorithm starts with an empty set of
features and generates all possible single feature expansions. The subset with the highest
merit is chosen and expanded in the same way by adding single features until all features
are added. The subset with the highest merit found during the search will be selected.

4.2 Correlation-Based Feature Selection with Best-First Search Strategy
(Heuristic H2)

Usually CFS uses a best-first search strategy. Best-first search is similar to hill-climbing
search, with the difference that if expanding a subset the merit doesn’t maximize, the
search drops back to the next best unexpanded subset and continues from there. CFS
uses a stopping criterion of five consecutive fully expanded non-improving subsets. The
subset with the highest merit, found in this way, is returned when the search terminates.



A Comparative Study on Feature Selection for Retinal Vessel Segmentation 659

4.3 Consistency-Based Feature Selection with CFS (Heuristic H3)

An inconsistency is defined in [2] as two instances having the same feature values but
different class labels. As the consistency measure is applied to each feature and not to
a feature subset, in order to choose a minimum number of features that separate classes
as consistently as the full set of features does, we sort the set of features by the number
of inconsistencies in ascending order and apply a modified CFS to this sorted set. We
apply the CFS in order to find the best correlated and consistent subset. The algorithm
starts with the set containing only the feature with less inconsistencies. For this subset
the merit is computed. The subset is expanded by adding one by one the features from
the sorted set described above. The subset with the highest merit is returned as the best
subset which is consistent and highly correlated.

4.4 Entropy-Based Feature Selection with CFS (Heuristic H4)

The entropy of each feature is defined as −sum(plog2(p)), where p is the histogram
counts of all the feature values. The smaller a feature’s entropy, the more discriminatory
the feature; hence we sort the set of features by the entropy values in ascending order
and apply the modified CFS described above. The idea behind the modified CFS is not
to decide a priori how many features to choose having low entropy, but to choose those
highly correlated.

4.5 MIT Correlation with CFS (Heuristic H5)

The MIT correlation is based on the t-statistics and it is also known as signal-to-noise
statistic. As described in [10] and [5], the method starts with a data set S containing
m feature vectors: X i = (xi

1, ..., x
i
n), where 1 <= i <= m, m is the number of

samples and n is the number of features. Each sample is labeled with Y ∈ {+1,−1}
(for classes, such as vessel pixels vs. non-vessel pixels). For each feature xj , the mean
μ+

j (resp. μ−j ) and the standard deviation σ+
j (resp. σ−j ) using only the samples labeled

+1 (resp.−1) are calculated. A score T (xj) is then computed as

T (xj) =
|μ+

j − μ−j |√
(σ+

j )2

n+
+

(σ−
j )2

n−

,

where n+ (resp. n−) is the number of samples labeled as +1 (resp. −1). Features are
then ordered by the score in descending order, as the features with the highest scores
will be the most discriminatory features. In the same way as described above, we choose
the best subset as the subset with the features highly correlated among, hence we com-
pute the merit with the modified CFS.

5 Experimental Evaluation

The performances of the classification are measured using receiver operating charac-
teristic (ROC) curves. ROC curves are represented by plotting true positive fractions
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versus false positive fractions as the discriminating threshold of the AdaBoost algo-
rithm is varied. The true positive fraction (TPF) is determined by dividing the number
of pixels correctly classified as vessel pixels (TP) by the total number of vessel pixels
in the ground truth segmentation, while the false positive fraction (FPF) is the number
of pixels incorrectly classified as vessel pixels (FP) divided by the total number of non-
vessel pixels in the ground truth. The axes of the plot are rescaled so the true positives
and false positives vary between 0 and 1. The area under the ROC curve (Az) mea-
sures discrimination, in our case, is the ability of the classifier to correctly distinguish
between vessel and non-vessel pixels. An area of 1 indicates a perfect classification.
We compute also the accuracy (ACC), which is degree of veracity of the classification,
being the fraction of pixels correctly classified.

6 Experimental Results

As it can be seen in Table 2, after applying the heuristics described in Section 4, the
number of features recommended by the first heuristic is 7, while the ones recom-
mended by the second one are 4. The third heuristic selects 21 features, the fourth one
20, while for the fifth a set containing 16 features is doing the best separation between
classes.

Table 1 shows the performance of different methods with or w/o feature selection
that have been tested on DRIVE database. The performance is measured by the ROC
index, defined as the area under the ROC curve and by the accuracy, defined as the
fraction of pixels correctly classified. The performances shown here are those reported
on www.isi.uu.nl/Research/Databases/DRIVE/.

Table 1. Overview of the performance of different methods. Az indicates the area under the ROC
curve and ACC indicates the accuracy.

Segmentation method Drive database Segmentation method Drive database
Az ACC Az ACC

FABC 0.9560 0.9584 Niemeijer et al. 0.9294 0.9416
(w/o feature selection) Zana et al. 0.8984 0.9377

Soares et al. 0.9614 0.9466 Jiang et al. 0.9114 0.9212
Human observer - 0.9473 Martinez et al. - 0.9181

Staal et al. 0.9520 0.9442 Chaudhuri et al. 0.7878 0.8773

Table 2. Performance of FABC with feature selection (H1, H2, H3, H4, H5) or w/o feature selec-
tion (All features). COLUMN 2: the area under the ROC curve Az . COLUMN 3: the accuracy
ACC. COLUMN 4: the computational time of constructing the model used by the AdaBoost
classifier.

Heuristic Az ACC Computational Heuristic Az ACC Computational
time time

All features 0.9560 0.9584 ≈ 230 min. H3 (21 features) 0.8970 0.9536 ≈ 24 min.
H1 (7 features) 0.9482 0.9554 ≈ 46 min. H4 (20 features) 0.8953 0.9532 ≈ 21 min.
H2 (4 features) 0.9393 0.9551 ≈ 20 min. H5 (16 features) 0.9544 0.9572 ≈ 85 min.
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Our method was tested on an Intel(R) Core(TM)2 Duo CPU (3.16 GHz) with 3326
Mb memory. Feature generation for an image from the DRIVE database takes less than
2 minutes, while the classification of its pixels takes less than 5 seconds. The process
of learning the AdaBoost model is computationally more expensive. It takes almost 4
hours when using the full set of features, while after feature selection it speeds up a lot
as it can be seen in Table 2.

7 Discussion and Conclusion

When selecting features with the consistency-based feature selection, as well as with the
entropy-based and MIT correlation feature selection, we don’t use an arbitrary number
to select top ranked features. In all cases we apply the CFS to strengthen the correlation
among features and as well to determine automatically the number of discriminatory
features.

We notice from Table 3, that the features that are playing an important discrimination
role (the ones that were selected by all heuristics) are: feature 18 (the 2 order derivative
of the Gaussian in the y direction at scale 2

√
2), feature 26 (the maximum response

of a multiscale matched filter using a Gaussian vessel profile) and feature 32 (the one
containing information about Staal’s ridges).

Even if after feature selection with the proposed heuristics the classification per-
formance doesn’t improve, the accuracies achieved outperforms the accuracies of the
state-of-the-art approaches (even the one of the second human observer). As it can be
seen in Table 2, of the five proposed selection heuristic the one using MIT correlation
appeared to be the best one (it approached the performance obtained by the algorithm
without feature selection). The performance of the fifth heuristic, as the one of FABC
without feature selection, is still competitive to the best performance (the one achieved
in [14] by Soares et al.).

Table 3. Features recommended by each heuristic

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

H1 � � � � � � � � � � � � � � � � � � � � �

H2 � � � � � � � � � � � � � � � � � � � � �

H3 � � � � � � � � � � � � � � � � � � � � �

H4 � � � � � � � � � � � � � � � � � � � � �

H5 � � � � � � � � � � � � � � � � � � � � �

Feature 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

H1 � � � � � � � � � � � � � � � � � � � �

H2 � � � � � � � � � � � � � � � � � � � �

H3 � � � � � � � � � � � � � � � � � � � �

H4 � � � � � � � � � � � � � � � � � � � �

H5 � � � � � � � � � � � � � � � � � � � �
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Abstract. A directional multi-scale modeling scheme based on wavelet and 
contourlet transforms is employed to describe HRCT lung image textures for 
classifying four diffuse lung disease patterns: normal, emphysema, ground glass 
opacity (GGO) and honey-combing. Generalized Gaussian density parameters 
are used to represent the detail sub-band features obtained by wavelet and con-
tourlet transforms. In addition, support vector machines (SVMs) with excellent 
performance in a variety of pattern classification problems are used as classi-
fier. The method is tested on a collection of 89 slices from 38 patients, each 
slice of size 512x512, 16 bits/pixel in DICOM format. The dataset contains 
70,000 ROIs of those slices marked by experienced radiologists. We employ 
this technique at different wavelet and contourlet transform scales for diffuse 
lung disease classification. The technique presented here has best overall sensi-
tivity 93.40% and specificity 98.40%. 

Keywords: HRCT diffuse lung disease, texture classification, wavelet,  
contourlet, generalized Gaussian density. 

1   Introduction 

High Resolution Computed Tomography (HRCT) is generally considered to be the 
best imaging modality for assessment of the lung parenchyma in patients likely to 
have diffuse lung diseases [1]. However, the diagnosis of diffuse lung disease from 
HRCT images is a difficult task for radiologists because of the complexity and varia-
tion in the visual disease patterns on the images. Therefore, the construction of a 
computer-aided diagnosis system for diffuse lung disease is important in providing 
the radiologist with a “second opinion”. 

Texture classification has been a significant research topic in image processing, 
particularly in medical image analysis and many features has been proposed to repre-
sent a texture  [2]. The method chosen for feature extraction is clearly critical to the 
success of texture classification. Five major categories of features for texture identifi-
cation have been proposed: statistical, geometrical, structural, model-based, and sig-
nal processing features. Among these methods, the signal processing approach has 
advantages in the characterization of the directional and scale features of textures.  
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The most popular signal-processing feature extraction method based on wavelet 
transform offers computational advantages over other methods for texture classifica-
tion [3-5]. In the literature of HRCT lung disease classification, Shamsheyeva et al. [6] 
applied a quincunx wavelet transform (QWF) along with SVM to classify 5 diffuse 
lung disease patterns. They used QWF decomposition combined with gray-level  
histogram features.  The next work applying wavelet transform to detect only honey-
combing pattern is Shojaii’s [7], who utilized discrete wavelet transform to decom-
pose a lung image into its directional sub-images, which were combined with  
histogram thresholding to extract honeycombing regions. In this work, the authors 
claimed that honeycombing region is best differentiable in vertical sub-image. Tol-
ouee et al. [8] applied discrete wavelet frames (DWF) and rotated wavelet frames 
(RWF) to describe features. They used an energy-based method (L-2 norm) to meas-
ure the output of DWF and RWF along with SVM. Their best accuracy was obtained 
when combining DWF and RWF. Finally, experiments were conducted by De-
peursinge’s group using QWF combined with gray-level features, another feature 
called air-pix (number of air pixels in each ROI) and a set of clinical features [9-11]. 
They used mean and variance to represent the wavelet coefficients. In their research 
[11], SVM also proved to be the best classifier in diffuse lung disease categorization. 

However, these wavelet-based methods suffer from the lack of directional informa-
tion – a unique and important feature of multi-dimensional signals. Therefore, con-
tourlet transform proposed by Do [12] with intrinsic multi-dimensional information (a 
different number of directions at each scale) and even less computational complexity 
has recently received increasing attention. 

As mentioned above, the early applications of wavelet transform to lung disease 
classification on HRCT images are to use measures L-1 norm and L-2 norm (energy) 
to represent the coefficients of wavelet transform at each scale. Nevertheless, it has 
been shown in the literature that the distribution of both wavelet and contourlet coef-
ficients in a given sub-band is highly non-Gaussian, heavily tailed and centered 
around zero [13, 14]. Hence, they cannot be modeled by normal Gaussian density 
function, and the more complex statistical probability distribution function called 
“generalized Gaussian density” that can adapt the marginal distribution of wavelet 
and contourlet coefficients at each sub-band most naturally is used widely. 

In this paper, our approach to classification of diffuse lung disease is to use general-
ized Gaussian density with two parameters to model the wavelet and contourlet coeffi-
cients at each scale. In the next section, the methodology will be discussed in detail. The 
experiment and results are in section 3. The paper is concluded in section 4.  

2   Methodology 

In our method, at the feature extraction stage the texture images are transformed into 
directional sub-images at multi-scales by discrete wavelet and contourlet transform. 
The generalized Gaussian density (GGD) with two parameters is used to model the 
marginal distribution of wavelet and contourlet coefficients and the feature vector is 
built from these parameters. Finally, at the classification stage, support vector ma-
chines (SVMs) are used for disease pattern discrimination. 
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2.1   Wavelet Transform 

In practice, the 2-D discrete wavelet transform (DWT) is computed by applying a 
separable filter-bank to the image [3] as seen in Fig. 1. 
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Fig. 1. Sub-band decomposition for one-level 2D DWT 

In Fig. 1, X[n] is the original image; h[n] and g[n] are a low-pass and high-pass 
filter, respectively. LL is obtained by low-pass filtering and is hence referred to as the 
low resolution image or approximation. LH, HL and HH contain directional detail 
information: horizontal, vertical and diagonal sub-images at each scale and only the 
coefficients from the directional information will be used to construct the feature 
vector. However, because of the down-sampling process, the performance of wavelet 
transform in texture description gets degraded. 

Discrete wavelet frames (DWF) are used for texture retrieval and classification to 
overcome the limitation of standard DWT [5, 15]. Wavelet frames are simply the non-
sampled version of the standard DWT; hence, they result in a texture description 
invariant with respect to translations of the input signal and yields a better estimation 
of texture characterization at region boundaries. In past research, wavelet frames have 
provided better results than the standard DWT. The performance of DWF will be 
tested in section 3 with different bases: Haar, Daubechies and Biorthogonal. 

2.2   Contourlet Transform 

Contourlet Transform is an efficient directional multi-scale image representation 
based on an efficient two-dimensional non-separable filter bank [12]. As seen in 
Fig.2, for contourlet transform, a Laplacian pyramid (LP) is first used to decompose 
the input image into multiple scale band-pass versions, and then followed by a non-
separable directional filter bank (DFB) which decomposes each scale band-pass ver-
sion into different numbers of directional sub-bands. In the contourlet transform in 
Fig. 3, a parent coefficient can have its children spread over two sub-bands. There-
fore, contourlets possess not only the main features of wavelets, namely multi-
resolution and time-frequency localization, but they also show a high degree of direc-
tionality and anisotropy.  

In general, it can be easily seen that there are several ways to extract features based 
on contourlet transform. The difference between them is relied on the combination of 
different Laplacian pyramid filters and non-separable directional filter banks. The 
popular Laplacian pyramid filters are Haar and 9-7 filter; directional filter banks are  
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Fig. 2. Contourlet Transform 

 

Fig. 3. Parent-children coefficient relationships for (a) Wavelets (b) Contourlets 

CD filters and PKVA filters. In [14], 9-7 filters are claimed to be superior to  
Haar filters in terms of whitening the contourlet coefficients, while PKVA filters  
are more effective in localizing direction and should lead to better performance in 
applications. The performance of the combination of filters will be tested in the 
experiments. 

2.3   Generalized Gaussian Density of Wavelet and Contourlet Coefficients 

The generalized Gaussian density function is used model the output of both DWF and 
contourlet transform for each detail sub-image as follows: 

��������� �
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where (.)Γ is the Gamma function, i.e. ( ) 1
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Γ t zz e t dt
∞

− −= ∫ and α, β are generalized 

Gaussian density model parameters indicating the width and the peak of the probabil-
ity density function.  Various estimators are used to estimate α and β, such as:  
moment-matching, entropy-matching and maximum likelihood. In this paper, an im-
proved maximum likelihood estimator proposed by [16] is used to estimate α and β. 
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2.4   Classification Algorithm – Support Vector Machines (SVMs) 

The support vector machine (SVM) has exploded in popularity within the machine 
learning literature and more recently has received increasing attention from the sta-
tistics community as well, and SVM has proved to be the best classifier in lung dis-
ease categorization [11]. The SVM paradigm was originally designed for the binary 
(two-class) classification problem [17]. To extend the original SVM to multi-class 
classification, popular methods include one-versus-all method using winner-takes-all 
strategy; one-versus-one method implemented by max-wins voting; and pair-wise 
coupling method (the extension of one-versus-one). The strategies are competitive to 
each other and there is no clear superiority of one method over others [18]. In our 
experiments, we use SVM with Gaussian radial basis function kernel, quadratic 
programming method for optimization and one-versus-all method for classification 
of different diffuse lung disease patterns because this configuration has been proven 
to be the most appropriate in experiments.  

3   Experiments and Results 

The dataset is constructed from a collection of 89 HRCT slices from 38 patients 
which have been investigated and labeled by experienced radiologists. From these 
labeled slices, 73,000 ROIs of size 32x32 are extracted. The size of ROIs is chosen to 
maintain the classification sensitivity with the smallest area and moreover, the size 
32x32 is appropriate for 3-level wavelet decomposition (the size should not be less 
than 16x16 to maintain the accuracy of texture description and discrimination) and [2 
3] contourlet transform ([4 8] directions). Distributions of the ROIs are detailed in 
Table 1. 

Table 1. Distribution of ROIs over lung disease patterns  

 Emphysema GGO Honeycombing Normal 

# of ROIs 20,000 18,000 15,000 20,000 

# of patients 15 11 8 10 

 
The performance of the experiment is evaluated through two measures: sensitivity 

and specificity where TP is true positives, FP false positives, TN true negatives and 
FN false negatives: 

TP TN
Sensitivity= ;Specificity=

TP+FN TN+FP
 

K-fold cross validation for the dataset is carried out to compute the classification 
sensitivity and specificity. The advantage of k-fold cross validation is that all the 
examples in the dataset are eventually used for both training and testing. For our size 
of dataset, 10-fold cross validation is appropriate to ensure that the bias is small and 
the computational time is acceptable. Moreover, in the experiments, use multiple run 
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k-fold (10-run 10-fold) cross validation is also performed to ensure higher replicabil-
ity and reliability of the results. Each run is executed with different random splits of 
the data set. 

For the classifier, the initial configuration of SVMs is set as mentioned in section 
2.4 with two parameters: cost C = 1000 and gamma 0.25γ = . 

The results in Table 2 are generated from applying 3-scale discrete wavelet frames 
(18 features) with different bases: Haar, Daubechies and Biorthogonal. The results 
show that Haar is an appropriate filter for HRCT lung images in terms of overall sen-
sitivity and specificity. It can be also seen that the generalized Gaussian density based 
(GGD) method always outperforms the energy-based method. 

Table 2. Performance of  Haar, Daubechies and Biorthogonal wavelet transform 

Haar Daubechies 4-tap Bior  
Sensitivity 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Energy 85.28 93.05 86.35 93.10 85.13 92.95 
GGD 90.41 97.17 89.93 96.95 85.58 93.95 

 
Table 3 illustrates the performance of different combinations of filters: Haar, 9-7 

and CD, PKVA for [2 3] contourlet transform ([4 8] directions at each scale) in dif-
fuse lung disease classification. The experiments use generalized Gaussian density to 
model the coefficients of the output of the contourlet transform at each scale. There-
fore, the feature vector consists of 24 parameters (two for each direction). The results 
are also computed in terms of overall sensitivity and specificity. The table shows that 
the best combination is using 9-7 and PKAV filters.  

Table 3. Performance of contourlet transform 

 Haar; CD Haar; PKVA 9-7; CD 9-7; PKAV 
Sensitivity (%) 88.78 85.69 90.23 92.57 
Specificity (%) 96.89 94.55 96.58 98.40 

Table 4. Comparison of DWF and Contourlet 

Wavelet Contourlet Combined  
Sensitivity 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Emphysema 95.16 97.58 97.47 98.56 98.07 98.57 

GGO 88.58 97.75 90.58 96.99 90.22 97.10 

Honeycombing 83.98 98.15 90.11 98.85 89.93 98.58 

Normal 93.92 95.20 92.11 99.20 95.38 99.34 
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The comparison of performance of discrete wavelet frames with 3-level and Haar 
basis and contourlet transform with [4 8] directions and [9-7 PKVA] filters for lung 
disease pattern classification is shown in Table 4. As seen, the contourlet-based 
method generally outperforms the wavelet-based method. The combination of wavelet 
and contourlet transform is tested as well. Although the performance of the combina-
tion is slightly better, the computational complexity increases dramatically.  

Finally, some results are shown on HRCT lung images for easy visualization in 
Fig. 4. 

 

(a) 

(b) 

(c) 

Fig. 4. (a) Emphysema (red) (b) Honeycombing (green) (c) GGO (yellow) (the first column is 
the labeled original image, the second and third show classification results by the proposed 
method for DWF and contourlet transform, respectively) 

4   Conclusion 

In this paper, wavelet-based and contourlet feature extraction strategy with the sup-
port of generalized Gaussian density model is employed to discriminate between four 
lung tissue patterns from the ROIs in an HRCT image database: normal, emphysema, 
ground glass opacity and honey-combing. These ROIs are decomposed to multi-
directional multi-scales by wavelet and contourlet transforms. The strategy was tested 
with SVMs as classifier. The results prove that the GGD-based strategy outperforms 
the energy-based method using the same wavelet transform employed by Tolouee 
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[12]. The results also show that the contourlet-based method gives the better perform-
ance than the wavelet-based method. The best result is achieved with the combination 
of wavelet and contourlet. Although our method did not make comparisons with other 
traditional methods such as gray-level histograms, we believe the overall accuracy of 
our method is competitive and the computation cost is much lower. These compari-
sons will be given in detail in the future work. 

Acknowledgements. The use of lung HRCT images from the LMIK database, School 
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Abstract. In this paper, we present a hybrid 2D-3D deformable
registration strategy combining a landmark-to-ray registration with a
statistical shape model-based 2D-3D reconstruction scheme, and show
its application to reconstruct a patient-specific 3D surface model of the
pelvis from single standard X-ray radiograph. The landmark-to-ray reg-
istration is used to find an initial scale and an initial rigid transformation
between the X-ray image and the statistical shape model. The estimated
scale and rigid transformation are then used to initialize the statistical
shape model-based 2D-3D reconstruction scheme, which combines sta-
tistical instantiation and regularized shape deformation with an iterative
image-to-model correspondence establishing algorithm. Quantitative and
qualitative results of a feasibility study on clinical and cadaveric datasets
are given, which indicate the validity of our approach.

Keywords: point distribution model, statistical deformable 2D-3D reg-
istration, surface reconstruction, pelvis.

1 Introduction

Constructing a three-dimensional (3D) surface model from two-dimensional (2D)
calibrated fluoroscopic image(s) is a challenging task. A priori information is of-
ten required to handle this otherwise ill-posed problem. In Fleute and Lavallée
[1], a point distribution model (PDM) of distal femur was iteratively fitted to
the bone contours segmented on the X-ray views by sequentially optimizing the
rigid and non-rigid parameters. It utilizes the principle of the shortest distance
between the projection ray of an image edge pixel and a line segment on the
apparent contour to set up image-to-model correspondence. In Benameur et al.
[2][3], a PDM of scoliotic vertebrae was fitted to two radiographic views by simul-
taneously optimizing both shape and pose parameters. The optimal estimation
was obtained by iteratively minimizing a combined energy function, which is
the sum of a likelihood energy term measured from an edge potential field on
the images and a prior energy term measured from the statistical shape models.
Previously, we proposed a 2D-3D reconstruction scheme combining statistical in-
stantiation and regularized shape deformation with an iterative image-to-model

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 672–679, 2009.
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correspondence establishing algorithm, and showed its application to reconstruct
the surface model of the proximal femur [4]. Common to all these previous works
are (a) at least two images are used as the input; and (b) all images are calibrated.
However, in clinical practice, no radiograph-specific calibration is available for
most cases. The only information that we can assume to know about the ra-
diograph is the image scale (mm/pixel) and the distance from the focal point
to the imaging plane or to the film. As long as the radiograph is acquired in a
standardized way, which is performed in a clinical routine [5], both parameters
can be directly retrieved from the DICOM image of the X-ray radiograph or can
be estimated by performing one-time calibration [6].

This paper presents a hybrid 2D-3D deformable registration strategy combin-
ing a landmark-to-ray registration with a statistical shape model-based 2D-3D
reconstruction scheme, and shows its application to reconstruct a patient-specific
3D surface model of the pelvis from single standard X-ray radiograph. The
landmark-to-ray registration is used to find an initial scale and an initial rigid
transformation between the X-ray image and the statistical shape model. The
estimated scale and rigid transformation are then used to initialize the statistical
shape model-based 2D-3D reconstruction scheme, which combines statistical in-
stantiation and regularized shape deformation with an iterative image-to-model
correspondence establishing algorithm.

This paper is organized as follows. Section 2 briefly presents the construction
of the statistical shape model. Section 3 describes the statistically deformable 2D-
3D registration approach. Section 4 presents the experimental results, followed
by the conclusions in Section 5.

2 Construction of the Statistical Shape Model of the
Pelvis

We chose the point distribution model (PDM) as the representation of our sta-
tistical shape model of the pelvis. The pelvic PDM used in this paper was con-
structed from a training database consisted of 14 segmented binary volumes
(12 of them were segmented from CT scans of dry bones and the rest 2 were
segmented from patient CT scans) where the sacrum was removed from each
dataset. Demon’s algorithm [7] as implemented in MedINRIA [8] was used to
estimate the dense deformation fields between the reference binary volume and
the other 13 binary volumes. Each estimated deformation field was then used to
displace the positions of the vertices on the reference surface model, which was
constructed from the reference binary volume, to the associated target volume.
We thus obtained 14 surface models with established correspondences.

Following the alignment, the PDM is constructed as follows. Let xi, i =
0, 1, ...,m − 1, be m (here m=14) members of the aligned training surfaces.
Each member is described by a vectors xi with N (here N=24994) vertices:

xi = {x0, y0, z0, x1, y1, z1, ..., xN−1, yN−1, zN−1} (1)
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Fig. 1. The first two eigen modes of variation of our PDM of the pelvis. The shape
instances were generated by evaluating x̄ + ασipi with α ∈ {−2,−1, 1, 2}.

The PDM is obtained by applying principal component analysis.

D = ((m− 1)−1) ·
∑m−1

i=0 (xi − x̄)(xi − x̄)T

P = (p0,p1, ...); D · pi = σ2
i · pi

(2)

where x̄ and D are the mean vector and the covariance matrix, respectively.
Fig 1 shows the variability captured by the first two modes of variation of our

PDM.

3 Statistically Deformable 2D-3D Registration

Our single image based surface model reconstruction technique is based on the
algorithm that we introduced in [4], which combines statistical instantiation and
regularized shape deformation with an iterative image-to-model correspondence
establishing algorithm. The image-to-model correspondence is established us-
ing a non-rigid 2D point matching process, which iteratively uses a symmetric
injective nearest-neighbor mapping operator and 2D thin-plate splines based de-
formation to find a fraction of best matched 2D point pairs between features
extracted from the X-ray images and the projections of the apparent contours
extracted from the 3D model. The obtained 2D point pairs are then used to set
up a set of 3D point pairs such that we turn a 2D-3D reconstruction problem
to a 3D-3D one. The 3D/3D reconstruction problem is then solved optimally
in three sequential stages including iterative scaled rigid registration, statistical
instantiation, and regularized shape deformation. For details, we refer to our
previous works [4].

In our previous work, we asked for 2 or more X-ray images as the input
and that all images should be calibrated. However, these requirements are the
conditions for the application in our previous work rather than the constraints to
our algorithm. Actually, the algorithm that we introduced in [4] can be directly
applied to single image, as long as at least four non-colinear point pairs are found.



Statistical Deformable Model-Based Reconstruction 675

(a) (b) (c)

Fig. 2. (a) the radiograph coordinate system and the cone-beam projection model; (b)
Landmarks extracted from the mean model of the PDM; and (c) landmarks extracted
from radiograph

Similar to the situation when multiple images are used, the convergence of the
single image based 2D-3D reconstruction also depends on the initialization. Thus,
in the following we focus on the establishment of the projection geometry of the
input radiograph, and on a landmark-based scaled registration for initializing
the single image based 2D-3D reconstruction.

3.1 Establishment of Projection Geometry

The local coordinate reference and the cone-beam projection model of the ra-
diograph is established as follows (see Fig. 2(a) for details). The image center
is taken as the coordinate origin. The X-axis and the Y-axis of the image are
taken as the X-axis and the Y-axis of the local coordinate reference of the radio-
graph. The central projection line is perpendicular to the radiograph plane and
its opposite direction is regarded as Z-axis.

3.2 Landmark-Based Scaled Rigid Registration for Initialization

Initialization here means to estimate the initial scale and the rigid transformation
between the mean model of the PDM and the input radiograph. For this purpose,
we have adopted an iterative landmark-to-ray scaled rigid registration. The five
anatomical landmarks that we used here are left and right ASIS, left and right
acetabular centers, and pubic symphysis. Their positions on the mean model
of the PDM are obtained through point picking (for left and right ASIS, and
pubic symphysis) or sphere fitting (for left and right acetabular centers), while
their positions on the radiograph are defined through interactive picking (for
the projections of left and right ASIS, and pubic symphysis) or circle fitting (for
the projections of left and right acetabular centers) (see Fig. 2(b) and 2(c) for
details).

Let us denote those landmarks defined on the mean model of the PDM, i.e.,
the left and the right acetabular centers, the pubic symphysis, and the mid-
dle points of the left and the right ASIS, as v1Mean, v

2
Mean, v

3
Mean, and v4Mean,
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respectively; and their corresponding landmarks interactively picked from the
radiograph as v1X−ray, v

2
X−ray, v

3
X−ray, and v4X−ray (v4X−ray is the middle point

of the projections of the left and the right ASIS), respectively. And for each
X-ray landmark, we can calculate a projection ray emitting from the focal point
to the landmark. We then calculate the length between v1Mean and v2Mean and
denote it as l1,2

Mean. Using the known image scale, we also calculate the length
l1,2
X−ray between v1X−ray and v2X−ray. Then, we do:

Data Preparation. In this step, we assume that the line connecting the ac-
etabular centers is parallel to the AP pelvic radiograph plane and is certain
distance away from the imaging plane (in all the experiments reported in this
paper, we used a fixed distance of 150 mm). Using this assumption and the cor-
respondences between the landmarks defined in the CT volume and those from
the radiograph, we can compute two points v̄1X−ray and v̄2X−ray on the projection
rays of v1X−ray and v2X−ray, respectively (see Fig. 3(a)), which satisfy:

v̄1X−ray v̄
2
X−ray//v

1
X−rayv

2
X−ray; and | v̄1X−ray − v̄2X−ray| = l1,2

X−ray ×
F − d
F

(3)

where F is the known distance from the focal point to the imaging plane and d
is the assuming distance from the acetabular centers to the imaging plane.

The current scale s between the mean model and the input image is then
estimated as,

s = |v̄1X−ray − v̄2X−ray|/l
1,2
Mean (4)

Using s, we scale all landmark positions on the mean model and denote them
as {v̄i

Mean; i=1,2,3, 4}. We then calculate the distances from v̄3Mean and v̄4Mean

to line v̄1Meanv̄
2
Mean and denote it as l̄3,1−2

Mean and l̄4,1−2
Mean, respectively.

Next we find two points, point v̄3X−ray on the projection ray of v3X−ray whose
distance to the line v̄1X−rayv̄

2
X−ray is equal to l̄3,1−2

Mean, and point v̄4X−ray on the
projection ray of v4X−ray whose distance to the line v̄1X−ray v̄

2
X−ray is equal to

l̄4,1−2
Mean. A paired-point matching [9] based on {v̄i

Mean; i=1,2,3,4} and {v̄i
X−ray;

i=1,2,3,4} is used to calculate a updated scale s0 and a rigid transformation
T̄X−ray

Mean (see Fig. 3(a) for details). From now on, we assume that all informa-
tion defined in the mean model coordinate frame has been transformed into the
radiograph coordinate frame using s0 and T̄X−ray

Mean . We denote the transformed
mean model landmarks as {ṽi

Mean}.

Iteration. The following steps are iteratively executed until convergence:

1. For a point ṽi
Mean, we find a point on the corresponding projection ray of

vi
X−ray which has the shortest distance to the point ṽi

Mean and denote it as
ṽi

X−ray (see Fig. 3(b)). We then perform a paired-point matching [9] using
the extracted point pairs to compute a scale s̃ and a rigid transformation
ΔT̃X−ray

Mean .
2. We update the mean model coordinate frame using s̃ and ΔT̃X−ray

Mean .
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Fig. 3. Iterative landmark-to-ray registration. (a) schematic view of data preparation;
and (b) schematic view of finding 3D point pairs.

3.3 2D-3D Reconstruction

The estimated scale and the rigid transformation between the mean model and
the input image are then treated as the starting values for the algorithm that we
introduced in [4]. As a feature-based 2D-3D reconstruction approach, our algo-
rithm requires a pre-requisite image feature extraction. In this paper, observing
the superimposition of the projections of different bone structures around the
pelvis and the post-operative characteristic of the X-ray radiograph, we opt for
an interactive way to identify contours of the pelvis. We thus developed a pro-
gram allowing the user to define up to eight contours by interactively picking
points from the radiograph. Each contour is then interpolated by a cubic-spline
to have the same resolution as the image resolution. The extracted contours are
then used together with the initial estimation of the scale and the rigid trans-
formation as the input to our PDM based 2D-3D reconstruction scheme for an
accurate reconstruction of a surface model of the pelvis. Fig. 4 shows different
stages of reconstruction of a patient-specific surface model of the pelvis from
single standard X-ray radiograph of a cadaver. The reconstructed surface model
of the pelvis can then be used to determine the post-operative cup orientation.

(a) (b) (c) (d)

Fig. 4. (a) the image contours (white line); (b) establishment of the initial image-to-
model correspondences (yellow points: projections of the apparent contours extracted
from the mean model; green lines: visualization of the correspondences); (c) the result
of the iterative scaled registration; and (d) the final reconstructed surface model
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4 Experiments and Results

We designed and conducted experiments on 3 cadaveric pelvis datasets and 1
patient dataset to validate the present approach. Each dataset contains an X-ray
radiograph and a CT volume. Two X-ray machines were used to acquire the X-
ray radiographs. The X-ray radiographs for all 3 cadaveric pelvis were acquired
by one X-ray machine with a focal point to film distance of 1200 mm and a pixel
size of 0.143 mm while the X-ray radiograph for the patient was acquired by the
other X-ray machine with a focal point to film distance of 1016 mm and a pixel
size of 0.17 mm.

To evaluate the reconstruction accuracy, we established the ground truth for
each dataset from the associated CT volume. A commercially available software
package, AMIRA 5.0 (TGS Europe, Paris, France) was used for semiautomatic
segmentation of the surface model of the pelvis from each CT volume. The
derived ground truths were transformed to the associated reference coordinate
systems of the reconstructed surface models by performing a surface-based scaled
rigid registation [10]. After that, we used the open source tool MESH to compute
the distances between the surface model reconstructed from each X-ray radio-
graph and its associated ground truth. The median and the mean reconstruction
errors are presented in Table 1. An average mean reconstruction error of 1.6 mm
was found. Such accuracy was regarded as accurate for surgical navigation ap-
plications according to Livyatan et al. [11]. Fig. 5 shows the error distributions
of the reconstructed surface model of a pelvis.

Table 1. Difference between the estimated results estimated and the ground truths

Bone Index cadaver 01 cadaver 02 cadaver 03 Patient 01 Mean

Median (mm) 1.3 1.2 1.4 1.3 1.3

Mean (mm) 1.6 1.4 1.7 1.6 1.6

Fig. 5. Color-coded error distribution when the reconstructed surface model of a pelvis
was compared to its ground truth. left: color-coded errors; middle: the reconstructed
surface model with color-coded error distributions; right: the ground truth.
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5 Conclusions

In this paper, we presented a statistically deformable 2D-3D registration ap-
proach to instantiate a patient-specific pelvis surface model from single stan-
dard X-ray radiograph. We designed and conducted feasibility experiments on
three cadaver datasets and on one patient dataset to validate the accuracy of
the present approach. Our experimental results demonstrate that it is feasible
to reconstruct a patient-specific model from single standard X-ray radiograph
for surgical navigation applications.
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Abstract. This paper presents the study of computational methods ap-
plied to histological texture analysis in order to identify plant species,
a very difficult task due to the great similarity among some species and
presence of irregularities in a given species. Experiments were performed
considering 300 × 300 texture windows extracted from adaxial surface
epidermis from eight species. Different texture methods were evaluated
using Linear Discriminant Analysis (LDA). Results showed that methods
based on complexity analysis perform a better texture discrimination, so
conducting to a more accurate identification of plant species.

Keywords: plant identification, complexity, multi-scale fractal dimen-
sion, texture analysis.

1 Introduction

Traditional methods used in taxonomy, which use arborized plants and have
in the external morphology their main tool for the taxa identification, not al-
ways are adequate to solve taxonomic problems [1]. Although not so accessible
as those used in external morphology, anatomical methods have been used in-
creasingly, with the purpose of searching characteristics that may assist in solv-
ing taxonomic problems [2]. Another difficulty comes from the fact that taxa
identification is widely based on morphologic characteristics of reproductive or-
gans, not always present in the sample. Otherwise, anatomic characters have
shown to be important in the identification of some taxa, even when the sam-
ples present a vegetative state [2]. Different types of stomata and trichromes [1],
cell shape, cuticle presence/thickness of cuticle, proportion between palisade and

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 680–688, 2009.
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spongy parenchyma, presence of tissues (such as hypodermis), secretion struc-
tures, crystals, etc [3], have been used in the characterization and taxonomic
understanding of different groups. However, other relevant characteristics, such
as color, texture, complexity of the anatomic cuts has not been considered.

Although there is no formal definition about the concept of texture, it is
easily identified by humans, and it is rich in visual information. In general,
textures are complex visual patterns composed by entities, or sub-patterns, with
bright, color, orientation and size characteristics [4]. So, textures supply very
useful informations for automatic recognition and interpretation of an image by
a computer [5].

This work aims to assess computational methods of texture analysis in histo-
logical images of adaxial surface epidermis in order to identify plant species
by its leaf tissue. For this purpose, the following eight species were consid-
ered: Byrsonima intermedia A. Juss., Miconia albicans (Sw.) Triana, Tibouchina
stenocarpa (DC.) Cogn., Vochysia tucanorum Mart., Xylopia aromática (Lam.)
Mart., Gochnatia polymorpha (Less.) Cabrera, Miconia chamissois Naudin and
Jacaranda caroba (Vell.) A. DC., typical species of the neotropical savanna
of Brazil, locally known as “cerrado”. The approach proposed in this work is
unedited uses of computational methods applied to histological images and uses
of analysis of texture of foliar epidermis as a novel descriptor to be used in
taxonomy.

2 Materials and Methods

All leaf samples were collected at Estação Ecológica de Assis, São Paulo State,
Brazil, situated between 22 ◦33’65” - 22 ◦36’68”S and 50 ◦22’29” - 50 ◦23’00”W.

2.1 Sample Preparation and Image Acquisition

Each sample consisted of a middle fragment of completely expanded leaves, be-
tween the main vein and the leaf margin, collected from five randomly chosen
individuals of each species. All samples were fixed in FAA70, dehydrated in a
graded ethanol series, infiltrated and embedded in paraffin and cut into 8μm
sections. The cross-sections obtained were stained with astra blue-basic fucsine
and permanently mounted in entellan.

Six images of different regions of each sample were obtained using a trinocular
microscope Leica, model DM-1000, coupled with a video camera Leica, DFC-280.
These images were amplified by factor 200× (Figure 1) and windows 150× 300
pixels were cropped out from them (Figure 2). Altogether, 30 texture windows
were acquired per each species. When hypodermis was present, like in T. steno-
carpa, this was also considered in the process. We did not discriminate it from
the epidermis, and we named all these cell layers as adaxial surface epidermis.

To obtain the final set of images used to assess the success rates of the evalu-
ated methods, the adaxial surface epidermis was automatically selected from the
images. For this purpose, the Mumford-Shah algorithm [6] was used to segment
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Fig. 1. Images of cross-sections of leaves of the species: A - Byrsonima intermedia, B
- Miconia albicans, C - Tibouchina stenocarpa, D - Vochysia tucanorum, E - Xylopia
aromatica, F - Gochnatia polymorpha, G - Miconia chamissois e H - Jacaranda caroba

Fig. 2. Image of cross-section of Miconia chamissois leaf and respective window 150×
300 pixels containing adaxial surface epidermis

(a) (b) (c)

Fig. 3. Images of adaxial surface epidermis of Tibouchina stenocarpa species. a - original
window (150 × 300 pixels); b - segmented window (150 × 300 pixels); c - segmented
epidermis (150 × measure of adaxial surface epidermis thickness).

the palisade parenchyma and the image background in order to find the borders
of the adaxial surface epidermis. Thus, new images containing only this region
of the leaf were created, as shown by Figure 3.

However, these images presented different widths, which are determined by
the adaxial surface epidermis thickness, what makes impossible the extraction
of texture features. To solve this, it was adopted a standard window of 300×300
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(a) (b) (c)

Fig. 4. Mosaic of 300 × 300 pixels of adaxial surface epidermis of the species: a -
Byrsonima intermedia, b - Miconia albicans, c - Tibouchina stenocarpa

(a) (b) (c)

Fig. 5. Process of building a texture mosaic by copy and reflection: (a) Original texture;
(b) Copy and reflection; (c) Copy and reflection of the previous step. This process
continues until the texture of 300 × 300 is achieved.

pixels that is a mosaic composed by reflected images of the adaxial surface
epidermis, as shown by Figure 4. So, the original image is copied and reflected
over y axis. The resulting image is placed beside the original. A new copy and
reflection are performed over the previous image. This time, the reflection is
over x axis and the resulting image is placed under the previous. This process
continues, alternating y and x axis, until an image with 300 × 300 of size be
composed - see Figure 5.

3 Fractal Dimension

The fractal dimension is a property from fractal objects related to its complexity.
It is widely used in literature in the characterization of objects and images in
terms of space occupation and self-similarity [7,8,9]. Among the methods found in
literature, the Bouligand-Minkowski Fractal Dimension is considered the most
precise [8,9]. Using a disc of radius r, this method carries out object dilation
in order to compute its influence region, which is very sensitive to structural
changes.

For texture analysis, consider the texture as a set of points S ∈ R3. Each
element s ∈ S is defined by the triple (y, x, z), where y and x are the pixel
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(a) (b) (c) (d)

Fig. 6. Example of texture dilation: (a) Set of image pixels; (b) Pixels modeled as
points in R3; (c) Dilation using r = 2; (d) Dilation using r = 3

coordinates in the texture and z is the gray-level value at pixel (y, x). The
influence volume, V (r), for a given dilation radius r is defined as

V (r) =
∣∣{s′ ∈ R3|∃s ∈ S : |s− s′| ≤ r

}∣∣ ,
where s′ is a point in R3 that dists r or less from s. As the r value increases, the
spheres produced by different pixels start to interact with each other. This inter-
action disturbs the way the influence volume V (r) increases, what makes it very
sensitive to detect even small changes in the texture (Figure 6). From the influ-
ence volume V (r), the Bouligand-Minkowski fractal dimension D is estimated
as

D = 3− lim
r→0

logV (r)
log (r)

,

where D is a number within [0; 3].

4 Multi-scale Fractal Dimension

Besides the great importance of the fractal dimension in literature, natural ob-
jects are not real fractals, and so, its complexity goes to zero as the scale in-
creases. For these objects, the fractal dimension is estimated by carrying out
linear interpolation over the logarithm curve of the volume (V (r)) in terms of di-
lating radius. This yields a line with angular coefficient α, where D = 3−α is the
estimated fractal dimension. However, the log-log curve computed by Bouligand-
Minkowski method presents a very rich degree of details along the scales that
cannot be expressed by a single numeric value.

The Multi-Scale Fractal Dimension [10,11] has been proposed as a solution
for this deficiency in the characterization of objects using complexity. Instead of
using linear interpolation to estimate the angular coefficient of the log-log curve,
this approach exploits the infinitesimal limit of the linear interpolation by using
the derivative. As a result, a curve that expresses complexity value along the
scale is yielded (Figure 7), what provides a more efficient characterization of the
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(a) (b)

Fig. 7. (a) Log-log curve; (b) Multi-scale Fractal Dimension

object. From the logarithm of the influence volume, logV (r), the Multi-Scale
Fractal Dimension D(r) is computed as

D(r) = 3− d logV (r)
d log r

,

where D(r) represents the complexity of the object at scale r.

5 Experiment and Results

We carried out the complexity analysis by applying our Bouligand-Minkowski
based approach over each texture sample. Finite Difference method [12] was
applied over log-log curves, so resulting in a Multi-scale fractal dimension curve
characteristic for that texture. Experiments showed that the best results are
yielded when a dilation radius r = 10 is considered, what results in a Multi-scale
curve containing 50 descriptors.

The data evaluation of Multi-scale curves was performed using Linear Discrim-
inant Analysis (LDA) [13,14], a supervised statistical classification method. LDA
objectives to find a linear combination of descriptors (independent variables)
that minimizes the intra-classes variance of the samples while maximizes the
inter-classes variance. The method also used the leave-one-out cross-validation
strategy to define training and test sets during its execution.

Multi-scales curves were also compared with traditional texture analysis meth-
ods, so that, a better performance evaluation is accomplished. The following
methods were used: Fourier descriptors (energy of the 63 most meaningful coef-
ficients) [15], Wavelet descriptors (energy and entropy from details of 3 decom-
positions) [16,17], Co-occurrence matrices (energy and entropy from matrices
computed using distances of 1 and 2 pixels with angles of −45 ◦, 0 ◦, 45 ◦, 90 ◦)
[4] and Gabor filters (energy from 4 rotations and 4 scales with frequencies 0.01,
0.0311, 0.0965, 0.3) [18,19]. Despite the many different versions existent in the
literature, this paper considers the conventional implementation of the methods.
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Table 1. Classification performance of different texture descriptors

Descriptor No of Samples correctly Success rate (%)
Descriptors classified

Gabor filters 16 205 85.42
Fourier descriptors 63 184 76.67

Co-occurrence matrices 16 221 92.08
Wavelet descriptors 36 210 87.50

M.S. Fractal Dimension 50 224 93.33

(a) (b)

Fig. 8. Plot of the first and second components from PCA: (a) Multi-scale curves; (b)
Co-occurrence matrices

Results (Table 1) demonstrates that Multi-scale curves are more robust in
the classification of the histological texture patterns evaluated. This is due to
the great sensitiveness and accuracy of the Bouligand-Minkowski method to de-
tect small changes in the texture. This, combined with the Multi-scale Fractal
dimension, allows a texture analysis at different scales, i.e., micro and macro
texture are considered to provide a better texture analysis. An analysis using
Principal Component Analysis (PCA) [13,14] was also performed over the meth-
ods that presented the best results. Figure 8 shows the plots of first and second
components computed from Multi-scale curves and Co-occurrence matrices. We
note higher dispersion inter classes in Multi-scale curves, i.e., there is a smaller
intersection among classes. Otherwise, Co-occurrence matrices tend to converge
in a specific point, so different classes are superimposed, what diminishes the
quality of the descriptor.

6 Conclusion

This paper presented a comparison among different computational methods of
texture analysis in a plant species identification task. Experiments were conducted
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using histological images of adaxial surface epidermis from different plant species.
Statistical analysis of the methods was carried out using Linear discriminant Anal-
ysis (LDA).

Among the compared methods, the Bouligand-Minkowski method and Multi-
scale fractal dimension offered the best results. The first method allows the study
of texture complexity in terms of the radius of the influence volume. The second
one is applied over Bouligand-Minkowski method, and it allows to exploit char-
acteristics of complexity present in the texture at different scales, so providing
a more efficient plant texture characterization. Plant identification is a difficult
task due to the great similarity among some species and irregularities present in
a given species. However, results showed that complexity analysis methods play
an important role in the analysis of histological images and that the adaxial
surface epidermis is a feasible source of plant characteristics.

Acknowledgments

A.R.B. acknowledges support from FAPESP (2006/54367-9), J. J. M. S. Jr. ac-
knowledges support from CNPq (135251/2006) and O.M.B. acknowledges sup-
port from CNPq (306628/2007-4).

References

1. Metcalfe, C.R., Chalk, L.: Anatomy of dicotyledons, 2nd edn. Oxford University
Press, Oxford (1979)

2. Stace, C.A.: Plant taxonomy and biosystematics, 2nd edn. Cambridge University
Press, Cambridge (1989)

3. Robinson, H.: A monograph on foliar anatomy of the genera connelia, cottendorfia
and navia (bromeliaceae). Smithsonian Contributions of Botany 2, 1–41 (1969)

4. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5),
786–804 (1979)

5. Bala, J.W.: Combining structural and statistical features in a machine learning
technique for texture classification. In: IEA/AIE, vol. 1, pp. 175–183 (1990)

6. Chambolle, A.: Image segmentation by variational methods: Mumford and Shah
functional and the discrete approximations. SIAM J. Appl. Math. 55(3), 827–863
(1995)

7. Backes, A.R., Bruno, O.M.: A new approach to estimate fractal dimension of tex-
ture images. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.)
ICISP 2008. LNCS, vol. 5099, pp. 136–143. Springer, Heidelberg (2008)

8. da, L., Costa, F., Cesar Jr., R.M.: Shape Analysis and Classification: Theory and
Practice. CRC Press, Boca Raton (2000)

9. Tricot, C.: Curves and Fractal Dimension. Springer, Heidelberg (1995)
10. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall,

New Jersey (2002)
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Abstract. Video-based recognition of hand symbols is a promising tech-
nology for designing new interaction techniques for multi-user environ-
ments of the future. However, most approaches still lack performance for
direct application for human-computer interaction (HCI).

In this paper we propose a novel approach to contour-based recogni-
tion of hand symbols for HCI. We present adequate methods for nor-
malization and representation of signatures extracted from boundary
contours, which allow for efficient recognition of hand poses invariant
to translation, rotation, scale and viewpoint variations, which are rele-
vant for many applications in HCI. The developed classification system
is evaluated on a dataset containing 13 hand symbols captured from four
different persons.

1 Introduction

The paradigm of personal computers, which mainly consist of a single display
with a mouse and a keyboard as input devices, dominated human-computer
interaction for the past decades. In recent years, however, the variety of com-
mercially available display types, sizes and form factors increased tremendously,
which allows for designing completely new human-computer interfaces (HCIs).
The main challenge in this field for the next years will be to design new in-
put devices and interaction techniques, which allow for intuitive interaction in
multi-user environments consisting of multiple heterogenous displays as shown
in Fig.1(a).

Video-based recognition of user actions is a promising technology for creating
input devices for such environments. It allows for the capturing of user input in a
non-intrusive way, independent from display technologies. Especially recognition
of hand gestures enables the design of many natural interaction techniques which
do not require additional devices or tools.

In this paper we first formulate requirements regarding performance of video-
based hand gesture recognition for HCI and review related literature in
Sect. 2. In Sect. 3 we present a new approach to contour-based classification
of hand symbols, invariant to influences relevant for many HCI applications. In
Sect. 4 evaluation results for data from a scenario as shown in Fig.1 are presented
and discussed.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 689–696, 2009.
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(a) (b)

Fig. 1. Multi-Display environment which was used for evaluation [1]. The gesture recog-
nition system serves as video-based input device for interaction across multiple displays.

2 Video-Based Recognition of Hand Gestures for HCI

The task of video-based recognition of hand gestures can be divided into three
subtasks, namely image segmentation, hand segmentation and classification. Im-
age segmentation means the separation of regions in video images, which poten-
tially contain a hand, from irrelevant background. Hand segmentation denotes
the problem of separating the human hand from other parts in segmented image
regions with similar reflectance properties as human skin (e.g. arm segments).
Classification means the recognition of hand symbols, which represent certain
states of the hand. This classification should be at least invariant to the basic
geometrical transformations rotation, translation and scaling as well as to rel-
evant changes of viewpoint and user dependent properties like hand size and
individual realization of the different hand symbols. Another important require-
ment results from the application for HCI and concerns processing time for the
whole process. The system reaction time to user inputs should be smaller than
50ms to not be recognized by the user.

This paper mainly focuses on the last mentioned task, namely hand sym-
bol classification. Approaches to this problem roughly can be divided into two
types: model- and appearance-based approaches. Model-based approaches use
geometrical and/or kinematic models which are fit to the image data (e.g.[2,3]).
However, due to the large number of degrees of freedom of the human hand,
such approaches can hardly be implemented on current hardware satisfying the
requirements regarding processing time. Appearance-based approaches only try
to recognize certain characteristic views of a hand symbol, which are relevant
for the application. The range of viewpoints considered in appearance-based ap-
proaches varies from full 3D [4,5,6] to one single viewpoint [7,8,9]. Recognition
rate and processing time of full 3D approaches, however, are not adequate for
HCI applications. A commonly used feature in appearance-based approaches are
Hu’s moments [5,8,9]. They deliver good results, at least for a small number of
hand symbols and persons. In [7] an approach for contour-based classification
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of hand symbols captured from one viewpoint is proposed. A localized contour
sequence is used for representing the boundary contour. However, calculation of
the proposed distance measure is computationally very expensive. An extensive
review of other approaches to hand pose estimation can be found in [10].

In this paper we present an new appearance-based approach to hand symbol
classification meeting the requirements for use in HCI applications. As a sample
application scenario we have chosen interaction in a multi-display environment
as shown in Fig.1. We extend the approach of a localized contour sequence as it
was used in [7] by additional signatures as features for classification. In contrast
to [7], by appropriate normalization and representation of contour signatures,
standard classifiers like support vector machines (SVM) [11] can be used instead
of nearest-neighbor classification based on signature distance measures.

3 Robust Classification of Hand Symbols

3.1 Image Segmentation

In a first step regions potentially containing a hand are segmented in the image.
Since we use images taken in near infrared (NIR), the highly dynamic content
emitted by displays, in our case the tabletop display (see Fig.1), is filtered out.
Therefore very good segmentation results can already be achieved by a simple
background subtraction followed by a threshold filter. For further smoothing of
the segmentation results we use morphological filtering.

3.2 Feature Extraction

For all consecutive steps, namely fingertip detection, hand segmentation and
hand symbol classification, we use features which are derived from boundary
contours of foreground regions. For each region its contour is extracted in clock-
wise direction (see Fig.2(a)) and represented by the parametric form

c(i) = (x(i), y(i))T , (1)

where x(i) and y(i) are the coordinates of the i-th contour pixel in the image.
From c(i) the one dimensional signatures

fw(i) = ‖slr‖ (2)

fh(i) = 〈sl0, s̄lr〉 (3)

are calculated, where 〈·〉 is the standard scalar product in IR2. The arc width
function fw is equal to the length of the chord

slr(i) = cr − cl (4)

of a contour segment of length L lying between cr := c(i + L/2) and cl :=
c(i−L/2) (see Fig.2(a)). In (3) s̄lr is equal to slr rotated by 90 degrees counter-
clockwise and normalized to ‖s̄lr‖ = 1. The other variable in (3) is sl0 = c(i)−cl.
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(a) (b)

Fig. 2. Contour and feature extraction

Geometrically fh is the height of the arc defined by cr and cl, more precisely
the orthogonal distance of the point c(i) to the line cl +λslr. Hence, it is an ap-
proximation of the curvature of a low-pass filtered version of the contour, where
L determines the low-pass characteristic of the filter [7]. Additionally the two
dimensional signature

fn(i) = s̄lr (5)

is calculated, which is an approximation of the normal to the contour in c(i) at
every contour pixel (see Fig.2).

All of the above signatures are invariant to translation of the whole contour.
A rotation of the contour leads to a shift of the signatures along i. In later
processing steps the signatures are therefore aligned to significant points on the
contour of the human hand (see Sect.3.5). Scaling the contour has two differ-
ent effects on fw and fh, while fn is invariant to scaling. First, the distance
between two contour points in 2-dimensional space increases linearly with the
scale, likewise ‖slr‖ and ‖sl0‖. Therefore the amplitudes of fw and fh are nor-
malized by max fw(i) and max |fh(i)|, respectively. The second effect is, that the
arc length increases due to the increasing sampling rate (number of pixels per
inch/cm). One option to normalize the signatures regarding this effect would
be to normalize the total length of the contour before the signature calculation.
This, however, would require approximately the same contour length for all hand
symbols to be recognized. Otherwise the normalization could destroy properties
of the signature, which are relevant for distinguishing the different hand symbols.
Therefore we use the length of fingers for normalization of arc length, since it is
independent from the hand symbol (see Sect.3.3). At the same time, by finger
length normalization, interpersonal differences in finger length are normalized.
After the feature extraction the lengths of the signatures are normalized to a
constant length as already proposed in [7].
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(a) (b) (c)

Fig. 3. Fingertip detection and hand segmentation

As a basis for the following processing steps, the local extrema in fh are
detected and will further on be denoted by

E = E+ ∪ E− , (6)

where E+ = {i0max, ..., i
M
max} and E− = {i0min, ..., i

N
min} are two sets that contain

the indices of all the local maxima and minima.

3.3 Fingertip Detection

In this section we present an algorithm for scale invariant fingertip detection.
The algorithm is based on unnormalized signatures and, by detecting fingers and
calculating finger lengths, is the basis for the finger length normalization.

We exploit two characteristic properties of fingers which are represented in
the fh and fn signatures. The first property is, that fingers always induce convex
segments of the contour and fingertips correspond to points of maximal curvature
within these segments and therefore to local maxima in fh. The second property
is, that edges along both sides of a finger are almost parallel. This leads to
contour normals pointing into opposite directions for points lying on opposite
edges of a finger (see Fig.3(a)).

The set of indices corresponding to fingertips is denoted as

Ef = {i0f , ..., iFf } ⊂ E+ . (7)

The length of a finger with index if is calculated as the distance to the closest
local minimum on the contour, which represents the beginning of a finger (see
Fig.3(a) and (b))

len(if) = min
imin∈E−

|if − imin| . (8)

The amplitude of the noise in fh, induced by segmentation and quantization of
the real hand silhouette, is approximately 0.5 pixel. As long as the amplitude of
fh at local extrema of the contour curvature is significantly higher, fingers can
be detected robustly. In a range of scales relevant for practical applications this
is the case.
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3.4 Hand Segmentation

In our case the hand cannot be segmented from the arm robustly by image
segmentation only. Therefore a bounding box of the hand to be segmented is
calculated (see Fig.3(c)). The box is aligned to the position of fingertips detected
in the previous step and scaled according to the finger length. Contour points
lying outside this box are ignored in further processing steps.

3.5 Hand Symbol Classification

For the classification of hand symbols we evaluated different approaches to nor-
malization and representation of the extracted signatures. Evaluation results on
real data are presented in the next section.

In a first step the signatures are normalized with regard to the rotation of the
whole contour. This is done by shifting the first finger on the contour which was
found in clockwise direction to the beginning of the signatures (see Fig.3(c)).
Normalization regarding contour length and scaling is done before the signature
calculations by normalization of the finger length. The length of a finger can
robustly be determined during fingertip detection as described in Sect.3.3 and
is similar for a certain finger for all hand symbols.

Another question regarding classification is, how signatures are to be repre-
sented. We evaluated two different approaches. In the first one, fh and fw are
represented as feature vectors of a constant length N , which contain equidis-
tant samples of the two signatures. In the second approach, we use the first N
components of the discrete cosine transform (DCT) for representation of the
signatures. The two feature vectors representing fh and fw are combined to a
vector of length Vlen = 2N for both of the two approaches, which will be referred
to as ’samples’ and ’DCT’, respectively.

For classification we use a soft-margin SVM for multiple classes[11] with a
radial basis function as kernel. As input for training and classification the feature
vectors mentioned above are used.

4 Results

In this section we present results achieved with our approach on data of 13
different hand symbols as shown in Fig.4(a) from four different persons and
compare them with the performance of features from literature [5,8,9,7]. For
each hand symbol and person 300 unsegmented samples with constant scale
were captured. The rotation of the hand symbols was varied over each set of
samples. Since the distance of the hand to the optical axis of the camera was
varied, the viewpoint varies across the sample sets (see Fig.4(b)). Additionally,
for evaluating the robustness of the fingertip detection regarding scaling, we used
a second dataset containing 200 samples of each of the 13 hand symbols from one
person at different scales. The correct number of fingers was detected for 95.11%
of the dataset. For the first dataset from four persons without scale variatons
the correct number of fingers was detected for 96.10%.
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(a) (b)

Fig. 4. Dataset for classification: (a) symbol set and recall for configuration 5, (b)
variants of selected hand symbols

Table 1. Classification results

Config Feature Norm Representation Vlen recall σ

1 fh SignLen samples 20 86.90 5.37
2 fh FingerLen samples 20 89.89 2.60
3 fh, fw SignLen samples 40 90.78 4.53
4 fh, fw SignLen DCT 40 79.16 18.74
5 fh, fw FingerLen samples 40 91.87 3.87
6 fh, fw FingerLen DCT 40 80.44 21.07
7 HuMom [5,8,9] - - 7 40.00 6.85

Table 1 shows the results of a 4-fold cross-validation for a dataset of 13 dif-
ferent hand symbols. For each of the for runs the data of a different person was
used as testing dataset and was tested against the data of the remaining three
persons as training dataset. The columns recall and σ show the means and the
corresponding standard deviations of the correct classifications over the four runs
and all hand symbols. For the ’samples’-representation the number of samples
was set to N = 20 for each signature, according to the sampling theorem. For
the ’DCT’-representation the first 20 components of the discrete cosine transform
of each signature were used. Different configurations of features and representa-
tions where evaluated and compared to approaches from the literature (Config
1,7). However, in literature different classifiers were used. The combination of fh

and fw represented by equidistant samples showed the best classification results.
Finger length normalization of the fh-only feature (Config 2) leads to a significant
increase in classification performance compared to signature length normalization
as proposed in [7]. Additionally, by using standard classifiers instead of non-linear
distance measures as they are used in [7] the computational complexity could be
reduced to fulfill real-time requirements. The good results using Hu’s moments as
presented in [5,8,9] could not be validated on our dataset. The overall process took
approximately 12 milliseconds per image on a 1.6 GHz CPU. Image segmentation
and contour extraction were implemented in C++, all other routines in MATLAB.
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5 Conclusion

In this paper we presented a promising approach to contour-based hand symbol
classification, which is invariant to translation, rotation, scale and viewpoint
changes, as they occur typically in many HCI applications. We proposed new
methods for normalization and representation of contour signatures that showed
promising classification results on a large dataset.

Classification for most hand symbols is better than 92%, up to 99% (see
Fig.4(a)). The average number of true positives over all hand symbols, however,
is decreased by some hand symbols, which can only hardly be distinguished
(e.g. H2 from H3, H10 from H3). In future work, we want to further improve
classification performance by incorporating additional features which help to
distinguish difficult hand symbols, e.g. texture. Additionally we plan to use more
efficient classification structures like decision trees, which enable combination of
multiple classifiers, each optimized to separate a certain subset of hand symbols.
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Abstract. In this paper we present a novel procedure for contour-based
recognition of partially occluded three-dimensional objects. In our
approach we use images of real and rendered objects whose contours have
been deformed by a restricted change of the viewpoint. The preparatory
part consists of contour extraction, preprocessing, local structure analysis
and feature extraction. The main part deals with an extended construction
and functionality of the classifier ensemble Adaptive Occlusion Classifier
(AOC). It relies on a hierarchical fragmenting algorithm to perform a lo-
cal structure analysis which is essential when dealing with occlusions. In
the experimental part of this paper we present classification results for five
classes of simple geometrical figures: prism, cylinder, half cylinder, a cube,
and a bridge. We compare classification results for three classical feature
extractors: Fourier descriptors, pseudo Zernike and Zernike moments.

1 Introduction

Contour-based recognition of partially occluded objects involves handling of sev-
eral challenging issues. Contour acquisition and its quality improvement is the
first task. In this work we have made use of some common techniques for noise
cancelling like cautious Gaussian smoothing and B-Spline modelling [7]. Partial
occlusion of shape poses a big challenge for algorithms with a global approach.
An object is made invisible in a local environment. At the same time its shape in
this environment is replaced by the shape of the occluding object. Recognition
of occluded shapes by a human involves an analysis of the local structure, a
search for a characteristic contour fragment allowing a clear assignment to the
corresponding object class. Automatisation of the recognition process requires
likewise a method that conducts such a local structural analysis of the object
contours under partial occlusion. The algorithm that performs the local struc-
ture analysis in our work will be referred to as hierarchical fragmenting. For a
given input contour this method generates several fragment levels, whereby the
structural complexity of the fragments increases from level to level. The B-spline
interpolation for noise cancelling and hierarchical fragmenting are both based on
the segmentation that uses local maxima of the curvature function for extrac-
tion of the points of interest. The importance of such points in contour-based
approaches has been investigated in [3].

In this paper we present classification results for two classical affine-invariant
feature extractors based on Fourier descriptors and Zernike moments [10,9].

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 697–704, 2009.
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Within our experimental setup we allow a restricted perspective deformation
of the contour. The scene is shot only from above while the camera is mov-
ing parallel to the surface. It has been shown in our work that it is possible
to compensate a certain degree of perspective deformation by training. Exper-
iments with rendered object images have shown that the larger the degree of
perspective change of the contour the larger the classification error when using
an affine-invariant feature extractor.

Multiple classifier systems have been employed in complex computer vision
tasks starting in the eighties. Different aspects of development in this field have
been discussed by T.K. Ho in [4]. In our approach each member of the ensemble
specializes on its own degree of occlusion, defined by the corresponding level of
the hierarchical fragmenting. The final hypothesis is generated by application
of the class-related weighted average method. The determination of weights is
formulated as a linear optimization problem being solved for an additional set
of occluded shapes. The empirical results have shown that our approach delivers
a considerable improvement of classification results compared to using a single
classifier for recognition of partially occluded objects.

2 Contour Preprocessing and Feature Extraction

Factors like hardware noise, reflection or shadows result in an acquired con-
tour that doesn’t comply with the smooth shape of the original objects (see
Figure 1(a)). Our goal is to improve the contour locally without loosing the in-
formation about the global structure. In our approach we describe the global
structure by a set of points of interest (POI), which we later interpolate with
B-splines. Here we use a common way to define a point of interest as a local
maximum of the curvature function [5,2]. Let x and y be functions defining a
discrete contour in a parametric representation. Then the curvature in the point
p := (x(t), y(t)), t ∈ T 1 is defined as follows:

k(p) :=
x′(t)y′′(t)− x′′(t)y′(t)(
x′2(t) + y′2(t)

)3/2 , (1)

where T denotes the number of discrete points in the contour. POI p0 = (x(t0),
y(t0)) is defined for ε ∈ N, t0 ∈ T and an environment U0 = U(t0, ε) as follows:

|k(p0)| = max
p∈Pu

|k(p)|, (2)

where Pu = {(x(t), y(t))|t ∈ U0}. In order to obtain realistic values for k(p),
we first apply Gaussian smoothing with σ = 5 on the contour data. Then we
calculate averaged derivatives that we use instead of regular discrete derivatives
in evaluation of k(p). Each derivative is built as an average over 5 neighbouring
points, which reduces the influence of noise. In the second step we apply a
procedure for POI extraction that can be schematically described as follows:
1 Throughout this work t ∈ T denotes t ∈ {1, . . . , T} for a T ∈ N.
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(a) Test objects in a
typical scene.

(b) Extracted POI (blue points); interpolated contour
(red) and original contour (blue).

Fig. 1. Typical test objects, preprocessed and segmented contours

1. Sort {(p, k(p)} in descending order according to the values k(p)
2. Select the first available point from the sorted list to be the next POI; pro-

hibit selection of further points belonging to the local environment of the
selected point

3. Go to 2 if there are points available in the list, otherwise emit the chosen
POI

The value of the local environment parameter in 2 depends on the structural
complexity of the objects. In our experiments we have used the value 1/10 of the
contour length. Finally, we conduct B-spline interpolation for the calculated POI.
This results in an improvement of the local contour structure, while sustaining
the global shape characteristics (see Figure 1(b)).

Contours of three-dimensional objects are rarely planar. Thus we can either
try to reconstruct the three dimensional structure of the curve or we work with
the two dimensional projection. Here we make use of the second option. In our
tests (see Section 4) we have shown that it is possible to use affine-invariant
feature extractors on such data and compensate the restricted perspective de-
formation by learning. For a given sampled contour we calculate a vector of
normalised Fourier descriptors and (pseudo) Zernike moments. In our experi-
ments we have used a constant number of points, L = 64, to represent any
kind of contour data. The dependency between the dimensionality of the feature
vector and the classification error will be described in Section 4.

3 Classifier Ensemble and Its Organisation

In the following sections we will describe the nature of Adaptive Occlusion Clas-
sifier (AOC) by looking at the following four main components: the data set,
feature extractors, basis classifiers and the combination technique [6].

3.1 Data Set

The data pool consists of real camera images and rendered images2 of the
non-occluded test objects. In our experiments we investigate solely artificially
2 In our experiments we have used POV-Ray [1] for rendering.
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Fig. 2. Five data subsets of fragments generated by the hierarchical fragmenting of a
bridge contour; rows correspond to the hierarchical levels

generated straight line boundary occlusion and make use of two methods for
occlusion generation. The first method of contour occlusion simply deletes a
given part of the contour data and connects the gap with a straight line. It is
computationally efficient but can produce unrealistic contours when applied to
non-convex shapes. The second method calculates the positions of the pixels
within the contour that can be deleted to yield a linear occlusion of the object
area. The later method of area occlusion is computationally more complex but
delivers realistic linear occlusions independent of the shape convexity.

On the data level the members of the AOC are assigned to their personal data
subsets. These are generated by the hierarchical fragmenting algorithm based
on the set of POI (or control points) for the B-spline interpolation. Consider
a contour fragment located between three neighbouring control points (see the
example fragments in the first line of Figure 2). A set of all such fragments builds
up the first hierarchical level or the first data subset. Note that the set of POI
used in the algorithm contains a subset of structurally descriptive points, e.g. a
corner of a prism. Analogously, the subset of the generated fragments contains a
subset of local shape-descriptive fragments, e.g. a fragment, containing a corner
of a prism. The hierarchical fragmenting algorithm on the i-th step connects two
neighbouring segments of the (i-1)-th level to a new one. This generates levels
of contour fragments of growing structural complexity, defining different levels
of partial occlusion. In Figure 2 you can see some example fragments of five
hierarchical levels for a bridge contour segmentation.

3.2 Feature Extractors and Basis Classifiers

In a perfect scenario classifier training results in a model that completely covers
the feature space of the partially occluded objects. Because the set of all possible
occlusions is vast, we have to choose training data that allows an approximate
solution. In our work we use the data subsets generated by the hierarchical
fragmenting which the feature extractor transforms into feature vector subsets.
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As mentioned above, we use normalized Fourier descriptors, Zernike and pseudo
Zernike moments. On the classifier level we use Local Credibility Criterion (LCC)
classifiers [8]. LCC classifiers consists of multiple hypersphere shaped models.
Their feasibility or credibility is determined by the ratio of correct responses to
the number of overall responses: γ = Rc/Rt. Both the set of models and their
number is dynamic.

3.3 Combination Technique and Weight Vector Estimation

Let F ⊂ Rn be a feature space and C := {1, . . . ,K} ⊂ N the set of class labels.
Let D := {D1, . . . , DL} be the classifier ensemble, where a classifier Di for i ∈ L
can be described by the following map:

Di : F → [0, 1]K , x �→ (di1(x) . . . diK(x)). (3)

In this work we have used the class-related weighted average method in order
to combine the responses of the AOC members. For each j ∈ K , i ∈ L the
class-related weighted average for a sample x is defined by:

μj(x) :=
L∑

i=1

wijdij(x), (4)

where the wij ’s denote the class specific weights.
AOC was designed to allow contour-based classification of objects with dif-

ferent degrees of occlusion. Each member of the ensemble specializes on its own
degree of occlusion during training as well as during testing. The main task of
the weight vector is to integrate the individual classifier class responses to a final
hypothesis according to their classification performance. For this purpose we use
an additional set of contours with a random uniform area occlusion up to 80
percent, denoted by γw

max = 0.8. Further let X := {(xn, cn)|n ∈ N } be a labeled
sample set. The response matrix Rl ∈ RN×K of the lth classifier to the sample
set X is given by:

Rl :=

⎛⎝ dl1(x1) . . . dlK(x1)
. . . . . . . . .

dl1(xN ) . . . dlK(xN )

⎞⎠ (5)

We define an auxiliary function that allows a correct building of a scalar product
and adding up of columns of the matrix Rl, l ∈ L for correct solving of the
minimization problem (see Eq. 8). For a k ∈ K we define:

fk : RN×K → RN ·K , Rl �→ (v1, . . . , vp)T , (6)

where p = N ·K and for i ∈ p , n ∈ N :

vi :=

{
dlk(xn), if i = N · (k − 1) + n
0, otherwise.

(7)
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Let r = L ·K be the dimension of the weight vector. We combine the responses
of the classifier ensemble in the following matrix R̂ ∈ Rp×r:

R̂ := (f1(R1), f2(R1), . . . , fj(Ri), . . . , fK(RL)).

For a given sample set X the weight vector w ∈ Rr

w := (w11, w12, . . . , wlk, . . . , wLK)T ,

can be calculated by minimizing the distance between the optimal response
matrix Ropt and the weighted (see Eq. 4) response matrix R̂:

min
w∈Rr

‖R̂w −Ropt‖. (8)

4 Experimental Results

The data pool consists of 1000 camera images and 1600 rendered non-occluded
images. For every type of geometrical figure (bridge, cylinder, half cylinder, cube
and prism) the data pool provides the same number of images. The objects have
been recorded with a perspective deformation through a change of the viewpoint
or the POV-Ray configuration.

In the first experiment we analyse the dependency between the dimensionality
of the feature vector and the classification error rate. For the training of the
ensemble members we have randomly selected 370 contours of non-occluded
objects out of the data pool. For the calculation of the weight vector we have used
250 contours with generated random area occlusion up to 30 percent, γw

max = 0.3.
In all algorithms for random occlusion generation we use uniform distribution
on the interval (0, γmax]. On average random uniform area occlusion up to 30
percent is approximately equivalent to random uniform contour occlusion up
to 50 percent in our experimental setup. We have tested 250 contours with
γt

max = 0.3. In the Figure 3(a) you can see the dimension of the feature vector
on the x-axis and the average classification error rate on the y-axis. Zernike
moments (ZM), pseudo Zernike moments (PZM) and Fourier descriptors (FD)
yield approximately the same results. The lowest average error is about 7 percent
which can be explained by the ambiguity of the contours with partial occlusion.

In the next experiment (see Figure 3(b)) we have compared the performance
of a single LCC classifier vs. AOC ensemble. For the calculation of the weight
vector we have used contours with a random uniform area occlusion up to 80
percent, γw

max = 0.8. As a representation of the contour data we have chosen to
use a 14-dimensional normalized vector of FD. On the x-axis we have plotted the
constant area occlusion parameter γt

const. The value of this parameter indicates
for all objects in the sample set a constant but randomly placed area occlusion
specified by the value γt

const. On the y-axis you can see the recognition error. For
all levels of occlusion AOC classifies considerably better than a single LCC. Data
with a constant area occlusion of more than 80 percent cannot be classified better
than by random guessing. This can be explained by a high degree of ambiguity
of strongly occluded object shapes.
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(a) Classification results for different feature
extractors

(b) Classification results: AOC vs. single
LCC

Fig. 3. Classification results for AOC ensemble and a single LCC classifier

Table 1. Comparison of error rates for different sets of synthetic data

R-R-S R-S-R R-S-S S-R-R S-R-S S-S-R S-S-S
Error rate (Set 1) 0.28 0.20 0.22 0.21 0.18 0.24 0.15
Error rate (Set 2) 0.27 0.19 0.24 0.22 0.21 0.23 0.22

The third experiment was aimed at exploring the capacity of rendered data
alone as well as its potential in combination with real camera images within
our applications. We have trained AOC with 350 samples. For weight vector
estimation we have used 250 contours with γw

max = 0.5. Table 1 shows the
summary of the test results for different combinations of real (R) and synthetic
(S) data in training, weight vector estimation and testing (R/S-R/S-R/S). Our
test data consists of 100 samples with γt

max = 0.5. The in-plane translation
of the objects with regard to the camera position within Set 2 is two times
as large as within Set 1. The classification using real camera images (R-R-R)
yielded an average error of about 17 percent. Consider the sixth column of the
table corresponding to the S-S-R configuration. The test results are only about
5 percent worse compared to the case where only real data (R-R-R) has been
used in training and weight estimation.

5 Conclusions

In this paper we have shown that the usage of the AOC ensemble for recog-
nition of partially occluded shapes of three-dimensional objects considerably
improves the results in comparison to a single LCC classifier. Classification for
γt

max yielded an average error rate of about 17 percent. This can be explained
by the ambiguity of the partially occluded data.
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Our procedure of hierarchical fragmenting delivers levels or subsets of contour
segments with growing structural complexity. By using this method in our appli-
cation we have demonstrated that it is well suited for carrying out local structure
analysis. In our tests we have compared the following classical affine-invariant
feature extractors: Fourier descriptors, pseudo Zernike moments and Zernike mo-
ments. All three have yielded comparable results. It can be concluded that the
usage of 12 to 14 dimensional feature vectors is sufficient for our application.

Tests with rendered images have revealed an automation potential of the
ensemble training within our experimental setup. Note that in our tests the usage
of rendered images in training resulted in an error rate increase of approximately
5 percent. More tests could be conducted in this area.
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Abstract. The medial axis being an homotopic transformation, the
skeleton of a 2D shape corresponds to a planar graph having one face
for each hole of the shape and one node for each junction or extremity
of the branches. This graph is non simple since it can be composed of
loops and multiple-edges. Within the shape comparison framework, such
a graph is usually transformed into a simpler structure such as a tree
or a simple graph hereby loosing major information about the shape. In
this paper, we propose a graph kernel combining a kernel between bags
of trails and a kernel between faces. The trails are defined within the
original complex graph and the kernel between trails is enforced by an
edition process. The kernel between bags of faces allows to put an em-
phasis on the holes of the shapes and hence on their genre. The resulting
graph kernel is positive semi-definite on the graph domain.

Keywords: Shape, Skeleton, Kernel Machine, Graph Kernel.

1 Introduction

The medial axis being an homotopic transformation, the skeleton of a 2D shape
is a 2D structure with as many holes as the shape. A natural way to encode
such a structure by a graph consists in creating an edge for each branch of
the skeleton and a node for each junction of branches or branch’s extremity.
The resulting graph is a non simple planar graph which may be enriched using
information from the radius of the osculating circle along branches [1,2,3,4,5].
The shape comparison is thus transformed into a graph comparison problem.
However, graph comparison methods robust against structural noise such as the
maximal common sub-graph method or the related graph edit distance prob-
lem [6] have an exponential complexity on general graphs. Many authors use
thus a simpler encoding of the skeleton leading to a comparison function with a
reduced complexity.

Siddiqi [1] and Sebastian [7] transform the graph into a tree and apply a
tree comparison scheme. Another method, introduced by Pelillo [8], transforms
� This work is performed in close collaboration with the laboratory Cyceron and is
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graphs into trees and then models the tree matching problem as a maximal
clique problem within a specific association graph. A last method proposed by
Bai and Latecki [4] matches end points (vertices with a degree one) and then
compares paths between end-points. Contrary to the previous approaches, this
last method can deal with closed structures and thus takes the holes of the shape
into account.

Although these methods have been developed for indexation and classification
tasks, they can not be readily used within the kernel machine framework. This
limitation is related to the lack of mathematical tools inside the graph domain.
Neuhaus and Bunke [9] proposed an elegant framework for the construction of
graph kernels based on edit distances. Another solution consists in using graph
kernels such as random walk or marginalized graph kernel [10] which are positive
semi-definite on the graph domain. Though, these kernels are easier to use, they
lack the flexibility and the noise robustness provided by the kernels based on
graph edit distances.

This paper follows a first contribution [11] where we defined the notion of path
rewriting within the graph kernel framework. However this method is defined
on trees and thus does not encode properly the holes of the shapes. First, we
recall some definitions and then extend our graph kernel framework to trails
(Section 2). Second, we propose to extend the rewriting process, initially defined
on trees, to graphs (Section 3). Then, we propose to combine our graph kernel
with a closed paths kernel which compares graphs’ faces (Section 4). Finally, an
experiment with a multi-class classifier is proposed to highlight the relevance of
holes inside holed shapes (Section 5).

2 Bag of Trails Kernel

Let us consider a graph G = (V,E) where V denotes the set of vertices and
E ⊆ V × V the set of edges. We define a simple-graph as a graph with no
multiple edges between two vertices and no loops (an edge linking a vertex with
itself). We define a trail as an alternating sequence of vertices and edges with
distinct edges and a path as a trail with distinct vertices. A closed path is a path
whose first vertex is equal to the last one. A bag of trails T associated to G is
defined as a set of trails of G whose cardinality is denoted by |T |. We finally
denote by Ktrail a generic trail kernel.

2.1 Mean Kernels

By considering bags as sets, Suard [3] has proposed several kernels for bags of
paths which are extensible to trails. Amongst these kernels, the mean kernel is
proposed as a convolution kernel [12] between trails: let T1 and T2 denote two
bags of trails, the mean kernel between these two bags is defined as:

Kmean(T1, T2) =
1
|T1|

1
|T2|

∑
t∈T1

∑
t′∈T2

Ktrail(t, t′). (1)
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This kernel is positive definite on the bag of trails domain if and only if Ktrail

is positive definite on the trail domain.
The major drawback of this kernel is the information averaging when bags

are composed of many trails. Such a loss of information may be avoided using a
weighted mean kernel [13]. The design of this kernel assumes that most of the
relevant information of a bag is located near its mean trail. Let T1 and T2 denote
two bags of trails, then the weighed mean kernel is defined as:

Kweighted(T1, T2) =
1
|T1|

1
|T2|

∑
t∈T1

∑
t′∈T2

<Ktrail(t,m),Ktrail(t′,m′)>d

ω(t)
W

ω(t′)
W ′ Ktrail(t, t′).

(2)

where d ∈ R+, m and m′ denote the mean trails of T1 and T2, ω(t) (resp.
ω(t′)) denotes the sum of the edge’s weights of t (resp. t′) and W (resp. W ′)
the whole weight of the graph containing t (resp. t′). The trail kernel between a
trail t and the mean trail m is defined as: Ktrail(t,m) = 1

|T |
∑

ti∈T Ktrail(t, ti).
The weighted mean kernel is a convolution kernel based on a scalar product
(the similarity with the mean trails) and the trail kernel Ktrail. So it is positive
definite if and only if Ktrail is positive definite.

2.2 A First Trail Kernel

For its marginalized kernel, Kashima proposed a walk kernel based on a tensor
product [14]. As trails are particular walks, the walk kernel remains available.
Let t and t′ denote two trails, the trail kernel denoted Kclassic is defined as 0 if
|t| �= |t′| and as follows otherwise:

Kclassic(t, t′) = Kv(ϕ(v1), ϕ(v′
1))

|t|∏
i=2

Ke(ψ(evi−1vi), ψ(ev′
i−1v′

i
))Kv(ϕ(vi), ϕ(v′

i)), (3)

where ϕ(v) and ψ(e) denote respectively the vectors of features associated to the
vertex v and the edge e. The termsKv andKe denote two kernels for respectively
vertex’s and edge’s features. Kclassic is a tensor product kernel and so is positive
definite if and only if Ke and Kv are two positive definite kernels. For the sake
of flexibility and simplicity, we use Gaussian RBF kernels based on the distance
between the attributes.

3 Edition Kernel on Trails

The main issue with skeleton based graphs is that two different graphs may
encode similar shapes. Two different kind of structural noise may appear inside a
skeleton: ligatures produced by noise on the boundary and elongations produced
by a general deformation of the shape. Usually, this structural noise is tackled
using edition operations on graphs. However, within a bag of trails framework
we must consider edition operations on trails. The effect of the structural noise
on a trail is twice: addition of edges and addition of vertices.
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We suppose that the edges of our graph are associated to a weight which en-
codes their relevance. Torsello [15] has proposed such a relevancy measure: for
each edge this measure approximates the length of the boundary associated to
the skeleton’s branch encoded by this edge. Using this weight, we compute the
relevance of each vertex and edge inside a trail: the relevance of an edge corre-
sponds to its weight and the relevance of a vertex corresponds to the weight of
the sub-graph (i.e. the sum of the weight of all the sub-graph’s edges) connected
to the trail by this vertex. When graphs are trees [11], the sub-graphs correspond
to sub-trees and the computation of the relevancy measure of vertices is unam-
biguous. Fig. 1a shows for example a path within a tree, where the sub-trees
related to the two vertices of the path are clearly defined and so their weight.

However, with holed shapes, graphs are not trees and the definition of the
relevancy of vertices is not straightforward. Indeed, sub-graphs may connect
several vertices of the considered trail. We propose to solve this difficulty by us-
ing the random walker diffusion algorithm [16] where normalized edge’s weights
are considered as transition probabilities. For each vertex vi of the trail, this
diffusion algorithm associates to each vertex vl of the graph the probability pl,i

that a random walker starting at vl first reach vi. Each vertex of the graph
is then associated with the vertex of the trail with the maximal probability.
The sub graph induced by this set of vertices is called the influence zone of the
trail’s vertex. However, the random walker is designed for simple-graphs. We
thus transform our non-simple graph into a simple one by defining the transi-
tion probabilities between vertices as follows: loops are removed and multi-edges
between two vertices are transformed into a single edge whose weight is the sum
of edges’ weights. Single edges between vertices are kept unchanged. Note that
this transformation is only used for the random walker algorithm. Our trails and
the sub-graphs encoding the influence zones are both defined within the initial
non simple graph.

The weight of the influence zone of a vertex v is defined as the sum of 1) the
weight of the edges within the influence zone and 2) a ratio of the weight of
the edges shared with another influence zone (i.e. edges whose vertices belong
to two influence zones). For example, the dash-dotted edges within Fig. 1b are
shared by the two influence zones. Let v1 and v2 be the two incident vertices
of an edge of weight w, v1 (resp. v2) is associated to its influence zone by a
probability p1 (resp. p2) then we define as p1

p1+p2
w (resp. p2

p1+p2
w) the part of the

weight associated to the influence zone related to v1 (resp. v2). Fig. 1b shows
an example of influence zone of trail vertices (the trail is defined by the dashed
line): remark the importance of the influence zone of vertex 1 compared to the
one of vertex 2.

Given a relevancy measure of each vertex and edge of a trail we introduce
two edition operations: vertex suppression followed by edge merging and edge
contraction ( or suppression for loops). The cost of an operation is defined as
the relevancy measure of the removed edge or vertex. Finally, we defined an
edition function κ which applies the cheapest edition. Then κi(t) denotes the
trail t after i editions. In addition, we denote by costi(t) the cumulative cost of
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(a) A path within a tree (b) The random walker algorithm

Fig. 1. Influence zones: (a) Example of tree with a selected path (dotted edge) (b)
The influence of the vertices of the dashed trail between the vertices 1 and 2 using the
random walker

operations leading to κi(t). Finally, we construct the edition kernel as a weighted
convolution kernel between the trails and their rewritings:

Kedit(t, t′) =
1

D + 1

D∑
k=0

D∑
l=0

exp
(
−costk(t) + costl(t′)

2σ2
cost

)
Kclassic(κk(t), κl(t′)),

(4)
where D is the maximal number of editions and σcost the RBF parameter of the
cost kernel which penalizes edition. This kernel is a convolution kernel [12] and is
positive definite if and only ifKtrail is positive definite. Experiments showing the
insight of kernel Kedit for the robustness against structural noise are provided
in [11].

4 Closed Paths Kernel

The faces of a skeletal graph encode the holes of a shape and represent as such
important information about the shape. When using the previously defined ker-
nels, faces are just encoded as trails. So when constructing a bag of trails, these
particular trails may not appear in the bag or may be drowned with many other
trails. Thus it is relevant to put an emphasis on faces when dealing with holed
shapes.

Several kernels based on cycles have been proposed for graphs [17]. However
these kernels are not designed for shape classification for two main reasons:
they don’t consider the orientation of faces and they are not restricted to cycles
encoding faces.

An efficient comparison of faces within a shape recognition framework requires
a kernel robust against structural noise. We propose to encode each hole by a
unique closed path which describes the corresponding face. This path begins at
the closest vertex to the gravity center of the shape and crosses the edges using
a counter-clockwise orientation. For example, the hole of the padlock in Fig. 2b
is described by the closed path ”4 e3 3 e1 4”. Finally, two closed paths encoding
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a) Holed shapes databases b) Computation of the closed path of a padlock shape

Fig. 2. Holed shapes and closed paths computation

faces are simply compared using a trail kernel such as Kclassic (section 2.2) or
Kedit (section 3).

However, while comparing two closed paths, we may have to face to alignment
errors due to the selection of the initial vertex. In order to enforce the robustness
of our kernel, shifted versions of the closed paths are also compared. For example,
the face in Fig. 2b presents two vertices at an equal distance to the gravity center
and the closed path ”3 e1 4 e3 3” is thus an acceptable path which corresponds
to a shifted version of the previous path. We define the function μi(t) which
performs a circular shift of i edges of the path t clockwise if i is positive and
counter-clockwise i is negative.

The shift kernel is then defined as the weighted convolution between paths
and their shifted versions using a trail kernel denoted Ktrail:

Kshift(t, t′) =
1

(2p+ 1)2

p∑
i=−p

p∑
j=−p

exp
(
− |i|+ |j|

2σ2
closed

)
Ktrail(μi(t), μj(t′)), (5)

where p is the maximal number of shifts. This kernel is positive definite if and
only if Ktrail is positive definite. Finally, the closed paths kernel is defined as
the mean kernel between all the closed paths surrounding the faces of two planar
graphs G1 and G2:

Kclosed paths(G1, G2) =
1

|C(G1)|
1

|C(G2)|
∑

t∈C(G1)

∑
t′∈C(G2)

Kshift(t, t′), (6)

where C(G1) (resp. C(G2)) denotes the set of closed paths encoding the faces
of G1 (resp. G2) and |C(G1)| (resp. |C(G2)|) denotes the size of the set C(G1)
(resp. C(G2)). This kernel is positive definite if and only if Kshift is positive
definite.

Finally, a kernel denoted Kcombined is built using the two proposed kernels:

Kcombined(G1, G2) = (1− γ)Kweighted(T1, T2) + γKclosed paths(G1, G2), (7)
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where T1 (resp. T2) is the bag of trails associated to G1 (resp. G2), γ ∈ [ 0, 1 ] is
a tuning variable, Kweighted (2) denotes our bag of trails kernel and Kclosed paths

our closed paths kernel (6). This kernel is positive definite on the union of the
bag of trails and bag of faces domains as it is defined as the addition of two
positive definite kernels multiplied by positive coefficients [18].

5 Experiments

We propose an experiment using a multi-class classifier [19]. The test database is
built by adding shapes with holes (Fig. 2a) to the Kimia 99 shapes database [20].
Three kernels are used: the combination of the weighted mean kernel with the
closed paths kernel denoted Kcombined (7) , the weighted mean kernel alone
denoted Kweighted (2) and the random walk kernel [10]. The trail kernel used
within the weighted mean and the shift kernels (Section 4) is the edition kernel
Kedit (Section 3).

For this experiment, the bags of trails (Section 2) were composed of 2 percent
of the heaviest paths amongst all the trails with up to 9 edges. The maximal
number of editions (Section 3) was set to 9 and the number of shifts (Section 4) to
5. The parameters of the involved RBF kernels have been manually tuned based
on a first estimate provided by a cross validation algorithm. For efficiency reason,
the random walk [10] is performed on an augmented version of the maximal
spanning tree: while considering an edge which is implied in the formation of a
cycle or a loop, we change one of its incident vertices into a new vertex (of degree
1) with the same characteristics in order to break the cycle or loop. Using this
trick, the graph may be encoded by an adjacency matrix and efficient random
walk kernels [10] based on such an encoding may be used. Note that alternative
encoding using line graphs may also be considered.

The experiment consists in the classification of the whole database into 5
classes (2 classes from the Kimia databases and 3 classes of holed shapes). The
training set was composed of 5 shapes of each class taken arbitrarily. The clas-
sifier algorithm [19] is based on kernel principal analysis and quadratic discrim-
inant analysis and so considers both inter-classes and intra-classes properties.
The computational times require to compute the Gram matrices associated to

Table 1. On the left, the confusion matrix on 5 classes of shapes: (1) Cups, (2) Keys,
(3) Scissors, (4) Dudes and (5) Tools. On the right, the computational time of the
Gram matrix for the three kernels.

Kcombined Kweighted Random Walk
Classes (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

(1) 8 2 1 7 4 4 6 1
(2) 11 11 2 8 1
(3) 11 2 9 10 1
(4) 11 11 11
(5) 1 10 1 3 2 5 2 1 8

Kernel Times
Kcombined 19s
Kweighted 8s
Random walk 9min
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our three kernels are given in Tab. 1(right). Tab. 1(left) shows the confusions
matrices of the three kernels. The Kcombined kernel shows very good results with
some confusion on the cups. The Kweighted kernel shows good results, but is very
confused on tools. This confusion comes from the few trails contained inside the
bag of trails which are not sufficient for a proper class separation. The random
walk kernel shows good results too with confusion on tools and on cups. The
confusion on the cups is due to the maximal spanning tree which conducts to a
loss in the description of the faces of the graph.

6 Conclusion

We have defined in this paper a positive semi-definite kernel for shape classifi-
cation which is robust to noise and takes holes into account. The experiments
show taking into account such topological feature of the shape improve the clas-
sification performances. In the future, we plan to further improve the selection
of the trails and the combination of the trail kernel results.
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Goal-Directed Hand Actions
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Abstract. The recognition of transitive, goal-directed actions requires
a sensible balance between the representation of specific shape details of
effector and goal object and robustness with respect to image transforma-
tions. We present a biologically-inspired architecture for the recognition
of transitive actions from video sequences that integrates an appearance-
based recognition approach with a simple neural mechanism for the rep-
resentation of the effector-object relationship. A large degree of position
invariance is obtained by nonlinear pooling in combination with an ex-
plicit representation of the relative positions of object and effector using
neural population codes. The approach was tested on real videos, demon-
strating successful invariant recognition of grip types on unsegmented
video sequences. In addition, the algorithm reproduces and predicts the
behavior of action-selective neurons in parietal and prefrontal cortex.

1 Introduction

The recognition of transitive actions requires additional computational mech-
anisms, compared to the recognition of human actions without goal objects.
Recognition has to be invariant against changes in low-level image features,
shifts in position, and shape transformations over time. At the same time, the
distinction of different grip types (e.g. precision or power grip) requires a remark-
able accuracy with respect to the detection of shape details (e.g. finger positions
or their relationship to the grasped object).

This paper presents a physiologically-inspired model for the recognition of
goal-directed hand actions. The model accomplishes the recognition of goal-
directed hand actions from unsegmented gray-level videos. At the same time,
it reproduces several biological findings in the mammal visual system, such
as tuning properties of action-selective neurons in premotor cortex [1], view-
dependence of recognition [2], and selectivity for the relationship between effec-
tor and object [3].

Related models have been discussed in robotics in the context of imitation
learning. Many existing models in this domain are based on explicit three-
dimensional shape models of effector and object (see [4] for an overview). Op-
posed to this work, we propose here an example-based approach that extends
biologically-inspired models for the recognition of objects and actions [5,6,7,8,9].

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 714–722, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Similar appearance-based approaches have been quite successful in object detec-
tion and recognition [10,11,12]. Opposed to previous work that has focused on
the recognition of effector and body shapes from silhouettes (e.g. [13,14]), our
system recognizes effector and object without previous segmentation. In contrast
to other recent systems for action recognition, our system does not rely on com-
bined space-time features (e.g. [15,14]) or motion features (e.g. [16,17]). Instead,
spatio-temporal order is explicitly modeled by a dynamical interaction between
shape representations using neural fields [18,5]. In contrast to many existing
models for shape recognition that are characterized by complete position invari-
ance, the proposed system exploits partially position-invariant detectors for the
reconstruction of the spatial relationship between effector and goal object. This
relationship is crucial for the detection of functional and dysfunctional grips.

In the following, we first present the architecture and its components (Section
2). We then show results of evaluating the different components of the system
in Section 3. Finally, in Section 4 implications and further extensions of the
approach are discussed.

2 Architecture for the Recognition of Transitive Actions

The architecture consists of three major components that correspond to corti-
cal structures that seem to play a central role in visual action recognition: (1)
a hierarchical neural system for the view-dependent recognition of object and
effector shapes, (2) a circuit that is selective for temporal sequences of detector
shapes, (3) a level that integrates the information about effector, object and
their spatial relationship.

2.1 Neural Hierarchy for Shape Recognition

The first levels of the developed system are formed by a hierarchical neural ar-
chitecture for shape recognition. Each layer of this hierarchy consists of a set of
neural feature detectors that are inspired by the properties of real physiological
neurons. Levels with neurons that are selective for individual features alternate
with levels that increase invariance by pooling over detectors with different spa-
tial and scale preference using a maximum operation [6,7]. The sequence of com-
putations within each of the five layers of this hierarchy is given by: (i) feature
detection through template matching, (i) maximum computation over detectors
at neighboring spatial positions, (iii) application of a linear threshold function,
and (iv) down-sampling by a factor of two. The parameters of the operations
within each layer are summarized in Figure 1.

Layer V1/V2 - Local Orientation Detectors. Local orientations are ex-
tracted by simple cells that are modeled by a set of Gabor filters. To cover the
structure of the hand, we use Gabor filters with 12 different preferred orienta-
tions θ and two different spatial frequencies ξ, as summarized in Figure 1.

Complex cells in the following layer integrate responses from simple cells with
same orientation preference over position, scale and phase. Let (xevenθ,ξ

1 , . . . ,
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Local Orientation Detectors Shape Fragment Detectors Global Shape Detectors

Complex CellsSimple Cells

Small Scale

Large Scale

Image Sequence

 Number Feature Maps
 Filter Size
 Range of Max-Pooling
 Activity Threshold

 12
       30x30; 40x40
           12x12x2
                 0.4

 120
              8x8x160
               12x12
                  0.5

80
              8x8x120
                10x10
                   0.6

21
              7x7x12
               
               

Layer 1 5432

 160
              8x8x12
               12x12
                  0.4

Fig. 1. Overview of the shape-recognition hierarchy

x
evenθ,ξ
m ) and (xoddθ,ξ

1 , . . . , x
oddθ,ξ
m ) denote the responses of the even and odd Gabor

filters from the same local neighborhoodS of sizem and scale ξ. Then the response
of a complex cell is given by rθ = maxj∈S,ξ{(xevenθ,ξ

j )2 + (xoddθ,ξ

j )2}. Above the
second layer no distinction of different spatial frequency regimes was realized.

Layers V4/IT - Detectors for Shape Fragments. The neurons in the
three intermediate layers represent detectors that extract features of increasing
complexity. The feature detectors on the intermediate layer i were defined by
Gaussian Radial Basis Functions (RBFs) with the form

ri = exp

⎛⎝−β ∥∥∥∥∥ r̃i−1∥∥r̃i−1∥∥ − p̃
‖p̃‖

∥∥∥∥∥
2
⎞⎠ . (1)

The centers p of the RBF functions were tuned to local combinations of input
features from the previous layer i − 1 that were specified by training patterns,
and we chose β = 0.5.

During training, on each layer novel intermediate features p were extracted
from the responses of the previous layer within a limited spatial region. Training
images show individual hand configurations or objects. Over the training set, for
dimensionality reduction, features were centered around the training mean m
and their dimensionality was reduced by the mapping p̃ = A(p−m), retaining
only the PCA components that were necesary for explaining 99% of the variance.
The transformed features p̃ were then clustered based on their correlations, and
the average feature of each cluster was retained. The number of remaining feature
detectors on each intermediate layer is summarized in Figure 1.

Outputs again were thresholded, and responses within a local spatial neigh-
borhood were pooled with a maximum operation, followed by a spatial down-
sampling with factor 2.

Layer IT/STS - Shape Templates for Hand and Object. The feature
detectors on the highest level of the recognition hierarchy respond selectively
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Fig. 2. Integration of hand and object information

to views of objects and hands, being sensitive to configuration, orientation and
size. The response function is computed using a RBF as described before, while
responses were not pooled and down-sampled. The responses of this level var-
ied still partially with the object position, making it possible to read out the
positions of object and effector by a simple population code.

2.2 Temporal Sequence Selectivity Exploiting Neural Fields

The outputs of the detectors for the effector shapes that correspond to a specific
grip type l , signified by zl

k(t), provide input to snapshot neurons that are selec-
tive for the temporal order with which these shapes occur. This temporal order
selectivity was implemented using a simple recurrent neural network, which can
be interpreted as a direction-selective neural field [5,18]:

τr ṙ
l
k(t) = −rlk(t) +

(∑
m

w(k −m) [rlm(t)]+

)
+ zl

k(t)− hr

where w is an asymmetric interaction kernel, hr determines the resting level,
and where τr is the time constant of the dynamics.

The responses of all snapshot neurons encoding the same action were inte-
grated by motion pattern neurons, which smooth the activity over time. Their
response depends on the maximum of the activities rlk(t) of the corresponding
snapshot neurons:

τsṡ
l(t) = −sl(t) + max

k
[rlk(t)]+ − hs (2)

The motion pattern neurons are active for individual grip sequences, independent
of the presence of a goal object.

2.3 Integration of Object and Effector

The recognition of functional transitive action requires the detection of the correct
match of object shape, effector configuration and relative position. For example,
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if a bottle is grasped from the side, the form of the bottle, the opening and orien-
tation of the hand and the location of the hand at the side of the bottle need to
be jointly recognized.

In order to compute the relative spatial positions of the effector and object,
we computed a relative position map (RPM) from the activity maps aE(u, v) and
aO(u, v) of the effector, respectively the object. In these maps, which corresponds
to the highest layer of the shape recognition hierarchy described before, object
and goal positions correspond to activity peaks. A simple neural network that
can be described by the relationship

aRP (u, v) =
∫
aO(u′, v′) aE(u′ − u, v′ − v) du′ dv′. (3)

realizes a coordinate transformation that results in an activity map, whose peak
position corresponds to the position of the goal object in a coordinate system
that is centered in the (retinal) position of the effector. This allows the definition
of tuning functions gl(u, v) that are positive for all object positions relative to
the effector (in this coordinate system) for which effector shape and position
would result in an effective grip, and which are zero otherwise (cf. blue region
indicated in Figure 2). The response of these detectors was given by:

al =
∫
aRP (u, v) gl(u, v) du dv. (4)

Finally, the information about this spatial congruency between effector and ob-
ject can be integrated with the information about the grip type that is indicated
by the motion pattern neurons. The response of the neural detectors at the high-
est level of the hierarchy was simply given by the product of the responses on
the previous layers:

ml(t) = sl(t) · al(t) (5)

In consistency with action-selective cortical neurons (e.g. [1,3]), these top-level
detectors show strong activity only if the grip type and effector position and
orientation matches the grasped object.

3 Results

We tested the model on unsegmented video sequences (640x480 pixels, RGB, 30
frames/sec, 30 to 40 frames) showing a side view of a hand grasping a ball (8cm
diameter, 30cm starting distance) either with a power or a precision grip. We
evaluated the performance by leave-one-out cross-validation on 10 sequences per
grip type. For training of the feature detectors, images (120x120 pixels) contain-
ing either the hand or the object were extracted from the training sequences. The
video frames were converted to grayscale and preprocessed by removing back-
ground noise, performing local contrast normalization and image whitening.
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3.1 Recognition of Grip Type

The performance of the hand-shape recognition was evaluated based on the out-
put of the highest layer of the shape recognition hierarchy. Image frames were
classified as representing either power or precision grip, according to the learned
feature map with the maximum activity. Figure 3a shows the corresponding clas-
sification performance (percent correct) over time (blue bars). Averaged over the
cross-validation test set, we achieve a perfect classification after approximately
half of the sequence length. Figure 3b depicts the corresponding confusion ma-
trix for power and precision grips. It is apparent that shapes usually are more
likely to be confused with other shapes from the same grip type. Confusions are
reduced by the sequence selection mechanism that results in an overall increase
in recognition performance (see Figure 3a, red bars).
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Fig. 3. (a) Recognition performance over time for the classification of power versus
precision grips, with and without sequence selectivity; (b) corresp. confusion matrix

3.2 Position Estimation

Figure 4a shows that the object position can be reconstructed with high accuracy
from the activity maps of the highest hierarchy layer (error: 8% in horizontal and
3% in vertical direction). This high accuracy form the basis of the reliable relative
position estimation realized by Eq. (3). Figure 4b demonstrates the efficiency of
this mechanism, showing the very small variation of responses if action stimuli
are presented at different positions of the visual field (standard deviation±0.61%
of the response to the prefered and ±2.65% to the non-prefered stimulus).

3.3 Recognition of Functional vs. Dysfunctional Actions

The proposed system not only recognizes grip type, but also is suitable for dis-
tinguishing functional and dysfunctional grips, consistent with the properties
of action-selective cortical neurons. Figure 5 depicts the average activity of the
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power grip detectors on the top-level of the system (Eq. 5) over the set of cross-
validation stimuli. Strong responses arise only for the correct grip type in pres-
ence of the object and if the object is placed correctly relative to the effector.
’Mimicked actions’ where the object occurs next to the effector do not result
in a significant response. This illustrates that the matching of grip affordances
can be realized in an appearance-based framework without the assumption of
three-dimensional representations. In addition, the behavior of the model closely
resembles the ones of action-selective neurons in the superior temporal sulcus of
monkeys ([3]see inset).

4 Conclusions

We have presented a biologically inspired architecture for the recognition of tran-
sitive actions. The system explicitly models the interaction between an effector
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and a goal-object without a detailed reconstruction of 3D structure. The system
successfully classifies different grip types based on unsegmented video stimuli
and provides estimates for the 2D positions of effector and object. Recognition
was highly invariant against position changes, at the same time being quite se-
lective against the small image changes that characterize the differences between
precision and power grip. Ongoing work focuses on extending and testing the
architecture on view-independent recognition tasks using an extended video data
basis including a variety of object shapes.
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Abstract. This paper describes a new visual feature to especially address the 
problem of highly dynamic place recognition. The feature is obtained by identi-
fying existing local features, such as SIFT or SURF, that have wide baseline 
visibility within the place. These identified local features are then compressed 
into a single representative feature, a wide-baseline visible feature, which is 
computed as an average of all the features associated with it. The proposed fea-
ture is especially robust against highly dynamical changes in scene; it can be 
correctly matched against a number of features collected from many dynamic 
images. This paper also describes an approach to using these features for scene 
recognition. The recognition proceeds by matching individual feature to a set of 
features from testing images, followed by majority voting to identify a place 
with the highest matched features. The proposed feature is trained and tested on 
2000+ outdoor omnidirectional. Despite its simplicity, wide-baseline visible 
feature offers two times better rate of recognition (ca. 93%) than other features. 
The number of features can be further reduced to speed up the time without 
dropping in accuracy, which makes it more suitable to long-term scene recogni-
tion and localization. 

1   Introduction 

In recent years the problem of place recognition and localization has achieved much 
attention. It has been solved with various visual features [6], [7]. To obtain an ideal 
recognition system, one may need to overcome three main difficulties: dynamic 
places, changes of viewpoint, and scene categorization. For dynamic environment (i), 
places may look very different in time because of illumination changes and because of 
moved stuffs, i.e. parking-lots become empty on holidays. For the second difficulties 
(ii), different viewpoints often make the scene look different. An object’s appearance 
taken from two different camera positions in exactly the same time could be various. 
The last sub-problem (iii), categorization, is a question of how the robot understand 
the scene so that it can categorize a new place to the one it knew. By the term "highly" 
dynamic changes, we define it as the situation where many objects have been changed 
because of some particular event (i.e. the university campus on Monday and Holiday, a 
city park with and without special event. 

In this paper, we examined the first difficulty: the scene recognition in highly dy-
namic environment where major components of scenes can be changed over time 
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because of moved objects. Among many solutions we have chosen the object-based 
approach [4], because we assume that, in highly dynamic place, finding the good 
landmarks is better than finding a good global representation. In object-based ap-
proach, a scene location is recognized by identifying a set of landmarks known to be 
included in the scene. Unfortunately, these approaches are prone to carrying over and 
amplifying low-level errors along the stream of processing. For instance, upstream iden-
tification of small objects (pixel-wise) is hindered by downstream noise inherent to 
camera sensors and by variable lighting conditions. This is problematic in spacious 
environment like the outdoors, where landmarks tend to be more spread out and possi-
bly at farther distances from the agent.  

The approach might become efficient if (i) the good landmarks could be found, and 
(ii) the error in capturing distant objects could be reduced. Therefore, we propose the 
feature which satisfies these two requirements. Wide-baseline visibility feature is devel-
oped upon the existing local features such as Scale-invariant Feature Transformation 
(SIFT) [6] or Speeded up Robust Features (SURF) [7]. Firstly, the local descriptors 
found in the sequential images are filtered to obtain only those descriptors which are 
slow-moving relatively to changes in camera positions. This satisfies the first require-
ment. Secondly, thanks to the descriptive power of the basic local descriptors, a good 
feature of even small distant objects can be captured precisely. This satisfies the second 
requirement. Despite its simplicity, wide-baseline visible feature works very well for 
highly dynamic outdoor scenes. We trained and tested its performance with 2000+ out-
door scenes collected from our campuses. For our dataset, training data is collected on 
holidays, while testing data is collected on weekdays.  

2   Related Works 

Place recognition has been addressed in the past by a variety of approaches. Many 
effective features have been proposed and used in various ways. Histogram of image 
properties, i.e. color [15], has been widely used in place recognition. However, after 
SIFT [6] is popularized in the vision community, it nearly dominates the feature 
choice in place recognition systems [2], [10], [11], [14]. SIFT features are invariant to 
scale and robust to rotation changes. The 128 dimensional SIFT descriptors have high 
discriminative power, while at the same time are robust to local variations [11]. It is 
shown that SIFT significantly outperforms edge points [3], pixel intensities [16], and 
steerable pyramids [12] in recognizing places. 

Oliva and Torralba [13] suggested that recognition of scenes could be achieved by 
using “global configurations”, without detailed object information. Thus statistical 
analysis of SIFT distribution becomes popular. Torralba et al. [8] use the global im-
age features to generate the Gaussian Mixture Models for place recognition, using 
fixed variance. The method gives limited tolerance for appearance variation and is not 
invariant to translation or scale changes. Lazebnik et al. [3], used the k-means algo-
rithm to cluster SIFT features, and the cluster centers were used as the codebook to 
solve the 15 classes scene recognition. Cummins and Newman [10] integrate the bag-
of-visual-word (BoW) into the recursive Bayesian framework and achieved the per-
formance beyond the localization; it can determine that a new image comes from a 
previously unseen place. Later, Angeli et al. [17], proposed the incremental BoW. 



 Wide-Baseline Visible Features for Highly Dynamic Scene Recognition 725 

Starting from empty dictionary, the system can gradually collect new words while 
localizing the places. Lately, Wu and Rehg [9] proposed the spatial Principle Compo-
nent Analysis on Census Transform (sPACT) as the feature for scene recognition and 
categorization. Its performance is proved to be better than the BoW method of [4]. 
The authors also report the highest accuracy over the KTH-IDOL dataset 
(http://cogvis.nada.kth.se/IDOL/) of indoor robots.  

Unlike Gist or sPACT, wide-baseline visibility feature captures only some objects 
which have wide baseline visibility. Our own experiments show that global represen-
tation may yield a lower rate of accuracy when the scenes are highly dynamic. Simply 
averaging the slow-moving local features can be surprisingly effective for outdoors 
where distant objects are abundant. Furthermore, the features can be extracted very 
rapidly (faster than Gist and sPACT).  

3   Wide-Baseline Visibility Feature Extraction 

Wide-baseline visible feature is a single local feature that is robust to wide range of 
camera position along the path within the same place. The basic idea comes from 
observing that outdoor scenes generally include distant views or objects. These ob-
jects are useful to identify the place because their appearance is stable, irrespective of 
camera position changes. Precisely, a single wide-baseline visibility feature is com-
puted as an average of the existing local descriptors which appear to belong to distant 
objects. The extraction requires an image sequence because it needs to identify all 
associated slow-moving local features from the sequence and compress them into a 
single wide-baseline visible feature. Many single wide-baseline visible features are 
gradually collected to form an individual dictionary of place (one place contains many 
sequential images). An individual dictionary is used as a signature of an individual 
place. In this paper, SIFT is used as the basic descriptor for wide-baseline visibility 
feature extraction. However, other local features, such as SURF [7], are also compati-
ble with our method. To be simple in presentation, we use the term “w-feature” to 
designate the wide-baseline visible feature. 

Given N as the current number of all visited places in an environment, in  as the 

number of sequential images },...,{ 1 inII=Ι  of the ith place, where i ≤ N. Matching is 

performed sequentially for every pair of images; namely )(),...,( 121 ii nn IIII −− − . We 

use the same matching criteria as done in the work of [7]. The threshold value is set to 
0.6. After every pair of images has been matched, the matching result is kept as the 
matching index vector, ),...,( ,,1

i

qk

i

q

i

q q
mmm =v

, where inq < , qk  is the number of local 

features of qI . For example, )0,10(1
1 =m
v

is interpreted as the first matching between 

1I  and 2I . The first feature of 1I  matches to the 10th feature of 2I , while the second 

features of 1I  is not found in the image 2I . 

Considering the th

in )(  image (the last image of the ith place), after 1−in  matching 

index vectors m
v

 are derived, a w-feature is then extracted. However, an object with a 
stable appearance irrespective of the changed position is hard to find because the path 
might be long or curved. Therefore, we instead extract the w-features of the sub-place. 
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Considering the sequence of vector i

qm
v

 as the sequential input data, sliding windows 

feature extraction is performed to collect the w-features from many sub-places instead of 
the whole place. For example, if w=3, the first sub-place contains iii mmm 321 ,,

vvv
 corre-

sponding to 4321 ,,, IIII  and the second sub-place contains iii mmm 432 ,,
vvv

 corresponding to 

5432 ,,, IIII . The window size is w; the window is shifted by one, which means that, 

given i

jD  as the dictionary containing a set of w-features corresponding to the jth win-

dow (sub-place), there would be 1+− wni  dictionary for representing the place when 

the extraction is completed. 
Fig. 1 illustrates the feature extraction of the ith place. Given the number of sequential 

images 7=in , and the size of sliding window 3=w . Every image pairs are compared 

by feature matching, resulting in six matching index vectors. An element of vector is the 
index of the corresponded feature in the next image. For example, for the first sub-place 
( iii mmm 321 ,,

vvv
), there is only three features which appear in all images; (1,3,6,1), (4,1,1,2), 

(6,3,6,1). Note that (1,3,6,1) is interpreted as the 1st, 3rd, 6th and 1th feature of the image 

321 ,, III  and 4I  respectively. These four features (1,3,6,1) are interpolated to obtain a 

single wide-baseline feature. Therefore, there would be 3, 4, 4, 3 w-features for the 1st, 
2nd, 3rd, and 4th sub-place respectively, resulting totally 14 wide-baseline visibility fea-
tures for the whole ith place. By repeat this extraction process for every place, N diction-
aries },...,{ 1 NDD=Γ  would be obtained, where each of them contains features used for 

representing an individual place iD = )D;...;D( 1

i

wn

i

i − , where );...;(D ,,1

i

jd

i

j

i

j j
ψψ vv= . i

jx ,ψv  is 

the xth single wide-baseline visibility feature of the jth sub-place of the ith place, jd  is the 

number of wide-baseline feature in the dictionary of the jth subplace, 1+−≤ wnj i , and 

Fig. 1. The sample feature extraction of the ith place 
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inD  is the total number of features in iD , ∑ == in

p p

i dn 1D . Γ  can be used to represent all 

visited areas in the environment. The extraction is incremental because the new area can 
be added to the library. In addition, it is worth noting that extracting w-feature must 
match the images only 1)( 1 −∑ =

N

i in  times, while the spectral clustering (SC) requires 

2/)1)(()( 11 −× ∑∑ ==
N

i i

N

i i nn  times to form the affinity matrix. 

4   Scene Recognition 

Now that all N individual places, },...,{ 1 Npp=P , are well represented by a set of 
corresponding dictionaries },...,{ 1 NDD=Γ , we describe how these dictionaries are 
used to recognize the places. Majority vote is selected as the recognition framework. 

Majority voting (MV) is a very popular combination scheme because of its  
simplicity and its performance on real data. Its performance has been demonstrated 
experimentally in many studies such as handwriting recognition [1] and person au-
thentication. The MV is our selection because of its main concept related to the inde-
pendence of recognizers (classifiers). Based on the theoretical analyses, the MV 
seems to be effective if the recognizers are independent. Considering our problem, we 
assume that each place is independent. By applying the MV to our problem, each 
place vote for the matched descriptors found in the testing image. Additionally, MV is 
suitable to the task of incremental map-building in robotics as described in [2] be-
cause the similarity threshold for image comparison is not needed. The image is as-
signed to the place with the maximum number of votes.  

Consider the problem in which the single omnidirectional image I is to be assigned 
to one of N possible existing places ),...,( 1 Npp . First the image I is extracted and a 

set of descriptors, ),...,( 1 nzz
vv=Z , is derived, where z

v
 is a single image descriptor, n 

is the number of descriptors. Of N places, each checks if the descriptors nkzk ≤≤1,
v

, 

is similar to any w-features in its dictionary iD , N1 ≤≤ i . The vote is counted and the 
score is increased by one for every matching. That is, initializes 0→iS , for every i, 

1+= ii SS  if τψ <−
≤≤

i

jknj
zi

D

vv
1

min , where τ  is the similarity threshold for feature 

matching ( 6.0=τ  yields the best performance). The vote from places can be done in 
parallel, enabling rapid classification. After voting has been completed, the system 
classifies the image I as )(maxarg ii SpI →  with confidence )(maxarg ii Sc = ∑ ≠=

N

ijj ji SS ;1 )(/ .  

5   Results and Experiment 

The experiment is the scene recognition outdoor scenes. Two image databases were 
used in this study; A-Campus and B-Campus. We collected them by setting a tripod 
with height ca. 1.7 m. mounted with a camera (60D, DSLR; Nikon Corp.) with an 
omnidirectional lens. We walk along the road on campus while capturing omnidirec-
tional images every few meters. For all images, the original solution are 3872 × 2592, 
but scaled down to 640 × 428 for using in experiments. For A-Campus, most of the 
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training data are collected on holidays under clear weather, while the testing data are 
collected on weekdays under various weather conditions, resulting in 580 images for 
training, and 489 images for testing. All images are collected according to all three 
routes shown in Fig. 2(a). For B-Campus, we collect more images from places A24-
A37 in respect to the path shown in Fig.2 (b). For this campus, people are crowded on 
both holidays and weekdays, so that all data are taken on weekdays under various 
time and weather condition. The data had been collected during 3 months, resulting in 
totally 450/493 images for training/testing. Fig.2 (c) shows the difference between 
training images and testing images. 

Image data are manually segmented into 23 classes for A-Campus and 13 classes 
for B-Campus. Two baselines were used. The first baseline (i) is the 80-D gist vectors 
used in the work of Torralba et al. [8]. With 6 orientations of steerable pyramid and 4 
scales applied to the monochrome image, 580 gist vectors are derived from 580 train-
ing images. However, we do not use the HMM as done in [8], because the transition 
matrix of labeled sequence data is not available. Therefore, we try to use the First 
Nearest Neighbour (1-NN) and Support Vector Machines (SVM) as the classifiers. 
For the second baseline (ii), the spatial Principal component Analysis on Cencus 
Transform (sPACT) proposed by [9] is our choice because of it’s the reported highest 
result over KTH-IDOL database of. The classifiers used with sPACT are 1-NN and 
SVM, in the same way as done for the first baseline. 

A24A25A26
A27

A28

A29 A30 A31
A32 

A34A33

A36 
A35

(a) (b)

Fig. 2. Map of the outdoor experiment sites. (a) 23 places manually segmented by hand from 
campus A. (b) More 13 places of campus B are additionally added. (c) The sample of images 
from place A21 (top-row) and A01 (bottom-row) of A-campus. (Top-row) The training image 
was collected on holiday evening (left), while the testing image was obtained on weekday 
afternoon. (Bottom-row) The training image is collected in daytime, while the testing image is 
collected in nighttime. All images are unwrapped just for illustration.  
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Results of recognition in outdoors are shown in Fig.3. w-feature obviously outper-
forms the others. The averaged accuracy of w-feature is about two times better than 
other features both for A-campus and B-campus. The rate for B-Campus is lower than 
A-Campus because the B-Campus is a very crowded environment with many build-
ings. These buildings often obscure the distant objects. On other words, w-feature will 
reach its highest performance in the environment where distant objects are abundant. 
That is to say, there are two main factors which affect the w-feature’s efficiency. (i) 
Places with great number of objects blocking the distant view of camera inject bad w-
features into the dictionary. (ii) A small number of image samples can fail the w-
feature extraction in the sense that only a small number of wide-baseline features 
could be found. For example, A16 and A19 obtains low rate of accuracy (83.33% and 
80.00% respectively) because their size are very small comparing to other places (see 
Fig.2 (a)), while A18 obtains low accuracy (85.00%) because of its high-slope blocks 
most of distant views. Time in w-feature extraction is fast. For every single image in 
Suzukakedai Campus, average time for creating CT histogram, gist and w-feature 
(including SIFT extraction) are 29.29s, 4.82s, and 3.23s respectively. In term of rec-
ognition time (per image), it is clear that w-feature is slower than Gist and sPACT 
since both of them encode an image into only one feature vectors. w-feature trades off 
the recognition time with better accuracy. Fig. 4 shows the accuracy for different 
number of w-features. Even 50% reduction of w-feature, the accuracy is still more 
than other baselines. Interestingly, parallel votes can reduce time to be less than a 
second per image (Blue Line in Fig. 4). Although the reduced time is still longer than 
that of Gist, it might be acceptable for robotic navigation in which the image captur-
ing rate corresponds to the robot’s motions. 

 

 

 

Fig. 3. The overall performance of w-feature 
(prop.) is shown in comparison with other 
methods for both Campus A (blue) and 
Campus B (Red). 

Fig. 4. The recognition times per image by  
w-feature for first 100 testing images of  
A-Campus. From the upper line, the number of 
w-features is reduced by 75%, 50%, 25%, 
resulting in accuracy 92.6%, 89% and 76.7% 
respectively. The bottom blue line is the time 
when the recognition is done in parallel with 
50% rate of reduction. 
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Generally, global feature which captures a whole scene, such as Gist, includes 
many sensitive objects. For the sPACT, the rate is also much lower than ours because 
of its basic nature of feature extraction. Like Gist, sPACT also includes many dy-
namic objects of the scenes. This explains why Gist and sPACT fail to recognize 
images taken from dynamically different conditions. 

Another remarkable advantage of the w-feature is the reduction rate of memory. 
Since the w-features are sufficient to represent the place, the reference images are no 
longer needed. Most previous approaches work with a database of reference images 
[10], [14] which its size heavily depend on the size of the area. The memory required 
to store all 580+489 images (for both sites) is ~ 667MB, while the memory required 
for storing the w-features is 37.05~ MB (45647 features, no reduction). This means 
that using w-features reduces the size of memory by ~94%. 

There are some limitations of w-feature and future research directions to improve 
it. First, w-feature is currently limited to only the recognition problem; its descriptive 
power is too great to be used in the problem of categorization or understanding. Sec-
ond, in this paper, we use w-feature in a simple way to recognize scenes. Collecting a 
large number of w-feature from many places may finally face a problem of duplicated 
features. In addition to our w-feature reduction, vector quantization might be another 
good choice. Since w-feature is a highly distinctive feature in dynamic environment, 
bag-of- w-feature may become more stable for highly dynamic environments. Third, 
although time in w-feature extraction is faster than Gist and sPACT, its recognition 
time is slower. In this work, one place needs about 500-1000 w-features for represen-
tation. There is a room for improvement here; one may further compress these  
w-features to speed up the recognition time. Efficiency of w-features directly depends 
on the efficiency of the basic local descriptors it based on. If there are any descriptor 
better than SIFT, w-features will also become more efficient. 
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Abstract. We propose a new image classification scheme based on the
idea of mining jumping emerging substrings between classes of images
represented by visual features. Jumping emerging substrings (JES) are
string patterns, which occur frequently in one set of string data and
are absent in another. By representing images in symbolic manner, ac-
cording to their color and texture characteristics, we enable mining of
JESs in sets of visual data and use mined patterns to create efficient and
accurate classifiers. In this paper we describe our approach to image rep-
resentation and provide experimental results of JES-based classification
of well-known image datasets.

1 Introduction

Knowledge Discovery in Databases is a process concerning a broad range of types
of data that needs to be processed every day. Originally, quantitative and textual
data was in the center of interest for developing efficient and effective methods of
finding interesting relationships. Today, analysis and understanding of enormous
amounts of collected multimedia data seem to be the most pressing problem in
the field of KDD.

As many methods for processing non-multimedia data have already been pro-
posed, it is interesting to see how well they perform in the domain of visual
data. Mining in such databases requires additional steps to represent visual in-
formation in symbolic form that is adequate for existing methods. In this paper
we assess the performance of a data mining method, which has been developed
focusing on textual data, in the task of image classification. For that purpose we
propose an approach to image representation, a method of building a classifier
and using it to perform classification of visual data.

Emerging substrings (ESs) [1] are patterns that can be used to differenti-
ate classes of data consisting of sequences of symbols. The idea originates from
emerging patterns (EPs) [2], a data mining method of extracting patterns that
occur frequently in one class of data and seldom in another. Emerging patterns
is an approach to KDD that proved to perform very well in the tasks of clas-
sification and prediction of large sets of data, many times much better than
classical methods, such as rule- and tree-based classifiers. Emerging substrings
allow additionally to reason about sequences of symbols or objects in data, which

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 732–739, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is an important feature of a visual data mining method. Specifically, we can rea-
son about the spatial arrangement of objects on a particular image. On these
grounds we expect an ES-based classifier to perform better in the task of image
classification than previously proposed methods based on the idea of emerg-
ing patterns. In particular, we suggest using a subset of emerging substrings –
jumping emerging substrings – to build classifiers capturing the most distinctive
features of two data sets.

In what follows we first outline work conducted previously in the field of
pattern-based image classification (Section 2), then give the necessary definitions
of jumping emerging substrings (Section 3). Next, we describe image represen-
tation used in our experiments (Section 4), the proposed classification method
(Section 5) and compare it with other known approaches (Section 6). Finally,
we conclude with possibilities of further research (Section 7).

2 Previous Work

The idea of mining emerging substrings as means of capturing interesting re-
lationships in textual data has been proposed in [1]. It was motivated by the
earlier concept of emerging patterns, proposed in [2], which have been success-
fully used in classification of a variety of datasets. While the original algorithm
for mining ESs was based on suffix trees, a generalized, linear-time solution has
been proposed in [3]. This result, based on suffix arrays and longest common
prefix (lcp) tables, has been later improved in [4].

To the best of our knowledge emerging substrings havenot been previously stud-
ied in the context of image classification, while our own experiments concerning
mining jumping emerging patterns in multimedia data have been presented in [5].

3 Jumping Emerging Substrings

Here we cite only the essential definitions of JESs, used in further parts of the
paper. Please refer to [1] for complete formal definition.

A sequence is a non-empty string with finite length over an alphabet Σ =
{a1, a2, . . . , am}. The length of a sequence is the number of symbols contained
in it. Having a string s = s1s2 . . . sk of length k and a sequence T = t1t2 . . . tl of
length l, we say that s is a substring of T, denoted as s * T if ∃i ∈ 1 . . . (l−k+1)
such that s1s2 . . . sk = titi+1 . . . ti+k−1. If s �= T , s is a proper substring of T ,
denoted as s � T .

A database D is a set of sequences Ti, each associated with a class label cTi ∈
C = {c1, c2, . . . , cn}, where C is the set of all labels. The support of a string s in a
database D is the fraction of sequences in D that s is a substring of: suppD(s) =
|{T∈D: s�T}|

|D| . Given two databases D1, D2 ⊆ D we say that a string s is a jump-
ing emerging substring (JES) from D1 to D2 if suppD1

(s) = 0 ∧ suppD2
(s) > 0.

The task of JES mining is to find all strings having a given minimum sup-
port θ in D2, being a JES from D1 to D2. We will denote this set of strings as
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Table 1. Example database and its jumping emerging substrings

class A class B

acd cde
ac ab

JES support direction
class A class B

b 0 1/2 A → B
e 0 1/2 A → B
ab 0 1/2 A → B
ac 1 0 B → A
de 0 1/2 A → B
acd 1/2 0 B → A
cde 0 1/2 A → B

JES(D1, D2, θ). Furthermore, we can distinguish the set of only minimal JESs,
that is sequences, for which no frequent substrings exist: JESm(D1, D2, θ) =
{T ∈ JES(D1, D2, θ) : ¬∃s ∈ JES(D1, D2, θ) s � T }.

Table 1 shows a simple two-class database and its jumping emerging sub-
strings. Based on the above definition, we look at all possible substrings of
strings in class A and find these, which are not present in class B. Similarly,
we check for JESs from class B to A. The string ”ac” would be the only JES,
if we were to find only jumping emerging substrings with minimum support
of 1. Finally, we reduce the set of discovered patterns to only minimal JESs:
JESm(DA, DB, 1/2) = {b, e}, JESm(DB , DA, 1/2) = {ac}.

4 Image Representation

We have compared two approaches to calculation of image features: using both a
color descriptor and a texture descriptor based on Gabor filters (as in MPEG-7
standard), and a SIFT descriptor. In both cases we divide the images into a
rectangular x× y grid and calculate features in each of the resulting tiles.

In the first approach color and texture features are calculated separately.
Image colors are represented by a histogram calculated in the HSV color space,
with the hue channel quantized to h discrete ranges, while saturation and value
channels to s and v ranges respectively. In effect, the representation takes the
form of a h × s × v element vector of real values between 0 and 1. For the
representation of texture we use a feature vector consisting of mean and standard
deviation values calculated from the result of filtering an original image with a
bank of Gabor functions. These filters are scaled and rotated versions of the
base function, which is a product of a Gaussian and a sine function. By using m
orientations and n different scales we get a feature vector consisting of mean (μ)
and standard deviation (σ) values of each of the filtered images and thus having
a size of 2 ×m × n values. In our experiments a vector size of 2 × 6 × 4 = 48
values has been used for texture and 18× 3× 3 = 162 for color representation.

SIFT is a local feature descriptor, proposed in [6], which has been widely used
for image representation in classification, recognition and retrieval tasks. Using
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Fig. 1. An example of features calculation and symbolic image representation

the VLFeat open implementation [7], we have calculated SIFT features of the
center point of each of the image tiles for H, S and V color channels, having a
constant scale and orientation set for the descriptor. The feature vector size for
every point is thus equal to 3× 128 values.

Having calculated features of each of the images in both the training and
testing set, we have created a visual dictionary of the most representative color
and texture features. The dictionary is built by clustering corresponding feature
values into a chosen number of groups. Resulting centroids become the elements
of the dictionary and are labeled with unique symbols. These identifiers are then
used to describe the images in the database by associating an appropriate label
with every tile of each image. This is performed by finding the closest centroid
to a feature vector calculated for a given image tile. The same dictionary is used
during both the learning and classification phases.

Figure 1 illustrates the used method of image representation. A regular grid
of points is used to calculate images features, which are then clustered to create
the dictionary. In the case of MPEG-7 features, values representing color and
texture are clustered separately and labeled B1, B2, . . . , Bn and T1, T2, . . . , Tn

respectively. These labels are then used to describe each of the grid tiles.

5 JES-Based Classification

In our approach classification is a two-step process. The first phase consists of
building a classifier on the basis of the learning dataset. We use image repre-
sentation described in the previous section to associate sets of strings to each of
the images in the dataset and then mine minimal jumping emerging substrings
between respective classes in the database. The strings are formed by taking into
account horizontal, vertical and diagonal sequences of symbols of representation
of a particular image (see Fig. 2).

In the second phase, we use the created classifier to assign images from the test-
ing set to respective categories. This is done by aggregating all minimal JESs that
match the representation of a particular image and determining the majority class
of the patterns. The winning category is then assigned to the example.
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Fig. 2. Representation used to mine JESs between classes of images. Strings are formed
by considering horizontal, vertical and diagonal sequences of symbols.

Formally, for a multi-class set of images, represented as a learning database
of strings with associated class labels DL =

⋃
c Cc, where Cc is a database

containing images of class c and C′
c is its complementary database, and a test

set DT , we can formally write the algorithm as follows:

1. For each c ∈ C:
(a) Discover minimal JESm(C′

c, Cc, θ)
(b) For each test image T ∈ DT : calculate score(T, c) =

∑
X suppCc

(X),
where X ∈ JES(C′

c, Cc) such that X * T .
2. Assign image T to a class c, which has the maximum score.

6 Experimental Results

We have used two different datasets to assess the performance of the proposed
JES-based image classification approach. Firstly, we have prepared a synthetic
two-class set of images, which consists of photographs containing the same ob-
ject, positioned randomly on a static background. On the images of class A the
object is oriented vertically, while in class B – horizontally (see Fig. 3). Each of
the classes contains ca. 60 images.

The database has been prepared to validate the idea behind using JESs for
image classification and the chosen image representation method. While the ob-
ject and background are exactly the same in each of the classes, in our approach
we are able to capture more data about their relationship than using regular
methods, which do not take spatial information into consideration. As presented
in Table 2 JES-based classifier performs much better, regardless of used feature
descriptor.

All experiments have been performed as a ten-fold cross validation, where the
feature dictionary is recreated in every iteration. The images have been divided
into 8× 8 tiles and the dictionary size has been limited to 16 values. In the case
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Fig. 3. A synthetic test database with two classes of images

Table 2. Classification accuracy of the synthetic dataset

method minimum MPEG-7 features SIFT features
support accuracy (%) patterns no. accuracy (%) patterns no.

0.250 95.33 92 69.33 80
0.200 96.67 156 79.67 140
0.150 97.50 229 87.00 198

JES 0.100 98.33 352 86.00 574
0.050 99.17 1175 85.67 1830
0.025 99.17 3304 85.33 10934
0.010 99.17 20797 85.33 10934
0.005 99.17 20797 85.33 10934

C4.5 - 93.46 - 57.00 -
SVM - 96.67 - 65.00 -

of this synthetic database, SIFT features have resulted in worse classification
performance than the color and Gabor-based texture features, mostly because
of the sparse grid used to calculate values in particular points. For comparison
purposes, we have used the same locations for calculation of SIFT and MPEG-7
features. Classification with other methods than emerging substrings and emerg-
ing patterns has been carried out using the Weka package [8] and the LIBSVM
library [9] with default parameter values.

Secondly, we have included results of classification of a dataset used in our
earlier experiments in [5], namely the image database created by the authors of
the SIMPLIcity CBIR system [10] (see Fig. 4). This set consists of 10 categories
of photographs, 100 images in each class. As reported in Table 3, our current
approach is in each case giving better results than any of the others. It may be
noted that lowering the minimum support value when mining JESs improves the



738 Ł. Kobyliński and K. Walczak

Table 3. Classification accuracy of the SIMPLIcity dataset with MPEG-7 features

method minimum accuracy (%)
support flower/ flower/ flower/ food/ food/ elephant/

food elephant mountain elephant mountain mountain

0.250 92.26 93.68 96.37 30.50 83.50 58.00
0.200 94.79 95.26 96.89 41.00 89.50 66.00
0.150 96.37 97.89 96.89 63.50 93.00 74.50

JES 0.100 97.94 98.95 96.89 85.00 94.00 89.00
0.050 98.47 98.95 96.89 93.00 95.50 92.00
0.025 98.47 98.95 96.89 93.00 96.00 93.50
0.005 98.47 98.95 96.89 93.00 95.50 93.50

occJEP [5] - 97.92 98.96 97.92 88.00 91.00 88.50
JEP [5] - 95.83 91.67 96.35 88.50 93.50 83.50
C4.5 - 93.23 89.58 85.94 87.50 92.50 82.00
SVM - 90.63 91.15 93.75 87.50 84.50 84.50

Fig. 4. Example images from the SIMPLIcity test database

classification accuracy only to certain point, above which there is no additional
gain of discovering greater number of patterns.

7 Conclusions and Future Work

In this paper we have proposed an approach to image classification that combines
the methods used for sequence and text mining with image analysis and showed
that such methodology may give promising results, surpassing the performance
of other data mining methods. Using jumping emerging substrings to distinguish
images of different classes in a database has a clear advantage over other pattern-
based methods, thanks to its ability to capture spatial relationships between
visual features. It is important to note that optimal (linear-time) algorithms
exist to mine JESs between sets of sequential data. Furthermore, the proposed
approach may be used in conjunction with different feature descriptors, as long
as the images are expressed by a matrix of a finite number of symbols.

The following aspects of the described method could be enhanced in future
work: invariance to scale by providing multiple layers of symbolic representation
of an image, each calculated using a descriptor of a different scale; using a dense
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grid of points for SIFT and multiple orientations to achieve better results than
the MPEG-7 approach.
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Abstract. In this paper we apply the Local Binary Pattern on Three Orthogonal 
Planes (LBP-TOP) descriptor to the field of human action recognition. A video 
sequence is described as a collection of spatial-temporal words after the detec-
tion of space-time interest points and the description of the area around them. 
Our contribution has been in the description part, showing LBP-TOP to be a 
promising descriptor for human action classification purposes. We have also 
developed several extensions to the descriptor to enhance its performance in 
human action recognition, showing the method to be computationally efficient.  

Keywords: Human action recognition, LBP-TOP, bag of words. 

1   Introduction 

Automatic categorization and localization of actions in video sequences has different 
applications, such as detecting activities in surveillance videos, indexing video se-
quences, organizing digital video library according to specified actions, etc. The chal-
lenge is how to obtain robust action recognition under variable illumination, background 
changes, camera motion and zooming, viewpoint changes and partial occlusions, geo-
metric and photometric variations of objects and intra-class differences.  

There are two main approaches: holistic and part-based representations. Holistic 
representations focus on the whole human body trying to search characteristics such 
as contours or pose. Usually holistic methods, which focus on the contours of a per-
son, do not consider the human body as being composed of body parts but consider 
the whole form of human body in the analyzed frame. Efros et al. [1] use cross-
correlation between optical flow descriptors and Shechtman et al. [2] use similarity 
between space-time volumes which allows finding similar dynamic behaviors and 
actions. Motion and trajectories are also commonly used features for recognizing 
human actions, e.g. Ali et al. [3] use trajectories of hands, feet and body. Holistic 
methods may depend on the recording conditions such as position of the pattern in the 
frame, spatial resolution, relative motion with respect to the camera and can be influ-
enced by variations in the background and by occlusions. These problems can be 
solved in principle by external mechanisms (e.g. spatial segmentation, camera stabili-
zation, tracking etc.), but such mechanisms might be unstable in complex situations 
and require more computational demand.  

Part-based representations typically search for Space-Time Interest Points (STIPs) 
in the video, apply a robust description of the area around them and create a model 
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based on independent features (Bag of Words) or a model that can also contain struc-
tural information. These methods do not require tracking and stabilization and are 
often more resistant to cluttering, as only few parts may be occluded. Different meth-
ods for detecting STIPs have been proposed, such as [11], [12]. The resulting features 
often reflect interesting patterns that can be used for a compact representation of 
video data as well as for interpretation of spatio-temporal events. 

The paper is organized as follows. In section 2 we provide the methodology 
adopted for classification and in Section 3 we provide an introduction to the LBP and 
LBP-TOP descriptors on 3D data. Experimental results on human action recognition 
are shown and evaluated in Section 4. Finally, we conclude in Section 5. 

2   Methodology 

In the following sections we describe our algorithm in detail. In Section 2.1 we  
explain the classification scheme of our algorithm. In Section 2.2 we give a brief 
description about the detection of STIPs and the feature description method is intro-
duced in Section 2.3. Section 2.4 explains the classifier used. 

2.1   Bag of Words Classification 

The methodology we adopt is a Bag of Words classification model [11]. As a first 
step, space-time interest points are detected using a separable linear filter and small 
video patches (named cuboids) are extracted from each interest point. They represent 
the local information used to learn and recognize the different human actions. Each 
cuboid is described using the LBP-TOP descriptor. The result is a sparse representa-
tion of the video sequence as cuboid descriptors. Having obtained all these data for 
the training set, a visual vocabulary is built by clustering using the k-means algorithm. 
The center of each cluster is defined as a spatial-temporal ‘word’ of which length 
depends on the length of the descriptor adopted. Each feature description is succes-
sively assigned to the closest (we use Euclidean distance) vocabulary word and a 
histogram of spatial-temporal word occurrence in the entire video is computed. Thus, 
each video is represented as a collection of spatial-temporal words from the codebook 
in the form of a histogram. For classification, we use non linear Support Vector Ma-
chines (SVM). As the algorithm has random components, such as the clustering 
phase, any experiment result reported is averaged over 20 runs. The entire methodol-
ogy used is shown in Fig. 1. 

2.2   Feature Detection 

Several spatio-temporal feature detection methods have been developed recently and 
among them we chose Dollar’s feature detector [11] because of its simplicity, fastness 
and because it generally produces a high number of responses. The detector is based on 
a set of separable linear filters which treats the spatial and temporal dimensions in dif-
ferent ways. A 2D Gaussian kernel is applied only along the spatial dimensions  
(parameter σ to be set), while a quadrature pair of 1D Gabor filters are applied only 
temporally (parameter τ to be set). This method responds to local regions which exhibit 
complex motion patterns, including space-time corners. For more implementation de-
tails, please refer to [11] as the feature detection part is beyond the scope of this paper. 
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Fig. 1. Methodology adopted for action recognition 

2.3   Feature Description 

Once the cuboid is extracted, it is described using the LBP-TOP descriptor, which is 
an extension of LBP operator into the temporal domain. LBP has originally been 
proposed for texture analysis and classification [4]. Recently, it has been applied on 
face recognition [5] and facial expression recognition [6], [7]. While the original LBP 
was only designed for static images, LBP-TOP has been used for dynamic textures 
and facial expression recognition [8]. As a video sequence can not only be seen as the 
usual stack of XY planes in the temporal axis, but also as a stack of YT planes on X 
axis and as a stack of XT planes on Y axis, we prove that a cuboid can be successfully 
described with LBP-TOP for action recognition purposes.  

2.4   Classification 

Each video sequence is described as a histogram of space-time words occurrence 
which represents its signature. The dimension of the signature is equal to the size of 
the codebook and is given as input to the classifier (see Fig. 1). We chose to use non 
linear Support Vector Machines (SVM) with rbf kernel and the library libSVM [14] 
was adopted. The best parameters C and γ were chosen doing a 5-fold cross validation 
in a grid approach on the training data and one against one approach has been used for 
multi-class classification. 

3   LBP-TOP and Its Extensions 

The Local Binary Pattern (LBP) operator labels the pixels of an image by threshold-
ing a circular neighborhood region [4]. The LBPP,R operator produces 2P different 
output values, corresponding to the 2P different binary patterns that can be formed by 
the P pixels in the neighbor set. The derived binary numbers encode local primitives 
such as curved edges, spots, flat areas etc. After the computation of the LBP for the 
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whole image, an occurrence histogram of the labels is used as feature. It contains 
information about the distribution of local micro-patterns over the whole image and 
represents a statistical description of image characteristics. This descriptor has been 
proved to be successful in face recognition [5]. For more details about LBP operator, 
please refer to [4], [5], [6], [7]. Recently, LBP has been modified in order to be used 
in the context of dynamic texture description and recognition and for facial expression 
analysis [8]. LBP-TOP computes the LBP from Three Orthogonal Planes, denoted as 
XY-LBP, XT-LBP and YT-LBP. The operator is expressed as .  

TYXYTXTXY RRRPPPTOPLBP ,,,,,− . (1) 

where the notation (PXY, PXT, PYT, RX, RY, RT) denotes a neighborhood of P points 
equally sampled on a circle of radius R on XY, XT and YT planes respectively.  The 
statistics on the three different planes are computed and then concatenated into a sin-
gle histogram. The resulting feature vector is of 3·2P length. Fig. 2 illustrates the con-
struction of the LBP-TOP descriptor. In such a scheme, LBP encodes appearance and 
motion in three directions, incorporating spatial information in XY-LBP and spatial 
temporal co-occurrence statistics in XT-LBP and YT-LBP. 

 

Fig. 2. LBP-TOP methodology 

In our implementation, LBP-TOP is applied on each cuboid, as shown in Fig. 3, 
where XY, XT and YT planes are the central slices of it as can be seen in Fig. 4. 
Kellokumpu et al [8] have recently used LBP-TOP for human detection and activity 
description. However, their approach is based on background subtraction using LBP-
TOP and a bounding volume has to be built around the area of motion.  Their method 
can be categorize as holistic, since no space-time interest points have to be detected 
and differs from our part-based approach.  

3.1   Modifications on LBP-TOP  

As we described previously, the original LBP-TOP descriptor is the computation of 
LBP on the gray-level values of 3 orthogonal slices of each cuboid. We propose to 
extend the computation of LBP to 9 slices, 3 for each axis. Therefore, on the XY 
dimension we have the original XY plane (centered in the middle of the cuboid) plus 
other two XY planes located at 1/4 and 3/4 of the cuboid’s length. The same is done 
for XT and YT dimensions. We named this method as Extended LBP-TOP. In this 
manner, more dynamic information in the cuboid can be extracted, as the 3 slices in 
one axis capture the motion at different times. We also exploit more information from 
the cuboid, dealing with 6 slices on each axis, located from 2/8 until 7/8 of the cu-
boid’s length for each axis. In this case, a dimensionality reduction technique has to 
be applied since the final dimension of the descriptor vector would be too high. 
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Another modification we introduced is the computation of LBP operator on gradi-
ent images. The gradient image contains information about the rapidity of pixel inten-
sity changes along a specific direction, has large magnitude values at edges and it can 
further increment LBP operator’s performances, since LBP encodes local primitives 
such as curved edges, spots, flat areas etc. For each cuboid, the brightness gradient is 
calculated along x, y and t directions, and the resulting 3 cuboids containing specific 
gradient information are summed in absolute values.  Before computing the image 
gradients, the cuboid is slightly smoothed with a Gaussian filter in order to reduce 
noise. LBP-TOP is then performed on the gradient cuboid and we name this method 
Gradient LBP-TOP. The Extended LBP-TOP can be applied on the gradient cuboid 
and we named this method as Extended Gradient LBP-TOP. 

 

Fig. 3. Cuboid with XY, XT and YT planes 

(a) (b) (c)
 

Fig. 4. Extracted XY (a), XT (b) and YT (c) planes from the cuboid of Fig. 3 

4   Experimental Results 

For our action recognition experiments, we chose to use the KTH human action data-
set [10]. This dataset contains six types of human actions: walking, jogging, running, 
boxing, hand waving and hand clapping. Each action class is performed several times 
by 25 subjects in different scenarios of outdoor and indoor environment. The camera 
is not static and the videos contain scale changes. In total, the dataset contains 600 
sequences. We divide the dataset into two parts: 16 people for training and 9 people 
for testing, as it has been done in [10] and in [13]. We limit the length of all video 
sequences to 300 frames. 

We extract the space-time interest points and describe the corresponding cuboids 
with the procedure described in Sections 2.2 and 2.3. The detector parameters are set 
to σ=2.8 and τ=1.6, which gave better results in our evaluations, and 80 STIPs were 
detected for each sequence. The original LBP-TOP and the Extended LBP-TOP are 



 Human Action Recognition 745 

computed on the original cuboid or on the gradient cuboid. The number of clusters 
used to build the codebook is chosen to maximize the classification accuracy on the 
testing data and best values have been achieved using 1000 visual-words.  

The accuracy results for LBP-TOP with different parameters R and P are shown in 
Table 1. The notation of parameters is as illustrated in Equation (1). Better classification 
accuracy has been obtained with the parameter P greater than 6 and radius R equal to 2. 
The performance is generally slightly decreasing as the radius R is getting bigger, while 
it is increasing as the number of neighbors P is increased. This could be explained as 
more neighbors permit to take more information into account. However, the drawback is 
a higher computational cost and a higher dimensionality of the feature vector. 

Table 1. Accuracy for different parameter values of LBP-TOPP,P,P,R,R,R 

  Neighbors (P) 
 4 6 8 10 

2 71.81% 85.65% 86.25% 86.32% 
3 84.54% 85.18% 85.12% 86.69% R

ad
iu

s 
(R

) 

4 81.34% 85.12% 85.46% 83.82% 

LBP-TOP8,8,8,2,2,2  produces a 768 vector length, while LBP-TOP10,10,10,2,2,2 has a 
descriptor dimension of 3072. The final descriptor of LBP-TOP12,12,12,2,2,2 will be 
12288 vector lengths. The use of uniform LBP operator decreases the performance 
results compared with the original operator, since less information is kept into account 
(see Table 2). Multiresolution LBP operator has also been tested, but the gain in per-
formances is not considerable with the increase of the descriptor length and computa-
tional cost. The time calculated in the following tables is measured on a computer 
equipped with a 3 Ghz Pentium 4 CPU and 3 Gb RAM.  

We choose to use LBP-TOP8,8,8,2,2,2 for the following experiments as it is computa-
tionally more efficient and the accuracy is among the highest. As dimensionality re-
duction technique, we used Principal Component Analysis (PCA) and set the final 
dimension to 100. 

In Table 2, the Extended LBP-TOP is evaluated and different number of slices is 
taken into account. As we can see, the Extended LBP-TOP descriptor performs better 
than the original one, since more information is taken into consideration at different 
times in XY planes and at different locations in the XT and YT planes. Although best 
result is obtained with 6 slices on each axis, the computational time is almost double 
than the Extended LBP-TOP version with 3 slices; because of this issue, in the fol-
lowing we are computing the Extended version on only 3 slices for each axis. 

Table 3 is a summary of best results achieved for different enhancement of LBP-
TOP. The usage of LBP-TOP applied to the gradient cuboid gives better results com-
pared with the original one. The information extracted from the gradient calculated 
along x, y and t directions and combined into the gradient cuboid permits to have a 
better performance for LBP-TOP in the description of actions. Moreover, a slight 
increase in performances can be achieved by applying the Extended LBP-TOP on the 
gradient cuboids. The number of support vectors calculated by SVM is, in all methods 
tested, about 360. As a feature reduction method, we applied PCA and show that the 
classification accuracy is only decreased slightly in Extended LBP-TOP, while 
slightly increasing in the Extended Gradient LBP-TOP.  



746 R. Mattivi and L. Shao 

Table 2. Uniform and Extended LBP-TOP 

Method Accuracy Descriptor 
length 

Computational 
time (s) 

LBP-TOP8,8,8,2,2,2 86.25 % 768 0.0139 
Uniform LBP-TOP8,8,8,2,2,2 81.78 % 177 0.0243 
Extended LBP-TOP8,8,8,2,2,2  
(3 slices on each axis) 

88.19 % 2304 0.0314 

Extended LBP-TOP8,8,8,2,2,2  
(3 slices on each axis) + PCA 

87.87 % 100 0.0319 

Extended LBP-TOP8,8,8,2,2,2  
(6 slices on each axis) + PCA 

88.38 % 100 0.0630 

Table 3. Accuracy for different LBP-TOP methods 

Method Accuracy Descriptor 
length 

Computational 
time (s) 

Ext LBP-TOP8,8,8,2,2,2 88.19 % 2304 0.0314 
Ext LBP-TOP8,8,8,2,2,2 + PCA 87.87 % 100 0.0319 
Grad LBP-TOP8,8,8,2,2,2 90.07 % 768 0.0788 
Ext Grad LBP-TOP8,8,8,2,2,2 90.72 % 2304 0.0992 
Ext Grad LBP-TOP8,8,8,2,2,2 + PCA 91.25 % 100 0.1004 
HOG-HOF 89.88 % 162 0.2820 
HOG-HOF + PCA 89.28 % 100 0.2894 

As a comparison, we evaluate Laptev’s method [13] with the same framework as 
illustrated in Section 2. We use Laptev’s code publicly available on his website and 
recently being updated with the latest settings used in [13]. The combination of Lap-
tev’s extraction method and Laptev’s HOG-HOF descriptor make us reach an accu-
racy of 89.88%. The time for Laptev’s HOG-HOF descriptor in Table 3 is referred to 
both extraction and description parts, as the description part cannot be computed re-
gardless of the extraction part in Laptev’s provided executable. Therefore, we expect 
the description part to be about half the time shown in the table.  The computational 
time for HOG-HOF is affected by the choice of the threshold and we have chosen a 
suitable threshold to have 80 detected STIPs for this comparison. There is also to 
mention that Laptev’s executable code is compiled in C environment, while our LBP-
TOP implementation is compiled in Matlab environment. Similar performance to 
Laptev’s is achieved using the Extended LBP-TOP descriptor which is almost 3 times 
computationally faster than the Extended Gradient LBP-TOP descriptor. 

5   Conclusion 

In this paper, we have applied LBP-TOP as a descriptor of small video-patches used 
in a part-based approach for human action recognition and shown LBP-TOP to be 
suitable for the description of cuboids containing information about human actions. 
We have extended LBP-TOP considering the action at three different frames in XY 
plane and at different views in XT and YT planes. Furthermore, we applied LBP-TOP 
to gradient images. We have also shown that the performance of descriptor is quite 
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stable when the PCA is applied. Regarding computational time, the Extended Gradi-
ent LBP-TOP descriptor, compared with HOG-HOF, is computationally more effi-
cient and permits to reach better accuracy in our framework. The experimental results 
reveal that LBP-TOP and its modifications tend to be good candidates for human 
action description and recognition. The best accuracy has been obtained by using the 
Extended Gradient LBP-TOP8,8,8,2,2,2 with PCA.  
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Abstract. Bag-of-words model (BOW) is inspired by the text classifi-
cation problem, where a document is represented by an unsorted set of
contained words. Analogously, in the object categorization problem, an
image is represented by an unsorted set of discrete visual words (BOVW).
In these models, relations among visual words are performed after dic-
tionary construction. However, close object regions can have far descrip-
tions in the feature space, being grouped as different visual words. In this
paper, we present a method for considering geometrical information of
visual words in the dictionary construction step. Object interest regions
are obtained by means of the Harris-Affine detector and then described
using the SIFT descriptor. Afterward, a contextual-space and a feature-
space are defined, and a merging process is used to fuse feature words
based on their proximity in the contextual-space. Moreover, we use the
Error Correcting Output Codes framework to learn the new dictionary in
order to perform multi-class classification. Results show significant clas-
sification improvements when spatial information is taken into account
in the dictionary construction step.

1 Introduction

Multi-class object categorization is one of the most challenging problems in Com-
puter Vision, which has been applied to a wide variety of applications. Usually,
the problem of object categorization is split into two main stages: object descrip-
tion, where discriminative features are extracted from the object to represent,
and object classification, where a set of extracted features are labeled as a par-
ticular object given the output of a trained classifier.

A general tendency in object recognition to deal with the object description
stage is to define a bottom-up procedure where initial features are obtained by
means of region detection techniques. These techniques are based on determining
relevant image keypoints (i.e. using edge-based information [1]), and then to
define a support region around the keypoint (i.e. looking for extrema over scale-
space [1]). Several alternatives for region detection have been proposed in the
literature [1]. Once a set of regions are defined, they should be described using
some kind of descriptor (i.e. SIFT descriptor [2]), and the region-descriptions
are related in some way to define a model of the object of interest.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 748–756, 2009.
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Based on the previous tendency, a recent technique to model visual objects
is by means of a bag-of-visual-words. The BOVW model is inspired by the text
classification problem using a bag-of-words, where a document is represented
by an unsorted set of contained words. Analogously, in object categorization
problems, an image is represented by an unsorted set of discrete visual words,
which are obtained by the object local descriptions.

Many promising results have been achieved with the BOVW systems in nat-
ural language processing, texture recognition, Hierarchical Bayesian models for
documents, object classification [3], object retrieval problems [4,5], or natural
scene categorization [6], just to mention a few. However, one of the main draw-
backs of the BOVW model is that dictionary construction does not take into
account the geometrical information among visual instances. Although this is-
sue can be beneficial in natural language analysis, its adaptation to visual word
description needs special attention. Note that based on the description strategy
used to describe visual words, very close regions can have far descriptors in the
feature space, being grouped as different visual words. This effect occurs for most
of the state-of-the-art descriptors, even when coping with different invariance,
and thus, a grouping based on spatial information of regions could be beneficial
for the construction of the visual dictionary.

In this paper, we present a method for considering spatial information of vi-
sual words in the dictionary construction step, namely Contextual-Guided Bag-
of-Visual-Words model (C-BOVW). Object’s interest regions are obtained by
means of the Harris-Affine detector and then described using the SIFT descrip-
tor. Afterward, a contextual-space and a feature-space are defined. The first
space codifies the contextual properties of regions meanwhile the second space
contains the region descriptions. A merging process is then used to fuse fea-
ture words based on their proximity in the contextual-space. Moreover, the new
dictionary is learned using the Error Correcting Output Codes (ECOC) frame-
work [7] in order to perform multi-class object categorization. We compared
our approach to the standard BOVW design and validated over public multi-
class categorization data sets, considering different state-of-the-art classifiers in
the ECOC multi-classification procedure. Results show significant classification
improvements when spatial information is taken into account in the dictionary
construction step.

The rest of the paper is organized as follows: section 2 describes the C-BOVW
algorithm. Section 3 introduces the multi-class ECOC strategy used to learn the
BOVW and C-BOVW dictionaries. Section 4 shows the experimental evaluation,
and finally, section 5 concludes the paper.

2 Contextual-Guided Bag-of-Visual-Words

In this section we reformulate the BOVW model so that geometrical information
can be taken into account in conjunction with the keypoint descriptions in the
dictionary construction step.
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The algorithm is split into four main stages: contextual and feature space
definition, merging, representant computation, and sentence construction.

Space definition: Given a set of samples for a n-multi-class problem, a set of
regions of interest are computed and described for each sample in the training
set. Then, K-means is applied over the descriptions and the spatial locations
of each region to obtain a K-cluster feature-space and a K-cluster contextual-
space, respectively. In our case, we use the Harris-affine region detector and SIFT
descriptor. The x and y coordinates of each region normalized by the height and
width of the image in conjunction with the ellipse parameters that define the
region are considered to design the contextual-space.

Merging: Let define a contextual-feature relational matrix M , where the posi-
tion (i, j) of this matrix represents the percentage of points from the jth visual
word of the feature-space that match with the points of the ith visual word
of the contextual-space. Then, from each row of M , the two maximums are se-
lected. These maximums correspond to the two words of the feature-space which
share more percentage of elements for a same contextual word. In order to fuse
relevant feature words, we select the contextual word which maximizes the min-
imums of all pairs of selected maximums. It prevents unbalanced feature words
to be merged. Finally, the two feature words with maximum percentage in M
for that contextual word (which have not been previously considered together)
are labeled to be merged at the end of the procedure, and the process is iter-
ated while an evaluation metric is satisfied or a maximum number of merging
iterations is reached. Once the merging loop finishes, the pairs of feature words
labeled during the previous strategy are merged and define the new visual words.

Representant computation: When the new C-BOVW dictionary is obtained,
a set of representant for each final word is computed. In order to obtain an strat-
ified number of representant related to the word densities, only one representant
is assigned to the word with the minimum number of elements. Then, a pro-
portional number of representant is computed for the rest of words by applying
k-means and computing the mean vector for each of the word sub-clusters. With
the final set of representant feature vectors, a normalized sentence of word oc-
currences is computed for each sample in the training set, defining its probability
density function of C-BOVW visual words. The whole C-BOVW procedure is
formally described in Algorithm 1. An example of a two-iteration C-BOVW def-
inition for a motorbike sample is shown in Figure 1. At the top of the figure, the
initial spaces are shown. In the second row, the shared elements from the two
spaces which maximize the percentage of matches for a given contextual word
are shown. The contextual-space just considers the x and y coordinates, and the
128 SIFT feature-space is projected into a two-dimensional feature-space using
the two principal components. Note that the feature descriptions for the two con-
sidered words are very close in the feature space though they belong to different
visual words before merging. On the right of the figure the new merged feature
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Fig. 1. Two iterations of C-BOVW algorithm over a motorbike sample

cluster is shown within a dashed rectangle. The same procedure is applied for
the second iteration of the merging procedure in the bottom row of the figure.

Sentence construction: After the definition of the new dictionary, a new test
sample can be simply described using the bag-of-visual-words without the need
of including geometrical information since it is implicitly considered in the new
visual words. The sentence for the new sample is then computed by matching its
descriptors to the visual words with the nearest representant. Finally, the test
sentence can be learned and classified using any kind of classification strategy.

3 Multi-class Extension

Error-Correcting Output Codes (ECOC) were defined as a framework to combine
binary problems in order to deal with the multi-class case [7]. This framework
is based on two main steps. At the first step, namely coding, a set of binary
problems (dichotomizers) are defined based on the learning of different sub-
partitions of classes by means of a base classifier. Then, each of the partitions
is embedded as a column of a coding matrix M . The rows of M correspond to
the codewords codifying each class. At the second step, namely decoding, a new
data sample that arrives to the system is tested, and a codeword formed as a
result of the output of the binary problems is obtained. This test codeword is
compared with each class codeword based on a given decoding measure, and a
classification prediction is obtained for the new object.

One of the most widely applied ECOC configurations is the one-versus-one
design [8]. This strategy codifies the splitting of each possible pair of classes as
a dichotomizer, which results in N(N − 1)/2 binary problems for an N -class
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Algorithm 1. Contextual-Guided Bag-of-Visual-Words algorithm
Require: D = {(x1, l1), .., (xm, lm)}, where xi is an object sample of label li ∈ [1, .., n] for a

n-class problem, K clusters, and I merging steps.
Ensure: Representant R = {(r1, w1), .., (rv, wb)}, where rv is a representant for word wi, i ∈ [1, ..b]

for b words. Sentences S = {(s1, l1), .., (sm, lm)}, where si is the sentence of sample xi.
1: for each sample xi ∈ D do
2: Detect regions of interest for sample xi:

Xi = {(x1, y1, ρ1
1, ρ2

1, ρ3
1), .., (xj , yj , ρ1

j , ρ2
j , ρ3

j )}, where x and y are spatial coordinates nor-
malized by the height and width of the image, and ρ1, ρ2, and ρ3 are ellipse parameters for
affine region detectors.

3: Compute region descriptors: Xr
i = {r1, .., rj}, where rj is the description of the jth detected

region of sample xi.
4: end for
5: Define a contextual-space C = {(c1, wC

1 ), .., (cv, wC
q )} using K-means to define K contextual

clusters, where wC
i is the ith word of the contextual-space.

6: Define a feature-space F = {(f1, wF
1 ), .., (fv , wF

q )} using K-means to define K feature clusters,
where wF

i is the ith word of the feature-space.
7: Initialize a contextual-feature relational matrix M : M(i, j) = 0, i, j ∈ [1, .., K]
8: Initialize W = ∅ the list of feature words to be merged
9: for I merging steps do

10: update M based on the contextual clusters and new feature clusters so that
M(i, j) = d(C,F,i,j)

|wF
j

| , where d(C, F, i, j) returns the number of points from contextual-

space of word wC
i that belong to the feature-space jth word wF

j , and |wF
j | is the number of

regions of the jth feature word.
11: Select the pair of positions with the maximum value for each row of M :

maxj,k M(i, ), j 	= k, ∀i, where ′ ′ stands for all row positions.
12: W = W ∪ (wF

j , wF
k ): Select the contextual word wC

i and words wF
j and wF

k from the feature-
space based on maxi (min(M(i, j), M(i, k))) , ∀j, k

13: end for
14: for each pair (wF

j , wF
k ) in W do

15: update F so that wF
j ← wF

k , and rename feature words so that wF
i , i ∈ [1, .., p] becomes

wF
i , i ∈ [1, .., p − 1]

16: end for
17: Compute representant R = {(r1, w1), .., (rv , wb)} for the new F , where:

zi = round
(

wi
min |wj |∀j

)
is the number of representant for word wi, computed using zi-means, and {r1, .., rzi

} represen-
tant are computed as the mean value for each sub-cluster of wi, obtaining an stratified number
of representant respect the words densities.

18: Compute sentences S = {(s1, l1), .., (sm, lm)} for all training samples of all categories compar-
ing with word representant of R.

problem. The one-versus-one ECOC technique is defined in the ternary ECOC
framework MN×M ∈ {−1, 0,+1}, being M a coding matrix of N rows (as the
number of classes), M the number of columns (dichotomizers to be trained,
where M = N(N − 1)/2 in the case of the one-versus-one design), {−1,+1}
symbols codify the class membership, and the zero symbol ignores a particular
class for a given dichotomizer. Each column of the matrix M corresponds to the
ith binary problem hi, which splits a pair of classes using a given base classifier.
Figure 2 codifies a one-versus-one coding matrix M for a 4-class problem. The
black positions correspond to the symbol +1, the white positions to the symbol
-1, and the gray positions to the zero symbol. Once the set of binary problems
h = {h1, .., hM} is trained, a new test sample ρ that arrives to the system is
tested applying the set h, and a test codeword X1×M ∈ {−1,+1} is obtained.

The decoding step was originally based on error-correcting principles under
the assumption that the learning task can be modeled as a communication
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Fig. 2. One-versus-one ECOC coding design for a 4-class problem. A decoding function
d for a new input test sample is performed, classifying by class C2.

problem, in which class information is transmitted over a channel [7]. The first
attempt for ECOC decoding is the Hamming Decoding (HD). The Euclidean
Decoding (ED) is another of the most preferred decoding strategies in the litera-
ture. Still very few alternative decoding strategies have been proposed [8]. Then,
after the codeword X for the test sample ρ is obtained, a decoding function
d(X,Yj) applying any of the previous decoding strategies is used to compare
the test codeword X with each codeword Yj (jth row from M) codifying class
Cj . Finally, the classification prediction corresponds to the class Cj which corre-
sponding codeword Yj minimizes d (C2 in the case of the example of Figure 2).

4 Experimental Evaluation

Before the presentation of the results, first, we discuss the data, methods, and
validation protocol of the experiments.

Data: The data used in the experiments consists of 15 categories from public
Caltech 101 [9] and Caltech 256 [10] repository data sets. One sample for each
category is shown in Figure 3. For each category, 50 samples were used, 10
samples to define the BOW and another 40 images to define new test sentences.

Methods: We compare the C-BOVW with the classical BOVW model. For both
methods, the same initial set of regions is considered in order to compare both
strategies at the same conditions. About 200±20 object regions are found by image
using theHarris-Affinedetector [1] anddescribedusing theSIFTdescriptor [2].The
visualwords are obtainedusing the public open sourceK-means software from [11].
After computing the final words and representant, multi-class classification is

Fig. 3. Considered categories from the Caltech 101 and Caltech 256 repositories
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performed using an one-versus-one ECOC methodology with different base clas-
sifiers: Mean Nearest Neighbor (NMC), Fisher Discriminant Analysis with a pre-
vious 99% of PCA (FLDA), Gentle Adaboost with 50 iterations of decision stumps
(G-ADA),Linear SupportVectorMachineswith the regularizationparameterC =
1 (Linear SVM), and Support Vector Machines with RBF Kernel withC and γ pa-
rameters set to 1 (RBF SVM)1. Finally, we use the Linear Loss-weighted decoding
to obtain the class label [8].

Validation protocol: We used the sentences obtained by the 50 samples of
each category and performed stratified ten-fold cross-validation evaluation.

4.1 Caltech 101 and 256 Classification

In this experiment, we started classifying from three Caltech categories in-
creasing by 2 up to 15. For each step, different number of visual words are
computed: 30, 40, and 50. These numbers are obtained by performing ten
iterations of the merging procedure (experimentally tested). In order to compare
the BOVW and C-BOVW methods at the same conditions, the same detected
regions and descriptions are used for all the experiments. The order in which
the categories are considered is the following: (1-3) airplane, motor-bike, watch,
(4-5) tripod, face, (6-7) ketch, diamond-ring, (8-9) teddy-bear, t-shirt, (10-11)
desk-globe, backpack, (12-13) hourglass, teapot, (14-15) cowboy-hat, and um-
brella. The obtained results applying ten-fold cross-validation are graphically
shown in Figure 4 for the different ECOC base classifiers. Note that the classifi-
cation error significantly varies depending on the ECOC classifier. In particular,
Gentle Adaboost obtains the best results, with a classification error inferior to
0.2 in all the tests when using 30 C-BOVW words. Independently of the ECOC
classifier, in most of the experiments the C-BOVW model obtains errors infe-
riors to those obtained by the classical BOVW. BOVW only obtains slightly
better results in the case of Gentle Adaboost for eleven classes and 50 visual
words.

An important remark of the C-BOVW model is about the selection of the
number of merging iterations. This parameter has a decisive impact over the
generalization capability of the new visual dictionary. First iterations of
the merging procedure use to fuse very close feature-words which belong to
different visual words whereas final merging iterations fuse more far regions of
the feature-space. Thus, a large number of iterations could be detrimental since
the new merged words could be too general for discriminating among sentences
of different object categories. Thus, this parameter should be estimated for each
particular problem domain (i.e. applying cross-validation over a training and a
validation subset). In the previous experiment we checked that ten merging iter-
ations obtains significant performance improvements, though we are aware that
this parameter could be not optimal for all the data sets.
1 Wedecided to keep the parameter fixed for the sake of simplicity and easiness of replica-

tion of the experiments, though we are aware that this parameter might not be optimal
for all data sets.
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NMC FLDA

G-ADA Linear SVM

RBF SVM

Fig. 4. Classification results for the Caltech categories using BOVW and C-BOVW
dictionaries for different number of visual words and ECOC base classifiers

5 Conclusion

In this paper we re-formulated the bag-of-visual-words model so that geometri-
cal information of significant object region descriptions are taken into account
in the dictionary construction step. In this sense, regions which have slightly
different descriptors because of small displacements in the region detection pro-
cess can be merged together in a same visual word. The method is based on
the definition of a contextual-space and a feature-space. The first space codi-
fies the geometrical properties of regions meanwhile the second space contains
the region descriptions. A merging process is then used to fuse feature words
based on their proximity in the contextual-space. The new dictionary is learned
in an Error-Correcting Output Codes design to perform multi-class object cat-
egorization. The results when spatial information is taken into account showed
significant performance improvements compared to the classical approach for
different number of object categories and visual words.
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Abstract. We present two methods for isometrically deformable object
recognition. The methods are built upon the use of geodesic distance
matrices (GDM) as an object representation. The first method compares
these matrices by using histogram comparisons. The second method is
a modal approach. The largest singular values or eigenvalues appear to
be an excellent shape descriptor, based on the comparison with other
methods also using the isometric deformation model and a general base-
line algorithm. The methods are validated using the TOSCA database
of non-rigid objects and a rank 1 recognition rate of 100% is reported for
the modal representation method using the 50 largest eigenvalues. This is
clearly higher than other methods using an isometric deformation model.

1 Introduction

During the last decades, many developments in 3D modelling and 3D capturing
techniques augmented the interest in the use of 3D objects for a number of
applications. Examples of these are CAD/CAM, architecture, computer games,
archaeology, medical applications and biometrics. Because of this growing use
of 3D objects, we see the emergence of 3D databases, which leads to a new
research question: 3D object retrieval. One witness of this are the yearly SHREC
contests [1]. For the last 3 years already, the 3D SHape REtrieval Contest has
the objective to evaluate the effectiveness of 3D-shape retrieval algorithms.

Our contribution considers 3D object recognition coping with non-rigid de-
formations in particular. A few examples of these kinds of deformations are the
expression variations of a human face, the movement of different subparts of a
fabrication robot or simply the movement of a walking human.

Based on the assumption that geodesic distances1 remain approximately con-
stant during natural non-rigid deformations, we propose a technique for non-
rigid object recognition based on the geodesic distance matrix (GDM), a matrix
summarizing all point-to-point geodesic distances on the object mesh.
� Corresponding author: dirk.smeets@uz.kuleuven.be

�� Joint first author.
1 The geodesic distance between two points is the length of the shortest path on the

object surface between two points on the object.
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2 Related Work

Some 3D object recognition methods dealing with non-rigid objects and mak-
ing use of the geodesic distance matrix are already to be found in literature.
The one that received the most attention is probably the method of Elad and
Kimmel [2]. Here, the GDM is computed using the fast marching on triangulated
domains (FMTD) method. Then, the GDM is processed using the multidimen-
sional scaling (MDS) approach, converting the non-rigid objects into rigid in-
variant signature surfaces. These can be compared using simpler algorithms for
rigid matching. We will use an implementation of this method for comparison.

Another 3D object recognition method that shows some similarity to one
method we propose here is the Geodesic Object Representation of Hamza and
Krim [3]. Here, the shape descriptor is a global geodesic shape function. This
shape function is defined in each point on the surface and measures the normal-
ized integral of squared geodesic distances to other points on the surface. These
global geodesic shape functions are then used to construct geodesic shape distri-
butions. These are kernel density estimates (KDE) made of the (discretisized)
global geodesic shape functions of a particular object. For the actual recognition,
these KDEs are compared using the Jensen-Shannon divergence. The similarity
of this method to our modal representation lies in the use of the geodesic distance
matrix, which, in the method of Hamza and Krim, is used for the computation
of the geodesic shape functions.

Finally, a similar method to our modal representation approach is the method
shown in Jain and Zhang’s work [4]. This method measures the inter-object dis-
tance by taking the χ2-distance between the 20 largest eigenvalues of a weighted
GDM. We will show that the weighting of the GDM has an adverse effect on the
accuracy of the method.

3 Isometric Deformation Modelling

In mathematics, an isometry is a distance-preserving isomorphism between
metric spaces. The basis of the isometric deformation model is therefore the
invariance of distances measured along the surface, called geodesic distances.
Therefore, an appropriate object representation to exploit the advantages of an
isometric model is the geodesic distance matrix (GDM). We call G a GDM for
a particular object if G = [gij ], with gij the geodesic distance between points i
and j on the object surface. This matrix is a symmetric matrix and defined up to
a random permutation of the points on the represented object surface. Figure 1
shows a 3D object and the associated GDM.

For the calculation of the GDM, a fast marching algorithm for triangulated
meshes is used [5]. The algorithm computes the distance of the shortest (discrete)
path between each pair of surface points. The complexity of this computation
is O(n2), with n the dimension of the GDM. Beside the geodesic distance ma-
trix (G1 = [gij ]), also other affinity matrices, closely related to the GDM are
examined. For example the squared GDM (G2 = [g2ij ]), the Gaussian weighted
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Fig. 1. 3D mesh of an object (a) and its geodesic distance matrix representation (b)

GDM (G3 = [exp(−gij
2/(2σ2)]) and the increasing weighting function GDM

(G4 = [1 + 1
σ gij ]−1) [6].

3.1 Multidimensional Scaling

Multidimensional scaling (MDS) is a technique that allows visualisation of the
proximity between points with respect to some kind of dissimilarity (distance)
measure matrix. For Euclidean distance matrix representations of a 3D object,
three dimensional MDS provides the configuration of the original object. In
[7], MDS is applied on the GDM in order to obtain a configuration of points
where pointwise Euclidean distances approximately equal the original pointwise
geodesic distances. Figure 2 shows the resulting 2D and 3D configurations, called
canonical forms, calculated using classical MDS.

Because the geodesic distances remain constant under isometric transforma-
tions, the GDM of an object is invariant with respect to isometric transforma-
tions up to an arbitrary - simultaneous - permutation of rows and columns.
However, the canonical forms have the same shape. Therefore, objects can be

(a) (b)

Fig. 2. 2D (a) and 3D (b) canonical form of the same object as shown in Fig. 1
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compared by rigidly aligning the canonical forms and comparing the registration
error.

3.2 Histogram Comparison

We propose another way to compare deformable objects: by comparing his-
tograms of the values contained in the geodesic distance matrices. The resulting
representation is invariant for matrix permutations. Experiments were conducted
with two kinds of histograms. The first are histograms calculated from all values
in the upper triangle of the GDM. The second are histograms of mean geodesic
distances per point. Examples of those histograms for the object in Fig. 1 are
shown in Fig. 3. Other histogram variants are possible but are not considered
here.
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Fig. 3. Histograms of all (a) and point-wise averaged (PWA) (b) geodesic distances of
the same object as shown in Fig.1

The histograms Sj (j = 1, . . . , n), with n the number of objects, can be
thought of as m-dimensional vectors, with m the number of bins. They can be
compared with a plethora of dissimilarity measures. We have tested 8 different
ones. Histograms can be compared using the Jensen-Shannon divergence [8]:

JSD(S1, S2, . . . Sn) = H(
n∑

j=1

πjS
j)−

n∑
j=1

πjH(Sj), (1)

with πj the weight for the histogram vector Sj and H(Sj) the Shannon entropy,
given by H(S) = −

∑m
i=1 Si logb Si. In this work only pair-wise comparisons are

considered. Both histograms receive equal weighting (π1 = π2 = 1/2). The other
dissimilarity measures need less explication and are listed in Tab. 1.

3.3 Modal Representation

A third approach for object comparison using the isometric model is based on a
modal representation. Here, the information in the geodesic distance matrix is sep-
arated into a matrix that contains intrinsic shape information and a matrix with
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Table 1. Dissimilarity measures

Dissimilarity measure Formula

Jensen-Shannon Divergence D1 = H( 1
2
Sk + 1

2
Sl)− ( 1

2
H(Sk) + 1

2
H(Sl))

Mean normalized Manhattan dis-
tance

D2 =
∑m

i=1

2|Sk
i −Sl

i|
Sk

i +Sl
i

Mean normalized maximum norm D3 = maxi
2|Sk

i −Sl
i|

Sk
i +Sl

i

Mean normalized absolute differ-
ence of square root vectors

D4 =
∑m

i=1

2|
√

Sk
i −
√

Sl
i|√

Sk
i
+
√

Sl
i

Correlation D5 = 1− Sk·Sl

‖Sk‖‖Sl‖

Euclidean distance D6 =
√∑m

i=1(S
k
i − Sl

i)2

Normalized Euclidean distance D7 =
√∑m

i=1(S
k
i − Sl

i)2/σ2
i

Mahalanobis distance D8 =
√∑m

i=1(Sk − Sl)T cov(S)−1(Sk − Sl)

information about corresponding points. This is done with an eigenvalue decom-
position (EVD) or a singular value decomposition (SVD) of the GDM. Both de-
compositions give similar results because the GDM is a symmetric matrix. The
eigenvalues and singular values can be used as intrinsic shape descriptors, while
the eigenvectors and singular vectors give information about correspondences. For
numerical reasons, only the largest eigenvalues or singular values are computed.

Because we do not know anything about the order of the points, G and all
possible simultaneous permutations of rows and columns of G determine the
configuration of the object. Let P be a random permutation matrix, such that
G′ = PGPT is a GDM with rows and columns permuted, and G = UΣV T a
singular value decomposition, then

G′ = PGPT = PUΣ(PV )T. (2)

Because PU and PV remain unitary matrices and Σ is still a diagonal matrix
with non-negative real numbers on the diagonal, the right hand side of Eq. 2
is a valid singular value decomposition of G′. A common convention is to sort
the singular values in non-increasing order. In this case, the diagonal matrix Σ
is uniquely determined by G′. Therefore, Σ = Σ′, with Σ′ the singular value
matrix of G′.

From this, we can see that Σ contains the intrinsic information about geome-
try, whileU and V contain the information about correspondences between points.
This justifies our approach of object recognition using S = {σ1, σ2, . . . , σk}, with
σ1, σ2, . . . , σk the first k singular values of the GDM, as a shape descriptor.As such,
the computational complexity singular value calculation is limited toO(k.n2),with
n the dimension of the GDM.

For comparing these singular value vectors, we can use the same dissimilarity
measures as we described in Sect. 3.2 (see Tab. 1).



762 D. Smeets et al.

4 Experimental Validation

To examine the deviation to the isometric deformation assumption in a realistic
situation, we looked at the change in geodesic distance between four finger tips
in three situations with different configuration of a hand. This results in a mean
coefficient of variation (CV) of 5.3% for the geodesic distances, while the CV for
Eucledian distances is equal to 27.6%.

For the validation of the three proposed object recognition approaches, we
use the TOSCA database [9]. This database consists of various 3D non-rigid
shapes in a variety of poses and is intended for non-rigid shape similarity and
correspondence experiments. We use 133 objects, i.e. 9 cats, 11 dogs, 3 wolves,
17 horses, 21 gorillas, 1 shark, 24 female figures, and two different male figures,
containing 15 and 20 poses. Each object contains approximately 3000 vertices.

We compare the three GDM-based methods with a baseline algorithm: the stan-
dard iterative closest point (ICP) algorithm [10]. This is a well-known and exten-
sively used rigid object registration method that minimizes the sum of squared
Euclidean distances between closest points. After rigid registration the objects can
be compared using the value of the employed registration objective function.

After roughly tuning the parameters, we used 100 bins for the histogram
comparison with all values and 80 bins for the pointwise averaged (PWA) value
histogram comparison. This number was determined experimentally.

The different approaches are validated using standard recognition experi-
ments, i.e. the verification and the identification scenario. The performance of
those scenarios is measured with the receiving operating characteristic (ROC)
curve and the cumulative matching curve (CMC), respectively. The former is a
curve plotting the false rejection rate (FRR) against the false acceptance rate
(FAR), while the latter gives the recognition rate for several ranks. These curves
can be found in Fig. 4. Here, we plotted the best combination of GDM weighting,
dissimilarity measure and, for the modal representation approach, the optimal
number of eigenvalues (see below).

The equal error (EER) and rank 1 recognition rate (R1RR) are characteristic
points on the ROC and CMC respectively. These are tabulated in Tab. 2.

Figure 5 plots the R1RR against the number of eigenvalues (logarithmic scale)
used in the shape descripor. A plateau of maximum recognition is observerd for
shape descriptors using a number of eigenvalues between 35 and 430.

In Tab. 3, the different dissimilarity measures are compared, showing that he
best results are obtained with the mean normalized absolute difference of square
root vectors of the 50 largest eigenvalues.

Table 2. Results of different isometric deformation model methods on TOSCA
database

experiment R1RR EER
MDS 39.34% 29.49%
histogram of PWA values 63.11% 16.93%
histogram of all values 72.13% 14.90%
modal representation 100.0% 2.43%
ICP 35.29% 40.07%
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Fig. 4. Results of standard validation experiments on the TOSCA-database with CMC
(a) and ROC (b). Object recognition with a baseline algorithm (thin solid line) is
compared to object recognition using MDS (dash-dot line), histogram comparison of
PWA (dotted line) and all values (dashed line) and modal representation (thick solid
line).
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Fig. 5. The R1RR is plotted against the number of eigenvalues (in log scale) used in
the shape descriptor

Table 3. Comparison of different dissimilarity measures as defined in Tab. 1

Diss measure D1 D2 D3 D4 D5 D6 D7 D8
PWA value Histogram comparison

R1RR 45.08% 54.92% 45.08% 54.92% 46.72% 56.56% 63.11% 20.49%
EER 18.68% 15.83% 25.31% 15.69% 34.68% 23.13% 16.93% 42.07%

All value Histogram comparison
R1RR 67.21% 69.67% 47.54% 69.67% 58.20% 72.13% 66.39% 20.49%
EER 14.95% 15.26% 21.01% 15.26% 19.63% 14.90% 16.94% 48.37%

Modal representation
R1RR 84.43% 100.0% 85.25% 100.0% 54.92% 76.23% 97.54% 33.79%
EER 10.11% 2.43% 10.09% 2.44% 20.33% 10.74% 7.74% 34.18%

To show the influence of different weightings of the GDM, we also tabulate
the rank one recognition rate and the equal error rate for the different weighting
functions as proposed in Sect. 3. This can be found in Tab. 4. The abbreviations
used are the ones introduced in Sect. 3. We can clearly see that every weighting
reduces the accuracy of both methods, sometimes quite drastically.
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Table 4. Comparison of different weighting function of the GDM as defined in Sect. 3

G1 G2 G3 G4
All Value Histogram comparison

R1RR 72.13% 70.49% 70.49% 69.67%
EER 14.90% 14.01% 14.14% 15.42%

Modal representation
R1RR 100.0% 97.54% 71.31% 90.98%
EER 2.43% 3.47% 17.79% 12.25%

All results clearly show that the modal representation of the geodesic distance
matrices provides the highest performance. We also note that all methods using
geodesic distance matrices perform better than the baseline algorithm.

5 Conclusions

In this article, different methods using geodesic distance matrices are com-
pared. Amongst all the representations and methods, the modal approach out-
performs the other methods, a geodesic histogram based representation, the
MDS-approach and the baseline ICP algorithm. For the TOSCA database a
rank 1 recognition rate of 100% is obtained.

As future work, we propose to further exploit the modal decomposition method
in order to obtain correspondences between different objects. This can be done us-
ing the eigenvectors or singular vectors based on the method of Brady and
Shapiro [11].
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Abstract. In this paper, we propose a Hierarchical Spatial Markov
Model (HSMM) for image categorization. We adopt the Bag-of-Words
(BoW) model to represent image features with visual words, thus avoid-
ing the heavy work of manual annotation in most Markov model based
approaches. Our HSMM is designed to describe the spatial relations of
these visual words by modeling the distribution of transitions between
adjacent words over each image category. A novel idea of semantic hi-
erarchy is exerted in the model to represent the composition relation-
ship of visual words at semantic level. Experiments demonstrate that
our approach outperforms Bayesian hierarchical model based categoriza-
tion approach with 12.5% and it also performs better than the previous
Markov model based approach with 11.8% on average.

Keywords: Image categorization, Hierarchical Spatial Markov Model,
Visual words.

1 Introduction

In this paper, we focus on the problem of recognizing the semantic categories of
unknown images via analyzing their visual features. In recent literatures of image
categorization, researches have been progressing along two lines of researches [2].
The first line of researches considers the semantic of an image directly based on
its low-level visual features [9][14] and the second line of researches employs inter-
mediate representations that are generated from low-level features [2][7][13][5].
It has been shown by recent researches that the intermediate representation nar-
rows the semantic gap between low-level visual features and high-level semantic
and also improves the performance of image recognition. The BoW model has
been developed and adopted for this purpose, especially in the fields of image
classification and visual object recognition with good results [5][7]. However,
the BoW model which fundamentally does not take into account the spatial
relationships among the visual features, has given rise to certain limitations par-
ticularly when the spatial relationships among visual features provide important
cues for many image classification problems. Developing effective approaches for

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 766–773, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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representing and exploiting the spatial structure of an image within the BoW
framework remains an open problem. Some previous works have yielded inspiring
results [13][12][4]. Recently, the hierarchical image feature is increasingly used
to represent the spatial layout of features in many schemes [7][1][11]. However,
these approaches do not describe the relative spatial relations among visual fea-
tures indeed. Instead, they merely bind the feature with its location. In this
paper, we propose a new image categorization approach that combines the BoW
model based image representation with a Hierarchical Spatial Markov Model,
which represents the spatial relationship of features along different directions.
Compared with relevant BoW model based approaches, the spatial layout within
an image is adequately considered in our approach.

The Hierarchical Spatial Markov Model in this paper is a hierarchical gener-
alization of a previously proposed 2-D hidden Markov model, the Spatial Hid-
den Markov Model (or SHMM) [14]. We inherit the fundamental assumption
of SHMM in our model and extend the previous 2-D structure to be a hierar-
chy, while the hidden states in SHMM is abandoned. In recent years, there have
been a few 3-D and hierarchical Markov models proposed for analyzing images
[8][3][9]. Li described a multi-resolution hidden Markov model to speed up the
procedure of image categorization in [8]. Bouman[3] developed a multi-scale ran-
dom field for Bayesian image segmentation based on the Markov random fields.
At the same time, some other hierarchical Markov models were proposed by
extending the one-dimensional Markov models [6][10]. However, in most of the
currently proposed hierarchical models, the connections of features in different
layers are not adequately considered. And the requirement of manual annota-
tion on image regions [9][14] is another drawback. In this paper, we present our
HSMM, which differs from other Markov models with following two innovations.
First, our model describes the semantic hierarchy within and across different
scales of an image. The correlation between image features includes not only
adjacency, like left-and-right, but also composition, such as part-and-integrity,
which is built on the semantic level. For instance, the image of a car at coarse
resolution can be partitioned into parts of window, wheel, and headlight at a
finer resolution. Our HSMM is proposed to represent the composition relation-
ship within an image by analyzing the correlation between features in adjacent
scales of an image pyramid. Second, we avoid the heavy and error-proned tasks
of manual annotation on individual image regions by taking the advantage of
BoW model based intermediate image representation.

In this paper, we propose a Hierarchical Spatial Markov Model based approach
to categorize images. Every image to be processed is constructed an image pyra-
mid with quad-tree structure, with each block being mapped to a visual word.
The HSMM is employed to describe the distribution of words over each image
category, by means of capturing the neighboring relationship of visual words
within the same layer (or resolution) as well as the containing relationship of
visual words across different layers. To classify an unknown image, we develop
its word-based representation and determine the model that best represents its
word distribution among the constructed models. This approach avoids manual
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annotation, on the one hand, while making use of spatial correlation of features,
and achieves better result than previous methods.

The remaining sections of this paper are organized as follows. In section 2, the
definition of the proposed Hierarchical Spatial Markov Model and its application
on image categorization is represented. We demonstrate the experimental results
in Section 3.

2 Hierarchical Spatial Markov Model Based Image
Categorization

The HSMM is a structured multi-level discrete stochastic process. Given several
sets of images with each being represented by a set of visual words, the HSMM
is built to describe the distribution of words over each image category.

The HSMM is constructed as a quad-tree structure with several uniformly por-
tioned image layers. From top to bottom of the quad-tree structure, the image
layers are partitioned into increasingly finer blocks, as each single block of current
layer is divided into four child-blocks in the next finer layer (Figure 1(a)). Intu-
itively, the fine layer represents the high resolution of an image while the coarse
layer represents what we see when overlooking it from somewhere far away. In
each block, one visual word is used to represent its feature, which takes value
from the codebook of corresponding layer, On = {o1, o2, . . . , oM}. With zigzag

Fig. 1. (a) The quad-tree structure of Hierarchical Spatial Markov Model; (b) The vi-
sual word sequence Ω = (ω1

1,1, ω
1
1,2, . . . , ω

N
H,W−1, ω

N
H,W ) is generated by zigzag travers-

ing the image hierarchy
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Fig. 2. Illustration of the fundamental assumption

traversing from the top-left block of the top layer to the bottom-right block of
the bottom layer, the image hierarchy is represented by a block sequence B =
(b11,1, b

1
1,2, . . . , b

N
H,W−1, b

N
H,W ), where bni,j denotes the block in the ith row and jth

column of the nth layer. And its corresponding sequence of visual words (or code-
words) is denoted by Ω = (ω1

1,1, ω
1
1,2, . . . , ω

N
H,W−1, ω

N
H,W ), as illustrated in Figure

1(b). Given a visual word sequence of an unknown image, Ω, the general frame-
work to detect its category is to find out the image categorywhose model maximize
the generation probability P (Ω | λ). The generation probability can be calculated
as:

P (Ω|λ) = P (ω1
1,1, ω

1
1,2, . . . , ω

N
H,W−1, ω

N
H,W |λ)

= P (ω1
1,1|λ) · P (ω1

1,2|ω1
1,1, λ) . . . P (ωN

H,W−1|ω1
1,1, ω

1
1,2, . . . , ω

N
H,W−2, λ) ·

P (ωN
H,W |ω1

1,1, ω
1
1,2, . . . , ω

N
H,W−1, λ) (1)

where ωn
i,j denotes the visual word of block (i, j) in the nth layer, and the model

λ contains N layers, with the finest layer being divided into H ×W blocks.

In our approach, we extend the memoryless property of Markov model to
define the HSMM with following assumption:
• Given the visual words of blocks that precede current block bni,j in the se-

quence B, the visual word in block bni,j is only dependent of the visual words in
its two neighboring blocks, bni,j−1 and bni−1,j , and in its parent block, bn−1

�i/2�,�j/2�.
As illustrated in Figure 2, the neighboring visual words, ωn

i,j−1, ω
n
i−1,j and

ωn−1
�i/2�,�j/2� are enough to determine the distribution of ωn

i,j . This fundamental
assumption is formally indicated as:

P (ωn
i,j |ω1

1,1, ω
1
1,2, . . . , ω

n
i,j−1) = P (ωn

i,j |ωn
i−1,j , ω

n
i,j−1, ω

n−1
�i/2�,�j/2�) (2)

where (ω1
1,1, ω

1
1,2, . . . , ω

n
i,j−1) are the visual words of blocks (b11,1, b

1
1,2, . . . , b

n
i,j−1)

that are preceding blocks of block bni,j in the sequence B (Figure 1(b)).
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To apply the model on solving real-life problem, it is necessary to estimate the
generation probability P (Ω|λ) by deducing the equation 1. However, to estimate
two and three dimensional Markov models with reasonable computational cost
is still an open problem. In the proposed approach, we solve the computational
problem by further assuming that, the right-hand part of equation 1 can be
approximated by the multiplication of three conditional probabilities, which are
the codeword transition probabilities in horizontal direction, vertical direction
and inter-layer direction respectively.

P (ωn
i,j |ωn

i−1,j , ω
n
i,j−1, ω

n−1
�i/2�,�j/2�)

≈ P (ωn
i,j |ωn

i−1,j) · P (ωn
i,j |ωn

i,j−1) · P (ωn
i,j |ωn−1

�i/2�,�j/2�) (3)

The equation 1 therefore is transformed into:

P (Ω|λ) = P (ω1
1,1|λ) ·

∏N
n=1

∏Hn

i=1
∏Wn

j=1 P (ωn
i,j |ωn

i−1,j , ω
n
i,j−1, ω

n−1
�i/2�,�j/2�, λ)

≈ P (ω1
1,1|λ) ·

∏N
n=1

∏Hn

i=1
∏Wn

j=1[P (ωn
i,j |ωn

i−1,j , λ)·
P (ωn

i,j |ωn
i,j−1, λ) · P (ωn

i,j |ωn−1
�i/2�,�j/2�, λ)]

(4)
where the model λ contains N layers and the nth layer is divided into Hn ×Wn

blocks.

Here we introduce four new parameters.

• Initial codeword distribution α(x) = P (ω1
1,1 = ox|λ), which represents the

probability that we observe codeword ox at block (1, 1) of the top layer, given
the model λ. Therefore, variable α(ω1

1,1) denotes P (ω1
1,1|λ).

• Horizontal word transition probability hn(x, y) = P (ωn
i,j = oy|ωn

i,j−1 =
ox, λ). It represents the probability that we observe codeword oy in block (i, j) of
the nth layer, given the codeword of its left block is ox. Therefore, hn(ωn

i,j−1, ω
n
i,j)

denotes P (ωn
i,j |ωn

i,j−1, λ), the probability that horizontal transition from code-
word ωn

i,j−1 to codeword ωn
i,j occurs in the nth layer.

• Vertical word transition probability vn(x, y) = P (ωn
i,j = oy|ωn

i−1,j = ox, λ).
It represents the probability that we observe codeword oy in block (i, j) of the
nth layer, given the codeword of its above block is ox. Consequently, variable
vn(ωn

i−1,j , ω
n
i,j) denotes P (ωn

i,j |ωn
i−1,j , λ).

• Inter-layer word transition probability tn(x, y) = P (ωn
i,j = oy|ωn

�i/2�,�j/2� =
ox, λ). It represents the probability that we observe codeword oy in block (i, j)
of the nth layer, given the codeword of its father block bn�i/2�,�j/2� is ox. And
tn(ωn

�i/2�,�j/2�, ω
n
i,j) is therefore used to represent P (ωn

i,j |ωn
�i/2�,�j/2�, λ).

Substituting equation 4 with above parameters, we have:

P (Ω|λ) ≈ α(ω1
1,1)·

N∏
n=1

Hn∏
i=1

Wn∏
j=1

hn(ωn
i,j−1, ω

n
i,j)·vn(ωn

i−1,j , ω
n
i,j)·tn(ωn−1

�i/2�,�j/2�, ω
n
i,j)

(5)
The above two assumptions actually are derived from the conclusion of research
[14]. The fundamental assumption is made based on the property that the texture
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of a region is strongly related with the texture in its directly adjacent regions
and its relations with those unconnected regions are relatively weak.

To train a model for a specific image category, the probability distribution
of initial word, horizontal word transition, vertical word transition, and inter-
layer word transition is estimated on training images with a simple maximum
likelihood estimate (MLE) [15].

Given an unknown image σ with its codeword representation Ωσ andK candi-
date image categories {Ψ1, Ψ2, . . . , ΨK}, we estimate its most probable category
by determining the model that is most likely to generate the sequence:

σ ∈ ΨX , with X = arg maxx[αλx(ω1
1,1) ·

∏N
n=1

∏Hn

i=1
∏Wn

j=1 h
n
λx

(ωn
i,j−1, ω

n
i,j)·

vn
λx

(ωn
i−1,j , ω

n
i,j) · tnλx

(ωn−1
�i/2�,�j/2�, ω

n
i,j)]

(6)

3 Experiments

The performance of the proposed HSMM-based image categorization approach
is evaluated on a dataset of 13 categories of grayscale natural scenes [5] and
the COREL dataset respectively. A Bayesian hierarchical model-based approach
and a related Markov model based approach are compared with our method.

3.1 Comparison to Bayesian Hierarchical Model

The performance of proposed approach is evaluated on a dataset of 13 categories
of natural scenes [5] and the result is compared with a Bayesian hierarchical
model-based approach [5]. This approach is an extension of the LDA model. It
also represents image patches with visual words and distinguishes image cate-
gories with the distribution of these words.

The dataset includes 3859 grayscale images from 13 categories of natural
scenes. We randomly select N (N=5,10,20,40,60,80,100) images from each cat-
egory to train the model and use the remaining for test. In the experiment,
we employ the model of 3 layers and they are divided into blocks of 32 × 32,
16× 16 and 8× 8 pixels from top to bottom. According to experimental result,
the capacity of the word dictionary of each layer is set to be 100, 150, and 200
accordingly. The descriptor of image features utilized in the experiment is the
128-dim SIFT vector that are employed in [5].

We conducted experiments with different ratios of training and testing data.
As shown in Figure 3(a), the proposed approach achieves the classification rate
of 77.7%, while we let the number of training data N take 100, which outper-
forms the result of 65.2% in [5] with 12.5%. As the number of training data
decreases, the advantage goes more obvious. The result 62.8% that corresponds
to 10 training data is almost double of the result of [5]. Figure 3(a) shows the
classification rate by comparing with the result in Figure 10(a) of [5].
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Fig. 3. (a) Classification rate of Hierarchical Spatial Hidden Markov Model and of
Bayesian Hierarchical Model; (b) Classification rate of Hierarchical Spatial Markov
Model and of Spatial Hidden Markov Model

3.2 Comparison to Previous Markov Model Based Approach

The Spatial Hidden Markov Model (SHMM) [14] extends the traditional Hidden
Markov Model (HMM) to a 2-D model for categorizing and annotating images.
It is also a block-based approach, which extracts image features in blocks and
models the property of feature distribution in each image category. However, the
SHMM is a supervised approach, which requires extensive annotation on image
regions.

Experiments are conducted on 800 images from 8 classes of COREL image
dataset. We randomly select N (N=40) images from each of the category to train
the model and use the remaining images for test. As in [22], the 15-dimensional
feature of average RGB values and 12-dimensional Gabor energy is used in the
experiment. And the codebook is generated via K-means clustering. The 3 layers
of the HSMM are under the same resolution and are partitioned in three different
block sizes (32× 32, 16× 16, 8× 8). And the dictionaries in size of 100, 150, and
250 for three layers are demonstrated to be appropriate.

As shown in Figure 3(b), the performance of the proposed approach achieves
89.7%. It outperforms the SHMM-based approach with 11.8% on average with
even much less manual annotation for training models.

4 Conclusions

The proposed image categorization approach improves upon the traditional BoW
model based approaches by utilizing the descriptive ability of the HSMM on spa-
tial correlations of image features. This method also suggests a way for Markov
model based approaches to adopt intermediate image representation with the ad-
vantage of avoiding the heavy workload of manual annotation on training data.
Experimental results show that the spatial structure does have its advantages
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over other BoW based methods [5] and improves the performance of previous
Markov model based approach [14] remarkably.
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Abstract. The improvement of bag-of-features image representation by
statistical modeling of visual tokens has recently gained attention in the
field of object categorization. This paper proposes a soft bag-of-features
image representation based on Gaussian Mixture Modeling (GMM) of vi-
sual tokens for object categorization. The distribution of local features
from each visual token is assumed as the GMM and learned from the train-
ing data by the Expectation-Maximization algorithm with a model selec-
tion method based on the Minimum Description Length. Consequently,
we can employ Bayesian formula to compute posterior probabilities of be-
ing visual tokens for local features. According to these probabilities, three
schemes of image representation are defined and compared for object cat-
egorization under a new discriminative learning framework of Bayesian
classifiers, the Max-Min posterior Pseudo-probabilities (MMP). We evalu-
ate the effectiveness of the proposed object categorization approach on the
Caltech-4 database and car side images from the University of Illinois. The
experimental results with comparisons to those reported in other related
work show that our approach is promising.

1 Introduction

In recent years, object categorization with bag-of-features image representation
has become a hot topic in the field of compute vision and pattern recognition [1,2,
3,4,5,6,7,8]. The bag-of-features method originated from the bag-of-words model
for document analysis, which was firstly introduced to object categorization by
Csurka et al. [1]. They cluster local features in images by k-means algorithm to
generate a visual vocabulary. The image is then represented as a histogram over
visual tokens in the vocabulary. After Csurka et al.’s work, statistical modeling
of visual tokens has been advised to improve the effectiveness of bag-of-features
representation [2,3,6]. The relations between local features and visual tokens can
be described more accurately and reliably through statistical modeling of visual
tokens. Furthermore, a local feature is allowed to be softly mapped to multiple
visual tokens in this way, so the aliasing effects can be reduced. In existing
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methods of statistical modeling of visual tokens for object categorization, the
Gaussian distribution is used to model each visual token and the set of visual
tokens is considered as a Guassian Mixture Model (GMM) [2, 3, 6].

This paper proposes a new soft bag-of-features image representation based on
the Gaussian Mixture Modeling (GMM) of visual tokens. The resultant object
categorization approach includes four stages. Firstly, local features are extracted
from an input image. Secondly, posterior probabilities of being visual tokens for
local features are computed by using Bayes formula, where local features from
each visual token are assumed to be of the distribution of GMM. The GMM
is learned from the training data by the Expectation-Maximization (EM) algo-
rithm with a model selection method based on the Minimum Description Length
(MDL). Thirdly, the image is represented using one of three schemes: probabil-
ities based hard histogram, classification based soft histogram, and completely
soft histogram. Finally, the image is classified into one of object categories un-
der a new discriminative learning framework of Bayesian classifiers, the Max-Min
posterior Pseudo-probabilities (MMP) [9], where feature vectors of images from
each object category is also assumed to be of the distribution of GMM. Follow-
ing other related work, we evaluate the proposed object categorization approach
on the Caltech-4 database and the car side images of the University of Illinois.
Our approach experimentally outperforms some other related methods with the
similar local features and achieves the comparable results to those reported by
using more sophisticated local features.

2 GMM-MMP Classification Framework

In this section, we introduce posterior pseudo-probabilities based categorization
approach with the MMP learning. The reader is referred to our paper for more
details [9].

Let X be a feature vector, C be an object category, p(X|C) be the class-
conditional probability density function, then the posterior pseudo-probability
of being C for X is computed as

f(p(X|C)) = 1− exp(−λpθ(X|C)), (1)

where λ, θ are positive numbers. Consequently, f(p(X|C)) is a smooth, mono-
tonically increasing function of p(X|C), and f(0) = 0 and f(+∞). Given an
input image, we use Eq. 1 to compute the posterior pseudo-probability for each
object category. The category with maximum posterior pseudo-probability will
be taken as the categorization result.

The MMP method is advised to learn unknown parameters in Eq. 1. Let
f(X;Λ) be the posterior pseudo-probability measure function (Eq. 1) of an ob-
ject category, where Λ denote the set of unknown parameters in it. Let X̂i be
a feature vector of arbitrary positive sample of the category, X̄i be a feature
vector of arbitrary negative sample of the category, m and n be the number of
positive and negative samples, respectively. Then the objective function of MMP
learning for estimating parameters is



776 Y. Wang, X. Liu, and Y. Jia

F (Λ) =
1
m

m∑
i=1

[f(X̂i;Λ)− 1]2 +
1
n

n∑
i=1

[f(X̄i;Λ)]2. (2)

F (Λ) = 0 means the perfect classification performance on the training data.
Consequently, we can obtain the optimum parameter set Λ∗ of the posterior
pseudo-probability measure function by using the gradient descent algorithm to
minimize F (Λ):

Λ∗ = argmin
Λ
F (Λ). (3)

The form of class-conditional probability density function p(X|C) in Eq. 1 should
be provided for using MMP categorization framework, which is assumed to be
the GMM in this paper. Let K be the component number of GMM, wk, μk and
Σk be the weight, the mean, and the covariance matrix of the k-th Gaussian
component, respectively.

∑K
k=1 wk = 1. Then we have

p(X|C) =
K∑

k=1

wkN(X|μk,Σk), (4)

where

N(X|μk,Σk) = (2π)−
d
2 |Σk|−

1
2 exp

(
−1

2
(X− μk)′Σ−1

k (X− μk)
)
. (5)

So the set of unknown parameters in the posterior pseudo-probability measure
function (Eq. 1) of each object category is

Λ = {λ, θ, wk,μk,Σk}, k = 1, · · · ,K. (6)

3 Object Categorization by Soft Measure of Visual Token
Occurrences

In bag-of-features image representation, a visual vocabulary consisting of vi-
sual tokens is generated to bridge local features and images. In this paper, we
model the distribution of local features from each visual token as a GMM. The
corresponding visual vocabulary can be seen as a set of visual token GMMs.
According to visual token GMMs, we compute posterior probabilities of being
visual tokens for local features. Then three corresponding image representation
schemes are explored for object categorization under the GMM-MMP catego-
rization framework.

3.1 Visual Token GMM with MDL-EM Training

We firstly cluster local features extracted from training images into designated
number of groups. Each group of local features is corresponding with a vi-
sual token. This is the same as conventional bag-of-features methods. However,
each group of local features is represented by a GMM, instead of its center, in
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this paper. The GMM is fitted to the group data by using the Expectation-
Maximization (EM) algorithm [10] with a model selection method based on
the Minimum Description Length (MDL) [11]. This strategy makes our method
different from other statistical modeling based bag-of-features representations,
where GMM is used to model the whole vocabulary and each visual token is
corresponding with a Gaussian component.

Let t be the parameter number of each Gaussian component in the GMM, n be
the number of training samples, f(x1, · · · ,xn|Θ) be the likelihood function over
the training set. Then the training criterion with MDL-EM can be formalized
to minimize [11]

− log f(x1, · · · ,xn|Θ) +
t

2
logn, (7)

where the first and second terms stand for the objective of maximum likelihood
and the simplest model, respectively.

After visual token GMMs are obtained from the training data, we employ
Bayes formula with the assumption of the same prior probabilities for all the
visual tokens to estimate the posterior probability of being visual token vj for
local feature xi:

P (vj |xi) =
P (xi|vj)∑N

k=1 P (xi|vk)
, (8)

where N is the number of all the visual tokens.

3.2 Image Representation

According to hard assignment of local features to visual tokens, it seems that
we can only compute occurrence frequencies of visual tokens to obtain a hard
histogram description of the image. Oppositely, P (vj |xi) reflects the confidence
of assigning xi to vj . More reliable and accurate occurrence distribution can
be defined based on this soft assignment. In this paper, we consider three corre-
sponding representation schemes: Probability Based Hard Histogram (PBHH),
Classification Based Soft Histogram (CBSH), and Completely Soft Histogram
(CSH). In both PBHH and CBSH, local features are firstly classified into the
visual token with maximum posterior probability. Then the image is represented
as frequencies (PBHH) or mean probabilities (CBSH) of visual tokens. The CSH
maps each local feature to all the visual tokens, and compute mean probabili-
ties of visual tokens to represent the image. More formally, let I be an image,
{x1,x2, . . . ,xM} be local features extracted from I, {v1,v2, . . . ,vN} be tokens
in the visual vocabulary, M be the number of all the local features, mi|Ni=1 be
the number of local features classified into visual token vj , then these three
representation schemes are listed in Table 1.

After the image is represented by each of three schemes above, we assume that
the feature vectors of the images from each object category are of the distribution
of GMM. We then use GMM-MMP categorization framework descried in Section
2 to perform the image categorization.
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Table 1. Three image representation schemes

Schema Image Representation
PBSH {mi/M}|Ni=1

CBSH
{∑mi

k=1 P (vi|xk)/mi

}
|Ni=1

CSH {
∑M

k=1 P (vi|xk)/M}|Ni=1

4 Experimental Results

4.1 Experimental Setup

Harris-affine detector [12] is adopted to extract local features from images. Then
we use SIFT [13] as the feature descriptor, resulting a 128-dimentsional real
vector (4× 4× 8) for each local feature. In order to fairly compare our approach
to other related methods, the number of visual tokens is preset to 1000 as that
used in [1].

In the MMP training for object categories, positive samples of each object
category are images from this category, while negative ones are images from
other categories. At first, we used the MDL-EM algorithm on positive samples
to get the parameters in the GMM, and set λ and θ through experiments. Then
the MMP training algorithm was used on all the samples including positive
samples and negative samples to revise initial parameters obtained by the MDL-
EM algorithm. For the MDL based model selection of the GMM, we evaluate
the component numbers from 1 to 20 for visual tokens and object categories.
The resultant numbers of components for visual tokens vary from 1 to 5, while
those for object categorization are from 3 to 9.

4.2 Caltech-4 Database and Car Side Images

We conduct experiments of object categorization on the Caltech-4 database and
car side images from the University of Illinois. The Caltech-4 database includes
four object categories. The number of images from each category varies from
450 to 1074. Following the evaluation method used in other related work, we
randomly select half of images from each object category for training, and the
others for testing.

4.2.1 Comparative Evaluation
The proposed object categorization approach can be divided into three stages:
visual token modeling, image representation, and discriminative learning for ob-
ject categorization. Thus we design three groups of experiments to evaluate the
influence of various factors in each stage.

In the first group, we tested the effectiveness of three visual token modeling
methods including GMM, Gaussian Model, and traditional cluster center under
hard histogram image representation setting. Gaussian Model is treated as 1-
component GMM in our experiments. We also compared GMM and Gaussian
Model under two types of soft histogram image representation setting, CBSH



Soft Measure of Visual Token Occurrences for Object Categorization 779

Table 2. Comparing categorization accuracies for visual token modeling methods and
image representation schemes

Methods THH PBHH CBSH CSH
GM GMM GM GMM GM GMM

Airplanes 0.961 0.968 0.968 0.972 0.980 0.985 0.970
Cars(Rear) 0.960 0.964 0.974 0.945 0.971 0.945 0.978

Motorbikes 0.889 0.889 0.910 0.893 0.910 0.893 0.932

Faces 0.880 0.893 0.907 0.880 0.889 0.906 0.933

Cars(Side) 0.953 0.942 0.935 0.956 0.960 0.956 0.964

Mean 0.936 0.939 0.947 0.936 0.952 0.943 0.960

Table 3. Comparing categorization accuracies for MMP vs. MDL-EM training

Categories MMP EM

Airplanes 0.980 0.970
Cars(Rear) 0.995 0.978
Motorbikes 0.960 0.932

Faces 0.947 0.933
Cars(Side) 1.000 0.964

Mean 0.977 0.960

and CSH. In this group, only MDL-EM algorithm is used to learn the GMMs
of object categories. The MMP algorithm is not triggered yet. Table 2 shows
categorization results for the test data from 5 categories, where ’THH’ denotes
the Traditional Hard Histogram based on cluster centers, ’GM’ denotes Gaussian
Model. It demonstrates that the GMM behaved best and statistical modeling of
visual tokens brings better performance than distance based vector quantization
technique. In the second group, three proposed image representation schemes,
PBHH, CBSH, and CSH, are compared under the GMM of visual tokens. The
corresponding results are also reflected in Table 2, where CSH is shown to outper-
form other two schemes. We tested the effectiveness of the MMP discriminative
learning algorithm in the third group. Under CSH image representation with
the GMM of visual tokens, the training effects of the MMP and the MDL-EM
for object categorization were compared and listed in Table 3. It shows that the
mean categorization accuracy is improved from 96.0% (EM) to 97.7% (MMP).

4.2.2 Comparisons to Related Work
To confirm the effectiveness of our approach, we further compared our best cat-
egorization results achieved by using the GMM of visual tokens, CSH image
representation, and MMP learning algorithm to those reported in other related
work [1, 4, 14, 7, 15]. The comparisons of results are shown in Table 4. Among
these work under comparison, Csurka et al. [1] and Sivic et al. [14] adopt the
same local features as ours, namely, the Harris-affine detector with the SIFT
descriptor; Fergus et al. [7] uses the Kadir-Brady local feature detector and the
pixel descriptor; Kapoor et al. [15] employs the multiresolution local features;
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Table 4. The comparisons between our approach and other related methods

Categories Ours [1] [14] [7] [4]-1 [4]-2 [15]
Airplanes 0.980 0.963 0.953 0.902 0.889 0.975 0.980

Cars(Rear) 0.995 0.977 0.981 0.900 0.911 1.000 0.991
Motorbikes 0.960 0.927 0.936 0.925 0.922 0.943 0.970

Faces 0.947 0.940 0.940 0.964 0.935 1.000 0.995
Cars(Side) 1.000 0.996 – – 0.830 1.000 –

Mean 0.977 0.961 – – 0.897 0.984 –

Opelt et al. [4] tested two kinds of local features, including the affine invariant
interest point detector with the moment invariant descriptor (denoted as [4]-1 in
Table 4) and the similarity-measure-segmentation with the intensity distribution
description (denoted as [4]-2 in Table 4). Our approach experimentally outper-
forms the methods using the similar local features [1,14], [4]-1, and achieved the
comparable results to those reported by using more sophisticated local features
in [15] and [4]-2.

5 Conclusions

In this paper, we explored the problem of soft histogram image representation
based on Gaussian Mixture Modeling (GMM) of visual tokens for object cat-
egorization. The main contributions of this paper are summarized as follows:
1) The posterior probabilities of being visual tokens for local features are com-
puted by assuming that local features from each visual token are of the dis-
tribution of GMM. Accordingly, three types of image descriptions are defined
and compared for object categorization, including Probability Based Hard His-
togram (PBHH), Classification Based Soft Histogram (CBSH), and Completely
Soft Histogram (CSH). 2) A new discriminative learning framework of Bayesian
classifiers, Max-Min posterior Pseudo-probabilities (MMP), is applied to object
categorization.

We conducted three groups of comparative experiments on the Caltech-4
database and car side images from the University of Illinois. In the first group,
GMM of visual tokens is compared to Gaussian modeling of visual tokens as
well as traditional cluster center. The results show that the GMM outperforms
other two strategies. In the second group, three types of histogram descriptions
of the images are tested and CSH is shown to behave best. In the last group,
we demonstrate that MMP is better than generative learning counterpart. To
sum up, we achieved the best result by using the GMM of visual tokens, CSH
image representation, and MMP learning for object categorization, which is bet-
ter than those reported using similar local features and comparable to those
obtained from more sophisticated local features.

The future developments of the proposed approach are described as follows.
Firstly, visual token GMMs are currently learned by using the MDL-EM
algorithm, since the number of visual token is 1000 and the MMP is not enough
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efficient to solve this huge classification problem. In the next work, we will improve
the efficiency of MMP learning and apply it to the training of visual token GMMs
for more accurate measure of visual token occurrence. Secondly, the experimen-
tal evaluation of our approach is planned to be performed on other widely used
databases, including Caltech-101 and VOC 2008.
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Abstract. The bag-of-visual-words approach, inspired by text retrieval meth-
ods, has proven successful in achieving high performance in object retrieval on 
large-scale databases. A key step of these methods is the quantization stage 
which maps the high-dimensional image feature vectors to discriminatory visual 
words. In this paper, we consider the quantization step as the nearest neighbor 
search in large visual vocabulary, and thus proposed a randomized dimensions 
hashing (RDH) algorithm to efficiently index and search the large visual  
vocabulary. The experimental results have demonstrated that the proposed algo-
rithm can effectively increase the quantization accuracy compared to the  
vocabulary tree based methods which represent the state-of-the-art. Conse-
quently, the object retrieval performance can be significantly improved by our 
method in the large-scale database. 

Keywords: Object retrieval, Vocabulary tree, Randomized dimensions hashing. 

1   Introduction 

Object retrieval in large-scale databases has drawn a lot of attentions in research area 
of image understanding and computer vision. Given a query image which contains a 
particular object, our motivation is to return immediately from the large database a set 
of high related images in which that object appears. In general, the standard approach 
to solve this problem is firstly to represent the images by high-dimensional local fea-
tures and then to match images by dealing with millions of feature vectors. 

Several successful object based image and video retrieval systems have been re-
cently reported [1-6], which mimicked the text-retrieval approaches using the analogy 
of visual words. Sivic and Zisserman [1] firstly introduced this bag-of-visual-words 
architecture for the video object recognition application. They apply flat k-means 
algorithm on feature vectors from the training frames to generate vocabulary of visual 
words. The feature vectors quantized to the same visual words are considered 
matched to each other. Then the standard TF-IDF (Term Frequency-Inverse Docu-
ment Frequency) weighting scheme, which down-weights the contribution of the 
commonly occurred words, is used for scoring the relevance of an image to the query 



784 H. Yang, Q. Wang, and Z. He 

one. However, the vocabulary built by flat k-means is hard to be scalable to a large 
size. To address this issue, Philbin et al. [5] introduced an approximate k-means 
(AKM) algorithm to speed up the traditional flat k-means method by employing an 
approximate nearest neighbor (ANN) method based on randomized trees. They 
claimed that AKM can reduce computation complexity of the regular k-means greatly 
and thus scale the vocabulary to a large size. A more efficient way to build scalable 
large vocabulary is proposed by Nistér and Stewenius [2]. They designed a vocabu-
lary tree structure based on hierarchical k-means (HKM) method [7]. The tree can 
efficiently define large visual vocabulary by recursively running k-means to partition 
features in current node to clusters with small k. Furthermore, it gave an efficient 
search procedure for quantization. Therefore, a much larger and more discriminatory 
vocabulary can be used efficiently which can improve the image searching quality 
dramatically. Schindler et al. [3] used the same data structure as the vocabulary tree 
for large-scale location recognition application. In particular, they presented a Greedy 
N-Best Paths (GNP) algorithm to improve the retrieval performance of the traditional 
vocabulary tree algorithm by considering more candidates instead of one at each level 
of the tree. Philbin et al. [6] introduced the soft-assignment technology which mapped 
a feature to a weighted combination of visual words rather than hard-assign to a single 
word. This method improved the performance of retrieval, since that it avoided the 
quantization lost of the hard-assigned method to some extent. Chum et al. [4] brought 
the query expansion technology, which is a standard method in text retrieval system, 
into the visual domain for improving the retrieval performance. They utilized the 
spatial constraint between query image and each returned image and used these veri-
fied images to learn a latent feature model which controlled the construction of ex-
panded queries. In a word, there are mainly four key stages in current successful im-
age retrieval systems based on the bag-of-visual-words model: 1) build large and 
discriminatory visual vocabulary; 2) quantize the feature vectors into large visual 
words efficiently; 3) use the TF-IDF scheme to score the similarity between images; 
4) employ well-known technologies to further refine the retrieval results, such as 
spatial verification and query expansion. 

In this paper, we focus on the quantization stage, since that it is the key factor to 
influence the retrieval quality based on the similar size vocabulary. In particular, we 
concentrate on solving the quantization issue of the vocabulary tree based methods. 
The tree structure based methods give us an efficient way to build large vocabularies, 
but low quantization accuracy (demonstrated in our experiment) which depresses the 
retrieval performance. The quantization process can be considered as the nearest 
neighbor searching in the visual word set and the quantization accuracy can be de-
fined as same as the ANN searching accuracy. In order to address the quantization 
issue of tree based method, we employ a locality sensitive hashing (LSH) [9] based 
ANN algorithm for efficiently indexing and searching the large vocabulary to im-
prove the quantization accuracy. 

The remainder of this paper is organized as follows. Section 2 analyses the quanti-
zation limitations of the tree based methods and section 3 presents our approach in 
detail. The experimental results and related discussions are given in section 4. Finally, 
the conclusion is summarized in section 5. 
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2   Quantization in Vocabulary Tree Based Methods 

The traditional vocabulary tree [2] is built by hierarchical k-means clustering on SIFT 
[8] feature vectors from the training data. The tree is a kind of k-way tree of depth L. 
Therefore, there are kL leaf nodes (visual words) at the bottom of the tree. For quanti-
zation, a SIFT feature is down from the root node to a leaf node by at each level com-
paring the feature vector to the k candidate cluster centers and choosing the closest 
one. Then the path down the tree is encoded by an integer which represents a specific 
visual word. The quantization speed of the traditional vocabulary tree is very fast 
when k and L are both small, since it only needs comparing totally k×L candidates in 
the quantization process for one search. However, there exists an obvious drawback in 
the quantization process. At each level of the tree, the quantization error will be inevi-
table when the feature vectors locate on the boundaries that are defined by the cluster 
centers (see Figure 1 for illustration). Therefore, due to the accumulative errors at 
upper levels of the tree, the quantization accuracy at the leaf level will be depressed. 
This can be validated from our experimental results (see section 4.1). 

The Greedy N-Best Paths (GNP) algorithm [3] improved the quantization method 
of [2]. It chooses the closest N nodes at each level by comparing the k×N candidates. 
The total comparisons of GNP is k+k×N×(L-1) per search. GNP can increase the 
quantization accuracy, since it considers more nodes (when N>1) in traversing a tree. 
But the computation complexity is nearly linear with N, which will bring heavy com-
putation when N is large. 

A B

CD

1 2

3

 

Fig. 1. Illustration of quantization error at an upper level of a vocabulary tree. Points A to D 
represent cluster center nodes and points 1, 2, 3 are feature vectors, respectively. The cross 
lines are the boundaries defined by cluster centers A to D together. Points 1, 2, 3 should be 
assigned to the same visual word at the bottom level for being close to each other, but they are 
assigned to different nodes at this level and thus are quantized to different visual words at last. 

3   Our Approach 

We follow the hierarchical k-means clustering scheme [2] to build large visual vo-
cabulary, which is proved scalable and efficient. But we throw off the tree index 
structure and employ a LSH based ANN method to index the whole visual vocabulary 
in order to address the tree based quantization issue. Our quantization scheme, called 
randomized dimensions hashing (RDH), is given in detail in the section 3.1. At last, 
TF-IDF scheme [1] is used to get the relevance score between database image and the 
query one, which is accomplished using inverted files. 
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3.1   Quantization Using Randomized Dimensions Hashing 

The target of quantization process is to map a feature vector to its nearest visual word 
in acceptable time. The exhaustive method is impracticable due to its low efficiency 
in the large vocabulary. Vocabulary tree based methods hold high speed, but low 
accuracy (see section 4.1). A natural consideration to this problem is to resort to the 
ANN searching method, considering both accuracy and speed. 

Our algorithm belongs to a LSH based ANN searching method. LSH is widely 
used in high-dimensional feature searching for its independent to the feature dimen-
sionality. LSH algorithm firstly project feature vectors to Hamming space which 
consists of super large binary bits. Then, a group hash functions are employed to 
randomly select m dimensions of vectors in Hamming space and thus compose the 
binary string as the hash value. Finally, p different hash tables are built. In searching 
phase, LSH only searches the features in the same buckets that have the same hash 
values to the query feature vector. In fact, two parameters m and p enable the designer 
to select an appropriate trade-off between accuracy and running time according to 
different request. However, LSH also has some drawbacks. First, the information of 
dimensions of the Hamming vector is very limited, which significantly decreases the 
local sensitivity of the algorithm. Secondly, projecting feature vectors into Hamming 
space consumes large memory cost. Both the two limitations decrease the perform-
ance of LSH algorithm. 

Based on the LSH framework, we propose a randomized dimensions hashing 
(RDH) algorithm to efficiently index and search the large vocabulary. There are three 
major improvements in our algorithm. The first and most important one is that we 
project the feature sets into an equally-distributed space, not the Hamming space, 
which can significantly enhance the local sensitivity of search algorithm. The second 
one is that a specific designed hash function (see Algorithm 1) is employed to assign 
feature vectors to hash buckets discriminatively. The last one is that a constraint com-
pare times is set to 200 to guarantee the search efficiency. The RDH algorithm is 
divided to three steps and described as follows:  

Step 1: Calculate the data distributions for each dimension in the feature (visual 
word) set F. If the set containing the same dimension of all the features (D dimen-
sions) is denoted as iF ( 1,2,...,i D= ), then a key value ikey  is determined to equally 

divide iF  into two parts. 

 
Algorithm 1. Hash Function 
Input: m dimensions of a feature vector jf  

Output: hash value of jf  

1  for t:= 1 to m  
2    If ( ) ( )jr t r tf key> , bs[t] = 1; 

3    Elseif, bs[t] = 0.  
4    end if 
5  end for 
6  Convert the binary string bs to an equivalent integer hash value jhv . 
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Step 2: Establish p index structures of 1 2{ , ,..., }pI I I . For each index, we randomly 

choose m dimensions for each feature jf , denoted as ( ) , 1, 2,..., ;1 ( )jr tf t m r t D= ≤ ≤ . 

Then for every feature jf  in F, we execute Algorithm 1 to computer its hash value 

jhv . Features with the same hash value are mapped into the same hash bucket. 

Step 3: For a query feature q, Algorithm 2 is executed to search the nearest neighbor 
as its quantization result. 

 
Algorithm 2. Searching  
Input: query feature q and the index structures 1 2{ , ,..., }pI I I  

Output: nearest neighbor of q 
1  cmp_time=0; 
2  for l:=1 to p 
3    Calculate the hash value of q using Algorithm 1 and find out the corresponding hash 

bucket qB . 

4    Compare, but not repeatedly among different indexes, the features in the set qB  one-by-one 

to search the nearest neighbor, and accumulate the compare times to cmp_time. 
5    If  cmp_time>200 
6       break; 
7    end if 
8  end for 

3.2   Discussion on RDH 

In the proposed algorithm, there are two important parameters which are the number 
of dimensions m for calculating hash value and the number of index structures p. Due 
to the fixed compare times in RDH, the computation complexity is fixed. However, 
different setting of m and p can bring the algorithm different performance on search-
ing accuracy. For a specific vocabulary built in section 4.1 in our retrieval task, we 
find that m=20 and p=30 can reach the best accuracy performance. For different size 
vocabularies in different applications, the two parameters can be adjusted accordingly 
to reach the high performance. 

In addition, employing RDH for quantization takes extra storage and computation at 
the index building step. But it is built for only one time and the index structure can be 
stored in memory for efficient online retrieval application. The benefit for doing this is 
the much higher quantization accuracy and further higher retrieval performance.  

4   Experimental Results and Analysis 

To evaluate the performance of the proposed quantization method and further its 
effect on object retrieval, we use the standard object recognition benchmark image 
database [2, 10]. It contains 10,200 images in groups of four that belong together. In 
each group, the same object is taken from different positions or under varying illumi-
nation conditions. We implemented SIFT algorithm to extract local features from 
images and create the invariant 128-D SIFT descriptor. 
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Our experiments can be divided into two parts. First, we compare the quantization 
accuracy and evaluate the quantization effect on the retrieval quality on the training 
data set. Second, we validate the retrieval superiority brought by our method on the 
whole large database. All the experiments are executed on a PC with Pentium IV 
dual-core 2.0 GHz processor and 2GB memory. 

4.1   Quantization Accuracy Comparison on Training Data Set 

The front 1,000 images from the object recognition database [2, 10] are used as train-
ing data set, from which 949,291 feature vectors are generated. We use the hierarchi-
cal k-means method [2] to train a vocabulary tree with 5 levels and a branching factor 
of 10, which will result in about 100K visual words. In our implementation, 96,994 
visual words are created finally, since some null clusters are generated. Then the pro-
posed RDH algorithm is employed to index the large visual words and perform ANN 
searching in quantization stage. 

In order to compare the quantization accuracy, we run exhaustive algorithm on the 
image features from the group-to-group and record the exact nearest neighbors for 
each group as ground truth. Then the traditional vocabulary tree (denoted as VT for 
short), GNP, original LSH and RDH search algorithms are executed respectively on 
each group. The quantization accuracy of each algorithm can be obtained by compar-
ing to the ground truth. The average compare times of the four algorithms are set to 
50 (10×5), 210 (N=5, 10+10×5×4), 200, 200 respectively. It is worth noticing here, 
we also constrain the maximum compare times to 200 for LSH algorithm to make it 
hold similar computational complexity to GNP and our algorithm. Due to the space 
limitation, we only show the results of the front 10 groups as examples in Figure 2, 
from which we can see that traditional vocabulary tree algorithm has the lowest quan-
tization accuracy which is averagely no more than 50%. GNP and LSH can achieve 
the similar performance, and RDH obtains the highest quantization accuracy which is 
averagely more than 90%. 
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Fig. 2. The quantization performance of four algorithms searching on 96,994 visual words 
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Furthermore, Table 1 gives the average retrieval accuracy (ARA defined by (1)) of 
the VT, GNP, LSH and RDH algorithms on the training data set. It can be seen the 
higher quantization accuracy can further lead to higher retrieval accuracy and thus 
RDH reaches the highest retrieval quality. 

Moreover, we use the AKM algorithm similar as [5] to recalculate the cluster cen-
ters. We take the visual words trained by HKM algorithm as the initial values, and 
employ the RDH algorithm to build index over the cluster centers at the beginning of 
each iteration to increase speed. The modified visual words are used for retrieval 
again, and the RDH is also employed for quantization. The recalculated result is 
ARA=0.917, which is nearly the same as that using the vocabulary built on HKM 
algorithm. This experimental result proves that both the AKM and HKM can give the 
similar results as long as they use the same quantization method and build vocabulary 
with the same size. In other words, with fixed size of visual vocabulary, the key factor 
to retrieval quality is the quantization accuracy. 

 

Table 1. The average retrieval accuracy of the four algorithms on training data set 

 VT GNP LSH RDH 
ARA 0.840 0.887 0.882 0.915 

4.2   Object Retrieval Performance Comparison on the Large-Scale Database 

We used the same visual vocabulary built by HKM method from the training data set, 
but assign image features of the whole database [2, 10] to visual words using different 
quantization methods – traditional vocabulary tree (VT), GNP and RDH respectively. 
The visual words are organized by inverted file structure for efficient retrieval, which 
keeps track of the number of times each visual word appears in each image in data-
base. Finally, TF-IDF scheme is employed to give the relevance score between query 
image and database image. The retrieval quality in this database can be measured by 
Average Retrieval Accuracy (ARA) which is computed by (1), where icnt  denotes 

how many of the first four most similar images in the same group as the i-th image 
(including the i-th image itself), and n is the number of the database images. 
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GNP algorithms on the large-scale object recognition database 
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The retrieval performances based on the three quantization algorithms along with 
the changing number of images of the whole large-scale database are shown in  
Figure 3. We can see that our algorithm obviously outperforms the other two tree-
based methods due to the higher quantization accuracy. Even when the database size 
is up to 10K, our algorithm can reach 0.685 for average retrieval accuracy. 

5   Conclusion 

The main contribution of this paper is to propose an ANN method for efficient quan-
tization in bag-of-visual-words model. Our quantization algorithm can achieve much 
higher quantization accuracy compared to the tree structure based methods. Further-
more, the quantization gain can lead to higher retrieval quality. Experimental results 
on the large-scale database have proved the effectiveness of our algorithm in the ob-
ject retrieval application. In future work, we plan to apply our method to the other 
retrieval applications, such as image-based localization. 
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Abstract. Clinical decision support system (CDSS) provides knowledge and 
specific information for clinicians to enhance diagnostic efficiency and improv-
ing healthcare quality. An appropriate CDSS can highly elevate patient safety, 
improve healthcare quality, and increase cost-effectiveness. Support vector ma-
chine (SVM) is believed to be superior to traditional statistical and neural net-
work classifiers. However, it is critical to determine suitable combination of 
SVM parameters regarding classification performance. Genetic algorithm (GA) 
can find optimal solution within an acceptable time, and is faster than greedy 
algorithm with exhaustive searching strategy. By taking the advantage of GA in 
quickly selecting the salient features and adjusting SVM parameters, a method 
using integrated GA and SVM (IGS), which is different from the traditional 
method with GA used for feature selection and SVM for classification, was 
used to design CDSSs for prediction of successful ventilation weaning, diagno-
sis of patients with severe obstructive sleep apnea, and discrimination of differ-
ent cell types form Pap smear. The results show that IGS is better than methods 
using SVM alone or linear discriminator. 

1   Introduction 

Clinical decision support system (CDSS) provides knowledge and specific informa-
tion for clinicians to enhance diagnostic efficiency. An appropriate CDSS can highly 
elevate patient safety, improve healthcare quality, and increase cost-effectiveness. In 
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order to achieve these objectives, American Medical Informatics Association recently 
identified and proposed three key points: best knowledge available when needed, high 
adoption and effective use, and continuous improvement of knowledge and CDS 
methods [1]. Several CDSSs have been developed for clinical applications in the past 
two decades.  

In this study, integrated genetic algorithm (GA) and support vector machine 
(SVM), namely IGS, was used to design CDSSs for the prediction of successful venti-
lation weaning, diagnosis of patients with severe obstructive sleep apnea, and dis-
crimination of different cell types form Pap smear, respectively. It is different from 
the traditional method that GA and SVM operate separately with the former first ap-
plied for feature selection and then the latter for classification [2]. The chromosome is 
consisted of features of clinical data and parameters of SVM. 

 

Prediction of Successful Ventilation Weaning. Although modern mechanical venti-
lators are invaluable tools for stabilizing the condition of patients in respiratory fail-
ure, ventilator support should be withdrawn promptly when no longer necessary so as 
to reduce the likelihood of known nosocomial complications and costs [3,4]. 

Recently, closed-loop knowledge-based system and automated protocol-driven 
mechanical ventilator has been developed and used for more rapid extubation than the 
conventional protocol-driven ventilation [5]. The former is a real-time system which 
acquires and interprets the patient’s clinical data and gradually adjusts the level of 
pressure to intubated or tracheotomized patients by keeping them at a comfortable 
state and trying to reduce the pressure to a minimal level. A trial of spontaneous 
breathing can be performed when the minimal pressure support is achieved. In con-
trast, the patients are automatically switched from mandatory to spontaneous ventila-
tion mode if it detects two consecutive spontaneous breaths for the latter. If the event 
of continuously spontaneous breaths of a patient is not detected, it will switch back to 
the mandatory mode. However, before popularity and cost down of these devices it 
still needs a clinical decision support system (CDSS) to identify the earliest time 
when the patients can be weaned from the ventilators. 

 

Diagnosis of Severe Obstructive Sleep Apnea. Obstructive sleep apnea (OSA) is a 
general sleep disorder and is commonly seen in 24% of men and 9% of women [6]. 
The severity of the respiratory events is measured by the frequency and duration of 
apneas and hypopneas per hour of sleep, namely apnea-hypopnea index (AHI), using 
polysomnography (PSG). Subjects with AHI smaller than 5 are considered as normal 
while AHI greater than 5 and smaller than 15 as mild. The patients with AHI between 
15 and 30 and greater than 30 are diagnosed as moderate and severe, respectively. 

Although PSG is treated as the gold standard for the diagnosis of OSA, it has sev-
eral limitations, such as technical expertise is required and timely access is restricted 
[7]. Hence, home pulse oximetry was proposed as a valuable and effective tool for 
screening OSA patients, but its efficiency has been debated for several years [8]. 
Recently, a comprehensive evaluation of representative oxyhemoglobin indices for 
predicting severity of OSA was investigated by Lin et al [9] who concluded that oxy-
gen desaturation index (ODI) alone had a better diagnostic performance than the time-
domain and frequency-domain indices with a sensitivity/specificity achieving 
84.0%/84.3% and 87.8%/96.6% using AHI=15/h and 30/h as thresholds, respectively 
[9]. Other variables might provide better predicting power than ODI alone. 
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Discrimination of Cell Types Using Pap Smears. Cytology evaluation is a safe, 
efficient, and well-established technique for the diagnoses of many diseases. The most 
famous success in cytology is its ability to reduce the mortality and morbidity of cer-
vical cancer through mass screening. Classical cytologic diagnosis is based on micro-
scopic observation of specialized cells and qualitative assessment by using descriptive 
criteria, which may be inconsistent because of subjective variability of different  
observers [10]. To lower the false negative rate in screening, many advanced tech-
nologies involving sampling, smear preparation, and screening quality control have 
recently been developed and introduced. However, most of the devices do not assist 
objective diagnosis by providing the calculable parameters that would eliminate inter-
pretation errors and inter-observer discrepancy [11]. The technique of computerized 
image analysis used to assist diagnosis of cell abnormality or tumors in cytopathology 
or histopathology also can provide accurate and objective evaluation of nuclear mor-
phology. Quantitative methods for estimating a cytological specimen can be traced 
back some 30 years ago and are still continuing developing [12,13]. Selection of sali-
ent morphometric parameters might be useful for classification and prediction of 
cervical cell types. 

2   Materials and Methods 

2.1   Subjects and Data Collection 

Ventilation Weaning. Data collected from a total of 287 patients, who were recruited 
from two all-purpose respiratory care centers of a hospital in Taichung area and who 
had been on mechanical ventilation for longer than 21 days and were clinically stable 
that their primary physicians considered ready to undergo a weaning trial, were used 
for study. The first dataset is consisted of 189 data collected during the period from 
Nov. 2002 to Nov. 2003(D3). The second and the third datasets were collected from 
99 patients and 21 patients from the periods within June-May in 2007 (D5) and Feb.-
Nov. in 2008 (D8), respectively. Gender, age, APACHE II score at the time of per-
mission, coma scale, and the biochemistry examination variables, including blood 
urea nitrogen (BUN), creatinine (Cr) albumin (Alb), and hemoglobin (Hb), were re-
corded and collected. Pulmonary diseases were classified based on the causes induc-
ing respiration failure. These causes include pulmonary, cardiac, and brain vessel (not 
including trauma) diseases. Other causes related to internal medicine, multiple-organ 
failure, historical respiratory disease, trauma, ARDS, brain surgery, and other kinds of 
surgeries were also considered. 

Obstructive Sleep Apnea. Retrospective data of 699 suspected OSA patients tested 
using PSG equipment for overnight attending recording at the Sleep Center of a Uni-
versity Hospital from Jan. 2005 to Dec. 2006 were collected. In which, data of 48 
subjects with ages less than 20 or more than 85 years old and data acquired from 85 
subjects with sleeping time less than 4 hours were excluded [14]. Hence only data 
obtained from 566 patients were used for further investigation. Alice 4 PSG recorder 
was used to monitor and record PSG during sleep with a number of physiologic vari-
ables measured and recorded, including (1) EEG for detecting brain electrical activity 
and sleep stages, (2) EOG and submental EMG for detecting eye and jaw muscle 
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movement, (3) tibia EMG for monitoring leg muscle movement, (4) airflow for de-
tecting breath interruption, (5) inductance plethysmorgraphy for estimating respira-
tory effort, (6) ECG for measuring heart rate, and (7) arterial oxygen saturation for 
inspecting blood oxygen. Demographic (age, gender, etc.), anthropometric (weight, 
height, BMI, waist and neck circumferences, etc.), and symptomatic (diabetes, hyper-
tension, asthma, smoking, alcohol consumption, etc.) data were measured. Question-
naires, including Epworth scaling score (ESS) and the sleeping disorder, were also 
filled before PSG recording. 

Pap-Smear Images. Cytological images were captured using a high-resolution digital 
camera (Olympus C-5060) mounted on a microscope (Olympus BX 51) and stored as 
digital format with a resolution of 1024x768 pixels and 32 bits color depth. Forty-two 
Papanicolaou-stained liquid-based cervical smears (Thin-Prep) were used for this 
investigation. Among them, 1814 cell images (1556×1076 pixels) were captured with 
different scales of magnification (100x, 200x, and 400x), in which 477 were classified 
as superficial, 499 as intermediate, 478 as parabasal, and 360 as abnormal cells. The 
abnormal cells were further divided into low grade (L) and high grade (H) squamous 
intraepithelial lesion (SIL). The digitized cellular images were reviewed by 3 certifi-
cated cytopathologists and 6 certificated cytotechnologists. By excluding the images 
with minimal magnification, extensive cellular overlapping, interference by other 
inflammatory cells or debris, and peer disagreement, only 503 images were selected 
for further investigation. Among them, 139 images were classified as superficial (S), 
178 as intermediate (I), 128 as parabasal (P), and 58 as low-grade and high-grade 
squamous intraepithelial lesion (SIL) cells. Classification of cell types was based on 
peer agreement which is the gold standard for evaluating the efficiency of the de-
signed CDSS.  

Morphometric parameters including axle center, center of gravity, perimeter, 
maximum length, and maximum width, were calculated. With the help of internal 
calibration using the micrometer image (400x), various parameters were obtained for 
the evaluation of the nuclear size and shape irregularity of a cell including nuclear 
perimeter, area, maximum length, maximum width, ratio of nucleus and cytoplasm 
areas (N/C ratio), maximum length from axel center to perimeter (MAP), average 
length from axel center to perimeter (AAP), maximum length from center of gravity 
to perimeter (MGP), and average length from center of gravity to perimeter (AGP). 
Other parameters, including entropy of the co-occurrence matrix (ECM), contrast of 
co-occurrence matrix (CCM), coarseness and contrast of Tamura features were also 
applied to analyze the textural features of the nuclei [15]. 

2.2   Integrated Genetic Algorithm and Support Vector Machine 

It is believed that SVM is superior to traditional statistical and neural network classi-
fiers. However, it is critical to determine suitable combination of SVM parameters 
(log2C and log2γ) regarding classification performance. Genetic algorithm can find 
optimal solution within an acceptable time, which is faster than greedy algorithm 
using exhaustive searching strategy. By taking the advantage of GA in quickly search-
ing the optimal features and parameter, a nonlinear hyperplane with a maximum mar-
gin can be obtained by using SVM to classify two clusters. Classification of multiple 
clusters can be easily expanded. The freeware LIBSVM [16], a library for SVM, was 
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adopted to design the SVM, while the genetic algorithm was modified to combine 
with LIBSVM to achieve best performance. 

The IGS method is different from the traditional method which first applies GA for 
feature selection and then SVM for classification [2]. The values of SVM parameters, 
i.e. regularization parameter (log2C) and kernel parameter (log2γ), are critical in opti-
mizing classification performance. Traditionally, regular grid search strategy was 
used to perform model selection, which is time-consuming with regards to computa-
tional complexity. In contrast, the IGS can converge to optimal solution in a reason-
able time. As shown in Fig. 1(a), a chromosome is composed of clinical variables and 
SVM parameters. In Fig. 1(b), a model which integrates GA and SVM used to con-
struct individual CDSSs is presented. The fitness value is defined as the accuracy of 
SVM classification. After several iterations, the best solution with optimal SVM pa-
rameters and selected features can be obtained. Detailed operation and theory of sup-
port vector machine can be found in [17]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

log2C log2γ X1 X2 …… Xn 

SVM 
Parameters 

Clinical Variables  
(Selected if Xi=1, otherwise  

Xi =0) 

(b)  
 

Fig. 1. (a) Chromosome and (b) flowchart of the integrated GA and SVM method 

3   Experimental Results 

As shown in Table 1, the classification results using IGS for constructing three CDSSs 
are demonstrated. The accuracies of cross-validation are within 84%-90% for ventila-
tion weaning, 89%-92% for OSA diagnosis, and 96%-99% for cell classification, which 
are better than CDSSs designed using other methods. Table 2 compares the proposed 
method with the method using SVM alone or linear discriminator. As depicted in Table 
2, the accuracy of ventilation weaning is 7.8% higher than a previous report [18], 
whereas it is 2.4% higher than a previous investigation [15] for cell classification. Both 
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used statistical methods for feature selection and SVM for classification and validation 
[15, 18]. Regarding diagnosis of obstructive sleep apnea, the sensitivity for the CDSS 
designed using IGS is also 4%-7% higher than a previous study [9] using linear dis-
criminator with respect to two different AHI thresholds (AHI=15/h and AHI=30/h) for 
discriminating severe from non-severe patients. 

Table 1. Classification results using IGS for three CDSSs 

CDSS Data Accuracy Sensitivity Specificity 
D3 (log2C=1.2, log2γ= 0.6) 83.6% 91.4% 73.8% 
D3+D5 (log2C=-4.5, log2γ=2.1) 89.2% 93.7% 83.7% 

Ventilation 
Weaning 

D3+D5+D8 (log2C=13.3,  log2γ=1.2) 89.7% 95.2% 83.2% 

Variable OSA Severity    
AHI > 15/h 89.1% 86.6% 94.9% 

ODI 
AHI > 30/h 91.3% 90.4% 92.2% 

ODI+ESS AHI > 15/h 90.2% 90.9% 88.5% 

Obstructive 
Sleep Apnea 
(log2C=20.9, 
log2γ=-1.9) 

ODI+BMI AHI > 30/h 91.7% 91.9% 91.5% 
Cell Type    
Superficial cell 94.2%   
Intermediate cell 98.9%   
Parabasal cell 97.7%   
Dysplastic cell 94.8%   

Classification of 4 
cell types 

All cells 96.8%   

Pap-Smear 
Images 
(log2C=18.5, 
log2γ=-3.5) 

Classification of 2 cell types: Normal  
(S+I+P) and Dysplastic (SIL) 

99.6% 100% 99.5% 

4   Discussions and Conclusions 

As shown in Table 3, the data collected from different periods were used to cross-
validate performance of a designed CDSS for ventilation weaning. The variables 
selected for designing CDSSs are different using different aggregated datasets. We 
suspect that the dataset size might be the factor causing such variation. Additionally, 
different methods used for feature selection is another factor causing such a variation. 
For example, by using dataset D3 to construct a CDSS for ventilation weaning, only 7 
variables were selected [18], while 14 variables were chosen in this study. By increas-
ing the sample number to 288 (D3+D5) and 309 (D3+D5+D8), the selected features 
both decrease to 13 variables with 2 selected variables are different. A comparison of 
ROC curves for CDSSs constructed using different datasets is illustrated in Fig. 2. 
The CDSS constructed using more samples has larger area under curve (AUC), Fig. 2, 
and higher accuracy, sensitivity, and specificity, Table 1. 

In conclusion, the integrated GA and SVM used to construct individual CDSSs 
demonstrates great efficiency for the prediction of successful ventilation weaning, 
diagnosis of patients with severe obstructive sleep apnea, and discrimination of dif-
ferent cell types from Pap smear images. Future works will focus on clinical testing of 
the designed CDSSs. 
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Table 2. Comparisons of different methods for individual CDSSs using the same dataset 

CDSS Method Accuracy Sensitivity Specificity 
SVM [18] 81.4% - - Ventilation  

Weaning IGS 
Dataset: 
D3+D5 89.2% 93.7% 83.7% 

AHI > 15/h - 84.0% 84.3% Linear Discri-
minant [9] AHI > 30/h - 87.8% 96.6% 

AHI > 15/h 90.2% 90.9% 88.5% 
Obstructive Sleep 
Apnea 

IGS 
AHI > 30/h 91.7% 91.9% 91.5% 

SVM [15] 94.4% - - 
Pap-Smear Images 

IGS 
All Cells 

96.8% - - 

 

 
(a) 

 
(b) 

Fig. 2. ROC curves of CDSSs constructed for the prediction of ventilation weaning using (a) 
D3 (N=189) with AUC= 0.8505 and (b) D3+D5 (N=288)with AUC=0.9441 

Table 3. Variables selected from different combinations of datasets for ventilation weaning 

Variable D3a D3b D3+D5c D3+D5+D8d 
Age 0 1 1 1 
APACHE II score when hospitalized 1 1 1 1 
Coma scale when hospitalized 1 1 1 1 
Other causes related to internal medicine 0 1 1 1 
Mutiple organ failure 0 1 1 1 
Trauma 0 1 0 1 
Brain surgery 0 1 1 1 
Creatinine 0 1 1 0 
Hemoglobin 0 1 0 0 
Tracheotomy 0 1 1 1 
Coma csale after weanning 1 1 1 1 
RSBI after weanning 1 1 1 1 
Length of ICU admission 0 1 0 0 
Days using ventilator 1 1 1 1 
Ventilator associated pneumonia 1 0 1 1 
Urinary tract infection 1 0 1 1 
aUsing data collected before Nov. 2003 by Yang et al. [18]. Using data collected before bNov. 2003, 
cMay 2007, and d Dec. 2008, respectively, for this study. 
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Abstract. Binary decision trees based on univariate splits have traditionally 
employed so-called impurity functions as a means of searching for the best 
node splits. Such functions use estimates of the class distributions. In the pre-
sent paper we introduce a new concept to binary tree design: instead of working 
with the class distributions of the data we work directly with the distribution of 
the errors originated by the node splits. Concretely, we search for the best splits 
using a minimum entropy-of-error (MEE) strategy. This strategy has recently 
been applied in other areas (e.g. regression, clustering, blind source separation, 
neural network training) with success. We show that MEE trees are capable of 
producing good results with often simpler trees, have interesting generalization 
properties and in the many experiments we have performed they could be used 
without pruning.  

Keywords: decision trees, entropy-of-error, node split criteria. 

1   Introduction 

Decision trees are mathematical devices largely applied to data classification tasks, 
namely in data mining. The main advantageous features of decision trees are the se-
mantic interpretation that is often possible to assign to decision rules at each tree node 
(a relevant aspect e.g. in medical applications) and to a certain extent their fast com-
putation (rendering them attractive in data mining applications). 

We only consider decision trees for classification tasks (although they may also be 
used for regression). Formally, in classification tasks one is given a dataset X as an 
n×f data (pattern feature) matrix, where n is the number of cases and f is the number 
of features (predictors) and a target (class) vector T coding in some convenient way 
the class membership of each case xi, )( ij xωω = , cj ,,1K= , where c is the number 
of classes and ω is the class assignment function of X into }{ jω=Ω . The tree deci-
sion rules also produce class labels, Ω∈)( ixy . 

In automatic design of decision trees one usually attempts to devise a feature-based 
partition rule of any subset L ⊂ X, associated to a tree node, in order to produce m 
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subsets Li ⊂ L with “minimum disorder” relative to some m-partition of Ω, ideally 
with cases from a single class only. For that purpose, given a set L with distribution of 
the partitioned classes )|( LP iω , mi ,,1K= , it is convenient to define a so-called 
impurity (disorder) function, ( ))|(,),|()( 1 LPLPL mωωφφ K≡ , with the following 
properties: a) φ achieves its maximum at (1/m, 1/m,…, 1/m); b) φ achieves its mini-
mum at (1,0,…,0), (0,1,…,0),…,(0,0,…,1); c) φ is symmetric. 

We only consider univariate decision rules, )( ij xy relative to two-class partitions 
(m=2), also known as Stoller splits (see [3] for a detailed analysis), which may be 
stated as step functions: ,;)(, kkijij xyx ωω=Δ≤ otherwise (xij is one of the xi 
features). The corresponding trees are binary trees. For this setting many impurity 
functions have been proposed with two of them being highly popularized in praised 
algorithms: the Gini Index (GI) applied in the well-known CART algorithm pioneered 
by Breiman and co-workers [2], and the Information Gain (IG) applied in the equally 
well-known algorithms ID3 and C4.5 developed by Quinlan [7, 8]. 

The GI function for two-class splits of a set L is defined in terms of 

( ) ( ) [ ]5.0,0|1)( 2
1

2 ∈−== ∑ =j j LPLgL ωφ & ; 

namely, ( ) ( ) ( )∑ =−= 2
1 ||)( i iyiy LLgLLPLgLIG   

In other words, GI depends on the average of the impurities gy(Li) of the descend-
ing nodes Li of L produced by rule y. Since g(L) doesn’t depend on y, the CART rule 
of choosing the feature which maximizes ( )LIG y  is equivalent to minimizing the 
average impurity. 

The IG function is one of many information theoretic measures that can be applied 
as impurity functions. Concretely, it is defined in terms of the average of the Shannon 
entropies (informations) of the descending nodes of node set L:  

( ) ( ) ( )∑ =−= 2
1 ||)( i iyiy LLinfoLLPLinfoLGI   

with ( ) ( ) ( )∑ =−== 2
1 |ln|)( k kk LPLPLinfoL ωωφ & ∈ [0, ln(2)]  

Again, maximizing IG is the same as minimizing the average Shannon entropy (the 
average disorder) of the descending nodes. In ID3 and C4.5 log2 is used instead of ln 
but this is inessential. Also many other definitions of entropy were proposed as alter-
natives to the classical Shannon definition; their benefits remain unclear. 

A fundamental aspect of these impurity measures is that they all are defined in 
terms of the probability mass functions of the class assignments ( )LP k |ω  and node 
prevalences ( )LLP i | . The algorithms use the corresponding empirical estimates. 

The present paper introduces a completely different “impurity” measure. One that 
does not directly depend on the class distribution of a node, ( )LP k |ω , and the preva-
lences ( )LLP i | , but instead it solely depends on the errors produced by the decision rule: 

( ) ( )iii xyxe −= ω , 

with convenient numerical coding of ( )ixω  and ( )ixy . 

We then apply as “impurity” measure to be minimized at each node the Shannon 
entropy of the errors ei. This Minimum Entropy-of-Error (MEE) principle has in  
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recent years been used with success in many different areas (regression, blind source 
separation, clustering, etc.); it has also been applied with success in neural network 
training for data classification (see e.g. [10]). 

The present paper describes in section 2 how MEE decision trees can be imple-
mented and how they perform in several real-world datasets in section 3. We also 
present a comparison of MEE and IG behaviors in section 4 and discuss the pruning 
issue in section 5. Finally we draw some conclusions and present future perspectives 
in section 6. 

2   The MEE Approach 

In accordance with [9] we consider ℜ∈ijx  (i.e. we do not consider categorical pre-
dictors), and at each node we assign a code t ∈{-1, 1} to the each candidate class ωj. 
We thus have: jiji xtxt ωωωω =−=== )(,1;)(,1  (t meaning t(ω(xi)). Likewise 
for y(xi).  

The support of the error random variable E, associated to the errors 
( ) ( ))()( iii xytxte −= ω  is therefore {-2, 0, 2}, with: 0 corresponding to a correct 

decision; 2 to a misclassification when xi class is the candidate class and the splitting 
rule produces the complement; and -2 the other way around. 

The splitting criterion is based on the Shannon entropy of E: 

[ ] [ ])3ln(,0lnlnln)|( 110011 ∈++−= −− PPPPPPLEH y , 

where P-1 = Py(E = -2), P1 = Py(E = 2) and P0 = Py(E = 0)=1 - P-1 - P1. Note that con-
trary to what happened with GI, IG (and other divulged impurity measures) there is 
here no room for left and right node impurities and subsequent average. One single 
function does it all. 

Ideally, in the case of a perfect split, the error probability mass function is a Dirac 
function; i.e., the “errors” are concentrated at zero. Minimizing Hy corresponds to 
constraining the probability mass function of the errors to be as narrow as possible 
and usually around zero. 

The main algorithmic operations for growing a MEE tree are simple enough and 
similar to what is done with other impurity measures: 

1. At each tree node we are given an n×f feature matrix X and an n×m class ma-
trix T (filled with -1, 1).  

2. The error probabilities are estimated using:  

2201,121,12 1;/)1(;/ −−−− −−=−== PPPnnpPnnpP  

with ',ttn  meaning the number of cases t classified as t’ and nnp
j

/ω=  the preva-
lence of the candidate class ωj. 

3. A univariate split y is searched for in the f×m space minimizing Hy. 
4. If a stopping criterion is not satisfied the corresponding left and right node 

sets are generated and steps 1 through 3 are iterated. 

Figure 1 illustrates two entropy-of–error curves relative to the Breast Tissue dataset 
presented later. In Figure 1a there is a clear class separation: the entropy curve is of 
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the “convex” type and a global minimum corresponding to the interesting split is 
found. In Figure 1b the curve is of the “concave” type and the global entropy mini-
mum is useless. As a matter of fact a reasonable split point for this last case would be 
located near the entropy maximum instead of the minimum. When we say “reason-
able” (and later on, optimal) we mean from the probability-of-error point of view. 

This phenomenon of the optimal working point for a Stoller split being located 
near the maximum of the entropy-of-error when there is a large class overlap, had 
already been studied in detail in [9]. This work also derives for a few class distribu-
tion settings the “turning point” when an entropy minimum turns into a maximum as 
the classes glide and overlap into each other. 

In our algorithm we stick to the entropy minimum. This means that we do not con-
sider the possibility of a “reasonable” split when there is considerable class overlap 
reflected by a “concave”-type entropy curve. This has an impact on the pruning issue 
as discussed in section 5. For that purpose our algorithm classifies every entropy 
curve as being of the “concave” or “convex”-type using a very crude rule: set a 100-
point grid on the whole feature range and divide it into five equally sized intervals; 
compare the average of the three central intervals, mc, with the average of the end 
intervals, me; if mc > me than the curve is classified as “concave”, otherwise is classi-
fied as “convex”. We tried other modifications of this basic scheme but didn’t find 
any clear improvement. 
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Fig. 1. Entropy-of-error curves for two splits of the Breast-Tissue dataset (splitting the balls 
from the crosses): a) feature x9 with class 6; b) feature x2 with class 2 

When there is no valid split for any descendent node of a node L (all entropy 
curves are concave or the number of cases for any candidate class is very small), the 
node is considered a leaf. 

In a large number of experiments performed with the MEE algorithm we found 
that one often found better splits (with lower H) when attempting to partition merged 
classes from the remaining ones. Such “multiclass” splits could even provide good 
solutions in cases where it was difficult or even impossible to obtain “convex” en-
tropy curves. Figure 2 illustrates an example of a tree with multiclass splits. When 
evaluating the tree, cases falling into multiclass nodes are assigned to the class with 
the larger number of cases. The multiclass feature, considering combinations of 
classes up to c/2, is included in the MEE algorithm. 
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Fig. 2. Tree structure for the Ecoli4 dataset (see below) showing 2-class combinations 

3   Application to Real-World Datasets 

The MEE algorithm was applied to the datasets presented in Table 1 and its results 
confronted with those obtained with the CART algorithm implemented by Statistica 
(StatSoft, Inc.) and the C4.5 implemented by Weka (open source software). 

Table 1. Datasets (main characteristics) 

 Breast (a) Breast4 
(a) 

Olive 
(b) 

Ecoli 
(c) 

Ecoli4 
(c) 

ImSeg 
(c) 

Glass 
(c) 

No. cases 106 106 572 327 327 2310 214 
No. features 9 9 8 5 5 18 9 
No. classes 6 4 9 5 4 7 6 

(a) “Breast Tissue” dataset described in [6]. Breast4 is Breast reduced to 4 classes: merging 
{fad,mas,gla}. 

(b) “Olive Oils” dataset described in [4]. 
(c) “E-coli”, “Image Segmentation” and “Glass” datasets described in [1]. We removed 

classes omL, imL and imS from E-coli because they have a low number of cases (resp., 5, 
2, 2). Ecoli4 is Ecoli reduced to 4 classes: merging {im, imU}. 

All algorithms used unit misclassification costs (i.e., tree costs are misclassification 
rates). CART and C4.5 used, as is common practice, the so-called midpoint splits: 
candidate split points lie midway of feature points. In our algorithm we kept the origi-
nal feature values as split candidate points. 

CART was applied with the Gini criterion an cost-complexity pruning [2]. Weka 
C4.5 applied a postpruning scheme. The MEE algorithm was applied without pruning 
(justification below). 

We applied cross-validation procedures to all datasets, namely leave-one-out with 
C4.5 and MEE and 25-fold cross-validation to CART (the leave-one-out method 
wasn’t available for CART). Confusion matrices and estimates of the probability of 
error were computed as well as statistics regarding the tree size (number of nodes). 

Table 2 shows the mean error rate and standard deviation (between brackets) for 
the cross-validation experiments. For the Breast and Ecoli datasets the errors for some 
classes were always quite high (also found with other classification methods). This 
led us to merge the poorly classified classes setting up the Breast4 and Ecoli4 datasets 
(see Table 1). 
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Table 2. Comparative table of results with mean (std) in cross-validation experiments 

 Breast Breast4 Olive Ecoli Ecoli4 Imseg Glass 

CART 
0.3679 
(0.047) 

0.1698 
(0.036) 

0.0962 
(0.012) 

0.2049 
(0.022) 

0.1040 
(0.017) 

0.0675 
(0.005) 

0.3738 
(0.033) 

C4.5 0.3396 
(0.046) 

0.1226 
(0.032) 

0.0979 
(0.012) 

0.1743 
(0.021) 

0.1498 
(0.020) 

0.0290 
(0.003) 

0.3224 
(0.032) 

MEE 
0.3679 
(0.047) 

0.0943 
(0.028) 

0.1031 
(0.013) 

0.2110 
(0.023) 

0.1070 
(0.017) 

0.1182 
(0.012) 

0.2664 
(0.030) 

 
The three methods were compared using multiple comparison tests based either on 

the Oneway Anova or the Kruskal-Wallis test according to the p-value of a variance 
homogeneity test (p < 0.05 selects Kruskal-Wallis, otherwise selects Oneway Anova). 
Multiple comparison was performed at 5% significance level. In Table 2 the signifi-
cantly best results are printed bold and the significantly worst results are underlined. 

4   MEE versus Information Gain 

In order to compare both entropy-based criteria, MEE and IG, we generated two-class 
datasets with an equal number of points, n, represented by 2 features (x1, x2) with  
 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

x1

IG

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

x2

IG

 

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Fig. 3.  Comparing IG (top figures) and MEE (bottom figures) in the separation of balls from 
crosses. IG prefers feature x1 with IGmax=0.1639, whereas for x2 IGmax=0.1325. MEE prefers 
feature x2 with MEE=0.4609, whereas no valid minimum is found for x1. 
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randomly and uniformly distributed values in [0,1[. One of the features was then se-
lected according to MEE and to IG decision criteria. 

For n = 10 and several batches of 1000 repetitions of the experiment we found that 
on average only 1% of the experiments where MEE found a solution that was differ-
ent from the IG solution. Moreover, we found that all differences between MEE and 
IG were of the type illustrated in Figure 3. The error probability mass functions for 
Figure 3a (IG selects x1) and Figure 3d (MEE selects x2) are shown in Figure 4. From 
these figures one concludes that whereas MEE preferred a more “balanced” solution, 
resembling a Dirac function at zero, IG emphasized the good classification of only 
one of the two classes, even at the cost of increased errors of the other class.  
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Fig. 4. Probability mass functions of the errors corresponding to: a) Figure 3a (IG selects x1); b) 
Figure 3d (MEE selects x2) 

5   The Pruning Issue 

Tree pruning is a means of obtaining simpler trees, i.e., simpler models, therefore 
with better generalization capabilities. CART, C4.5 and other tree design methods 
employ pruning techniques whenever some evidence of overfitting is found. The 
MEE method has an important characteristic: it doesn’t attempt to find a split when-
ever the class distributions show a considerable degree of overlap. The quantifica-
tion on theoretical grounds of what “considerable” means isn’t easy. Taking into 
account the results in [9] one may guess that whenever the distance of the class 
means is below one pooled standard deviation the entropy-of-error curve will be 
“concave” and no valid split under the MEE philosophy is found. We believe that 
this characteristic is one of the reasons why the MEE algorithm always produced 
smaller trees, on average, than those produced by C4.5 (no tree size statistics were 
available for CART). 

In our experiments MEE trees also showed a tendency to generalize better than 
those produced by other methods, as measured by the difference between resubstitu-
tion estimates of the error rate and the cross-validation estimates with significantly 
lower smmR CVR /−= , where mR is the mean resubstitution error and mCV the 
mean cross-validation error. 
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Fig. 5. Mean (solid) and mean±std (dashed) of the training set error (black) and test set error 
(grey) in 50 experiments on trees designed with 80% of the cases (randomly drawn) and tested 
in the remaining cases 

 
We have also performed a large number of experiments with the MEE algorithm 

designing the tree with 80% of randomly chosen cases and testing in the remaining 
20% cases, and plotted the mean and mean±standard deviation of the training and 
test set error estimates along the tree level for 50 repetitions of each tree design. 
The results of Figure 5 clearly indicate the absence of overfitting. The same  
conclusion could be drawn in all experiments (over 20 for each dataset) we have 
carried out. 

6   Conclusions 

The basic rationale of the MEE approach is that it searches for splits concentrating the 
error distribution at zero. For the classic approaches what the split is doing in terms of 
the error distribution is unclear. 

From the large number of experiments we carried out we conclude that possible 
benefits of the MEE trees are the no need of applying a pruning operation and the 
obtaining of more interesting splits corresponding to errors distributed in a more bal-
anced way as exemplified in section 4. This last aspect could be of interest for some 
datasets. The results obtained with MEE trees applied to real-world datasets, de-
scribed in section 3, look quite encouraging especially taking into account that they 
were obtained with the first version of the algorithm and that there is still much space 
for improvements.  

Besides of introducing obvious improvements in the algorithm (e.g. using mid-
point splits) we also intend to study in more detail the following issues: the turning 
point from “convex” to “concave” behavior of the empirical error distribution; the 
stopping conditions of the algorithm; Generalization issues such as the evolution of 
training and test errors with the number of cases. We also intend to study in a  
comparative way the performance of MEE trees in a larger number of real-world 
datasets. 
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Abstract. Spectral manifold learning techniques have recently found extensive 
applications in machine vision. The common strategy of spectral algorithms for 
manifold learning is exploiting the local relationships in a symmetric adjacency 
graph, which is typically constructed using -nearest neighborhood ( -NN) cri-
terion. In this paper, with our focus on locally linear embedding as a powerful 
and well-known spectral technique, shortcomings of -NN for construction of 
the adjacency graph are first illustrated, and then a new criterion, namely / -
nearest neighborhood ( / -NN) is introduced to overcome these drawbacks. 
The proposed criterion involves finding the sparsest representation of each 
sample in the dataset, and is realized by modifying Robust-SL0, a recently pro-
posed algorithm for sparse approximate representation. / -NN criterion gives 
rise to a modified spectral manifold learning technique, namely Sparse-LLE, 
which demonstrates remarkable improvement over conventional LLE through 
our experiments. 

Keywords: Local linear embedding, sparse representation, Robust-SL0. 

1   Introduction 

In the recent years, several algorithms have been developed to perform dimensionality 
reduction of low-dimensional nonlinear manifolds embedded in a high-dimensional 
space. In particular, due to technical advantages, local linear embedding (LLE) has 
found widespread applications in real-world problems [1, 2]. LLE is based on eigen 
decomposition of a special Gram matrix, which is designed to preserve the local 
structure of data. This local structure is typically defined using nearest neighborhood 
criterion in the Euclidean space by constructing a symmetric adjacency graph, in 
which the nodes represent the training samples and any pair of nodes are connected iff 
the corresponding data points are adjacent. Indeed, successful recovery of the low-
dimensional structure of data highly depends on the construction of an accurate adja-
cency graph that gives a faithful representation of the local geometry of data [3]. In 
this regard, though widely used, -NN criterion suffers from major drawbacks. In 
fact, since each sample is connected to its  direct nearest neighbors, -NN rule is 
generally unable to exclude noisy samples or outliers in the neighborhood. In addi-
tion, -NN criterion considers a fixed neighborhood size about each sample on the 
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manifold.  In this paper, with our focus on LLE, -NN criterion is first represented as 
an optimization problem, which is then modified to yield / -nearest neighborhood 
( / -NN) criterion. As was the case in -NN, new criterion searches for a small 
subset of samples in the neighborhood of each data point. However, unlike -NN, this 
subset is not limited to -nearest neighbors of each sample, but instead belongs to a 
larger neighborhood within the roughly linear patch on the manifold centered at that 
sample. Furthermore, size of this subset is chosen adaptively to include the minimum 
required samples among   nearest neighbors of each data point, which is often 
believed to give a more reliable representation of the manifold [4]. The proposed 
criterion involves finding the sparsest approximate representation of a sample in the 
dataset, and is realized by modifying the recently proposed Robust-SL0 algorithm for 
sparse approximate representation [5]. The modified spectral method, namely Sparse-
LLE is then experimentally validated on several datasets, demonstrating remarkable 
improvement over the conventional LLE. The rest of this paper is organized as fol-
lows. Section 2 is devoted to a review of the LLE. In Section 3, shortcomings of -
NN are studied and / -NN criterion is introduced and justified. Implementation 
details are then discussed in Section 4 and, finally, experimental results are presented 
in Section 5. 

2   Locally Linear Embedding 

LLE, the local properties of the manifold are expressed by writing each sample as a 
linear combination of its nearest neighbors. LLE then attempts to preserve these local 
relationships in the low-dimensional space [6]. To be more specific, LLE first con-
structs the adjacency graph , , whose nodes  and edges  represent the data 
samples and neighborhood relations among samples, respectively. Denoting each 
sample by x , we will use x ~x  to indicate that samples x  and x  are adjacent 
by some criterion, i.e. x x . Similarly, x x  will indicate x x . Further-
more, for each sample x , the subset of samples x  satisfying x ~x  will be denoted by x . In particular, for -NN criterion, we have x x , where x  de-

notes the subset of -nearest neighbors of x . Additionally,  would denote the 
corresponding subset of indices of x .  

Once the adjacency graph is constructed, each sample x  is written as a linear com-
bination of its  nearest neighbors. This is achieved by solving:  : min x Xw  s. t. Supp w , w 1                        (1)

where w  contains the reconstruction weights and Supp η  denotes the support 
of η, i.e. subset of all indices , for which  is nonzero. In addition, 1, … ,1

. The weight matrix W w , … , w  is then constructed and the embed-
dings are found by computing the eigenvectors associated with the bottom nonzero 
eigenvalues of M I W I W , where I is the identity matrix. To be more 
specific, denoting the resulting modal matrix by V v , … , v , rows of V 
contain the embeddings y  . In fact, up to a scaling factor that depends on the 
algorithm, the embedding of x , namely y , is a vector with , , , . 
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3   / -Nearest Neighborhood Criterion  

-NN criterion implies that x ~x  iff x x , and is justified based on the notion 
that local geometry of the manifold at x  is best represented by x  rather than by 
any other subset x  with # . In this section, with our focus on LLE, 
shortcomings of this notion are discussed. / -NN criterion is then introduced, 
which, to some extent, overcomes the shortcomings of -NN.  

As shown in the [11], (1) is asymptotically equivalent to: : min lim  x Xw ∑ , x x                            (2)

                              s. t.  w , w 1, w , 0 

where ·  is the step function and η  is the ℓ -norm of the vector η, i.e. number of 
nonzero elements of η. It is observed that solving  primarily minimizes the second 
term of the functional by choosing x x . Then, keeping x  fixed,  mi-

nimizes the reconstruction error x Xw  by solving the linear system x Xw  
subject to Supp w , where x  is the projection of x  onto Span x . It is 

observed that, despite its importance, minimizing the reconstruction error does not 
contribute to the choice of x  in . Furthermore, # x  is fixed to  in , while it is 

generally better to let the algorithm automatically decide on # x  by selecting only 
necessary samples for representation of x  [4]. To overcome these drawbacks, the 
following optimization problem is introduced: min  x Xw ∑ , x x w                            (3)

                                       s. t.  w 1, , 0 

where ,  are finite positive scalars. By choosing ∞, we ensure that, in con-
trast to , minimizing the reconstruction error x Xw  contributes to our choice 
of x . Moreover, (3) uses the minimum required number of samples to best 

represent x , and hence adaptively selects # x  on the manifold. Note that for every 

pair  and , there always exist a pair  and , for which (3) is equivalent to: min w                                                    (4) s. t. x Xw  , ∑ , x x , w 0 , , 0 

Furthermore, we notice that ∑ w , x x  sets an upper limit on x x  for x x  and hence there exists some 0, for which the second 

constraint in (4) can be safely replaced by x x , x x  [7]. A closer 

look reveals that this in turn could be safely replaced by Supp w  , for 
some integer . Therefore, we can rewrite (4) as follows: 
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: min w                                                       (5)s. t. x Xw , Supp w , w 1 
  

Let w  and x  denote the solution of  and the subset of samples corresponding to 

the nonzero elements of w , respectively. Note that, as a result of the second con-
straint in , x . In order to preserve the computational advantages of 

working with highly sparse matrices, we further limit # x  to , for some integer 

. This is achieved by keeping at most  top nonzero elements of w  and setting 
others (if any) to zero. x  is also modified by discarding the corresponding samples. 

The new criterion will be referred to as / -NN rule and is summarized in Fig. 1. 
Notice that, in -NN, x  is the subset of first  nearest neighbors of x , whereas in 

, x  is the best subset x  with # , that contains the minimum re-

quired samples to achieve a reconstruction error less than the error tolerance . When 
compared to -NN, / -NN criterion is able to exclude noisy neighbors and outliers, 
which is achieved by the constraint on the reconstruction error in . On the other 
hand, when compared to -NN, / -NN criterion adaptively selects # x  ( ) to 

best represent x  with the minimum required number of samples. Now, using / -
NN criterion to construct the adjacency graph, LLE is modified to obtain an improved 
spectral algorithm, dubbed Sparse-LLE. Note that the only difference between LLE 
and Sparse-LLE lies in the construction of the adjacency graph. 

 

 

Fig. 1. / -NN criterion for construction of the adjacency graph

4   Implementation 

In Section 3, / -NN criterion for construction of the adjacency graph was intro-
duced and justified. In order to apply this criterion, we shall study the following opti-
mization problem: , , : min s s. t. b As  and Supp s , where b  and  is a given subset of indices of s , … , . Our implementa-
tion assumes , which fairly happens almost always in real-world situations. As 
the starting point, we first consider the well-known sparse approximate representation 
problem , :  min s s. t.  b As . Among available approaches, we  
opt for the recently proposed Robust-SL0 as a fast and accurate algorithm [5].  
Briefly speaking, Robust-SL0 solves a sequence of problems of the form , : max ∑ /  s.t. b As  , decreasing  at each step, and  
initializing the next step at the maximizer of the previous (larger) value of . Each 

Given integers  and , with , solve  for each sample x x , and denote 
the answer by w . Then, nodes  and  in the adjacency graph  are connected iff ,  is 
among the top  nonzero elements of w . 
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,  is solved approximately by few iterations of gradient ascent. Convergence analy-
sis of Robust-SL0 has been thoroughly considered in [5] and it was shown that, under 
some mild conditions, the sequence of maximizers of ,  indeed converges to the 
unique minimizer of , , whenever such answer exists. Moreover, Robust-SL0 runs 
significantly faster than the competing algorithms, while producing answers with the 
same or better accuracy [5]. The idea is now to modify , ,  in a way that enables 
using Robust-SL0 algorithm to solve , , . This necessitates proper modification of 
the second constraint in , , , i.e. Supp s . While this may be achieved by, for 
instance, setting 0 for  at each iteration, we prefer to preserve the studied 
convergence properties of Robust-SL0 by replacing Supp s  with a term in func-
tional that smoothly favors small values for  when . Therefore, , ,  is mod-
ified to:  lim max ∑ 1 / ∑ 1 /                     (6)

s.t. b As  

where we take 0 , 1. Convergence properties of (6) are obtained by minimal 
modifications in the proof presented in [5]. Note that Robust-SL0 algorithm is now 
applicable to (6) by merely using the gradient of the functional of (6) in the algorithm. 
The interested reader is referred to [5] for details. 

5   Experiments 

The objective of this section is to experimentally assess the merits of the proposed / -NN criterion for construction of the adjacency graph. To this end, the perfor-
mance of LLE and Sparse-LLE are compared on several datasets. In each experiment, 

 (and if available ) are experimentally tuned for the best results. Other parameters 
of Sparse-LLE are fixed to: 0.05, 0.9. As our first experiment, we com-
pare the performance of  LLE and Sparse-LLE for visualizing the Frey face dataset, 
which consists of 1965 gray-level images of a single individual acquired under dif-
ferent expression and pose conditions [2]. Few images in this dataset are depicted in 
Fig. 2(a). Fig. 2(b) depicts the first two components of these images discovered by 
LLE. Depicted in Fig. 2(c) are the visualization results obtained by Sparse-LLE, 
which may be interpreted as follows. We can recognize four pair of opposite branches 
in the embedded space, labeled from 1 to 4. It is observed that the main trend in 
branches 1 and 2 includes left pose or slightly left pose images, whereas images in 
branches 3 and 4 are mainly either right pose or slightly right pose. In particular, 
while containing opposite poses, both branches 1 and 3 are similar in that one of their 
ends includes happy faces and the other end includes either sad faces or faces with 
visible tongue. The main trend of images in each branch is represented in Fig. 3. It is 
observed that the main trend in branches 1 and 2 includes left pose or slightly left 
pose images, whereas images in branches 3 and 4 are mainly either right pose or 
slightly right pose. In particular, while containing opposite poses, both branches 1 and 3 are similar in that one of their ends includes happy faces and the other end includes 
either sad faces or faces with visible tongue. 
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Fig. 2. A few samples of Frey dataset used in the first experiment (a). Images of faces mapped 
into the embedding space described by the first two coordinates of LLE with 12 (b), and 
sparse-LLE with 5 and 12 (c). 

 
As our second experiment, the performance of LLE and Sparse-LLE is compared 

in face recognition task on the extended Yale face database. The dataset includes 2432 cropped frontal images of 38 individuals under expression and illumination 
variation [8], where the first 16 images of each individual are considered in this expe-
riment. After vectoriation, using LLE and Sparse- LLE, dimension of image data is 
reduced to 10. Subsequently, motivated by the well-designed experimental setup in 
[6], quality of the resulting low-dimensional representations is evaluated by measur-
ing the classification errors of 1 nearest neighbor classifiers trained on the low-
dimensional representations using leave-one-out cross-validation. In other words, 
class of each sample is predicted by its nearest neighbor in the embedded space and 
the overall classification error is reported in Table 1.  

Retinal biometrics refers to identity verification of individuals based on their  
retinal vessel tree pattern. Our third experiment is conducted on VARIA database 
containing 153 (multiple) retinal images of 59 individuals [9]. To compensate for the 
variations in the location of optic disc (OD) in retinal images, a ring-shaped region of 
interest (ROI) in the vicinity of OD is used to construct the feature matrix. To extract 
the ROI, using the technique presented in [10], OD and vessel tree are extracted. 
Then, a ring-shaped mask with proper radii centered at OD is used to form the feature 
vectors X  by collecting the pixels along 8 beams of length 6 originating from 
OD. A special case is depicted in Fig. 4. After vectorization of feature matrices,  
dimension is reduced to 10 using LLE and Sparse-LLE. The performance of the  
resulting low- dimensional representations is then evaluated similar to the second 
experiment (Table 1). 
 

(a) 

(c) (b) 
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Fig. 3. Further study of the embedded space obtained by sparse-LLE in Fig. 2(c). Outer boxes 
are positioned similar to the distribution of branches in Fig. 2(c), where label of corresponding 
branches are indicated by the arrows. Each outer box contains few samples of the 
corresponding branch, which are selected to represent the main trend of the images inside the 
branch. 

 

Fig. 4. (a) Retinal image; bright area is OD. (b) Vessel tree (in white) and mask (in blue). (c) 
Feature matrix obtained from 300 beams of length 100 pixels (images (a) and (b) are cropped). 
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Table 1. Generalization errors of 1-NN classifiers for different dimension reduction algorithms 

 Yale face database VARIA database 

Algorithm Parameters 
Generalization 

error of 1-NN 
Parameters 

Generalization  
error of 1-NN 

PCA - 35.5263 - 59.4771 
LLE 12 29.9342 4 61.4379 

Sparse-LLE
5 12 23.5197 

5 7 
56.2092 

6   Conclusions 

LLE is a well-known and powerful spectral dimension reduction algorithm. For success-
ful recovery of the low-dimensional structure of data, however, LLE requires an  
adjacency graph, which is typically constructed using -NN criterion. In this paper, 
deficiencies of -NN for construction of the adjacency graph were first studied and /

-NN criterion was then introduced to overcome the drawbacks. Implementation of / -NN involved a variant of Robust-SL0 algorithm for sparse approximate represen-
tation. The modified spectral method, namely Sparse-LLE, is experimentally validated 
on several datasets, demonstrating remarkable improvement over the conventional LLE. 
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Abstract. In the paper, we propose a novel parameter free approach
for clustering analysis. The approach needs not to make assumptions
or define parameters on the cluster number or the results, while the
clustered results are visually verified and approved by experimental work.
For simplicity, this paper demonstrates the idea using Fuzzy C-Means
(FCMs) clustering method, but the proposed open framework allows
easy integration with other clustering methods. The method-independent
framework generates optimal clustering results and avoids intrinsic biases
from individual clustering methods.

1 Introduction

Clustering analysis is aimed at partitioning a large number of data or objects into
different clusters (subsets, groups, or classes), while clustering must fulfill the
requirements of homogeneity and heterogeneity. Homogeneity means that data
in the same cluster should be as similar as possible and heterogeneity means
that data in different clusters should be as different as possible [5].

The applications of clustering analysis are diverse, for instances in pattern
recognition [1], face recognition [4], image understanding [2], and so forth. Many
research work were focused on improving cluster algorithms, such as CURE [3],
shifting grid [9], training neural networks [13], global FCM [11], and evidential
C-Means (ECMs) [8]. However, these clustering algorithms are sensitive to the
initial parameter settings, namely, the initialization. This means assumptions
must be made about the data before the analysis is conducted, for example, the
cluster number for FCMs and a static or dynamic threshold distance for KNN
searching. The initial settings imply some assumptions are made towards the
data shape or the cluster number. These assumptions would lead to misunder-
standing and inaccuracy about the data. Therefore, a parameter free clustering
approach is crucial to avoid misunderstanding and inaccuracy.

2 Research Motivation

In this paper, a flexible parameter free approach for clustering analysis is pro-
posed. This approach has two advantages: (1) it makes no assumption like data
� Corresponding author. Email: tracy.mok@inet.polyu.edu.hk, Telephone: (852) 2766

4442 Fax: (852) 2773 1432.
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shape or the cluster number; (2) it avoids prejudice on the data caused by adopt-
ing some particular clustering methods. The inspiration comes from human deci-
sion making process, which human usually make decision after integrating diverse
information and comparing different alternatives. Similarly, in clustering analy-
sis, it is proposed to make a clustering conclusion after synthetically analysing
many opinions on a data set.

An opinion is defined as a clustered result from a clustering algorithm with
certain parameters. This opinion is represented by a matrix, called observation
matrix. Another matrix, called judgement matrix accumulates many observation
matrices. Therefore, the judgment matrix contains comprehensive information
about the data than any individual clustered result. By analysing the judgment
matrix, more reliable results can be obtained. In this paper, for the purpose
of simplicity and clarity, Fuzzy C-Means (FCMs) clustering algorithm is used
to generate these observation matrices. Nevertheless, it is important to note
that the observation matrices can be derived either from a specific clustering
algorithm, like FCMs in this case, or from different algorithms.

3 Clustering Approach

3.1 Observation and Judgment Matrices

The objective of the paper is to make an optimal clustering judgment about
any given data set according to different clustered results. These results are rep-
resented by observation matrices, judgment matrices and its graphs which are
defined as follows:

Definition 1. For a data set X of m data points, the observation matrix Jc is a
m×m matrix which is calculated from a cluster method, where c is the cluster
number. Each element of the observation matrix, juv, represents the relationship
of two data points, Xu and Xv.

Definition 2. The judgment matrix T is the sum of different observation ma-
trices Jc with c ranging from 2 to k, and k is a number less than m.

Definition 3. The judgment graph GT is defined as the graph of its adjacency
matrix T .

3.2 Judgment Matrix Calculation

A data set X is given by m samples

X =
[
X1 X2 · · · Xm

]
where each sample Xj is a p-dimensional data point, i.e.

Xj =

⎡⎢⎢⎢⎣
x1
x2
...
xp

⎤⎥⎥⎥⎦
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By clustering the data set X by FCMs, the following c×m membership matrix,
U , can be obtained,

U =

⎡⎢⎢⎢⎣
u11 u12 · · · u1m

u21 u22 · · · u2m

...
...

. . .
...

uc1 uc2 · · · ucm

⎤⎥⎥⎥⎦
where c is the cluster number; uij is the membership value of sample Xj belongs
to the ith cluster. The sum of each column membership value equals to 1, i.e.

c∑
i=1

uij = 1.

Different c values result in different matrices of U . For each membership ma-
trix U , a row vector, called decision vector, can be defined as follows,

D =
[
l1 l2 · · · lm

]
where lj is the row index of the largest membership value uij in each column
of U . Therefore, lj is also a label indicating which cluster the data point Xj is
belong to.

In order to have a thorough understanding on the clustering results, a m×m
observation matrix J is defined based on the decision vector D as follows,

J =

⎡⎢⎢⎢⎣
j11 j12 · · · j1m

j21 j22 · · · j2m

...
...

. . .
...

jm1 jm2 · · · jmm

⎤⎥⎥⎥⎦
where jij=1 if Xi and Xj have the same label l in the decision vector D; other-
wise, jij=0. J is thus a diagonal symmetric matrix, representing an observation
result of clustering X into c clusters. Besides, J is also an adjacency matrix of
a undirected graph, whose adjacent edges weights are all 1.

In order to make an optimal clustering decision, we need to accumulate many
different observation results. A range of cluster numbers are used to compute
different judgment matrices. The cluster number c can be any number in [2, k],
where k is an integer smaller than m. The decision on the cluster number upper
bound k will be discussed in Section 4.1. The lower bound of c is 2 because a
data set is usually clustered into more than one group. Accordingly, a judgment
matrix T is defined as:

T =
k∑

c=2

Jc (1)

where Jc is the observation matrix of clustering the data set into c clusters. The
judgment matrix is also an adjacency matrix of a weighted graph. The adjacency
matrix depicts the inter-relationships of data points within the data set.
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3.3 Cluster Result Identification

After the judgment matrix T and adjacency graph are computed, a graph par-
titioning process is conducted, from which an optimal cluster number can be
identified.

Graph Partitioning. The graph partitioning problem divides a graph into
subgraphs according to the weight, length or distance between graph nodes.
Kernighan-Lin(KL) algorithm is a well-known method for partitioning graphs [7];
a variation of the KL algorithm can be found in [6]. By defining the judgment
matrix T and its graph GT , our method of graph partitioning consists of a
deducting step and a visualising step.

1. Deducting step: compute a new adjacency matrix Tnew by deducting every
element, tij , of the previous matrix Tprevious by one, i.e.

tnew
ij =

{
tprevious
ij − 1 if tprevious

ij > 0 ,
0 otherwise .

(2)

2. Visualising step: identify the relationship of data points as a new graph
Gnew for Tnew by a breadth first searching (BFS)

Gnew = BSF (Tnew) (3)

The first ’previous’ matrix, Tprevious, is the judgment matrix T . The process
of deducting and visualising repeats until all elements of Tnew become zero.
Accordingly, a collection of adjacency matrices and corresponding subgraphs
are generated (as shown in the complete algorithm below). Subgraphs visualise
the relationships between data points such that help identify cluster numbers.
Fig. 1(a) is the graph visualising the judgment matrix T before deducting steps,
and Fig. 1(b) shows obtained subgraphs after a few deducting steps. By visual-
ising Gnews, cluster number is defined as the number of subgraphs of connecting
nodes.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

(a)

Node 1 Node 2

Node 3 Node 4

Node 5

Node 6

Node 7

Node 8 Node 9

(b)

Fig. 1. Graph partitioning and visualization: (a) Graph of initial judgment matrix T;
(b) Two connected subgraphs
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Cluster result identification (group partitioning) algorithm

Input: The judgement matrix T
n=0;
Tnew(0)=T .deducting();
do until (all elements in Tnew == 0)
Gnew(n)=Tnew(n).BSFvisualising();
clusterNumber(n)=Gnew(n).getConnectedGroupNumber();
n = n+1;

end
Output: A collection of matrices Tnews and subgraphs Gnews,
and corresponding cluster numbers
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Fig. 2. FCMs clustering results (k=50)

Cluster Number Distribution. To carry out clustering analysis, most al-
gorithms require the cluster number to be specified beforehand. Different ini-
tializations, namely, selecting different cluster numbers, can result in different
clustering partitions. Some previous work, like [12] and [10], use validity indices
to measure ”goodness” of choices of cluster number In this paper, the stability of
the clustering number distribution is examined so as to decide an optimal cluster
number. During the deducting and visualising process, a collection of Gnews and
cluster numbers are generated. By examining the distribution of these cluster
numbers, an optimal cluster result can be identified. The cluster number distri-
bution is obtained by plotting the number of iterations, n, for group partitioning
on the judgment matrix T against the cluster number (the resulted number of
subgraphs from visualizing step) (see Fig. 2). It shows that the cluster result
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tends to be stable at certain levels and the cluster number will increase dra-
matically if further iterations of deducting and visualising continue. An optimal
cluster number and clustered result can then be concluded according to the
stability level of the distribution.

4 Results and Discussions

In this paper a parameter free approach for clustering analysis is proposed,
which can integrate different opinions on a given data set in order to decide the
optimal cluster result without defining initial parameters. The distribution of
cluster numbers described above plays an important role in deciding the optimal
cluster number. Fig. 2(a) and (c) indicate the distribution of cluster numbers
are stable on 4 and 3. Therefore, the optimal cluster numbers are 4 and 3,
respectively, for Fig. 2(b) and (d).

4.1 Clustering Stability and Cluster Number k

If data shape or boundaries of the given data set are complex, the cluster number
distribution tends to be stable at several levels (see Fig. 3(b)) or even unstable.
The decision on the cluster number is not trivial. In our approach, every cluster-
ing opinion about the data set is defined as a matrix J . The judgment matrix T
is accumulated from these matrices J . Different upper bounds of cluster number,
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Fig. 3. FCMs clustering results with different k values
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k in equation (1), were tested. Increasing k implies more observation matrices J
to generate, and the cluster number distribution was found to be more stable.
Fig. 3 shows the distributions with different k values. Fig. 3(b) illustrates the
distribution is more stable on 1 cluster than that on 2 clusters when k=30. How-
ever, when k=60 and k=100 the stability on 2 clusters become overwhelming.
Therefore, increasing the number of observations k makes the cluster number
distribution more stable, and thus decides the cluster number and result more
easily. By experiments, it is found that k=100 can generate clear distribution of
cluster numbers for most data sets and achieve promising results.

4.2 Integrating with Various Clustering Algorithms

Every approach for clustering or pattern recognition has advantages and dis-
advantages. Algorithms are normally proposed for solving particular problems.
The clustering approach proposed in this paper is an open framework that can
be easily integrated with different clustering algorithms. Fig. 4 shows the results
of clustering the same data set in Fig. 3 by k-means algorithms. It is shown that
k-means algorithm obtains similar cluster distribution and clustered results as
that of FCMs. It is important to note that the values in decision vector D do
not necessarily come from one clustering method, which can be a combination
of FCMs and k-means. Consequently, the proposed method can also reduce bias
caused by one individual clustering method.
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Fig. 4. K-means clustering results with different k values
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5 Conclusions

In this paper, a parameter free approach for clustering analysis has been pro-
posed. For any given data set, an optimal cluster result is obtained without
specifying the cluster number through analysing observation and judgment ma-
trices. It has been demonstrated by experiments that the proposed method is
effective in generating reliable and promising clustering results.
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Abstract. The Product of Hidden Markov Models (PoHMM) is a mixed
graphical model defining a probability distribution on a sequence space
from the normalized product of several simple Hidden Markov Models
(HMMs). Here, we use this model to approach the human action recogni-
tion task incorporating mixture-Gaussian output distributions. PoHMM
allow us to consider context at different range and to model different
dynamics corresponding to different body parts in an efficient way. For
estimating the normalization constant Z we introduce the annealed im-
portance sampling (AIS) method in the context of PoHMM in order to
obtain no-relative estimates of Z. We compare our approach with one
based on fitting a logistic regression model to each two PoHMMs.

Keywords: partition function, PoHMM, human action recognition.

1 Introduction

Probabilistic state-space models have been very successful in automatic human
action recognition tasks [1], since states and state transitions can be associated
to subject poses and transitions between poses. We approach this task using a
PoHMM, which was introduced by Brown and Hinton [2] for modelling character
strings. PoHMM approaches the full distribution as a product of experts, where
each expert is represented by an individual HMM, which describes, through no-
causal dependences, an observation accepted by all the HMMs. PoHMM provides
a bigger representational capacity than traditional HMM where all the informa-
tion is contained in a single k-state multinomial variable. In a PoHMM each
individual HMM-factor tries to explain aspects of the data mainly associated to
regularities present in different temporal scales. This allows to model the differ-
ent dynamics present in an action from different HMMs. Moreover, many human
activities share common poses, so that context to large or medium range needs to
be considered for removing ambiguities. Thanks to its probabilistic dependence
(see figure 1), in PoHMM given the observations the inference on each HMM is
independent and therefore the full process is very efficient. In [2] simple Gaus-
sian distributions are used, here we use mixture-Gaussian output distributions
� This work has been granted by the Consolider Ingenio MIPRCV project of the

Spanish Minister of Science and Innovation, CSD2007-00018.
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Fig. 1. PoHMM Graphical Model. Empty circles represent the hidden states (S)
and shaded circles observed data (X).

since the human actions present too much variability for only one Gaussian. But
the big issue when we model a multiclass classification task is the estimation
of the normalization constant required to calculate probabilities on the global
state-space. The computation of this constant Z is generally intractable. In [2] a
logistic regression fitting was suggested to estimate the ratio ZA/ZB when only
two models were considered. Here we estimate Z in the general case by adapt-
ing to the PoHMM the AIS method proposed by Neal in [3]. We compare the
estimates from both approaches.

2 Products of Hidden Markov Models

PoHMM is defined by multiplying together the densities of the independent
HMMs and normalizing by a constant Z called partition function. This is calcu-
lated summing over all the possible observation sequences X .

P (X |Θ) =
∏M

m=1 P
(m)(X |θ(m))
Z(Θ)

. (1)

Z(Θ) =
∑

X∈X

M∏
m=1

P (m)(X |θ(m)) . (2)

M is the number of HMMs in the model. Θ is the set of all the model parameters,
Θ = {θ}Mm=1. X = {X1, . . . , XT } ∈ X are the observation variables.

The unnormalized likelihood P (m)(X |θ(m)) for each HMM can be approx-
imated by only considering the most likely discrete state sequence S(m)

1:T =
{S(m)

1 , . . . , S
(m)
T }, and factorizes as:

P (m)(X |θ(m)) = maxs(m)

{
P (S(m)

1 )
T∏

t=2

P (S(m)
t |S(m)

t−1 )
T∏

t=1

P (Xt|S(m)
t )

}
(3)

P (S1) is the initial state probability usually denoted as K-component vector π,
where K is the number of hidden states, P (St|St−1) the state transition proba-
bility denoted as K ×K matrix A and P (Xt|St) is the observation probability.
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Here we introduced Gaussian mixture observation distributions. In common with
most systems based on continuous HMMs:

P (Xt|S(m)
t ) =

G∑
g=1

Cg

S
(m)
t

N (Xt|μg

S
(m)
t

, Σg

S
(m)
t

) (4)

where N (.|μ,Σ) denotes a Gaussian distribution, d is the dimension of feature
vector, G the number of Gaussians, Cg is the K-component weight vector of the
gth Gaussian, μg (d×K) and Σg (d×d×K) represent the means and covariances
characterizing the observed sequence. Therefore, the full set of unknown is: Θ =
{πm, Am, μ

1
m, . . . , μ

G
m, Σ

1
m, . . . , Σ

G
m, C

1
m, . . . , C

G
m}Mm=1.

Training and Recognition
In order to estimate the model parametersΘ, we get an initial solution estimating
the parameters for each HMM independently using the Forward-Backward (F-
B) algorithm [4]. Then, these estimates are updated minimizing the contrastive
divergence given by Hinton [5] w.r.t the model parameters:

Δθ(m) ∝ ∂

∂θ(m) logP (X0|θ(m))− ∂

∂θ(m) logP (X1|θ(m)) (5)

X0 is an observation sequence taken from the experimental data and X1 is a
rebuilt sequence from the most likely state sequences (Viterbi algorithm [4]) for
each one of the HMMs. log P

∂θ(m) is calculated efficiently by F-B algorithm [2]. The
probability that a sequence belongs to a class is given by equation (1).

3 Partition Function for PoHMMs

The value of the function Z, guaranteeing that equation (1) defines a probability
distribution, is computationally intractable since we must sum on all the possible
observation sequences X . So, Z cannot be directly known in most cases, but it
is possible to estimate ratios of Z values for two different models.

3.1 Estimating Ratio of Z

In [2], in order to compare two different PoHMMs the difference of their respec-
tive logZ is estimated discriminatively. Let P ∗

A and P ∗
B be the unnormalized

probability distributions of two PoHMMs respectively, (P = P ∗/Z), then

Δ logP (X |Θ) = Δ logP ∗(X |Θ)−Δ logZ(Θ) . (6)

In (6) Δ logZ is considered a bias of the difference between the log-likelihood of
both models and can be calculated by a simple logistic regression on the training
data [5].

The estimation of Z in such way only allows us to calculate differences between
log-likelihoods. But in classification task we usually want to compare more than
two PoHMMs (classes) at the same time. ForM PoHMMs we could calculate the
M(M−1)/2 ratios of Z, but we cannot calculate the model giving the maximum
probability.
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3.2 Estimating Z by AIS

In [3], Neal proposes an Annealed Importance Sampling (AIS) technique to esti-
mate partition function ratios ZA/ZB. In [6] good results were found estimating
complex partition function, ZB, starting from a simple model where ZA can be
calculated analytically. We adapt this idea in order to estimate Z in PoHMMs.

Let P ∗
A and P ∗

B be the unnormalized probabilities of two PoHMMs, and ZA

and ZB their corresponding partition functions. Following [3] we define a se-
quence of intermediate probability distributions each one differing slightly to
the next, {p∗0, . . . , p∗K}, satisfying the condition p∗k �= 0 whenever p∗k+1 �= 0:

p∗k(X) ∝ P ∗
A(X)(1−βk)P ∗

B(X)βk =
( MA∏

ma=1

P ∗ma

A

)(1−βk)( MB∏
mb=1

P ∗mb

B

)βk

(7)

with p∗0 = P ∗
A and p∗K = P ∗

B, and 0 = β0 < β1 < . . . < βK−1 < βK = 1
empirically fixed.

For each k-value, we generate a sample Xk = {X1k
, . . . , XTk

} from p∗k−1 and
Xk−1. Using p∗k−1 we calculate the most likely hidden state sequence for theXk−1

sample using the Viterbi algorithm: {s(1)t , . . . , s
(MA)
t , s

(1)
t , . . . , s

(MB)
t }. Then we

generate a sample Xk from the mixture of Gaussian conditioned on the hidden
state configuration given at each time step of the HMMs.

. . .−−−−−−−−−−→
p∗

k−1

{s(1)
t , . . . , s

(MA)
t , s

(1)
t , . . . , s

(MB)
t }−−−−−−−−−−−−−−−−−−−−−−→

μ, Σ
{s

(1)
t ,...,s

(MA)
t ,s

(1)
t ,...,s

(MB )
t }

Xtk . . .

where the parameter estimation for each AIS-step is given by:

Σ
{s

(1)
t ,...,s

(MA)
t ,s

(1)
t ,...,s

(MB )
t }

=

⎛⎝(1− βk)
MA∑
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A run of AIS obtains the sequence {X(i)
1 , . . . , X

(i)
K }, together with the corre-

sponding ith importance weight:

w(i) =
p∗1(X

(i)
1 )
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1 )
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. . .
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. (10)

After performing N runs of AIS, the ratio of ZB and ZA can be estimated by
averaging these weights [3]. To avoid overflow problems, we use log(w(i)).

ZB

ZA
≈ 1
N

N∑
i=1

w(i) (11)
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Let ZB be the partition function we want to evaluate, if we could assess ZA,
we can estimate directly ZB from equation (11). We choose it as the probability
distribution associated to a simple HMM, PA is equal to equation (3) and ZA =
1, then ZB is given by ZB ≈ 1

N

∑N
i=1 w

(i).

4 Experimental Setup

4.1 Data

We ran our experiments on the well-known KTH database of human actions [7].
25 different people of both genders carry out 10 different actions: walking, jogging,
running and boxing, parallel to the camera in both directions; and clapping and
waving, facing to the camera. The actions were performed in 4 different scenarios,
outdoors and indoors, with different lighting conditions, appearing in the images
shadows and compression artifices. In the scenario 2, during the recording of the
boxing, clapping and waving sequences there is a continuous zoom, while in the
rest of actions there are strong viewpoint changes.

4.2 Feature Vector

The optical flow is shown to be very discriminative when it is used in action
recognition [8]. We estimate the optical flow by the Farnebäck´s method, the
constrain on each pixel provides us a dense and more stable optical flow estima-
tion with very low computation burden [9]. For improving the stability of the
estimate a moving average of size 5 has been considered along the sequence. In
order to obtain the bounding box enclosing the person carrying out the action,
we learn the background distribution from the first frames on each scenario.

We split the bounding box into uniform non-overlapped meaningful tiles,
which would increases the discriminant power of feature (e.g. walking and wav-
ing) and allow us to distinguish between oriented motions (left and right). We
use 8 tiles: 2 horizontal sections, exploiting human symmetry; and 4 vertical
sections corresponding to the principal segments of the body. On each tile we
calculate one 2D histogram using orientation and magnitude. We used 4 bins for
magnitude and 8 bins for orientation (from 0 ◦ to 360 ◦ in steps of 45 ◦). For each
two adjacent frames, we obtain one 256D feature vector h (4 magnitude bins ×
8 angle bins × 8 tiles). To reduce the h dimension we compute principal com-
ponents by each tile on the training features. We select only the first 4 axes
representing about 90% of information. Training and testing samples are pro-
jected on the new axes, given 32D feature vectors.

4.3 Model

Number of HMMs in a PoHMM. To fix the number of HMMs defining the
PoHMM, we studied the spectral power of the components of the feature vectors.
Figure 2 shows that walking, jogging and running present 2 well-differentiated
peaks while the remaining actions present a single peak. This agrees with the
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Fig. 2. Spectral power and features clustering. First row, spectral power of the
components of the feature vectors for each action. Second row, separation values for a
number of clusters ranging from 2 to 10 in the feature space.

studied actions, they are simple actions where the movement is principally ad-
dressed by the arms and/or legs. So that, we use PoHMM compound by 2 HMMs
to model the 2 fundamental frequencies governing the action. We fixed the max-
imum number of states to 20, the number of frames of the shortest sequence.
In order to analyze different temporal resolution with each HMM, we range the
number of states from 2 to 10 in HMM-1 and from 11 to 20 in HMM-2.

Number of Gaussians
We construct clusters fitting Gaussian mixture with a specified number of com-
ponents to the data, and measure the separation value between clusters, second
row figure 2, the best separation values are obtained for a low number of com-
ponents, so that 2 Gaussians are enough to model our features.

Number of β′s. Other important issue is the discretization of the β′s values
defining the intermediate probabilities. We try three different distributions: First,
1000 distributions uniformly spaced, β = {0 : 0.001 : 1}. Second, β = {0 : 0.01 :
0.5 0.5 : 0.001 : 0.9 0.9 : 0.0001 : 1.}, 1453 distributions with uniform spacing
for log βj , this is an optimal schema according to [3]. Finally, we keep this schema
but increasing the number of distributions, β = {0 : 0.001 : 0.5 0.5 : 0.0001 :
0.9 0.9 : 0.0001 : 1}, in total 5503 distributions.

5 Results

Results were validated by 3-fold cross validation on subject-independent tests,
two third for training and the other third for testing, about 1590 and 800 samples
respectively. One 2-Gaussians PoHMM with 2 chains (from 2 to 10 hidden states
and from 11 to 20) was trained for each action. We obtained the best recognition
score with a PoHMM 7× 12-states. That is, 14854 (7(π) + 7× 7(A) + 32× 7×
2(μ) + 32 × 32 × 7 × 2(Σ) + 7 × 2(C)) parameters for one HMM and 25524
(12 + 12× 12 + 32× 12× 2 + 32× 32× 12× 2 + 12× 2) for the other.

Figure 3 shows the estimated logZ ′s and their variances for the three discretiza-
tions ofβ, which are similar for all the cases. We can observe that the variance in the
activities of legs is much less in the test 1. Table 1 shows the results for each test of
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Table 1. Recognition accuracy on KTH. First and second rows, log-likelihood
using differences of log Z (section 3.1), third one the differences are calculated by AIS
(section 3.2), fourth one directly normalizing by log Z (AIS). First row, we use simple
HMMs with Gaussian output distribution, in the remaining ones 2-Gaussians mixture.

PoHMM 7 × 12-states Acc (%)
Test1 Test2 Test3 Average

Gaussian output (Δ log Z by regression) 91.6 84.6 89.3 88.5
2-Gaussian mixture output (Δ log Z by regression) 91.8 90.1 90.6 90.8

2-Gaussian mixture output (Δ log Z by AIS) 92.5 87.5 87.0 89.0
2-Gaussian mixture output (log Z by AIS) 92.5 88.2 86.9 89.2

Fig. 3. Estimated log Z for each action. In each test of the 3-fold cross validation
for the 3 described discretizations of β. 1:(l)walk, 2:(r)walk, 3:(l)jog, 4:(r)jog, 5:(l)run,
6:(r)run, 7:(l)box, 8:(r)box, 9:clap, 10:wave. (l) action to the left, (r) to the right.

Table 2. Confusion matrices of 2-Gaussian PoHMM 7×12-states. Left, matrix
is calculated by the logistic regression method. Right, matrix is calculated by AIS
method. Rows are the test classes and columns the recognized ones. Last column is
correct % by action.
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(l)walk 198 0 1 0 1 0 0 0 0 0 99.0 195 0 3 0 2 0 0 0 0 0 97.5

(r)walk 1 195 0 1 0 2 1 0 0 0 97.5 1 191 0 4 0 3 1 0 0 0 95.5

(l)jog 8 0 178 0 14 0 0 0 0 0 89.0 2 0 151 0 46 1 0 0 0 0 75.5

(r)jog 0 1 0 189 0 10 0 0 0 0 94.5 0 0 0 136 0 64 0 0 0 0 68.0

(l)run 0 0 56 0 143 1 0 0 0 0 71.5 0 0 27 0 171 2 0 0 0 0 85.5

(r)run 0 1 0 43 0 156 0 0 0 0 78.0 0 0 0 17 0 183 0 0 0 0 91.5

(l)box 0 0 0 0 2 0 302 1 8 0 96.5 0 0 0 0 2 0 301 0 10 0 96.2

(r)box 2 0 1 0 2 0 17 44 18 0 52.4 1 0 0 0 3 0 18 37 25 0 44.1

clap 0 0 0 0 0 0 6 2 382 6 96.5 0 0 0 0 0 0 6 1 385 4 97.2

wave 0 0 0 0 0 0 4 0 10 384 96.5 0 0 0 0 0 0 1 0 16 381 95.7

the 3-fold cross validation. First and second row, we assess recognition rate using
Δ logZ fit by logistic regression ([2]), for Gaussian and 2-Gaussian mixture out-
put respectively. We can observe that introducing HMMs with mixture-Gaussian
observation distribution as factors in the PoHMM improves the accuracy in the ac-
tion recognition task, so that this model was used for the rest of experiments. Third
and fourth row, we useΔ logZ and logZ respectively, both of them calculated by
AIS. For calculating the difference between the logZ of two different PoHMMs we
take as initial distribution one of the PoHMM and as final distribution the other
PoHMM (equation 11), while that we calculated logZ taking as initial distribu-
tion a simple 2-state HMM (Z = 1) and as final distribution the PoHMM whose
logZ we want to assess. We observe that for both cases we obtain similar results,
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but the computation in the second case is much less (40Δ logZ vs. 10 logZ). The
AIS performance increases in the test 1, but decays for the rest, the test 1 is the
test with less variance in Z (see figure 3), the accuracy depends on the variability
of the importance weights [3]. In the confusion matrices (table 2), we observe that
the fall is principally due to jogging which is erroneously confused with running, in
the graphic corresponding to the test 3 of the figure 3 jogging presents the largest
variance. Instead, it increases the number of running actions correctly recognized
with the AIS method. Both actions are similar and in this database are also con-
fused by a human observer. Finally, table 2 shows that the total accuracy decreases
by the poor performance of boxing to the right, which is the action with less training
sequences, possibly the number of samples are not enough for these models.

6 Conclusions

We have shown that PoHMMs using mixture-Gaussian observations can be ap-
plied successfully to the human action recognition task. We have also presented
a schema based on AIS which provides an estimation of the partition function Z
for these models. The recognition scores obtained using this Z estimate are good
at most of actions, however the experiment shows that a large enough number of
samples is needed in order to get a stable value for Z. The classification score in-
creases when the variance in Z decreases. The estimation of Z allows to evaluate
different PoHMMs in a single classification framework. This fact combined with
the linear computational complexity in the number of HMMs [2] would allow to
handle large databases of complex actions.
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Abstract. The task of automated classification is a highly active re-
search field with great practical benefit over a number of problem do-
mains. However, due to the factors such as lack of available training
examples, large degrees of imbalance in the training set, or overlapping
classes, the task of automated classification is rarely straightforward in
practice. Methods that adequately compensate for such difficulties are
required. The recently developed bridging algorithm does just this for
problems in the field of short string text classification. The algorithm
integrates a collection of background knowledge into the classification
process. In this paper, we have shown how the bridging algorithm was
redesigned so it can be applied to image data. We also demonstrated it is
effective to overcome a range of difficulties in the classification process.

1 Introduction

The task of automated classification is a highly researched field of great practical
benefit over a number of domains. In it an algorithm is given an object repre-
sented by a set of descriptive features, and attempts to assign to it a label from a
pre-determined finite set of classes. Typically these features describe data wholly
contained within the object itself and thus the resultant classifier is required to
effectively differentiate between classes using only the local properties of the ob-
jects. However in many cases the information contained in the objects may be
insufficient to satisfactorily deal with the given classification task. It is possible
that additional a-priori knowledge of the problem domain may be required in
order to achieve the required standards of performance.

Within the field of short string text classification Zelikovitz et al [16] proposed
the Bridging algorithm to include just this type of a-priori information (hence-
forth called background knowledge) into the classification process. When training
classifiers on problems such as separating physics papers into sub-discipline (ie.
Astrophysics, optics etc.) using the titles, and classifying company names by
business function, improvements in both classifier stability and accuracy have
been demonstrated when dealing with training data under the conditions of both
high rates of imbalance and a lack of available labelled training examples [16,14].

The aim of this paper is to demonstrate the potential of the Bridging al-
gorithm when used to compensate for a number of classification difficulties in
domains other than short string text classification, namely the image domain and

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 832–839, 2009.
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more specifically the problem of homogenous texture classification. Homogenous
texture classification can be defined as classification where the training and test
examples are comprised of homogenous textures. We will describe how we re-
designed the Bridging algorithm for use in the image domain and present the
results of an evaluation of its performance when dealing with classification prob-
lems including a lack of available training examples and high rates of imbalance
in the training dataset.

This paper is organised as follows; in section 2 we provide an overview of
the Bridging algorithm and the idea of background knowledge for classification.
In Section 3 we introduce the idea of global context for homogenous textures
and explain how it can be harnessed to implement Bridging for the problem of
homogenous texture classification. In section 4 we present an overview of current
methods for compensating classification problems such as imbalance and lack of
training data. In section 5 we present an evaluation of our method and in section
6 we conclude and present possible directions for future research.

2 Definition of Bridging

The Bridging algorithm provides an extension to the standard classification
paradigm by incorporating into the classifier a collection of unlabelled back-
ground knowledge related to the specific classification task at hand. In the stan-
dard classification model a test instance is classified by comparing it to a set of
pre-labeled feature / class label pairs. The Bridging algorithm replaces the de-
scriptive features with the results of comparisons between the training instance
and each item in the unlabelled background knowledge using a similarity met-
ric. The new feature vectors are then learnt by a classifier to build a model that
approximates this derived space of instances. The same process is applied to the
test instances, and the new feature vector is then evaluated by the model to
derive the classification result.

This reasoning behind the inclusion of the background knowledge is that it
is often able to provide information about the classification task that is not
contained in the training examples themselves. This information is used by the
algorithm to aid in separating instances and discerning the class to which they
belong. Bridging could be said to provide a dimensionality increase for the in-
stances in the problem domain. The additional information enables the classifier
to better discern between classes and greatly clarifies the decision boundaries.

To understand exactly what comprises the background knowledge used with
the Bridging algorithm two points must be noted:

– The background knowledge should be selected to contain additional infor-
mation relevant to the problem domain that can be used to aid in providing
better resolution between the test instances. This means that the background
knowledge needs to be in some way similar to the test instances so results of
a comparison between the two can be obtained. To this end it needs to be
selected with the task at hand in mind (it is problem specific).
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– The background knowledge does not need to be of the same form or size
as the test instances; there only needs to exist some comparison method
for the background items with the test instances (the size and form of the
background knowledge do not need to be the same as for the test instances).

As such the background knowledge can be almost anything as long as it is re-
lated to the problem at hand, provides information pertinent to the classification
problem that is not contained in the instances themselves, and is comparable to
the test instances. Examples of problems / background knowledge pairings for
Bridging from the literature include:

– Classifying physics papers by title into sub-disciplines of physics using paper
abstracts as the background knowledge

– Classifying company names by business type (eg. Google would be IT, West-
pac would be a bank etc.) employing the text of business related web sites
as the background knowledge.

3 Current Strategies for Motivating Problems

Building classifiers with only small amounts of training data available is an
actively researched topic within the classification community [4,2]. The majority
of research uses the idea that a lack of available labelled instances for training
does not necessarily imply a lack of unlabeled instances. This however is not
always the case. In comparison Bridging requires only the existence of data
containing some meaningful a-priori domain knowledge of benefit to the classifier.
The relatively relaxed constraints on the form of the background knowledge mean
that in many cases it may be much simpler to obtain background knowledge than
unlabelled training examples.

Current data imbalance compensation strategies can be divided into sev-
eral categories, the most well known being over-sampling, under-sampling, and
weighting examples. Over-sampling involves duplicating examples to increase the
number of minority class examples, under-sampling involves randomly removing
examples from the majority class in order to rebalance the training set, and
weighting methods involve the classifier assigning a positive bias to examples
from the minority class. Comparisons have been made in several places through-
out the literature [3,5,9,15] and current research indicates that all methods can
be effective given the right circumstances.

4 Contextual Knowledge for Homogenous Textures

In Section 2 it was pointed out that for many classification tasks additional domain
knowledge may be required to satisfactorily identify the class of a given test in-
stance. Consider the problem of homogenous texture classification. Figure 1 shows
a homogenous texture and the surrounding context in which it was found. When
viewed alone the texture is difficult to identify due to the relative lack of infor-
mation contained in the image. However when the texture is taken in conjunction
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Fig. 1. Homogenous texture (grass) and surrounding context

with its surrounding context as shown in , the correct classification is significantly
clearer.

The notion of contextual knowledge is the basis of our design for Bridging with
homogenous textures. By their very definition homogenous textures contain no
contextual data. Because of this we have chosen to use a collection of wider
scene photographs as our background knowledge. A wider scene photograph can
be interpreted as a collection of homogenous textures. By comparing test images
to the scene photographs we hope to create some kind of surrounding context
for the textures. This in turn can then be used to increase the performance of
the resulting classifier.

As stated in Section 2 two tasks need to be accomplished in order to im-
plement Bridging for homogeneous textures; choosing appropriate background
knowledge and designing a suitable comparison metric. As we have elected to
use scene photographs for the background knowledge, the remaining task is to
determine how they are to be compared to the homogeneous textures. Given we
can interpret scene photographs as collections of textures, we determined to cal-
culate for each test and background image two types of information; how similar
is the test image to each of the textures in the background image (represented
as a value between 0 and 1), and where in the background image is the similar-
ity strongest (represented by the X and Y values of a point on the background
image with (0,0) being the centre of the image). The comparison metric used in

Algorithm 1. Comparison Metric for Bridging with Homogeneous Textures
1. The background image is divided into a uniform grid of equally sized sub-images.
2. Standard descriptive features are calculated for the test image and each sub-image

tile.
3. The feature vectors for each sub-image tile are compared to the test image feature

vectors using a simple metric (such as the dot product) to produce a value between
0 and 1. The metric is determined experimentally as a parameter of the algorithm.

4. Each tile in the background image grid is weighted with its corresponding compar-
ison value and the centre of mass for the background image is calculated.

5. The result of the comparison between then test and background image is repre-
sented as the average of the comparison values from step 3, and the X and Y values
of the centre of mass as calculated in step 4.
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our experiments is shown in Algorithm 1. We use this algorithm to create new
features for a given test image by feeding the classifier the values computed in
running Algorithm 1 with the image and every item of background knowledge.

The division of the background image into a uniform grid in step 1 (as op-
posed to using a more complex segmentation algorithm) is done to simplify the
process and also because a segmentation algorithm would not necessarily gen-
erate rectangular regions making it much harder to choose features to represent
the textures in the items of background knowledge. The size of the uniform grid
used in our experiments was 6x6. It should also be noted that the choice of de-
scriptive features from step 2 and the choice of simple metric from step 3 are
linked; some metrics may perform better with some features than others. We
discuss our choice of descriptive features and simple metric in Section 5.

5 Evaluation

In order to evaluate the performance of our implementation of Bridging we tested
it on both the problem of training with an imbalanced dataset and training with
a small number of available training examples. To test the performance of our
method on these problems we created a dataset using images from the Vistex
Texture Database [1], a texture benchmark that has been employed a number of
times throughout the literature [5,6,11,10]. The full database comprises 167 ho-
mogeneous textures from 19 distinct classes, however to create a dataset suitable
for our purposes we have selected images from the 8 majority classes and divided
each into 4 equal sub-images resulting in a balanced dataset of 432 images. The
specifics of how the data was prepared for each set of tests is detailed below.

To evaluate results we employed an SVM classifier (from the WEKA machine
learning toolkit [15]) with 10-fold stratified cross validation and measured per-
formance using the weighted average f-score averaged across multiple runs on
different random splits of the database. The weighted average f-score is the av-
erage f-score for each class in the dataset, with each score being weighted by
the size of the class it represents. For each motivating problem the results of our
method were compared against a baseline; the performance of the classifier when
using only standard descriptive features without any background knowledge.

For standard descriptive features we have chosen the colour layout, edge his-
togram and scalable colour descriptors from the MPEG-7 standard for repre-
sentation of multimedia content metadata [7]. This choice was made both for
convenience and due to the benefits of utilising standardised descriptors which
can be seen in a range of literature [12,8]. In addition to these descriptors we
will also use the combined feature vectors of the colour layout, edge histogram
and scalable colour as demonstrated by Spyrou et al [12]. For a more detailed
description of this descriptor we refer you to the cited publication. The metrics
used in our experiments to compare the test image feature vectors to the back-
ground image sub-tiles (in step 3 of Algorithm 1) are the dot product and the
histogram intersection [13].



Reworking Bridging for Use within the Image Domain 837

The background knowledge used in these evaluations was sourced from a num-
ber of photographs collected by the authors. There were 79 images in total col-
lected both indoors and outdoors over a range of lighting conditions. They were
stored in 2848x2134 resolution. In addition there were also 11 multi-texture scene
images taken from the Vistex Texture Database [1], which were stored in either
786x512 or 512x786 resolution. It should be noted that the dataset we have cho-
sen, while designed for use with textures is not specifically tailored for use with
images from the Vistex database.

5.1 The Imbalanced Dataset

Performance of the bridging algorithm with an imbalanced dataset was evaluated
by taking the average f-score of bridging with a balanced dataset, then examining
any degradation in performance as the rates of imbalance were increased. To this
end we first designated one of the majority classes in the test set as the target
class and joined together the remaining 7 to form an ‘other’ class. Selecting 2,
4, 6, 8, 10, 15, 20, 30, 40, and 50 instances respectively from the target class,
and then filling the remainder of the training set with random instances from
the ‘other’ class we then created ten separate training sets of 100 instances, each
representing varying degrees of imbalance. Any remaining images not used in
any of the above training sets were then used as a test set.

Fig. 2. Performance of descriptors with Bridging (solid line) verses without Bridging
(dotted line). (a) - (b) Target F-Score vs. Number of target class examples for the
Combined MPEG-7 Visual Descriptors and the Colour Layout descriptor using the
Histogram-Intersection and Dot-Product metric for feature vector comparison respec-
tively (c) - (d) Weighted Average F-Score vs. Percentage of database for Colour Layout
and Edge Histogram using the Dot-Product for feature vector comparison.
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Figure 2a and 2b are two examples of the results obtained when using bridging
to compensate for the imbalanced dataset problem. They demonstrate that the
application of bridging is able to provide a significant improvement in classifier
performance, particularity at high rates of imbalance. The improvement in Fig-
ure 2b is more substantial and consistent than in Figure 2a, particularly when
the datasets are more or less balanced.

5.2 Lack of Available Training Examples

In order to evaluate the performance of the Bridging algorithm with a lack of
available training examples, we observed the changes in performance of the clas-
sifier on a progressively smaller dataset. A 50/16.6/33.3 train/dev/test split on
the entire dataset was used, then the training split was used to create datasets
comprising 100, 80, 60, 40, 30, 20, 15, 10 and 5% of the total database size re-
spectively while maintaining the relative distribution of the classes. The results
displayed in Figure 2c and Figure 2d demonstrate the ability of bridging to com-
pensate for this problem. The performance of the bridging algorithm is equal to
or better than the baseline.

6 Conclusions and Further Work

In this paper we have successfully redesigned and applied the Bridging algo-
rithm to the problem of homogeneous texture image classification and we have
demonstrated an improvement in classifier performance when faced with a range
of difficulties. The contributions made by this paper are:

– We have demonstrated that the Bridging algorithm is applicable in domains
outside short string text classification.

– We demonstrated that the Bridging algorithm can be applied to positive
effect in the image domain when dealing with a range of problems including
an imbalanced training set and a lack of available training examples.

– We demonstrated that within the image domain reasonable results can be
obtained using the Bridging algorithm while employing a relatively uncom-
plicated comparison metric.

The inclusion of background knowledge into the classification process raises the
question of from where are we to obtain this data. The Internet contains a
wealth of knowledge on an almost limitless number of topics and is therefore a
potentially endless source of background knowledge. Zelikovitz et al have pre-
viously used the Internet as a source of background knowledge in the domain
of short string text classification [17]. One potential direction for further study
would be automatically obtaining the corpus of background knowledge from the
Internet.
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Abstract. This work presents a pattern recognition system that is able
to detect ambiguous patterns and explain its answers. The system con-
sists of a set of parallel Support Vector Machine (SVM) classifiers, each
one dedicated to a representative feature extracted from the input, fol-
lowed by an analysing module based on a bayesian strategy in charge
of defining the system answer. We apply the system to the recognition
of handwritten numerals. Experiments were carried out on the MNIST
database, which is generally accepted as one of the standards in most of
the literature in the field.

Keywords: pattern recognition, support vector machine, ambiguous
pattern, answer explanation, bayesian statistics.

1 Introduction

Optical character recognition (OCR) is one of the most traditional topics in the
context of Pattern Recognition that includes as a key issue the automatic recog-
nition of handwritten characters. The subject has many interesting applications,
such as automatic recognition of postal codes, recognition of amounts in bank-
ing checks and automatic processing of application forms. Handwritten numeral
classification is a difficult task because of the wide variety of styles, strokes and
orientations of digit samples. One of the main difficulties lies in the fact that the
intra-class variance is high, due to the different forms associated with the same
pattern, because of the particular writing style of each individual. Many models
have been proposed to deal with this problem, but none of them has succeeded
in obtaining levels of response comparable to human ones.

The use of Support Vector Machines (SVMs) has provided good results in
handwritten digit recognition due to its good generalization performance even
in high dimensional space and under small training set conditions[1][2].

This work proposes a SVM based pattern recognition system with a prob-
abilistic strategy in order to classify, detect ambiguous patterns and explain
answers. This proposal is based on a model previously introduced by our group,
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consisting basically of a hybrid unsupervised, self-organising model, followed by
a supervised stage [3]. We apply the system to the recognition of handwrit-
ten digits. Our experiments were carried out on the MNIST handwritten digit
database, which is generally accepted as a standard in most of the literature in
the field.

This work is organized as follows: in section 2 the recogniser structure is ex-
plained. In section 3 we present implementation details and experimental results.
Concluding remarks are presented in section 4.

2 Recognition System

The first stage of the process consists of a pre-processing of input data in which
relevant features are extracted from the patterns. This provides a more general
and simple structure for the system, specifically oriented to classification rather
than feature selection that is therefore independent from system architecture.
The recogniser is composed of two levels. The first one is formed by a collection
of parallel and independent classification elements implemented with SVM sys-
tems, each one specialised in a different feature. The second level consists of an
analysing module in charge of defining and explaining the output of the system.
This module is integrated by the following elements: the table of reliability and
two parameters adjustable while running the system. Each classification element
in the first level produces a response to an input pattern, as a judge who, only
based on the analysis of the corresponding feature, decides which class the pat-
tern belongs to. The connection between the first and second levels of the system
is performed through this new representation of the pattern, formed with the
answers of the ”judges”. The purpose of the table of reliability is to represent
how trusty the ”vote” of each classification element is. Using this data, the mod-
ule of analysis of the second level has to produce the final answer. The system

Fig. 1. Architecture of the proposed recogniser. Each SVM system is associated with
a feature. In the analyser: table of reliability (R-Table), threshold of reliability and
minimal distance parameter.
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is able to explain its responses, indicating which class is most similar to the
input pattern respecting each particular feature, on the base of the vote of each
classification element/judge and the weight assigned to each one. As a part of
the explanation, if a pattern is ambiguous for the system, we can know which
other digits it could be identified with (i.e. which classes it has more features in
common). The general structure of the system is depicted in Figure 1.

2.1 SVMs Level

The performance of a character recognition system strongly depends on how
the features that represent each pattern are defined. In the first level of the
recogniser, each classification element is trained on the base of a certain feature
previously defined in the pre-processing stage according to the problem to deal
with. In the context of handwritten numeral recognition, local detection of line
segments and global detection of line structures seem to be an adequate feature
extraction method. Kirsch masks [4] have been used as directional feature ex-
tractors by several authors [5][6], as they allow local detection of line segments.
We used these masks to extract four directional features from the set of patterns:
horizontal, vertical, right diagonal, left diagonal. In addition, we also considered
the complete (original) pattern, which we call global feature. Then the dimen-
sion of each feature associated with a given pattern are considerably reduced
applying the Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet transform [7].

Hence we defined five SVM systems for the first layer of the recogniser, each
one dedicated to a particular feature. The method of Support Vector Machine
was proposed by Vapnik as a machine learning system based on statistical learn-
ing theory [8]. It has been sucessfully applied to the handwritten digit recog-
nition problem by several authors [1] [2]. Instead of fitting nonlinear curves to
the data, SVM uses a kernel function to map the data into a different space
where a hyperplane can separate 2 classes. The main idea is to build the hy-
perplanes as decision boundaries by using the fitting kernel such as Gaussian,
polynomial or linear classifiers. Then, the hyperplanes try to split the positive
examples from the negative examples and maximize the distance of the marginal
separation between classes. To implement our experiments we used TORCH [9],
a machine-learning library specifically tailored for large-scale problems. We ap-
plied the Gaussian kernel function because of its high performance reported by
several authors [2][6] for this kind of classification problem.

2.2 Analyser Level

Once the classification elements of the first level have been trained, the second
level of the recogniser has to be constructed, being its parts: a reliability table
and the parameters ”confidence threshold” and ”minimal distance”. For con-
structing the table that expresses how reliable the answer of each SVM system
is, a Bayesian probabilistic approach was chosen because of its better results. Us-
ing the definition of conditional probability and the multiplication rule, we define
the probability of pattern p belonging to class C given that feature classification
element f has responded C for input p as:
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Table 1. Reliability Table: probabilities for each classifier and each class

Feat 0 1 2 3 4 5 6 7 8 9
HR 0.925 0.959 0.957 0.905 0.970 0.938 0.965 0.958 0.866 0.927
VT 0.978 0.972 0.965 0.952 0.960 0.966 0.985 0.932 0.945 0.923
RD 0.967 0.974 0.971 0.960 0.960 0.937 0.960 0.972 0.920 0.958
LD 0.975 0.983 0.961 0.944 0.955 0.979 0.967 0.957 0.939 0.928
GL 0.992 0.983 0.972 0.967 0.958 0.978 0.980 0.977 0.973 0.950

P ({p, C}/{f, p, C}) =
P ({f, p, C}/{p, C})P ({p, C})

P ({f, p, C}) (1)

P ({p, C}) : probability of input pattern p belonging to class C, estimated from
the labeled training set. P ({f, p, C}) : this probability is estimated from trained
SVM system f . We assume that the response C of a SVM system f given an
input pattern p is independent from responses of other classification elements.
P ({f, p, C}/{p, C}): this probability is estimated from correct outputs of SVM
system f given input patterns of class C.

In the classification stage, once the input pattern has been represented by
the five votes of the SVM systems, a score is computed for each voted class, on
the base of the reliability of each classification element, according to the values
showed in Table 1. For this sake, such values are added for each class, so that a
class with a greater score implies more reliable answers and more votes for the
same class. The score s for each class was computed as:

sC =
∑

f∈FC

rC,f (2)

where C indicates the selected class, f indicates SVM system associated with
a feature, FC the SVM systems that voted class C, rC,f reliability value taken
from table for class C and feature f.

One of the main difficulties for classification is dealing with outliers, ”am-
biguous patterns”, since the distortions they exhibit make difficult their correct
classification (being far away from the mean value of its class, they could be
incorrectly associated with another class closer in average). We have considered
the distance from the pattern represented by its feature vector to the mean value
of the class assigned by the SVM system: if the pattern is close to that mean
value, we assume that it is well defined and belongs to that class. A pattern far
away from the centroid might be consider as an outlier (according to the variance
of the class) and hence a candidate to ”ambiguous pattern”. This information is
used as a reinforcement factor for the score given by the table. Then, the score
s assigned to each voted class C is calculated as

sC =
∑

f∈FC

rC,f
1

d(pf , μf,C)
(3)
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where C indicates the selected class, f indicates SVM system associated with
a feature, FC the SVM systems that voted class C, rC,f reliability value taken
from table for class C and feature f , pf pattern represented by its feature vector
associated with SVM system f , d(pf , μf,C) normalized distance between the
feature vector of the pattern p and the mean value of class C for feature f .

As an example, the following vector V shows votes for each feature for a given
test input: V = (5 2 5 0 0). Score associated with each voted class is computed
using (3). In this case, scores are 2.84, 1.98 and 3.27 for classes ”0”, ”2” and ”5”
respectively. Class ”5” obtains the higher score.

In order to define the system output the class with the higher score is identi-
fied; this score is compared with the reliability threshold that determines which
patterns are considered as ambiguous and which are not. If the total score for the
winning class surpasses the threshold, then the system considers that pattern as
well defined and the answer is that class. On the other hand, if the cumulative
score is lower than the threshold, the system decides that the pattern is am-
biguous. In this case it is necessary to determine the class it might be confused
with. From all voted classes, the one closest to the winner is selected if distance
between it and the winning class is lower than minimal distance parameter.

Values for the threshold of reliability and for the minimal distance are chosen
empirically, on the base of information provided by the training set in the stage
of adjustment of the classifier. Variation of these parameters permits to adjust
the output of the system without need of a new training of the SVMs.

3 Experiments

3.1 The Data Set

The MNIST database of handwritten numerals is widely accepted as a standard
benchmark to test and compare performances of pattern recognition and classi-
fication methods and it was used to perform our experiments. It contains 70,000
unconstrained handwritten numerals, including many different writing styles col-
lected from a larger set available from NIST (National Institute of Standards and
Technology) of the U.S. Department of Commerce. It has a training set of 60,000
samples and a test set of 10,000 samples. Each digit in the database is centered
in a 28 x 28 graylevel image.

As a pre-processing stage Kirsch masks were applied on each image, as men-
tioned in Section 2.1. Then the CDF 9/7 wavelet transform [10][7] was applied in
order to obtain a smaller descriptor associated with each feature for a given input
image. The Discrete Wavelet Transform has been mainly used for image com-
pression. We applied one step of the CDF 9/7 obtaining three detail subbands
and one approximation subband LL from the vertical and horizontal convolu-
tions with low and high pass filters. The LL subband constitutes a descriptor
that preserves the structure and shape of the image in size a fourth of the orig-
inal one. This means that each 28 x 28 image descriptor was reduced in size to
14 x 14. As the final step in the preprocessing stage, the coefficients of the LL
image were thresholded, via rescaling them to the interval [0,1] and rounding the
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result. Hence we obtained a shape-preserving binarized smaller version of each
digit in order to reduce the computational cost and to make the clasification
process easier for large amounts of data.

3.2 Recognition Results

We have implemented the pattern recognition system described in previous sec-
tions. Results for different values of reliability threshold and minimal distance
are shown in Table 2.

Table 2. Recognition results (%) - RT: reliability threshold - MD: minimal distance

RT MD Correct Correct Error
(includes ambiguous) (unique response)

4.0 3.0 98.65 94.94 1.35
6.0 3.0 98.97 93.68 1.03
6.0 4.0 99.08 90.14 0.92
6.0 5.0 99.11 89.55 0.89

As threshold increases, patterns associated with greater values of scores of
winning classes will result well defined, and the rest will be considered as pat-
terns with a certain degree of similarity with elements of other classes. Using
the minimal distance enables to introduce a second class of output for these pat-
terns, as long as such class has a score near enough to that which obtained the
maximum. If that is not the case, the output for this not clearly defined pattern
is unique. Table 3 shows some data forming the output of the system for some
digits in Figure 2, grouped by class. Digits in the first column are well defined,
i.e. they are not ambiguous for the system. The first row of each group in Table
3 shows that all classifiers voted for the same class; however, in the definition
of the output not only the number of votes takes part. The second and third
columns in Figure 2 show patterns that the system considers as ambiguous. It
can be observed in Table 3 that the output indicates two possible classes for the
pattern, and one of them is the right one. The votes are distributed between
different classes, hence the score of winning classes is lower than scores of well

Fig. 2. Test patterns correctly classified. Each row: classes ”2”, ”3” and ”5” respec-
tively.
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Table 3. Some results over testing set: reliability threshold 6.0 - minimal distance 5.0

Class Sys.Out. Ambig HR vote VT vote RD vote LD vote GL vote
2 2 No 2 2 2 2 2
2 2 or 8 Yes 3 2 8 2 2
2 7 or 2 Yes 2 7 7 9 2
5 5 No 5 5 5 5 5
5 5 or 0 Yes 5 2 5 0 0
5 5 or 8 Yes 3 8 5 5 8

Table 4. Recognition rates of different methods on MNIST database

Method Recognition Rate %
PCA+Polynomial[11] 96.7

LeNet4[11] 98.3
Bhattacharyya Distance[12] 98.2

Proposed method 99.1
SVM Affine Distortion[1] 99.4

defined patterns. Visual analysis shows that the third ”2” is in fact similar to a
”7”; for the rest of the ambiguous patterns, forms can be observed that are not
associated with a unique class. For example, the third pattern labelled as a ”5”
might well be an incomplete ”8”.

On the other hand, our strategy of combining the response of each individual
classifier improves the error rate associated with each SVM system (error %:6.6,
4.4, 4.7, 4.1, 2.6 for features HR, VT, RD, LD and GL respectively) besides allow-
ing an analysis of the system response. Table 4 compares published results of dif-
ferent methods on the MNIST database with the proposed method. Our classifier
outperforms other approaches, as LeNet4 [11] based on a complex architecture,
or the one based on the Bhattacharyya distance combined with a kernel approach
[12]. In [1] a trainable feature extractor based on the LeNet5 convolutional neural
network architecture with SVMs performing the classification task is presented.
Additionally, new samples generated by affine transformations and elastic distor-
tions are added to the training set. Our system is simpler than theirs and, although
the error rate is higher, our strategy is quite effective and allows managing outliers
and ambiguities, a remarkable property of the proposed recogniser.

4 Conclusions

We have presented a fully supervised system for pattern recognition that com-
bines the use of SVM independent classifiers with a probabilistic bayesian ap-
proach. Besides of its simplicity, one of the notable features of our technique is
the ability to manage outliers and ambiguities. The ”reliability table” -estimating
how reliable is the answer of each SVM system for an input pattern- and a few
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parameters are used to decide when a pattern is considered as ambiguous, and
which class or classes it might be confused with.

The classifier was applied to the recognition of handwritten digits. Experi-
ments were carried out on the MNIST handwritten digit database. The patterns
were preprocessed extracting directional features from each digit, and reducing
the input dimension to a fourth of the original one.

The recognition rate obtained with our method is high (99.11%). Our strategy
of combining the response of each individual classifier improves the error rate
associated with each SVM system, thus justifying the good overall performance
obtained and allowing an analysis of the system response.
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Abstract. Possibilities of more accurate digital modelling of 3D scenes
by fusing 3D range data from an active hand-held laser scene scanner
developed in IRL and passive stereo data from stereo pairs of images of
the scene collected during the scanning process are discussed. Comple-
mentary properties of two data sources allow for improving a 3D model
by checking reliability of active range data and using it to adaptively
guide passive stereo reconstruction. Experiments show that this avenue
of the data fusion offers good prospects of error detection and correction.

1 Introduction

Geometrically and visually accurate 3D scene models are required in applications
such as mobile robotics, surveying and mapping, computer-assisted training,
video games, and crime scene examination. Active range scanners and passive
stereo sensors that provide 3D measurements for scene modelling have different
and often complementary strengths and weaknesses. Range scanner collects data
sequentially, often by traversing a scene embedding all objects of interest. Stereo
reconstruction uses either a single image pair acquired instantly or a sequence of
images. Range data can be dense or sparse for different parts of a scene and is
mostly accurate although prone to errors in some particular cases (e.g. for sharp
edges, thin objects, and surfaces with poor reflection properties). Stereo data
is dense but typically unreliable on textureless (uniformly coloured) surfaces
and on repetitive textures. Both active and passive techniques may fail on large
surface discontinuities caused by partial occlusions.

Fusion of active range and passive stereo data for the same scene is actively
explored in various domains (mostly for autonomous navigation of robotic ve-
hicles [1, 2, 3] and 3D scene modelling [4, 5, 6]) as a promising way to obtain
more accurate and reliable 3D models. Initial approaches have combined image
analysis and range data to separate objects of interest (e.g. road obstacles) and
evaluate their spatial positions [7, 4, 8]. Better results were obtained by using
range data to limit search zones of correlation-based passive stereo and combine
both data sets into a unique depth map where points with inconsistent range
and stereo measurements were labelled as outliers [9, 6]. These approaches use

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 848–855, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Accurate 3D Modelling by Fusion of Potentially Reliable Active Range 849

(a) (b) (c)

Fig. 1. Data from the IRL scene scanner: (a) the “cloud” of 3D points; (b) an example
of the data missed: the marked area corresponds to a lever on the chair shown on the
rectified left image of a stereo pair in (c). The lever is small and dark, so it returned
only 2 range data points shown enhanced in the inset.

simple local stereo matching and eliminate range data contradicting stereo data
by sequential heuristic criteria.

Considerably more advanced fusion strategy was outlined in [10] for a sen-
sor system with a time-of-flight range scanner (200K points per field-of-view)
and a pair of cameras. Complex photometric and geometric calibration of the
system was verified for a test scene using ground truth generated by a separate
structured lighting device. A depth map produced by a belief propagation based
stereo matching was combined with the range data using a Markov random field
model. The overall depth error of range data was reduced from 1.8% down to
0.6% comparing to the ground truth.

In principle, such a model-based fusion permits to not only use reliable stereo
data and image analysis to fill in gaps and detect inaccuracies in range data but
also guide stereo matching with reliable range data for improved accuracy and
completeness. An assumption of only a pair of range and stereo measurements
per field-of-view point in [10] does not hold for most of outdoor and large indoor
scenes. Practical requirements to 3D scene models and physical limitations of
range and stereo sensors dictate sequential scanning of a scene from different
positions and in multiple directions. Thus the numbers of available range, stereo,
and image data for each scene voxel may vary considerably.

This paper investigates possibilities of range and stereo data fusion for a
hand-held 3D laser time-of-flight scene scanner developed in IRL [11]. Here, we
focus on more accurate stereo reconstruction of visible 3D surfaces guided by
reliable range data. Real-time calibration and registration of the scanner to a
world coordinate system uses pre-placed beacons. The operator sweeps over a
static scene covering more densely surfaces of interest and glossing over other
scene features. The scanner produces a “cloud” of 3D points indicating a surface
of interest (Fig. 1(a)). During scan sweeps, a colour camera mounted on the
scanner outputs a video stream that captures scene texture. Both the scanner
and camera are continuously calibrated. This allows us to build different rectified
stereo pairs of the scene (Fig. 1(c)).
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2 Reliability and Fusion of Range and Stereo Data

Real-world scenes have complex arrangements of objects with multiple occlusions
and frequent uniform (non-textured) or poorly reflecting surfaces that may hin-
der range measurements or/and 3D stereo reconstruction. The range data and
images of a scene are collected from many different positions and directions. The
same surfaces of interest appear in multiple range scans and stereo pairs formed
from the rectified images. The range measurements typically do not cover the
whole scene and are dense only on objects of interest, whereas a large part of
the scene is represented densely at different scales only by stereo data.

Formal statements and solutions of the data fusion problems depend on data
collection scenarios. For definiteness, we restrict our consideration to relatively
small 3D scenes formed by discontinuous surfaces of complex shape, covered
by many different individual range scans, and depicted in many accompanying
calibrated images while only a single stereo pair is used for 3D reconstruction
in addition to the range data. Generally, range scanning is more accurate than
stereo matching; it therefore seems natural to use the range data to guide stereo
reconstruction in order to amplify its accuracy. Still, on some surfaces the sit-
uation is quite the opposite. Figure 1(b) shows inaccurate and missing (due to
poor reflection and limited resolution) range data points near the hand lever of a
chair. When a foreground object is not detected but the background is visible for
the scans from other directions, the erroneous guidance affects considerably the
accuracy of stereo reconstruction. As shown in Fig. 2(A), the range data from
the background floor misguides the stereo algorithm for both the lever and the
central column of the chair which have no range data available. Repeat scans of
each surface from other directions may resolve some ambiguities at the expense
of considerably larger time and complexity of data collection.

Fusing reliable and consistent range and stereo data holds more promise in
accurate modelling of 3D scenes. Most of the known data fusion frameworks
consider a range measurement reliable if it fits the results of stereo matching.
Large difference between these data values may indicate not only a possible error
from the range scanner, but also an erroneous stereo reconstruction. Moreover,
similar values do not necessarily imply their reliability if colour inconsistencies
exist between the corresponding points in stereo images.

When images taken from different directions are used to check the colour
consistency of a particular 3D point, a mixture of colours will generally appear
due to possible occlusions. The ambiguities can be resolved by comparing the
mixture modes to the colours fetched for that point from the stereo pair assuming
that the point is visible for more than a prescribed fraction of the images. In
principle, such a comparison can account also for possible local contrast and
offset deviations in the images. Differences between potentially equal colours
allow us to build colour consistency indicators that evaluate the range data
reliability. Then, reliable range measurements is used to improve the accuracy
of a dense 3D model obtained by stereo matching. Comparing to the known
fusion processes (e.g. in [9, 6, 10]), our approach not only accounts for multiple
variants of the same 3D surfaces after the range and stereo measurements, but
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N: No Guidance A: All Range Data R: Reliable Range Data

Fig. 2. Depth maps (top) obtained by stereo algorithm without and with guidance
from all or only potentially reliable range data points and enhanced colour differences
between corresponding pixels for the maps (middle) and corresponding histograms with
logarithmic frequency scale (bottom)

also suggests the concurrent use of their reliability indicators to refine the final
dense 3D model.

Our two-stage 3D scene modelling framework first conducts multiple indepen-
dent range scans of a scene-of-interest, and a rectified stereo pair that depicts
the scene is selected to conduct an independent stereo reconstruction. Next,
the colour consistency indicators are evaluated for projections of all 3D surface
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N: No Guidance A: All Range Data R: Reliable Range Data

Fig. 3. Depth maps and cyclopean views obtained by stereo algorithm without and
with guidance from all or only potentially reliable range data points
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points produced by the range scanner, and a dense scene model is built by an
adaptive stereo matching process constrained by the range data with due account
of reliability.

The 3D data sets obtained initially from the stereo pair and the laser scanner
are compared in order to update the stereo matching process using only the
potentially reliable range data. The latter is deemed unreliable when the absolute
difference between the colours that correspond in a stereo pair to that 3D point
does not meet a matching criterion. The stereo matching is now guided by the
range data with due account of its current reliability. The process can be iterated
using the resulting absolute colour differences to update the reliability indicators.
The low reliability indicates reconstruction errors as well as outliers.

To obtain the guidance map we select those 3D points which correspond to
depth data produced by both range measurement and stereo reconstruction and
project them onto the stereo pair. First, the histogram of the absolute colour
differences between the pixels that correspond to all these points is computed.
Next, the stereo matching process uses all the guidance points (i.e. points with
both stereo and range data) to restrict the search for acceptable stereo matches.
Then, the changes of the distributions of the colour differences are used to sepa-
rate the unreliable range data and create a confidence mask of the guiding points.
Finally, the stereo matching conducted with a reliable guidance map. Further
assessment of the range data with respect to colour consistency, colour edges,
uniformly coloured image segments, and textured segments are currently under
investigation but not demonstrated here.

3 Experimental Results and Conclusions

We provide results for unguided and guided stereo-matching following the above
reliability based framework on our test image (see Figs. 1(c), 2, and 3). The test
scene contains a chair with various small objects that exhibit different textures
and colour characteristics as well as a background floor. The stereo algorithm
used is a version of Symmetric Dynamic Programming Stereo (SDPS) [12] mod-
ified to accept colour images and a (possibly sparse) depth map for per-pixel
guidance. The initially obtained range and unguided stereo data are shown on
Fig. 1(a), 2(N), and 3(N) respectively. The data sets have both the reliable and
unreliable components as is shown by the unguided stereo matching (N) and the
guided one using all the range data (A). The reliability of the range data was
estimated from the colour difference histograms displayed in Fig. 2 (bottom)
and the object colour. The much larger “tail” in Fig. 2(A)(bottom) indicates
that using all range points for the guidance produces many more points with
large colour differences, indicating the unreliable range data. Pure black regions
with zero colour components were also considered as unreliable. The unrelia-
bility threshold for colour differences was set manually to 8 after analysing the
histograms – in the future we are going to use a mixture identification technique
such as in [13] for this setting.
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The potentially reliable range data found allowed us to considerably improve
the resulting 3D models shown in Figs. 2(R) and 3(R) . One more iteration
of the algorithm with an updated guidance map did not change noticeably the
obtained reliability indicators and the final model.

Data comparisons and enhancement as well as performance evaluations in the
previous works often rely on the ground truth data acquired either with a sepa-
rate optical measuring device [10] or by an user assessment [14,9]. Unfortunately,
this ground truth is difficult to measure for experiments involving large natural
scenes such as our test scene with objects lying on a chair. To obtain numerical
comparisons, the ground truth data on points with both range and stereo data
is obtained by using a graphics editing program to manually compare the dis-
parity between the stereo pair. This process is a laborious but reliable way to
produce ground truth data on complex real-world scenes where accurate mea-
surement using other techniques is not available. The effort required to produce
accurate ground truth data also limits the amount of numerical results in our
experiments.

In terms of the 3 stereo pairs, the test scene was depicted on about 400,000
pixels, with only 50% of them having both the range and stereo matching data.
The comparisons have been conducted on 153,414 points having both the range
and stereo data as well as the manually found ground truth data. A criterion
for “good pixels” was the difference from the ground truth within ±1 disparity
level. The percentage of such pixels in the obtained model increased from 87.3%
originally to 93.8% after the proposed iterative refinement (the number of the
“good” pixels increased by 9.1% among the guided ones and by 5.4% among the
points excluded from the guidance). Qualitatively, the reliable guidance improved
the reconstruction of the homogeneous areas such as the floor and the back of
the chair as well as on small objects where range data is unreliable such as the
hand lever and objects lying on the chair.

This clearly demonstrates that stereo matching guided by potentially reliable
range data largely resolves the problem of “large differences” between the active
range and passive stereo measurements first encountered. Checking the range
data on consistency with the stereo data in terms of image correspondences and
using estimates of data reliability to guide the stereo matching process does
suppress the large stereo matching errors due to features exhibiting poor or
inconsistent information.
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Abstract. We propose a method for rapidly classifying surface re-
flectance directly from the output of spatio-temporal filters applied to
an image sequence of rotating objects. Using image data from only a
single frame, we compute histograms of image velocities and classify
these as being generated by a specular or a diffusely reflecting object.
Exploiting characteristics of material-specific image velocities we show
that our classification approach can predict the reflectance of novel 3D
objects, as well as human perception.

Keywords: specular flow, rapid surface reflectance classification, velocity
histogram, material perception, spatio-temporal filtering.

1 Introduction

Identifying the surface reflectance of an object is a fundamental problem in vi-
sion. Reflectance provides important information about the object’s material and
identity, and given known reflectance, algorithms for shape reconstruction exist
for both, diffuse and specular surfaces [1]. However, because of the strong differ-
ences in the image motion generated by specular and diffuse surfaces, unknown
reflectance is a serious problem for these methods. Previous work on diffuse vs.
specular reflectance classification has relied on specific assumptions and condi-
tions, such as the tracking of surface features during known camera motion [2],
known surface shape [3], the use of structured lights [4], color [5], or a specific
reflectance model [6].

Evidence from human vision, however, suggests that monocular image mo-
tion across a few frames provides sufficient information to classify a surface as
diffuse or specular, e.g. [7] showed that static objects with ambiguous apparent
reflectance could be unambiguously classified as shiny or matte when in motion.
Additionally, [8] demonstrated that it is also possible to generate reflectance illu-
sions from motion: under certain conditions, rotating specular objects look matte
(also see [9]). What aspects of specular motion explain both, the rapid mate-
rial classification and the perceptual errors? Although specular motion patterns
� This work has been supported in part by the EC FP7 Marie Curie IRG-239494.
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Fig. 1. Specular Velocity and Curvature Variability. A. Cross-sections through
3D scenes. The position of the 2D camera (triangle) and a point light source (circle)
are fixed. We find the surface normal at the point on the object where the specular
feature (square) will be visible to the camera. “Specular velocity” is measured as the
distance traveled by the specular feature in x (indicated by fat black line) as the object
rotates 10◦ counterclockwise around its origin. Consider the cuboidal cross-section: 1.
The specular feature (sf) appears on a high curvature point and “sticks” to this region
as the object rotates. 2. The sf moves some distance in the direction of object rotation.
3. The sf appears on a low curvature point. After a 10◦ rotation the distance that it has
traveled, now in opposite the direction of object rotation, has nearly doubled. Compare
this to the sf on the ellipsoid. B. Sf velocities for specular (upper plot) and surface
feature velocities for diffusely reflecting (lower plot) objects per 2◦ rotation. See text
for details.

can be quite complex, we will show that simple statistical measures on image
velocities can be used to classify moving objects as specular or diffusely reflect-
ing, without any additional assumptions or conditions. We will demonstrate that
these classifiers can predict human perception, as well as the material of novel
objects. Rapid methods for reflectance classification, such as the one proposed
here, constitute an important step towards a fully automated vision system.

2 Specular Flow

The relative displacement of a specular feature or highlight due to camera or
observer motion (or, conversely due to object motion relative to a stationary
camera/observer), is negatively related to the magnitude of surface curvature
[10,11], i.e. specular features “rush” across low curvature regions and “stick” to
points of high curvature. In contrast, all points on a moving diffusely reflective
surfaces stick. This suggests that the distribution of velocities across a moving
object may contain important information about the object’s material, because
all specular surfaces with sufficient curvature variation undergoing a generic
motion will have both low velocity “sticky” points and high velocity points, while
diffusely reflective surfaces will have only “sticky” points. Moreover, except for
rotations around the viewing axis, the flow generated by a rigid body motion
will have a principle direction of motion.
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For example, for an in-depth rotating specular object (Fig. 1A) the distribu-
tion of image velocities generated by the specular flow across the object will have
regions of relatively high and low magnitude, whose specific range is directly re-
lated to the magnitude and range of surface curvatures. As an extreme case, a
rotating cube, (0 curvature across sides and positive curvature at the corners)
will produce two kinds of image velocities: high ones, opposite to the direction
of object rotation (along the sides) and those congruent with object rotation
speed and direction (“sticking” to corners). As an object increases in surface
curvature homogeneity the resulting range of image velocities will decrease, the
extreme end being a rotating specular sphere: it will produce image velocities of
magnitude and range 0. This velocity variability can be exploited for reflectance
classification: high image velocity variability, which can be easily identified from
the image velocity histogram, appears to be crucial to induce the spatio-temporal
characteristics associated with perceived shininess [8]. Conversely, specular ob-
jects with low curvature variability will, when rotated, generate low variability
image velocity distributions which are, not surprisingly, not distinct from those
generated by diffusely reflecting objects (Fig. 1B).

3 Implementation

General Strategy. To rapidly classify reflectance properties from image veloci-
ties our strategy was to 1) estimate velocities from rotating specular objects using
spatio-temporal filters, 2) find the principal direction of motion, and 3) classify
the velocity histogram in that principal direction using 3 different approaches:
parametric, and non-parametric density estimation, as well as non-negative ma-
trix factorization. We chose to classify movies on the basis of histogram veloci-
ties because we expected the velocity signature of specular or matte (appearing)
reflectances to be largely object (identity) invariant (but see Section 2 for the
special role of 3D curvature). Furthermore, by focusing on the principal direction
of motion we achieve object motion invariance.

Spatio-temporal Filtering. We filtered image sequences by directionally se-
lective filters G2 (second derivative of a 3D Gaussian) and H2 (and its Hilbert
Transform) at orientations (α, β, γ)i) [12].

fΩ(x, y, z) = G(r)QN (x′) (1)

are the even and odd filters formed by a nth order polynomial QN(x′)1 times
a separable windowing function G(r) (e.g. a Gaussian-like function), both of
which are assumed to be rotationally symmetric. R is the transformation that
these functions are rotated by such that their axis of symmetry points along
the direction of cosines α, β and γ. We estimated velocities from the filter co-
efficients using the max-steering method of Simoncelli [13]. Subsequent analysis
of these velocities was restricted to include velocity samples only from within

1 x′ = αx + βy + γz.
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object boundaries in order to avoid contamination with boundary motion. Ve-
locities were sampled from a grid indicated by the colored dots in Fig. 2C.

Parametric and Non-parametric Density Estimation. We performed prin-
ciple components analysis on image velocities to estimate the dominant direction
of motion for a given movie frame. Image velocities were projected onto this di-
rection vector. To develop a statistical classifier for reflectivity we estimated the
conditional probabilities of the projected velocities for both diffuse and spec-
ular objects. To verify our results did not depend on the details of a specific
density estimation learning procedure, we used three different density learning
approaches.

Histograms. Histogram densities were estimated with a generalized cross-entropy
density estimator [14] that uses a gaussian kernel and data-driven bandwidth se-
lection. To classify a given movie frame into shiny or matte we used histogram
estimates of the conditional densities of velocity ξ given shiny S, P (ξ|S), and
matteM , P (ξ|M), from image sequences judged shiny and matte in [8]. A sample
velocity ξ′ from a test image sequence was classified by comparing the likelihood
ratio P (ξ′|S)/P (ξ′|M) against a threshold k2. Note, that we also used the value
of the likelihood ratio as a graded material measure for the data set. Graded mea-
sures are particularly useful for comparisons to human perception, as discussed
below.

Mixture of Gaussians. To confirm that the shape of a given histogram was indeed
driven by ”diagnostic” (high and low curvature) regions we fitted a Mixture of
Gaussians with two components [15], and computed the posterior probability of
each pixel given either Gaussian distribution. Pixel classifications are illustrated
by mapping the samples back onto the frame they were taken from. From the
two estimated Gaussian means (μ1, μ2) we compute the velocity contrast of the
sample

Cb =
|μ1 − μ2|

max(σ1, σ2)
. (2)

If Cb > 1 the sample is classified as specular, else as matte. The value of Cb also
forms a graded material measure.

Mixture of Histograms Using Non-negative Matrix Factorization. To smooth the
likelihoods and form a low-dimensional representation for the densities, we fac-
torized the velocity histograms using convolutive non-negative matrix factoriza-
tion (NNMF) [16]. We preserved 3 components based on an initial estimate that
3 components account for as much as 97% of the approximation error. Because
the histogram of a test sequence can be represented as a weighted combination
of the 3 components, these weights can be used to represent the velocity dis-
tributions of novel objects. To estimate the weights for a novel sequence, we
maximized the likelihood of the total sample evaluated on the components with

2 k was obtained by a bootstrapping procedure used to constrain the false alarm rate
to 5%.
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respect to the weights. The best fitting weight values were used to classify a
sample as shiny or matte.

Movies. The test set consisted of 36 movies (6 shapes x 6 light probes) of
rotating specular superellipoids (http://bilkent.edu.tr/˜katja/g run.html). Ob-
jects were constructed according to

1 =

[∣∣∣∣ xrx
∣∣∣∣ 2

n2

+
∣∣∣∣ yry

∣∣∣∣ 2
n2

]n2
n1

+
∣∣∣∣ zrz

∣∣∣∣ 2
n1

. (3)

We set rx = 1 and ry = rz = 0.64. Surface curvature was determined by setting
n1, n2 to: 0.3, 0.5, 0.7, 0.8, 0.9 or 1.0 (Fig. 2A). Each object rotated in depth. Its
angular speed was adjusted (0.1, 0.35, 0.61, 0.74, 0.87, 1.0◦/frame) such that the
resulting image velocities were in the range that our filters were sensitive to.

4 Experimental Results

Histograms. Figure 2B illustrates the characteristic changes that the veloc-
ity histogram undergoes as the object decreases in surface curvature variability
(left to right). Table 1 shows normalized Log-Likelihood Ratios (LLR) for all
histograms testing H0 that a given histogram has been generated by a matte
object.

Fig. 2. Renderings, Histograms, and Pixel Classification. A. Sample frames for
superellipsoids (SE) and for the specular and diffusely reflecting Utah Teapot. Numbers
indicate values for n1, n2, in Eq.(3). SEs were rendered under 6 different light probes: 2
natural (L1 (”grace”), L3 (”uffizi”) from http://gl.ict.usc.edu/Data/HighResProbes/),
2 partially- (L2, L4), 2 fully phase-scrambled (L3, L6) versions of L1 and L3, re-
spectively. For each movie 40 512x512 images were rendered with Radiance [17]. B.
Corresponding velocity histograms. C. Corresponding pixel classification results. See
text for details.
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Table 1. Normalized Log-Likelihood Ratios. Values larger than k (k = 0.16) (in
bold) were classified as shiny with a predicted error rate of less than 5%. Training
data are indicated by T .

Light Probe Superellipsoid shape coefficient n1, n2

0.3 0.5 0.7 0.8 0.9 1.0
L1 1.000T 0.362 0.145 0.153 0.114 0T

L2 0.961 0.362 0.184 0.215 0.139 0.031
L3 0.877 0.365 0.184 0.270 0.103 0.011
L4 0.749 0.267 0.178 0.114 0.114 0.003
L5 0.766 0.476 0.223 0.187 0.142 0.014
L6 0.805 0.368 0.159 0.187 0.148 0.003
Average 0.860 0.367 0.179 0.188 0.127 0.010

Table 2. Average Cb. The average was computed across light probes for superellip-
soids with shape coefficients n1 = n2 from 0.3 (cuboidal) to 1 (ellipsoidal). Values > 1
(in bold) indicate that the velocity histogram was classified as bimodal, which could
be a rough predictor of material shininess. Compare the relative magnitudes of values
to average observer ratings in Table 3.

Light Probe Superellipsoid shape coefficient n1, n2

0.3 0.5 0.7 0.8 0.9 1.0
Average Cb 1.658 1.4143 0.6824 0.7247 0.4778 0.1341

Mixture of Gaussians Pixel Classification. Figure 2C shows that the simple
velocity distribution measure was successful in roughly identifying image regions
of high (blue pixels) and low (orange pixels) velocities. Purplish colors indicate
that the sample could come from either Gaussian distribution. Note, that the
distinctiveness of the high and low velocity regions decreases as the amount of
the surface curvature variability decreases: in the corresponding two-Gaussian
model fit, the two components approach a uni-modal mixture. The measure Cb

exploits the bi-modality of specular velocity distributions to classify the material
of test sequences (see Table 2).

Non-negative matrix factorization. The distribution of estimated weights
across the stimulus set is shown in Fig. 3A. Ellipsoidal objects’ velocity his-
tograms (multiples of 6) tended to have high weights on component 2 (solid tri-
angle) whereas most cube-like objects tended have high weights on components
1(circle) and/or 3(square). A very simple shininess criterion can be computed by
taking the ratio of the weights of the 2 ”specular components” and the weight of
the ”matte component” e.g. Cw = 1/2(wf1 +wf3)/wf2, with values larger than
1 being classified as specular (see Fig. 3B).

Objective Classification of Material of Novel 3D Objects. To verify that
the velocity distribution can be sufficient for objectively classifying material we
tested an object with more complex shape variation. We generated 40 frames of
a rotating version of the Utah “Teapot”. This object was rendered with a diffuse
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Fig. 3. NNMF of velocity histograms. A. Estimated weights for our test set. B.
Average values of Cw : 5.4, 1.8, 1.0, 0.7, 0.5, 0.06. The black square on top or next to
each bar indicates average observer data for the same movie (note, observer values are
plotted on a different scale). C. Regression of histogram classifications onto observer
data. See text for details.

Table 3. Human Shininess Ratings. Shown are ratings for 2 light probes (those
eliciting highest and lowest shininess ratings) as well the average data (across all light
probes and observers). Differences in relative apparent shininess for different light
probes is consistent with previous research [19]. In the experiment observers rated
apparent shininess of all 36 light probe – shape combinations.

Light Probe Perceived Shininess of Shape n1, n2

0.3 0.5 0.7 0.8 0.9 1.0
L1 0.9740 0.9635 0.9219 0.8125 0.7552 0.6927
L3 0.8229 0.6875 0.3385 0.2292 0.0938 0.0365
Average 0.8872 0.7830 0.4991 0.3837 0.2578 0.1962

[18] and with a specular reflectance (see Fig. 2A (right)). We evaluated the se-
quence using histograms, mixture of Gaussians, and NNMF approaches. Teapots
were correctly classified as shiny and matte for all three methods. Histograms:
LLR specular and diffusely reflecting teapot were 0.26 (classified as shiny) and
0.008 (classified as matte). Mixture of Gaussians: Cbs for specular and diffusely
reflecting teapot were 1.16 (classified as shiny), and 0.87 (classified as matte).
NNMF: The specular teapot classified as shiny Cw = 33.2, and the diffusely
reflecting teapot was classified as matte Cw = 0.7954.

Predicting Human Perception. In the experiment 4 observers indicated via
keyboard press on a scale from 1 (matte) - 7 (mirror reflection) how shiny a given
superellipsoid appeared. A subset of results are reported in Table 3. Additional
experimental details can be obtained from [8]. Regressing normalized LLRs (Ta-
ble 1) onto normalized observer data (Fig. 3) yielded R2 = 0.45, p < 0.00001.
Repeating the analysis with only the most shiny and matte data points yielded
R2 = 0.75, p = 0.0003. Training data was excluded from the regression.
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5 Discussion

We provide a first account of how to rapidly classify surface reflectance from a
single frame of object motion, without any assumptions. We show that moving
diffusely reflecting, and specular objects with sufficient curvature variability,
generate distinct image velocity distributions whose respective characteristics
can be captured by simple, invariant statistical measures. Our results account
for the misperception of material in [8,9], demonstrating that diffusely reflecting
and apparently matte objects, i.e. those that are specular but with insufficient
surface curvature variability, share the same velocity histogram characteristics.
Thus, we were able to correctly classify a diffusely reflecting object on the basis
of a classifier that was trained on a matte-appearing (but physically specular)
object. In future work we will extend our analysis to a velocity region-based
approach.
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Abstract. In this paper we present a new framework for shape-from-
shading which relies on a novel regularisation term which preserves sur-
face structure. The resulting algorithm is both robust and accurate. We
show that it can recover stable surface estimates from both synthetic and
real world images of complex objects, even under extreme illumination.

1 Introduction

Shape-from-shading is a classical problem in computer vision which has attracted
over four decades of research [1,2]. The aim is to estimate surface shape, typi-
cally in the form of surface normals, given a single intensity image. The problem
is underconstrained and proposed solutions have, in general, made strong as-
sumptions in order to make the problem tractable. However, even when these
assumptions are satisfied (for example in a synthetically produced image) ex-
isting shape-from-shading algorithms still fail to recover accurate surface shape
from images of complex objects.

Minimization methods are a traditional and robust way to solve the shape
from shading problem, first proposed by Horn [3]. These methods try to opti-
mize the brightness error subject to additional regularisation constraints, such
as surface smoothness or integrability. Worthington and Hancock [4] treated the
image irradiance equation as a hard constraint. Their idea was to use robust
regularisers to optimise the solution within the space of solutions which strictly
minimise the brightness error. Prados and Faugeras [5] used viscosity solutions to
solve the partial differential equation which arises from the shape-from-shading
problem. Their method accounts for perspective projection effects but assumes
frontal illumination.

More recently, several authors have posed shape-from-shading in terms of
pairwise Markov Random Fields [6,7,8]. Haines and Wilson [7] describe sur-
face normal direction probabilistically in terms of a Fisher-Bingham distribution
for each pixel. Belief propagation is used to solve for the undetermined degree
of freedom for each surface normal. Although their model provides an elegant
formulation of the problem, in practice the results obtained are unconvincing.
Potetz [8] also uses belief propagation but solves for the surface gradient at each
pixel. The framework uses factor nodes to capture irradiance, smoothness and
integrability constraints. Solving the resulting model is extremely difficult and
results are only shown for a single synthetic image.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 865–872, 2009.
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In this paper we present a new shape-from-shading algorithm which obtains
a solution with zero brightness error while seeking to preserve surface structure.
In practice, our algorithm provides improved results over existing methods on a
wide range of imagery of complex objects.

2 Solving Shape-from-Shading

The aim of computational shape-from-shading is to make estimates of surface
shape from the intensity measurements in a single image. Since the amount of
light reflected by a point on a surface is related to the surface orientation at that
point, in general the shape is estimated in the form of a field of surface normals
(a needle-map). Assuming a normalised and linear camera response, the image
intensity predicted by the simplest Lambertian reflectance model is given by

g(N,L, ρd) = ρdN · L, (1)

where N is the local surface normal, L is a vector in the light source direction and
ρd is the diffuse albedo which describes the intrinsic reflectivity of the surface.

For an image in which the viewer and light source directions are fixed, the
radiance function reduces to a function of one variable: the surface normal.
This image-specific function is known as the reflectance map in the shape-from-
shading literature. The squared error between the observed image intensities,
I(x, y), and those predicted by the estimated surface normals, N(x, y), according
to the chosen reflectance model is known as the brightness error:

EBright(n) =
∑
x,y

(I(x, y)− g(N(x, y),L))2 . (2)

For typical reflectance models, this function does not have a unique minimum.
In fact, there are likely to be an infinite set of normal directions all of which
minimise the brightness error. In the case of a Lambertian surface there will be
a set of normals lying on a cone, all of which have zero brightness error.

2.1 The Variational Approach

In order to make the shape-from-shading problem tractable, the most common
approach has been to augment the brightness error with a regularization term,
EReg(n), which penalises departures from a constraint based on the surface struc-
ture. A wide range of such constraints have been considered, such as surface
smoothness and integrability. In some of the earliest work, Horn and Brooks
[3] used a simple smoothness constraint in a regularization framework. They
used variational calculus to solve the minimisation: n∗ = arg min

n
EBright(n) +

λEReg(n), where λ is a Lagrange multiplier which effectively weights the influence
of the two terms. The resulting iterative solution is [4]:

nt+1 = fReg(nt) +
C(I − nt · L)

λ
L, (3)
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where fReg(nt) is a function which enforces the regularising constraint (in this
case a simple neighbourhood averaging which effectively smooths the field of
surface normals). Note that the surface smoothness constraint is trivially min-
imised by a planar surface. The second term provides a step in the light source
direction of a size proportional to the deviation of nt from the image irradiance
equation and seeks to reduce the brightness error.

The weakness of the Horn and Brooks approach is that for reasons of numerical
stability, a large value of λ is typically required. The result is that the smoothing
term dominates and image brightness constraints are only weakly satisfied. The
recovered surface normals therefore lose much of the fine surface detail and do
not accurately recreate the image.

2.2 The Geometric Approach

An approach which overcomes these deficiencies was proposed by Worthington
and Hancock [4]. Their idea was to choose a solution which strictly satisfies
the brightness constraint at every pixel but uses the regularisation constraint to
help choose a solution from within this reduced solution space. If we make the
assumption that the reflectance properties are homogenous across the surface
(i.e. constant unit albedo), we obtain a simple relationship between observed
intensity and the angle of incidence, θi = ∠NL, between the light source and
surface normal:

I(x, y) = N(x, y) · L = cos θi. (4)

Geometrically, this means that the surface normal must lie on a right circular cone
whose axis is the light source direction and whose half angle is θi = arccos(I).
By constraining the surface normal to lie on the cone, we satisfy the image irra-
diance equation and hence ensure the fullest possible use of the input image. In
essence, the method applies the regularization constraint within the subspace of
solutions which have a brightness error of zero: n∗ = arg min

EBright(n)=0
EReg(n). To solve

this minimisation, Worthington and Hancock use a two step iterative procedure
which decouples application of the regularization constraint and projection onto
the closest solution with zero brightness error:

1. n′
t = fReg(nt)

2. nt+1 = arg min
EBright(n)=0

d(n,n′
t),

where d(., .) is the arc distance between two unit vectors and fReg(nt) enforces
a robust regularizing constraint. The second step of this process is implemented
using nt+1 = Θn′

t, where Θ is a rotation matrix, determined by L, n′
t, and I,

which rotates a unit vector to the closest direction that satisfies θi = arccos(I).

3 A Structure-Preserving Regularisation Constraint

Although the above framework is attractive in that it ensures strict satisfac-
tion of the image irradiance equation, in practice its performance is critically
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determined by the choice of regularisation constraint. Worthington and
Hancock experimented with several “robust” regularisers which sought to smooth
surface normal estimates in such a way as to preserve surface structure, i.e. sharp
changes in orientation. In other words, their approach was based on an assump-
tion of piecewise smoothness. However, there are two key weaknesses in their
approach:

1. Their robust kernels operate on the current surface normal estimates mean-
ing that large changes in surface normal direction which are present at ini-
tialisation are exaggerated as the algorithm iterates.

2. The regularisation constraint is imposed as a one-shot, local process. Many
normals simply alternate between two positions rather than converging to-
wards a solution that satisfies both constraints.

We propose an alternative regularisation constraint which seeks to address both
of these weaknesses. We detect rapid changes in surface orientation (i.e. finescale
detail) in terms of change in the incident angle. Our assumption is that adja-
cent pixels with similar incident angles are likely to have similar surface normal
directions. The influence of the regularisation constraint does not spread over
discontinuities. We also pose regularisation as its own iterative process which is
run to convergence. Although this is computationally expensive, it allows the
influence of local surface features to diffuse over the surface.

For a pixel (x, y), we define the local neighbourhood as Ω(x, y) = {(x +
1, y), (x − 1, y), (x, y + 1), (x, y − 1)}. We precompute the change in incident
angle between all pairs of neighbouring pixels:

S((x1, y1), (x2, y2)) =
| arccos(I(x1, y1))− arccos(I(x2, y2))|

ΔSmax
, (5)

whereΔSmax, which is used to normalize the term, is the largest change in incident
angle over the image.We define a weight between adjacent pixels based on the mag-
nitude of the change in incident angle:W ((x1, y1), (x2, y2)) = eKS((x1,y1),(x2,y2)),
where the constantK determines the behaviour of the constraint (we useK = 10).
For small values, the constraint reduces to local smoothness, for large values more
structure is preserved at the cost of increased sensitivity to noise.

The total of the weights between a pixel and its neighbours is given by:

Z(x, y) =
∑

(i,j)∈Ω(x,y)

W ((x, y), (i, j)). (6)

We impose our structure-preserving regularisation constraint iteratively. The
surface normal at pixel (x, y) at iteration t+ 1 is given by the weighted average
of its neighbouring normals at iteration t:

N(t+1)(x, y) =
μ(t+1)(x, y)
‖μ(t+1)(x, y)‖ , (7)

where

μ(t+1)(x, y) =
∑

(i,j)∈Ω(x,y)

N(t)(i, j)
W ((x, y), (i, j))

Z(x, y)
. (8)



Structure-Preserving Regularisation Constraints for Shape-from-Shading 869

This process is applied iteratively across the surface until convergence. In con-
trast to a simple surface smoothness update, this process retains surface struc-
ture since the weight function ensures smoothing does not occur across sharp
changes in surface orientation.

3.1 Implementation

Our algorithm iteratively interleaves the process of imposing the hard constraint
and enforcing the regularisation constraint. The update equation to impose the
regularisation constraint typically requires 100 to 200 iterations to converge. The
shape-from-shading algorithm typically requires around 5 iterations to converge.
This means the regularisation update is applied on the order of 1000 times. The
whole algorithm runs in around 2.5 minutes using unoptimised Matlab code.

Our implementation makes use of two further standard shape-from-shading
constraints. We assume that surface normals at the boundary lie in the image
plane and are orthogonal to the tangent to the object boundary. At critical
points, where I = Imax, the surface nromal is constrained to a single direction
and hence we can fix N = L. Boundary and critical point pixels are detected
automatically and their normal directions remain fixed.

We initialise our algorithm using the negative gradient method of Worthington
and Hancock [4]. This initialisation places each surface normal on its cone in
the direction opposite to the local image gradient. This is consistent with an
assumption of global convexity.

A summary of the algorithm is as follows:

1. Obtain N(0)(x, y) using negative gradient initialisation [4]
2. Repeatedly apply (7) until convergence
3. Rotate normals back to cone: N(x, y) = ΘN(final)(x, y)
4. Stop if converged, otherwise iterate to step 2

To obtain surface height estimates, we integrate the field of surface normals using
the algorithm of Frankot and Chellappa [9].

4 Experiments

We now demonstrate the results of applying our algorithm to both synthetic
images (drawn from the Stanford database) and real images (drawn from the

Fig. 1. Surfaces recovered from the input image shown in the top left panel of Fig. 2.
From left to right: ground truth, proposed algorithm, [4], [7].
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Fig. 2. Recovered surfaces, surface normals and reilluminations. Ground truth in first
column, remainder show: proposed algorithm, [4] and [7] respectively.
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Coil database). In Fig. 1, we show a novel view of the surfaces recovered using
the proposed algorithm, Worthington and Hancock [4] and Haines and Wilson
[7]. The corresponding view of the ground truth surface is shown in the first
panel. The input image is shown in the top left panel of Fig. 2. Note that the
surface recovered by the proposed algorithm has better global structure whilst
still containing much of the finescale surface detail.

Fig. 2 shows the recovered surfaces and surface normals along with reillumi-
nations of the surface normals under novel lighting. In column 1 we show the
recovered surfaces rendered with frontal illumination. In column 2 we show the
surface normals. The remaining columns show renderings under novel illumina-
tion. The top row shows ground truth images, the remaining rows show results
from the proposed algorithm, Worthington and Hancock and Haines and Wilson
respectively. We assume that the light source vector, L, is known. This is used
in the initialisation and rotation back to the cone. Note that the quality of the
estimated surface shape and reilluminations are considerably improved using the
proposed algorithm.

In Fig. 3 we show the result of applying our method to real images from Coil
database. The input is shown in the first column, the remaining columns show the
surface from different viewpoints. Note that the surfaces in these images deviate
from the Lambertian assumption and contain variations in albedo. Despite this,
our algorithm recovers stable surface estimates which retain the fine surface
detail (e.g. the wing of the duck).

Finally, we show results for non-frontal illumination. The ground truth sur-
faces in Fig. 4 are illuminated from an extreme angle resulting in much of the
surface being in shadow. Note that our algorithm degrades gracefully, recovering
unshadowed portions of the surface independently, whilst still retaining much of
the global structure.

Fig. 3. Surfaces recovered from real images



872 R. Huang and W.A.P. Smith

Fig. 4. Surfaces recovered under extreme illumination

5 Conclusions

We have presented a practical and robust shape-from-shading algorithm which re-
covers stable surface estimates from a wide range of real and synthetic imagery. By
using weights based on the change in incident angle, we are able to preserve struc-
ture such that the solution is not oversmoothed.This allows us to apply regularisa-
tion update iteratively until convergence, ensuring that the constraint is optimally
satisfied. In future work we intend to investigate alternative initialisations and ex-
plore how to incorporate integrability constraints within our framework.

References

1. Durou, J.D., Falcone, M., Sagona, M.: Numerical methods for shape-from-shading:
A new survey with benchmarks. Comput. Vis. Image Underst. 109(1), 22–43 (2008)

2. Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape–from–shading: a survey. IEEE
Trans. Pattern Anal. Mach. Intell. 21(8), 690–706 (1999)

3. Horn, B.K.P., Brooks, M.J.: The variational approach to shape from shading. Com-
put. Vis. Graph. Image Process. 33(2), 174–208 (1986)

4. Worthington, P.L., Hancock, E.R.: New constraints on data–closeness and needle
map consistency for shape–from–shading. IEEE Trans. Pattern Anal. Mach. In-
tell. 21(12), 1250–1267 (1999)

5. Prados, E., Faugeras, O.: Perspective shape from shading and viscosity solutions.
In: Proc. ICCV, vol. 2, pp. 826–831 (2003)

6. Han, F., Zhu, S.C.: Cloth representation by shape from shading with shading prim-
itives. In: Proc. CVPR, vol. 1, pp. 1203–1210 (2005)

7. Haines, T.S.F., Wilson, R.C.: Belief propagation with directional statistics for solv-
ing the shape-from-shading problem. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part III. LNCS, vol. 5304, pp. 780–791. Springer, Heidelberg (2008)

8. Potetz, B.: Efficient belief propagation for vision using linear constraint nodes. In:
Proc. CVPR, pp. 1–8 (2007)

9. Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from
shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988)



3D Object Reconstruction Using Full Pixel
Matching

Yuichi Yaguchi, Kenta Iseki, Nguyen Tien Viet, and Ryuichi Oka

The University of Aizu
Aizu-wakamatsu, Fukushima, 965-8580 Japan

{d8101109,m5121118,m5122105,oka}@u-aizu.ac.jp
http://iplpcx1.u-aizu.ac.jp

Abstract. This paper proposes an approach to reconstruct 3D object
from a sequence of 2D images using 2D Continuous Dynamic Program-
ming algorithm (2DCDP) as full pixel matching technique. To avoid us-
ing both calibrated images and fundamental matrix in reconstructing 3D
objects, the study uses the same approach with Factorization but aims
to demonstrate the effectiveness in pixel matching of 2DCDP compared
with other conventional methods such as Scale-Invariant Feature Trans-
form (SIFT) or Kanade-Lucas-Tomasi tracker (KLT). The experiments
in this study use relatively few uncalibrated images but still obtain ac-
curate 3D objects, suggesting that our method is promising and superior
to conventional methods.

1 Introduction

Precise and compatible reconstruction of 3D real world objects from images or
video sequences remains a great challenge in computer vision. There have been
many image-based modeling methods developed, such as the stereo method [1],
shape from shading [2], photometric stereo [3], baseline matching method us-
ing epipolar geometry [4,5], Factorization methods [6,7], and shape from silhou-
ettes [8]. Most of these methods achieve their goals under specific conditions and
require extra input information, such as internal and external camera parame-
ters or light source position (see Table 1). All of them except Factorization need
precise camera parameters, which are contained in a fundamental matrix. Nor-
mally, fundamental matrix can be extracted from several calibrated images [9].
An effective approach, Quasi-dense baseline matching, developed by J. Kan-
nala and S.S. Brandt [10], uses the fundamental matrix and seeds provided by
SIFT [11] or KLT tracker [12] to obtain more matching points to reconstruct 3D
objects. However, materials such as movies and photos taken by ordinary people
are difficult to calibrate. Another approach, Factorization, does not require the
fundamental matrix and calibrated images to reconstruct 3D objects, so it is still
a practical method from this situation.

In Factorization, SIFT and KLT are used as pixel matching techniques. They
require small variation of angle in sequences of input images, and can obtain

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 873–880, 2009.
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Table 1. 3D reconstruction methods summary: ‘x’ indicates (a) Camera parameter,
(b) Fixed camera position, (c) Fixed light position, (d) Camera distance, (e) Non-
peculiarity scale matrix, (f) Corresponding points, (g) Minimum number of required
images

Method Characteristic (a) (b) (c) (d) (e) (f) (g) Note

Stereo method Parallax +
Triangular surveying x x x 2 Principle of human eye

Shape from
shading Reflection coefficient map x x x x 1 Smooth object

Photometric
stereo

Reflection coefficient
difference

x x x 3 Lambertian surface
model

Baseline
matching

E/F Matrix +
Camera motion

x x 2 Weak matching noise

Factorization Pixel correspondence +
Motion separation x x 3 Affine camera model

Shape from
silhouettes

Back projection +
Voting x x x 4+ Convex object only

only small number of matching pixel. For this reason, Factorization needs to use
numerous input images to increase the amount of matching pixels.

The main objective of this paper is to propose an effective method to re-
construct 3D objects from few uncalibrated images by using the 2DCDP [13]
algorithm and then Factorization to calculate points in 3D space. The 2DCDP
algorithm in this paper is an advanced implementation of the 2DCDP developed
by Yaguchi, Iseki, and Oka [13]. This algorithm preserves 2D pixel correlation
and assures continuity and monotonicity in the input image, thereby giving a
suitable full pixel matching ability. This fact is quite an advantage over Factor-
ization, which requires many reliable matching points to calculate object shape
and camera motion.

Section 2 comprises an overview of the 2DCDP algorithm. Section 3 describes
3D object reconstruction using the Factorization method. Section 4 shows the
experimental results for nonparametric 3D object reconstruction. Finally, Section
5 is our conclusion.

2 Image Registration Algorithm

2.1 Definition of the 2DCDP Algorithm

2DCDP is an extension of CDP [14] to 2D correlation, and is an effective algo-
rithm for full-pixel matching (Figure 1(a)). The pixel coordinates of input image
S and reference image R are defined by:

S � {(i, j)|1 ≤ i ≤ I, 1 ≤ j ≤ J}, R � {(m,n)|1 ≤ m ≤M, 1 ≤ n ≤ N}. (1)

The pixel value at location (i, j) of input image Sp is Sp(i, j) = {r, g, b}, and
the pixel value at location (m,n) of reference image Rp is Rp(m,n) = {r, g, b},
where r, g, and b are normalized red, green, and blue values respectively, and 0 ≤
{r, g, b} ≤ 1. We define the mapping R→ S, (m,n) ∈ R and (ξ(m,n), η(m,n)) ∈
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Fig. 1. Full pixel matching overview. (a) An example of full pixel matching; (b) Optimal
paths are able to explain an 3D space (i, j, l) on the input image. l is rank, such that
l = m + n− 1.

S by (m,n) =⇒ (ξ(m,n), η(m,n)), setting the end location for pixel matching as
î = ξ(M,N), ĵ = η(M,N) and the point (̂i, ĵ) as a nomination for the spotting
point determined afterM+N−1 iterations of the proposed algorithm. Next, we
set the local distance d(i, j,m, n) as the difference between Sp(i, j) and Rp(m,n),
and w(i, j,m, n) as the weighted value of each local calculation. In this implemen-
tation, the local distance is determined by d(i, j,m, n) = (Sp(i, j)−Rp(m,n))2,
and weighted value sets as w(i, j,m, n) = 1 for all paths (Figure 2(c)). The ac-
cumulated local minimum D(i, j,m, n) is used to evaluate the decision sequence,
and is defined as:

D(̂i, ĵ,m, n) = (2)

1
W

min
ξ,η
{

M∑
m=1

N∑
n=1

w(ξ(m,n), η(m,n),m, n)d(ξ(m,n), η(m,n),m, n)}.

Then ξ∗(m,n) and η∗(m,n) are used to represent the optimal solutions in
ξ(m,n) and η(m,n) respectively, where W is the optimal accumulated weight
W =

∑
m,n w(ξ∗(m,n), η∗(m,n),m, n). To ensure continuity and monotonicity,

K(m,n) = {ξ(m− 1, n), η(m− 1, n)} and L(m,n) = {ξ(m,n− 1), η(m,n− 1)}
are used to define the sets of points that are movable in the i and j directions
in the input image, taken from the movements in the m and n directions in the
reference image. The following equation defines the relationship between two
corresponding pixels (m− 1, n− 1) and (m,n) (see Figure 1(b) and Figure 2):

(ξ(m− 1, n− 1), η(m− 1, n− 1)) ∈
K(m,n)⊗ L(m− 1, n) ∩ L(m,n)⊗K(m,n− 1). (3)

Here, the operator⊗ represents the connection between a set of points on the left
and a set of points on the right. To calculate accumulated local distance, each ac-
cumulated localD(i, j,m, n) is derived from two previous accumulated local min-
imum D(i′, j′,m − 1, n) and D(i′′, j′′,m, n − 1). In this way, we define rank l =
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Fig. 2. Pixel corresponding overview. (a) Two directions and seven paths for selecting
optimal path to accumulate value. (b) This figure shows only one case (linear matching)
among the possible cases for optimal matching of local images, which include many
different cases of nonlinear optimal matching of local areas. (c) Seven path directions
and weighted values. Weighted value w is set to 1 in our implementation but it can
change. (d) Each i and j direction can connect seven candidate pixels as (a) and (c).
2DCDP selects the node that has minimal accumulation value from among these paths,
but a node depends on only two lower-rank nodes.

m + n − 1, as shown in Figure 1 (b), to smoothly calculate the accumulated lo-
cal minima. A notice for the accumulation and back-tracking in the 2DCDP is
that it selects two local paths that are needed to check the connection of the four
points (m,n), (m− 1, n), (m,n− 1), and (m− 1, n− 1) that form a quadrilateral
(Figure 2(b)).

3 Method for 3D Reconstruction from Motion

Factorization [6,15] is used to factor a measurement matrix into a camera motion
matrix and a 3D coordinates matrix without using camera parameters.

First, set the number of matching pixels between If (f = 1, 2, . . . F ) input
images and the reference image found by 2DCDP as P . The trajectory vector
Tα is defined as: Tα = (x1α y1α . . . xFα yFα)�, α = 1, 2, . . . , P . The centroid
vector Tc = 1

P

∑P
α=1 Tα describes the origin for scene coordination. Using Tα

and Tc, moment matrix C is calculated as:

C =
P∑

α=1

(Tα −Tc)(Tα −Tc)�. (4)
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Eigenvalues λ1,. . . ,λ2F and Eigenvectors u1,. . . ,u2F are calculated by applying
SVD to C. Then Tα can be expanded as: Tα = Tc + c1u1 + c2u2 + c3u3 + . . . .
Eigenvalues λ1,. . . ,λ2F are in non-increasing order. For this reason, Tα can be
approximated as a 3D Affine space by using the first three Eigenvectors u1,u2,
and u3 if Tc is considered to be the centroid vector of that space. Alternatively,
define the coordinates of the 3D point which corresponds to the k − th scene of
Tα as (Xα, Yα, Zα), tk as the origin, and {ik, jk, kk} as the base coordinates
of camera position. Then the position of Tα, in camera coordinates, is defined
as rkα = tk + Xαik + Yαjk + Zαkk. If a 3D affine camera model is used to
approximate the perspective projection, the projection of (Xα, Yα, Zα) to a 2D
image is (xα yα)� = Arα +b = m0+Xαm1+Yαm2+Zαm3. In these equations,
A is a 2×3 internal camera-parameter matrix that depends on the camera model,
b is a 2D translation vector, and {mi|i = 0, 1, 2, 3} are 2D vectors derived
from internal camera parameters and the camera position in the scene. If m0 =
Tc, Tα belongs to a 3D affine space, and this condition is called Affine space
constraint [16]. This space is constructed from m1, m2, and m3, which can be
expressed in terms of u1,u2, and u3: mj =

∑3
i=1 Aijui (j = 1, 2, 3). From this

equation, camera motion and object shape can be calculated from the metric
matrix AA� using nonlinear least-square fitting.

4 Experiment

4.1 Experiment Specification

This section describes the results of using the proposed method to reconstruct 3D
objects from just a few hard-deformed images. It also compares the results with
those for other conventional methods. The computer used for the experiments
was a Mac running OS X, with dual Xeon 3.0 GHz processors, 16 GB SDRAM,
and a 300 GB HDD. The cameras comprised a Nikon D40 DSLR for Objects
1–3 and 5, and a Casio Exilim EX-Z1000 for Object 4. In these experiments,
the background of the input images was removed manually, and the color of the
background was set to (0,0,255) in RGB color space. In the contrast experiments,
we used KLT tracker [12] and SIFT tracker [11] to extract correspondent pixels.
Three images were used for Objects 1 and 3, five images for Object 2, and four
images for Object 4, as indicated in Figure 3.

4.2 Results of 3D Reconstruction

Figure 3 shows reconstructed 3D objects using the proposed method with texture-
mapped and mesh-structured objects using result of 2DCDP. Each of these ob-
jects is reconstructed either in dense mesh structure form alone or with texture
mapping. Although some matching errors and occlusion occurred during the
full pixel matching phase, the proposed method was still able to form the early
shapes of objects precisely. Object 4 in Figure 3(d) was reconstructed from im-
ages captured by a person who did not mention either camera parameters or
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(e) Object 5: Tsuruga castle, Aizuwakamatsu, Japan.

Result of full pixel matching

(f) Object 6:Hand written image

Fig. 3. Comparison Result of pixel matching and 3D reconstruction using 2DCDP
and SIFT between an arbitrarily shaped reference image and another scene image.
The reference image is drawn at (0,0,255) in RGB color space via user interaction for
cut-out background because our method assumes template image is already known.

position, but the result was still acceptably close to the 3D object shape. More-
over, Table 2 indicates the relatively fast calculation time for 2DCDP which
will guarantee the applicability of 2DCDP to real-world object reconstruction.
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Table 2. 2DCDP calculation time, image size, number of images for reconstruction,
accumulation of contributing rate from first to third Eigenvalues of equation (4) and
the ratio of fourth and third Eigenvalues

Object 1 Object 2 Object 3 Object4
Input image size 200x132 200x132 150x150 200x129

Reference image size 96x104 89x107 150x150 125x102
Number of Images 3 5 3 4

Calculation time (second) 128.7685 198.706 227.3417 206.413
Accumulation of propotion rate 0.9985 0.9992 0.9993 0.9984

λ4/λ3 0.0622 0.1483 0.1950 0.2320

Table 3. Comparison between the proposed method and the KLT-based and SIFT-
based methods. (0 means failure of point tracking or reconstruction.)

Method Object 1 Object 2 Object 3 Object 4
2DCDP 7601 6799 7005 8115

Matching points KLT 0 0 0 0
SIFT 0 7 9 3

2DCDP 7496 6731 6818 7981
Number of polygons KLT 0 0 0 0

SIFT 0 6 10 0

Table 3 shows the comparative numbers of matching points and polygons found
by 2DCDP, SIFT, and KLT. Matching result of 2DCDP and SIFT are shown
by Figure 3 (a)–(d). As the numbers indicate, SIFT and KLT could not find
sufficient matching points in these large-variation images because they expected
small-variation pixel movement in image sequences. For this reason, Factoriza-
tion did not have enough corresponding pixels to form 3D objects. On the other
hand, the proposed method demonstrated its ability to find corresponding pixels
in these large-variation images. Since equation 4 suggests using principal compo-
nent analysis [17], the bottom of Table 2 indicates the degree of separation be-
tween camera motion and object shape. The accumulated proportion rate using
the first three Eigenvalues being almost equal to units means that the 3D object
was well approximated by the 3D affine space. (λ4/λ3) represents the noise in the
approximation calculation, and these noise values are sufficiently close to zero
for the moment matrix rank to be considered as three. By comparing the noise
values in the bottom of Table 2 and the reconstructed object shapes in Figure 3,
the difference in quality between Objects 1 and 4 is recognizable because of the
difference between the noise values for them. The Factorization method is able
to reconstruct a 3D object shape not only from the images above but also from
hand-drawn cartoons (Figure 3(f)) and large-scale object images (Figure 3(e)).
These examples indicate that the proposed method can be considered effective
for many purposes.

5 Conclusion

This paper has proposed a pixel matching-based 3D reconstruction method us-
ing 2DCDP and Factorization, which needs only a few images and no internal
or external camera parameters. The proposed method can find optimal pixel
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correspondence between hard-deformed images using 2DCDP, and can recon-
struct 3D objects using the Factorization method with corresponding pixels de-
rived from 2DCDP. A problem of 2DCDP is that matching errors will occur
if pixels are occluded or on texture-less curved surfaces. However, the Factor-
ization method can overcome cover these matching errors because of the large
number of corresponding pixels supplied by 2DCDP. To improve the proposed
method, the matching errors should be reduced before applying Factorization,
occluded points in matching results should be determined to estimate more suit-
able matching points between images, and, finally, a faster matching algorithm
for optimal pixel matching should be developed.
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Abstract. Rigidity and reflectance are key object properties, important
in their own rights, and they are key properties that stratify motion re-
construction algorithms. However, the inference of rigidity and reflectance
are both difficult without additional information about the object’s shape,
the environment, or lighting. For humans, relative motions of object and
observer provides rich information about object shape, rigidity, and reflec-
tivity. We show that it is possible to detect rigid object motion for both
specular and diffuse reflective surfaces using only optic flow, and that flow
can distinguish specular and diffuse motion for rigid objects. Unlike non-
rigid objects, optic flow fields for rigid moving surfaces are constrained by a
global transformation, which can be detected using an optic flow matching
procedure across time. In addition, using a Procrustes analysis of struc-
ture from motion reconstructed 3D points, we show how to classify spec-
ular from diffuse surfaces.

Keywords: Optic flow, rigidity detection, specular motion, reflectance
classification.

1 Introduction

For some computer vision applications like shape analysis from motion, it is
typically required to know the material and rigidity of the objects. For instance,
there would exist some difficulties to track highly reflective objects like cars
without knowing if the object appearance remains constant across frames. Hence,
most algorithms usually have strong assumptions about both the reflectivity and
rigidity. For example, structure from motion algorithms assume rigidity and it
is difficult to extract the point motion information needed without diffusely
reflective and patterned objects [1]. Although there are methods to handle both
nonrigid structure from motion and shape from specular flow, these methods are
derived under the assumption that the rigidity and reflective properties of the
object are known [2,3,4,5].
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Detecting that an object is shiny and rigid would allow a tracking system to
rely more on appropriate measurements and improve performance. Methods for
rapidly classifying the reflectivity and rigidity of an object would provide the
basis for automated recovery. Further, to be most useful, such methods should
have minimal information demands. Ideally, we would like an assumption free,
fast, image-based method for material and rigidity classification. In this paper
we show how optic flow information from a single camera can be used to classify
both rigidity of moving objects, and the reflectivity of rigid objects.

Previous methods for classifying material have largely relied on the ability to
control the lighting in the scene, using multiple lights, structured lights, color,
stereo, or combinations of these. For examples, see [6,7,8,9,10,11]. Oren and
Nayar [12] develop a classification strategy to distinguish image points whose
motions affected by specular reflectance from points behaving like diffuse reflec-
tors based on caustic curves. To our knowledge, we are the first to suggest that
rigidity can be classified for both diffuse and specular surfaces from optic flow
information alone.

In this paper we develop an approach to classify the rigidity and reflectiv-
ity of a moving body using only optic flow information. Our approach consists
of two parts. We show that rigidity produces characteristic transformations in
optic flow that holds for objects with both diffuse and specular reflectance. We
exploit this information to develop an optic flow matching algorithm for rigidity
classification. We also show how an analysis of the consistency of structure from
motion reconstruction can be used to identify diffuse rigid objects.

2 Rigidity from Optic Flow

To detect the rigidity of a specular or diffusely reflecting object from optic flow,
we show a simple relationship exists between the optic flow fields at two time
points for far-field environmental illumination and orthographic (or paraperspec-
tive) viewing. In particular, the flow fields generated by a rigid body motion that
differ by a global transformation is derived below.

In order to derive a relationship between optic flow and rigid object motion,
we assume that both the viewer and the environment are far from the object,
approximated by orthographic viewing and illumination parameterized by direc-
tion on a sphere. These assumptions are not overly restrictive as [2] has shown
that paraperspective is an exceedingly good approximation for most scenes. As
shown in Fig. 1, the object surface F (x, y) = (x, y, f(x, y)) is represented as a
function of image coordinates x, y, n(x, y) = S(θ, φ) indicates the surface normal
at the surface point F (x, y) with direction (θ, φ), S represents the mapping be-
tween spherical and cartesian coordinates, u(x, y) is the optic flow results from
the rigid body transformation T . Because the viewing direction is v = (0, 0, 1),
the mirror direction r = S(θ, 2φ) produces the image point at (x, y).

Rigid body transformation T can be applied to the surface F as T [F (x, y)] =
R [F (x, y)] + t, with R and t refer to the rotation matrix and the translation
vector. This induces a motion field in spatial coordinates:
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Fig. 1. Assumptions for our treatment of the rigidity from optic flow problem, adapted
from [4]. A surface f(x, y), reflecting a far-field illumination environment viewed ortho-
graphically to produce an image I(x, y), undergoes a rigid body transformation T .

(
dx
dt
dy
dt

)
= I

(
−RṘTF (x, y) + t

)
, (1)

where I =
(

1 0 0
0 1 0

)
is the orthographic projection matrix, and ṘT is the trans-

pose of the cross product matrix Ṙ formed from the rotation axis ω, where Ṙ
takes the following form:

Ṙ = [ω×] =

⎛⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞⎠ . (2)

For a fixed rotation axis, ṘTF (x, y) is a constant flow. Thus, the optic flow
pattern generated by a rigid-body transformation is an added translation and
a global transformation that is the projection of the rotation onto the carte-
sian plane −IR: the flow is being rotated across time. This means that a global
transformation of the motion field across time provides critical information about
rigidity. For textured diffusely reflective objects, this motion field result trans-
lates directly into optic flow. After removing a global translation, we expect a
rigid body motion to produce optic flow patterns that are projected rotations of
an initial flow pattern.

We next show a similar result for specular surfaces, which reveals that the
global transformations of optic flow patterns is a key piece of information about
object rigidity. Because translations simply translate the flow under the viewing
and illumination assumptions, we focus on rotations. For a specular surface, if
the surface normals are rotated by a rotation R around an axis ω, then the trans-
formation as a function of time is given by R(t) [ω×]. In cartesian coordinates,
dn
dt = R(t) [ω×] n. This transformation of the normal field induces a specular
flow field. Adapting the results in [5] to the case of object motion (rather than
environment motion), an explicit relationship between the reflection direction
and the first order derivatives of the surface can be used to relate differential
changes in surface normals to optic flow, when the surface normals are expressed
in spherical coordinates:



884 D. Zang, K. Doerschner, and P.R. Schrater

(
dφ
dt
dθ
dt

)
=

(
1

2|∇f |(1+|∇f |2) 0
0 1

2|∇f |2

)(
fx fy

−fy fx

)(
fxx fxy

fxy fyy

)(
dx
dt
dy
dt

)
. (3)

To convert the normal flow between spherical coordinates and cartesian coordi-
nates, we use the jacobian J of the cartesian to spherical coordinates mapping:(

dφ
dt ,

dθ
dt

)T

= Jdn
dt . Chaining these relationships, the difference between a flow

at an initial time t = 0 and a later time t is a rotation of the flow. This shows
that specular flow patterns will differ by global transformations for rigid body
motions.

Consequently, by matching optic flow patterns for motion sequences across
time, classification can be made based on the measure of average angular error
(AAE) [13]. The magnitude of AAE can be used to classify surface points as
rigid, with small AAE indicating rigid and large AAE indicating nonrigid.

3 Distinguishing Specular and Diffuse Rigid Bodies

To distinguish rigid motions from diffusely reflective and specular objects, we
use structure from motion [14] to reconstruct a candidate shape, and then assess
the variation of the shape across time using Procrustes analysis [15]. For diffuse
reflective and rigid objects, we would expect the variation in the reconstructed
shape to be low and much higher for specular and nonrigid surfaces. Structure
from motion is applied to a set of points that are tracked using normalized corre-
lation [16]. To assess shape variation, we used a Procrustes analysis that removed
the means of the set of tracked points within each time frame and aligned the
points by finding a global rotation that minimized the least-squares difference be-
tween corresponding points. But unlike the normal Procrustes analysis, the scale
is not removed. The average of the Euclidean distances between corresponding
aligned points provides a measure of shape change that can be computed across
time lags. Large values of this average shape change (ASC) measure indicate
the surface is not both rigid and diffuse reflective. Combined with the optic flow
matching measure, these optic flow based measures can distinguish rigid from
nonrigid objects, and diffuse rigid from specular rigid motions.

4 Optic Flow Computation

We use a combined global local differential method (CLG) for optic flow com-
putation based on Bruhn et al. [17]. CLG yields accurate, dense flow fields that
are robust against noise. The method estimates the flow field by minimizing an
energy function:

E(u) =
∫

Ω

(ψ1(uTJρ(∇3f)u) + αψ2(1− |∇u|2))dxdy , (4)
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where Ω denotes the image domain, α serves as regularization parameter, u =
[u, v, 1]T is the flow field, ∇ refers to the spatial gradient, and ∇3 is the spatio-
temporal gradient. The function Jρ takes the form Jρ(∇3f) = Kρ ∗ (∇3f∇3f

T ),
whereKρ means a Gaussian kernel with standard deviation ρ. Two nonquadratic
penalisers ψ1(·) and ψ2(·) are computed as

ψi(z) = 2β2
i

√
1 +

z

β2
i

i ∈ {1, 2} , (5)

with β1 and β2 as scaling parameters to handle outliers. For all the parameters,
we take suggested values from [17].

5 Experimental Results

Test set. Our test set was comprised of novel 3D objects, generated by sinu-
soidally modulated spheres, which were organized into 4 categories according to

Fig. 2. Example frames (left to right: 1, 34, 67, 100) from our test for each of the 4
objects categories (top to bottom): specular nonrigid, diffuse nonrigid object, specular
rigid and diffuse rigid. See text for details.
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Fig. 3. Selected feature points tracked through 100 frames shown for all 4 object cat-
egories (left to right): specular nonrigid, diffuse nonrigid, specular rigid, and diffuse
rigid
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Fig. 4. A. ASC for all 4 object categories as a function of number of tracked feature
points. B. Average angular errors between an initial flow field based on frames 1-2 and
subsequent fields as a function of frame number. AAEs become larger with increasing
lag, and are reliably small and stable for rigid objects of either reflectance.

their reflectivity (specular vs. diffuse) and rigidity (rigid vs. nonrigid). Nonrigid
deformations were achieved by animating a phase shift of one sinusoidal modu-
lator, in addition to scaling the object either in width (specular) or width and
height (diffuse). For each measure (ASC, AAE) we generated 4 (1 per object
category) 100-frame test sequences, some example frames are shown in Fig. 2.
For ASC experiments, objects underwent a 90◦ rotation around the viewing di-
rection and an xy-translation, whereas for AAE experiments, objects underwent
a 90◦ rotation only.

Average shape change (ASC). We track object features across the duration
of a sequence (see Fig. 3), and compute the ASC by comparing shape changes
between the first and second 50-frame block. As shown in Fig. 4A, the ASC
measure stabilizes when more than 100 feature points are tracked. Small ASC
values reliably indicate the diffusely reflective, rigid object.

Average Angular Error (AAE). Fig. 5 shows sample optic flow fields for each
object category. As expected, the flow fields generated by the specular rigid
object are very similar between frames - up to a rotation (this is also true for
the diffuse, rigid object - but not shown here). However, flow fields for nonrigid
objects of either reflectance can vary in non-systematic ways. The AAE was
computed by comparing the initial flow field (computed between frames 1 and
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Table 1. Our method allows for a sequential classification approach: In step 1 dif-
fuse rigid objects are successfully classified. In step 2, the AAE reliably distinguishes
between rigid and non-rigid objects.

Step in Analysis Object Class

specular diffuse

rigid nonrigid rigid nonrigid

1. ASC large large small large
2. AAE small, stable large, > diffuse small, stable large, <specular
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Fig. 5. The top row shows initial flow fields (see text) for specular nonrigid, diffuse
nonrigid and specular rigid objects, respectively (see Fig 2 Column 1 for corresponding
sequence frames).The bottom row shows optic flow fields between frames 51 and 52.

2) and the inverse rotated subsequent two-frame flow fields, incrementing frame
counts by 10. As results in Fig. 4B illustrate, the AAEs for specular rigid and
diffuse rigid objects are relatively stable and small compared to nonrigid objects
of either reflectance. Thus it provides a reliable measure of the rigidity of an
object.

Table 1 summarizes qualitatively results of each step (1.ASC, 2. AAE) in our
approach.

6 Conclusions

We have shown that it is possible to distinguish the rigidity and reflectance
of moving objects on the basis of the optic flow fields they generate. Rigidity
for both specular and diffuse surfaces constrains the optic flow to follow a pro-
jected transformation across time. Using a structure from motion reconstruction
criterion, it is possible to distinguish specular from diffuse reflectance of rigid
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motions. In future work it will be possible to formulate a statistical optic-flow
based rigidity and reflectivity classifier and quantify the error rates.
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Abstract. In this paper we address the challenging problem of recov-
ering the depth of a scene from a single image using defocus cue. To
achieve this, we first present a novel approach to estimate the amount
of spatially varying defocus blur at edge locations. We re-blur the input
image and show that the gradient magnitude ratio between the input and
re-blurred images depends only on the amount of defocus blur. Thus, the
blur amount can be obtained from the ratio. A layered depth map is then
extracted by propagating the blur amount at edge locations to the entire
image. Experimental results on synthetic and real images demonstrate
the effectiveness of our method in providing a reliable estimate of the
depth of a scene.

Keywords: Image processing, depth recovery, defocus blur, Gaussian
gradient, markov random field.

1 Introduction

Depth recovery plays an important role in computer vision and computer graph-
ics with applications such as robotics, 3D reconstruction or image refocusing. In
principle depth can be recovered either from monocular cues (shading, shape,
texture, motion etc.) or from binocular cues (stereo correspondences). Conven-
tional methods for estimating the depth of a scene have relied on multiple images.
Stereo vision [1,2] measures disparities between a pair of images of the same scene
taken from two different viewpoints and uses the disparities to recover the depth.
Structure from motion (SFM) [3,4] computes the correspondences between im-
ages to obtain the 2D motion field. The 2D motion field is used to recover the
3D motion and the depth. Depth from focus (DFF) [5,6] captures a set of im-
ages using multiple focus settings and measures the sharpness of image at each
pixel locations. The sharpest pixel is selected to form a all-in-focus image and
the depth of the pixel depends on which image the pixel is selected from. Depth
from defocus (DFD) [7,8] requires a pair of images of the same scene with differ-
ent focus setting. It estimates the degree of defocus blur and the depth of scene
can be recovered providing the camera setting. These methods either suffer from
the occlusion problem or can not be applied to dynamic scenes.
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Fig. 1. The depth recovery result of the book image. (a) The input defocused image.
(b) Recovered layered depth map. The larger intensity means larger blur amount and
depth in all the depth maps presented in this paper.

Recently, approaches have been proposed to recover depth from a single image
in very specific settings. Several methods [9,10] use active illumination to aid
depth recovery by projecting structured patterns onto the scene. The depth
is measured by the attenuation of the projected light or the deformation of the
projected pattern. The coded aperture method [11] changes the shape of defocus
blur kernel by inserting a customized mask into the camera lens, which makes
the blur kernel more sensitive to depth variation. The depth is determined after
a deconvolution process using a set of calibrated blur kernels. Saxena et al . [12]
collect a training set of monocular images and their corresponding ground-truth
depth maps and apply supervised learning to predict the value of the depth map
as a function of the input image.

In this paper we focus on a more challenging problemof recovering the depth lay-
ers from a single defocused image captured by an uncalibrated conventional cam-
era. As the most related work, the inverse diffusion method [13], which models the
defocus blur as a diffusion process, uses the inhomogeneous reverse heat equation
to obtain an estimate of the blur at edge locations and then proposed a graph-cut
basedmethod for inferring the depth in the scene. In contrast,wemodel the defocus
blur as a 2D Gaussian blur. The input image is re-blurred using a known Gaussian
function and the gradient magnitude ratio between input and re-blurred images is
calculated. Then the blur amount at edge locations can be derived from the ratio.
We also construct a MRF to propagate the blur estimate from the edge location to
the entire image and finally obtain a layered depth map of the scene.

Our work has three main contributions. Firstly, we propose an efficient blur
estimation method based on the gradient magnitude ratio, and we will show that
our method is robust to noise, inaccurate edge location and interference from
near edges. Secondly, without any modification to the camera or using additional
illumination, our blur estimation method combined with MRF optimization can
obtain the depth map of a scene by using only single defocused image captured
by conventional camera. As shown in Fig. 1, our method can extract a layered
depth map of the scene with fairly good extent of accuracy. Finally, we discuss
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two kinds of ambiguities in recovering depth from a single image using defocus
cue, one of which is usually overlooked by previous methods.

2 Defocus Model

As the amount of defocus blur is estimated at edge locations, we must model
the edge first. We adopt the ideal step edge model which is

f(x) = Au(x) + B, (1)

where u(x) is the step function. A and B are the amplitude and offset of the
edge respectively. Note that the edge is located at x = 0.

When an object is placed at the focus distance df , all the rays from a point
of the object will converge to a single sensor point and the image will appear
sharp. Rays from a point of another object at distance d will reach multiple
sensor points and result in a blurred image. The blurred pattern depends on
the shape of aperture and is often called the circle of confusion (CoC) [14]. The
diameter of CoC characterizes the amount of defocus and can be written as

c =
|d − df |

d

f2
0

N (df − f0)
, (2)

where f0 and N are the focal length and the stop number of the camera respec-
tively. Fig. 2 shows a thin lens model and how the diameter of circle of confusion
changes with d and N , given fixed f0 and df . As we can see, the diameter of the
CoC c is a non-linear monotonically increasing function of the object distance
d. The defocus blur can be modeled as the convolution of a sharp image with
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Fig. 2. (a) A thin lens model. (b) The diameter of CoC c as a function of the object
distance d and f-stop number N given df = 500mm, f0 = 80mm.

the point spread function (PSF). The PSF can be approximated by a Gaussian
function g(x, σ), where the standard deviation σ = kc is proportional to the
diameter of the CoC c. We use σ as a measure of the depth of the scene. A
blurred edge i(x) can be represented as follows,

i(x) = f(x)⊗ g(x, σ). (3)
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amount
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⊗σ1

Fig. 3. Our blur estimation approach: here, ⊗ and ∇ are the convolution and gradient
operators respectively. The black dash line denotes the edge location.

3 Blur Estimation

Fig. 3 shows the overview of our local blur estimation method. A step edge is
re-blurred using a Gaussian function with know standard deviation. Then the
ratio between the gradient magnitude of the step edge and its re-blurred version
is calculated. The ratio is maximum at the edge location. Using the maximum
value, we can compute the amount of the defocus blur of an edge.

For convenience, we describe our blur estimation algorithm for 1D case first
and then extend it to 2D image. The gradient of the re-blurred edge is:

∇i1(x) = ∇
(
i(x)⊗ g(x, σ0)

)
= ∇

(
(Au(x) + B)⊗ g(x, σ)⊗ g(x, σ0)

)
=

A√
2π(σ2 + σ2

0)
exp(− x2

2(σ2 + σ2
0)

),

(4)

where σ0 is the standard deviation of the re-blur Gaussian function. We call it the
re-blur scale. The gradient magnitude ratio between the original and re-blurred
edges is

|∇i(x)|
|∇i1(x)| =

√
σ2 + σ2

0

σ2
exp(

x2

2σ2
− x2

2(σ2 + σ2
0)

). (5)

It can be proved that the ratio is maximum at the edge location (x = 0). The
maximum value is given by

R =
|∇i(0)|
|∇i1(0)|

=

√
σ2 + σ2

0

σ2
. (6)

Giving the insight on (4) and (6), we notice that the edge gradient depends
on both the edge amplitude A and blur amount σ, while the maximum of the
gradient magnitude ratio R eliminates the effect of edge amplitude A and de-
pends only on σ and σ0. Thus, given the maximum value R, we can calculate
the unknown blur amount σ using

σ =
1√

R2 − 1
σ0. (7)

For blur estimation in 2D images, we use 2D isotropic Gaussian function to
perform re-blur. As any direction of a 2D isotropic Gaussian function is a 1D
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Gaussian, the blur estimation is similar to that in 1D case. In 2D image, the
gradient magnitude can be computed as follows:

‖∇i(x, y)‖ =
√
∇i2x +∇i2y (8)

where ∇ix and ∇iy are the gradients along x and y directions respectively.

4 Layered Depth Map Extraction

After we obtain the depth estimates at edge locations, we need to propagate
the depth estimates from edge locations to other regions that do not contain
edges. We seek a regularized depth labeling σ̂ which is smooth and close to the
estimation in Eq. (7). We also prefer the depth discontinuities to be aligned
with the image edges. Thus, We formulate this as a energy minimization over
the discrete Markov Random Field (MRF) whose energy is given by

E(σ̂) =
∑

i

Vi(σ̂i) + λ
∑

i

∑
j∈N (i)

Vij(σ̂i, σ̂j). (9)

where each pixel in the image is a node of the MRF and λ balance the single
node potential Vi(σ̂i) and pairwise potential Vij(σ̂i, σ̂j) which are defined as

Vi(σ̂i) = M(i)(σi − σ̂i)2, (10)

Vij(σ̂i, σ̂j) =
∑

j∈N (i)

wij(σ̂i − σ̂j)2, (11)

where M(·) is a binary mask with non-zeros only at edge locations. the weight
wij = exp{− (I(i)− I(j))2} encodes the difference of neighboring colors I(i) and
I(j). 8-neighborhood system N (i) is adopted in our definition.

We use FastPD [15] to minimized the MRF energy defined in Eq. (9). FastPD
can guarantee a approximately optimal solution and is much faster than previous
MRF optimization methods such as conventional graph cut techniques.

5 Experiments

There are two parameters in our method: the re-blur scale σ0 and the λ. We set
σ0 = 1, λ = 1, which gives good results in all our examples. We use Canny edge
detector [16] and tune its parameters to obtain desired edge detection output.
The depth map are actually the estimated σ values at each pixel.

We first test the performance of our method on the synthetic bar image shown
in Fig. 4(a). The blur amount of the edge increases linearly from 0 to 5. We
first add noises to the bar image. Under noise condition, although the result of
edges with larger blur amount is more affected by noise, our method can still
achieve reliable estimation result (see Fig. 4(b)). We then create more bar images
with different edge distances. Fig. 4(c) shows that interferences from neighboring
edges increase estimation errors when the blur amount is large (> 3), but the
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Fig. 4. Performance of our blur estimation method. (a) The synthetic image with blur
edges. (b) Estimation errors under Gaussian noise condition. (c) Estimation errors with
edge distances of 30, 15 and 10 pixels. (d) Estimation errors with edge shifts of 0, 1 and
2 pixels. The x and y axes are the blur amount and corresponding estimation error.
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Fig. 5. The depth recovery results of flower and building images. (a) The input defo-
cused images. (b) The sparse blur maps. (c) The final layered depth maps.

errors are controlled in a relative low level. Furthermore, we shift the detected
edges to simulate inaccurate edge location and test our method. The result is
shown in Fig. 4(d). When the edge is sharp, the shift of edge locations causes
quite large estimation errors. However, in practice, the sharp edges usually can
be located very accurately, which greatly reduces the estimation error.
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Fig. 6. Comparison of our method and the inverse diffusion method. (a) The input
image. (b) The result of inverse diffusion method. (c) Our result. The image is from [13].
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Fig. 7. The depth recovery result of the photo frame image. (a) The input defocused
image. (b) Recovered layered depth map.

As show in Fig. 5, we test our method on some real images. In the flower
image, the depth of the scene changes continuously from the bottom to the top
of the image. The sparse blur map gives a reasonable measure of the blur amount
at edge locations. The depth map reflects the continuous change of the depth.
In the building image, there are mainly 3 depth layers in the scene: the wall in
the nearest layer, the buildings in the middle layer, and the sky in the farthest
layer. Our method extracts these three layers quite accurately and produces
the depth map shown in Fig. 5(c). Both of the results are obtained using 10
labels of depth with the blur amount from 0 to 3. One more example is the
book image shown in Fig. 1. The result is obtain using 6 depth labels with
blur amount from 0 to 3. As we can see from the recovered depth map, our
method is able to obtain a good estimate of the depth of the scene from a single
image. In Fig. 6, we compare our method with the inverse diffusion method [13].
Both methods generate reasonable layered depth maps. However, our method
has higher accuracy in local estimation and thus, our depth map captures more
details of the depth. As shown in the figure, the difference in the depth of the left
and right arms can be perceived in our result. In contrast, the inverse diffusion
method does not recover this depth difference.
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6 Ambiguities in Depth Recovery

There are two kinds of ambiguities in depth recovery from single image using
defocus cue. The first one is the focal plane ambiguity. When an object appears
blur in the image, it can be on either side of the focal plane. To remove this
ambiguity, most of the depth from defocus methods including our method assume
all objects of interest are located on one side of the focal plane. When taking
images, we just put the focus point on the nearest/farthest point in the scene.

The second ambiguity is called the blur/sharp edge ambiguity. The defocus
measure we obtained may be due to a sharp edge that is out of focus or a blur
edge that is in focus. This ambiguity is often overlooked by previous work and
may cause some artifacts in our result. One example is shown in Fig. 7. The
region indicated by the white rectangle is actually blur texture of the photo in
the frame, but our method treats it as sharp edges due to defocus blur, which
results in error estimation of the depth in that region.

7 Conclusion

In this paper, we show that the depth of a scene can be recovered from a single
defocused image. A new method is presented to estimate the blur amount at
edge locations based on the gradient magnitude ratio. The layered depth map
is then extracted using MRF optimization. We show that our method is robust
to noise, inaccurate edge location and interferences of neighboring edges and
can generate more accurate scene depth maps compared with existing methods.
We also discuss ambiguities arising in recovering depth from single images using
defocus cue. In the future, we would like to apply our blur estimation method
to images with motion blur to estimate the blur kernels.

Acknowledgement. The author would like to thank the anonymous reviewers
for their helpful suggestions. The work is supported by NUS Research Grant
#R-252-000-383-112.
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Abstract. This paper proposes an algorithm of color segmentation that models
the human-based perception according the Gestalt laws of similarity and proxim-
ity. We use the mean shift clustering to translate these laws into the analysis of
the color layout of an image. Given a set of possible segmentations, the method
uses a measure of stability to identify the most meaningful regions according to
perceptual criteria. Quantitative results obtained on the Berkeley data set show
that this approach outperforms state-of-the-art methods on human-based image
segmentation.

1 Introduction

Image segmentation is one of the most common strategies to extract relevant infor-
mation from images. Nevertheless, unsupervised segmentation turns into a very severe
problem when it has to emulate human-based criteria. Processes involved in the hu-
man perception have been studied since decades from a phycological point of view.
This way, the computer science community has attempted to translate the psycholog-
ical framework into effective algorithms of image segmentation. The Gestalt school
is a well-known organization of psychologists who modelled the perceptual process
according to a set of rules called Laws of Organization. These rules explain the group-
ing processes of the image components into higher level patterns [1]. In this paper, we
present a segmentation strategy inspired in two of the Gestalt laws: Similarity and Prox-
imity. The Law of Similarity declares that the mind groups elements that share similar
features. Moreover, the Law of Proximity asserts that humans perceive close elements
as a collective (see Figure 1).

Fig. 1. Humans perceive as groups elements that are similar and elements that are placed close
together
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We present a segmentation method that translates the Similarity Law into the analy-
sis of the color features and translates the Proximity Law into the analysis of their layout
distribution. To perform a segmentation, we purpose to analyze a set of solutions that
group the image pixels regarding to their color and their spatial position. We use a mea-
sure that evaluates the ”stability” of these grouping possibilities and generates the final
segmentation. We have called the proposed method Color Region Stability (CoReSt).

To evaluate the algorithm we have used the public benchmark provided by the
Berkeley Segmentation Dataset [2]. This database is a collection of photographs which
have been manually segmented by human subjects. We have used the Global Constancy
Error to compare the algorithm against other state-of-the-art methods. Quantitative re-
sults show that our approach outperforms other strategies on human-based image seg-
mentation.

The paper organization is as follows. In the section 2 we explain the main idea of
our proposal and we detail its implementation. Then, in section 3, we present the exper-
imental validation and, finally, in section 4 we expose the conclusions of the work.

2 The Color Region Stability Algorithm (CoReSt)

The goal of the CoReSt algorithm is to provide a segmentation solution that fits the
human criteria. An image can be segmented in multiple ways according to the properties
of color and position of the pixels. From this set of segmentations we use a ”stability”
measure to select those regions that are considered most relevant. This stability measure
considers that a region is relevant if it remains most unchanged as possible along the
collection of segmentation solutions.

In the literature we can find a huge variety of color segmentation algorithms [3].
Some proposals also study a set of segmentation solutions with regard to a stability
function. The work of Heidemann [4] proposed a goodness function to optimize the
parameters of color segmentation. The function evaluates the contrast on the boundary
pixels of a set of segmented regions. This way, the segmentation that maximizes this
goodness measure is taken as the optimal solution. Another different approach is the
detector of regions of interest proposed by Matas [5]. The detector was designed to work
in grayscale images so it analyzes the image segmentations in the intensity domain. The
stability measure is computed by a function that evaluates the rate of area in which the
regions vary across two consecutive segmentations. Then, a posterior work of Forssén
[6] exported the concept to the color space using an agglomerative clustering process.
In another direction, the work Wattuya combines multiple segmentations [7] and uses a
random walker approach.

Notice that these proposals explore the color domain of the image but do not explore
its layout configuration. This way, the obtained regions are always connected compo-
nents but there is no grouping process that searches for relations between them. In this
paper we introduce the spacial analysis of the image components in order to overcome
occlusions and detect textured areas. In the next section we explain in detail the imple-
mentation of the proposal.
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2.1 Implementation

Given an image, the measure of segmentation stability is computed in both color and
spatial domains. This way, if we focus on the color analysis, we can obtain a set of
segmentation instances increasing the threshold that controls the color similarity. Then,
we observe that image pixels are merged into regions if their color distances are lower
than this threshold value. The generated segmentations can be understood as the evolu-
tion of the image regions through the color domain. Then, if we analyze the evolution
we see that the most contrasted regions remain most stable along a larger set of seg-
mentation images. Otherwise, if we focus on the space analysis, we can generate a set
of segmentations by increasing the threshold of the spatial similarity. The evolution of
the segmentation shows that image regions are progressively merged according their
spatial distance. From the stability viewpoint, we observe that the regions which are
most isolated from other regions with similar color remain most unchanged along the
segmentations. To obtain every segmentation we have used the mean shift clustering
algorithm proposed by Comaniciu [8]. Thus, a pixel is understood like a point in a 5D
space where its first three dimensions are related to the color values in the Luv space the
other two represent the (x,y) coordinates in the image. The mean shift process defines
for every pixel in the image a path that leads it to a local density maximum in the 5D
space. A region is formed by all the pixels that belong to the same local density maxi-
mum despite they do not correspond to a single connected component in the image. We
use an implementation of the mean shift clustering that depends on two thresholds, hc
and hs, that control respectively the similarity constraints on the color and the space
[9]. Then, as we show in Figure 2, we construct a bidimensional grid G filled up with
the clustered images. Let us denote MSS the mean shift function and HC and HS
the two sets of thresholds, HC = {hc1, . . . , hcNC} HS = {hs1, . . . , hsNS}. Given a
region R of a cell in the grid, we define as analogous regions the regions of the other
grid cells that maximize the overlapping area with R. Analogous regions are therefore
found along the color or space dimensions, varying the corresponding thresholds in HC
and HS respectively. The intuitive idea of an analogous region of a region R is that it
is the evolution, i.e. the closest region, to R in another segmentation scale. We denote

R
(x,y)
i the region i of the grid cell (x, y) and AR

(x,y)i

(x,y)′ its analogous region of another
cell (x, y)′.

Once we have the segmentation evolution along the color and the space dimensions,
we need a function to evaluate the stability of the regions. The stability function models
the shape variation of a region along the two dimensions of the grid. The features used
in the computation are the first and the second central moments. These features visually
correspond to the area of a region and the axis lengths of the minimum enclosing ellipse

of the region. Then, given a region R
(x,y)
i and another analogous one AR

(x,y)i

(x,y)′ we
calculate the stability S as a combination of the variation of the area rate and the axis
length. Let us denote with A the function that computes the area of a region and with
L and l the functions that compute the maximum and minimum lengths of the axis. For

the sake of readability, we simplify the notation of R
(x,y)
i to R1 and AR

(x,y)i

(x,y)′ to R2.
Thus, the stability measure between two regions R1 and R2 is defined as:
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b) c) S(R(6,3)
3 , AR
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0.9310 0.9212 0.8774
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d) SCS values for some example regions

Fig. 2. a) Grid of segmented images using the MSS according to the parameters of color HC

and space HS. We show an example of the region R
(6,2)
3 and its analogous ones. Observe how it

grows trough the color, merging with similar pixels, and how it grows trough the space merging
with similar regions. b) Original image c) Stability value S of R

(6,2)
3 according to the analogous

region on the cell (6,6). d) Some selected regions and their stability value SCS.

S(R1, R2) = Sarea(R1, R2) ∗ 0.5 + Saxis(R1, R2) ∗ 0.5

Sarea(R1, R2) =
min(A(R1), A(R2))
max(A(R1), A(R2))

Saxis(R1, R2) = min (
min(L(R1), L(R2))
max(L(R1), L(R2))

,
min(l(R1), l(R2))
max(l(R1), l(R2))

)

For each region of each cell we compute its stability along the two dimensions of the
grid. The computation is done by the mean of the S values regarding the analogous
regions. We name SC to the function that measures the stability along the color, and
SS its equivalent in the space.

SC(R(x,y)
i ) =

#HC∑
X=1

S(R(x,y)
i , AR

(x,y)i

(X,y) )

#HC
SS(R(x,y)

i ) =
#HS∑
Y =1

S(R(x,y)
i , AR

(x,y)i

(x,Y ) )

#HS

At this point we have two measures of stability for every region of the segmented im-
ages of the grid. Nevertheless, we search for a representative subset of regions that fits
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... Occluded ...

... ...

Fig. 3. Generation of the segmentation using the CoReSt regions ranked by the stability. The
first row shows the progress of the boundaries and the second row shows how the regions are
progressively incorporated. In the fifth step we observe an example of a region that is not included
in the solution because it is occluded by a more stable one.

the human perception. Following the idea of the laws of similarity and proximity we
propose to select the subset of regions that maximize the stability functions along the
color and space dimensions. A region that fulfills this maximal response is denoted PR
and is selected to form part of the output regions of the CoReSt method.

PR
(x,y)
i = R

(x,y)
i | PC(R(x,y)

i ) or PS(R(x,y)
i )

PC(R(x,y)
i ) = SC(AR

(x,y)i

(x−1,y)) ≤ SC(R(x,y)
i ) > SC(AR

(x,y)i

(x+1,y))

PS(R(x,y)
i ) = SS(AR

(x,y)i

(x,y−1)) ≤ SS(R(x,y)
i ) > SS(AR

(x,y)i

(x,y+1))

Among the final output regions a global measure of relevance is also computed. This
value combines the stability of color and space using the function SCS. Notice that all
the computations we have presented work in the range [0, 1], then the global stability is
also in this range.

SCS(R) = (SC(R) + SS(R)) ∗ 0.5

The result of SCS allow to rank the regions by its meaningfulness: the greater, the
more meaningful. Taking into account this ranking we generate an image segmenta-
tion that combines the regions. The figure 3 provides an example of this segmentation
construction.

The process consists in constructing a pile of regions ordered by stability. Then, in
the deepest positions we find the less stable regions and in the most superficial positions
we have the most stable ones. The segmentation generation can be understood as a z-
buffering analysis of this pile of regions. The segmentation incorporates the boundaries
of the regions following the priority order defined by the stability measure. Notice that
a region PRi will not be included in the final segmentation if its pixels are overlapped
by another region PRj that is more stable.

3 Experiments and Results

We have evaluated the performance of the proposed method with the public segmenta-
tion dataset of Berkeley [2]. The test set comprises 200 color photographs which have
been manually segmented. For each of the images, at least 5 segmentations produced by
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Table 1. Comparison of the CoReSt strategy against other state-of the-art methods: the Ridge
based Distribution Analysis (RAD)[11], the Multiple Seed Segmentation (Seed)[12], the pairwise
pixel affinity algorithm proposed by Fowlkes (Fow)[13] and the Normalized Cuts (nCuts)[14].
GCE results for the 200 Berkeley images (values taken from [11]).

Human CoReSt RAD Seed Fow MS nCuts
GCE 0.0800 0.1946 0.2048 0.209 0.214 0.2598 0.336

Good segmentation results

Bad results achieving under-segmentation and over-segmentation

Fig. 4. Examples of the CoReSt segmentations

different people are available. We have generated a segmentation result on every orig-
inal image of the dataset. The experimentation provides a numerical evaluation among
the CoReSt solution and the manual benchmark.

In the literature we can find several measures to evaluate the segmentation results
[10]. We have chosen to use the Global Consistency Error (GCE) since it is a standard
framework in a number of a state-of-the-art methods. The GCE measure takes care of
the refinement between two segmentations: being IS1 the segmentation of the bench-
mark and IS2 the segmentation we evaluate, it produces an error measure in the range
[0, 1] (the lower, the better). For each pixel pi the GCE evaluates the difference between
the regions of both segmentations R ∈ (IS1, pi) and R ∈ (IS2, pi) that contain this
pixel. Let us denote n the number of pixels in a image, \ difference operator, and | | the
cardinality one.

GCE =
1
n

min(
∑

i

|R ∈ (IS1, pi)\R ∈ (IS2, pi)|
|R ∈ (IS1)|

,
∑

i

|R ∈ (IS2, pi)\R ∈ (IS1, pi)|
|R ∈ (IS2, pi)|

)

The inter-variability among the human segmentations obtains a mean GCE value of 0.08.
Fixing the method parameters for all the test set, we have obtained a score of 0.1946. The
table 1 summarizes the GCE values obtained by other segmentation methods.
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a) b)

c) d)

Fig. 5. a) Original Images. b) and c) present the grouping properties. b) Regions that conform a
textured area. c) Regions that present occlusions. d) Regions detected as outstanding for having
contrasted color and being isolated.

An interesting point in the comparative table is to see that the proposed method out-
performs the results obtained by original Mean Shift algorithm (MS). This way, we can
see that the stability measure helps on building a segmentation result that adapts better
to the human based criteria. Some qualitative examples of the CoReSt segmentation are
shown in the Figure 4. The images of the Figure 5 present some regions that illustrate
the properties of the CoReSt method.

4 Conclusions

We have presented an algorithm to emulate the human-based image segmentation in-
spired in the Gestalt laws of Similarity and Proximity. The CoReSt method explores
the color features of an image according to its spatial distribution. This twofold anal-
ysis allows the perceptual grouping of elements in a image an gives the segmentation
process interesting properties. This way, we can detect entities that belong to be a tex-
tured element (a repetitive color pattern) or a plain surface that has been ”broken” due
to a partial occlusion. The method outstands big and homogeneous regions as well as
isolated and contrasted ones. Due to this behavior, we can obtain a final segmentation
that comprises a coarse description of the content but that also preserves the meaning-
ful details. To prove the consistency of the perceptual segmentation we have test the
method on the Berkeley benchmark of human-based segmentations. We have seen that
the CoReSt method outperforms other state-of-the-art proposals according to the GCE
measure. The proposal gives a very high degree of freedom on the shape of the output
regions and can be applied in images of general purpose.

Future lines of research suggest potential applications in fields where the informa-
tion needs to match the human representation. One example is the content based image
retrieval field. Retrieval systems are meant to provide perceptually similar images ac-
cording to a given query. The extreme application of the human perception can be found
in those retrieval applications that have a drawing interface and allow the user to create
its own query image. Then the regions drawn by a user could match the regions of the
database extracted by CoReSt method.
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A Metric and Multiscale Color Segmentation
Using the Color Monogenic Signal
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Abstract. In this paper, we use the formalism of Clifford algebras to
extend the so-called Monogenic Signal to color images. This extension
consists in a function with values in the Clifford algebra R5,0 that en-
codes color as well as geometric structure information. Using geometric
calculus, such a mathematical object can be used to extend classical con-
cepts of signal processing (filtering, Fourier Transform...) to color images
in a consistent manner. Regarding this paper, a local color phase is in-
troduced, which generalizes the one for grayscale image. As an example
of application, we provide a new method for color segmentation. Based
on our phase definition and the multiscale aspect of the Color Monogenic
Signal, we provide a metric approach using differential geometry which
reveals relevant on the Berkeley Image Dataset.

Keywords: Monogenic signal,Clifford algebras, color segmentation, color
image processing, differential geometry.

1 Introduction

We propose in this paper a new framework for high dimensional signal processing
based on Clifford algebras. The aim is to generalize in the context of color images
the work of M. Felsberg [2] about the monogenic extension of the analytic signal
to grayscale images. After some recalls on analytic and monogenic signals we
first introduce the color monogenic signal of a color image as a scale-space signal
using the Dirac operator and the Laplace equation. We show then how to define
a color local phase that is parametrized by a vector of R5,0 containing color and
geometric structures information. This color local phase can be used in many
applications such as color optical flow or color object tracking (details will appear
elsewhere). We focus here on defining a new color segmentation method based
on a metric and multiscale approach. Segmentation in a chosen color can be done
and experiments show accurate results on images from the Berkeley dataset [5].

� This work has been partially founded by Région Poitou-Charente and ONR Grant
N00014-09-1-0493.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 906–913, 2009.
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2 Dirac Operator and Cauchy-Riemann Equations

To a vector space E together with a quadratic form Q is associated a non-
commutative algebra Cl(E,Q) called the Clifford algebra of the couple (E,Q).
In what follows we deal with the Clifford algebra of the euclidean vector space
Rn, usually denoted by Rn,0. In this algebra, the product of two vectors a and
b of Rn, embedded in Rn,0, is given by:

ab = a · b + a ∧ b (1)

where a · b is the inner product and a ∧ b, the wedge product of a and b, is a
bivector. This product is usually called the geometric product of a and b. One
could refer to [1] for further details.

2.1 The Clifford Algebra R3,0

As a vector space over R3, it is of dimension 8. A base of R3,0 is given by:
{1, e1, e2, e3︸ ︷︷ ︸

vectors

, e1e2, e1e3, e2e3︸ ︷︷ ︸
bivectors

, e1e2e3︸ ︷︷ ︸
trivector

} where {e1, e2, e3} is an orthonormal basis

of R3. Given two vectors u = ae1 + be2 + ce3 and v = a′e1 + b′e2 + c′e3 of R3,0,
the geometric product uv is:

uv =(aa′ + bb′ + cc′)︸ ︷︷ ︸
scalar part

+ (ab′ − ba′)e1e2 + (ac′ − ca′)e1e3 + (bc′ − cb′)e2e3︸ ︷︷ ︸
bivector part

One can recognize immediately the combination of the usual dot product and
cross product of R3. In particular:
∀i, j ∈ {1, 2, 3}, eiej + ejei = 2δij where δij is the delta function.

2.2 Generalized Cauchy-Riemann Equations

In Rn,0, the Dirac operator is defined by D =
∑n

k=1 ek
∂

∂xk
, where ∀i, j ∈

{1, .., n}, eiej + ejei = 2δij .
Let f : R2 → R2,0 such that f(x, y) = f1(x, y)e1 + f2(x, y)e2. Applying the

Dirac operator to this function gives:

Df(x, y) = D · f(x, y) + D ∧ f(x, y)

=
∂f1

∂x
(x, y) +

∂f2

∂y
(x, y) + e12

(
∂f2

∂x
(x, y) − ∂f1

∂y
(x, y)

)
.

Then, solving the Dirac equation Df = 0 in R2,0 is equivalent to find solution
f : R2 → R2 with f(x, y) = (f1(x, y), f2(x, y)) that satisfy the Cauchy-Riemann
(CR) equations. Moreover, this can be extended to higher dimension and the
CR equations are generalized by the Dirac equation.
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3 Analytic Signal and Monogenic Signal

3.1 Analytic Signal

Let s : R → R be a real-valued signal and f : R → R2,0 be a vector-valued signal
such that f(x) = s(x)e2. The purpose is to construct a function fulfilling the
Dirac equations (i.e an holomorphic function) whose real part is the real-valued
signal. Thus it is equivalent to find the solution of a boundary value problem of
the second kind (a Neumann problem):⎧⎪⎨⎪⎩

Δu =
∂2u

∂x2 +
∂2u

∂y2 = 0 if y > 0

e2
∂u

∂y
= f(x) if y = 0

(2)

with D = e1
∂

∂x
+ e2

∂

∂y
and Δ = D2.

The first equation is the 2D-Laplace equation restricted to the open domain
y > 0. The second equation is called the boundary condition and the choice of
the basis vector e2 is coherent with the embedding of complex functions as vector
fields (the real part is embedded as the e2-component). Using the fundamental
solution of the 2D-Laplace equation, the solution of the problem leads to:

fA(x, y) = hp ∗ f(x, y) + hp ∗ hH ∗ f(x, y) (3)

where hp =
y

π(x2 + y2)
(1D-Poisson kernel) and hH =

e12

πx
(Hilbert kernel).

The variable y is a scale parameter and setting it to zero1, we obtain the
classical analytic signal.

3.2 Monogenic Signal

Following the previous construction of the analytic signal, M. Felsberg has pro-
posed an extension to 2D signals (such as grayscale images) [3]. Let s : R2 → R

be a real-valued signal and f : R2 → R3,0 be a vector-valued signal such that
f(x, y) = s(x, y)e3. Generalizing 3.1 we are looking for a monogenic function (ex-
tension of holomorphic function) the e3-component of which is the real-valued
signal. The associated boundary value problem of the second kind is:⎧⎪⎨⎪⎩

Δu =
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2 = 0 if z > 0

e3
∂u

∂z
= f(x, y) if z = 0

(4)

where D = e1
∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z
and Δ = D2.

1 In the Fourier domain, the Poisson kernel has an exponential form and equal to one
for y = 0.
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The first equation is the 3D-Laplace equation restricted to the open half-space
z > 0 and the second equation is the boundary condition. Using the fundamental
solution of the 3D-Laplace equation, the solution of this problem leads to:

fM (x, y, z) = hp ∗ f(x, y) + hp ∗ hR ∗ f(x, y) (5)

where hp =
z

2π(x2 + y2 + z2)3/2 is a 2D-Poisson kernel and hR =
xe1 + ye2

2π(x2 + y2)3/2

is the Riesz kernel, extension in 2D of the Hilbert kernel.
The variable z is a scale parameter and setting it to zero2, we obtain the

monogenic signal.

4 The Color Monogenic Signal

4.1 Construction

The aim of this paper is to construct a scale-space signal for color images seen
as vectors in R5,0 . Let s : R2 → R3 be a real-valued signal and f : R2 → R5,0
be a vector-valued signal such that f(x1, x2) = f3(x1, x2)e3 + f4(x1, x2)e4 +
f5(x1, x2)e5. Thus a color image is decomposed in the f3f4f5 space represented as
the subspace spanned by {e3, e4, e5}. Here, any orthonormal colorimetric system
can be chosen for f3f4f5 such as RGB, CIE XYZ or CIE L*a*b*. According to
the previous construction, we need to find a function which is monogenic and the
e3, e4 and e5-component of which are the components f3, f4 and f5 respectively.⎧⎪⎨⎪⎩

Δu =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

+
∂2u

∂x2
4

+
∂2u

∂x2
5

= 0

e3
∂u

∂x3
+ e4

∂u

∂x4
+ e5

∂u

∂x5
= f(x1, x2)

(6)

with D =
5∑

i=1

ei
∂

∂xi
and Δ = D2.

The choice of R5,0 is related to the construction of the monogenic signal.
Indeed, we want to define a scale-space signal which have independent scales in
each component (x3 for f3, x4 for f4 and x5 for f5). We split the problem into
three boundary value problems in R5,0 as follows:

(i = 3, 4, 5)

⎧⎪⎪⎨⎪⎪⎩
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
i

= 0 if xi > 0

ei
∂u

∂xi
= fi(x1, x2)ei if xi = 0

(7)

Solving each system is achieved by adapting the results of section 3.2, however we
will not explain the construction in details. Each solution of the previous systems
(7) leads to monogenic functions S1, S2, S3: they satisfy the Dirac equation in

2 Similar reason as footnote 1.
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each subspace Ei = span{e1, e2, ei} (i = 3, 4, 5) and consequently the Dirac
equation in R5,0 (DSi = 0). Let fc = S1 + S2 + S3, then fc is still monogenic in
R5,0 (i.e. Dfc = 0) and satisfies the boundary conditions in (6). We call fc the
Scale-Space Color Monogenic Signal, it has the following form:

fc =h3
p ∗ f3e3 + h4

p ∗ f4e4 + h5
p ∗ f5e5

+ h3
p ∗ hR ∗ f3 + h4

p ∗ hR ∗ f4 + h5
p ∗ hR ∗ f5 (8)

where hi
p =

xi

2π(x2
1 + x2

2 + x2
i )3/2 , (i = 3, 4, 5) is a 2D-Poisson kernel and hR =

x1e1 + x2e2

2π(x2
1 + x2

2)3/2 is the Riesz kernel.

4.2 Local Color Phase

Let us first introduce some notations. We denote:

fc = A1e1 + A2e2 + A3e3 + A4e4 + A5e5 (9)

where

(i = 3, 4, 5)

⎧⎨⎩
A1 = h3

p ∗ hRx1
∗ f3 + h4

p ∗ hRx1
∗ f4 + h5

p ∗ hRx1
∗ f5,

A2 = h3
p ∗ hRx2

∗ f3 + h4
p ∗ hRx2

∗ f4 + h5
p ∗ hRx2

∗ f5,
Ai = hi

p ∗ fi

The Color Monogenic Signal contains two kinds of information:

– A1 and A2 correspond to the smoothed vertical and horizontal structures
with the meaning of Riesz transform.

– A3, A4 and A5 correspond to the smoothed colors represented in the f3f4f5
space spanned by {e3, e4, e5}.

If V = ue1 + ve2 + ae3 + be4 + ce5 ∈ R5,0 is a chosen vector containing structure
information (u, v) and color information (a, b, c) then the geometric product fcV
in R5,0 is given by:

fcV = 〈fcV 〉0 + 〈fcV 〉2 (10)

where the 0-graded part 〈fcV 〉0 is the scalar part and the 2-graded part 〈fcV 〉2
is the bivector part. We can explain this result in the context of Clifford algebra
as follows. If B is any normalized bivector, the subspace spanned by {1, B} is

isomorphic to C. Applying this to fcV = 〈fcV 〉0 +
〈fcV 〉2
| 〈fcV 〉2 |

| 〈fcV 〉2 |, allows to

consider it as a complex number:
fcV = 〈fcV 〉0 + i| 〈fcV 〉2 | (11)

This precisely means that fcV is a spinor which acts as a rotation in the plane
spanned by the bivector 〈fcV 〉2. Then the local color phase is the angle of the
rotation and is given by:

ϕ = arg (fcV ) = arctan
(
| 〈fcV 〉2 |
〈fcV 〉0

)
(12)

This phase describes the angular distance between fc and a given vector V in
R5,0, i.e it gives a correlation measure between a pixel fitted with color and
structure information and a vector containing chosen color and structure.
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5 A Metric and Multiscale Color Segmentation

5.1 Differential Geometry

A usual method of edge detection using metric information given by the first
fundamental form [6] is to consider a multidimensional image, of components
(f1, ..., fn) defined on a domain D of R2 as a two-dimensional surface S
parametrized by ψ : (x, y) → (x, y, f1(x, y), ..., fn(x, y)) embedded into Rn+2

fitted with the metric g =
(

1 0
0 1

)
⊕

⎛⎜⎝λ1 0
. . .

0 λn

⎞⎟⎠. This latter induces a metric

on S called the first fundamental form of S, which takes the following form:

dS2 = dx2 + dy2 + λ1df
2
1 + ... + λndf

2
n (13)

Then variations on the image are assimilated to tangent vectors of S and a
measure of these variations is given by dS2. The rest of the method is devoted
to select the strongest local variation, called edges. More precisely, let I(q) be the
matrix representation of the metric dS2 at q = ψ(p) (p ∈ R2) in the coordinates
system given by (dpψ(1, 0), dpψ(0, 1)). Then I(q) has the following form:

I(q) =
(

E(q) F (q)
F (q) G(q)

)
(14)

Let λ+(q) and λ−(q), λ+ ≥ λ−, be the two eigenvalues of I(q) and θ+(q), θ−(q)
the corresponding eigenvectors. The edge measure is then given by:

w(q) =
√

λ+(q) − λ−(q) (15)

and we say that p ∈ D is an edge point if the function w has a local maximum
at ψ(p) in the direction given by θ+(ψ(p)).

5.2 A Multiscale Approach

Due to the construction of the Color Monogenic Signal, this latter inherits a
multiscale character in the Poisson Scale-Space. As shown in [4], this linear
scale-space satisfies the axiomatic of Iijima and then is an alternative to the
Gaussian Scale-Space. We will not extend the whole linear scale-space theory in
this paper, the reader may refer to [4] for further details.

5.3 Segmentation Method

First of all, we need to choose a colorimetric system for our Color Monogenic
Signal. In this application, we take the CIE L*a*b* space and considering each
pixels of a color image as a vector in R5,0 is done by using the Color Monogenic
Signal at a given scale s (the same for each component, i.e. s = x3 = x4 = x5 in
formula 8). Then, geometric calculus allows us to consider the geometric product
between each vectors and a reference (chosen) vector V = ue1 +ve2+ae3+be4+
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ce5. As in (4.2), a local color phase ϕ(x, y) is obtained and associated with the
scalar part p(x, y) = 〈fcV (x, y)〉0, we have an angle and magnitude information
respectively.

Algorithmic scheme

1. Let V = ue1 + ve2 + ae3 + be4 + ce5.
2. Compute ϕ(x, y) and p(x, y) as in (4.2).
3. Given S parametrized by ψ : (x, y) → (x, y, ϕ(x, y), p(x, y)) in R4

with metric M =
(

1 0
0 1

)
⊕

(
λ1 0
0 λ2

)
:

– compute the matrix representation of the metric dS2 as in (14);
– calculate w(q) as in (15).

Then variations in the local color phase and scalar part are assimilated to tangent
vectors of S and we are able to measure edges in a chosen color given by V .

6 Experiments and Results

Some results obtained on well-known images and images from the Berkeley image
dataset [5] are presented. We aim at showing the relevance of our approach on
these highly regarded images. Firstly, we look at the Lab image (figure 1) and
we study a yellow object segmentation.

Taking a vector V carrying yellow in the L*a*b* space without any structure,
i.e. V = ae3+be4+ce5, we apply the method described above with the euclidean
metric (λ1 = 1, λ2 = 1) and obtain images in figure 1. As the reader can see,
when the scale parameter is set to zero, we get not only yellow objects but all
object with strong variations in this color. When the scale parameter increases,
one can see in a first step that edges are smoothed and then that the blue
block disappears. Finally we keep the desired yellow objects but also the green
block, this is due to the strong variations in yellow between this object and the
background.

Next, we choose two challenging images from the Berkeley image dataset: the
Plane and Garden images (see figure 2). For the first image (first row), we would
like to get the red edges. Using the multiscale aspect and taking the metric (λ1 = 2,

Fig. 1. From left to right: Lab image, segmentation at scale 0, 1.5 and 3.5 (hysteresis
thresholds are the same for each scale.)
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Fig. 2. From left to right. First row, the Plane image, the function w and the result at
scale 3,5. Second row, the Garden image, the function w and the result at scale 3,5.

λ2 = 0.5) in order to reinforce the phase relatively to the magnitude, we obtain
results shown in figure 2. For the second image (second row), we would like to get
green edges. Using the multiscale aspect and taking the euclidean metric, results
in figure 2 show an interesting segmentation compared with segmentation in [5].

7 Conclusion

In this paper, we introduce a new theoretical framework to represent color images
as scale-space signal. We use Clifford algebra formalism to encode structure and
color information in a single vector-valued function. By geometric calculus, we
define a local color phase that may be used in a wide range of applications. We
have treated in this paper a method of color segmentation which reveals relevant
for finding edges relative to a chosen color. Future work will be devoted to the
analysis of the scale-space in the Color Monogenic Signal framework.
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Abstract. Microscopy is often employed in food research to inspect the
microstructural features of food samples. Accurate detection of micro-
scopic features is required for reliable quantitative analysis. We propose
a user-assisted approach that can be easily integrated into a graphical
interface. The proposed algorithm is based on a fast approximation of
the common region-based level set equation, providing interactive com-
putations. Experiments have been run on cheese micrographs acquired
with electron and confocal microscopes.

Keywords: Level set, segmentation, feature detection, cheese
microstructure.

1 Introduction

Rheological properties of complex food, such as taste, consistency, and texture,
are closely related to food microstructure. Food research takes advantage from
microscopy to study microstructural features in food samples, such as holes,
protein, and fat. The potential of computer analysis of microscopic features has
recently been recognised by several researchers [1], objective quantification and
rapid data handling being the most prominent advantages over visual inspection.

Accurate detection of features in food micrographs is an important step for
reliable quantitative analysis of food morphology [2]. The measurements com-
puted on binarised images are deeply influenced by the segmentation accuracy,
especially when shape descriptors of features are involved [3]. Although our ap-
proach is general enough to cover a broad range of applications, here we are
interested in images from Scanning Electron Microscope (SEM) and Confocal
Light Scanning Microscope (CLSM) (see Figure 1).

In the literature, segmentation of biological data is mostly concerned with de-
tection of macroscopic structures. The extent of published work on segmentation
of microscopy images is low compared to that devoted to the macroscopic world.
Far from being caused by lack of interest, this phenomenon is the result of a
number of causes (see [4]): the large diversity of imaging approaches, the lack of
a priori knowledge about the image content, the lack of common evaluation pro-
cedures, the large variety of imaged objects for different disciplines. Moreover,
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(a) SEM (b) CLSM

Fig. 1. Cheese micrographs acquired with different imaging devices: Scanning Electron
Microscope (SEM), and Confocal Light Scanning Microscope (CLSM)

most of the literature in this field addresses biomedical data (e.g., analysis of
cells) or the study of bacteria in biological images. Segmentation of structural
features in food images is mostly carried out with time-consuming user interac-
tion, using simple techniques such as thresholding and basic morphology [2].

In this paper, we propose a fast approximate level set algorithm for the detec-
tion of microstructural features in food micrographs. Our approximation method
is in the spirit of [5]. Automatic segmentation methods offer little control to the
user on the resulting segmentation. Hence, we chose a user-assisted approach.
Approximating the exact evolution equation allows for interactive computations.

2 Algorithm

Level Sets [6] have been fruitfully employed for segmentation, thanks to their
ability to give closed contours between segmented regions, avoiding the overseg-
mentation issues of region-based approaches. A binary segmentation is obtained
evolving the boundary towards a rest position that minimises an energy func-
tional. The boundary is implicitly represented by an embedding function, Φ,
chosen as the signed distance from the contour. This formulation overcomes the
implementation issues of active contours [7]. The level set equation is

∂Φ

∂t
= −∇Φ · dx

dt
= −∇Φ ·F (1)

where F is a function encompassing the partial derivatives of Φ evaluated at x,
and drives the evolution. Equation 1 is evaluated at the nodes of a finite grid.
Resolution anisotropy is easily dealt with by using an appropriate grid spacing.

The level set framework can be easily employed for segmentation by defining
a function F such that Equation 1 goes to zero close to the boundaries of interest
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objects in the image. Most of the level set segmentation algorithms in the liter-
ature are based on two different approaches: edge-based, and region-based. The
edge-based method, introduced by Caselles et al. [8], employs an image gradient
term to stop the evolution of the contour close to image intensity edges. The
region-based method, proposed by Chan and Vese [9], employs global statistics
about the inner and outer regions of the evolving contour to segment the im-
age into two homogenous regions. These basic methods are intrinsically bimodal.
Multi-region segmentation can be obtained by simultaneously evolving a number
of different contours.

2.1 Evolution Equation

Our algorithm is intended as a smart tool to select homogeneous features in food
micrographs. The user is asked to select a point inside the interest feature, that is
used to initialise contour evolution. A circular contour is defined around the input
point, and is grown towards the outside. We use the region-based framework.
The original formulation [9] employed information about the inner and outer
regions with respect to the contour. Namely, the deviation from the average
intensity values in the inner and outer regions is penalised. In our application,
the interest regions are reasonably homogenous, while the background can show
high variability. Hence, we drop the homogeneity term for the outer region.

Our interest structures can present intensity gradients while moving from the
centre to the border. However, they are locally homogenous. Hence, a term is
added to favour homogeneity in local neighbourhoods, much in the same way as
in [10]. This term is expressed as in the original region-based formulation, but
over a local support determined by a binary function B(x,x), where x is the
interest pixel and x is defined over the image support.

Food images, both microscopic and macroscopic, often present globular struc-
tures due e.g., to fat, gas concentration, and so on. An elliptical template shape is
used when looking for globular features. The evolution is guided by the equation:

∂Φ

∂t
= δε(Φ) [ −ν − λG(Φ− μi

G)2 − λL(Φ− μi
L)2

−γ(1 − |μi
L − μo

L|) + 2α(Φ− Ψ)] (2)

where Φ and Ψ are signed distance functions from the contour and from the prior
shape, respectively, μ is an inflation force, and λG,λL, γ, and α are parameters.
μi

G and μi
L are, respectively, the average pixel value inside the contour, and the

local average inside the contour. μo
L is the local average of background pixels.

These averages can be expressed as:

μi
G =

∫
H(Φ(x))I(x)dx∫
H(Φ(x))dx

μi
L(x) =

∫
B(x,x)H(Φ(x))I(x)dx∫
B(x,x)H(Φ(x))dx
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μo
L(x) =

∫
B(x,x)(1 −H(Φ(x)))I(x)dx∫
B(x,x)(1 −H(Φ(x)))dx

Here, B(x,x) is defined as above, x is the interest pixel, I(.) is the image, and
H(.) is the Heaviside function.

The homogeneity term (Φ−μi
G)2 penalises the deviation of pixel values from

the average values inside the contour. Similarly, (Φ − μi
L)2 does the same in

the neighbourhood defined by B(x,x). The similarity term (1 − |μi
L − μo

L|) is
maximum when the local average inside, μi

L, and outside, μo
L, the contour are

identical, and goes to zero when they are extremely different. This term lets
the contour go through homogeneous regions, stopping close to intensity edges.
Finally, the term (Φ− Ψ) measures the difference of the contour from the prior
shape Ψ . The function δε(Φ) is a smoothed Dirac delta such that δε(Φ) = 1 at
Φ(x) = 0, which prevents topology changes to occur far from the contour.

2.2 Approximate Equation

The computational burden of solving PDEs does not allow interactive segmen-
tation using standard level set methods. On the other hand, a few applications
require segmentation at sub-pixel precision. In order to speed up the evolution
process, we are thus allowed to approximate the distance function such that the
contour points have integer pixel coordinates. We do not even need to compute
an exact distance function. Only its sign matters. In the same spirit as [5], we
approximate Equation 2 as:

∂Φ

∂t
= δbox(Φ) [ −ν − λG(Φ− μi

G)2 − λL(Φ− μi
L)2

−γ(1 − |μi
L − μo

L|) − 2α(H(Φ) −H(Ψ))] (3)

where H is the Heaviside function, and δbox(Φ) = 1 for |Φ| ≤ 1 and zero else-
where. The function δbox is a sort digitised Dirac delta function that selects the
pixels adjacent to the approximate contour. These points are the only candidates
for a sign change. H(Φ) and H(Ψ) are used in place of Φ and Ψ to avoid keeping
track of the exact distance function, and store only its sign.

2.3 Implementation

Thanks to the approximations in Equation 3, a number of optimisations can be
carried out to speed up the contour evolution. Since no signed distance function is
defined, there is nothing to reinitialise. This saves most of the computational time
of the exact level set method. Since the grid values can take only two values (i.e.,
the sign of the distance function) only pixels adjacent to the contour, selected by
the function δbox(Φ), are candidate for a sign change. Hence, the narrow band
only contains pixels whose distance from the contour is less than one pixel. The
number of grid points involved for each iteration is thus considerably reduced.
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The function δbox(Φ) can be easily implemented using the standard Moore
boundary following algorithm. The computed pixel chain contains the candidate
foreground boundary pixels. Notice that the boundary pixels found by this al-
gorithm lie inside the contour. In order to get the background boundary pixels,
we take care to store adjacent pixels during the execution of Moore’s algorithm,
at negligible additional cost. These two chains represent each of the two sides of
the boundary, and are used to decide which inner (outer) pixels move outside
(inside) the contour. The following expressions are used to implement Equation 3
for each side of the boundary (notice the sign of the homogeneity terms):

Δ
I→O

(x) = −ν − λG(Φ(x) − μi
G)2 − λL(Φ(x) − μi

L)2

−γ(1 − |μi
L − μo

L|) − 2α(H(Φ(x)) −H(Ψ(x))) (4a)

Δ
O→I

(x) = −ν + λG(Φ(x) − μi
G)2 + λL(Φ(x) − μi

L)2

−γ(1 − |μi
L − μo

L|) − 2α(H(Φ(x)) −H(Ψ(x))) (4b)

Equation 4a is used to shrink the contour, while Equation 4b is used for
expansion.

2.4 Evolution of the Prior Shape

In our application, we are interested in blob-like objects that appear approx-
imately elliptical in micrographs. Hence, an elliptical prior can be fit to the
contour points using a fast ellipse fitting algorithm at each evolution step. We
use a classical moment-based algorithm proposed in [11].

2.5 Colour

SEM micrographs are 8-bit greyscale images. Conversely, CLSM images are com-
posite images that may contain more than three colour channels. Each channel
maps the intensity of fluorescent light from stained structures to a 8-bit scale. A
channel represents the density of e.g., fat, protein or other substances of interest.
Microscopists take great care in order to choose colour stains that do not affect
the response of the sensor for other stains. These micrographs can be viewed as
a sort of multispectral images.

A mapping is needed from a colour micrograph with any number of colour
channels to a unidimensional scale. Micrographs can contain more that three
colour stains and colours may vary, depending on many factors (e.g., micro-
scopist’s choice, type of experiment, and so on). Most mapping schemes assume
images with three colour channels, while mapping functions used for multispec-
tral images are often bounded to the specific nature of the spectral components.
In our experiments, we adopt the straightforward solution of summing-up all
colour channels. Each new channel requires one more bit to represent pixel val-
ues (e.g., 9-bit values are used for images such as that shown in Figure 3).
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3 Evaluation

Table 1. Parameter values for
SEM and CLSM

SEM CLSM
λG 0.4 0.5
λL 1.0 2.0
γ 0.1 0.1
α 0.05 0.05
ν 0.0 0.0
W 5×5 3×3
dinit 20 15

We carried out a number of experiments us-
ing 20 cheese micrographs, 10 for each imaging
device (SEM and CLSM). We used two sets
of parameter values, one for each of the two
imaging techniques.

Table 1 shows the values we used throughout
all our experiments. The meaning of λG, λL,
γ, α, and ν is as described in Section 2. W is
the size of the active local neighbourhood in
B(x,x) and dinit is the diameter of the initial
curve, centred at the position selected by the
user. Two different sets are used for SEM and

(a) Input SEM micrograph. Interest
regions are marked and annotated.

(b) A complex feature

(c) A blob-like fea-
ture

(d) A blob-like fea-
ture

(e) A compound fea-
ture

Fig. 2. Examples of segmentation of SEM cheese micrographs. The segmentations are
originated by user selections in the highlighted regions of the input images. Four fea-
tures are shown: (b) a very complex feature corresponding to an agglomerate of fat,
(c) a fat globule with complex background, (d) a globular structure, probably fat, with
two small pores where whey can flow (e) two fat globules attached.
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CLSM micrographs. This is mainly due to the different nature of the two imaging
technologies. Parameter values are also influenced by the colour mapping scheme
employed.

Figure 2 shows four cases of interest for food microscopists. In Figure 2(d)
a fat globule was successfully segmented although in contains two small pores.
Similarly, the fat globule in Figure 2(c) has a rough background, due to the
cheese making process or to sample preparation. Most common segmentation
algorithms fail in these cases. The case in Figure 2(e) shows a faintly distin-
guishable globule close to a clearly visible pore. This is another hard situation
for most algorithms. A very complex feature, showing a highly variable back-
ground, is successfully detected in Figure 2(b).

Figure 3 shows four segmentation results on a CLSM cheese micrograph.
Again, simple (Figure 3(c)) as well as complex (Figures 3(d) and 3(e)) features
are successfully detected. Smooth transitions (Figure 3(b)) are also captured.

Our algorithm may converge to wrong segmentations in complex situations,
such as that in Figure 2(b). This is due to the balance between global and local
detection terms in Equation 3. Our method may not converge at all in very
faint globules (e.g., the left globule in Figure 2(e)) or may leak through smooth
transitions (e.g., Figure 3(b)). Clearly, this depends on the difficulty to mark
inner and outer pixels when they present similar local statistics.

We cannot provide a more accurate quantitative analysis of segmentation
results due to the lack of manually-labelled ground truth. However, we plan
to get manual annotations for the near future. Improvements will concern the
colour mapping scheme and a deeper adaptation to the input data.

(a) Input CLSM micrograph.
Interest areas are highlighted
and annotated.

(b) (c)

(d) (e)

Fig. 3. Examples of segmentation of CLSM cheese micrographs. Four features are
segmented: (b) a feature showing a smooth transition of the red component (fat) going
out of focus, (c) a well distinguished feature, (d) and (e) features with complex internal
background.
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micrographs and for many helpful discussions. Financial support was provided
by the Assessorato Agricoltura e Foreste della Regione Siciliana, Palermo, Italy.

References

1. Aguilera, J.M., Stanley, D.W.: Microstructural principles of food processing and
engineering, 2nd edn. Aspen (1999)

2. Russ, J.C.: Image Analysis of Food Microstructure. CRC Press, Boca Raton (2004)
3. Impoco, G., Carrato, S., Caccamo, M., Tuminello, L.: Quantitative analysis of

cheese microstructure using SEM imagery. In: SIMAI 2006, Minisymposium: Image
Analysis Methods for Industrial Application (May 2006)

4. Nattkemper, T.W.: Automatic segmentation of digital micrographs: a survey. Stud-
ies in health technology and informatics 107(2), 847–851 (2004)

5. Fahmi, R., Farag, A.A.: A fast level set algorithm for shape-based segmentation
with multiple selective priors. In: 15th IEEE International Conference on Image
Processing (ICIP 2008), October 2008, pp. 1073–1076 (2008)

6. Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces.
Springer, Heidelberg (2002)

7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision 1(4), 321–331 (1988)

8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Jour-
nal on Computer Vision 22, 61–79 (1997)

9. Chan, T., Vese, L.A.: An active contour model without edges. In: Nielsen, M.,
Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682,
pp. 141–151. Springer, Heidelberg (1999)

10. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE
Transactions on Image Processing 17(11), 2029–2039 (2008)

11. Chaudhuri, B.B., Samanta, G.P.: Elliptic fit of objects in two and three dimensions
by moment of inertia optimization. Pattern Recognition Letters 12(1), 1–7 (1991)



Shape Detection from Line Drawings by
Hierarchical Matching

Rujie Liu1, Yuehong Wang1, Takayuki Baba2, and Daiki Masumoto2

1 Fujitsu Research and Development Center, Beijing, China
{rjliu,wangyh}@cn.fujitsu.com

2 Fujitsu Laboratories, Kawasaki, Japan

Abstract. An object detection method from line drawing images is pre-
sented. In this method, the content of line drawing images are hierarchi-
cally represented, where a local neighborhood structure is formed for
each primitive by grouping its nearest neighbors. The detection process
is a hypothesis verification scheme. Firstly, the top k most similar local
structures in the object drawing are obtained for each local structure of
the model, and the corresponding transformation parameters are esti-
mated. By treating each estimation result as a point in the parameter
space, a dense region around the ground truth is then formed provided
that there exists a model in the object drawing. At last, the mode detec-
tion method is used to find this dense region, and the significant modes
are accepted as the occurrence of object instances.

1 Introduction

Object detection is usually required in content based engineering drawings man-
agement, where the purpose is to find the occurrences of a specific part from
the database. Direct usage of object detection techniques often costs much time
for each operation, therefore, they are not qualified under the real time require-
ment. Thanks to the specific characteristics of the drawings wherein lines and
curves are the primary objects, a line/curve representation can be used instead
for detection purpose [1][2][3].

Matching line/curve representations is not a trivial problem. A line segment
itself is non-distinctive: a line in the model can be matched to any line of the
image if affine invariance is allowed. The discriminative power of a line/curve
representation lies in the structural information between line/curve segments.
This naturally leads to graph matching approaches [4][5]. Although theoreti-
cally reasonable, the graph matching methods are difficult to be applied in real
applications due to the high computational complexity.

Many attempts have been made to improve the graph matching speed. Huet
and Hancock [6] proposed to integrate the geometric attributes of line/curve
pairs into a histogram, and measure the similarity of two histograms by the
Bhattacharyya distance. Similar to [6], histogram was also adopted in [3] to
conglomerate the local structures of one image, and histogram intersection op-
erations were employed for indexing, however, the local structure representation
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was constructed therein under the guidance of Gestalt psychology laws. To pre-
serve the structural information in matching, a hypothesis-test scheme was used
in [7] to realize the graphics recognition. The attributed graph of the model was
firstly reduced into a spanning tree and a fixed traversal path was thus deter-
mined, next, this tree was used to direct the examination process to find all
required components of this modal class.

Our method for object detection from line drawings commences by extract-
ing lines and smooth curves from the row image data. These lines and curves,
with the advantages of line/curve representation, are then adopted as primitives
to construct local neighborhood structure by grouping several nearest neighbor
primitives around one reference. Object detection is realized by the mode de-
tection scheme. For each local structure of the model, we find the top k nearest
structures in the drawing, and estimate the transformation parameters for each
of the k candidates. If one candidate structure is actually in correspondence with
the model structure, the estimation result will be close to the ground truth; oth-
erwise, these values will be irregularly distributed. By treating each estimation
result as a point in the parameter space, a dense area around the ground truth is
then formed provided that there exists a model object in the drawing; otherwise,
no dense area can be found. This dense area is finally detected using the mean
shift technique [8].

2 Local Neighborhood Structure

The local neighborhood structure is constructed using the nearest neighbor cri-
terion. Lines and curves are the primary components of line drawings, thus, it
is a natural thing to adopt them as the primitives. Given a primitive as the
reference, we find its neighbor primitives whose minimum distances to the ref-
erence are smaller than a threshold, and then group these neighbor primitives
with the reference to form a local neighborhood structure. With this process, a
local neighborhood structure is built for each primitive.

The local neighborhood structure is characterized by two kinds of attributes:
(1) shape of the primitive, which is represented by its direction histogram. To
realize rotation and scale invariance, the Fourier transform is applied to the
histogram, and the magnitudes of the coefficients are used as the attribute; (2)
the spatial relationship between neighbor primitives and the reference.

Four geometric cues are defined to describe the relationship between a neigh-
bor primitive and the reference one [9]:

1. Relative length, which is defined as the length of the neighbor primitive
divided by that of the reference;

2. Relative distance, which is defined as the length of the line segment con-
necting the centroids of these two primitives, divided by the length of the
reference;

3. Relative minimum distance, similar to relative distance, we define the relative
minimum distance as the minimum distance between the neighbor primitive
and the reference, divided by the length of the reference;



924 R. Liu et al.

4. Relative angle, which is defined as the acute angle between the neighbor
primitive and the reference.

Measuring the angle of two lines is straightforward, but it is not an easy thing
for two curves. To solve this problem, the earth mover’s distance (EMD) of the
direction histograms of two primitives is used to measure their relative angle.
Intuitively, the angle between two curves can be interpreted as how much in
average the angle is changed from one curve to another, which is fully consistent
with the concept of EMD.

In summary, we can represent a local neighborhood structure P as P =
{S, (Ti, RLi, RDi, RMDi, RAi), i = 1...u}, where, S and Ti are the shape de-
scriptors of the reference and the i-th neighbor primitive, RLi, RDi, RMDi,
RAi are the geometric cues between the reference and its i-th neighbor, u is the
number of neighbors.

3 Matching Local Neighborhood Structures

Let PM = {SM , (Ti, RLi, RDi, RMDi, RAi)M , i = 1...u} and PG = {SG, (Tj ,
RLj, RDj, RMDj, RAj)G, j = 1...v} be local neighborhood structures of the
model and the drawing image respectively. For the reason of simplicity, NM

i and
NG

j are used to denote the neighbor primitive in PM and PG respectively. We
will introduce in this section how to compute the distance of PM and PG, and
estimate the transformation parameters from PM to PG.

Given one neighbor NM
i in PM and another neighbor NG

j in PG, their distance
is defined as follows:

DN (i, j) = α · dT (i, j) + (1 − α) · dC(i, j) (1)

where, dT (i, j) is the distance between shape descriptors Ti and Tj, dC(i, j) is
the distance of the geometric cues, α is a weight coefficient between 0 and 1.

With this distance metric, we may calculate all the distances between the
neighbors in PM and those in PG, which are represented as a matrix, [DN ]u×v.

After that, a greedy searching process is used to obtain the distance of PM

and PG. Firstly, find the minimum value DN (x, y) in DN , and treat neighbors
x and y as being processed; Next, search the minimum distance in the remained
neighbors, and mark them as being processed. Repeat this process until no fur-
ther operations can be made. In case that the number of the neighbors in PM is
larger than that in PG, a punishment cost is assigned to each of the unprocessed
neighbors in PM .

Let D be the cumulative value of the distances obtained in the above searching
process, the distance of PM and PG is then defined as:

DLNS(PM , PG) = (D + dT (SM ,SG))/(2 ∗ u + 1) (2)

The transformation from PM to PG is restricted to be an affine one, i.e., only
changes on scale, shift, and rotation are allowed. In this case, we may estimate



Shape Detection from Line Drawings by Hierarchical Matching 925

the transformation parameters of the occurrence of the model in the drawing by
two pairs of matched primitives.

Denote NM
i and NM

j be two primitives in the model, which are in correspon-
dence with NG

k and NG
l in the drawing respectively. Let the vectors from the

centers of NM
i and NM

j to the centroid of the model be −→
Vi and −→

Vj , and Ok and
Ol be the centers of NG

k and NG
l . Under the assumption of affine transformation,

following relation holds:

Ok + s · −→Vi · (cosθ + isinθ) = Ol + s · −→Vj · (cosθ + isinθ) (3)

Unfortunately, two main problems prevent the above method from being applied
directly: (1) the assumption of affine transformation is too strict; (2) correspon-
dences of the primitives are not known at all in the current stage, i.e., one
neighbor in PM may be matched to any neighbor in PG.

To solve these problems, we rely on the most reliable matches of the primi-
tives to estimate the parameters. Firstly, we select the reliable matches of the
primitives from all possible matches in PM and PG. Next, the parameters are
calculated with equation (3) for any two pairs of the reliable matches. Provided
that PG is actually in correspondence with PM , most of the selected reliable
matches will be correct, and thus a dense region of the calculated parameters
will be formed.

Let Dmin be the minimum value in the distance matrix [DN ]u×v. A neighbor
pair, NM

x and NG
y , are accepted as a reliable match if:

1. DN (x, y) is larger than Dmin within a given threshold;
2. The ratio of DN(x, y) to Dmin is smaller than a threshold.

With the parameters calculated from all the reliable match pairs, the Parzen
Window method is used to search the dense clusters, and the ’true’ transforma-
tion parameters are thus obtained.

4 Object Detection

4.1 Mean Shift Mode Detection

Obviously, many estimation results from the local neighborhood structures of the
model and their k nearest candidates are not precise. At the first glance, it seems
difficult to realize the detection task from these unreliable estimation results.
However, it is not such a case. For a correct match pair of local neighborhood
structures, where the reference primitives of the two structures are actually in
correspondence with each other, the estimation result is usually close to the
ground truth; otherwise, irregular and sparse values will arise. Thus, a dense
area around the ground truth is formed by the correct match pairs if we treat
each estimation result as a point in the parameter space. By searching this dense
cluster, the occurrence of the object can be detected with its transformation
parameters.



926 R. Liu et al.

The variable bandwidth mean shift [8] is adopted to find the dense clusters
from the estimation results. Let xi ∈ Rd, i = 1...n be the estimated parameters
by matching the local neighborhood structures, and each point xi is associated
with a bandwidth value hi. The mean shift method is implemented by an iterative
procedure, as follows:

Yj+1 =

∑n
i=1

Xi

hd+2
i

G(‖Yj−Xi

hi
‖2)∑n

i=1
1

hd+2
i

G(‖Yj−Xi

hi
‖2)

(4)

4.2 Verification

Let C be one mode obtained from the mean shift procedure, and cn = {PM
i , PG

j ,

DLNS(i, j), fij}n, n = 1...N the points belonging to this mode, where PM
i and

PG
j constitute a matched pair of local neighborhood structures, DLNS(i, j) is

their distance, and fij is the estimated parameters from PM
i and PG

j . Denote
the parameters corresponding to mode C be f, i.e. the center of the dense region.
Under the constraint that only one-to-one match is allowed for local neighbor-
hood structures, we can evaluate each mode by solving the Hungarian assignment
problem.

Firstly, a confidence value is assigned to each point cn of mode C:

Zn = (1 −DLNS(i,j))2 · exp(−(fij − f)′W (fij − f)) (5)

where, W is a diagonal matrix with the diagonal elements indicating the weights
of the parameter components.

Two factors are considered in this definition: (1) the similarity of two local
neighborhood structures; (2) the distance of the estimated parameters of these
two structures to the mode center.

The value of the weight coefficients in W is calculated by solving a least
squares problem with the manually labeled samples. For this purpose, some pairs
of model and drawing images are firstly selected. A model and a drawing image
compose a pair for manual labeling if the drawing contains one occurrence of the
model and the mean shift mode detection result (the detected mode) is correct.
Given these selected images, the correctly matched pairs of local neighborhood
structures are manually labeled as positive samples while others are labeled as
negative one.

With the training samples, the objective function used in the least squares
problem is:

J =
N∑

n=1

M∑
m=1

bnm(e−(f
nm

−f
n
)′W(f

nm
−f

n
) − tnm)2 (6)

Here n = 1...N denotes the selected pair of model and drawing images and
fn is the detected mode from these two images, m = 1...Mn represents the
matched pair of the local neighborhood structures in n and fnm is the estimated
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parameters from these two structures, tnm indicates the manual labeling result
(1 for positive samples and 0 for negative ones), the weights bnm are set to be
the ratio of the number of positive samples to the negative ones if tnm = 1, and 1
otherwise. These weights balance the relative contributions to the error function
between positive and negative examples.

After the calculation of the confidence value zn for the points of C, the optimal
matches of local neighborhood structures can be selected therein by solving the
Hungarian assignment problem, under the constraint that only one-to-one match
is allowed. Thus, the confidence score of mode C can be easily obtained.

5 Experiments

5.1 Synthetic Data

The robustness of the proposed method is analyzed using randomly generated
drawings, which are assumed to be composed only by straight lines. Firstly, one
drawing image is created by randomly generating several straight lines; then,
noise of various forms are added to the lines to get another drawing; at last,
matching is run on the two drawings.

The ingredient lines of the first drawing are modified by two factors to generate
another drawing, i.e., rotation, scale and translation.

– Rotation. Each ingredient line is rotated around its center with a random
number between [−RMax, RMax].

– Scale and translation. Given a random number S between [−SMax, SMax],
each end point of a line is moved to or away the line center by S/2 multiplied
by the length of this line.

The evaluations are performed in two ways: the local neighborhood structure
matching; and the whole drawing matching. In the first way, each local neigh-
borhood structure of the first drawing is matched to its corresponding structure
of another drawing, and the transformation parameters are estimated as de-
scribed in section 3. In the second way, the two drawing are matched with the
proposed method and the transformation parameters are then estimated.

In the experiments, the ingredients lines of the first drawing image are limited
in the range [0, 0] to [100, 100], and a drawing image is composed by 10 lines.
The distance from the estimated object center to the true object center is used as
the measurement criterion. To analyze the robustness of the matching method,
different levels of noise are added by changing the values of RMax and SMax.
For each parameter value, 200 iterations are performed and the average value is
computed. The experimental results are illustrated in Figure 1.

Compared with scale and translation variation, the proposed method is more
robust to rotation variation. This phenomena is reasonable. In the matching
algorithm, the centers of the constituent primitives (lines in this experiment)
play a key role in parameter estimation, as shown in equation (3). Therefore,
the estimated object centroid doesn’t change at all in case of rotation variation,
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Fig. 1. Estimation from k nearest candidates

provided that the two pairs of lines are in fact in correspondence. However, it
is not the case for scale and translation change. With the scale and translation
noise, the middle points of the primitives are changed, and as a result, the
estimated object centroid is different from the true position.

5.2 Real-Life Engineering Drawings

We present in this section some detection results with real-life engineering draw-
ings in manufacture area. As our algorithm is used for object detection under
the framework of line/curve representation, raster images are firstly vectorized
to extract the geometrical primitives such as segments and arcs. For the sake of
conciseness, we do not thoroughly discuss the vectorization process. One well-
know vectorization approach consists in computing the medial axis of the raster
image and approximates it by the primitives. Although the basic raster-to-vector
conversion problem is considered as solved, solutions are far from perfection in

(a) (b) (c)

Fig. 2. Illustration of detection result. (a) Confidence=0.78; Angle=3.5; Scale=2.37;
Time=12ms (b) Confidence=0.8; Angle=1.1; Scale=1.90; Time=10ms; (c) Confi-
dence=0.71; Angle=272.1; Scale=3.99; Time=25ms.
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terms of precision, robustness, and stability [7]. For example, the same object can
be vectorized very differently when slight changes (e.g., resizing and/or rotation)
are applied to the object.

Due to the lack of a benchmark engineering drawing database for perfor-
mance evaluation, we only present in this paper some examples to illustrate the
detection results, as shown in Figure 2(a)-(c). An off-line preprocessing stage is
adopted, where the drawing images are vectorized and the local neighborhood
structures are built. All the experiments are carried out with a computer of 3G
CPU and 2G memory, and the time costs shown therein correspond to only the
matching time. In each of the figures, a red rectangle is used to mark the detected
object, while the red points are used to illustrate the estimated centroids from
the local neighborhood structures of the model and their 6 nearest candidates.

6 Conclusion

In this paper, we present an object detection method to search shapes from line
drawings. This method is in fact a hierarchical matching scheme, where the local
neighborhood structure acts as the middle level representation.By grouping the el-
ementary lines/curves into local neighborhood structure, both the appearance and
the geometric structure of the line drawing are well described. For each local neigh-
borhood structure of the model, its k-nearest neighbors in the drawing image are
obtained and the transformation parameters are estimated. By a mean shift mode
detection process, more precise parameters are got from these noisy estimations.
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Abstract. Implicit active contours are widely employed in image
processing and related areas. Their implementation using the level set
framework brings several advantages over parametric snakes. In particu-
lar, a parametrization independence, topological flexibility, and straight-
forward extension into higher dimensions have led to their popularity.
However, in some applications the topological flexibility of the implicit
contour is not desirable. Imposing topology-preserving constraints on
evolving contours is often more convenient than including additional
postprocessing steps. In this paper, we build on the work by Han et
al. [1] introducing a topology-preserving extension of the narrow band
algorithm involving simple point concept from digital geometry. In order
to significantly increase computational speed, we integrate a fast level
set-like algorithm by Nilsson and Heyden [2] with the simple point con-
cept to obtain a fast topology-preserving algorithm for implicit active
contours. The potential of the new algorithm is demonstrated on both
synthetic and real image data.

1 Introduction

Implicit active contours [3,4] have been developed as an alternative to parametric
snakes [5]. Their solution is usually carried out using the level set framework [6],
in which the contour is represented implicitly as the zero level set (also called
interface) of a scalar, higher-dimensional function φ. This representation has sev-
eral advantages over the parametric one. In particular, it avoids parametrization
problems, the topology of the contour is handled inherently, and the extension
into higher dimensions is straightforward.

The contour evolution is governed by a partial differential equation (PDE):

φt + F |∇φ| = 0 , (1)

where F is an appropriately chosen speed function describing the motion of the
interface in the normal direction. A basic PDE-based solution using an explicit
finite difference scheme results in a significant computational burden limiting
the use of this approach in near real-time applications.

Many approximations, aimed at speeding up the basic level set framework,
have been proposed in last two decades. They can be divided into two groups.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 930–938, 2009.
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First, methods based on the additive operator splittings scheme [7,8] have
emerged to decrease the time step restriction. Therefore, a considerable lower
number of iterations has to be performed to obtain the final contour in contrast
to standard explicit scheme. However, these methods require for the implicit
function to maintain in the form of signed distance function, which is computa-
tionally expensive. Second, since one is usually interested in the single isocontour
– the interface – in the context of image segmentation, other methods have been
suggested to minimize the number of updates of the implicit function in each
iteration, or even to approximate the contour evolution in a different way. These
include the narrow band [9], sparse-field [10], or fast marching method [11].
Other interesting approaches based on a pointwise scheduled propagation of the
implicit contour can be found in [12,2].

The topological flexibility of the evolving implicit contour is a great bene-
fit since it allows to detect several objects simultaneously without any a pri-
ori knowledge. However, in some applications this flexibility is not desirable.
For instance, when the topology of the final contour has to coincide with the
known topology of the desired object (e.g. brain segmentation), or when the
final shape must be homeomorphic to the initial one (e.g. segmentation of two
touching nuclei starting with two separated contours, each labeling exactly one
nucleus). Therefore, imposing topology-preserving constraints on evolving con-
tours is more convenient than including additional postprocessing steps.

The main motivation of our work is the need for a robust and fast segmentation
method that would take advantages of the level set framework and be able to
preserve the interface topology during the deformation. We build on the work by
Han et al. [1] introducing a topology-preserving extension of the narrow band
algorithm [9] involving simple point concept from digital geometry. Since the
sparse-field method [10] can be considered as a special case of the narrow band
algorithm (the band width is equal to 1) and based on our previous work [13]
showing that a fast level set-like algorithm by Nilsson and Heyden [2] is about
two orders of magnitude faster than the sparse-field method, we integrate the
Nilsson and Heyden’s algorithm with the simple point concept to obtain a fast
topology-preserving algorithm for implicit active contours.

The organization of the paper is as follows. In Section 2, a review of implicit
active contours with topology-preserving constraints as well as the simple point
concept is presented. Section 3 describes the Nilsson and Heyden’s algorithm and
its topology-preserving extension. Section 4 is devoted to experimental results.
We conclude the paper with a discussion and suggestions for future work in
Section 5 and 6, respectively.

2 Topology-Preserving Constraint

This section briefly reviews the previous work devoted to imposing topology-
preserving constraints on implicit active contours. Namely, the key ideas of ex-
isting approaches and a characterization of simple points are introduced.
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2.1 Previous Work

Han et al. [1] proposed a first approach to preserve the topology of the implicit
contour during the deformation. This preservation is achieved by maintaining
the topology of the digital object enclosed by the implicit contour, for which
the simple point concept is used. The topology of the digital object can change
only if the implicit function changes the sign at a grid point (such a point is
moved from inside the object to the outside or vice versa). However, not every
point switching implies a topological change of the digital object. Its topology
will not change if the considered point is simple. To summarize, Han et al.
introduced an extension of the level set framework monitoring the sign changes
of the implicit function and preventing the contour to be evolved at grid points
that are not simple. The method guarantees that the final contour has exactly
the same topology as the initial one and does not contain any self-interactions
that may occur in the case of explicit contours.

For completeness, we refer the reader to other approaches [14,15], even though
they are not related directly to the proposed method. Instead of modifying the
level set framework as Han et al. do, the others integrate various penalization
terms directly into the energy functional.

2.2 Simple Point Concept

One of the fundamental ideas of digital geometry is the simple point concept
allowing topology-preserving deformations of digital images. A simple point is
a point whose switching from the foreground to the background (or vice versa)
does not change the image topology. In 2D, Klette and Rosenfeld [16] introduced
the simple point characterization considering the number of n-connected fore-
ground components and the number of n̄-connected background components in
the 8-neighborhood of the considered point, where (n, n̄) is a pair of compatible
connectivities avoiding a topological paradox. Since there are only 28 possible
configurations, each of them can be evaluated in advance and a small look-up
table can be used for the fast simple point detection.

An extension of this characterization into 3D is not straightforward. Bertrand
and Malandain [17] proposed a characterization requiring the computation of
two topologic numbers in the 26-neighborhood of the considered point. This
approach can be implemented efficiently using the breadth-first search (BFS)
algorithm [18]. Note that the configuration space contains 226 possibilities in
3D. Therefore, it is not always convenient to use a precomputed look-up table,
since its size may exceed the capacity of a workstation main memory. Instead,
an evaluation using the BFS algorithm has to be performed repeatedly.

3 Proposed Algorithm

A principle of the proposed algorithm is explained in this section. We start with
a brief description of the Nilsson and Heyden’s algorithm, since the proposed
one extends this approach. A mechanism involving the simple point concept and
enforcing the implicit contour to preserve its topology is given in Sect. 3.2.
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3.1 Nilsson and Heyden’s Algorithm

Nilsson and Heyden proposed a fast approximation of the level set framework
exploiting a pointwise scheduled propagation of the implicit contour in [2]. In-
stead of evolving the whole interface in a small constant time step, a point p
of the interface with the minimal departure time is moved to the outside or in-
side of the interface depending on the sign of the speed function at this point.
Simultaneously, its local neighborhood is updated accordingly. The departure
time Td(p) of the interface point p (the time at which the propagation of p is
expected to occur) is defined as

Td(p) = Ta(p) +
1

max{|F (p)|, ε} , (2)

where Ta(p) is the arrival time (the time at which the interface arrived to p)
and F (p) is the speed function. The max-operation in the denominator avoids
the division by zero (ε is a small number). Furthermore, considering the implicit
function as a mapping of the set membership of each point, the need for its
periodical reinitialization vanishes. This simplification also allows to roughly
approximate the interface curvature in an incremental manner. These ideas in
conjuction with a heap-sorted queue for the departure times of the interface
points result in a near real-time algorithm for tracking implicit contours.

3.2 Topology-Preserving Extension

To enforce the Nilsson and Heyden’s algorithm to preserve the interface topology
during the deformation, we exploit the simple point concept. A local characteri-
zation of simple points allows a relatively straightforward and easy to implement
modification of the pointwise scheduled interface propagation in each iteration.

Let p be a point of the interface with the minimal departure time. The be-
haviour of the new algorithm can be divided into two cases according to the sign
of F (p). First, assume that F (p) < 0 (Fig. 1a). The original algorithm removes p
from the heap, transfers it to the exterior, and adds all its interior neighbors to
the interface. Clearly, only p is switched from the foreground to the background,
which could eventually change the interface topology. This could happen only
if p is not simple. In order to preserve the interface topology, it is therefore
sufficient to check whether p is simple or not. If p is simple, the new algorithm
behaves in the same way as the original one. If p is not simple, its propagation
is stopped. The implicit function remains unchanged, Ta(p) is set to Td(p), and
Td(p) is recomputed using (2), i.e. p is considered as a point which the interface
is arriving to right now.

The second case, when F (p) > 0 (Fig. 1b), is more complicated than the first
one. The original algorithm removes p from the heap, transfers it to the interior,
and adds all its exterior neighbors (denote them by E(p)) to the interface. In
this case, each point in E(p) is switched from the background to the foreground
and could eventually change the interface topology. Therefore, it is inevitable to
check whether each point in E(p) is simple or not (denote the set of simple ones
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Fig. 1. Comparison of one iteration of the Nilsson and Heyden’s algorithm (top right)
and the proposed one (bottom right) in case of (a) F (p) < 0 and (b) F (p) > 0.
The black points correspond to the interface, the white ones to the exterior, and the
gray ones to the interior. The arrows from p correspond to the directions of possible
propagations of the interface in this iteration.

by E+(p) and the set of non-simple ones by E−(p)). For the points in E+(p),
the new algorithm behaves in the same way as the original one. On the other
hand, the propagation to points in E−(p) is stopped. Note that if E−(p) is not
empty, p must be put back into the interface and consider it as a point which the
interface is arriving to right now in order to preserve the interface connectedness.

For completeness, the case F (p) = 0 has already been solved in the original
algorithm and does not require any special attention in the new one. In this case,
Ta(p) is set to Td(p), Td(p) is recomputed using (2), and the heap is updated
according to the new value of Td(p).

4 Experimental Results

In this section, we present several results and comparisons on both synthetic
and real image data to demonstrate the potential of the proposed algorithm.
The experiments have been performed on a common workstation (Intel Core2
Duo 2.0 GHz, 2 GB RAM, Windows XP Professional).

We have solved a PDE related to the geodesic active contour model [4] and
used two different inflation forces in the experiments. First, a constant inflation
force over the whole domain is considered. We refer to this model as standard
geodesic model (SGM). Second, the inflation force, defined as (2 · I(x) − 1) for
a binary image I(x), provides an expansion force inside the object and a con-
traction force outside. We refer to the second model as binary geodesic model
(BGM). The original Nilsson and Heyden’s algorithm is denoted as SGM or
BGM algorithm depending on the geodesic model it implements. Similarly, the
topology-preserving algorithm considering (n, n̄) as a pair of compatible connec-
tivities is denoted as TSGMn

n̄ or TBGMn
n̄ algorithm.

We start with a synthetic binary image containing two circles (Fig. 2a). We
aim at finding both circles while the topology of the initial interface remains
unchanged. In case of the BGM algorithm, the interface is splitted into two parts
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a
b
c d

Fig. 2. (a) Segmentation of a synthetic image with two circles. Evolution of the BGM
contour (upper row). Evolution of the TBGM4

8 contour (lower row). (b) Segmentation of
a hand-shaped digital phantom. Left: The original image including the initial interface.
Centre: The result of the SGM algorithm. Right: The result of the TSGM8

4 algorithm.
(c) Segmentation of touching human lung cells. Left: The original image including the
initial contour. Right: The final shape of the TSGM8

4 contour. (d) Deformation of five
ellipsoid-shaped digital phantoms. Top: Three mutually orthogonal cross sections of the
original image. Bottom: The result of the proposed algorithm for the (26, 6) compatible
connectivity pair. Ticks show the positions of the other two cross sections.

and each circle is detected separately. On the other hand, the TBGM4
8 algorithm

preserves the contour topology and outputs only one 4-connected component.
The second experiment is aimed at finding the boundary of a hand-shaped

digital phantom (Fig. 2b). Since two middle fingers are touching, the SGM con-
tour changes its topology, which results in a hole inside the final object. On the
other hand, the TSGM8

4 algorithm keeps the boundary of each finger separated.
Figure 2c illustrates a segmentation of two touching cell nuclei. The image

was acquired using a fluorescence microscope and the initial interface is made of
two disjoint curves. The final contour is achieved by the TSGM8

4 algorithm.
To conclude this section, we present an application of the proposed algorithm

in 3D. We have developed a tool [19] that is able to generate 3D cell nuclei-like
digital phantoms as well as to simulate the process of image formation in the
fluorescence microscope. The task of the proposed algorithm has been to reduce a
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regularity of the boundary of simple geometric objects to conform better with the
real nucleus shapes, while the topology of initial objects is preserved (Fig. 2d).

5 Discussion

A local characterization of simple points makes the simple point checking pro-
cedure straightforward and efficient. In comparison to the original Nilsson and
Heyden’s algorithm, including the topology-preserving constraint does not incur
a significant computational overhead. In 2D, a difference in the computational
speed of both algorithms is negligible since the simple point detection exploits a
precomputed look-up table. On the other hand, this difference is not negligible
in 3D, since the BFS algorithm [18] has to be executed repeatedly in each iter-
ation to evaluate the simple point criterion. However, the extra time stemming
from applying the topology-preserving constraint increases the total processing
time by only about 4 percent. In comparison to the topology-preserving narrow
band algorithm by Han et al. [1], the proposed algorithm is about two orders
of magnitude faster (Fig. 3). On the other hand, it does not achieve subpixel
accuracy due to the simplified representation of the implicit function.

Fig. 3. Dependence of the computational time of the topology-preserving narrow band
algorithm and the proposed one on the image size in 2D (left) and 3D (right)

The proposed algorithm preserves the topology of the contour as well as the
topology of the background component. This behaviour results in a 4-connected
path separating two touching cell nuclei in Fig. 2c. For segmentation of touching
objects, it would be more convenient to omit such a path and let the contours
evolve to touch themselves. This will be addressed in future work.

6 Conclusion

We have addressed the problem of imposing topology-preserving constraints on
implicit contours. We have integrated a fast level set-like algorithm by Nilsson
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and Heyden with the simple point concept to obtain a fast topology-preserving
algorithm for implicit active contours. A local characterization of simple points
allows a relatively straightforward and easy to implement modification of the
pointwise scheduled propagation of the implicit contour. The experiments veri-
fied topology-preserving properties of the proposed algorithm and indicated that
it is fast enough to be used in near real-time applications.

Acknowledgments. This work has been supported by the Ministry of Edu-
cation of the Czech Republic (Projects No. MSM-0021622419, No. LC535 and
No. 2B06052).

References

1. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geo-
metric deformable models. IEEE Transactions on Pattern Analysis and Machine
Inteligence 25(6), 755–768 (2003)

2. Nilsson, B., Heyden, A.: A fast algorithm for level set-like active contours. Pattern
Recognition Letters 24(9-10), 1331–1337 (2003)
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938 M. Maška and P. Matula

16. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

17. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple
points. Pattern Recognition Letters 15(2), 169–175 (1994)

18. Malandain, G., Bertrand, G.: Fast characterization of 3d simple points. In: Pro-
ceedings of 11th International Conference on Pattern Recognition, pp. 232–235
(1992)

19. Svoboda, D., Kozubek, M., Stejskal, S.: Digital cell phantom generation and sim-
ulation of image formation in 3d image cytometry. Cytometry Part A 75A(6),
494–509 (2009)



Significance Tests and Statistical Inequalities for
Segmentation by Region Growing on Graph

Guillaume Née1,2,�, Stéphanie Jehan-Besson3, Luc Brun1,
and Marinette Revenu1

1 GREYC - UMR CNRS 6072 - 14050 Caen Cedex, France
2 General Electric Healthcare - 78140 Vélizy, France

3 LIMOS - UMR CNRS 6158 - 63173 Aubière cedex, France
{gnee,jehan,brun,revenu}@greyc.ensicaen.fr

Abstract. Bottom-up segmentation methods merge similar neighboring
regions according to a decision rule and a merging order. In this paper,
we propose a contribution for each of these two points. Firstly, under
statistical hypothesis of similarity, we provide an improved decision rule
for region merging based on significance tests and the recent statistical
inequality of McDiarmid. Secondly, we propose a dynamic merging order
based on our merging predicate. This last heuristic is justified by consid-
ering an energy minimisation framework. Experimental results on both
natural and medical images show the validity of our method.

1 Introduction

Segmentation of images into homogeneous regions is a fundamental low-level op-
eration which is crucial for many applications such as video compression, image
enhancement (different processing may be applied for different objects), object
detection, etc. Spatial segmentation can be classified into two main categories,
namely contour-based and region-based methods. In the first category, edges are
computed and connected components can be extracted (see [1] for example).
However, the connection of a set of disconnected edges in order to define an
image partition remains a challenging problem. Moreover such a segmentation
scheme can not take benefit of statistical properties of the considered image
regions. The second category of methods, i.e. region-based, is then more often
used. Such an approach may use features computed along the contours of the re-
gions but uses the regions as basic elements within the segmentation scheme. We
are interested here in a bottom-up segmentation approach. In such an approach,
similar neighboring regions are merged according to a decision rule [2]. The ini-
tial regions can be defined from the grid of pixels or an oversegmentation of the
image. The design of both the merging criterion and the merging order is crucial
for segmentation purposes. When dealing with the merging predicate, the choice
of the threshold is often difficult and can be crucial. Compared to other classical
� This work is funded by a grant co-financed by General Electric Healthcare and the
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approaches, e.g. [3,4], the authors of [5,6] have proposed recently an adaptive
threshold based on the use of statistical inequalities. Such a method provides
good results with few parameters to tune. However, their merging predicate is
based on the assumption that all the pixels of a given region have the same
expectation of their intensities. This last assumption is only valid for piecewise
constant images with a low level of noise. Let us also notice that the authors
of [6] show that their algorithm provides an oversegmentation especially for small
images. As far as the merging order is concerned, the authors propose two differ-
ent distances between regions intensities computed once at the beginning of the
merging process. These orders are not clearly related to the merging criterion.

In [7] we have revisited this statistical segmentation framework using a con-
trario principles. The a contrario approach is based on the perception theory
and particularly the grouping law of the Wertheimer’s theory. This grouping law
states that “objects having a quality in common get perceptually grouped”. The
Helmholtz principle [8] which states that “an event is meaningful if its number
of occurrences is very small in a random model” is a quantitative version of
the previous law. More formally, let us consider an event E whose probability
under an hypothesis H0 is bounded by a low threshold δ, the a contrario ap-
proach leads to reject the hypothesis H0 if such an event occurs. Using such a
decision scheme, δ may be interpreted as an upper bound of the probability of
a false alarm (rejection of H0 while H0 is actually true). The upper bound δ
may be fixed a priori in which case the test P (E|H0) < δ is called a significance
test [9]. Desolneux [8] proposed to set δ according to the expected number of
false alarms. Such a method provides an elegant way to fix the threshold but
reduces the adaptability of the method to user requirements.

Following the work in [7], we propose to apply a contrario principles and signif-
icance tests for the design of both the merging order and the merging predicate.
The general a contrario framework designed to compute merging predicates is
given in section 2. The merging order and the whole algorithm are described
in section 3. The influence of the merging order and the merging predicate are
studied in section 4.

2 Statistical Merging Predicates

Due to the random part in image acquisition systems, an image I is classically
considered as an observation of a perfect statistical image I∗. Using such an
image model, an ideal region is defined as a vector X = (X1, . . . , Xn) of n random
variables representing the pixel intensities. A “real” region is then considered as
an observation of this random vector which takes its values in

∏n
k=1 Ak. In

natural images, the set of admissible values Ak usually corresponds to [0;M ]
where M = 255. However, in medical images (e.g. : MRI, Echography), the set
Ak may be larger.

Using such a statistical model of regions, segmentation by region growing is
realized through the definition of a merging predicate P (Xi, Xj) and a merging
order. The design of these two features determines the main properties of a
segmentation algorithm.
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2.1 Problem Statement Using a Contrario Approaches

Given two statistical regions X1 and X2 and a dissimilarity criterion d(., .), let
us consider two observations R1 and R2 of respectively X1 and X2 and the event
“E: the observed value d(R1, R2) of d(X1,X2) is greater than a threshold T ”. As
mentioned in section 1, the a contrario approach is based on the estimation of
the probability of this event under the similarity hypothesis H0. Let us consider
an upper bound δ of this probability:

P {d(X1,X2) ≥ T |H0} ≤ δ (1)

We can remark that the upper bound δ and the threshold T are dependent.
Indeed if the threshold T is set to a high value, the event E corresponds to a
non probable event under H0 and δ should then be small. On the contrary if
the threshold T is set to a small value, E corresponds to a probable event under
H0 and so δ must be large. More generally, one may usually assume that the
threshold T is a decreasing function of δ which may be denoted as T (δ).

Using the a contrario approach, if we take δ as a low probability value, the
event E is considered as not probable under the similarity hypothesis H0 and
this hypothesis is then rejected. Given two observations R1 and R2 of statistical
regions X1 and X2, our decision rule for region merging is thus defined as follows:

if d(R1, R2) ≥ T (δ) then H0 is rejected (2)

The rejection of H0 means that X1 and X2 are different and thus that the
regions R1 and R2 must not be merged.

2.2 Computation of Thresholds Using Concentration Inequalities

The main difficulty of the above approach lies in the computation of the thresh-
old T (δ). In this work, we propose to use the extension of the McDiarmid theo-
rem [10] which allows to bound the probability of a large class of events. Let us
remind this theorem:

Theorem 1. Let Y = (Y1, . . . , Yn) be a family of random variables with Yk

taking values in a set Ak, and let f be a bounded real-valued function defined on
Ω =

∏n
k=1 Ak. If μ denotes the expectation of f(Y) we have for any α ≥ μ:

P {f(Y) ≥ α} ≤ exp
(
−2(α− μ)2

r2

)
+ P {Y ∈ C} (3)

Where C is a subset of Ω which corresponds to a set of outliers for Y and r2 is
the maximal sum of squared range [10] defined on C = Ω \ C.

Within our framework, we define f(Y) as our dissimilarity measure d(X1,X2)
and Y as an appropriate combination of the two vectors X1 and X2.

Let us denote by Δ(α), the bound provided by the McDiarmid’s theorem:

P {f(Y) ≥ α} ≤ Δ(α) (4)

The threshold T (δ) introduced in (1) can then be computed by setting δ = Δ(α)
and so α = Δ−1(δ) = T (δ).
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2.3 Piecewise Constant Predicate

We measure the similarity between the two regions by the following dissimilarity
measure:

f(X) = d(X1,X2) = |U1 − U2| (5)

where {Uj}j=1;2 denote the random variables corresponding to the means of the
statistical regions {Xj}j=1;2 of associated sizes |Xj | .

Our goal is to compute a decision rule that indicates if two observations R1 and
R2 of X1 and X2 are similar or not. We have thus to upper bound the probability
that the function f(X) = d(X1,X2) is greater than a given threshold α using
the McDiarmid’s theorem (theorem 1). Such an upper bound is provided by the
following proposition:

Proposition 1. Using the previously defined notations, we have for any couple
(X1,X2) of statistical similar regions and any threshold α > 0:

P {d(X1,X2) ≥ α} ≤ exp
(
− 2|X1||X2|

g2(|X1| + |X2|)
(α− μ12)2

)
+ K (6)

with K = P {X ∈ C} where C ⊂ Ω is the set of outliers for X and μ12 =
E [d(X1,X2)]. The parameter g comes from the computation of the maximum
range r2 and is equal to N − N ′ when C = [N ;N ′] (N ′ > N) defines the
complementary of the set of outliers C in Ω.

See [11] for a similar proof of this proposition. Note that the McDiarmid’s The-
orem 1 doesn’t require the independence of random variables, but we make
this assumption. Rigorously, such an assumption is not valid, but allows to
simplify the computation of r2. In practice, we set N = minx∈I(I(x)) and
N ′ = maxx∈I(I(x)) which ensures a null value of the probability of outliers
K. The parameter μ12 may be estimated using assumptions on the noise model.
For example, in the case of a gaussian noise (Xi ∼ N (mi, σ) for 1 ≤ i ≤ N),
we obtain, for any couple (Xi,Xj) of statistical regions, and after some calculus
based on well-known properties for the combination of Gaussian models:

μij =
2σ

(√
|Xi| +

√
|Xj |

)
√

2π|Xi||Xj |
(7)

Given two observations Ri, Rj of two different statistical regions Xi and Xj ,
our merging criterion is defined by the following predicate:

P (Ri, Rj) =

{
true if |Ri −Rj | < αij

false otherwise
(8)

with αij = g

√
|Ri| + |Rj |
2|Ri||Rj |

ln
(

1
δ −K

)
+ μij .
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According to Proposition 1, the probability that P (Ri, Rj) is true under the
hypothesis that Xi and Xj are parts of a same statistical region is bounded by
δ. Note that for a fixed δ, the αij value ensures (1), but is not necessarily the
largest value for which (1) holds.

This predicate can be understood as a generalization of the one proposed
by [6,7]. The general version of McDiarmid’s theorem provides an elegant way to
reduce the range of the random variables via the parameter g and the probability
K. It plays a similar role as the parameter Q introduced in [6]. Compared to this
last approach, we do not make the assumption that in a same statistical region
E [U1 − U2] = 0. In fact, this is not the case for noisy images. Such an assumption
is only valid under the law of large numbers and is therefore not verified for small
regions. This last point is illustrated by our experimental results (Section 4).

3 Merging Algorithm

Given an image I, the regions adjacency graph (RAG) G is composed of a set
of vertices V representing the observed regions and a set of edges E encoding
the adjacency of regions in 4-connectivity. In our implementation, regions are
initially reduced to a single pixel. A weighted edge is then a triplet composed of
a couple of nodes (vi, vj) with their corresponding weight wij . In our work, this
weight is defined as the ratio of the value of the criterion (left side of (8)) and
the computed threshold (right side of (8)):

wij =
|Ri −Rj |

αij
=

|Ri −Rj |

g

√
|Ri|+|Rj|
2|Ri||Rj| ln

(
1

δ−K

)
+ μij

(9)

Using the above formula, the predicate P between 2 regions Ri and Rj is true
if and only if the weight of the edge eij between the associated vertices vi and
vj is lower than 1. Our merging order on the edges eij corresponds to a de-
creasing order on the probability that d(Ri, Rj) < αij (6). Let us consider two
distinct couple of regions (Ri, Rj) and (Ri′ , Rj′ ) such that wij ≤ wi′j′ < 1. Then
P (Ri′ , Rj′) is true implies that P (Ri, Rj) is true. The probability of the event
P (Ri, Rj) is thus greater than the one of P (Ri′ , Rj′). A merging order based
on decreasing probability of our predicate is thus achieved by sorting our edge
weights increasingly.

Our merging order differs significantly from the one proposed by [6,7]. More-
over it is updated at each merging step. We may also justify these choices using
an energy minimisation scheme on the set of image partitions. Considering, for
simplicity reasons, an image without noise (e.g. μij = 0, ∀i, j), we define the
energy of a partition at instant t of the merging process as follows:

E(R1, ..., RN ) =
N∑

k=1

∑
x∈Rk

(I(x) −Rk)2

g2 + λN (10)
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where the number of regions N is a regularization term balanced by a positive
parameter λ. The merging of two selected regions Ri and Rj at step t + 1 leads
to an energy Et+1 and to the following energy difference:

ΔE = Et+1 − Et =
|Ri||Rj |

|Ri| + |Rj |
(Ri −Rj)2

g2 − λ (11)

This difference must be negative to ensure the minimization of the energy E.
By setting λ = 0.5 ln 1

δ−K and so regarding δ as our regularisation parameter,

ΔE becomes equal to
1
2

ln
1

δ −K
(w2

ij − 1). Our merging predicate (wij < 1)

thus ensures the negativity of ΔE. The merging order, if updated after each
merging operation, ensures the selection of the couple of regions that provides
the steepest energy descent for a fixed δ.

4 Experimental Results

In the first row of Fig. 1, the importance of the merging order is demonstrated.
For each segmentation result, the merging predicate (8) is used and the value of
the unique parameter δ is adjusted so as to obtain the same number of regions
(i.e. 55). The merging order used for the second column of Fig. 1 is simply a
scan-column, for the third column, we use a pre-computed order with wij =
(μi −μj)2 as in [7] and finally, segmentation using our dynamic update with the
weight (9) is given in the fourth column. The parameter g is chosen as mentioned

Fig. 1. Segmentation of the Trouville’s beach image (first row). From left to right:
original image - segmentation using a scan-column order (δ = 0.5) - segmentation
using a pre-computed order with wij = (μi − μj)2 as in [7] (δ = 0.335) - segmentation
using a dynamic update and (9) (δ = 0.09). The parameter δ is adjusted to obtain 55
regions in both reordering methods. Segmentation of an hypo-perfused region inside
the myocardium in MRI perfusion imaging (second row) using respectively algorithm
from [7] (second column) and our one (third column).
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EGBIS [3] JSEG [4] SRM [6] TCVSEG [7] Our algorithm
Mean > 6 2.51 1.88 1.48 1

Minimum > 3.5 1.85 1.51 1.29 1
Maximum > 11 4.43 3.11 2.04 1

Fig. 2. Comparison with others algorithms on a random selection of 10 images from
the Berkeley database [12]. For each image, the parameters of each algorithm have
been chosen to obtain the same number of regions. The values represent the Mean
Square Error (MSE) normalized by the minimum of MSE over all algorithms. Each line
respectively presents the mean, the minimum, and the maximum of this normalized
MSE on all the 10 images.

in section 2.3, which gives g = max
x∈I

(I(x)) − min
x∈I

(I(x)). This parameter g is equal

to 243 and the standard deviance of the noise has been estimated to σ = 0.55.
The two last results are clearly better than the first. The small regions such
as the lighthouse’s antenna or the lighthouse’s pillar are accurately recovered
with our dynamical merging process. Such a dynamical merging order generally
leads to a more accurate segmentation of small regions. This last point can be
explained by the fact that we take into account the sizes of the regions in our
merging order. The second row of Fig. 1 concerns the segmentation of hypo-
perfused regions (darkest regions) inside the myocardium in perfusion cardiac
MRI images. Accurate segmentation of pathological regions is a crucial task
for practitioners to allow perfusion quantification inside these regions. The left
segmentation result has been obtained by setting δ = 0.1, it is composed of
5 regions. The right one has been obtained by setting δ = 10−4 and gives 4
regions, the standard deviance of the noise has been estimated to σ = 35.36
and the parameter g = 7040. We can see that the hypo-perfused region (low
contrast on the right side of the myocardium) is accurately segmented by our
method while the other method does not perfectly enclose the region. Generally,
given an equal number of regions, our algorithm doesn’t merge significantly
different regions even if one of them is small. This last point is illustrated in fig. 2
which summarizes the results of our second experiment realized on 10 randomly
chosen images from the Berkeley database [12]. In this second experiment, we
have computed the MSE (Mean Square Error) normalized by the minimum of
the MSE value obtained over the 5 algorithms. The MSE is computed between
the original image and the image composed of segmented regions filled by their
mean values. The table 2 presents the mean, the minimum and the maximum of
this normalized MSE computed for each algorithm over all the 10 images. We
can remark that our algorithm always gives the minimum value of MSE which
is coherent with the fact that we ensure the steepest gradient descent of the
criterion E (10).

5 Conclusion

We have proposed in this paper a new region merging algorithm. The merging
predicate has been designed using an a contrario approach and a recent theorem
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about concentration inequalities. We have shown that merging criteria and merg-
ing orders are closely related and both contribute to the quality of the segmented
image. Concerning the merging order, we have proposed an original sorting cri-
terion based on the merging predicate and justified it within an energy min-
imisation scheme on the set of image partitions. Experimental results prove the
applicability of our method, especially for segmentation of small regions in med-
ical images.
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Abstract. In this paper, we develop a segmentation algorithm using
configurations of singular points in the linear scale space. We define seg-
ment edges as a zero-crossing set in the linear scale space using the
singular points. An image in the linear scale space is the convolution of
the image and the Gaussian kernel. The Gaussian kernel of an appropri-
ate variance is a typical presmoothing operator for segmentation. The
variance is heuristically selected using statistics of images such as the
noise distribution in images. The variance of the kernel is determined
using the singular point configuration in the linear scale space, since sin-
gular points in the linear scale space allow the extraction of the dominant
parts of an image. This scale selection strategy derives the hierarchical
structure of the segments.

1 Introduction

In this paper, we develop an algorithm of edge detection for segmentation us-
ing the deep structure in the linear scale space. The method of the Gaussian
scale-space analysis [3,4,5,6,7,8] is an established multiresolution image analysis
tool which provides the hierarchical expression of steel images and sequence of
images [9]. An image in the linear scale space is the convolution of the image and
the Gaussian kernel. The singular point configuration in the linear scale space is
called the deep structure of scale space (the DSSS in abbreviation). The DSSS
describes hidden topological nature of the original functions dealing with gray
values of an n-variable function in the scale space as (n + 1)-dimensional topo-
graphical maps [1,2,10,11,12,13]. The DSSS allows to extract dominant parts of
an image and their topological relation.

For segmentation of an image, presmoothing for the image is usually operated.
A typical presmoothing is the convolution of an image with a Gaussian kernel
with an appropriate variance. Then, a class of differential operations are operated
to the presmoothed image for the detection of steepest points as candidate of
segment edges. In this process, the variance of the Gaussian kernel, which defines
the bandwidth in the Fourier domain, is heuristically selected. We introduce a
mathematical strategy for the selection of the variance of the Gaussian kernel
using the DSSS. Since the stationary points on the stationary curves [1,2] define
dominant parts and their topological relation, we use the topological properties of
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stationary curves for the selection of the variance of the presmoothing Gaussian
kernel. This selection strategy derives the hierarchical structure of the segments
in the linear scale space.

Kuijper et al [12,13] dealt with singular points whose second derivatives are
zero as a DSSS feature. These singular point in the linear scale space is called
the top points or critical points. A top point is a singular point in the scale
space on which both first and second derivatives are zero. Iijima [3] defined
the singular points whose first derivative is zero. These singular points in the
scale space are called the stationary points [3,1,2]. These stationary points define
the centroids of view fields which extract the dominate parts of an image for a
fixed scale [3]. Zhao and Iijima proposed [1,2] a tree construction strategy in the
linear scale space using the configuration of their stationary points to express the
topological relations of dominant parts in the linear scale space. This paper is an
application of Zhao and Iijima’s treatment [1,2,3] of the DSSS for segmentation
since we deal with the configurations of singular points whose first derivatives
are zero for various scales.

2 Linear Scale Space and Structure Line

In the 2-dimensional Euclidean space R2, for an orthogonal coordinate system
x-y defined in R2, a vector in R2 is expressed by x = (x, y)� where ·� is the
transpose of a vector. The solution of the linear diffusion equation

∂

∂τ
f(x, τ) = Δf(x, τ), τ > 0, f(x, 0) = f(x) (1)

defines the general image of the function f(x) in the linear scale space. Setting
|x| to be the length of x, the solution of eq. (1) is obtained as

G ∗2 f(x) = f(x, τ) =
1

4πτ

∫ ∞

−∞

∫ ∞

−∞
f(y) exp(−|x − y|2

4τ
)dy. (2)

We define the following operators,

∇f(x, τ) = ∇Gf =
(
Gx ∗2 f
Gy ∗2 f

)
, HG =

(
Gxx ∗2 f, Gxy ∗2 f
Gxy ∗2 f, Gyy ∗2 f

)
. (3)

Using these operators, zero point sets and zero-crossing sets are defined in the
linear scale space.

Definition 1. Stationary points [1,3] for the topographical maps in the scale
space are the solutions of the equation ∇Gf = 0.

Denoting the signs of the eigenvalues of the Hessian matrix HG of the func-
tion f(x, τ) as (−,−), (+,−) and (+,+) in the linear scale space, these labels
of points correspond to the local maximum points, the saddle points, and the
local minimum points, respectively. Using these labels, the stationary points are
categorised into three types.
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Definition 2. The top points in the linear scale space are points which satisfy
the conditions ∇Gf = 0 and detHG = 0.

Next, we introduce closed curves [14,15,17] for each τ in the linear scale space.

Definition 3. The structure line in the linear scale space is

E(τ) = {x|∇Gf�HG∇Gf = 0}. (4)

For a fixed τ , E(τ) is the edge detected by the Canny edge-detection operator
[15,16,17].1 Canny [16] suggested the superposition of E(τi),

ECanny = ∪n
i=1E(τi) (5)

as the final edge for an appropriate set of parameters {τi}n
i=1, where τi+1 > τi.

In the next section, we introduce a mathematical method for the selection of τi

using the linear scale space analysis.

3 Segmentation in Scale Space

3.1 Scale Space Tree

Definition 4. The stationary curves in the linear scale space are the collections
of stationary points.

The trajectories of the stationary points which is expressed as x(τ) is the solution
of

HG
dx(τ)
dτ

= −∇Δf(x(τ), τ). (6)

Since the Hessian matrix is always singular for singular points, this equation is
valid for nonsingular points.

Definition 5. For S(x, τ) = |dx(τ)
dτ |, the stationary points on the stationary

curves are the points which satisfy S(x, τ) = 0 or are isolated points under the
conditions dS(x,τ)

dτ = 0 and d2S(x,τ)
d2τ = 0.

Denoting a stationary point on the stationary curves as (xi, τi), the region

R(xi, τi) = {x||x − xi| ≤
√

2τi} (7)

expresses a dominant part of f(x, τi).
In refs. [1,2], an algorithm to define a unique tree whose nodes are the sta-

tionary points on the stationary curves is defined. This tree expresses a unique
hierarchical relation of dominant parts in an image. The tree is constructed ac-
cording to the order of the stationary points on the stationary curves. Since the

1 In ref. [16], the zero-crossing ∂2

∂2m (G ∗2 f) = 0 for m = ∇Gf
|∇Gf | is proposed as the

segment edge. In ref. [15], the equality ∂2

∂2m (G ∗2 f) = 1
|∇Gf |2∇Gf	HG∇Gf is

proven.
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stationary curves consist of many curves for τ > 0, we call each curve a branch
curve. The point x∞ such that limτ→∞ x(τ) = x∞ is uniquely determined for
any images. We call a curve on which the point x∞ lies and a curve which is
open to the direction of −τ the trunk and branch, respectively.

At the top of each branch, a top point exists. Therefore, for the construction
of a unique hierarchical expression of stationary points, the following rule is
proposed [1].

Tree Construction

1. The subroot of a branch is a top point.
2. A top point is merged with the closest maximal point on the scale which

derives the top point.

This rule yields a monotonically branching curve from infinity to zero along
the τ -axis in the linear scale space. Using this monotonically branching curve,
we can define the order of scales [1,2].

Definition 6. For the stationary points on the stationary curves which are
merged using rule 1, the order of the stationary points is defined as x(τ) � x(τ ′)
if τ > τ ′ on a branch.

3.2 Segmentation Hierarchy

Using the geometrical properties of stationary points on stationary curves, we
select a set {τi}n

i=1.

Definition 7. We select scales {τi}n
i=1 for the Canny edge detection from scales

at stationary points on stationary curves.

Let �(τ) be the number of extremals for the scale τ . Setting τ∗ to be a scale
which derives a top point, the difference between �(τ∗ + ε) and �(τ∗ − ε) is at
least one for a small positive constant ε. E(τ) crosses at saddle points and a
simple closed portion of E(τ) encircles at least one extremal [14]. These two
geometric properties in the linear scale space and topology of E(τ) lead to the
next assertion.

Assertion 1. The difference between the number of simple closed curves for
scales τ∗ + ε and τ∗ − ε is at least one.

Figure 1 shows the topological and hierarchical relations of segments extracted
from a simple image. Fig. 1(h) shows the merging of a pair of closed structure
lines on a top point. From these geometrical properties we obtain the following
proposition.

Proposition 1. If a pair of branches of stationary curves is merged at a top
point, a pair of simple closed curves in E(τ) which share a saddle point is merged
into a simple closed curve.
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(a) Diffused im-
age; τ = 500

(b) Diffused im-
age; τ = 360

(c) Diffused im-
age; τ = 220

(d) Input image

(e) Simple closed
curve; τ = 500

(f) Creation of a
region; τ = 360

local maximum
saddle

(g) Creation of a
region; τ = 220

(h) Region tree

Fig. 1. Creation of regions with decreasing scale. Top row shows the diffused images of
(d), and bottom row shows the edge lines. (e) A simple closed curve at a large scale, (f)
creation of region inside existing region, and (g) creation of region which has a contact
point. (h) is the extracted tree.

This property implies the next rule to select scales for the detection of E(τ) as
the segment boundary.2

Parameter Selection for Edge Detection

1. Compute scales {τ∗i}k
i=0, which define top points, such that τ∗i ≤ τ∗i+1 and

τ0 = 0.
2. Select scales in the interval (τ∗i , τ

∗
i+1).

We define the hierarchical order of the segments extracted as the zero-crossing
of ∇Gf�HG∇G for (τ∗i , τ

∗
i+1).

Region Tree

1. For τ = ∞, set the region encircled with a closed loop to be the root of the
tree.

2. While decreasing τ , operate the followings;

2 For an appropriate function F , the set of points F = {x|F (x) = 0} is expressed
as a common set of the two sets F = F+ ∩ F− for F+ = {x|F (x) ≥ 0} and F− =
{x|F (x) ≤ 0}.
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(a) If a new region encircled with a closed loop appears, set this region as
the subroot of the node corresponding to the loop encircling the new loop
and connect this subroot to the node using an inclusive relation edge.

(b) If a new region incident to a loop appears, set this region as the subroot
of the node corresponding to the loop incident to this loop and connect
this subroot using an incident relation edge.

4 Experimental Examples

Figure 2 shows edges and segments for the selected scales. The scales in Fig. 2 are
selected based on the numbers of saddle points listed in Table 1. These numbers
define τ∗. Figure 3 shows the tree extracted from the singular points in the linear
scale space and the tree extracted from segments. The tree constructed from the
segments may define a strategy for the unification of small segments to one large
segments for the control of oversegmentation. Figure 4 shows the topological
relations of regions. These results show that the zero point and zero-crossing in
the linear scale space yield a hierarchical relation of image segments.

(a) Edge; τ = 220 (b) Edge; τ = 290 (c) Edge; τ = 370 (d) Edge; τ = 480

(e) Segment; τ =
220

(f) Segment; τ =
290

(g) Segment; τ =
370

(h) Segment; τ =
480

Fig. 2. Edges and segments in the linear scale space. From left to right, figures show
edges and the segments for the selected scales.
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Table 1. The number of saddle points for scales

scale 730 > τ ≥ 400 > τ ≥ 380 > τ ≥ 360 > τ ≥ 230 > τ ≥ 220
Number of
points 4 5 6 7 8

local maximum
local minimum
saddle
annihilation

inf.

(a) Scale Space tree

 

 

 1000

 2000

tau

(b) Stationary curve (c) Segment tree

Fig. 3. Singular point tree and segment tree. The tree in (a) is extracted based on the
curves in (b). The tree in (c) is extracted from the hierarchy of segments of Fig. 2.

(a) Segment; τ =
360

(b) Segment; τ =
560

(c) Segment; τ =
960

(d) Segment; τ =
1570

Fig. 4. Edges and segments in the linear scale space. If a closed curve for a small scale
encircles a collection of closed curves in a large scale, this relation defines a hierarchy
of segments across the scale.

5 Conclusions

In this paper, we analysed the Canny operator using the Gaussian scale space
framework and found a theoretical strategy on the determination of parameters
involved in Canny operation. Furthermore, we extracted the hierarchical relation
of segments using the configuration of the saddle points in the linear scale space.
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Appendix. The following algorithm [16] detects an approximation of ECanny,
since the gradient map of an original image approximates E(τ).

1. Define the parameters τ∗, T1 and T2 such that T1 ≥ T2.
2. Compute h = G ∗2 f .
3. Mark θ(x, y) = tan−1 hx

hy
= tan−1 Gx∗2f

Gy∗2f on points as the edge direction.
4. For |∇h|, select a point |∇h| ≥ T1 as the starting point of edge tracking.
5. Track peaks using θ(x, y) of |∇h| as for as |∇h| ≥ T2.
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Abstract. This paper introduces a novel 3D segmentation algorithm,
which works directly on point clouds to address the problem of parti-
tioning a 3D object into useful sub-parts. In the last few decades, many
different algorithms have been proposed in this growing field, but most of
them are only working on complete meshes. However, in robotics, com-
puter graphics, or other fields it is not always possible to work directly
on a mesh. Experimental evaluations of a number of complex objects
demonstrate the robustness and the efficiency of the proposed algorithm
and the results prove that it compares well with a number of state-of-
the-art 3D object segmentation algorithms.

Keywords: point cloud segmentation, mesh segmentation, mesh
decomposition.

1 Introduction

Cutting up an object into simpler sub parts has several benefits in modeling [10],
robotics [13] or collision detection [16]. The presented work includes a new seg-
mentation algorithm, based on radial reflection. The majority of the algorithms
developed here can be applied with only trivial modifications to more complex
shape matching problems.

1.1 Problem Statement and Contributions

Object segmentation and analysis, which can be interpreted as purely geometric
sense are challenging problems in computer vision. An ideal shape descriptor
should be able to find out the main features of an object and segment it into
useful parts, which can be used for automatic processes such as matching, reg-
istration, feature extraction [12] or comparison of shapes. Different methods
for mesh segmentation exist (e.g. Plumber [17], feature point and core extrac-
tion [14], Hierarchical Fitting Primitives (HFP) [3], spectral methods [22],...),
but most of them are only able to work on a mesh and not a point cloud. This
paper presents an algorithm which works directly on point clouds and is invariant
under rotation, translation and scaling.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 955–962, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1.2 Algorithm Overview

Fig. 11 gives an overview of our segmentation algorithm. The proposed segmen-
tation algorithm is based on radial reflection. At the beginning the algorithm
calculates the internal center and the radius of the bounding sphere by comput-
ing the smallest enclosing sphere of points [11], see Fig. 1d. Then, all points are
radial reflected inside in the direction to the center. Thus all points which are
inside on the original point cloud are farthest out after this step. The algorithm
uses the reflected point cloud to calculate the convex hull [18], Fig. 1e (yellow
hull), whereby all adhering parts on the core part will be automatically cut off.
To realize a hole free segmentation of the core part all vertices of the convex hull
are transformed in the direction to the center depending on the distances of the
neighboring points [2], see Fig. 1e (red hull). Based on these vertices an inner
convex hull is calculated. These inner convex hull surrounds the rest parts of the
object. Then our algorithm automatically segments the 3D point cloud into a
set of sub-parts by recursive flood-filling [9] based on the segmented core part,
see Fig. 1f. To realize a pose invariant object segmentation our algorithm gen-
erates a 3D mesh based on the power crust algorithm [1], see Fig. 1b, and uses
multi-dimensional scaling (MDS) to get a pose-invariant model representation,
see Fig. 1c. Thereby every vertex on the pose-invariant model corresponds to a
vertex of the mesh and every point of the original point cloud corresponds to a
vertex of the mesh.

Fig. 1. Overview of our segmentation algorithm: a 3D point cloud (5360 points). b
3D mesh based on the power crust algorithm (58441 vertices). c Pose-invariant model
representation based on multi-dimensional scaling (MDS) (58441 vertices). d Center
and bounding sphere, the radial reflected point cloud (5360 points) is red colored,
the original point cloud (5360 points) is green colored. The blue points (along the
bounding sphere) correspond with the blue center of the radial reflected point cloud. e
Outer convex hull (yellow), internal convex hull (red) to realize a hole free core part. f
Segmented point cloud (2085 core points, 3275 rest points).

1 All images are best viewed in color. The core part is in every case red colored.
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1.3 Related Work

Different methods to automatic 3D object segmentation into meaningful parts
have been published in the last few years.

3D Model Segmentation: algorithms can be categorized into two main classes.
The first class is developed for applications like reverse engineering of CAD mod-
els [5]. The second class tries to segment natural objects into meaningful parts.
Most work on mesh segmentation is based on iterative clustering. [20] segmented
models into meaningful pieces using k-means clustering. Based on this idea [15]
developed a fuzzy clustering and minimal boundary cuts method to achieve
smoother boundaries between clusters. Unsupervised clustering techniques like
mean shift can also applied to mesh segmentation [19]. [14] published a mesh seg-
mentation algorithm based on pose-invariant models and extraction of core part
and feature points. The method is able to produce consistent results. An com-
putation intensive method is used to find feature points, to limit the complexity
and number of parts of models.

Pose-Invariant Mesh Representation: To realize a pose-invariant mesh rep-
resentation multi-dimensional scaling (MDS) is used. MDS is a generic name for
a family of algorithms that construct a configuration of points in a target metric
space from information about inter-point distances (dissimilarities), measured
in some other metric space [8]. In our experiments, dissimilarities are defined as
geodesic distances δij between all vertices vi on the mesh M in a symmetrical
dissimilarities matrix Δ = N ×N between N points on a Riemannian manifold
S. We differentiate between metric and non-metric MDS (Shephard-Kruskal).
Metric MDS preserves the intervals and the ratios between the dissimilarities
and non-metric MDS only preserves the order of the dissimilarities. The goal
is to minimize the embedding error, i.e. minimizing the sum of distances be-
tween the optimal scaled data f(δij) and the euclidean distances dij , where
f is an optimal monotonic function (in order to obtain optimally scaled sim-
ilarities). Thereby a stress function Fs will be used to measure the degree of
correspondence of the distances between vertices. We use the scaled gradient-
descent algorithm (SMACOF), as published by [8]. This algorithm is one of the
most efficient at the moment and it allows real-time performance. Each vertex
in MDS space corresponds to a vertex in euclidean space. In order to speed up
the calculation time, the geodesic distances are calculated only on a reduced
set of landmark points. Approximately the original points of the point cloud of
the mesh vertices as landmark points has an optimal balance between accuracy

Fig. 2. Pose-invariance: each model was segmented separately
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of representation and time. Fig. 2 illustrates our segmentation results based on
pose-invariant model representation.

In our work the difference to the existing core extraction algorithm [14] is the
radial reflection of the points in the direction to the center of the object and to
calculate an internal convex hull to get a hole free core part, which is used to
cut the 3D model. Additionally our algorithm works directly on point clouds,
whereby no mesh generation is needed. The mesh generation with the power
crust algorithm [1] is only needed to get a pose-invariant model representation.

2 Point Cloud Segmentation

This section describes each stage of the proposed segmentation algorithm for
point clouds.

2.1 Core Extraction

The presented method is based on the principle of radial reflection. At the begin-
ning the internal center C is calculated by computing smallest enclosing sphere of
points [11]. The bounding sphere is defined by the maximum distance R between
the center C and all points pi:

R = max‖pi − C‖ (1)

Each point pi of the point cloud with n points is radial reflected inwards in the
direction to the calculated center C , as illustrated in Fig. 1d and Fig. 1e.

p,
m = C + (R− ‖ pi − C ‖) (pi − C)

‖ pi − C ‖ (2)

Thus all points which are farthest outside on the original point cloud are farthest
in after this step, as illustrated in Fig. 1d. This way, the points of the core part
reside on the outer convex hull Hout [18], whereby all adhering parts on the core
part will be automatically cut off.

Hout = ConvexHull

(
n−1⋃
i=0

p,
mi

)
(3)

Every vertex vm of the k vertices that reside on the outer convex hull Hout will
be transformed in the direction to the center, depending on the distances of
the neighboring points [2] with an offset off . For that the algorithm calculates
for each point of the original point cloud the distance to the nearest neighbor
and then the minimum dmin, maximum dmax and average da of these distances.
Then the algorithm finds out for every vertex vm on the outer convex hull all
neighboring points p,

m with the average distance da and calculates the offset off ,
depending of the z point neighbors, see Equ. 5. This step is important to realize
a hole free core part.
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off =

z−1∑
i=0

| p,
mi

− vm |

z
(4)

The offset off was calculatedwith all z neighboring points of the transformedpoint
cloud of the vertex vm on the convex hull Hout. With the calculated offset off the
algorithm need no more connectivity analysis to realize a hole free core part. All
vertices on the outer convex hull Hout will be transformed with an offset for every
vertex:

v,
m = vmi − off ∗ (vmi − C)

‖ vmi − C ‖ (5)

This k transformed vertices v,
m are used to calculate an inner convex hull Hin,

as illustrated in Fig. 1e (red convex hull):

Hin = ConvexHull

(
k−1⋃
i=0

v,
mi

)
(6)

The resulting inner convex hull Hin is used to cut the radial reflected point cloud
into a core part and a rest part, as illustrated in Fig. 1f.

2.2 Cut Refinement

If the core part is found, all other segments of the point cloud are extracted by
recursive flood-filling [9]. We define an object-part as a set of points, with distances
between neighbors below a threshold dmax. We build a kd-tree [7] to find neighbors
and use the recursiveflood-filling function [9] to identify connected point sets. dmax

is the maximum distance between the neighboring points, calculated by nearest
neighbor search [2]. This step segments the point cloud into different components.
An additional cut refinement was not arranged, because the main goal is to find
out the core part. It is possible to improve the segmentation results with the help
of a substantially curvature-based filter [21], mean shift, gaussian curvature or a
feature point based approach [14]. It is also possible to improve the segmentation
results with the calculation of the normal vector for every point, by fitting planes in
a defined area da. Thus the angleα between the regardedpoint i and the considered
point w can be used as weighting factor wg, as illustrated in Fig. 3.

cosα =
ni • nw

‖ni‖‖nw‖ (7)

wg = 1 − | cos(α)| (8)

To belong to a fracture of the object the distance d between a fracture element
w and the considered point i must be smaller than the average distance with the
weighting factor.

d =
√

(xi − xw)2 + (yi − yw)2 + (zi − zw)2 (9)

d < da · wg (10)



960 M. Richtsfeld and M. Vincze

Fig. 3. Cut refinement: Improvement of the segmentation result by calculating an
additional weighting factor. a, c Hand, Man: standard flood-filling. b, d Hand, Man:
flood-filling with additional weighting function.

3 Results

We have created and collected at AIM@SHAPE repository2 several challenging
examples to test our segmentation algorithm, see Fig. 4. For similar segmenta-
tions of the same models in different poses, the segmentation based on pose-
invariant models show almost best results. Our analysis shows that the position
of the internal center of the models has a significant influence, as illustrated in
Fig. 4g (dino) and h (elephant). It is important that the approximated center is
inside the object.

Fig. 4. Segmentation results: We analyzed different groups of models: a package, b
coffee tin, c bolt, d frog, e pig, f oni, g dino, h elephant, i bunny, j mannequin

Fig. 4 and Fig. 5 show that the proposed algorithm is optimal to extract the
core component and the surrounding parts. HFP performs good results, if the
number of clusters is limited to a realistic number of parts of the analyzed object.
Methods like Plumber perform good results with a a-priori knowledge about the
2 http://shapes.aim-at-shape.net/index.php
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Fig. 5. Comparison: a Proposed Algorithm, b HFP, and c Plumber

object. It performs good on features with elongation axis larger than section
axis, whereby parts are correctly detected as a tubular feature. [5] described
more exactly the properties of the Plumber and HFP algorithms and pointed
out more exactly the segmentation results and differences based on their segmen-
tation criteria. However, the presented results in this work confirm their work
completely.

4 Conclusion

The proposed segmentation method represents a flexible and completely auto-
matic way to segment a 3D object in a hierarchical manner, whereby the al-
gorithm works directly on point clouds and shows high reliability. It is obvious
from the results presented in this work that there exist no perfect segmentation
algorithm. Each algorithm has his own benefits and drawbacks. Segmentation
can neither be formalized nor measured mathematically [5]. If a pose-invariant
model representation is needed, the algorithm generates a 3D mesh with the
power crust algorithm [1] and use multi-dimensional scaling (MDS). We cut the
object into sub-parts with an inner convex hull, which results from an outer con-
vex calculated by radial reflection. This segmentation algorithm can be applied
to a reasonable set of objects with different applications.
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Abstract. We propose a framework for locally adaptive level set func-
tions. The impact of well-known speed terms for the evolution of the ac-
tive contour is adjusted by parameterising them with functions based on
pre-defined properties. This allows for the application of level set meth-
ods even if image features are subject to large variations or if certain
properties of the model are only valid for parts of the segmentation pro-
cess. We present a number of examples and applications for the proposed
concept and also address advantages and drawbacks of combinations of
locally adaptive speed terms.

Keywords: Image Segmentation, Level Set Methods.

1 Introduction

Level set methods have become very popular in recent years in many image pro-
cessing domains. They allow for the segmentation of images even if the shape of
the desired object is unknown or has large variances between data sets. Level
sets can adapt to topological changes, usually only require a small number of
parameters to be adjusted and their extension to higher dimensions is straight-
forward.

An implicit active contour φt + F |∇φ| = 0 is evolved either in a propagation
process [11] or via energy minimisation [2]. Each point on the zero level set is
moving along its surface normal with a speed F . This speed is calculated ac-
cording to pre-defined properties of the desired object. In image processing these
properties are usually image features like gradients [10], texture measures [12] or
image intensities [2]. To compensate for image artefacts such as noise or imper-
fect boundaries a second class of speed terms is often needed for regularisation
of the contour. Regularisation of the front ranges from smoothness terms based
on mean curvature [11] to more sophisticated approaches such as incorporation
of model-based knowledge based on shocks [1], geometric shapes like circles or
ellipsoids [16] or the topology of the desired object [8]. Other approaches even
incorporate explicit shape knowledge [3][9].

Unfortunately the use of sophisticated speed terms has a number of drawbacks
in certain situations. The definition of level sets is very general, allowing for their
application to data sets from many different domains. By incorporating highly
specialised speed terms, the method becomes limited to specific applications.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 963–970, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



964 K. Rink and K. Tönnies

Interesting properties of the method, such as the extension to any number of
dimensions, are lost. Also, for a number of segmentation problems it is not
possible to incorporate any of these advanced speed terms because the shape of
the desired object is not known in advance. Examples in medical image analysis
are the segmentation of the cerebral grey and white matter or segmentation of
the vascular or bronchial tree. We propose a new framework for the design of
level set speed functions that is also suitable for this kind of application.

2 Locally Adaptive Speed Terms

Many speed terms for level set functions can be incorporated for the segmen-
tation of different kinds of images and data sets simply by adjusting a param-
eter that controls the impact of that particular speed term. For example, the
often used speed function F = Fg(Fν + Fκ) includes the well-known gradient-
based speed term Fg(α) = (1 + α|∇Gσ ∗ I(x)|)−1 and the curvature-based term
Fκ(ε) = ε∇ ∇φ

|∇φ| . In the first case, the value of α affects how large gradients need
to be for the front to stop. In the second example, ε determines how smooth the
contour is going to be and how much it will be affected by image noise.

Unfortunately, these parameter values are usually constant for the whole prop-
agation process. If certain properties of the image differ substantially over image
space, adjustment of the parameters is difficult. An example are field inhomo-
geneities in magnetic resonance imaging. Model-based properties may change in
the same way. In the segmentation of the human brain, thickness of the cortical
grey matter is different in various regions of the brain. Even the established cou-
pled surface approach [7] does not account for that. More generally, smoothness
of the contour may be desired only for certain parts of the objects but not for
others. With other deformable models such as the active shape model [4] or mass
spring models [15] it is possible to address this kind of variability by adjusting
the modes of variation or the parametrisation of springs, respectively. To allow
for the incorporation of such functionality in level sets and thus increase the
application spectrum these methods, we propose the concept of locally adaptive
speed terms for level set methods.

A speed term Fi = Fi(f) is dependent on one or more features f. Instead of
controlling the influence of Fi on the active contour with a constant parameter,
a function ωi = ωi(g) is used for adjusting the impact of Fi based on a second
set of features g. The definition of a level set speed term F̂i is then given by

F̂i = ωiFi = ωi(g)Fi(f). (1)

Note that the properties g need not be based on image features. Below we will
give examples of weighting functions ω based on distance-measures and position
in image space. Using ωi it is possible to adjust the influence of Fi, to apply it only
for certain parts of the image or to set it to zero if it would otherwise impede the
desired evolution of the active contour. If allωi andFi are continuous functions the
method is numerically stable and the combination of locally adaptive speed terms

F = ω1F1 + ω2F2 + . . . + ωnFn, (2)
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(a) Test image (b) Fi (c) ωi (d) F̂i

Fig. 1. Example for a locally adaptive speed term based on distance. Bright intensities
indicate a high velocity, dark intensities a low velocity. An image-based speed term Fi

based on image intensities is parameterised by a function ωi depending on distance and
prevents the front from evolving if its distance to the light grey region on the right side is
less than 15 pixels. The resulting speed term F̂i is superimposed on figure (a) for better
visualisation.

will be a continuous function as well. If for some speed terms no weighting
function is necessary, ωi can be chosen such that F̂i = id(Fi). Figure 1 shows a
simple example for a locally adaptive speed function based on distance. Similar
to model-based speed terms, the influence of more sophisticated parameterising
functions ωj might also change over time.

The proposed concept allows for the use of comparativelybasic speed terms even
for challenging segmentation tasks. By using parameterising functions, well-known
speed terms can be incorporated even if certain properties that define the object
of interest do not hold for all parts of that object. Vice versa, they can also be
employed if such properties are only needed for a correct segmentation of few or
small parts of the object. A number of previously published examples that fit into
this framework are summarised below. Applications are given in section 3.

2.1 Speed Terms Based on Distance

We demonstrated the possibilities of locally adaptive speed terms based on dis-
tance measures to introduce additional knowledge to the segmentation process
in [13]. A number of segmentation results are depicted in figure 2. Given figure
2a, a segmentation process was startet with a single seed point within object A.
Figure 2b shows a segmentation where the level set stops based on image-features
but keeps a minimum distance of 15 pixels to region F (the corresponding speed
function has been visualised in figure 1). In figure 2c a speed function that used a
minimum and maximum distance criterion has been employed. The front keeps
a minimum distance of dmin = 15 pixels to region F within objects A and D,
where the properties of the desired object as defined in the speed function hold.
The front does not stop at the boundary of A where the distance to F is too
large. Instead it propagates into object E, but a maximum distance of dmax = 30
pixels is kept to region F . Again, the weighing functions are quite simple: the
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Effects of distance-based speed terms for image segmentation

maximum distance is realised by a sigmoid function while the evolution of the
front for dmin < d < dmax is controlled by a regularised boxcar function (Such a
function is used in section 3 for the segmentation of white matter in MR images
of the brain). In figure 2d the front stops d = 15 pixels outside object A. Object
B is segmented as well because its distance to A is smaller than d. Figure 2e
visualises the segmentation result using an acceleration term that connects ob-
jects that have similar properties if their distance is smaller than a pre-defined
distance d. That way, objects B and C have been connected to A. Note that the
front propagated directly from A to the other objects and does not leak into the
image background. Finally, figure 2f combines both approaches. Objects B and
C are again connected to A but the front keeps a distance of 10 pixels to the
white rectangle. For the definitions of the speed functions and further discussion
the reader is referred to [13].

2.2 Speed Terms Based on Location

Speed terms can also be parameterised based on the absolute or relative position
of the front in image space. In the first case the weighting function ω has the
same size as the data set D that is being segmented. That is, for each pixel
x ∈ D exists a parameter ω(x). This allows for the incorporation of information
from an external source. We have applied this concept in [14] to ensure for the
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anatomical correct segmentation of cortical grey matter (see figure 4c). Also,
Cremers et al. [5] incorporated a similar approach for allowing user interaction
during the segmentation process.

If speed terms are dependent on local position, parameter values are adjusted
based on pixels in the vicinity of front pixels. In [14] the image space has been
subdivided into a grid of cubes of equal size to account for the effect of magnetic
field inhomogeneities on the data. Within each subdivision Di parametrisation
was assumed to be constant. The transition between neighbouring subdivisions
Di and Dj have been smoothed based on the distance to the centers of Di and
Dj and the reliability of estimates for the intensity distributions. Again, the
interested reader is referred to [14] for details. Obviously, it is not necessary
to choose a static subdivision of image space for the calculation of parameters
based on local position. A dynamically chosen set of pixel (for instance within a
hyperball around x) is also possible but computationally much more expensive.

2.3 Combinations of Speed Terms

Obviously weighting functions are not limited to the presented examples but
can be based on any property that can calculated for each pixel on the front.
The above examples have been chosen because they are available at nearly no
additional computational cost. Other properties of the image or level set function
that might also be incorporated in this way are image features or the speed
of the active contour itself. If computational cost is not an issue, choices for
weighting functions are only limited by properties of the desired object that can
be formulated in mathematical terms.

Furthermore, locally adaptive speed terms can also be combined. In figure 2f
a simple example has already been illustrated. In our experience a small set of
weighting functions is useable for a surprisingly large number of applications.
Regularised Heaviside- and Boxcar functions are easily incorporated examples.
These functions also have the advantage that the set of parameters is limited
to the slope of the function, which usually only needs to be slightly adjusted or
not changed at all for different applications. Based on the above considerations
this concept also allows for the creation of a construction kit for level set speed
functions. By employing a set of weighting functions as well as a bank of well-
known speed terms, the framework can thus be employed for a large number of
segmentation problems.

Finally, a number of potential drawbacks of this framework should be addressed
as well. Even though the number of parameters for each combinationωiFi is small,
parameter space can get large when a number of locally adaptive speed terms are
combined. In this case even slight adjustments to parametersmight not be straight-
forward anymore. In the same way, the small computational offset introduced by
each parameterising function ωi might add up when a number of adaptive speed
terms are combined. And finally, since it is possible to ‘switch off’ speed terms it
might happen that for certain pixels in image space no speed is defined. Again,
this is a problem that will usually only occur with the combination of more speed
terms when parameter space becomes difficult to manage.
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3 Applications

We will give a few examples of application of locally adaptive speed functions
to 3D medical data sets to demonstrate their benefit to various segmentation
tasks. Details on the algorithms and an evaluation of the results can be found
in the respective publications.

In [13] we incorporated a distance-based acceleration term for the segmen-
tation of dendrites in microscopic images. Due to partial volume effects, small
spines attached to the dendrites do often appear unconnected in the data sets.
Using a locally adaptive speed function, the propagating front is accelerated if
spines are detected within a certain distance to the active contour. Segmentation
results could thus be significantly improved in comparison to a conventional level
set segmentation. Examples are given in figure 3.

We also employed an algorithm including locally adaptive speed functions
based on local and global position in image space to guarantee for an anatom-
ically correct segmentation of the cortical grey and white matter in MR data.
Figure 4 shows a comparision between segmentation results for white matter
using the commercial software BrainVoyager as well as our adaptive level set

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 3. Segmentation of dendritic spines using a distance based acceleration term.
Figures 3a–3c shows pre-processing of data sets of the original data sets by contrast
enhancement and low pass filtering. Figures 3d and 3e show segmentation results using
a conventional level set speed function and the locally adaptive function, respectively.
Figures 3g and 3h present results for a second example. Again most spines were found
by the algorithm, although some have been missed since their image features are too
similar to background noise (see enlarged region).
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(a) (b) (c)

Fig. 4. Segmentation of the cortical white matter in the human brain brain. (a) Result
using commercial software. (b) Result using our locally adaptive algorithm. (c) Cortical
thickness map according to [6].

algorithm. A visual inspection by neurobiologists suggested that the boundary
between grey and white matter found by our algorithm is usually more exact
than the boundary found by the commercial software, which could often not
provide a correct segmentation result in the presence of strong magnetic field in-
homogeneities. Our algorithm uses a modified coupled surface approach [7]. The
distance between inner and outer cortical surface varies between 1.5 − 2.5mm
in the occipital lobe to about 4 − 5mm in the frontal lobe of the brain [6]. We
employed a weighting function based on the absolute position within the brain
to guarantee for a correct estimation of cortex thickness (see figure 4c). Further-
more, image-based speed terms are parameterised based on an analysis of local
intensity distributions as briefly described in section 2.2.

4 Conclusions

We presented a novel framework for the design of level set speed functions using
locally adaptive speed terms. By parameterising a level set speed term with a
function ωi its influence on the active contour can be adjusted depending on pre-
defined properties. It is also possible to define speed terms for segmentation of
parts of the desired object only and to switch them off when they are not needed.
Examples for locally adaptive speed terms as well as possible applications have
been presented. Future work includes the expansion of the concept to create a
construction kit for level set speed functions.
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14. Sokoll, S., Rink, K., Tönnies, K., Brechmann, A.: Dynamic Segmentation of the
Cerebral Cortex in MR Data using Implicit Active Contours. In: Proc. of Medical
Image Unterstanding and Analysis (MIUA), pp. 184–188 (2008)

15. Terzopoulos, D., Fleischer, K.: Deformable Models. Visual Comput. 4(6), 306–331
(1988)

16. Van Bemmel, C.M., Spreeuwers, L.J., Viergever, M.A., Niessen, W.J.: A Level-Set-
Based Artery-Vein Separation in Blood-Pool Agent CR-MR Angiograms. IEEE
Trans. Med. Imag. 22(10), 1224–1234 (2003)



Improving User Control with Minimum Involvement in
User-Guided Segmentation by Image Foresting

Transform

T.V. Spina, Javier A. Montoya-Zegarra, P.A.V. Miranda, and A.X. Falcão

Institute of Computing – University of Campinas (UNICAMP),
C.P. 6176, 13084-971, Campinas, SP, Brazil

afalcao@ic.unicamp.br

Abstract. The image foresting transform (IFT) can divide an image into object
and background, each represented by one optimum-path forest rooted at inter-
nal and external markers selected by the user. We have considerably reduced the
number of markers (user involvement) by separating object enhancement from
its extraction. However, the user had no guidance about effective marker location
during extraction, losing segmentation control. Now, we pre-segment the image
automatically into a few regions. The regions inside the object are selected and
merged from internal markers. Regions with object and background pixels are
further divided by IFT. This provides more user control with minimum involve-
ment, as validated on two public datasets.

1 Introduction

User interaction is necessary in several image segmentation tasks. In publicity, for ex-
ample, the edition of photos and video very often requires user-guided segmentation.
A challenge is to minimize user involvement and the time required for segmentation
without compromising accuracy and precision. This usually requires solutions that also
provide complete user control over the process, such that the user’s actions do not de-
stroy parts already accepted as correct, making segmentation more effective [1].

In view of that, we have divided segmentation into three main tasks: recognition,
enhancement and extraction. Recognition is the only interactive task, which consists
of drawing markers inside and outside the object. During enhancement, discrimina-
tive image properties on marker pixels (Figure 1a) are used to increase the dissimi-
larities between object and background (Figures 1b–c). Finally, during extraction, the
spatial extent of the object in the image is defined. Furthermore, we have shown that
recognition and enhancement should be separated from recognition and extraction for
more effective segmentation [2]. This is certainly a contribution with respect to interac-
tive methods that usually consider enhancement and extraction as a single delineation
task [3, 4, 5]. Given that, user interaction usually affects the entire image during en-
hancement and user corrections should only affect the wrong segmentation parts during
extraction, markers used for extraction should never be used for enhancement. How-
ever, the absence of guidance in the location of markers during extraction also makes it
less effective. In fact, it was suggested in [2] that the markers should be selected around
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Markers are selected for enhancement. (b-c) Object membership map and the weight
image resulting from enhancement. Segmentation results with (d) the proposed approach using
two markers, where the color lines indicate the segmented regions, (e) the method in [2] using
three markers, and (f) the watershed transform using several markers [7].

the weaker parts of the boundary, which could be visually identified from a weight im-
age (Figure 1c). This is still too technical for a non-expert user and rather confusing.
Furthermore, the weight image gives only a poor insight of how the extraction method
will actually behave and it is difficult to predict from it what is the result of adding new
markers.

To increase user control with minimum involvement, we pre-segment the image au-
tomatically into a few regions. The regions inside the object are selected and merged
from internal markers, while regions with object and background pixels are divided
from internal and external markers (Figure 1d). Region segmentation reduces the num-
ber of markers with respect to the previous approach [2] (Figure 1e) and the traditional
approach [6, 7] (i.e. a watershed transform from markers), which does not use markers
for enhancement (Figure 1f). Besides, the proposed solution incorporates both of these
methods.

The image foresting transform (IFT) [8] is used to design image processing operators
for object enhancement, region segmentation, and object extraction. In each case, a
graph is derived from the image by taking some or all pixels as its nodes and defining
some adjacency relation between them. A connectivity function assigns a value to any
path in the graph, including trivial paths formed by a single node. Considering the
minimum value among all possible paths with terminus at each node, the optimum path
is trivial for some nodes, called roots, and the remaining nodes will have an optimum
path coming from their most strongly connected root, partitioning the graph into an
optimum-path forest (disjoint sets of optimum-path trees). The three operators differ in
the parameters of the connectivity function, adjacency relation, and roots of the forest.
The optimal connectivity values are used for enhancement while root labels are used
for region segmentation and object extraction. Enhancement aims higher arc weights on
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the object’s boundary than elsewhere. Under this condition, region segmentation by IFT
can divide the object into a few regions, making extraction a trivial region merging task.
When it fails and a region contains object and background pixels, they can be separated
by internal and external marker competition. The connectivity function is such that the
object pixels in this region are more strongly connected to the internal markers than to
the external ones, completing the object extraction process.

Section 2 presents the concepts about the IFT, which will be used for enhancement
(Section 3), region segmentation (Section 4), and object extraction (Section 5). In Sec-
tion 6, experimental results on standard public datasets are given and are used to show
the high accuracy of our framework. Conclusions are drawn in Section 7.

2 Image Foresting Transform (IFT)

A natural image Î is a pair (DÎ , I), where DÎ ⊂ Z2 is the image domain and I(t)
is the color vector (I1(t), I2(t), I3(t)) in the Lab space. Multiscale feature extrac-
tion essentially transforms an image Î = (DÎ , I) into the pair F̂ = (DÎ ,F ) where
F (t) = (F1(t), F2(t), . . . , Fm(t)) is a feature vector assigned to t. In this work, we use
a cosine-based low-pass filter L̂ applied to each of the Lab components in three different
scales [9], followed by a leveling operation [10] to avoid border shifting. Considering
the original Lab values and the additional filtered values, each pixel ends up with 12
features (i.e., m = 12).

A graph (N ,A) may be defined by taking a set N ⊆ DÎ of pixels as nodes and an
adjacency relation A between nodes of N to form the arcs. We use t ∈ A(s) or (s, t) ∈
A to indicate that a node t ∈ N is adjacent to a node s ∈ N . A path πt = 〈t1, t2, . . . , t〉
is a sequence of adjacent nodes with terminus at a node t, being πt = 〈t〉 a trivial path.
A connectivity function f assigns to any path πt a value f(πt). In all cases, we are
interested in function fmax:

fmax(〈t〉) = H(t) (1)

fmax(〈t1, t2 . . . , tn〉) = max
i=1,2,...,n−1

{H(t1), w(ti, ti+1)}, (2)

where H(t) is a handicap value, which is finite only to root candidates (i.e., seed pix-
els), and w(ti, ti+1) ≥ 0 is an arc weight, both computed from F̂ in different ways,
depending on the operator.

Considering all possible paths with terminus at each node t, the optimum connec-
tivity value map is V (t) = min∀πt in (N ,A){f(πt)}. The IFT solves this minimization
problem by computing an optimum-path forest — a function P which contains no cy-
cles and assigns to each node t ∈ N either its predecessor node P (t) ∈ N in the
optimum path with terminus t or a distinctive marker P (t) = nil �∈ N , when 〈t〉 is
optimum (i.e., t is said root of the forest). The IFT algorithm is presented below for
function fmax. The root R(t) of each pixel t can be obtained by following its opti-
mum path backwards in P . However, it is more efficient to propagate them on-the-fly,
creating a root map R.
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Algorithm 1 – IFT ALGORITHM FOR fmax

INPUT: Graph (N ,A)
OUTPUT: Optimum-path forest P , its connectivity value map V and its root map R.
AUXILIARY: Priority queue Q and variable tmp.

1. For each t ∈ N , do
2. P (t)← nil, R(t)← t and V (t)← H(t).
3. If V (t) �= +∞, then insert t in Q.
4. While Q �= ∅, do
5. Remove s from Q such that V (s) is minimum.
6. For each t ∈ A(s), such that V (t) > V (s), do
7. Compute tmp← max{V (s), w(s, t)}.
8. If tmp < V (t), then
9. If V (t) �= +∞, then remove t from Q.
10. Set P (t)← s, R(t)← R(s), V (t)← tmp.
11. Insert t in Q.

Lines 1–3 initialize maps for trivial paths. The minima of the initial map V compete
with each other and some of them become roots of the forest. They are pixels with
optimum trivial-path values, which are inserted in queue Q. The main loop computes
an optimum path from the roots to every node s in a non-decreasing order of value
(Lines 4–11). At each iteration, a path of minimum value V (s) is obtained in P when
we remove its last pixel s from Q (Line 5). Ties are broken in Q using first-in-first-out
policy. The remaining lines evaluate if the path that reaches an adjacent pixel t through
s is cheaper than the current path with terminus t and update Q, V (t), R(t) and P (t)
accordingly. The next sections show how to use this framework for object enhancement,
region segmentation and object extraction.

3 Object Enhancement

Enhancement consists of feature extraction, fuzzy classification and arc-weight assign-
ment, aiming higher weights to arcs on the object’s boundary than elsewhere. Under
this condition, the object can be extracted using fmax from only two marker pixels,
one inside and one outside it. However, perfect arc-weight assignment is usually not
possible, asking for more user involvement (marker selection).

Let M be a set of markers for enhancement, selected on parts where object and
background have distinct properties. Note that, markers selected in Figures 1d–e for
extraction should never be used for enhancement. We first randomly divide the labeled
markers in M = T ∪ E into a training set T and an evaluation set E , with the same
proportion of object and background markers. Set T = Tb ∪ To is further divided into
object markers in To and background markers in Tb.

Now, consider a complete graph (T ,A), where t ∈ A(s) for all t �= s, with arc
weights w(s, t) = ‖F (t) − F (s)‖. The arcs (s, t), s ∈ To and t ∈ Tb, or vice-versa,
in a minimum-spanning tree of (T ,A) define the closest nodes between object and
background in the feature space. They represent key elements to protect each class,
object and background, as seeds in an optimum-path forest classifier [11]. We use here
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a variant, by inserting s in a set So ⊂ To, t in a set Sb ⊂ Tb, and computing one
optimum-path forest Po for fmax on a complete graph (To,A) and one optimum-path
forest Pb for fmax on a complete graph (Tb,A). In the first case, the handicap H(t) = 0,
if t ∈ So, or H(t) = ∞, otherwise. The second case is similar, changing So by Sb.

A local processing operation can compute the optimum connectivity values Vo(t)
and Vb(t) for any remaining pixel t ∈ DÎ\T incrementally, as though t were part of the
original graphs.

Vo(t) = min{max{Vo(s), w(s, t)}}, ∀s ∈ To, (3)

Vb(t) = min{max{Vb(s), w(s, t)}}, ∀s ∈ Tb. (4)

This allows fast propagation of the optimum connectivity values from So and Sb to the
remaining image pixels.

An object membership value Mo(t) (Figure 1b) can finally be assigned to each pixel
t ∈ DÎ as:

Mo(t) =
Vb(t)

Vo(t) + Vb(t)
(5)

A binary classification of pixels t ∈ E is also possible by assigning to them the label
l(t) ∈ {0, 1} of background or object ( l(t) = 1 if Vo(t) < Vb(t), and l(t) = 0
otherwise). If λ(t) ∈ {0, 1} is the correct label of t ∈ E , then an error occurs when
λ(t) �= l(t). Aiming to minimize the number of misclassifications, we can select better
training nodes by replacing misclassified nodes in E with randomly selected nodes in
T \So ∪ Sb [11].

Then, consider the image graph (DÎ ,A) where t ∈ A(s) if t �= s is 8-neighbor of s.
Enhancement is represented by a weight image Ŵ = (DÎ ,W ) (Figure 1c).

W (s) = γWo(s) + (1 − γ)Wf (s), (6)

where Wo(s) is an object-based weight, Wf (s) is a feature-based weight, and 0 ≤ γ ≤
1 represents the importance of the object membership map in this estimation.

Given that F stores filtered maps Fb, b = 1, 2, . . . , 12, for each Lab component in
different scales, we estimate Wf (s) as the maximum gradient magnitude among the
feature-based gradients

W f (s) = max
b=1,2,...,12

{‖
∑

∀t∈A(s)

(Fb(t) − Fb(s)) st‖}, (7)

where st is the unit vector from s to t. The weight Wo(s) = ‖Go(s)‖ is estimated in a
similar way as the magnitude of an object-based gradient

Go(s) =
∑

∀t∈A(s)

(Mo(t) −Mo(s)) st. (8)

4 Region Segmentation

A classical watershed transform can oversegment the image into all catchment basins
of W (t). We can simplify segmentation by closing basins of W (t) with volume below
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a threshold [12] (i.e., a morphological volume closing). This requires the following
parameter setting to obtain a few regions inside the object.

For the image graph (DÎ ,A), where t ∈ A(s) if t �= s is 8-neighbor of s, we define
w(s, t) = W (t) in Eq. 1 and H(t) by

H(t) =
{

W (t) if t ∈ R,
V C(t) + 1 otherwise,

(9)

where R is a root of the forest (minimum of V C(t) + 1) and V C(t) is the resulting
function from morphological volume closing of W (t). Given that V C(t) ≥ W (t),
we use V C(t) + 1 to guarantee that the roots in R will conquer all pixels in their
basins. However, this requires a variant in Algorithm 1. Initially, all pixels start with
H(t) = V C(t) + 1. When a pixel s is removed from Q in Line 5 and P (s) = nil,
this implies that s ∈ R is a minimum of V C(t) + 1. By reducing H(s) to W (s) for
all minima s, we partition the image into an optimum-path forest with roots in R. The
borders of the optimum-path trees rooted at each minimum are shown in Figure 1d to
guide object extraction, by indicating which regions need to be selected.

5 Object Extraction

Object extraction is done by region merging inside the object and by internal and exter-
nal marker competition inside regions with object and background pixels. This compe-
tition requires the following setting.

For the image graph (DÎ ,A), where t ∈ A(s) if t �= s is 8-neighbor of s, we now

define w(s, t) = W (s)+W (t)
2 in Eq. 1 and H(t) by

H(t) =
{

0 if t ∈ M,
∞ otherwise,

(10)

where M is the set of internal and external markers selected for extraction. The object
consists of pixels 1 after a local operation, which assigns the correct label λ(R(t)) ∈
{0, 1} of the root to each pixel t ∈ DÎ . Note that the method includes the one in [2],
when the entire image is one region, and the watershed approach from markers, when
we do not select markers for enhancement (γ = 0 in Eq. 6).

6 Experiments and Results

We have evaluated three methods using the proposed framework: (M1) The watershed
approach [7] (γ = 0 in Eq. 6), (M2) the method in [2] (γ �= 0 in Eq. 6), and (M3) the
proposed method with γ �= 0 and region merging. Figure 2 shows examples of these
approaches, which indicate that M3 usually requires less markers for segmentation.

A dataset with 50 natural images with ground-truths was obtained from [3] for the ex-
periments. Furthermore, accuracy was estimated as the average of the F-measures [13]
computed between the segmentation results and the ground truths of the 50 images.
The standard deviation of these measures indicates precision. Two individuals used
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Fig. 2. The first row shows the original images and the subsequent ones present the segmentation
results for methods M1, M2 and M3

Table 1. Average results of F-measure, number of internal and external markers with their re-
spective standard deviations over the 50 images segmented by two users using M1, M2 and M3

F-Measure Markers
M1 M2 M3 M1 M2 M3

User 1 98.22 ± 0.88 98.48 ± 0.78 98.41 ± 0.82 10.78 ± 5.59 7.14 ± 5.26 5.32 ± 3.61
User 2 97.90 ± 1.00 98.04 ± 1.15 98.02 ± 0.95 9.52 ± 5.46 7.56 ± 3.90 6.80 ± 3.79

each method to segment each of the 50 images and the average and standard devia-
tion of F-measure and number of internal and external markers (including markers for
enhancement) were computed. All methods can obtain similar and high accuracy and
precision, but user involvement (number of markers) is 40% less in M3 and 27.5% less
in M2 with respect to M1. M3 also offers more user control than M2 and M1. In addi-
tion, our framework was also evaluated on 100 images from benchmark1 which reports
average results of F-measure 87.00± 0.01, while M3 achieved F-measure 96.04± 3.15
using 5.69 ± 3.72 markers.

1 http://www.wisdom.weizmann.ac.il/˜vision/GoodSegment.html

http://www.wisdom.weizmann.ac.il/~vision/GoodSegment.html
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7 Conclusion

We presented an IFT-based approach for interactive segmentation which includes sim-
pler versions of the method [2]. We have improved those versions by reducing user
involvement and increasing user control over segmentation. The method exploits the
image foresting transform for three image processing operations during segmentation.
The separation of recognition and enhancement from recognition and extraction is a key
aspect to obtain more effective results. More user control is provided by region segmen-
tation, which guides marker selection during object extraction. Indeed, the method also
reduces the total time for segmentation, but this aspect needs to be somehow quantified
in a future work. We also intend to incorporate other methods, such as live wire [1], in
the segmentation framework, and fuzzy classify border pixels to adequate the segmen-
tation results for image edition.

The authors thank CNPq (Proc. 302617/2007-8), CNPq/PIBIC-PRP and FAPESP
(Proc. 05/59808-0 and Proc. 07/52015-0) for the financial support.
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Abstract. This paper presents a novel pyramid approach for fast seg-
mentation of 3D images. A pyramid is a hierarchy of successively reduced
graphs whose efficiency is strongly influenced by the data structure that
codes the information within the pyramid and the decimation process
used to build a graph from the graph below. Depending on these two
features, pyramids have been classified as regular and irregular ones.
The proposed approach extends the idea of the Bounded Irregular Pyra-
mid (BIP) [5] to 3D images. Thus, the 3D-BIP is a mixture of both types
of pyramids whose goal is to combine their advantages: the low compu-
tational cost of regular pyramids with the consistent and useful results
provided by the irregular ones. Specifically, its data structure combines a
regular decimation process with an union-find strategy to build the suc-
cessive 3D levels of the structure. Experimental results show that this
approach is able to provide a low–level segmentation of 3D images at a
low computational cost.

1 Introduction

In many 3D image processing tasks, segmentation is an important step which
can be defined as the process of decomposing a 3D image into regions which are
homogeneous according to some criteria [5]. In these tasks, it constitutes a crit-
ical step towards content analysis and image understanding. Hence, 3D image
segmentation plays an important role in different research fields such as reverse
engineering or robotic vision. However, it must be noted that the most number
of 3D image processing tasks are related to medical images: computerized tomo-
graphies (CT) or magnetic resonance images (MRI). Segmentation of medical
images is still a difficult task because voxel intensities are not necessarily con-
stant for each tissue class and the histograms of each tissue show great overlaps.
Besides, noise artifacts in real data generate a fragmented segmented structure.
Therefore, fully unsupervised segmentation approaches are far from satisfying
in many real situations and it is usual that segmentation approaches follow a
semi-supervised strategy. In these methods, input data are preprocessed as far as
possible, and user interaction is allowed to control the final segmentation stage.
A fast and effective unsupervised segmentation algorithm is then required to

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 979–986, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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be employed as an initial preprocessing stage. For instance, in the MRI Brain
Segmentation task, this initial stage is used to ease the separation of the brain
from the scalp, the bone and other class of non-interesting tissue items.

This paper presents a novel, fast and effective volume segmentation approach.
It extends the scheme of a two dimensional (2D) image segmentation approach,
the Bounded Irregular Pyramid (BIP) [5,6], towards the processing of 3D im-
ages. Hence, our proposal, in the same manner as the original BIP, uses a hybrid
pyramid structure to reduce the computational load associated to the segmenta-
tion process. The pyramid represents the input 3D image at different resolution
levels. In this hierarchy, the bottom level contains the 3D image to be processed
and each pyramid level is recursively obtained by processing its underlying level.
The main advantage of the pyramid structure is that it can be used to reduce the
time required to analyze an image. The more relevant features of the proposed
3D-BIP can be summarized as follows:

– It is a fast algorithm, which is able to segment a 3D image of 128 x 128 x 53
voxels in less than 16 seconds (in a Intel Core2 Duo CPU P8400 2.26GHz,
2268 Mhz PC). Although in medical applications the processing speed is
less important than the final accuracy, it is interesting that preprocessing
algorithms will be fast [7].

– The 3D Bounded Irregular Pyramid is an unsupervised segmentation method.
It does not depend on seed points as in the Region Growing algorithms or on
an initial spline curve as in Snake models.

– It is a general 3D segmentation algorithm. That is, it does not need training
as in Atlas guided methods or as in Artificial Neural Network-based methods.

The rest of the paper is organized as follows: Section 2 describes the data struc-
ture and decimation process of the 3D-BIP. The experimental results revealing
the efficacy of the method are described in Section 3. Finally, the paper concludes
along with discussions and future work in Section 4.

2 Data Structure and Proposed Decimation Scheme

2.1 Definitions

The structure of a pyramid can be described as a graph hierarchy in which each
level l is at least defined by a set of nodes Nl connected by a set of arcs El.
These arcs define the horizontal relationships of the pyramid and they represent
the neighborhood of each node at the same level (intra-level arcs). Another set
of arcs define the vertical relationships by connecting nodes between adjacent
pyramid levels (inter-level arcs). These inter-level arcs establish a dependence
relationship between each node of level l+1 and a set of nodes at level l (reduction
window). The nodes belonging to one reduction window are the children of the
node which defines it. The value of each parent is computed from the one of
its children using a reduction function. The ratio between the number of nodes
at level l and the number of nodes at level l+1 is the reduction factor. Fig. 1
illustrates some of these terms. Using this framework, the general process to
build Gl+1 = (Nl+1, El+1) from level Gl = (Nl, El) is the following:
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Fig. 1. Levels l and l+1 of a 3D-BIP hierarchy: spheres are related to irregular nodes
and cubes to regular ones (see text)

1. Selection of the nodes of Gl+1 among Nl: This selection step is a decimation
procedure.

2. Definition of inter-level arcs: Each node of Gl is linked to its parent node in
Gl+1. This step defines a partition of Nl.

3. Definition of intra-level arcs: The set of arcs El+1 is obtained by defining the
neighborhood relationships between the nodes Nl+1.

The parent-child relationship defined by the reduction window may be extended
by transitivity down to the base level. The set of nodes in the base level linked
to a pyramid node is named its receptive field. The receptive field defines the
embedding of this node on the original image [2]. In the case of 3D images, the
nodes of the bottom pyramid level (level 0) can be anything from an original 3D
image voxel via some general numeric property to symbolic information, e.g. a
node can represent an image voxel grey level or an 3D image edge. Corresponding
to the generalization of the node contents, the intra-level and inter-level relations
of the nodes are also generalized [4].

2.2 Data Structure of the Bounded Irregular Pyramid

The data structure of the 3D Bounded Irregular Pyramid (3D-BIP) is a combi-
nation of regular and irregular data structures: a 2x2x2/8 3D regular structure
and a simple graph. A simple graph is a non-weighted and undirected graph
containing no self-loops. It encodes the adjacency between two nodes by only
one arc, although their receptive fields may share several boundary segments.
The mixture of both regular and irregular structures generates an irregular con-
figuration which is described as a graph hierarchy. In this hierarchy, there are
two types of nodes: nodes belonging to the 2x2x2/8 structure, named regular
nodes and irregular nodes or nodes belonging to the irregular structure.



982 F. Torres, R. Marfil, and A. Bandera

Although regular pyramids can be explained as a graph hierarchy, it is more
usual to represent them as a hierarchy of arrays due to their rigid structure. In
the regular part of the 3D-BIP, each regular node is described by x = (i, j, k, l)
where l represents the level and (i, j, k) are the x-, y- and z-coordinate within
the level. In each of these arrays, two regular nodes are neighbors if they are
placed in adjacent positions of the array in an 26-neighborhood. On the other
hand, irregular nodes are only described by their level l and an index value i.
In general, a node x is neighbor of other node x′ if their reduction windows wx
and wx′ are connected. Two reduction windows are connected if there are at
least two nodes at level l-1, y ∈ wx and y′ ∈ wx′ , which are neighbors. Two
nodes x1 and x2 which are neighbors at level l are connected by an intra-level
arc e = (x1,x2) ∈ El.

2.3 Proposed Decimation Process

The proposed decimation algorithm runs two consecutive steps to obtain the
set of nodes Nl+1. The first process generates the set of regular nodes of Gl+1
from the regular nodes at Gl, meanwhile the second one determines the set of
irregular nodes at level l+1. In this proposal, this second process conducts an
union-find decimation algorithm which is simultaneously conducted over the set
of regular and irregular nodes of Gl which do not present a parent in the upper
level l + 1.

Let Gl = (Nl, El) be a graph where Nl stands for the set of regular and
irregular nodes and El for the set of intra-level arcs. Let εxy

l be equal to 1 if
(x,y) ∈ El and equal to 0 otherwise. Let ξx be the neighborhood of the node x
defined as {y ∈ Nl : εxy

l }. It can be noted that a given node x is not a member of
its neighborhood, which can be composed by regular and irregular nodes. Each
node x has associated a vx value. Besides, each regular node has associated a
boolean value hx: the homogeneity [6]. At the base level of the hierarchy, G0, all
nodes are regular, and they have hx equal to 1. Only regular nodes which have
hx equal to 1 are considered to be part of the regular structure. Regular nodes
with an homogeneity value equal to 0 are not considered for further processing.

The proposed decimation process transforms the graph Gl in Gl+1 such that
the reduction factor is greater to 1. In our case, we focus on dividing the image
into a set of homogeneous blobs. This aim is achieved using the pairwise compar-
ison of neighboring nodes [3]. Then, a pairwise comparison function, g(vx1 , vx2)
is defined. This function is true if the vx1 and vx2 values associated to the x1
and x2 nodes are similar according to some criteria and false otherwise. The
decimation process consists of the following steps:

1. Regular decimation process. The hx value of a regular node x at level l+1 is
set to 1 if the eight regular nodes immediately underneath {yi} are similar
according to some criteria and their h{yi} values are equal to 1. That is, hx

is set to 1 if
{

⋂
∀yj,yk∈{yi}

g(vyj , vyk
)} ∩ {

⋂
yj∈{yi}

hyj} (1)
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Besides, at this step, inter-level arcs among regular nodes at levels l
and l+1 are established. If x is an homogeneous regular node at level l+1
(hx==1), then the set of four nodes immediately underneath {yi} are linked
to x.

2. Irregular decimation process. Each irregular or regular node x ∈ Nl without
parent at level l+1 chooses the closest neighbor y according to the vx value.
Besides, this node y must be similar to x. That is, the node y must satisfy

{||vx − vy|| = min(||vx − vz|| : z ∈ ξx)} ∩ {g(vx, vy)} (2)

If this condition is not satisfy by any node, then a new node x′ is generated
at level l+1. This node will be the parent node of x. Besides, it will constitute
a root node and its receptive field at base level will be an homogeneous set
of pixels according to the specific criteria. On the other hand, if y exists and
it has a parent z at level l+1, then x is also linked to z. If y exists but it
does not have a parent at level l+1, a new irregular node z′ is generated at
level l+1. In this case, the nodes x and y are linked to z′.

This process is sequentially performed and, when it finishes, each node of
Gl is linked to its parent node in Gl+1. That is, a partition of Nl is defined. It
must be noted that this process constitutes an implementation of the union-
find strategy. The union-find uses tree structures to represent sets [1]. A find
operation looks for the parent of a node at level l. If two nodes at level l are
similar, then a union operation will be performed by setting one of the two
nodes to be the parent of both ones at level l+1.

3. Definition of intra-level arcs. The set of edges El+1 is obtained by defining the
neighborhood relationships between the nodes Nl+1. As it was described in
Section 2.2, two nodes at level l+1 are neighbors if their reduction windows
are connected at level l.

Fig. 2 shows an example of the described decimation process. Regular nodes are
drawn as cubes meanwhile irregular nodes are drawn as spheres. The vx values
are represented by the color of the cells. Fig. 2a shows the regular part of the
data structure after being built. The base level of the structure is composed by
the 4x4x2 image voxels. The 8-to-1 regular decimation procedure generates a
2x2x1 level. Note that regular nodes with hx equal to 0 are not depicted on the
figure. Hence, the 2x2x1 level is reduced to a real 2x1x1 level. Only two regular
nodes have been generated at level 1. Fig. 2a also shows the generation of a
first irregular node at level 1 from the union of x(0)

1 and x(0)
2 . Fig. 2b illustrates

that the union-find process joins, to the same irregular parent node, those nodes
linked to x(0)

1 and x(0)
2 which present the same color than them (7 nodes from

level 0 are finally joined to x(1)
2 ). Two new irregular nodes are also generated.

One of them is the parent node of a image region of three voxels at level 0. The
other one presents the same color than the regular nodes generated at level 1.
Inter-level arcs show that some voxels are linked to the regular nodes at level 1,
but other voxels are connected to this new irregular node. The regular nodes at
level 1 and this irregular node will be merged if level 2 is generated.
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Fig. 2. Hierarchy generation: a) Regular nodes generated at level 1 and generation of
a first irregular node; and b) nodes at level 1 when the decimation process between
levels 0 and 1 has finished (see text for details)

3 Experimental Results

Fig. 3 shows the 3D image region obtained from the segmentation of the cranial
CT image1 at Fig. 3a. A cranial computed tomography (CT) scan is an imaging
method that uses x-rays to create cross-sectional pictures of the head, including
the cranium, brain, eye sockets, and sinuses. In this case, the size of the original
CT image is 128 x 128 x 53 (868352 voxels), and it has been segmented in less
than 16 seconds using a Intel Core2 Duo CPU P8400 2.26GHz, 2268 Mhz PC.
Fig. 3b shows the segmentation region associated to the cranium, from different
points of view. The vx value of each node x at level 0 was the corresponding
3D image intensity value, and the pairwise comparison function, g(vx1 , vx2) is
defined as a simple thresholding of the difference of vx values. These choices
will allow us to qualitatively evaluate the 3D-BIP features. However, it must be
noted that to apply this approach to segment medical images, more complex vx
values and pairwise comparison functions must be studied. As it is illustrated
in Fig. 4a, the employed decimation process provides high reduction factors at
low levels. This allows to reduce the storage requirements which could be associ-
ated to a 3D image representation using an irregular pyramid. The total number
of nodes at each hierarchy level is represented at logarithmic scale in Fig. 4b.
This figure also shows the presence of regular nodes at medium hierarchy levels.
They are associated to large uniform image regions. On the contrary, irregular
nodes are located at the region boundaries. With respect to the total number of
nodes, it must be noted that the percentage of irregular nodes increases for higher

1 http://www.vis.uni-stuttgart.de/ẽngel/pre-integrated/
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Fig. 3. 3D Segmentation example: a) Original CT image from different views; and b)
segmentation region associated to the cranium (see text for details)

Fig. 4. Segmentation statistics associated to the segmentation example shown in Fig. 3:
a) Reduction factors; and b) number of regular and irregular nodes with respect to the
total number of nodes per level (see text for details)

pyramid levels. Finally, it must be also appreciated that the two last higher
levels are only composed by irregular nodes. The union-find algorithm allows
that irregular nodes have large reduction windows. In fact, the reduction factor
is typically higher than the one imposed by the regular decimation (8-to-1) at
low hierarchy levels (see Fig. 4a).
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4 Conclusions and Future Work

This paper has proposed a fast approach for 3D image segmentation which ex-
tends the hybrid decimation process employed inside the BIP framework [5].
This strategy is specially suitable to deal with 3D images, as it is able to provide
high reduction factors between pyramid levels if the original image present large
uniform regions. The main drawbacks of the proposed approach are the use of
a sequentially conducted irregular decimation process and the use of a simple
graph to encode each pyramid level. Thus, in the employed data structure, a
graph arc may encode a non-connected set of boundaries between the associated
receptive fields. Moreover, the lack of self-loops in simple graphs does not allow
to differentiate an adjacency relationship between two receptive fields from an
inclusion relationship. Future work will be focused on employing a dual graph
to encode each pyramid level and on studying the possibility to manage this
hierarchy using a mixture of regular and irregular decimation processes which
could run in a parallel way.
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Abstract. This paper represents a new level set method for multiregional image 
segmentation. It employs the Gabor filter bank to extract local geometrical fea-
tures and builds the pixel tensor representation whose dimensionality is reduced 
by using the offline tensor analysis. Then multiphase level set functions are 
evolved in the tensor field to detect the boundaries of the corresponding image. 
The proposed method has three main advantages as follows. Firstly, employing 
the Gabor filter bank, the model is more robust against the salt-and-pepper 
noise. Secondly, the pixel tensor representation comprehensively depicts the 
 information of pixels, which results in a better performance on the non-
homogenous image segmentation. Thirdly, the model provides a uniform equa-
tion for multiphase level set functions to make it more practical. We apply the 
proposed method to synthetic and medical images respectively, and the results 
indicate that the proposed method is superior to the typical region-based level 
set method. 

Keywords: Gabor filter bank, tensor subspace analysis, image segmentation, 
geometric active contour, level set method. 

1   Introduction 

Geometric active contour model, implemented by the level set methods, becomes 
increasing popular in the field of image segmentation, and many methods have been 
developed [14]. These methods can be categorized into two groups, i.e., edge-based 
ones [1][6][9][11][12] and region-based ones [3][4][18]. The former has to design an 
edge indicator to locate the edges in the image, while these edges are not always 
keeping closed and do not always correspond to the boundaries of objects. The latter 
seems to be a better choice and indeed it attracts more and more research interests in 
recent years. 

Chan-Vese level set method [3] is a representative region-based level set method, 
and it gives the image a piecewise constant representation by introducing Mumford-
Shah functional [8] into level set framework. This method constructs an energy func-
tional by adding a regularization item and the fitting error between the piecewise 
constant representation and the image. By minimizing the energy functional, the ob-
ject is separated from the image. The method is well extended in two ways generally 
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as follows. Chan et al. [4] extended it to segment multi-channel images, and Wang 
and Vemuri [19] extended it to segment tensor diffusion MRI images. These exten-
sions just take into account the pixel density depicted by a scalar, and that is not ade-
quate to represent all image information. On the other side, Vese and Chan extended 
it to multiphase level set (MCV) method [18] which did not provide a practical for-
mula to deal with the case more than two level set functions being used. Zhao et al. 
[20] extended it to multiple level set functions by adding a constraint into the energy 
functional to ensure one pixel just belongs to one level set function. Lie et al. [7] 
shared the same idea with [18] except for using binary level set functions which has to 
be regularized by using another constraint. These two extensions utilized an unnatural 
way to describe the partitioned regions, which results they had to append some regu-
larization to energy functional, and that is not computational. 

To overcome the above problems, we employ Gabor filter bank to extract the local 
geometrical features, e.g., gradient and orientation, and then build a high-order pixel 
tensor representation. This representation offers a more comprehensive description to 
pixels, by which the image corresponds to a tensor field. By applying multiphase level 
set functions to segment this tensor field, the original image can be fully segmented. 
The proposed method has four main advantages as follows. Firstly, the incorporation 
of the image smoothed by Gaussian filter makes the model is more robust against 
noise, especially the salt-and-pepper noise. Secondly, the pixel tensor representation 
is more accurate and comprehensive than the pixel density, which results in better 
segmentation performance on the image with the inhomogeneous background. 
Thirdly, the model extends MCV to the multiphase tensor level set method which is 
capable of evolving in tensor field, and does not need to add a constraint like [7][20]. 
Finally, the model utilizes the offline tensor analysis (OTA) [13], a general principle 
component analysis for high-order tensor, to reduce the dimensionality of the pixel 
tensor representation, and speeds up the process of execution. 

2   MCV Level Set Method 

The MCV method [18] makes use of two level set functions to evolve in and finally 
segment the image. Since two zero level curves partition the image domain into four 
sub-regions and one zero level curve only does two sub-regions, the MCV method 
gives a more accurate piecewise constant representation to the image than Chan-Vese 
method [3]. The following gives a brief description about this method. 

Let 0 :u RΩ →  be a given image, and 2RΩ ⊂  be the image domain. 2M =  is the 

number of level set functions, and 2MN =  is the number of the sub-regions parti-
tioned by the zero level curves. The energy functional is defined as 
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where 1 2 3 4, , ,c c c c  are the mean values of the four sub-regions respectively, 1φ  and 2φ  

are the two level set functions, and ( )H ⋅  is the Heaviside step function. This model 

just considers the pixel densities and that is not adequate for an accurate segmenta-
tion. For this purpose, in the next section we introduce Gabor filter bank to build a 
pixel tensor representation which is more comprehensive than gray value. 

3   Multiphase Gabor-Based Tensor Level Set Method 

This section firstly presents the construction of tensor representation for pixels, and 
then describes the evolution of the multiple level set functions for this tensor repre-
sentation, including the energy functional and evolution equation. 

3.1   Construction of the Tensor Representation 

Marcelja [10] and Daugman [5] developed Gabor functions to model the response of 
the visual cortex, and it is usually used to give images a Gabor-based description 
[15][16][17]. Here, it is used to construct the pixel tensor representation. The tensor 
representation and tensor field, as shown in Fig.1, are constructed by following steps. 

Step 1: The image smoothed by Gaussian filter is involved into the tensor representa-
tion as a matrix, and the process is formulated as 

( ), , 1 01
, , * , .s d k

x y x yS DS D S D
t u G x yσ

=
×× ×

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (2) 

Step 2: The original image is embedded into the tensor representation in the same 
way as above step, the matrix is written as 

, , 2 01
, , .s d k

x y x yS DS D S D
t u=

×× ×
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (3) 

Step 3: The local geometric features are incorporated into the tensor representation in 
following way 

( ), , 3 0
, , ,* , ,s d k

x y x y s dS D S D
t u GT x y=

× ×
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (4) 

where , ( )s dGT ⋅  is the Gabor function. For more details, please refer to [15]. 

Though the pixel tensor representation provides a more comprehensive description 
to the image, it greatly increases the computational cost. To overcome this problem, 
we introduce the OTA [13], a kind of generalization of principle component analysis 
for tensors, to reduce the dimensionality of the tensor representation. 

( )( ), , 3 0
, , ,' ' ' '

* ,s d k
x y x y s dS D S D

t OTA u GT x y=

× ×
⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

 
(5) 

where ( )OTA ⋅  denotes the process of dimensionality reduction. After applying OTA, 

S D×  is reduced to ' 'S D× , where 'S S<  and 'D D< . The cost of computation is 
reduced from (( ) )O S D K N× × ×  to (( ' ' ) )O S D K N× × ×  per time step, where N  is 

the numbers of the pixels in the image. 
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Fig. 1. The pixel tensor representation is zoomed out on the left-top corner, and the two zero 
level curves are denoted by red and green curve respectively. The two level set functions evolve 
in the tensor field composed of the elements in the form of the tensor representation. 

Through steps 1-3, each pixel is depicted by a 3-order tensor in S D KR × × , and the 
image will correspond to a 5-order tensor in M N S D KR × × × × . 

3.2   Multiphase Gabor-Based Tensor Level Set Method 

Let us define a tensor T  in M N S D KR × × × × , then unfold T  along the first two indices 
simultaneously. Thus, T  develops a tensor field with elements in the form of tensor 
in S D KR × × . We use M  level set functions to segment the tensor field T , and the zero 
level curves of these level set functions are iC  in M NR ×Ω ∈  which divide the tensor 

field into 2MN =  sub-regions. The case of 2M =  is shown in Fig.1. The energy 
functional is composed of a regularization item and a fitting error item between tensor 
field T  and the piecewise constant representation. The functional is defined as 
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where 1{ , , }Mφ φΦ = K , 1{ , , }NC c c= K , ( )δ ⋅ is the Dirac delta function, , ,
,

s d k
x yt  is the 

element in T , and jχ  denotes the sub-region and formulated as 

( ) ( ) ( ) ( )( )
1

1 1 ,k

M
b

j k k
k

b Hχ φ
=

Φ = − − −∏  (7) 

where ( )[ ] 2kb dec binvec j=  and converts the denary number j  into its binary nota-

tion. , ,s d k
jc  is the mean tensor inside the sub-region jχ  and defined as 
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( ) ( ), , , ,
, .s d k s d k

j x y j jc t dxdy dxdyχ χ
Ω Ω

= Φ Φ∫ ∫  (8) 

The tensor distance function is defined as 

( ) ( )2, , , , , , , ,
, , ,1 1 1

dist , ,
S D Ks d k s d k s d k s d k

x y x y j s d k x y js d k
t c t cα β γ

= = =
= −∑ ∑ ∑  (9) 

where 
1 1 1

0, 1; 0, 1; 0, 1.
S D K

s s d d k ks d k
α α β β γ γ

= = =
≥ = ≥ = ≥ =∑ ∑ ∑  

The minimization of the energy functional is a calculus problem. By adding an arti-
ficial time variable t  and computing the Euler-Lagrange equation for each unknown 
function iφ , the gradient flow, i.e., evolution equation, is formulated as 
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 (10) 

with the boundary condition / 0i nφ∂ ∂ =  on ∂Ω , where div( / | |)i iφ φ∇ ∇  is the mean 

curvature of iφ , and ( ) /j iχ φ∂ Φ ∂  is the partial derivative with respect to the level set 

function iφ . 

4   Experimental Results and Analysis 

We conduct three experiments on different images to illustrate the effectiveness of the 
proposed method compared with the MCV method [18]. All these experiments select 
two level set functions to segment the images, which are denoted by red and green 
curve respectively. 

 

Fig. 2. The left two rows represent the evolutions applying MCV method on the images with 
the salt-and-pepper noise, and their noise density equals 0.01and 0.05 respectively. The right 
two rows represent the evolution applying the proposed method on the same images, but the 
noise density equals 0.1and 0.3 respectively. 
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Experiment 1 applies the MCV method and the proposed method on a synthetic 
image with salt-and-pepper noise. There are three paper-cut snowflakes with different 
gray value in the image. From the first row to the last row, the noise densities are set 
to 0.01, 0.05, 0.1 and 0.3 respectively. Fig. 2 shows that the MCV method wrongly 
classifies the positive impulse points as the object, and the proposed method correctly 
segments the snowflakes from the background even the noise density being 0.3. 

Experiment 1 indicates the proposed method is more robust against the salt-and-
pepper noise than the MCV method, since it incorporates the information of the Gaus-
sian smoothed image. 

 

Fig. 3. The left two rows represent the evolutions applying the MCV method on the images 
with INU level being 20% and 40% respectively, and the right two rows represent the evolu-
tions applying the proposed method on the image with the same INU level settings as MCV 
method 

Experiment 2 applies the MCV method and the proposed method on the simulated 
magnetic resonance images with different density non-uniformity (INU) level. INU 
level is a kind of non-homogenous percentage and if INU is greater, the non-
homogeneity is more serious. For more detail, please refer to [2]. Fig. 3 shows the 
proposed method detects more objects than the MCV method, e.g., the skin and skull. 
Meanwhile the proposed method obtains the same segmentation results whatever the 
INU level is 20% or 40%, but the MCV method treats the left-top part of white matter 
as the grey matter by mistake. 

Experiment 2 indicates that the proposed method detects more objects than the 
MCV method, and is robust against the non-homogeneity, because the DC component 
of the image is removed by utilizing the Gabor filter bank in the proposed method. 

 

Fig. 4. The left row represents the evolution using MCV method, and the right row represents 
the evolution using the proposed method 
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In experiment 3, we apply the MCV method and the proposed method on a real 
magnetic resonance image, as shown in Fig. 4. The results indicate the MCV method 
cannot separate the cerebrospinal fluid from the grey matter, while the proposed one 
can make a correct segmentation. 

Experiment 3 suggests that the proposed method employs the Gabor filter bank to 
essentially increase the weight of boundaries in energy functional, thus the more 
boundaries is detected and segmentation result is more natural. 

5   Conclusions 

In this paper, we utilize the Gabor filter bank to extract the local geometric features, 
e.g., gradient and orientation, and combine these features with the original image and 
the image smoothed by Gaussian filter to build a comprehensive pixel tensor repre-
sentation. By applying the multiphase tensor level set method on the tensor field cor-
responding to the given image, an accurate segmentation result is obtained. This 
method is more robust against noise and achieves better performance on the image 
with non-homogenous background. Additionally, the method provides a practical 
uniform formula to execute the multiphase level set method, and speeds up the proc-
ess of execution by using OTA to reduce the dimensionality of the tensor representa-
tion. In the future, the proposed method will be applied on more images to verify its 
segmentation effectiveness. 
 
Acknowledgments. We want to thank the helpful comments and suggestions from 
the anonymous reviewers. This research was supported by National Science Founda-
tion of China (60771068, 60702061), and the Program for Changjiang Scholars and 
innovative Research Team in University of China (IRT0645). 

References 

1. Adalsteinsson, D., Sethian, J.A.: A Fast Level Set Method for Propagating Interfaces. J. 
Comput. Phys. 118(2), 269–277 (1995) 

2. BrainWeb: Simulated Brain Database,  
http://www.bic.mni.mcgill.ca/brainweb/ 

3. Chan, T.F., Vese, L.A.: Active Contours without Edges. IEEE Trans. Image Proc-
ess. 10(2), 266–277 (2001) 

4. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active Contours without Edges for Vector-Valued 
Images. J. Vis. Commum. Image R. 11(2), 130–141 (2000) 

5. Daugman, J.G.: Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles. 
Vision Res. 20(10), 847–856 (1980) 

6. Li, C., Xu, C., Gui, C., Fox, M.D.: Level Set Evolution without Re-initialization: A New 
Variational Formulation. In: IEEE Conference on Computer Vision Pattern Recognition, 
pp. 430–436. IEEE Computer Society Press, Washington (2005) 

7. Lie, J., Lysaker, M., Tai, X.: A Binary Level Set Model and Some Applications to Mum-
ford-Shah Image Segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006) 

8. Mumford, D., Shah, J.: Optimal Approximations by Piecewise Smooth Functions and As-
sociated Variational Problems. Commun. Pur. Appl. Math. 42(5), 577–685 (1989) 



994 B. Wang et al. 

9. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape Modeling with Front Propagation: A Level 
Set Approach. IEEE Trans. Pattern Anal. Machine Intell. 17(2), 158–175 (1995) 

10. Marcelja, S.: Mathematical Description of the Responses of Simple Cortical Cells. J. Opti-
cal Soc. Am. 70(11), 1297–1300 (1980) 

11. Osher, S., Sethian, J.A.: Fronts Propagating with Curvature-Dependent Speed: Algorithms 
Based on Hamilton-Jacobi Formulation. J. Comput. Phys. 79, 12–49 (1988) 

12. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE Based Fast Local Level Set 
Method. J. Comput. Phys. 155(2), 410–438 (1999) 

13. Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.: Incremental Tensor Analysis: 
Theory and Applications. ACM Trans. Knowl. Disc. from Data 2(3), 11:1–11:37 (2008) 

14. Suri, J.S., Liu, K., Singh, S., Laxminarayan, S.N., Zeng, X., Reden, L.: Shape Recovery 
Algorithms Using Level Sets In 2-D/3-D Medical Imagery: A State-Of-The-Art Review. 
IEEE Trans. Inf. Technol. Biomed. 6(1), 8–28 (2002) 

15. Tao, D., Li, X., Wu, X., Maybank, S.J.: General Tensor Discriminant Analysis and Gabor 
Features for Gait Recognition. IEEE Trans. Pattern Anal. Machine Intell. 29(10), 1700–
1715 (2007) 

16. Tao, D., Song, M., Li, X., Shen, J., Sun, J., Wu, X., Faloutsos, C., Maybank, S.J.: Bayesian 
Tensor Approach for 3-D Face Modelling. IEEE Trans. Circuits and Systems for Video 
Technology 18(10), 1397–1410 (2008) 

17. Tao, D., Li, X., Wu, X., Maybank, S.J.: Tensor Rank One Discriminant Analysis - A Con-
vergent Method for Discriminative Multilinear Subspace Selection. Neurocomput-
ing 71(10-12), 1866–1882 (2008) 

18. Vese, L.A., Chan, T.F.: A Multiphase Level Set Framework for Image Segmentation Us-
ing the Mumford and Shah Model. Int. J. Comput. Vision 50, 271–293 (2002) 

19. Wang, Z., Vemuri, B.C.: DTI Segmentation Using an Information Theoretic Tensor Dis-
similarity Measure. IEEE Trans. Med. Imaging 24(10), 1267–1277 (2005) 

20. Zhao, H., Chan, T.F., Merrian, B., Osher, S.: A Variational Level Set Approach to Multi-
phase Motion. J. Comput. Phys. 127, 179–195 (1996) 



X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 995–1002, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Embedded Geometric Active Contour  
with Shape Constraint for Mass Segmentation 

Ying Wang1, Xinbo Gao1, Xuelong Li2, Dacheng Tao3, and Bin Wang1 

1 School of Electronic Engineering, Xidian University, Xi’an 710071, P.R. China 
2 State Key Laboratory of Transient Optics and Technology, Xi'an Institute of Optics and 

Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, P.R. China 
3 School of Computer Engineering, Nanyang Technological University, 639798, Singapore  

Abstract. Mass boundary segmentation plays an important role in computer 
aided diagnosis (CAD) system. Since the shape and boundary are crucial dis-
criminant features in CAD, the active contour methods are more competitive in 
mass segmentation. However, the general active contour methods are not so ef-
fective for some cases, because most masses possess very blurry margin that 
easily induce the contour leaking. To the end, this paper presents an improved 
geometric active contour for mass segmentation. It firstly introduces the mor-
phological concentric layer model for automatically initializing. Then an em-
bedded level set is used to extract the adaptive shape constraints. For refining 
the boundary, a new shape constraint function and stopping function are de-
signed for the enhanced geometric active contour method. The proposed 
method is tested on real mammograms containing masses, and the results sug-
gest that the proposed method could effectively restrain the contour leaking and 
get better segmented results than general active contour methods. 

Keywords: Mass segmentation, active contour, shape constraint, embedded 
level set, mammogram. 

1   Introduction 

Breast cancer is the most common cancer among women [1], and early diagnosis is 
the only way for reducing the death rates. Mammography is currently the most effec-
tive tool to pronounce the abnormities and detect early cancers. However, it is still a 
very difficult work for analyzing and diagnosing on mammography, because the seri-
ous impaction of the image quality and some subjective reasons. Computer-aided 
diagnosis (CAD) systems have been developed and proved to be a very useful tool for 
assisting radiologists by identifying the suspicious lesions. Mass, as one of the major 
indications of early breast cancer, its detection is still a challenging problem for many 
CAD systems. It is because mass always surrounded by density tissues, possess ill-
defined margins, and also vary in their size and shapes. Accurate segmentation of the 
mass is very important for the CAD system, because it directly affects the detection 
performance. There has been several studies focus on the mass segmentation, such as 
pixel-based methods [2], edge-based methods [3-6], region-based methods [7]. Since 
the shape and boundary characteristics are more crucial in diagnosis, the edge-based 
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methods attract more attention in the literature. Sahiner et al. [4] employed the active 
contour models as a final step for refining the segmentation. Timp and Karssemeijer 
[5] found the best contour of the mass based on dynamic programming. Ball and 
Bruce [6] studied the application of level set in mammograms. 

However, there are still some problems that the active contour methods cannot easily 
handle. First, the initialization is a major drawback of general active contour methods. 
The second problem is the contour leaking of masses with blurry boundaries. Although 
the shape prior has been introduced to solve the similar problem [8,9], it does not work 
in mass segmentation because the mass possess various size and shapes that general 
shape prior could not adapt to any case. The stopping function designing is also a prob-
lem which should be set according to the particular image features.  

To solve these problems, we proposed an improved geometric active contour (also 
known as level set) method for mass segmentation. The morphological concentric 
layer (MCL) method [10] is introduced first to locate the initial contour, according to 
which the level set function is automatically initialized. Then an embedded level set is 
applied to the smoothed image to adaptively extract the shape constraints correspond-
ing to different mass regions. This shape constraint will make the segmented results 
more approached to the real size and shapes of various masses. Based on the shape 
constraints, we also design a new stopping function for further refining the boundary 
of masses and meanwhile preserve the gradient information within the masses, espe-
cially the real boundary of masses. Furthermore, the proposed method can also effec-
tively avoid the contour leaking, because the final boundary will be restrained well by 
the shape constraints when the blurry boundary exists. 

2   Active Contour Models and Their Limitations 

There are two general types of active contour methods in literature [11]: parametric 
active contours and geometric active contours. In this section, we will give the over-
view of the two effective methods and their limitations on mass segmentation. 

2.1   Parametric Active Contour 

The parametric active contour, i.e., basic snake model [12], is a controlled continuous 
curve under the influence of internal and external forces. Representing the position of 
a snake parametrically by ( ) ( ) ( )( )sysxs ,=v , the energy function can be defined as 

( )( ) ( )( ) ( )( ) ,
1

0
int dssEsEsEE conimagesnake vvv ++= ∫  (1) 

where intE  represents the internal energy, imageE  gives rise to the image force, and  

conE  represents the external constraint force. 

2.2   Geometric Active Contour 

For capturing more complex topology difficult for parametric active contour methods, 
Osher and Sethian [13] introduced the concept of geometric active contour, and also 
provided an implicit formulation of the deformable contour in a level set framework. 
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In level set, the deformable contours can be denoted by C  which are represented by 
( ) ( ) ( ){ }0x,|, == tyxtC φ , the zero level set of a level set function ( )tx,φ . The evolu-

tion equation of φ  can be written in a general form 

,0=∇+∂∂ φφ Ft  (2) 

which is called level set equation [13]. The function F  is called the speed function. 
For the real image segmentation problems, Malladi et al. [14] multiplying the contour 
velocity by a “stopping” term ( )xg  which is a monotonically decreasing function of 

the gradient magnitude of the image. In general case, ( )xg  is given as 

( ) ( ) ( )( ),x*x11x
2

IGg σ∇+=  (3) 

where ( ) ( )x*x IGσ∇  is the absolute gradient of the convoluted image which is ob-

tained by convolving the original image by the Gaussian function with a known stan-
dard deviation σ . 

2.3   Challenging Issues 

Although the parametric and geometric active contours models can work well on 
many segmentation problems, they still have certain limitations when applied on 
mammography. The parametric active models have two main limitations. Firstly, 
when the initial model and desired object boundary differ greatly in size and shape, 
the model must be re-parameterized dynamically to faithfully recover the object 
boundary, which means it is sensitive to the initialization. Secondly, it has difficulties 
to deal with the topological adaptation such as splitting or merging model parts, and 
also the sharp corners or pieces of the boundary intersect. 

Then the geometric active contours which realized by level set methods is proposed 
to deal with these limitations. Even though numerous work have been proved that the 
level set is more effective on any of the cavities, concavities, splitting or merging, 
there are still some drawbacks when it is applied to our study. Firstly, the initial 
placement of the contour is a major problem, as it does not have either enough capture 
range or power to grab the topology of shapes. The second problem is the gaps in 
boundaries. Since the mass always possess so ambiguous margin that like a disconti-
nuity in boundaries, it easily induces contour leaking. Therefore, more effective 
methods should be studied for handling the aforementioned problems. 

3   An Improved Level Set for Mass Segmentation 

For overcoming the above challenging issues, we work on an improved level set 
method. This new method incorporates the shape prior information as the shape con-
straint into the embedded level set process for restraining the contour leaking and 
refining the segmented results. 

3.1   Initialization Based on Morphological Concentric Layer Model  

The MCL model is worked on the smoothed image decomposed by morphological 
component analysis (MCA) first [15]. Since the mass region on smoothed image usually 
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highlights in core and then gradually dimmer toward the margin, it can be viewed as a 
Gaussian area with some concentric density rings around the focal area. Then accord-
ing to the adaptive density slicing, the focal area F  within the mass region that satis-
fies the following conditions will be extracted as the initial contour 

( ) ( ) ( ){ },,&& massEXEXECECARAR RFThFThFThFF ∈≥≥≥  (4) 

where ARF  and ARTh  are the area of F  and its threshold respectively. Similarly, 

ECF  and EXF  are the eccentricity and the extent, while ECTh  and EXTh  are their 

thresholds. These limitations assure F  can capture more information of various 

masses, and also avoid the unstable segmented results induced by manually marking. 

3.2   Adaptive Shape Constraint 

For adaptively extracting the meaningful shape constraints of masses with the above 
initial contour, an embedded level set is employed on the smoothed image (decom-
posed by MCA). Here, we employ a more effective evolution methods proposed by Li 
et al. [16] for eliminating the costly re-initialization procedure of classical level set. 
Since the smoothed component MCAS  already has smoothed variation on intensity, 

this component will substitute the convoluted image item in (3).  

( ) ( ).11x
2

MCASg ∇+=  (5) 

After the curve evolving, we will extract the boundaries on the smoothed image 
according to various size, shapes and margin characteristics of the mass regions.  

3.3   Improved Level Set with New Stopping Function 

For introducing the shape constraint into the improved level set model, we convert the 
contour Ω∂  acquired by aforementioned method to a shape constraint function 

( ) ( ) ,

x0

xmax

x1

x
⎪
⎩

⎪
⎨

⎧

Ω⊄
Ω∂∈∇
Ω⊂

= MCASH  (6) 

where Ω  represents the region within the boundary Ω∂ .  
According to this function, the gradient within the shape constraint of the original 

image will be preserved, and all the gradient variation out of the shape constraint will 
be set to zero for restraining the contour leaking. Furthermore, the shape constraint 
function will magnify the gradient on the margin of shape constraint to ensure the 
evolving curve could stop when the mass boundary is too ambiguous.  

With this adaptive shape constraint item, we design a new stopping function for 
improving the performance of level set. It can be written as 

( ) ( ) ( ) ( )( ),x*xx1x
22 IGHgs σε ∇⋅+=  (7) 
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where the parameter ε  is a real number (set to 3 on average) to adjust the whole 
contrast of the gradient based stopping condition. If the gradient varies too complex 
within the real mass regions, this parameter can automatically regulate the stopping 
function value to avoid the evolving contour stopping inside the regions. 

Then the new stopping function will introduced into the total energy function [16] 

( ) ( ) ( ),,, φεφμφε λ vsgP +=  (8) 

where the function ( )φP  is a penalizing term to keep the level set function as a signed 

distance function, 0>μ  and is the weight of the penalizing term. The external energy 

( )φε λ vsg ,,  will drive the zero level set toward the mass boundaries.  

3.4   The Proposed Image Segmentation Algorithm 

The proposed method includes initialization, shape constraints extraction, embedded 
level set segmentation, and so on. In this section, the detail procedures will be given 
by pseudo-code combined with equations as shown in Table 1. 

4   Experimental Results and Analysis 

The performance of the improved level set method is tested on a random selected sub-
dataset from the Digital Database for Screening Mammography (DDSM) provided by 
the University of South Florida [17]. The mammograms were digitized with a LUMI-
SYS laser scanner at a pixel size of 0.5mm and 12-bits per pixel. Since the malignant 
masses present more complex shape and margin characteristic, we first test the pro-
posed method on 37 malignant masses. All of these mammograms containing ab-
normities are associated with ground truth information marked by experts.  

Table 1. Algorithm flowchart of the improved level set segmentation method 

Input: the original image to be segmented 0m  
Output: the evolving curve C  and the segmentation result R  
Initialization: the initial position of evolving curve 

Step1  Iterate { }
{ }

2
211,

TTminarg, MCATexMCAMCATexTex
SS

MCATex SSSSSSS
MCATex

−−++= λ  

Step2  // extract the shape constraint by embedded level set 

       Calculate ( ) ( )2
11x MCASg ∇+= , and iterate 0=∇⋅+∂∂ φφ Fgt  

Step3  // construct the shape constraint function and stopping function:  

Calculate ( ) ( )
⎪
⎩

⎪
⎨

⎧

Ω⊄
Ω∂∈∇
Ω⊂

=
x0
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x1

x MCASH , and ( )
( ) ( ) ( ) 22 x*xx

1
x

IGH
gs
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Step4  Iterate ( )[ ] ( ) ( ) ( )φδφφφλδφφφμφ ss vggt +∇∇+∇∇−Δ=∂∂ divdiv  

Step5  Calculate the evolving curve ( ) ( ){ }0,:, =Ω∈= jijiC φ  

Step6  Calculate the segmentation result ( ) ( )( )φφ HmHmR −+= 100  
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All of the mammograms are processed firstly by MCA decomposition and MCL 
detection. Then the sub-images contains masses are cropped from the original and 
smooth image respectively. Fig. 1 gives the complete working procedure of the pro-
posed scheme. As shown in Fig. 1, the malignant mass has ambiguous boundary in 
the top right corner, which easily brings the contour leaking problem. While, under 
the limitation of the shape constraint, the contour leaking problem can be restrained, 
and the segmented boundary is more approaching to the real mass margin. 

 

        (a)              (b)                (c)              (d)              (e)               (f)               (g)              (h) 

Fig. 1. The segmentation result of the embedded level set with shape constraint. (a) The origi-
nal image; (b) The initialized contour; (c) The shape constraint; (d) The new stopping function; 
(e) The contour of 20 iterations; (f) The contour of 180 iterations; (g) Segmentation result with 
2000 iterations; (h) The segmentation result with shape constraint.  

 

 

 

 

Fig. 2. The comparison of different active contour based segmentation methods. The first col-
umn gives the original images; the second column shows the segmental results using GVF 
snake; the third column is the level set segmental results without shape constraint; and the forth 
column presents the results of the proposed algorithm. 
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Then the comparison experiments are implemented for providing the competitive 
segmentation results between several active contour methods. As applied in the litera-
ture, we test those malignant masses using the GVF snake, level set without shape 
constraint, and the improved segmentation scheme respectively, and test results are 
given in Fig. 2. It indicates that the snake model can not effectively deal with  
the boundary concavities and complex intensity distribution within the mass regions. 
The level set method can find more meaningful boundary which is better than the 
parametric active contour. However, it still cannot handle the contour leaking problem 
when the boundaries of masses are ill-defined. The last column in Fig. 2 is the seg-
mented results using the proposed segmentation method. With the adaptive shape 
constraint, the contours can be more approaching to the real mass margins. 

5   Conclusion 

In order to avoid the contour leaking and refine the segmentation results, this paper 
proposed an improved geometric active contour method for the mass segmentation. 
First, the evolving curve is initialized by the MCL method. Then, for adaptively ex-
tracting the shape constraints of various mass types, an embedded level set is operated 
on the smoothed image. According to the limitation of the shape constraints function, 
a new stopping function is constructed for the improved level set method to avoid the 
contour leaking and further refine the segmented results. The comparison experimen-
tal results show that the proposed method could more effectively on capturing com-
plex topology. Furthermore, it also can avoid the contour leaking in weak margins and 
stopping earlier inside the regions. 

For further validating the proposed methods, more malignant masses with more 
complex distribution and margins will be tested in the future. And more flexible shape 
constraints and stopping function should be considered for refining the segmentation. 
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Abstract. Automatically partitioning images into regions (‘segmenta-
tion’) is challenging in terms of quality and performance. We propose
a Minimum Spanning Tree-based algorithm with a novel graph-cutting
heuristic, the usefulness of which is demonstrated by promising results
obtained on standard images. In contrast to data-parallel schemes that
divide images into independently processed tiles, the algorithm is de-
signed to allow parallelisation without truncating objects at tile bound-
aries. A fast parallel implementation for shared-memory machines is
shown to significantly outperform existing algorithms. It utilises a new
microarchitecture-aware single-pass sort algorithm that is likely to be of
independent interest.

1 Introduction and Related Work

Segmentation (automatically partitioning an image into regions) is an impor-
tant early stage of some image processing pipelines, e.g. object-based change
detection. The final results of such applications are often strongly dependent on
the quality of the initial segmentation. Since subsequent processing steps can
use higher-level region information instead of having to examine all pixels, the
segmentation may also be the limiting factor in terms of performance. Many
algorithms have been proposed, but good quality results often come at the price
of high computational cost.

One extreme example of this is a multi-scale watershed approach (MSHLK)
[1]. Repeated applications of anisotropic diffusion smooth the image and reduce
the oversegmentation caused by the watershed transform. The resulting subjec-
tive quality is very good, but its computational cost (1 second per kPixel) is
unacceptable.

An alternative approach uses the Mean-Shift (MS) [2] procedure to locate
clusters within a higher-dimensional representation of the image. This is guar-
anteed to converge on the densest regions in this space and yields good results
in practice, but the processing rate (0.1 MPixel/s) is still inadequate.

Recent work has shown that Maximally Stable Extremal Regions (MSER) [3]
within a gradient image are also suitable for image segmentation. While more
efficient (2 MPixel/s), this scheme only detects high-contrast segments and does
not provide full coverage of the image. It also seems ill-suited for parallelisation
since the stability criterion depends on a global ordering of pixels.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1003–1010, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Graph-based segmentation (GBS) [4] increases the amount of data to be han-
dled (multiple edges per pixel) but has several attractive properties. Viewing
pixels as nodes of a graph allows the reduction of segmentation to finding cuts
in a Minimum Spanning Tree (MST). Defining edge weights as some function of
the pixels’ per-band intensity differences enables the use of colour information
without having to compute gradients. Finally, an MST can be assembled from
partial sub-trees, which provides the possibility of parallelisation.

The remainder of this article is structured as follows: Section 2 develops a new
online graph-cutting heuristic for MST-based segmentation. Section 3 shows the
promising results obtained on well-known images. Section 4 introduces ‘PHMSF’
(Parallel Heuristic for Minimum Spanning Forests), which we believe to be the
first non-trivially-parallel segmentation algorithm. Perhaps most importantly,
Section 5 shows it to significantly outperform existing segmentation techniques.

2 Segmentation Algorithm

Segmentation algorithms require (often application-dependent) definitions of
‘image region’. We consider ‘homogeneity’ and high contrast to surrounding pix-
els to be reasonable criteria [5]. Homogeneity can be computed as distances be-
tween (vector-valued) pixels; we find the L2 norm to yield better results than L1
or pseudo-norms. Note that [4] advocates separate segmentation of the R/G/B
component images and intersecting the results. Since object edges are not al-
ways visible in all multi-spectral bands [6], it is safer (and certainly faster) to
segment once using all bands. Recalling the graph segmentation framework, the
above homogeneity measure defines the weight of edges. It remains to be seen
how an online graph-cutting heuristic should partition the MST depending on
edge weight. A mere threshold is insufficient because it fails to account for noise
or the overall homogeneity of a region. [4] suggests an adaptive threshold that is
incremented by a linearly decreasing function of the region size1. The function’s
slope is a user-defined parameter that must be determined by experimentation
since it has no physical explanation. This scheme also underestimates a region’s
homogeneity by defining it as the maximum weight in its MST, thus tending
towards oversegmentation. We suggest the adoption of an idea from Canny’s
edge detection algorithm [7]. In the context of edge detection, pixels with large
gradient magnitudes are likely to correspond to edges, but there is no single
level at which this ceases to be the case. Applying a rather high limit finds likely
candidates, which can be augmented by nearby pixels that lie above a second,
lower threshold. Returning to segmentation terminology, regions connected by
low-weight edges represent likely candidates that can subsequently be expanded
by following adjoining edges with somewhat higher weights. To avoid poten-
tially unbounded growth, we institute a ‘credit’ limit on the sum of edge weights
that may be added to a candidate region. Since no shape can be more compact
than a circle, the region’s perimeter is bounded from below by the circumference
1 This unduly penalizes the growth of large segments; we saw slightly better results

when dividing by the logarithm of the region size.
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√
4π · regionSize. Let us also assume additive white Gaussian noise with variance

σ2
n, for which several estimators have been proposed [8,9].s Defining contrast as

the smallest edge weight along the border of any ‘interesting’ region minus 2 ·σn

thus makes it likely that edges of total weight ≤ contrast · minPerimeter can
be added to a region without inadvertently expanding beyond its bounds. This
property is important because subsequent region merges are trivial, whereas
splitting requires re-examination of the pixels or edges. However, the resulting
regions are not necessarily too fine because pixels connected by low-weight edges
are always merged. We have therefore averted global under- and oversegmenta-
tion of the image while using only local information. The algorithm first forms
candidate regions by merging the endpoints of low-weight edges and then calls
the following simple heuristic in increasing order of the remaining edges’ weights:

Procedure EdgeHeuristic(edge)
region1, region2 := Find(edge.endpoints);
if region1 �= region2 then

credit := min {region1.credit, region2.credit};
if credit > edge.weight then

survivor := Union(region1, region2);
survivor.credit := credit − edge.weight;

3 Results

To demonstrate the usefulness of the new segmentation results, we compare
them to the outputs of existing algorithms on standard images [10], the results
of which are shown in Fig. 1:

MSHLK [1] is known for high-quality results and provides excellent smooth-
ing of the walls (b) but merges the eaves into the sky segment. We also call

(a) 4.1.05 (b) MSHLK (c) MS (d) MSER (e) GBS (f) PHMSF

(g) 4.1.07 (h) MSHLK (i) MS (j) MSER (k) GBS (l) PHMSF

Fig. 1. Segmentation results of the new PHMSF algorithm and others on USC SIPI
[10] images 4.1.05 (‘House’) and 4.1.07 (‘Jelly beans’)
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attention to the oversegmentation of the second image and shock effects [11] in
the background (h). MS [2] is more successful at merging the individual objects
(i) but also splits some of them (e.g. below the P); spurious segments near edges
(c) are its only visible flaws. As with MSHLK, segment borders are delineated
by black pixels. MSER [3] produces mostly adequate label images, though the
wall is not considered to be a stable region (d); the effects of the gradient filter
are clearly visible (j). GBS [4] is satisfactory but results in undersegmentation
near the roof lines and oversegmentation of the sky and wall (e). It also merges
different-coloured objects (k) but fails to return a uniform background. Our new
PHMSF algorithm provides results comparable to MSHLK and MS and requires
only 1/4000 and 1/50 the computation time, respectively (cf. Sect. 5). The black
pixels (f) indicate surface irregularities that resulted in regions smaller than the
minimum size. The segmentation in (l) is quite accurate, correctly separating
different-coloured objects without introducing spurious boundaries.

4 Parallel Algorithm

Despite the efficiency of the new segmentation algorithm, a highly-tuned sequen-
tial implementation is still far slower than the collection rates of commercial
imaging satellites (e.g. IKONOS with up to 90 km2/s [12]). Since a significant
reduction of the algorithm’s constant factors appears unlikely and sequential
programs have seen less benefit from recent CPU advances [13], it appears our
self-set performance goal of 10 MPixel/s can only be reached by means of paral-
lelisation. Note that embarrassingly-parallel schemes that simply split the input
into independent tiles are not acceptable because they do not correctly handle
objects straddling a border. Nor are overlapping tiles sufficient because there
is no upper bound on the size of objects of interest (e.g. rivers or roads). Our
first attempt at parallelisation addressed the MST computation. The new Filter-
Kruskal scheme [14] combines ideas from Quicksort and Kruskal’s algorithm and
discards non-MST edges without having to sort them. This ‘filter’ operation,
partitioning and sorting can all be parallelised. However, the total speedup on
a quad-core system is only 1.5 – chiefly due to the sequential portion of the
algorithm, but also because our eight-connected grid graphs are too sparse to
derive much benefit from discarding edges. Our second approach is designed
to allow independent processing of image tiles, but still ensures consistent re-
sults irrespective of the number of processors P .2 The key observation is that
Kruskal’s MST algorithm can run in a data-parallel fashion until encountering
an edge that crosses a tile border. From then on, MST components using such
edges and in turn their incident edges must be ‘delayed’ until the partial MSTs
of both tiles are available. We accomplish this with per-tile edge queues that are
processed in a subsequent sequential phase3. It remains to be seen how many
edges are delayed – a long cross-border region of homogeneous pixels could affect
2 We ignore the (negligible) effects of unstable edge sorting.
3 This could be parallelised if edges indicate which border they cross, but our imple-

mentation cannot spare any space within the 32-bit representation.
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a large proportion of a tile. However, high-weight edges at the boundary of such
regions often serve as a ‘firewall’ because they can be discarded without affecting
neighbouring regions. Only about 5 % of edges are delayed in practice, making
Amdahl’s argument less of a factor than real-world limits on memory bandwidth
and P . The algorithm is described by the following pseudo-code:

Algorithm 2. Parallel Segmentation
parallel foreach tile do

sort edges, merging those with weight < minWeight;
foreach borderEdge do // connect and mark cross-border regions

region1, region2 := Find(borderEdge.endpoints);
survivor := Union(region1, region2);
Mark(survivor);
tile.regions := tile.regions ∪ {survivor};

parallel foreach tile do
foreach r ∈ tile.regions do r.credit := ComputeCredit(r.size);

parallel foreach tile do
foreach edge in ascending order of weight do

region1, region2 := Find(edge.endpoints);
if edge crosses border then Mark(region1); Mark(region2);
else if IsMarked(region1, region2) then tile.delayQ.push (edge);
else EdgeHeuristic(edge);

foreach tile do
foreach edge ∈ tile.delayQ do EdgeHeuristic(edge);

To avoid scheduling and locality issues, the (manually partitioned) loops reside
in a single OpenMP parallel region. A novel variant of counting sort uses paged
virtual memory to simulate bins of unlimited size and thus dispenses with a
separate counting phase. An explicit buffering technique further increases per-
formance by enabling write-combining without cache pollution. Details are given
in App. A within the expanded version of this work [15].

The algorithm outputs a Union-Find (UF) tree represented as an array of
pointers to a parent pixel or region, as well as per-tile lists of regions, which
each store size (number of pixels) and credit. Computing features for single-pixel
regions would consume too much memory, so we only consider regions of size
min..max. This requires relabeling the per-tile regions and replacing them with
so-called ‘accumulators’ for the region features, which is accomplished by Alg. 3.
Its separate and very efficient count phase seems preferable to updating the per-tile
region count when cross-border merges are performed by the Kruskal algorithm.
Since the desired output includes a label image, we ‘collapse’ the UF tree once all
regions have been re-labeled. With all pieces in place, we can now compute the
contribution of each pixel toward its region’s features. The per-band intensities Bi

and
∑

B2
i are required for computing the band averages and standard deviations.
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Algorithm 3. Parallel Relabeling
parallel foreach tile do // compress regions

foreach r ∈ tile.regions do r.isValid := r.size ∈ [min, max];

parallel foreach tile do // count regions
tile.numRegions := 0;
foreach pixel do

if IsRepresentative(pixel) and Find(pixel).isValid then
tile.numRegions := tile.numRegions + 1;

for i := 0 to |tiles| − 1 do
tiles [i] .startIndex :=

∑
0≤j<i tiles [j] .numRegions;

parallel foreach tile do // re-label regions

foreach pixel do
if IsRepresentative(pixel) and Find(pixel).isValid then

parents [pixel] := tile.startIndex;
tile.startIndex := tile.startIndex + 1;

For pixel coordinates (Y,X), the six moments
∑

Y p ·Xq (p, q ∈ IN0, p+q ≤ 2) are
sufficient for estimating an ellipse [16]. Finally, counting the number of neighbour
pixels belonging to different regions allows computing the region perimeter. Using
64-bit floating-point accumulators mitigates precision issues while still enabling
vectorization via SSE2 instructions.

5 Performance Analysis

We first examine the complexity of the proposed algorithm. Counting sort is
O(N). Region merges via Union-Find are effectively O(1) for all practical in-
put sizes4 [18]. All other operations are also constant-time and reside in loops
with trip counts in O(N), so the complexity is (quasi-)linear in the input size.
Since this also applies to the MSER and GBS algorithms, we must compare their
implementations. Table 1 lists the performance5 of each algorithm for a repre-
sentative 8.19 MPixel subset of a 16-bit, 4-component (RGB + NIR) Quickbird
image of Karlsruhe.

Our PHMSF algorithm does more work (computing region features and pro-
cessing the original four-component 16-bit pixels rather than an 8-bit RGB ver-
sion), yet significantly outperforms the other algorithms. In this test it is 138
times as fast as MS [20], 28 times as fast as GBS [21] and 5 times as fast as our
similarly optimised implementation of MSER. Note that (32-bit) MSHLK ex-
hausted its address space after a single diffusion iteration. Our PHMSF
4 We view the inverse Ackermann function as a constant ≤ 5 for N < 1080. Note that

an attempt at replacing Union-Find with a ‘true linear algorithm’ [17] introduces a
constant factor of 8.

5 Measured on a X5365 CPU (3.0 GHz, 32 GiB FB-DDR2 RAM) running Windows
XP x64. Our implementation is compiled with ICC 11.0.066 /Ox /Og /Ob2 /Oi /Ot

/fp:fast /GR- /Qopenmp /Qftz /QxSSSE3
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Table 1. Performance comparison

Algorithm MPixel/s

MSHLK N/A

MS 0.09

GBS 0.45

MSER 2.53

PHMSF 12.80

Table 2. Performance on large images

Sensor Preproc.6 Bits MPixel MPixel/s

IKONOS PS 16×4 54 13.5

QuickBird PS 16×4 219 14.3

JAS150s BF 8×4 527 24.4

implementation requires much less memory: the working set is about 7.1 GB
for a 1.97 GB image, which equates to 13.5 bytes/pixel. Table 2 shows measure-
ments from processing large images of up to 527 MPixel. Performance improves
with size due to increased parallelism – tile interiors grow faster than their bor-
ders. The parallel speedup varies between 2 and 3.2 when using 4 cores. In the
latter case, sequential processing only accounts for 2 % of processing time; the
limiting factor is memory bandwidth. RightMark Memory Analyzer [22] mea-
sures read and write throughputs of roughly 3500 MB/s and 2500 MB/s on this
system. Having analysed the elapsed times and minimum amounts of data that
must be transferred to/from memory during the credit computation, region com-
pression/counting/relabeling and feature computation phases, we can conclude
that each is at least 85 % efficient. Improving their performance or scalability is
therefore contigent on increased bandwidth (e.g. via NUMA architecture or by
adding further memory channels).

6 Conclusion

We have presented a new (quasi-)linear-time segmentation algorithm that pro-
vides useful results at previously unmatched speeds. Applications include auto-
matic wide-area appraisal of the suitability of roofs for solar panels, object-based
change detection, environmental monitoring and rapid updates of land-use maps.
From an algorithm engineering standpoint, we believe this to be the first
non-trivially-parallel segmentation algorithm. Its scalability is chiefly limited by
the memory bandwidth of current SMP systems. Future work includes statisti-
cal estimation of the edge weight thresholds and efficiently computing a segment
neighbourhood graph. We are also interested in applying this algorithm towards
segment-based fusion of high-resolution electro-optical and hyperspectral imagery.
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Abstract. Tracking of articulated objects is a challenging task in Com-
puter Vision. A highly target specific model can improve the robustness
of the tracking by eliminating or reducing the ambiguities in the asso-
ciation task. This paper presents a flexible framework, which allows to
build target specific, part-based models for arbitrary articulated objects.
The rigid parts are described by hierarchical spring systems in form of
attributed graph pyramids and connected via articulation points, which
transfer position information between the adjacent parts.

1 Introduction

Tracking the parts of articulated objects in video sequences is still a challenging
task with a lot of open problems. Promising approaches dealing with this task
employ part-based models and match this models into the image with the help
of statistics to maximize a probability function.

A possibility to build part-based models and describe the spatial relationships
between the parts of the target object in a tolerant, deformable way are spring
systems. Spring systems can be represented by graphs, where each part of a
target object is a vertex and the edges encode their spatial relationships. Object
recognition or tracking can be done by minimizing the energy in the spring sys-
tem to find the most likely configuration of the object parts in an image. Spring
systems have already been proposed in 1973 by Fischler et al. [1]. Felzenszwalb
et al. employed this idea in [2] to do part-based object recognition for faces and
articulated objects (humans). Their approach is a statistical framework mini-
mizing the energy of the spring system learned from training examples using
maximum likelihood estimation. Ramanan et al. apply in [3] the ideas from [2]
in tracking people. In [4], Mauthner et al. present an approach using a two-level
hierarchy of particle filters for tracking objects described by spatially related
parts in a mass spring system.

In this paper we also employ spring systems to encode the relationships in a
part-based model, but in comparison to the related work we try to stress solutions
� Partially supported by the Austrian Science Fund under grants P18716-N13 and

S9103-N13.
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that emerge from the underlying structure, instead of using structure to verify
statistical hypothesis. The aim is to supply a flexible framework that allows to
build part-based models for arbitrary objects with varying number of rigid parts
and articulation points. Each rigid part is robustly tracked with the help of a
hierarchical spring system encoding the spatial relationships of coarse and fine
features. The articulation points in the model act as agents of the information
transfer between the parts of the object. They transfer position information
from reliable parts to ambiguous parts. The approach presented here refines and
extends our previous work in [5]. Possible applications are action recognition,
human computer interfaces, motion based diagnosis and identification, etc.

There is a vast amount of work in the field of tracking articulated objects and
motion analysis [6,7,8]. It would go beyond the scope of this paper mentioning all
of this work. In comparison to many related approaches our approach does not
need any training and we do not employ motion models. The presented approach
relies on the spatial relationships of object parts and their features, and hence
resulting distance constraints.

The paper is organized as follows: Sec. 3 explains how the hierarchical spring
systems are built. In Sec. 4 the task of articulation points is described. Sec. 5
sums up the presented concepts and describes their combination in tracking.
Sec. 6 presents experiments to prove and qualitatively evaluate the concept of
our approach and in Sec. 7 we draw conclusions.

2 The Building Blocks of the Spring Hierarchy

Articulated objects are made out of rigid parts connected through articulation
points. On each rigid part, multiple features are tracked through a mixture
of many independent trackers, one for each feature, and a spring system, one
for each part. The final position of each feature is decided based on the offset
vectors from the tracker and the spring system. This section recalls Mean shift,
the method used for the independent trackers, and the spring system.

2.1 Mean Shift Algorithm

The Mean shift algorithm [9] is employed to associate the features of the object
parts between consecutive frames. It does this by efficiently finding local maxima
in a probability distribution, and generating an offset vector pointing to the
corresponding position. The distribution encodes the probability that a given
feature from the previous frame is in a certain position in the current frame. To
compute the probability that a certain feature, the target, matches the feature
at a certain position, the following similarity measure is used (see Eq. 3).

Region covariance was introduced by Porikli and Tuzel as a feature for detec-
tion, classification and tracking in [10,11]. It is invariant to scaling and rotation
up to a certain degree (depends on the feature selection) and allows the combi-
nation of multiple features in an elegant way. Furthermore, compared to other
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region descriptors, region covariance is low-dimensional and can be efficiently
calculated using integral images.

The covariance feature is extracted out of an one dimensional intensity or
a three dimensional color image I. F is a W × H dimensional feature image
extracted from I, encoding a feature vector of size d at each position F (x, y):

F (x, y) = φ(I, x, y), (1)

where the function φ can be any mapping including e.g. intensity, color, gradients
and so on. A rectangular region of interest R ⊂ F can be represented by the
d× d covariance matrix

CR =
1

n− 1

n∑
k=1

(zk − μ)(zk − μ)T , (2)

where {zk}k=1..n are the d-dimensional feature vectors of the points in R and μ
is the mean over all points. The following distance measure is used to calculate
the similarity between two covariance matrices [11]:

ρ(C1, C2) =

√√√√ n∑
i=1

ln2 λi(C1, C2), (3)

where {λi(C1, C2)} are the generalized eigenvalues of C1 and C2.

2.2 Spring System as a Graph

An attributed graph (AG) is a possible data structure for a spring system. The
attributes of the vertices of the graph are the features and their correspond-
ing positions. We use covariance matrices as the features (Sec. 2.1), but other
features can also be used (e.g. 3D color histogram features [5]).

Given the features, the edges of the AG are obtained by a Delaunay triangu-
lation. A fully connected graph (connected each vertex with each other vertex
in the graph) could also be used but it would increase the complexity of the
optimization process.

The elastic behavior (tolerance to variations in the structure) of a spring
system can be modeled by graph relaxation. As the tracked object parts are rigid,
the objective of the relaxation is to maintain the tracked structure as similar as
possible to the initial structure. Thus the aim is to keep the edge lengths as
similar as possible to the initial length. The total energy of the spring system is
0 in the initial state and increases with the deformation of the structure.

The variation of the edge lengths in the AG and their directions are used to
determine a structural offset for each vertex. This offset vector is the direction
where a given vertex should move such that its edges restore their initial length
and the energy of the structure is minimized. This structural offset vector O is
calculated for each vertex v as follows:

O(v) =
∑

e∈E(v)

k · (|e,| − |e|)2 · (−d(e, v)), (4)
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where E(v) are all edges e incident to vertex v, k is the elasticity constant of
the edges in the structure, e is the edge length in the initial state and e, at a
different point in time. d(e, v) is the unitary vector in the direction of edge e
that points toward v. For more details see [5].

3 Building the Hierarchical Spring System

Each rigid part of a target object is described and tracked in a coarse-to-fine
manner. Each part is described by a two level spring system represented by an
attributed graph pyramid [12].

As shown in Fig. 1(a), the top level is described by one covariance feature
Ct, extracted out of a region of interest (ROI) covering the whole object part.
The bottom level consists of several features, which are from the same ROI (see
Fig. 1(b)). A Harris corner detector is applied on the ROI to find promising po-
sitions for the region covariance features {Cb}i=1..n of the bottom level. Around
each corner point a small ROI is built to calculate Cb (e.g. 9 × 9 pixels).

(a) (b) (c)

Fig. 1. Extracting region covariance features. (a) Feature of top level. (b) Features of
bottom level. The white edges are the edges of the AG. (c) Attributed graph pyramid.

The AG pyramid is built as follows (see Fig. 1(c)). In the top level of the
pyramid: one vertex to which the coarse feature Ct of the whole rigid part is
assigned. In the bottom level all fine features Cb. The edges in the bottom
level of the pyramid are inserted with a Delaunay triangulation. The vertex in
the top level is connected with every vertex (child) in the bottom level. The
spring system is initialized with the state in the first frame, meaning that the
total energy of the spring system is considered 0 in this configuration.

4 Articulation Points: Agents of the Information Transfer

An articulation point connects several rigid parts. It allows them to move in-
dependent from each other, but forces them to always keep the same distance.
From this follows that the movement of a rigid part in the image plane is con-
straint to the circle centered at the articulation point and spanned by the radius
corresponding to its size (in 3D it is a sphere). Fig. 2 visualizes this concept.
It would be possible to connect every point with the articulation point, but to
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Fig. 2. Distance constraints imposed by articulation points

reduce the complexity we only built a spring system with two reliable vertices
in the bottom level and with the top vertex.

Articulation points can be initialized manually or automatically by observing
the articulated motion of the target object [5,13] parts.

Deriving the position of the articulation points. In the frame in which
the position of the articulation point is initialized, for each adjacent part and
each pair of features of the bottom level of the part, a local coordinate system is
created. The coordinates of the articulation point in this coordinate systems is
stored. Having the position of any two features is then enough to reconstruct the
position of the articulation point, and thus at any time, each part can generate
a hypothesis for the position of all adjacent articulation points. This hypothesis
is produced with the local coordinate system of the two most reliable features
(see Sec. 4.1) – further on named reference vertices – of each part.

The hypothesis of all connected parts of an articulation point are combined
with a weighted sum, where the weight for each hypothesis depends on the relia-
bility of the corresponding part (see Sec. 4.1). With this weighting, the influence
of ambiguous parts (e.g. occluded parts) on the position of the articulation point
is low and for reliable parts high.

After the position of the articulation point is computed, the articulation
“transfers” position information from reliably to ambiguously tracked parts
through its distance constraints (circles). This is done in spring systems, where
the articulation point is connected to the reference vertices and the top vertices.

4.1 Computing the Reliability of Features and Parts

The reliability of a feature b depends on the number of incident edges in the
spring system Ib, the energy of the incident edges in the spring system Eb and the
similarity Sb (see Eq. 3) of the covariance feature Cb to the template covariance
feature from the first frame:

Rb = Ib · αI + Eb · αE + Sb · αS

Ib = E(v)
E , Eb =

∑
e∈E(v)

k·(|e′|−|e|)2

TEp
, Sb = ρ(Cb,Ct)

ρmax
.

(5)
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E(v) are all edges incident to vertex v (feature), E is the number of edges in
the spring system, TEp is the total energy of the spring system, and ρmax is the
highest similarity in the same part as feature b. In our experiments: αI = 0.2,
αE = 0.4, αS = 0.4. The reliability of a part p is:

Rp = Dp · αD + Ep · αE + Sp · αS

Dp = Fp

F , Ep = TEp

TE
, Sp =

∑
b∈p

ρ(Cb,Ct)

Fp

(6)

is computed out of the size Dp of the part p, the energy of the part Ep, and the
similarity Sp of the covariance features in comparison to their templates. Fp is
the number of features of part p, F is the number of all features, and TE is the
energy of all spring systems. In our experiments: αD = 0.2, αE = 0.4, αS = 0.4.
Intuitively the two measures model the mixture of “seeing” and “knowing”.

5 Tracking as a Hierarchical Optimization Process

Tracking is done in a coarse-to-fine manner – from top to bottom level of each
part (summarized in Algorithm 1).

Algorithm 1. Algorithm for tracking articulated objects
1: processFrame
2: associate top vertex of each part with Mean shift
3: associate bottom vertices of each part with Mean shift and structural offsets
4: select reference vertices for each part
5: calculate current position of articulation points
6: transfer position information over articulation points to top and bottom levels
7: end

The first step is to associate the top vertices of each part using the positions
from the previous frame and applying Mean shift to a probability distribution
built with the similarity measure in Eq. 3.

In the next step the bottom vertices of each part are associated by combining
Mean shift offsets and structural offsets. The structural offsets are generated out
of the spring systems of the bottom levels and the spring systems connecting each
bottom vertices with the corresponding top vertices. For each feature (vertex)
depending on its reliability value Rb a mixing gain g = 0.5 − (Rb − 0.5) is
computed and used to combine the offsets.

Then for each part the two vertices with the highest Rf are selected to gen-
erate the hypothesis for the positions of the articulation points. The hypothesis
of the parts connected to a articulation point are mixed with a weighted sum
depending on the reliability value Rp of each part.

In the last step, the position information between the parts is transfered
over the articulation points to the top and reference vertices which forward the
information to the vertices not directly connected. This transfer is again done
in a combined iterative process with Mean shift and structure.
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6 Experiments

In all experiments we use prior knowledge about the structure of the object to
initialize the ROIs and the articulation points. The spring constant k is set for
edges in the bottom level to 0.2 and for edges connecting to the articulated point
or to the top vertex to 0.5.

In experiment 1, the lower and upper arm of a human are successfully tracked
through articulated motion (see Fig. 3). Experiment 2 in Fig. 4 shows frames
with scissors. One part of the structure is completely occluded, but the position
of the articulation point (red star) is robust and the structure relaxes when the
occlusion is gone. In experiment 3 one can see the tracking of 4 parts connected
with 3 articulation points (see Fig. 5).

Frame 10 Frame 70 Frame 280 Frame 305

Fig. 3. Experiment 1: Tracking a human’s upper and lower arm in articulated motion

Frame 210 Frame 285 Frame 355

Fig. 4. Experiment 2: Tracking through occlusion

Frame 20 Frame 150 Frame 440 Frame 490

Fig. 5. Experiment 3: Tracking 4 parts of a human with 3 articulation points

7 Conclusion

This paper presented an approach for describing and tracking of articulated ob-
jects consisting of several rigid parts connected with articulation points. The
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object parts are described in a coarse-to-fine manner in an AG pyramid, where
the features are region covariance matrices and the spatial relationships between
the features are enforced during the tracking through a hierarchical spring sys-
tem. Position information is transfered between the parts over the corresponding
articulation points depending on the reliability of the parts and their features.
Open issues are dealing with pose changes and the corresponding changes in the
structure, optimizing the information transfer in big structures and automati-
cally initializing the structure.
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Abstract. Color processing imposes a new constraint on stereo vision algorithms:
The assumption of constant color on object surfaces used to align local correla-
tion windows with object boundaries has improved the accuracy of recent window
based stereo algorithms significantly. While several algorithms have been pre-
sented that work with adaptive correlation windows defined by color similarity,
only a few approaches use color based grouping to optimize initially computed
traditional matching scores. This paper introduces the concept of color-dependent
adaptive support weights to the definition of local support areas in cooperative
stereo methods to improve the accuracy of depth estimation at object borders.

1 Introduction

A closer look at recent publications in stereo vision shows that the old separation be-
tween slow algorithms, employing a large amount of computational power to achieve
the most accurate results, and fast real-time algorithms concentrating on efficiency, be-
comes more and more blurred. Recent improvements in computer hardware seem to
open space for an incorporation of additional computational power to real-time algo-
rithms to increase accuracy by new improvement steps beyond the well known fixed
window correlate-and-winner-takes-all scheme of former real-time approaches. Exam-
ples are algorithms using local improvement steps that follow the disparity estimation
[1] or basic dynamic programming based optimization methods [2].

Another group of algorithms with the potential to significantly improve real-time
approaches are algorithms using color grouping for an advanced adaptive correlation
[3,2]. Surprisingly, grouping neighboring pixels that are assumed to be located on the
same object surface by the similarity of their color is relatively new in stereo vision. Re-
cent algorithms use this constraint to obtain local adaptive correlation windows which
are better aligned to object borders, resulting in better correlation accuracy at disparity
discontinuities [4,5,6,3]. Grouping is achieved either by color segmentation [4,5,6] or
by calculating color-dependent correlation weights [3] to control the influence of pix-
els inside a correlation window on the matching score. Unfortunately, relatively large
correlation windows are needed by these algorithms to eliminate ambiguities (in [3]
the typical window size is 33x33 pixels, in [6] results are given for 51x51 windows),
which results in a higher computational cost making these approaches unsuitable for
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X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1019–1027, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



1020 R. Brockers

(a) (b) (c)

Fig. 1. Disparity maps for Teddy image detail (a): fixed local support leads to object blurring (b),
while adaptive local support maintains accurate object borders (c)

real-time applications. To reduce the window size significantly and benefit from a faster
implementation we transfer the idea of color grouping to a cooperative optimization
algorithm which is highly suited to hardware implementation.

Cooperative approaches are a relatively old group of stereo methods, originally moti-
vated by the biological model of the human visual cortex (cp. [7]). They optimize initially
calculated matching scores in a three dimensional disparity label space φ(x, y, d) by it-
erative local cooperation of neighboring labels using mainly the stereoscopic continuity
and uniqueness constraint coded in the variable update function. While the implementa-
tion of the uniqueness constraint differs among algorithms, all cooperative approaches
implement the continuity constraint by coupling labels of neighboring pixels within lo-
cal support areas. In traditional approaches these are fixed local support areas, which can
be calculated very efficiently, but entail a common disadvantage: the coupling of labels
across object borders, resulting in enlargement of foreground objects. When no adjust-
ments are made, cooperative algorithms will always extend object surfaces from areas
with high initial matches into regions with low matching scores, e.g. occluded areas or
low textured regions of the input images (cp. Fig. 1). To cope with this general problem
of fixed-window based algorithms, alignment mechanisms were proposed in the liter-
ature to get more accurate object borders during post-processing [1]. However, within
an optimization algorithm, automated adjustment inside the optimization is preferable.
Good results can be achieved e.g. with methods performing an initial color-based seg-
mentation to group pixels belonging to the same object surface [4,5,6]. In this paper we
show that a computationally expensive pre-segmentation is not necessary and that the
grouping can be coded within pre-calculated weights of local support areas used in a
cooperative optimization suitable for later hardware acceleration.

The proposed algorithm is described in section 2 and 3. In section 4 the new algo-
rithm is applied to common test scenes with ground truth from the Middlebury stereo
vision page [8] to demonstrate the quality of the approach and to compare the results
with other related algorithms. Finally, section 5 summarizes the results.

2 Matching Costs

The structure of the proposed algorithm is similar to traditional stereo algorithms
(cp. [9]). As an initial guess a correlation based similarity measure quantifies the sim-
ilarities of potential corresponding pixel pairs. Matching scores are calculated using a
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sampling insensitive version of normalized cross correlation which correlates the gray-
scale intensities of the rectified input images to achieve tolerance to noise in local chro-
maticity (eq. 1-3). Because of the later optimization it is possible to choose a very small
correlation window size (e.g. 3x3 pixels). This reduces calculation time and minimizes
the influence of errors near disparity discontinuities caused by a non-constant disparity
inside the correlation window.

s0(x, d) =
mx,d

sl,xsr,x+d
(1)

mx,d =
∑

x̃

ϕ
{
il(x+x̃), īl(x)

}
ϕ
{
ir(x+d+x̃), īr(x+d)

}
(2)

sa,k =
√∑

x̃

(ϕ {ia(k + x̃), īa(k)})2 (3)

To achieve insensitivity to image sampling artifacts a difference operator ϕ is intro-
duced to calculate the difference between the intensity of a particular pixel i(x+ x̃) and
the mean intensity ī(x) inside the correlation window with an adapted version of the
sampling insensitive dissimilarity measure of Birchfield and Tomasi [10]. As the inten-
sity mean already includes an averaging among several pixel intensities, only i(x + x̃)
is expected to be appreciably influenced by sampling effects. Therefore ϕ calculates
the minimum difference between i(x + x̃), linearly interpolated in an interval of ±1/2
pixel, and the window mean (eq. 5) and uses this difference to calculate the deviation
term for the cross correlation (eq. 4).

ϕ {i(x1), ī(x2)} = i(xm) − ī(x2) (4)

with |i(xm) − ī(x2)| = min
x1− 1

2≤x≤x1+ 1
2

|i(x) − ī(x2)| (5)

Note, that this definition of the difference operator minimizes the absolute differ-
ences while maintaining the sign of the difference as this is essential for the calculation
of cross correlation.

3 Cooperative Optimization

In a second step, a cooperative optimization process adjusts the probability values of the
similarity measure to calculate an optimal solution with respect to the implicitly coded
stereoscopic constraints. For efficiency reasons, the cooperative optimization is formu-
lated as an iterative cost minimization approach with a global cost function containing
only squared cost terms (cp. [11]). To simplify equations, all labels in the disparity
space are ordered in a single order parameter vector

ξ = (ξ(1,dmin), ..., ξ(n,dmin), ξ(1,dmin+1), ..., ξ(n,dmax))T (6)

where the first index i ∈ [1, ..., n] enumerates all pixels in the reference view.
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The global cost function P defines two different cost terms for each variable ξ(i,d):

P (ξ) = c1

dmax∑
d=dmin

n∑
i=1

(ξ(i,d) − ξ(i,d)0)
2 + c2

dmax∑
d=dmin

n∑
i=1

∑
j∈Ui

γij(ξ(i,d) − ξ(j,d))2 (7)

Costs are generated when a variable ξ(i,d) differs from its initial value ξ(i,d)0 given by
the similarity measure s0(x, d) (correlation confidence) or if the variable values within
a local neighborhood U are diverging (continuity) (eq. 7).

The local support area Ui of a pixel i is defined by a local window surrounding i
where the influences of neighboring pixels j are weighted by individual adaptive sup-
port weights γij which are explained in the following section. c1 and c2 are positive con-
stants to trim the final global cost function. Because of the squared cost terms, equation
7 has only one minimum, characterizing the global solution for the optimization prob-
lem (cp. [11]). It is calculated numerically with the gradient descent method, where the
update function for the iteration is defined as:

ξk+1 = ξk − λ∇P (ξi), λ > 0 (8)

with
δP

δξi,d
= [2c1 + 4c2

∑
j∈Ui

γij ] ξ(i,d) − 2c1ξ(i,d)0 − 4c2
∑
j∈Ui

γijξ(j,d). (9)

After convergence, the valid disparity for each pixel in the reference view is selected
by a winner-takes-all maximum search over all variables attached to the same pixel
(uniqueness).

Computationally, this approach has some advantages compared to other coopera-
tive approaches like [7] or [12]. The avoidance of local competition leads to a sim-
ple, linear first derivate of the cost function (eq. 9), making it possible to use a fast
standard minimization method to compute the global cost minimum. All calculations
are local, which implies a high potential for parallelization in a manner amenable to
hardware implementations. Additionally, all calculations consist only of additions and
multiplications which is particularly important for FPGA implementation. Finally, the
independent definition of the local neighborhoodUi with its appropriate weights makes
it possible to implement different kinds of local support. In the proposed algorithm,
we define Ui as a circular 2D window in a constant disparity level with pre-calculated
adaptive weights γij .

(a) (b) (c) (d)

Fig. 2. Adaptive local support: (a) detail of Cones scene with marked window positions; (b-d)
adaptive weights local support areas for position 1-3 (D=11, σc =6, σr =2.04)
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3.1 Adaptive Local Support

The local support weights γij define the amount of support a variable gets from its
neighbors depending on color similarity cij and spatial distance rij of the underlying
pixels (eq. 10). The definition of the individual weight terms essentially follows Tomasi
and Manduchi’s definition of bilateral filters [13]. To reflect perceptual metrics, the
color difference is defined by the Euclidean distance of the two color vectors ci and
cj of pixel i and j in CIELab color space, calculated from the reference view after
applying a bilateral filter to remove local noise. The spatial distance is determined by
the Euclidean distance between the image coordinate vectors of i and j. All distances
are weighted by Gaussian weighting functions (eq. 11 and 12).

γij = rij · cij (10)

rij = e
− 1

2

(
δe(xi,xj)

σr

)2

= e
− 1

2
(xi−xj)2+(yi−yj)2

σ2
r (11)

cij = e
− 1

2

(
δe(ci,cj)4

σ2
c

)
= e

− 1
2

((Li−Lj)2+(ai−aj )2+(bi−bj)2)2

σ2
c (12)

This differs from the weight definition in [3] where the authors choose a Laplacian
kernel for the weighting function, which is less optimal because of lower compactness
and smaller weights in the immediate proximity of the center pixel. Note that the color
distance in (12) has an exponent of 4 for a sharper separation of color edges.

To define a local support area Ui for pixel i, adaptive support weights γij are cal-
culated for all neighboring pixels j inside a fixed local neighborhood of circular shape
with diameter D to minimize the mean spatial distance between supporting pixels and
the center. While all variables in Ui contribute to the development of the center variable
i, the center variable itself is excluded from the support window to inhibit self amplifi-
cation. Figure 2 shows an example of local support areas in an area of color transition
in the cones scene of the Middlebury data set.

3.2 Occlusion Detection and Sub-pixel Precision

After the optimization process is complete, occlusions are explicitly detected by search-
ing the disparity map for pixels that point to the same corresponding pixel in the
non-reference view or are in succession in a cyclopean view, using the optimized cor-
respondence probabilities (cp. [11]). To calculate sub-pixel precise disparities, the re-
laxation process is applied once again to the 2D pixel-precise disparity map similar
to [11].

4 Experimental Results

In the following we evaluate our algorithm with images from the Middlebury test data
set to demonstrate the capabilities of the new approach. Figure 3 illustrates the effect
of adaptive local support on variable values before and after the optimization. After ini-
tialization with the similarity measure, variables linked to the correct object disparity
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(a) (b) (c) (d) (e) (f)

Fig. 3. Adaptive local support compared with fixed local support: (a) detail of reference view;
(b) similarity measure in a constant disparity level of d=49; (c) variable values after optimization
with fixed local support (circ. Gaussian weighted, D = 7); (d) disparity map for fixed local
support; (e) variable values after optimization with adaptive weights local support (σc =6, σr =
1.84, D=7); (f) resulting disparity map

already contain high values, but a large amount of noise can be observed as well due to
the small correlation window size of 3x3 pixels (Fig. 3b). After the optimization most
of the ambiguity is resolved. If using fixed local support, high variable values are prop-
agated to neighboring variables disregarding of object boundaries (Fig. 3c), leading to
misalignment of object borders and calculated disparity edges in the final disparity map
(Fig. 3d). With adaptive local support, cross boundary coupling is significantly reduced,
resulting in sharp object contours that are aligned with the real object boundaries in both
the variable activity map (Fig. 3e) and the disparity map (Fig. 3f).

For quantitative comparison with related stereo algorithms, we applied our algo-
rithm to all four Middlebury test scenes according to [9] (δd =1.0, constant parameter
set and back filling of detected occlusions). The calculated disparity maps are shown
in Figure 4 and the corresponding error percentages of false matches are illustrated in
Table 1. Compared to the CostRelax approaches, which use basically a similar opti-
mization method, adaptive local support clearly outperforms fixed local support. With
the new similarity measure, accuracy can be further improved, most visibly in low res-
olution images like Tsukuba, which are more prone to sampling artifacts. Compared to
other methods, which also use color-based adaptive grouping, the proposed algorithm
achieves good results. In Figure 5 the error development during iteration is illustrated
for the Tsukuba scene. Fig. 5b points out a major advantage of local optimization meth-
ods: The quick decrease of overall errors allows an early termination of the iteration

Table 1. Percentage of bad matching pixels for the Middlebury data set (δd =1) for non occluded
pixels (non), all pixels (all) and near discontinuities (disc) (∗cp. [8] visited in 03/2009)

Algorithm Tsukuba Venus Teddy Cones
non all disc non all disc non all disc non all disc

SegmentSupport [6]∗ 1.25 1.62 6.68 0.25 0.64 2.59 8.43 14.2 18.2 3.77 9.87 9.77

AdaptiveWeight [3]∗ 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26

Our Method (ncc+BT, 3x3) 2.91 3.49 11.4 0.60 1.11 6.45 7.92 13.7 20.9 3.59 9.43 10.3
Our Method (regular ncc, 3x3) 4.60 5.10 13.0 0.69 1.62 6.11 8.06 16.0 21.0 3.60 12.3 10.4
CostRelax [14] (3D fixed local supp.)∗ 4.76 6.08 20.3 1.41 2.48 18.5 8.18 15.9 23.8 3.91 10.2 11.8

CostRelax [11] (2D fixed local supp.) 6.33 1.44 9.60 5.24
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Fig. 4. Results for Tsukuba, Venus, Teddy and Cones scene; from top to bottom: left reference
view; ground truth; disparity map calculated with proposed algorithm, with black labeled occlu-
sions; error map with false matches (black) and unconsidered errors in true occluded areas (gray)
(c1 =0.5, c2 =10, c3 =0.5, c4 =0.2, σc = 6, σr =8, D=5, 400 iterations)

in time critical applications, giving a calling process the ability to provide only the
momentary available calculation time for stereo calculation while still benefiting from
significantly improved disparity maps. When comparing fixed and adaptive local sup-
port, the biggest difference is visible at object boundaries (Fig. 5a). Where the old fixed
support algorithm generates significant object blurring during iterations, adaptive local
support decreases errors over time and maintains accurate object borders.

However, difficulties remain in un-textured areas. This is in part due to the relatively
small window size of local support (e. g. D = 5 for results in Table 1) and the strict
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Fig. 5. Error during iteration for the Tsukuba scene: Adaptive weights local support (AW) com-
pared with fixed local support (fixed); (a) error near discontinuities; (b) error for all pixels; (c) er-
ror in true non-occluded regions. For the definition of different regions see [8].
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limitation on non-global optimization. In future work we plan to investigate variable
window sizes that adapt to the local amount of texture to deal with these difficulties. In
our tests, the algorithm was coded in standard non-optimized C++ code using full float
precision and run on an 2.4GHz Intel Core2Duo T7700. The calculation time for the
Tsukuba scene with 100 iterations was 20s on a single core and 11.5s on both cores. In
a future FPGA based implementation we expect to run the algorithm in near real-time.

5 Conclusion

Traditional cooperative stereo algorithms are well known for producing blurry object
borders due to a fixed coupling of neighboring pixels to implement the stereoscopic
continuity constraint. In this paper we demonstrated that color-based adaptive local
support can be used to align support areas with object borders and, thus keep accu-
rate object boundaries throughout the cooperative optimization process. Implemented
in a simple and fast relaxation algorithm which uses a new sampling insensitive nor-
malized cross correlation for initial matching, our results show that optimization with
local adaptive support generates results comparable with other algorithms that also use
adaptive local grouping, while avoiding large correlation windows or computationally
expensive pre-segmentation.
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Abstract. This paper addresses the problem of the joint determination
of camera motion parameters and scene depth information. A video se-
quence obtained by a one hand moving camera is the input. It is well
known that the movement of a pixel between two consecutive images de-
pends on the motion parameters and also on the depth of the projected
point. Based on a camera motion estimation which uses the registration
group and an energy minimization based on the Belief Propagation al-
gorithm, we propose an iterative method combining camera motion and
depth estimation.

Keywords: camera motion, depth estimation, registration group, belief
propagation.

1 Introduction

The estimation of scene depth based on two images is a difficult problem because
of occlusions, discontinuities of the depth, texture and noise in the images. This
problem, also called stereo matching, has been largely studied. Scharstein and
Szeliski [9] propose a large comparison of methods. They conclude that good
results are obtained when the depth map is modelled by Markov Random Fields
and if for minimization Belief propagation and Graph Cut methods are employed.
These minimization tools are compared, for efficiency and precision, by Tappen
and Freeman [12].

In this paper the Belief Propagation algorithm will be used for estimating
depth from two consecutive images of a video sequence. But rather than using
rectified images, as do the methods in [5,9,11,12], an estimation of the camera
motion parameters by a direct method is proposed. For a comparison of methods
based on rectified/non rectified images see the work of Schreer, Brandburg and
Kauff [10].

To estimate camera motion direct methods use the content of a couple of im-
ages. They are often based on the constraint of constant illumination, minimized
by a least squares approach on the parameters of a motion model. Different as-
sumptions are used to avoid estimating depths over all the points. Horn and
Weldon in [4] and Bergen et al., in [1], assume that the depth map is locally

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1028–1035, 2009.
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constant. In [6], Negahdaripour and Horn consider that it is planar or quadratic.
Following [2], we have precise constraints for applying the constant depth hy-
pothesis in our algorithm.

In Section 2 we present our algorithm for camera motion estimation, Section
3 presents depth estimation based on Belief Propagation. Section 4 presents the
iterative method for solving both problems and some experimental results.

2 Motion Estimation

In this section we will show that the deformation of an image due to camera
displacement may be obtained thanks to a modelization with a six parameter
group. These parameters will be used to find the displacement between two
successive frames.

A camera projects a point in 3D space on a 2D image. This transformation
can be described using the well-known pinhole camera model [3], see Figure 1,
left. The camera is located in C, the optical center, and directed by k, the optical
axis. The camera projects a point M of the 3D space on the plane R : {Z = fc}.
The plane R is called the retinal plane and fc the focal length. The projection
m of M is then the intersection of the optical ray (CM) with R.

Let c be the intersection of the optical axis with R. If (X,Y, Z) are the coordi-
nates of M in the camera coordinate system (C, i, j, k) and (x, y) the coordinates
of m in the orthogonal basis (c, i, j), the relationship between (x, y) and (X,Y, Z)
is the following

x = fc
X

Z
and y = fc

Y

Z
.

As fc just acts as a scaling factor on the image and in order to simplify the
presentation, we choose in this section without loss of generality, to set the focal
length to one. Thus fc will be the unit for the camera and image coordinate
systems.

C

c

i

j

k
fc

m(x, y)

M(X, Y, Z)

R

Fig. 1. Left: pinhole camera model. Right: displacement D = (R, t).
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Let D be a displacement of the camera or, in an equivalent way, a displacement
of the plane R. The movement D may be written in a unique way as D = (R, t),
where R is a rotation with axis containing C and t a translation. The set of
displacements D = (R, t) forms the Lie group of rigid transformations in R3

called SE(3), which denotes the special Euclidean group.
The displacement D = (R, t) transforms a point M belonging to R3 in M ′ =

RM + t. Thus, the camera is identified before the displacement by (C, i, j, k)
and after the displacement by (C′, R(i), R(j), R(k)), with CC′ = t, see Figure
1, right. In the following, denote

R =

⎛⎝a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞⎠ and t =

⎛⎝t1
t2
t3

⎞⎠ .

Let f and g be two adjacent images in a sequence defined on rectangular domains
K of R and K ′ of R′ (with fc = 1). Let M be a point in R3 such that its
projections m and m′ on R and R′ belong to K and K ′. Denote m = (x, y) in
(c, i, j) and m′ = (x′, y′) in (c′, R(i), R(j)). Under the assumption of constant
illumination, one has

g(x′, y′) = f(x, y) = f ◦ ϕ(x′, y′)

thus

g(x′, y′) = f

(
a1x

′ + b1y
′ + c1 + t̃1

a3x′ + b3y′ + c3 + t̃3
,
a2x

′ + b2y
′ + c2 + t̃2

a3x′ + b3y′ + c3 + t̃3

)
where t̃ = t/Z(x′, y′), where Z(x′, y′) is the depth of M in (c′, R(i), R(j)).

In Theorem 1,[2], it has been proved that if the camera translation is small
with respect to the mean scene depth, thus the above model can be simplified
by assuming that Z(x′, y′) = Z0=constant. The two images f and g are thus
linked by g = f ◦ϕ and f = g ◦ψ, where the applications ϕ and ψ are projective
transformations associated to the following invertible matrices Mϕ and Mψ

Mϕ =

⎛⎝a1 b1 c1 + t̃1
a2 b2 c2 + t̃2
a3 b3 c3 + t̃3

⎞⎠ = R

⎛⎝1 0 〈t̃, R(i)〉
0 1 〈t̃, R(j)〉
0 0 1 + 〈t̃, R(k)〉

⎞⎠ = RH

and

Mψ =

⎛⎝a1 a2 a3 − 〈t̃, R(i)〉
b1 b2 b3 − 〈t̃, R(j)〉
c1 c2 c3 − 〈t̃, R(k)〉

⎞⎠ = R−1

⎛⎝1 0 −t̃1
0 1 −t̃2
0 0 1 − t̃3

⎞⎠ = R−1H̃.

Remark: In this formulation, the matrix Mψ corresponds to the matrix as-
sociated to the inverse camera displacement. This leads us to introduce the
registration group, in which the inverse deformation corresponds to the inverse
camera displacement. This is not true in the projective group.

Definition of the registration group: Let A be the subset of projective
applications

A =
{

ϕ : R2 → R2 so that ∀(x, y) ∈ R2,
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ϕ(x, y) =
(
a1x + b1y + c1 + A

a3x + b3y + c3 + C
,
a2x + b2y + c2 + B

a3x + b3y + c3 + C

)
, (1)

where R =

⎛⎝a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞⎠ ∈ SO(3) and (A,B,C) ∈ R3
}
.

The registration group is (A, �), where the composition law � is deduced from
the composition law ◦ of SE(3) through the isomorphism I : A −→ SE(3)
defined for all φ ∈ A: I(φ) = (R, t). Here R is the rotation defined above and
t = (A,B,C) is the translation.

Some properties of the registration group(see [2] for more details):

1. The registration group is a six parameter group, whereas the projective group
is an eight parameter group.

2. A rotation may be decomposed into two rotations R = Rθ,αR
k
β. Where Rk

β

is a rotation with axis k and angle β; Rθ,α is a rotation with axis Δ and
angle α, Δ belonging to the plane (C, i, j) and angle(i,Δ)=θ.
This decomposition emphasizes the role of the purely projective deformation
due to Rθ,α which displaces the optical axis k.

3. The registration group will be used for the composition of elementary dis-
placements. Let ϕ be given by (1) and R = Rθ,αR

k
β , then an elementary

displacement is given by{
x′ − x ≈ −Cx + A− βy − αx(y cos θ − x sin θ) + α sin θ
y′ − y ≈ −Cy + B + βx − αy(y cos θ − x sin θ) − α cos θ

where (A,B,C) are the parameters of the elementary translation and (θ, α, β)
are the parameters of the elementary rotation decomposed as above.

The movement parameters (θ, α, β,A,B,C) are computed by adapting the para-
metric 2D registration algorithm “Motion2D” of Odobez and Bouthemy [7].

3 Depth Recovery

The preceding section showed how to obtain the camera motion parameters
between two frames and thus the global registration between two frames.

The translation parameters depend on the mean depth of the scene which
replaces the effective depths. Therefore, by comparing the second image to the
deformation of the first image under the camera movement, we are able to de-
terminate the relative depths of the scene.

Denote by y = {f, g, θ, α, β, t1, t2, t3} two consecutive images and the associ-
ated camera motion parameters. In the sequel, y is considered to be a realization
of a random field Y . Indeed, we want to maximise the a posteriori probability
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P (x) = P (X = x |Y = y)

where X is the depth field of the scene with respect to f . In the Bayesian context

P (x) = P (X = x |Y = y) ∝ P (Y = y|X = x)P (X = x).

Where

P (Y = y|X = x) =
∏
s∈V

ψ(xs) and P (X = x) =
∏

(s,t)∈E

ψst(xs, xt).

Here V is the set of pixels, xs the relative depth at pixel s and ψ(xs) the local
likelihood of depth in pixel s. E is the set of edges and ψst(xs, xt) enforces
regularity of depth for neighbouring pixels s and t. The method used by Sun,
Shum and Zheng [11] on rectified images has been adapted, taking

ψst(xs, xt) = (1 − e1)e
− |xs−xt|

σ1 + e1 and ψ(xs) = (1 − e2)e
− |f(s)−g(s′)|

σ2 + e2.

Here s′ is the pixel obtained from s through the estimated camera movement
{θ, α, β, t1, t2, t3} if the depth of the 3D point associated to s is equal to xs. If
s = (x, y) and s′ = (x′, y′), one obtains

g(x′, y′) = f

(
fc

a1x
′ + b1y

′ + fcc1 + t1
xs

a3x′ + b3y′ + fcc3 + t3
xs

, fc

a2x
′ + b2y

′ + fcc2 + t2
xs

a3x′ + b3y′ + fcc3 + t3
xs

)
.

Notice that here the focal length fc is introduced again. With the preceding
setup, it is easy to use the “max-product” version of the Belief Propagation
algorithm. For more details on Belief Propagation see [8,13,14].

4 Algorithm

Based on the methods developed in the two preceding sections, an iterative
algorithm for joint camera motion and depth estimation is now proposed. The
estimated depths X are used to determine 2D movements of regions which are of
similar depth, from this a new estimation of the camera movement is deduced.
From this new displacement, depth can be estimated,. . .

More precisely, let Λ be the finite set of relative depths. In Section 2, we
estimated the movement parameters by considering a mean scene depth Z0. Let
us now label Z0 to depth 1. For xs smaller than 1 the pixel is in front of the
mean depth, whereas for xs larger than 1 it is beyond.

The set Λ is partitioned into H subsets Ih, Λ = I1∪I2∪· · ·∪IH . This allows to
partition the set of pixels according to depth. By X̂h we denote the mean depth
of Ih: the displacement for pixels belonging to the same class will be estimated
with respect to the mean depth.
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Algorithm:

1. Initialization
• Estimate the displacement D1 between images f and g (see Section 2).
• Estimate the depth field X1 by using f , g and D1 (see Section 3).
• Denote by ϕ̃ the projective transformation associated to the displace-

ment D1 and depth X1.
2. For i = 2, . . . , N

• For h = 1, . . . , H
− Estimate the displacement for all pixels in the class K ∩ {Xi−1 ∈ Ih},
the depth being set to X̂h;
− Compute the weights ph = #{Xi−1 ∈ Ih}/#K.

• Compute Di from the preceding H displacements and by using the
weights ph.

• Estimate the depth field Xi by using f , g and Di. Denote ϕi the projective
transformation associated to the displacement Di and depth Zi.

• If ‖f ◦ ϕi − g‖1 < ‖f ◦ ϕ̃− g‖1, then set ϕ̃ = ϕi.

5 Experimental Results and Conclusion

In this section, we present numerical experiments in order to illustrate the im-
provements due to the iterations of depth and camera motion estimation.

Fig. 2. Top row: two images from a sequence; bottom left, depth map using only Belief
Propagation (100 iterations); bottom right, the depth map obtained after 15 iterations
of the iterative algorithm, (100 for each Belief Propagation)
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Fig. 3. Top row: two images from a sequence; bottom left, depth map using only Belief
Propagation (100 iterations); bottom right, the depth map obtained after 15 iterations
of the iterative algorithm, (100 for each Belief Propagation)

For the experiments, the following parameter values have been used: In the
Belief Propagation algorithm e1 = 0.01, σ1 = 0.3, e2 = 0.05 and σ2 = 20. We
set H = 3, I1 = {0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75} I2 = {0.8, 0.9, 1, 1.1, 1.2} and
I3 = {1.4, 1.6, 1.8, 2}. Thus Λ = I1 ∪ I2 ∪ I3, X̂1 = 0.6, X̂2 = 1 and X̂3 = 1.7 .
We consider only three “mean” depth planes, thus estimating the displacement
in an independent way for each of these planes.

Figure 2 presents bottom left the result of applying 100 iterations of the
Belief Propagation. As described above, the images are not rectified, instead the
estimated camera movement is used. The bottom right image shows the result
after 15 iterations of displacement and depth estimation. The bottle, the kettle
and the boundaries of the table are much better identified.

In Figure 3 the initial result, bottom left, allows to identify the parasol in the
first plane, the fronts of the buildings in the second plane and a region between
the two buildings in the back plane. Nevertheless, for the left building some
windows are wrongly detected to be in the first plane and for the right building,
which is orthogonal to the optical axis, various depths are detected. These effects
are attenuated after 15 iterative refinements of the depth estimation.

Conclusion. This paper presents an algorithm for depth estimation based only
on the knowledge of 2D images from a sequence. Camera displacement and the
depth of the 3D scene are iteratively estimated. This seems a natural way to
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address these closely linked problems. Each solution will be enhanced thanks to
the refinement of the solution to the other problem.

Future work includes implementation of a block based Belief Propagation
algorithm.
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Abstract. Recently, performance prediction has been successfully applied in 
the field of information retrieval for content analysis and retrieval tasks. This 
paper discusses how performance prediction can be realized for unsupervised 
learning approaches in the context of video content analysis and indexing. 
Performance prediction helps in identifying the number of detection errors 
and can thus support post-processing. This is demonstrated for the example of 
temporal video segmentation by presenting an approach for automatically 
predicting the precision and recall of a video cut detection result. It is shown 
for the unsupervised cut detection approach that the related clustering validity 
measure is highly correlated with the precision of a detection result. Three re-
gression methods are investigated to exploit the observed correlation. Ex-
perimental results demonstrate the feasibility of the proposed performance 
prediction approach. 

Keywords: Performance prediction, video indexing, video retrieval. 

1   Introduction 

Performance prediction is a powerful method to achieve optimal results for content 
analysis and retrieval tasks. Recently, proposals in the field of information retrieval 
addressing the issue of performance prediction have been made [1,2]. In this field, 
performance prediction is used to identify difficult queries that often lead to bad re-
trieval results [1,2]. He and Ounis [5] state that reliable prediction of query perform-
ance is a way of determining the best retrieval strategy for a given query. 

In this paper, it is shown how performance prediction can be applied in the context 
of video content analysis. Here, performance prediction can help to identify the num-
ber of errors and can thus support post-processing. This is demonstrated exemplarily 
for the task of temporal video segmentation: an approach for automatically predicting 
the precision and recall of a video cut detection result is presented. The temporal 
segmentation of a video into particular shots is fundamental for video indexing and 
retrieval purposes. Shots in a video are separated by abrupt transitions (“cuts”) and 
gradual transitions (such as dissolves or wipes). The prerequisite of our performance 
prediction is the application of unsupervised clustering to enable the evaluation of 
clustering quality using the silhouette coefficient [3]. It is shown that this clustering 
validity measure is highly correlated with the precision of a video cut detection result, 
and moderately correlated with recall. Three regression methods are investigated to 
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exploit the observed correlation: linear regression, multilayer perceptron network, and 
support vector regression. Experimental results demonstrate the feasibility of the 
proposed performance prediction approach.  

The paper is organized as follows. In Section 2, the underlying video indexing ap-
proach is presented, followed by the description of the proposed performance predic-
tion approach. Experimental results for three regression methods are described in 
Section 3. Section 4 concludes the paper and outlines areas for future work. 

2   Performance Prediction for Unsupervised Video Indexing 

In this section, we demonstrate how performance prediction can be realized for unsu-
pervised learning approaches in the context of video content analysis and indexing. 
This is shown exemplarily for the task of temporal video segmentation: an approach is 
presented for automatically predicting the precision and recall of a video cut detection 
result that is obtained via an unsupervised learning approach. In a previous paper [4], 
we have presented an unsupervised approach for video cut detection. For this ap-
proach, we show that there is an interrelationship between a clustering validity meas-
ure and precision or recall. Precision and recall are defined as follows: 

D

C
precision =      (1) 

X

C
recall =      (2) 

X is the set of events of a particular class of interest (in our case cuts), D is the set of 
events for which a detection system decided that they belong to class X, and C ⊆ D  is 
the set of events for which this decision is correct. 

The video cut detection approach is briefly summarized in Section 2.1, and our 
novel approach to predict precision and recall is presented in Section 2.2. 

2.1   Unsupervised Video Cut Detection 

To detect cuts, the dissimilarity of consecutive video frames is measured. Motion 
compensated pixel differences of DC-frames [10] are used in our approach. Feature 
vectors describe a frame position with respect to the possibility that a cut occurred at 
this position, the feature vector in our algorithm consists of two features. A feature 
vector is created only for a dissimilarity value, which is in the middle of a temporal 
neighborhood of size 2m+1 and has the maximum value in this window. First, the 
dissimilarity measure itself is used as the first feature. The second feature is the ratio 
of the second highest and the highest dissimilarity value in the sliding window: 

featureVec (ti) = (max/dmax, 1-sec/max) = (max', sec')   (3) 

Here, max>0 and dmax>0. In practice, if max=0, then this frame position will not be 
considered as a cut candidate and no feature vector is created for this position. The 
range for both max' and sec' is [0,1]. The Euclidean distance is used as a distance metric, 
and the set of candidates is partitioned by the k-means algorithm in the subsequent steps 
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for separating cuts from non-cuts. Since k-means is used to solve a classification prob-
lem, the number of clusters is known in advance (k=2).  

However, detection results depend significantly on the sliding window size. To es-
timate the best sliding window size for a video automatically, we make use of a valid-
ity measure for clustering, the silhouette coefficient (SC) [3]. Normally, SC is used to 
measure the clustering validity for different numbers of clusters k to find the best 
suited k, in case it is not known in advance. The SC for a feature vector v in C can be 
computed by: 

       { })(),(max

)()(
)(

vavb

vavb
vSC

−=
    

    (4) 

Here, a(v) is the average distance of v to the members in the same cluster C, whereas 
b(v) is the average distance of v to the members of the nearest other cluster, in our 
case it is the “non-cuts” cluster. The SC(C) of the cuts cluster C is the average of the 
silhouette coefficients for all feature vectors in C. In our cut detection approach, the 
value SC(C) is exploited to measure the clustering quality of the cuts cluster for a 
reasonable range of sliding window sizes, and the cut detection algorithm is modified 
as follows.  
 
Input: Min. and max. sliding window size (minSize,maxSize) 
Output: Estimated best sliding window size;  
Algorithm 
Find_Best_SlidingWindowSize() 
  SCmax = 0; maxIndex = 1; 
  for each window size m = minSize to maxSize 
    Compute cuts and non-cuts cluster for window size m; 
    Compute the quality SC(C) of the cuts cluster C; 
    if SC(C) > SCmax then 
      SCmax = SC(C);  
      maxIndex=m; 

    return window size maxIndex; 
 

The higher the sliding window size parameter m, the fewer cut candidates are used 
in the clustering process. Furthermore, if (max'm, sec' m) and (max'n, sec' n) are feature 
vectors for the same frame position, but for different sliding window sizes m and n, 
with m<n, then the following holds (which is also illustrated by Figure 1):  

max'm= max'n;  sec’m≥ sec’n.     (5) 

2.2   Performance Prediction 

In our cut detection experiments, we have observed that SC(Ccuts) is significantly corre-
lated with the precision of a clustering result, and moderately with recall. For example, 
for the MPEG-7 [6] test set we have measured a correlation of 0.63 for precision and 
SC(CCuts), and a correlation of 0.26 for recall and SC(CCuts). Thus, we propose to esti-
mate the interrelation between SC(Ccuts) and precision and recall, respectively. That is, a 
function f(SC(Ccuts)) is searched that approximates precision or recall, respectively, for a  
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Fig. 1. Clustering result for the same video for different sliding window sizes m=9 (left) and 
m=13 (right). There are fewer feature vectors for m=13 (right) and some of the feature vectors 
“sink” down because feature sec’ potentially decreases with increasing m. Dark (no cut) and 
bright (cut) crosses represent the cluster membership after k-means clustering, boxes indicate 
ground truth cuts. 

given clustering result for a video. This is a simple numeric prediction problem that can 
be solved in several ways. In this paper, three methods are investigated to predict recall 
and precision automatically based on the silhouette coefficient SC(Ccuts): 

 

• linear regression 
• multilayer perceptron network 
• support vector regression 
 

The three methods are well known and the reader is referred to other publications 
[7,9] for details. For example, for linear regression, the following linear equations can 
be formulated to calculate precision and recall.  

        qCSCpprecision cutsest +⋅= )(             (6) 

 

        sCSCrrecall cutsest +⋅= )(                 (7) 

The parameters p and q, and r and s, respectively, are estimated using the method 
of least squares on a training set for which the outcomes of precision and recall are 
known (ground truth data).  

A multilayer perceptron network arranges perceptrons in a number of layers [9]. 
These layers usually consist of an input layer (the attributes, in our case only SC), 
the hidden layer and the output layer that represents the outcome (in our case preci-
sion or recall). A perceptron itself is a simple classification approach that is able to 
solve linear classification problems. Learning in the multilayer perceptron  
is achieved by backpropagation. To predict precision or recall, there is one input 
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perceptron (neuron) that represents SC(Ccuts), and one output neuron for precision 
(or recall, respectively). 

Support vector regression is related to support vector machines [7]. ´The goal of 
support vector regression is to estimate a function that approximates the training data 
well. This function is expected to have at most a deviation of ε from the training data 
points, that is estimation errors up to a pre-defined parameter ε are discarded. At the 
same time, the regression function is expected to be as flat as possible. The parameter 
ε defines a tube around the regression function. The related optimization problem is 
solved in its dual formulation. 

3   Experimental Results 

The proposed performance prediction approach has been tested using two different 
test sets: the MPEG-7 [6] video test set and the shot boundary test set of TRECVID 
[8] 2005. The unsupervised video cut detection algorithm was run on the MPEG-7 
test set and the best silhouette coefficient SC (for a number of sliding window sizes) 
for each video and the related precision or recall outcome were used to train each 
regression approach. Using this test set, the parameters p, q, r and s for linear regres-
sion were estimated as well as the corresponding support vector parameters and the 
perceptron network weights. The video cut detection algorithm was then run on the 
TRECVID shot boundary test videos and precision and recall were estimated for each 
video using the three different regression methods.  

The experimental results are shown in Table 1 and 2 for the three competing re-
gression approaches, where the estimated precision, real precision, estimated recall, 
real recall, and the corresponding estimation errors are presented. Assuming that the 
precision outcome for each video had been estimated with the mean precision ob-
tained for the MPEG-7 test set (94.2%), the mean estimation error would have been 
about 5.7% (standard deviation 3.7); for recall the mean estimation error would have 
been 7.5% (standard deviation 6.2, based on the mean recall of 94.4 on the MPEG-7 
test set). These errors are called reference errors in Table 1 and 2.  

Using the proposed precision estimation via linear regression yields an average 
(absolute) estimation error of only 3.2% (standard deviation of 2.9). This estimate is 
nearly twice as precise as if the precision achieved for the MPEG-7 test set (94.2%) 
would be used to estimate precision. The multilayer perceptron achieves a slightly 
better result (estimation error of 3.0%, standard deviation of 2.9), whereas the result 
using support vector regression is slightly worse (estimation error of 3.9%). In par-
ticular, the perceptron network predicts the mean precision with respect to all test 
videos well with an estimation error of only 1.1%.  

The recall estimate is not as precise as for precision, but this had to be expected 
due to the lower correlation. Using linear regression it is slightly better (average error: 
6.5%) than a reference estimate that is based on the mean recall for the MPEG-7 test 
set (error: 7.5%, based on recall of 94.5% on the MPEG-7 test set), along with a lower 
standard deviation. Support vector regression and the multilayer perceptron network  
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Table 1. Estimated precision and the related error 

Video
ID

SC(Ccuts) Estimated 
precision
(& error) 

[%]: 
Linear

regression

Estimated 
precision
(& error) 

[%]: 
Support vector 

regression

Estimated 
precision
(& error) 

[%]: 
Multilayer 
perceptron 

Reference 
error based 

on other 
test set 

(precision: 
94.2)

Precision 
[%] 

1 0.564 87.4 (7.0) 88.6 (8.2) 81.5 (1.1) 13.8 80.4 
2 0.677 92.5 (1.6) 93.3 (2.4) 89.8 (0.9) 3.3 90.9 
3 0.635 90.6 (3.4) 91.6 (4.4) 87.3 (0.1) 7.0 87.2 
4 0.723 94.5 (6.0) 95.3 (6.8) 91.2 (2.7) 5.7 88.5 
5 0.649 91.2 (0.8) 92.2 (0.2) 88.2 (3.8) 2.2 92.0 
6 0.634 90.5 (1.9) 91.5 (2.9) 87.2 (1.4) 5.6 88.6 
7 0.615 89.7 (0.7) 90.7 (1.7) 85.7 (3.3) 5.2 89.0 
8 0.600 89.0 (0.4) 90.1 (0.7) 84.4 (5.0) 4.8 89.4 
9 0.673 92.3 (9.2) 93.2 (10.1) 89.6 (6.5) 11.1 83.1 

10 0.774 96.8 (0.2) 97.4 (0.8) 91.9 (4.7) 2.2 96.6 
11 0.717 94.2 (4.6) 95.0 (5.2) 91.1 (1.3) 4.4 89.8 
12 0.834 99.5 (2.8) 99.9 (3.2) 92.1 (4.6) 2.5 96.7 

Average all 
(error)

- 92.4 (3.0) 93.2 (3.8) 88.3 (1.1) 5.7 89.4 

Avg. error 
(std.dev.) 

- 3.2 (2.9) 3.9 (3.1) 3.0 (2.0) 5.7 (3.7) - 

 

Table 2. Estimated recall and the related error 

Video
ID

SC(Ccuts) Estimated 
recall 

(& error) 
[%]: 

Linear
regression

Estimated 
recall 

(& error) 
[%]: 

Support vector 
regression

Estimated 
recall 

(& error) 
[%]: 

Multilayer 
perceptron 

Reference 
error based 
on other test 
set (recall: 

94.4)

Recall 
[%] 

1 0.564 91.6 (19.7) 93.8 (21.9) 94.9 (23.0) 22.5 71.9 
2 0.677 93.7 (6.9) 95.8 (9.0) 95.3 (8.5) 7.6 86.8 
3 0.635 92.9 (6.4) 95.1 (8.6) 95.1 (8.6) 7.9 86.5 
4 0.723 94.5 (1.6) 96.7 (0.6) 95.8 (0.3) 1.7 96.1 
5 0.649 93.1 (4.3) 95.3 (6.5) 95.1 (6.3) 5.6 88.8 
6 0.634 92.9 (1.0) 95.1 (1.2) 95.1 (1.2) 0.5 93.9 
7 0.615 92.5 (5.0) 94.7 (7.2) 95.0 (7.5) 6.9 87.5 
8 0.600 92.2 (12.8) 94.5 (15.1) 95.0 (15.6) 15.0 79.4 
9 0.673 93.6 (2.2) 95.8 (4.4) 95.2 (3.8) 3.0 91.4 

10 0.774 95.5 (6.2) 97.6 (8.3) 97.4 (8.1) 5.1 89.3 
11 0.717 94.4 (11.1) 96.5 (13.2) 95.7 (12.4) 11.1 83.3 
12 0.834 96.6 (1.4) 98.6 (0.6) 100.0 (2.0) 3.6 98.0 

Average all 
(error)

- 93.6 (5.9) 95.8 (8.1) 95.8 (8.1) 6.7 87.7 

Avg. error 
(std. dev.) 

- 6.5 (5.6) 8.1 (6.4) 8.1 (6.5) 7.5 (6.2) - 

 

cannot achieve a better prediction than the simple reference estimate based on the 
obtained recall using the MPEG-7 test set. The results for linear regression are also 
displayed in Figure 2 (Figure 3), where the silhouette coefficient, estimated precision 
(recall), and real precision (recall) are shown. 
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Fig. 2. This figure displays the precision, silhouette coefficients, and the estimated precision 
using linear regression for each video of the TRECVID 2005 shot boundary test set 
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Fig. 3. This figure displays the recall, silhouette coefficient, and the estimated recall using 
linear regression for each video of the TRECVID 2005 shot boundary test set 

4   Conclusions 

In this paper, an approach to automatically predict the performance of an unsuper-
vised video cut detection task in terms of recall of precision has been presented. It is 
based on the observation that cluster validity, in our case measured with the silhouette 
coefficient, is strongly correlated with precision and moderately with recall, though to 
a low degree. Exploiting this fact, it is suggested to learn the interrelationship between 
the silhouette coefficient and precision and recall, respectively. Three regression 
methods have been investigated to predict recall and precision: linear regression, 
multilayer perceptron network, and support vector regression. In the experiments, the 
comprehensive MPEG-7 video test set was used to learn the interrelationship and the 
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TRECVID 2005 shot boundary detection test set was used to test the prediction per-
formance. Experimental results demonstrated that linear regression is sufficiently well 
suited to predict the performance and to outperform for both recall and precision the 
reference method that uses the results on another test set. The prediction yields an 
average error of only 3.0% for precision and 6.5% for recall. In both cases, the esti-
mates are more precise than a prediction that would be based only on the overall per-
formance on another test set. In case of precision, the prediction is nearly even twice 
as precise as the reference approximation. Both support vector regression and multi-
layer perceptron network also predict precision more precisely than the reference 
method, but they perform worse for recall. 

Currently, we plan to consider three issues of future work. First, additional suitable 
features for performance prediction are sought for the investigated task of video cut 
detection. Second, the prediction approach should be transferred to other video con-
tent analysis approaches that use supervised learning. Finally, it will be investigated 
how performance prediction can be utilized to improve analysis results.  
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Abstract. Particle filtering of boundary points is a robust way to estimate lanes.
This paper introduces a new lane model in correspondence to this particle filter-
based approach, which is flexible to detect all kinds of lanes. A modified version
of an Euclidean distance transform is applied to an edge map of a road image
from a birds-eye view to provide information for boundary point detection. An
efficient lane tracking method is also discussed. The use of this distance transform
exploits useful information in lane detection situations, and greatly facilitates the
initialization of the particle filter, as well as lane tracking. Finally, the paper vali-
dates the algorithm with experimental evidence for lane detection and tracking.

1 Introduction

Lane detection plays a significant role in driver assistance systems (DAS), as it can help
estimate the geometry of the road ahead, as well as the lateral position of the ego-vehicle
on the road. Lane detection and tracking have been widely studied for driving on a free-
way or an urban road, for single or multiple lanes, with or without marks, based on
region (texture or color) or edge features. Various models have been applied to describe
the borders of a lane, such as piecewise linear segments, clothoids, parabola, hyperbola,
splines, or snakes. For a complete review of lane detection algorithms, please refer to [4].
There are even some commercial lane detection systems available, working mainly on
highways. Loose et al (Daimler AG) state in [3]: “Despite the availability of lane depar-
ture and lane keeping systems for highway assistance, unmarked and winding rural roads
still pose challenges to lane recognition systems.” Generally, it is a challenging task to
robustly detect lanes in varying situations, especially in complex urban environment.

This paper introduces a new weak (i.e., with no assumption about the global shape
of a lane) road model for lane detection and tracking. Instead of modeling global road
geometry, this new model only constrains relations between points on the left and right
lane boundaries. Tracking based on these points in the birds-eye image (using a particle
filter) provides lane detection results. Furthermore, a modified version of a standard
Euclidean Distance Transform (EDT) is applied on the edge map of the birds-eye image.
Utilizing some beneficial properties of this distance transform for lane detection and
tracking, this paper also specifies an innovative initialization method for the particle
filter.

This paper is organized as follows: Section 2 describes a new lane model. Section 3
explains a modified version of a standard Euclidean distance transform, and its useful-
ness for lane detection. Lane detection and tracking methods are introduced in Section 4

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1044–1052, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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y

Fig. 1. Lane model as used in this paper. (a) 3D lane view; boundaries are drawn in bold. (b)
Perspective 2D lane view in the input image. (c) Birds-eye image of the lane. Slope angles β1

and β2 are shown in the 3D view and the birds-eye images; the zenith angle α in the 3D and the
projective view. See text for further explanations.

and Section 5. Experimental results are given in Section 6. Finally, conclusions are pro-
vided in Section 7.

2 A New Lane Model

The new lane model is illustrated in Figure 1. Five parameters xc, yc, α, β1, and β2 are
used to model opposite points PL and PR, located on the left or right lane boundary,
respectively.PC = (xc, yc) is the (virtual) centerline point of a lane in the ground plane.
α is the zenith angle above PC , defined by an upward straight line segment between PC

and the zenith PZ of fixed length H , and a line incident with PZ and either PL or PR.
β1 and β2 are the slope angles between short line segments L1 and L2 and a vertical
line in the ground plane; the two short line segments L1 and L2 are defined by a fixed
length and local approximations to edges at lane boundaries (e.g., calculated during
point tracking). Ideally, L1 and L2 should coincide with tangents on lane boundaries
at points PL and PR; in such an ideal case, β1 and β2 would be the angles between
tangential directions of lane boundaries at those points and a vertical line.

By applying this model, a lane is identified by two lane boundaries, and points are
tracked along those boundaries in the birds-eye image. This model does not use any
assumption about lane geometry, and applies to all kinds of lanes.

3 Distance Transform

The distance transform is applied to the binary edge map, which labels each pixel with
the distance to the nearest edge pixel. The Euclidean distance transform (EDT) is, in
general, the preferred option; using the Euclidean metric for measuring the distance be-
tween pixels. A modified EDT was proposed in [7], called orientation distance trans-
form (ODT). This divides the Euclidean distance into a contributing component in the
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E1

E2

P1P2

row direction

d

r

i

d: Euclidean distance of P1 to the nearest edge point E1
r:  Real part of ODT of P1 to the nearest edge point E1
i:  Imaginary part of ODT of P1 to the nearest edge point E1

Fig. 2. Euclidean distance and Orientation distance. P1 and P2 are two neighboring non-edge
pixels. E1 is the nearest edge point to P1, and E2 is the nearest edge point to P2.

Fig. 3. EDT and ODT on a birds-eye road image. (a) Birds-eye road image. (b) Binary edge map.
(c) Imaginary part of ODT. (d) Real part of ODT (absolute value). (e) EDT. (c)(d)(e) have been
contrast adjusted for better visibility. The square root of distance value in (c) and (d) will be the
Euclidean distance value as (e). The rectangle in (b) indicates a small window for comparisons
of dashed lane mark with EDT and RODT(see below).

row and column direction. A complex number is assigned to each pixel by the ODT,
with the distance component in the row direction as the real part, and the distance com-
ponent in the column direction as the imaginary part. Note that distance component in
row direction is signed, with a positive value indicating that the nearest edge point lies
to the right, and a negative value if it is to the left. See Figure 2 for the relationship
between ODT and EDT.

This paper uses only the Euclidean distance in the row direction, and we call this
the real orientation distance transform (RODT). An example of EDT and ODT in our
application is shown in Figure 3. The RODT of our edge map offers various bene-
fits. First, the initialization of lane detection becomes much easier (to be discussed in
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Section 4.1). Second, dashed lane marks will make no difference with continuous ones
in the RODT, as illustrated in the comparison of the rectangle area in Figure 3. Third,
more information about the centerline is provided by the distance transform compared
to the edge map. Generally, a (non-edge) pixel on the centerline of a lane will have a
local maximum in distance to the lane boundaries. Thus, combined with the lane model
introduced in Section 2, a point with a high distance value is likely to be a centerline
point PC . The usefulness of these properties of the RODT will be discussed in the
following sections.

4 Lane Detection Using a Particle Filter

For lane detection in a single image, a particle filter is used to track points along lane
boundaries as in [5]. Furthermore, a novel initialization method is adopted based on
a distance transform applied to the birds-eye edge map. The whole procedure of lane
detection is illustrated in Figure 4 by an example.

The algorithm starts with mapping the perspective input image into a birds-eye view.
An edge detection method, as introduced in [1], is then adopted to detect lane-mark-like
edges. After binarization of the resulting edge map, a RODT is applied. The resulting
distance map allows us to design a novel initialization method for finding the initial
boundary points. These points are used to initialize the parameters of the particle filter,
for tracking further boundary points through the whole image; a lane is finally detected.

Fig. 4. The overall work flow of lane detection. (a) Input image. (b) Birds-eye image. (c) Edge
map. (d) Distance transform. (e) Lane detection results, shown in the birds-eye image (left and
right lane boundaries, with lane center in the middle). (f) Lane detection results, shown in the
input image.

4.1 Initialization

The aim of the initialization step is to find an initial value (e.g., the x-coordinate of a
point PL and point PR in a selected image row) for the specified model. In [5], a clus-
tered particle filter is used in order to find a start point on a lane boundary. In distinction
to this, we fully utilize the distance map to find the first left and right boundary points.
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Left boundary 
edge pixel

Right boundary 
eldge point

0 -1 01d-d

Search result

Fig. 5. Illustration of the search procedure in the start row of the distance map. Note that the
distance values are signed, as described in Section 3.

In a pre-defined start row (near to the bottom) of the birds-eye image, a search is con-
ducted, starting at the middle of the row, for a pixel which has a positive distance value
but a negative distance value at its left neighbor (see Figure 5). When such a pixel is
found, the left and right boundary points in the start row are instantly known using the
distance value of the found pixel and of its left neighbor.

For the initial state X0(xc0 , α0, β10 , β20) of the particle filter, xc0 and α0 are initial-
ized by using the detected left and right start points, while β10 and β20 are simply set to
be zero.

4.2 Particle Filter for Lane Detection

Particle filters are widely used for lane detection and tracking, such as in [5,6]. This
section discusses particle filtering for our new lane model. The state vector X =
(xc, α, β1, β2)T to be tracked is defined by the parameters of the lane model, with-
out yc, as yc will be calculated incrementally by applying a fixed step Δ, starting at
row yc0 in the birds-eye image. For the application of a particle filter, two models are
discussed in the following.

The dynamic model. The dynamic model A is used to define the motion of particles in
the image. The prediction value X̂n is generated from Xn−1 by using X̂n = A ·Xn−1.
We simply take A as being the identity matrix, because of the assumed smoothness of
the lane boundary.

The observation model. The observation model determines each particle’s importance
factor for re-sampling. Based on the RODT information combining new model, it is
reasonable to assume points (xcn , ycn) will have large distance values, and L1 and L2
coincide with short lines of pixels which all only have small distance values.

Tracking step n is identified by ycn = (yc0 + n · Δ). We calculate the lateral
position of the left boundary point of the lane from the predicted state vectors, with
X̂ i

n(x̂i
cn

, α̂i
n, β̂

i
1n

, β̂i
2n

) for the ith particle.
From now on, PL and PR only represent the lateral position of boundary points, for

simplicity. The left position is calculated as follows:

P i
L = x̂i

cn
−H · tan α̂i

n

Next, the sum of the distance values along line segment L1 is as follows:

Si
L1

=
L1/2∑

j=−L1/2

∣∣∣d(
P i

L + j · sin β̂i
1n

, ycn + j · cos β̂i
2n

)∣∣∣
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Here, d(·, ·) is the distance value of the RODT. Calculating Si
L2

in the analogous way,
we obtain the ith importance factor

ωi
dist =

1
2πσ1σ2

exp

(
−

(Si
L1

− μ1)2

2σ1
−

(Si
L2

− μ2)2

2σ2

)
For the centerline point (xi

cn
, ycn), the importance factor is equal to

ωi
center =

1
σ3

√
2π

exp

⎛⎜⎝−

(∣∣∣ 1
d(xi

cn
,ycn)

∣∣∣− μ3

)2

2σ3

⎞⎟⎠
where μk and σk are constants, for k = 1, 2, 3 . The final observation model is given by
the factors

ωi = ωi
dist · ωi

center

5 Efficient Lane Tracking

Lane tracking uses information defined by previous results to facilitate the current de-
tection. This section introduces an efficient lane tracking method. Note that when a
lane is detected (as in Section 4), it is reasonably represented just by two sequences
{PLn : n = 0, 1, . . . , N} and {PRn : n = 0, 1, . . . , N} of points on its left and right
lane boundaries in the birds-eye image. Here, N is determined by the forward-looking
distance. Tracking of a lane through an image sequence is then simplified as being
tracking of these two point sequences.

Efficient lane tracking simply uses previously detected lane boundary points, adjusts
them according to the ego-vehicle’s motion model, and then offsets them according to
values of the RODT on the current birds-eye edge map. The lane tracking scheme is
summarized in Figure 6.

Sequences {P (t)
Ln

} and {P (t)
Rn

}, detected in frame t, are already partially driven through

by the ego-vehicle at time t + 1. The detection process of {P (t+1)
Ln

} and {P (t+1)
Rn

} at
time t + 1 is composed of three steps: adjustment caused by the driven distance and
the variation in yaw angle, new point detection, and offset specification according to the
values of the RODT in the birds-eye edge map.

Because of the driven distance between frames t and t+1, it holds (in principle) that

P
(t+1)
Ln

= P
(t)
L(n+k)

, P
(t+1)
Rn

= P
(t)
R(n+k)

, n = 0, 1, . . . , N − k

Lane detection 
in frame t

  Adjustment of
{PLi,PRi, i=0,...,N-k}

     Detection of
{PLi,PRi, i=N-k+1,...,N}

         Offset of
{PLi,PRi, i=0,...,N-k} by 
value of distance transform

Frame t+1
 Birds-eye view 
mapping and 
distance transform

Fig. 6. Efficient lane tracking scheme
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Here, k is determined by the driven distance between time t and t + 1, and is usually a
small number. Furthermore, points

{P (t+1)
Ln

: n = 0, 1, . . . , N − k} and {P (t+1)
Rn

: n = 0, 1, . . . , N − k}

are obtained by adding some translation (according to n) caused by the variation in
driving direction between t and t + 1.

For the detection of {P (t+1)
Ln

: n = N − k + 1, . . . , N} and {P (t+1)
Rn

: n = N −
k + 1, . . . , N}, note that k is small and we also assume smoothness of lane boundaries.
Thus, we simply start as follows:

P
(t+1)
Ln

= P
(t+1)
Ln−1

, P
(t+1)
Rn

= P
(t+1)
Rn−1

, n = N − k + 1, . . . , N

For further refinement, those predictions {P (t+1)
Ln

} and {P (t+1)
Rn

} from the previous
result at frame t are likely to be already located near the true points on the bound-
aries, as the variation of a lane is usually minor between two subsequent frames. – The
adjustment

P
(t+1)
Ln

= P
(t+1)
Ln

+ d(P (t+1)
Ln

, ycn), n = 0, 1, . . . , N
P

(t+1)
Rn

= P
(t+1)
Rn

+ d(P (t+1)
Rn

, ycn), n = 0, 1, . . . , N

of all N+1 points is finally achieved by information available from values of the RODT
of the current birds-eye edge map.

6 Experiments

Experiments were conducted on images and sequences recorded with the test vehicle
“HAKA1” of the .enpeda.. project [8].

Experimental results for lane detection are shown in Figure 7 and Figure 8. Differ-
ent scenarios are considered. Note that detected lane boundaries are sometimes locally
slightly curved. This is due to the fact that the distance transform of dashed lane marks
is slightly unaligned in column direction in the birds-eye image (see Figure 3).

Fig. 7. Experimental results for lane detection. (a) Input images. (b) Lanes detected in the birds-
eye image. Note that the centerline of a lane is also marked. (c) Lanes detected in input images.
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Fig. 8. Lane detection on roads with unmarked or blocked lane marks. (a) Input images. (b) Edge
map. (c) RODT. (d) Lane detected. Note that RODT contains more information than edge map
for lane detection as discussed in Sec. 3.

Fig. 9. Experimental results on two sequences using efficient lane tracking

Experimental results while using the efficient lane tracking method are illustrated in
Figure 9. The results are really acceptable except for some outliers for lane boundaries.
With an off-the-shelf computer, the computation time for the adjustment steps of effi-
cient lane tracking is negligible. The only measurable time needed is that for birds-eye
view mapping, edge detection and distance transform, and all three sub-processes can
be computed highly efficiently.

7 Conclusions

This paper introduced a new weak model of a lane, and a possible lane detection scheme
using a particle filter based on a monocular camera. Furthermore, an efficient lane track-
ing method was proposed and discussed.

A (simple and easy to calculate) distance transform was used in this paper for lane
detection and tracking. It shows that the distance transform is a powerful method to
exploit information in lane detection situations. The distance transform can deal with
dashed lane marks, provides information for the detection of the centerline of a lane,
finds initial values for the particle filter, and adjusts the tracking results conveniently.

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China under Grant 50875169.
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Real-Time Volumetric Reconstruction and Tracking of
Hands in a Desktop Environment

Christoph John1,2, Ulrich Schwanecke2, and Holger Regenbrecht1

1 University of Otago, New Zealand
2 University of Applied Sciences Wiesbaden, Germany

Abstract. A probabilistic framework for vision based volumetric reconstruction
and marker free tracking of hand and face volumes is presented, which exclusively
relies on off-the-shelf hardware components and can be applied in standard of-
fice environments. Here a 3D reconstruction of the interaction environment (user-
space) is derived from multiple camera viewpoints which serve as input sources
for mixture particle filtering to infer position estimates of hand and face volumes.
The system implementation utilizes graphics hardware to comply with real-time
constraints on a single desktop computer.

Keywords: Probabilistic Shape From Silhouette, Mixture Particle Filtering.

1 Introduction

Virtual and mixed reality environments rely on the implementation of (tele) presence:
the perceived sense that a user’s own body and body parts belong to the artificial world
presented. Of paramount importance here is the efficient and accurate registration,
tracking, reconstruction and display of the head and hands of a human operator.

In the following we present an approach for the reconstruction and tracking of hands
and head (skin-colored objects) in a potential standard office environment which works
with off-the-shelf hardware components. The supervised volume in our table-top envi-
ronment (see figure 1) has a hand tracking volume size of 1.0m × 1.0m × 0.75m. The
lighting conditions have been constrained to controlled and reasonably well lit office
room, following the recommendations of IEEE Std. 241 [1].

The system consists of a flock of six color cameras which are utilized to compute
a volumetric reconstruction of the user-space. A variant of a probabilistic Shape from
Silhouette (pSfS) algorithm, first introduced by Landabaso and Pardas [4] has been
developed. Unlike traditional SfS (tSfS), which performs object segmentation in the
image domain, pSfS utilizes a 3D probabilistic background model. This shifts object
segmentation into the spatial domain and leads to improved segmentation results in
presence of image noise or clutter. We have extended pSfS by imposing constraints on
the 3D foreground process in terms of anticipated color and occupancy of hand and face
volumes, thus limiting volumetric reconstruction to skin-colored foreground regions.
This leads to more detailed reconstructions and an increased probabilistic distance to the
background scene. In addition we allow dynamic per pixel on/off switching of cameras
to allow the integration of occlusion masks and to stabilize reconstruction results in
presence of occlusion.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1053–1060, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Proposed environment. Hands and face are tracked in front of the projection screen.

In [4] volumetric reconstructions have been projected into images to generate occlu-
sion masks needed for background model update. We instead utilize the derived visual
hulls as input source for a variant of mixture particle filtering [7] to estimate positions
of hand and face volumes. Occlusion masks are then generated from tracked bounding
boxes. This has the advantage that masks can be computed efficiently and that volumet-
ric reconstruction errors do not degenerate the background model. Finally we present
a GPU implementation of the presented system, which in contrast to [4] permits the
whole system to run in real-time on a consumer graphics card and a single desktop
computer.

2 Probabilistic Volume Reconstruction

The reconstruction algorithm presented below is based on probabilistic reasoning and
can be subdivided into an image and volume based classification part. In the image
based part a measure is assigned to each pixel which exhibits its probability of belong-
ing to a skin-colored foreground silhouette. In the volume based part these silhouettes
are utilized to derive volumetric reconstructions.

2.1 Image Based Likelihood Evaluation

The task of skin-colored foreground object segmentation can be formulated as a clas-
sification problem at pixel level. A pixel may belong to one of four groups which are
given as the possible combinations of fore-/background and skin/non-skin color. Pixel
likelihood evaluations are casted as maximum a posteriori (MAP) assignments in a dis-
criminative model. I.e., the model expresses the per pixel probability of belonging to
the foreground with the skin-colored class P ′(F, S|c) as a function of its observed color
vector c. The prime denotes augmentation with an outlier model which will be described
in detail later. Here c = [r, g]T is represented in the normalized-rg color space.

A combination of two classifiers constitutes our discriminative model (see figure 2).
The first classifier P ′ (F |c) is based on a model of the background process and esti-
mates per pixel foreground probabilities by combining the MAP assignment of being
foreground P (F |c) with an outlier model. Equivalently the second classifier P ′ (S|c)
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(a) P ′ (F |c) (b) P ′ (S|c) (c) P ′ (F, S|c)

Fig. 2. Left: foreground classification; Middle: skin classification; Right:combined classification

augments the MAP estimate of being skin color P (S|c). The final per pixel classifica-
tion scheme is thus given by:

P ′ (F, S|c) = P ′ (F |c) · P ′ (S|c)

Our setup has been constrained to office environments with a fixed camera setup. This
leads to a relatively static background scene which can be modeled with a single Gaus-
sian model (SGM) [3]. A SGM is defined in the bivariate case with the mean normalized-
rg color vector μ and covariance matrix Σ as:

P (c|μ,Σ) =
1

2π |Σ|
1
2
· exp

(
−1

2
(c − μ)T ·Σ−1 · (c − μ)

)
(1)

The background likelihood is obtained from equation (1) as P (c|F̄ ) = P (c|μF̄ , ΣF̄ )
and is used to derive the MAP foreground likelihood P (F |c). Assuming equal likeli-
hood of color appearance in the foreground i.e. P (c|F ) = 1

2562 , we obtain:

P (F |c) =
P (c|F ) · P (F )

P (c)
=

1
2562 · P (F )

1
2562 · P (F ) + P (c|F̄ ) · P (F̄ )

Priors of fore-/background are derived from the expected volume occupancy of fore-
ground objects and will be discussed in the next section.

For skin color classification we follow Caetano et al. [2] and model skin color with
a static Gaussian Mixture Model (GMM) with I = 2 basis functions. This has been
reported as a good tradeoff between accuracy and efficiency. The GMM is derived from
equation (1) and associated weights wi as P (c|S) =

∑I
i=1 wi ·P (c|μi, Σi). The param-

eters have been trained with Expectation Maximization from a set of labeled skin-color
images. Skin color classification can thus be cast in a Bayesian formulation by assum-
ing equal likelihood of color appearance in non skin-colored regions P

(
c|S̄

)
= 1

2562

resulting in the MAP assignment:

P (S|c) =
P (c|S) · P (S)

P (c)
=

P (c|S) · P (S)
P (c|S) · P (S) + 1

2562 · P (S̄)

Notice that the models introduced so far do not permit for any type of classification er-
ror. Following [6], a more robust classification scheme is formulated by reverting to the



1056 C. John, U. Schwanecke, and H. Regenbrecht

prior in case of an outlier. Let eF , eS ∈ [0, 1] be the probabilities of being outlier in the
foreground and skin color model respectively. Then the classifier augmentations are:

P ′(F |c) = eF ·P (F ) + (1−eF )·P (F |c) and P ′(S|c) = eS ·P (S) + (1−eS)·P (S|c)

2.2 Volume Based Classification

pSfS has been adapted to combine the previously described image based classifiers.
The difference between the presented algorithm and [4] is the definition of φ and β. In
our setting φ describes a skin colored foreground and β a group of classes given as the
remaining combinations of being fore-/background and skin/non-skin color. This leads
to the introduction of multiple priors into pSfS.

Now let {Γ1, · · · , ΓN} be the set of super classes representing all N = 2S possible
combinations of skin-colored foreground or background classifications of all S sensors.

Γ1 = { φ, φ, φ, . . . , φ }
Γ2 = { β, φ, φ, . . . , φ }
Γ3 = { φ, β, φ, . . . , φ }

...
ΓS+2 = { β, β, φ, . . . , φ }

...
Γn = { Γn[1], Γn[2], Γn[3], . . . , Γn[S] }

...
ΓN = { β, β, β, . . . , β }

and let their group specific priors be given as P (Γn) =
∏S

s=1 P (Γn[s]) with projected
priors:

P (φ) = P (F ) · P (S) and P (β) = 1 − P (φ)

In the absence of occlusion a voxel is assigned to be part of a visual hull H if all sensors
classify the voxel as skin-colored foreground, with prior probability P (H). That is:

H = Γ1 and P (H) = P (Γ1) (2)

P (H) is defined as the occupancy ratio between the expected number of skin-colored
foreground voxels and the total number of voxels. Projected skin priors can thus be

derived from P (H) as P (S) =
S
√

P (H)
P (F ) . Equivalently projected foreground priors can

be derived from a visual hull of all foreground objects HF with an expected volume
occupancy ratio P (HF ) as P (F ) = S

√
P (HF ). We have chosen P (HF ) and P (H)

statically from reference reconstructions which have been generated with a traditional
SfS algorithm.

Cameras in SfS setups are usually mounted with wide stereo baselines leading to
statistical independents between the camera views and Bayes theorem can be consulted
to estimate class probabilities.
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P (Γn|c1, . . . , cS) = P (Γn) ·
S∏

s=1

P (cs|Γn)
P (cs)

n = 1, . . . , N (3)

Here P (cs|Γn) = P (cs|Γn[s]) is the conditional probability of the observation in sen-
sor s, given a certain super class in its view. Conditional probabilities can be rewritten
in means of posterior probabilities to plug in per pixel MAP assignments:

P (Γn|c1, . . . , cS) = P (Γn) ·
S∏

s=1

P (Γn[s]|cs)
P (Γn[s])

(4)

Here P (Γn[s]|cs) conforms to the posterior probability of a certain superclass in sensor
s given its observation cs. This is to say:

P (Γn[s]|cs) :=

{
P ′(F, S|cs) if Γn[s] = φ

1 − P ′(F, S|cs) if Γn[s] = β

Finally the partitioning of voxels to super classes is obtained by following Bayes rule
for minimum error. Therefore a voxel is assigned to the most probable super class Γm:

Γm = arg max
Γn

P (Γn) ·
S∏

s=1

P (Γn[s]|cs)
P (Γn[s])

As computation of all class posteriors becomes computational intensive with growing
number of sensors, it has been recommended in [5] to limit computation to the fore-
ground class and set a threshold on its posterior instead. Our results suggest the same
as we have obtained equivalent reconstruction results for both algorithmic variants.

The algorithm introduced so far does not account for systematic errors given through
occlusion or segmentation errors. The assignment of multiple foreground classes is a
common approach to resolve this issue in SfS type algorithms. In pSfS this can be
done in two ways. First, by assigning multiple super classes to the visual hull. If for
example, the appearance of a single systematic error was to be allowed, equation (2)
would become:

H =
S+1⋃
s=1

Γs and P (H) =
S+1∑
s=1

P (Γs) (5)

This approach has a serious disadvantage as all class posteriors now have to be com-
puted. A more efficient procedure is given by assigning an active camera flag to each
pixel and than limit the class computation to active projections. In the presence of occlu-
sion masks these are the activity flags. If multiple foreground classes should be allowed,
a given number of pixel projections with lowest foreground probability P ′(F, S|c) have
to be disabled dynamically.

3 Mixture Particle Filtering

Detection of hand and face volumes within a reconstructed volume is usually a time
consuming process which can be accelerated by incorporating temporal information
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through tracking. We assume independents of the movements of hands and head and
therefore follow [7] and apply a 3D variant of mixture particle filtering for tracking.
Here the joint distribution of object states is interpreted as a mixture in which each
object is tracked with a dedicated particle filter. The prediction and update equations of
the M-component mixture model are given with mixture weights

∑M
m=1 πm,t = 1 as

predict: p(xt|Yt−1) =
M∑

m=1

πm,t−1 · pm(xt|Yt−1)

update: p(xt|Yt) =
M∑

m=1

(
πm,t−1 · pm(yt|Yt−1)∑M
n=1 πn,t−1 · pn(yt|Yt−1)

)
· p(yt|xt)pm(xt|Yt−1)

pm(yt|Yt−1)

The first update term can be interpreted as the new mixture weight πm,t because the
state x is not involved. Hence only the second term represents the component update.
Component interaction is therefore limited to mixture weight computation which makes
this particle filtering technique fast. Particle filters track 3D centroid positions of hand
and face volumes. Hands and face are distinguished through their volume sizes. Par-
ticle states represent boxes in space with a fixed size, see right side of figure 1. We
use the percentage of occupied skin-colored volume within these boxes as the source
for weight evaluation. This average occupancy can be computed efficiently through uti-
lization of a summed volume table for the reconstructed volume. The mixture particle
formulation given above does not determine how a mixture is initialized or modified.
In our setup initialization is done by spreading particles randomly until all expected
objects are tracked. If a mode was found which is not already tracked, a new mixture
is initialized on that mode. In cases in which object separation is impossible, a mixture
update has to be enforced which provides merge and split operations. Here it is based on
K-means analysis and similar to the one proposed in [7]. The difference is that we have
to treat different particle types. Therefore we allow re-clustering only between mixtures
of the same type, others are discared.

4 Results

We have implemented pSfS as well as tSfS and compared both with respect to recon-
struction quality and performance. Achieved reconstruction results favor pSfS over
tSfS, see figure 3 for a comparison. Both pSfS variants achieved more detailed re-
constructions than tSfS. Explicit computation of fore-/background classes and limited
evaluation by thresholding the foreground class resulted in similar reconstructions. The
similarity between outputs of both pSfS algorithms can be explained by detailing the
impact of background class evaluation. Explicit evaluation of background classes leads
to a less false positive rate for foreground class assignment in presence of highly am-
biguous voxels. These false positives are known to have a low foreground probability,
as they would not be assigned to a background class otherwise. This implies that they
can be equivalently eliminated by enforcing a threshold on posterior probabilities.

The presented SfS variants were implemented on a GPU with NVIDIA CUDA to per-
mit interactive frame rates. Here performance results of three different volume
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resolutions are presented. The runtime values were measured on an Intel Q6600 running
at 2.4GHz with a NVIDIA GeForce 8800 GTX graphics card and are listed in table 1.

Table 1. Performance results of 3D reconstruction on a GPU

Reconstruction Type Volume Resolution Algo Image eval. GPU Readout Total

tSfS

64× 64× 48 voxel 1.1ms 5.5ms 0.1ms 6.7ms

128× 128× 96 voxel 5.7ms 5.5ms 0.8ms 12.0ms

256 × 256 × 192 voxel 35.8ms 5.5ms 7.8ms 49.1ms

pSfS, foreground class

64× 64× 48 voxel 1.2ms 5.5ms 0.1ms 6.8ms

128× 128× 96 voxel 5.9ms 5.5ms 0.8ms 12.2ms

256 × 256 × 192 voxel 38.0ms 5.5ms 7.8ms 51.3ms

pSfS, all classes

64× 64× 48 voxel 4.3ms 5.5ms 0.1ms 9.9ms

128× 128× 96 voxel 31.4ms 5.5ms 0.8ms 37.7ms

256 × 256 × 192 voxel 241.8ms 5.5ms 7.8ms 255.1ms

Fig. 3.

1. row: [left to right] tSfS, pSfS with fore-/background classes, pSfS with foreground class,
all computations with 6 cameras in 128× 128× 96 volume

2. row: pSfS, foreground thresholding with 6 cameras, 256 × 256 × 192 voxels
3. row: [left to right] tSfS P ′(F, S|c) thresholded, pSfS multiple classes, pSfS active camera,

all computations with 1 of 6 views occluded in 64× 64× 48 volume
See also: www.mi.fh-wiesbaden.de/̃ cjohn/videos/psfsTracking.avi
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The SfS performances vary between 1.1ms and 241.8ms, depending on the chosen
algorithm and volume resolution. A performance comparison between tSfS and pSfS
limited to foreground class evaluation resulted in similar runtimes. Both algorithms
have a linear complexity O(S) where S is the number of sensors. In contrast explicit
evaluation of fore-/background classes has an exponential complexity of O(2S).

It is further essential to note how the presented algorithms behave in the presence of
systematic errors like inter-object occlusion. tSfS and both pSfS variants cannot handle
this and do not reconstruct partial occluded objects. The appearance of systematic errors
therefore has to be explicitly modeled. As our particle filter is applied to low resolution
volume reconstructions, we limit the following comparison to this type. Figure 3 de-
picts obtained reconstructions with 5 out of 6 cameras. Here. we compared tSfS and
pSfS with explicit computation of multiple foreground classes and finally pSfS with the
active camera concept. All algorithms achieve similar coarse reconstructions and can
reconstruct the volume even in presence of occlusion.

5 Conclusion

We have presented a GPU based pSfS system which uses a cascade of classifiers for
volumetric reconstruction of skin colored objects, i.e. to track hand and face volumes.
Our GPU implementation makes the system suitable for the advanced HCI applications
targeted, with a runtime of less than 15ms for coarse but reasonable volume resolutions.

Acknowledgments. We would like to thank Brendan McCane, Geoff Wyvill and Katrin
Frank for their contributions. Part of this work has been funded by a University of Otago
CALT research grant (JDLJ17400).
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Abstract. In this paper, we present a cooperative stereo system based
on two pant-tilt-zoom (PTZ) cameras that can localize a moving tar-
get in a complex environment. Given an approximate target position
that can be estimated by a fixed camera with a wide field of view, two
PTZ cameras with a large baseline are pointed toward the target in or-
der to estimate precisely its position. The overall method is divided in
three parts: offline construction of a look-up-table (LUT) of rectification
matrices, use of the LUT in real time for computing the rectification
transformations for arbitrary camera positions, and finally 3D target lo-
calization. A chain of homographic transformations are used for finding
the matching between different pairs of wide baseline stereo images. The
proposed stereo localization system has two advantages: improved local-
ization on a partially occluded target and monitoring a large environment
using only two PTZ cameras without missing significant information.
Finally, through experimental results, we show that the proposed sys-
tem is able to make required localization of targets with good accuracy.

1 Introduction

Modern video surveillance has been an active area of research. Nowadays, a
number of research works are going to develop more intelligent and smart video
monitoring systems according to the requirements and applicability [1], [2], [3].
The computation of reliable objects’ trajectories by means of localization is re-
ally important for different contexts like traffic monitoring, behaviour analysis,
suspicious event detection, sensor network configuration, etc. From the low-level
to the high level techniques three main steps can be identified: a) detection and
localization of interesting objects, b) frame-to-frame tracking of detected ob-
jects and c) behaviour recognition. To achieve all these goals visual surveillance
systems usually exploit a network of cameras [4]. Existing non-stereo systems
often localize objects in the environment by defining homographies between sin-
gle cameras and a 2D map [4]. Such homographies are based on a ground plane
constraint. When the detected object is occluded in such a way that its point
of contact with the ground plane is not visible, such an approach introduces
relevant localization errors. To overcome such a problem, stereo vision can be
taken into account.

Stereo vision has the advantage that it is able to estimate an accurate and
detailed 3-D representation of the position of an object with respect to a given

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1061–1069, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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co-ordinate system using its two or more perspective images [5]. Traditional
stereo vision research usually uses static cameras for their low cost and relative
simpleness in modelling. PTZ camera is a typical and the simplest active cam-
era, whose pose can be fully controlled by pan, tilt and zoom parameters [3].
As PTZ cameras are able to obtain multi-view-angle and multi-resolution infor-
mation (i.e. both global and local image information), they are used for many
real applications specially in video surveillance. The PTZ camera based stereo
system is able to cover large environments and, if overlapped fields of view are
considered, to reduce the occlusions. However, PTZ cameras based stereo vision
is much more challenging when compared to traditional static cameras based
stereo vision as the intrinsic and external parameters of each camera can be
changed in utility.

Recently, a novel stereo rectification method for dual-PTZ-camera system is
presented to greatly increase the efficiency of stereo matching [6]. In this dual-
PTZ-camera based stereo method, the problem related to inconsistency of inten-
sities in two camera images is solved by addressing a two-step stereo matching
strategy. An interesting approach to solve stereo vision problems by means of
rotating cameras has been recently proposed with its analytic formulation [7].
An off-line initialization process is performed to initialize essential matrix us-
ing calibration parameters. During on-line operations the rotation angles of the
cameras are retrieved and exploited to compute the essential matrix. When the
zoom is considered, it would require the calibration for any zoom level of both
cameras.

In this paper, we propose a stereo system based on two PTZ cameras from a
network of cooperative sensors. The proposed solution is able to accurately local-
ize a moving object in outdoor areas. Once a target is selected by the surveillance
system, a pair of PTZ cameras are focused on the target with the required zoom
to provide stereo localization of such a target. To solve stereo matching problem
in case of dual PTZ camera, an uncalibrated approach that computes the rec-
tification by interpolating the transformations contained in a LUT is proposed.
Such a LUT is defined off-line by sampling the pan and tilt ranges of both
PTZ cameras and using the same zoom level. The transformations contained in
the LUT are computed on image pairs computed with a chain of homographies
to solve the wide base-line problem. During on-line operations an interpolation
based on neural network is proposed to estimate the rectification transformations
for the given orientations of both cameras.

2 Pre-localization Steps

The localization is performed using various rectified pairs of stereo images.
Therefore, few steps for real time rectification are needed before performing
the task of localization. These steps involve wide baseline stereo matching, con-
struction of LUT and learning of neural network using LUT data.
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2.1 Construction of the Look-Up Table

A rectification transformation is a linear one-to-one transformation of the pro-
jective plane, which is represented by a 3 × 3 non-singular matrix. For a pair of
stereo images Il and Ir, the rectification can be expressed in the following ways

Jl = Rl ∗ Il Jr = Rr ∗ Ir

where (Jl,Jr) are the rectified images and (Rl,Rr) are the rectification matrices.
These rectification transformations can be obtained by minimizing∑

i

[(mi
l)

T RT
r F∞Rlm

i
l] (1)

where (mi
l ,m

i
r) are pairs of matching points between images Il and Ir and F∞

is the fundamental matrix for rectified pair of images. Generally, the minimiza-
tion of (1) is time-consuming and therefore it is not possible to compute the
rectifications in real time [8]. Here, an offline LUT containing rectification ma-
trices corresponding to various image pairs captured at predefined pan and tilt
angles is constructed. The rectification transformations can then be interpolated
in real-time for any arbitrary orientation of both PTZ cameras by using this
LUT data. The main steps to construct the LUT are:

1. Sample the different pan and tilt angles (pi
l, t

i
l)i=1:1:n1 for the whole pan and

tilt ranges of left PTZ camera into n1 equal intervals. Similarly, sample the
different pan and tilt angles (pi

r, t
i
r)i=1:1:n1 for the right camera.

2. Capture n1 × n1 different of images (Ii,j
l )j=1:1:n1

i=1:1:n1
for left camera. Same time

of instance capture their corresponding right stereo images (Ii,j
r )j=1:1:n1

i=1:1:n1
.

3. Compute the possible k(> n1 × n1) pairs of rectification transformations
pairs (Rk

l ,R
k
r) for the different combination of these stereo images. Here,

we use the constraint that the rectification transformations are computed
for two images only if they share at least 30% of their field of view. This
criterion is considered also during the sampling of pan and tilt angles for
both cameras.

4. Store all these pairs of rectification transformations in a LUT in such a way
that by choosing a combination of four independent variables (pl, tl, pr, tr),
their corresponding rectification transformations (Rl,Rr) can be easily com-
puted. This is done through a neural network described in section 2.3.

The main problem to be addressed in the creation of the LUT is the automatic
computation of the rectification transformations. Many works on rectification
assume that the baseline (the distance between the two cameras) is small if
compared to the distance of the object from the cameras, and thus the two
images acquired by the cameras are similar. This allows the detection of the
matching points using standard techniques such as SIFT matching [9]. However,
in the proposed system this assumption is no longer valid for some combinations
of pan-tilt values. The problem of finding matches in wide-baseline configurations
is addressed in the next section.
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2.2 Point Matching between Wide Baseline Stereo Images

SIFT matching [9] is a popular tool for extracting pairs of matching points
between stereo images. However, this method fails to provide good results in
case of wide baseline images. In this work, we have used a method based on a
chain of homographic matrices for extracting pairs of matching points in these
kinds of image pairs. In the case of wide baseline images, if the object is far
enough along the optical axis then it is possible to extract pairs of matching
points manually or using an approach proposed in [10]. Let (I1

l , I
1
r) be a pair of

images of a 3D scene which is far from the cameras along their optical axis. An
initial homography H1 is generated by using extracted pairs of matching points
between I1

l and I1
r using standard approaches. Let In

l and In
r be a pair of images

captures from left and right cameras of a scene/object near to cameras along
their optical axis. The problem is to autonomously extract the pairs of matching
points between the images In

l and In
r . To solve such a problem, a set of n images

is captured for each camera by moving the cameras from the initial position (the
one at which (I1

l , I
1
r) are acquired) to the current position. Let these two sets

of images be (I1
l , I

2
l . . . In

l ) and (I1
r , I

2
r . . . In

r ). Now we use the following steps to
solve this matching problem for wide-baseline image pairs:

1. Perform the SIFT matching between image pairs (I1
l , I

2
l ), (I2

l , I
3
l ), . . . ,

(In−1
l , In

l ) and use these sets of pairs of matching points for computing their
respective homography matrices H1,2

l , H2,3
l , . . . , Hn−1,n

l .
2. Repeat the procedure given in above step on the sequences of images of right

camera and compute H1,2
r , H2,3

r , . . . , Hn−1,n
r .

3. Compute the homography matrix Hl and Hr

Hl =
n−2∏
i=0

Hn−(i+1),n−i
l and Hr =

n−2∏
i=0

Hn−(i+1),n−i
r

4. Compute the homography matrix Hn for the pairs of matching points be-
tween current images In

l and In
r as

Hn = Hr ∗ H1 ∗ (Hl)−1 (2)

Figure 1 gives an intuitive interpretation of the procedure. The final homography
matrix Hn can be computed for any value of n; however, the above procedure
can accumulate errors in the final homography due to multiplication of several
matrices. In order to minimize this error, we

1. keep the sampling step n as low as possible, with the constraint that we
require at least a 30% image overlap for SIFT matching;

2. minimize errors due to bad matches by using a robust estimator for outlier
detection and removal: we use the Iterative re-weighted least-square (IRLS)
technique for computing the homography matrix from the pairs of matching
points between any two images. IRLS provide a robust solution for homog-
raphy computation when compared to other approaches like standard least
square or Singular value decomposition.
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Fig. 1. Wide baseline stereo matching using a chain of homographic matrices

2.3 Neural Network Based Interpolation

Once the LUT is constructed, its content is used for the offline training of the
neural networks using k combinations of pan and tilt angles (pi

l , t
i
l, p

i
r, t

i
r)i=1:1:k

as input and the elements of their respective rectification transformations
(Ri

l,R
i
r)i=1:1::k as the network output. A multilayer feed-forward neural net-

work containing one five-nodes hidden layer with backpropagation (BP)learning
algorithm has been used in this work. The optimal input-to-hidden nodes weight
matrix W and hidden-to-output nodes weight matrix V is stored and used for
interpolating the rectification transformations for any arbitrary orientations of
both cameras in real time.

Note that the LUT is built with constant and equal zoom levels for both
cameras. Based on the requirements for the monitoring of the selected target,
the zoom levels of the two cameras can actually be different, and the LUT data
cannot be directly applied. In this case, compensation of unequal zoom settings
is needed before stereo matching. This problem can be handled easily by using
a focal-ratio-based methodology [11].

3 Localization

The 3D position of the target has to be computed in terms of its coordinates
[xw,yw, zw] in a world reference system. Once the pair of stereo images is rec-
tified, the disparity between the matching pairs can be computed only for the
pixels belonging to the target. Starting from the pixels in the left camera image,
the search for its matching pixels is restricted only on the corresponding epipo-
lar lines in the right camera image. In particular, for each pixel, starting from
its x, y position, similarity scores are computed considering a normalized SSD
measure that quantifies the difference between the intensity patterns as:
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C(x, y, d) =

∑
(ξ,η)

[Jl(x + ξ, y + η) − Jr(x + d + ξ, y + η)]√ ∑
(ξ,η)

Jl(x + ξ, y + η)2
∑

(ξ,η)
Jr(x + ξ, y + η)2

(3)

where ξ ∈ [−n, n] and η ∈ [−m,m] define a window centred in (x, y), while d
is the disparity. The required disparity value is the one that minimizes the SSD
error:

d0(x, y) = mind C(x, y, |d|) (4)

Once the disparity d is computed between the position of the target in the left
and right images, the distance of the target zw from the camera along optical
axis is estimated by

zs = fr
B

d
(5)

where fr is focal length for the rectified pair of images and B denotes the base
line distance. Let (xl,yl) be the position of the target in the left camera image,
then its position in the plane orthogonal to the optical axis of camera is given
by

xw =
xlzw

fr
yw =

ylzw

fr

The location of target (xm,Ym) in a ground plane map is given by

[xm, ym, 1]T = Hw
m [xw, yw, 1]T

where Hw
m is the homography computed offline between the homogeneous co-

ordinates of ground plane position (xw,yw) of some selected points and their
respective position in the map (xm,ym). The iterative re-weighted least square
(IRLS) algorithm allows to robustly estimate such a homography.

4 Experimental Results

The experimental results have been obtained from four different pairs of frames
by considering different cases, i.e., partially occluded targets and using different
zoom levels for both PTZ cameras. Six different pan and tilt angles have been
selected in each direction by sampling with a step size of 3.0 degree along pan
direction and 4.0 degree along tilt direction for both cameras to cover entire
experimental outdoor environment. In this way, a total of 36 images have been
captured by each camera. Out of these 36 × 36 combination of images, only
k = 120 pairs of images have been selected for network training by considering
the fact that at least 30% part of field of view should be common between
both images. The rectification transformations have been computed using the
matching pairs of feature points from these 120 pairs of images and stored in a
LUT.

Experiments with real sequences have been carried out in order to test the per-
formance of the proposed localization algorithm. Localization results are shown
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Fig. 2. Localization of a target in various stereo frames

Fig. 3. Error in localization corresponding to the occlusion’s height and object’s
distance

in Fig. 2 for four different pairs of frames captured at different camera settings
(pan, tilt and zoom). The selection of these four frames have been performed
to check the performance of proposed localization algorithm in different cases
such as partially occluded target (frame pairs 1 and 4), images having unequal
zoom (frame pairs 1 and 2) and non-occluded (frame pairs 2 and 3). Simultane-
ously, the localization results are computed based on a monocular camera based
technique [4](here we have used a static camera having wide field of view) for
making a comparison of the achieved results and for showing the superiority
of proposed method on monocular camera based techniques in case of partially
occluded targets (see localization for frame pairs 1 and 4). Localization has been
made in a 2D ground-plane map (30 × 40) meters.
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Fig. 3 represents a surface plot for localization error computed for a target
with ground truth obtained from known marks. It can be seen from this plot that
the error is increasing if the distance of object from the left camera or the height
of occlusion is increasing in case of monocular camera based scheme. In the case
of the proposed method, the error is almost constant and does not depend the
occlusion’s height or object’s distance from camera.

5 Conclusions

We have presented an approach for the localization of an object in a given test
map using dual PTZ camera based wide baseline stereo system. A neural network
is used for finding the rectification transformations in real time using an offline
LUT; and a method has been proposed for extracting pairs of matching points
from wide base line stereo images. The required targets have been localized on a
given test map using stereo based 3D position. Experimental results have proven
that the proposed technique leads to better results than standard monocular
camera based localization.
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Abstract. A Growing Competitive Neural Network system is presented as a pre-
cise method to track moving objects for video-surveillance. The number of neu-
rons in this neural model can be automatically increased or decreased in order
to get a one-to-one association between objects currently in the scene and neu-
rons. This association is kept in each frame, what constitutes the foundations of
this tracking system. Experiments show that our method is capable to accurately
track objects in real-world video sequences.

1 Introduction

In video surveillance systems, accurate and real-time multiple objects tracking will
greatly improve the performance of objects recognition, activity analysis and high level
event understanding [1,2,3,4]. Segmentation and tracking of multiple objects are two
important stages in visual surveillance. The most popular approach for visual tracking
is the adaptive tracking of coloured regions, with techniques such as the particle fil-
tering of coloured regions [5,6] and the Kalman/mean-shift [7], which uses the well
known mean-shift algorithm [8] to determine the search region, and the Kalman filter
to predict the position of the target object in the next frame.

In this paper, the use of growing competitive neural networks (GCNNs) to perform
object tracking is proposed. These networks are derived from the usual competitive neu-
ral networks (CNNs) [9]. Their main particularity consists in that this kind of network
is able to generate new process units (neurons) when needed, in order to get a better
representation of the input space.

In general, CNNs are suitable for data clustering, since each neuron in a CNN is
specifically designed to represent a single cluster. In the field of object tracking in video
sequences, such clusters correspond to moving objects. Thus, it seems reasonable to
use CNNs as trackers. However, due to the dynamic nature of a video sequence, objects
are constantly appearing and disappearing from the scene, and the method used to track
objects should take care of this situation. Consequently, the use of GCNNs become a
good approach for tracking.

The rest of this paper is structured as follows: section 2 is devoted to the segmentation
algorithm, in section 3 the tracking system is explained and finally, some experimental
results and conclusions are presented in sections 4 and 5 respectively.
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2 Object Segmentation

Detecting moving objects in video sequences is the first relevant stage of extracting
information in most of the computer vision applications which are related to video
analysis. Many works based on motion detection and, more concretely, on background
subtraction using fixed cameras as the CCTV cameras installed in public transport can
be found in the literature [4,2].

Our approach in this section is a modification of the algorithm proposed in [10] and
can be considered as a pixel-based technique, since this kind of methods analyse each
pixel separately. A classification problem has to be solved, in which a pixel (x, y) in an
specific frame t only can belong to one of two classes: foreground or background. In
order to perform this task, a neural network architecture based on Adaptive Resonance
Theory (ART) is used. The inputs of this model are the colour components of the pixel
according to the colour space in which the frames are obtained.

Each neuron is associated to one class (foreground or background) and each class can
be composed of several neurons. Therefore, multimodal backgrounds (i.e. sea waves or
waving trees) can be handled by our model, due to more than one neuron correspond to
the background class. The neural network starts with an small number, M , of neurons
or processing units. The network activates only one processing unit, called winning
neuron, whose synaptic vector is closest to the input pattern x.

After that, the network checks if the input pattern is well represented by the synaptic
vector of the winning neuron. In case of the test is failed, a new neuron k is created
using the input pattern x as the synaptic vector of the neuron.

The neurons associated with background and foreground classes have to be deter-
mined. The B most activated neurons are used to model the background, whereas the
rest of neurons correspond to foreground objects. This value B is computed as the
amount of neurons whose number of activations na1 , . . . , naB verify

na1+...+naB

N > T
for a prefixed threshold T , where N is the total number of activations of all neurons, as
proposed in [4]. When the segmentation results have been obtained, it will be necessary
to apply additional techniques to obtain clear foreground regions. Many shadow detec-
tion methods have been described in several reviews [11]. In our system, we develop
the proposed technique cited in [12].

3 The Tracking Module

The tracking module is based on a growing competitive neural network (GCNNs),
which follows an online training process based on a prediction-correction scheme. The
number of neurons of the network is not fixed, and is changed depending on the amount
of objects which must be tracked by the system in each time instant.

Every object appearing in the video frame is assigned to a neuron. This neuron be-
comes the responsible for identifying and representing the object, as well as predicting
its features in future instants. New neurons are created when not previously detected ob-
jects appear in the image, whereas some neurons are killed when the objects associated
to the neurons leave the scene.

In algorithm 1 the main steps of the algorithm are shown. Each step is described
more thoroughly in the following sections.
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3.1 Prediction-Correction Scheme

The proposed neural network is designed to follow a prediction-correction scheme dur-
ing the training process. In the competition step every neuron predict the new state of
the object that it is assigned to it. That is, where the object it is supposed to be in the
current frame and how it is to be like, in terms of shape and colour. Each features vector
corresponding to objects that appear in the current frame is compared with the estimated
features vectors of the neurons. The neuron with the most accurate prediction is eligible
as the winner. In the update step the winner neuron is the only neuron able to use the
object features vector to correct the knowledge it has learnt, as it is explained later.

In order to calculate the object prediction the memory capacity of the neurons has
been augmented. Each neuron, j, stores a log, Hj , which contains K entries with the
known information about the object assigned to the neuron in some previous video
frames. Every time an object is detected the current feature vector that represents it,
Hw

j , and the frame in which the detection happens, Hf
j , are kept in the log of the

neuron Hj =
(
Hw

j , Hf
j

)
.

The estimated pattern x̂j(t) is obtained by summing the current object pattern, stored
in the weight vector of the neuron, and an estimated change vector. This vector depends
on the difference between the current frame t and the last frame in which the neuron
was updated, and also on the averaged change observed in that pattern and computed
for the last P ≤ K entries in the log,

x̂j(t) = wj(t− 1) +
(
t−Hw

j (K)
) K−1∑

i=K−P+1

Hw
j (i + 1) −Hw

j (i)

Hf
j (i + 1) −Hf

j (i)
(1)

with Hw
j (i) the object features vector which was written down in the log of the j-th

neuron in the frame Hf
j (i). P is a user parameter which determines the number of log

entries that are used for the object prediction and allows to adapt the prediction to the
requirements of the specific application. Besides, low values of P allows to speed up
the computation of the prediction.

Notice that the frame which appears in the last entry of the log coincides with the
last frame in which the neuron was updated and, consequently, its weight vector was
modified.

3.2 Competition Rule

Object tracking is a task which must be solved in real time. Therefore, the tracking
system must be able to perform in an online way. In a time instant t the system is
provided M training patterns (or input patterns) xi(t), i ∈ {1 . . .M}. These features
patterns correspond to M objects which were detected by the segmentation module in
the video frame sampled in time instant t.

In the competition step, every time an input pattern xi(t) is provided to the network
a competition process among the neurons starts. Each neuron predicts a features vector
for the object it represents. This predicted feature vector represents the expected state
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of the object in the current frame t. The neuron whose predicted vector x̂j(t) is the
nearest in the input space to the input pattern is declared the winner.

c(t) = arg min
1≤j≤N

{‖xi(t) − x̂j(t)‖2} (2)

with x̂j(t) computed by means of equation (1)
The proposed neural model also tries to detect which components of an object fea-

tures vector are more reliable when we want to identify it. For that purpose the inverse
of the standard deviation of the time difference of the data stored in the log is used

rjz(t) =
1

var
(
Hw

jz(t) −Hw
jz(t− 1)

)1/2 (3)

where Hw
jz(t) is the z-th component of the features vector Hw

j (t). The variance is esti-
mated as follows:

var
(
Hw

jz(t)−Hw
jz(t− 1)

)
= E

[(
(Hw

jz(t)−Hw
jz(t− 1))− E[Hw

jz(t)−Hw
jz(t− 1)]

)2
]

=
1
K

K∑
h=1

((Hw
jz(t− h)−Hw

jz(t− h− 1))−mjz(t))2 (4)

where mjz(t) is the expectation of the difference

mjz(t) = E
[
Hw

jz(t) −Hw
jz(t− 1)

]
=

1
K

K∑
h=1

(Hw
jz(t− h) −Hw

jz(t− h− 1)) (5)

These measures for each component of an object features vector xj(t) are joined to
form a vector of reliabilities rj(t).

Finally, a mask vector m ∈ [0, 1]D, with D dimension of the input space, has been
added in order to let the user choose a weight for the object components based on their
expert knowledge.

Then the resulting competition rule obtained when m and rj(t) are included is

c(t) = arg min
1≤j≤N

{‖m · rj(t) · (x(t) − x̂j(t))‖2} (6)

where · means the componentwise product.

3.3 Neuron Update

Once the winner neuron has been determined, the weight vector wc(t) must be updated
in order to incorporate some knowledge from the pattern to the network. Only the win-
ner neuron is updated in the instant time t.

wi(t) =
{

wi(t− 1) + α (xi(t) − wi(t− 1)) if i = c(t)
wi(t− 1) otherwise

(7)

where α ∈ [0 . . . 1] is named the learning rate and determines how important is the
information extracted from the current input sample with respect to the background
information that the neuron already known from previous training steps.
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The proposed solution considers that each neuron represents an object in the frame
and tracks this object through the input space frame by frame. The learning rate should
be fixed to a large value, for example 0.9. Otherwise, the network cannot adequately
detect changes in the object, and thus, the object may not be identified.

3.4 Neurons Birth and Death

The size of the neural network layer should not be fixed a priori because the number
of objects which are present in the scene varies from one frame to another. Hence, the
proposed network is formed by n(t) neurons in a time instant t, and a mechanism to
add new neurons to the network and to remove the useless neurons is needed.

When an unknown object appears in the scene, none of the existing neurons is able
to represent it accurately and the error is expected to reach a high value, compared with
the error obtained for correctly identified objects. Thus, a new neuron should be created
in order to track that new object. A user-defined parameter δ ∈ [0, 1] has been utilised.
It manages the neurons birth by means of the check

∀j ∈ {1 . . . n(t)} ‖x(t) − x̂j(t)‖
‖x(t)‖ > δ (8)

with x̂j(t) computed by equation (1).
On the other hand, if an object leaves the scene then the neuron which represents

it should be destroyed. For this purpose, each neuron has a counter Cdie which means
the lifetime of the neuron, measured in number of training steps. Each training step,
the counter value is decreased by one and, if the value reaches zero then the cor-
responding neuron is removed. Every time a neuron wins a competition its counter
value is reset. Therefore, only neurons associated to objects which are not longer in
the scene are destroyed, since it is very unlikely for these neurons to win a
competition.

4 Results

Several sequences have been used to prove the effectiveness of our tracking method, in
which the objects are considered as rigid objects. The main objective is to demonstrate
that this system is effective, reliable and robust in order to get valid trajectories to be
analysed in the following behaviour stage. For this reason, two different kind of scenes
are taken into account. The first one consists of typical traffic sequences provided by a
video surveillance online repository generated by the Federal Highway Administration
(FHWA) under the Next Generation Simulation (NGSIM) program.1 In these sequences
some common problems appear, such as occlusions, stopped car in the scene or errors
happened in the segmentation phase, which must be satisfactorily solved by our tracking
algorithm.

The second kind of scene corresponds to hand-generated sequences 1(c) and it is used
to compare with other standard tracking techniques and check really that our method

1 Datasets of NGSIM are available at http://ngsim.fhwa.dot.gov/
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Algorithm 1. Main steps of the tracking algorithm
Input: Time instant t and the features of the segmented objects xi(t)
Output: Labelling of the segmented objects
foreach Segmented object xi(t) do

Compute winner neuron by means of Eq. (6);
if Eq. (8) is satisfied then

Create a new neuron. Initialise it;
else

Update the network using equation Eq. (7);
end

end
Refresh the counter values belonging to the neurons which win a competition;
Decrease all neurons counter values by one;
Check out neuron counters and destroy neurons whose counter value is zero;

(a) (b) (c)

Fig. 1. Different sequences are viewed in which the objects are identified and tracked. Subfigures
1(a) (frame 844) and 1(b) (frame 810) correspond to real traffic sequences while 1(c) (frame 90)
is a hand-made sequence used to make the comparison.

can solve the aforementioned problems. The ground truth can be generated for these
sequences in order to compare the performance of the tracking approaches, unlike the
traffic sequences that do not provide this valuable information. For comparison purposes
the kalman filter, which is one of the main reference algorithms for tracking objects, is
chosen. This method uses the centroid to predict the position of the identified object in
the next frame.

In figure 2(a), the errors in the x coordinate of the centroids obtained by several algo-
rithms at each frame are shown. Two versions have been generated for each algorithm,
in which an split object module is performed in order to divide the overlapped objects
that appear in the scene. This module simply takes into account the mean and standard
deviance of the object sizes appearing in the sequence and, if the size of a new object
exceeds the normal distribution obtained using the mean and standard deviance, try to
split into more than one. Comparisons between the ground truth of one object of the
hand-made sequence 1(c) and the results obtained by using the proposed algorithms
are shown in 2(b). The correct trajectories has been obtained using the neural networks
models since kalman approaches confuses the trajectories with other objects.
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(a) (b)

Fig. 2. 2(a) Comparative analysis of the centroid error at each frame using the ground truth. 2(b)
Trajectory of the object with ID 2 in the scene showed in figure 1(c), is obtained using different
algorithms.

Table 1. Comparative analysis of the success rate among the studied methods for the sequence
observed in Fig. 1(c)

Method Mean Error Maximum Error No. spurious objs No. mixed trajs

Kalman 9.8133 45.3894 3 1
Kalman with split objects 21.4802 56.7362 2 3

NN 22.2467 97.2632 3 0
NN with split objects 1.505 4.2302 0 0

In the table 1 the mean and maximum errors of each trajectory is calculated for
each algorithm. The last two columns represent the number of the spurious objects that
appear in the scene and the number of mixed trajectories. It happens when two different
objects swap their trajectories. This situation is not recommended due to the analysis of
each trajectory will be done incorrectly. As we can observed, better results are obtained
using both neural networks approaches.

5 Conclusions

A new algorithm for moving object detection and tracking in video sequences is pre-
sented. Tracking module is an important part of video surveillance systems, since it
is necessary a good starting point to analyse object behaviour. With a reliable track-
ing algorithm, objects can be easily identified in the video sequence. Then, by using
other analysis tools, the behaviour of these objects can be studied, and the system can
determine whether they are suspicious/dangerous or not.

The algorithm proposed is based on the use of a type of the well-known competitive
neural networks: the growing competitive neural network, which allows the creation
and removing of neurons, which are assigned to the objects in the scene. Since the
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number of objects in a video sequence can change from frame to frame, it seems rea-
sonable to permit a change in the number of process units of the network. Thus, a better
representation of the foreground objects is obtained.

The new neural model is also able to predict the features of each object (location...),
by using a log which stores all information known for every object during the last
frames. This allows to deal with several problems produced at the segmentation phase,
such as object occlusion or fusion. Experimental results show that our approach is a
reliable and accurate method to detect objects in video sequences publicly available
in Internet. In addition, segmentation derived problems can be robustly tackled by this
method. Our future work covers aspects of behavioural analysis, as it is the next logical
step in a surveillance system.
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A Third Eye for Performance Evaluation
in Stereo Sequence Analysis
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Abstract. Prediction errors are commonly used when analyzing the performance
of a multi-camera stereo system using at least three cameras. This paper discusses
this methodology for performance evaluation for the first time on long stereo se-
quences (in the context of vision-based driver assistance systems). Three cam-
eras are calibrated in an ego-vehicle, and prediction error analysis is performed
on recorded stereo sequences. They are evaluated using various common stereo
matching algorithms, such as belief propagation, dynamic programming, semi-
global matching, or graph cut. Performance is evaluated on both synthetic and
real data.

1 Introduction

Assume a rectified stereo pair of a left and a right image, and a disparity map obtained
by applying some stereo matching algorithm. In absence of ground truth data, one way
to evaluate the performance of this matching algorithm is to calculate – from both the
calculated disparity map and the given stereo image data – a virtual image as it would
appear for a virtual camera at a defined pose, and compare this with a third image
actually recorded at that pose. At pixels in the virtual image we assign either visible (in
left and right image) surface textures, value ‘black’ for pixels occluded in the left image,
and ‘white’ for pixels occluded in the right image. The comparison between virtual and
third image takes those uncertainties into account.

This performance analysis is known as prediction error evaluation [15], and it is
applied when at least three images of the same scene are available; see, for example, [1].
The third image is used as ground truth, and statistical analysis is performed to analyze
the matching algorithms.

Fig. 1. Left to right: left and right images of frame 22 of the used synthetic sequence; third, left
and right images of frame 95 of the used real-world sequence

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1078–1086, 2009.
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We are recording video data with a three-camera system, and the described evalua-
tion is not only done for a few triples of images but for trinocular (‘long’) image se-
quences, and (in this paper) for one 100-frame synthetic stereo image sequence where
a third camera may be simulated based on available ground truth (see Figure 1). The
use of long sequences allows us to observe the influence of varying situations (e.g.,
brightness differences between left and right image, or reflections) on the algorithmic
performance. It allows to incorporate temporal filters into disparity calculation. To the
best of our knowledge, the prediction error has not been used so far on long (especially
real-world) stereo sequences.

The outline of this paper is as follows. We briefly recall a geometric approach that is
commonly used to generate a virtual image from a disparity map and a pair of rectified
images, and discuss poses of the third camera (Section 2). Section 3 informs about
evaluated stereo algorithms, used quality metrics and experimental results. Conclusions
are stated in Section 4.

2 Geometry of the Third View

Assume three cameras; the left and right camera are rectified [6] in such a way that their
images satisfy the standard stereo geometry [9]. The left (right) camera is the reference
(matching) camera and records the reference (matching) image. The third camera may
be at an arbitrary pose and provides the third image. The predicted image is the virtual
image.

2.1 Common Forward Equations

The coordinate system of the reference camera is identified with the world coordi-
nate system. Image coordinates are defined by each camera individually. The reference,
matching and third camera are positioned as sketched in Figure 2; the camera center of
the reference camera is at O = (0, 0, 0), that of the matching camera at OM = (b, 0, 0),
and that of the third camera at OT = (b1, b2, b3). Let P = (X,Y, Z) be a scene point

Fig. 2. Illustration of three-camera notations
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visible for all the three cameras, and p = (x, y), pM = (xM , yM ), and pT = (xT , yT )
are its projections on the reference, matching, or third image plane, respectively. In the
virtual image we have pV = (xV , yV ). Let b be the base-line distance, f the rectified
focal length of reference and matching cameras, and d the disparity between p and pM ;
disparity values have been calculated by some stereo matching algorithm. It follows [6]
that

xV = fT · m11(bx− db1) + m12(by − db2) + m13(bf − db3)
m31(bx− db1) + m32(by − db2) + m33(bf − db3)

(1)

yV = fT · m21(bx− db1) + m22(by − db2) + m23(bf − db3)
m31(bx− db1) + m32(by − db2) + m33(bf − db3)

(2)

where mij are the elements in the rotation matrix (from third into reference camera
system, defined by rotation angles α, β, and γ; see Figure 2), for 1 ≤ i, j ≤ 3, and
fT is the focal length of the third camera. These two forward equations (e.g., see [8])
allow us to map any pixel (x, y) in the reference image into a point (xV , yV ) in the
image plane of the virtual image, to be shown at the nearest pixel position.

2.2 Poses of the Third Camera

Occluded points may cause a bias when evaluating the performance of a stereo algo-
rithm. (This may be illustrated by examples generated for the used synthetic stereo se-
quence in Set 2 on [3]; occluded points vary depending on the pose of the third camera.)

By increasing differences between poses of the third and the other two cameras, more
occluded areas occur in the virtual image. A point P may be visible in the reference and
in the third view, but still possibly occluded in the matching image. Texture cannot be
assigned in the virtual image if P is not visible in left or right image, as there is no depth
information available in this case. Occlusions may be reduced (in general) by having
the third view between left and right camera. Figure 3 shows three different occlusion
cases. We may predict a virtual view at a new pose; we can also identify this ‘new’ pose
with one of the two given poses of the left and right camera.

The Symmetric Pose. The symmetric pose of the third camera (i.e., focal point half-
way on base line between reference and matching camera, with perpendicular bisector
incident with optical axis) is expected in general to be the one which minimizes im-
pacts of occlusions (i.e., the total number of either black or white pixels). In evaluations

Fig. 3. Stereo sequence in Set 2 of [3]. Left to right: calculated (from ground truth) image of a
virtual camera positioned on the left of the reference camera; two calculated virtual images at
poses of the left and right camera; ground truth for the left image. Used disparity code: light =
close, dark = far, white = occlusion.
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it would be ideal to separate the impact of occlusions from those of incorrect matching.
Thus, the symmetric case seems to be a good choice. However, errors due to mismatches
may not be as obvious when the pose of the third camera differs (much) from the sym-
metric case.

Collinear Poses. The focal point of the third camera is on (or close to) the base line of
the left and right camera. For example (see left of Figure 3), if the third view is on the
left of the reference camera, both kinds of occlusions (black and white) are present in
the novel view.

For this paper we decided for the collinear case, having the third camera approx-
imately 40 cm to the left of the reference camera. Rectified reference and matching
camera are about 30 cm apart from each-other.

3 Evaluations Using the Third Sequence

For each rectified stereo image pair of a given sequence and its calculated depth map, we
generate an image as it would be seen by a virtual camera in exactly the same collinear
pose as our third camera (i.e., left of the reference camera). For this paper we use two
sequences illustrated in Figure 1.

The gray-value synthetic sequence from Set 2 of [3] consists of 100 stereo pairs with
available ground truth [16]. The usage of this sequence allows us to integrate results
from a previous study [12] obtained for the same data set. We generate from available
ground truth an image sequence (with occlusions) for a third camera being about 40 cm
to the left of the reference camera.

We compare evaluation results for this synthetic example with those obtained for a
trinocular real world sequence of 150×3 frames, taken with three calibrated cameras
mounted in the research vehicle of the .enpeda.. project. We selected the center and
right camera to be the reference and matching camera, respectively. The focal point of
the reference camera is considered to be the origin of the world coordinate system, and
the other two cameras are calibrated with respect to this coordinate system.

Stereo Algorithms. We aimed at testing a representative collection of various stereo
algorithms, and our selection is as follows:

Dynamic programming stereo. We compare a standard algorithm [13] (DP), against one
with temporal (DPt), spatial (DPs), or temporal and spatial (DPts) propagation; see [11]
for specifications of propagation.

Belief propagation stereo. We use a coarse-to-fine algorithm BP [4] with quadratic cost
function, with parameter settings as reported in [5].

Semi-global matching. An SGM strategy [7] allows us to use different cost functions;
we use mutual information (SGM MI) and Birchfield-Tomasi (SGM BT).

Graph Cut. For a detailed discussion of the GC method, see [2] and [10].

Quality Metrics. We use two common quality metrics. Let (x, y) be a pixel in the
reference image IR with intensity IR(x, y) and let (xV , yV ) be the corresponding point
in the virtual image IV , with calculated intensity IV (xV , yV ) = IR(x, y). For each
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frame t of the given trinocular sequence, we compute the root mean squared (RMS)
error between the third and the virtual image as follows:

R(t) =
1

|Ωt|

⎛⎝ ∑
(x,y)∈Ωt

[IT (x, y) − IV (x, y)]2
⎞⎠

1
2

where |Ωt| denotes the cardinality of the discrete domain Ωt of non occluded pixels
for frame t. The normalized cross correlation (NCC) is also used to compare third and
virtual image, applying the following:

N(t) =
1

|Ωt|
∑

(x,y)∈Ωt

[IT (x, y) − μT ][IV (x, y) − μV ]
σTσV

μT and μV denote the means, and σT and σV the standard deviations of IT and IV ,
respectively.

Results for the synthetic sequence. For the RMS results (see Figure 4, left, and Ta-
ble 1, left), the algorithm with the best overall performance was SGM BT, followed by
BP and SGM MI; GC ranks fourth followed by the dynamic programming algorithms.
Note that the order of rankings is about constant along the synthetic sequence.

The larger errors occurring in the first ten frames are a result of large occluded areas
(Note that occluded points have influence on the calculation of the disparity map as
well as on the generation of the virtual view.) caused by a close object - a car. The
local error maximum around frame 45 is caused by a similar situation. However, we
can conclude that the summarized ranking of the algorithms is not affected by those
situations. The other local error maxima, around frames 15, 20 and 60, are due to errors
in the calculated disparity maps, as there are no obvious changes in occluded areas in
those frames.

The ranking of the algorithms resembles the one obtained in [12], where a different
evaluation methodology was used (not a third camera but just a comparison with ground

Fig. 4. Frame-by-frame results for the synthetic sequence. Left: RMS. Right: NCC; note that
closer to 1.0 means “better”.
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Table 1. Summarizing results for the synthetic sequence. Left: RMS. Right: NCC.

Algorithm Mean Min Max
SGM BT 34.05 13.67 30.68
BP 35.69 14.72 31.59
SGM MI 35.72 14.24 29.85
GC 36.67 17.30 34.19
DPs 37.55 13.75 32.43
DPt 37.68 12.99 32.43
DP 37.70 12.95 32.53
DPts 37.70 13.03 28.98

Algorithm Mean Min Max
GC 0.77 0.75 0.79
SGM BT 0.74 0.72 0.76
BP 0.70 0.69 0.72
SGM MI 0.69 0.65 0.71
DPt 0.43 0.38 0.45
DP 0.42 0.40 0.47
DPs 0.40 0.38 0.45
DPts 0.39 0.37 0.43

Fig. 5. Examples of virtual images for the best four performing algorithms for both metrics. The
black strip on the top is due to a minor tilt in the pose of the third view. Left to right: SGM BT,
BP, SGM MI, and GC (RMS ranking).

truth). There, it was also stated that SGM BT performed best for this sequence. How-
ever, BP and SGM MI swapped their positions in the different evaluations in [12] and
here. Another difference is that DPs ranked third among the four dynamic programming
algorithms in that previous study, but shows now best performance out of those four.

The NCC measure ranking is different from the one derived from RMS. The GC
algorithm performs best overall now, followed by SGM BT, BP and SGM MI. Figure 5
shows the virtual images of frame 22 for the top four performing algorithms for the
both metrics. The four dynamic programming algorithms were the worst again; with
DPt performing best for most of the frames, and DPts being the worst. For the top four
algorithms it is evident that the performance on the first ten frames is again limited,
impacted by occlusions; the four dynamic programming algorithms do not show this
change in performance.

Results for the Real World Sequence. For RMS, all the eight algorithms behave pretty
much the same! The difference in magnitude is not evident at all as the function graphs
are highly overlapping; see Figure 6. Ranking at one particular frame may be totally
different to a ranking at another frame! However, Table 2 shows that DPts appears to be
the best algorithm with respect to RMS, followed closely by DPt. The worst algorithm
by far is GC in this case. The local maxima correspond, also for this sequence, to frames
where there are closer objects to the ego-vehicle, causing more occluded areas. – The
NCC results show a totally different ranking. For this metric, BP performs the best,
followed by DP and DPt; DPts was the worst algorithm for this metric, which tells us
that it calculates inaccurate values at many pixels, but errors are fairly small. Note that
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Fig. 6. Frame-by-frame results for the real world sequence. Left: RMS. Right: NCC.

Table 2. Results for the real world sequence. Left: RMS. Right: NCC.

Algorithm Mean Min Max
DPts 19.74 13.03 28.98
DPt 19.75 12.99 32.43
SGM MI 20.09 14.24 29.85
SGM BT 20.09 13.67 30.68
DP 21.19 12.95 32.53
BP 21.91 14.72 31.59
DPs 22.23 13.75 32.43
GC 24.79 17.30 34.19

Algorithm Mean Min Max
BP 0.85 0.79 0.89
DP 0.84 0.76 0.89
DPt 0.83 0.75 0.72
GC 0.80 0.74 0.84
SGM MI 0.73 0.63 0.81
SGM BT 0.69 0.62 0.73
DPs 0.62 0.54 0.72
DPts 0.50 0.42 0.61

Fig. 7. Examples of virtual images for the top four performing algorithms on the real-world se-
quence. Upper row (NCC), left to right: BP, DP, DPt, and GC. Lower row (RMS), left to right:
DPts, DPt, SGM MI, and SGM BT.
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SGM MI performs better than SMG BT, which confirms the ranking in [12], where
SMG BT proved to be more sensitive to common real-world noise than SGM-MI. In
general it seems that NCC ranking is more appropriate on real-world sequences than
RMS-ranking; see Figure 7 for an example.

4 Conclusions

This paper evaluates the performance of several stereo algorithms, using the generation
of a virtual image from the disparity map. We conclude that this prediction error anal-
ysis is a valuable tool to test the performance of stereo algorithms when no real-world
ground truth is available. We notice a good correlation with RMS evaluations as pre-
viously obtained for the used synthetic sequence in [12], where the methodology was
characterized by using the ground truth. Occlusions seem to have an influence on the
magnitudes of the errors, but do not seem to affect the ranking of the algorithms very
much. It is also evident that testing algorithms on real world sequences is necessary, as
the rankings of algorithms may vary totally if used on either a synthetic or a real world
sequence. The nearly constant ranking order on the synthetic sequence appears to be
due to missing diversity of situations, as occurring in real-world sequences.

Future work may use different positions for the third camera and different metrics in
order to widen the study about relationships between occlusions and accuracy for the
presented approach.

Acknowledgement. The authors thank Stefan Gehrig for his implementations of SGM,
Shushi Guan for his specification of the [4] implementation of BP, Joachim Penc for his
GC implementation, and Tobi Vaudrey for his valuable comments.
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Abstract. We propose an Online Inferential Framework (OIF) for
tracking humans and objects under occlusions with Kalman tracker.
The OIF is constructed on knowledge representation schemes, precisely
semantic logic where each node represents the detected moving object
and flow paths represent the association among the moving objects. A
maximum likelihood is computed using our CWHI-based technique and
Bhattacharyya coefficient. The proposed framework efficiently interprets
multiple possibilities of tracking by manipulating the ”propositional logic”
on the basis of maximum likelihood at a time window. The logical propo-
sitions are built by formularizing facts, semantic rules and integrity con-
straints associated with tracking. The experimental results show that our
novel OIF is able to track objects along with the interpretation of their
physical states accurately and reliably under complete occlusion, illus-
trating its contribution and advantages over various other approaches.

1 Introduction

Ideally, it is expected in tracking to estimate the trajectory of the object to
interpret its path. But practically it is not simple due to illumination variation,
camera motion, and on field conditions. Besides, many other issues such as in-
ternal and external occlusion, abrupt change in orientation, and motion of the
object make tracking a difficult problem. However, in this paper we are only
addressing partial and full occlusions. Tracking has been extensively studied; a
detailed review on visual tracking is given in [1],[2]. One of the prominent tech-
niques is the data association approach such as Probabilistic Data Association
(PDA) [3], Probabilistic Multi-hypothesis Tracker (PMHT) [4], and Multi hy-
pothesis Tracker (MHT) [5]. Another approach is the online data association,
where the decision of association is based on the computations of each consec-
utive frame which however is very sensitive to detected features and may result
in false association. In [6], a solution is suggested by taking a time window T
to reduce ambiguities which may arise due to occlusions. However, these meth-
ods have an edge over classical data association in which the association and
estimation relies on the priors of previous frames.

Other authors use reasoning-based approaches to address the occlusion prob-
lem. For example, Elgammal et al.[7] presents occlusion-reasoning explicitly us-
ing segmentation when object interacts with each other. Each entered object is

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1087–1095, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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considered as isolated until any interaction is observed. As the objects interact,
a color model is assigned which is then segmented in order to track object dur-
ing occlusion. Wu and Nevatia [8] proposed a body part-based representation
and detection of objects where the heuristics are used to overcome the inter-
object occlusions. Recently, Rayoo and Aggarwal [9] proposes another approach
based on Bayesian inference for long term occlusion where the object is entered
in an explanation mode if the occlusion is observed. However, in the proposed
technique with every successive frame a wide range of combination arises, thus
computational complexity may raised. Therefore, despite of the many techniques
that have been proposed to address problems and sub-problems related to track-
ing; yet, it still remains problematic and challenging.

In this paper, we present a generic framework for tracking objects using se-
mantic logic-based framework and the maximum likelihood for data association.
Our goal is to reliably track objects under severe occlusion with a motivation
of tracking without any scene restriction and prior training. Our OIF extends
the capabilities of Kalman tracker; so that it can handle occlusions explicitly.
The paper is organized as: section 2 discusses tracking as a logical problem; The
proposed OIF framework is introduced, conceptually in section 3 followed by the
practical implementation of our tracking system in section 4. Section 5 repre-
sents the experimental results. Finally, the concluding remarks and the future
directions of the work are sketched in section 6.

2 Tracking as Logical Problem

In our previous works, it is observed that online tracking of object during
occlusion is a very generic problem but a generic solution is missing. This
motivates us to interpret tracking as a logical problem and fuse it with typi-
cal predict-update model. The main contribution of this innovative idea is to
prune the generation of wrong possibilities during data association through the
”cognitive” state of the moving objects. For example if the object has just
entered in the scene then it will be not considered when searching the ”oc-
cluded” object. The data extracted from the pre-tracking stage (i.e. detection)
at every time frame t is interpreted as a node which contains a property set.
This property set represents two data structures which include: feature set and
state set. The feature set is typically a set of physical features of detected ob-
ject Fi = {hi, ai, φi, ci, bi} whereas the state set represents the cognitive state of
the object Si = {normi, occdi, overi, rappi, exiti, newi}. Each object has a fixed
identity number which remains unchanged throughout tracking as presented in
the illustration in Fig.(1).

During the propagation of inference models, these property sets are updated
and stored in the knowledge base (i.e. hierarchical form) to generate next in-
ferences. In this way, we represent our tracking problem on logical network (i.e.
semantic inferences) to track objects. The propagation of flow path is based on
maximum likelihood and integrity constraints. The search space criteria and in-
tegrity constraints are analogous to hypothesis pruning in this work. Thus, we
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Fig. 1. The logical model of the object with its property set

are able to not only track objects efficiently by fusing logical framework in it,
but also able to interpret the state of object.

3 OIF: A Conceptual Explanation

The main motivation behind OIF is to associate and incorporate the cognitive
inference methodology (i.e. how a human-tracker would track multiple objects?)
in tracking and manage the searching possibilities as mentioned in section2.

3.1 Logic Representation and Semantic Inference for Tracking

A semantic-logic based framework contains three components which builds our
inferential framework. In this network, every detected moving object is a node,
the relations among the nodes are built and inferred by manipulating logical
premise, an elucidation of how human-tracker handles tracking?

Facts. Starting from the left: normal, occluded, overlaper, reappear, exit and
new are the object’s observation i at time t.

Facts =
{
Onorm

i , Ooccd
i , Oover

i , Orapp
i , Oexit

i , Onew
i

}
(1)

Property set. The property set (see Fig.(1)) represents a unique property of
each detected object in the scene. This data structure comprises of two sub
structures as described in following:
– Feature set: These feature set are the result of post-detection response.The

structure of the feature set is given below:

Fi = {hi, ai, φi, ci, bi} (2)

where hi, ai, φi, ci, bi is the histogram, appearance, orientation, centroid and
boundary of the detected object respectively.

– State set: The logical inference and tracking status of the object is built by
keeping the cognitive interpretations under consideration. This state set can
be expanded further but initially, the following states are associated to detect
the objects:

Si = {normi, occdi, overi, rappi, exiti, newi} (3)
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Fig. 2. A logical interpretation is presented. In (a) normal inference and tracking is
shown in the scene, the property set is updated by OIF. In (b) the logical inference of
”new” object is presented. In (c) The exit state inference is described.

3.2 Semantics and Semantic Events for Inference

Notations: These notations are used in following section: i is the observation
instance, 1, ..., k represents the identities of the object, l is the likelihood.

For Normal [Onorm
i ]. This status of moving object shows ideal behavior of

detected object which is set during each detection when no appearance cluttering
is observed as presented in Fig.(2a). This is the ideal situation of tracking when
the property set of the objects are updated on the basis of maximum likelihood
computation. The tracking system updates the location of the detected moving
object by calculating the likelihood at time window T.
– Event: isNormal() Following is the semantic relations for ”normal”

O
{1,...,k},norm
i ⇒ O

{1,...,k},norm
i+1

iff O
{1,...,k},norm
i+1 ⊆ S

{1,...,k},norm
i ∧ iff max

[
0∑

n=−3

li+n,i+1

]

For New [Onew
i ]. The decision of assigning ”new” state is taken after consid-

ering two possibilities: the object search space must not fall in existing object
space and the likelihood of the new detected object is minimum when compared
to the existing objects. New detected object is assigned a new identity and a
Kalman tracker is initialized to estimate its trajectory during the entire course
of tracking as shown in Fig.(2b).
– Event: isNew() The logical premise is given below:

O
{h},new?
i+1 ⇒ O

{h},new
i+1 iff¬

[
O

{h},new
i+1 ⊆ S

{1,...,k},norm
i

]
For Exit [Oexit

i ]. The object is set to ”exit”, if the object is outside the region
SI of the active scene. After this state, the tracker of the object is set to inactive
and tracking is stopped. This object will not take part in any searching (i.e. dead
node) as shown in Fig.(2c).
– Event: isExit() The interpretation is shown below:

O
{h},norm
i ⇒ O

{h},exit
i iff ¬

[
O

{h},norm
i+1 ⊆ SI

]
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For Overlaper [Oover
i ]. The object which retains its contextual information

during occlusion is named as ”overlaper” as presented in Fig.(3a). At first, both
objects must fall in conflict search space, and then the maximum likelihood at
time window T is computed and summed. The moving object with state ”over-
laper” contains its occluding object as child. As a result,two Kalman trackers are
associated with one ”conflicted” object. The feature set of the occluded object
is updated using breadth-first search (BFS), an exhaustive searching technique
whereas the state set reflects the conflicted-phase. The overlaper (i.e. parent) is
our root node which expand and update its child nodes (i.e. occluded) until no
child exits. The updation of overlaper and occluded object continues till split
occurs.
– Event: isOverlap() The inference of overlaper state is given below:

O
{h},norm
i ⇒ O

{h},over ∧ norm
i

iff O
{1,...,k},over ∧ norm
i+1 ⊆ S

{1,...,k},norm
i ∧ iff max

[
0∑

n=−3

li+n,i+1

]

For Occluded [Ooccd
i ]. During tracking, if an object lost its contextual infor-

mation (i.e. features are affected by the influence of other moving object) due
to occlusion, the object status is set to ”occluded”. As shown in Fig.(3a). After
occlusion, the occluded object becomes a child of its overlaper and adapts the
feature set of its parent, whereas the state set reflects its own behavior. Also it
is not considered in any search till it reappears.
– Event: isOccluded() The state inference is based on the following:

O
{h},norm
i ⇒ O

{h},occd
i

iff O
{1,...,k},norm
i+1 ⊆ S

{1,...,k},norm
i ∧ iff min

[
0∑

n=−3

li+n,i+1

]

For Reappear [Orapp
i ]. When the split occurs, we track the instance of oc-

clusion in the past at time t using backward chaining and then computes the
maximum likelihood of the object. The maximum likelihood sets the object state
as ”reappeared” as illustrated in Fig.(3b). When the split occurs, the child-parent
relationship is killed and ”occluded” state is updated to ”normal”.
– Event: isReAppear()

O
{1,...,k},occd
i ⇒ O

{h},rapp
i iff max

[
0∑

n=−3

li+n−t,i+1

]
where t is the instance of time when occlusion was occurred.

3.3 Integrity Constraints

Following are the set of integrity constraints used in our logical framework:
– if Onew

i ⇒ true then ¬
(
Ooccd

i ∧ Oexit
i ∧ Orapp

i

)
– if Oexit

i ⇒ true then ¬
(
Ooccd

i ∧ Oover
i ∧ Onorm

i ∧ Orapp
i

)
– if Ooccd

i ⇒ true then ¬ (Onorm
i ∧ Orapp

i ∧ Oover
i )
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Fig. 3. In (a) state inferential model for occlusion is presented; In (b) the occluded
object is reappeared afetr split

4 Implementation of Tracking System with OIF

In previous section 3, a conceptual and practical description is presented for our
generic framework. Here in this section, we explain the likelihood computation
for logical inferential model and tracking algorithm.

4.1 Maximum Likelihood Computation

During tracking, the states of objects are determined using maximum likelihood
observation which is based on the online data association approach at time win-
dow T to avoid ambiguities of data association. Currently, we are using color
features for maximum likelihood computation. The likelihood among objects
is measured by integrating the CWHI-based technique [10] and Bhattacharyya
coefficient, a general description is found in [11]. The formulations of these ap-
proaches are as follows:

CWHI-based likelihood. This approach is based on computing the normal-
ized histogram correlation and use that correlation with conventional histogram
intersection technique [12]. The relationship between color distance and the nor-
malized correlation weights is formalized as defined below:

CWHI =
∑

i=hisM

∑
j=hisT

min (hM (i) , hT (j)) exp

(
− d

2ρ2
fused

)
(4)

where d is the euclidean color distance, hM (i) represents histogram of the object
at time t-1 and hT (i) represents histogram of objects at time t.

Bhattacharya coefficient. Bhattacharya coefficient approximates the normal-
ized distance between the histograms of the objects hM (u) and hi

T (u) as defined
in following:

BC
(
hi

T (u), hM (u)
)

=
m∑

u=0

√
hi

T (u)hM (u) (5)

where hi
T (u) and hM (u) are the histogram of object at time t and t-1, respec-

tively, m is the dimension of the histogram, u is the index of each bin and i is
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Fig. 4. The normal tracking of object with state window is presented. In the state
window terms used are(from left to right): N = normal, C = overlaper, M= occluded,
R = reappear; S = splitfrom, N = new, and E = exit. [Note: colored images are available
online]

the object identity. The maximum BC
(
hi

T (u), hM (u)
)

represents the maximum
likelihood of the object i with the model object histogram.

Combined maximum likelihood. The likelihood is computed iteratively at
time window T. Therefore, the combined likelihood Cbc,cwhi from i to T is com-
puted using following formulation:

l = Cbc,cwhi = BC + CWHI (6)

4.2 Tracking Using Kalman Filter

In whole tracking system, each Kalman tracker is associated with a specific
object and responsible for the estimation of the object trajectories where the
identities of object are managed by our OIF. Kalman tracker is defined in terms
of its states and measurement equations. We consider the center of gravity of
moving objects (i.e. the trajectories txt and tyt ) at time t as the states for Kalman
tracker, hence the state vector and the measurement vector is as follows:

xt =
[
txt tyt

]T
zt =

[
txt tyt

]T

A is the transition matrix and H is the measurement matrix of our tracking system
along with the Gaussian process noise wt and measurement noise vt. These noise
values are entirely dependent on the system that is being tracked and adjusted
empirically. Finally, the equations of our tracking system are:

xt = Axt−1 + wt and zt = Hxt + vt

5 Experiments

We test our proposed approach on different cases which are observed in real
scenes. In the Fig.(4), each detected object is assigned an identity called Moving
Object Identity(MOID) and the trajectory is the estimated result of Kalman
tracker. Besides, the state set window illustrates the mapping of cognitive state
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Fig. 5. In (a) (top to down), three objects are detected with normal state, the states
are updated in frame k+36 when the occlusion occurs, similarly the tracking and state
updation are observed in the entire scene. In the second sequence (b), cars are tracked
under occlusions where the states of the objects are presented in state window.

of the object. When a new object is detected a symbol ”N” is visible, similarly
when object exits from the scene, the exit ”E” status is active. It is noticeable
that the objects size is very small and colors are very similar but our OIF is able
to maintain their state accurately despite of the fuzzied likelihood measurements,
thus tracking is reliable. In the second case which is shown in Fig.(5a), humans
are tracked under full occlusions. It is observed that in frame k+36 two objects
with MOID 0 and 1 occlude each other fully where the object with MOID 0
is the overlaper and the object with MOID 1 is the occluded object and is
reappeared in frame k+51. In the state window, the respective states are active
during occlusion and split. In the same video at frame k+64, another occlusion is
observed due to object with MOID 2 which occludes the object 0. The occluded
object is reappeared in frame k+71. The inference of object state is presented in
state window, thus object under multiple occlusion can be tracked with OIF.

Fig.(5b) demonstrates tracking of object with crossing and parallel tracks.
The example shows two objects occlude each other in frame k+10, where the
occluded object’s MOID is 0 which is reappeared in frame k+11. The same
object is occluded by object with MOID 2 which is reappeared again in frame
k+26 after split. The results present all the states of the object during tracking
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as explained in section 3. The experimental results shows efficient tracking using
the proposed OIF which is based on online data association, therefore no prior
threshold and empirical values are required.

6 Conclusion and Future Work

In this paper, the proposed novel framework handles occlusions, where property
set interpretation is based on maximum likelihood computation. Later, each
object links to its tracker. The tracking is very robust and efficient, however it
is very pertenient to associate the correct Kalman with its object. In future, we
will experiment our logical model with some reliable detection technique (i.e.
AdaBoost) and will analyze more complex scenes.
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Abstract. Dynamic Programming (DP) is a popular and efficient method for cal-
culating disparity maps from stereo images. It allows for meeting real-time con-
straints even on low-cost hardware. Therefore, it is frequently used in real-world
applications, although more accurate algorithms exist. We present a refined DP
stereo processing algorithm which is based on a standard implementation. How-
ever it is more flexible and shows increased performance. In particular, we intro-
duce the idea of multi-path backtracking to exploit the information gained from
DP more effectively. We show how to automatically tune all parameters of our
approach offline by an evolutionary algorithm. The performance was assessed on
benchmark data. The number of incorrect disparities was reduced by 40 % com-
pared to the DP reference implementation while the overall complexity increased
only slightly.

1 Introduction

Stereo vision’s task is to estimate depth by calculating a disparity map for two input
images. It has actively been investigated for decades and still is a vivid topic in computer
vision – mainly driven by a wide range of possible fields of application like robotics,
automotive systems, surveillance and augmented reality just to name a few.

Depending on the application, very different requirements and objectives, i.e. run-
time and performance, are relevant. If there are only weak constraints on these issues, a
look at the Middlebury Stereo site1 established by Scharstein and Szeliski [1,2], which
compares results for a lot of different approaches, allows for finding a state-of-the-art
algorithm.

However, if problem specifications become more restrictive, e.g. in terms of real-time
performance on limited hardware resources, there are much fewer options as require-
ments may include low memory usage, mainly linear memory access, few complex
operations (like floating point instructions), and parallelizability. DP approaches are
perfectly suitable in this context, providing all the properties listed while their perfor-
mance is sufficient for most real-world applications.

1 http://vision.middlebury.edu/stereo/
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In this work we will focus on how to tap the full potential of the basic, pixel-wise
DP algorithm itself. We modify it to be better parameterizable and perform automatic
offline optimization of those parameters. Additionally, we introduce a new idea to ex-
haustively benefit from the information gained by the DP – namely through a multi-path
backtracking.

This article is organized as follows. In the forthcoming section, we present related
work on DP stereo methods. The algorithm we chose as reference is presented in more
detail in section 3. In section 4 modifications to this algorithm proposed by us are pre-
sented. Section 5 describes how the parameters of the new approach are optimized for a
given task using the Middlebury benchmark images as an example. Finally we discuss
our results in section 6.

2 Related Work

DP was first used for edge-based approaches, for example by Ohta and Kanade [3].
Geiger et al. [4] were among the first to propose a DP stereo method based on pixel-wise
intensity differences. Bobick and Intille [5] presented the algorithm whose implemen-
tation serves as reference for this study. It is described in detail in section 3.

In [6] the usage of MMX, Assembler code, and some other techniques allow for
building a real-time DP based stereo system. No results can be found in the Middle-
bury benchmark, but the results reported for two of the four current test images show a
slightly better performance than the reference implementation does.

In [7] Gong et al. introduce a so called reliability-based DP algorithm. Tracing more
than just the best path after the optimization step they provide a reliability measure for
each disparity. A similar technique will be applied in this work.

Kim et al. [8] present a DP based algorithm which identifies possible disparities for
each pixel by comparing orientation filter responses. The first (horizontal) DP optimiza-
tion step is then performed only taking into account those candidates. Costs caused by
that optimization step are incorporated in an energy function which is finally optimized
in vertical direction. Computation takes several seconds on the Middlebury benchmark
images. The idea of identifying candidates and choose among them can be found in our
approach, too, but it is conducted in a different manner.

In [9] adaptive cost aggregation in the vertical direction (considering color informa-
tion) is used to improve the DP results. Real-time capability is achieved with a GPU-
based implementation.

Veksler introduces a DP algorithm that works on a tree structure instead of image
rows [10]. Her implementation takes less than 1 s and performs almost 20 % better on
the Middlebury benchmark data than the basic method.

3 Reference Implementation

As reference and baseline for comparison, we consider the algorithm ranked 49th in the
Middlebury evaluation under the name of ’DP’. The source code is freely available as
part of the StereoMatcher framework. Because the goal in [1] was to evaluate the opti-
mization technique itself, the DP approach presented in [11] was applied, but without
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shiftable windows and ground control points. In the course of this section the algorithm
is described.

3.1 Cost Calculation

The matching costs dSAD for two pixels P and Q are based on the sum of absolute
differences (SAD) which is

dSAD(P,Q) = dR(P,Q) + dG(P,Q) + dB(P,Q) (1)

for RGB images, where dR(P,Q) = |PR −QR| with PR as red component of pixel P
etc. The cost for matching two pixels is interpolated in the range of a half pixel as
proposed by Birchfield and Tomasi [5]. The result is the cost matrix C of size X ×N
for every image row, where X is the length of the row and N the number of allowed
disparities.

3.2 Cost Aggregation

Values in the cost matrix are not aggregated. Thus, optimization is only based on the
interpolated pixel-to-pixel intensity differences.

3.3 Optimization

The optimization is performed independently for each image row. A path with minimal
total cost through the matrix C has to be found (cf. [11]). While the naive technique,
i.e. calculating costs of all possible paths independently, would lead to a computational
complexity of O(NX), DP solves this in O(NX). The algorithm works in two phases:
forward step and backtracking.

During the forward step, three possible states for each pixel and each disparity are
managed simultaneously: M (matched), V (vertical occlusion) and D (diagonal occlu-
sion). Pixels in matched state are assigned the corresponding cost from C , Pixels in
states V or D are penalized by cocc. Starting an occlusion is additionally penalized by
ρI(ΔI) which depends on the actual intensity gradient ΔI and is realized as

ρI(ΔI) =

{
csmooth if ΔI < tI

csmooth · p if ΔI ≥ tI .
(2)

The algorithm on the left side in figure 1 contains pseudo code for one part of the
forward step and storage of the best transition leading to state M .

In the backtracking phase the minimal cost path is followed backwards along the
stored transitions. At the same time, pixels in the result image are set to the correspond-
ing disparity values or marked occluded.

3.4 Refinement

Pixels marked as occluded are filled from left to right. No sub-pixel refinement is per-
formed.
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4 Proposed Algorithm

Our implementation provides modifications of the reference algorithm. We add more
flexibility and aim at utilizing the information gained from DP more efficiently.

4.1 Cost Calculation

We propose calculating a weighted Euclidean distance in the RGB-space

dEuklid(P,Q) =
√

wR · d2
R(P,Q) + wG · d2

G(P,Q) + wB · d2
B(P,Q), (3)

where the three components are weighted individually by wR, wG, and wB respectively.
The Birchfield cost measure is not applied because experiments in [1] did not show

pay-off concerning efficiency.

4.2 Cost Aggregation

Slight aggregation in vertical direction, between neighboring scanlines, is performed.
To realize that, we store the cost matrices for the current row and the two adjacent ones.
A vertical Gaussian filter with weights (1, 2, 1) is applied previous to optimization in
order to calculate a smoothed match matrix.

4.3 Optimization

Extended parametrization. We introduce more parameters to the DP technique to allow
for more flexibility: Different penalties for diagonal and vertical occlusions (cD , cV )
and for starting these occlusions (pD , pV ) are provided. Additionally, we introduce
rewards rD and rV for transitions leading from occluded to matched state as counterpart
to the penalties. As the penalty pD and reward rD e.g. would cancel each other out, this
is only useful if all these costs are gradient-dependent. Therefore, for every parameter •
named above, there is also a corresponding one used if ΔI ≥ tI , marked as •̂.

Multi-path backtracking. It is noteworthy that a lot of information is generated during
optimization, but most of it is disregarded in the classic approach: During the forward
step only one transition per cell is chosen, not taking into account (almost) equally good
solutions. For backtracking, just one possible path ending is considered.

We explicitly aim for incorporating more information for optimization. So, during
the forward step of DP, almost-optimal transitions are stored. A transition is almost-
optimal if its cost does not differ more than Δc from the best one. Figure 1 shows the
resulting changes in pseudo code.

After the forward step, in the classic DP approach the only solution is found in the
last column, corresponding to a path ending with minimal total costs m. We propose to
additionally trace alternative path endings with costs c ≤ τ ·m (with τ > 1). Depending
on the information from the forward step, more than one transition can be considered
at every point during backtracking. All resulting possible paths through the DP array
can be found by depth-first search, keeping track of already visited nodes in order to
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cMM ← A(x− 1, d, M) + C (x, d);1

cVM ← A(x− 1, d, V ) + C (x, d);2

cDM ← A(x− 1, d, D) + C (x, d);3

cMin ← min(cMM , cVM , cDM );4

A(x, d,M)← cMin;5

if cMM = cMin then6

optTrans(x, d)← −−−→MM ;7

else if cVM = cMin then8

optTrans(x, d)← −−→V M ;9

else if cDM = cMin then10

optTrans(x, d)← −−→DM ;11

cMM ← A(x− 1, d, M) + C (x, d);1

cVM ← A(x− 1, d, V ) + C (x, d)− rD;2

cDM ← A(x− 1, d, D) + C (x, d)− rV ;3

cMin ← min(cMM , cVM , cDM );4

A(x, d, M)← cMin;5

if cMM ≤ cMin + Δc then6

isPosTrans(x, d,
−−−→
MM)← true;7

else8

isPosTrans(x, d,
−−−→
MM)← false;9

if cVM ≤ cMin + Δc then10

isPosTrans(x, d,
−−→
V M)← true;11

else12

isPosTrans(x, d,
−−→
V M)← false;13

if cDM ≤ cMin + Δc then14

isPosTrans(x, d,
−−→
DM)← true;15

else16

isPosTrans(x, d,
−−→
DM)← false;17

Fig. 1. Treatment of state M for pixel at x and disparity d during forward step of DP in the
reference implementation (left) and in our approach (right)

Fig. 2. Cost matrix for a single image row with path found by basic DP (top) and same matrix
with results from multi-path backtracking (bottom)

avoid multiple processing. Figure 2 shows an example for optimization results in the
reference implementation and in our approach.

If a pixel at (x, d) is traversed with state M , the disparity d is possible in this image
row at position x and this information is stored, resulting in a sparse representation of
candidate disparities for every pixel. As the assignment of disparities is not definite as
in the reference implementation, an additional selection step is necessary.

Vertical optimization. To chose from the sparse number of candidate disparities, an
additional optimization step is performed. The same idea as used for the horizontal
optimization step is realized here: an assignment from the possible disparities in a col-
umn with minimal cost is chosen. If there was not found any possible disparity for a
pixel at all during backtracking, every disparity is allowed. The cost function enforces
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smoothness by penalizing neighbor disparities that differ by 1 with λ and disparities
that differ more with μ. Again, this optimization problem can be solved with DP, but
here, it is significantly less complex due to the smaller amount of possible solutions.
Resulting disparity values are accepted if the corresponding matching cost is less than
Cmax. Otherwise, the pixel is marked as occluded.

4.4 Refinement

Occluded regions in the disparity image are filled in the same manner as in reference
implementation. Furthermore, disparities for the left border of the reference image are
not calculated, because not all matching costs can be computed there. This border region
is filled from the right side.

5 Experiments

Along with our modifications and in favor of more flexibility the total number of pa-
rameters increase from four to 21, cf. table 1 for an overview. To tune the parameters
offline, we use the Covariance Matrix Adaption evolution strategy (CMA-ES) [12], a
variable-metric evolutionary algorithm which represents the ”state-of-the-art in evolu-
tionary optimization in real-valued optimization” [13]. As a baseline for comparison,
we also optimize the four parameters of the reference approach the same way.

5.1 Experimental Setup

We optimized the parameters for the benchmark images from the Middlebury evaluation
site as an example. As objective the average number of bad pixels as defined in [1] was
minimized. Using the CMA-ES implementation from the Shark open-source machine
learning library [14], five optimization trials were conducted for the basic approach and
five for our modified approach.

5.2 Results

For the basic approach we obtained 14.5 % bad pixels as best solution with cocc = 28.8,
csmooth = 31.7, p = 1.5 and tI = 5.1. The perfomance is very similar to that of the
reference implementation using the Birchfield-Tomasi measure.

For our modified approach, the best solution for the parameter settings given in
table 1 results in 8.8 % bad pixels. Figure 3 shows results for two of the test images.

Table 1. Optimized parameter settings for our approach

Parameter pD cD pV cV rD rV tI wR wG wB

Best 30.7 27.4 −5.3 -12.9 -2.6 3.6 45.9 0.32 0.62 0.06

Parameter p̂D ĉD p̂V ĉV r̂D r̂V Δc τ λ μ Cmax

Best 43.9 19.0 −16.7 −13.7 −1.9 4.0 1.95 1.17 22.6 57.5 76.2
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Fig. 3. Left to right: ground-truth disparity images, results obtained from our approach (border
and occlusions shown black), and error images for Middlebury test images Teddy and Cones

Table 2. Results for Middlebury benchmark data sets

Tsukuba Venus Teddy Cones Avg. percent

Rank Algorithm nocc all disc nocc all disc nocc all disc nocc all disc bad pixels

38 Our approach 2.0 3.8 9.8 3.3 4.7 13.0 6.5 13.9 16.6 5.2 13.7 13.4 8.83

.

.

.

42 RealTimeGPU [9] 2.1 4.2 10.6 1.9 3.0 20.3 7.2 14.4 17.6 6.4 13.7 16.5 9.82

43 CostRelax [15] 4.8 6.1 20.3 1.4 2.5 18.5 8.2 15.9 23.8 3.9 10.2 11.8 10.6

44 ReliabilityDP [7] 1.4 3.4 7.3 2.4 3.5 12.2 9.8 16.9 19.5 12.9 19.9 19.7 10.7

45 TreeDP [10] 2.0 2.8 10.0 1.4 2.1 7.7 15.9 23.9 27.1 10.0 18.3 18.9 11.7

.

.

.

50 DP [1] 4.1 5.0 12.0 10.1 11.0 21.0 14.0 21.6 20.6 10.5 19.1 21.1 14.2

See table 2 for detailed results and comparsions. Thus, our approach shows better per-
formance in the Middlebury evaluation than most other algorithms using DP and it is
the best one performing pixel-wise DP.

Processing test images Tsukuba takes 0.2 s, Venus 0.4 s, Teddy 0.8 s and Cones 0.8 s
on a standard desktop PC with 1.8 GHz .

6 Conclusion

We considered a freely available implementation of a standard stereo algorithm based
on DP. The technique is very popular due to its applicability to a large variety of real-
world problems.
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We showed how to modify and extend it in order to provide higher performance
and more flexibility. In particular we focused on utilizing available information during
DP more efficiently. At the same time the computational complexity did not increase
significantly.

Offline optimization of all algorithm parameters for benchmark images as an exam-
ple showed that an error reduction of 40 % compared to the reference implementation
has been allowed. The algorithm proposed is widely applicable, escpecially for real-
time applications.
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Abstract. We introduce a new method to determine the flow field of
an image sequence using multi-scale anchor points. These anchor points
manifest themselves in the scale-space representation of an image. The
novelty of our method lies largely in the fact that the relation between
the scale-space anchor points and the flow field is formulated in terms of
soft constraints in a variational method. This leads to an algorithm for
the computation of the flow field that differs fundamentally from pre-
viously proposed ones based on hard constraints. We show a significant
performance increase when our method is applied to the Yosemite image
sequence, a standard and well-established benchmark sequence in optic
flow research.

1 Introduction

Optic flow describes the apparent motion in an image sequence. A variety of
approaches exists to estimate this motion. Survey papers include those by Barron
et al. [1] and Mitchie et al. [2].

Differential methods are based on the most widespread approach, which uses
spatiotemporal derivatives to describe the local image structure. The flow field
is assumed to connect points in subsequent frames of the image sequence with
similar structure. For example, in one of the earliest methods, proposed by Horn
and Schunck [3], this ”structure” is the image intensity, which leads to the well-
known Optic Flow Constraint Equation. An overview of current developments
in differential methods can be found in Bruhn et al. [4]. A problem that is
encountered by these methods is that the structure does not always remain
constant over time. For example, the global image intensity may vary over time.
More complex terms to describe the structure can be used to overcome this
problem [5][6]. A second problem is that many possible solutions exist, since
points on level-sets have the same image intensity. This requires a so-called
prior, which determines a unique solution based on prior knowledge. A prior
usually is a regularization term, which can for example prefer an overall smooth
solution with sparse discontinuities [7][8].

Another well performing approach is that of region matching, in which the
image is split up into small blocks, each of which is translated to match the
image neighborhood [9]. Because of their low computational cost, these methods
are widely used in applications such as temporal up-scaling of video signals and
video compression.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1104–1112, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Our method can be placed in the category of feature-tracking methods. An
overview of such methods can be found in [10]. However, in contrast to most
feature-tracking algorithms, the features we use do not correspond to a specific
point in the image sequence. Instead, we use anchor points that exist at dif-
ferent scales in scale-space, called toppoints (properly defined in section 2.1).
Therefore, instead of corresponding to a point, the features we track actually
represent entire regions in the image sequence. Using toppoints to extract the
motion from an image sequence has been first proposed by Janssen et al. [11] and
Florack et al. [12]. In these papers, the relation between the toppoint velocity
and the flow field was implemented using a hard constraint, which means that
this constraint has to be fulfilled exactly. The advantage is that their method
is entirely parameter free, but the price of this is sensitivity to outliers. In the
method presented in this paper, a 1-parameter soft constraint is used, giving
more room for errors in the estimated toppoint velocity or deviations from the
proposed relation between toppoint velocity and the flow field.

Toppoints are found throughout the scale-space of each frame of the image
sequence as isolated entities. Therefore they are truly multi-scale, in contrast to
other multi-scale features which are found by applying scale-selection to points
that exist at every scale, such as corners. Another use of toppoints is to re-
construct an image from the values of derivatives taken at toppoint positions
[13][14][15]. In these papers it is shown that features at the toppoint positions
can be used to efficiently represent the information contained in an image. An
important property is that the amount of toppoints found in a certain area of
the image is proportional to the amount of information in that area.

2 Theory

In this chapter we will first explain how the scale-space representation of an
image is defined and what toppoints are. Also important properties of toppoints
are mentioned and we try to give toppoints a more intuitive meaning with some
visualizations. Next we explain how to calculate toppoint velocities, and the
method used to obtain the actual flow field from the toppoint velocities.

2.1 Scale-Space and Toppoints

The scale-space representation fs(x, y) = f(x, y; s) ∈ L2(R2 × R+) of a static
scalar image f0(x, y) ∈ L2(R2) is defined by the convolution of the image with a
Gaussian kernel φs(x, y) = φ(x, y; s) ∈ L2(R2), where s ∈ R+ denotes the scale
(for tutorial books on scale-space see ter Haar Romenij [16] and Florack [17]):

f : R2 × R+ → R : (x, y; s) �→ f(x, y; s) def= (f0 ∗ φs) (x, y) ,

φs(x, y) = φ(x, y; s) def=
1

4πs
exp

(
−x2 + y2

4s

)
. (1)

This results in a 3-dimensional function, where a slice of constant scale represents
a blurred version of the original image.
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The scale-space of an image fulfills the heat equation, since the Green’s func-
tion of the Laplacian operator is a Gaussian kernel:

∂sf(x, y; s) = �(x,y)f(x, y; s) ,

∂sf(x, y; 0) = f0(x, y) . (2)

The Laplacian in the spatial directions x and y is denoted by �(x,y).
A singular point in scale-space, also called a toppoint, occurs when the fol-

lowing conditions are fulfilled (see Gilmore et al. [18]):

[
∇(x,y)f
detH

]
=

⎡⎣ fx

fy

fxxfyy − f2
xy

⎤⎦ = 0 , H def=
[
fxx fxy

fxy fyy

]
. (3)

The gradient operator with respect to x and y is denoted by ∇(x,y) and partial
derivatives of f are indicated by self-explanatory subscripts. The condition states
that the gradient is zero at toppoints, which in general occurs at extrema and
saddle points in 2-dimensional images. These extrema and saddle points exist
at every scale, and form so-called critical paths through scale-space. When two
critical paths, corresponding to a saddle point and an extremum, collide as scale
increases, an annihilation takes place. A pair of two critical paths can also be
created when moving up in scale, which is called a creation. The points in scale-
space where these events take place are called toppoints. As a consequence,
toppoints are locations in scale-space where a topological change occurs. Figure 1
shows how two Gaussian blobs merge when scale increases, causing the maximum
of the smallest blob to annihilate with the saddle point between the two blobs,
creating a toppoint at the scale where this occurs.

A well-posed formulation of spatial derivatives of an image in scale-space is
given by partially integrating the convolution product of a derivative of the
image f0 with a Gaussian filter φs, see eq. (1), using the property that φs is a
Schwartz function:(

∂n
x∂

m
y f0 ∗ φs

)
(x, y) =

(
f0 ∗ ∂n

x∂
m
y φs

)
(x, y) . (4)

In fact, because f0 is often not m + n times differentiable, we define the scale-
space of an image derivative by the right hand side of eq. (4). This results in
a lower-bound on the scale at which derivatives can be calculated numerically,
which increases with derivative order. Derivatives with respect to scale can be
calculated using only spatial derivatives by means of eq. (2).

2.2 Toppoint Velocity

If we consider a sequence of successive images, or a movie, in which objects move,
the toppoints will move as well. The movement of toppoints in spatial and scale
direction is defined as: (ẋ, ẏ, ṡ) ∈ R3. Note that e.g. ẋ(t) = ∂tx(t) represents
the time derivative of the x(t) position of the toppoint. An expression for this
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Fig. 1. (left) A series of scale-space slices of an image of two Gaussian blobs of different
size, where scale increases to the right. Red circles denote maxima and blue crosses
denote saddle points. A toppoint is located between the 5th and 6th slice, where a
maximum and a saddle point annihilate. (right) The critical paths of the scale-space
of the same image, where a toppoint is indicated by a red dot.

toppoint movement can be acquired by implicitly differentiating the definition
of toppoints as stated in eq. (3) with respect to the time parameter t:

d

dt

[
∇(x,y)f
detH

]
=

⎡⎣ fxt + ẋfxx + ẏfxy + ṡfxs

fyt + ẋfxy + ẏfyy + ṡfys

∂tdetH + ẋ ∂xdetH + ẏ ∂ydetH + ṡ ∂sdetH

⎤⎦ = 0

⇒

⎡⎣ fxx fxy fxs

fxy fyy fys

∂xdetH ∂ydetH ∂sdetH

⎤⎦⎡⎣ ẋ
ẏ
ṡ

⎤⎦ = −

⎡⎣ fxt

fyt

∂tdetH

⎤⎦ . (5)

If the matrix is invertible, eq. (5) supplies us with a scheme to calculate the move-
ment of toppoints in an image sequence. The notation for derivatives of detH is
abbreviated to avoid cumbersome notation. When we expand ∂sdetH for exam-
ple, we obtain (using eq. (2) to express scale derivatives in spatial derivatives):

∂s(fxxfyy−f2
xy)=fxx(fxxyy+fyyyy)+fyy(fxxxx+fxxyy)−2fxy(fxxxy+fxyyy) . (6)

An estimation of the position of toppoints can be used to find a more accurate
location. Florack and Kuijper [19][20] developed a method that iteratively refines
the estimated position to the desired accuracy. Using the estimated toppoint ve-
locity, we estimate the toppoint position in the next frame of the image sequence.
Consequently, the position of the toppoint in the next frame is refined. This re-
fined position is used to calculate a more accurate estimation of the movement
of the toppoints from one frame the the next.

2.3 Optic Flow Using Toppoints

The velocity of the scale-space toppoints forms a sparse 3D flow field. In optic
flow, the goal is to acquire a dense 2D flow field which describes the velocity in
each pixel of the image sequence. In order to obtain the dense 2D flow field from
the sparse 3D one the following assumption is made:
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Assumption 1. The velocity of toppoints in the scale-space of the image corre-
sponds to the values at those points in the scale-spaces of u(x, y) and v(x, y):

< u, φi > = Ui ,

< v, φi > = Vi , (7)

where Ui ∈ R (= ẋi) and Vi ∈ R (= ẏi) are obtained by applying eq. (5) at the
toppoint positions of the image sequence, and φi are Gaussian functions shifted
to spatial position xi, yi and with scale si (recall eq. (1)). Here and henceforth,
< ., . > indicates a standard L2-inner product.

This assumption alone does not uniquely determine the flow field. Therefore,
we use a flow driven isotropic prior, which allows for some discontinuities in
the flow field. We combine this prior with the assumption regarding toppoint
velocities in the following energy functional:

E(u, v) =
∫∫

dΩ

γ
√
|∇u|2 + |∇v|2 + ε2 +

N∑
i=1

[
(< u, φi > −Ui)

2 + (< v, φi > −Vi)
2
]
dΩ, (8)

where ε is a contrast parameter, γ determines the smoothness of the resulting
flow field and N denotes the number of toppoints. Minimizing this energy func-
tional leads to the dense flow field. Using variational calculus, we obtain the
Euler-Lagrange equations corresponding to this energy functional. These are
discretized using β-splines [21] and the resulting system of equations is solved
using the BiCG-Stab algorithm [22].

Besides the toppoints of the regular image, we also calculate the toppoint
positions and velocities in the gradient magnitude and Laplacian of the original
image. This adds information on the movement of higher-order structures in the
image, such as edges.

3 Numerical Evaluation

The error measure for flow fields used in literature is the Angular Error, as
first proposed by Fleet and Jepson [23]. This measure describes the angle be-
tween the estimated 3D flow vector ve = {ue, ve, 1} and the true flow vector
vt = {ut, vt, 1}. In order to objectively compare different methods, the Average
Angular Error, or AAE, is used.

Figure 2 shows the Yosemite image sequence, which is used in optic flow
literature as a benchmark sequence. This sequence tests multiple aspects of the
performance of optic flow methods: it contains spatial discontinuities, brightness
change (the sky increases in brightness), rigid and non-rigid transformations.

In Table 1 different methods that introduced significant novelties can be found
together with the improvement of the AAE of the Yosemite image sequence since
Horn and Schunck introduced their method in 1981.
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Fig. 2. (left) The first frame of the Yosemite image sequence. (right) The ground truth
flow field of the Yosemite image sequence. The camera moves through the valley, and
the clouds move to the right.

Fig. 3. (left) The flow field of the Yosemite image sequence calculated using our
method. (right) The Angular Error of the flow field calculated using our method,
displayed as shades of grey, with white = 0◦ and black = 102.7◦. Red dots indicate
toppoints, the size of which is proportional to the scale.

The flow field that is obtained by our method can be found in Figure 3,
together with the angular error and toppoint locations. We can see that, apart
from the discontinuity at the border between the landscape and the sky, the
flow field is fairly accurate, albeit not state-of-the-art. The AAE we obtained
was 4.82◦. We can clearly see that the discontinuity between the landscape and
the sky results in the largest error. This is partially caused by the low number of
toppoints found in the low-texture sky, and partially by the suboptimal choice of
prior. Using a smoothness term with better discontinuity-preserving properties
may improve this result significantly.
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Table 1. Yosemite sequence results of other methods. The first four results are obtained
from Barron et al. [1].

Technique AAE Method description
Horn and Schunck [3] 32.43◦ Original, only smoothness
Anandan 15.84◦ Region matching
Singh 13.16◦ Region matching and coarse-to-fine approach
Nagel [7] 11.71◦ Discontinuity preserving smoothness
Alvarez et al. [8] 5.53◦ Improvement of Nagel’s method
Weickert and Schnörr[24] 4.85◦ Spatio-temporal smoothness
Zang et al. [6] 2.67◦ Monogenic curvature tensor constancy
Amiaz and Kiryati [25] 1.78◦ Piecewise smoothness with level-sets
Papenberg et al. [5] 1.64◦ High order data term, spatio-temporal smoothness
Brox et al. [26] 0.92◦ Same as Papenberg, with level-sets

4 Conclusion and Future Work

We have shown that the information toppoint movement provides admits a fairly
accurate estimation of the flow field of an image sequence. We obtained a flow
field with an AAE as low as 4.82◦, even without the use of a complex, parameter-
rich and computationally expensive method to preserve discontinuities, such as
level-sets. In comparison: the method proposed in [11], using hard constraints,
resulted in an AAE of 19.19◦.

This preliminary result is promising for several reasons: (i) Unlike superior so-
phisticated methods our method is characterizedby only one global parameter. (ii)
Toppoint representations are typically very sparse (1837 toppoints for the 79316
pixels in the Yosemite sequence). (iii) The method itself can be easily modified so
as to account for different or additional anchor points and more effective priors.

The principle novelty of our approach is the term in the energy functional
which provides the information on the flow field. Many improvements in differ-
ential methods have been made in the regularization term, which can also be
incorporated into our method. Also other anchor points can be added, such as
SIFT feature points [27].

Since the Yosemite image sequence is the benchmark sequence used in litera-
ture, for most methods only the AAE of this sequence is available. Our approach
is very robust compared to differential methods, since it is inherently multi-scale
and invariant under changing brightness, and rather generic, as it requires only
a single global regularity parameter. Therefore it is expected to perform well on
more challenging image sequences, such as those with opacity, reflections or a
significant amount of noise. This is the subject of further research.
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Abstract. Robust stereo and optical flow disparity matching is essential for
computer vision applications with varying illumination conditions. Most robust
disparity matching algorithms rely on computationally expensive normalized
variants of the brightness constancy assumption to compute the matching
criterion. In this paper, we reinvestigate the removal of global and large area
illumination artifacts, such as vignetting, camera gain, and shading reflections,
by directly modifying the input images. We show that this significantly
reduces violations of the brightness constancy assumption, while maintaining
the information content in the images. In particular, we define metrics and
perform a methodical evaluation to identify the loss of information in the images.
Next we determine the reduction of brightness constancy violations. Finally, we
experimentally validate that modifying the input images yields robustness against
illumination artifacts for optical flow disparity matching.

1 Introduction

Previous studies have shown that when using correspondence algorithms (i.e., stereo
and optical flow) to provide reliable information, the results on synthetically generated
data (e.g., [10]) do not compare well with results on realistic images [16]. Further
studies have shown that illumination artifacts (such as shadows, reflections, and
vignetting) and differing exposures have the worst effect on the matching [11]. This
effect is especially highlighted in driver assistance systems (DAS), where illumination
can change drastically in a short amount of time (e.g., going through a tunnel, or the
“dancing light” from sunlight through trees).

For dealing with illumination artifacts, there are three basic approaches:
simultaneously estimate the disparity matching and model brightness change within the
disparity estimation [5], try to map both images into a uniform illumination model,
or map the intensity images into images which carry the illumination-independent
information (e.g., using colour images [9,18]).

Using the first option, only reflection artifacts can be modelled without major
computational expense. From experiments with various unifying mappings, the second
option is near impossible. The third approach has more merit for research; we restrain
our study to using the more common grey value images.

An example of mapping intensity images into illumination-independent images is
the structure-texture image decomposition [1,12] (an example can be seen in Figure 1).
More formally, this is the concept of residuals [7], which is the difference between

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1113–1121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Example for removing illumination artifacts due to different camera exposure in the Art
image (left) by using its residual component (2nd from left). The brightness difference between
the plain intensity images (3rd from left) shows laminar errors. The brightness difference of the
residual images (right) contains spatially distributed noise but no large area illumination artifacts.

an intensity image and a smoothed version of itself. A subset of residual operators
has been recently evaluated together with different matching costs in the context of
stereo disparity matching in [6]. In this paper we systematically evaluate and compare
residual operators as basic approach for preprocessing corresponding images, to reduce
the effect of illumination variances.

The main contribution of this work is we provide a valid methodology for analysing
information loss compared to illumination removal effects for an arbitrary filter. The
methodology is based on first showing that information is not lost by applying the
filter, using co-occurrence matrix [4] based measures. The second contribution is
high-lighting these effects using correspondence images as validation. This is done
by using ground truth correspondence data, comparing the differences in illumination,
and summarising the information with an error metric. We go on to show that using
residual images removes illumination artifacts, by using a mixture of synthetic and
real-life images [3,10]. The illumination effects are highlighted more drastically when
the illumination and exposure conditions of the corresponding images are not the same.
The chosen filters are the TV-L2 [12], median, mean, sigma [8], bilateral [14], and
trilateral filter [2]. All are effectively “edge preserving” filters, except the mean filter.

2 Methodology

Here we define the methodology of our process. It is defined by two parts; firstly,
identifying if the images loose information, and secondly, determining reduction of
the effect of illumination artifacts.

Co-occurrence Matrix and Metrics. The co-occurrence matrix has been defined for
analysing different metrics about the texture of an image [4]:

C(i, j) =
∑
x∈Ω

∑
a∈N\{(0,0)}

{
1, if h(x) = i and h(x + a) = j
0, otherwise

(1)

where N +x is the neighbourhood of pixel x, a �= (0, 0) is one of the offsets in N , and
0 ≤ i, j ≤ Imax, for maximum intensity Imax. h represents any 2D image (e.g., f ). All
images are scaled min ↔ max for utilizing the full 0 ↔ Imax scale.
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Fig. 2. Outline of the methodology used to obtain an error image. For our study H = R.

In our experiments we chose N to be the 4-neighbourhood, and we have Imax =
255. The loss in information is identified by the following metrics: homogeneity
Thomo(h) =

∑
i j

C(i,j)
1+|i−j| , uniformity Tuni(h) =

∑
i j C(i, j)2, and entropy Tent(h) =

−
∑

i j C(i, j) lnC(i, j). An increase in homogeneity represents the image having
more homogeneous areas, an increase in uniformity represents more uniform areas,
and a decrease in entropy shows that there is less information contained in the image.
To get a better representation of the effect of filters, we scale the result by the original
image’s metric, i.e., T∗(h)/ |T∗(f)|, where h is the processed image (obviously, h = f
gives a value of 1). Previous studies [15] have shown that homogeneity and entropy can
define the information loss in an image. In this study, we only use the homogeneity (see
results section).

Testing Illumination Artifact Reduction. Correspondence algorithms usually rely on
the brightness consistency assumption, i.e., that the appearance of an object (according
to illumination) does not change between the corresponding images. However, this does
not hold true when using real-world images, this is due to, for example, shadows,
reflections, differing exposures and sensor noise. It is well known, that illumination
artifacts propose the biggest problem for correspondence algorithms; a recent study has
shown that illumination artifacts may, in fact, be the worst type of error [11]. Figure 2
shows our proposed approach for evaluating the effectiveness of a filter. In this paper,
we chose the filtering operator H to be the residual image (H = R).

Image Warping. One way to highlight this (i.e., that the errors from residual images
are lower than the errors obtained using the original images) is to warp one image to the
perspective of the other (using ground truth) and compare the differences. The forward
warping function W is defined by the following:

W
(
h1(x),u∗(x, h1, h2)

)
= w

(
x + u∗(x, h1, h2)

)
,

where h(x) is the image value at x ∈ Ω, and u∗ is the 2D ground truth warping
(remapping) vector from h1 to the perspective of h2. In practice, the warping is
performed using a lookup table with interpolation (e.g., bilinear or cubic). In the stereo
case, u∗ is the ground truth disparity map from left to right (all vertical translations
would be zero). Another common example is optical flow, where u∗ is the ground truth
flow field from the previous to the current frame.

Image Scaling. For the purposes of this paper, h is discrete in the functional inputs (x),
but continuous for the value of h itself. For a typical grey-scale image, the information
is discrete (0 ≤ h ≤ 2n − 1 ∈ N2, where n is usually 8 or 16). However, we find it
easier to represent image data continuously by −1 ≤ h ≤ 1 ∈ Q2, which takes away
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the ambiguity for the bits per pixel (as any n-bits per pixel image can be scaled to this
domain). We scale all images to this domain using h(x) = h(x)/maxx∈Ω |h(x)|.

Error Images and Metrics. An error image e is the magnitude of difference between
two images, E(h, h∗) = e(x) = ‖h(x) − h∗(x) ‖, where, usually, h is the result of a
process and h∗ is the ground truth. For this paper, the error image is between h∗ = h2
and the warped image h = W (h1).

A common error metric is the Root Mean Squared (RMS) Error. The problem with
this metric is that it gives an even weighting to all pixels, no matter the proximity to
other errors. In practice, if errors are happening in the same proximity, this is much
worse than if the errors are randomly placed over an image. Most algorithms can handle
(by denoising or such approaches) small amounts of error, but if the error is all in
the same area, this is seen as signal. We define the Spatial Root Mean Squared Error
(Spatial-RMS) to take the spatial properties of the error into account:

RMSS(e) =

√
1
M

∑
x∈Ω

(
G
(
e(x)

)2
)

(2)

M is the number of pixels in the (discrete) non-occluded (when occlusion maps are
available) image domain Ω, and G is a function that propagates the errors in a local
neighbourhood N . For our experiments, we chose a Gaussian error propagation using
a standard deviation σ = 1.

Smoothing Operators and Residuals. Let f be any frame of a given image sequence
(or stereo camera setup), defined on a rectangular open set Ω and sampled at regular
grid points within Ω.

f can be defined to have an additive decomposition f(x) = s(x)+r(x), for all pixel
positions x = (x, y), where s = S(f) denotes the smooth component (of an image) and
r = R(f) = f − S(f) the residual (Figure 1 shows an example of the decomposition).
We use the straightforward iteration scheme:

s(0) = f, s(n+1) = S(s(n)), r(n+1) = f − s(n+1), for n ≥ 0.

The concept of residual images was already introduced in [7] by using a 3× 3 mean for
implementing S. We use the mean operator and also an m×m median operator in this
study. The other operators for S are defined below.

TV-L2 filter. [12] used the definition of f = s + r (as above), where s is assumed to be
in L1(Ω) with bounded TV (in brief: s ∈ BV), and r is in L2(Ω). We use the residual
image from this idea as implemented and exploited in [17].

Sigma filter. This operator [8] is effectively a trimmed mean filter; it uses an m × m
window, but only calculates the mean for all pixels with values in [a − σf , a + σf ],
where a is the central pixel value and σf is a threshold. We chose σf to be the standard
deviation of f (to reduce parameters for the filter).

Bilateral filter. This edge-preserving Gaussian filter [14] is used in the spatial domain
(using σ2 as spatial σ), also considering changes in the colour domain (e.g., object
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boundaries). It therefore only takes into consideration values within a Gaussian kernel
within the colour domain (σ1 as colour σ).

Trilateral filter. This gradient-preserving smoothing operator [2] (i.e., it uses the local
gradient plane to smooth the image) only requires the specification of one parameter σ1,
which is equivalent to the spatial kernel size. The rest of the parameters are self tuning.

All filters have been implemented in OpenCV, where possible the native function
was used. For the TV-L2, we use an implementation (with identical parameters) as in
[17]. All other filters used are virtually parameterless (except a window size) and we
use a window size of m = 3 (σ1 = 3 for trilateral filter1). For the bilateral filter, we use
color standard deviation σ1 = Ir/10, where Ir is the range of the intensity values (i.e.,
σ1 = 0.2 for the scaled images).

Datasets. We illustrate our arguments with the Middlebury dataset [10] and the EISATS
[3] synthetic data (Set 2).

This highlights the major importance of removing illumination artifacts. For the
Middlebury dataset we include both the 2005 and 2006 datasets (provided by [6,13]).
This data has 3 different exposures and 3 different illuminations (for both the left and
right images). This enables us to test the brightness consistency assumption under
extreme conditions. Again, we only use images with ground truth available. For the
2005 set, that includes: Art, Books, Dolls, Laundry, Moebius, and Reindeer. For the
2006 set: Aloe, Baby1-3, Bowling1-2, Cloth1-4, Flowerpots, Lampshade1-2, Midd1-2,
Monopoly, Plastic, Rocks1-2, and Wood1-2. We are not interested in “good quality”
situations. Therefore, we only use images with differing exposure and illumination.
To do this, for each image pair, we keep the left image with illumination = 1 and
exposure = 0 (as defined by [10]). But for the right image, we make use of all all the
differing illumination (1, 2, 3) and exposure (0, 1, 2) settings (excluding the exact same
illumination = 1 and exposure = 0). This is a total of 8 different illumination/exposure
combinations, for each image pair. That brings the total dataset to 216 (27 × 8).

3 Experimental Results

A previous study, has already pointed out that the results for slight illumination artifacts
are improved using residual images [15]. We now show that these results get even better
when illumination is a major issue (not just a minor one).

Co-occurrence Metrics. This subsection demonstrates that the important information
for correspondence algorithms is contained in the residual image r. The residual image
is, in fact, an approximation of the high frequencies of the image, and the smoothed
image s is an approximation of a low-pass filter. Obviously, by iteratively running a
smoothing filter, you will get a more and more smoothed image (i.e., you will be getting
lower and lower frequencies, thus reducing the higher frequencies). In [15] the metrics
were shown to represent this effect accurately.

1 The authours thank Prasun Choudhury (Adobe Systems, Inc.) and Jack Tumblin (EECS,
Northwestern University), for their implementation of the trilateral filter.
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Fig. 3. Left: average scaled homogeneity of the residual images, averaged over dataset [10].
Right: Spatial-RMS graph for the same data. Notice the huge benefit from using residual images.

The residual of an image is an approximation of the high frequencies of the image,
so the information should not be reduced. We average the co-occurrence metric results
over dataset [10] to highlight this (Figure 3). This graph shows that the residual images
do not lose information, in fact the homogeneity is slightly reduced (except for the
trilateral and median filter). The increase in information could be seen as noise from the
filter, or an increase in emphasis of the high-frequencies.

Illumination Differences. This subsection uses again the dataset [10]. A qualitative
example of error images e can be seen in Figure 1. This specific error image is generated
using the Art right image, with illumination and exposure both equal to 1 (left image is
1 and 0, respectively). The image is from [6], and has ground truth available (warping
from left to right). The original error image (left) clearly shows how increasing the
exposure (250 to 1000 ms) has very big consequences on the illumination differences
between the left and right image. The error image using the TV-L2 residual (right)
reduces the error dramatically. Furthermore the magnitudes of the maximum errors are
less; the original image is 1.83 and the TV-L2 residual image is 1.25.

See again Figure 3. The trilateral filter was stopped at iteration 10. It is immediately
obvious that the original images are far worse than residual images, around 3 times
worse on average. This again highlights that with extremely different exposures and
illuminations, the residual images provide the best information for matching.

Since most of the filters stabilize around iteration 40 (TV-L2, sigma, bilateral, and
median), we have presented statistical results of the RMS after 1 and 40 iterations.
These results are shown in Table 1. You can see from these results that all the statistics
for the original images are higher than any of the filters. The mean, trilateral, and median
filter seem to be the most robust; showing the lowest standard deviation. The TV-L2,
mean, and median filters have the best average. The timing information provided in
this table is the average time per iteration, on two sizes of images (470 × 370, 752 ×
480 pixel resolution), this is to highlight the scalability of the filters. The tests were
under Windows, the CPU was an Intel Core 2 Duo 3G Hz (multi-core processing not
exploited), with 4GB memory.
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Table 1. Average (Ave.) and Standard Deviation (S.D.) for the methodology performed on dataset
[10]. Average running times per iteration are also included (right) for two image resolutions. The
rank of the filters is also given for both evaluations.

# Its. 1 40 Time / iteration Rank
Filter Ave. S.D. Ave. S.D. 470× 370 752× 480 Thomo RMS
Original 0.282 0.136 0.282 0.136 - - 5 7
TV-L2 0.068 0.028 0.080 0.030 30 ms 60 ms 2 3
Sigma 0.168 0.036 0.090 0.023 30 ms 100 ms 1 6
Mean 0.055 0.023 0.072 0.025 1 ms 2 ms 4 2
Median 0.039 0.020 0.041 0.022 7 ms 15 ms 6 1
Bilateral 0.113 0.021 0.086 0.026 160 ms 340 ms 3 5
Trilateral 0.085 0.017 0.082 0.016 5,000 ms 11,000 ms 7 4

Optical Flow on EISATS Dataset. For this subsection, we computed optical flow using
TV-L1 optical flow [19] (one of the top performing algorithms), on the EISATS dataset
[3]; see [16] for Set 2. We altered the data to resemble illumination differences in time,
as performed in [11]; the differences start high between frames, then go to zero at frame
50, then increase again. The flow field is computed using U(h1, h2) = u. This is to
show that a residual image r provides better data for matching, than for the original
image f . Figure 5 shows an example of this effect, obviously the residual image vastly
improves optical flow results. We calculated the end-point-error using the error image
e = E(u,u∗) and Spatial-RMS.

We computed the flow using U(r(n)
1 , r

(n)
2 ) with n = 1, 2, 10, and 40 to show how

each filter behaves. The results are compared to optical flow on the original images
U(f1, f2). The results can be seen in Figure 4. It is immediately obvious that the original

n TV-L2 Sigma Mean Med. Bil. Tri.
1 Ave. 7.58 7.74 7.69 7.36 6.80 6.34

S.D. 0.48 0.47 0.45 0.60 0.68 0.58
2 Ave. 7.42 7.71 7.37 6.84 6.15 4.98

S.D. 0.56 0.48 0.53 0.85 0.80 0.84
10 Ave. 6.88 7.45 5.63 4.73 3.30 1.72

S.D. 0.61 0.60 0.81 1.39 0.98 0.87
40 Ave. 5.36 6.14 2.79 3.85 1.63 -

S.D. 0.85 0.92 1.60 1.60 1.07 -
Rank 5 6 3 4 =1 =1

Fig. 4. Left: Flow end point error over entire EISATS sequence using number of filter iterations
r(40), graph is logarithmically scaled (log10) (only TV-L2, mean, and bilateral shown). Right:
results using different number of filter iterations r(n), the original average (Ave.) is 61, and
standard deviation (S.D.) is 53 (much higher than the rest).
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Fig. 5. Top row: frame 1 (left) and 2 (middle) from EISATS scene. Ground truth flow with
key (HSV circle for direction, saturation for vector length) is shown on the right. Bottom row:
optical flow results using; original images (left) and residual images, TV-L2 (middle) and trilateral
(right), respectively.

image results are much worse quality than the residuum results. Residual images are
more robust to illumination differences than standard images.

4 Conclusions and Future Research

We have identified a methodology for analysing the effect of illumination reducing
filters using numerical comparisons. We went on to show that the results for this
test do align with the optical flow performance, on a scene with drastic illumination
variation. The tests showed that generating a simple mean residual image, produces
acceptable improvements, while being the fastest (and easiest) to implement. Future
work should test the limits of the proposed methodology. Other smoothing algorithms
and illumination invariant models need to be tested. Finally, a larger dataset can be used
to further verify the illumination artifact reducing effects of residual images.
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Abstract. This work presents new ideas in multidimensional signal the-
ory: an isotropic quadrature filter approach for extracting local features
of arbitrary curved signals without the use of any steering techniques. We
unify scale space, local amplitude, orientation, phase and curvature in
one framework. The main idea is to lift up signals by a conformal map-
ping to the higher dimensional conformal space where the local signal
features can be analyzed with more degrees of freedom compared to the
flat space of the original signal domain. The philosophy is based on the
idea to make use of the relation of the conformal signal to geometric enti-
ties such as hyper-planes and hyper-spheres. Furthermore, the conformal
signal can not only be applied to 2D and 3D signals but also to signals
of any dimension. The main advantages in practical applications are the
rotational invariance, the low computational time complexity, the easy
implementation into existing Computer Vision software packages, and
the numerical robustness of calculating exact local curvature of signals
without the need of any derivatives. Applications can be optical flow and
object tracking not only limited to constant velocities but detecting also
arbitrary accelerations which correspond to the local curvature.

1 Introduction

Low level image analysis is often the first step of many Computer Vision tasks.
Therefore, local signal features determine the quality of subsequent higher level
processing steps. It is important not to lose or to merge any of the original infor-
mation within the local neighborhood of the point of interest. The constraints of
local signal analysis are: to span an orthogonal feature space (split of identity)
and to be robust against stochastic and deterministic deviations between the
actual signal and the model. Image signals f ∈ L2(Ω) with Ω ⊂ Rn will be
locally analyzed on a low level. The assumed local signal model is defined as a
hyper-sphere

P{f}(z; s) = (f ∗ p)(z; s) = a cos
(∥∥∥∥z − 1

κ
ō

∥∥∥∥ + φ

)
, (z, s) ∈ Ω × R+ (1)

with a as the local amplitude, φ ∈ [0, π) as the local phase, κ > 0 as the local
curvature and ō as the normal of the local orientation. For the special case of
� We acknowledge funding by the German Research Foundation (DFG) under the

project SO 320/4-2.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1122–1129, 2009.
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Fig. 1. From left to right: a constant signal (i0D), an arbitrary rotated 1D signal (i1D)
and an i2D checkerboard signal consisting of two simple superimposed i1D signals.
A curved i2D signal and two superimposed curved i2D signals. Note that all signals
displayed here preserve their intrinsic dimension globally.

κ = 0 the hyper-sphere degrades to a hyper-plane. One important local structural
feature is the phase φ which can be calculated by means of the Hilbert transform
[6]. Furthermore all signals will be analyzed in Poisson scale space P{·} [3] since
the Hilbert transform can only be interpreted for narrow banded signals. The
Poisson kernel of the applied low pass filter reads

pn(z; s) =
2

An+1

s

(s2 + ‖z‖2)(n+1)/2
, An+1 =

2 π
n+1

2

Γ
(

n+1
2

) (2)

with An+1 as the surface area of the unit sphere Sn [10] in Euclidian space Rn+1.

2 Related Work

Local phase and amplitude of 1D signals can be analyzed by the analytic signal
[6]. The generalization of the analytic signal to multidimensional signal domains
has been done by the monogenic signal [2]. The nD monogenic signal is restricted
to i1D signals for all dimensions. The monogenic signal replaces the classical one-
dimensional Hilbert transform of the analytic signal by the generalized Hilbert
transform [1] in Euclidean space

hn(z) =
2

An+1

z

‖z‖n+1
, z ∈ R

n, n ∈ N \ {1} (3)

This paper shows, that signal analysis problems can be solved in higher dimen-
sional conformal spaces [9,11]. Since the original signal will be analyzed in scale
space it will be of advantage to summarize the Hilbert kernel and the Poisson
to one unified kernel which will be called the conjugated kernel

qn(z; s) = (hn ∗ pn)(z; s) =
2

An+1

z

(s2 + ‖z‖2)(n+1)/2
(4)

To enable interpretation of the generalized Hilbert transform, its relation to
the Radon transform is the key [12] of signal intelligence, see Figures (4) and
(3). The generalized Hilbert transform can be expressed by a concatenation of
the Radon transform, the inverse Radon transform and the well known classical
1D Hilbert transform kernel h(t) = 1

πt . Note that the relation to the Radon
transform is required solely for interpretation and theoretical results. Neither the
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Fig. 2. Illustration of the conformal mapping of 2D signals to the 3D conformal space

Radon transform nor its inverse are ever applied to the signal in practice. Instead
the generalized Hilbert transformed signal will be determined by convolution in
spatial domain.

3 The Conformal Signal

In case of visual motion analysis a three dimensional isotropic quadrature filters
are needed [7,4]. The conformal signal of a 3D signal f ∈ L2(Ω) with Ω ⊂ R3

delivers amplitude, 3D orientation, phase and curvature. For image sequences
(3D signals) the concept of planes in 3D Radon space becomes the more abstract
concept of hyper-planes in 4D Radon space. These 4D hyper-planes determine
3D spheres on the 4D hyper-sphere in 4D conformal space. Since 3D planes and
3D spheres of the three-dimensional signal domain are mapped to 3D spheres
on the 4D hyper-sphere, the integration on these 3D spheres determines points
in the 4D Radon space. The general inverse stereographic projection for any
dimension n ∈ N which maps the Euclidian space Rn to the conformal space
Rn+1 reads

S−1(x1, x2, . . . , xn) =
1

1 +
∑n

ν=1 x2
ν

⎡⎢⎢⎢⎢⎢⎣
x1

x2

...
xn∑n

ν=1 x2
ν

⎤⎥⎥⎥⎥⎥⎦ (5)

The inverse stereographic projection maps the Euclidian space Rn to the hyper-
sphere in Rn+1 with radius 1

2 and the south pole of the hyper-sphere touching
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the origin 0 ∈ Rn of the Euclidian space Rn and the north pole of the hyper-
sphere with coordinates (0, 1) ∈ Rn+1. For the signal dimension n = 3 the
inverse stereographic projection S−1 known from complex analysis [5] maps the
3D signal domain to the hyper-sphere. This projection is conformal and can be
inverted by the general formula

S(ξ1, ξ2, . . . , ξn, ξn+1) =
1

1− ξn+1

⎡⎢⎢⎢⎣
ξ1

ξ2

...
ξn

⎤⎥⎥⎥⎦ (6)

The back-projection S for all elements of the hyper-sphere reads with ξ =
(ξ1, ξ2, ξ3, ξ4). This mapping has the property that the origin of the 3D sig-
nal domain will be mapped to the south pole 0 of the hyper-sphere and both
−∞,+∞ will be mapped to the north pole (0, 0, 0, 1) of the hyper-sphere. 3D
planes and spheres of the 3D signal domain will be mapped to spheres on the
hyper-sphere and can be determined uniquely by hyper-planes in 4D Radon
space. The integration on these hyper-planes corresponds to points (t, θ1, θ2, ϕ)
in the 4D Radon space. Since the signal domain Ω ⊂ R3 is bounded, not the
whole hyper-sphere is covered by the original signal. Anyway, all hyper-planes
corresponding to spheres on the hyper-sphere remain unchanged. That is the
reason why the conformal signal models 3D planes and all kinds of curved 3D
planes which can be locally approximated by spheres. To provide the generalized
Hilbert transform more degrees of freedom, the original three-dimensional signal
will be embedded in an applicable subspace of the conformal space by the so
called conformal signal c ∈ R(R

4) of the original 3D signal f

c(ξ) =
{

f(S (ξ1, ξ2, ξ3, ξ4)T ) ,
∑3

ν=1 ξ2
ν +

(
ξ4 − 1

2

)2 =
(

1
2

)2

0 , else
(7)

by which the even signal part ce = (c ∗ p4)(0; s) can by defined. Thus, the 4D
generalized Hilbert transform can be applied to all points on the hyper-sphere.
The center of convolution in spatial domain is the south pole where the origin
of the 3D signal domain meets the hyper-sphere. At this point the generalized
Hilbert transform will be evaluated in spatial domain by convolution for each
test point

co =

⎡⎢⎢⎣
co
1

co
2

co
3

co
4

⎤⎥⎥⎦ = (q4 ∗ c)(0; s) =
2

A5

∫
z∈R4

z(
s2 + ‖x‖2

)5/2
c(z − 0) dz (8)

The conformal signal for 3D signals is defined by the even part and the four
odd parts of the 4D Hilbert transform. Note that the coordinates are relative
to the local coordinate system for each test point of the original 3D signal and
0 = (0, 0, 0, 0) are the corresponding relative coordinates in conformal space, i.e.
this is no restriction. The Hilbert transform of the 3D signal embedded in the
conformal space can also be written in terms of the 4D Radon transform and its
inverse
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Fig. 3. Left figure: Curved i2D signal with orientation θ and curvature κ = 1
ρ
. Right

figure: Corresponding 3D Radon space representation of the i2D signal spanned by the
parameters t, θ and ϕ. Since the Radon transform on circles directly on the plane of
the original 2D signal is not invertible, the Radon transform has to be done in higher
dimensional 3D conformal space where circles correspond to planes.

co = R−1

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

cos ϕ sin θ1 sin θ2

sin ϕ sin θ1 sin θ2

cos θ1 sin θ2

cos θ2

⎤⎥⎥⎦ h(t) ∗ R{(c ∗ p4)(z; s)} (t; θ1, θ2, ϕ)

⎫⎪⎪⎬⎪⎪⎭ (0; s) (9)

This representation of the Hilbert transform is essential for the subsequent
interpretation of the conformal signal. Remember that without loss of generality
the signal will be analyzed at the origin of the local coordinate system of the
test point of local interest. Compared to the monogenic signal the conformal
signal is based on a Hilbert transformation in conformal space. Analogous to
the interpretation of the monogenic signal in [12], the parameters of the hyper-
plane within the 4D Radon space determine the local features of the curved 3D
signal. The conformal signal can be called the generalized monogenic signal for
3D signals, because the special case of planes in the original 3D signal can be
considered as spheres with zero curvature. These planes are mapped to spheres
passing through the north pole in conformal space. The 3D curvature corresponds
to the parameter ϕ of the 4D Radon space,

ϕ = arctan
co
2

co
1

(10)

Besides, the curvature of the conformal signal naturally indicates the intrin-
sic dimension of the signal. The parameters (θ1, θ2) will be interpreted as the
orientation of the signal in the original 3D space

θ1 = arcsin

√
[co

1]
2 + [co

2]
2

co
4

and θ2 = arctan

√
[co

1]
2 + [co

2]
2 + [co

3]
2

co
4

(11)

The amplitude and phase are defined by

a =
√

[ce]2 + ‖co‖2 and φ = arctan
‖co‖
ce

(12)

In all different intrinsic dimensions the phase indicates a measure of parity sym-
metry. Note that all proofs are analogous to those for the monogenic signal shown
in [12].
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Fig. 4. From left to right: signal with varying curvature in spatial domain (top row)
and in the corresponding 2D Radon space (bottom row). Obviously the 2D Radon
space is too flat for analyzing and parameterizing the orientation and curvature of
signals. Therefore the dimension of the 2D Radon space must be extended to 3D. This
is the idea of the conformal signal.

3.1 Implementation

The computational time complexity is in O(n3) with n as the convolution mask
size in one dimension.

//Input: double Image3D(double x,double y,double z)

//Input: double x,y,z (Local pixel test point for analysis)

//Input: double Coarse > Fine > 0 (Bandpass filter parameters)

//Input: double Size > 0 (Convolution mask size)

//Output: Direction1, Direction2, Phase, Curvature, Amplitude

double Coarse=2,Fine=0.1; int Size=5;//e.g.

double rp=0,r1=0,r2=0,r3=0,r4=0;

for(double cx = -Size;cx <= Size;cx += 1)

for(double cy = -Size;cy <= Size;cy += 1)

for(double cz = -Size;cz <= Size;cz += 1)

{

//Map points (cx,cy,cz) to conformal space (x1,x2,x3,x4)

double d = pow(cx,2)+pow(cy,2)+pow(cz,2)+1;

double x1 = cx / d;

double x2 = cy / d;

double x3 = cz / d;

double x4 = (d-1) / d;

//Generalized Hilbert transform in conformal space

double a = pow(x1,2)+pow(x2,2)+pow(x3,2)+pow(x4,2);

double pf = pow(pow(Fine ,2) + a,-2.5);

double pc = pow(pow(Coarse,2) + a,-2.5);

double f = Image3D(x + cx,y + cy,z + cz);

double c = f * (pf - pc);

rp += f * (Fine*pf - Coarse*pc);

r1 += x1 * c; r2 += x2 * c; r3 += x3 * c; r4 += x4 * c;

}

Curvature = atan(r2/r1);

Direction1 = asin(sqrt(pow(r1,2)+pow(r2,2))/r4);
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Direction2 = atan2(sqrt(pow(r1,2)+pow(r2,2)+pow(r3,2)),r4);

Phase = atan2(sqrt(pow(r1,2)+pow(r2,2)+pow(r3,2)+pow(r4,2)),rp);

Amplitude = sqrt(pow(rp,2)+pow(r1,2)+pow(r2,2)+pow(r3,2)+pow(r4,2));

In practical applications such as medical image analysis [4] or 3D optical flow (5)
the convolution mask sizes must be DC-free. This can be achieved by removing
their mean value after precalculating them.

Fig. 5. The 3D conformal signal delivers four local features which can be used for
image sequence analysis such as optical flow and motion analysis. From left to right:
Curvature, phase and the two parts of the orientation information. 3D convolution
mask size 5× 5× 5 pixels.

4 Conclusion

In this paper a new fundamental idea for locally analyzing multidimensional
signals has been presented. The n-dimensional domain of the original signal is
always limited to its n-dimensional Radon space, which restricts the related fea-
ture space. To extend the dimension of the related feature space, this problem can
be solved by embedding signals in higher dimensional conformal spaces in which
the original signal can be analyzed by generalized Hilbert transforms with more
degrees of freedom. Without steering and in a rotationally invariant way, local
signal features such as amplitude, phase, orientation and curvature can be deter-
mined in spatial domain by convolution. The conformal signal can be computed
efficiently and can be easily implemented into existing low level image process-
ing steps of Computer Vision applications. Furthermore, exact curvature can be
calculated with all the advantages of rotationally invariant local phase based
approaches (robustness against brightness and contrast changes) and without
the need of any partial derivatives. Hence, lots of numerical problems of partial
derivatives on discrete grids can be avoided. All results can be proved mathe-
matically as well as by experiments. Applications of the conformal signal such
as object tracking [8] with arbitrary acceleration on three-dimensional data will
be part of our future work.
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Abstract. Using statistical textons for texture classification has shown great 
success recently. The maximal response 8 (MR8) method, which extracts an 
8-dimensional feature set from 38 filters, is one of state-of-the-art rotation  
invariant texture classification methods. However, this method has two limi-
tations. First, it require a training stage to build a texton library, thus the  
accuracy depends on the training samples; second, during classification, each 
8-dimensional feature is assigned to a texton by searching for the nearest tex-
ton in the library, which is time consuming especially when the library size is 
big. In this paper, we propose a novel texton feature, namely Binary Filter 
Response Pattern (BFRP). It can well address the above two issues by encod-
ing the filter response directly into binary representation. The experimental 
results on the CUReT database show that the proposed BFRP method 
achieves better classification result than MR8, especially when the training 
dataset is limited and less comprehensive. 

Keywords: Texture Classification, Texton, MR8, LBP. 

1   Introduction 

Texture analysis is an active research topic in the fields of computer vision and pat-
tern recognition. Generally speaking, it involves four basic problems: classifying 
images based on texture content; segmenting an image into regions of homogeneous 
texture; synthesizing textures for graphics applications; and establishing shape infor-
mation from texture cue [1].  

In the early stage, researchers devoted themselves into extracting statistical feature 
to classify texture images, such as the co-occurrence matrix method [2] and the filter-
ing based methods [3]. These methods could achieve good classification results if the 
training and testing samples have similar or identical orientation. In real applications, 
rotation invariance is a critical issue to be solved. Kashyap and Khotanzad [4] were 
among the first researchers to study rotation-invariant texture classification by using a 
circular autoregressive model. Later, many other models were explored, including the 
multiresolution autoregressive model [5], hidden Markov model [6], and Gaussian 
Markov random field [7]. Jafari-Khouzani and Soltanian-Zadeh proposed to use Ra-
don transform to estimate the texture orientation and extract wavelet energy features 
for texture classification [8]. In [11], Ojala et al. proposed to use the Local Binary 
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Pattern (LBP) histogram for rotation invariant texture classification. LBP is a simple 
but efficient operator to describe local image patterns. Recently, Varma and Zisser-
man [9] proposed a statistical learning based algorithm, namely Maximal Response 8 
(MR8), using a group of filter banks, where a rotation invariant texton library is first 
built from a training set and then an unknown texture image is classified according to 
its texton distribution. Under the same framework, Varma and Zisserman [10] pro-
posed a new statistical learning based algorithm. Instead of using filter bank, pixel 
gray value is used directly to represent local region. Scale and affine invariant texture 
classification is anther active research topic, and some pioneer work have been done 
by using fractal analysis [13-14] and affine adaptation [12].  

As a state-of-the-art rotation invariant texture classification method, MR8 has 
achieved good accuracy on public database [9]. However, this method requires a train-
ing step to learn a feature dictionary. The learned dictionary thus depends on training 
samples. For example, it may suffer from generality when the training sample set is 
limited. Furthermore, to obtain a statistical histogram for a given image, it requires an 
additional step to assign the local region with a texton by searching the closest one from 
the trained library. This step is time consuming when the library size is big. 

To solve the above problems, in this paper we propose a new feature extraction op-
erator, namely Binary Filter Response Pattern (BFRP), which could be viewed as a 
binary version of MR8. After filtering the input image, BFRP converts the filter re-
sponse into binary strings directly, instead of preserving the real values of filter re-
sponse. Hence, each local region is assigned with a predefined texton. Such a binary 
presentation is not only fast to compute, but also can retain more discriminant infor-
mation for classification. 

The rest of the paper is organized as follows. Section 2 introduces the proposed 
BFRP and the dissimilarity metric. Section 3 reports the experimental results on a 
representative texture database. Section 4 gives the conclusion and future work. 

2   Binary Filter Response Pattern 

The MR8 filter bank used in [9] is employed in the proposed binary filter response 
pattern (BFRP) method. The MR8 filter bank consists of 38 filters, which are shown in 
Fig.1. To achieve rotation invariance, the filters are implemented at multiple  
 

 

Fig. 1. The MR8 filter bank consists of a series of anisotropic filters (an edge and a bar filter at 
6 orientations and 3 scales), and 2 rotationally symmetric ones (a Gaussian and a Laplacian of 
Gaussian) [9] 
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orientations and multiple scales. At each scale only the maximal response among the 
different orientations is kept. The final response at each position is an 8-dimension 
feature vector (3 scales for the edge and bar filters, plus 2 isotropic filters). 

2.1   BFRP Feature Extraction 

As shown in Fig.2, some local regions may have multiple dominant orientations. The 
magnitude of the filter response at each angle could be treated as a confidence meas-
urement in the feature occurring at that orientation [9]. Thus we define the BFRP for 
multiple orientations as 
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fθ  is the filter with orientation iθ , * is the convolution operation. N is the 

number of filters at one scale (N=6 for bar and edge filters, N=1 for Gaussian and 
Laplacian filters). I is the input image.  

 

Fig. 2. The top row shows 3 texture images. The central image patch (highlighted by red rec-
tangle) is matched with an edge filter at all orientations. The magnitude of the filter response 
versus the orientation is plotted in the bottom row [9]. 
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To achieve rotation invariance, we shift the BFRP until the least value of the bi-
nary string is obtained. Similar to the definition of rotation invariant LBP code [11], 
we can define the rotation invariant BFRP and denote this binary code as riBFRP  (the 

superscript “ri” means the use of rotation invariant patterns). The rotation invariance 
of a binary code is achieved by shifting a number of binary bits, to find the least bit 
string value [11]. Thus, for the 6-bit binary code of bar and edge filters, there will be 
14 kinds of rotation invariant strings (the 14 rotation invariant strings are 000000, 
000001, 000011, 000101, 000111, 001001, 001011, 001101, 001111, 010101, 
010111, 011011, 011111, and 111111). While for the 1-bit binary code of Gaussian 
and Laplacian filters, there will be 2 kinds of string only. With riBFRP , the filtering 

output at each position is a 8-dimensional vector, and there are 30,118,144 
(14*14*14*14*14*14*2*2) kinds of patterns in total. Such a dimension is too large to 
build histogram and it will bring computation issue. To reduce the feature size, we 
empirically divide the 38 filters into 2 groups as show in Fig. 3. Thus for each image, 
only two 4-dimensional histograms need to be built and then the 2 histograms are 
concatenated. The final histogram size is reduced to 10,976 (14*14*14*2*2). 

 

  
 

Fig. 3. Divide the MR8 filter banks into two equally groups 

To further reduce the number of patterns at each scale, similar to the “uniform” 
LBP [11], the “uniform” BFRP is defined as: 
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The uniformity measure U is used to count the number of bit transition (bitwise 1/0 
changes) in the bit string. By definition, exactly N+1 “uniform” binary patterns can 
occur in a circularly symmetric neighbor set of N binary bits, while the remaining 
(non-uniform) are grouped into a “miscellaneous” label (N+1).  
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The 2riuBFRP  (superscript “riu2” means the use of rotation invariant “uniform” 

patterns that have U value of at most 2), has 8 distinct output values for 6-bit binary 
strings and 2 distinct output values for 1-bit binary strings. Using 2riuBFRP , the feature 

size is 2,048 (8*8*8*2*2) which is comparable with that in MR8 [9].  

2.2   Dissimilarity Metric 

The dissimilarity of sample and model histograms is a test of goodness-of-fit, which 
could be measured with a nonparametric statistic test. There are many metrics to 
evaluate the goodness between two histograms, such as histogram intersection, log-
likelihood ratio, and chi-square statistic [11]. In this study, a test sample T is assigned 
to the class of model L that minimizes the chi-square distance: 
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where N is the number of bins, and nT  and nL  are the values of the sample and model 

image at the nth bin, respectively. In this paper, the nearest neighborhood classifier 
with chi-square distance is used to measure the dissimilarity between two histograms 
because it is equivalent to the optimal Bayesian classification [16] and get good per-
formance for texture classification [17]. 

3   Experimental Results 

In this section we will compare the proposed feature extraction scheme with MR8 and 
another non-training method (here, the “non-training” standing for the feature extrac-
tion is training free), LBP [11]. In MR8, 40 textons are clustered from each of the c 
texture classes using the training samples, and then a histogram based on the c*40 
textons is computed for each model and sample image. To more comprehensively 
evaluate the proposed method, in the experiments we list both the classification rates 
by using the riBFRP  (rotation invariant BFRP) and 2riuBFRP (“uniform” rotation in-

variant BFRP) schemes.  
The CURet database [18] is one of the largest yet most difficult databases for rota-

tion invariant texture recognition. It contains 61 textures and each texture has 205 
images obtained under different viewpoints and illumination directions. There are 118 
images whose viewing angles ( vθ ) are less than 600. Out of the 118 images, the 92 

images, from which a sufficiently large region could be cropped (200*200) across all 
texture classes, are selected [9]. Before feature extraction, all the cropped regions are 
converted into grey scale and are normalized to have a mean of 0 and a standard de-
viation of 1 [9, 11]. Here, instead of computing error bar (i.e. mean and standard de-
viations of results calculated over multiple splits), we performed experiments on four 
different settings to simulated four situations: 
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1. T46A: The training set for each class was selected by taking one from every two 
adjacent images. Hence, there are 2,806 (61*46) models and 2,806 testing sam-
ples. Because in CUReT, adjacent images have similar appearance than far im-
ages, this setting is used to simulate the situation of large and comprehensive 
training set. 

2. T23A: The training set for each class was selected by taking one from every four 
adjacent images. Hence, there are 1,403 (61*23) models and 4,209 (61*69) test-
ing samples. This setting is used to simulate the situation of small but compre-
hensive training set. 

3. T46F: The training set for each class was selected as the first 46 images. Hence, 
there are 2,806 models and 2,806 testing samples. This setting is used to simulate 
the situation of large but less comprehensive training set. 

4. T23F: The training set for each class was selected as the first 23 images. Hence, 
there are 1,403 models and 4,209 testing samples. This setting is used to simulate 
the situation of small and less comprehensive training set. 

 
The performance is evaluated by using the classification rate with chi-square distance 
and the nearest neighborhood classifier. The classification results by different opera-
tors with its associated feature size are listed in Table 1. The column for “T46A”, 
“T23A”, “T46F”, “T23F” represent the four different test setup as described above. 

From Table 1, we could make the following findings. First, under similar feature 
size, the proposed BFRP has better recognition performance than MR8. For example, 

2riuBFRP  (2,048 dimension) achieves 0.39%, 0.33%, 1.14%, and 2.66% higher recog-

nition rates than MR8 with its best settings (c=61 with feature size being 2,440 di-
mensions) for T46A, T23A, T46F, and T23F, respectively.  

Second, because MR8 requires a training stage, which depends on the training 
samples, when the training sample is few and not comprehensive, the accuracy will 
drops quickly compared with the proposed feature extraction. For example, the accu-
racy decreases 18.32% (from T23A to T23F) for MR8 (c=61) while decreasing only 
15.99% for 2riuBFRP . So the proposed method is more suitable for real applications 

where training samples are limited and not comprehensive. 

Table 1. Classification rate (%) for the four settings using different schemes 

Method 
Feature 

Size 
T46A T23A T46F T23F 

2 2 2
8,1 16,3 24,5
riu riu riuLBP LBP LBP+ + [15] 54 95.47 93.09 85.64 78.50 

MR8 (c=61) 2440 97.65 96.15 88.70 77.83 
MR8 (c=20) 800 96.79 94.80 86.89 75.98 
MR8 (c=10) 400 95.55 93.87 84.50 74.82 

riBFRP  10976 98.33 96.58 90.02 80.97 
2riuBFRP  2048 98.04 96.48 89.84 80.49 

      
 Average 97.05 95.16 87.55 77.82 
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4   Conclusion 

In the past decade, statistical texton has achieved great success for texture classifica-
tion. However, it requires a training step and spends much cost on building the feature 
histogram. In this study, a training free rotation invariant feature extractor is proposed 
for texture classification. Using the same filter bank as in MR8, the proposed feature 
extractor requires much less computation cost on feature extraction but achieves bet-
ter result than MR8. In the future we will investigate other statistical texton based 
operators, such as local fractal [14] and local patch [10], and try to extract their train-
ing free counterpart. 
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Abstract. This paper describes a method for seamless enlargement or
editing of difficult colour textures containing simultaneously both reg-
ular periodic and stochastic components. Such textures cannot be suc-
cessfully modelled using neither simple tiling nor using purely stochastic
models. However these textures are often required for realistic appear-
ance visualisation of many man-made environments and for some natural
scenes as well. The principle of our near-regular texture synthesis and
editing method is to automatically recognise and separate periodic and
random components of the corresponding texture. Each of these compo-
nents is subsequently modelled using its optimal method. The regular
texture part is modelled using our roller method, while the random part
is synthesised from its estimated exceptionally efficient Markov random
field based representation. Both independently enlarged texture compo-
nents from the original measured texture are combined in the resulting
synthetic near-regular texture. In the editing application both enlarged
texture components can be from two different textures. The presented
texture synthesis method allows large texture compression and it is si-
multaneously extremely fast due to complete separation of the analytical
step of the algorithm from the texture synthesis part. The method is uni-
versal and easily viable in a graphical hardware for purpose of real-time
rendering of any type of near-regular static textures.

1 Introduction

Physically correct virtual models require object surfaces covered with realistic
nature-like colour textures to enhance realism in virtual scenes. Satisfactory mod-
els require not only complex 3D shapes accorded with the captured scene, but also
realistic surface materials visualisation. This will significantly increase the realism
of the synthetic generated scene. We define near-regular textures as textures that
contain global, possibly imperfect, regular structures as well as irregular stochas-
tic structures simultaneously. This is more ambitious definition than to view [1] a
near-regular textures as a statistical distortion of a regular texture. Near regular
textures are difficult to synthesise, however, these textures are ubiquitous in man-
made environments such as buildings, wallpapers, floors, tiles, fabric but even
some fully natural textures such as honeycomb, sand dunes or waves belong to
this texture category. These textures can be modelled in simplified smooth or more
precise rough (also referred as the bidirectional texture function - BTF [2]) repre-
sentation. The rough textures do not obey the Lambert law and their reflectance

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1138–1145, 2009.
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is illumination and view angle dependent. Both types of such near-regular texture
representations occur in virtual scenes models. The purpose of any synthetic tex-
ture approach is to reproduce and enlarge a given measured texture image so that
ideally both natural and synthetic texture will be visually indiscernible. The re-
lated texture modelling approaches may be divided primarily into sampling and
model-based-analysis and synthesis, but no ideal texture modelling method ex-
ists. Each of the existing approaches or texture models has its advantages and
limitations simultaneously and it is applicable for a restricted subset of possible
textures only. Model-based texture synthesis [3,4,5] requires non-standard multi-
dimensional (3D for static colour textures or even 7D for static BTFs) models.
Such models are non trivial and they suffer with several unsolved problems which
have to be circumvented (e.g. optimal parameters estimation, efficient synthesis,
stability). Model-based methods are also often too difficult to be implemented in
contemporary graphical card processors. Sampling approaches [6, 7] rely on so-
phisticated sampling from real texture measurements. Sampling methods require
to store original texture sample, thus they cannot come near the large compression
ratio of the model-based methods.

Neither model-based or simple sampling algorithms alone can satisfactorily
solve the difficult problem of near-regular texture modelling. Existing methods
[1, 8, 9, 10, 11, 12, 13, 14, 15] usually try to overcome this problem by user assisted
modelling of the regular structures and then rely on regular tiling. However Lin et
al. [11] experimentally observed that several of these general purpose sampling al-
gorithms fail to preserve the structural regularity on more than 40% of their tested
regular textures. Tiling-based synthesis algorithms [9,12] identify the underlying
lattice of the input texture either automatically or by user selection of two trans-
lation vectors and use slightly modified image quilting method [7] for synthesis.
Texture replacement method [10] can replace selected regular texture while pre-
serving its lighting using a Markov random field model and slow iterative Markov
chain Monte Carlo solution. Another interactive tiling method [1] requires user as-
sistance to identify a coarse texture lattice structure. The method [15] separates
the global regular structure from the irregular structure using fractional Fourier
analysis similarly to our method. However the synthesis is performed by generat-
ing a fractional Fourier texture mask from the extracted global regular structure
which is used to guide pixelwise and time consuming sample-based synthesis. All
mentioned near-regular texture modelling methods suffer with drawbacks inher-
ent to the tiling approach. They do not allow texture editing, near-regular BTF
textures, unmeasured textures applications and have very limited compression ra-
tio. Tiling approaches cannot eliminate visible repetitions even if they use several
tiles which are randomly combined such as [2].

The presented fully automatic method proposes to combine advantages of
both basic texture modelling approaches by factoring a texture into factors that
benefit best from each of two basic different modelling concepts. The principle
of the method is to separate texture regular and stochastic parts, to enlarge
both parts separately and to combine these results (texture enlargement) or re-
sults from several different textures (texture editing) into the required resulting
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texture. The proposed solution is not only fully automatic, very fast due to strict
separation of the analytical and very efficient synthesis steps, but it also allows
significant data compression. Due to its stochastic modelling it completely elim-
inates visible repetitions (contrary to all mentioned tiling approaches) because
there are never used two identical tiles in a scene. Finally the method can be
easily used to near-regular texture editing by either combining texture parts
from different measurement or by changing stochastic model parameters.

2 Periodic and Non-periodic Texture Separation

The prerequisite for the method is that near-regular input textures have distinct
amplitude spectrum parts for both periodic and random components. Otherwise
the method, schematised in Fig.1 and outlined in the following sections, would
not be able to separate both texture parts. Periodic and non-periodic texture
part are detected in the simplified monospectral texture space. The input colour
texture is spectrally transformed using the principal component analysis (PCA).
Let the digitised colour texture Ȳ is indexed on a finite rectangular three-
dimensional M ×N × d underlying lattice I, where M ×N is the image size
and d is the number of spectral bands. The original centered data space Ỹ is
transformed into a new data space with PCA coordinate axes Y . This new basis
vectors are the eigenvectors of the d×d second-order statistical moments matrix
Φ = E{Ỹr,•Ỹ T

r,•} where d is the number of spectral bands and the multiindex r
has two components r = [r1, r2] (the row and column index). The projection of
random vector Ỹr,• (the notation • has the meaning of all possible values of the
corresponding index) onto the PCA coordinate system uses the transformation
matrix T = [uT

1 , . . . , uT
d ]T which has single rows uj that are eigenvectors of

the matrix Φ: Ȳr,• = T Ỹr,• . The periodic texture part (Fig. 2) is detected
on the most informative transformed monospectral factor, which corresponds to
the largest Φ eigenvalue.

2.1 Textural Periodicity Direction

Near-regular measured textures can have arbitrary periodicity directions (Fig.1-
top right), not necessarily simple axis aligned periodicity. The periodicity in two
directions is detected from the spatial correlation field restricted with the help of
Fourier amplitude spectrum (Fig.1-right). The method finds two largest Fourier
amplitude spectrum coefficients provided that they do not represent parallel
directions. Tolerance sectors (Fig.1- right), which accommodate for possible lo-
calisation imprecision of local amplitude spectra maxima, are specified and for all
their indices the corresponding spatial correlations are evaluated. Local spatial
correlation field maxima, larger than a threshold, are detected and the minimal
periodicity maximum is selected. Detected periodicity (δh∗

, δv∗
) and its direc-

tion allows to rotate measured texture to have axis aligned periodicity which
simplifies further analytical steps. Detected periodicity and directions specify a
rhomboid which contains the largest periodic part from the input texture. The
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Fig. 1. Presented method overall schema, right from above - original measured texture,
its amplitude spectrum, detected spatial correlation sectors, and the resulting toroidal
tile (bottom)

rhomboid is further inscribed into the M̂×N̂ rectangle which is cut out from the
input texture. Although the double toroidal tile can be searched directly from
the rhomboid the rectangular shape restriction simplifies this detection step.

2.2 Amplitude Spectrum Filter

The texture cutout is re-sampled to the lattice size of the power of two required
by the fast Fourier transformation (FFT) based filter Ṁ ≥ M̂ , Ṁ = 2i ,
Ṅ ≥ N̂ , Ṅ = 2j , where i, j are minimum possible values. Let Amax is
the Fourier amplitude spectrum maximum coefficient detected from the Fourier
amplitude spectrum (Fig.1- right). The filter removes such coefficients, for which
any of the following conditions holds: Ar < kAmax , Ar /∈ M ∧ r /∈ Im , where
M is a set of amplitude spectrum local maxima, k ∈ 〈0; 1〉 is a parameter and
Im is a contextual neighbourhood (we use the hierarchical neighbourhood of the
first or the second order) of such a local maximum. Applying the inverse FFT
and re-sampling the filtered tile back to the original M̂ × N̂ size we get the
filtered cutout Ẏ (Fig. 2- even images). FFT can be alternatively replaced by
the rotated FFT from the section 2.1 but this option would introduce sampling
errors into the filter. The filtered tile Ẏ is binarized (Ŷ ) using a threshold
tbin ∈ 〈0; 1〉. One label determines the periodic texture part and the other the
stochastic part. To find the labels correspondence to both periodical and non-
periodical parts of the original texture Fig.2 - odd img., the binary image Ŷ is
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Fig. 2. Near-regular measured textures (odd) and their detected periodic parts

tested for periodicity δh∗
, δv∗

. The majority label complying to the periodicity
test denotes the original texture periodic sites (Fig.2- even img.). When both
periodic and stochastic parts are separated they can be independently modelled
and enlarged to any required size as it is detailed in two following sections. The
required near-regular texture is simple composite of both synthetic parts.

3 Periodic Texture Modelling

The regular part of the texture is enlarged using a simplification of our previously
published [16] method. The roller method [2,16] is based on the overlapping tiling
and subsequent minimum error boundary cut. One or several optimal double
toroidal texture patches are seamlessly repeated during the synthesis step. This
automatic method starts with the minimal tile size detection which is limited by
the size of texture measurements, the number of toroidal tiles we are looking for
and the sample spatial frequency content. The optimal horizontal and vertical
edges cuts are searched using the dynamic programming method. These optimal
vertical and horizontal cuts constitute a toroidal tile as is demonstrated on the
Fig.1 - bottom right. Some textures with dominant irregular structures cannot
be modelled by simple single tile repetition without clearly visible and visually
disturbing regular artefact. Such textures exploit multiple toroidal tiles which
share identical border but differ in their interior. Finally, the periodic texture
enhancement is simple repetition of one or several randomly alternating double
toroidal tiles in both directions until the required texture size is generated.

4 Random Texture Modelling

The random part of a texture is synthesised from the original input texture from
where the detected periodic component was removed as described in section 2.
If the stochastic texture patches are too small (few hundred pixels area) to
reliably learn the random field model statistics, we replace occluded stochastic
texture areas by using a modification of the image quilting algorithm [7]. The
random part of the texture is synthesised using an adaptive probabilistic spatial
model, a multiresolution 3D causal autoregressive model (CAR) [17], which is
an exceptionally efficient type from the Markov random field (MRF) family of
models. This model allows extreme compression (few tens of parameters to be
stored only) and can be speedily evaluated directly in a procedural form to
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seamlessly fill an infinite texture space. The resulting near-regular texture is
simple combination of both regular and stochastic synthesised factors.

5 Results

We have tested the presented method on near-regular textures from our exten-
sive texture database, which currently contains over 1000 colour textures. Tested
near-regular textures were either man-made such as two textures on Fig.4 or
combinations of man-made structures with natural background (Fig.3) such as
grass, wood, plants, snow, sand, etc. Both part of modelling were separately

Fig. 3. Near-regular textures and their synthesis (right), image quilting [7] results
(bottom row)
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Fig. 4. Near-regular texture editing. Measured textures (three leftmost) and edited
textures (three rightmost).

successfully tested on hundreds of colour or BTF textures with results reported
elsewhere ( [16]). Such unusually extensive testing was possible due to simplicity
and efficiency of both crucial parts of the algorithm and it allowed us to get
insight into the algorithm properties. The method is even capable to synthe-
sise some near-regular textures combined from two distinctive types of regular
structures provided they can be adequately separated in the Fourier domain.
Resulting textures are mostly surprisingly good for such a fully automatic fast
algorithm. Textures in Fig.3 were synthesised in real time (≈ 1 [s]) while us-
ing the image quilting method [7] the synthesis took 90 [s] on the same PC.
Obviously there is no optimal texture modelling method and also the presented
method fails on some near-regular textures with similar (and thus faultlessly un-
separable) amplitude spectrum parts of both periodic and random components.

6 Conclusions

Our test results on available near-regular texture data are encouraging. The
overall method is fully automatic and extremely fast due to strict separation of
the analytical and very efficient synthesis steps. The regular part modelling is
easily implementable even in the graphical processing unit. The method offers
larger compression ratio than alternative tiling methods for transmission or stor-
ing texture information due to the periodic part modelling approach. The MRF
based random part model can reach a huge compression ratio itself, hence its
storage requirements are negligible, and simultaneously eliminates visible rep-
etitions typical and unavoidable for tiling approaches. The overall method has
negligible computation complexity for the periodic model and exceptionally effi-
cient computational model for the random part as well. The method’s extension
for alternative texture types, such as BTF textures or some other spatial data
such as the reflectance models parametric spaces is straightforward. Finally, the
method can be easily used to near-regular texture editing by either combin-
ing texture parts from different measurement or by changing stochastic model
parameters.
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Abstract. A fully automatic colour texture editing method is proposed,
which allows to synthesise and enlarge an artificial texture sharing an-
ticipated properties from its parent textures. The edited colour texture
maintains its original colour spectrum while its frequency is modified
according to one or more target template textures. Edited texture is
synthesised using a fast recursive model-based algorithm. The algorithm
starts with edited and target colour texture samples decomposed into a
multi-resolution grid using the Gaussian-Laplacian pyramid. Each band
pass colour factors are independently modelled by their dedicated 3D
causal autoregressive random field models (CAR). We estimate an op-
timal contextual neighbourhood and parameters for each of the CAR
submodel. The synthesised multi-resolution Laplacian pyramid of the
edited colour texture is replaced by the synthesised template texture
Laplacian pyramid. Finally the modified texture pyramid is collapsed
into the required fine resolution colour texture. The primary benefit of
these multigrid texture editing models is their ability to produce realis-
tic novel textures with required visual properties capable of enhancing
realism in various texture application areas.

1 Introduction

Image editing remains a complex user-directed task, often requiring proficiency
in design, colour spaces, computer interaction and file management. Editing pro-
vides the scene designer with tools which enable to control virtual scene objects,
geometric surfaces, illumination and objects faces appearance in the form of
their corresponding textures. Image editing software is often characterised [1]
by a seemingly endless array of toolbars, filters, transformations and layers. Al-
though some recent attempts [2,3,4,5,6,7,8] have been made to automate this
process, automatic integration of user preferences still remains an open problem
in the context of texture editing [9,10].

The primary contribution of our method is a simple intuitive and fully au-
tomatic tool for the scene designer to modify objects surface appearance by
controlled texture modifications. Contrary to some other texture editing ap-
proaches such as the procedural textures, the edited texture visual appearance
predictably corresponds to the anticipated projection.

Authentic and photo realistic appearance of natural materials covering sur-
faces of virtual objects in virtual or augmented reality rendered scenes requires
nature-like colour textures covering visualised scene objects. Such textures can

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1146–1153, 2009.
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be either digitised natural textures or textures synthesised from an appropriate
mathematical model. The former simplistic option suffers among others from
extreme memory requirements for storage of a large number of digitised cross-
sectioned slices through different material samples. Synthetic textures are more
flexible, extremely compressed (few parameters have to be stored only), they may
be evaluated directly in procedural form and can be designed to meet certain
constraints or to secure some desirable properties (e.g., smooth periodicity, no
visible discontinuities, etc.). The underlying mathematical models have besides
presented texture editing also many other applications (e.g., image restoration,
image and video compression, classification, segmentation, etc.).

Several monospectral texture modelling approaches were published, e.g.,
[11,12], among them also few colour models, e.g., [13,14,15,16] and some survey
articles are available [17,18] as well. [13] introduced a fast multiresolution Markov
random field based method. Although this method avoids the time consuming
Markov chain Monte Carlo simulation so typical for applications of Markov mod-
els it still requires several simplifying approximations. Several alternative Marko-
vian colour texture models such as the simultaneous 2D causal autoregressive
random fields (2D CAR) [16], 2D Gaussian Markov models (2D GMRF) [19], or
3D CAR [20] were introduced as well and later generalised also for Bidirectional
Texture Function (BTF) [21,22,23,24] or dynamic textures [25]. These models
are appropriate for colour texture synthesis not only because they do not suffer
from some problems of alternative options (see [17,18] for details) but they are
also easy to analyze as well as to synthesise and last but not least they are still
flexible enough to imitate a large set of natural and artificial textures.

2 Markovian Texture Model

We assume to have two colour textures Yα, Yδ which can be represented using
a Markovian random field model (MRF). The texture Yα is the input texture
which will be modified according to a target template texture Yδ. The edited
colour texture maintains most of its original colour spectrum but changes its
frequency to resemble the template texture Yδ. Single frequency factors are
modelled using the exceptionally fast 3D wide-sense Markov causal autoregres-
sive random field model (3D CAR). Let the digitised colour texture Y is indexed
on a finite rectangular three-dimensional N×M×d underlying lattice I, where
N ×M is the image size and d is the number of spectral bands (i.e., d = 3 for
usual colour textures). Let us denote a simplified multiindices r, s to have two
components r = [r1, r2], s = [s1, s2]. The first component is row and the second
one is column index, respectively.

2.1 Frequency Factorisation

The analyzed colour texture image is decomposed into a multi-resolution grid
using Laplacian pyramid and the intermediary Gaussian pyramid. The benefit
of the multigrid approach is the replacement of a large neighbourhood CAR
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model with a set of several simpler CAR models which are easy to estimate and
synthesise. Each resolution data are independently modelled by their dedicated
CAR. Each one generates a single spatial frequency band of the texture. The
Gaussian pyramid Ÿ

(k)
ν is a sequence of images in which each one is a low-

pass down-sampled version of its predecessor where the weighting function (FIR
generating kernel) is chosen subject to the following constraints:

ws = ŵs1 ŵs2 ,
∑

i ŵi = 1 , ŵi = ŵ−i , ŵ0 = 2ŵ1 (ζ = 1)

and ν ∈ {α, δ}. The solution of the above constraints for the reduction factor 3
(2ζ + 1) is ŵ0 = 0.5, ŵ1 = 0.25 and the FIR equation is now

Ÿ (k)
r,ν =

ζ∑
i,j=−ζ

ŵiŵj Ÿ
(k−1)
2r+(i,j),ν . (1)

The Gaussian pyramid for a reduction factor n is

Ÿ (k)
r,ν =↓n

r (Ÿ (k−1)
ν ⊗ w) k = 1, 2, . . . , (2)

where Ÿ
(0)
ν = Yν , ↓n denotes down-sampling with reduction factor n and

⊗ is the convolution operation.
The Laplacian pyramid Ẏ

(k)
r,ν contains band-pass components and provides

a good approximation to the Laplacian of the Gaussian kernel. It can be con-
structed by differencing single Gaussian pyramid layers:

Ẏ (k)
r,ν = Ÿ (k)

r,ν − ↑n
r (Ÿ (k+1)

ν ) k = 0, 1, . . . , (3)

where ↑n is the up-sampling with an expanding factor n. Single orthogonal
multispectral components are thus decomposed into a multi-resolution grid and
each resolution data are independently modelled by their dedicated independent
Gaussian noise driven autoregressive random field model as follows.

2.2 3D CAR Texture Model

Single frequency factors are modelled using the causal autoregressive random
field (3D CAR) model [20] which is a family of random variables with a joint
probability density on the set of all possible realisations Y of the M × N × d
lattice I, subject to the following condition:

p(Y | γ,Σ−1) =
|Σ−1|

(MN−1)
2

(2π)
d(MN−1)

2

exp

{
−1

2
tr{Σ−1

(
−I
γT

)T

ṼMN−1

(
−I
γT

)
}
}

,

where the following notation is used

Ṽr−1 =
(

Ṽyy(r−1) Ṽ T
xy(r−1)

Ṽxy(r−1) Ṽxx(r−1)

)
, Ṽyy(r−1) =

∑r−1
k=1 YkY

T
k ,

Ṽxy(r−1) =
∑r−1

k=1 XkY
T
k , Ṽxx(r−1) =

∑r−1
k=1 XkX

T
k .

The 3D CAR model can be expressed as a stationary causal uncorrelated noise
driven 3D autoregressive process:
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Yr = γXr + er , (4)

where γ is the d × dη parameter matrix γ = [A1, . . . , Aη] , η = card(Ic
r ) ,

Ic
r is a causal neighbourhood, er is a Gaussian white noise vector with zero

mean and a constant but unknown covariance matrix Σ (estimated by (7)) and
Xr is a corresponding vector of Yr−s (design vector).

Parameter Estimation. The selection of an appropriate CAR model support
is important to obtain good results in modelling of a given random field. If the
contextual neighbourhood is too small it cannot capture all details of the random
field. Inclusion of the unnecessary neighbours on the other hand add to the com-
putational burden and can potentially degrade the performance of the model as
an additional source of noise. The optimal Bayesian decision rule for minimising
the average probability of decision error chooses the maximum posterior proba-
bility model, i.e., a model Mi corresponding to maxj{p(Mj|Y (r−1))} where
Y (r−1) denotes the known process history Y (r−1) = {Yr−1, Yr−2, . . . , Y1} .
The most probable CAR model given past data Y (r−1), the normal-Wishart
parameter prior and the uniform model prior is the model Mi for which
i = arg maxj{Dj(r−1)}

Dj(r−1) =
d2η

2
ln π

d∑
i=1

[
ln Γ (

β(r)− dη + d + 2− i

2
) − ln Γ (

β(0)− dη + d + 2− i

2
)
]

− d

2
ln |Vxx(r−1)| −

β(r)− dη + d + 1
2

ln |λ(r−1)|

where β(r) = β(0) + r − 1 , β(0) > 1 , and

λ(r) = Vyy(r) − V T
xy(r)V

−1
xx(r)Vxy(r) . (5)

Parameter estimation of a CAR model using the maximum likelihood, the least
square or Bayesian methods can be found analytically. The Bayesian parameter
estimations of the causal AR model with the normal-Wishart parameter prior
which maximise the posterior density are:

γ̂T
r−1 = V −1

xx(r−1)Vxy(r−1) (6)

and

Σ̂r−1 =
λ(r−1)

β(r)
, (7)

where Vuz(r−1) = Ṽuz(r−1) +Vuz(0) and matrices Vuz(0) are the corresponding
matrices from the normal-Wishart parameter prior. The estimates (5), (6),(7)
can be also evaluated recursively if necessary.

Model Synthesis. The CAR model synthesis is very simple and a 3D causal
CAR random field can be directly generated from the model equation (4) using a
multivariate Gaussian generator. Single CAR models synthesise spatial frequency
bands of the texture.
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2.3 Laplacian Pyramid Swap

The synthesised Laplacian pyramid layers from the target texture target tem-
plate texture Ẏδ are used instead of the corresponding input texture Laplacian
pyramid layers (Ẏα), i.e.

Ẏ (k)
r,α = Ẏ

(k)
r,δ ∀k . (8)

The input texture Yα Laplacian pyramid layers (Ẏα) are not needed and their
corresponding 3D CAR models are neither estimated nor synthesised. On the
contrary, the input Gaussian pyramid Ÿ

(k)
r,α at the most coarse level contains

original texture colour spectrum and is needed (and thus estimated) for the
edited texture synthesis. If the Laplacian pyramids of both textures have similar
numerical values, then the edited texture colour spectrum is unchanged, other-
wise its colour spectrum is a compromise between both textures colour spectra.
The edited fine-resolution synthetic colour texture is obtained from the pyramid
collapse procedure (inversion process to (2),(3) modified to (8)).

3 Experimental Results

Figs.1,2 show six examples of different natural or man made colour textures
edited using the presented algorithm. All original natural colour textures (upper

Fig. 1. Natural cloud and fur textures (upper row), their resynthesis using a set of 3D
CAR models (bottom left) and their edited counterparts (bottom right)
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Fig. 2. Wood, tile, lichen, and leather natural textures and their resynthesised edited
counterparts using the 3D CAR models (middle and bottom)

rows) are taken either from the VisTex [26] database or from our own exten-
sive colour texture database. The images on Fig.1-bottom left show synthe-
sised enlarged examples of the input textures while the Figs.1-bottom right,2-
middle,bottom rows present results from the presented texture editing method
with frequency modification using the alternate column texture as the template
texture Yδ with the reduction factor n = 2 and the number of pyramid lay-
ers k ∈ {2, 3}. The edited textures are generated fully automatically and they
clearly demonstrate original texture frequency modified to resemble the template
texture frequency. The method can be easily combined with some texture seg-
menter if we need to edit separately single textures appearing in the scene. The
method allows very high compression ratio, because only tens parameters for
every fractional 3D CAR model have to be stored regardless of the required tex-
ture enlargement. This extreme compression ration (1 : 106 for BTF modelling
[21]) is the prerequisite for BTF editing applications where alternative texture
editing methods cannot be used due to unsolvable memory requirements.

4 Conclusions

A simple fully automatic colour texture editing method is proposed. The method
allows to synthesise and enlarge artificial textures which resemble both their
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parents textures. The edited texture inherits primarily spectral information from
one parent and frequency information from the other one. This procedure can be
repeated for more complex lineage trees which allows to inherit visual properties
from more than two parent textures. The method allows very high compression
ratio for transmission or storing texture information, while sometimes compro-
mises visual quality of the resulting texture, similarly as any other adaptive
texture model. The edited texture analysis as well as synthesis is extremely fast
(due to complete analytical solution) and can be used in real-time applications.
The method can be easily generalised also for other types of textures such as the
Bidirectional Texture Function (BTF) or dynamic textures.
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the MŠMT grants 1M0572 DAR, 2C06019.

References

1. Brooks, S., Dodgson, N.A.: Integrating procedural textures with replicated image
editing. In: Proceedings of the 3rd International Conference on Computer Graphics
and Interactive Techniques in Australasia and Southeast Asia 2005, Dunedin, New
Zealand, November 29 - December 2, pp. 277–280. ACM, New York (2005)

2. Ashikhmin, M.: Synthesizing natural textures. In: ACM Symposium on Interactive
3D Graphics, pp. 217–226 (2001)

3. Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., Werman, M.: Texture mixing and tex-
ture movie synthesis using statistical learning. IEEE Transactions on Visualization
and Computer Graphics 7, 120–135 (2001)

4. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by
patch-based sampling. ACM Transactions on Graphics (TOG) 20, 127–150 (2001)

5. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analo-
gies. ACM Trans. Graph., 327–340 (2001)

6. Wiens, A.L., Ross, J.: Gentropy: evolving 2d textures. Computers & Graphics 26,
75–88 (2002)

7. Wang, X., Wang, L., Liu, L., Hu, S., Guo, B.: Interactive modeling of tree bark.
In: Proc. 11th Pacific Conf. on Comp. Graphics and Appl., pp. 83–90. IEEE, Los
Alamitos (2003)

8. Brooks, S., Cardle, M., Dodgson, N.A.: Enhanced texture editing using self simi-
larity. In: VVG, pp. 231–238 (2003)

9. Brooks, S., Dodgson, N.A.: Self-similarity based texture editing. ACM Trans.
Graph 21, 653–656 (2002)

10. Khan, E.A., Reinhard, E., Fleming, R.W., Bülthoff, H.H.: Image-based material
editing. ACM Trans. Graph 25, 654–663 (2006)

11. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society, Series B B-36, 192–236 (1974)

12. Kashyap, R.: Analysis and synthesis of image patterns by spatial interaction mod-
els. In: Kanal, L., Rosenfeld, A. (eds.) Progress in Pattern Recognition, vol. 1.
North-Holland, Elsevier (1981)



Texture Editing Using Frequency Swap Strategy 1153
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20. Haindl, M., Havĺıček, V.: A multiscale colour texture model. In: Proceedings of the
16th International Conference on Pattern Recognition, pp. 255–258. IEEE Com-
puter Society, Los Alamitos (2002)

21. Haindl, M., Filip, J.: Fast BTF texture modelling. In: Texture 2003. Proceedings,
Edinburgh, pp. 47–52. IEEE Press, Los Alamitos (2003)

22. Haindl, M., Filip, J., Arnold, M.: BTF image space utmost compression and mod-
elling method. In: Proceedings of the 17th IAPR International Conference on Pat-
tern Recognition, vol. III, pp. 194–197. IEEE, Los Alamitos (2004)

23. Haindl, M., Filip, J.: A fast probabilistic bidirectional texture function model.
LNCS, pp. 298–305. Springer, Heidelberg (2004)

24. Haindl, M., Filip, J.: Extreme compression and modeling of bidirectional texture
function. IEEE Transactions on Pattern Analysis and Machine Intelligence 29,
1859–1865 (2007)

25. Filip, J., Haindl, M., Chetverikov, D.: Fast synthesis of dynamic colour textures. In:
Proceedings of the 18th International Conference on Pattern Recognition, ICPR
2006, vol. IV, pp. 25–28. IEEE Computer Society, Los Alamitos (2006)

26. Vision texture (vistex) database. Technical report, Vision and Modeling Group,
http://www-white.media.mit.edu/vismod/

http://www-white.media.mit.edu/vismod/


A Quantitative Evaluation of Texture Feature
Robustness and Interpolation Behaviour�

Stefan Thumfart1, Wolfgang Heidl1, Josef Scharinger2,
and Christian Eitzinger1

1 Profactor GmbH,
Im Stadtgut A2, 4407 Steyr-Gleink, Austria

stefan.thumfart@profactor.at

http://www.profactor.at
2 Johannes Kepler University Linz, Department of Computational Perception,

Altenberger Str. 69, 4040 Linz, Austria
http://www.cp.jku.at

Abstract. Whenever an image database has to be organised according
to higher level human perceptual properties, a transformation model is
needed to bridge the semantic gap between features and the perceptual
space. To guide the feature selection process for a transformation model,
we investigate the behaviour of 5 texture feature categories.

Using a novel mixed synthesis algorithm we generate textures with a
gradual transition between two existing ones, to investigate the feature
interpolation behaviour. In addition the features’ robustness to minor
textural changes is evaluated in a kNN query-by-example experiment.

We compare robustness and interpolation behaviour, showing that
Gabor energy map features are outperforming gray level co-occurrence
matrix features in terms of linear interpolation quality.

1 Introduction

In addition to typical image processing applications such as fault detection or ob-
ject background segmentation, texture became an integral part in recent content-
based image retrieval (CBIR) systems [1]. Nowadays the field of CBIR must not
be seen in the narrow context of e.g. example based image retrieval, but includes
all technologies that facilitate the organisation of large digital image archives by
their visual content [2].

The essential component of such systems is a distance measure, capable of
representing high level image similarity concepts. Depending on the application
scenario, it is very likely, that this distance measure cannot be computed directly
from the low level feature set. The usage of specific higher level (e.g. perceptual)
features partly solves this problem for a limited domain.

� This work was funded by the EC under grant no. 043157, project SynTex. It reflects
only the authors’ view.
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A general solution can be achieved by transforming the low level feature space
into another domain specific similarity space [3]. Within this space the image
distance can be computed more easily. Furthermore machine learning enables
us to build the transformation model automatically, e.g. based on psychological
experiments or user relevance feedback. Regardless of the application domain
the choice of the feature set and the related transformation model is essential.

We conducted two experiments to support this decision. The first experiment
evaluates feature retrieval accuracy and robustness with respect to minor changes
in the image, using a query-by-example image retrieval setup (section 3.2). The
second experiment is dedicated to analyse feature changes in case of interpolation
between given texture samples, using a novel texture mixing algorithm (section
3.3). Texture and colour features are discussed in section 2.

2 Texture Features

We use statistical (gray level co-occurrence matrix), perceptual (neighbourhood
gray tone difference matrix, Tamura), signal processing (Fourier energy, Gabor
energy map) and Colour features. See [4] for a complete list of all features
including the parameter settings.

2.1 Statistical Features

Gray level co-occurrence. In 1973 Haralick et al. first proposed to use a gray
level co-occurrence matrix, GLCM, to analyse the 2nd order statistical properties
of textures [5].

As suggested in [5] we extract 4 GLCMs for a fixed displacement vector length
|d| and angle θ = {0◦, 45◦, 90◦, 135◦}. For each of the resulting GLCMs we
compute 11 statistical measures and comprise the final feature vector of length
22 by calculating the mean and range value for each measure. We are using the
GLCM features computed for |d| = {1, 2, 4, 8} for our experiments (= 88 features
in total).

2.2 Perceptual Features

Tamura. Tamura et al. proposed 6 perceptual texture measures, namely: coarse-
ness, contrast, directionality, line-likeness, regularity and roughness [6]. The
computation of these features follows no general approach, but aims to achieve
high correspondence to human judgements for the given texture properties.

Neighbourhood gray tone difference. In [7] Amadasun and King propose to
extract texture features from a vector termed neighbourhood gray tone difference
matrix (NGTDM), describing the intensity difference between image pixels and
their local neighbourhoods. Amadasun and King defined 5 measures which can
be extracted from the NGTDM, all of them following from a visual deduction
of perceptual texture properties. We compute these measures for neighbourhood
sizes of d = {1, 2}.
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Fig. 1. F.l.t.r. the real and imaginary component of a single Gabor filter in spatial
domain, a Gabor filter bank (4 scales, 6 orientations) in Fourier domain, a texture
image, the Gabor energy map for the texture image using the given filterbank

2.3 Signal Processing Features

The use of signal processing based texture analysis methods is seconded by
findings about the early human visual processing steps [8], [9].

Fourier energy features. The Fourier power spectrum is partitioned into cir-
cular rings or wedges to measure the energy present in these segments [1]. We
use a partitioning into 12 log-scaled circular rings and 48 wedges. The ring en-
ergy distribution can be used to assess the coarseness of a texture, whereas the
wedge energy distribution describes its directionality. Based on these energy fea-
tures we compute several statistical measures such as the wedge energy standard
deviation.

Gabor energy map features. Contrary to the Fourier transform the Gabor
convolution is spatially localized. A two dimensional Gabor function is a sinu-
soidal plane wave modulated by a Gaussian envelope. An exhaustive comparison
of Gabor energy based features for texture segregation and classification can be
found in [10].

According to [11] we compute the Gabor energy map m, using a Gabor filter
bank (4 scales, 6 orientations) as depicted in Fig. 1. Based on m Kim et al. use
the sum of Gabor orientation energy difference, SGOED for object classification.
Besides SGOED, we implemented several features such as sum of Gabor scale
energy difference, SGSED, maximum of Gabor orientation energy difference,
MGOED, which are modifications of the SGOED.

2.4 Colour Features

Colour has been used for image indexing and retrieval for almost two decades
[12]. We use 3 measures (f1, f2 and f3 ) as proposed in [13], to describe the
images’ average intensity, colourfulness and average saturation.

Furthermore we partition the hue component of the HSV colour space into 6
equally sized sectors (60◦ each), to count the relative frequency of image pixels
within each sector. The frequencies are weighted by the average image value and
saturation. Finally we end up with 6 measures describing e.g. the redness of an
image.
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3 Experimental Setup

We conduct two experiments to assess the robustness with respect to minor
changes of the input image and the feature interpolation behaviour between
given texture samples for the feature set outlined in section 2.

3.1 Texture Sample Selection

In total we selected 394 stationary [14] images from texture collections such as
Brodatz [15], Outex [16], Vistex [17] and textures collected on our own, avail-
able at [4]. To unify the upcoming processing steps we cropped all 394 selected
samples to 480× 480 pixels (i.e. the minimum size of selected texture samples).
Increasing the minimum size threshold for selecting texture samples, would have
led to the exclusion of the above mentioned popular texture collections, lowering
the value of the evaluation results.

3.2 Evaluation of Feature Robustness

We evaluate the robustness of the feature set with respect to minor texture
changes, inspired by the stationarity criterion.

First we extract 16 patches Pi1, ..., Pi16 of size 128×128 pixels in scanline order
for every selected texture Ti. We term a set of patches extracted from the same
texture as patch group Gi. Given that Ti is stationary, the patches Pi1, ..., Pi16
are similar. If a feature returns instable results for many patch groups, it is
likely that this feature is sensitive to minor texture changes. Prior to the actual
robustness experiments we have to eliminate all images that are causing high
variances for many different features because they are instationary. We use a
voting approach to eliminate 81 instationary texture images.

kNN query-by-example results. Using the remaining 313 patch groups, we
conduct a query-by-example kNN classification experiment to assess the retrieval
performance of our feature set. For a random patch Pr the k nearest neigbhours
among the other patches are retrieved, using euclidean distance. Based on the
group memberships of the k selected candidates, the group for Pr is predicted.
Table 1 shows the average retrieval accuracy for 1000 query patches per feature
groups. Due to the low number of samples per class (16) the value k = 3 gives
the best average retrieval accuracy. GLCM features are most robust, followed by
Gabor energy map features.

3.3 Evaluation of Feature Changes

Pyramid based Texture Mixing. We use a novel texture mixing method,
based on the idea of pixel based texture synthesis. We extend the method pro-
posed in [14] to produce textures which are a weighted mixture of two input
samples TA, TB. The algorithm of Wei and Levoy synthesizes a new texture of
user defined size based on a single input texture. Starting with a random im-
age (initialized with white noise) the resulting texture is synthesized pixel per
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Table 1. kNN retrieval accuracy [%] for all feature groups, for 1000 query patches

k 1 3 5 7 10 15

avg. precision 78.0 78.2 75.1 74.1 73.0 70.3
GLCM d = 1 91.4 90.8 88.5 88.4 86.5 83.5
GLCM d = 2 91.5 91.9 86.4 89.2 84.2 84.9
GLCM d = 4 84.1 86.7 82.5 81.4 82.8 77.7
GLCM d = 8 79.6 78.1 77.1 77.0 75.9 75.5

NGTDM d = 1 71.7 70.8 67.4 63.8 64.8 59.2
NGTDM d = 2 71.4 71.3 64.7 65.9 61.5 59.8

Tamura 58.5 60.7 59.0 55.9 58.3 54.4
Fourier energy 73.1 75.9 73.5 72.7 73.2 69.9

Colour 78.3 76.8 75.3 71.9 70.7 66.5
Gabor energy map 80.2 79.0 76.9 74.5 71.8 71.8

Fig. 2. The outer columns show the original mixing input samples. The 6 columns in
the middle show the mixed texture samples for different mixing weights.

pixel in scanline order by comparing the local output pixel neighbourhood to all
neighbourhoods of the input sample.

Instead of starting with a white noise image, we randomly select pixel values
from TA and TB to build the starting image Srand. Next, 2 Gaussian pyramids are
built from Srand. Separately, each pyramid is synthesized, using multi-resolution
neighbourhood search [14]. By blending the highest resolution pyramid levels we
get the mixing results as depicted in Fig. 2.

Texture sample mixing. We generate weighted (mixed) textures using pyra-
mid based texture mixing to assess the interpolation behaviour of features be-
tween given texture samples. To select representative mixing inputs, we assigned
the extracted patches (section 3.2) to 20 clusters, according to their normalized
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Fig. 3. Feature trajectories of 4 Gabor energy map features computed for a mixing
group containing 6 textures

(a) The feature trajectory values for
mixing group 50.

(b) Combined trajectory for
mixing groups: 50, 51, 52.

Fig. 4. Building of a combined trajectory for the feature GLCM d = 1, mean(sum of
squares)

average group variance. From each cluster, 1 patch is chosen randomly. We use
the mixing weights 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 to generate 6 textures (a mixing
group) for each of the

(20
2

)
= 190 possible combinations.

Experiment. We compute the features for all mixing groups to obtain 190
discrete trajectories of each feature for the transition from TA to TB. Fig. 3
shows the feature trajectory of 4 selected Gabor energy map features.

As the feature range is different for each mixing group, we shall first discuss
how to compose a combined trajectory ci for feature fi.

For every mixing group j, we compute the equidistant feature values for each
single trajectory ti,j . Finally we get 190 matrices of size 2 × 6 per feature, with
the first row storing the equidistant feature values and the second row containing
the computed feature values (see Table 4(a)).

We superimpose all trajectories ti,j , with j ∈ {1, ..., 190} by plotting the
equidistant values along the x-axis and the computed feature values along the
y-axis. See Fig. 4(b) for a combined trajectory built from 3 mixing groups.

Results and Conclusions. The selection of a useful measure to assess the
quality of the combined trajectories depends on the subsequently used model
type (e.g. of a transformation model to bridge the semantic gap between low
level features and human perception). For simplicity we assume a linear model
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Fig. 5. Combined trajectories for Tamura-regularity, ID: 103, Colour-average intensity,
ID: 149 and Colour-colourfulness, ID: 150. The values of feature 149 are located close
to the 1st median line. Therefore this feature is highly correlated to the equidistant
feature steps. Feature 103 received the lowest correlation results. Feature 150 is the
one which performed best in the retrieval experiment.

(a) Average feature interpolation
quality.

(b) Average feature kNN retrieval ac-
curacy (k = 30).

Fig. 6. Comparison of linear interpolation behaviour and kNN retrieval accuracy for
all feature categories

(e.g. linear regression) and use Pearson’s linear correlation coefficient to describe
the linear interpolation quality of single features, based on combined trajectories
as depicted in Fig. 5.

Fig. 6 shows the results of the kNN feature robustness and the interpolation
behaviour experiment in terms of retrieval accuracy and linear correlation. Both
diagrams contain the results averaged for all members of a separate feature
category. Note that the results presented in Table 1 contain the retrieval accuracy
obtained for an n dimensional feature space, with n representing the number of
features per category.

As shown in Fig. 6(a), the perceptual features (NGTDM, Tamura) received
low correlation results, indicating that they are not suited as input for a lin-
ear model. Also the Fourier features are outperformed by Gabor filters, both
in terms of robustness and linear interpolation quality. We consider it inter-
esting, that the robustness and the linear interpolation quality seem not to be
correlated, as NGTDM features are among the robust ones, but received a low
correlation score.

As expected, GLCM features gave a good retrieval accuracy. Surprisingly they
were among the best in terms of linear interpolation quality, even though they
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mainly describe higher level statistical properties. Colour features performed
well in both experiments, but could not outperform Gabor and GLCM features
in the second experiment.
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Abstract. The amount of electronic information as well as the size and
dimensionality of data sets have increased tremendously. Consequently,
dimension reduction and visualization techniques have become increas-
ingly popular in recent years. Dimension reduction is typically connected
with loss of information. In supervised classification problems, class labels
can be used to minimize the loss of information concerning the specific
task. The aim is to preserve and potentially enhance the discrimination of
classes in lower dimensions. Here we propose a prototype-based local rele-
vance learning scheme, that results in an efficient nonlinear discriminative
dimension reduction of labeled data sets. The method is introduced and
discussed in terms of artificial and real world data sets.

1 Intoduction

Dimension reduction techniques aim at finding a smaller set of features by re-
ducing or eliminating redundancies. From a theoretical point of view the “curse
of dimensionality” causes many difficulties in high-dimensional spaces, such that
dimension reduction constitutes a valuable tool to deal with these problems [1].

In the last decades an enormous number of unsupervised dimension reduction
methods has been proposed. In general, unsupervised dimension reduction is an
ill-posed problem since a clear specification which properties of the data should
be preserved, is missing. Standard criteria, for instance the distance measure
employed for neighborhood assignment, may turn out unsuitable for a given
data set, and relevant information often depends on the situation at hand.

If data labeling is available, the aim of dimension reduction can be defined
clearly: the preservation of the classification accuracy in a reduced feature space.
Supervised linear dimension reducers are for example the Generalized Matrix
Learning Vector Quantization (GMLVQ) [2] and the Linear Discriminant Anal-
ysis (LDA) [3]. Often, however, the classes cannot be separated by a linear
classifier while a nonlinear data projection better preserves the relevant infor-
mation. Examples for nonlinear discriminative visualization techniques include,
an extension of the Self Organizing Map (SOM) incorporating class labels [4].
Further supervised dimension reduction techniques are explained in [5,6].

In this contribution we propose a discriminative visualization scheme which is
based on an extension of Learning Vector Quantization and relevance learning.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1162–1170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Supervised Nonlinear Dimension Reduction

For general data sets a global linear reduction to lower dimensions may not be
powerful enough to preserve the information relevant for classification. In [1] it
is argued that the combination of several local linear projections to a nonlinear
mapping can yield promising results. We use this concept and learn local lin-
ear low-dimensional projections from labelled data. Alternatively to the direct
usage of the local linear patches it is also possible to merge them into a global
nonlinear embedding with a charting technique to obtain a smoother nonlinear
projection. The following subsection gives a short overview over the algorithms.

Localized LiRaM LVQ. Learning vector quantization (LVQ) [7] constitutes
a successful class of heuristic, prototype based classification algorithms. LVQ is
intuitive, interpretable, fast, and easy to implement. It is distance based and
a key issue is the selection of a suitable dissimilarity measure. However, the
most frequent choice, i.e. standard Euclidean distance, is not necessarily suit-
able. Therefore, relevance learning schemes have been suggested which adapt
more general metrics in the training process [8,9]. Recent extensions parame-
terize the distance measure in terms of a relevance matrix, the rank of which
may be controlled explicitly. The algorithm suggested in [2] can be employed
for linear dimension reduction and visualization of labeled data. The local linear
version presented here provides the ability to learn local low-dimensional projec-
tions and combine them into a nonlinear global embedding. We consider training
data xi ∈ IRN , i = 1 . . . S with labels yi corresponding to one of C classes re-
spectively. A data point xi is assigned to the class of the closest prototype wj

with d(xi,wj)Λj ≤ d(xi,wk)Λk for all j �= k. During the training process LVQ
adapts l prototypes wj ∈ IRN with class labels c(wj) ∈ {1, . . . , C} to represent
the classification as accurately as possible. Generalized LVQ (GLVQ) [10] adapts
prototypes by minimizing the cost function

E =
S∑

i=1

Φ

(
dΛJ (wJ ,xi) − dΛK (wK ,xi)
dΛJ (wJ ,xi) + dΛK (wK ,xi)

)
, (1)

where wJ (wK) denotes the closest prototype with the same (a different) class
label as xi and Φ refers to a monotonic function, e. g. the logistic function or the
identity, which is used in our experiments. Learning can take place by means of
a stochastic gradient descent of the cost function E (Eq. (1) for details see [2]).

The localized generalized matrix LVQ (LGMLVQ) substitutes the squared
Euclidean distance by a more complex dissimilarity measure which can take into
account arbitrary pairwise correlation of features. This metric

dΛj (wj ,xi) = (xi − wj)�Λj(xi − wj) (2)

is defined through an adaptive symmetric and positive semi-definite matrix
Λj ∈ IRN×N locally attached to each prototype wj . By setting Λj = Ω�

j Ωj semi-
definiteness and symmetry is guaranteed. Ωj ∈ IRM×N with arbitrary M ≤ N
transforms the data locally to an M -dimensional feature space. It can be shown
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that the adaptive distance dΛj (wj ,xi) Eq. (2) equals the squared Euclidean
distance in the transformed space dΛj (wj ,xi) = [Ωj(xi − wj)]2. The target
dimension M must be chosen in advance by intrinsic dimension estimation or
suitable for the given task. For visualization purposes, usually a value of two
or three is appropriate. We will refer to this algorithm as Limited Rank Matrix
LVQ (LiRaM LVQ). After each training epoch (sweep through the training set)
matrices are normalized to

∑
i[Λj ]ii = 1 in order to prevent degeneration. An ad-

ditional regularization term in the cost function proportional to − ln(det(ΩjΩ
�
j ))

can be used to enforce full rank M of the relevance matrices and prevent over-
simplification effects, see [11]. At the end of the learning process the algorithm
provides a set of prototypes wj , their labels c(wj), and corresponding projec-
tions Ωj . A low dimensional embedding of each data point xi can then be de-
fined by Pj(xi) = Ωjxi using the projection Ωj of its closest prototype wj , with
dΛj (wj ,xi) = min

k
dΛk(wk,xi). For smoother visualizations the outcome of the

classifier can also be mapped with a charting step.

Charting. The charting technique introduced in [12] provides a frame for unsu-
pervised dimension reduction by decomposing the sample data into locally linear
patches and combine them into a single low-dimensional coordinate system. For
nonlinear dimension reduction we use the low-dimensional local linear projec-
tions Pj(xi) ∈ IRM for every data point xi provided by localized LiRaM LVQ
and apply only the second step of the charting method to combine them. The
local projections Pj(xi) are weighted by their responsibilities rji for data point
xi. Here we choose the responsibilities

rji ∝ exp(−(xi − wj)�Λj(xi − wj)/σj) , (3)

with normalization
∑

j rji = 1 and an appropriate bandwith σj > 0. We set σj

to a fraction of the Euclidean distance to the nearest projected prototype

σj = a · min
k �=j

[Ωjwj −Ωkwk]2 with 0 < a ≤ 0.5 . (4)

The charting technique finds affine transformations Bj : IRM → IRM of the local
coordinates Pj , such that the resulting points coincide on overlapping parts as
much as possible in a least squares sense. An analytical solution can be found in
terms of a generalized eigenvalue problem, which leads to a global embedding in
IRM . We refer to [12] for further details.

3 Unsupervised Nonlinear Dimension Reduction

We will compare this locally linear discriminative projection technique with some
well-known unsupervised projection techniques which are based on different pro-
jection criteria.

Isomap. [13] is an extension of the metric Multi-Dimensional Scaling (MDS)
and uses distance preservation as criterion for the dimension reduction. Whereas
metric MDS frequently employs the Euclidean metric to compute this pairwise
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distances, Isomap incorporates the so called graph distances as an approximation
of the geodesic distances. The weighted neighborhood graph is constructed by
connecting points i and j if their distance is smaller than ε (ε-Isomap), or if i is
one of the K nearest neighbors of j (K-Isomap). Isomap is guaranteed to find
the global optimum of its error function in closed form. The approximation of
the geodesic distances may be very rough and its quality depends on the number
of data points, the noise and the parameters (ε or K). For details see [13]. For
quantitative analysis we additionally compare the results of L-Isomap [14], which
focuses on a small subset of the data, called the landmark points.

Locally Linear Embedding. (LLE) [15] uses the topology preservation crite-
rion for dimension reduction. LLE aims at the preservation of local angles. The
first step of the LLE algorithm is the determination of a number of neighbors
for each data point, either by choosing the K nearest neighbors or all neighbors
inside an ε-ball around the point. The idea is to reconstruct each point by a
linear combination of its neighbors and to project data points such that this
local representation of the data is preserved as much as possible. Advantages of
this method are the elegant theoretical foundation which allows an analytical
solution. From the computational points of view LLE requires the solution of an
S-by-S eigenproblem with S being the number of data points. As reported in
[16], the parameters must be tuned carefully, see [15] for further details.

Stochastic Neighbor Embedding. (SNE) [17] is closely related to Isotop [18].
It overcomes some limitations of the Self Organizing Maps (SOM) by separating
the vector quantization and the dimensionality reduction in two steps. SNE is
a variant, which follows a probabilistic approach to map high-dimensional data
vectors into a low-dimensional space, while preserving the neighbor identities.
Like Isotop it centers a Gaussian kernel on each data point to be embedded.
The algorithm optimizes the approximation of a probability distribution over all
potential neighbors if the same operation is performed on the low-dimensional
representation of the data point. The minimization of the objective function is
difficult and may stuck in local minima. Details can be found in [17]. In the
quantitative analysis we additionally compare the results of the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [19], which uses a Studen-t distribution
rather than a Gaussian and a different cost function.

4 Experiments

In this section we will compare the described dimension reduction techniques on
two different data sets: an artificial data set and the segmentation data set from
the UCI repository [20]. For visual comparison we reduce the dimension in both
cases to two.

3 Tip Star. This dataset consists of 3000 samples in IR10 with two classes (C1
and C2) arranged on three clusters respectively (see Fig. 1 top left). The first
two dimensions contain the information whereas the remaining eight dimensions
contribute high variance noise. Localized LiRaM LVQ was trained for t = 500
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Fig. 1. Upper left: two informational dimensions of the original 3 Tip Star data set.
Upper right: projection with LiRaM LVQ. Bottom: nonlinear projection based on the
same LiRaM LVQ projections from the upper right figure combined with charting.

epochs, with three prototypes per class. Each of the prototype was initialized
close to one of the cluster centers. The learning rate of the prototypes is set to
α1(t) = 0.01/(1 + (t− 1) · 0.001) and the metric learning starts at epoch t = 50
with a learning rate of α2(t) = 0.001/(1+(t−50) ·0.0001). We run the localized
LiRaM LVQ 10 times and one result of the local projected data is shown in Fig. 1
top right. Note that the aim of the LiRaM LVQ algorithm is not to preserve any
topology or distances, but to find projections, which separate the classes as much
as possible. So cluster four and six merge, because they carry the same class label.
Nevertheless the different orientations and appearances of all six clusters are still
visible. The bottom visualization in Fig. 1 shows the combination of the local
projections shown in the top right after the charting step. Where the parameter
a for σj (Eq. (4)) to fix the responsibilities for the local projection Pj is set to
0.4 (found by cross validation with values between [0.1 0.5]). The invariances
inherited from the local linear projections of the LiRaM LVQ algorithm and the
eigenvalue problem in the charting step lead to a flipped version of the original
data, where cluster six and three are separated vertically but not horizontally.
Fig. 2 shows the results of other dimension reduction methods on this data set.
Principal Component Analysis (PCA) leads to very similar results like MDS
in this problem. The classes are not well separated in two of the three modes.
The other three figures show the results for SNE, and Isomap and LLE with
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Fig. 2. Unsupervised projections of the 3 Tip Star data set from various methods

K = 35 neighbors each. Obviously, hardly any class structure is preserved in
these projections. Note that, due to the presence of only two classes, standard
linear discriminance analysis (LDA) yield a projection to one dimension only.
Table 1 shows the Nearest Neighbor (NN) error on the projected data of the
unsupervised methods and the mean NN error of the LVQ based projected data
averaged over all 10 runs. The NN error of the LiRaM LVQ mapping in Fig. 1
is 0.06 and 0.09 with the charting step. We also tried kernel PCA with gaussian
kernel and 9 different equidistant variances σ from the interval [1,5], and L-
Isomap and t-SNE. The best results are shown in table 1.

Segmentation. The segmentation data set (available at the UCI repository [20])
consists of 19 features which have been constructed from regions of 3× 3 pixels,
randomly drawn from a set of 7 manually segmented outdoor images. Every
sample is assigned to one of seven classes: brickface, sky, foliage, cement, window,
path and grass (referred to as C1, . . . , C7). The set consists of 210 training
points with 30 instances per class and the test set comprises 300 instances per
class, resulting in 2310 samples in total. We did not use the features 3,4 and 5,
because they display zero variance over the data set. We use the same parameter

Table 1. Nearest neighbor errors on the mapped 3 Tip Star data set

LiRaM LVQ 0.12 kernel PCA (gauss kernel σ = 4.5) 0.41
PCA 0.29 Isomap 0.41 L-Isomap (20% landmarks, K = 35) 0.39
SNE 0.46 LLE 0.50 t-SNE (perplexity 30) 0.41
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Fig. 3. Left: nonlinear supervised two-dimensional projection of the segmentation data
set with LiRaM LVQ. Right: supervised two-dimensional projection of the same data
with LDA.

settings as specified in the previous section. We set the parameter K of neighbors
for Isomap and LLE to 108, according to the connectivity in the neighborhood
graph. One example result for the localized LiRaM LVQ with a Nearest Neighbor
error of 0.07 is shown in the top left panel in Fig. 3. For this seven class problem
a supervised dimension reduction with LDA is also possible. The top right panel
shows the result of dimension reduction with LDA. In particular, the classes C4
and C6 appear to be well separated in the LVQ based approach, whereas they fall
together in LDA. We observed that Generalized Discriminant Analysis (GDA)
[21] using gaussian kernels with 19 equidistant variances in the interval [1,10]
or polynomial kernels with powers three to 10 and addition values between zero
and 10 were a good deal worse than LDA (see table 2). Fig. 4 shows the results of
the other dimension reduction techniques. Again PCA and MDS lead to nearly
identical results only isolating one class: C2. For Isomap and LLE, even using
the huge number of neighbors K = 108, unsatisfactory results are obtained. SNE
yields to the best result compared to other unsupervised techniques, but some
classes scatter in a circle around the zoomed area showed here.

For a quantitative analysis of the results obtained by the differend methods,
we compute the leave-one-out estimate of the Nearest Neighbor (NN) classifi-
cation error on the mapped segmentation data. The NN error of the localized
LiRaM LVQ mapping is averaged over 10 random initializations of the algorithm.
Additionally we evaluate the GDA, t-SNE and L-Isomap and list their best re-
sults together with the NN errors of all methods in table 2. t-SNE, GDA, PCA
and LLE show the worst results with errors between 84% and 33%, followed by
Isomap and L-Isomap with 27% and 25%. The supervised method LDA performs
also not satisfactory with ca. 20%. SNE and localized LiRaM LVQ achieve the
best mean error results with 11% and 9% respectively.
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Fig. 4. Unsupervised projections of the segmentation data set from various methods.
To see the structure of most samples the Isomap and SNE figures are zoomed, some
samples spread widely.

Table 2. Nearest neighbor errors on the mapped segmentation data set

LiRaM LVQ 0.09 LDA 0.20 GDA (polynomial, pow. 3, offset 6) 0.70
Isomap 0.27 PCA 0.31 t-SNE (perplexity 40) 0.84
SNE 0.11 LLE 0.33 L-Isomap (20% landmarks, K = 108) 0.25

5 Conclusion

We proposed a supervised discriminative nonlinear dimension reduction tech-
nique based on a prototype-based classifier with adaptive distances and charting.
Compared to other state-of-the-art methods it shows promising results in two
examples. Unlike LDA this method provides a nonlinear embedding of the data.
Its complexity is linear in the number of examples, which is an advantage espe-
cially in comparison with methods based on the construction of a neighborhood
graph. The combination with a prototype based learning scheme additionally
offers the possibility of data compression by embedding the prototypes. This
is especially interesting for the processing of huge data sets. For the localized
LiRaM LVQ combined with the charting we observe a small but non-negligible
loss of classification accuracy which is due to the charting step. We will address
the optimization of the latter in a forthcoming project.
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Abstract. This paper describes the use of mobile camera technology to
assess the performance of Aerodrome Ground Lighting (AGL). Cameras
are placed inside the cockpit of an aircraft and used to record images
of the AGL during an approach to an airport. Subsequent image analy-
sis, using the techniques proposed in this paper, will allow a performance
metric to be determined for the lighting. This can be used to inform regu-
lators if the AGL is performing to standards and it will also provide useful
information towards the maintenance strategy for the airport. Since the
cameras that are used to collect the images are mounted on a moving
and vibrating platform (the plane), some image data may be effected by
vibration. In the paper we illustrate techniques by which to quantify and
remove the effects of vibration and illustrate how the image data can be
used to derive a performance metric for the complete AGL.

Keywords: Photometrics, vibration, luminaire assessment.

1 Introduction

Aerodrome Ground Lighting (AGL) (Fig. 1(a)) is used to guide a pilot towards
a runway for safe landing. It is important that the AGL is operating according
to standards set by aviation governing bodies. One of those standards indicate
that the AGL pattern should appear uniform to the pilot, that is, luminaires
should exhibit similar performance. Other standards indicate luminaires should
have a given color, projection and luminous intensity. However, because of the
operating conditions for these lighting systems it is difficult to maintain the
individual luminaires and check they are operating as intended. As yet no device
exists which can monitor the performance of the complete AGL pattern [1].
Airports typically implement routine block change of luminaires to ensure they
are operating as required, which is an expensive maintenance strategy.

In this paper, we propose camera based techniques to assess the overall per-
formance of the AGL in terms of uniformity only. Future research will look at
addressing the issues of color and luminous intensity assessment.

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1171–1178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. (a) CAT I/II/III Lighting pattern layout (b) CATII Lighting system from
aircraft (c) CATII template with physical details

2 Related Research

There are three categories of lighting patterns which are used in different visibili-
ties with CAT I typically being used for reasonable visibility and CAT III for low
visibility range. Each category of lighting consists of runway and approach lu-
minaires. According to the International Civil Aviation Organisation standards
[2], runway luminaires are inserted into the ground whilst the approach lumi-
naries are placed at different elevation heights (0 to 15m) above the ground. To
date, only ground based photometric assessment methods have been developed
and as such, they are only suitable for the runway luminaires. A review of these
techniques is available in [3] and [4].

Research at Queen’s University Belfast has concentrated on developing assess-
ment methods for the complete AGL pattern[5]. The developed system consists
of a camera which is placed inside the cockpit of an aircraft and used to take
images of the complete AGL pattern. Model based tracking [1] is used to identify
luminaires in the collected images. One of the limitations of this work however
is that no account is taken of image quality and more specifically the effect that
vibration will have on the quality of the image data and subsequently the accu-
racy of the assessment. In addition, most of this work concentrated on extracting
and tracking luminaires from the image data with limited work on determining
a performance metric for the AGL.

3 Luminaire Performance Metric

Figure 1 (b) shows an image taken using the assessment system during an ap-
proach to an airport using a CAT II lighting pattern. This approach was un-
dertaken during clear daylight conditions, with filters placed on the camera to
prevent image saturation. One of the limitations of this system, is that the as-
sessment should only be performed during clear daylight conditions. For a CAT
II lighting pattern, the physical layout of the system is given in Fig. 1(c).

To determine a performance metric for the AGL, it is necessary to use the
information presented in the image sequence [6]. Thus the pixel grey level per



Performance Evaluation of Airport Lighting 1173

luminaire must be used to determine such a metric. In this research we propose
using a comparison based approach in order to determine a performance metric
for the complete pattern in terms of uniformity. It is known [7] that when using
a camera to take a picture of a light source, the pixel grey level information
recovered from the image is dependent on its luminous intensity and the dis-
tance between each. As such, for luminaires of similar luminous intensity, which
are of similar or comparable distance away from the camera at the instant an
image was taken, it is possible to use the pixel grey level information in order to
compare their performance [8]. Using this theory, it is also possible to output a
comparative performance metric per luminaire.

In order to do this accurately it is necessary for the image data to have a
high quality. However, very often during an approach to the airport, the aircraft
will suffer from vibration which will affect the quality of the acquired data [9].
It is necessary to determine how this vibration will distort the pixel grey level
information recovered for each luminaire and therefore what impact it will have
on the determination of a performance metric.

The pixel grey level information recovered for each luminaire will be used in
order to estimate a performance metric for that luminaire [10]. Since any given
luminaire will appear in a number of images (approximately 50-100 images for
a camera acquiring images at 12 frames per second), it is necessary to uniquely
identify a luminaire in the image it first appears and then track this luminaire
through subsequent images. To achieve this we used a technique developed by
Niblock et.al [5] which uses a template matching approach to identify and track
the luminaires.

3.1 Three Layer Topography Model (TLTM)

Using this position of each luminaire, output by the tracking algorithm, it is
possible to extract the pixel grey level information for this luminaire. For each
luminaire it is necessary to decide which pixels belong to that luminaire and
should be used for the performance estimate. Previous techniques to do this
have used a single threshold where all pixels above a given value are assumed
to belong to that luminaire. This single threshold technique can lead to consid-
erable errors especially for those luminaires which only cover a small number
of pixels within the image. Rather a TLTM was implemented as a more intu-
itive technique to determine the pixels which represent a given luminaire. In
this TLTM, three thresholds are used, namely the SeedPointThreshold (SPT ),
MoveUpwardsThreshold (MUT ) and MinimumIntensityThreshold (MIT ),
where SPT ≥ MUT ≥ MIT . OTSU algorithm [11] finds out a suitable thresh-
old to classify all pixel values into two classes. The recursive use of the OTSU
algorithm allows us to generate the three required threshold values. Essentially
TLTM is a controlled region growing algorithm where a new region starts for
a point having intensity of at least SPT and then there is a recursive search
of all neighborhood pixels. Once the grey level value of a pixel falls below the
MUT , then the TLTM will prevent any successive pixels with a higher value
being included in the region. It is more likely that these high value pixels belong
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to the next luminaire. No pixels having a value less than MIT will be included
in any luminaire region. Figure 2(a) illustrates the output from the TLTM. The
grey level value of any pixels, in a given column, which are assigned to a given
luminaire, are summed.

In summary, the input to the TLTM algorithm is a two dimensional image
function, Fq where q represents the image number within the video sequence.
Thus, Fq(i, j) represents the grey level on a pixel in ith row and jth column in
image number q. The output from the TLTM algorithm is a function T which
will identify all assigned pixels, where T (i, j, p, q) = 1 if the pixel at location
(i, j), in the image Fq , belongs to a luminaire p, where p refers to the unique
number used to represent each luminaire in a pattern. Otherwise the value will
be zero.

3.2 Measurement of the Streak Vector of a Luminaire (SVL)

When vibration of the camera effects the acquired image data, the luminaire
images have a number of prominent features. Rather than appear as a circular
object in the image data, the luminaires develop a ‘streak’. This is evident in
figure 2(b). In addition, all streaks normally have the same direction and approx-
imately the same length for a given amount of vibration. Thus it is necessary
to determine both the direction and length of each streak, namely the SVL, in
order to remove the effect vibration will have on the pixel grey level distribution
profile of a luminaire.

For each luminaire p in each image Fq, we applied principal component anal-
ysis (PCA) on all the pixels (i, j) where T (i, j, p, q) = 1. In order to calculate
a four element covariance matrix m, define mrc as the rth row and cth column
element. Then m11 = η20, m12 = m21 = η11 and m22 = η02, such that

ηgh =
∑
∀(i,j)

T (i, j, p, q)Fq(i, j)(i− γ10)g(j − γ01)h/α, g, h = 0, 1, 2 . (1)

Here α =
∑

∀(i,j) T (i, j, p, q)Fq(i, j) and product T (i, j, p, q)Fq(i, j) gives the
pixel value of the pixel (i, j) in image frame q if it belongs to the luminaire p.
Let us denote γ01 and γ10 in its generic form γde where,

γde =
∑
∀(i,j)

T (i, j, p, q)Fq(i, j)idje/α, d, e = 0, 1 . (2)

Eigenvalues of the matrix m are calculated as e1 and e2. For the luminaire p on
the image q, EV ec(p, q) denotes the eigenvector corresponding to the principal
component or the largest eigenvalue me (me = MAX(e1, e2)) for a given lumi-
naire in a given image. The direction of the streak is the same as directed by the
vector EV ec(p, q) corresponding to me, whereas the length of streak, EV al(p, q),
is a function of me. EV al(p, q) can be calculated after the SVL directional field
is normalized, that is, when the streak is orientated to take a vertical direction.
See Fig. 2(c) for an example of SVL-directional field.
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3.3 SVL-Directional Field Normalization and Recalculation of
SVL-Intensity Field

Using the deviation angle between the vertical direction and the direction of
vector EV ec(p, q), the luminaire image is rotated so that the corresponding
EV ec(p, q) is parallel to the vertical axis (Fig. 3(a)). Let us denote the rotated
pth luminaire in qth image frame by FR

pq . For FR
pq , let F denote the pixel grey level

value and T denote the existence of the luminaire in a given pixel. T (i, j, p, q) = 1
means pixel (i, j) is assigned to the luminaire p in image frame q of the rotated
luminaire image FR

pq . As a result of this rotation operation, the SVL-directional
field will be normalized and the streak will occur in the vertical direction. PCA
is again applied on this rotated image. The SVL-intensity field or length of the
streak, EV al(p, q) is then assigned by the principal component (Fig. 3(a)).

3.4 Peak of the Projection of the Pixel Grey Level (P3GL)

SVL-directional field normalization determines the vertical streak of the lumi-
naire. After normalization, the pixel grey levels per luminaire per column can
be summed to produce a normal-like distribution. The maximum among the
column-wise sum of the grey level values is given as the P3GL. A visual P3GL
is shown in figure 3(b). The peak P3GL for luminaire p, in the image frame q is
given by P3GLpq and it is calculated as

P3GLpq = MAX((
∑

i T (i, j, p, q)F pq(i, j)), ∀j) . (3)

3.5 Normalizing P3GL (nP3GL) Using SVL-Intensity Field

Fig. 3(c) illustrates the relation of P3GL and SVL-intensity field (length of the
streak) per image for a given luminaire. For each of these images, the actual lu-
minous intensity of the luminaire was constant. The diagram therefore indicates
that the SVL intensity field is directly related to the vibration factor and is also
directly proportional to the P3GL. For example, some images are not affected
by vibration and the SVL-intensity field is small. Since we know the actual lu-
minous intensity of the luminaire remains constant we would not expect such a
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large variation. Thus vibration, when present, clearly increases the value of the
P3GL. Thus to remove the effect of vibration from the P3GL measurement, it is
divided by the magnitude of the SVL-intensity field. This results in a normalized
P3GL value or nP3GL.

4 Results from Luminaire Performance Comparison

In any given AGL system, it is realistic to expect that a number of the lumi-
naires within the pattern will not operate as expected due to complete luminaire
failure, or dust/dirt on the lens or a wrong orientation setting. By comparing the
performance of luminaires with the pattern, it is possible to detect luminaires
which are under-performing in relation to other luminaires.

Currently the nP3GL value recorded per luminaire per image is dependent of
the distance variation between the camera and the luminaire under test. However
this displacement is an important factor since the pixel information recorded for
an image is dependent on this displacement [1]. Fig. 4(a) shows the variation of
nP3GL recorded for each luminaire against the distance this measurement was
taken. The distance is known because it is calculated as part of the tracking
algorithm [5]. It can be seen that nP3GL decreases non-linearly with respect to
the distance. A best fit least squares parabolic curve (LSP) was determined using
the data set to show the average change of nP3GL with distance. A simplistic
approach to determining a performance metric is to use this expected change.

For example, each luminaire will have a number of nP3GL measurements, the
value of which will vary depending on the distance between the luminaire and the
camera. Assuming that a luminaire p produces total of tp nP3GL values during
the complete approach (e.g. nP3GLp

1 to nP3GLp
tp

). The function DT (p, v) is
used to store the distance between camera and luminaire p for each of the vth

instances (1 ≤ v ≤ tp) of nP3GL. Let us denote the minimum and maximum
value of nP3GL for a luminaire p as MX(p) and MN(p). Then the ratio of
the fluctuation between both can be represented by FLC(p) where, FLC(p) =
(MX(p)−MN(p)) / MN(p). For a luminaire p, the nP3GL values vary around
the LSP. At any instance v, luminaire p produces a deviation DV calculated as
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DV (p, v) = nP3GLp
v − LSP (DT (p, v)) (4)

where, LSP (d) is the value of LSP at distance d. Let us define GTp and LSp for
a luminaire p which represents the squared sum of the deviations.

GTp =
tp∑

v=1

(DV (p, v))2 | DV (p, v) > 0 (5)

LSp =
tp∑

v=1

(DV (p, v))2 | DV (p, v) < 0 . (6)

Using GTp and LSp, a fluctuation normalized ratio FNRp can be determined;

FNRp =
GTp

LSp
(FLC(p))ψ , ψ =

⎧⎨⎩
−2, GTp > LSp

0, GTp = LSp

2, otherwise .
(7)

Thus, FNRp gives us a measure of how a luminaire’s performance deviates with
respect to the average performance of luminaires within the pattern.

For any luminaire p, FNRp describes the comparative estimation of a lumi-
naires performance. If one luminaire is under performing (less bright) in com-
parison to others then its FNRp value will be less than 1. Fig. 4(c) shows the
under-performing luminaires with a pointer and absent luminaires with a cross
and pointer. Using this simplistic technique it is possible to identify luminaires
which do not perform as well as others. This technique does not give a definitive
measure of performance for a given luminaire in terms of luminous intensity.
However, it would be possible for the airports to check the flagged luminaires. If
the luminaires pass the airports test, then of course all remaining luminaires in
the pattern will pass. Future work will look at the use of coupling this technique
will definitive luminous intensity estimation using a pre-calibrated camera.

For this assessment, no information is available regarding how the pilot sensed
missing or less bright luminaires. However, in future experiments this will be
recorded and compared to the findings from the mobile assessment system.
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5 Conclusion

This paper presents a new and robust methodology which compares the perfor-
mance of luminaires within an AGL pattern using image data captured from a
vibrating high speed moving platform. It has been shown that when vibration
of the platform effects the image data, the luminaires in the image data will
appear with a ‘streak’. It is possible to remove the effect of vibration from the
P3GL by quantifying the direction and length of the streak. Precise photometric
calibration of the camera and accurate estimation of the surrounding visibility
factor are quite challenging. Thus the measure of exact luminous intensity of a
luminaire is not considered in this current research. Rather, we use comparative
measurement to rank the performance of luminaires within an AGL pattern.
Thus mobile camera technology can be used to provide a robust and fast tech-
nique by which to determine the performance of the AGL which airports can
utilize to target their maintenance strategy.
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Abstract. One of the problems for electrical power delivery through
power lines in northern countries is when snow or ice accumulates on
electrical insulators. This could lead to snow or ice-induced outages and
voltage collapse, causing huge economic loss. This paper proposes a novel
real-time intelligent surveillance and image analysis system for detect-
ing and estimating the snow and ice coverage on electric insulators us-
ing images captured from an outdoor 420 kV power transmission line.
In addition, the swing angle of insulators is estimated, as large swing
angles due to wind cause short circuits. Hybrid techniques by combin-
ing histogram, edges, boundaries and cross-correlations are employed for
handling a broad range of scenarios caused by changing weather and
lighting conditions. Experiments have been conducted on the captured
images over several month periods. Results have shown that the pro-
posed system has provided valuable estimation results. For image pixels
related to snows on the insulator, the current system has yielded an aver-
age detection rate of 93% for good quality images, and 67.6% for images
containing large amount of poor quality ones, and the corresponding av-
erage false alarm ranges from 9% to 18.1%. Further improvement may
be achieved by using video-based analysis and improved camera settings.

Keywords: electric insulator surveillance, snow detection, ice detection,
swing angle, insulator image analysis.

1 Introduction

Northern countries, e.g. Scandinavian, north Canada, Russia and China often
encounter snow and ice during cold winter or in high areas. One of the problems
for electrical power delivery through power lines is when snow or ice accumulates
on electrical insulators. When the accumulated snow melts and freezes or in
case of freezing rain, long ice bars hanging down along the edge of insulators
could be formed. Also, the coverage of snow on insulators could be thick. When
the ice or snow melts, a conducting layer is formed on the insulator or on the
outside of the ice, and short circuit or flashover may occur. This may lead to
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ice-induced outages and voltage collapse, causing huge economic loss for the
power company and the related users. For example, Norwegian power companies
have observed ice-induced outages especially during 1987 and 1993. In Sweden,
it has recently caused a number of large blackouts. In Canada it has led to
large problems and sever blackout in the end of 1990’s. Because snow and ice
related outages happen during severe weather conditions, very little information
and knowledge are available about the process of ice and snow accretion finally
leading to flash over. Further, when upgrading power lines, ice performance
is one of the important aspects of the insulation selection process. A better
understanding of insulator’s sensitivities to snow and ice would be useful to help
improving future design. In Norwegian environment, classical freezing rain rarely
occurs. Hence, it is unlikely that rain would lead to outages in their networks.
However, it is assumed that accretions from wet snow (possibly in combination
with heavy rime icing) that occur regularly could result in ice accretions with
electrical properties similar to those of freezing rain.

So far, there is no benchmark method for solving this problem. Efforts so
far for finding insulator’s snow coverage have been relied heavily on weather
predictions and human observations. Other efforts for insulators include, e.g.
finding contamination of sea salts [?]. Our efforts in this investigation include
arranging surveillance cameras along remotely located power lines, transferring
captured videos through the Internet to the utilities or power companies followed
by automatic analyzing the situations. Our aim is to automatic monitor and
detect possible snow/ice accretions on electrical insulators. Once the snow or
ice are detected, automatic estimation of the percentage of snow/ice coverage
related to the distance between two neighboring shells of an insulator are then
performed. The analysis results can be fed to network operators if the snow/ice
coverage reaches a risk level, and necessary intervention can then be taken before
short circuits occur. We proposes a full automatic image analysis system for
detection and analysis of snow/ice coverage on electrical insulators of power lines
using images captured by visual cameras in a remote outdoor laboratory test bed
[1,2]. To the best of our knowledge, this is the first successful insulators snow and
ice surveillance system that is entirely based on automatic image analysis. It is
worth mentioning that as a by-product, such results may also provide power
system experts with a better understanding of snow/ice bridging phenomena
hence possible improvement in future insulator design [2].

2 Settings of Web-Based Surveillance

The measurements are performed for insulators on a 420 kV power transmis-
sion line that is set for remote outdoor tests. Basic components installed in the
system include: (a) visual cameras and lamps; (b) a weather station; (c) a com-
munication system between the remote test site and network operator; (d) a
web-based database; (e) a real-time automatic image analysis system. Measure-
ments (including videos) are done in the remote site (where 230 V supply is
not available) in a fix time interval (10 minutes) and during severe conditions
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Fig. 1. Insulators used for our tests. From the left to right: type (a), (b), (c).

such as low temperatures and darkness, where the power is sufficient for heat-
ing the lamps and the cameras. Weather and wind conditions are recorded. The
communication system is established between the remote site and the power
network operator, where measured data are transferred from the test site to the
database and stored, which are accessible via a web interface immediately af-
ter the measurement. Meanwhile, real-time image analysis is performed for each
newly captured image and the results are displayed and stored in the system.
Other data, such as voltage, power, current, reports and results of analysis, can
be added to the database. More details on system settings can be found in [1,2].

As shown in Fig. 1, three different types of insulators are monitored in our
outdoor tests. type (a): composite insulator (diameter d=168 and 129 mm) con-
sists of 11 large and 33 small shells. The insulator length (include corona rings
placed above and below) is 2.12 meters. type (b): desert type insulator (d=420
and 280 mm) of 2 meters long, consisting of 6 large diameter shells and 7 small
diameter shells. type (c): coastal type insulator (d=330 mm) of 2 meters long,
consisting of 13 shells, with a corona ring placed below.

3 Complex Outdoor Image Scenarios

Despite rigid insulators and stationary cameras, automatic detection and analysis
of snow coverage is non-trivial. The lack of electrical power supply (230v) in the
remote area also puts a constraint on improving the insulators’ visibility where
natural daylight is usually short (≈ 5 hours) in the winter. Since images were
captured from natural scenes, not only lighting conditions and background may
change abruptly (e.g. sunshine, cloudy, foggy, drizzle, raining and snow; moving
clouds, unexpected moving objects e.g. airplanes or birds within camera views),
but also cameras are often slightly moved due to strong wind (causing insulator
positions in images drifting with time), see example scenarios in Fig. 2. Among
them, some events that significantly impact the image analysis are:

– strong wind: may cause camera movement hence the insulator position in
the image may drift;

– dark weather: may lead to low visibility or low contrast in images. This not
only includes images at nights, but also during dark morning and afternoon
times;
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Fig. 2. Scenarios of outdoor captured insulators (only insulator areas are shown). Left
to right: (a) sunny with clear sky; (b) insulator with reflections from sunlight; (c)-(e)
clouds form non-uniform background and may change fast; (f)-(g) blurred images due
to the fog; (h)-(j) dark and night images; (k) snow on shells; (l) ice on shells.

– cloudy weather: may lead to non-uniform fast changing background;
– foggy weather: may lead to low visibility / severely blurred images;
– dark night: images may vary significantly, depending on the snow, reflection

of lighting and camera incident angle.
– strong sun: depending on the incident angle of camera, images may contain

bright regions due to the reflection from the insulator.

4 Registration for Extracting ROI

To limit the computation in insulator image analysis, a small region containing
the insulator (or, the region of interest - ROI) is extracted. Observing insulator’s
positions in images drift with time mostly due to minor camera movement but
also from the swing of insulator, image registration is required for extracting
ROI. Since the image size of insulator remains a constant, it is used as a priori
information. Separate processing methods are applied to daytime and nighttime
images due to significantly different nature of these images.

Nighttime images. Under the lighting condition of current system setting, only
the central axis of insulator images is most visible (see Fig. 3(a)). Hence, a
histogram-based accumulation method is proposed. Since histograms from night
images contain a narrow sharp peak, a binary image B is generated by threshold-
ing the histogram. To determine the ROI, vertical and horizontal accumulations
are performed respectively by av(i) =

∑N
j=1 B(i, j), ah(j) =

∑M
i=1 B(i, j). The

vertical accumulated curve av(i) usually shows one narrow peak (see Fig. 3(c))
related to the central axis of insulator. This peak position is assigned to the x-
coordinate center of the ROI. The horizontal accumulated curve ah(j) usually
shows two large peaks (see Fig. 3(d)), corresponding to the top and bottom frame
where an insulator is fixed. The valley region between the two peaks in ah(j) is
related to the insulator, the center position in this valley is hence assigned as the y-
coordinate center of the ROI. The width and height for the ROI are then assigned
according the pre-determined values (fixed constants for each type of insulator in
respect to its camera setting). This results in the ROI (see Fig. 3(e)).
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Fig. 3. Extract a ROI from a large image. Left to right: (a) night image; (b) binary
image after histogram thresholding; (c) vertical accumulations av; (d) horizontal accu-
mulations ah; (e) extracted ROI.

Daytime images. Daytime images refer to all images captured during the day-
time, including dark images captured during mornings and afternoons. Extract-
ing the ROI from daytime images is more difficult due to a broad range of
possible complex scenarios. Individual image analysis methods (e.g. segmenta-
tion [4], corner detection, histograms) often require tuning parameters and do
not work well for a broad range of scenarios. We propose to use a priori informa-
tion (a pre-stored template) and cross-correlations. The template ET , containing
broadened outer boundaries (width w = 7 in our tests) of insulator from an ideal
image, is stored beforehand. For each new image frame, a binary edge image E is
created from a simple edge detector. The following normalized cross-correlations
are then computed,

ρ(u, v) =

∑
x,y E(x− u, y − v)ET (x, y)√(∑

x,y E(x, y)2
∑

x,y ET (x, y)2
) (1)

where u, v ∈ RE are the lags for cross-correlation, the range of u, v is within the
size of image E. The reason of using broadened boundaries in the template is to
avoid sensitivity in the correlation when edges and boundaries from two images
are slightly shifted. The best position is found by (u∗, v∗) = argmaxu,vρ(u, v).
The extracted ROI is then further refined by applying horizontal and vertical
accumulations (in the similar way as for the nighttime images).

Tests of these methods over 3 months of images have resulted in about 88.5%
of success for extracting ROIs.

5 A Hybrid Method for Snow Detection

Once a ROI image is successfully extracted, detection of snow and subsequently
analysis of snow (or, ice) coverage is performed. Since the emphasis is on the
fully automatic analysis of captured images with a large dynamic range and
different stochastic natures, many robust image analysis methods (e.g. mean
shift [4], graph cuts [5]) requiring fine parameter tuning are not suitable. Noting
that snow (or, ice) scenarios can vary significantly (see Fig. 4(a)-(e)), we exploit
the following a priori information to achieve robustness:
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Fig. 4. Variety of scenarios of: snow on insulator and swing of insulator. From the left to
right: (a)(b) snow; (c) melting snow; (d)(e) Rim frost; (f): night image of insulator with
almost no wind. (g) night image of insulator with a relatively large swing (measured
wind speed 10.4m/sec).

– An insulator is a rigid object, its size and shell edges and outer boundaries
are fixed and known. These may be changed if an insulator is covered by
something, e.g. snow or ice.

– There exists intensity difference between the snow, insulator or background.
– The intensity differences between snow, shells (or, background) cause extra

edge curves on the top half of insulator shells.

Further, based on observations we assume that snow is only accumulated on the
top or along the side of insulator’s shells.

5.1 Detect and Analyze Snow Regions

To determine the snow (or ice) regions from images with a range scenarios, a
joint boundary and insulator analysis scheme is employed as follows.

(a) Detect extra regions. Observing that snow may generate extra image edges
and regions, an edge detector is first applied to the median filtered ROI image,
followed by edge closing. The median filter is used for obtaining a ROI image with
a smoother background, hence less edge noise. Each enclosed area surrounded
by edge curves forms a region.

(b) Find extra regions above the shells. Snow on insulator shells, and other
changes (e.g. local clouds, illuminations, reflections) could generate new extra
regions. Using the prior information of standard shell positions and the ’ellipse’
shell shape regions as the reference, these extra regions (including split regions)
can be found and require further analysis. Since snow/ice is more likely to accu-
mulate on the top and/or side part of insulator shells, only extra regions related
to these locations are considered and analyzed.

(c) Tighten the width of ROI. To further limit the areas, a ROI is narrowed
down by tightening the width determined by two parallel lines touching the
outer sides of shells (using extremal left/right points of shells). These extremal
points are detected either from the outer boundaries or from the silhouette of
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insulator shells (see Section 6). To make the boundary or silhouette estimate
more robust, cross-correlations with a pre-stored template (containing broadened
outer boundaries or silhouette) from the ideal insulator can be applied.

(d) Compare the intensities. Region analysis is then performed by comparing the
range of intensity values in each extra region with those of the shell and of the
background. Decision on snow area is then made by combining the comparison
results and the prior knowledge of snow intensity.

5.2 Compute the Snow Coverage

Once snow regions are determined, a narrow-width vertical bar parallel to the
vertical center axis of insulator, is then placed and swept from the left to the
right side of the insulator. For each area under the sweeping bar, the heights
of detected snow regions are accumulated, and then compared with the total
length of insulator shells under analysis, resulting in the percentage of snow
coverage. Further, the maximum snow coverage between any two neighboring
shells is computed.

6 Estimate Swing Angles

Due to the camera view angle, the angle of insulator in an image does not
have to be 0◦ with respect to the vertical image axis (see example scenarios
in Fig. 4(f)). The swing angle is hence defined as the relative angle, computed
from the difference between the absolute insulator angle (with respect to the
frame that hangs the insulator) in the given image and the reference insulator
angle in an image captured when no wind is present. It is worth mentioning
that camera movement does not cause absolute angle changes. Since computing
a relative angle is straightforward, only the method for estimating the abso-
lute angle is described. The proposed method is based on using the estimated
outer boundaries or estimated silhouette of insulator shells. The basic idea is
very similar to the cross-correlation used in Section 4, where the edges from
the ROI is correlated with a template containing the broadened outer bound-
aries (or silhouette) of insulator. However, instead of translating the template,
the template is now rotated in order to find the maximum correlation with
the insulator in the ROI, using orientation-based cross-correlations ρ(0, 0, θk) =∑

i,j E(i,j)ET (i,j,θk)√
(∑ i,j E2(i,j)

∑
i,j E2

T (i,j,0))
, where θk = kΔθk is the rotation angle of the tem-

plate (Δθk = 0.25◦, θk ∈ [0◦, 1.5◦] used in our tests), and θk ∈ [0, θ1]. The best
angle is found from θ∗ = argmaxθk

ρ(0, 0, θk). The original thin outer boundaries
(or boundaries of silhouette) from the template at matched positions are then
assigned as the outer boundaries for the given ROI image.

Once shell outer boundaries are found, two parallel vertical lines are deter-
mined by shifting lines to touching the outer most (extremal) points on shell
boundaries or silhouette. The central axis is then determined from the middle
of these two outer lines. From the central axis, the absolute angle is computed.
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For dark/night images, the central axis is directly estimated through the vertical
accumulations av of ROI image.

7 Experimental Results and Evaluation

Test Results. The proposed system is implemented with a graphical user interface
(GUI), and tested using images measured from one winter period. Fig. 5 (left)
shows 5 examples of several good and not so good results from snow analysis.
It is observed that detection results are significantly affected by the variety of
background scenarios, also, they are affected by the setting of camera view angle
and image resolution for an insulator of concern. For example, the camera setting
for the insulator (b) generates better images as compared with those for insulator
(c) (not so good view angle) and for insulator (a) (too low resolution).

Ground Truth. To estimate the ’ground truth’ of insulator snow regions, a semi-
automatic assisted analysis is performed (see the right part of Fig. 5). In semi-
automatic analysis, each shell is extracted and analyzed separately, allowing e.g.
manually select thresholds for histogram, edge closing. This process is repeated
over all shells.

Evaluation. The performance of automatic analysis results are evaluated for
insulator type (b) by using the corresponding insulator snow ’ground truth’
(generated from the above semi-automatic way) as the reference.

Our preliminary evaluation shows that: For good quality images, the average
detection rate is about 93% with false alarm rate about 9%, (defined by the
correctly and falsely detected pixels related to the snow, respectively). However,
it is noticed that the average performance is significantly dragged down by poor

Fig. 5. Left part: Automatic analysis results. This part contains 5 results where the
detected snow regions are visually enhanced: the first 3 insulators: good results from
image with one clear and 2 dark backgrounds; the next 2 insulators: not so good
results where only partial snow areas are detected from images with cloudy and dark
background. Right part: Semi-automatic analysis to find snow ground truth for shell 2
and 3. From the left to right, top to bottom in each column: Selecting a shell (inside
green box) from ROI, the selected shell, closed edge curves after modification, resulted
snow region ground truth with visual enhancement.
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quality images with low visibility, very weak edges and dark snow. The average
detection rate is dropped to 61.03% for bright background images and 74.22%
for dark background images. Meanwhile, the average false alarm also increased
to 21.5% for bright background, and 18.13% for dark background. The highest
snow coverage during that period was 14.73%.

8 Conclusion

The proposed insulator video surveillance system for automatically detecting
and estimating insulator snow (or, ice) coverage and insulator swing angles, has
been tested. Our test results on one year (winter season) measurements showed
that the proposed hybrid method is relatively robust for a broad range of com-
plex images, with an average detection rate ranging from 93% to 67.6% and
averaging false alarms from 9% to 18.1% depending on image quality. Such re-
sults, though far from ideal, are encouraging since this implies a new approach
entirely based on image analysis, can be a rather promising choice for insulator
snow surveillance. Further improvement shall be made by exploiting temporal
information in videos and by improving the settings of image capture system.
The system has also increased the interest for a long term research, as our test
results have demonstrated that automatically monitoring ice and snow phenom-
ena, previously considered as not feasible, is now possible.

References

1. WAP project website, http://wap.stri.se
2. Berlijn, S.M., Gutman, I., Halsan, K.A., Gu, I.Y.H.: Laboratory Tests and a Web

Based Surveillance to determine the Ice- and Snow Performance of Insulators. IEEE
Trans. on Dielectrics and Electrical Insulation, Special Issue on Flashover of Ice- or
Snow-Covered Insulators 14(6), 1373–1380 (2007)

3. Richards, C.N., Renowden, J.D.: Development of a Remote Insulator Contamination
Monitoring System. IEEE Trans. Power Delivery 12, 389–397 (1997)

4. Sistiaga, U.: Automatic image analysis methods for estimating snow coverage and
swing angle of insulators in power transmission lines, M.Sc. thesis, Dept. of Signals
and Systems, Chalmers Univ. of Technology, Sweden (2007)

5. Gu, I.Y.H., Gui, V.: Joint space-time-range mean shift-based image and video seg-
mentation. In: Zhang, Y.-J. (ed.) Advances in Image and Video Segmentation, pp.
113–139. Idea Group Inc. Pub. (2006)

6. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph
cuts. IEEE trans. on PAMI 23(11), 1222–1239 (2001)

http://wap.stri.se


Size from Specular Highlights for Analyzing
Droplet Size Distributions

Andrei C. Jalba1, Michel A. Westenberg1, and Mart H.M. Grooten2

1 Department of Mathematics and Computer Science,
2 Department of Mechanical Engineering,

Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

{a.c.jalba, m.a.westenberg, m.h.m.grooten}@tue.nl

Abstract. In mechanical engineering, heat-transfer models by dropwise
condensation are under development. The condensation process is cap-
tured by taking many pictures, which show the formation of droplets, of
which the size distribution and area coverage are of interest for model
improvement. The current analysis method relies on manual measure-
ments, which is time consuming. In this paper, we propose an approach
to automatically extract the positions and radii of the droplets from an
image. Our method relies on specular highlights that are visible on the
surfaces of the droplets. We show that these highlights can be reliably ex-
tracted, and that they provide sufficient information to infer the droplet
size. The results obtained by our method compare favorably with those
obtained by laborious and careful manual measurements. The processing
time per image is reduced by two orders of magnitude.

1 Introduction

Since its introduction, the heat-transfer model by dropwise condensation [1] has
drawn considerable interest in the field of mechanical engineering, as it allows
higher heat transfer compared to filmwise condensation, which in turn offers
opportunities for design improvements of compact industrial condensers.

Vapor condenses onto a surface if the temperature of the surface is below
its saturation temperature. The condensate forms droplets on the surface, which
grow and coalesce with adjacent droplets. Bigger droplets fall or roll from the sur-
face (drainage) due to aerodynamic and/or gravity forces. Then, new droplets
appear on the clear surface with the release of condensation enthalpy during
nucleation inception of the droplets. Modeling heat transfer by dropwise con-
densation requires knowledge of the drop-size distribution and area coverage [2].
Although some research on nucleation and growth of water drops has been car-
ried out [3], it is only recently that dropwise condensation from flowing steam/air
mixtures at various process conditions has been observed in practical compact
condensers [4]. Unfortunately for large data sets (routinely about 400 images
are collected during an experiment), the task of determining droplet size dis-
tributions and area coverage becomes tedious and prohibitive (about 2 hours
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Fig. 1. Left-to-right : cropped input image, gradient magnitude, result after background
subtraction (BS), BS + thresholding, BS + top-hat + thresholding, see Fig.2

per image), as one has to manually assess droplet sizes. Thus, automating the
process is highly desirable, and the purpose of this paper is to propose an image
processing approach to accomplish this.

The experimental rig used to acquire the input images is briefly described
below, see [4] for full details. The condenser is optically accessible through a
sapphire window of 66 mm in diameter. A horizontally-placed video camera
measures condensate drops on one of the outer vertically-mounted condenser
plates. Every image is 512 × 512 pixels, which corresponds to 6.5 × 6.5 mm2,
giving a spatial resolution of 13 μm. The time interval between two consecutive
images is 0.2 s. All images are recorded with the air/steam mixture flowing from
right to left over the plate with a mean velocity of 6.2 m/s.

A part of a typical image is shown in the first picture of Fig. 1. Note that
classical image processing tools (gradient and automatic thresholding, even after
background subtraction) fail to detect the boundaries of the droplets shown in
the input image, see second and fourth pictures in Fig. 1. Moreover, in darker
areas, as the contrast between the droplet boundary and the background plate
is very low, such methods manage to only extract brighter parts of the droplet
surfaces. Here we focus solely on using the information within the specular high-
lights visible on the surfaces of the droplets, as a means to infer their sizes. This
is advantageous, as these specular highlights can be reliably extracted (see last
picture of Fig. 1), and thus the whole process can be automated, see Section 2.
That is, since droplets (should in theory) have hemispherical shapes [4], we pro-
pose to infer their sizes using a “size-from-specular-highlights” approach. Note
that classical shape-from-shading methods (see [5, 6, 7] and references therein)
not only assume that a single surface is present in the input image, but also pos-
tulate that the surface to be reconstructed exhibits Lambertian reflectance (i.e.
there is no specular reflection). However, the droplets are translucent, so most of
their surface is not visible, and they exhibit strong specular reflection. Moreover,
some shape-from-shading methods assume that certain values are known (e.g.
normals or height values at image boundaries), make smoothness assumptions,
or postulate noise-free data.

2 Proposed Method

The computational flow diagram of our method is shown in Fig. 2. A background
image was constructed by merging droplet-free regions from 3 images out of the
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Fig. 2. Flow diagram of the proposed method

600 images collected during an experiment. Let I be the input image, and B
denote the background image, with I,B : D ⊂ Z → {0, 1, · · · , N −1} and N the
number of gray levels.

2.1 Extraction of Specular Highlights

The first step of our method consists in subtracting the background B from
the input image I, which is based on the concept of morphological grayscale
reconstruction, see [8]. Given threshold sets Tk(I) = {p ∈ D | I(p) ≥ k} at level
k, the reconstruction ρI(B) of I from B is given by

∀p ∈ D, ρI(B) = max{k ∈ [0, N − 1] | p ∈ ρTk(I)(Tk(B))}, (1)

see [8] for further details and efficient algorithms. Using the above definition
of grayscale reconstruction, image I1 resulting after background subtraction is
given by

I1 = I − ρI(B). (2)

The advantage of this method for background subtraction is that no grayscale
levels (other than those already present in the input image) are introduced.
Moreover, some intrinsic smoothing is also carried out during the process.

Extraction of the specular highlights is a two-step process. In our approach, it
is essential to preserve their shape and graylevel (after background subtraction),
as our method solely relies on this information to estimate the size of the droplets.
As it is impossible to directly obtain the highlights by simple thresholding (see
Fig. 1), one obvious idea would be to use a morphological top-hat transform
[9] to extract the highlights, since they form (small) compact light spots on
the droplets’ surfaces. Unfortunately, using a classical top-hat transform (i.e.
difference between original image and its morphologically opened result), the
shape of those connected components which survive the opening is dramatically
modified. However, if one uses morphological reconstruction, leading to opening
by reconstruction, the original shape of the surviving regions is restored. More
formally, I2 is computed by top-hat by reconstruction, i.e.,

I2 = I1 − ρI1(I1 ◦ S), (3)

where I1 ◦ S denotes morphological opening by a flat structuring element S (we
fixed S to be the 7 × 7 square, the dimensions of the largest highlight).
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Fig. 3. Illustration of the global model. Two of the n droplets are shown in the image
plane (z′ = 0), one with center in (xc, yc, 0); eye vector is V̂ = (0, 0, 1), and unknown
light vector is L̂ = (sin θ cos φ, cos θ cos φ, sin φ), parametrized by angles φ and θ

Binary image I3 denoting the extracted highlights is obtained by automati-
cally thresholding I2 [10]. Finally, after labeling the connected components of
I3, image I1 is used to restore the grayscales at the locations of the specular
highlights to yield I4.

2.2 Size Distributions from Specular Highlights

Now that we have extracted one specular-highlight region per droplet, we propose
to infer their sizes using Phong’s specular reflectance model [11]. As the pictures
are essentially taken through a microscope (with zoom factor of about 80×,
see Section 1), one can assume that the viewer is infinitely far, and thus the
perspective projection can be approximated by an orthographic one. Further,
droplets can be assumed to have hemispherical shapes [4]. In image coordinates
(x′, y′, z′), an illustration of the model assumed here is shown in Fig. 3. Note that,
as the light location is not known from the experimental setup, the unit light
vector L pointing in the direction of the light source is also assumed unknown.
Further, since we aim at estimating both the radius r and the location (xc, yc, 0)
of each droplet, and as the position of the specular highlight changes with the
droplet’s position, we can assume that L is unknown but fixed in the local
coordinate system (x, y, z) : (x′ − xc, y

′ − yc, z
′) placed in the center of a droplet

at (xc, yc, 0).
Within the local coordinate system, considering that droplets are translucent

(see Fig. 1), the brightness of a droplet surface restricted to the highlight area
is given exclusively by Phong’s specular reflectance model [11], i.e.,

I = Is(N̂ · Ĥ)n, Ĥ = (L̂ + V̂ )/||L̂ + V̂ ||, (4)

with Is and n assumed fixed and known parameters (Is = 255, n = 10 in our
implementation) depending on the properties of the surface material. To reduce
the number of unknowns, we parametrize the unit light vector by two angles,
i.e. L̂ = (sin θ cosφ, cos θ cosφ, sinφ), see Fig. 3. Since the height of the droplet
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surface above the z = 0 plane is expressed as a function S(x, y), i.e. z = S(x, y),
the unit (outer) surface normal is given by

N̂ =
[−Sx,−Sy, 1]√
S2

x + S2
y + 1

, (5)

where Sx and Sy denote first-order partial derivatives of S with respect to x and
y, respectively. Thus Eq. (4) becomes

I = Is

⎛⎝−Sx sin θ cosφ− Sy cos θ cosφ + sinφ + 1√
(2 + 2 sinφ)(S2

x + S2
y + 1)

⎞⎠n

, (6)

with S(x, y) =
√

r2 − x2 − y2. In the image space, the problem of determining
for each droplet i a minimizer k̂i = [ri, xi

c, y
i
c, θ

i, φi] can be regarded as a (non-
linear) least squares minimization. Accordingly, one determines k̂i such that the
squared l2 norm of the differences between the estimated values Ii(xi, yi,ki) and
those of image I4 (see Fig. 2) is minimized, i.e.,

k̂i = argminki

∣∣∣∣I4(xi, yi) − Ii(xi, yi,ki)
∣∣∣∣2

2 , (7)

where (xi, yi) ∈ Di ⊂ D is the domain restricted to the highlight region of
droplet i. Similar to [6] we use the Levenberg-Marquardt algorithm [12], as im-
plemented in the levmar software package [13].

Thus, for each droplet i with |Di| ≥ 5 a separate minimization is conducted.
As it is known that, especially for non-linear problems similar to ours, the mini-
mizer k̂i found by (7) can be just a local one, we repeat the whole minimization
process a couple of times, if necessary. Between minimization steps, we slightly
and randomly perturb the estimated paramaters such that the solution can be
advanced towards a global minimizer. The convergence criterion is used to decide
whether the minimization for a given droplet has to be ended.

For each droplet i, an initial estimate of the parameter vector ki (see Sec-
tion 2.2) is obtained as follows. Assuming that the area of the highlight |Di| is
f times smaller than the area of the hemispherical surface of droplet i, it follows
that an estimate for radius ri is given by ri =

√
f |Di|/2 π; in our implementa-

tion we set f = 50. Parameters (xi
c, y

i
c) are set to the coordinates of the centroid

of Di, and initially the light vector L̂ is (globally) parametrized using θ = 135◦

and φ = 80◦.

3 Results

We selected two images to compare the result of manual counting with the auto-
matic method proposed above. Both images contain a sufficiently large variation
in droplet sizes, and both have problematic regions where droplets are partially
in a bright and dark region of the plate, see Fig. 1 for an example.
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Manual counting was performed by two users on contrast-enhanced printouts
of the images, sized at 18 by 18 centimeters. The users measured the extents
of the droplets in both the x- and y-dimensions with a standard ruler having
a millimeter scale. It took about two hours per image to perform the measure-
ments and enter the data into a spreadsheet program. The radii were obtained
from these measurements by taking the maximum of the x- and y-extents and
multiplication with the appropriate scaling factor. Taking the maximum ensures
that the droplet falls completely inside the circumscribing circle, and that no
parts will be cut from it.

The automatic method performs the measurements in about two seconds on a
machine equipped with a 2.4 GHz CPU; in this experiment about 400 non-linear
least-squares minimizations were performed.

The results of the counting procedure are listed in Table 1. The radii were
binned according to the size intervals proposed in [4], which are shown in the
table together with their bin number. The symbol · indicates that the value of
the lower limit of an interval is the same as the upper limit of the previous
interval; this was done for space considerations. The first row, labeled ‘auto’,
contains the droplet counts obtained by our method, and the remaining rows
contains those obtained by the two users. The numbers are comparable, though
there are disagreements between the manual counts. Some of the differences can
be explained by the discretization at the one-millimeter scale inherent to the
manual measurement. Some droplets were not measured, because they were on
the border of the images. Others were simply missed because there are over 300
droplets visible in the images. The boundaries of the droplets in dark regions of
the plate are very hard to see, thus causing yet another source of errors. Those
droplets j with |Dj | < 5 are too small for the minimization procedure, however,
they can be safely assigned to bin 1 directly.

We also compared the distributions of the radii in each bin for the results in
Table 1. The comparison is best made by box-and-whisker plots, which are shown
in Fig. 4. The top graph corresponds to image 1 and the bottom one to image 2.
The left and right borders of a box correspond to the 25th percentile and 75th
percentile, respectively. The median is shown as an encircled dot. The whiskers
extend to 1.5 times the length of the box on either side, though they go never
beyond the minimum or maximum data value. Outliers in the data are shown by
the symbol ’+’. The boxes are grouped according to bin number (shown at the

Table 1. Droplet counts by our method and manual counting. See text for details on
the binning used.

Image 1 Image 2

Size interval (mm) [0.02, 0.1) [·, 0.15) [·, 0.35) [·, 0.85) [0.02, 0.1) [·, 0.15) [·, 0.35) [·, 0.85)���������Method
Bin number

1 2 3 4 1 2 3 4

auto 174 70 95 8 128 113 138 8
user 1 173 73 94 7 133 109 118 8
user 2 169 70 95 7 86 92 145 6
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Fig. 4. Box-and-whisker plots of the distributions of radii per bin and per method. Top:
results for image 1. Bottom: results for image 2. The boxes are grouped according to
bin number (see left axis). Per bin, boxes for the automatic method (’A’) and the user
measurements (’U1’ and ’U2’) are shown. Median values are indicated by an encircled
dot. For futher details, see text.

left axis). Per bin, our method (labeled ’A’) and the user measurements (labeled
’U1’ and ’U2’) are put above each other. It can be seen that the medians in
each bin are close to each other for all methods. Note that the counts in bin
4 (large radius) are very small, which makes a comparison hard. From these
graphs, we can also conclude that the bin intervals can be chosen in a better
way, as there appears to be a bias towards the lower limit of the bin interval. We
could also replace the binning altogether by kernel density estimation [14]. This
issue is beyond the scope of the current paper, however. Our method produces
more symmetrical distributions of droplet radii, which is most likely due to the
fact that it is not constrained by the discretization employed in the manual
approach.
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4 Conclusions

Considering that manually estimating droplet size distributions is a very tedious
and time consuming task, extensive validation of the proposed automatic method
is unfortunately difficult to achieve. However, we have shown that at least on
a small sample of images (five images were considered, but due to the lack of
space, we only reported results for two of them), the automatic method delivers
results which are comparable to those obtained by laborious and careful manual
counting. Further extensions and improvements of the method proposed here
are the subject of ongoing research. Additionally, we also consider improving
the experimental setup, such that the quality of the results by the automatic
method can be assessed easier.

References

1. Schmidt, E., Schurig, W., Sellschop, W.: Versuche über die kondensation von
wasserdampf in film - und tropfenform. Tech. Mech. Thermodyn (Forsch. Ing.
Wes.) 1, 53–63 (1930)

2. Vemuri, S., Kim, K.: An experimental and theoretical study on the concept of
dropwise condensation. International Journal of Heat and Mass Transfer 49, 649–
657 (2006)

3. Leach, R., Stevens, F., Langford, S., Dickinson, J.: Dropwise condensation: experi-
ments and simulations of nucleation and growth of water drops in a cooling system.
Langmuir 22, 8864–8872 (2006)

4. Ganzevles, F.: Drainage and condensate heat resistance in dropwise condensation of
multicomponent mixtures in a plastic plate heat exchanger. PhD thesis, Eindhoven
University of Technology, The Netherlands (2002)

5. Zhang, R., sing Tsai, P., Cryer, J.E., Shah, M.: Shape from shading: A survey.
IEEE Trans. Pattern Anal. Machine Intell. 21, 690–706 (1999)

6. Pong, T.C., Haralick, R.M., Shapiro, L.G.: Shape from shading using the facet
model. Pattern Recognition 22(6), 683–695 (1989)

7. Prados, E., Faugeras, O.: Shape From Shading. In: Handbook of Mathematical
Models in Computer Vision, pp. 375–388. Springer, Heidelberg (2006)

8. Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications
and efficient algorithms. IEEE Trans. Image Processing 2, 176–201 (1993)

9. Serra, J.: Image Analysis and Mathematical Morphology. Academic, London (1982)
10. Ridler, T.W., Calvard, S.: Picture thresholding using an iterative selection method.

IEEE Trans. Syst. Man, Cybern. SMC-8, 629–632 (1978)
11. Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6),

311–317 (1975)
12. Gill, P.E., Murray, W.: Algorithms for the solution of the nonlinear least-squares

problem. SIAM Journal on Numerical Analysis 15, 977–992 (1978)
13. Lourakis, M.I.A.: levmar: Levenberg-marquardt nonlinear least squares algorithms

in C/C++ (July 2004),
http://www.ics.forth.gr/~lourakis/levmar/

14. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London (1986)

http://www.ics.forth.gr/~lourakis/levmar/


X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1196–1203, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Capturing Physiology of Emotion along Facial Muscles: 
A Method of Distinguishing Feigned from Involuntary 

Expressions 

Masood Mehmood Khan1, Robert D. Ward2, and Michael Ingleby3 

1 Faculty of Science & Engineering, Curtin University of Technology 
GPO Box U1987, Perth, Western Australia 6845 

Masood.Khan@curtin.edu.au 
2 Department of Behavioral Sciences 

3 Applied Criminology Centre, University of Huddersfield, 
Queensgate, HD1 3DH, England 

Abstract. The ability to distinguish feigned from involuntary expressions of 
emotions could help in the investigation and treatment of neuropsychiatric and 
affective disorders and in the detection of malingering. This work investigates 
differences in emotion-specific patterns of thermal variations along the major 
facial muscles. Using experimental data extracted from 156 images, we at-
tempted to classify patterns of emotion-specific thermal variations into neutral, 
and voluntary and involuntary expressions of positive and negative emotive 
states. Initial results suggest (i) each facial muscle exhibits a unique thermal re-
sponse to various emotive states; (ii) the pattern of thermal variances along the 
facial muscles may assist in classifying voluntary and involuntary facial expres-
sions; and (iii) facial skin temperature measurements along the major facial 
muscles may be used in automated emotion assessment. 

1   Introduction 

Darwin, some 140 years ago, proposed the basic principles of expressing emotions 
[1]. As stated in [2], he suggested “muscles that are difficult to activate voluntarily 
might escape efforts to inhibit or mask expressions, revealing true feelings.” About 
108 years later Ekman and others [3] observed that less than 25% of the people they 
examined could produce deliberately what they termed facial actions on certain facial 
muscles: orbicularis oris triangularis, depressor labii inferioris; frontalis pars me-
dialis; frontalis pars lateralis; risorius and orbicularis oculi pars lateralis. Ekman 
and other’s observations [3], though initially based on limited psychophysiological 
evidence, were widely accepted in the scientific community.  

The information-processing approach to facial expression classification is consid-
ered useful in investigating and treating neuropsychiatric and affective disorders such 
as schizophrenia and autism and in detecting malingering and dissimulation. Relying 
mostly on vision, earlier researchers discovered that sincerity of emotion was detect-
able [2]. The morphological differences in expressions: the differences in timing, 
duration and speed of onset of facial expressions; the analyses of the symmetry of 
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facial features; and factors such as ballistic trajectory and apex overlap distinguish 
between evoked and pretended expressions of emotions to a limited extent [2]. Auto-
mation of these distinguishing schemas for real-world applications has seemed daunt-
ing, however, given the functional limitations and complexity of the patterns [4]. 
Similarly, several digital voice-analysis tools aimed at diagnosis of sincerity have 
encountered limitations to use in real-life scenarios [4]. 

The emotion-specific facial hæmodynamic and thermal variations of skin surface 
have been used to classify the expressions of emotive states [5,6]. Studies have demon-
strated that pixel grey-levels in the thermal images would provide a reliable measure of 
skin surface radiance [7,8]. Investigators have consequently recognized stress levels and 
deceit and have classified positive and negative expressions of emotive states using the 
pixel grey-level information extracted from the thermal images [4-6, 9-11]. 

For the first time, this work investigates whether the thermal variations on the fa-
cial skin along those muscles that Ekman’s subjects found difficult to activate during 
the voluntary expressions [3] differ under the influence of voluntary and involuntary 
expressions of emotive states. We attempt to use thermal intensity values (TIVs) 
measured on a set of significant facial thermal feature points (FTFPs) along the major 
facial muscles to classify voluntary and involuntary facial expressions of emotive 
states. Our goal is to determine whether psychophysiological information processing 
can assist in person-independent recognition of true emotive states. The reported 
results encourage the application of physiological information in psychology and 
psychiatric practice. 

This paper presents in sequence our experimental design, feature measurement and 
feature extraction methods, data analysis, results, and conclusions.  

2   Experimental Design 

The infrared images were acquired under a normal, controlled and comfortable envi-
ronment with the room temperature kept between 19-22 ºC. Participants were given 
20 minutes or more to acclimatize with the environment. Common pathological con-
ditions such as fever and inflammation were ruled out. A low emissivity background 
(concrete wall with emissivity ε = 0.54) was used to ensure better separation of the 
background from the desired regions of the thermal infrared images (TIRIs).  

A thermal infrared imaging camera capable of capturing an image array of 320 × 
240 pixels, with an uncooled microbolometer (a special purpose temperature sensitive 
electrical resistor) mounted for measuring the incident radiation was used. The cam-
era had a focal plane sensor array with a high thermal sensitivity in the wavelength 
range of 7.50-14.00 μm. The skin surface emissivity (ε) was set between 0.97 and 
0.99. In order to capture the frontal view of a participant, the central vertical line on 
the camera viewfinder was aligned to the center of each participant’s face.  

A set of 156 images was used. The first subset included 96 images of 16 under-
graduate students, 12 males and 4 females, with a mean self-reported age of 20 years 
9 months who pretended facial expressions. A second subset of 60 visible and thermal 
infrared images with naturally evoked expressions of emotion from 7 male and 3 
female participants (mean age of 21 years 2 months) was used. The practices sug-
gested in [12] were followed for evoking expressions using carefully selected images 
and video clips, avoiding violent, disturbing and unethical images to evoke happiness 
and sadness. 
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3   A New Thermal Feature Measurement Space 

Infrared cameras usually operate in a temperature range of -20 to 500 ºC and cover 
this range using between 4096-16384 grey levels of pixels in a thermogram [13]. The 
built-in radiance measurement and image digitization mechanisms in a thermal cam-
era cause addition of undesired noise in the TIRIs, and this affects severely the narrow 
band of temperature-differences involved in facial imaging. Many convolution meth-
ods are recommended for noise reduction and edge detection to minimize the influ-
ence of noise factors in the TIRIs [8,13]. We found that the median smoothing filter 
[14] was an effective noise reducer for our images as instead of averaging the pixels, 
it would pick one of the pixels being analyzed. The Sobel operator-based edge detec-
tion algorithm, generally considered a robust edge-detector, was invoked for extract-
ing segment contours within our infrared images. For the selected 3x3 neighborhood 
the Sobel gradient operators were calculated according as [14]: 

1)],j 1,f(i j) 1,2f(i1)-j 1,[f(i - 1)]j 1,-f(i j) 1,-2f(i1)-j 1,-[f(iGs +++++++++=  (1) 

and  

1)]j 1,f(i 1)j 2f(I,1)j 1,-[f(i - 1)]-j 1,f(i 1)-j 2f(I,1)-j 1,-[f(iGt +++++++++= . (2) 

The gradient magnitude was computed as 

22)],([ ts GGtsfG +=  (3) 

1 Symmetrically divide thermal image into N squares 
2 Set CorrelationST = 0 
3 Set VarianceST = 0 
4 Set the list of FTFPs = Empty 
5 For squares 1 to N, 
6 Find the highest level of grey in the square 
7 Measure the corresponding temperature of the discovered highest grey level 
8 Add the discovered highest temperature point to the list of FTFPs 
9 Calculate the correlation between the FTFPs 
10 Set the FTFP Correlation = Cornew 
11 Calculate the Variance between the FTFPs 
12 Set the FTFP Variance = Varnew 
13 If {(Cornew > CorrelationST ) and (Varnew > VarianceST)} 
14 Then ((CorrelationST = Cornew )And (Varnew = VarianceST)) 
15 And Keep the newly discovered FTFP in the list of FTFPs 
16 Else, Remove the newly discovered FTFP in the list of FTFPs 
17  End If 
18 End For 

Fig. 1. Significant Facial Thermal Feature Point Selection Procedure 

As suggested in [13], the time-sequential TIRIs were analyzed through comparing 
the temperature measurements at the points of registration within a series of images to 
discover the temporal changes on the faces with different facial expressions. The most 
significant facial thermal feature points were discovered by minimizing the correla-
tion between corresponding regions of interest in a sequence, and maximizing vari-
ance. The optimization procedure is summarized in Figure 1. 
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Table 1. The Muscular Alignment of Facial Thermal Feature Point (FTFPs) 

Facial Muscle FTFPs 
Frontalis, pars medialis 1, 3, 6, 8, 13, 15 
Frontalis, inner center edges of pars 
medialis and pars lateralis 

2, 7 

Frontalis, pars lateralis 4, 5, 9, 10, 11, 12, 16, 17 
Procerus/ Levator, labii superioris 
alaquae nasi 

21 

Depressor, supercilii 14 
Orbicularis Oculi, pars orbital 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31 
Orbicularis Oris 45, 51, 64, 65, 66 
Levator, labii superioris alaquae nasi  28, 35, 36 
Levator, labii superioris 33, 34, 37, 38, 44, 46 
Masseter, superficial 40, 41, 49, 50 
Levator, anguli oris 43, 47 
Zygomaticus major 32, 39, 42, 48 
Risorious/ Platysma 52, 53, 54, 59, 60, 61 
Depressor anguli oris 55, 58 
Buccinator 56, 57 
Platysma 62, 63, 67, 68 
Depressor Labii Inferioris 69, 70, 71, 72 
Mentalis 73, 74, 75 

 

 

Fig. 2. Left to right: The highest thermal intensity values were measured within the shown 16, 
32 and 64 square segments on the face 

Figure 2 exhibits the progressively selected symmetrical regions of interest during 
this analysis. 

The most significant thermal variations were discovered at 75 physical sites lo-
cated all over the face along the major facial muscles within the TIRIs. The TIV data 
gathered from these 75 facial thermal feature points (FTFPs) were used for feature 
classification. Fig. 3 above represents the geometric profile of the facial thermal fea-
ture points showing a muscular map of a human face and the 75 FTFPs on an emo-
tionally neutral human face. The 75 FTFPs and their muscular alignments are listed in 
Table I. The TIV data recorded at the 75 FTFP sites were used to represent each 
thermal face as a 75-dimensional thermal feature vector for the subsequent investiga-
tion and analysis. 
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Fig. 3. Left to right: Geometric profile of FTFPs, FTFPs on a facial muscle map and FTFPs on 
a human face 

4   Thermal Data Analysis 

Figure 4 exhibits the observed mean of thermal variations along the facial muscles in 
°C. As evident in Figure 4, orbicularis oris triangularis, depressor labii inferioris, 
frontalis pars medialis and orbicularis oculi pars lateralis experienced more thermal 
variations during the involuntary expression of emotive states than voluntary expres-
sions of the same affects. More thermal variations were observed, however, on ri-
sorius during the voluntary expression of positive affects than during the involuntary 
expression. We observed similar increased variation during voluntary expression of 
both negative and positive emotive states on frontalis pars lateralis. Looking at these 
initial results, it would be safe to assume that facial thermal features of voluntary and 
involuntary expressions of emotive states differ. However, the TIVs measured at the 
FTFPs on these muscles considered “difficult to activate during the voluntary expres-
sion of emotion” did not distinguish successfully the emotive states in a person-
independent way. 

 

Fig. 4. Differences in thermal variations along certain facial muscles when emotive states were 
expressed voluntarily and involuntarily 
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In a follow-up analysis, using the TIVs measured on all the 75 FTFPs, fairly suc-
cessful separation of emotional states was achieved (Figures 5 and 6). The separation 
was more successful for voluntary expressions (Figure5) than for involuntary expres-
sions (Figure 6). 

The combinations of FTFPs used to illustrate separation power were selected using 
principle component analysis (PCA) [15]. 

 

 

Fig. 5. Separation between the neutral, happy and sad voluntary facial expression in a 2-
principal component eigenspace 

 

Fig. 6. Separation of the neutral faces and involuntary expression of happiness in a 2-principal 
component eigenspace 

5   Results and Discussion 

The investigation suggested significant and detectable thermal differences between 
the neutral, voluntary and involuntary facial expressions of emotive states. The ob-
served between-group separation patterns might be understood in the light of the 
previous works on the correlation between emotions and musculo-physiological ac-
tivities [16-19]. There seems to be some overlap between the neutral faces and faces 
with intentional expressions of sadness and happiness in a 2-component eigenspace 
obtained by PCA. However, the neutral faces do not seem to be overlapping the 
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evoked expressions of happiness. Previous studies found that Zygomaticus Major, 
Orbicularis Oris, Orbicularis Oculi, Mentalis and Platysma contribute to the expres-
sion of positive evoked emotional experiences. The hæmodynamic and thermal char-
acteristics of these muscles probably did not change when the expressions were being 
simulated, hence the intentionally happy faces overlapped with the neutral faces. 
When emotions were evoked, however, some significant musculo-physiological and 
hæmodynamic activities took place along these muscles, so evoked expressions of 
happiness did not overlap the neutral faces. 

As reported in [20] the Orbicularis Oculi, Mentalis, and Depressor Anguli Oris 
contribute to the evoked expression of negative emotions. Simulating the negative 
emotion probably does not cause as much musculo-physiological and hæmodynamic 
activities in these muscles as evoked expressions do. So the simulated sadness was 
confused with the neutral face. In summary, there appears to be a traceable difference 
in the activities of certain muscles between emotional expressions that are evoked and 
those that are simulated.  The apparent tendency is that activities along Zygomaticus 
Major, Orbicularis Oris, Mentalis and Platysma are evoked by positive emotional 
experiences, while the muscular activities along Corrugator, Masseter, Triangularis, 
Orbicularis Oculi Palpabraeous, Platysma, and Bucccinator are more strongly 
evoked by negative emotional experiences. Also, the cited studies in [20] report some 
musculo-physiological activities around the Orbicularis during the facial expression 
of both positive and negative emotions. The musculo-physical activities along this 
particular muscle may possibly have caused the overlap between the positive and 
negative facial expressions in our study. 

6   Conclusion 

The pixel grey-level analysis of the acquired thermal images suggested that voluntary 
and involuntary expressions of emotive states would result in dissimilar patterns of 
facial skin temperature variations along the major facial muscles. The facial muscles 
that were known to be “difficult to activate during the voluntary expressions of emo-
tive states”, experienced a lesser degree of thermal variation during the voluntary 
expressions than those observed during the involuntary expressions. Though further 
work is needed to consolidate these results, the work reported here suggests that facial 
skin temperature measurements taken along appropriate major facial muscles might 
help in distinguishing between the voluntary and involuntary facial expressions of 
positive and negative emotive states and help in automated detection of concealed 
emotions during the psychiatric investigations. If confirmed by further study, this 
finding is also significant to the emotion assessment, detection of dissimulation and 
deceit in forensic and security applications. 
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Abstract. Atmospheric visibility is a standard of human visual perception of the 
environment. It is also directly associated with air quality, polluted species and 
climate. The influence of urban atmospheric visibility affects not only human 
health but also traffic safety and human life quality. Visibility is traditionally de-
fined as the maximum distance at which a selected target can be recognized. To 
replace the traditional measurement for atmospheric visibility, digital image proc-
essing schemes provide good visibility data, established by numerical index. 
The performance of these techniques is defined by the correlation between the 
observed visual range and the obtained index. Since performance is affected by 
non-uniform illumination, this paper proposes a new procedure to estimate the 
visibility index with a sharpening method. The experimental results show that 
the proposed procedure obtains a better correlation coefficient than previous 
schemes. 

Keywords: atmospheric visibility, digital image processing, homomorphic  
filtering. 

1   Introduction 

Many researchers have evaluated air quality by means of various indices and fre-
quently use atmospheric visibility as an air quality indicator. The influence of urban 
atmospheric visibility not only effects human health, but also traffic safety and human 
life quality. Low visibility strongly implies air pollution by ambient pollutants, par-
ticulate matter, or gaseous species [1].  

Atmospheric visibility is a standard of human visual perception of the environ-
ment. The traditional measurement defines visibility as the maximum distance at 
which the selected target can be recognized [2]. Since the variation in human-eye 
observation could be high due to different personal characteristics, researchers have 
applied some photograph processing methods for measuring visibility [3]. Moreover, 
several meters, such as the telephotometer [4], the nephelometer and the athelometer 
[5], have also been developed to monitor visibility. 

Since the rapid development of information technologies, we have widely applied digi-
tal image processing schemes to meteorology, pattern recognition, biology, geographic 
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information system, environmental monitoring and machine vision [6], etc. Digital camera 
can be used to measure the predetermined distance of target for computation of visibility 
[7]. Expensive digital panorama camera is also used to determinate the visibility with 
Sobel operator [8]. Digital image data can be translated to specific brightness value, the 
difference between the building and its background [9]. However, the pixel value differ-
ence and the digital image analysis techniques (both in spatial domain and frequency 
domain) have also been used to estimate atmospheric visibility [10, 11].  

Luo et al. proposed the high pass filter concept to measure atmospheric visibility. 
They extracted high frequency data by the Fourier transform and the Sobel operation 
in frequency domain and spatial domain, respectively [12]. They used the ideal high 
pass filtered data to establish the visibility index and defined the performance of these 
techniques by the correlation between the observed visual range and the obtained 
index. The correlation is the coefficient of determination, 2R , which includes linear 
regression [13]. With the ideal filter, the 2R  result is less than 0.8. However, ideal 
high pass filters do not easily reveal the fine structures of a non-uniform illumination 
area, such as the shadow, of the image.  

Digital image data can be characterized by illumination and reflectance compo-
nents. Illumination is the amount of viewed source illumination incident on the scene 
and reflectance is the amount of illumination reflected by objects in the scene. Slow 
and fast spatial variations characterize illumination and reflectance, respectively. The 
homomorphic filter operates these components separately with two or more parame-
ters. The homomorphic filter can be used to advantage the ideal filter [6]. The 2R  of 
measuring the visibility index via the homomorphic filter technology is close to 0.9 
[14]. However, using the homomorphic filter is complex because it needs to decide 
the parameters.  

Yang proposed an algorithm with the Harr function to improve non-uniform illu-
mination sharpness [15]. Compared to the homomorphic filtering approach, this 
method helps reveal the fine structures of the non-uniform image. Since objects in the 
urban atmospheric image may be shaded and outlines in the dim area are not illumi-
nated enough to be recognized, this scheme is suitable for measuring visibility.  

This paper introduces a series of digital image analysis techniques with the ideal 
high pass filter and homomorphic filter. The current work also proposes a new proce-
dure to estimate the visibility index with the Harr function. The experiments compare 
the proposed procedure with previous schemes. According to experiment results, 
when the proposed procedure obtains the indices, the correlation between the ob-
served visual range and the obtained indices is better. 

2   Methods and Experiments 

This study uses the same image database in [12], to show practical application per-
formance. This study shot the actual urban images on the top of the Linden Hotel, a 
42-floor building in Kaohsiung, Taiwan. This study took a total 172 images with 
observed visibility in four months. At the time of shooting the image, a trained inves-
tigator also recorded observed visibility. The investigator stands on the top of the 
hotel and decides the farthest building that he can see. The visibility is measured as 
the pre-measured distance (using GPS).  
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We compute the visibility indices of 172 images with three methods (ideal high 
pass filter, homomorphic filter and sharpness with Harr function). Relationships be-
tween observed visibility values and the computed indices show the performance. The 
correlation, which is the coefficient of determination, 2R  (which includes linear re-
gression [13]), defines the relationship. If the Relationship between observed visibil-
ity values and the computed indices is close to a line, the 2R  value will be close to 1. 
The following describes summaries of the methods and experiment results. 

2.1   Fourier Transform and Ideal High-Pass Filter 

Since impaired visibility can not appear detailed, the high-frequency components in 
the scene decrease. The high-frequency information can be used to estimate the visi-
bility. We can use the Fourier transform and the ideal high-pass filter to separate the 
high frequency components [12]. 

The digital image can be described by a function, ),( yxf , where the value of the 

function presents the brightness level at location of (x, y). The Fourier transform of 
the image with M×N size can be written as [6] 
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The ideal 2-D high-pass filter passes high frequencies and cuts off low frequencies 
with the cutoff distance, D0. The ideal high-pass filter function is defined as  
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where D0 is a positive integer and D(u, v) is the distance between (u, v) and the 
center of the frequency domain. Finally, the filtered image can be obtained by the 
inverse Fourier transform. The visibility index with this method, IF, is the average 
gray level of the filtered image. Figure 1 shows the relationships of the Fourier trans-
form (with ideal high pass filter) where the line equation of the linear regression and 

2R  are shown on the figure.  
 

 

Fig. 1. The result of actual urban images by the Fourier transform 
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2.2   Homomorphic Filter 

The ideal high pass filters do not easily reveal the fine structures of a non-uniform 
illumination area, such as the shadow, of the image. The homomorphic filter is useful 
for improving the non-uniform illumination area by brightness range compression and 
contrast enhancement. The homomorphic filter controls the filter function that affects 
low frequency and high frequency in different ways by choosing the parameters L and 
H. A homomorphic filter function can be defined as [14] 
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If we choose that L < 1 and H > 1, then the filter reduces the illumination (low fre-
quencies) and increases the reflectance (high frequencies). In this paper, we set L=0.5 
and H=1.1. After the homomorphic filter, the data is filtered again by a 2-D Gaussian 
high-pass filter which is defined as  
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Similarly, the filtered image can be obtained by the inverse Fourier transform and 
the visibility index, IH, is the average gray level of the filtered image. Figure 2 shows 
the results of the Homomorphic filter. 

 

 

Fig. 2. The result of actual urban images by the Homomorphic filter 

2.3   Sharpness with Harr Function 

The Harr function is an orthogonal base of the wavelet transform [15]. In general, the 
orthogonal Harr filter coefficient is typically 2/1 . In other words, when two data ( p1 

and p2 ) are inputted, they can be separated as ( p1－p2 )/ 2  and ( p1 + p2 )/ 2 , re-
spectively.  

We assume that the input image is described by a function, ),( yxf , where the 

ranges of x and y are 10 −≤≤ Mx  and 10 −≤≤ Ny , respectively. We compute the 

image in x direction and y direction. In the x direction, we set p1= f (2m, y) and  
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p2= f (2m+1, y) to be the input of the Harr function (where 2/0 Mm ≤≤ ). We also ex-
tract one pixel shifted, p1= f (2m+1, y) and p2= f (2m+2, y), to operate the transforma-
tion. Similarly, the y direction proceeds two times with one pixel shifted. Two input 
of the y direction are p1= f (x, 2n), p2= f (x, 2n+1) and p1= f (x, 2n+2), p2= f (x, 2n+2), 
respectively (where 2/0 Nn ≤≤ ). We can see that the original image is separated into 
four subsets. In the separated subset, we set the original data (p1 and p2 ) into the 

sharpened data ( p1’ and p2’) by the value of ( p1－p2 )/ 2 . If the value is positive, we 

set p1’=14log( p1－p2+1)  and p2’=0, otherwise, we set p1’=0  and p2’=14log 

( p2－p1+1). Finally, the sharpen image can be obtained by the sum of the results of 
four modified sub-images.  

To estimate the visibility index, we combine the sharpen image with the homo-
morphic filtered image (without Gaussian high-pass filter). The combination is  
(the sharpen image) + c×(the homomorphic filtered image), where c is a combination 
weight. The visibility index with the proposed procedure, IP, is the average gray level 
of the combined image. To find the optimum value of c, we compute indices of all 
172 mages with variant c. The relation between 2R and c is shown in Figure 3. The 
best value of 2R  is 0.9146 with c=0.78. Figure 4 shows the results of the proposed 
procedure. 

 

Fig. 3. The results of finding the optimum c value (the combination weight) 

 

Fig. 4. The result of actual urban images by the proposed procedure 
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3   Comparisons 

From the experiment results, the performances of the Fourier transform, the homo-
morphic filter and the proposed procedure are 2R =0.77, 2R =0.86, and 2R =0.91, re-
spectively. The proposed procedure obtains higher relationship with human observed 
visibility than the other methods. We would like to show that the proposed procedure 
is better because it reduces the effect of shadow.  

We compare of the three methods with shaded buildings compared to no shaded 
buildings in the same observed visibility. Since the shadow should not affect visibility 
index, with the same method, the indices of the two images should be the same. We 
use similarity to show performance comparisons. With two indices, i1 and i2, we de-
fine the similarity as 
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Figure 5(a) shows an urban image obtained on a cloudy day. Figure 5(b) shows an-
other image shot on a sunny day. The observed visibilities of Fig. 5(a) and (b) are the 
same (5km). Figure 5(a) shows less shadow than Fig. 5(b). Since human observed 
visibilities are the same, indices similarity with the same method should be close to 
100%. Table 1 shows the results of computing visibility indices with similarity by the 
above methods. The similarity of the proposed procedure is the best. 

 

 
(a) 

 
(b) 

Fig. 5. Two actual urban images (with the same 5km observed visibility) which are shot on (a) 
cloudy day and (b) sunny day 

Table 1. The obtained indices and similarity of Fig. 5 (a) and (b) 

Image 
Fourier 

transform 
Homomorphic 

filter 
Proposed 

procedure 
Fig. 5(a) 19.7562 29.3877 146.2156 

Fig. 5(b) 10.6512 24.2651 143.3134 

similarity 83.54% 98.19% 99.98% 
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We also use two images both with 12km observed visibility to compare the simi-
larity. Figure 6(a) and Figure 6(b) show that the non-shadow buildings and shadow 
buildings, respectively. Table 2 shows the results of computing visibility indices with 
similarity by the above methods. Similar to the above results, the similarity of the 
proposed procedure is the best. 

Results of the above comparisons show that, the proposed scheme reduces  
the influence of non-uniform illumination. Obtaining the visibility indices with 
the proposed procedure can increase the similarity when the observed visibilities 
are the same.  

 

 
(a) 

 
(b) 

Fig. 6. The same 12km observed visibility images with (a) non-shadow buildings and (b) 
shadow buildings 

Table 2. The obtained indices and similarity of Fig. 6 (a) and (b) 

Image 
Fourier 

transform 
Homomorphic 

filter 
Proposed 

procedure 
Fig. 6(a) 21.172 37.842 165.3027 

Fig. 6(b) 32.847 49.673 179.5326 

similarity 91.07% 96.41% 99.66% 

4   Conclusion 

This paper introduces a series of digital image analysis schemes, based on high pass 
filters. Since shadow may influence urban images, this paper also proposes a proce-
dure based on sharpness of the non-illumination image. The experiments in this 
study use actual atmospheric images to show the comparison between the Fourier 
transform, the homomorphic filter and the proposed procedure. Results show that 
the proposed procedure obtains higher relationship with human observed visibility 
than the other methods. We also show that obtaining the visibility indices with  
the proposed procedure can increase the similarity when the observed visibilities are 
the same. 
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Abstract. Image-based modeling is very successful in the creation of
realistic facial animations. Applications with dialog systems, such as e-
Learning and customer information service, can integrate facial anima-
tions with synthesized speech in websites to improve human-machine
communication. However, downloading a database with 11,594 mouth
images (about 120MB in JPEG format) used by talking head needs
about 15 minutes at 150 kBps. This paper presents a prototype frame-
work of two-step database minimization. First, the key mouth images
are identified by clustering algorithms and similar mouth images are dis-
carded. Second, the clustered key mouth images are further compressed
by JPEG. MST (Minimum Spanning Tree), RSST (Recursive Shortest
Spanning Tree) and LBG-based clustering algorithms are developed and
evaluated. Our experiments demonstrate that the number of mouth im-
ages is lowered by the LBG-based clustering algorithm and further com-
pressed to 8MB by JPEG, which generates facial animations in CIF
format without loss of naturalness and fulfill the need of talking head for
Internet applications.

1 Introduction

Visual speech synthesis (talking head) is studied by researchers in computer
graphics, image processing, speech processing, artificial intelligence, communi-
cation, psychology, etc. Different competing talking head systems have been
presented in the first visual speech synthesis challenge LIPS 2008 [1]. The image-
based talking head system [2] achieved the most natural animations in terms of
audio-visual consistency [3]. An image-based talking head may be combined with
dialog systems, such as desktop agents on personal computers, e-Learning and
human-car-entertainment services [4], which will open many opportunities in
modern human-machine communications.

A typical architecture of a talking head for an Web-based customer informa-
tion service is shown in Fig. 1(a). A Web server will forward any questions from
client to a dialog system, which sends the answer to a TTS (Text-To-Speech)
synthesizer. The TTS converts the text of the answer to the corresponding spo-
ken audio track as well as the phonetic information and their duration which
is required by the talking head plug-in embedded in the website. The talking

X. Jiang and N. Petkov (Eds.): CAIP 2009, LNCS 5702, pp. 1212–1219, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) Architecture for customer information service. (b) Snapshot of a website

Fig. 1. Web-based applications with talking heads

head plug-in selects appropriate mouth images from the database to animate
the talking head at the client. A snapshot of the Website is shown in Fig. 1(b).

For a talking head in PAL format, the database with about 12000 mouth
images in JPEG format requires 120MB storage space and needs a long time
to be downloaded from Internet. Therefore, the database should be minimized
to realize the talking head for Internet applications. This paper proposes a pro-
totype framework which can efficiently minimize the database and focuses on
MST, RSST and LBG-based clustering algorithms.

The rest of the paper is structured as follows. Section 2 describes the creation
of the database. Section 3 presents the proposed framework of database mini-
mization. Experimental results are shown in Section 4, and concluding remarks
are drawn in the final section.

2 Database Creation

Our image-based talking head system includes two parts: analysis and synthesis.
The audio-visual analysis part creates a database, which is available for the
synthesis part to generate animations. The details of the analysis and synthesis
were presented in [2] and this section describes the database creation briefly.

A subject is recorded while reading a predefined corpus including about
300 sentences. The motion parameters of recorded subject are estimated by a
gradient-based approach [5], which is used to compensate head motion such that
mouth images can be cropped from the normalized face sequences. A snapshot
of the database with a large number of mouth images is shown in Fig. 2(a).

Since the dimension of normalized mouth image is very high and computa-
tion using the original mouth image is inefficient, the dimensionality should be
reduced before clustering and compression. PCA (Principal Component Anal-
ysis) [6] is very efficient to reduce the dimension of the mouth images. In the
PCA space, each base is an eigen mouth and each mouth image is the sum of
weighted eigen mouths. The weight is the coordinate of the mouth image in the
PCA space. Therefore, the problem of mouth image classification is simplified
to cluster the data set in the low dimensional PCA space of the database.
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Fig. 2. Frequency determination of using mouth images

3 Database Minimization

This section proposes a framework to minimize the database. First, probability
of using a mouth image is determined and only used mouth images are retained
in the database. Second, the key mouth images are identified in the PCA space
of the retained mouth images by clustering algorithms. For each cluster, one im-
age is selected as a representative image from the cluster. All the representative
images build a final database. Last, the final database is further compressed by
JPEG. In order to cluster the database, three clustering algorithms are devel-
oped and an objective performance measurement of the clustering algorithms is
defined.

3.1 Probability Determination of Using Mouth Images

In order to evaluate the relevance of each image in the database, the test corpus
including 1457 sentences from different sources is comprised of:

– 400 titles of top news in different categories from BBC website;
– 100 sentences from the story “The Tale of Two Cities“;
– 657 sentences from the corpus used for speech synthesis to cover all diphones

in English;
– 300 sentences from AT&T research lab.

Using this test corpus, the relative frequency pi of using the mouth image xi is
determined. By doing so, only the mouth images with pi > 0 are retained and
the mouth images with pi = 0 are discarded.

Fig. 2(b) shows the process of the frequency determination, which is part of
the synthesis system. Depending on the phonetic information from TTS, the
unit selection selects mouth images from the database and assembles them in
an optimal way to produce the desired animation. The unit selection balances
two competing goals: lip synchronization and smoothness of the transition be-
tween consecutive images. Lip synchronization considers the co-articulation ef-
fects by matching the distance between the phonetic context of the synthesized
phoneme and the phonetic context of the mouth image in the database. The
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goal of smoothness is to reduce the visual distance at the transition of images in
the final animation, favoring transitions between consecutively recorded images.
The probability of using mouth images is derived from the selection frequency
of mouth images.

3.2 Clustering Algorithms

The goal of the clustering algorithms is to identify key mouth images and discard
similar mouth images from the database. For example, a lot of closed mouths
are similar and only one is necessary for animations. Similarity depends on the
distance d between two points in the PCA space. d is calculated as the weighted
Euclidean distance between the two mouth images. Therefore, a threshold T is
required to measure the similarity. d(u, v) < T means that mouth image u and
v are similar and should be classified in one cluster.

MST-Based Clustering
A spanning tree is an acyclic subgraph of a graph G, which contains all the
vertices from G. The MST of a weighted graph is the minimum weight spanning
tree of that graph. Prim’s algorithm [7] is known to be a good algorithm to find
an MST. The algorithm continuously increases the size of a tree starting with
a single vertex until it spans all the vertices. The cost of constructing an MST
is O(mlogn), where m is the number of edges in the graph, n is the number of
vertices. The classical MST based clustering algorithms begin with any point in
the PCA space to construct an MST. From this tree, any edge with a weight
d(u, v) ≥ T is removed from the tree. This leads to a set of disjoint subtrees
SC = {C1, C2, ...}. Each of the subtrees Ct is treated as a cluster, for which a
representative point should be found. All representative points are collected to
build a final database.

Each image in the database is a vertex of the graph. Prim’s algorithm takes
a long time and it becomes impossible to construct an MST for our database,
since the database consists of a large number of mouth images, even though
some non-used mouth images with pi = 0 are discarded. In order to speed up
MST construction for our database, we modify the algorithm by combining the
two steps as follows. Once the weight of a new edge of the subtree is bigger than
the threshold T , we stop constructing the subtree and the subtree is treated as
a cluster. The remaining vertices of the database are treated the same to build
clusters until all the vertices are part of the subtrees. The modified MST based
clustering algorithm can build the same subtrees according to the threshold T
as the classical MST based clustering does, but the computing time for our
database is reduced to maximal 3 hours from several months or more.

To find the representative image, we assume that there are nt points in the
cluster Ct, the average node ct and its standard deviation σt are computed
considering the unit probability in the following way:

ct =
nt∑

j=1

pjVj ; σt =

√√√√ nt∑
j=1

pj(Vj − ct)2 ,
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where Vj is a vector with the PCA weights of mouth image j in Ct and pj

is the probability of using the mouth image j. If the condition σt < T/6 is
fulfilled, the nearest point to ct is selected as the representative point in the
cluster Ct. Otherwise, cluster Ct will be approximated by two Gaussian mixture
distributions or more, till the condition is fulfilled.

RSST-Based Clustering
RSST-based clustering algorithm presents a powerful solution to the problem
of incorporating global information into clustering algorithm [9]. RSST begins
with the shortest link in the graph and merges the two vertices joined by this
link. A new vertex and link weights are recalculated in the region. The region
represents a vertex or many vertices in the same partition. The process will be
repeated until the number of regions are enough for the clustering.

In the case of mouth image clustering, we define the region as a mouth image
in the PCA space at the initialization stage or many mouth images clustered in a
partition. The link weights are calculated by the weighted Euclidean distance of
two mouth images. The RSST-based clustering algorithm begins with finding the
least link in the graph and merging the two mouth images adjoined by this link
into a region. The average PCA weight of the region is calculated to represent
the new vertex of the region and the link weights of the region are updated. This
process will be done recursively until the desired regions are obtained. We define
a threshold T that controls the building of RSST. If the next least link weight
is bigger than T , we stop the construction of RSST. The mouth image, which is
the nearest to the average PCA weight, is treated as the representative mouth
image of the region.

LBG-Based Clustering
We assume that there is a training data set consisting of M vectors: τ =
{x1, x2, ..., xM} and the vectors are K-dimensional: xm = (xm,1, xm,2, ..., xm,K),
m = 1, 2, ...,M . In our case, the vector represents the PCA weight of a mouth im-
age. The LBG VQ design algorithm [8] is an iterative algorithm to find the parti-
tion S = {s1, s2, ..., sP } and their representative vectors rp = (rp,1, rp,2, ..., rp,K),
p = 1, 2, ..., P , which are subject to Q(xm) = rp, xm ∈ sp, such that the global
average distortion is minimized in the following way, considering the probability
pm of using the mouth image xm:

Dave =

M∑
m=1

pm ·
∥∥xm −Q(xm)

∥∥2

K ·
M∑

m=1
pm

.

However, the classic LBG does not consider the maximum distortion of the
partition, which results in jerky animations, when the mouth images are selected
from the partitions with a large distortion. To overcome this problem, we define
a threshold R that controls the size of the partitions. The partitions are further
split, if the maximal distortion of the partitions is larger than the threshold.
The clustering algorithm is repeated until all the partitions fulfill the threshold
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condition. Considering the probability of using a mouth image, the distortion
D(sp) between any point and the representative point rp in the partition sp

fulfills the following condition: D(sp) =
∥∥xm − rp

∥∥2
< R, ∀ xm ∈ sp.

Objective Evaluation of Clustering Algorithms
To evaluate the clustering algorithms, PSNR is chosen as the objective measure-
ment. The PSNR between the original database and the final database is defined
as:

PSNR = 10 · log10
2552

MSE
; MSE =

M∑
m=1

Pxm ·
∥∥Ixm − IQ(xm)

∥∥2

w · h ·
M∑

m=1
Pxm

where MSE is the mean square error, Ixm is the pixel value vector of mouth
image xm, w and h are the width and height of the mouth image, Q(xm) is the
representative image of xm, Pxm is the probability of using the mouth image xm.

3.3 Compression of Final Database

JPEG and H.264 are the most efficient coding methods for pictures and se-
quences. Due to the discontinuity of the mouth images in the final database,
inter coding of images by H.264 is not useful. The efficiency of the intra coding
of H.264 is similar to the JPEG efficiency. In practice, JPEG is the most pop-
ular and efficient coder for pictures and very suitable for our case. The size of
compressed database in JPEG is proportional to the number of mouth images
in the final database.

4 Experimental Results

In order to determine the probability of using mouth images, we have built an
image-based talking head system [2] with 11594 mouth images in the database.
The resolution of the talking head image is 720 × 576 and the cropped mouth
image size is 176 × 208. This means the original database is about 640MB in
YUV format and 120MB in JPEG format.

Fig. 3(a) shows the number of mouth images that are not selected by the
unit selection given the number of test sentences. 4230 mouth images are never
used by the test corpus. Almost 36.6% of the mouth images are not selected by
the unit selection. 93.7% of the non-used mouth images are labeled with silence.
Given 1457 test sentences, the logarithm of the selection frequency of the mouth
images is shown in Fig. 3(b), where the mouth images are sorted in the order of
selection frequency.

The performance of the clustering algorithms is measured by PSNR between
the final database and the original database as shown in Fig. 4. The black curve
represents the PSNR between the final database clustered by LBG and the orig-
inal database. The red one corresponds to RSST-based clustering and the blue
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Fig. 3. Results of probability determination. (a) The number of non-used mouth im-
ages given the number of input sentences. (b) Logarithm of the selection frequency
determined by unit selection from 1457 test sentences.
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one corresponds to MST-based clustering. LBG-based clustering performs better
than the others, if the clustered database contains less than 5400 mouth images.

After clustering the database, the final database is compressed by JPEG. The
size of the final database depends on the number of mouth images in the final
database and the resolution of the talking head image. For example, 3000 mouth
images need 29MB storage space in PAL format or 8MB in CIF format.

In order to evaluate the proposed clustering algorithms subjectively, we gener-
ated animations by using the original database and the final database clustered
by MST, RSST and LBG with different size. These animations are shown to the
viewers and they were asked to score the quality of the animations generated
by using the final databases. The results of the informal subjective tests show
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that the database with not less than 3000 mouth images clustered by LBG, can
synthesize animations without loss of naturalness.

To see the animations according to Fig. 4, the reader is encouraged to visit
http://www.tnt.uni-hannover.de/project/facialanimation/demo/minidb/

5 Conclusion

In this paper we have presented a prototype framework for minimizing the
database of unit selection so that the real-time talking head for Internet ap-
plications is possible. The database reduction is carried out in two steps: First,
the database with useful mouth images is clustered; Second, JPEG is used to
compress the final database. MST, RSST and LBG-based clustering algorithms
are proposed and evaluated.

Experimental results show that the proposed methods can reduce the database
efficiently. LBG-based clustering algorithm performs better than others given a
small size of database. According to the subjective tests, the animations can be
generated by a small database with at least 3000 mouth images without loss of
naturalness.

Furthermore, because the non-used mouth images are discarded from the
database, the number of candidates are reduced in the Viterbi search, so that
the unit selection performs faster and more efficiently.
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Abstract. Traffic Sign Recognition is a widely studied problem and its dynamic 
nature calls for the application of a broad range of preprocessing, segmentation, 
and recognition techniques but few databases are available for evaluation. We 
have produced a database consisting of 1,300 images captured by a video cam-
era. On this database we have conducted a systematic experimental study. We 
used four different preprocessing techniques and designed a generic speed sign 
segmentation algorithm. Then we selected a range of contemporary speed sign 
classification algorithms using shape based segmented binary images for train-
ing and evaluated their results using four metrics, including accuracy and 
processing speed. The results indicate that Naive Bayes and Random Forest 
seem particularly well suited for this recognition task. Moreover, we show that 
two specific preprocessing techniques appear to provide a better basis for con-
cept learning than the others.  

Keywords: Traffic Sign Recognition, Segmentation, Classification. 

1   Introduction 

Automatic Traffic Sign Recognition (TSR) systems attempt to detect and recognize 
traffic signs from live images captured by a video camera mounted on a vehicle. The 
development of such a visual pattern recognition system is not a trivial task [1]. It has 
attracted the research community since the eighties [2]. There are a number of issues 
associated with the automatic detection and classification of traffic sign patterns from 
real-world video or images. Visibility is the key issue in the performance of a TSR 
system because it determines the quality of the captured images and hence affects 
classification performance. A TSR system can only attract the transport community if 
it can outperform, or at least perform comparably to, humans in correctly locating and 
recognizing signs at low visibility. Visibility issues can arise due to many reasons. For 
instance, the various lighting conditions at different hours of the day and the different 
seasons have a strong impact on visibility. Additionally, because of trees or shadows 
of nearby buildings the signs may be partially hidden. These and other common issues 
have been discussed in related studies [1]. Researchers have applied a variety of pre-
processing techniques based on color processing [3, 4], shape analysis [3-5], along 
with numerous classification and recognition techniques ranging from template 
matching algorithms [3, 6], Radial Basis Function (RBF) Network [7, 8], Multilayer 
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Perceptron and other Neural Networks [7, 8], Genetic Algorithms [9], Fuzzy Logic 
[10] to the applications of Support Vector Machines [11] and signal processing-based 
transformation-specific classifiers.   

Accuracy and processing speed are two important performance metrics in the de-
velopment of TSR systems. Some studies present detection and/or classification re-
sults around 90% [12, 13] or in some cases 95% [10] or more. However, few studies 
compare with other databases than their own and the used database is seldom made 
public. Moreover, the level of detail in describing the preprocessing and other steps is 
usually low, which makes it difficult to reproduce the experiment.  Besides related 
work and also some commercial implementations of TSR systems [14] there are prac-
tically no significant traffic sign databases available. We have only managed to find a 
small database, consisting of 48 images of three different traffic signs, available on-
line [15]. This study aims to remedy this situation by making our initial database 
publicly available. We also expect to enlarge the database in future work. For the 
initial database, we have collected 1,300 images from Swedish roads. Detection and 
recognition of speed signs in particular have been extensively studied [13, 16, 17]. In 
this work our main focus is to conduct an extensive study on various algorithms for 
the classification of this particular type of sign. For this purpose we extract the shape 
based binary information from the sign images to generate training and testing data 
sets for supervised concept learning. A number of classifiers are evaluated for speed 
limit recognition under various performance metrics. In order to make the preprocess-
ing, segmentation and classification experiments reproducible, standard tools are used 
and each step is described in detail. Our database of traffic sign images and the im-
plementation results are available online1. 

 

Fig. 1. Traffic signs collection & processing 

                                                           
1 www.bth.se/tek/nla.nsf/sidor/resources 
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2   Data Collection, Size Analysis and Preprocessing 

We collected 1,300 raw images of the traffic signs using a Logitech Quick Cam Pro 
4,000 web camera with automatic settings and a resolution of 640×480 for each im-
age. The collection of images along road sides was performed during different hours 
of the day, and thus under various lighting conditions to maximize visibility disorders. 
Since this study is concerned with speed signs only, each such sign (30, 50, 70, 90 
and 110) is marked and associated with a corresponding class. We also considered 
multiple speed signs present in a single image and included a reasonable collection of 
non-speed signs as well. We labeled such signs as belonging to the Noise class. In 
Fig. 1, steps 1 to 4 describe the image capturing, boundary marking and the segmenta-
tion of sign images from the original image for further processing. During boundary 
marking (step 3 in Fig. 1) we have marked signs of size 10×10 pixels or more.   

A traffic sign detection algorithm has to process images that include rectangular 
shapes, as opposed to the circular shape of the speed signs. Thus, we also marked 
rectangular signs as well as some non-sign rectangular shapes. To avoid unnecessary 
processing of rectangular shapes and to make the system robust against non-speed 
signs, a basic size analysis is conducted before passing the sign image to the prepro-
cessing module. We have analyzed the height and width of the images for each class 
in our database, and can conclude that, for all of the properly segmented speed signs 
as well as other traffic sign images, the height and width are almost identical. For the 
other images the height is roughly 1.5 times the width. So, in our size analysis heuris-
tic approach, we simply discard an image if the width of the image is 1.9 times the 
height or vice versa. We have kept this threshold slightly flexible just to ensure that 
no speed sign image is rejected. This check is shown after step 4 in Fig. 1.  

There are several methods based on shape or color information that can be used ei-
ther individually, or in combination, for this purpose. The reader may refer to [1] for a 
detailed study on such techniques. We have chosen to process signs based on shape 
because similarity matching between templates is considered good for classification 
algorithms [1]. For this purpose we need to convert color images to binary images. 
Binary images are very economical as opposed to color images with respect to the 
training and testing times required for the classification algorithms. Thus the scope of 
our preprocessing module is to take the color image and to convert it to a gray scale 
image, which is then further processed to get a binary (black and white) image. To 
ensure an unbiased evaluation of the classifiers, we implemented four different tech-
niques in the preprocessing module. For our preprocessing, critical decisions need to 
be made with regard to 1) the selection of technique for color to grayscale conversion 
and 2) which gray threshold to use in order to generate the binary image. 

We therefore made different choices for these decisions and developed four inva-
riants, as shown with labels P1, P2, P3 and P4 respectively in step 5 of Fig. 1. Our im-
plementation of P1 through P4 includes regular MATLAB functions for color image to 
gray scale conversion, adaptive histogram equalization and gray level threshold for 
conversion to binary. For the implementation of P1 rgb2gray is used to convert from 
color image to gray image then adapthisteq, graythresh, and im2bw are applied in 
sequence to get the binary image. In P2 the input image is first adjusted with regard to 
color intensities. For this purpose the function imadjust is used and the input parame-
ter [low_in; high_in] is given as [0.3 0.2 0.1; 0.8 0.6 0.8]. We have analyzed the 
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results using various sets of values for this parameter and heuristically we have con-
cluded that the above given set of values produces sufficiently good results.  The 
adjusted image is then processed similar to P1. For P3 we used the intensity of the red 
component from the color image as the gray level to get a gray image. The remaining 
steps are the same as for P1. In P4, the same method as the one used for P1 is followed, 
but the gray threshold is further processed so that, if the threshold θ is greater than ½, 
it is recalculated as defined below: 

 ,,  (1) 

 
We have developed a technique consisting of six simple steps of sequential 

processing for possible segmentation of the speed limit value as shown in step 6 of 
Fig. 1. Our segmentation logic is independent of the preprocessing techniques dis-
cussed above. Output binary images I1, I2, I3 and I4 from the preprocessing P1 through 
P4 form the input to the segmentation module. The same segmentation steps are ap-
plied on each of I1 through I4, separately. The first step is the framing border, which 
ensures maximum reduction of the background noise. Black borders are added in the 
background with a size of 10% of the length of each side. Then, in the next step the 
background noise is filtered by removing 4-connected neighborhood pixels. It also 
removes the frame generated during the previous step. In the third step, the isolated 
black pixels and single pixel connected black lines are converted to white. This 
process removes small clusters of noise and separates single pixel connected black 
regions. After step three, some large clusters of noise in the form of groups of con-
nected black pixels still exist. We call them open areas since they are not part of the 
shape of the speed limit value. We remove them in the fourth step. This time we 
search for 8-connected neighbors and remove those open areas which have a pixel 
count below a certain threshold. The threshold pixel count (Pc) is taken as the percen-
tage of black pixels in the image plus some constant integer value such as 7 or 8.  This 
step also ensures that the speed limit value is not affected.  Next, we remove white 
spaces from all four sides and define a bounding box for the segmented speed limit 
value. After step five, the segmentation process is over. The last step is basically to 
determine the quality of the segmented image. We define segmentation quality as 
either good or bad. If the quality is good, the image is resized to a predefined width 
and height, so that each instance given to the classifier is of the same size. The dimen-
sion of the resized images is 20×24, a dimension which was determined by taking the 
average size of the segmented images based on the output of the four preprocessing 
methods. The quality analysis is the most important (and the most technical) step in 
the segmentation algorithm. We will now discuss why quality analysis is important 
and describe our quality analysis approach. 

Normally, on the road sides there are a lot of different signs and speed signs appear 
rarely.  For example, in our collection only 20% of the images represent speed signs. 
Since we are only concerned with the speed sign images, we classify each non-speed 
sign as Noise. For this purpose, a proper shape segmentation of the speed limit value 
is desired. At the same time, it is important to design robust criteria to deal with non-
speed signs. It is not a good idea to simply use every non-speed sign image as a mem-
ber of the Noise class. Non-speed signs do not follow any predefined pattern and thus 
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it will be difficult for a classifier to properly learn the Noise class. During segmenta-
tion, any prior information about the class of the input image is not present and it is 
upon the segmentation method to reject as many of the noisy images as possible. 
Thus, during the last step of the segmentation process we analyze the images based on 
the quality criteria shown in Eqn. 2. A binary decision in terms of good or bad quality 
is made for each segmented image. Bad segmentations are discarded whereas good 
segmentations are normalized with regard to size and used for the further preparations 
for classification.  
        ,  

, 13,  13,  3 1, ,   
,

 

(2) 

 
Our quality analysis  is independent of the preprocessing and segmentation tech-

niques. The quality check serves two main purposes. It allows the selection of all well 
segmented speed sign images by marking them as good quality and rejecting poor 
segmentation results by labeling them as bad quality segmentation to achieve a high 
hit ratio. Secondly, when we apply the check on the segmentation results of noisy 
images, most of them are simply rejected as being bad segmentations. Thus, the non-
speed signs that are regarded as good quality after the segmentation process are the 
only non-speed signs that will be included in the Noise class. Therefore a classifica-
tion as good is expected for each speed sign while bad is desired for every non-speed 
sign. The segmentation quality analysis is also robust against visibility disorders of 
the images and tries to reject most of them to avoid misclassifications at the later 
stage. The experimental results seem to indicate that all four preprocessing techniques 
perform well in rejecting non-speed signs, since 95% to 98% of these signs are put 
into the bad segmentation collection.  

3   Analysis of Classification Algorithms 

From the segmentation results we get the shape representation of the sign as binary 
images. To conduct the experiments we use the Weka [18] machine learning  
workbench. To examine the classification results separately for each preprocessing 
technique, we constructed four ARFF-based data sets.   These data sets include six 
different classes: the speed limit values 30, 50, 70, 90, 110, and the Noise class. 
Segmentation results for each preprocessing technique are associated with the re-
spective class labels and thus a training data set of binary strings for each prepro-
cessing is generated. To convert the training set into Weka ARFF format we defined 
a relation consisting of 480 nominal attributes, each corresponding to the binary 
value of a pixel. 
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3.1   Algorithm Selection and Performance Analysis 

The main objective of our experiments is to evaluate the performance of different 
classification algorithms for the speed sign recognition problem. The generated clas-
sifiers are evaluated based on the results from all four data sets. We have selected a 
diverse population of 15 algorithms from different learning categories (e.g., Percep-
tron and Kernel functions, Bayesian learners, Decision trees, Meta-learners, and Rule 
inducers), see Table 1 column one. We used Weka algorithm implementations and 
tried various parameter configurations but observed no significant difference in clas-
sifier performance as compared to the default configuration, except for Multilayer  
Perceptron. We observed that, with 8 neurons in the hidden layer and the learning rate 
set to 0.2 (the default is 0.3) the same recognition performance was achieved, but a 
significant decrease in training time was achieved.  

Table 1. Experiment results for accuracy and AUC 

Algorithm 
Accuracy (% correct)

Avg.
Area under ROC curve  

Avg. Dataset Dataset 
P1 P2 P3 P4   P1 P2 P3 P4   

Multilayer Percep-
tron 

94.75 94.4 94.56 91.36 93.8 1.00 0.94 1.00 0.87 0.95
± 4.78 ± 5.68 ± 5.08 ± 7.24 ± 0.00 ± 0.19 ± 0.01 ± 0.33  

RBF Network 
93.93 93.87 95.96 90.82 93.7 0.99 0.94 0.99 0.95 0.97

± 5.50 ± 6.39 ± 4.90 ± 8.22 ± 0.02 ± 0.16 ± 0.01 ± 0.11  

Ridor 
80.85 79.03 81.08 78.64 79.9 0.87 0.85 0.82 0.67 0.8

± 9.95 ± 9.41 ± 8.31 ± 10.61 ± 0.17 ± 0.18 ± 0.18 ± 0.24  

PART 
82.63 83.62 83.9 80.64 82.7 0.88 0.83 0.79 0.66 0.79

± 9.09 ± 9.63 ± 7.44 ± 10.31 ± 0.18 ± 0.19 ± 0.22 ± 0.30  

NNge 
78.44 75.27 78.57 81.64 78.5 0.75 0.7 0.73 0.68 0.72

± 9.67 ± 11.89 ± 9.30 ± 11.77 ± 0.21 ± 0.20 ± 0.21 ± 0.24  

JRip 
80.13 74.01 78.14 75.00 76.8 0.89 0.81 0.87 0.61 0.80

± 9.02 ± 10.39 ± 9.31 ± 11.73 ± 0.16 ± 0.21 ± 0.19 ± 0.33  

SMO 
97.6 96.73 98.86 95.36 97.1 0.97 0.91 1.00 0.88 0.94

± 3.33 ± 4.15 ± 2.37 ± 5.85 ± 0.10 ± 0.21 ± 0.01 ± 0.32  

J48 
84.27 85.11 89.19 79.55 84.5 0.9 0.82 0.84 0.72 0.82

± 7.98 ± 10.96 ± 6.98 ± 10.53 ± 0.16 ± 0.18 ± 0.21 ± 0.30  

Random Forest 
93.22 92.82 95.28 88.91 92.6 0.98 0.95 0.99 0.91 0.96

± 6.33 ± 6.27 ± 4.72 ± 8.23 ± 0.08 ± 0.13 ± 0.04 ± 0.21  

Bagging 
89.77 87.27 88.76 82.55 87.1 0.99 0.96 0.99 0.85 0.95

± 7.20 ± 7.67 ± 6.94 ± 8.92 ± 0.06 ± 0.10 ± 0.02 ± 0.27  

Dagging 
81.28 80.98 82.89 70.27 78.9 0.99 0.92 0.98 0.79 0.92

± 6.20 ± 6.27 ± 4.81 ± 5.90 ± 0.03 ± 0.15 ± 0.05 ± 0.33  

END 
90.34 90.3 92.22 87.27 90.0 0.99 0.95 0.98 0.86 0.95

± 7.58 ± 8.42 ± 7.05 ± 9.76 ± 0.06 ± 0.13 ± 0.07 ± 0.29  

Random Committee 
89.44 89.10 90.87 85.09 88.6 0.96 0.91 0.95 0.89 0.93

± 6.81 ± 7.78 ± 6.49 ± 8.62 ± 0.08 ± 0.15 ± 0.11 ± 0.22  

Logit Boost 
91.27 93.00 94.12 87.09 91.4 1.00 0.94 1.00 0.85 0.95

± 6.58 ± 6.77 ± 5.43 ± 8.78 ± 0.00 ± 0.18 ± 0.01 ± 0.32  

Naïve Bayes 
97.46 94.54 97.4 93.55 95.7 1.00 0.97 1.00 0.89 0.97

± 3.94 ± 6.59 ± 3.44 ± 6.87 ± 0.00 ± 0.10 ± 0.00 ± 0.28  
Average 83.25 82.00 84.10 79.85 82.3 0.89 0.84 0.87 0.75 0.84
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Multilayer Perceptron is the most widely used [7, 9] algorithm in TSR applications, 
especially for speed sign recognition. Consequently, we used it as the base classifier 
in Weka (with optimized parameters) and all other classifiers (generated with default 
configurations) are evaluated against it. In addition to Multilayer Perceptron, RBF 
Network and Support Vector Machines are also used in a number of related studies, as 
described earlier. Thus, it was natural to include these algorithms in our experiments. 
We performed ten 10-fold cross-validation tests and used the corrected paired t-test 
(confidence 0.05, two-tailed) for all four data sets. We compared the performance 
based on four evaluation metrics; accuracy, the Area under the ROC curve (AUC), 
training time, and testing time.  The experimental results are shown in Table 1. The 
average performance over all data sets is also presented in the Table. With respect to 
accuracy and AUC, we observe that the best performing algorithms are: Multilayer 
Perceptron, RBF Network, SMO (Weka implementation of SVM), Random Forest, 
and Naive Bayes. Now we consider the training and testing time. Besides accuracy, 
the elapsed time is also very important in the performance evaluation of classifiers, 
with respect to the application at hand. An analysis of training and testing times de-
monstrates that, among our best algorithms with respect to accuracy and AUC, Ran-
dom Forest and Naive Bayes are by far the fastest algorithms with regard to both 
training and testing. From the results we can conclude that, aside from good perfor-
mance by the commonly used classifiers for this problem, Naive Bayes and Random 
Forest have achieved quite promising results in terms of accuracy and significantly 
better training and testing times than the other algorithms. We have also analyzed the 
results of the individual preprocessing techniques. For almost all of the 15 algorithms 
and specially the above mentioned five algorithms, P1 and P3 have shown consistently 
a higher accuracy than P2 and P4. We can also observe that both P1 and P3 have better 
AUC values than the other two techniques. 

4   Conclusion and Future Work 

Our proposed size analysis criterion is able to properly differentiate the detected traf-
fic signs from those of under or over segmented signs and other noisy segmentations. 
The criterion is database independent and hence it can be applied to any collection of 
traffic sign images. Due to the real-time nature of TSR applications, a short recogni-
tion time in conjunction with good accuracy is always desirable. This is indeed an 
important trade-off for most real-time recognition systems. The experimental results 
indicate that Naive Bayes and Random Forest are quite accurate and have better train-
ing and testing times than the other studied algorithms. We conclude that our ap-
proach is suitable, at least for the studied database. In addition, we have evaluated 
four preprocessing techniques. Experiments indicate that P1 and P3 are more suitable 
for preprocessing speed signs. Moreover, we have introduced the concept of segmen-
tation quality analysis and proposed a general speed limit value segmentation tech-
nique.  The two preprocessing techniques together with the segmentation algorithm 
provide a good basis for the development of a TSR system using the proposed clas-
sifiers. For future work, we intend to collect a larger database incorporating all types 
of traffic signs. 
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Using CCD Moiré Pattern Analysis to Implement 
Pressure-Sensitive Touch Surfaces 
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Abstract. The Moiré fringe patterns obtained when a CCD camera views a  
repetitive line grating can be exploited to measure small changes to surface dis-
placements. We describe how curved surfaces with line grating patterns can be 
reconstructed by analysing the instantaneous frequency of the extracted 1D 
Moiré waveform. Experimental results show that monotonically increasing dis-
placements of a stretched canvas of less than 1mm can be clearly separated,  
suggesting the possibility of using the proposed Moiré-based vision technique 
to construct accurate pressure-sensitive touch surfaces.  

Keywords: Moiré patterns, Image-based metrology, Surface deformation 
analysis, Human computer interface, Vision-based interface. 

1   Introduction 

Touch surfaces enable computer interaction using natural finger gestures. The trend in 
multi-touch interaction is fast gaining widespread acceptance with products like iPhone 
[1], Microsoft Surface [2], etc. The technologies behind these touch-sensitive surfaces 
include electronic-based [1,3] and vision-based [2,4,5,6,7]. Vision-based touch surfaces 
are relatively pervasive due to the affordability of imaging devices and the improved 
vision algorithms and its computational speed. Such system normally detect finger 
touches using reflection from non-visible infrared light sources [6,7] or shadows [5]. 
However, few systems are able to accurately detect the pressure being asserted by the 
fingers. Some like [6] rely on uncorrelated finger contact time or unreliable increase in 
the diameter of the detected finger contour [7] to infer increasing pressure. Others like 
[4] require special deformable surfaces with embedded color markers.  

This paper explores the possibility of addressing pressure-sensitive touch detection 
by analyzing the changing Moiré patterns that result when a CCD camera is used to 
observe the small local deformations on a deformable interactive surface that is printed 
with fine line grating. Moiré patterns are the results of the interference fringes produced 
by superimposing two or more sets of repetitive gratings. These patterns have been used 
in metrology for tasks such as strain measurements, vibration analysis and the recovery 
of the surface geometry of 3-dimensional objects [8,9,10,11]. Traditionally, Moiré im-
ages are obtained by using a camera to capture the patterns generated by superimposing 
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two alternating opaque-transparent gratings called Ronchi gratings [9] or the resulting 
interaction between two projected light patterns. A simpler approach is to use a cam-
era’s regular CCD cell arrangement as a reference grating. In [12], it was shown that the 
sinusoidal-like Moiré patterns obtained when a camera views a line grating can be easily 
extracted and modeled with the steps shown in Fig. 1c-1f. We extended the work in [12] 
to extract camera-to-surface distances of smooth curved surfaces. We were able to 
measure small local displacements in a deformable patterned surface, which suggest its 
potential for implementing a pressure-sensitive touch surface.  

2   Moiré Patterns 

Moiré patterns in our study are generated by imaging line gratings on a specimen 
surface using a standard CCD camera with regularly arranged CCD cells. The pitch S 
of the line gratings on the surface is reduced to pitch ps′ on the CCD’s image through 
an approximate camera lens geometry shown in Fig. 1a, where the distance d, be-
tween line grating surface and the centre line of the camera’s lens is much larger than 
the camera’s focal length given by F (i.e. d>>F ). 

d

FS
ps ='  (1) 

�  

Fig. 1. (a) The camera geometry relating the line grating’s pitch S to ps′ given in (1). (b) Moiré 
fringe formation when the pitch of the line grating is much larger than the pitch width of the 
CCD cell array.  (c) CCD image of Moiré fringe pattern. (d) Moiré waveform extracted at 
selected 1-D cross-section that is orthogonal to line grating.  (e) Waveform after removing line 
artifacts by sub-sampling every (m=4) pixel. (f) The AM-FM sinusoidal waveform with known 
instantaneous frequency f(n), modeled using the L-STPSA algorithm [13]. 

Fig. 1b shows a common situation where the observed specimen line grating pitch, 
ps′ is some integer factor larger than the pitch width of the regular CCD cell array pr. 
It has been shown in [12] that the generated Moiré pattern pitch pm′ satisfies  
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The factor m, which is the integer multiple of times the specimen line pitch is larger 
than the CCD cell array pitch, plays an important role in removing the line artifacts 
within the Moiré pattern images. As discussed in [12], the clever use of the CCD 
array as a reference grating permits the annoying high-frequency line grating artifacts 
to be removed by simply sub-sampling every other m pixels along the 1D profile (see 
Fig. 1d and 1e). By modeling the Moiré waveform in Fig. 1e as a AM-FM sinusoid 
using the L-STPSA algorithm [13,14], the instantaneous frequency f(n) at any given 
point n, in the Moiré waveform along the 1D profile can be computed. Since f(n) is 
the inverse of the instantaneous Moiré fringe pitch, the distance d(n) (see Fig. 1a) on 
any point n along the 1D profile can be obtained by substituting (1) into (2). 
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For a given system setup, the combination of camera focal length, line grating 
pitch width and CCD cell spacing can be represented by the constants k and b as 
shown in (3). Using a similar setup as shown in Fig. 3a, the system constants k and b 
were obtained through a simple calibration procedure. A flat line-patterned surface 
(printed using a 600 dpi laser printer) was imaged from distances d of 70.0cm to 75.0 
cm at intervals of 0.5cm. A plot of the average Moiré pattern frequency f versus the 
distances d was produced. The linear relationship between these two measures as 
highlighted in (3) was observed and the straight line graph allowed the constants k 
and b to be extracted at values of -11.5 and 76.9 respectively [12]. 

Given the values of k and b, the distance d on any flat surface can be computed as 
long as the instantaneous frequency f of the Moiré waveform is known. This however, 
is not true of surfaces that exhibit local inclination such as a curved surface. The next 
section describes the additional consideration required to compute the distance d ′(n) 
along a 1D profile on a smooth curved line grating surface.    

3   Distance Estimation of Curved Surfaces 

When a horizontal surface is slanted at an angle θ, as shown in Fig. 2a, the pitch S of 
the line gratings viewed by the camera will be shortened to  

θcos' SS =  (4) 

Since a curved 1D profile can be locally approximated by an incline (see Fig. 2b), 
the same relationship in (4) is also applicable for smooth curved line grating surfaces. 
The distance d′ (n)  of a point n on an incline surface to the camera is given by 
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Even with known values of system constants k, b and the instantaneous frequency 
f(n) on point n on the Moiré pattern waveform, it is not possible to compute the cam-
era-to-surface distance on an inclined surface unless angle θ is known. The angle θ 
can be estimated by using geometry on the triangle OAB, where points A and B are 
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immediate pixel neighbors of our point of interest C (see Fig. 2c). If the distances of 
points A and B to the camera are denoted as dA′ and dB′, then from (5) we get 
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Fig. 2. (a) An incline shortens the line gratings pitch S by a factor cos θ. (b) The inclination on 
any point on a smooth curve can be approximated using the inclination produced by its two 
adjacent pixel points. (c) The parameters related to an incline measurements. 

The camera-to-surface distances dA and dB (based on a flat surface) can be obtained 
using the system constants b, k and the instantaneous frequencies of the Moiré wave-
form at f(A) and f(B) respectively. This means we can then compute the local inclina-
tion angle θ at point C using  
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With angle θ, the true camera-to-surface distance at incline point C can be obtained 
by substituting θ into (5). The horizontal inter-pixel length ΔL is obtained with the aid 
of appropriately located ruler placed on the flat imaging platform next to the edge of 
the patterned surface, as shown in Fig. 3a.  

4   Experiments 

Two sets of experiments were carried out. The first was to verify the ability to use the 
proposed Moiré pattern analysis technique described in section 3 to reconstruct a 
smooth curved surface. The second investigated the sensitivity of this technique for 
measuring small displacements on a deformable surface. All images were acquired 
using a Dragon Fly Express monochrome CCD camera from PointGrey Research Inc. 
and a lens with a 25mm focal length. In all the experiments, the distance to the cam-
era was adjusted such that a value of m=4 given in (2) was used. 
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4.1   Curved Surface Reconstruction 

Fig. 3a shows the experimental setup used to test the reconstruction of a smooth 
curved line grating surface. An A4-sized paper printed with 33 lines per inch of equal-
width black and white lines was used as the specimen patterned surface. It was al-
lowed to buckle upwards into a smooth curve with the aid of two stoppers at either 
ends. With the aid of a ruler, surface height measurements were made at regular hori-
zontal intervals at the edge of the curved paper.  
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Fig. 3. (a) The experiment setup. (b) Estimated curve profile plotted against actual curve (inter-
polated from physically measured data). (c) The 3D curved surface plot obtained by combining 
consecutively reconstructed 1D profiles. Uniform bending of the paper resulted in a smooth 3D 
curve surface unlike the single-point surface depression example shown in Fig. 4a. 

Based on the local incline approximation approach of smooth curved surface de-
scribe in section 3, the incline-compensated surface-to-camera distances d′(n) given in 
(5) was computed from the estimated instantaneous frequency f(n) of the Moiré wave-
form along a 1-D cross section (see Fig. 3a), and the earlier computed systems con-
stants b and k given in (3). The result in Fig. 3b shows that the extracted smooth curve 
is reasonably close to that actual measured curve, given the limited accuracy of the 
crude ruler-based measurement technique employed. Fig. 3c shows the smooth 3D 
curved surface reconstructed by stitching together the consecutive 1-D cross sections 
taken orthogonal to the line grating. 
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In terms of absolute measurements, the highest point on the smooth curve was 
measured to be at 69.0cm from the camera and the estimated maximum height com-
puted was 68.9cm, which was an error of 1mm or about 0.16% of the absolute height. 
The maximum depth of bend over the observed area was about 20mm. Based on this 
relative measure, the estimate error is higher at about 5% of maximum depth varia-
tion. With our proposed use of this technique to estimate pressure-induced small dis-
placements on deformable surfaces, the absolute estimation of the camera-to-surface 
distance is not as critical as compared to the sensitivity of measuring small displace-
ments on the surface. This issue is addressed in the next experiment. 

4.2   Sensitivity to Small Displacements Due to Pressure on a Deformable Surface 

The experimental setup shown in Fig. 4b was used to create very small mm-scaled 
displacements on a stretched canvas by applying horizontal pressure via a blunt-
headed plunger. The deforming patterned surface of 18 lines per inch line grating was 
imaged from about 1.5 metres away (giving a m value of 4).  
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Fig. 4. (a) Moiré pattern image (pseudo-colored for clarity) with line artifacts removed by sub-
sampling every other m=4 samples. The 1D cross-section analysed is shown in a red dashed 
line. (b) Setup used to investigate sensitivity to small displacements on a stretched canvas.  

Fig. 5a shows plots of the extracted instantaneous frequencies, f(n) along the 1D 
Moiré waveform at the cross-section line shown in Fig. 4a. The results suggest that 
small monotonic displacements of <1mm can be clearly separated by the proposed 
Moiré analysis technique using images captured from a distance of about >1.5m 
away. With a large imaging distance and small surface deformations, like in this case, 
the measure given by d (n) in (3) would be a reasonable approximate of the camera-to-
surface distance. If similar calibration procedures as describe in section 2 were carried 
out to determine the new system constants b and k in (3), the measured instantaneous 
frequency f(n) in Fig. 5a can be used to determine the exact displacement of the can-
vas. However, if the task is merely to detect a measure proportional to the pressure 
applied on the canvas, then the frequency measure f(n) would suffice. This is assum-
ing the useful working range of the finger pressure to be detected by the proposed 
vision-based interface displaces the canvas in a proportional manner.  
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Fig. 5. (a) The extracted instantaneous frequencies along the 1D Moiré waveform for different 
plunger displacement positions. (b) A possible implementation of a front projection pressure-
sensitive multi-touch display surface using the proposed Moiré pattern-based technique for 
touch pressure measurement. 

5   Conclusions and Future Work 

We proposed a Moiré pattern-based technique for surface-to-camera distance meas-
urement. It uses a CCD camera to capture a smooth curved surface printed with regu-
lar-pitched parallel lines that can be easily generated with a 600dpi laser printer.  
Experimental results show that smooth 3D curved surfaces can be reconstructed with 
the proposed technique. More importantly, small displacement quantum of <1mm 
resulting from finger-like pressure applied to a stretched patterned canvas can be 
readily extracted and distinguished. This suggests the proposed technique would be a 
viable vision-based solution to implement pressure-sensitive touch surfaces.    

We are currently in the process of developing a real-time pressure-sensitive touch 
display surface. The general idea for this interactive display is to have a stretched 
opaque vinyl canvas act as the interactive display on one side (with front projection). 
And on the other side that is printed with line grating, a vision-based system for pres-
sure-sensitive multi-touch detection. Unfortunately, one of the side effects of employ-
ing frontal projection is that the projected imagery will annoyingly appear on the 
user’s hands and this will also result in shadows on the display surface. A more com-
plicated strategy would be to use an occlusion-free back-projection display that em-
ploys the imperceptible pattern projection technique of Cotting et al. [15] to time-slice 
the line grating pattern into pre-allocated synchronized temporal slots of the video 
frames. Unlike [15], the Moiré-based surface reconstruction technique proposed here 
is faster as there is no need to project a sequence of Gray-coded structured light pat-
tern during surface depth reconstruction.  
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Abstract. We deal with the problem of landmine field detection using
low-resolution infrared (IR) image sequences measured from airborne or
vehicle-borne passive IR cameras. The proposed scheme contains two
parts: a) employ a multi-scale detector, i.e., a special type of isotropic
bandpass filters, to detect landmine candidates in each frame; b) en-
hance landmine detection through seeking maximum consensus of cor-
responding landmine candidates over image frames. Experiments were
conducted on several IR image sequences measured from airborne and
vehicle-borne cameras, where some results are included. As shown in our
experiments, the landmine signatures have been significantly enhanced
using the proposed scheme, and automatic detection results are reason-
ably good. These methods can therefore be applied to assisting humani-
tarian demining work for landmine field detection.

Keywords: Landmine field detection, feature point, SIFT descriptor,
bandpass filter, consensus of landmine candidates.

1 Introduction

Humanitarian demining is concerned with the detection and subsequent removal
of mines. The process consists of identifying mine fields and reducing the sus-
pected area by discriminating individual landmine-like object from clutter (e.g.,
bushes, rocks, petrified wood and animal burrows) in the suspected regions, and
of the actual landmine clearance. Among the technologies for landmine detec-
tion (e.g. using metal detector, ground penetrating radar, chemical, and acoustic
and optical sensors [1,2,3,4,5], the methods based on infrared (IR) sensors have
drawn many interests [6,7,8,9].

The methods based on IR images utilize the property that the soil temper-
ature on the ground above the buried objects (including landmines) are often
different from that of unperturbed areas. For IR images of mine fields measured
from airborne or vehicle-borne sensors, landmines are indicated by spatial differ-
ence from their surroundings due to digging, or thermal and material signatures.
However, the background in images usually consists of various types of noise and
clutter, e.g., thermal noise, sand, gravel road and vegetation, thus making the de-
tection difficult. It was shown in [8] that IR landmine signatures in close-distance
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measured IR images over time can be modeled by a 3D Gaussian shaped func-
tion. Although landmines in IR images measured from close-distances to ground
surfaces are significantly larger as compared with those measured from airborne,
the principle of using thermal contrast differences to detect landmines is sim-
ilar. [6] has shown that using a special type of multiscale isotropic bandpass
filters in [7], or a multiscale matched filter whose profile is a spatially reversed
replica of landmine patterns, is effective for detecting landmine candidates from
airborne measured IR images. It has also shown that the profile from the filter
(or, the landmine pattern) is consistent to the IR contrast model for landmines
measured in close distance. Employing such a multiscale 2D isotropic bandpass
filter, involving an automatic scale level selection, a post-processing of peak pick-
ing and inter-scale peak position tracing, has demonstrated its promising as a
semi-automatic tool for mine field detection [6]. However, this method is based
on detection using a single image frame. A common characteristic of landmines
in low resolution images is that they all appear to be point-like features. False
alarms and missed detections using image based detection are likely high. In or-
der to remove outliers and improve the detection, jointly using multiple frames
or temporal consistency is desirable for enhancing the landmine detection. This
paper extends the previous method which uses spatial-frequency differences for
detecting landmine candidates and locating landmine fields in low-resolution
IR images, by adding an extra step based on temporal consistency of detected
candidates over several frames. Hence, the proposed scheme is formulated as
detecting landmine candidates from each frame followed by utilizing their tem-
poral consistency constrained by a motion model to reducing false alarms and
improve detections. The latter includes using landmine candidates that agree
with the same motion model to reduce the outliers and use the frequency of
coincident appearances of detected candidates for determining the inliers. The
proposed scheme has been examined on IR landmine images measured from air-
borne and vehicle-borne sensors. Our experiments have shown that using the
proposed scheme for landmine detection over image frames landmine signatures
have been significantly enhanced, and reasonably good results are obtained from
the automatic detection.

The remainder of the paper is organized as follows. In Section 2, a general de-
scription of the proposed method is presented. Section 3 provides the detection
of landmine candidates in a single image. In Section 4, the enhanced landmine
detection from image sequences is described. Section 5 demonstrates the perfor-
mance of the proposed method with some experimental results included.

2 System Description

The block diagram of the proposed system is shown in Fig. 1. First, the land-
mine candidates are detected using a multi-scale 2D detector (or, a multiscale
2D matched filter) in each frame (block 1). Landmine candidates may not be
reliable due to the changes of landmine and environmental temperature. A 2nd
processing step is followed based on the temporal consistency of corresponding
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Isotropic bandpass filter for 
landmine candidate detection 

in a single frame

Find consensus landmine 
correspondences over 

frames

Remove 
outlies 

Enhanced 
Landmine 
cancidates

( , , )x y tI

Fig. 1. Block diagram of the proposed system. From left to right: block 1 to 3.

landmine candidates over frames, agreeing with the same model of changes. This
is realized by associating landmine candidates over frames using SIFT (Speeded
Up Robust Features) descriptors (block 2) and then seeking the maximum con-
sensus of corresponding landmine candidates over frames (block 3). In this way,
an enhanced landmine detector is obtained that reduces false alarm and en-
hances the performance of the detector. The details of the proposed method are
described in the subsequent sections.

3 Detect Landmine Candidates in a Single Image

Landmines are shown as point-like patterns in airborne or vehicle-borne IR im-
ages. To detect landmine candidates, a multi-scale anisotropic 2D bandpass fil-
ter in [6] is adopted. This feature point detector is similar to SIFT [11]. The
multi-scale detector is formed by repetitively cascading (L times) of the same
single-scale detector followed by thresholding and peak picking. Although many
different types of bandpass filters satisfy the required specifications [7], a straight-
forward way to formulate a bandpass filter in a single-scale detector is to use
the difference of two 2D isotropic lowpass filters, being the same type but with
different bandwidths [10]:

gk(x, y) = g
(1)
0 (x, y) − g

(2)
0 (x, y) (1)

where g
(1)
0 (x, y) and g

(2)
0 (x, y) are 2D lowpass filter kernels with a wider and

narrower frequency bandwidth, respectively, the suffix of g indicates the radial
frequency fk of the filter, and g

(i)
0 is a lowpass filter with an isotropic 2D Gaussian

kernel, g
(i)
0 (x, y) = 1

2πσ2
i
e

−(x2+y2)
2σ2

i , i = 1, 2, where σ2 = scale · σ1, scale > 1.0.
The 2D bandpass filter in (1) has an effective finite support despite its infinite
support. To reduce computation, the kernel is truncated after the absolute value
of normalized kernel envelope becomes insignificant (i.e. below a small value).
It is worth mentioning that the parameter scale should be carefully selected so
that the 2D filter magnitude spectrum attenuates all signal components at zero
frequency (i.e., removes all d.c. elements). Failure to do so would lead to high
false alarm in the detection. Empirically, this requirement can be monitored by
observing the 1D cross-section of the 2D magnitude response.

In the multi-scale detector, detecting landmine candidates is done as follows:
starting from the finest scale (level-1), if landmine candidates in the output image
are not prominent against their surroundings, coarser scales are added by repeti-
tively cascading one additional single-scale detector from the previous finer scale,
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until the ’best’ scale level Lmax, or a pre-determined maximum level Loptimum

is reached. Since significant landmine candidates become more pronounced in a
coarse scale while most spurious noise is removed, it is easier to detect candi-
dates from local peaks at a coarser level. Once local peaks in the coarsest level
are detected, locations of mine candidates are determined by inter-scale peak
position tracing where better localizations are found in finer scales.

4 Enhanced Detection by Seeking Temporal Consensus

The landmine candidates detected in Section 3 may contain spurious ones. The
detection can be improved by considering the temporal consistency of the can-
didates over image frames under a given transformation model. This is done by
first finding correspondences among detected candidates in consecutive frames
using the point descriptors similar to SIFT and then applying RANSAC (RAN-
dom SAmple Consensus) to find a subset of consensus candidates that best fit
for a given model.

For each landmine candidate point obtained from Section 3, a feature de-
scriptor (or, feature vector) is added. Although there are many different types of
feature descriptors, we choose the SIFT keypoint descriptor in our application.
Each SIFT feature vector (or keypoint descriptor) is of size 128. It is formed
based on gradient magnitudes in orientation histograms for a 16x16 region cen-
tered at the corresponding keypoint [11]. The correspondences between the de-
tected landmine candidates in two image frames are found by using the detected
landmine candidates together with their features in the respective frames, where
images may undergo a given transformation (e.g. affine model in this paper).

To find maximum consensus of landmine point correspondences between
frames, RANSAC ([12]) is used to estimate parameters of a mathematical model
from a set of observed data points containing outliers. Lately, RANSAC has
been increasingly used ([13,14]). A basic assumption is that data consists of in-
liers and outliers. The distribution of inliers can be described by parameters,
while outliers do not fit the model. The outliers are due to measurement noise
or incorrect hypotheses. RANSAC also assumes that, given a small set of inliers,
it may estimate the parameters of a model that optimally explains or fits the
hypothetical inliers. For a given fitting problem and the model, RANSAC is per-
formed as follows: 1) Randomly choose the minimum number of points needed
to estimate the model. 2) Estimate the model parameters using these points.
3) Find the number of data points agreeing with the estimated model (within
a pre-specified tolerance error). 4) Repeat Steps 1) to 3) for a predetermined
number of times. 5) Choose the largest set of consensus points, and re-estimate
the model parameters.

The joint scheme for removing outliers in detected landmine candidates can
be described as follows. First, multi-scale landmine candidates are detected, and
their feature descriptors are extracted from their surroundings in each image
frame (Section 3). For each frame (e.g. frame t), a data set St = {St, ft} is
formed, where St is a subset containing landmine candidate positions, and ft is
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a subset containing feature vectors. Using data sets from two frames, point cor-
respondences of landmine candidates are established between these two frames
under a given affine transformation. Next, RANSAC is employed to the subset
St at frame t, and the subsets S = {St−L, · · · , St+L} from the nearby frames
under a selected affine model with 4 unknown parameters,[

x
y

]
= β

[
cos θ − sin θ
sin θ cos θ

] [
x̃
ỹ

]
+

[
dx
dy

]
(2)

where (x, y) and (x̃, ỹ) are point correspondences from 2 different frames, θ is the
rotation angle, β is the scaling factor, and (dx, dy) are the translation between
the 2 frames. The parameters can be estimated by the matrix inversion (for
k = 2), or the least squares solution (for k > 2) of (3),⎡⎢⎢⎢⎢⎢⎣

x̃1 −ỹ1 1 0
ỹ1 x̃1 0 1
...

...
x̃k −ỹk 1 0
ỹk x̃k 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
β cos θ
β sin θ
dx
dy

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
x1
y1
...
xk

yk

⎤⎥⎥⎥⎥⎥⎦ (3)

where {(x1, y1)}, · · · , (xk, yk)} and {(x̃1, ỹ1), · · · , (x̃k, ỹk)} are subsets of k cor-
respondence points selected from the 2 frames. Choosing the affine model in
(2) is based on the assumption that images are measured straight downward.
Under this model, we first use RANSAC to find the maximum consensus land-
mine candidates between the current frame t and one neighbouring frame t′,
t′ = t − L, · · · , t − 1, t + 1, · · · , t + L. The total number for each landmine
candidate being selected by RANSAC in 2L + 1 frames is then accumulated.
Those consensus candidate points, whose accumulated numbers exceed a given
threshold, are then chosen as the refined landmine candidates. The remain-
ing candidates are removed as being clutter points in order to reduce the false
alarm.

5 Experiments and Results

Datasets: For test set (a), airborne IR images were captured by IR cameras on
a helicopter at approximately 180m above the ground surface when scanning one
of the landmine test site in Eksjo, Sweden. Each image contained more than a
dozen surface-laid anti-tank mines between the two columns of man-made land-
marks (i.e., the green panel, the astro turf and the red corn marks). For test set
(b), vehicle-borne IR image sequences were measured by IR cameras mounted at
10m height above the ground surface in the test site of FOI laboratory during a
24-hour period. The desired target feature points correspond to surface-laid and
shallowly-buried anti-personnel and anti-tank mines.

Results: For test set (a), the multi-scale detector was applied to airborne IR
images, where the desired targets correspond to man-made landmarks. These
landmarks were set for locating regions of interest. Fig. 2 shows some resulting
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(a) frame 115 (b) frame 118 (c) frame 123

(d) frame 124 (e) final result in panorama image

Fig. 2. Row-1 in (a)-(d): 4 original images; Row-2 in (a)-(d): detected candidates of
landmarks and landmines using the multi-scale detector marked by black circles plus
white rectangles. Parameters used: σ=0.9, scale = 2.0, total scale levels L = 4, and
threshold = 0.24. The enhanced scheme results in the selected maximum consensus
candidates of landmarks and landmines marked by white rectangles. A candidate is
selected as consensus point if the candidate appears in more than 45% of the scenes
containing that candidate. (e): the final results based on detection over image frames,
all detected landmine and landmark candidates are marked by white rectangles in a
panorama image (through image registration of the 4 frames).

frames extracted from the airborne IR sequence. The results show that though
the detector is effective in detecting man-made landmark candidates (marked
by white rectangles and black circles) some clutter points are also detected. Fur-
ther, it is noticed that almost none of the anti-tank mines are detected mainly
due to too low spatial resolution of landmines using the given IR cameras at the
measurement altitude. Further, as can be seen from the panorama image, after
applying the enhanced detection over image frames, landmark and landmine can-
didates are chosen from the maximum consensus correspondences, which further
improves the detection results (marked by white rectangles only).

For test set (b), the multi-scale detector was first applied to vehicle borne
IR images. Fig. 3 shows some results from 10 image frames extracted from
the vehicle-borne IR sequence. The contrast of landmines and background is
quite small in these frames. The cross digging signs are weakly visible, and the
signatures of landmines are very weak. from the results one observes that the
multi-scale detector has successfully picked up some of the landmines, however,
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(a) frame 989 (b) frame 990 (c) frame 991

(d) frame 992 (e) frame 993 (f) frame 994

(g) frame 995 (h) frame 996 (i) frame 997

(j) frame 998 (k) final result

Fig. 3. Row-1 in (a)-(j): Ten original IR image frames. Row-2 in (a)-(j): detected
landmine candidates using the multiscale detector marked by black circles plus white
rectangles. Parameters used: σ=1.4, scale = 2.0, total scale levels L = 4, and
threshold = 0.15. The enhanced scheme results in the selected maximum consensus
candidates of landmarks and landmines marked by white rectangles. A candidate is
selected as a consensus point if it appears in ≥ 80% of the scenes under consideration.
(k) The final candidates based on consensus information over the 10 frames.
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some clutter points are also included as landmine candidates probably due to
their similar pattern to landmines. Observing the results in Fig. 3 show that
the multi-scale detector in this case has yielded reasonable good results in de-
tecting anti-personnel mines on the top row (with intensity difference), and also
located several buried anti-tank mines on the bottom row (with cross digging
signs). However, some clutter points are also included. It is observed that after
the enhanced detection using maximum consensus landmine candidates through
frames, the final results have been further improved (indicated by white rectan-
gles).

6 Conclusions

We propose an enhanced landmine candidate detection method for airborne
and vehicle-borne measured IR images. The method utilizes the consistency
of the landmine candidates detected through image frames to further reduce
false alarms and improve detection rate. This is obtained by matching feature
descriptor and seeking the maximum number of consensus correspondences over
image frames. Experiments has been conducted on two IR landmine datasets.
And experimental results show that the proposed method has improved the
performance of image based landmine detection.
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In the original publication Figure 5c was replaced by a copy of figure 5b by mistake. 
The correct figure is shown here.  
 

(a) (b) (c)

Fig. 5. Error during iteration for the Tsukuba scene: Adaptive weights local support (AW) com-
pared with fixed local support (fixed); (a) error near discontinuities; (b) error for all pixels; (c) er-
ror in true non-occluded regions. For the definition of different regions see [8].
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Dosil, Raquel 261
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