
S. Katz et al. (Eds.): Transactions on AOSD VI, LNCS 5560, pp. 191–237, 2009.
© Springer-Verlag Berlin Heidelberg 2009

MATA: A Unified Approach for Composing UML Aspect
Models Based on Graph Transformation*

Jon Whittle1, Praveen Jayaraman2, Ahmed Elkhodary2, Ana Moreira3,
and João Araújo3

1 Dept. of Computing, Lancaster University, Bailrigg, Lancaster LA1 4YW
2 Dept. of Information and Software Engineering, George Mason University, Fairfax, VA 22030

3 Dept. of Informatics, FCT, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
whittle@comp.lancs.ac.uk, praveenjayaraman@yahoo.com,

aelkhoda@gmu.edu, {amm,ja}@di.fct.unl.pt

Abstract. This paper describes MATA (Modeling Aspects Using a Transforma-
tion Approach), a UML aspect-oriented modeling (AOM) technique that uses
graph transformations to specify and compose aspects. Graph transformations
provide a unified approach for aspect modeling in that the methods presented
here can be applied to any modeling language with a well-defined metamodel.
This paper, however, focuses on UML class diagrams, sequence diagrams and
state diagrams. MATA takes a different approach to AOM since there are no
explicit joinpoints. Rather, any model element can be a joinpoint, and composi-
tion is a special case of model transformation. The graph transformation execu-
tion engine, AGG, is used in MATA to execute model compositions, and
critical pair analysis is used to automatically detect structural interactions be-
tween different aspect models. MATA has been applied to a number of realistic
case studies and is supported by a tool built on top of IBM Rational Software
Modeler.

1 Introduction

Aspect model composition is the process of combining two models, MB and MA,
where an aspect model MA is said to crosscut a base model MB. As such, aspect model
composition is a special case of the more general problem of model fusion. A number
of techniques and languages have been developed to specify how MA crosscuts MB,
and, in particular, how MA and MB should be composed.

Broadly speaking, there have been, to date, two approaches for specifying aspect
model composition. In the first approach, MA and MB are composed by defining
matching criteria that identify common elements in MA and MB and then applying a
generic merge algorithm that equates the common elements. Typically, matching
criteria are based on easily identifiable properties of model elements. For example,

* This paper is an extended version of a paper previously published at the 2007 International

MODELS conference [1]. There was also a workshop paper on the MATA tool [2]. The main
new contributions are the section on code generation and the evaluation and discussion
section. The section on aspect interactions is also new.

192 J. Whittle et al.

two class diagram models can be merged by equating classes with the same name.
Examples of this approach include Theme/UML [3] as well as work by France et al.
[4]. In the second approach, mechanisms for specifying and weaving aspects from as-
pect-oriented programming (AOP) are reused at the modeling level. There has been a
significant amount of research, for example, that identifies a joinpoint model for a
modeling language and then uses the AspectJ advices of before, after, and around for
weaving. Examples of this type include [5, 6].

These two kinds of approaches are not always sufficient. A merge algorithm in the
first approach based on general matching criteria will never be expressive enough to
handle all model compositions. Matching by name, for example, may not work for
state diagrams. Given two states with the same name, the states may need to be
merged in one of a variety of ways depending on the application being modeled: (1)
the two states represent the same thing, which implies making the states equal; (2) the
two states represent orthogonal behaviors of the same object, which implies enclosing
the states by a new orthogonal region; (3) one state is really a submodel of the other,
which implies making one state a substate of the other; and (4) the behaviors of the
two states must be interleaved in a complex way, which implies weaving the actions
and transitions in a very application-specific way to achieve the desired result. Only
the first of these can be accomplished based on merge-by-name. Furthermore, these
are only four of the many possible options, and so it is not generally sufficient to
provide a number of pre-defined merge strategies. In practice, to overcome this
problem, the modeler may additionally specify what Reddy et al. [7] call composition
directives—that is, operators that override the default merge algorithm. However,
understanding the interactions between the default algorithm and the composition
directives is a difficult task, and, in particular, does not work easily for behavioral
models (cf. [8]).

In the second approach, specific elements in a model are allowed to be defined as
joinpoints and others are not. For example, in state diagrams, some approaches [5] de-
fine actions as joinpoints. Others, however, define states as joinpoints [9]. One could
even imagine more complex joinpoints, such as the pointcut of all orthogonal regions.
(This pointcut might be used, for example, by an aspect that sequentializes parallel
behaviors.) Defining only a subset of a model’s elements as joinpoints seems to be
overly restrictive. In addition, limiting advices to before, after, and around (as is done,
for example, by both [5] and [9]) is also rather restrictive since it may be desired to
weave behavior in parallel or as a sub-behavior of a behavior in the base.

This paper takes a step back to reassess the requirements for aspect modeling lan-
guages. The result is the technique and tool MATA (Modeling Aspects Using a
Transformation Approach), which tackles the above limitations by viewing aspect
composition as a special case of model transformation. In MATA, composition of a
base and aspect model is specified by a graph rule. Given a base model, MB, crosscut
by an aspect model, MA, a MATA composition rule merges MA and MB to produce a
composed model MAB. The graph rule r: LHS → RHS defines a pattern on the
left-hand side (LHS). This pattern captures the set of joinpoints, i.e. the points in MB
where new model elements should be added. The right-hand side (RHS) defines the
new elements to be added and specifies how they should be added to MB. MATA
graph rules are defined over the concrete syntax of the modeling language. This is in
contrast to almost all known approaches to model transformation, which typically

 MATA: A Unified Approach for Composing UML Aspect Models 193

define transformations at the meta-level, that is, over the abstract syntax of the model-
ing language. The restriction to concrete syntax is important for aspect modeling
because a modeler is unlikely to have enough detailed knowledge of the UML meta-
model to specify transformations over abstract syntax.

MATA currently supports composition for UML class, sequence, and state
diagrams. In principle, however, it is easy to extend MATA to other UML models (or,
indeed, other modeling languages as long as a metamodel for the language exists)
because the idea of using graph rules is broadly applicable. MATA makes no deci-
sions on joinpoint models, for example, which would limit the approach to specific
diagram types.

One advantage of using graph transformations for aspect model composition is that
graph transformations are a well-understood, formal technique with formal analysis
tools available. In particular, critical pair analysis can be used to automatically detect
dependencies and conflicts between graph rules. MATA applies critical pair analysis
to detect interactions between aspects. This can be done because each aspect is repre-
sented as a graph rule and so the problem of aspect interaction can be stated in terms
of dependencies between graph rules. Not all kinds of interactions can be detected–the
technique is limited to structural rather than semantic interactions–but critical pair
analysis offers a fully automatic, lightweight method for finding these structural inter-
actions between aspect models.

This paper gives a full description of the MATA language for aspect model com-
position, its underlying graph transformation representation, and the use of critical
pair analysis for detecting aspect interactions. It also describes the tool support for
MATA, which is implemented on top of IBM Rational Software Modeler. The contri-
butions of this paper can be divided into three categories as follows:

1. A unified, expressive approach for aspect model composition:

− MATA is agnostic with respect to the modeling language to be composed as
long as there is a well-defined metamodel for this language.

− MATA is more expressive than previous approaches because it views aspect
model composition as simply a special case of model transformation.

− MATA handles both structural and behavioral models in the same way.
2. A usable graph transformation language for aspect model composition:

− Graph rules in MATA are written in the concrete syntax of the modeling lan-
guage, not in the abstract syntax. This allows them to be specified graphically in
a way that is very similar to defining models for the underlying modeling
language.

− Graph rules in MATA provide support for sequence pointcuts, where a pointcut
is a sequence of elements, which allows rich specification methods available in
graph transformations to be available for aspect model composition, but in a
way that is accessible to model developers.

3. An automatic technique for detecting structural interactions between aspect
models:

− Critical pair analysis has been applied to detect interactions between models
given as UML class diagrams, sequence diagrams, and state diagrams.

194 J. Whittle et al.

The paper is organized as follows. Section 2 motivates why a new, unified, and expres-
sive approach to aspect model composition is needed. Section 3 provides background on
graph transformations necessary to describe the MATA approach. Section 4 describes
the MATA language and Sect. 5 explains the application of critical pair analysis for de-
tecting aspect interactions. Section 6 presents an extended example illustrating MATA
and is followed, in Sect. 7, by a description of MATA tool support and, in Sect. 8, by a
discussion of how MATA has been applied in practice. Conclusions follow in Sect. 9.

2 Motivation

This section motivates why existing approaches to aspect model composition are not
expressive enough. The goal here is to show either that existing approaches cannot
specify compositions in certain cases or that they cannot do it in an intuitive way. To
illustrate this, we use a simple but non-trivial, example of an aspect model composi-
tion and argue that previous approaches are non-optimal.

Note that this paper takes a rather general definition of the term aspect such that any
view of the system can be called an aspect. This means that many existing decomposi-
tion techniques (e.g. use cases and features) can be seen as aspects. This interpretation is
consistent with that of many authors [6, 10, 11]. The examples in the paper will reflect
this definition. This general view in particular means that our technique for handling as-
pect models works just as well for crosscutting and non-crosscutting concerns. In other
words, we handle aspectual and non-aspectual concerns in a uniform way.

Figure 1 is an example of using UML use cases to maintain separation of concerns
in a distributed application. The idea here (following [6]) is that the use case models
are maintained separately throughout system development and that they can be
composed at any time using aspect composition. The LHS is a use case for calling a
remote service and consists of a state dependent class ServiceController and a state
diagram that defines its behavior. The RHS is a use case for handling a network
failure, which contains the same class ServiceController, but with a different set of
attributes and a different state diagram. This second use case describes a limited
number of attempts to retry a service.

Call Remote
Service

ServiceController

S1

S3
entry: logReturnValue(..)

entry: updateGUI(..)
entry: enableGUI()

serviceRequest/
disableGUI()

ServiceController

retries : int;
MAX : int;

T1

T2

[retries>MAX]remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

/retries:=0

Handle
Network
Failure

S2
entry:callRemoteService(…)

ack(..)/

Fig. 1. Maintaining Use Case Separation of UML Models

 MATA: A Unified Approach for Composing UML Aspect Models 195

S1

S2
entry:callRemoteService(…)

serviceRequest/
disableGUI(); retries:=0

ServiceController

retries : int;
MAX : int;

entry: enableGUI()

[retries>MAX]
remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

ack(..)/logReturnValue(…);
updateGUI()

Fig. 2. Desired Composition of State Diagrams from Figure 1

The RHS crosscuts the LHS in the sense that whenever callRemoteService appears
on the LHS, the RHS behavior should be used to handle a failure. This turns out to be
a non-trivial example of crosscutting behavior. Prior to calling the remote service on
the LHS, a GUI is disabled (via the action disableGUI). The GUI is only re-enabled
(via the action enableGUI) once the remote service has been called successfully—the
service call succeeds, a log is taken, and the GUI is updated before the GUI is
re-enabled.

Now, consider the desired result from composing the RHS with the LHS—this is
shown in Fig. 2. Note that when failure-handling is incorporated, what is now needed
is that the GUI should be re-enabled whether the calling of the remote service suc-
ceeds or not. That is, even if the maximum number of retries is exceeded, enableGUI
must still occur. Furthermore, logging and updating must only occur if the service call
succeeds.

Capturing this composition is quite difficult if a composition model based on that
of AspectJ is used. Existing work on (AOM) might, for example, define a joinpoint as
the occurrence of the action callRemoteService. One might then insert behavior after
or around this joinpoint in such a way that enableGUI is called whether or not the
service call succeeds, and that logging/updating is not called in the failure scenario.
This is possible but would really require the definition of two separate aspects, each
with separate joinpoints—one joinpoint being the state containing action callRemote-
Service() to which the [retries<=MAX] transition would be added, and the other be-
ing the transition with event ack/ to which logReturnValue() and updateGUI() would
be added as actions. In addition, one would need to use an around advice to ignore the
first two entry actions in state S3. The effect is that the failure handling model on the
RHS gets broken into pieces, thus becoming harder to understand the failure handling
aspect in its own right. This effect goes against many of the ideas of modeling in that
models ought to be easily readable.

Capturing this composition using some kind of default merge algorithm is also dif-
ficult. For example, one could proceed by defining a correspondence between states
and then merging those states. The obvious thing to try would be to equate T1 and S2,
but the merge based on this correspondence would fail to re-enable the GUI if the
maximum number of retries is reached. If one tries to solve this, in addition, by equat-
ing T2 and S3, then the GUI will be re-enabled, but the logging and updating will
occur even if the remote service call fails, which is contrary to the requirements given

196 J. Whittle et al.

above. Therefore, composition directives would be needed to refactor the result of
equating states. The problem with such composition directives is that it is hard to
know exactly which directives to use because one has to first visualize the result of
the merging. For large state diagrams, it becomes very complex to be able to predict
where composition directives will need to be applied after the merge is complete.

As it turns out, one neat way to handle this example is by defining a so-called
sequence pointcut [12]. A sequence pointcut should be used when it is not enough to
consider a single element as a joinpoint, but instead, the joinpoint should be a se-
quence of elements. In this example, the key sequence starts with disabling the GUI
and ends with re-enabling the GUI. This is because the GUI must be both disabled
and re-enabled whatever the outcome of the remote service call. If one could specify
that the pointcut is the sequence of actions/events between disableGUI and en-
ableGUI, then one can easily capture the fact that the aspect should only apply to
sequences where the GUI is first disabled and then later re-enabled. This allows one
to specify, on the same diagram, that the failure handling (i.e. the aspect) behavior
begins after disableGUI and ends with enableGUI. Further details on how sequence
pointcuts can be defined in MATA are given in Sect. 4. Sequence pointcuts are not
currently possible with most AOM approaches†

1, although some AOP languages do
support them [12].

More generally, when composing crosscutting state diagrams, it may be desirable
to use advices that are more expressive than before, after or around. For example, an
aspect state diagram may need to be composed in parallel with a base state diagram,
or an aspect state diagram may need to be inserted inside a state in the base diagram
(i.e. the base state becomes a composite state). In fact, composition should allow two
diagrams to be composed using any of the syntactic constructs of the modeling lan-
guage. In the case of state diagrams, for example, composition could be achieved
using orthogonal regions, composite states, or even history states.

In other words, aspect-oriented model composition may require models to be com-
posed in complex ways rather than just before or after each other. Previous
approaches to AOM do not support such complex compositions. It is for this reason
that we propose a new model composition language in this paper.

3 Background

Before going on to explain the details of the MATA language, this section first
presents necessary background material. MATA is based on the technique of graph
transformations and so a brief introduction to graph transformations is given in this
section. We also briefly describe critical pair analysis, which will be used to detect
interactions between aspects.

3.1 Graph Transformations

A graph consists of a set of nodes and a set of edges. A graph transformation is a
graph rule r: L → R from a LHS graph L to a RHS graph R. The process of applying r

1 The only known approach that does allow this is joinpoint designation diagrams (JPDDs) [13]

but JPDDs do not support expressive advices.

 MATA: A Unified Approach for Composing UML Aspect Models 197

to a graph G involves finding a graph monomorphism h from L to G and replacing
h(L) in G with h(R). Graph transformations may also be defined over attributed typed
graphs. A typed graph is a graph in which each node and edge belongs to a type.
Types are defined in a type graph. An attributed graph is a graph in which each node
and edge may be labeled with attributes where each label is a (value, type) pair giving
the value of the attribute and its type. In a graph rule, variables may be used to capture
a set of possible values and/or a set of possible types.

Graph rules have previously been used for transforming UML models (e.g. UML
refactorings [14]). Such work requires that UML models be represented as graphs.
The usual approach is to define node types as the metaclasses in the UML metamodel.
Graph rules can then be shown graphically using object diagrams.

As an example, Fig. 3 shows a (simplified) fragment of the UML state machine
metamodel. A state machine contains 1 or more (orthogonal) regions, each of which
contains states. Each transition is from a source to a target state and has a trigger and
actions. States may also have actions. A state may contain 0 or more regions. A state
is composite if it contains 1 or more regions. If it contains 2 or more regions, then the
regions in this state are orthogonal. The State metaclass has an attribute isComposite
indicating whether or not the state is composite. Finally, states, triggers, and actions
have names (as represented by a generalization relationship to namedElement).

Figure 4 is an example graph transformation which moves all outgoing transitions
from a composite state to its substates. The notation used to define this graph trans-
formation is that of [14]. (We defer to [14] for the subtleties of this notation.) Nodes
in the graph are given as rectangles. Nodes are attributed and typed and so the UML
object diagram notation can be used to represent them. There are two additional nota-
tions. First, a set of nodes of a certain type is shown by a stacked rectangle. For
example, regions is a set of Regions associated with a composite state. Secondly, the
cross in the figure is a negative application condition and says that any match against
the LHS graph cannot have a substate with a transition trigger called triggerName.

State

isComposite :
Boolean

Region

Transition

0..1

*

1

*

1

1

* *

source
target

*

0..1

substates

subregions Trigger
0..1

1

namedElement

name : String

Action

0..1 *

StateMachine

0..1
1..*

*
0..1

Fig. 3. UML State Machine Metamodel

198 J. Whittle et al.

where ts is a set of copies of t

s1 : State
isComposite
= true

regions:
Region

subs: State

t : Transition

source

s2 : State

target

source

: Transition : Trigger

name =
triggerName

tr : Trigger

name =
triggerName

s1 : State
isComposite =
true

regions:
Region

subs: State

source

ts: Transitions

s2 : State
target

tr : Trigger
name =
triggerName

subregions

subregions

substates

substates

Fig. 4. Graph Rule to Move Down Transitions

The LHS in Fig. 4 matches any graph with at least one composite state with an outgo-
ing transition. Furthermore, there should not be a transition on any of the substates
with the same trigger. The RHS redirects the matched transition to all substates (by
creating copies) thus moving the transition down in the state hierarchy.

3.2 Critical Pair Analysis

Critical pair analysis is a technique invented for term rewriting systems to check
whether a set of rewrite rules is confluent. A set of rewrite rules is confluent if for all
x,u,w with x » u and x » w, there exists a z such that u » z and w » z. Here, » denotes
the application of zero or more rewrite steps–i.e. x » u means x rewrites to u in any
number of rewrite steps. If a set of rewrite rules is finitely terminating, that is, there
are no infinite rewriting sequences, then, confluence implies that all terms have
unique normal forms. This in turn implies that, for a given term, the set of rules can
be applied in any order and the result will be the same. This is an important property
because it allows rules to be applied exhaustively without any concern about interac-
tions or dependencies between rules.

As a simple example, consider a rewrite system consisting of two rules, p1 and p2
with p1: f(X,X) →X and p2: g(f(X,Y),X) →h(X), where X and Y are variables. This is
not a confluent rewrite system. This can easily be shown by choosing the term
g(f(a,a),a) for a constant a, which rewrites under p1 to g(a,a) and under p2 to h(a).
Since there is now no way to rewrite g(a,a) and h(a) to the same term, the rule set is
not confluent.

Critical pair analysis examines potential overlaps between rules. For instance, if X
is unified with Y, p1 and p2 overlap at f(X,X). This leads to two possible rewriting re-
sults for the term g(f(a,a),a) because either of the two rules can be applied.
(g(a,a),h(a)) is called a critical pair and corresponds to the two possible ways of re-
writing g(f(a,a),a). By analyzing all possible critical pairs, all potential overlaps are
examined, i.e. all ways that might lead to divergent results are analyzed. In essence,
therefore, critical pair analysis is a way of detecting structural interactions between
rules.

 MATA: A Unified Approach for Composing UML Aspect Models 199

Formally, critical pairs can be defined as follows. If x→y and u→v are two rewrite
rules with no variables in common (rename them if there are), and if x1 is a non-
variable subterm of x unifiable with u via most general unifier θ, then the pair yθ and
the result of replacing x1θ in xθ by vθ is called a critical pair.

Critical pair analysis has been adapted to graph rules—see, for example, [15]. In
the context of MATA, since an aspect is a graph rule, critical pair analysis can be
applied to detect overlaps, i.e. interactions, between aspects. When applied exhaus-
tively, critical pair analysis will find all aspects (i.e. graph rules) that are in conflict or
are dependent, where conflict and dependency are defined as follows:

• Aspect A conflicts with aspect B if the application of aspect A prevents aspect B
from being applied.

• Aspect B is dependent on aspect A if the application of aspect A is necessary for
aspect B to be applied.

Examples of conflicts and dependencies for UML aspect models are given in
Sect. 5.

4 Specifying and Composing Aspect Models with MATA

This section describes how to specify and compose aspect models with MATA.
MATA considers aspect composition as a special case of graph transformation. The
key difference with existing graph transformation approaches such as FUJABA [16]
and VIATRA2 [17] is that these approaches define transformations using the abstract
syntax of the modeling language. For example, the transformation in Fig. 4 refers to
metaclasses such as Region and State. Even for a simple transformation such as the
one in Fig. 4, the use of abstract syntax soon becomes complicated and it becomes
very difficult to specify such rules correctly. This is particularly true for UML
sequence diagrams because the metamodel for interactions in UML is quite compli-
cated. Since MATA is targeted toward model developers, not metamodeling experts,
its aspect models must be specified in a way that is intuitive for users unfamiliar with
the intricacies of the UML metamodel. This means that aspect rules should be speci-
fied using the concrete syntax of UML rather than UML metaclasses.

For the most part, specifying a graph rule over UML using concrete syntax is
straightforward. As long as a metaclass has a concrete visualization, users can draw
diagrams using this visualization and it can be translated automatically to the relevant
metaclass. Abstract metaclasses, which do not have a concrete syntax realization,
cannot be drawn using concrete syntax. Such abstract metaclasses cannot be used in
MATA and so MATA should not be viewed as a general purpose transformation lan-
guage, but rather a transformation language specialized toward aspect model compo-
sition. For aspect model composition, abstract metaclasses do not need to be used.

MATA aspect models, therefore, are graph rules written in concrete syntax that are
translated into equivalent abstract syntax for the purposes of executing the transfor-
mation. MATA does include some extensions to UML’s concrete syntax that are nec-
essary to support its notion of sequence pointcuts. Recall from Sect. 1 that sequence
pointcuts are used to match against a sequence of model elements in the base. In
MATA, this can be a sequence of transitions in state diagrams, or it can be a sequence
of messages in sequence diagrams. Sequence pointcuts turn out to be a very powerful

200 J. Whittle et al.

mechanism for specifying aspects in a way where the aspect is as ignorant as possible
of elements in the base.

The remainder of this section explains the MATA language in detail. First, an
overview of how to specify aspects in MATA is presented. This is followed by details
on specifying joinpoints and advices in MATA.

4.1 An Overview of Using Aspects in MATA

Figure 5 provides an overview of how aspect models are specified in MATA. A
model slice is defined as a collection of structural and behavioral models (UML class
diagrams, state diagrams, and sequence diagrams) that capture a particular view of the
system. The base model slice captures the core system model with crosscutting
concerns removed. An aspect model slice captures the models for a particular cross-
cutting concern.

The base model slice is composed of a set of base models. Similarly, an aspect
model slice is composed of a set of aspect models. Base models are written in stan-
dard UML. Aspect models are written in the MATA language and are defined as
increments of the base models or other aspect models. Each aspect model describes
the set of model elements affected by the aspect (i.e. the joinpoints) and how the base
model elements are affected (i.e. the advices). Note that an aspect model can only be
defined as an increment of a model of the same type; for example, sequence diagram
aspects can extend base sequence diagrams but not base state diagrams.

The following process can be used to develop and compose aspect models. The
modeler first develops the base model slice and a set of aspect model slices. Each
aspect model slice is written as an increment over the base model slice or as an in-
crement over other aspect model slices. The user then invokes the MATA composi-
tion engine to compose the base slice with a selected subset of the aspect slices.
 Before performing the composition, MATA applies critical pair analysis to detect in-
teractions within the set of chosen aspect slices. Interactions can be detected

<<relates to>>

Base
Model Slice

Aspect
Model Slice

Aspect
Model Slice

MATA
Models

MATA
Models

MATA
Models

MATA
Models

UML
Models

UML
Models

Composed
UML Models

Composed
UML Models

Conflict &
Dependency Detection

<<relates to>>

<<relates to>>

<<realized by>> <<realized by>>

Ordering

Composed
Model Slice

Fig. 5. An Overview of MATA

 MATA: A Unified Approach for Composing UML Aspect Models 201

between models of the same type. The results of this analysis are provided to the user
and result in one of the following three conclusions:

1. There are no interactions.
2. There are interactions that mean that the aspects must be applied in a particular

order. The user then specifies this order.
3. There are interactions that cannot be resolved by applying the aspects in a particu-

lar order. Instead, either the base or aspect models must be modified to remove
these unwanted interactions.

Once all interactions have been resolved either by (2) or (3), the modeler instructs
MATA to compose the chosen aspects with the base. The result is a new model slice
that can be inspected, analyzed, or from which code can be generated. Note that there is
no necessity to actually compose the models. The key point is that the MATA specifica-
tion contains a precise description of the aspect and base relationships. This description
can either be used in composition or can be used to generate aspect-oriented code by
generating the code for each model slice and generating the AOP code that specifies
how to weave the aspect code into the base. In fact, MATA comes with a code generator
that does exactly this, resulting in AspectWerkz [18] code (see Sect. 7).

Note that MATA does not address how to partition a problem into an appropriate
set of aspect slices, i.e. how to decide on the right set of aspects. This is a more
general problem, which is out of the scope of this paper, but existing techniques for
identifying aspects during requirements engineering, such as [19], could be applied to
identify requirements-level aspects and then model these aspects during the analysis
and design phases using MATA.

4.2 Joinpoints, Advices and Aspects in MATA

There are no explicit joinpoints in MATA. Any model element can be a joinpoint and
pointcuts are defined as patterns over these model elements. Similarly, there are no
restrictions on the advices in MATA. In particular, MATA is not limited to before,
after, and around advices. Instead, any model element of the underlying model lan-
guage can be used. For example, composition in parallel is allowed in state diagrams
using orthogonal regions.

Hence, an aspect model in MATA consists of two parts, a pattern and a composi-
tion specification. Application of an aspect model to an existing base model is done in
two stages:

1. Find a match for the pattern in the base model.
2. Modify the base model at the matched locations according to the composition

specification.

This is just a standard application of graph transformation techniques.

4.2.1 MATA’s Pattern Language
A pattern in MATA can be either a simple pattern or a complex pattern. (This distinc-
tion is made purely for presentational purposes.) A simple pattern is just a UML
model with some elements marked as pattern variables. Pattern variables are typed
over UML metaclasses and are regular expressions prefixed with a vertical bar “|” to

202 J. Whittle et al.

denote that they are variables. For a simple pattern, matching the pattern against a
UML base model consists of finding an instantiation of the pattern variables in the as-
pect model such that the structure of the aspect model is preserved. Standard efficient
algorithms for matching in graph transformations can be used for this [20].

Complex patterns include patterns that define sequence pointcuts. Sequence
pointcuts are currently provided for state diagrams and sequence diagrams, and are
described next.

Sequence pointcuts in state diagrams

Sequence pointcuts in state diagrams are a general way of matching against multiple
elements at once. This is particularly useful, for example, when one wants to match
against a sequence of transitions beginning and ending with a particular event, but
where the events on intermediate transitions are unimportant. Sequence pointcuts in-
troduce new concrete syntax into patterns because multiple model elements must be
matched against. However, the concrete syntax is extended in as minimal a way as
possible.

A state diagram sequence pointcut, therefore, is an abstract representation of a
family of state diagrams and contains pattern variables. In complex patterns represent-
ing sequence pointcuts, pattern variables have multiplicities. A pattern variable |X has
a multiplicity of one. A pattern variable |X+ has a multiplicity of one or more. A com-
plex state diagram pattern matches a state diagram if all the pattern variables can be
instantiated to elements of the state diagram in a way that preserves the variable’s
metaclass and multiplicity.

State Diagram Sequence Pointcut Syntax. We denote the type of a pattern variable
by (|X : T). Only the metaclasses in the list below are allowed to have pattern variable
multiplicities. We assume the metamodel of Fig. 3 in the remainder of this paper.

1. (|X : State) matches against a single state. (|X+ : State) matches against
one or more states and also matches the transitions between these states.
More precisely, |X+ will match a fully connected substate machine–that is,
each state included in the match must be connected by at least one transi-
tion to another state included in the match.

2. (|X : StateMachine) matches a single state machine. (|X+ : StateMachine)
is not allowed (because it is unnecessary).

3. (|X : Action) matches a single action. (|X+: Action) matches a sequence of
one or more actions.

4. (|X : Trigger) matches a single event. (|X+: Trigger) matches a sequence
of one or more events.

5. (|X : Region) matches a single orthogonal region. (|X+: Region) matches
one or more regions within the same composite state.

Whenever possible, the concrete syntax of a pattern variable is the same as the UML
concrete syntax of its type. See Fig. 6 for examples.

 MATA: A Unified Approach for Composing UML Aspect Models 203

a |X b

Matches any state diagram with
states a,b separated by a single
state

a |X+ b

Matches any state diagram with
states a,b separated by any number
of states and transitions (i.e. another
state machine)

|X

|Y

Matches any composite state
with exactly 2 orthogonal regions

|X

|Y+

Matches any composite state
with at least 2 orthogonal regions

entry: |X+
e/|Y+

Matches any state with one or more
entry actions and an outgoing transition
with event e and one or more actions

Matches any composite state, i.e.,
any state that contains one or more
states and transitions

(a)

(f)(e)

(d)
(c)

(b)

|X+

Fig. 6. State Diagram Pattern Examples

Figure 6(a), for example, matches any sequence of states starting with a state
named a, ending with a state named b, and with another state in between (different
from a and b). In contrast, the variable |X+ in Fig. 6(b) matches one or more states in
between a and b as well as any transitions between those states. This means that |X+
represents any number of states and transitions with at least one of those states con-
nected to the incoming transition shown, and at least one state connected to the outgo-
ing state shown. In a similar way, Fig. 6(c) and 6(d) show how to match against a
specific number of regions and one or more regions, respectively. Figure 6(e) is self-
explanatory. Figure 6(f) matches a state which contains a state machine, i.e. there
must be at least one substate, but the composite state may contain any number of
substates and transitions.

Note that, for any simple pattern, the name of the pattern variable may be
omitted–so, Fig. 6(a) would be equivalent if |X was removed.

State Diagram Sequence Pointcut Semantics. The pattern-matching semantics for
state diagram sequence pointcuts is given by mapping each pattern to a typed graph
consisting of instances of the appropriate metaclasses. If a pattern element has a mul-
tiplicity of one, it maps to a single instance of its metaclass. If it has multiplicity of
one or more, it maps to a set of instances. To illustrate, Fig. 7 shows the mapping to
metaclass instances for the patterns given in Fig. 6(c) and (d). The first pattern will
match any composite state with exactly two orthogonal regions. The second pattern
will match any state with at least 2 regions.

A slight complication is introduced by the use of |X+ to match against a set of states
and transitions in Fig. 6(b) and (f). In Fig. 6(f), for example, instead of mapping |X+ to
a set of instances of State, it must be mapped to an instance of Region containing any

204 J. Whittle et al.

number of instances of State and Transition. This issue arises because of the peculiari-
ties of the UML metamodel.

State Diagram Pattern Example. Figure 8 shows the state diagram pattern required
in the example of Sect. 2. Recall that a sequence pointcut was deemed to be useful.
The figure illustrates how to specify a sequence from callRemoteService to
enableGUI. The pattern variable |X+ matches against any number of actions in the
target state of the transition but will not match against enableGUI(). The effect is that
the state diagram pattern matches any sequence starting with the callRemoteService()
action, followed by a transition, and by one or more entry actions, and ending with the
action enableGUI().

isComposite
= true

isComposite
= true

:State

:State

|X

|Y

|X

|Y+

:Region

:Region

:Region

:Region

Fig. 7. Metaclass Instance Representation of Patterns

entry:callRemoteService(…)

entry: |X+
entry: enableGUI()

Fig. 8. State Diagram Sequence Pointcut for Figure 1

Sequence pointcuts in sequence diagrams

Sequence pointcuts are also supported in sequence diagrams, but are somewhat
simpler. A sequence pointcut here corresponds to any sequence of ordered model
elements, including messages and combined fragments. To match the concrete syntax
closely, a new interaction fragment is introduced, with interaction operator any. An
any fragment is a variable that will match against any sequence of messages and/or
combined fragments. In Fig. 9, the Call Remote Service use case from the LHS of
Fig. 1 is instead modeled as a sequence diagram. This is shown on the top half of
Fig. 9. The bottom half of Fig. 9 gives a sequence pointcut equivalent to that shown in
Fig. 8, but for sequence diagrams. Note how this sequence pointcut is agnostic about
the messages occurring in between callRemoteService and enableGUI.

 MATA: A Unified Approach for Composing UML Aspect Models 205

:Client

(a) Call Remote Service
Sequence Diagram

(b) Sequence Pointcut

serviceRequest

:Service
Controller

:GUI :Server

disableGUI
callRemoteService

ack

logReturnValue

updateGUI

enableGUI

:Service
Controller

:GUI :Server

enableGUI

callRemoteService

|X
any

Fig. 9. Sequence pointcuts for sequence diagrams

4.2.2 MATA’s Composition Specification Language
MATA’s pattern language identifies model elements in the base models that are
crosscut by the aspect models. MATA also gives a way to define how model elements
from the aspect should be composed with model elements from the base. MATA
represents an aspect as a graph rule r: L → R, where L and R are UML models, as a
single UML model in which model elements may be annotated with one of three
stereotypes— <<create>>, <<delete>> or <<context>>.

Given a pointcut definition as a MATA pattern, model elements from the aspect
that should be added to the pattern are marked with the <<create>> stereotype. Simi-
larly, elements may be removed using the <<delete>> stereotype. Simple examples
are shown in Fig. 10 for state diagrams. In (a), the pointcut is any state (where an ex-
plicit pattern variable |X has been omitted) and the aspect elements added are a state a
and a transition to a. In (b), the pointcut is any pair of states with a transition between
them, and the aspect element is a superstate that is added so that it contains these (and
only these) two states. In general, <<create>> and <<delete>> can be used to add (or
remove) any kind of aspectual model element. For example, an aspect could be added
as an orthogonal region to an existing base model that matches a state pattern—see
Fig. 10(c).

The use of <<create>> is “optimized” in the sense that if a state is stereotyped as
<<create>>, then any of its substates or transitions are also created. Hence, in
Fig. 10(a), the transition is created but does not need to explicitly be given a <<cre-
ate>> stereotype. This optimization reduces the number of stereotypes a user must
specify. However, in Figs. 10(b) and 10(c), the user wants to wrap a composite state
around existing states. To stop these substates from being created, they are stereo-
typed as <<context>>. <<context>> therefore overrides the “optimization”. In par-
ticular, in Fig. 10(b), although the outer state is marked with <<create>>, the use of
<<context>> means that the two inner states are matched against rather than created.

206 J. Whittle et al.

<<create>>
a

(a) (b)

ev/act
<<context>> <<context>>

<<create>>

(c)

<<context>> a

<<create>>

Fig. 10. Examples of Composition Specifications

MATA’s composition stereotypes can also be applied to class diagrams and se-
quence diagrams. We illustrate with some examples of sequence diagram composition
specifications.

Figure 11 gives an example MATA aspect rule to add parallel behavior in a
sequence diagram. Figure 11(a) is the MATA rule itself and (c) shows the application
of the rule to a particular example. (In (a), the lifelines are pattern variables—as be-
fore, the pattern variables do not need to be explicitly named.) Figure 11(a) has two
parts to it—the pattern to match against and elements to add. As with state diagrams,
<<create>> in MATA sequence diagrams is “optimized” so that if <<create>> is ap-
plied to a combined fragment, it will also be applied to everything inside the fragment
unless it is marked with <<context>>. Similarly, if <<create>> is applied to a lifeline,
it is also applied to any messages that are sent to or are received by this lifeline.
<<delete>> works in the same way.

<<create>>

ppar

r
s

<<context>>

(a) MATA rule, R1

a:A b:B
p

q
ppar

r
s

a:A b:B

q

(c) Application of rules R1 and R2

<<create>>

ppar

r
s

<<context>>

(b) MATA rule, R2

b <<context>>

any

R1

R2

b

b

ppar

q
b

a:A b:B

r

s

<<context>>

Fig. 11. MATA Rules

 MATA: A Unified Approach for Composing UML Aspect Models 207

Hence, for the par fragment in Fig. 11(a), <<create>> also applies to messages r
and s. To avoid <<create>> being applied to p, it is marked with <<context>>. There-
fore, the match defined in Fig. 11(a) is any pair of lifelines with a message p from one
lifeline to the other. The effect of applying the rule in Fig. 11(a) is to introduce a new
par fragment around all instances of message p, and this new fragment will have
messages r and s occur in parallel with p. This is shown in Fig. 11(c).

Figure 11 also shows an example of how sequence pointcuts and composition
specifications can be used together in MATA. The rule R2 in Fig. 11(b) will match
any two lifelines with messages p and b with any number of messages between p and
b. (Note that the messages matched by the any fragment need not have the same
sender and receiver lifelines as p and q–that is, the lifelines across which any is drawn
are irrelevant.) The result of applying the rule is shown in Fig. 11(c). Note how the
result is different than if rule R1 is applied. For R2, the pointcut is the sequence of
messages p, q, b, and so these messages all appear in the first operand of the par
fragment.

Semantics of MATA’s composition language

As already indicated, the use of the <<create>> and <<delete>> stereotypes are “op-
timized” to reduce the burden on the modeler of applying these stereotypes. This
“optimization” is governed by the rules of neighborhood; for example, if <<create>>
is applied to a model element, it is also applied to all of its neighbors. Similarly, it
holds true for <<delete>> and <<context>>. Since this optimization process can get
quite involved for complex examples, we define here precisely how the optimization
works.

The semantics is defined by transforming an aspect into the equivalent graph rule
in the form LHS → RHS. This is done in two steps. First, the stereotypes <<create>>,
<<delete>> and <<context>> are propagated throughout the aspect model. Second,
the stereotypes are eliminated by transforming the aspect into a graph rule.

In the first step, each stereotype is propagated to its neighbors. A neighbor may be
an immediate neighbor or a remote neighbor. For a given model element, its immedi-
ate neighbors are all those related model elements that are considered strongly related
to it. For example, the trigger events on a transition are strongly related to the transi-
tion itself because they cannot exist without the transition. States are strongly related
to their transitions because if a state is deleted, then its transitions must be deleted lest
a hanging transition remains. Container states are considered to be strongly related to
the elements they contain. For example, composite states are strongly related to the
contained states. On the other hand, a transition is not strongly related to its target or
source state because the transition can be deleted without deleting the states and the
result will still be a well-formed model.

Table 1 gives the immediate neighbors for the model elements considered in this
paper.

A remote neighbor of a model element is any neighbor of an immediate neighbor
of the model element. The immediate neighbors are designed both to ensure termina-
tion of the propagation process and, as much as possible, to avoid aspects introducing
ill-formed models.

208 J. Whittle et al.

There are two precedence rules that must be taken into account during the propaga-
tion process. This is because a model element may end up with more than one MATA
stereotype either because different stereotypes were propagated from different direc-
tions or because the user has specifically assigned a stereotype. In the former case,
<<context>> always takes precedence over <<delete>> or <<create>> and so
<<delete>> and <<create>> are removed in this case. In the latter case, the user-
defined stereotype always takes precedence. For example, if a model element is
marked as <<delete>> by the user but <<context>> is propagated to it, then
<<context>> is removed. If the propagation process ends up with <<create>> and
<<delete>> both applied to the same element, then there is an inherent inconsistency
in the aspect rule and the rule should not be applied. This can happen, for instance, if
the user specifies that a state should be deleted but an incoming transition to that state
should be created. Obviously, one cannot create a new transition to a state that is
marked for deletion.

The following summarizes the propagation process.

for each MATA-stereotyped model element, m, in the aspect model:

let N be the set of immediate neighbors of m;
propagate the MATA stereotypes of m to all elements of N;
for each n in N,

apply the propagation process
end foreach

end foreach

for each model element, m, in the aspect model:

eliminate MATA stereotypes according to the precedence rules
if m is stereotyped with both <<create>> and <<delete>>, STOP

end foreach

The second step of the semantics definition is to construct the equivalent graph

rule. This is done easily. <<create>> and <<delete>> are simply a way of representing
both the LHS and RHS of a graph rule on the same diagram. The familiar LHS→
RHS notation can be obtained by considering the LHS as all elements either with no
stereotype or with <<context>> or <<delete>>. The RHS is the LHS but with the
<<create>> elements added and the <<delete>> elements removed. The Appendix
discusses how we do the conversion from UML models in concrete syntax to typed
graphs.

Although the propagation algorithm is designed as much as possible to ensure the
result of applying an aspect is a well-formed model, there are still situations where
this cannot be guaranteed. For example, if state X has a transition to Y and both Y and
the transition are marked as <<context>>, whereas X is marked as <<create>>, then
this rule looks for an existing transition with some undefined source state and creates
a new source state for the transition. However, a transition cannot have two source
states. We leave as future work to define constraints over how rules are defined that
would either avoid such rules or alert the user. Experience has shown that such rules
rarely occur in practice.

 MATA: A Unified Approach for Composing UML Aspect Models 209

Table 1. Immediate Neighbors for Some Common Model Elements

The table should be read as follows. The second column lists model elements. For
each of these elements, if a MATA stereotype is applied to it, then all elements
from the third column are also given the stereotype. So, for example, if a class has a
<<delete>> stereotype, all associations connected to this class will also be deleted.

Diagram Model element Immediate Neighbors
Class diagram Class Connected Association, Contained

Attribute, Contained Operation
Aggregation or
Composition Asso-
ciation

Aggregate or Composite Classes

Generalization Child Classes
Other Association None

State diagram State Incoming or Outgoing transition, Subs-
tates, Entry or Exit Actions

 Transition Event on the transition, Action on the
transition, Guard on the transition

Event None
Action None

Sequence diagram Combined fragment Model elements contained in the frag-
ment

Lifeline Incoming or outgoing message
Message None

4.3 MATA Example

Finally, in this section, we return to the remote service call example introduced in
Fig. 1. We now consider how to specify this aspect composition in MATA. The base
model slice consists of the models on the LHS of Fig. 1. The aspect model slice is an
adaptation of the models on the RHS of Fig. 1. The aspect models must be put into
MATA syntax so that they define the failure handling behavior as an increment over
the base model slice. Figure 12 therefore shows the state-dependent part of the aspect
model slice for failure handling. To make it easier to read, elements that are created or
deleted are in bold italics. Note that a MATA rule contains the pattern to match
against, the aspect model elements, and the composition operators that detail how
those aspect elements are merged with the base. The effect of applying this rule is
that: (1) a match is found in the base model with the state diagram sequence pointcut,
and (2) the matched submodel of the base is modified by creating and deleting ele-
ments according to the <<create>> and <<delete>> composition operators. Note that
a combination of <<create>> and <<delete>> is used to move the actions that match
against |X+.

210 J. Whittle et al.

entry:callRemoteService(…)

entry: |X+ <<delete>>
entry: enableGUI()

<<create>>[retries>MAX]
remoteException/

<<create>>[retries<=MAX]
remoteException/
<<create>>callRemoteService(…);
<<create>>retries++

/ <<create>>|X+

Fig. 12. MATA Specification of the Example in Figure 1

5 Detecting Aspect Interactions

Since aspect models are represented as graph rules in MATA, critical pair analysis
can be applied, as explained in Sect. 3, to detect interactions between aspects. In this
section, we introduce a small example to illustrate how this works. The example is for
class diagrams, but the same principles apply to sequence and state diagrams.

Service
Controller

Server

Service
Controller

Proxy Server

<<delete>>

<<create>>

Validator
<<create>>

Service
Controller

Proxy Server

<<delete>>

<<create>>

Authenticator
<<create>>

Proxy ServerCache
<<create>>

(a)

(b)

(c)

(d)

Fig. 13. Simple Example of Aspect Model Interaction

(Note how the concept of immediate neighbor is used so that, for example,
<<create>> does not need to be applied to the association from Proxy to Cache.)

 MATA: A Unified Approach for Composing UML Aspect Models 211

Recall the ongoing example, which involves the call of a remote service from a
ServiceController to a Server. Figure 13(a) gives a simple class diagram illustrating
the relationship between ServiceController and Server. Figure 13 (b)-(d) shows three
aspects that might be specified to add functionality to the network communication.
Figure 13(b) introduces a basic proxy server that simply validates a request before
forwarding it. Figure 13(c) is an aspect introducing caching to an existing proxy, and
Fig. 13(d) adds an access control proxy. The intention is that all three of these aspects
will be added to the base so that all communication between the ServiceController
and Server goes through a caching, validating, access control proxy.

Following the process to use MATA outlined in Sect. 4.1, the modeler would
instruct MATA to apply all three aspects and, before actually composing the models,
it would apply critical pair analysis to detect dependencies and conflicts between the
aspects. Because of the simplicity of the example, it is easy to see in this case that
there are indeed serious aspect interactions and that a random order of application of
the aspects may result in an incorrect result. For example, if aspect 13(d) is applied to
the base first, then aspect 13(b) can no longer be applied because it cannot match the
result obtained after applying aspect 13(d)–aspect 13(d) removes the association be-
tween ServiceController and Server, which is needed to match and apply aspect
13(b). Aspect 13(c) will still apply but the result of applying the aspects in this order
means that, since 13(b) cannot be invoked, the proxy validity check will not occur.
For large examples, such details could easily be overlooked, resulting in incorrect
models as a result of applying aspects.

Table 2 summarizes the results of critical pair analysis applied to this example. The
table tells us that there is conflict from aspect 13(d) to aspect 13(b). In particular, this
means that if aspect 13(d) is applied, then aspect 13(b) cannot be. This matches the
intuition in the previous paragraph. Conflicts are generally more serious than depend-
encies. Dependencies can be dealt with by applying the aspects in a particular order
(and this can be specified in the MATA tool). Conflicts, on the other hand, can some-
times be resolved by enforcing an application order, but, in the worst case, imply a
fundamental inconsistency in the specification that should be fixed.

Table 2. Dependencies and Conflicts in Figure 13. An entry for row X and column Y implies a
dependency or conflict from X to Y.

row→column Aspect (b) Aspect (c) Aspect (d)
Aspect (b) Dependency Conflict
Aspect (c)
Aspect (d) Conflict Dependency

Table 3. Revised Dependencies and Conflicts

row→column Aspect (b) Aspect (c) Aspect (d)
Aspect (b) Dependency Dependency
Aspect (c)
Aspect (d)

212 J. Whittle et al.

For this example, the modeler might realize, based on the results in Table 2, that a
better model would allow aspect 13(b) to introduce the basic validating proxy and
then other aspects should add functionality layers on top of this proxy. This would re-
sult in modifying aspect 13(d) to only introduce the Authenticator. (It would look
identical to Fig. 13(c) except Authenticator would replace Cache.) Once this is done,
and critical pair analysis is re-run, the results in Table 3 are obtained. Table 3 shows
us that aspects 13(c) and 13(d) are now orthogonal since there are neither dependen-
cies nor conflicts between them. This implies that the application order of 13(c) and
13(d) is irrelevant. However, there are still dependencies from aspect 13(b) to the
other rules and so aspect 13(b) must be applied before those. The modeler should
therefore specify to apply 13(b) first followed by either 13(c) or 13(d).

6 Extended Example

The preceding sections have introduced the major concepts in MATA. To bring eve-
rything together, this section provides an extended example of MATA that includes
both static and dynamic models. A cell phone application is used to illustrate the
concepts that have been introduced so far.

We will model three use cases for a simple cell phone—Receive a Call, Take a
Message, and Notify Call Waiting. The goal here is to compose models for the three
use cases. To do this, we will consider Receive a Call to be the base use case, and the
other two use cases to be aspects. The base use case is modeled in UML, whereas the
aspect use cases are modeled as MATA models, that is, as increments of the base
models. Note that the models for the aspect use cases refer only to those elements in
the base that are needed for the modifications to take place.

Figure 14 shows (simplified) static and dynamic models for the base use case, Re-
ceive a Call. The phone contains a ringer, a phone component, a display unit, and a
keypad. Upon receiving an incoming call, the phone notifies the user by displaying
the caller information on the display unit and sending a ring message to the ringer.
The user is allowed to either accept the call (then hang up later) or not accept (i.e. dis-
connect) the call.

Figure 15 gives the behavior models for the two aspects: Take a Message and No-
tify Call Waiting. Figure 15(a) is a sequence diagram for Take a Message. If the
phone rings for a specified amount of time (i.e. there is a timeout), the call goes to a
messaging system. In MATA, this is specified by creating a new alt fragment since
forwarding to voice mail is an alternative scenario to the case where the callee accepts
the call. Note that an any fragment is used to match against all messages coming after
Ring in the base. This is needed since once a message is taken, the user should not be
able to pick up the call or disconnect it. Hence, the alt fragment must be wrapped
around all messages in the base concerned with call pick up or disconnect.

In Fig. 15(b), the aspect rule matches any two states that have a transition between
them with an event named Incoming call. The effect of the aspect is to add an addi-
tional transition capturing the voicemail behavior. When this rule is applied, the two
states will match against Idle and Waiting in Fig. 14(c). The effect is to add a transi-
tion from Waiting back to Idle.

 MATA: A Unified Approach for Composing UML Aspect Models 213

Caller User

alt

Incoming call

Phone Ringer Display

Display call info

Ring

Pick up

Hang up

Disconnect

Idle

On call

Waiting

Hang up/

Pick up/

Incoming call/

Display call info,
Ring

,

Disconnect/

Phone

Keypad

Display
+Ring()

Ringer

(a) Phone System Classes

(b) Receive a Call Scenario

(c) State Diagram for Phone

Fig. 14. Models for the Base Use Case

any

(a) Take A Message Scenario (b) Take A Message States

(c) Notify Call Waiting Scenario (d) Notify Call Waiting States

Phone Ringer

Ring

Voice

alt

Forward to voice mail

<<create>>

Caller User

Pick up

Incoming call

Phone Ringer Display

loop <<create>>

Display call info

OK

Put on hold

<<create>>

Waiting for hold
prompt

On call

Incoming call/
Display call info OK/

Put on hold

Incoming call/

<<create>>

timeout/Forward to voice mail

timeout

Hang up

<<context>>

<<create>>

Fig. 15. Aspect Models for Take a Message and Notify Call Waiting

214 J. Whittle et al.

Figure 15(c) introduces messages for putting an incoming call on hold when a call
is already underway. These new messages are only relevant when a call is taking
place, that is, in between messages Pick Up and Hang Up in the base. Hence, the loop
fragment is marked with a <<create>> stereotype and this fragment is inserted in
between Pick Up and Hang Up. Note that, in this case, it would be sufficient to leave
out the Hang Up message in 15(c), which, in effect, would insert the new behavior af-
ter Pick Up. However, we include Hang Up because there may eventually be other
occurrences of Pick Up, which should not be affected by the aspect.

Figure 15(d) introduces a new state, Waiting for hold prompt, into the base to cap-
ture the new behavior for the call waiting use case. Note that the two transitions in
15(d) implicitly have <<create>> stereotypes because they are immediate neighbors
of the newly created state.

6.1 Interactions between Aspects

We can see that there is a dependency between the two state diagram rules for Take a
Message and Notify Call Waiting. This dependency arises because Notify Call Wait-
ing creates a transition with event Incoming Call (Fig. 15(d)) whereas Take a Mes-
sage matches against the event Incoming Call (Fig. 15(b)). Hence, if Take a
Message is applied to the base before Notify Call Waiting then any incoming call that
is received during an existing call cannot be sent to voicemail. Figure 16 gives the re-
sults of composing the two aspects with the base in either order. In 16(a), Take a Mes-
sage is applied to the base before Notify Call Waiting. In 16(b), it is applied after. The
difference is that there is an extra transition from Waiting for hold prompt to On call
in 16(b) which captures the fact that an incoming call may be sent to voice mail even
when there is currently an active call taking place. The difference in the composed
state diagrams arises because the rule for Notify Call Waiting introduces a new transi-
tion with event Incoming call. Hence, when the Take a Message rule is applied in
16(b), there are two transitions with event Incoming call and so the rule applies twice.

Idle

On call

W aiting

Hang up/

Pick up/

Incoming call/
Display call info,
Ring

Disconnect/

timeout/
Forward to
voice mail

On call

Waiting for
hold prompt

Incoming
call/
Display call
info

OK/Put on hold

(a) Take A Message before
Notify Call Waiting (b) Take A Message after

Notify Call Waiting

t imeout/
Forward to
voice mail

Idle

On call

W aiting

Hang up/

Pick up/

Incoming call/
Displ ay call info,
Ring

Disconnect/

timeout/
Forward to
voice mail

On call

Waiting for
hold prompt

Incoming
call/
Display call
info

OK/Put on hold

Fig. 16. Base and Aspect State Diagrams Composed

 MATA: A Unified Approach for Composing UML Aspect Models 215

MATA detects these kinds of dependencies automatically. Ultimately, the modeler
must decide which order is the correct one, but MATA can at least provide some assis-
tance in flagging cases that must be considered more carefully. If there are no conflicts
or dependencies, then the rules can be applied in any order. Critical pair analysis is par-
ticularly important when aspects are reused in a different context than originally
intended since new conflicts and dependencies may then arise inadvertently.

7 Tool Support

7.1 Overview

This section describes the implementation of the MATA tool. MATA is designed as a
vendor-independent tool but currently works on top of IBM’s Rational Software
Modeler (RSM). Each model slice is modeled as a package. Within this package, the
class diagrams, sequence diagrams, and state diagrams for the slice are maintained. A
simple UML profile is applied so that the base model slice is stereotyped as <<base>>
and aspect model slices are stereotyped as <<aspect>>. Users may select a subset of
the aspects and the tool generates the composed model for all of these aspects and the
base. The user may also define an ordering of aspect composition in case one aspect
needs to be composed before another. If an ordering is not specified, the tool selects
an order non-deterministically. Critical pair analysis is always applied before compo-
sition and the results are presented to the user.

Since MATA uses graph transformations as the underlying theory, it relies on an
existing graph rule execution tool to apply graph rules. The graph rule execution tool
used is AGG [21]. MATA converts a UML base model slice, captured as an instance
of the UML2 metamodel by RSM, into an instance of a type graph, where the type
graph represents a simplified form of the UML2 metamodel. MATA composition
rules are converted into AGG graph rules and are executed on the base graph auto-
matically. The results are converted back into a UML2 compliant model and are
displayed in RSM. Critical pair analysis is done by AGG and the results are converted
into RSM so that detected dependencies and conflicts can be understood by the user.

The details of the conversion to type graphs are not given here. It suffices to say
that for simple patterns, the mapping is a straightforward transformation from a UML
metamodel instance to a type graph instance. Full details are given in [22]. For se-
quence pointcuts, the transformation is more complex because AGG does not directly
support these. The effect is achieved by tagging model elements to keep track of their
relative positioning and then using a sequence of graph rules to manipulate the se-
quence pointcut matches. This is an implementation detail that we do not go into here.
So far, sequence pointcuts have been implemented for sequence diagrams but not for
state diagrams.

In principle, MATA could use any existing graph rule execution tool (e.g.
VIATRA2 or FUJABA) as its underlying engine, but AGG was chosen because of its
support for critical pair analysis. Although built on top of an existing engine, MATA
provides some unique features that make it very suitable for aspect modeling and
composition, namely: (1) graph rules are defined graphically using the concrete syn-
tax of UML rather than using metaclasses; (2) MATA supports sequence pointcuts,
that is, an aspect may match against a sequence of messages or a sequence of

216 J. Whittle et al.

transitions. This is supported directly in the MATA rule syntax; (3) the stereotype
<<context>> is unique to MATA; and (4) dependencies and conflicts between aspects
can be detected automatically using critical pair analysis.

7.2 Generating AspectWerkz Code from MATA Models

In general, the user has a choice whether to compose the aspect and base models dur-
ing modeling or to compose them once code has been generated from them. In the
former case, the composed models can be used to generate code using existing code
generators. In the latter case, aspect-oriented code is generated automatically using
MATA’s built-in generator, which generates AspectWerkz [18] code. AspectWerkz
was chosen for its dynamic weaving capabilities2

‡ since this research has been con-
ducted within the context of a larger project on integrating model-driven development
and runtime weaving. The code generator, however, aims to decouple the MATA
representation from the particular AOP language used, and therefore, introduces an
intermediate layer in the mapping. This layer defines a metamodel of common AOP
language constructs and can be mapped to different AOP languages supporting those
constructs.

The remainder of this section gives a brief introduction to AspectWerkz, a short
description of the code generation facilities in MATA, and a short example.

7.2.1 AspectWerkz
AspectWerkz is a Java-based AOP language that does not add any new language
constructs to Java, but instead supports declaration of aspects via Java annotations.
AspectWerkz has now been merged with AspectJ. However, the full dynamic weav-
ing capabilities of AspectWerkz are not available in AspectJ and so we continue to
use AspectWerkz in this paper. AspectWerkz includes support for dynamic weaving
of aspects, which makes it possible to redefine advices and introductions at runtime
without any class reloading or new weaving phase as well as to declare new pointcuts
at run time. AspectWerkz was chosen to be the target of MATA’s code generator be-
cause of its ability to support research projects in adaptive systems. However, because
of the merge of AspectWerkz and AspectJ, it would be straightforward to adapt the
code generator to produce AspectJ code (albeit without the runtime weaving capabili-
ties). An alternative AOP language with run time weaving facilities would be PROSE
[23]. Partly because of the uncertainty of future runtime weaving languages, MATA’s
code generator has been implemented following MDA principles, that is, by mapping
first to an intermediate platform-independent aspect metamodel before mapping to
AspectWerkz.

In AspectWerkz, annotations can be used to define aspects (see Fig. 17). An aspect
is just a class with the annotation @Aspect. The usual advices–before, after and
around–can also be defined using annotations. For example, in Fig. 17(b), an around
advice is defined to add new behavior to method1 when field1 is set to 1. Introduc-
tions in AspectWerkz can be defined using mixins. Figure 17(c) shows a mixin for
adding new fields and methods to Class1. Note how the mixin is just a class with an
annotation.

2 Although Aspectwerkz has now been integrated into AspectJ 5, the runtime weaving capabili-

ties do not exist in AspectJ 5.

 MATA: A Unified Approach for Composing UML Aspect Models 217

public class Class1 {

int field1 = 0;
…

public void method1(String param) {
if(field1 == 0) {

object1.method1(param);
object2.method1();

}
}
public void method2()

{ /*method2 logic*/ }
…

}

@Aspect
public class Aspect1 {

@Around(“execution(public * *.Class1.method1(..))”)
public void around_method1(JoinPoint jp){

Class1 baseClass = (Class1) jp.getTarget();
if(baseClass.field1 == 1){

baseClass.object3.method1(param)
baseClass.object2.method1();
return;

} else {
jp.proceed();

}
}

}

@Mixin(“within(public *.Class1)”)
public class Class1Mixin {

public Class1Mixin(Object target)
{ Class1 baseClass = (Class1) target; }

int field2 = 0;
public void method3()

{ /*logic for the new method*/ }
public void method4()

{ /*logic for the new method*/ }
}

Influence on
Structure

Influence on
Behavior

(a)

(b)

(c)

Fig. 17. Syntax of AspectWerkz

7.2.2 Code Generation in MATA
MATA currently generates AspectWerkz code from UML class diagrams and UML
state diagrams. It takes a base model slice and a set of aspect model slices (selected by
the user) and generates Java code for the base model slice and an AspectWerkz aspect
for each of the aspect model slices. State diagrams are implemented using the State
pattern.

To maintain independence from the target AOP language, code is generated in two
phases. The first phase maps MATA models to an AOP metamodel that defines the
concepts common to the most widely used AOP languages but does not commit to a
particular AOP language. The second phase generates AspectWerkz code from this
metamodel but could be adapted fairly easily to generate, for example, AspectJ code.

The intricacies of the code generator are outside the scope of this paper. Instead, we
present a simple example. Recall the cell phone example from Sect. 6. Figure 14 shows
the base state diagram, whereas Fig. 15 shows an aspect state diagram that introduced a
new state and transitions for the Notify Call Waiting use case.

Figure 18 gives the code generated for these two state diagrams. The LHS of the fig-
ure is an implementation of the base state diagram using the State pattern. The RHS
uses mixins to add new states and transitions to the base behavior. Note, in this example,
that a single new state is created (Waiting for Hold Prompt). This is implemented as a
new object that implements the State interface. In Fig. 15, a new transition, Incoming
Call, is added to the On Call state. This is captured in the aspect code by a mixin ap-
plied to the OnCall class. There also needs to be a mixin applied to the Phone class to
redirect the new transition OK. The upper portion of the RHS of Fig. 18 is a book-
keeping code needed to ensure proper placement of the aspect code.

218 J. Whittle et al.

public class Caller
{ /* caller interfacing logic */ }

public class User
{ /* user interfacing logic */ }

public class Phone {
public void incomingCall(String info)

{ curState.incomingCall(info); }
public void pickUp() { curState.pickUp(); }
public void hangUp() { curState.hangUp(); }
public void disconnect() { curState.disconnect(); }

//State Machine Implementation
public interface State {

void incomingCall(String info);
void pickUp();
void hangUp();
void disconnect();

}
class Idle implements State {

public void incomingCall(String info) {
display.displayCallInfo(info);
ringer.ring();
curState = waiting;

}
void pickUp() { /*do nothing*/ }
void hangUp() { /*do nothing*/ }
void disconnect() { /*do nothing*/ }

} //other states follow the same approach...
}
public class Ringer() {

public void ring() { /*ringing logic*/ }
}
public class Display() {

public void displayCallInfo(String info)
{ /*display logic*/ }

}

@Mixin(“within(public * ReceiveACall.Phone)”)
public class Phone extends PeerClass {

//initialization code…
public void incomingCall(String info) {

curState.incomingCall(info); }
public void oK() { curState.oK(); }

//State Machine Implementation
interface State

{ void incomingCall(String info); void OK(); }
@Mixin(“within(public ReceiveACall.Phone$OnCall)”)
class OnCall extends PeerState implements State {

void incomingCall(String info){
display.displayCallInfo(info);
setCurState(waitingForHoldPrompt);

}
void OK() {/*do nothing*/ }

}
class WaitingForHoldPrompt extends PeerState implements State {

void OK(){
caller.putOnHold(); //instance of NotifyCallWaiting.Caller
setCurState(OnCall);

}
void incomingCall(String info) {/*do nothing*/ }

} // other mixins follow the same approach…

@Aspect
public class NotifyCallWaiting extends MAspect {

@Around(“execution(public * ReceiveACall.Caller.*(..))”
+” || execution(public * ReceiveACall.Phone.*(..))”
+ … /*all base classes referenced by the aspect*/)

public void crosscut(JoinPoint jp) {
if(enabled == true)

this.weave(jp);
else

jp.proceed();
}//…

Fig. 18. Code Generated for the Cell Phone Example

8 Evaluation and Discussion

This section presents a preliminary evaluation of MATA. In [24], the authors argue
that an aspect composition language should satisfy a number of basic requirements.
(The arguments made in [24] specifically address aspect-oriented requirements engi-
neering but the discussion generalizes to modeling). We include five of these re-
quirements here and assess whether MATA satisfies them. According to [24], an
aspect composition language should aim to be:

1) Environment-friendly. A composition language should allow an aspect to
be defined without requiring changes to the base model. In particular, the
base should not need to be structured or designed in a particular way to sup-
port the aspect. This is a special case of obliviousness. If a composition lan-
guage is very limited in expressiveness, for example, it might require the
base to be structured in a particular way. The base would still be oblivious to
the aspect, in the sense that it does not expose any aspect-specific interfaces,
but the composition could only take place under certain design restrictions
applied to the base. In the same way, an aspect should not need to be written
in a special way so that it can be composed with the base.

 MATA: A Unified Approach for Composing UML Aspect Models 219

2) Scalable. A composition language should scale to large industrial models.
3) Familiar. In order to ease adoption of the composition language, it should

already be familiar to model developers.
4) Formal. The composition technique should be as formal as possible without

the formalism becoming a barrier in practice.
5) Exhaustive. Models may be composed in many different, complex, and un-

expected ways. A composition technique must be exhaustive in that it should
provide the means to express all desired compositions. For example, for
composing sequence diagrams, composition rules should cover not just se-
quences and alternatives (i.e. before/after/around) but also concurrency,
loops, and interleaving.

We now assess how MATA performs against these criteria. We will focus in this pa-
per on exhaustiveness and will present the results of a small empirical study that
suggest that (1) MATA is more exhaustive than competing approaches and (2) that
exhaustiveness is required in practical examples. First, however, we will briefly
discuss the other requirements. Scientific studies have not yet been undertaken for
these.

8.1 Environment-Friendliness

Regarding the first requirement, MATA clearly satisfies it because MATA allows any
change to the base model. Hence, any design decisions in the base could ultimately be
modified. This is in contrast to other approaches in which only a selection of prede-
fined model elements are allowed to be joinpoints. Therefore, it might be difficult or
impossible to modify base elements not in this predefined selection. In Sect. 2, we
saw an example where approaches based on AspectJ might be able to define a compo-
sition but would do so in a non-optimal way because either the aspect or the base
model would have to be broken into fragments, that is, they would have to be written
in a particular way to support the composition. The treatment of this example using
MATA does not require such decomposition.

As noted above, this criterion is a special case of obliviousness. Recently, a num-
ber of authors [25, 26] have argued that full obliviousness is not desirable and that
programs should have well-defined interfaces for aspect composition (e.g. joinpoint
interfaces). While this argument does not negate the points made in the previous
paragraph, we broadly agree with this way of thinking and note that MATA could
easily support such interfaces in the future. Currently, all model elements are accessi-
ble as joinpoints, but these could potentially be limited by the user. The difference
with previous approaches would be that the modeler, instead of the language designer,
would have full control over which joinpoints to limit.

8.2 Scalability

This criterion is always difficult to provide evidence for. We have applied MATA in a
variety of settings for reasonably large examples, which tends to suggest, at least ini-
tially, that it is straightforward to specify aspects using MATA. The major application
areas to which we have applied MATA are as follows:

220 J. Whittle et al.

1. Modeling Software Product Lines. Jayaraman et al. [27] report on how
MATA was used to model features as aspects in software product line de-
velopment. Each feature is represented as a model slice as an increment
over other features. Critical pair analysis was applied to detect feature in-
teractions. As part of this work, Jayaraman et al. took an existing product
line–namely, the microwave oven product line from Gomaa’s book [28]–
and modeled it using MATA.

2. Maintaining the Separation of Use Cases throughout the Modeling Proc-
ess using the technique in [6]. We conducted an experiment to refactor a
number of student design solutions into an aspect-oriented MATA design
–see Sect. 8.5 for details.

3. Modeling Security Requirements as Aspects. We have applied MATA to
the problem of modeling security concerns during requirements engineer-
ing. In particular, security use cases were modeled as MATA sequence
diagrams and were composed with sequence diagrams for the base use
cases. This approach has been conducted on a number of case studies in-
cluding an electronic voting system [29] and requirements for a positive
train control system [30] under consideration by the Federal Railroad
Administration.

These case studies lend evidence that MATA can be used in practice. For larger indus-
trial models, there is, of course, an efficiency question regarding both the graph trans-
formation composition mechanism and critical pair analysis. For both of these, MATA
relies on AGG’s implementation. In our experience, we have found that composition is
very efficient. Critical pair analysis, however, can take time. The efficiency depends on
the complexity of the metamodel for the diagram being analyzed. For class diagrams,
critical pair analysis generally takes only a few seconds. For state diagrams, it can take a
few minutes on large examples. For sequence diagrams, it has taken up to one hour in
our most complex case study. This is because the interaction metamodel for UML is
very complex. In fact, we have made a number of simplifications to the metamodel to
allow us to translate it into a type graph in AGG that allows relatively efficient analysis.
This does mean that not all of the modeling elements in sequence diagrams are currently
supported by MATA. We consider it a future research question to develop an efficient
analyzer for large UML models. The work presented here provides evidence that the
analysis would be useful but further work is required on a more efficient implementa-
tion. In particular, critical pair analysis in AGG is a very general implementation and it
may be that it can be specialized for the specific tasks that MATA takes care of, mean-
ing that the efficiency could be improved.

8.3 Familiarity

For MATA, familiarity means that the MATA language should be as close to UML as
possible. Graph transformations are traditionally written over the abstract syntax of a
modeling language because this is the most general approach. However, in MATA,
aspects (which are graph rules) are written in concrete syntax with a small number of
extensions to support sequence pointcuts. The use of UML’s concrete syntax makes
MATA broadly applicable because no experience with metamodeling is required.

 MATA: A Unified Approach for Composing UML Aspect Models 221

8.4 Formality

Since MATA is based on graph transformations, it is founded on a strong formal foot-
ing. The application of critical pair analysis is possible because of this foundation.

8.5 Exhaustiveness

This is the main criterion considered in this paper. As discussed in Sect. 1, there have
been two types of approaches to AOM. The first is to use a generic merge algorithm
(that can be tailored) to compose an aspect and a base model. The second is to reuse
and adapt the joinpoint model and advices from AspectJ. Henceforth, we will refer to
the first approach as GM (for generic merge) and the second as AJ.

MATA is more exhaustive than either GM or AJ because any model element can be
a joinpoint and any model element can be an advice. However, the question remains
whether the additional expressiveness is actually required in practice. To answer this
question, we undertook an investigation of existing design solutions to see which kinds
of compositions are needed in practice. Our experiment attempted to answer the follow-
ing question: In practical examples, are model composition mechanisms like GM or AJ
enough or is more expressiveness needed? The investigation was undertaken for the use
case slice technique of Jacobson and Ng [6]. Use case slices are a way of maintaining a
use case-based decomposition throughout the development lifecycle. As an example, for
state diagrams, this means that each use case maintains its own state diagram and these
state diagrams are composed during late design or implementation to obtain the overall
design.

In [6], Jacobson and Ng do not adequately address how to compose use case slices
during design. Their approach is to apply AspectJ-like composition operators. The
hypothesis of this paper is that such operators are not expressive enough. To test this
hypothesis, we examined existing UML designs, refactored those designs to reflect the
use case slice technique of Jacobson and Ng, and then investigated the level of expres-
siveness required to compose designs from different use case slices. Because of the
availability of the models, we chose to study seven student team design solutions, each
expressed in UML consisting of use cases, class diagrams, interaction diagrams, and
state diagrams. Only the use cases and state diagrams were considered in the study, and
we focused on compositions of state diagrams from different use case slices.

Projects were conducted by teams of three to four students. Each of the seven pro-
jects tackled the same problem statement using the same set of use cases. The scale of
the student solutions is clearly not industrial in size and the results offered here are
meant to be just the first step.

Based on an analysis of the compositions required in the state-dependent use case
slices, we identified four categories of composition that occurred.

C1: One-to-One State Matching. The first category includes model compositions
that can be expressed using simple matching of states. In other words, for two state
diagrams, S1 and S2, with state sets Σ1 and Σ2, the composed state diagram S1• S2,
can be obtained by defining a one-to-one mapping θ: Σ1 → Σ2. Figure 19(a) gives an
example. In the student solutions, this case occurred typically when two use cases
defined state diagrams that were joined together into a loop.

222 J. Whittle et al.

C2: Many-to-many state matching. This category is an extension of the previous
one whereby states in the two state diagrams have a many-to-many relationship, i.e.
θ(σ) is a set for any state σ. This allows a much richer form of composition. In par-
ticular, it allows for the creation of composite states (see Fig. 19(b)).
C3: State diagram refactoring. In this category, one or more of the state diagrams
must be refactored to enable composition to take place. In other words, one state dia-
gram cannot be inserted in its entirety into the other. Rather, it must be broken up
before being inserted in multiple places. This type cannot be handled by state match-
ing because matching cannot refactor a state diagram. Figure 19(c) illustrates this.
C4: State diagram refinement. In this type of composition, additional behavior (i.e.
states and transitions) must be added when composition takes place. Clearly, state
matching does not apply because state matching cannot refine behavior. This type of
composition is necessary in cases where two use case slices have been developed in-
dependently but where there are dependencies between the slices that must be
resolved when the slices are composed. A typical example concerns access to data. If
a single use case slice reads from a data object, then no data access synchronization is
required. However, if another use case slice writes to this data object, when the two
use case slices are composed, an access synchronization mechanism such as mutual
exclusion must be added. Figure 19(d) gives an example.

Based on the student design solutions, we found that all four categories of compo-
sition occur for use case slice development. The relative frequency for the four
categories was as follows: 13%, 39%, 46% and 2%.

The GM approach supports only category C1 although it can be easily extended to
support C2 (as was done in [31]). It does not support categories C3 and C4.
The AJ approach does not support C2 since, for example, composite states cannot be
wrapped around multiple base states simply using before/after/around. The AJ ap-
proach partially supports categories C3--C4. In some cases, a composition of these
types requires container model elements to be wrapped around existing elements–see
Fig. 19(d), for instance. AJ does not support this. In some cases, especially for

A B C D

B/C A/D

A=D
B=C

e/a f/b

f/b

e/a(a) (b)

(c) (d)

A B C D

B

A=C=D

e/a f/b

e/aC D
f/b

A

A B C D
e/a f/b

E

A B
e/a

C
f/b

D

E

g/c

g/c

f/b

A B C D
e/a f/b

A B
e/a

C D

[IN(A)]f/b

[not IN(A)]f/wait

Fig. 19. Composition Categories

 MATA: A Unified Approach for Composing UML Aspect Models 223

category C1, quite complex compositions occur that could be specified by AJ, but the
aspect would have to be first refactored into multiple fragments, each of which is then
inserted at a different place in the base. We view this as a non-optimal approach to
composition because it involves representing fragments of an aspect model separately,
which leads to problems in reusability and readability. Finally, in other cases, AJ can-
not make a distinction between different kinds of composition. As an example, in Fig.
19(c), inserting the LHS state diagram after f/b could have two possible results: either
stay in state B or go to state D. With AJ, it is not generally possible to make such a
distinction.

MATA supports all categories because the entire state machine diagram syntax is
available. For example, two use case slices can be merged in parallel using UML or-
thogonal regions. The results of the investigation reveal that, at least for use case slice
composition, a greater degree of expressiveness is required in practice. Further inves-
tigation is required, of course, to see if these results are true for other aspect-oriented
software development methods.

9 Related Work

There is a large body of work on AOM, although much of this has been restricted to
structural models. Work of note that considers behavioral models is the Motorola
WEAVR tool for state machines [5], Song et al.’s work on weaving security aspects
into sequence diagrams [32], and Klein et al.’s work on semantic composition for in-
teraction diagrams [33]. The WEAVR tool considers actions in state machines as
joinpoints and uses “around” advices to weave in aspect state machines. WEAVR is
the first commercially available aspect modeling tool but focuses only on state ma-
chines. In addition, it is tailored toward SDL state machines and concentrates on ex-
ecutable modeling and so is more suited to detailed design rather than earlier analysis
and design phases.

There has been some work that composes aspect sequence diagrams. Song et al.
work [32] has only a very limited set of composition operators and does not provide
tool support. However, it does address how to verify the result of the composition by
annotating models with OCL expressions, which could then be checked against the
composed models. However, the work appears to be in its early stages. Reddy et al.
[34] compose aspect sequence diagrams by using special tags that allow an aspect to
be broken into pieces and then inserted at different points in the base–for example, at
the beginning, in the middle, or at the end of the base messages. Whilst interesting,
the MATA approach is more general and subsumes these operators. Indeed, earlier
work by some of the authors of this paper considered composition of sequence dia-
grams using a limited set of composition operators [35]. This work has also been sub-
sumed by MATA. Klein and Kienzle [36] describe a case study of composing aspect
sequence diagrams. In this approach, one sequence diagram describes the pointcut and
another describes the advice. The paper presents a case study using the semantic
composition of scenarios described in [33]. The latter is important work that goes be-
yond syntactic mechanisms for defining pointcuts but instead relies on the semantics
of the modeling language for matching an aspect. This reduces, to some extent, the
fragile pointcut problem for aspect sequence diagrams but does incur a performance
overhead. Such techniques could potentially be incorporated into MATA.

224 J. Whittle et al.

Other work on AOM includes, of course, Theme/UML [3]. Theme/UML is an
example of the generic matching approach considered in Sect. 8 and suffers the limi-
tations in expressiveness noted there. Katara and Katz [37] provide an approach for
AOM of sequence and state diagrams based on superimposition. This is quite similar
to MATA in that aspects are defined as increments over other models (either the base
or other aspects). However, Katara and Katz [37] does not support a fully-fledged pat-
tern language for defining pointcuts, which limits the quantification possible. Al-
though Katara and Katz do give consideration to identifying dependencies between
aspects, these dependencies must be found manually and documented on a so-called
concern diagram. Indeed, MATA can be thought of as providing automated support
for developing and/or validating such a concern diagram.

Generic aspects can be seen as a kind of design pattern. Hence, work on instantiat-
ing design patterns and applying aspect models is closely related. Indeed, there has
been some work on automatically instantiating generic descriptions of design patterns
[38, 39] and using such techniques in AOM [31, 40].

MATA views aspect composition simply as model transformation. This is a point
of view that has also been noted by others. A general discussion of the similarities of
model composition and model transformation is presented in [41]. One interesting
point described there, and discussed elsewhere, is that aspect composition could either
be specified by a generic model transformation language or by a dedicated aspect
composition language, or indeed that there is a spectrum of possibilities lying in be-
tween. MATA tends toward the use of a generic model transformation language but
tailors this to ensure familiarity of the language to modelers. In this sense, it is differ-
ent than using a completely general transformation language, such as the one based on
QVT, but retains the power and flexibility of a generic transformation language.
Dedicated aspect composition languages risk sacrificing expressiveness because a
limited number of composition operators would be provided. For example, France et
al. [42] provide such a limited number of matching and composition operators but the
user may override these if necessary, or indeed define new operators. However, this
requires programming skills. MATA brings flexible composition without requiring
any knowledge of programming or the need to understand the code in an existing
composition framework. France et al. [42] is also limited to class diagrams. It is not
clear how these techniques would extend to behavioral models.

MATA provides two key contributions to AOM. First, is the support for detecting
aspect interactions. Second, it supports sequence pointcuts. To date, there has been
limited support for detecting aspect interactions in AOM. Aspect interactions are a
well-recognized problem but research has tended to focus on how to document inter-
actions rather than uncover them automatically (cf. [37, 43--45]). The only known
work is [46], which translates aspect UML models into Alloy so that they can be veri-
fied. This approach does not consider behavioral diagrams but requires pre/post-
conditions to specify operations on class diagrams. Furthermore, it is more of a
general verification approach not specifically geared toward interactions. This means
that it could potentially uncover more semantic interactions (which MATA cannot)
but at the cost of a more expensive analysis. At the programming level, there has been
research on detecting interactions using static analysis [47, 48].

Although expressive pointcut mechanisms, such as sequence pointcuts, have been
considered for AOP [12], to the authors’ knowledge, this paper is the first work to

 MATA: A Unified Approach for Composing UML Aspect Models 225

bring expressive pointcuts to behavioral models. Related work that is closest to ours is
joinpoint designation diagrams (JPDDs) [13]. JPDDs are similar to defining patterns
using graph rules. Something similar to sequence pointcuts can be defined but the ad-
vices are limited to before/after/around. Furthermore, the advantage of using graph
rules is the existence of formal analysis techniques. In addition, JPDDs focus on de-
fining joinpoints and are not so much concerned with composition. MATA provides a
full composition tool in which very expressive composition relationships can be
specified. This is not possible with JPDDs.

This paper considers joinpoints to be static in the sense that the runtime semantics of
behavioral diagrams is not taken into consideration. Dynamic joinpoints can also be
defined for behavioral models, such as state diagrams [9]. However, since currently
models are most commonly used for communication and documentation, and are not
necessarily executed, static joinpoints are perhaps more useful in current modeling prac-
tices. It would be interesting to extend MATA to dynamic joinpoints, however.

More generally, model composition has been addressed outside of the AOSD
community. In particular, [49] investigates how to merge state machines using com-
position relationships and category theory. This is similar in many respects to our
work but has a different goal in that it addresses how to reconcile models produced by
different development teams.

10 Conclusion and Further Work

This paper has presented a new approach for AOM wherein aspect composition is
considered to be simply a special case of model transformation. A language and tool,
MATA, has been presented, which allows modelers to maintain aspect models sepa-
rately, detect structural interactions between aspects automatically, and compose a
chosen set of aspects automatically with a set of base models. The approach goes
beyond previous work in that:

• MATA provides a unified approach to aspect model composition. Any
modeling language with a well-defined metamodel can be handled in the
same way. Currently, UML class, sequence, and state diagrams are sup-
ported, but extensions to other modeling languages would be straightfor-
ward and would provide the same capabilities in detecting interactions and
automating composition.

• MATA provides a richer aspect composition language. Joinpoints are de-
fined by an expressive pattern language and any base model element (or
combination of elements) can be a pointcut. In particular, MATA provides
the first full support for sequence pointcuts at the aspect modeling level.

MATA is supported by a tool built on top of IBM’s Rational Software Modeler. It has
been applied in a range of application areas, including security modeling, software
product lines, and modeling of use case slices.

There are a number of interesting avenues for further work that would build upon
MATA. First, base models in MATA are currently completely open, in the sense that
any base model elements can be accessed by aspect models. This has shown to be ab-
solutely essential in some application areas. In particular, for the software product line

226 J. Whittle et al.

method PLUS [28], which can be handled in MATA by modeling features as aspects,
models of non-kernel features can be added to models of the kernel in many and var-
ied different ways. It would not have been possible to restrict the joinpoint model and
still allow the case studies from [28] to be modeled faithfully.

However, it may be desirable for other application areas to restrict the joinpoint
model so that only certain base model elements can be affected by an aspect. This
kind of approach would potentially support improved modular reasoning for aspects.
MATA could support such a technique easily as interfaces could be designed on top
of the existing language. In any case, we feel that the modeler should be in control of
whether or not full access is required by the aspects and it is not up to the language
designer to restrict the joinpoint model for him/her.

Another area where MATA could potentially be extended is to provide domain-
specific composition operators, built on top of the existing language. A key contribution
of this paper is that MATA allows all modeling languages to be handled in a uniform
way. However, the current composition operators in MATA are quite low level because
they are at the same level as the underlying modeling language. One could imagine de-
fining more abstract operators, for example, in software architecture composition that
would be then mapped down to MATA’s operators. This would raise the level of dis-
course of aspect modelers but would retain the strong benefits of the MATA founda-
tions. However, such a path should be taken with caution. A great deal of effort has
already gone into language design for existing modeling languages and it is not com-
pletely clear that an additional layer of abstraction would be beneficial.

Along similar grounds, MATA’s composition is purely syntactic currently. This
means that aspect modelers define aspects based on the syntactic elements of the un-
derlying modeling language. While this is in line with current practice in modeling, it
would be interesting to investigate semantics-based composition techniques, similar
to those developed for aspect-oriented requirements engineering languages [50]. This
would allow modelers to specify aspects in terms of semantic concepts of the domain
rather than syntactic modeling elements. For example, one might wish to define the
pointcut of all model elements related to access control. The techniques in [50] rely
on natural language processing techniques to extract semantic content from textual
requirements documents and it is not clear how such an approach could be adapted to
analysis and design models. However, it is certainly an open area of research that
could provide fruitful solutions to the fragile pointcut problem in AOM.

The usability of the MATA composition language has not yet been fully tested. Al-
though a number of realistic case studies have been undertaken, we have limited
experience with real users. The intricacies of the propagation algorithm are such that
it may be difficult to grasp for novices. However, use of propagation is always op-
tional and the user may choose to explicitly provide stereotypes. So far, MATA pro-
vides no support for validating the composition of base and aspect. It is possible to get
unexpected results if there are interactions between aspects that cannot be detected by
critical pair analysis. A simple example is if two aspects each create an instance of the
same class. Then the result will have two copies of this instance where only one may
be desired. There may be lightweight techniques that can help with validating the
composition. Another usability issue is in maintaining the generality of the aspects.
Generic aspects should be designed where possible so that they can be reused. This is

 MATA: A Unified Approach for Composing UML Aspect Models 227

certainly easy to do in MATA because of the rich pattern-matching facilities. How-
ever, from a usability point of view, more research is required as to how to guide
users to specify good (i.e. generically applicable) aspects.

One of the main points made in this paper is that aspect composition approaches
based on generic match and merge algorithms–for example, those that merge model
elements by name–are not very practical. This is a claim backed up by preliminary
empirical evidence in Sect. 8.5. On the other hand, there may be some advantages in
combining a MATA-like approach with these generic merge algorithms. Once again,
this could provide a way of raising the level of composition abstraction in MATA.
Care would need to be taken, however, to ensure that the problems of generic merge
algorithms–that the results of composition are hard to predict and adapt–do not carry
over to the MATA context.

Finally, we hope that the expressive composition mechanisms provided by MATA
might have some consequences for AOP. Whilst modeling is different from pro-
gramming, it seems that AOP could also benefit by more expressive pointcut lan-
guages or more expressive advices. We believe that the rich language available in
MATA might offer some insights as to how such languages should be developed.

References

[1] Whittle, J., Moreira, A., Araújo, J., Rabbi, R., Jayaraman, P., Elkhodary, A.: An Expres-
sive Aspect Composition Language for UML State Diagrams. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 514–528. Springer,
Heidelberg (2007)

[2] Whittle, J., Jayaraman, P.: MATA: A Tool for Aspect-Oriented Modeling based on Graph
Transformation. In: Workshop on Aspect Oriented Modeling at the International
MODELS Conference, Nashville, TN (2007)

[3] Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Approach.
Addison Wesley, Reading (2005)

[4] France, R., Ray, I., Georg, G., Ghosh, S.: Aspect-oriented approach to early design mod-
eling. In: IEE Proceedings - Software, vol. 151, pp. 173–186 (2004)

[5] Cottenier, T., van den Berg, A., Elrad, T.: Motorola WEAVR: Model Weav-ing in a Large
Industrial Context. In: Aspect-Oriented Software Development (AOSD), Vancouver,
Canada (2007)

[6] Jacobson, I., Ng, P.-W.: Aspect Oriented Software Development with Use Cases.
Addison-Wesley Professional, Reading (2004)

[7] Reddy, Y.R., Ghosh, S., France, R., Straw, G., Bieman, J., McEachen, N., Song, E.,
Georg, G.: Directives for Composing Aspect-Oriented Design Class Models. In: Rashid,
A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Development I. LNCS,
vol. 3880, pp. 75–105. Springer, Heidelberg (2006)

[8] Fleury, F., Baudry, B., France, R., Ghosh, S.: A Generic Approach for Automatic Model
Composition. In: Workshop on Aspect Oriented Modeling at MODELS 2007 (2007)

[9] Zhang, G., Hölzl, M., Knapp, A.: Enhancing UML State Machines with Aspects. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 529–543. Springer, Heidelberg (2007)

228 J. Whittle et al.

[10] Lopez-Herrejon, R., Batory, D.: Modeling Features in Aspect-Based Product Lines with
Use Case Slices: An Exploratory Case Study. In: Kühne, T. (ed.) MoDELS 2006. LNCS,
vol. 4364, pp. 6–16. Springer, Heidelberg (2007)

[11] Rashid, A.: Views, Aspects and Roles: Symphony or Random Noise? In: Panel Statement
at Views, Aspects and Roles Workshop associated with ECOOP 2005 (2005)

[12] Douence, R., Fritz, T., Loriant, N., Menaud, J.-M., Segura-Devillechaise, M., Sudholt,
M.: An Expressive Aspect Language for System Applications with Arachne. In: Aspect-
Oriented Software Development (AOSD), Chicago, Illinois, pp. 27–38 (2005)

[13] Stein, D., Hanenberg, S., Unland, R.: Expressing Different Conceptual Models of Join
Point Selections in Aspect-Oriented Design. In: Aspect-Oriented Software Development
(AOSD), Bonn, Germany, pp. 15–26 (2006)

[14] Markovic, S., Baar, T.: Refactoring OCL Annotated UML Class Diagrams. In: Briand,
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 280–294. Springer,
Heidelberg (2005)

[15] de Micheaux, N.L., Rambaud, C.: Confluence for Graph Transformations. Theoretical
Computer Science 154, 329–348 (1996)

[16] Wagner, R.: Developing Model Transformations with Fujaba. In: International Fujaba
Days, Bayreuth, Germany, pp. 79–82 (2006)

[17] Balogh, A., Varro, D.: Advanced Model Transformation Language Constructs in the
VIATRA2 Framework. In: ACM Symposium on Applied Computing (Model Transfor-
mation Track), Dijon, France, pp. 1280–1287 (2006)

[18] Boner, J., Vasseur, A.: Tutorial on AspectWerkz for Dynamic Aspect-Oriented Pro-
gramming. In: Aspect Oriented Software Development (2004)

[19] Moreira, A., Rashid, A., Araújo, J.: A Multi-Dimensional Separation of Concerns in Re-
quirements Engineering. In: International Conference on Requirements Engineering (RE),
Paris, France, pp. 285–296 (2005)

[20] Rudolf, M.: Utilizing Constraint Satisfaction Techniques for Efficient Graph Pattern
Matching. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998.
LNCS, vol. 1764, pp. 238–251. Springer, Heidelberg (2000)

[21] Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation
of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

[22] Jayaraman, P.: Interaction Verification and Model Composition in Product Lines Using
MATA in Dept. of Information and Software Engineering. MS Thesis Fairfax, VA.
George Mason University, USA (2007)

[23] Nicoara, A., Alonso, G.: Dynamic AOP with PROSE. In: International Workshop on
Adaptive and Self-Managing Enterprise Applications at CAiSE, Porto, Portugal (2005)

[24] Mussbacher, G., Amyot, D., Whittle, J., Weiss, M.: Flexible and Expressive Composition
Rules with Aspect-Oriented Use Case Maps (AoUCM). In: Moreira, A., Grundy, J. (eds.)
Early Aspects Workshop 2007 and EACSL 2007. LNCS, vol. 4765, pp. 19–38. Springer,
Heidelberg (2007)

[25] Griswold, W., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., Rajan, H.: Modu-
lar Software Design with Crosscutting Interfaces. IEEE Software 23, 51–60 (2006)

[26] Aldrich, J.: Open Modules: Modular Reasoning about Advice. In: Black, A.P. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 144–168. Springer, Heidelberg (2005)

[27] Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H.: Model Composition in Product
Lines and Feature Interaction Detection using Critical Pair Analysis. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp.
151–165. Springer, Heidelberg (2007)

 MATA: A Unified Approach for Composing UML Aspect Models 229

[28] Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
based Software Architectures. Addison-Wesley Object Technology Series (2005)

[29] Kohno, T., Stubblefield, A., Rubin, A., Wallach, D.: Analysis of an Electronic Voting
System. In: IEEE Symposium on Security and Privacy, pp. 27–40. IEEE Computer Soci-
ety Press, Los Alamitos (2004)

[30] Hartong, M., Goel, R., Wijesekera, D.: Use Misuse Case Driven Forensic Analysis of
Positive Train Control: A Preliminary Study. In: 2nd IFIP WG 11.9 International Confer-
ence on Digital Forensics, Orlando, FL

[31] Araújo, J., Whittle, J., Kim, D.-K.: Modeling and Composing Scenario-Based Require-
ments with Aspects. In: International Conference on Requirements Engineering, Kyoto,
Japan, pp. 58–67 (2004)

[32] Song, E., Reddy, R., France, R.B., Ray, I., Georg, G., Alexander, R.: Verifiable Composi-
tion of Access Control and Application Features. In: ACM Symposium on Access Con-
trol Models and Technologies (SACMAT), Stockholm, Sweden, pp. 120–129 (2005)

[33] Klein, J., Helouet, L., Jézéquel, J.-M.: Semantic-Based Weaving of Scenarios. In: Aspect-
Oriented Software Development (AOSD), Vancouver, Canada, pp. 27–38 (2006)

[34] Reddy, R., Solberg, A., France, R., Ghosh, S.: Composing Sequence Models Using Tags.
In: Aspect Oriented Modeling Workshop at MODELS 2006 (2006)

[35] Whittle, J., Araújo, J.: Scenario Modelling with Aspects. In: IEE Proceedings - Software,
August 2004, vol. 151, pp. 157–172 (2004)

[36] Klein, J., Kienzle, J.: Reusable Aspect Models. In: Aspect Oriented Modeling Workshop
at MODELS 2007 (2007)

[37] Katara, M., Katz, S.: Architectural Views of Aspects. In: Aspect-Oriented Software De-
velopment (AOSD), Boston, Massachusetts, pp. 1–10 (2003)

[38] Kim, D.-K.: Evaluating Conformance of UML Models to Design Patterns. In: Interna-
tional Conference on the Engineering of Complex Computer Systems (ICECCS),
Shanghai, China, pp. 30–31 (2005)

[39] Kim, D.-K., Whittle, J.: Generating UML Models from Domain Patterns. In: Software
Engineering Research, Management and Applications, pp. 166–173 (2005)

[40] Kim, D.K.: A Pattern-Based Technique for Developing UML Models of Access Control
Systems. In: 30th Annual International Computer Software and Applications Conference
(COMPSAC), Chicago, IL, pp. 317–324 (2006)

[41] Baudry, B., Fleurey, F., France, R., Reddy, R.: Exploring the Relationship between
Model Composition and Model Transformation. In: Aspect Oriented Modeling Workshop
at MODELS 2005 (2005)

[42] France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing Support for Model
Composition in Metamodels. In: IEEE International EDOC Conference, Annapolis,
Maryland (2007)

[43] Zhang, J., Cottenier, T., van den Berg, A., Gray, J.: Aspect Interference and Composition
in the Motorola Aspect-Oriented Modeling Weaver. In: Aspect Oriented Modeling Work-
shop at MODELS 2006 (2006)

[44] Sanen, F., Loughran, N., Rashid, A., Nedos, A., Jackson, A., Clarke, S., Truyen, E.,
Joosen, W.: Classifying and Documenting Aspect Interactions. In: Workshop on Aspects,
Components and Patterns for Infrastructure Software at AOSD, Bonn, Germany (2006)

[45] Bakre, S., Elrad, T.: Scenario-based Resolution of Aspect Interactions with Aspect Inter-
action Charts. In: Aspect-Oriented Software Development, Vancouver, Canada, pp. 1–6
(2007)

230 J. Whittle et al.

[46] Mostefaoui, F., Vachon, J.: Design-level Detection of Interactions in Aspect-UML Mod-
els using Alloy. Journal of Object Technology 6, 137–165 (2007)

[47] Douence, R., Fradet, P., Südholt, M.: A Framework for the Detection and Resolution of As-
pect Interactions. In: Generative Programming and Component Engineering, Pittsburgh, PA,
pp. 173–188 (2002)

[48] Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis of state-
ful aspects. In: Aspect Oriented Software Development, pp. 141–150 (2004)

[49] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and Merg-
ing of Statecharts Specifications. In: International Conference on Software Engineering,
pp. 54–64 (2007)

[50] Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-Based Com-position for
Aspect-Oriented Requirements Engineering. In: Aspect-Oriented Software Development
(AOSD), Vancouver, Canada, pp. 36–48 (2007)

Appendix

This appendix describes how MATA performs the conversion from a model in concrete
syntax to a type graph in AGG. This conversion process is performed automatically.

MATA considers a subset of the UML metamodel (we do not yet consider the full
UML2 metamodel) and maps it to a corresponding type graph. The type graph repre-
sents the metamodel in the AGG syntax. In the current scope, the chosen UML meta-
model subset contains commonly used modeling elements of class diagrams,
sequence diagrams, and state machines. MATA converts a base model into an AGG
graph and converts an aspect model into an AGG graph rule.

To illustrate, we present a simple example for a family of printers. A printer will be
modeled as the base and an optional feature, a sheet rotator (which allows printing on
both sides of a sheet), will be modeled as an aspect.

Class Diagrams

The base model contains an assembly of an abstract controller object called Printer.
The Printer aggregates PrintRoller and PrintNozzle objects. Figure 20 shows the class
diagram of the Printer base model in concrete UML syntax. The graph metamodel
used to represent the class diagram is shown in Fig. 21. The corresponding host graph
of the Printer base model is shown in Fig. 22. The class diagram concepts supported
by MATA are:

1. Class/Interface–A class or an interface is represented by a node of type
Classifier. The Type attribute indicates whether the node is a class or an
interface. Additional attributes such as Name and Visibility indicate the
name and visibility of the element. The attribute isAbstract is used to
represent an abstract class.

a. Property–A graph node of type Attribute represents properties of
classes and interfaces. These nodes are connected to the owning
Classifier nodes via an edge of type Owns. The attributes Name,

 MATA: A Unified Approach for Composing UML Aspect Models 231

Visibility, isStatic, Lower and Upper indicate the name, visibility,
static nature, lower and upper bound of the attribute, respectively.

b. Operation–A graph node of type Operation represents operations
supported by classes and interfaces. An operation node is con-
nected to the owning classifier node via an edge of type Owns.
The attributes Name, Visibility, isAbstract, and isStatic indicate
the name, visibility, abstract, and static nature of the operation,
respectively.

2. Generalization–An edge of type Extends represents the generalization
relationship between two classes or interfaces. The edge connects the cor-
responding nodes of type classifier.

3. Realization–An edge of type Implements represents the realization of an
interface by a class. In the graph metamodel, this edge connects a classi-
fier of type interface to a classifier of type class.

4. Association/Composition/Aggregation–An edge of type Association
represents a relationship between two classifiers. Table 4 explains the rep-
resentation of different kinds of relationships such as associations, compo-
sitions, and aggregations as well as other association-related attributes.

Fig. 20. Class diagram for Printer Kernel feature

Fig. 21. Graph metamodel for class diagram (in AGG syntax: e.g. String @Name means Name
is of type String)

232 J. Whittle et al.

Table 4. Graph metamodel attributes of an Association

Attribute Description

SourceAggregation Represents the aggregation kind of the source
classifier of the association.

TargetAggregation Represents the aggregation kind of the target
classifier of the association.

SourceRoleName Represents the name of the source role of the
association.

TargetRoleName Represents the name of the target role of the
association.

SourceLower Represents the lower bound of the source of the
association.

TargetLower Represents the lower bound of the target of the
association.

SourceUpper Represents the upper bound of the source of the
association.

TargetUpper Represents the upper bound of the target of the
association.

SourceVisibility Represents the visibility of the source of the
association.

TargetVisibility Represents the visibility of the target of the
association.

Classifier
@Name=”Printer”
@Visibility=Public
@isAbstract=true

Classifier
@Name=”PrintRoller”
@Visibility=Public
@isAbstract=false

Classifier
@Name=”PrintNozzle”
@Visibility=Public
@isAbstract=false

@Name=””
@SourceAggregation=False

@TargetAggregation=True
@SourceNavigable=True
@TargetNavigable=True

@SourceRoleName=””
@TargetRoleName=””

@SourceLower=0
@TargetLower=0

@SourceUpper=0
@TargetUpper=0

@SourceVisibility=0
@TargetVisibility=0

Association

@Name=””
@SourceAggregation=False
@TargetAggregation=True
@SourceNavigable=True
@TargetNavigable=True
@SourceRoleName=””
@TargetRoleName=””
@SourceLower=0
@TargetLower=0
@SourceUpper=0
@TargetUpper=0
@SourceVisibility=0
@TargetVisibility=0

Association

Fig. 22. Host graph for Printer Kernel class diagram

 MATA: A Unified Approach for Composing UML Aspect Models 233

Sequence Diagram

The Printer object receives a print command from an external user and sends a mes-
sage to the PrintRoller to lift a sheet from an external paper tray. Then, it sends a
message to the PrintNozzle to start printing on the sheet and when the sheet is printed,
the PrintRoller ejects the sheet. The process repeats if the print job requires more
sheets.

Figure 23 shows the sequence diagram of the Printer Kernel in concrete UML syntax.
The graph metamodel used to represent the sequence diagram is shown in Fig. 24. The
corresponding host graph of the Printer Kernel feature is shown in Fig. 25. The
sequence diagram related concepts supported by MATA are

1. Interaction–An interaction of type sequence diagram is represented by a
node of type Sequence Diagram.

2. OccurrenceSpecification/GeneralOrdering–An OccurrenceSpecification is
represented by a node of type Sequencer. The after association of Gener-
alOrdering is represented by an edge of type Next between two Sequencer
nodes. These nodes are also used to indicate the start and end of interac-
tion diagrams, interaction fragments and interaction operands. For exam-
ple, the start and end of an interaction are represented individually by two
sequencer nodes that are connected to the Sequence Diagram node by
edges of start and end type, respectively.

3. Lifeline–The lifeline of a participant in a sequence diagram is represented
by a node of type Class. The name of the lifeline is preserved by the Name
attribute of the node. MATA does not support explicit creation or destruc-
tion of a lifeline and assumes a lifeline to exist throughout the interaction
diagram.

4. CombinedFragment–A fragment is represented by a node of type Fragment.

a. InteractionOperator–The interaction operator of a fragment is
preserved by the Operator attribute of the node representing the
fragment.

b. InteractionConstraint–A constraint applied on a fragment is pre-
served by the Guard attribute of the node representing the
fragment.

c. Interaction operand–Each operand of a fragment is represented
by a node of type Operand.

5. Complete Asynchronous Message–Complete asynchronous messages are
represented using nodes of type Message. The name of the asynchronous
message is preserved by the Name attribute of the Message node. The send-
ing and receiving lifelines of a message are indicated by edges of type Re-
ceiver and Sender from the Message node to the class nodes, respectively.

6. EventOccurrence (Send/Receive)–The receive and send events of a
message are represented individually by sequencer nodes connected by an
edge of type Next.

234 J. Whittle et al.

Fig. 23. Sequence diagram for Printer Kernel feature

Message
String @Name

Class
String @Name

Sequencer

SenderReceiver

Start

End

Next

Fragment
String @Operator

String @Guard

Start End

Operand

Start

End

Sequence
Diagram

String @Name EndStart

Fig. 24. Graph metamodel for sequence diagram

 MATA: A Unified Approach for Composing UML Aspect Models 235

Sequence Diagram
@Name=”Printer”

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Message
@Name=”Print command”

Fragment
@Operator=”loop”

@Guard=””

Operand
Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Message
@Name=”Lift sheet”

Message
@Name=”Print sheet”

Message
@Name=”Sheet printed”

Message
@Name=”Eject sheet”

Sequencer

Sequencer

Sequencer

next

next

next

next

next

next

next

next

next

next

next

next

next

next

End

Start

End

Start

End

Start

End

Start

End

Start

End

Start

End

Start

End

Start

Class
@Name=”User”

Class
@Name=”Printer”

Class
@Name=”Print Roller”

Class
@Name=”Print Nozzle”

Sender

Receiver

Sender

Receiver

Sender

Receiver
Sender

Receiver

Sender

Receiver

next

Fig. 25. Host graph of Printer Kernel sequence diagram

MATA Syntax

MATA translates a UML model annotated with the MATA stereotypes to a graph
rule. The procedure for generating the graph rules is as follows:

1. Instantiate a graph rule with a left and a right graph.
2. For each element in the source model:

2.1. If the element is stereotyped with <<create>>, create a graph node and
add the node to the right graph.

2.2. If the element is stereotyped with <<delete>>, create a graph node and
add the node to the left graph.

2.3. If the element is stereotyped with <context>>, create two graph nodes
and add one to the left graph and the other to the right graph. Add
mapping information between the nodes.

2.4. If the element is not associated with any stereotype:

236 J. Whittle et al.

2.4.1. If the element is a nearest neighbor of another element in the
model then apply the stereotype of the neighbor to the element
and repeat step 2. For example, if a class element is stereotyped
with <<create>> or <<delete>> then the same stereotype is im-
plicitly applied to all attributes and methods that are owned by
the class.

2.4.2. Else, create two graph nodes and add one to the left graph and
the other to the right graph. Add mapping information between
the nodes.

Sheet rotator Aspect

The sheet rotator aspect adds flip sheet functionality to the PrintRoller object. The
static view transformation for this rule, called AddFlipMethod, is shown using
concrete syntax and graph syntax in Figs. 26 and 27, respectively.

+<<create>> FlipSheet()

PrintRoller

Fig. 26. Concrete syntax for rule AddFlipMethod

Fig. 27. Graph syntax for rule AddFlipMethod

This functionality is invoked only if one side of the sheet has been printed and the
print job requires more sheets. The Printer object adds an alternate flip sheet message
to an existing eject sheet message. The printer sends the lift sheet message only if the
sheet has been ejected or if the first sheet is being printed. Two separate transforma-
tions are used to execute these changes. The first rule to add an alternate flip sheet
message is called AddFlipMessage and is shown using UML concrete syntax and
graph syntax in Figs. 28 and 29, respectively. The second rule to make the lift sheet
message optional is called MakeLiftOptional and is not shown here.

 MATA: A Unified Approach for Composing UML Aspect Models 237

Fig. 28. Concrete syntax for rule AddFlipMessage

Fig. 29. Graph syntax for rule AddFlipMessage

	MATA: A Unified Approach for Composing UML Aspect Models Based on Graph Transformation
	Introduction
	Motivation
	Background
	Graph Transformations
	Critical Pair Analysis

	Specifying and Composing Aspect Models with MATA
	An Overview of Using Aspects in MATA
	Joinpoints, Advices and Aspects in MATA
	MATA Example

	Detecting Aspect Interactions
	Extended Example
	Interactions between Aspects

	Tool Support
	Overview
	Generating AspectWerkz Code from MATA Models

	Evaluation and Discussion
	Environment-Friendliness
	Scalability
	Familiarity
	Formality
	Exhaustiveness

	Related Work
	Conclusion and Further Work
	References
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

