
Model-Driven Theme/UML

Andrew Carton, Cormac Driver, Andrew Jackson, and Siobhán Clarke

Distributed Systems Group,
Department of Computer Science and Statistics,

Trinity College Dublin, Ireland
{firstname.lastname}@cs.tcd.ie

Abstract. Theme/UML is an existing approach to aspect-oriented mod-
elling that supports the modularisation and composition of concerns,
including crosscutting ones, in design. To date, its lack of integration
with model-driven engineering (MDE) techniques has limited its ben-
efits across the development lifecycle. Here, we describe our work on
facilitating the use of Theme/UML as part of an MDE process. We have
developed a transformation tool that adopts model-driven architecture
(MDA) standards. It defines a concern composition mechanism, imple-
mented as a model transformation, to support the enhanced modularisa-
tion features of Theme/UML. We evaluate our approach by applying it
to the development of mobile, context-aware applications-an application
area characterised by many non-functional requirements that manifest
themselves as crosscutting concerns.

1 Introduction

Aspect-oriented software development (AOSD) extends the decomposition and
composition mechanisms of existing software development paradigms in order to
more effectively modularise interdependent concerns [5]. Theme/UML is part of
the broader Theme approach to aspect-oriented analysis and design [1], extend-
ing standard UML to explicitly support both the modularisation and composi-
tion of concerns in design.

We recently conducted an investigation into the application of Theme/UML
to the design of mobile, context-aware applications, which motivated much of the
work described in this paper. Mobile, context-aware computing is a computing
paradigm in which applications can discover and take advantage of contextual
information such as user location, time of day, nearby people/computing devices
and user activity [26]. Such applications can run on a range of diverse comput-
ing platforms and in multiple deployment environments, from personal digital
assistants and mobile phones running Java, to small embedded wearable devices
supporting C. In specifying applications of this nature, software developers must
consider non-functional mobility and context-awareness concerns that negatively
impact software complexity and therefore make the use of Theme/UML appro-
priate. It emerged from our investigation that although Theme/UML can aid
the modularisation of mobility and context-awareness concerns, the prevalence

S. Katz et al. (Eds.): Transactions on AOSD VI, LNCS 5560, pp. 238–266, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Model-Driven Theme/UML 239

of multiple target environments and the lack of support for automated model-
to-code transformations restricted the contribution our designs made towards
producing widely deployable solutions. This finding motivated extensions (with
supporting tools) to the Theme/UML approach that reduce the effort required
to progress from a single system model to multiple deployable applications de-
rived from this model. A model-driven software engineering process was adopted
to support the automatic generation of platform-specific models and code from
a generic model, thereby addressing platform heterogeneity.

Model-driven engineering (MDE) is an approach to software development that
emphasises the use of models as primary engineering artefacts. It addresses plat-
form heterogeneity by abstracting platform-independent models and providing
means to automatically transform these models to one or more specific target
platforms. The model-driven approach, through architectural separation of con-
cerns, promotes portability, interoperability and reusability [21].

In this paper, we present our work on integrating Theme/UML with an MDE
process. We have developed a tool that supports the specification of platform-
independent models with Theme/UML and subsequent automatic transforma-
tions to platform-specific models and code. This tool is compliant with the
model-driven architecture (MDA) standards defined by the Object Manage-
ment Group (OMG) [10], while retaining the general purpose and intention
of the original Theme/UML semantics. We have defined an MDA process
with a composition phase implemented as a model transformation, allowing
developers to avail of the enhanced modularisation features in Theme/UML.
Aspect-oriented platform-independent models, specified in Theme/UML, are au-
tomatically transformed to object-oriented platform-specific models and code,
giving the developer powerful decomposition and composition capabilities at de-
sign time without tying them to an aspect-oriented platform. To demonstrate our
approach, we implemented transformations to two mobile environments, J2ME
and .NET CF. We conducted a case study-based evaluation by applying the tool
to the implementation of a mobile, context-aware application with a number of
non-functional requirements that manifest themselves as crosscutting concerns.

The remainder of this paper is as follows. Section 2 describes the model-driven
Theme/UML tool from an implementation perspective, while Sect. 3 discusses
the application development process it facilitates. Section 4 presents a case study
of our approach as applied to the development of a mobile, context-aware ap-
plication with crosscutting requirements. Section 5 discusses related work while
Sect. 6 provides a summary of this paper and a brief overview of our continuation
of this work.

2 Model-Driven Theme/UML: Implementation

In this section, we present the implementation of the model-driven Theme/UML
tool. We first outline our initial design decisions and then describe the imple-
mentation phase. The section concludes with a discussion of the challenges and
difficulties encountered.

240 A. Carton et al.

2.1 Initial Design Decisions

Our initial design decisions concerned how best to integrate and implement
Theme/UML with current MDA guidelines, technologies and tools. Theme/UML
is defined as a meta-object facility (MOF)-based extension of the UML 1.3 beta
R7 metamodel [11]. This version of the UML originated before the OMG up-
dated their standards to conform to the MDA vision [22], currently at version
2.1.1. As such, this definition was not compatible with the current standards
and conventions, and consequently hindered our objective to offer Theme/UML
as an MDA solution. In order to achieve this objective, we investigated three
strategies.

The first strategy involves extending the UML 2.1 metamodel. This is a heavy-
weight solution that requires augmentation of the appropriate metaclasses and
metarelationships [17] to support the Theme/UML extensions. However, porting
Theme/UML to UML 2.1 proved prohibitively challenging, primarily because of
the significant dissimilarity between the two versions of the UML metamod-
els. Furthermore, invasive metamodel changes to the UML preclude the use of
standard UML tool support.

Next, we investigated the use of a marking1 UML profile to support the ex-
pression of a composition specification, while using UML Package Merge to re-
alise Theme/UML’s composition semantics. As a UML Profile is a lightweight
extension mechanism supported both at the modelling level and by the UML
compliance levels2, any compliant UML graphical tool would be adequate. The
UML Package Merge is part of the UML metamodel that allows one package
to be merged with another, accommodating the interoperability of tools by al-
lowing a higher level of compliance to be merged with a lower level one. In
Theme/UML, a theme is defined as an extension of a package; therefore UML
Package Merge could potentially have been used to define Theme/UML’s com-
position semantics by redefining the UML Package Merge at the metamodel level
[13]. However, heavyweight metamodel extensions had been ruled out as imprac-
tical due to lack of tool support. Investigating Package Merge as a foundation for
defining Theme/UML’s composition semantics proved to be unsuccessful at the
modelling level also, as it lacks the ability to support additional types [30]. Fur-
ther evidence suggested that the Package Merge is not suitable for meta-model
builders and the definition of transformations [29].

The third strategy, similar to the second, involved the definition of a marking
UML Profile. The process involves marking a model to indicate the composi-
tion specification and then mapping this specification to an instance of a new
composition metamodel. A composition metamodel defined in MOF can be used
to indicate the structure and behaviour of Theme/UML’s composition seman-
tics. We decided that this strategy was more favourable than the others for two
1 Marking is a technique that allows a set of elements in a UML model to be identified

for transformation in a non-invasive way [19].
2 UML is stratified into a number of horizontal layers of increasing capabilities called

compliance levels. These are points at which a tool can claim compliance to the
standard.

Model-Driven Theme/UML 241

reasons. The first advantage is gained from the distinct separation of the graph-
ical extensions in the UML and the definition of the composition semantics. The
composition semantics can evolve independently from the graphical extensions
by extending the composition metamodel. Likewise, if more expression is needed
in the marking, only the marking profile and the mapping to the composition
metamodel need to change. The second advantage relates to the difficulties of
using UML Package Merge in defining the composition semantics, in which their
structure and behaviour are expressed entirely in textual form in the UML stan-
dard. The use of a composition metamodel, in our opinion, better captures and
illustrates these semantics in a more formal manner.

Apart from deciding how best to integrate Theme/UML with the MDA pro-
cess, we had to decide on which, if any, third party tools to use. Given that
we were working with a standard modelling language, we adopted a standard
UML editor called MagicDraw3. This tool exports models in Eclipse Modelling
Framework XMI format, a format commonly supported by MDA tools. For code
generation, we adopted the openArchitectureWare (oAW)4 model-driven genera-
tor framework, which aids the production of source code from XMI. The decision
to adopt only standard tools and formats means that developers are free to use
one of the many UML editors or source code generators that support XMI.

2.2 Implementation

The design process is separated into three distinct phases that relate to the activ-
ity of the designer during that phase-the modelling phase, the composition phase
and the transformation phase. Figure 1 illustrates the mapping specifications
and definitions that enclose each phase with a description of their implementing
technologies parenthesised beneath each.

Modelling Phase. Designers use Theme/UML (see Appendix A for more de-
tails) during the modelling phase to modularise application concerns. Two re-
quirements had to be met in order to accomplish the implementation of our
MDA strategy at this phase.

1. Theme/UML’s composition semantics must be defined in the form of a mark-
ing profile.

2. A graphical UML tool is required that supports both the definition of a UML
profile and the standard UML features that Theme/UML requires (i.e. Class
and Interaction Diagrams).

The first requirement motivated the definition of a Theme/UML Marking Pro-
file, illustrated in Fig. 2, that extends UML 2.1 and supports the designer
in creating a composition specification. In this case, the marks guide the de-
signer in creating a composition specification by decorating the UML elements

3 MagicDraw 12.5, http://www.magicdraw.com
4 openArchitectureWare, http://www.openarchitectureware.org

http://www.magicdraw.com
http://www.openarchitectureware.org

242 A. Carton et al.

Fig. 1. Model-Driven Theme/UML Mappings and Definitions

Fig. 2. Theme/UML Marking Profile

Model-Driven Theme/UML 243

with stereotypes and tagged values from the Theme/UML Marking Profile. We
use this lightweight extension mechanism to support extension of Theme/UML
without requiring invasive changes at the UML metamodel level. There are five
stereotypes indicated in the Theme/UML Marking Profile. A theme stereotype
allows a UML Package to be marked to indicate that it may be used in a com-
position relationship. If the theme is to be designed as an aspect, then the
tagged definition template indicates the string that represents the template
parameters that trigger crosscutting behaviour. A merge stereotype is placed
on a Dependency to indicate the themes involved in a merge composition re-
lationship. The tagged definitions of this stereotype (themeName, matchType,
precedences, explicitResolve and defaultResolve) can be applied on the
stereotype to indicate the properties of the merge. The override stereotype can
be placed on a Dependency and indicates an override composition relationship,
while the tagged definition delete represents the elements to be deleted. A bind
stereotype is applied to a Dependency and is constrained as a binary dependency
between an aspect and base theme. The tagged definition binding represents
the elements that instantiate the templates of the aspect theme. Finally, an
explicit stereotype allows explicit matching of concepts in a composition rela-
tionship and the tagged definition mergedName indicates the composed value.

Magicdraw was chosen to meet our second requirement for three reasons. First,
it supports UML 2.1 modelling and therefore supports the implementation of a
UML Profile definition. Second, it exports to the Eclipse Modelling Framework5

(EMF) XML Metadata Interchange (XMI), which is compatible with transfor-
mations at the later stages of the MDA process. Third, it supports both class
and sequence UML diagrams, which is a necessity for Theme/UML.

After completing a design in Theme/UML, the tool exports two files-the
Theme/UML Marking Profile File and the UML 2 Diagram File. Both files
are serialised with the EMF XMI.

Composition Phase. The composition phase allows the designer to auto-
matically compose the model according to the composition specification that
was created during the modelling phase. This phase is implemented using two
transformations. The first transformation takes the two files from the output of
the Modelling Phase and maps them to create a composition model that is an
instance of the composition metamodel. The second transformation takes this
composition model and executes it to produce an EMF XMI file that holds the
object-oriented PIM. This horizontal transformation, as illustrated in the middle
of Fig. 1, is termed a composition.

Mapping. The first transformation is defined as a mapping from the
Theme/UML Marking Profile (c.f. Fig. 2) to the Composition Metamodel
(c.f. Fig. 3), as illustrated in Fig. 1. The mapping specification uses the UML
elements decorated with marks to transform them into a composition model.
This is achieved in two steps. In the first step, an associated element in the
ComposableElement hierarchy (c.f. Fig. 3) is created that corresponds to the
5 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

244 A. Carton et al.

Fig. 3. Theme/UML Composition Metamodel

UML element being mapped. For example, a UML Package with a theme stereo-
type applied in the UML Design Model specifies the creation of a Theme element
in the composition model. In the second step, a detailed composition specifica-
tion is created in the composition model that maps each composition relationship
and its properties in the UML Design Model to their equivalent in the compo-
sition metamodel. For example, a UML Dependency with a bind stereotype in
the UML Design Model specifies the creation of an AspectThemeMerge in the
composition model, with a binding tagged value on that stereotype, resulting
in the creation of its respective ReplacementSet and ReplacementCouples as
containing properties for that integration type.

As a result of using strings as tagged values, the mapping implementation heav-
ily relies on parsing techniques and the use of the Object Constraint Language
(OCL) as a means to extract and query elements in the UML model, respectively.

Model-Driven Theme/UML 245

In particular, OCL proved especially useful in supporting Theme/UML’s pointcut
selection mechanism.

Composition. Figure 3 illustrates the metamodel used to describe the struc-
ture and behaviour of Theme/UML’s composition semantics6. Each element
that can be involved in a composition is defined by a ComposableElement. A
ComposableElement implements a Matchable element that abstracts the notion
of a matching criterion. This matching criterion is specific to each element and
is implemented in a manner appropriate to the element being matched. For ex-
ample, a UML Operation is matched to the name of the operation, the types of
the parameters and the type of the return value. An Integration is an abstract
metaclass that describes the way in which themes are to be integrated. The three
integration strategies that Theme/UML defines are ThemeMerge, ThemeOverride
and AspectThemeMerge. Each have their additional metaclasses and metarela-
tionships that define how the integration is supported and behaves.

A ThemeMerge integration describes how base themes are to be composed. This
necessitates a definition of how overlapping specifications are resolved through
the Reconciliation hierarchy. An ExplicitReconciliation allows a designer
to indicate an explicit preference in the composed theme if elements in a merge
match, using one or more ExplicitValues. An ExplicitValue indicates the
specification of a single matching element, referencing the construct property
of the element and the value of that element upon composition. Likewise, a
DefaultReconciliation allows a designer to specify the default value for ele-
ments of a particular type if a conflict arises between elements of that type in
the composition. The reconciliation can have one or more DefaultValues. A
DefaultValue indicates the specification of a single matching element of a par-
ticular type and the value of that type upon reconciliation. The final reconcilia-
tion strategy defined by Theme/UML is precedence. A precedence reconciliation
specifies precedence on a composable element when a match occurs in a merge.
A precedence strategy is integrated into an attribute of a ComposableElement
rather than having its own metaclass.

The second integration strategy defined by Theme/UML, ThemeOverride,
describes how one theme’s specification is overridden by that of another theme.
This metaclass can contain a set of DeleteElements which indicate the elements
that get deleted upon the override.

The third integration strategy, AspectThemeMerge, specifies how an aspect
theme is composed with base themes. Each AspectThemeMerge has a number
of ReplacementSets equivalent to the number of sequence diagrams in each
aspect theme that it represents. Each ReplacementSet must have one trigger-
ing ReplacementCouple and can have many sequenced ReplacementCouples. A
ReplacementCouple references both a placeholder ComposableOperation and
its replacement ComposableOperation.

The composition metamodel was realised in Ecore and implemented using
EMF libraries. Ecore is the EMF’s meta metamodel and is synonymous with

6 Due to space limitations, Fig. 3 only illustrates a subset of the composable
elements.

246 A. Carton et al.

MOF, with some slight variations. The EMF implements both the UML 2 stan-
dard and the OCL standard with Ecore in Java and provides a supporting library
called UML2. The EMF also defines its own XMI schema that allows libraries
to read and write any EMF-based model.

While the composition metamodel defines the structure and behaviour of
Theme/UML’s composition semantics, a mapping specification defines how these
semantics are executed. In our approach, we implemented a mapping specification
that targets an object-oriented PIM. In this case, all the integration strategies are
executed. However, if a transformation to an AO PIM is desired, the metamodel is
extensible enough to support the definition of a mapping specification that only
executes some of the integration strategies (e.g. targeting an asymmetric AOP
platform would require only the overlapping specifications to be resolved).

Transformation Phase. The output from the composition phase is an object-
oriented PIM that can be transformed into a platform-specific model. Rather
than go straight from a PIM to code, we made the decision to go to an interme-
diate PSM. The reason for this is that the proposed approach is elaboration-
oriented, meaning the PIM is not computationally complete and does not
contain the full executable specification [18]. The PSM is open for re-factoring
and elaboration of low-level details by the designer. There are two transforma-
tions implemented in this phase, refinement and synthesis, which support the
developer in moving from a PIM-based design to a PSM-based design and finally
to code respectively.

After choosing a target platform, a model-to-model transformation refines the
object-oriented PIM into a PSM suitable to model the concepts for the chosen
platform. This refinement requires a number of platform-specific extensions. For
each PSM, a UML profile is created that extends the standard UML datatypes
with those that are specific to the language and platform. The profile can also
include the namespaces and datatypes needed to further elaborate the PSM.
The transformation was implemented using Java and the UML2 library.

The second transformation, illustrated as synthesis, allows a PSM to be trans-
formed into code. This transformation is implemented using a template-based
code-generation technology called XPand-part of the oAW framework. In gen-
eral, there are two main approaches for model-to-text (M2T) transformation,
visitor-based approaches and template-based approaches [3]. Template-based
tools such as XPand use a text-based declarative language as a means for se-
lection of model nodes and iterative expansion. We decided to use Xpand to
transform the UML class diagrams to code. For the generation of behavioural
code with sequence diagrams, we used a visitor-based approach implemented in
Java. Sequence diagrams are written in the UML in-order, and so a visitor-based
approach is more desirable than a template-based approach as the visitor can
step through the full trace in order and generate code on the fly. As XPand
supports Java extensions, the two approaches could be integrated, producing
both compilable structural and behavioural code from the class diagrams and
sequence diagrams respectively. The code generation capabilities could be ex-
tended by implementing support for standard UML behavioural diagrams.

Model-Driven Theme/UML 247

2.3 Discussion

This section discusses the difficulties and challenges we encountered while im-
plementing our approach to the integration of Theme/UML with current MDA
standards, guidelines and technologies.

Fig. 4. UML 2.1 sequence diagram

Modelling Triggering and Returning Messages. In Theme/UML, UML
sequence diagrams are used to indicate how and when the crosscutting occurs
in relation to the abstract templates of an aspect theme. The UML metamodel
in which Theme/UML was defined had no support for indicating a message in
the case where the sender or receiver was unknown. Consequently, this resulted
in these messages being drawn without a sender or receiver, violating a number
of constraints of the metamodel. This would be especially problematic in the
creation of a mapping specification, where it is assumed all UML models are
compliant to the constraints and are well-formed. However, the UML 2.1 meta-
model has improved the definition of sequence diagrams. A Gate is a connection
point for relating a Message outside an InteractionFragment with a Message
inside the InteractionFragment. With Gate support, the sender and receiver
of the initial triggering message can now be unspecified while conforming to the
constraints of the metamodel. Figure 4 shows the updated Theme/UML seman-
tics and notation for indicating triggering and returning operations, explicitly
indicating where the gates are.

248 A. Carton et al.

Modelling Composition Relationships. Theme/UML defines an n-ary com-
position relationship for elements that are to be composed by its merge. As a
profile extension can only mark existing UML metaclasses, profile extensions for
n-ary relationships were required. Association is restricted as a relationship
between certain types; therefore, Dependency is the next best option, allowing
n-ary relationships between NamedElements. It emerged that MagicDraw only
supported one-to-one relationships with a Dependency, and as such deviates
from the standard. To work around this, the desired relationships were emulated
by drawing an additional Dependency on the Dependency that was drawn be-
tween two model elements. This workaround could be successfully implemented
since a Dependency itself is a NamedElement. However, the solution necessitated
extra parsing logic to determine all the elements participating in a composition
relationship.

Modelling Sequence Diagrams. When we began designing our tool, we sur-
veyed a number of UML 2 modelling tools, including Topcased7, Poseidon8 and
Rational Software Architect9. We decided to use Magicdraw as the community
edition was free; it offered export to EMF XMI and had support for class and se-
quence diagrams. However, it emerged that the EMF XMI export implemented
by MagicDraw was faulty for sequence diagrams. We based an alternate ap-
proach on the UML2 editor provided by the UML2 library of the EMF. This
workaround involves using this tree-based graphical tool to create the sequence
diagrams by hand. The graphical tool offers the designer a little more abstrac-
tion than working with the raw XMI directly (which requires detailed knowledge
of the specification). Although this workaround is undesirable from a designer
perspective, it was the only option available as no other free tool surveyed was
capable of viewing or writing sequence diagrams to EMF XMI correctly. Once a
tool that supports sequence diagrams becomes available, it can be used instead.

Code Generation for Sequence Diagrams. A visitor-based approach was
adopted to generate code from sequence diagrams. However, we discovered that
the sequence diagrams in the UML 2.1 specification are currently unsuitable for
the purpose of code generation. The OMG Revision Task Force for UML10 cur-
rently lists a number of pending revisions. One such revision describes that the
arguments of a Message can only be ValueSpecifications, and the creation,
referencing and assignment of variables in the underlying model remains ambigu-
ous. To get around this restriction, a LiteralString is used to pass arguments
in textual form. However, this solution is undesirable because it precludes com-
plete validation of the model. We are currently awaiting publication of the next
UML 2 standard to evaluate the fixes for these issues in order to provide better
support for code generation from sequence diagrams.

7 http://www.topcased.org
8 http://www.gentleware.com
9 http://www-306.ibm.com/software/awdtools/architect/swarchitect

10 http://www.omg.org/issues

http://www.topcased.org
http://www.gentleware.com
http://www-306.ibm.com/software/awdtools/architect/swarchitect
http://www.omg.org/issues

Model-Driven Theme/UML 249

Selection of Transformation Tools. Prior to the design of our tool, we in-
vestigated a number of Model-to-Model (M2M) transformation languages such
as ATL11, Kermeta12 and oAW Xtend13. The UML 2 is a large and complex
metamodel, and writing valid transformations has been proven to be both chal-
lenging and intricate [8]. At that time, we found it easier to use the EMF and
UML2 libraries in Java. One of the difficulties we observed with tools like ATL
was that it was difficult to transform from a source UML model to a destination
UML model when changes to only a small number of meta-model items were
required. A tool such as ATL requires rules to copy every single element in the
UML metamodel (which is very large) to a new model. Using the libraries, copy-
ing a full model requires only a few lines of code and is therefore more feasible.
With the rapidly improving state of model-driven tools, however, modern M2M
tool support can potentially achieve what we desired during our development
phase. For example, ATL now supports superimposition, which allows new rules
to be superimposed onto another set of rules, e.g. a full UML2 copy transforma-
tion. Redoing our transformations in this manner may be an interesting piece
of future work as we believe that working with model-transformation tools is a
good way of reducing the complexities of designing mapping specifications and
increases extensibility and usability for both the developer and the user.

3 Model-Driven Theme/UML: Process

Tool support that integrates both aspect-orientation and MDA is inadequate
without a complementary systematic process that clearly defines its use. Previ-
ous research on aspect-oriented design (AOD) has amalgamated work on best
practises to produce a unified and refined AOD process [14]. Likewise, the MDA
Guide [22] provides a flexible and extensive treatise on model-driven processes.
Using both individual processes as a basis, we have devised an integrated process.

3.1 Process Phases

The requirements of the application should be analysed with a view to identifying
concerns before design begins. Theme/Doc, a concern identification approach,
supports aspect-oriented requirements analysis and provides explicit mappings
from its output to Theme/UML [1]. Theme/Doc can be realised in the MDA
process by taking the role of a computation-independent model, where a trans-
formation realises the mappings to a PIM. Other aspect-oriented requirements
analysis approaches can be used, provided a mapping exists to Theme/UML,
such as that outlined by Sánchez et al. [25]. It is not pertinent to the out-
lined approach whether this mapping is realised as a manual transformation
(indicated by completely elaborating the PIM) or by a semi-automatic transfor-
mation (where some artefacts are generated). Future work will investigate tool
11 http://www.eclipse.org/m2m/atl
12 http://www.kermeta.org
13 http://www.openarchitectureware.org

http://www.eclipse.org/m2m/atl
http://www.kermeta.org
http://www.openarchitectureware.org

250 A. Carton et al.

Fig. 5. The Model-Driven Theme/UML process

support for these mappings. If automation is provided, the designer would be-
gin with a set of pre-generated UML artefacts that could be further elaborated.
This process is illustrated in Fig. 5 as an activity diagram, with the three phases
represented by swimlanes.

Modelling Phase. The modelling phase illustrates two activities-modelling
base application concerns and modelling crosscutting concerns. As Theme/UML
supports a symmetric decomposition, and its concern spaces are considered
declaratively complete, both of these activities can be done concurrently and
independently of each other. This is illustrated by the fork in Fig. 5, and allows
themes to be designed in isolation–either by an individual or a team of design-
ers. Each theme is modelled inside a UML Package and should not reference any
element outside the package. This ensures that the concern is declaratively com-
plete. The UML Package has the stereotype theme applied from the Theme/UML
Profile. As aspect themes are modelled relative to their abstract templates, it is
necessary for the designer to indicate this using the tagged value template from
the Theme/UML Profile. Each theme has a sequence diagram for each sequence
of templates. This sequence diagram illustrates the interaction of the templates
with the behaviour of the theme itself.

When themes have been modelled, the designer applies the composition re-
lationships, specifying how themes are to be composed. At the coarsest level
of granularity, the individual themes themselves are marked for composition.
Support is also available to indicate finer compositions that deviate from the
composition specification of the composite container. Base themes use a merge
stereotype applied to a Dependency from the Theme/UML marking profile.
The themeName tagged definition indicates the name of the final composed

Model-Driven Theme/UML 251

theme. The matchType allows a matching strategy to be applied to the merge,
with the precedences stereotypes indicating the ascending order of the merge.
The defaultResolve and explicitResolve stereotypes are available as rec-
onciliation options if a conflict arises. An explicit stereotype, applied to a
Dependency, indicates a deviation from the default composition of a merge. The
bind stereotype is used similarly to the merge, but indicates how aspect themes
are composed with the base themes. The composition of the aspect theme is
indicated using a binding tagged value to show how the templates are instan-
tiated to the elements of the base themes. Once the composition relationships
have been applied, the designer can then proceed to the composition phase as
indicated in Fig. 5.

Composition Phase. Given a UML model with Theme/UML marks applied,
the designer can use the tool to compose themes. As illustrated in Fig. 5, the
designer can view the composed model and can then choose to take one of three
actions. The designer may go back to the modelling phase in the case that the
composition relationships need to be reapplied or adjusted due to the composed
model being incorrect or incomplete. The second possibility involves going back
to the start of the modelling phase to edit the model. Finally, the designer can
decide that the composed model is complete.

The next step in the process is refactoring the composed model. We decided
to make the composed model open for refactoring for two reasons. The first
reason is the possibility of cycles in generalisations. This problem may occur as
a result of merging different class hierarchies. The problem has been addressed
theoretically through the use of subject-oriented flattening [28,23]. Tool support
and process integration for this solution remain future work. Currently, if the
problem arises in the composed model, the designer can correct it manually.

The second reason for making the composed model open for refactoring is
the need to resolve ambiguities that may arise in the composed model. Conceiv-
ably, while designing themes, matching associations may get modelled at different
points in each class hierarchy.After composition, these will get duplicated and con-
sequently result in redundant associations. Theme/UML does not naturally cater
for these conceptual ambiguities in the semantics of its integration strategies.

Transformation Phase. To begin the transformation process, the designer
chooses the target platform. The tool takes the PIM, and using the mapping for
the target environment, produces a PSM representing the domain-specific exten-
sions of the PIM for that environment. In our approach, the object-oriented PIM
that is produced from composition is refined to either a J2ME or .NET CF PSM.
A PSM is a direct representation of the underlying platform, modelling precise
library support and features of the specific environment. From a pragmatic point
of view, it is usually not suitable to model the full specification in the PSM. For
example, one could imagine that programming a complex algorithm would be
much more effective through the use of code, rather than tediously modelling it
with a UML activity diagram [12]. If the full structural and behavioural spec-
ification is not modelled in the PSM, it can be specified subsequently in the

252 A. Carton et al.

source code. After elaborating the design of the PSM, the designer can trans-
form from model to code. This kind of transformation is known as synthesis or
code generation [20].

4 Case Study

In this section, we present an overview of a case study that we conducted in
order to assess the applicability of model-driven Theme/UML to an application
development scenario. The case study demonstrates how our approach facilitates
both the separation of concerns in a mobile, context-aware auction system and
the subsequent automatic composition of these concerns to produce platform-
specific models and source code. The auction system offers typical functionality
such as placing and browsing bids, managing accounts and purchasing goods. It
also offers context-awareness features such as notification of auctions that may
be of interest to the user, and mobility features such as ensuring that the user
is in a valid location before a transaction can proceed and adapting the user
interface (UI) to changes in the environment.

Analysis of the requirements specification for the auction system with
Theme/Doc identified six base themes and three aspect themes. The base themes
cater for the following behaviour:

– Enrolling with the system.
– Browsing auctions.
– Joining auctions.
– Bidding on auctions.
– Transferring credit.
– Administration of auctions.

The aspect themes support the following crosscutting behaviour:

– Adapting the UI (specifically the backlight) based on system events.
– Determining and querying user location.
– Recommending auctions based on user profile and auction history.

Starting at the modelling phase, the analysis provided by Theme/Doc allowed
us to create and elaborate a detailed design of each theme. In the interest of
brevity, we do not include design of all themes, although we include the enroll (cf.
Fig. 6) and join (cf. Fig. 7) base themes and the adapt-ui aspect theme (cf.
Figs. 9 and 10) as examples of themes designed for the auction system application.
We will refer to these themes throughout the remainder of the case study overview.

After completing the design, we applied the composition relationships to the
themes and their elements to create a specification that would indicate the in-
tegration of all the themes. Figure 8 illustrates a merge between the two base
themes, enroll and join. The merged theme is given a name, auctionSystem,
through the use of the themeName tag definition. Examination of the base themes
reveals that we generally used the same vocabulary to model the same concepts,
and so a match[name] matching criterion is attached to match elements with

Model-Driven Theme/UML 253

Fig. 6. MagicDraw screenshot of the enroll theme

Fig. 7. MagicDraw screenshot of the join theme

the same name and type. During this process, the concept of User in the enroll
theme was found to be the same as that of Customer in the join theme. An
explicit composition relationship was applied to resolve this conflict. This re-
lationship specifies that the two classes are the same and that they should be
merged under the unified Customer class.

Aspect themes can be integrated through the bind composition relationship.
A bind is defined as a specialisation of a merge integration and supports merging
of the structure and behaviour of an aspect theme with a base theme. Figures 9
and 10 illustrate the adapt-ui theme, along with its composition specification
to the base themes enroll and join. As illustrated in Fig. 1014, the sequence
diagrams in aspect themes specify how (advice) and when (joinpoint) in re-
lation to the abstract templates the crosscutting behaviour takes place. The

14 The sequence diagram is not currently shown as part of the aspect theme due to
the error with MagicDraw’s sequence diagram export behaviour (see Sect. 2.3). We
show a manually constructed sequence diagram as well as part of the UML2 tree
editor’s view of the behaviour under discussion.

254 A. Carton et al.

Fig. 8. MagicDraw screenshot of the base merge composition specification

Fig. 9. MagicDraw screenshot of adapt-ui and its composition specification

activateLight() joinpoint in the adapt-ui theme acts as a placeholder to the
operations identified in the bind statement. It is these operations that actually
trigger activation of the UI backlight following the base-aspect merge.

At the composition phase, we used the tool to take the themes and related
composition relationships and merged them. The result of this composition spec-
ification, applied in Fig. 8, is depicted in Fig. 11. For ease of illustration, we only
show the result of the bases being merged. Figures 12 and 13 show the result
of the full composition produced by the tool, i.e. the composition specification
applied in Fig. 8 and Fig. 9. The classes that were shared among multiple themes

Model-Driven Theme/UML 255

Fig. 10. Two views of the adapt-ui crosscutting behaviour

Fig. 11. Screenshot of the merged base

256 A. Carton et al.

Fig. 12. Screenshot of merging adapt-ui with the enroll and join themes

have been unified, e.g. the resultant merge of the same class has all the opera-
tions belonging to separate versions of that class before the merge. Also, there
is no User class as it has been merged with its new name, Customer.

The aspect theme was also composed with the base themes. For example,
the ActivityMonitor behaviour in the adapt-ui theme gets merged with the
AuctionSystem through the binding to the enroll theme. The logon and
enroll operations are renamed to do logon and do enrol, respectively. The
new logon and enroll operations now contain the crosscutting behaviour that
they have been merged with. The case is similar for the join theme.

With the object-oriented composition of themes completed and no refactor-
ing necessary, it was possible to produce a PSM. In the transformation phase,
we choose both available target platforms, J2ME and .NET CF. The tool was
used to transform the object-oriented design produced in the previous phase
into the two target PSMs, adding in more concrete detail for each specific plat-
form as appropriate. Figure 14 illustrates the J2ME PSM produced during the

Model-Driven Theme/UML 257

Fig. 13. Two views of the merged adapt-ui crosscutting behaviour

transformation process, depicting the modified datatypes for J2ME platform and
the automatically generated accessors and mutators.

At this point, either the J2ME PSM or the .NET CF PSM could be inspected.
As a PSM is refined from a computationally incomplete PIM (i.e. the approach
is elaboration-oriented), it was necessary to further elaborate the model both
structurally and behaviourally using platform-specific library extensions. Either
PSM can be elaborated partially or to completion at the model level, with the
remaining elaboration achieved through code. After elaboration, the PSM was
ready for synthesis, i.e. transformation to source code. The J2ME and .NET
CF source code that was automatically generated for the join method (which
includes crosscutting adapt-ui behaviour) is illustrated in Fig. 15.

4.1 Discussion

We observed from this case study that Model-Driven Theme/UML has a positive
impact on system modularity when applied to the development of an applica-
tion with crosscutting mobility and context-awareness concerns. Theme/UML
facilitated the separation of concerns at design time that would have otherwise
resulted in scattering and tangling in core system behaviour. Through the spec-
ification of composition relationships between modularised concerns, it was pos-
sible to produce a design with which the tool could operate. Given a collection
of modules and a description of their relationships, the tool automatically gener-
ated platform-specific models for J2ME and .NET CF platforms. The tool then
used these PSMs to generate source code for the respective target platforms,
saving time and reducing the risk of error introduction. The tool supports a
solution-focused development approach that allows developers to concentrate on
the design of the initial model and avail the benefits of automatic PSM and code
generation.

258 A. Carton et al.

Fig. 14. Screenshot of the platform-specific J2ME model

Fig. 15. Source code generated from the .NET CF (left) and J2ME (right) PSMs

Model-Driven Theme/UML 259

5 Related work

Composition Directives [24,27] is an approach implemented in Kermeta called
Kompose [6,7] and supports the composition of both aspect and base UML mod-
els. This work takes a hybrid symmetry approach to merging, i.e. the composition
procedure does not distinguish between an aspect and a base model, and was de-
signed to deal with the inadequacies of a simple name-based matching strategy.
For example, when merging two operations with the same name but different
argument lists or return values, a simple name-based matching strategy would
produce a merged result using just the names as matches. The Composition
Directives approach supports different model elements having unique, sensible
matching strategies, according to their syntactic properties. To accomplish this,
a composition metamodel was devised. The idea of a composition metamodel in
our work was originally inspired by this approach, but we subsequently focused
on supporting the original definition of the Theme/UML semantics. The similar-
ities include an abstraction of the matching criterion, as well as an enumeration
of the composition elements. In terms of differences, contrasting composition
algorithms are employed. Theme/UML defines an abstract integration type and
therefore the composition algorithm is iterative. Alternatively, Composition Di-
rectives defines a single merge implemented as a recursive composition algorithm.

The Atlas Model Weaver (AMW)15 is a tool that facilitates the creation of
links between models [4]. It is based on the Eclipse Modelling Framework (EMF)
and is part of the ATLAS Model Management Architecture (AMMA). The links
are stored in a weaving model that conforms to a weaving metamodel. AMW
can be used to support aspect weaving16, although it is not centred specifically
around the notion of aspect-orientation. While our approach specifies a meta-
model that defines how models get composed, AMW defines a metamodel for
weaving links between models. It allows models to be visualised in a tree-like
manner and supports the association of links between two metamodels or models
using the weaving metamodel. It also defines the notion of a weaving session in
which the weaving metamodel, the models and their metamodels are loaded and
links are defined and woven. Contrary to this approach, our approach uses a
UML profile to define the weaving/composition relationships at modelling time.
The AMW weaving process does not distinguish between primary and aspect
models, making it purely symmetric.

The Motorola WEAVR [2] is a commercial add-in to the Telelogic TAU tool17

and is designed for use in telecoms systems engineering. WEAVR is a translation-
oriented approach that includes a joinpoint model for state machines. It uses
the Specification and Description Languages (SDL) and UML standards to fully
model reactive discrete systems and produce executable code. Unlike our ap-
proach, which is elaboration-based, WEAVR is a translation-based approach
that uses state machines and an action language to fully specify the application

15 http://www.eclipse.org/gmt/amw
16 http://www.eclipse.org/gmt/amw/usecases/AOM
17 http://www.telelogic.com

http://www.eclipse.org/gmt/amw
http://www.eclipse.org/gmt/amw/usecases/AOM
http://www.telelogic.com

260 A. Carton et al.

logic at the model level. Similar to our approach, it uses a UML Profile to spec-
ify aspect-oriented extensions. For example, to illustrate an aspect, a class is
extended with the aspect stereotype, allowing tagged definitions in the form of
attributes, operations, signal definitions and ports, which are treated like inter-
type declarations. Furthermore, it allows precedence of connectors to be applied
to the same pointcut, aiding the management of aspect interference. This feature
is not catered for in Theme/UML.

XWeave is a model weaver that supports composition of different architectural
viewpoints. The weaver facilitates software product-line engineering, allowing for
variable parts of architectural models to be woven according to a specific prod-
uct configuration [9]. Xweave adopts a form of asymmetric aspect-orientation,
unlike Theme/UML, which defines both symmetric and asymmetric forms. As-
pect models are woven into a base model using two strategies, name matching
and explicit pointcut expressions. Name matching supports weaving through
equivalence of elements in the base and aspect models if both elements have
the same name and type. This is similar to the matching criterion defined in
our composition metamodel. Pointcut expression weaving is based on the oAW
expression language, which is itself similar to OCL. This approach is more pow-
erful than the wildcard-based string selection mechanism used by Theme/UML.
One drawback of the XWeave approach is the limited support for advice. Base
model elements cannot be removed, changed or overriden by aspect models and
hence they only support additive weaving. Theme/UML supports these features
through the semantics of its integration strategies.

Modelling Aspects Using a Transformation Approach (MATA) [15] is a UML
aspect-oriented modelling tool. Unlike our approach, which is based on model
composition, MATA uses graph transformations to specify and compose aspects.
Using the UML metamodel as a type graph, any UML model can therefore be
represented as an instance of this type graph and a transformation based on
graph theory applied on it. The tool currently supports class, sequence and state
diagrams. The aspect model consists of a set of graph rules that can be applied
as a graph transformation to the base model using a pattern. MATA is built on
top of IBM’s Rational Software Modeler and uses the graph rule execution tool
AGG as a back-end for graph transformations.

Klein et al. [16] suggest an approach for weaving multiple behavioural as-
pects using sequence diagrams. In their approach, a base scenario describes the
behaviour of the system using a sequence diagram, and a behavioural aspect de-
scribes a concern that crosscuts this base scenario. They propose various types
of pointcut, allowing joinpoints to be matched even when extra messages oc-
cur in between and also demonstrate how these can be statically woven. This
approach formally defines a more concise custom metamodel and addresses the
semantic difficulty of explicitly composing one sequence diagram with another.
Although this approach differs from Theme/UML in that it supports asymmetric
separation, it is considered a complimentary approach that could be integrated
to enhance Theme/UML’s support for behavioural modelling.

Model-Driven Theme/UML 261

6 Summary and Future Work

In this paper we have presented our efforts to integrate AOSD techniques
with the MDE process. We have described new tool support for model-driven
Theme/UML from both an implementation and a methodological perspective,
and illustrated the capabilities of the tool by means of a case study.

We are currently investigating revisions and extensions to the tool to support
both the modularisation of distributed, real-time embedded (DRE) concerns at
the model level and transformations to embedded platforms. In addition to this
work, we are developing an aspect-oriented MDE tool suite. The tool suite com-
bines the work described in this paper with similar work that was conducted in
tandem. This related work provides similar capabilities in terms of modularisa-
tion of concerns at the model-level, but differs from the approach described here
in terms of the types of transformations supported.

Acknowledgments

We would like to acknowledge the support of AOSD-Europe and of Lero: The
Irish Software Engineering Research Centre, funded by Science Foundation Ire-
land. Thanks also to Jorge Fox for his comments on earlier drafts of this paper.

References

1. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. The Theme Ap-
proach. Object Technology Series. Addison-Wesley, Boston (2005)

2. Cottenier, T., van den Berg, A., Elrad, T.: The Motorola WEAVR: Model Weaving
in a Large Industrial Context (2007)

3. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In:
OOPSLA 2003 Workshop on Generative Techniques in the context of Model Driven
Architecture (October 2003)

4. Didonet Del Fabro, M., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a
generic model weaver. In: Journées sur l’Ingénierie Dirigée par les Modèles (IDM
2005), pp. 105–114 (2005)

5. Filman, R.E., Elrad, T., Clarke, S., Akşit, M. (eds.): Aspect-Oriented Software
Development. Addison-Wesley, Boston (2005)

6. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A generic approach for automatic
model composition. In: Aspect Oriented Modeling (AOM) Workshop, Nashville,
USA (October 2007)

7. France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing support for
model composition in metamodels. In: EDOC 2007: Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing Conference, Washington,
DC, USA, p. 253. IEEE Computer Society, Los Alamitos (2007)

8. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-Driven Development
Using UML 2.0: Promises and Pitfalls. Computer 39(2), 59 (2006)

9. Groher, I., Voelter, M.: XWeave: models and aspects in concert. In: AOM 2007:
Proceedings of the 10th international workshop on Aspect-Oriented Modeling,
pp. 35–40. ACM Press, New York (2007)

262 A. Carton et al.

10. Object Management Group. Model-Driven Architecture, http://www.omg.org/mda
(accessed October 22, 2007)

11. Object Management Group. OMG UML Specification Version 1.3.,
ftp://ftp.omg.org/pub/docs/ad/99-06-03.pdf (accessed October 25, 2007)

12. Hailpern, B., Tarr, P.: Model-driven development: the good, the bad, and the ugly.
IBM Systems Journal 45(3), 451–461 (2006)

13. Jackson, A., Barais, O., Jézéquel, J.-M., Clarke, S.: Toward A Generic And Exten-
sible Merge. In: Models and Aspects workshop, at ECOOP 2006, Nantes, France
(2006)

14. Jackson, A., Clarke, S.: Towards a Generic Aspect Oriented Design Process.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 110–119. Springer,
Heidelberg (2006)

15. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition
in product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

16. Klein, J., Fleurey, F., Jézéquel, J.-M.: Weaving multiple aspects in sequence dia-
grams. In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD III. LNCS, vol. 4620,
pp. 167–199. Springer, Heidelberg (2007)

17. Object Management Group. UML 2.0 Infrastructure Specification,
http://www.omg.org/docs/ptc/03-09-15.pdf (accessed October 25, 2007)

18. McNeile, A.: MDA: The Vision with the Hole,
http://www.metamaxim.com/download/documents/MDAv1.pdf (accessed October
30, 2007)

19. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co., Inc., Boston (2002); foreword
By-Ivar Jacoboson

20. Mens, T., Czarnecki, K., Van Gorp, P.: Discussion – A Taxonomy of Model Trans-
formations. In: Bezivin, J., Heckel, R. (eds.) Language Engineering for Model-
Driven Software Development. Dagstuhl Seminar Proceedings, vol. 04101, Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany (2005)

21. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. Technical report, Object Man-
agement Group (OMG) (2003)

22. OMG. MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf
(accessed November 2, 2007)

23. Ossher, H., Kaplan, M., Katz, A., Harrison, W., Kruskal, V.: Specifying subject-
oriented composition. Theory and Practice of Object Systems 2(3), 179–202 (1996)

24. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for Composing Aspect-Oriented Design Class Mod-
els, pp. 75–105 (2006)

25. Sánchez, P., Fuentes, L., Jackson, A., Clarke, S.: Aspects at the Right Time. In:
Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Develop-
ment IV. LNCS, vol. 4640, pp. 54–113. Springer, Heidelberg (2007)

26. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In:
Proceedings of the Workshop on Mobile Computing Systems and Applications,
Santa Cruz, CA, US, pp. 85–90. IEEE Computer Society, Los Alamitos (1994)

27. Straw, G., Georg, G., Song, E., Ghosh, S., France, R.B., Bieman, J.M.: Model
composition directives. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, pp. 84–97. Springer, Heidelberg (2004)

http://www.omg.org/mda
ftp://ftp.omg.org/pub/docs/ad/99-06-03.pdf
http://www.omg.org/docs/ptc/03-09-15.pdf
http://www.metamaxim.com/download/documents/MDAv1.pdf
http://www.omg.org/docs/omg/03-06-01.pdf

Model-Driven Theme/UML 263

28. Walker, R.J.: Eliminating cycles in composed class hierarchies. Technical Report
TR-2000-07, University of British Columbia (2000)

29. Zito, A., Dingel, J.: Modeling UML 2 Package Merge With Alloy. In: 1st Alloy
Workshop (Alloy 2006), Portland, OR, USA, pp. 86–95 (2006)

30. Zito, A., Diskin, Z., Dingel, J.: Package Merge in UML 2: Practice vs. Theory?
In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 185–199. Springer, Heidelberg (2006)

Appendix

A Theme/UML Overview

The Theme Approach is an aspect-oriented methodology that encompasses the
requirements analysis, design and mapping to implementation phases of the de-
velopment lifecycle [1]. Theme/Doc provides a systematic means to analyse a
text-based requirements specification in order to identify base and crosscutting
concerns and the relationships between them. Theme/UML is an aspect-oriented
modelling language that supports the design of concerns and maintains the rela-
tionships previously identified by Theme/Doc. The Theme Approach also details
mapping specifications from Theme/UML to aspect-oriented programming lan-
guages such as AspectJ.

Theme/UML is aspect-oriented design language with an accompanying
methodology. The Theme/UML design language is a Meta-Object Facility
(MOF) extension of the UML 1.3 beta R7, enhancing standard UML with new
modularisation and compositional constructs. The accompanying methodology
provides guidelines on the use of these new constructs. The constructs include
a new type of classifier called a theme, a composition relationship and three
integration strategies-merge, override and bind.

Fig. 16. Designing with Theme/UML

264 A. Carton et al.

Fig. 17. Merge Integration Strategy

Fig. 18. Override Integration Strategy

A theme is a construct based on the existing definition of the standard UML
package and encapsulates the design specification of a base or aspect concern. As
illustrated in Fig. 16, a base theme is designed using the standard UML process
and can include any of the standard diagram types. An aspect theme is one that
encapsulates a crosscutting concern and is designed relative to the abstract tem-
plates, with sequence diagrams specifying when and how the templates interact
with the base themes.

As Theme/UML aligns to a symmetric decomposition, themes are consid-
ered to be declaratively complete. This means that the design specification of a
concern is self-contained and does not reference anything outside the theme in
which it is defined. This property allows a more rigorous separation of individual
themes from each other. Consequently, this property may result in overlapping

Model-Driven Theme/UML 265

Fig. 19. Bind Integration Strategy

concepts being represented in multiple individual theme designs. Consequently,
these concepts must be reconciled at composition time.

Theme/UML supports compositional constructs for both overlapping and
crosscutting specifications. An overlapping or shared concept can arise because
equivalent concepts can be considered in more than one theme. A merge inte-
gration strategy can exist between two or more themes and allows like-named
elements to be matched, thereby resolving conflicts between themes. Figure 17
illustrates a merge between two themes. The match[name] property indicates
that elements are to be matched and merged based on name and type. Theme-
Name(“NewTheme”) indicates that the result of the merged themes will produce a
new theme called NewTheme. To achieve resolution of conflicts, Theme/UML sup-
ports three reconciliation strategies. The first strategy, prec, indicates the prece-
dence of each theme’s design specification in the merge. Figure 17 illustrates that
the second theme has a higher precedence than the first theme, and therefore,
its design specification will get priority in the merge. The second reconciliation
strategy is an explicit reconciliation that takes the form resolve(Entity (property
= value)) and allows any property of any specific Entity in a theme to be assigned
a value. The third reconciliation strategy is a default reconciliation and has a sim-
ilar form, with Construct replacing the Entity instead (c.f. Fig. 17). In this case,
any property of a UML construct (e.g. operation visibility kind) can be given a
value (e.g. private) and this reconciliation gets executed during the merge. The
second kind of composition extension that Theme/UML supports for overlapping
specifications is called an override. An override, as indicated in Fig. 18, is a rela-
tionship between two themes where one theme’s design specification overrides the
other. The semantics of the integration properties are similar to the merge. One
difference is that elements can be explicitly indicated to be deleted in a theme
prior to the merge.

For crosscutting specifications, an integration strategy called a bind facili-
tates the composition of an aspect theme with a base theme. Figure 19 depicts
an aspect theme being bound to a base theme. The aspect theme is designed
in relation to the abstract templates. In this example, the triggering template

266 A. Carton et al.

operation is called A.trigger(). The sequence diagram illustrates the behaviour
of the aspect theme in relation to this triggering behaviour. The operation
do trigger() encapsulates the existing behaviour of the operation in the base
theme that is bound to the template method in the aspect theme. The sequence
diagram is important in representing how and when the crosscutting behaviour
is executed with respect to the base themes it is crosscutting. The bind specifica-
tion represents the instantiation of the aspect theme. The operation B.trigger() is
the operation being bound to, and the triggering template operation is replaced
with this method upon the aspect’s instantiation.

	Model-Driven Theme/UML
	Introduction
	Model-Driven Theme/UML: Implementation
	Initial Design Decisions
	Implementation
	Discussion

	Model-Driven Theme/UML: Process
	Process Phases

	Case Study
	Discussion

	Related work
	Summary and Future Work
	References
	Appendix
	A Theme/UML Overview

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

