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Abstract. This paper describes MATA (Modeling Aspects Using a Transforma-
tion Approach), a UML aspect-oriented modeling (AOM) technique that uses 
graph transformations to specify and compose aspects. Graph transformations 
provide a unified approach for aspect modeling in that the methods presented 
here can be applied to any modeling language with a well-defined metamodel. 
This paper, however, focuses on UML class diagrams, sequence diagrams and 
state diagrams. MATA takes a different approach to AOM since there are no 
explicit joinpoints. Rather, any model element can be a joinpoint, and composi-
tion is a special case of model transformation. The graph transformation execu-
tion engine, AGG, is used in MATA to execute model compositions, and  
critical pair analysis is used to automatically detect structural interactions be-
tween different aspect models. MATA has been applied to a number of realistic 
case studies and is supported by a tool built on top of IBM Rational Software  
Modeler. 

1   Introduction 

Aspect model composition is the process of combining two models, MB and MA, 
where an aspect model MA is said to crosscut a base model MB. As such, aspect model 
composition is a special case of the more general problem of model fusion. A number 
of techniques and languages have been developed to specify how MA crosscuts MB, 
and, in particular, how MA and MB should be composed. 

Broadly speaking, there have been, to date, two approaches for specifying aspect 
model composition. In the first approach, MA and MB are composed by defining 
matching criteria that identify common elements in MA and MB and then applying a 
generic merge algorithm that equates the common elements. Typically, matching  
criteria are based on easily identifiable properties of model elements. For example, 

                                                           
* This paper is an extended version of a paper previously published at the 2007 International 

MODELS conference [1]. There was also a workshop paper on the MATA tool [2]. The main 
new contributions are the section on code generation and the evaluation and discussion  
section. The section on aspect interactions is also new. 
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two class diagram models can be merged by equating classes with the same name. 
Examples of this approach include Theme/UML [3] as well as work by France et al. 
[4]. In the second approach, mechanisms for specifying and weaving aspects from as-
pect-oriented programming (AOP) are reused at the modeling level. There has been a  
significant amount of research, for example, that identifies a joinpoint model for a 
modeling language and then uses the AspectJ advices of before, after, and around for 
weaving. Examples of this type include [5, 6]. 

These two kinds of approaches are not always sufficient. A merge algorithm in the 
first approach based on general matching criteria will never be expressive enough to 
handle all model compositions. Matching by name, for example, may not work for 
state diagrams. Given two states with the same name, the states may need to be 
merged in one of a variety of ways depending on the application being modeled: (1) 
the two states represent the same thing, which implies making the states equal; (2) the 
two states represent orthogonal behaviors of the same object, which implies enclosing 
the states by a new orthogonal region; (3) one state is really a submodel of the other, 
which implies making one state a substate of the other; and (4) the behaviors of the 
two states must be interleaved in a complex way, which implies weaving the actions 
and transitions in a very application-specific way to achieve the desired result. Only 
the first of these can be accomplished based on merge-by-name. Furthermore, these 
are only four of the many possible options, and so it is not generally sufficient to  
provide a number of pre-defined merge strategies. In practice, to overcome this  
problem, the modeler may additionally specify what Reddy et al. [7] call composition 
directives—that is, operators that override the default merge algorithm. However,  
understanding the interactions between the default algorithm and the composition  
directives is a difficult task, and, in particular, does not work easily for behavioral 
models (cf. [8]).   

In the second approach, specific elements in a model are allowed to be defined as 
joinpoints and others are not. For example, in state diagrams, some approaches [5] de-
fine actions as joinpoints. Others, however, define states as joinpoints [9]. One could 
even imagine more complex joinpoints, such as the pointcut of all orthogonal regions. 
(This pointcut might be used, for example, by an aspect that sequentializes parallel 
behaviors.) Defining only a subset of a model’s elements as joinpoints seems to be 
overly restrictive. In addition, limiting advices to before, after, and around (as is done, 
for example, by both [5] and [9]) is also rather restrictive since it may be desired to 
weave behavior in parallel or as a sub-behavior of a behavior in the base. 

This paper takes a step back to reassess the requirements for aspect modeling lan-
guages. The result is the technique and tool MATA (Modeling Aspects Using a 
Transformation Approach), which tackles the above limitations by viewing aspect 
composition as a special case of model transformation. In MATA, composition of a 
base and aspect model is specified by a graph rule. Given a base model, MB, crosscut 
by an aspect model, MA, a MATA composition rule merges MA and MB to produce a 
composed model MAB. The graph rule r: LHS → RHS defines a pattern on the  
left-hand side (LHS). This pattern captures the set of joinpoints, i.e. the points in MB 
where new model elements should be added. The right-hand side (RHS) defines the 
new elements to be added and specifies how they should be added to MB. MATA 
graph rules are defined over the concrete syntax of the modeling language. This is in 
contrast to almost all known approaches to model transformation, which typically  
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define transformations at the meta-level, that is, over the abstract syntax of the model-
ing language. The restriction to concrete syntax is important for aspect modeling  
because a modeler is unlikely to have enough detailed knowledge of the UML meta-
model to specify transformations over abstract syntax.  

MATA currently supports composition for UML class, sequence, and state  
diagrams. In principle, however, it is easy to extend MATA to other UML models (or, 
indeed, other modeling languages as long as a metamodel for the language exists)  
because the idea of using graph rules is broadly applicable. MATA makes no deci-
sions on joinpoint models, for example, which would limit the approach to specific 
diagram types.  

One advantage of using graph transformations for aspect model composition is that 
graph transformations are a well-understood, formal technique with formal analysis 
tools available. In particular, critical pair analysis can be used to automatically detect 
dependencies and conflicts between graph rules. MATA applies critical pair analysis 
to detect interactions between aspects. This can be done because each aspect is repre-
sented as a graph rule and so the problem of aspect interaction can be stated in terms 
of dependencies between graph rules. Not all kinds of interactions can be detected–the 
technique is limited to structural rather than semantic interactions–but critical pair 
analysis offers a fully automatic, lightweight method for finding these structural inter-
actions between aspect models. 

This paper gives a full description of the MATA language for aspect model com-
position, its underlying graph transformation representation, and the use of critical 
pair analysis for detecting aspect interactions. It also describes the tool support for 
MATA, which is implemented on top of IBM Rational Software Modeler. The contri-
butions of this paper can be divided into three categories as follows: 

1. A unified, expressive approach for aspect model composition: 

− MATA is agnostic with respect to the modeling language to be composed as 
long as there is a well-defined metamodel for this language. 

− MATA is more expressive than previous approaches because it views aspect 
model composition as simply a special case of model transformation. 

− MATA handles both structural and behavioral models in the same way. 
2. A usable graph transformation language for aspect model composition: 

− Graph rules in MATA are written in the concrete syntax of the modeling lan-
guage, not in the abstract syntax. This allows them to be specified graphically in 
a way that is very similar to defining models for the underlying modeling  
language. 

− Graph rules in MATA provide support for sequence pointcuts, where a pointcut 
is a sequence of elements, which allows rich specification methods available in 
graph transformations to be available for aspect model composition, but in a 
way that is accessible to model developers. 

3. An automatic technique for detecting structural interactions between aspect  
models: 

− Critical pair analysis has been applied to detect interactions between models 
given as UML class diagrams, sequence diagrams, and state diagrams. 
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The paper is organized as follows. Section 2 motivates why a new, unified, and expres-
sive approach to aspect model composition is needed. Section 3 provides background on 
graph transformations necessary to describe the MATA approach. Section 4 describes 
the MATA language and Sect. 5 explains the application of critical pair analysis for de-
tecting aspect interactions. Section 6 presents an extended example illustrating MATA 
and is followed, in Sect. 7, by a description of MATA tool support and, in Sect. 8, by a 
discussion of how MATA has been applied in practice. Conclusions follow in Sect. 9. 

2   Motivation 

This section motivates why existing approaches to aspect model composition are not 
expressive enough. The goal here is to show either that existing approaches cannot 
specify compositions in certain cases or that they cannot do it in an intuitive way. To 
illustrate this, we use a simple but non-trivial, example of an aspect model composi-
tion and argue that previous approaches are non-optimal.  

Note that this paper takes a rather general definition of the term aspect such that any 
view of the system can be called an aspect. This means that many existing decomposi-
tion techniques (e.g. use cases and features) can be seen as aspects. This interpretation is 
consistent with that of many authors [6, 10, 11]. The examples in the paper will reflect 
this definition. This general view in particular means that our technique for handling as-
pect models works just as well for crosscutting and non-crosscutting concerns. In other 
words, we handle aspectual and non-aspectual concerns in a uniform way. 

Figure 1 is an example of using UML use cases to maintain separation of concerns 
in a distributed application. The idea here (following [6]) is that the use case models 
are maintained separately throughout system development and that they can be  
composed at any time using aspect composition. The LHS is a use case for calling a 
remote service and consists of a state dependent class ServiceController and a state 
diagram that defines its behavior. The RHS is a use case for handling a network  
failure, which contains the same class ServiceController, but with a different set of  
attributes and a different state diagram. This second use case describes a limited  
number of attempts to retry a service.  

 

Call Remote 
Service

ServiceController

S1

S3
entry: logReturnValue(..)

entry: updateGUI(..) 
entry: enableGUI()

serviceRequest/
disableGUI()

ServiceController

retries : int;
MAX : int;

T1

T2

[retries>MAX]remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

/retries:=0

Handle 
Network
Failure

S2
entry:callRemoteService(…)

ack(..)/

 

Fig. 1. Maintaining Use Case Separation of UML Models 
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S1

S2
entry:callRemoteService(…)

serviceRequest/
disableGUI(); retries:=0

ServiceController

retries : int;
MAX : int;

entry: enableGUI()

[retries>MAX]
remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

ack(..)/logReturnValue(…);
updateGUI()

 

Fig. 2. Desired Composition of State Diagrams from Figure 1 

The RHS crosscuts the LHS in the sense that whenever callRemoteService appears 
on the LHS, the RHS behavior should be used to handle a failure. This turns out to be 
a non-trivial example of crosscutting behavior. Prior to calling the remote service on 
the LHS, a GUI is disabled (via the action disableGUI). The GUI is only re-enabled 
(via the action enableGUI) once the remote service has been called successfully—the 
service call succeeds, a log is taken, and the GUI is updated before the GUI is  
re-enabled.  

Now, consider the desired result from composing the RHS with the LHS—this is 
shown in Fig. 2. Note that when failure-handling is incorporated, what is now needed 
is that the GUI should be re-enabled whether the calling of the remote service suc-
ceeds or not. That is, even if the maximum number of retries is exceeded, enableGUI 
must still occur. Furthermore, logging and updating must only occur if the service call 
succeeds. 

Capturing this composition is quite difficult if a composition model based on that 
of AspectJ is used. Existing work on (AOM) might, for example, define a joinpoint as 
the occurrence of the action callRemoteService. One might then insert behavior after 
or around this joinpoint in such a way that enableGUI is called whether or not the 
service call succeeds, and that logging/updating is not called in the failure scenario. 
This is possible but would really require the definition of two separate aspects, each 
with separate joinpoints—one joinpoint being the state containing action callRemote-
Service() to which the [retries<=MAX] transition would be added, and the other be-
ing the transition with event ack/ to which logReturnValue() and updateGUI() would 
be added as actions. In addition, one would need to use an around advice to ignore the 
first two entry actions in state S3. The effect is that the failure handling model on the 
RHS gets broken into pieces, thus becoming harder to understand the failure handling 
aspect in its own right. This effect goes against many of the ideas of modeling in that 
models ought to be easily readable.  

Capturing this composition using some kind of default merge algorithm is also dif-
ficult. For example, one could proceed by defining a correspondence between states 
and then merging those states. The obvious thing to try would be to equate T1 and S2, 
but the merge based on this correspondence would fail to re-enable the GUI if the 
maximum number of retries is reached. If one tries to solve this, in addition, by equat-
ing T2 and S3, then the GUI will be re-enabled, but the logging and updating will  
occur even if the remote service call fails, which is contrary to the requirements given 
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above. Therefore, composition directives would be needed to refactor the result of 
equating states. The problem with such composition directives is that it is hard to 
know exactly which directives to use because one has to first visualize the result of 
the merging. For large state diagrams, it becomes very complex to be able to predict 
where composition directives will need to be applied after the merge is complete. 

As it turns out, one neat way to handle this example is by defining a so-called  
sequence pointcut [12]. A sequence pointcut should be used when it is not enough to 
consider a single element as a joinpoint, but instead, the joinpoint should be a se-
quence of elements. In this example, the key sequence starts with disabling the GUI 
and ends with re-enabling the GUI. This is because the GUI must be both disabled 
and re-enabled whatever the outcome of the remote service call.  If one could specify 
that the pointcut is the sequence of actions/events between disableGUI and en-
ableGUI, then one can easily capture the fact that the aspect should only apply to  
sequences where the GUI is first disabled and then later re-enabled. This allows one 
to specify, on the same diagram, that the failure handling (i.e. the aspect) behavior 
begins after disableGUI and ends with enableGUI. Further details on how sequence 
pointcuts can be defined in MATA are given in Sect. 4. Sequence pointcuts are not 
currently possible with most AOM approaches†

1, although some AOP languages do 
support them [12]. 

More generally, when composing crosscutting state diagrams, it may be desirable 
to use advices that are more expressive than before, after or around. For example, an 
aspect state diagram may need to be composed in parallel with a base state diagram, 
or an aspect state diagram may need to be inserted inside a state in the base diagram 
(i.e. the base state becomes a composite state). In fact, composition should allow two 
diagrams to be composed using any of the syntactic constructs of the modeling lan-
guage. In the case of state diagrams, for example, composition could be achieved  
using orthogonal regions, composite states, or even history states. 

In other words, aspect-oriented model composition may require models to be com-
posed in complex ways rather than just before or after each other. Previous  
approaches to AOM do not support such complex compositions. It is for this reason 
that we propose a new model composition language in this paper.  

3   Background  

Before going on to explain the details of the MATA language, this section first  
presents necessary background material. MATA is based on the technique of graph 
transformations and so a brief introduction to graph transformations is given in this 
section. We also briefly describe critical pair analysis, which will be used to detect  
interactions between aspects. 

3.1   Graph Transformations 

A graph consists of a set of nodes and a set of edges. A graph transformation is a 
graph rule r: L → R from a LHS graph L to a RHS graph R. The process of applying r 
                                                           
1 The only known approach that does allow this is joinpoint designation diagrams (JPDDs) [13] 

but JPDDs do not support expressive advices. 
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to a graph G involves finding a graph monomorphism h from L to G and replacing 
h(L) in G with h(R). Graph transformations may also be defined over attributed typed 
graphs. A typed graph is a graph in which each node and edge belongs to a type. 
Types are defined in a type graph. An attributed graph is a graph in which each node 
and edge may be labeled with attributes where each label is a (value, type) pair giving 
the value of the attribute and its type. In a graph rule, variables may be used to capture 
a set of possible values and/or a set of possible types.  

Graph rules have previously been used for transforming UML models (e.g. UML 
refactorings [14]). Such work requires that UML models be represented as graphs. 
The usual approach is to define node types as the metaclasses in the UML metamodel. 
Graph rules can then be shown graphically using object diagrams.  

As an example, Fig. 3 shows a (simplified) fragment of the UML state machine 
metamodel. A state machine contains 1 or more (orthogonal) regions, each of which 
contains states. Each transition is from a source to a target state and has a trigger and 
actions. States may also have actions. A state may contain 0 or more regions. A state 
is composite if it contains 1 or more regions. If it contains 2 or more regions, then the 
regions in this state are orthogonal. The State metaclass has an attribute isComposite 
indicating whether or not the state is composite. Finally, states, triggers, and actions 
have names (as represented by a generalization relationship to namedElement).  

Figure 4 is an example graph transformation which moves all outgoing transitions 
from a composite state to its substates. The notation used to define this graph trans-
formation is that of [14]. (We defer to [14] for the subtleties of this notation.) Nodes 
in the graph are given as rectangles. Nodes are attributed and typed and so the UML 
object diagram notation can be used to represent them. There are two additional nota-
tions. First, a set of nodes of a certain type is shown by a stacked rectangle. For  
example, regions is a set of Regions associated with a composite state. Secondly, the 
cross in the figure is a negative application condition and says that any match against 
the LHS graph cannot have a substate with a transition trigger called triggerName. 
 

State

isComposite : 
Boolean

Region

Transition

0..1

*

1

*

1

1

* *

source
target

*

0..1

substates

subregions Trigger
0..1

1

namedElement

name : String

Action

0..1 *

StateMachine

0..1
1..*

*
0..1

 

Fig. 3. UML State Machine Metamodel 
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where ts is a set of copies of t

s1 : State
isComposite
= true

regions: 
Region

subs: State

t : Transition

source

s2 : State

target

source

: Transition : Trigger

name = 
triggerName

tr : Trigger

name = 
triggerName

s1 : State
isComposite = 
true

regions: 
Region

subs: State

source

ts: Transitions

s2 : State
target

tr : Trigger
name = 
triggerName

subregions

subregions

substates

substates

 

Fig. 4. Graph Rule to Move Down Transitions 

The LHS in Fig. 4 matches any graph with at least one composite state with an outgo-
ing transition. Furthermore, there should not be a transition on any of the substates 
with the same trigger. The RHS redirects the matched transition to all substates (by 
creating copies) thus moving the transition down in the state hierarchy. 

3.2   Critical Pair Analysis 

Critical pair analysis is a technique invented for term rewriting systems to check 
whether a set of rewrite rules is confluent. A set of rewrite rules is confluent if for all 
x,u,w with x » u and x » w, there exists a z such that u » z and w » z. Here, » denotes 
the application of zero or more rewrite steps–i.e. x » u means x rewrites to u in any 
number of rewrite steps. If a set of rewrite rules is finitely terminating, that is, there 
are no infinite rewriting sequences, then, confluence implies that all terms have 
unique normal forms. This in turn implies that, for a given term, the set of rules can 
be applied in any order and the result will be the same. This is an important property 
because it allows rules to be applied exhaustively without any concern about interac-
tions or dependencies between rules. 

As a simple example, consider a rewrite system consisting of two rules, p1 and p2 
with p1: f(X,X) →X and p2: g(f(X,Y),X) →h(X), where X and Y are variables. This is 
not a confluent rewrite system. This can easily be shown by choosing the term 
g(f(a,a),a) for a constant a, which rewrites under p1 to g(a,a) and under p2 to h(a). 
Since there is now no way to rewrite g(a,a) and h(a) to the same term, the rule set is 
not confluent. 

Critical pair analysis examines potential overlaps between rules. For instance, if X 
is unified with Y, p1 and p2 overlap at f(X,X). This leads to two possible rewriting re-
sults for the term g(f(a,a),a) because either of the two rules can be applied. 
(g(a,a),h(a)) is called a critical pair and corresponds to the two possible ways of re-
writing g(f(a,a),a). By analyzing all possible critical pairs, all potential overlaps are 
examined, i.e. all ways that might lead to divergent results are analyzed. In essence, 
therefore, critical pair analysis is a way of detecting structural interactions between 
rules. 



 MATA: A Unified Approach for Composing UML Aspect Models 199 

Formally, critical pairs can be defined as follows. If x→y and u→v are two rewrite 
rules with no variables in common (rename them if there are), and if x1 is a non-
variable subterm of x unifiable with u via most general unifier θ, then the pair yθ and 
the result of replacing x1θ in  xθ by vθ is called a critical pair. 

Critical pair analysis has been adapted to graph rules—see, for example, [15]. In 
the context of MATA, since an aspect is a graph rule, critical pair analysis can be  
applied to detect overlaps, i.e. interactions, between aspects. When applied exhaus-
tively, critical pair analysis will find all aspects (i.e. graph rules) that are in conflict or 
are dependent, where conflict and dependency are defined as follows: 

• Aspect A conflicts with aspect B if the application of aspect A prevents aspect B 
from being applied. 

• Aspect B is dependent on aspect A if the application of aspect A is necessary for 
aspect B to be applied.  

Examples of conflicts and dependencies for UML aspect models are given in  
Sect. 5. 

4   Specifying and Composing Aspect Models with MATA 

This section describes how to specify and compose aspect models with MATA. 
MATA considers aspect composition as a special case of graph transformation. The 
key difference with existing graph transformation approaches such as FUJABA [16] 
and VIATRA2 [17] is that these approaches define transformations using the abstract 
syntax of the modeling language. For example, the transformation in Fig. 4 refers to 
metaclasses such as Region and State. Even for a simple transformation such as the 
one in Fig. 4, the use of abstract syntax soon becomes complicated and it becomes 
very difficult to specify such rules correctly. This is particularly true for UML  
sequence diagrams because the metamodel for interactions in UML is quite compli-
cated. Since MATA is targeted toward model developers, not metamodeling experts, 
its aspect models must be specified in a way that is intuitive for users unfamiliar with 
the intricacies of the UML metamodel. This means that aspect rules should be speci-
fied using the concrete syntax of UML rather than UML metaclasses.  

For the most part, specifying a graph rule over UML using concrete syntax is 
straightforward. As long as a metaclass has a concrete visualization, users can draw 
diagrams using this visualization and it can be translated automatically to the relevant 
metaclass. Abstract metaclasses, which do not have a concrete syntax realization, 
cannot be drawn using concrete syntax. Such abstract metaclasses cannot be used in 
MATA and so MATA should not be viewed as a general purpose transformation lan-
guage, but rather a transformation language specialized toward aspect model compo-
sition. For aspect model composition, abstract metaclasses do not need to be used.  

MATA aspect models, therefore, are graph rules written in concrete syntax that are 
translated into equivalent abstract syntax for the purposes of executing the transfor-
mation. MATA does include some extensions to UML’s concrete syntax that are nec-
essary to support its notion of sequence pointcuts. Recall from Sect. 1 that sequence 
pointcuts are used to match against a sequence of model elements in the base. In 
MATA, this can be a sequence of transitions in state diagrams, or it can be a sequence 
of messages in sequence diagrams. Sequence pointcuts turn out to be a very powerful 
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mechanism for specifying aspects in a way where the aspect is as ignorant as possible 
of elements in the base. 

The remainder of this section explains the MATA language in detail. First, an 
overview of how to specify aspects in MATA is presented. This is followed by details 
on specifying joinpoints and advices in MATA.  

4.1   An Overview of Using Aspects in MATA 

Figure 5 provides an overview of how aspect models are specified in MATA. A 
model slice is defined as a collection of structural and behavioral models (UML class 
diagrams, state diagrams, and sequence diagrams) that capture a particular view of the 
system. The base model slice captures the core system model with crosscutting  
concerns removed. An aspect model slice captures the models for a particular cross-
cutting concern.  

The base model slice is composed of a set of base models. Similarly, an aspect 
model slice is composed of a set of aspect models. Base models are written in stan-
dard UML. Aspect models are written in the MATA language and are defined as  
increments of the base models or other aspect models. Each aspect model describes 
the set of model elements affected by the aspect (i.e. the joinpoints) and how the base 
model elements are affected (i.e. the advices). Note that an aspect model can only be 
defined as an increment of a model of the same type; for example, sequence diagram 
aspects can extend base sequence diagrams but not base state diagrams. 

The following process can be used to develop and compose aspect models. The 
modeler first develops the base model slice and a set of aspect model slices. Each  
aspect model slice is written as an increment over the base model slice or as an in-
crement over other aspect model slices. The user then invokes the MATA composi-
tion engine to compose the base slice with a selected subset of the aspect slices. 
 Before performing the composition, MATA applies critical pair analysis to detect in-
teractions within the set of chosen aspect slices. Interactions can be detected 
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Fig. 5. An Overview of MATA 
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between models of the same type. The results of this analysis are provided to the user 
and result in one of the following three conclusions: 

1. There are no interactions. 
2. There are interactions that mean that the aspects must be applied in a particular  

order. The user then specifies this order. 
3. There are interactions that cannot be resolved by applying the aspects in a particu-

lar order. Instead, either the base or aspect models must be modified to remove 
these unwanted interactions. 

Once all interactions have been resolved either by (2) or (3), the modeler instructs 
MATA to compose the chosen aspects with the base. The result is a new model slice 
that can be inspected, analyzed, or from which code can be generated. Note that there is 
no necessity to actually compose the models. The key point is that the MATA specifica-
tion contains a precise description of the aspect and base relationships. This description 
can either be used in composition or can be used to generate aspect-oriented code by 
generating the code for each model slice and generating the AOP code that specifies 
how to weave the aspect code into the base. In fact, MATA comes with a code generator 
that does exactly this, resulting in AspectWerkz [18] code (see Sect. 7).  

Note that MATA does not address how to partition a problem into an appropriate 
set of aspect slices, i.e. how to decide on the right set of aspects. This is a more  
general problem, which is out of the scope of this paper, but existing techniques for 
identifying aspects during requirements engineering, such as [19], could be applied to 
identify requirements-level aspects and then model these aspects during the analysis 
and design phases using MATA. 

4.2   Joinpoints, Advices and Aspects in MATA 

There are no explicit joinpoints in MATA. Any model element can be a joinpoint and 
pointcuts are defined as patterns over these model elements. Similarly, there are no 
restrictions on the advices in MATA. In particular, MATA is not limited to before,  
after, and around advices. Instead, any model element of the underlying model lan-
guage can be used. For example, composition in parallel is allowed in state diagrams 
using orthogonal regions.  

Hence, an aspect model in MATA consists of two parts, a pattern and a composi-
tion specification. Application of an aspect model to an existing base model is done in 
two stages: 

1. Find a match for the pattern in the base model. 
2. Modify the base model at the matched locations according to the composition  

specification. 

This is just a standard application of graph transformation techniques.  

4.2.1   MATA’s Pattern Language 
A pattern in MATA can be either a simple pattern or a complex pattern. (This distinc-
tion is made purely for presentational purposes.) A simple pattern is just a UML  
model with some elements marked as pattern variables. Pattern variables are typed 
over UML metaclasses and are regular expressions prefixed with a vertical bar “|” to 
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denote that they are variables. For a simple pattern, matching the pattern against a 
UML base model consists of finding an instantiation of the pattern variables in the as-
pect model such that the structure of the aspect model is preserved. Standard efficient 
algorithms for matching in graph transformations can be used for this [20].  

Complex patterns include patterns that define sequence pointcuts. Sequence  
pointcuts are currently provided for state diagrams and sequence diagrams, and are 
described next. 

Sequence pointcuts in state diagrams 
 
Sequence pointcuts in state diagrams are a general way of matching against multiple 
elements at once. This is particularly useful, for example, when one wants to match 
against a sequence of transitions beginning and ending with a particular event, but 
where the events on intermediate transitions are unimportant. Sequence pointcuts in-
troduce new concrete syntax into patterns because multiple model elements must be 
matched against. However, the concrete syntax is extended in as minimal a way as 
possible.  

A state diagram sequence pointcut, therefore, is an abstract representation of a  
family of state diagrams and contains pattern variables. In complex patterns represent-
ing sequence pointcuts, pattern variables have multiplicities. A pattern variable |X has 
a multiplicity of one. A pattern variable |X+ has a multiplicity of one or more. A com-
plex state diagram pattern matches a state diagram if all the pattern variables can be 
instantiated to elements of the state diagram in a way that preserves the variable’s  
metaclass and multiplicity.   

 
State Diagram Sequence Pointcut Syntax. We denote the type of a pattern variable 
by (|X : T). Only the metaclasses in the list below are allowed to have pattern variable 
multiplicities. We assume the metamodel of Fig. 3 in the remainder of this paper.  

1. (|X : State) matches against a single state. (|X+ : State) matches against 
one or more states and also matches the transitions between these states. 
More precisely, |X+ will match a fully connected substate machine–that is, 
each state included in the match must be connected by at least one transi-
tion to another state included in the match. 

2. (|X : StateMachine) matches a single state machine. (|X+ : StateMachine) 
is not allowed (because it is unnecessary). 

3. (|X : Action) matches a single action. (|X+: Action) matches a sequence of 
one or more actions. 

4. (|X : Trigger) matches a single event. (|X+: Trigger) matches a sequence 
of one or more events. 

5. (|X : Region) matches a single orthogonal region. (|X+: Region) matches 
one or more regions within the same composite state. 

Whenever possible, the concrete syntax of a pattern variable is the same as the UML 
concrete syntax of its type. See Fig. 6 for examples.  
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a |X b

Matches any state diagram with
states a,b separated by a single 
state

a |X+ b

Matches any state diagram with
states a,b separated by any number 
of states and transitions (i.e. another
state machine)

|X

|Y

Matches any composite state
with exactly 2 orthogonal regions

|X

|Y+

Matches any composite state
with at least 2 orthogonal regions

entry: |X+
e/|Y+

Matches any state with one or more 
entry actions and an outgoing transition
with event e and one or more actions

Matches any composite state, i.e.,
any state that contains one or more
states and transitions

(a)

(f)(e)

(d)
(c)

(b)

|X+

 

Fig. 6. State Diagram Pattern Examples 

Figure 6(a), for example, matches any sequence of states starting with a state 
named a, ending with a state named b, and with another state in between (different 
from a and b). In contrast, the variable |X+ in Fig. 6(b) matches one or more states in 
between a and b as well as any transitions between those states. This means that |X+ 
represents any number of states and transitions with at least one of those states con-
nected to the incoming transition shown, and at least one state connected to the outgo-
ing state shown. In a similar way, Fig. 6(c) and 6(d) show how to match against a 
specific number of regions and one or more regions, respectively. Figure 6(e) is self-
explanatory. Figure 6(f) matches a state which contains a state machine, i.e. there 
must be at least one substate, but the composite state may contain any number of  
substates and transitions. 

Note that, for any simple pattern, the name of the pattern variable may be  
omitted–so, Fig. 6(a) would be equivalent if |X was removed.  

 
State Diagram Sequence Pointcut Semantics. The pattern-matching semantics for 
state diagram sequence pointcuts is given by mapping each pattern to a typed graph 
consisting of instances of the appropriate metaclasses. If a pattern element has a mul-
tiplicity of one, it maps to a single instance of its metaclass. If it has multiplicity of 
one or more, it maps to a set of instances. To illustrate, Fig. 7 shows the mapping to 
metaclass instances for the patterns given in Fig. 6(c) and (d). The first pattern will 
match any composite state with exactly two orthogonal regions. The second pattern 
will match any state with at least 2 regions.  

A slight complication is introduced by the use of |X+ to match against a set of states 
and transitions in Fig. 6(b) and (f). In Fig. 6(f), for example, instead of mapping |X+ to 
a set of instances of State, it must be mapped to an instance of Region containing any 
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number of instances of State and Transition. This issue arises because of the peculiari-
ties of the UML metamodel.  

State Diagram Pattern Example. Figure 8 shows the state diagram pattern required 
in the example of Sect. 2. Recall that a sequence pointcut was deemed to be useful. 
The figure illustrates how to specify a sequence from callRemoteService to 
enableGUI. The pattern variable |X+ matches against any number of actions in the 
target state of the transition but will not match against enableGUI(). The effect is that 
the state diagram pattern matches any sequence starting with the callRemoteService() 
action, followed by a transition, and by one or more entry actions, and ending with the 
action enableGUI(). 
 

isComposite
= true

isComposite
= true

:State

:State

|X

|Y

|X

|Y+

:Region

:Region

:Region

:Region

 

Fig. 7. Metaclass Instance Representation of Patterns 

entry:callRemoteService(…)

entry: |X+
entry: enableGUI()

 
Fig. 8. State Diagram Sequence Pointcut for Figure 1 

Sequence pointcuts in sequence diagrams 
 
Sequence pointcuts are also supported in sequence diagrams, but are somewhat  
simpler. A sequence pointcut here corresponds to any sequence of ordered model 
elements, including messages and combined fragments. To match the concrete syntax 
closely, a new interaction fragment is introduced, with interaction operator any. An 
any fragment is a variable that will match against any sequence of messages and/or 
combined fragments. In Fig. 9, the Call Remote Service use case from the LHS of  
Fig. 1 is instead modeled as a sequence diagram. This is shown on the top half of  
Fig. 9. The bottom half of Fig. 9 gives a sequence pointcut equivalent to that shown in 
Fig. 8, but for sequence diagrams. Note how this sequence pointcut is agnostic about 
the messages occurring in between callRemoteService and enableGUI. 
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:Client

(a) Call Remote Service
Sequence Diagram

(b) Sequence Pointcut

serviceRequest

:Service
Controller

:GUI :Server

disableGUI
callRemoteService

ack

logReturnValue

updateGUI

enableGUI

:Service
Controller

:GUI :Server

enableGUI

callRemoteService

|X
any

 

Fig. 9. Sequence pointcuts for sequence diagrams 

4.2.2   MATA’s Composition Specification Language 
MATA’s pattern language identifies model elements in the base models that are 
crosscut by the aspect models. MATA also gives a way to define how model elements 
from the aspect should be composed with model elements from the base. MATA 
represents an aspect as a graph rule r: L → R, where L and R are UML models, as a 
single UML model in which model elements may be annotated with one of three  
stereotypes— <<create>>, <<delete>> or <<context>>.  

Given a pointcut definition as a MATA pattern, model elements from the aspect 
that should be added to the pattern are marked with the <<create>> stereotype. Simi-
larly, elements may be removed using the <<delete>> stereotype. Simple examples 
are shown in Fig. 10 for state diagrams. In (a), the pointcut is any state (where an ex-
plicit pattern variable |X has been omitted) and the aspect elements added are a state a 
and a transition to a. In (b), the pointcut is any pair of states with a transition between 
them, and the aspect element is a superstate that is added so that it contains these (and 
only these) two states. In general, <<create>> and <<delete>> can be used to add (or 
remove) any kind of aspectual model element. For example, an aspect could be added 
as an orthogonal region to an existing base model that matches a state pattern—see 
Fig. 10(c).  

The use of <<create>> is “optimized” in the sense that if a state is stereotyped as 
<<create>>, then any of its substates or transitions are also created. Hence, in  
Fig. 10(a), the transition is created but does not need to explicitly be given a <<cre-
ate>> stereotype. This optimization reduces the number of stereotypes a user must 
specify. However, in Figs. 10(b) and 10(c), the user wants to wrap a composite state 
around existing states. To stop these substates from being created, they are stereo-
typed as <<context>>. <<context>> therefore overrides the “optimization”. In par-
ticular, in Fig. 10(b), although the outer state is marked with <<create>>, the use of 
<<context>> means that the two inner states are matched against rather than created. 
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<<create>>
a

(a) (b)

ev/act
<<context>> <<context>>

<<create>>

(c)

<<context>> a

<<create>>

 
Fig. 10. Examples of Composition Specifications 

MATA’s composition stereotypes can also be applied to class diagrams and se-
quence diagrams. We illustrate with some examples of sequence diagram composition 
specifications.  

Figure 11 gives an example MATA aspect rule to add parallel behavior in a  
sequence diagram. Figure 11(a) is the MATA rule itself and (c) shows the application 
of the rule to a particular example. (In (a), the lifelines are pattern variables—as be-
fore, the pattern variables do not need to be explicitly named.) Figure 11(a) has two 
parts to it—the pattern to match against and elements to add. As with state diagrams, 
<<create>> in MATA sequence diagrams is “optimized” so that if <<create>> is ap-
plied to a combined fragment, it will also be applied to everything inside the fragment 
unless it is marked with <<context>>. Similarly, if <<create>> is applied to a lifeline, 
it is also applied to any messages that are sent to or are received by this lifeline.  
<<delete>> works in the same way. 

 
 

<<create>>

ppar

r
s

<<context>>

(a) MATA rule, R1

a:A b:B
p

q
ppar

r
s

a:A b:B

q

(c) Application of rules R1 and R2

<<create>>

ppar

r
s

<<context>>

(b) MATA rule, R2

b <<context>>

any

R1

R2

b

b

ppar

q
b

a:A b:B

r

s

<<context>>

 

Fig. 11. MATA Rules 

 



 MATA: A Unified Approach for Composing UML Aspect Models 207 

Hence, for the par fragment in Fig. 11(a), <<create>> also applies to messages r 
and s. To avoid <<create>> being applied to p, it is marked with <<context>>. There-
fore, the match defined in Fig. 11(a) is any pair of lifelines with a message p from one 
lifeline to the other. The effect of applying the rule in Fig. 11(a) is to introduce a new 
par fragment around all instances of message p, and this new fragment will have 
messages r and s occur in parallel with p. This is shown in Fig. 11(c). 

Figure 11 also shows an example of how sequence pointcuts and composition 
specifications can be used together in MATA. The rule R2 in Fig. 11(b) will match 
any two lifelines with messages p and b with any number of messages between p and 
b. (Note that the messages matched by the any fragment need not have the same 
sender and receiver lifelines as p and q–that is, the lifelines across which any is drawn 
are irrelevant.) The result of applying the rule is shown in Fig. 11(c). Note how the  
result is different than if rule R1 is applied. For R2, the pointcut is the sequence of  
messages p, q, b, and so these messages all appear in the first operand of the par  
fragment.  

 
Semantics of MATA’s composition language 

 
As already indicated, the use of the <<create>> and <<delete>> stereotypes are “op-
timized” to reduce the burden on the modeler of applying these stereotypes. This  
“optimization” is governed by the rules of neighborhood; for example, if <<create>> 
is applied to a model element, it is also applied to all of its neighbors. Similarly, it 
holds true for <<delete>> and <<context>>. Since this optimization process can get 
quite involved for complex examples, we define here precisely how the optimization 
works. 

The semantics is defined by transforming an aspect into the equivalent graph rule 
in the form LHS → RHS. This is done in two steps. First, the stereotypes <<create>>, 
<<delete>> and <<context>> are propagated throughout the aspect model. Second, 
the stereotypes are eliminated by transforming the aspect into a graph rule. 

In the first step, each stereotype is propagated to its neighbors. A neighbor may be 
an immediate neighbor or a remote neighbor. For a given model element, its immedi-
ate neighbors are all those related model elements that are considered strongly related 
to it. For example, the trigger events on a transition are strongly related to the transi-
tion itself because they cannot exist without the transition. States are strongly related 
to their transitions because if a state is deleted, then its transitions must be deleted lest 
a hanging transition remains. Container states are considered to be strongly related to 
the elements they contain. For example, composite states are strongly related to the 
contained states. On the other hand, a transition is not strongly related to its target or 
source state because the transition can be deleted without deleting the states and the 
result will still be a well-formed model.  

Table 1 gives the immediate neighbors for the model elements considered in this 
paper.  

A remote neighbor of a model element is any neighbor of an immediate neighbor 
of the model element. The immediate neighbors are designed both to ensure termina-
tion of the propagation process and, as much as possible, to avoid aspects introducing 
ill-formed models. 
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There are two precedence rules that must be taken into account during the propaga-
tion process. This is because a model element may end up with more than one MATA 
stereotype either because different stereotypes were propagated from different direc-
tions or because the user has specifically assigned a stereotype. In the former case, 
<<context>> always takes precedence over <<delete>> or <<create>> and so  
<<delete>> and <<create>> are removed in this case. In the latter case, the user-
defined stereotype always takes precedence. For example, if a model element is 
marked as <<delete>> by the user but <<context>> is propagated to it, then  
<<context>> is removed. If the propagation process ends up with <<create>> and 
<<delete>> both applied to the same element, then there is an inherent inconsistency 
in the aspect rule and the rule should not be applied. This can happen, for instance, if 
the user specifies that a state should be deleted but an incoming transition to that state 
should be created. Obviously, one cannot create a new transition to a state that is 
marked for deletion. 

The following summarizes the propagation process. 
 
for each MATA-stereotyped model element, m, in the aspect model: 

let N be the set of immediate neighbors of m; 
propagate the MATA stereotypes of m to all elements of N; 
for each n in N,  

apply the propagation process 
end foreach 

end foreach 
 
for each model element, m, in the aspect model: 

eliminate MATA stereotypes according to the precedence rules 
if m is stereotyped with both <<create>> and <<delete>>, STOP 

end foreach 
 
The second step of the semantics definition is to construct the equivalent graph 

rule. This is done easily. <<create>> and <<delete>> are simply a way of representing 
both the LHS and RHS of a graph rule on the same diagram. The familiar LHS→ 
RHS notation can be obtained by considering the LHS as all elements either with no 
stereotype or with <<context>> or <<delete>>. The RHS is the LHS but with the 
<<create>> elements added and the <<delete>> elements removed. The Appendix 
discusses how we do the conversion from UML models in concrete syntax to typed 
graphs. 

Although the propagation algorithm is designed as much as possible to ensure the 
result of applying an aspect is a well-formed model, there are still situations where 
this cannot be guaranteed. For example, if state X has a transition to Y and both Y and 
the transition are marked as <<context>>, whereas X is marked as <<create>>, then 
this rule looks for an existing transition with some undefined source state and creates 
a new source state for the transition. However, a transition cannot have two source 
states. We leave as future work to define constraints over how rules are defined that 
would either avoid such rules or alert the user. Experience has shown that such rules 
rarely occur in practice.  
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Table 1. Immediate Neighbors for Some Common Model Elements 

The table should be read as follows. The second column lists model elements. For 
each of these elements, if a MATA stereotype is applied to it, then all elements  
from the third column are also given the stereotype. So, for example, if a class has a 
<<delete>> stereotype, all associations connected to this class will also be deleted.  

Diagram Model element Immediate Neighbors 
Class diagram Class Connected Association, Contained 

Attribute, Contained Operation 
Aggregation or 
Composition Asso-
ciation 

Aggregate or Composite Classes

Generalization Child Classes 
Other Association  None 

State diagram State Incoming or Outgoing transition, Subs-
tates, Entry or Exit Actions  

 Transition Event on the transition, Action on the 
transition, Guard on the transition 

Event None
Action None

Sequence diagram Combined fragment Model elements contained in the frag-
ment 

Lifeline Incoming or outgoing message
Message None

 

4.3   MATA Example 

Finally, in this section, we return to the remote service call example introduced in  
Fig. 1. We now consider how to specify this aspect composition in MATA. The base 
model slice consists of the models on the LHS of Fig. 1. The aspect model slice is an 
adaptation of the models on the RHS of Fig. 1. The aspect models must be put into 
MATA syntax so that they define the failure handling behavior as an increment over 
the base model slice. Figure 12 therefore shows the state-dependent part of the aspect 
model slice for failure handling. To make it easier to read, elements that are created or 
deleted are in bold italics. Note that a MATA rule contains the pattern to match 
against, the aspect model elements, and the composition operators that detail how 
those aspect elements are merged with the base. The effect of applying this rule is 
that: (1) a match is found in the base model with the state diagram sequence pointcut, 
and (2) the matched submodel of the base is modified by creating and deleting ele-
ments according to the <<create>> and <<delete>> composition operators. Note that 
a combination of <<create>> and <<delete>> is used to move the actions that match 
against |X+.   
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entry:callRemoteService(…)

entry: |X+ <<delete>>
entry: enableGUI()

<<create>>[retries>MAX]
remoteException/

<<create>>[retries<=MAX]
remoteException/
<<create>>callRemoteService(…);
<<create>>retries++

/ <<create>>|X+

 

Fig. 12. MATA Specification of the Example in Figure 1 

5   Detecting Aspect Interactions 

Since aspect models are represented as graph rules in MATA, critical pair analysis 
can be applied, as explained in Sect. 3, to detect interactions between aspects. In this 
section, we introduce a small example to illustrate how this works. The example is for 
class diagrams, but the same principles apply to sequence and state diagrams. 

Service
Controller

Server

Service
Controller

Proxy Server

<<delete>>

<<create>>

Validator
<<create>>

Service
Controller

Proxy Server

<<delete>>

<<create>>

Authenticator
<<create>>

Proxy ServerCache
<<create>>

(a)

(b)

(c)

(d)

 

Fig. 13. Simple Example of Aspect Model Interaction  

(Note how the concept of immediate neighbor is used so that, for example, 
<<create>> does not need to be applied to the association from Proxy to Cache.) 
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Recall the ongoing example, which involves the call of a remote service from a 
ServiceController to a Server. Figure 13(a) gives a simple class diagram illustrating 
the relationship between ServiceController and Server. Figure 13 (b)-(d) shows three 
aspects that might be specified to add functionality to the network communication. 
Figure 13(b) introduces a basic proxy server that simply validates a request before 
forwarding it. Figure 13(c) is an aspect introducing caching to an existing proxy, and 
Fig. 13(d) adds an access control proxy. The intention is that all three of these aspects 
will be added to the base so that all communication between the ServiceController 
and Server goes through a caching, validating, access control proxy. 

Following the process to use MATA outlined in Sect. 4.1, the modeler would  
instruct MATA to apply all three aspects and, before actually composing the models, 
it would apply critical pair analysis to detect dependencies and conflicts between the 
aspects. Because of the simplicity of the example, it is easy to see in this case that 
there are indeed serious aspect interactions and that a random order of application of 
the aspects may result in an incorrect result. For example, if aspect 13(d) is applied to 
the base first, then aspect 13(b) can no longer be applied because it cannot match the 
result obtained after applying aspect 13(d)–aspect 13(d) removes the association be-
tween ServiceController and Server, which is needed to match and apply aspect 
13(b). Aspect 13(c) will still apply but the result of applying the aspects in this order 
means that, since 13(b) cannot be invoked, the proxy validity check will not occur. 
For large examples, such details could easily be overlooked, resulting in incorrect 
models as a result of applying aspects. 

Table 2 summarizes the results of critical pair analysis applied to this example. The 
table tells us that there is conflict from aspect 13(d) to aspect 13(b). In particular, this 
means that if aspect 13(d) is applied, then aspect 13(b) cannot be. This matches the  
intuition in the previous paragraph. Conflicts are generally more serious than depend-
encies. Dependencies can be dealt with by applying the aspects in a particular order 
(and this can be specified in the MATA tool). Conflicts, on the other hand, can some-
times be resolved by enforcing an application order, but, in the worst case, imply a 
fundamental inconsistency in the specification that should be fixed.  

Table 2. Dependencies and Conflicts in Figure 13. An entry for row X and column Y implies a 
dependency or conflict from X to Y. 

row→column Aspect (b) Aspect (c) Aspect (d) 
Aspect (b)  Dependency Conflict 
Aspect (c)    
Aspect (d) Conflict Dependency  

Table 3. Revised Dependencies and Conflicts 

row→column Aspect (b) Aspect (c) Aspect (d) 
Aspect (b)  Dependency Dependency 
Aspect (c)    
Aspect (d)    
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For this example, the modeler might realize, based on the results in Table 2, that a 
better model would allow aspect 13(b) to introduce the basic validating proxy and 
then other aspects should add functionality layers on top of this proxy. This would re-
sult in modifying aspect 13(d) to only introduce the Authenticator. (It would look 
identical to Fig. 13(c) except Authenticator would replace Cache.) Once this is done, 
and critical pair analysis is re-run, the results in Table 3 are obtained. Table 3 shows 
us that aspects 13(c) and 13(d) are now orthogonal since there are neither dependen-
cies nor conflicts between them. This implies that the application order of 13(c) and 
13(d) is irrelevant. However, there are still dependencies from aspect 13(b) to the 
other rules and so aspect 13(b) must be applied before those. The modeler should 
therefore specify to apply 13(b) first followed by either 13(c) or 13(d).  

6   Extended Example 

The preceding sections have introduced the major concepts in MATA. To bring eve-
rything together, this section provides an extended example of MATA that includes 
both static and dynamic models. A cell phone application is used to illustrate the  
concepts that have been introduced so far.  

We will model three use cases for a simple cell phone—Receive a Call, Take a 
Message, and Notify Call Waiting. The goal here is to compose models for the three 
use cases. To do this, we will consider Receive a Call to be the base use case, and the 
other two use cases to be aspects. The base use case is modeled in UML, whereas the 
aspect use cases are modeled as MATA models, that is, as increments of the base 
models. Note that the models for the aspect use cases refer only to those elements in 
the base that are needed for the modifications to take place.  

Figure 14 shows (simplified) static and dynamic models for the base use case, Re-
ceive a Call. The phone contains a ringer, a phone component, a display unit, and a 
keypad. Upon receiving an incoming call, the phone notifies the user by displaying 
the caller information on the display unit and sending a ring message to the ringer. 
The user is allowed to either accept the call (then hang up later) or not accept (i.e. dis-
connect) the call.  

Figure 15 gives the behavior models for the two aspects: Take a Message and No-
tify Call Waiting. Figure 15(a) is a sequence diagram for Take a Message. If the 
phone rings for a specified amount of time (i.e. there is a timeout), the call goes to a 
messaging system. In MATA, this is specified by creating a new alt fragment since 
forwarding to voice mail is an alternative scenario to the case where the callee accepts 
the call. Note that an any fragment is used to match against all messages coming after 
Ring in the base. This is needed since once a message is taken, the user should not be 
able to pick up the call or disconnect it. Hence, the alt fragment must be wrapped 
around all messages in the base concerned with call pick up or disconnect.  

In Fig. 15(b), the aspect rule matches any two states that have a transition between 
them with an event named Incoming call. The effect of the aspect is to add an addi-
tional transition capturing the voicemail behavior. When this rule is applied, the two 
states will match against Idle and Waiting in Fig. 14(c). The effect is to add a transi-
tion from Waiting back to Idle. 
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Incoming call
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Ring

Pick up

Hang up

Disconnect
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Fig. 14. Models for the Base Use Case 
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Fig. 15. Aspect Models for Take a Message and Notify Call Waiting 
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Figure 15(c) introduces messages for putting an incoming call on hold when a call 
is already underway. These new messages are only relevant when a call is taking 
place, that is, in between messages Pick Up and Hang Up in the base. Hence, the loop 
fragment is marked with a <<create>> stereotype and this fragment is inserted in  
between Pick Up and Hang Up. Note that, in this case, it would be sufficient to leave 
out the Hang Up message in 15(c), which, in effect, would insert the new behavior af-
ter Pick Up. However, we include Hang Up because there may eventually be other 
occurrences of Pick Up, which should not be affected by the aspect. 

Figure 15(d) introduces a new state, Waiting for hold prompt, into the base to cap-
ture the new behavior for the call waiting use case. Note that the two transitions in 
15(d) implicitly have <<create>> stereotypes because they are immediate neighbors 
of the newly created state. 

6.1   Interactions between Aspects 

We can see that there is a dependency between the two state diagram rules for Take a 
Message and Notify Call Waiting. This dependency arises because Notify Call Wait-
ing creates a transition with event Incoming Call (Fig. 15(d)) whereas Take a Mes-
sage matches against the event Incoming Call (Fig. 15(b)). Hence, if Take a  
Message is applied to the base before Notify Call Waiting then any incoming call that 
is received during an existing call cannot be sent to voicemail. Figure 16 gives the re-
sults of composing the two aspects with the base in either order. In 16(a), Take a Mes-
sage is applied to the base before Notify Call Waiting. In 16(b), it is applied after. The 
difference is that there is an extra transition from Waiting for hold prompt to On call 
in 16(b) which captures the fact that an incoming call may be sent to voice mail even 
when there is currently an active call taking place. The difference in the composed 
state diagrams arises because the rule for Notify Call Waiting introduces a new transi-
tion with event Incoming call. Hence, when the Take a Message rule is applied in 
16(b), there are two transitions with event Incoming call and so the rule applies twice.   
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Fig. 16. Base and Aspect State Diagrams Composed 
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MATA detects these kinds of dependencies automatically. Ultimately, the modeler 
must decide which order is the correct one, but MATA can at least provide some assis-
tance in flagging cases that must be considered more carefully. If there are no conflicts 
or dependencies, then the rules can be applied in any order. Critical pair analysis is par-
ticularly important when aspects are reused in a different context than originally  
intended since new conflicts and dependencies may then arise inadvertently.  

7   Tool Support 

7.1   Overview 

This section describes the implementation of the MATA tool. MATA is designed as a 
vendor-independent tool but currently works on top of IBM’s Rational Software 
Modeler (RSM). Each model slice is modeled as a package. Within this package, the 
class diagrams, sequence diagrams, and state diagrams for the slice are maintained. A 
simple UML profile is applied so that the base model slice is stereotyped as <<base>> 
and aspect model slices are stereotyped as <<aspect>>. Users may select a subset of 
the aspects and the tool generates the composed model for all of these aspects and the 
base. The user may also define an ordering of aspect composition in case one aspect 
needs to be composed before another. If an ordering is not specified, the tool selects 
an order non-deterministically. Critical pair analysis is always applied before compo-
sition and the results are presented to the user. 

Since MATA uses graph transformations as the underlying theory, it relies on an 
existing graph rule execution tool to apply graph rules. The graph rule execution tool 
used is AGG [21]. MATA converts a UML base model slice, captured as an instance 
of the UML2 metamodel by RSM, into an instance of a type graph, where the type 
graph represents a simplified form of the UML2 metamodel. MATA composition 
rules are converted into AGG graph rules and are executed on the base graph auto-
matically. The results are converted back into a UML2 compliant model and are  
displayed in RSM. Critical pair analysis is done by AGG and the results are converted 
into RSM so that detected dependencies and conflicts can be understood by the user. 

The details of the conversion to type graphs are not given here. It suffices to say 
that for simple patterns, the mapping is a straightforward transformation from a UML 
metamodel instance to a type graph instance. Full details are given in [22]. For se-
quence pointcuts, the transformation is more complex because AGG does not directly 
support these. The effect is achieved by tagging model elements to keep track of their 
relative positioning and then using a sequence of graph rules to manipulate the se-
quence pointcut matches. This is an implementation detail that we do not go into here. 
So far, sequence pointcuts have been implemented for sequence diagrams but not for 
state diagrams.  

In principle, MATA could use any existing graph rule execution tool (e.g. 
VIATRA2 or FUJABA) as its underlying engine, but AGG was chosen because of its 
support for critical pair analysis. Although built on top of an existing engine, MATA 
provides some unique features that make it very suitable for aspect modeling and 
composition, namely: (1) graph rules are defined graphically using the concrete syn-
tax of UML rather than using metaclasses; (2) MATA supports sequence pointcuts, 
that is, an aspect may match against a sequence of messages or a sequence of  
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transitions. This is supported directly in the MATA rule syntax; (3) the stereotype 
<<context>> is unique to MATA; and (4) dependencies and conflicts between aspects 
can be detected automatically using critical pair analysis. 

7.2   Generating AspectWerkz Code from MATA Models 

In general, the user has a choice whether to compose the aspect and base models dur-
ing modeling or to compose them once code has been generated from them. In the 
former case, the composed models can be used to generate code using existing code 
generators. In the latter case, aspect-oriented code is generated automatically using 
MATA’s built-in generator, which generates AspectWerkz [18] code. AspectWerkz 
was chosen for its dynamic weaving capabilities2

‡ since this research has been con-
ducted within the context of a larger project on integrating model-driven development 
and runtime weaving. The code generator, however, aims to decouple the MATA  
representation from the particular AOP language used, and therefore, introduces an 
intermediate layer in the mapping. This layer defines a metamodel of common AOP 
language constructs and can be mapped to different AOP languages supporting those 
constructs. 

The remainder of this section gives a brief introduction to AspectWerkz, a short 
description of the code generation facilities in MATA, and a short example. 

7.2.1   AspectWerkz 
AspectWerkz is a Java-based AOP language that does not add any new language  
constructs to Java, but instead supports declaration of aspects via Java annotations. 
AspectWerkz has now been merged with AspectJ. However, the full dynamic weav-
ing capabilities of AspectWerkz are not available in AspectJ and so we continue to 
use AspectWerkz in this paper. AspectWerkz includes support for dynamic weaving 
of aspects, which makes it possible to redefine advices and introductions at runtime 
without any class reloading or new weaving phase as well as to declare new pointcuts 
at run time. AspectWerkz was chosen to be the target of MATA’s code generator be-
cause of its ability to support research projects in adaptive systems. However, because 
of the merge of AspectWerkz and AspectJ, it would be straightforward to adapt the 
code generator to produce AspectJ code (albeit without the runtime weaving capabili-
ties). An alternative AOP language with run time weaving facilities would be PROSE 
[23]. Partly because of the uncertainty of future runtime weaving languages, MATA’s 
code generator has been implemented following MDA principles, that is, by mapping 
first to an intermediate platform-independent aspect metamodel before mapping to 
AspectWerkz.  

In AspectWerkz, annotations can be used to define aspects (see Fig. 17). An aspect 
is just a class with the annotation @Aspect. The usual advices–before, after and 
around–can also be defined using annotations. For example, in Fig. 17(b), an around 
advice is defined to add new behavior to method1 when field1 is set to 1. Introduc-
tions in AspectWerkz can be defined using mixins. Figure 17(c) shows a mixin for 
adding new fields and methods to Class1. Note how the mixin is just a class with an 
annotation. 
                                                           
2 Although Aspectwerkz has now been integrated into AspectJ 5, the runtime weaving capabili-

ties do not exist in AspectJ 5. 
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public class Class1 {

int field1 = 0;
…

public void method1(String param) {       
if(field1 == 0) {

object1.method1(param);
object2.method1();

}
}
public void method2() 

{ /*method2 logic*/ }
…

}

@Aspect
public class Aspect1 { 

@Around(“execution(public * *.Class1.method1(..))”)
public void around_method1(JoinPoint jp){

Class1 baseClass = (Class1) jp.getTarget();
if(baseClass.field1 == 1){

baseClass.object3.method1(param) 
baseClass.object2.method1(); 
return;

} else {
jp.proceed(); 

}
}

}

@Mixin(“within(public *.Class1)”)
public class Class1Mixin {

public Class1Mixin(Object target)
{ Class1 baseClass = (Class1) target; }    

int field2 = 0;
public void method3() 

{ /*logic for the new method*/ }
public void method4() 

{ /*logic for the new method*/ }
}

Influence on  
Structure

Influence on 
Behavior

(a)

(b)

(c)

 
Fig. 17. Syntax of AspectWerkz 

7.2.2   Code Generation in MATA 
MATA currently generates AspectWerkz code from UML class diagrams and UML 
state diagrams. It takes a base model slice and a set of aspect model slices (selected by 
the user) and generates Java code for the base model slice and an AspectWerkz aspect 
for each of the aspect model slices. State diagrams are implemented using the State 
pattern. 

To maintain independence from the target AOP language, code is generated in two 
phases. The first phase maps MATA models to an AOP metamodel that defines the 
concepts common to the most widely used AOP languages but does not commit to a 
particular AOP language. The second phase generates AspectWerkz code from this 
metamodel but could be adapted fairly easily to generate, for example, AspectJ code.  

The intricacies of the code generator are outside the scope of this paper. Instead, we 
present a simple example. Recall the cell phone example from Sect. 6. Figure 14 shows 
the base state diagram, whereas Fig. 15 shows an aspect state diagram that introduced a 
new state and transitions for the Notify Call Waiting use case.  

Figure 18 gives the code generated for these two state diagrams. The LHS of the fig-
ure is an implementation of the base state diagram using the State pattern. The RHS 
uses mixins to add new states and transitions to the base behavior. Note, in this example, 
that a single new state is created (Waiting for Hold Prompt). This is implemented as a 
new object that implements the State interface. In Fig. 15, a new transition, Incoming 
Call, is added to the On Call state. This is captured in the aspect code by a mixin ap-
plied to the OnCall class. There also needs to be a mixin applied to the Phone class to 
redirect the new transition OK. The upper portion of the RHS of Fig. 18 is a book-
keeping code needed to ensure proper placement of the aspect code. 

 



218 J. Whittle et al. 

public class Caller 
{ /* caller interfacing logic */ }

public class User 
{ /* user interfacing logic */ }

public class Phone {
public void incomingCall(String info) 

{ curState.incomingCall(info); }
public void pickUp() { curState.pickUp(); }
public void hangUp() { curState.hangUp(); } 
public void disconnect() { curState.disconnect(); }

//State Machine Implementation
public interface State {

void incomingCall(String info);
void pickUp(); 
void hangUp(); 
void disconnect();

}
class Idle implements State {

public void incomingCall(String info) {
display.displayCallInfo(info);
ringer.ring();
curState = waiting;

}
void pickUp() { /*do nothing*/ } 
void hangUp() { /*do nothing*/ }
void disconnect() { /*do nothing*/ }    

} //other states follow the same approach...
}
public class Ringer() {

public void ring() { /*ringing logic*/ }
}
public class Display() {

public void displayCallInfo(String info)
{ /*display logic*/ }

}

@Mixin(“within(public * ReceiveACall.Phone)”)
public class Phone extends PeerClass {

//initialization code…
public void incomingCall(String info) { 

curState.incomingCall(info); }
public void oK() { curState.oK(); }

//State Machine Implementation
interface State

{ void incomingCall(String info); void OK(); }
@Mixin(“within(public ReceiveACall.Phone$OnCall)”)
class OnCall extends PeerState implements State {

void incomingCall(String info){
display.displayCallInfo(info);
setCurState(waitingForHoldPrompt);       

}
void OK() {/*do nothing*/ }

}
class WaitingForHoldPrompt extends PeerState implements State {

void OK(){
caller.putOnHold();     //instance of NotifyCallWaiting.Caller
setCurState(OnCall);

}
void incomingCall(String info) {/*do nothing*/ }

} // other mixins follow the same approach…

@Aspect
public class NotifyCallWaiting extends MAspect { 

@Around(“execution(public * ReceiveACall.Caller.*(..))”
+” || execution(public * ReceiveACall.Phone.*(..))”
+ … /*all base classes referenced by the aspect*/ )

public void crosscut(JoinPoint jp) {
if(enabled == true)

this.weave(jp);
else

jp.proceed();
}//…

 

Fig. 18. Code Generated for the Cell Phone Example 

8   Evaluation and Discussion 

This section presents a preliminary evaluation of MATA. In [24], the authors argue 
that an aspect composition language should satisfy a number of basic requirements. 
(The arguments made in [24] specifically address aspect-oriented requirements engi-
neering but the discussion generalizes to modeling). We include five of these re-
quirements here and assess whether MATA satisfies them. According to [24], an  
aspect composition language should aim to be: 

1) Environment-friendly. A composition language should allow an aspect to 
be defined without requiring changes to the base model. In particular, the 
base should not need to be structured or designed in a particular way to sup-
port the aspect. This is a special case of obliviousness. If a composition lan-
guage is very limited in expressiveness, for example, it might require the 
base to be structured in a particular way. The base would still be oblivious to 
the aspect, in the sense that it does not expose any aspect-specific interfaces, 
but the composition could only take place under certain design restrictions 
applied to the base. In the same way, an aspect should not need to be written 
in a special way so that it can be composed with the base. 
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2) Scalable. A composition language should scale to large industrial models. 
3) Familiar. In order to ease adoption of the composition language, it should 

already be familiar to model developers.  
4) Formal. The composition technique should be as formal as possible without 

the formalism becoming a barrier in practice.  
5) Exhaustive. Models may be composed in many different, complex, and un-

expected ways. A composition technique must be exhaustive in that it should 
provide the means to express all desired compositions. For example, for 
composing sequence diagrams, composition rules should cover not just se-
quences and alternatives (i.e. before/after/around) but also concurrency, 
loops, and interleaving. 

 
We now assess how MATA performs against these criteria. We will focus in this pa-
per on exhaustiveness and will present the results of a small empirical study that  
suggest that (1) MATA is more exhaustive than competing approaches and (2) that 
exhaustiveness is required in practical examples. First, however, we will briefly  
discuss the other requirements. Scientific studies have not yet been undertaken for 
these. 

8.1   Environment-Friendliness 

Regarding the first requirement, MATA clearly satisfies it because MATA allows any 
change to the base model. Hence, any design decisions in the base could ultimately be 
modified. This is in contrast to other approaches in which only a selection of prede-
fined model elements are allowed to be joinpoints. Therefore, it might be difficult or 
impossible to modify base elements not in this predefined selection. In Sect. 2, we 
saw an example where approaches based on AspectJ might be able to define a compo-
sition but would do so in a non-optimal way because either the aspect or the base 
model would have to be broken into fragments, that is, they would have to be written 
in a particular way to support the composition. The treatment of this example using 
MATA does not require such decomposition. 

As noted above, this criterion is a special case of obliviousness. Recently, a num-
ber of authors [25, 26] have argued that full obliviousness is not desirable and that 
programs should have well-defined interfaces for aspect composition (e.g. joinpoint 
interfaces). While this argument does not negate the points made in the previous 
paragraph, we broadly agree with this way of thinking and note that MATA could 
easily support such interfaces in the future. Currently, all model elements are accessi-
ble as joinpoints, but these could potentially be limited by the user. The difference 
with previous approaches would be that the modeler, instead of the language designer, 
would have full control over which joinpoints to limit. 

8.2   Scalability 

This criterion is always difficult to provide evidence for. We have applied MATA in a 
variety of settings for reasonably large examples, which tends to suggest, at least ini-
tially, that it is straightforward to specify aspects using MATA. The major application 
areas to which we have applied MATA are as follows: 
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1. Modeling Software Product Lines. Jayaraman et al. [27] report on how 
MATA was used to model features as aspects in software product line de-
velopment. Each feature is represented as a model slice as an increment 
over other features. Critical pair analysis was applied to detect feature in-
teractions. As part of this work, Jayaraman et al. took an existing product 
line–namely, the microwave oven product line from Gomaa’s book [28]–
and modeled it using MATA.  

2. Maintaining the Separation of Use Cases throughout the Modeling Proc-
ess using the technique in [6]. We conducted an experiment to refactor a 
number of student design solutions into an aspect-oriented MATA design 
–see Sect. 8.5 for details. 

3. Modeling Security Requirements as Aspects. We have applied MATA to 
the problem of modeling security concerns during requirements engineer-
ing. In particular, security use cases were modeled as MATA sequence 
diagrams and were composed with sequence diagrams for the base use 
cases. This approach has been conducted on a number of case studies in-
cluding an electronic voting system [29] and requirements for a positive 
train control system [30] under consideration by the Federal Railroad 
Administration.  

 
These case studies lend evidence that MATA can be used in practice. For larger indus-
trial models, there is, of course, an efficiency question regarding both the graph trans-
formation composition mechanism and critical pair analysis. For both of these, MATA 
relies on AGG’s implementation. In our experience, we have found that composition is 
very efficient. Critical pair analysis, however, can take time. The efficiency depends on 
the complexity of the metamodel for the diagram being analyzed. For class diagrams, 
critical pair analysis generally takes only a few seconds. For state diagrams, it can take a 
few minutes on large examples. For sequence diagrams, it has taken up to one hour in 
our most complex case study. This is because the interaction metamodel for UML is 
very complex. In fact, we have made a number of simplifications to the metamodel to 
allow us to translate it into a type graph in AGG that allows relatively efficient analysis. 
This does mean that not all of the modeling elements in sequence diagrams are currently 
supported by MATA. We consider it a future research question to develop an efficient 
analyzer for large UML models. The work presented here provides evidence that the 
analysis would be useful but further work is required on a more efficient implementa-
tion. In particular, critical pair analysis in AGG is a very general implementation and it 
may be that it can be specialized for the specific tasks that MATA takes care of, mean-
ing that the efficiency could be improved.  

8.3   Familiarity 

For MATA, familiarity means that the MATA language should be as close to UML as 
possible. Graph transformations are traditionally written over the abstract syntax of a 
modeling language because this is the most general approach. However, in MATA, 
aspects (which are graph rules) are written in concrete syntax with a small number of 
extensions to support sequence pointcuts. The use of UML’s concrete syntax makes 
MATA broadly applicable because no experience with metamodeling is required. 
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8.4   Formality 

Since MATA is based on graph transformations, it is founded on a strong formal foot-
ing. The application of critical pair analysis is possible because of this foundation.  

8.5   Exhaustiveness 

This is the main criterion considered in this paper. As discussed in Sect. 1, there have 
been two types of approaches to AOM. The first is to use a generic merge algorithm 
(that can be tailored) to compose an aspect and a base model. The second is to reuse 
and adapt the joinpoint model and advices from AspectJ. Henceforth, we will refer to 
the first approach as GM (for generic merge) and the second as AJ.  

MATA is more exhaustive than either GM or AJ because any model element can be 
a joinpoint and any model element can be an advice. However, the question remains 
whether the additional expressiveness is actually required in practice. To answer this 
question, we undertook an investigation of existing design solutions to see which kinds 
of compositions are needed in practice. Our experiment attempted to answer the follow-
ing question: In practical examples, are model composition mechanisms like GM or AJ 
enough or is more expressiveness needed? The investigation was undertaken for the use 
case slice technique of Jacobson and Ng [6]. Use case slices are a way of maintaining a 
use case-based decomposition throughout the development lifecycle. As an example, for 
state diagrams, this means that each use case maintains its own state diagram and these 
state diagrams are composed during late design or implementation to obtain the overall 
design.  

In [6], Jacobson and Ng do not adequately address how to compose use case slices 
during design. Their approach is to apply AspectJ-like composition operators. The  
hypothesis of this paper is that such operators are not expressive enough. To test this 
hypothesis, we examined existing UML designs, refactored those designs to reflect the 
use case slice technique of Jacobson and Ng, and then investigated the level of expres-
siveness required to compose designs from different use case slices. Because of the 
availability of the models, we chose to study seven student team design solutions, each  
expressed in UML consisting of use cases, class diagrams, interaction diagrams, and 
state diagrams. Only the use cases and state diagrams were considered in the study, and 
we focused on compositions of state diagrams from different use case slices.  

Projects were conducted by teams of three to four students. Each of the seven pro-
jects tackled the same problem statement using the same set of use cases. The scale of 
the student solutions is clearly not industrial in size and the results offered here are 
meant to be just the first step.  

Based on an analysis of the compositions required in the state-dependent use case 
slices, we identified four categories of composition that occurred.  

 
C1: One-to-One State Matching. The first category includes model compositions 
that can be expressed using simple matching of states. In other words, for two state 
diagrams, S1 and S2, with state sets Σ1 and Σ2, the composed state diagram S1• S2, 
can be obtained by defining a one-to-one mapping θ: Σ1 → Σ2. Figure 19(a) gives an 
example. In the student solutions, this case occurred typically when two use cases  
defined state diagrams that were joined together into a loop.  
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C2: Many-to-many state matching. This category is an extension of the previous 
one whereby states in the two state diagrams have a many-to-many relationship, i.e. 
θ(σ) is a set for any state σ. This allows a much richer form of composition. In par-
ticular, it allows for the creation of composite states (see Fig. 19(b)).  
C3: State diagram refactoring. In this category, one or more of the state diagrams 
must be refactored to enable composition to take place. In other words, one state dia-
gram cannot be inserted in its entirety into the other. Rather, it must be broken up 
before being inserted in multiple places. This type cannot be handled by state match-
ing because matching cannot refactor a state diagram. Figure 19(c) illustrates this. 
C4: State diagram refinement. In this type of composition, additional behavior (i.e. 
states and transitions) must be added when composition takes place. Clearly, state 
matching does not apply because state matching cannot refine behavior. This type of 
composition is necessary in cases where two use case slices have been developed in-
dependently but where there are dependencies between the slices that must be  
resolved when the slices are composed. A typical example concerns access to data. If 
a single use case slice reads from a data object, then no data access synchronization is 
required. However, if another use case slice writes to this data object, when the two 
use case slices are composed, an access synchronization mechanism such as mutual 
exclusion must be added. Figure 19(d) gives an example. 

Based on the student design solutions, we found that all four categories of compo-
sition occur for use case slice development. The relative frequency for the four  
categories was as follows: 13%, 39%, 46% and 2%.  

The GM approach supports only category C1 although it can be easily extended to 
support C2 (as was done in [31]). It does not support categories C3 and C4. 
The AJ approach does not support C2 since, for example, composite states cannot be 
wrapped around multiple base states simply using before/after/around. The AJ ap-
proach partially supports categories C3--C4. In some cases, a composition of these 
types requires container model elements to be wrapped around existing elements–see 
Fig. 19(d), for instance. AJ does not support this. In some cases, especially for 
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Fig. 19. Composition Categories 
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category C1, quite complex compositions occur that could be specified by AJ, but the 
aspect would have to be first refactored into multiple fragments, each of which is then 
inserted at a different place in the base. We view this as a non-optimal approach to 
composition because it involves representing fragments of an aspect model separately, 
which leads to problems in reusability and readability. Finally, in other cases, AJ can-
not make a distinction between different kinds of composition. As an example, in Fig. 
19(c), inserting the LHS state diagram after f/b could have two possible results: either 
stay in state B or go to state D. With AJ, it is not generally possible to make such a 
distinction. 

MATA supports all categories because the entire state machine diagram syntax is 
available. For example, two use case slices can be merged in parallel using UML or-
thogonal regions. The results of the investigation reveal that, at least for use case slice 
composition, a greater degree of expressiveness is required in practice. Further inves-
tigation is required, of course, to see if these results are true for other aspect-oriented 
software development methods.  

9   Related Work 

There is a large body of work on AOM, although much of this has been restricted to 
structural models. Work of note that considers behavioral models is the Motorola 
WEAVR tool for state machines [5], Song et al.’s work on weaving security aspects 
into sequence diagrams [32], and Klein et al.’s work on semantic composition for in-
teraction diagrams [33]. The WEAVR tool considers actions in state machines as 
joinpoints and uses “around” advices to weave in aspect state machines. WEAVR is 
the first commercially available aspect modeling tool but focuses only on state ma-
chines. In addition, it is tailored toward SDL state machines and concentrates on ex-
ecutable modeling and so is more suited to detailed design rather than earlier analysis 
and design phases. 

There has been some work that composes aspect sequence diagrams. Song et al. 
work [32] has only a very limited set of composition operators and does not provide 
tool support. However, it does address how to verify the result of the composition by 
annotating models with OCL expressions, which could then be checked against the 
composed models. However, the work appears to be in its early stages. Reddy et al. 
[34] compose aspect sequence diagrams by using special tags that allow an aspect to 
be broken into pieces and then inserted at different points in the base–for example, at 
the beginning, in the middle, or at the end of the base messages. Whilst interesting, 
the MATA approach is more general and subsumes these operators. Indeed, earlier 
work by some of the authors of this paper considered composition of sequence dia-
grams using a limited set of composition operators [35]. This work has also been sub-
sumed by MATA. Klein and Kienzle [36] describe a case study of composing aspect 
sequence diagrams. In this approach, one sequence diagram describes the pointcut and 
another describes the advice. The paper presents a case study using the semantic 
composition of scenarios described in [33]. The latter is important work that goes be-
yond syntactic mechanisms for defining pointcuts but instead relies on the semantics 
of the modeling language for matching an aspect. This reduces, to some extent, the 
fragile pointcut problem for aspect sequence diagrams but does incur a performance 
overhead. Such techniques could potentially be incorporated into MATA. 
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Other work on AOM includes, of course, Theme/UML [3]. Theme/UML is an  
example of the generic matching approach considered in Sect. 8 and suffers the limi-
tations in expressiveness noted there. Katara and Katz [37] provide an approach for 
AOM of sequence and state diagrams based on superimposition. This is quite similar 
to MATA in that aspects are defined as increments over other models (either the base 
or other aspects). However, Katara and Katz [37] does not support a fully-fledged pat-
tern language for defining pointcuts, which limits the quantification possible. Al-
though Katara and Katz do give consideration to identifying dependencies between 
aspects, these dependencies must be found manually and documented on a so-called 
concern diagram. Indeed, MATA can be thought of as providing automated support 
for developing and/or validating such a concern diagram.  

Generic aspects can be seen as a kind of design pattern. Hence, work on instantiat-
ing design patterns and applying aspect models is closely related. Indeed, there has 
been some work on automatically instantiating generic descriptions of design patterns 
[38, 39] and using such techniques in AOM [31, 40]. 

MATA views aspect composition simply as model transformation. This is a point 
of view that has also been noted by others. A general discussion of the similarities of 
model composition and model transformation is presented in [41]. One interesting 
point described there, and discussed elsewhere, is that aspect composition could either 
be specified by a generic model transformation language or by a dedicated aspect 
composition language, or indeed that there is a spectrum of possibilities lying in be-
tween. MATA tends toward the use of a generic model transformation language but 
tailors this to ensure familiarity of the language to modelers. In this sense, it is differ-
ent than using a completely general transformation language, such as the one based on 
QVT, but retains the power and flexibility of a generic transformation language. 
Dedicated aspect composition languages risk sacrificing expressiveness because a 
limited number of composition operators would be provided. For example, France et 
al. [42] provide such a limited number of matching and composition operators but the 
user may override these if necessary, or indeed define new operators. However, this 
requires programming skills. MATA brings flexible composition without requiring 
any knowledge of programming or the need to understand the code in an existing 
composition framework. France et al. [42] is also limited to class diagrams. It is not 
clear how these techniques would extend to behavioral models. 

MATA provides two key contributions to AOM. First, is the support for detecting 
aspect interactions. Second, it supports sequence pointcuts. To date, there has been 
limited support for detecting aspect interactions in AOM. Aspect interactions are a 
well-recognized problem but research has tended to focus on how to document inter-
actions rather than uncover them automatically (cf. [37, 43--45]). The only known 
work is [46], which translates aspect UML models into Alloy so that they can be veri-
fied. This approach does not consider behavioral diagrams but requires pre/post-
conditions to specify operations on class diagrams. Furthermore, it is more of a  
general verification approach not specifically geared toward interactions. This means 
that it could potentially uncover more semantic interactions (which MATA cannot) 
but at the cost of a more expensive analysis. At the programming level, there has been 
research on detecting interactions using static analysis [47, 48].  

Although expressive pointcut mechanisms, such as sequence pointcuts, have been 
considered for AOP [12], to the authors’ knowledge, this paper is the first work to 
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bring expressive pointcuts to behavioral models. Related work that is closest to ours is 
joinpoint designation diagrams (JPDDs) [13]. JPDDs are similar to defining patterns 
using graph rules. Something similar to sequence pointcuts can be defined but the ad-
vices are limited to before/after/around. Furthermore, the advantage of using graph 
rules is the existence of formal analysis techniques. In addition, JPDDs focus on de-
fining joinpoints and are not so much concerned with composition. MATA provides a 
full composition tool in which very expressive composition relationships can be 
specified. This is not possible with JPDDs.  

This paper considers joinpoints to be static in the sense that the runtime semantics of 
behavioral diagrams is not taken into consideration. Dynamic joinpoints can also be  
defined for behavioral models, such as state diagrams [9]. However, since currently 
models are most commonly used for communication and documentation, and are not 
necessarily executed, static joinpoints are perhaps more useful in current modeling prac-
tices. It would be interesting to extend MATA to dynamic joinpoints, however.  

More generally, model composition has been addressed outside of the AOSD 
community. In particular, [49] investigates how to merge state machines using com-
position relationships and category theory. This is similar in many respects to our 
work but has a different goal in that it addresses how to reconcile models produced by 
different development teams.  

10   Conclusion and Further Work 

This paper has presented a new approach for AOM wherein aspect composition is 
considered to be simply a special case of model transformation. A language and tool, 
MATA, has been presented, which allows modelers to maintain aspect models sepa-
rately, detect structural interactions between aspects automatically, and compose a 
chosen set of aspects automatically with a set of base models. The approach goes  
beyond previous work in that: 

• MATA provides a unified approach to aspect model composition. Any 
modeling language with a well-defined metamodel can be handled in the 
same way. Currently, UML class, sequence, and state diagrams are sup-
ported, but extensions to other modeling languages would be straightfor-
ward and would provide the same capabilities in detecting interactions and  
automating composition. 

• MATA provides a richer aspect composition language. Joinpoints are de-
fined by an expressive pattern language and any base model element (or 
combination of elements) can be a pointcut. In particular, MATA provides 
the first full support for sequence pointcuts at the aspect modeling level. 

MATA is supported by a tool built on top of IBM’s Rational Software Modeler. It has 
been applied in a range of application areas, including security modeling, software 
product lines, and modeling of use case slices. 

There are a number of interesting avenues for further work that would build upon 
MATA. First, base models in MATA are currently completely open, in the sense that 
any base model elements can be accessed by aspect models. This has shown to be ab-
solutely essential in some application areas. In particular, for the software product line 
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method PLUS [28], which can be handled in MATA by modeling features as aspects, 
models of non-kernel features can be added to models of the kernel in many and var-
ied different ways. It would not have been possible to restrict the joinpoint model and 
still allow the case studies from [28] to be modeled faithfully. 

However, it may be desirable for other application areas to restrict the joinpoint 
model so that only certain base model elements can be affected by an aspect. This 
kind of approach would potentially support improved modular reasoning for aspects. 
MATA could support such a technique easily as interfaces could be designed on top 
of the existing language. In any case, we feel that the modeler should be in control of 
whether or not full access is required by the aspects and it is not up to the language 
designer to restrict the joinpoint model for him/her. 

Another area where MATA could potentially be extended is to provide domain-
specific composition operators, built on top of the existing language. A key contribution 
of this paper is that MATA allows all modeling languages to be handled in a uniform 
way. However, the current composition operators in MATA are quite low level because 
they are at the same level as the underlying modeling language. One could imagine de-
fining more abstract operators, for example, in software architecture composition that 
would be then mapped down to MATA’s operators. This would raise the level of dis-
course of aspect modelers but would retain the strong benefits of the MATA founda-
tions. However, such a path should be taken with caution. A great deal of effort has  
already gone into language design for existing modeling languages and it is not com-
pletely clear that an additional layer of abstraction would be beneficial. 

Along similar grounds, MATA’s composition is purely syntactic currently. This 
means that aspect modelers define aspects based on the syntactic elements of the un-
derlying modeling language. While this is in line with current practice in modeling, it 
would be interesting to investigate semantics-based composition techniques, similar 
to those developed for aspect-oriented requirements engineering languages [50]. This 
would allow modelers to specify aspects in terms of semantic concepts of the domain 
rather than syntactic modeling elements. For example, one might wish to define the 
pointcut of all model elements related to access control. The techniques in [50] rely 
on natural language processing techniques to extract semantic content from textual 
requirements documents and it is not clear how such an approach could be adapted to 
analysis and design models. However, it is certainly an open area of research that 
could provide fruitful solutions to the fragile pointcut problem in AOM. 

The usability of the MATA composition language has not yet been fully tested. Al-
though a number of realistic case studies have been undertaken, we have limited  
experience with real users. The intricacies of the propagation algorithm are such that 
it may be difficult to grasp for novices. However, use of propagation is always op-
tional and the user may choose to explicitly provide stereotypes. So far, MATA pro-
vides no support for validating the composition of base and aspect. It is possible to get 
unexpected results if there are interactions between aspects that cannot be detected by 
critical pair analysis. A simple example is if two aspects each create an instance of the 
same class. Then the result will have two copies of this instance where only one may 
be desired. There may be lightweight techniques that can help with validating the 
composition. Another usability issue is in maintaining the generality of the aspects. 
Generic aspects should be designed where possible so that they can be reused. This is 
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certainly easy to do in MATA because of the rich pattern-matching facilities. How-
ever, from a usability point of view, more research is required as to how to guide  
users to specify good (i.e. generically applicable) aspects. 

One of the main points made in this paper is that aspect composition approaches 
based on generic match and merge algorithms–for example, those that merge model 
elements by name–are not very practical. This is a claim backed up by preliminary 
empirical evidence in Sect. 8.5. On the other hand, there may be some advantages in 
combining a MATA-like approach with these generic merge algorithms. Once again, 
this could provide a way of raising the level of composition abstraction in MATA. 
Care would need to be taken, however, to ensure that the problems of generic merge 
algorithms–that the results of composition are hard to predict and adapt–do not carry 
over to the MATA context. 

Finally, we hope that the expressive composition mechanisms provided by MATA 
might have some consequences for AOP. Whilst modeling is different from pro-
gramming, it seems that AOP could also benefit by more expressive pointcut lan-
guages or more expressive advices. We believe that the rich language available in 
MATA might offer some insights as to how such languages should be developed. 
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Appendix 

This appendix describes how MATA performs the conversion from a model in concrete 
syntax to a type graph in AGG. This conversion process is performed automatically.  

MATA considers a subset of the UML metamodel (we do not yet consider the full 
UML2 metamodel) and maps it to a corresponding type graph. The type graph repre-
sents the metamodel in the AGG syntax. In the current scope, the chosen UML meta-
model subset contains commonly used modeling elements of class diagrams,  
sequence diagrams, and state machines. MATA converts a base model into an AGG 
graph and converts an aspect model into an AGG graph rule.  

To illustrate, we present a simple example for a family of printers. A printer will be 
modeled as the base and an optional feature, a sheet rotator (which allows printing on 
both sides of a sheet), will be modeled as an aspect. 

Class Diagrams 

The base model contains an assembly of an abstract controller object called Printer. 
The Printer aggregates PrintRoller and PrintNozzle objects. Figure 20 shows the class 
diagram of the Printer base model in concrete UML syntax. The graph metamodel 
used to represent the class diagram is shown in Fig. 21. The corresponding host graph 
of the Printer base model is shown in Fig. 22. The class diagram concepts supported 
by MATA are: 

1. Class/Interface–A class or an interface is represented by a node of type 
Classifier. The Type attribute indicates whether the node is a class or an 
interface. Additional attributes such as Name and Visibility indicate the 
name and visibility of the element. The attribute isAbstract is used to  
represent an abstract class. 

a. Property–A graph node of type Attribute represents properties of 
classes and interfaces. These nodes are connected to the owning 
Classifier nodes via an edge of type Owns. The attributes Name, 
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Visibility, isStatic, Lower and Upper indicate the name, visibility, 
static nature, lower and upper bound of the attribute, respectively. 

b. Operation–A graph node of type Operation represents operations 
supported by classes and interfaces. An operation node is con-
nected to the owning classifier node via an edge of type Owns. 
The attributes Name, Visibility, isAbstract, and isStatic indicate 
the name, visibility, abstract, and static nature of the operation, 
respectively. 

2. Generalization–An edge of type Extends represents the generalization  
relationship between two classes or interfaces. The edge connects the cor-
responding nodes of type classifier. 

3. Realization–An edge of type Implements represents the realization of an 
interface by a class. In the graph metamodel, this edge connects a classi-
fier of type interface to a classifier of type class. 

4. Association/Composition/Aggregation–An edge of type Association 
represents a relationship between two classifiers. Table 4 explains the rep-
resentation of different kinds of relationships such as associations, compo-
sitions, and aggregations as well as other association-related attributes. 

 
 

 

Fig. 20. Class diagram for Printer Kernel feature 

 

Fig. 21. Graph metamodel for class diagram (in AGG syntax: e.g. String @Name means Name 
is of type String) 
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Table 4. Graph metamodel attributes of an Association 

Attribute Description 

SourceAggregation Represents the aggregation kind of the source 
classifier of the association. 

TargetAggregation Represents the aggregation kind of the target  
classifier of the association. 

SourceRoleName Represents the name of the source role of the  
association. 

TargetRoleName Represents the name of the target role of the  
association. 

SourceLower Represents the lower bound of the source of the 
association. 

TargetLower Represents the lower bound of the target of the  
association. 

SourceUpper Represents the upper bound of the source of the 
association. 

TargetUpper Represents the upper bound of the target of the  
association. 

SourceVisibility Represents the visibility of the source of the  
association. 

TargetVisibility Represents the visibility of the target of the  
association. 

 
 

Classifier
@Name=”Printer”
@Visibility=Public
@isAbstract=true

Classifier
@Name=”PrintRoller”
@Visibility=Public
@isAbstract=false

Classifier
@Name=”PrintNozzle”
@Visibility=Public
@isAbstract=false

@Name=””
@SourceAggregation=False

@TargetAggregation=True
@SourceNavigable=True
@TargetNavigable=True

@SourceRoleName=””
@TargetRoleName=””

@SourceLower=0
@TargetLower=0

@SourceUpper=0
@TargetUpper=0

@SourceVisibility=0
@TargetVisibility=0

Association

@Name=””
@SourceAggregation=False
@TargetAggregation=True
@SourceNavigable=True
@TargetNavigable=True
@SourceRoleName=””
@TargetRoleName=””
@SourceLower=0
@TargetLower=0
@SourceUpper=0
@TargetUpper=0
@SourceVisibility=0
@TargetVisibility=0

Association

 

Fig. 22. Host graph for Printer Kernel class diagram 
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Sequence Diagram 
 
The Printer object receives a print command from an external user and sends a mes-
sage to the PrintRoller to lift a sheet from an external paper tray. Then, it sends a  
message to the PrintNozzle to start printing on the sheet and when the sheet is printed, 
the PrintRoller ejects the sheet. The process repeats if the print job requires more 
sheets. 

Figure 23 shows the sequence diagram of the Printer Kernel in concrete UML syntax. 
The graph metamodel used to represent the sequence diagram is shown in Fig. 24. The 
corresponding host graph of the Printer Kernel feature is shown in Fig. 25. The  
sequence diagram related concepts supported by MATA are 

1. Interaction–An interaction of type sequence diagram is represented by a 
node of type Sequence Diagram. 

2. OccurrenceSpecification/GeneralOrdering–An OccurrenceSpecification is 
represented by a node of type Sequencer. The after association of Gener-
alOrdering is represented by an edge of type Next between two Sequencer 
nodes. These nodes are also used to indicate the start and end of interac-
tion diagrams, interaction fragments and interaction operands. For exam-
ple, the start and end of an interaction are represented individually by two 
sequencer nodes that are connected to the Sequence Diagram node by 
edges of start and end type, respectively. 

3. Lifeline–The lifeline of a participant in a sequence diagram is represented 
by a node of type Class. The name of the lifeline is preserved by the Name 
attribute of the node. MATA does not support explicit creation or destruc-
tion of a lifeline and assumes a lifeline to exist throughout the interaction 
diagram. 

4. CombinedFragment–A fragment is represented by a node of type Fragment.  

a. InteractionOperator–The interaction operator of a fragment is 
preserved by the Operator attribute of the node representing the 
fragment. 

b. InteractionConstraint–A constraint applied on a fragment is pre-
served by the Guard attribute of the node representing the  
fragment. 

c. Interaction operand–Each operand of a fragment is represented 
by a node of type Operand. 

5. Complete Asynchronous Message–Complete asynchronous messages are 
represented using nodes of type Message. The name of the asynchronous 
message is preserved by the Name attribute of the Message node. The send-
ing and receiving lifelines of a message are indicated by edges of type Re-
ceiver and Sender from the Message node to the class nodes, respectively. 

6. EventOccurrence (Send/Receive)–The receive and send events of a  
message are represented individually by sequencer nodes connected by an 
edge of type Next. 
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Fig. 23. Sequence diagram for Printer Kernel feature 
 
 
 

Message
String @Name

Class
String @Name

Sequencer

SenderReceiver

Start

End

Next

Fragment
String @Operator

String @Guard

Start End

Operand
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Sequence 
Diagram

String @Name EndStart
 

 
Fig. 24. Graph metamodel for sequence diagram 
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Fig. 25. Host graph of Printer Kernel sequence diagram 

MATA Syntax 
 
MATA translates a UML model annotated with the MATA stereotypes to a graph 
rule. The procedure for generating the graph rules is as follows: 

1. Instantiate a graph rule with a left and a right graph. 
2. For each element in the source model: 

2.1. If the element is stereotyped with <<create>>, create a graph node and 
add the node to the right graph. 

2.2. If the element is stereotyped with <<delete>>, create a graph node and 
add the node to the left graph. 

2.3. If the element is stereotyped with <context>>, create two graph nodes 
and add one to the left graph and the other to the right graph. Add  
mapping information between the nodes. 

2.4. If the element is not associated with any stereotype: 
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2.4.1. If the element is a nearest neighbor of another element in the 
model then apply the stereotype of the neighbor to the element 
and repeat step 2. For example, if a class element is stereotyped 
with <<create>> or <<delete>> then the same stereotype is im-
plicitly applied to all attributes and methods that are owned by 
the class. 

2.4.2. Else, create two graph nodes and add one to the left graph and 
the other to the right graph. Add mapping information between 
the nodes. 

 
Sheet rotator Aspect 
 
The sheet rotator aspect adds flip sheet functionality to the PrintRoller object. The 
static view transformation for this rule, called AddFlipMethod, is shown using  
concrete syntax and graph syntax in Figs. 26 and 27, respectively. 

 

+<<create>> FlipSheet()

PrintRoller

 

Fig. 26. Concrete syntax for rule AddFlipMethod 

 

Fig. 27. Graph syntax for rule AddFlipMethod 

This functionality is invoked only if one side of the sheet has been printed and the 
print job requires more sheets. The Printer object adds an alternate flip sheet message 
to an existing eject sheet message. The printer sends the lift sheet message only if the 
sheet has been ejected or if the first sheet is being printed. Two separate transforma-
tions are used to execute these changes. The first rule to add an alternate flip sheet 
message is called AddFlipMessage and is shown using UML concrete syntax and 
graph syntax in Figs. 28 and 29, respectively. The second rule to make the lift sheet 
message optional is called MakeLiftOptional and is not shown here.   
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Fig. 28. Concrete syntax for rule AddFlipMessage 

 

Fig. 29. Graph syntax for rule AddFlipMessage 
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