

Lecture Notes in Computer Science 5560
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Shmuel Katz Harold Ossher
Robert France Jean-Marc Jézéquel (Eds.)

Transactions on
Aspect-Oriented
Software DevelopmentVI

Special Issue on Aspects
and Model-Driven Engineering

13

Editors-in-Chief

Shmuel Katz
The Technion
Department of Computer Science
Haifa 32000, Israel
E-mail: katz@cs.technion.ac.il

Harold Ossher
IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598, USA
E-mail: ossher@us.ibm.com

Guest Editors

Robert France
Colorado State University
Computer Science Department
Fort Collins, CO 80523-1873, USA
E-mail: france@cs.colostate.edu

Jean-Marc Jézéquel
Université de Rennes 1, IRISA
Campus de Beaulieu
35042 Rennes Cedex, France
E-mail: Jean-Marc.Jezequel@irisa.fr

Library of Congress Control Number: 2009935702

CR Subject Classification (1998): D.2, D.1, D.3, F.3.2, I.2.2, I.2.5, I.2.8

ISSN 0302-9743 (Lecture Notes in Computer Science)
ISSN 1864-3027 (Transactions on Aspect-Oriented Software Development)
ISBN-10 3-642-03763-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03763-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12732333 06/3180 5 4 3 2 1 0

Editorial

Welcome to Volume VI of Transactions on Aspect-Oriented Software Development.
This volume is a special issue on “Aspects and Model-Driven Engineering,” with
guest editors Robert France and Jean-Marc Jézéquel, under the management of one of
the co-editors-in-chief, Harold Ossher. Robert and Jean-Marc are both well-known
experts in the field of model-driven engineering, and they have attracted an excellent
set of papers on the role AOSD can play in this important area of software engineer-
ing. We thank them for their effort and commitment in producing such a high-quality
special issue.

We also thank the Editorial Board for their continued guidance, commitment and
input on the policies of the journal, the choice of special issues, and associate-
editorship of regular submissions. Thanks are also due to the reviewers, who volun-
teered significant time, despite their busy schedules, to ensure the quality of articles
published in the journal. Most importantly, we wish to thank the authors who have
submitted papers to the journal so far.

There are two exciting special issues on the horizon. The first, with guest editor
Jörg Kienzle, is titled “A Common Case Study for Aspect-Oriented Modeling
Approaches.” A variety of notations and abstraction techniques for modeling aspect
systems will be demonstrated and evaluated for the same case study, a fairly complex
crisis management system. This will allow readers to understand the relative strengths
of each approach, and encourage cross-fertilization among the techniques. The second
will be on “Industrial Applications of Aspect Technology,” with guest editors Wouter
Joosen and Christa Schwanninger. One of the major impediments to broader industry
adoption of AOSD is the lack of accessible success stories and experience reports on
the application of AOSD in commercial software projects. This special issue will of-
fer a collection such examples, experience reports and success stories, and report on
insights gained that should be of value to (potential) industrial users.

Linda Northrop has left the Editorial Board after serving since the inception of the
journal. Many thanks to Linda for her years of devoted service to TAOSD, and much
valuable guidance she gave during that time. In the next issue we will announce some
new members of the Board, who will give us the opportunity to benefit from the in-
sights of additional members of the software engineering community expert in areas
related to AOSD.

June 2009 Shmuel Katz
Harold Ossher

Co-Editors-in-Chief

Aspects and Model-Driven Engineering
Guest Editors’ Foreword

Model-Driven Engineering (MDE) is an approach to software development in
which models are used to drive the development of all software artifacts, from
code to documentation to tests. MDE is gaining acceptance in several soft-
ware domains with demonstrated benefits such as cost reduction and quality
improvement.

Modeling is not just about expressing a solution at a higher abstraction
level than code. This limited view on modeling has been useful in the past
(e.g., assembly languages abstracting away from machine code, 3GL abstracting
over assembly languages) and it is still useful today, but much more can be
accomplished using modeling techniques.

A model can be an abstraction of an aspect of a system (existing or under
development) that handles a given concern. Complex systems typically give rise
to more than one model because many aspects must be considered when address-
ing all relevant software development concerns. These models may be expressed
with a general purpose modeling language such as the UML, or with Domain
Specific Languages when they are deemed more appropriate.

From a modeling point of view, the terms aspect and model can be consid-
ered synonymous. This notion of aspect goes beyond the usual meaning found
in the Aspect Oriented Programming community where an aspect is often nar-
rowly defined as the modularization of a cross-cutting concern. Given a “main”
decomposition paradigm (such as object orientation), there are many classes of
concerns (e.g., security, mobility, availability, distribution) for which clear allo-
cation into modules is not possible (i.e., they are “cross-cutting” concerns).

However, the growing uptake of the term aspect outside of the programming
world, has resulted in a growing acceptance of a broader definition in which an
aspect is a concern that can be modularized. Work on aspect-oriented techniques
above the code level is concerned with the systematic identification, modulariza-
tion, representation, and composition of concerns. The goal of work in this area
is to improve our ability to reason about the problem domain and the corre-
sponding solution, thereby reducing the size of software models and application
code, development costs, and maintenance time.

From the above, an important software development activity is the separa-
tion of concerns in problem domains. This activity is called analysis. If solutions
to these concerns can be described as aspects, the design process can then be
characterized as a weaving of these aspects into a base design model. This is not
new: designers have been doing this for some time. However, the various aspects
are often not explicitly defined, and when they are, it is done informally. Cur-
rently, designers do the weaving mentally (i.e., in their heads), and then produce
the resulting detailed design as a tangled structure of design elements. This may

VIII Guest Editors’ Foreword

work for small problems, but it introduces significant accidental complexities
when tackling larger problems.

Note that the real challenge here is not how to design the system to take a par-
ticular aspect into account: there is significant design know-how in industry on
this and it is often captured in the form of design patterns. Taking into account
more than one aspect can be a little harder, but many large scale successful
projects in industry provide some evidence that engineers know how different
concerns should be handled. The real challenge is reducing the effort that the
engineer has to expend when grappling with many inter-dependent concerns. For
example, in a product-line context, when an engineer wants to replace a variant
of an aspect used in a system, she should be able to do this cheaply, quickly and
safely. Manually weaving every aspect is not an option.

Unlike many models used in the sciences, models in software and in linguis-
tics have the same nature as the things they model. In software, this provides
an opportunity to automatically derive software from its model, that is, to au-
tomate the weaving process. This requires models to be formal, and the weaving
process be described as a program (i.e., an executable meta-model) manipulat-
ing models to produce a detailed design. The detailed design produced by the
weaving process can ultimately be transformed to code or at least test suites.

In the above, we make the case that aspects are at the core of Model Driven
Engineering. From this perspective, work on aspect-oriented approaches to mod-
eling is important because it can yield significant insights into how the MDE
vision of software development can be realized. There is thus a growing com-
munity interested in the convergence of Aspect-Oriented Software Development
(AOSD) and MDE ideas. In this issue, we present papers that provide good ex-
amples of how AOSD and MDE ideas can be integrated to produce techniques
that manage software complexity.

The papers in this issue cover a number of issues including the following:

– Methods and techniques supporting separation, composition, and evolution
of aspects identified in different development phases (e.g., requirements, ar-
chitecture, detailed design, deployment).

– Simulating runtime weaving of aspects using aspect-oriented models.
– Techniques for verifying and validating aspect-oriented models.
– AOM case studies that provide significant insights into how aspect-oriented

modeling techniques can be applied across the development life-cycle.
– Providing tool support for use of integrated AOSD and MDE techniques.
– Providing language support for aspect-oriented modeling.

Submissions

Dynamic Weaving of Aspect-Oriented Executable UML Models. In this
paper, the authors, Lidia Fuentes and Pablo Sanchez, present a model weaver that
can be used to simulate runtime weaving of aspects at design time. This allows
designers to identify and correct errors that can arise as a result of dynamic weav-
ing before expending significant effort and cost on implementing the design. The
ideas are illustrated using a location-aware intelligent transportation system.

Guest Editors’ Foreword IX

On Language-Independent Model Modularisation. In this paper, the au-
thors, Florian Heidenreich, Jakob Henriksson, Jendrik Johannes, and Steffen
Zschaler, present a generic approach to modularizing and composing models.
The approach can be adapted to construct language- and purpose-specific com-
position techniques for specific modelling languages. The authors claim that the
approach can be used as (1) a tool for developing specific model modularisa-
tion and composition techniques, and (2) a research instrument for studying
properties and concepts of model modularisation.

Aspects across Software Life Cycle: A Goal-Driven Approach. In this
paper, the authors, Nan Niu, Yijun Yu, Bruno Gonzalez-Baixauli, Neil Ernst,
Julio Cesar Sampaio do Prado Leite, and John Mylopoulos, propose a model-
driven framework for tracing aspects from requirements to testing and implemen-
tation. In the framework, goal models are engineering assets and model-to-code
transformations are used to bridge the gap between domain concepts and imple-
mentation technologies. The frameworks applicability and usefulness is evaluated
using an open-source e-commerce platform case study.

Aspect-Oriented Model-Driven Software Product Line Engineering.
In this paper, the authors, Iris Groher and Markus Voelter, present an integrated
AOSD and MDE approach to variability implementation, management, and trac-
ing in product-line development of software. Features are modeled separately and
the models are composed using aspect-oriented composition techniques. Model
transformations are used to transform problem models to solution models. The
ideas presented in the paper are illustrated using a home automation system
case study.

Constraint-Based Model Weaving. In this paper, the authors, Jules White,
Jeff Gray, and Douglas C. Schmidt, present a constraint-based weaving tech-
nique that reduces model weaving to a constraint satisfaction problem (CSP). A
constraint solver is used to deduce an appropriate weaving strategy. The paper
also presents the results of a case study in which the constraint-based weaving
technique is applied to an enterprise Java application. The evaluation showed
that use of the technique resulted in a reduction of manual effort.

MATA: A Unified Approach for Composing UML Aspect Models
Based on Graph Transformation. In this paper, the authors, Jon Whittle,
Praveen Jayaraman, Ahmed Elkhodary, Ana Moreira and Joo Arajo, describe
an aspect-oriented modeling technique called MATA (Modeling Aspects Using
a Transformation Approach). MATA uses graph transformations to specify and
compose aspects. In MATA, any model element can be a join point and com-
position is a special case of model transformation. MATA has been applied to a
number of realistic case studies and is supported by a tool built on top of IBM
Rational Software Modeler.

Model Driven Theme/UML. In this paper, the authors, Andrew Carton,
Cormac Driver, Andrew Jackson and Siobhan Clarke, describe how the Theme/
UML approach to modularizing and composing concerns can be integrated with

X Guest Editors’ Foreword

MDE techniques. The resulting method includes a tool-supported technique
for transforming platform-independent models to platform-specific models. The
transformation tool utilizes standards defined in the Object Management Group’s
Model Driven Architecture. The paper also describes a process that guides the
use of the MDE/AOSD techniques. The utility of the approach is demonstrated
through a case study.

Biographies

Robert France: Professor Robert France is a full professor in the Department
of Computer Science at Colorado State University. He is actively engaged in
research on object-oriented (OO) modeling, aspect-oriented modeling, model
transformations, and formal description techniques. He is an editor-in-chief for
the journal on Software and System Modeling (SoSyM) and is an Software Area
Editor for the IEEE Computer. He was organizing chair for the Second Confer-
ence on the UML, past chair of the UML Conference steering committee and
member of the MoDELS Conference steering committee.

Jean-Marc Jézéquel: Prof. Jean-Marc Jézéquel received an engineering degree
in Telecommunications from the ENSTB in 1986, and a Ph.D. degree in Com-
puter Science from the University of Rennes, France, in 1989. He first worked in
Telecom industry (at Transpac) before joining the CNRS (Centre National de la
Recherche Scientifique) in 1991. Since October 2000, he is a Professor at the Uni-
versity of Rennes, leading an INRIA research team called Triskell. His interests
include model driven software engineering based on object oriented technologies
for telecommunications and distributed systems. He is the author of the books
”Object-Oriented Software Engineering with Eiffel” and ”Design Patterns and
Contracts” (Addison-Wesley 1996 and 1999), and of more than 100 publications
in international journals and conferences. He is a member of the steering com-
mittees of the AOSD and the MODELS/UML conference series. He also served
on the editorial boards of IEEE Transactions on Software Engineering and on
the Journal on Software and System Modeling: SoSyM and the Journal of Object
Technology: JOT.

For more information please visit http://www.irisa.fr/prive/jezequel

June 2009 Robert France
Jean-Marc Jézéquel

Editorial Board

Mehmet Aksit University of Twente
Shigeru Chiba Tokyo Institute of Technology
Siobhán Clarke Trinity College Dublin
Theo D’Hondt Vrije Universiteit Brussel
Robert Filman USA
Bill Harrison Trinity College Dublin
Shmuel Katz Technion-Israel Institute of Technology
Gregor Kiczales University of British Columbia
Shriram Krishnamurthi Brown University
Karl Lieberherr Northeastern University
Mira Mezini University of Darmstadt
Oege de Moor University of Oxford
Ana Moreira New University of Lisbon
Harold Ossher IBM Research
Awais Rashid Lancaster University
Douglas Schmidt Vanderbilt University

List of Reviewers

Elisa Baniassad
Olivier Barais
Benoit Baudry
Brian Berenbach
Jim Bieman
Behzad Bordar
Jordi Cabot
Peter Clarke
Siobhan Clarke
Thomas Cottenier
Steven Demurjian
Juergen Dingel
Steve Easterbrook
Johan Fabry
Franck Fleurey
Lidia Fuentes
Alessandro Garcia
Geri Georg
Sebastien Gerard

Sudipto Ghosh
Emanuel Grant
Jeff Gray
Anca Ionita
David Janovy
Cedric Jeanneret
Dae-Kyoo Kim
Jacques Klein
Alexander Knapp
Roberto E. Lopez-Herrejon
Katharina Mehner
Ana Moreira
Brice Morin
Freddy Munoz
Gilles Perrouin
Indrakshi Ray
Raghu Reddy
Gianna Reggio
Pourya Shaker

XII Editorial Board

Wuwei Shen
Devon Simmonds
Arnor Solberg
Dominik Stein
Aswin van den Berg

Rob von Ommering
Dianxiang Xu
Andrea Zisman
Steffen Zschaler

Table of Contents

Special Issue: Aspects and Model-Driven Engineering

Dynamic Weaving of Aspect-Oriented Executable UML Models 1
Lidia Fuentes and Pablo Sánchez

On Language-Independent Model Modularisation . 39
Florian Heidenreich, Jakob Henriksson, Jendrik Johannes, and
Steffen Zschaler

Aspects across Software Life Cycle: A Goal-Driven Approach 83
Nan Niu, Yijun Yu, Bruno González-Baixauli, Neil Ernst,
Julio Cesar Sampaio do Prado Leite, and John Mylopoulos

Aspect-Oriented Model-Driven Software Product Line Engineering 111
Iris Groher and Markus Voelter

Constraint-Based Model Weaving . 153
Jules White, Jeff Gray, and Douglas C. Schmidt

MATA: A Unified Approach for Composing UML Aspect Models Based
on Graph Transformation . 191

Jon Whittle, Praveen Jayaraman, Ahmed Elkhodary,
Ana Moreira, and João Araújo

Model-Driven Theme/UML . 238
Andrew Carton, Cormac Driver, Andrew Jackson, and
Siobhán Clarke

Author Index . 267

Dynamic Weaving of Aspect-Oriented
Executable UML Models�

Lidia Fuentes and Pablo Sánchez

Dpto. de Lenguajes y Ciencias de la Computación
University of Málaga, Málaga, Spain

{lff,pablo}@lcc.uma.es

Abstract. Several efforts have been made to incorporate aspect-oriented
abstractions into the modelling level. Several modelling languages have
appeared, which are mainly UML extensions that incorporate aspect-
oriented constructions (e.g. advices or pointcuts). Although these ex-
tensions help to improve the modularisation of software designs, their
incorporation makes it more complex to understand how the model works
after being composed (e.g. woven). In order to overcome this problem, dif-
ferent aspect-oriented model weavers, such as Motorola WEAVR, AOEM
and KerTheme, were proposed. These weavers provide the infrastructure
for testing and debugging the models before moving into an implemen-
tation. However, these model weavers are static in the sense that aspects
cannot be woven and unwoven at run time (i.e. during model execution).
Hence, software systems that require dynamic weaving (e.g. adaptive
applications) are not properly supported. Reasoning about this kind of
application can be more complex due to the intrinsic dynamic nature.
The novel contribution of this work is an aspect-oriented dynamic model
weaver that can be used for running aspect-oriented models where as-
pects are woven and unwoven during model execution. These ideas are
illustrated using a location-aware intelligent transportation system.

1 Introduction

Aspect-Oriented technologies improve the modularisation of software systems
by defining: (1) new constructions (e.g. aspects and advices) for the suitable
encapsulation of crosscutting concerns into single modules; and (2) mechanisms
(e.g. pointcuts and weavers) for composing crosscutting concerns with base mod-
ules. Due to the separate definitions of crosscutting concerns and weaving in-
formation, it is often difficult to understand how the system works once it is
woven. This increase in reasoning complexity is mainly due to: (1) developers
not being familiar with the new aspect-oriented constructions; (2) developer
being forced to compose (or weave) the aspect-oriented programs or models

� This work has been supported by Spanish Ministerio de Ciencia y Tecnoloǵıa
(MCYT) Project TIN2005-09405-C02-01 and European Commission Grant IST-2-
004349-NOE AOSD-Europe and the European Commission STREP Project AMPLE
IST-033710.

S. Katz et al. (Eds.): Transactions on AOSD VI, LNCS 5560, pp. 1–38, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 L. Fuentes and P. Sánchez

mentally; and/or (3) aspect-orientation causing new problems, such as unde-
sirable execution scenarios caused by unexpected aspect interactions. It should
be observed that to help developers envision and reason about a woven pro-
gram, some aspect-oriented languages provide extra facilities, such as cross-
cutting maps of AJDT1 [1] (AspectJ Development Tools) in the AspectJ [2]
case.

Aspect-Oriented modelling approaches focused initially on providing the set
of constructions that enable separation of concerns at the modelling level. As
a result, several UML Profiles [3,4,5] and design languages [6,7,8] appeared.
Nevertheless, these notations do not provide any extra facilities or tool-support
to aid designers to visualise and understand how the models behave after they
are composed. As a consequence, software designers are forced to weave their
aspect-oriented models “manually” and/or “mentally”, which is a cumbersome
and error-prone task. Further discussions about reasoning on the behaviour of a
system in the presence of aspects can be found in Clifton and Leavens [9] and
Kiczales and Mezini [10].

In order to overcome this problem, different aspect-oriented model weavers,
such as Kompose [11], KerTheme [12], Motorola WEAVR [13], AOEM [14] and
MATA [15] have been proposed.

The common idea behind all of them is to verify that the composed sys-
tem works as desired. Some of them, specifically KerTheme [12], Motorola
WEAVR [13] and AOEM [14], focus on providing the infrastructure for exe-
cuting aspect-oriented models as a stepping stone towards model simulation,
model testing and/or model debugging.

Using model simulation, inaccuracies inherent in an aspect-oriented design can
be detected during the model execution, before moving on to implementation.
Arguments about the benefits of simulation in software development can be
found in the Saturn experience [16], in Doldi [17], the Motorola experience [18]
and the Motorla WEAVR report [19].

Nevertheless, these model weavers are static, which means that aspects cannot
be woven or unwoven during model execution. There are several situations where
dynamic aspect weaving is preferred to a static one [20,21,22]. For instance, in a
mobile pervasive system running in a specific context, some aspects (e.g. authen-
tication, specific encryption mechanisms or specific error handling strategies)
must be applied in order to interact accordingly with the environment. When
the context changes, these aspects may no longer be required, and so they can be
simply unwoven. This kind of dynamic evolution by weaving/unweaving aspects
cannot be properly simulated using the currently available model weavers.

This paper presents as a novel contribution an aspect-oriented dynamic model
weaver for aspect-oriented models expressed in the Aspect-Oriented Executable
Modelling (AOEM) UML 2.0 Profile developed by the authors [14].

This dynamic model weaver is able to compose at model execution time cross-
cutting concerns separated following a pointcut plus advice scheme based on
method interception.

1 http://www.eclipse.org/ajdt/

Dynamic Weaving of AO Executable UML Models 3

Using this dynamic model weaver and the AOEM Profile, software design-
ers can construct aspect-oriented Platform Independent Models (PIM) and can
execute these aspect-oriented models in the same way as if they were running
aspect-oriented programs built on top of implementation platforms with run time
weaving. Thus, designers can visualise the behaviour of a model, reason more
easily about it, analyse different alternative solutions and/or fix errors before
moving on to implementation.

In order to illustrate these concepts, a location-aware intelligent transporta-
tion system, taken from the literature [23], consisting of a set of cooperating
sentient vehicles, is used as a motivating example.

In the following, the paper is structured as follows: Sect. 2 explains the rea-
sons aspect-oriented dynamic weaving is required, using a motivating exam-
ple, and provides a general overview of our approach. Section 3 describes how
an aspect-oriented model with dynamic reconfiguration by means of dynamic
aspect-weaving can be specified using the AOEM Profile [14] and the solution
proposed in this paper. Section 4 explains how aspects can be woven and un-
woven during model execution following a dynamic weaving strategy. Section 5
focuses on the tool-support for our approach. Section 6 provides some reflections
on the benefits of the presented solution. Finally, Sect. 7 comments on related
work and Sect. 8 outlines conclusions and future work.

2 Dynamic Weaving of AO UML Models

2.1 Motivating Example

A cooperating sentient vehicle application

Intelligent transportation systems exploit intervehicle cooperation without hu-
man assistance to provide autonomous vehicle navigation from a given origin to
a pre-determined destination2 [23].

The goal is for a set of autonomous vehicles to be able to drive with only
minimum driver assistance. Each vehicle travels along a ‘virtual’ circuit [23],
which has to be previously calculated with the aid of a GPS for a given target
point. Vehicle sensors are used to ensure safe driving. These sensors measure
the distance with respect to the obstacles, such as other vehicles, pedestrians or
crash barriers. The vehicles can also use information received from surrounding
vehicles, such as their speed or distance, for safety purposes. Thus, vehicles must
be able to communicate with each other in order to coordinate the interaction.
Finally, and not less important, vehicles must obey traffic signals and rules, such
as stop signal or speed limits. These signals send information to the vehicles to
inform them about traffic constraints and regulations.

The system reliability is considered critical as a small error could cause a
vehicle crash with potentially dramatic consequences. For this reason, it should
2 The cooperating sentient vehicle application is a key demonstrator of the technology

developed by the EU funded project CORTEX [24].

4 L. Fuentes and P. Sánchez

be carefully designed and tested, and in addition, the designer should pay special
attention to error handling, and all the possible conflicting situations considered.
Moreover, the strategy to be applied in the presence of an error should be selected
according to the context, as this would dictate which specific strategy would be
more suitable.

For instance, as previously commented, vehicles drive using a GPS on a virtual
circuit. The vehicle receives the information from the GPS periodically, the time
interval being dependent on the vehicle speed. An error-handling module (an
aspect) should monitor that the response time of the GPS is never exceeded,
and react when this constraint is violated. If this constraint is violated, one
specific error-handling strategy would be more suitable than the others. One
possible solution, for instance, could be to temporarily use the GPS data from
a nearby vehicle. This is only feasible, however, if the vehicle is circulating on a
highway where the neighbouring vehicles are going in the same direction, with
an almost constant speed. If the vehicle were in the city, where vehicle behaviour
is less predictable, information on the other vehicles is of no use and the human
driver would be forced to control the vehicle manually, until the GPS recovers.

Why we need dynamic aspect weaving

As commented before, the error-handling strategy depends on the context. There
are large number of existing contexts, since the context depends upon a wide
range of variables. For instance, the vehicle may be on a highway, circulating fast
and there may be good weather or the vehicle can be on a narrow city street,
circulating slowly and it could also be raining. Depending on these contextual
variable values, one specific error-handling strategy will be more suitable than
another. For instance, if the GPS signal is lost whenever it is snowing, the human
driver is forced to manage the vehicle manually. If the GPS signal is lost and the
vehicle is on a highway, circulating fast or at normal speed, and there is another
vehicle near, the vehicle is driven automatically using the GPS information of
the other vehicle until the next highway exit (which is signposted by the corre-
sponding traffic signal). In general, for each different combination of contextual
variable values, a different error-handling strategy might be designed to achieve
a compromise between automation and safety.

Let us descend to the implementation level for a while. Using a static aspect-
oriented language, such as AspectJ [2], all these strategies would be hard-coded
in a large or heavyweight error-handler aspect that is always woven into the ap-
plication. Depending on the context, this aspect executes a different strategy. Us-
ing a dynamic aspect-oriented language, such as JAsCo [25] or DAOP-ADL [26],
the different error-handling strategies can be coded in separate aspects, which
will be smaller, more lightweight and manageable than the AspectJ counterpart.
These lightweight aspects can be woven and unwoven at run time depending on
the context. Hence, the application is able to reconfigure itself at run time as
the context changes. Further motivations for this kind of run time adaptation
can be found in Kon et al. [20] and Grace et al. [21].

Dynamic Weaving of AO Executable UML Models 5

These dynamic adaptations require ensuring that the run time weaving and
unweaving of aspects works properly, and that an erroneous situation does not
arise as a result of this reconfiguration process. This kind of scenario cannot be
easily simulated or tested at the modelling level using the currently available
static aspect-oriented model weavers, as they are not able to weave/unweave
aspects at run time, which is precisely what designers want to simulate.

In order to overcome this limitation, we present in this paper a dynamic model
weaver able to simulate dynamic aspect weaving independent of any dynamic
aspect-oriented execution platform. Designers can use this platform to test that
their models behave as desired even in the presence of dynamic aspect weaving.

Our dynamic weaver promotes the definition of an aspect-oriented design
where the pointcuts contemplate the weaving and unweaving of aspects at run
time. Consequently, the designer can observe, by simulation, the advantages of
dynamic weaving that can be extended to an aspect-oriented implementation
platform offering similar facilities [25,26,27]. In the case where the developer
chooses an aspect-oriented dynamic platform for embedded systems such as pro-
posed by Fuentes and Jiménez [28], he/she will start to work from a design which
is very close to that required by these kinds of platforms.

2.2 Our Approach

This section provides a brief overview of our proposed solution. Our goal is to ex-
ecute aspect-oriented models where aspects are woven at model execution time,
facilitating the modelling of self-reconfigurable aspect-oriented applications.

Figure 1 illustrates the different elements that comprise our proposed solution:
First, the non-crosscutting concerns of the application are modelled using

the common UML 2.0 language. These concerns are modelled without taking
aspects into consideration. Then, a dynamic weaving platform (modelled as a
UML class), named Cencibel, is added to the model as q reusable external module
or model library. This platform provides an interface for weaving and unweaving
aspects during model execution.

The aspect-oriented part of the application model is then constructed using
the AOEM UML 2.0 Profile [14], developed previously by the authors of this
paper and one of the few AOEM approaches, based on method interception,
together with Motorola WEAVR [13]. According to this Profile, an aspect is a
class that contains common methods and advices. Advices are methods that use
special aspect-oriented behaviours, such as proceed.

Pointcuts are composition rules defined outside the aspects specifying that
when certain conditions are satisfied during the execution of an application, a
certain crosscutting behaviour must be executed.

The Cencibel platform is responsible for composing aspects with the design
modules they crosscut according to the pointcuts specification. Hence, to achieve
dynamic weaving, the Cencibel platform provides operations for loading and
unloading composition rules, i.e. pointcuts, at model execution time.

These composition rules or pointcuts bind aspects with specific events that
occur during model execution. Either aspects or base classes of the application

6 L. Fuentes and P. Sánchez

Base ModelBase ModelBase ModelBase Model

Aspect ModelAspect ModelAspect ModelAspect ModelAspect ModelAspect Model

Cencibel
(Dynamic Weaver)

Cencibel
(Dynamic Weaver)

Pointcut ModelPointcut ModelPointcut ModelPointcut Model

{hook=BEFORE_SEND}

: Bank

pay(..)

{hook=BEFORE_SEND}

*:**:* BankBank

pay(..)

executes

load/unload
pointcuts

load/unload
pointcuts

composes aspects
as specified by

load/unload
pointcuts

UML 2.0

AOEM Profile AOEM Profile

AO Designer

Fig. 1. Dynamic Weaving of AO Executable models

model can perform calls to Cencibel requesting the loading and unloading of
pointcuts. The addition of a new composition rule results in the weaving of the
aspect it binds. Similarly, the removal of a new composition rule results in the
unweaving of the aspect it binds. Therefore, the application is able to reconfigure
itself at run time.

For instance, in our example the context-awareness aspect will cause the un-
weaving and weaving of different versions of the error-handler aspect as the
context changes.

Cencibel is modelled using UML 2.0 and its action language, so it is an ex-
ecutable model (with some extensions that will be explained later). Hence, fol-
lowing our approach, both the models constructed and the Cencibel platform
are executable models, and so they can be run for simulation or testing pur-
poses. The Cencibel platform, as already commented, performs the composition
between aspects and the modules they crosscut dynamically during model exe-
cution. This composition (weaving) process is specified in pure UML 2.0 (with
slight extensions), avoiding UML and aspect-oriented expert designers having to
learn a new language to update or customize this weaving process.

During model execution, the designer can also interact with the dynamic
model weaver, loading and unloading pointcuts that activate and/or deactivate
aspects, which results in a more interactive model simulation.

The general idea behind constructing this platform is to provide an infras-
tructure that enables software engineers to test and debug their models before
moving into an implementation. Once they have checked if the models are cor-
rect, code for an implementation platform would be created. This code can be
created either manually or, more in accordance with a model-driven vision, gen-
erated automatically from them. In the latter case, since the models are correct
and the implementation code is generated automatically from the models, the
implementation code would be “correct by construction”. However, here we focus

Dynamic Weaving of AO Executable UML Models 7

on providing the mechanisms for model simulation, the code generation being
outside the scope of this paper.

3 Modelling the Sentient Vehicles in AOEM

This section describes how our motivating example can be modelled in UML
2.0 as an aspect-oriented self-reconfigurable application using the AOEM Profile
and the Cencibel model library. Before explaining this, a brief introduction to
executable modelling in UML 2.0 is provided.

3.1 Executable UML in a Nutshell

This section describes briefly how executable models in UML 2.0 can be con-
structed. Two main elements are required for making a modelling language ex-
ecutable: (1) an action language, which contains those elements that abstract
the atomic actions the models can carry out; and (2) an operational semantics,
which specifies where and how the actions can be placed in a model and how a
model must be interpreted. Both elements in the UML 2.0 standard are described
below.

Operational semantics for UML models

The operational semantics of UML is still in the process of standardisation [29].
Nevertheless, several tools implementing non-standard operational semantics for
UML models already exist (e.g. Rational RT, Rhapsody or Tau G2).

The ideas behind them are quite similar, and so the process of constructing a
UML executable model using these tools can be generalised and summarised as
follows: First, the global system structure is established as a set of components.
Then, the structure of each component is detailed by means of class diagrams.
The behaviour of each class is specified using a state machine, where each state
represents a stage in the typical class instance life cycle. A transition rule specifies
the behaviour and the new state reached when an object in a given state receives
a particular event. Each event represents something that occurs during object
execution, such as a method invocation, a signal or the expiration of a timer.
States can have associated procedures (sets of actions) that model the behaviour
executed when a class instance enters, stays in or exits a state. Procedures are
specified using an action language, described in the next subsection.

Action language

As previously commented, procedures are specified by means of an action lan-
guage. UML defines its own action language [30], which aims to provide modelers
with the basis for a complete and precise specification of UML models. Using
this action language, the full behaviour of UML models can be specified using

8 L. Fuentes and P. Sánchez

Table 1. UML actions used throughout this paper

ReadSelf Returns a reference to the object where it is executed
AddStructuralFeature Adds a value to an attribute of an object
ReadStructuralFeature Reads the value of an attribute of an object
CallBehavior Invokes a procedure (an activity diagram with actions)
CallOperation Invokes an object method
CreateLink Creates a link between two objects

a set of platform-independent atomic actions. These atomic actions can be used
for either the execution of UML models or even the generation of 100% of the
code if desired [31].

The UML standard [32] defines an action as “the fundamental unit of be-
haviour specification, which takes a set of inputs and converts them into a set of
outputs”. The UML action language defines operations that support the manip-
ulation of objects and the logical constructors for the specification of algorithms.
Examples of these actions are object creation, calls to methods or writing an at-
tribute value, among others. The specific set of actions used in this paper are
explained in Table 1.

Intentionally, the UML action language does not enforce any notation for
drawing actions. Thus, each tool defines its own notation. However, procedures
are commonly represented by means of UML activity diagrams. Actions are
nodes of activity diagrams. For each action, a general action symbol (a round
cornered rectangle) is used. Inputs and outputs are depicted as pins. To distin-
guish each specific action (object creation, attribute reading/writing, etc.), they
are stereotyped with their name (e.g. �ReadSelf�).

3.2 The Cooperating Sentient Vehicle Application

We show in this section the executable design model for the core logic (or primary
model) of the cooperating sentient vehicle application.

First, the system is decomposed into a set of interacting components.
Figure 2 shows such a decomposition. Each vehicle has a VehicleController com-
ponent, which receives requests from a GUI component and receives information
about traffic regulations from the TrafficSignal components. VehicleController com-
ponents can communicate with each other through the ICarInfo interface.

Second, the internal part of each component is modelled as a set of connected
classes. We focus on the VehicleController. This component is responsible for driv-
ing the vehicle with as little human assistance as possible. To achieve this goal,
it contains (see Fig. 3): (1) a GPS module for location sensing; (2) an electronic
Compass for orientation; (3) four UltrasonicSensors to detect the presence of neigh-
boring physical objects; (4) a SpeedController which acts as a sensor and actuator
for the velocity of the vehicle; (5) a Context object that stores information about
the vehicle current context; and (6) a Coordinator object, which ensures that the

Dynamic Weaving of AO Executable UML Models 9

ComponentTypespkg []
<<component>>

VehicleContoller
requestPort infoPort

<<component>>
TrafficSignal

dataPort

<<component>>
GUI

request

ITrafficInfo

IUserNotification

IController

ICarInfo

Fig. 2. Cooperating Sentient Vehicles System Architecture

VehicleTypespkg []

Context

-speedMode : SpeedMode
-pathType : PathType

+getSpeedMode() : SpeedMode
+getPathType() : PathType
+setSpeedMode(mode : SpeedMode)
+setPathType(pathType : PathType)

Coordinator

+nextPosition(pos : Position)
+switchDrivingMode(mode : DrivingMode)

SpeedController

-speed : Real

+getSpeed() : float
+setSpeed(setSpeed : Real)

+setTarget(target : String)

GPS

<<enumeration>>
DrivingMode

AUTOMATIC
MANUAL

Compass

+getPosition() : Position
<<enumeration>>

SpeeMode

SLOW
FAST

UltrasonicSensor

+getDistance() : float

<<enumeration>>
PathType

HIGHWAY
CITY

+compass

+gps+vehicle

+context

+sensors
4

+speed

Fig. 3. VehicleController internal classes

setSpeedact []

<<addStructuralFeatureValue>>
setSpeed

object

value

speed : Real

<<readSelf>>
this

this

Fig. 4. setSpeed activity

previous elements cooperate adequately to achieve the global task of driving the
car safely.

Finally, as commented in the previous section, the behaviour of each class is
described by means of state machines and activities containing actions.

As an example, Fig. 4 shows the activity that specifies the setSpeed method
of the SpeedController. This activity has an input parameter, which is the new
speed value to be set. The activity initially gets a reference to the object
where it is being executed (readSelf action), and using this reference, it sets
(addStructuralFeatureValue action) the speed attribute of the referenced object to
the value specified by the parameter.

10 L. Fuentes and P. Sánchez

Table 2. Aspect-oriented actions

GetMessName Returns the name of the intercepted message
GetMessArg(n) Returns the n-argument of the intercepted message
GetTarget Returns a reference to the target of the intercepted message
GetSource Returns a reference to the source of the intercepted message
Proceed Executes the intercepted behaviour

This initial model is fully executable, but it does not contain crosscutting
concerns, such as context-awareness or error handling, which are added in the
next section as aspects.

3.3 Aspect Modelling

This subsection explains how error-handling and context-awareness crosscutting
concerns are added to the application by means of aspects using the AOEM
UML 2.0 Profile [14] and the Cencibel model library.

An aspect, according to the AOEM Profile, is modelled as a class, stereotyped
as �aspect�. This class contains the logic of a crosscutting concern. An aspect
can contain, in addition to basic operations, special operations called advices3.
An advice, in AOEM, differs from common operations in that: (1) they can
contain special aspect-oriented actions such as proceed. This set of special aspect-
oriented actions is provided by the AOEM Profile [14] as a lightweight extension
to the UML standard (Table 2 shows a subset of such aspect-oriented actions that
are relevant in the context of this paper); and (2) they are never explicitly invoked
by common classes. Instead, they are invoked by the aspect-oriented weaver
as specified by the pointcuts. The reason for distinguishing between common
operations and advices is that the set of aspect-oriented actions provided by the
AOEM Profile, such as proceed, would make sense only in the context of non
implicit method invocation as a result of method interception.

As already commented in Sect. 2.2, pointcuts are composition rules defined
outside the aspects, which specify that when certain conditions are satisfied
during the execution of an application, a certain behaviour must be executed.
Pointcuts can invoke both advices and common operations. This allows opera-
tions that do not require using any of the aspect-oriented special actions to be
also used by common classes, thereby increasing reusability and symmetry.

Each �aspect� class, like common classes, can also contain a state machine
that specifies the behaviour of the aspect instances. Advices are also specified
by means of activities that contain actions. Such actions could be normal ones
or those special aspect-oriented actions previously mentioned.
3 Although, in proper English, advice is non-countable and therefore its plural would

be pieces of advice, in the context of aspect-oriented software development, since a
piece of advice is similar to a method and method is considered countable, we will
also consider advice countable by extension and we use advices as the plural of advice
instead of pieces of advices, which improves readability, in our humble opinion.

Dynamic Weaving of AO Executable UML Models 11

Aspectspkg []

<<aspect>>
ContexAwareness

-context : Context
-lastSpeed : float
-lastPath : PathType

<<advice>>+speedChange()
<<advice>>+pathChange()
-changeState()

<<aspect>>
ErrorHandler

-context : Context
-time : float
-coordinator : Coordinator

+initTimer()
+applyStrategy()
+resetTimer()

SpeedControlAutomaticEH

+applyStrategy()

ConservativeEH

#coordinator : Coordinator
#cencibel : Cencibel

+applyStrategy()

CityAutomaticEH

+applyStrategy()

AutomaticEH

+applyStrategy()

Fig. 5. Aspect classes

Figure 5 shows the structure of the classes that model error-handling and
context awareness. The different error-handling strategies are defined as sub-
classes of an abstract ErrorHandler aspect, which encapsulates the common part
of all the error-handling strategies. Each specific ErrorHandler aspect redefines the
applyStrategy operation, which contains the specific logic to be applied in case of
an error situation. These aspects are described in the following subsections.

The ContextAwareness aspect

The ContextAwareness aspect must detect all the events or messages that might
result in changes of the contextual information, requiring an appropriate update
of the context object. This aspect can be considered as a “big” observer, using
the terminology of the subject-observer pattern [33], which monitors multiple
subjects, e.g. vehicle speed or current path type.

In our example, the system simply observes changes in the route type and
speed. The speedChange and the pathChange advices are the update methods, ac-
cording to the subject-observer terminology, which are notified when an observed
entity changes its state. Both operations are specified by means of activities.

Figure 6 shows part of the speedChange advice. This advice is executed when-
ever a call to the setSpeed operation of the SpeedController object (see Fig. 3) is
performed (this is enforced by the corresponding composition rule that will be
explained in the next subsection).

When the speed value exceeds a certain constant value (which we call SPEED),
it is considered that the vehicle is in the FAST mode; otherwise, it is in the
SLOW mode. This advice, first, gets a reference (�readSelf� action) to the
object where it is being executed, and using this reference, it reads the last-

Speed attribute (�readStructuralFeature� action). Using the aspect-oriented ac-
tion �GetArgNamed�, the advice recovers the value of the new speed set in the

12 L. Fuentes and P. Sánchez

speedChangeact []

<<readStructuralFeature>>
getLastSpeedobject

lastSpeed

<<callBehavior>>
changeSpeedState

speed

<<getArgNamed>>
getSpeed

speedValue

<<readSelf>>
this this

changeState?

 [((lastSpeed <= SPEED) and
 (speed <= SPEED)) or
((lastSpeed > SPEED) and
 (speed > SPEED))]

 [else]

Fig. 6. ContextAwareness.speedChange advice (I)

changeStateact []

<<readStructuralFeature>>
getContextObject value

object

<<callOperation>>
setSpeedMode

mode

target

<<callOperation>>
setSpeedMode

mode

target

<<readSelf>>
this

this

<<literal>>
FAST

speed : float

<<literal>>
SLOW

 [speed <= SPEED]

[speed>SPEED]

Fig. 7. ContextAwareness.speedChange advice (II)

SpeedController object: then, it checks when this new speed value and the old
speed value (lastSpeed) are within the same speed mode interval. If both val-
ues are greater than the SPEED constant value, the vehicle remains in the FAST

mode (no extra action needs to be carried out). If both values are lower than the
SPEED constant value, the vehicle remains in the SLOW mode (no extra action
needs to be carried out). Otherwise, the system moves to a new speed mode
and the subactivity changeState (�callBehavior� action) is invoked with the cur-
rent speed value as a parameter. This subactivity is depicted in Fig. 7. It is not
described as it is considered self-explanatory4.

The ErrorHandler aspect

The ErrorHandler aspect is responsible, in the scope of this paper, for checking
that the GPS data are received on time. If it were not so, a specific error-handling
strategy, depending on the context, must be executed.
4 In our experience, readers are able to interpret it easily even if they are not familiar

with activity diagrams.

Dynamic Weaving of AO Executable UML Models 13

ErrorHandlingstm []

ErrorHandling
Countdown

initTimerentry /
at (time) / applyStrategy

resetTimer()

Fig. 8. ErrorHandler state-based behaviour

applyStrategyact []

<<readStructuralFeature>>
getCencibelRef

<<callOperation>>
removeRule

target

argument

<<callOperation>>
switchDrivingMode

target

argument

<<readStructuralFeature>>
getCoordinator

<<readSelf>>
this

<<literal>>
GPSdataReception

<<literal>>
MANUAL

Fig. 9. Conservative Error Handling Strategy

The behaviour of the ErrorHandler aspect is modelled using the state machine
depicted in Fig. 8. When the ErrorHandler aspect is created (i.e. when the auto-
matic driving mode is switched on), it initially enters the countdown state, where
the timer is initialised. When a message from the GPS with the nextPosition data
(see Fig. 5) is received by the Coordinator object, the aspect-oriented weaver sends
a message resetTimer to the ErrorHandler and the countdown is restarted (this is
enforced by the corresponding composition rule), just in case this countdown
has not finished. If the countdown ends, the ErrorHandler moves to the ErrorHan-

dling state, where a specific error-handling strategy is applied. This strategy will
be different depending on the specific subclass of the ErrorHandler aspect that is
woven at the current point in the application.

Figure 9 shows the strategy applied by the conservative error-handler aspect.
First, it switches the system to the manual driving mode (the sequence of ac-
tions this, getCoordinator plus swicthDrivingMode in the upper part of the figure).
Then, it makes a call to the Cencibel platform requesting the removal of the
GPSDataReception composition rule (the sequence of actions this, getCencibelRef

plus removeRule in the lower part of the figure). The GPSDataReception composi-
tion rule, or pointcut, is what binds the ErrorHandler aspect with the application.
Therefore, by removing the GPSDataReception pointcut, the ErrorHandler aspect is
removed from the application and it is not applied while the system is in the

14 L. Fuentes and P. Sánchez

manual driving mode. The GPSDataReception composition rule is described with
more detail in the next subsection. Other error-handling strategies are not shown
here as they are not relevant for the purpose of the paper.

Thus, it is the responsibility of the cooperating sentient vehicle application
itself to weave and unweave the concrete subclass of the ErrorHandler aspect
that corresponds to the current status of the Context object. This reconfigura-
tion process is carried out by a Reconfigurator aspect that will be described in a
later subsection. Before describing this aspect, however, we need to explain how
the composition relationships between the ContextAwareness and the ErrorHandler

aspects can be specified, since the Reconfigurator needs to handle these relation-
ships in order to trigger the weaving/unweaving of the different versions of the
ErrorHandler aspect.

3.4 Pointcut Modelling

This section describes how the aspects modelled in the previous sections are com-
posed, by means of pointcut specifications, with the classes of the VehicleController

component they crosscut.
A pointcut, according to the AOEM Profile [14], is expressed by means of

a sequence diagram, stereotyped as �pointcut�. This stereotype has a tagged
value called advice, which specifies the method to be invoked when the pattern
specified by the sequence diagram is matched. The specific message that must
be intercepted in order to execute the advice is stereotyped as �joinpoint�. This
stereotype has two tagged values: (1) point, indicating whether the interception
point is either the sending (SEND) or the reception (RECEIVE) of the message;
and (2) time, specifying when the advice is executed in relation to the join-
point (BEFORE, AFTER or AROUND). Similar to aspect-oriented languages (e.g.
AspectJ [2] or JAsCo [25]), wildcards are available in lifelines and method names:
“*” represents any sequence of characters and “..” any sequence of arguments.

The ContextAwareness aspect has to be applied when any subject observed by
this aspect changes. For instance, Fig. 10 shows the SpeedChanges pointcut that
specifies when SpeedController receives a message (setSpeed()) for setting a new
speed; after the reception of such a message (AFTER RECEIVE), the speedChange()

advice of the ContextAwareness aspect has to be executed. In the same way, when
a message, informing about a change in the type of road where the vehicle is

setSpeed(..)

<<pointcut>>

sd SpeedChanges

:SpeedController

<<joinpoint>>
{point = RECEIVE,
time = AFTER}

{advice = ContextAwareness.speedChange()}

Fig. 10. SpeedChanges pointcut

Dynamic Weaving of AO Executable UML Models 15

nextPosition (..)

<<pointcut>>
sd GPSDataReception

:Coordinator

<<joinpoint>> {point = RECEIVE ,
time = BEFORE}

{advice = ConservativeEH .resetTimer ()}

Fig. 11. GPSdataReception pointcut

circulating, is sent, the pathChange() advice of the ContextAwareness is executed.
This pointcut is not shown since it is similar to the one shown in Fig. 10.

The countdown of the specific version of the ErrorHandler aspect woven that
is currently woven must be reset each time the GPS sends the data for the next
vehicle position, which is specified by the GPSDataReception pointcut, as shown
in Fig. 11. It indicates that BEFORE the Coordinator RECEIVEs the nextPosition

message, the method resetTimer of the ErrorHandler aspect must be executed.
Depending on the context, a specific version of the abstract ErrorHandler aspect

must be invoked. Figure 11 represents a context where a conservative error-
handling strategy is applied.

This last pointcut needs to be updated at model execution time or at run
time each time the context changes, in order to invoke the version of the abstract
ErrorHandler aspect corresponding to the new context.

The next section explains how a Reconfigurator aspect deals with this task.

3.5 The Reconfigurator Aspect

A third aspect, named Reconfigurator is identified for this system. This aspect is
responsible for detecting or observing changes in the context object and switching
the error-handler aspects as necessary.

The Reconfigurator aspect must switch between different versions of the
ErrorHandler aspect according to the changes in the context. Therefore, the
Reconfigurator is also an observer that monitors changes in the Context object
and reacts accordingly. The Reconfigurator aspect (Fig. 12 (left)) has a reference
(cencibel) to the Cencibel platform, a reference (context) to the context object
and a reference (pointcut) to the GPSDataReception pointcut (see Fig. 11).

The pointcut for composing the Reconfigurator aspect with the classes it cross-
cuts is depicted in Fig. 12 (right). This pointcut specifies after a setter method
of the Context object is executed, i.e. each time the Context object is updated,
the switchErrorHandler aspect needs to be invoked, for unweaving the current
ErrorHandler aspect and weaving a new one.

Figure 13 shows how the switchErrorHandler advice carries out this task. To
change the current specific ErrorHandler aspect associated with the GPSData

Reception pointcut, the Reconfigurator aspect uses a special service of the Cen-
cibel platform (called changeAspect), which allows the advice value of a specific
pointcut to be changed.

16 L. Fuentes and P. Sánchez

set*(..)

<<pointcut>>
sd Reconfigure

:Context

<<joinpoint>> {point = RECEIVE,
time = AFTER}

{advice = Reconfigurator.swicthErrorHandler()}

Reconfiguratorpkg []

<<aspect>>
Reconfigurator

+switchErrorHandler()

-context : Context
-currentPointcut : String
-cencibel : Cencibel

Fig. 12. (left) Reconfigurator aspect (right) Reconfigure pointcut

switchErrorHandleract []

<<readStructuralFeature>>
getLastPointcut

object

pointcut

<<readStructuralFeature>>
getCencibelRef

object

cencibel

<<readStructuralFeature>>
getContext

object

context

<<callOperation>>
changeAspect

target pointcut

ConservativeEH.resetTimer

<<callOperation>>
changeAspect

target pointcut

SpeedControlAutomaticEH.resetTimer

<<callOperation>>
changeAspect

target

AutomaticEH.resetTimer

pointcut

<<callOperation>>
changeAspect

target

CityAutomaticEH.resetTimer

pointcut

<<callOperation>>
getSpeedMode

object

speedMode

<<callOperation>>
getPathType

object
path

<<readSelf>>
getThis this

pahtType &
 speedMode?

 [(path = CITY) and
 (speedMode = FAST)]

 [(path = CITY) and
 (speedMode = SLOW)]

 [(path = HIGHWAY) and
 (speedMode = FAST)]

 [(path = HIGHWAY) and
 (speedMode = SLOW)]

Fig. 13. Reconfigurator.switchErrorHandler advice

This is equivalent to unloading the pointcut with the old advice value and
loading a pointcut equal to the most recent one, but with a different advice
value. The changeAspect service is a shortcut to achieve this task.

According to Fig. 13, the swicthErrorHandler advice first gets a reference to itself
(getThis) and using this reference, it reads the context, cencibel and pointcut at-
tributes (getContext, getCencibel, and getPointcut actions, respectively). Using the
reference to the Context object, it recovers the new values for the tuple (pathType,
speedMode). Then, a specific call to the changeAspect service of the Cencibel

platform is performed requesting the update of the current advice associated
with the pointcut for error handling, i.e. the GPSDataReception pointcut. A call
to this service results in the unweaving of the previously associated aspect and
the weaving of the newly specified one. The name of the new advice is provided

Dynamic Weaving of AO Executable UML Models 17

as a literal value in UML terminology, which varies for each combination of val-
ues of the (pathType, speedMode) tuple. Literal values passed as arguments to an
action are modelled in UML 2.0 as value pins. A value pin is one which con-
tains a literal expression that provides the value for an input of an action. Value
pins have been coloured black in order to distinguish them more easily from
common pins. The literal value for each one of them appears beside them (e.g.
AutomaticEH.resetTimer). After calling the changeAspect service with the proper
advice value, which results in the unweaving of an error-handler aspect and the
weaving of a different one, the switchErrorHandler advice ends.

This section has shown how the application is able to dynamically change the
error-handling strategy used by means of unweaving and weaving aspects at run
time. The next section explains how this dynamic weaving can be achieved at
the modelling level.

4 Aspect-Oriented Dynamic Weaving

This section describes how the aspect-oriented model created in the previous
section can be executed using a dynamic model weaving strategy.

4.1 Dynamic Weaving Process

Using a dynamic weaving strategy, aspects can be woven and unwoven at run time
by adding/removing/updating composition rules, i.e. pointcuts. Since the addi-
tion, updating or removal of pointcuts at model execution time is valid, it is not
possible to know whether an aspect advice will be executed or not until just before
the joinpoint interception happens. Therefore, just before a joinpoint is going to
be executed (e.g. a method call), the dynamic weaving platform, called Cencibel,
intercepts it. The platform checks according to the pointcuts currently loaded,
some advice(s) must be executed. If so, the advice(s) and the joinpoint are ex-
ecuted in the order specified by the pointcut. Thus, according to the joinpoint
model of the AOEM Profile [14], when an object needs to execute a call action,
instead of calling the target object directly, this call is delegated to the dynamic
weaving platform.

The structure of our Cencibel dynamic weaving platform is depicted in Fig. 14.
The Cencibel platform contains a set of aspect composition rules (i.e. pointcuts).
A CompositionRule indicates that when a specific message is delegated to the weav-
ing platform, at a certain time (i.e. BEFORE, AROUND or AFTER) and at a certain
point of execution of that message (i.e. either the sending SEND or the reception
RECEIVE), a specific advice must be executed. A Message specifies the callerType,
the receiverType and the message name. Cencibel also contains information about
dynamic constraints (FlowConstraints) imposed on the composition rules. More
specifically, it is allowed to discard messages if they are (active=true) or not (ac-
tive=false) in the control flow of other messages. The included attribute specifies
whether the message must be considered or not during the joinpoint flow (i.e.
the counterpart in AspectJ would be cflow for included=true and cflowbelow for
included=false).

18 L. Fuentes and P. Sánchez

DynamicWeaverclass []

Cencibel

+execute(source : Object, message : String, target : Object, args : Object [*])
+addRule(rule : CompositionRule) : String
+removeRule(ruleId : String)
+changeAspect(pointcut : String, advice : String)
+addConstraint(ruleId : String, constraint : FlowConstraints)
+removeConstraint(constraintId : String)
#proceed()
-executeCall(target : Object, message : String, args : Object [*])

CompositionRule

+time : IntTime
+point : IntPoint
+advice : String
+id : String

+included : Boolean = true
+active : Boolean = true
+id : String

FlowConstraints

Message

+message : String
+callerType : String
+receiverType : String
+args : Object [*]

<<enumeration>>

IntTime

AROUND
BEFORE

AFTER

<<enumeration>>

IntPoint

RECEIVE
SEND+constrainedMessage

+/constraints

*

+crosscuttMessage
+affectedBy

1..*

+/crosscutMessages* +pointcuts
{ordered}

*

+constraints*

Fig. 14. Cencibel structure

The Cencibel interface offers an execute(source: Object, message: String, target:

Object, args:Object[*]) method for executing call actions. It also provides methods
for loading (addRule) and unloading (removeRule) aspect composition rules at run
time, as well as for changing the value of the advice associated with one pointcut
(changeAspect). Constraints to composition rules can also be added (addConstraint)
and removed (removeConstraint) at run time.

When a call to a method is delegated to the Cencibel platform by means of the
execute(aSource, aOperation, aTarget, aArgs) operation, Cencibel searches for all the
crosscutMessages tuples that match the specific tuple (asource, aOperation, aTarget,

aArgs) and that satisfy the associated constraints. All the resulting tuples are
grouped by the (point, time) values of the composition rules associated with each
message. Each group is then ordered by the advice execution priority (note that
the collection of pointcuts contained in Cencibel is ordered). Next, the process
depicted in Fig. 155 is executed:

1. Initially, Cencibel checks if there are any aspects applicable before the call
action. If so, they are executed in order (Fig. 15, step 1). According to the
AOEM Profile, neither BEFORE nor AFTER advices can contain proceed

actions; thus, they can be simply executed in sequence by execution priority.
2. Cencibel then checks if there are any aspects applicable around the sending

of the call action (Fig. 15, step 2). If so, the AROUND SEND advice with the
5 This figure is a not a UML-compliant precise specification of the weaving process; it

is only a high level description.

Dynamic Weaving of AO Executable UML Models 19

Execute AROUND SEND
advices in proceed

Execute AROUND RECEIVE
advices in proceed

<<ordered>>
AROUND RECEIVE

advices

<<ordered>>
BEFORE RECEIVE

 advices

Execute called method

Push highest
priority advice

Push highest
priority advice

Execute aspects

Execute aspects

Execute highest
priority advice

Execute highest
priority advice

Execute aspects

Execute aspects

<<ordered>>
AFTER SEND

advices

<<ordered>>
AFTER RECEIVE

advices

AROUND SEND
 advices

<<ordered>>

BEFORE SEND
advices

<<ordered>>

empty(AROUND RECEIVE advices) ?empty(AROUND SEND advices) ?

proceed ?proceed ?
 [false]

 [false]

 [false]

 [true]

 [false]

 [true]

 [true] [true]

1

2

3

4

5

6

7

8

9

Fig. 15. Dynamic weaving process

highest priority is executed. During this execution, a call to the proceed action
is performed, the advice is added to a stack for AROUND SEND advices in the
“proceed” state, removed from the AROUND SEND advices collection, and the
dynamic weaving process continues at step 2, checking if further AROUND

SEND advices need to be executed. If an around call advice did not contain a
call to proceed, it means the call has to be discarded, and the weaving process
continues at step 8, skipping the execution of the called method (as well as
the execution of other around advices with a lower execution priority, as well
as any BEFORE RECEIVE, AROUND RECEIVE or AFTER RECEIVE
advices).

3. After executing the aspects around the sending of the call (and if all of them
have invoked a proceed action), the BEFORE RECEIVE advices are executed
(Fig. 15, step 3). As in the BEFORE SEND case, they can be simply executed
in order, since they do not contain proceed actions.

4. Then, the advices around the reception of the call are executed (Fig. 15,
step 4). This process is the same as for the around send advices, but in
this case, the process returns to step 4 when a proceed action is invoked, or
goes to step 6 in the case where the execution of the method is skipped and
the advices that have invoked a proceed action are stored in the stack for
AROUND RECEIVE advices in the “proceed” state.

5. Next, the call is forwarded to the target object (just in case all the AROUND

SEND advices have proceeded), which dispatches it (Fig. 15, step 5). To
carry out this task, the Cencibel platform invokes its private function
executeCall.

6. After the execution of the method, the AROUND RECEIVE advices pushed in
the corresponding stack are popped out and executed (Fig. 15, step 6).

20 L. Fuentes and P. Sánchez

7. Then, the AFTER RECEIVE advices are executed (Fig. 15, step 7). They do
not contain proceed actions, and so they can be simply executed in order.

8. The AROUND SEND advices pushed in the corresponding stack are popped
and executed (Fig. 15, step 8).

9. Finally, the AFTER SEND advices, which do not contain proceed actions, are
executed (Fig. 15, step 9) and the weaving process finishes.

In order to illustrate this algorithm, let us consider the execution trace of the
sending of a nextPosition(pos) message from the GPS to the Coordinator (see Fig. 3):

1. First, the GPS executes a �CallOperation� action, invoking the operation
nextPosition of the Coordinator object, with the data of the next position of
the vehicle.

2. This call, instead of being executed directly, since it is a potential joinpoint,
is delegated to the Cencibel platform (see Sect. 4.3 for further details about
how this call is redirected to the platform).

3. Then, the Cencibel platform executes the algorithm described above:
(a) The platform searches for all the advices applicable at this joinpoint.

The applicable advices are those which are bound to the current
joinpoint by a composition rule, and they also satisfy the dynamic condi-
tions (e.g. cflow constraints), if these exist. In our case, one composition
rule matches the current joinpoint. This composition rule is GPSDataRe-

ception (see Fig. 11). It specifies a BEFORE RECEIVE advice, which is a
ConservativeEH.resetTimer6 .

(b) Therefore, the two steps of the algorithm do not have any effect on the
joinpoint because there are neither BEFORE SEND nor AROUND SEND

advices.
(c) Then, the ConservativeEH.resetTimer operation is executed because it is a

BEFORE RECEIVE advice bound by a composition rule that matches the
current joinpoint.

(d) Step 4 of the algorithm is skipped because no AROUND RECEIVE advices
are applicable at this joinpoint.

(e) The current joinpoint is executed. Cencibel calls its private function
executeCall, which invokes the operation delegated to the platform.

(f) Steps 6, 7, 8 and 9 do not have any effect because there are no AROUND

RECEIVE advices applicable, nor are AROUND advices pushed in the cor-
responding stacks, nor are there AFTER RECEIVE advices or AFTER SEND

advices that should be executed.

With the current UML Action language, the execution of the delegated call
action to Cencibel, i.e. step 5 of the weaving process, or according to the previous
example, the invocation of the nextPosition method by the Cencibel platform,
has a limitation. This is illustrated in Fig. 16. The target object (target) and
the arguments (arg1, arg2, arg3, etc.) are provided to the call action at model
6 Let us suppose for simplicity that the ConservativeEH is the concrete version of the

error-handler aspect currently woven in the application.

Dynamic Weaving of AO Executable UML Models 21

MessageName

arg1 arg2 arg3
target <<CallOperation>>

Fig. 16. Call operation action limitation

execution time, but the message name and the number of input pins must be
statically specified at modelling time (i.e. hard-coded into the action); so the
complete call action cannot be composed dynamically at model execution time.

Using the previous example, the exact problem is that the Cencibel platform
cannot dynamically construct a CallOperation action at run time for invoking the
nextPosition method of the Coordinator object (step 3.e of the previous example).
The Coordinator object and the parameter can be supplied at model execution
time, but the called operation, the number and type of arguments would have
to be previously specified at design time.

This issue could be easily resolved using reflection mechanisms not currently
supported by the UML Action language. We have extended the current UML
Action language to provide the reflective support that we need. This extension
is explained in the next section.

4.2 Reflective Executable UML

This section explains how reflective support can be smoothly incorporated into
UML 2.0 based on previous ideas presented by Sunyé et al. [31]. The basic idea
behind this work is that the UML Action language is a language for carrying
out activities over object-oriented models, such as creating objects or setting
attributes. The UML metamodel is itself an object-oriented model, and so the
UML Action language can be used for executing actions over the UML meta-
model, i.e. for changing a model at model execution time.

Following these ideas, we have created a simple UML 2.0 Profile for adding
reflection to executable UML models. This profile contains only the �reflective�
stereotype, which can be applied to any action. It means that an action stereo-
typed as �reflective� does not refer to the objects that are instances of the
UML model; instead, it refers to the UML model itself as a set of instances
of the metaclasses of the UML metamodel. For instance, a CreateObject action,
stereotyped as �reflective�, means we are creating a new instance of a metaclass
of the UML metamodel. Then, using the reflective version of CreateObject, either
a new UML class, a new UML activity, a simple final node of an activity or any
other UML element can be created.

Using this slight extension to the UML Action language, the problem of con-
structing a call to an operation dynamically at model execution time can be
solved using the executeCall procedure (depicted in Fig. 17), which is contained
in the Cencibel class. This procedure accepts as input the called object, the name

22 L. Fuentes and P. Sánchez

executeCallact []

<<createLink>>
<<reflective>>

LinkClassActivityclass

activity

<<callBehavior>>
getClass class

object

<<callBehavior>>
createRuntimeActivity

result

args

operation

message : String

<<callBehavior>>
getOperationRef

operationRef
class

operationName args

<<callBehavior>>
runtimeActivity

target

result

<<callBehavior>>
getClass

class

object

receiver : Object

receiver : Object

result : Object

args : Object

<<readSelf>>
getThis

result

1

2

3 4

5 6

Fig. 17. Procedure for constructing a call to an operation at model execution time

runtimeActivityact []

<<callOperation>>
aOperationSpecifiedAtRuntime

arg1

target

arg2 arg3

result

...

target

result

arg1 arg3 ...arg2 The pins are created at runtime.
The called operation is
specified at runtime

Fig. 18. Activity created at run time

of the called operation and the collection of arguments. This procedure uses three
subprocedures: (1) getClass; (2) getOperationRef; and (3) createRuntimeActivity.

The getClass procedure returns a reference to the definition of the object class
that is passed as an argument to the procedure. For instance, if getClass receives
an object of type A, it returns a reference to the definition of class A (thinking
reflectively, it would be a reference to the object A of the metaclass Class).

The getOperationRef procedure obtains a reference to the definition of an op-
eration, given: (1) a reference to a class definition; (2) the name of the operation
as a string; and (3) a collection of arguments that serves to select an operation
with a specific signature (just in case there were several operations with the
same name and different signature). These elements are passed as arguments to
the getOperationRef procedure.

The createRuntimeActivity procedure creates the activity or procedure (called
runtimeActivity), at model execution time that calls the operation delegated to
the Cencibel platform. A general sketch of this procedure is shown in Fig. 18.
The runtimeActivity is created entirely at run time using reflective UML actions.
Its unique task is to invoke the operation whose call has been delegated to the
Cencibel platform. The most interesting part of this activity is that the name of
the callOperation action is specified at run time, and the corresponding attribute

Dynamic Weaving of AO Executable UML Models 23

of the metaclass CallOperationAction is set by means of reflective UML actions.
The input pins for this action are also created at run time, and their types are
dynamically specified using reflection.

Using the example of the invocation of the nextPosition method used in the
previous section, the runtimeActivity is dynamically created in that case in step 3.e.
This activity contains only a �CallOperation� action that invokes the nextPosition

operation of the Coordinator object, with the data of the next position of the
vehicle as a parameter.

Using these three subprocedures, we come back to the executeCall procedure,
which works as follows:

The goal is to add an activity at model execution time, as shown in Fig. 18,
which executes the call delegated to the Cencibel platform, as part of the Cen-
cibel platform behaviour. Then, the upper part of the Fig. 17 specifies the pro-
cess to create the runtimeActivity reflectively (labels 1, 3 and 4) and the lower
part models how this new activity is linked to the Cencibel platform object
(label 2 and 5) and executed returning a result (label 6). This process is detailed
below:

1. References to the definition of the class of the called object (Fig. 17, label
1) and to the definition of the Cencibel class (Fig. 17, label 2) are obtained.

2. A reference to the definition of the called operation is obtained (Fig. 17,
label 3).

3. The runtimeActivity is created (Fig. 18) using the reference to the definition
of the operation previously obtained and the collection of arguments for the
called operation (Fig. 17, label 4).

4. The newly created activity is linked with the Cencibel platform using a UML
reflective action, i.e. a new activity is added to the Cencibel class definition
(Fig. 17, label 5).

5. This newly added behaviour is invoked (Fig. 17, label 6) and the result
collected.

This section has shown how the problem regarding the execution of the delegated
action can be solved using reflective UML, this being one of the contributions of
this paper.

4.3 Running the Aspect-Oriented Model

Previous sections have described how a dynamic weaving process for executable
models can be designed (or implemented) at the modelling level. However, before
starting the execution of an aspect-oriented model with dynamic weaving, some
preliminary tasks must be carried out to convert the aspects and the pointcuts
modelled using the AOEM Profile into plain Executable UML elements that can
be run in conjunction with the Cencibel platform. These preliminary actions are
described in this section.

First, we need to ensure that each potential joinpoint is not directly executed
by the model; instead, it is replaced with a call to the Cencibel platform request-
ing the execution of such a joinpoint. For instance, the GPS should not call the

24 L. Fuentes and P. Sánchez

nextPosition method of the Coordinator object directly; instead, the GPS should
delegate this call to the Cencibel platform. In order to avoid the designer need-
ing to be aware of this indirection level, each potential joinpoint is automatically
replaced with its equivalent call to the Cencibel platform by means of a model
transformation provided by the Cencibel preprocessor. In this way, designers
can work as usual, being only required to execute these model transformations
before running the aspect-oriented model.

Second, the information specified in the pointcuts must be transformed into a
sequence of calls (addRule and addConstraint) to the Cencibel platform in order to
load these pointcuts ‘programmatically’ into the Cencibel platform. Another set
of model transformations performs this task, avoiding the extra task of having
the designer perform it manually. At design time, the designer can just use a spe-
cial addPointcut action, which contains a reference to the sequence diagram that
specifies the required pointcut as an argument. The set of model transformations
replaces this special action with a set of calls to the Cencibel platform.

Finally, aspect advices need to be converted to plain Executable UML, which
means we need to replace the special aspect-oriented actions of the AOEM Profile
with common UML actions. All the information about the joinpoint context that
could be required by a special aspect-oriented action (e.g. the message target and
the message caller) is already loaded in the Cencibel platform; thus, each aspect-
oriented action can be substituted by a proper action requesting this information
from the Cencibel platform. In the case of the proceed action, this is substituted
by a call to the Cencibel.Proceed method, which executes the original call action,
according to the process described in Fig. 15. This transformation process is also
implemented by means of a set of automatic model transformations.

The complete set of model transformations to be executed before running the
model can be viewed as a compilation process at the modelling level. Once these
transformations have been executed, the model is ready to be executed with the
appropriate tool-support, which is described in the next section.

5 Tool Support

This section describes the tools required to reproduce our experiments.
The set of reflective actions presented in the previous section are not contained

in the UML 2.0 standard. This implies that current tools able to execute UML
models need to be extended with an implementation of these reflective actions
in order to support our approach. At the time we faced this task, there were no
tools available with these characteristics, as all the UML tools with execution
capabilities were proprietary and non-extensible7.

Due to the evident lack of effective tool support for our approach, we have
developed a UML execution engine, called Pópulo, a kind of UML Virtual
Machine that is provided as an Eclipse plugin [35,36]. This UML Virtual Machine
7 Recently, a UML model debugger, in the form of an IBM Rational plugin, with

similar characteristics to our requirements has been released. The interested reader
can refer to [34].

Dynamic Weaving of AO Executable UML Models 25

2

1

3

4

Fig. 19. The Pópulo UML Virtual Machine

is easily extensible with new actions (it was one of our main goals when devel-
oping Pópulo). Thus, the set of reflective actions required to run the Cencibel
platform were built-in as part of this virtual machine. The Cencibel platform was
therefore constructed as a model library that aspect-oriented applications can
import and use. Aspect-oriented applications can then be executed, following a
dynamic weaving strategy, using Pópulo.

Figure 19 shows a screenshot of Pópulo. This tool allows designers to visualise
the behaviour of an (aspect-oriented) executable UML model by interpreting
the UML actions. It works as a model debugger and provides four views for
observing: (1) the execution trace of the model (Fig. 19, label 1); (2) the current
status of the objects created by the application (Fig. 19, label 2); (3) the values
of the attributes of such objects (Fig. 19, label 3); and (4) the current status of
the stack of method calls, i.e. the status of the queue of actions and activities
ready for execution and the status of the set of actions and activities that are
blocked waiting for some object or control flows (Fig. 19, label 4). The Pópulo
UML Virtual Machine supports breakpoints and step-by-step execution8.

8 Interested readers can find information about the Pópulo tool at
http://caosd.lcc.uma.es/populo/index.htm

26 L. Fuentes and P. Sánchez

For designing aspect-oriented UML models, any UML tool supporting the
UML action language can be used. To the best of our knowledge, at least four
tools support this feature: MagicDraw, Rational, Topcased and Eclipse UML2.
XMI serialisations of UML models can differ depending on the the UML tool
used. Pópulo accepts as input UML models serialised in the flavour of the XMI
standard supported by Eclipse UML2. Therefore, the selected tool must be able
to export the models in an XMI format compatible with this XMI version. We
opted for using this version, as it is becoming the de-facto standard for XMI se-
rialisations, and a wide range of UML tools (e.g. MagicDraw, Rational, Together
and Topcased) are compatible with this version.

Using these tools, Pópulo, the Cencibel model library and the AOEM Profile,
the motivating example presented in this paper has been modelled, executed and
simulated. In addition, an Online Book Store system presented in [14], which
was already modelled in an aspect-oriented fashion using the AOEM Profile, has
also been executed using this dynamic weaving strategy. Positive and negative
aspects of this experience are discussed in the next section.

6 Discussion

Several approaches have recently appeared, such as Motorola WEAVR [13] or
AOEM [14], which allow the execution, testing and/or debugging of aspect-
oriented models. However, these approaches (one provided by the authors) only
consider static weaving. Our experience trying to use these aspect-oriented model
weavers in pervasive systems revealed to us that a static weaving strategy is not
always sufficient and that we needed some dynamic weaving support at the
modelling level to adequately simulate adaptive applications, i.e. those able to
reconfigure themselves by dynamic aspect weaving and unweaving.

The goal of this paper is to present the infrastructure required for executing
aspect-oriented models with a dynamic weaving process that allows an applica-
tion to reconfigure itself. However, a systematic process for designing the test
cases that allow designers to verify their models, such as described by Xu and
Xu [37] or Baker and Jervis [38], is beyond the scope of this paper and has been
left as future work. Currently, using our approach, an aspect-oriented model can
be debugged by means of its execution. We comment on scenarios using the
cooperating sentient vehicles system where our approach is useful for detecting
potential errors using aspect-orientation.

Figure 12 (right) shows the pointcut for triggering the reconfiguration aspect.
This pointcut intercepts all the executions of any setter method of the Context

object (actually, what is intercepted is any call to a method whose name starts
with ‘set’, independently if this method sets any attribute or not). By means
of executing the model, we could discover that this pointcut is intercepting the
execution of setter methods for contextual variables that do not affect the error-
handling strategy. Thus, the current ErrorHandler aspect does not need to be
unwoven, and the Reconfigurator aspect should not be executed.

Using the approach presented in this paper, the previous issue and other
ones inherent to aspect-oriented applications, such as the problem of checking

Dynamic Weaving of AO Executable UML Models 27

the correctness of aspect-interactions, can be analyzed at the modelling level by
observing the trace of a model execution. When defects are discovered, the model
can be fixed at design time without moving into a implementation. Industrial
reports have revealed that fixing these defects at design time can contribute
greatly to reducing the effort required for solving these errors (the Motorola
experience [18] shows a 30–70x reduction on this effort).

Nevertheless, for analysing the previous issues, a dynamic weaving strategy is
not strictly required. As a novel contribution of this approach, specific issues of
dynamic system reconfiguration can also be analysed at the modelling level.

The experienced reader in adaptive systems will know that an extra piece of
code/model behaviour must be specified to ensure the system behaves correctly
during the dynamic reconfigurations (see, for instance, [22,39,40]). This piece of
behaviour depends on each application. It has not been modelled in this paper
for the cooperating sentient vehicle example, as the construction of these safe
reconfigurators often involves a lot of technical details on the adaptive systems
domain. This domain usually contains complex formalisms that are not essential
for the goal of this paper. Readers interested in these topics can refer to the
work of Rasche et al. [22], Zhang and Cheng [40] or a recent survey [39]. The
goal of this paper is to provide the infrastructure to be able to simulate aspect-
oriented adaptive applications and check that these safe reconfigurators work
as expected. An adequate simulation of such reconfigurators cannot be properly
addressed using a static weaving strategy.

In this respect, even developers unfamiliar with adaptive systems can realize
that the reconfigurator presented in this paper does not work correctly simply
by running the aspect-oriented model of this system. The aspect-oriented de-
signer could easily find several bugs contained in the model, such as: (1) in the
case where the GPS signal is lost just during the reconfiguration process, no
aspect is executed; or (2) the countdowns may be longer than specified due to
reconfigurations.

An additional contribution of this work is that different alternative solutions
can be analysed without the necessity of implementing them, simply by observing
the behaviour of the models.

We would also like to comment that the reader familiar with aspect-oriented
technologies and especially with aspect-oriented modelling approaches, might
miss in this paper advanced aspect-oriented mechanisms that go beyond method
interception based on a pointcut plus advice scheme, such as multidimensional
separation of concerns based on hyperslices [41] or the merge operator provided
by Theme/UML [6]. This paper focuses on method interception because this is
the aspect-oriented technique most often applied to the systems that use dy-
namic weaving strategies, such as adaptive systems or context-aware systems.
The reason is that the kind of concern separated by means of method interception
(e.g. encryption), it is also the same that requires being woven/unwoven dynam-
ically. The kind of concerns using other methods, such as the Theme/UML
merge operator, rarely require dynamic weaving strategies. In comparison with
middleware platforms for component-based applications, the concerns separated

28 L. Fuentes and P. Sánchez

by method interception are the ones that are most likely to be managed by the
component containers. The concerns separated by other mechanisms are those
that are most likely to be placed in the business logic of the component. While
the former ones can normally be added or removed from the container at run
time by application servers, it is rarely the case when the same dynamism applies
to the latter ones.

In our experience, concerns composed by means of some kind of merge opera-
tor might require dynamic weaving strategies mainly in a Software Product Line
(SPL) context [42]. In this case, the different features of a product are designed as
separate models that are later composed in order to get a specific product. If we
want to make a product of the SPL dynamically reconfigurable, dynamic weav-
ing strategies could be of interest. However, this is a new topic that is beyond the
scope of this paper and one that involves a lot of new challenges [43,44]. One pos-
sible solution would be as follows: the result of the composition of several modules
by means of a merge operator may be a set of components. Thus, in order to dy-
namically reconfigure a model, the new set of features we want to include in our
product would be selected, and a new set of common or base components would
be generated as a result. These newly created components could be added to the
application, and the old ones removed. Dynamic loading and unloading of com-
ponents is nowadays feasible and it could be simulated at the modelling level.

It is reasonable therefore to think that the construction of fully executable
models in UML provides benefits from a software engineering point of view.
These executable models are so highly-detailed that it could be argued we are
just programming in UML instead of using a conventional programming language
and hence, there is no difference between programming and modelling.

We would like to point out that in order to analyse some critical parts, or dif-
ferent alternatives, of an aspect-oriented model, designers do not need to specify
the model completely. They only need to model the behaviour of those parts they
want to analyse, and the non-critical behaviours, such as trivial getters, setters
or simple numeric algorithms, can be simply filled with dummy specifications,
which will be refined at the implementation level.

Regarding the benefits of executable modelling, they rely mainly on three
factors: (1) abstraction; (2) code generation; and (3) platform-independence.

First, in order to provide benefits from a software engineering point of view,
models are supposed to be more abstract than programming languages, hiding
irrelevant details of the implementation languages and helping software engineers
to focus on the relevant details of the problem. In this respect, modelling lan-
guages often provide a richer set of abstractions (e.g. state-machine diagrams,
sequence diagrams) than traditional programming languages, such as Java or
C++. Software for certain domains (e.g. reactive systems which are mainly
state-based) can be more easily specified using the high-level abstractions (e.g.
state-machines) provided by modelling languages. On the other hand, for the
kind of applications where the set of abstractions provided by programming lan-
guages is sufficient, such as purely numerical algorithms, the abstraction benefit
of executable modelling is perhaps not so clear.

Dynamic Weaving of AO Executable UML Models 29

The effort associated with executable modelling is extremely beneficial when
combined with code generation. One of the goals of the UML Action language is
to allow 100% of the code to be automatically generated if desired (this feature
is currently supported by several tools, such as Rhapsody, TAU G2 or Ratio-
nal RT). Currently, powerful code generators, such as Motorola Mousetrap [45],
can produce strongly optimised applications (which often perform better than
hand-written code) [18,46], as reported in the Motorola experience. Code gener-
ation also serves to hide some particularities of the target language or platform
from the developers, at the same time helping to ensure target code quality by
automatically and systematically applying code generation patterns considered
as best-practices [18].

Finally, models produced using the AOEM Profile are platform-independent,
which means they are not dependent on any target language or platform. This
implies that changes in the target language or platform (which unfortunately are
more frequent than desired) would not affect these models, making them more
stable than code. In addition, the same model could specify the same system
for different target languages. Platform-independency when combined with code
generation improves reusability, as the same model can be used to generate the
same system for different target languages or platforms [47].

In general, the major benefits of executable modelling can be obtained
from the combination of the three previously commented factors: abstraction,
platform-independency and code generation [48]. A deeper discussion on when it
is faster, cheaper and more desirable to model instead of going directly to code
is not the goal of this paper. Interested readers can consult the Saturn experi-
ence [16], the work of Mellor and Balcer [49], the Motorola case [18] and also the
Cottenier et al. [19,50]. Counter positions can be found in Bell [51] and Kleppe
et al. [52], and a critical discussion of these issues is available in Hailpern and
Tarr [53].

7 Related Work

To the best of our knowledge, this is the first work in the literature describing
how to execute aspect-oriented models using a dynamic weaving strategy. Nev-
ertheless, there is some work on aspect-orientation and executable models in the
literature on static aspect-oriented model weaving, which are described in this
section.

Ho et al. [54] present a framework for modelling aspect-oriented applications.
It serves to construct AOEMs, but the weaving is postponed until the implemen-
tation phase and thus the execution of the complete model, including aspects, is
not possible at modelling time. The weaving process is implemented as a model
transformation from design to implementation, which generates the code from
the UML actions.

C-SAW [55] is a framework for generating model weavers for aspect-oriented
domain models. C-SAW is integrated with the GME9 modelling environment.
9 http://www.isis.vanderbilt.edu/projects/gme/

30 L. Fuentes and P. Sánchez

It focuses mainly on consistently adding constraints and properties to very
large models rather than encapsulating crosscutting behaviours in aspects. In
C-SAW, pointcuts and advices are modelled using the ECL (Embedded Con-
straint Language) language, defined by the authors, which is a subset of OCL
(Object-Contraint Language). This kind of declarative and OCL-based textual
languages might be cumbersome for specifying pointcuts, as demonstrated by
Stein et al. [56]. Advices are also modelled using the ECL language; therefore
aspect and base models are expressed in different notations, which could gen-
erate some comprehension problems. A more optimal solution, in our humble
opinion, is to use the same notation for the aspect and the base model, and so
the learning curve could decrease for those designers that are already familiar
with the notation of the base model but not with aspect-oriented concepts. In
addition, the behaviour of the advices is not modelled in a strict sense; instead,
it is specified in a syntax similar to C++.

Theme/UML [6] is an extension of UML for aspect-oriented modelling. It
supports all the UML 2.0 diagrams. Therefore, using Theme/UML, we should
be able to weave UML executable models, which specify procedures using the
UML Action language. However, although Theme/UML specifies the weaving
semantics of the approach, until now, the weaving must be done manually, since
no tool support is available. We tried to implement a Theme/UML weaver, but
without fruitful results since it is quite complex and it is not precisely defined
beyond sequence and class diagrams.

KerTheme [12] is an extension to Theme/UML which adds execution capabil-
ities to common ‘themes’ by integrating them with the Kermeta language10 [57].
This Kermeta language enables the definition of precise behaviour for metamod-
els (and models) by means of an action language. The main goal of KerTheme
is to test models. A KerTheme comprises a sequence diagram, which describes a
test case, and an executable class diagram. This diagram is executable since the
behaviour of the class method is precisely specified using the Kermeta language.
After specifying KerThemes, they are woven. The weaving process generates
both woven executable class diagrams and woven test cases that can be used
to check the correctness of the executable class diagrams. The main drawback
of this approach is the use of the Kermeta language for providing model execu-
tion. Kermeta is a language designed for breathing life into metamodels, i.e. for
specifying behaviour at the metamodel level (M2 level), but not for specifying
behaviour at the modelling level (M1 level). Hence, it is aligned with MOF (M3
level) instead of the UML metamodel or any other metamodel (M2 level). This
has several consequences: First, it forces designers to switch between their pre-
ferred UML editor and the corresponding tool for the Kermeta language in order
to create their designs, unless their preferred UML editor provides a seamless
integration with Kermeta, such as is the case for the Topcased tool11. Second,
because Kermeta was designed for working at the metalevel, the Kermeta action
language is less expressive and more restrictive than the UML action language.

10 http://www.kermeta.org/
11 http://topcased-mm.gforge.enseeiht.fr

Dynamic Weaving of AO Executable UML Models 31

Signals, forks or data store nodes that represent data streams are some exam-
ples of elements of the UML action language that are not supported by Kermeta.
Finally, KerTheme behaviour is modelled using the Kermeta action language,
which imposes an imperative and procedural style of specifying behaviour. Other
modelling alternatives, such as state-machines, which could be more suitable for
certain kinds of applications such as reactive systems, are simply discarded.

Cottenier et al. [13,50,58] present a powerful aspect-oriented static model
weaver called Motorola WEAVR [19]. Currently, Motorola WEAVR can be con-
sidered the most mature model weaver, since it has been adopted by Motorola.
This model weaver is integrated with the TAU G2 tool and it enables the use
of powerful code generators provided by these tools. In addition, it provides an
interesting joinpoint model based on states, which allows the specification of se-
mantic pointcuts in reactive systems [59]. However, Motorola WEAVR is based
on the Telelogic TAU G2 implementation of the Executable UML principles.
Cottenier et al. define an aspect-oriented profile that extends the Telelogic SDL
metamodel for the Action Semantics. This notation is not compatible with the
current UML Action language and introduces some proprietary features that
reduce its interoperability and tool-independence. The aspect-oriented model
weaver is implemented as a Telelogic add-in [50]; therefore, it is not portable
and tool-independent. In addition, the weaving process is not clearly described
in their work.

Reedy et al. [11] present a model composition approach that is used for aspect-
oriented model weaving. In this work, an aspect-oriented model comprises a pri-
mary model plus a number of aspect models that crosscut the primary model.
Aspect models are presented as patterns that describe generic forms of crosscut-
ting features. These patterns are instantiated and then merged with the primary
model. The merging process is carried out using a composition metamodel and
special composition directives that enable designers to tune it. These ideas have
been implemeted in the Kompose tool. This composition metamodel only works
once the aspect patterns have been instantiated, which implies designers need to
instantiate the aspects manually for each joinpoint they crosscut. In our work,
selected joinpoints are automatically found by the weaver and aspect models are
automatically instantiated for each selected joinpoint. In addition, the compo-
sition metamodel presented by Reddy et al. only applies to class diagrams, the
composition of behavioural diagrams not being addressed.

Groher and Völter [60] present a model weaver, called XWeave, which allows
the weaving of models and metamodels based on the Eclipse Modelling Frame-
work12. However, this model weaver is mainly focused on the structural definition
of models and metamodels instead of their behaviour. In addition, it does not
contain any mechanism to model the precise behaviour of aspects. Ubayashi et
al. [61] propose MMAP (metamodel access protocol), which can be viewed as a
reflection mechanism for manipulating a model as an instance of its metamodel.
MMAP provides interesting benefits for the construction of model weavers for

12 http://www.eclipse.org/modeling/emf/

32 L. Fuentes and P. Sánchez

aspect-oriented models. However, MMAP is limited to structural models (e.g.
class diagrams), and so the handling of crosscutting behaviours is not possible.

MATA [15] is an aspect-oriented model weaving tool based on graph trans-
formation, which supports weaving of sequence diagrams [62] and/or state
machines [44]. This tool provides some interesting extra features, such as Crit-
ical Pair Analysis (CPA) for detecting some kind of problems due to aspect-
interaction. Nevertheless, MATA does not currently support, weaving of activity
diagrams; therefore, the weaving of highly-detailed UML executable models as
presented in this paper is still not possible. In addition, because the weaving
process of MATA is based on graph transformation, both the pointcut and ad-
vice models must be expressed using the same kind of diagram or conceptual
model. In our case, advices are described using activity diagrams containing ac-
tions because we want to specify the precise behaviour of a method, and this
seems to be the conceptual model that best fits in with our needs. Pointcuts
are modelled using sequence diagrams because we want to represent execution
traces that must trigger a crosscutting behaviour. In this case, sequence dia-
grams are the conceptual model most in accordance with our requirements. Our
weaver is responsible for interpreting and composing this information coming
from different conceptual models adequately.

SmartAdapter [63] is a generic aspect-oriented modelling approach that, as a
novel contribution, uses an adaptation model in addition to the traditional ad-
vice and pointcut models for modelling aspects. This adaptation model specifies
options and directives for composing an aspect with a module it crosscuts. For
instance, when a class A, belonging to an aspect, and a class B, belonging to a
crosscut model, must be combined, the adaptation model specifies how to do it.
This adaptation model could specify that these classes must be simply merged,
such as in Theme/UML, or we could opt for making that B inherits from A.
This introduces some variability in the weaving process, which allows aspects
and base model to be combined not always in the same way, supporting certain
customisations for each case, which improves aspect reusability. Nevertheless, as
in MATA, both the pointcut and advice models must be expressed using the
similar kind of diagrams, the specification of pointcuts using sequence diagrams
and the advices using activity diagrams being difficult.

In conclusion, we would like to point out that all these aspect-oriented model
weavers are static, as already commented at the beginning of this section, and
are unsuitable for the dynamic weaving requirements presented throughout this
paper.

Finally, as already commented, the highly detailed models used in this paper
are close to the implementation level. Therefore, it is also related to aspect-
oriented languages with dynamic weaving, such as JAsCo [25], DAOP [26] or
Prose [64]. This work is intended to be an aspect-oriented version (based on
method interception) of executable UML [49]. Hence, the AOEM Profile adapts
several concepts of aspect-oriented implementation level languages to the ex-
ecutable UML approach. The AOEM Profile borrows concepts from several

Dynamic Weaving of AO Executable UML Models 33

aspect-oriented implementation languages, but there is not a one-to-one mapping
between the AOEM Profile and any aspect-oriented language.

For instance, in the AOEM Profile, pointcuts are defined outside aspects,
such as in JAsCO, where a pointcut is defined in a connector or DAOP, where a
pointcut is defined in a composition rule placed in a XML file. In Prose, however,
pointcuts are defined inside aspects. Our approach does not support introduc-
tions or intertype declarations, such as DAOP, and unlike JAsCo. The AOEM
Profile supports dynamic joinpoints based on “cflow”, which are included in
the JAsCo language but are not supported by the DAOP platform. JAsCo sup-
ports stateful aspects [65], where pointcuts are enabled or disabled depending on
the state where an aspect is. Each pointcut is responsible for indicating which
pointcuts are enabled once it has been matched. The AOEM Profile supports
this feature by means of UML 2.0 state machines that specify the reactive be-
haviour of an aspect. Nevertheless, UML 2.0 state machines used by the AOEM
Profile are more expressive than stateful aspects of JAsCo, since elements such
as nested states, orthogonal regions, timers or guard conditions in the transi-
tions are available in the AOEM Profile but not in JAsCo. State machines of
the AOEM Profile can also react to events different to pointcut satisfaction,
such as time consumption or invocation of normal methods. Contrary to these
aspect-oriented implementation languages, a pointcut can invoke either a com-
mon method or an advice.

In summary, the AOEM Profile adapts those concepts we have found most
interesting from each aspect-oriented implementation language to the modelling
level. Therefore, it has both differences and similarities with each aspect-oriented
implementation language.

8 Conclusions and Future Work

This paper has presented the infrastructure and the process required for execut-
ing aspect-oriented models with dynamic weaving requirements, as a stepping
stone towards the simulation and testing of this kind of model. The infrastruc-
ture comprises of: (1) a UML 2.0 Profile, named AOEM (a previous work of
the authors), for Aspect-Oriented Executable Modelling, (2) a reusable model
library, called Cencibel, which plays the role of a dynamic weaving platform at
the modelling level and is able to weave aspects at model execution time; and
(3) an extensible UML Virtual Machine, called Pópulo, which has allowed us the
implementation of a set of UML reflective actions as a precondition for achiev-
ing aspect-oriented dynamic weaving at the modelling level. Using these three
elements, aspect-oriented applications with dynamic weaving requirements can
be executed, and thus their behaviour observed and debugged.

As future work, it is our intention to incorporate more aspect-oriented features
to the AOEM Profile. One of the main drawbacks of this profile is that it is not
able to access context beyond the intercepted joinpoint. For instance, arguments
of messages considered in control flow constraints cannot be accessed from the
aspect advices in a straightforward way. In order to overcome this shortcoming,

34 L. Fuentes and P. Sánchez

we are now integrating Joinpoint Designation Diagrams (JPDDs) [66] into the
AOEM Profile and our weaving process [67].

We will also continue working on the implementation of the Pópulo UML
Virtual Machine and the reflective UML actions. We will focus particularly on
the development of user interfaces for Pópulo which enable a user-friendly model
simulation. Opportunities for integrating Pópulo with available UML tools, such
as IBM Rational or Topcased, will also be explored.

Finally, we will also address dynamic weaving using advanced aspect-oriented
mechanisms that goes beyond method interception. More specifically, we have
found that dynamic weaving of concerns separated by some kind of merge oper-
ator could be of interest in the context of Software Product Lines (SPL) [42]. In
this context, the CaesarJ [68] and ObjectTeams [69] languages provide a tech-
nique similar to the Theme/UML merge operator, called family polymorphism.
Family polymorphism have a similar expressiveness to merge operators, but it
involves fewer conflicting situations. Therefore, it is our intention to study how
to incorporate mechanisms similar to family polymorphism at the modelling
level (the work by Laguna et al. [70] could be considered a first step towards
this goal). Subsequently, we will examine how to dynamically weave concerns
separated by this technique at model execution time.

References

1. Colyer, A., Clement, A., Harley, G., Webster, M.: Eclipse AspectJ: Aspect-
Oriented Programming with AspectJ and the Eclipse AspectJ Development Tools.
Addison-Wesley Professional, Reading (2004)

2. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 327–353. Springer, Heidelberg (2001)

3. Stein, D., Hanenberg, S., Unland, R.: A UML-based Aspect-Oriented Design Nota-
tion for AspectJ. In: Proc. of the 1st Int. Conference on Aspect-Oriented Software
Development (AOSD), Enschede, The Netherlands, April 2002, pp. 106–112 (2002)

4. Aldawud, O., Elrad, T., Bader, A.: UML Profile for Aspect-Oriented Software De-
velopment. In: Proc. of 3rd Int. Workshop on Aspect-Oriented Modelling (AOM),
2nd Int. Conference on Aspect-Oriented Software Development (AOSD), Boston,
Massachusetts, USA (March 2003)

5. Evermann, J.: A Meta-Level Specification and Profile for AspectJ in UML. Journal
of Object Technology (JOT), Special Issue on Aspect-Oriented Modelling 6(7),
27–49 (2007)

6. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Ap-
proach. Addison-Wesley Professional, Reading (2005)

7. Wagelaar, D., Jonckers, V.: A Concept-Based Approach to Software Design. In:
Hamza, M. (ed.) Proc. of the 7th Int. Conference on Software Engineering and
Applications (SEA), Marina del Rey, California, USA (November 2003)

8. Grundy, J.: Multi-Perspective Specification, Design and Implementation of Compo-
nents using Aspects. International Journal of Software Engineering and Knowledge
Engineering 10(6), 713–734 (2000)

Dynamic Weaving of AO Executable UML Models 35

9. Clifton, C., Leavens, G.T.: A Design Discipline And Language Features For Mod-
ular Reasoning In Aspect-Oriented Programs. Technical Report TR #05-23, De-
partment of Computer Science, Iowa State University (December 2005)

10. Kiczales, G., Mezini, M.: Aspect-Priented Programming and Modular Reasoning.
In: Proc. of the 27th Int. Conference on Software Engineering (ICSE), St. Louis,
Missouri, USA, May 2005, pp. 49–58 (2005)

11. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for Composing Aspect-Oriented Design Class
Models. In: Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Soft-
ware Development I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg (2006)

12. Jackson, A., Klein, J., Baudry, B., Clarke, S.: KerTheme: Testing Aspect Ori-
ented Models. In: Proc. of the Workshop on Integration of Model Driven Devel-
opment and Model Driven Testing, 2nd European Conference on Model-Driven
Architecture-Foundations and Applications (ECMDA-FA), Bilbao, Spain (July
2006)

13. Cottenier, T., van den Berg, A., Elrad, T.: Motorola WEAVR: Aspect Orientation
and Model-Driven Engineering. Journal of Object Technology (JOT), Special Issue
on Aspect-Oriented Modelling 6(7), 51–88 (2007)

14. Fuentes, L., Sánchez, P.: Designing and Weaving Aspect-Oriented Executable UML
models. Journal of Object Technology (JOT), Special Issue on Aspect-Oriented
Modelling 6(7), 109–136 (2007)

15. Whittle, J., Jayaraman, P.: MATA: A Tool for Aspect-Oriented Modeling based
on Graph Transformation. In: Proc. of the 11th Int. Workshop on Aspect-Oriented
Modelling (AOM), 11th Int. Conference on Model Driven Engineering Languages
and Systems (MoDELS), Nashville, Tennessee, USA (October 2007)

16. Long, E., Misra, A., Sztipanovits, J.: Increasing Productivity at Saturn. Com-
puter 31(8), 35–43 (1998)

17. Doldi, L.: Validation of Telecom Systems with SDL: The Art of SDL Simulation
and Reachability Analysis. Wiley, Chichester (2003)

18. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a Large Industrial
Context-Motorola Case Study. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 476–491. Springer, Heidelberg (2005)

19. Cottenier, T., van den Berg, A., Elrad, T.: Motorola WEAVR: Model Weaving in a
Large Industrial Context. In: Proc. of the 6th Int. Conference on Aspect-Oriented
Software Development (AOSD), Industry Track, Vancouver, British Columbia,
Canada (March 2007)

20. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The Case for Reflective Middleware.
Communications of the ACM 45(6), 33–38 (2002)

21. Grace, P., Truyen, E., Lagaisse, B., Joosen, W.: The Case for Aspect-Oriented
Reflective Middleware. In: Proc. of the 6th Workshop on Adaptive and Reflec-
tive Middleware (ARM), 8th Int. Conference on Middleware, Newport Beach,
California, USA (November 2007)

22. Rasche, A., Schult, W., Polze, A.: Self-Adaptive Multithreaded Applications - A
Case for Dynamic Aspect Weaving. In: Proc. of the 4th Workshop on Adaptive
and Reflective Middleware (ARM), 6th International Conference on Middleware,
Grenoble, France (November 2005)

23. Sivaharan, T., Blair, G., Friday, A., Wu, M., Duran-Limon, H., Okanda, P.,
Sørensen, C.: Cooperating Sentient Vehicles for Next Generation Automobiles.
In: Proc. of the 1st Workshop on Applications of Mobile Embedded Systems
(WAMES), 2nd Int. Conference on Mobile Systems, Applications and Services
(MobiSys), Boston, Massachusetts, USA (June 2004)

36 L. Fuentes and P. Sánchez

24. Verissimo, P., Cahil, V., Casimiro, A., Cheverst, K., Friday, A., Kaiser, J.: Cortex:
Towards Supporting Autonomous and Cooperating Sentient Entities. In: Proc. of
the European Wireless Conference, Florence, Italy (February 2002)

25. Suvée, D., Vanderperren, W., Jonckers, V.: JAsCo: An Aspect- Oriented Ap-
proach Tailored for Component Based Software Development. In: Proc. of the
2nd Int. Conference on Aspect-Oriented Software Development (AOSD), Boston,
Massachusetts, USA, March 2003, pp. 21–29 (2003)

26. Pinto, M., Fuentes, L., Troya, J.M.: A Dynamic Component and Aspect-Oriented
Platform. The Computer Journal 48(4), 401–420 (2005)

27. Popovici, A., Gross, T., Alonso, G.: Dynamic Weaving for Aspect-Oriented Pro-
gramming. In: Proc. of the 1st Int. Conference on Aspect-Oriented Software De-
velopment (AOSD), Enschede, The Netherlands, pp. 141–147 (2002)

28. Fuentes, L., Jiménez, D.: An Aspect-Priented Ambient Intelligence Middleware
Platform. In: Proc. of the 3rd Int. Workshop on Middleware for Pervasive and Ad-
hoc Computing (MPAC), 6th International Conference on Middleware, Grenoble,
Grenoble, France, pp. 1–8 (2005)

29. Object Management Group (OMG): Semantics of a Foundational Subset for Exe-
cutable UML Models, Request For Proposal (ad/2005-04-02) (April 2005)

30. Object Management Group (OMG): Unified Modelling Language: Superstructure
v2.0 (formal/05-07-04), ch. 5: Actions (July 2005)

31. Sunyé, G., Pennaneac’h, F., Ho, W.M., Guennec, A.L., Jézéquel, J.M.: Using
UML Action Semantics for Executable Modeling and Beyond. In: Dittrich, K.R.,
Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 433–447.
Springer, Heidelberg (2001)

32. Object Management Group (OMG): Unified Modelling Language: Superstructure
v2.0 (formal/05-07-04) (August 2005)

33. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1994)

34. Dotan, D., Kirshin, A.: Debugging and Testing Behavioral UML Models. In: Com-
panion to the 22nd Int. Conference on Object Oriented Programming Systems and
Applications, Montreal, Quebec, Canada, October 2007, pp. 838–839 (2007)

35. Fuentes, L., Manrique, J., Sánchez, P.: Pópulo: A tool for debugging uml models.
In: Proc. of the 30th Int. Conference on Software Engineering (ICSE), Compan-
ion Volume (Research demonstration), Leipzig, Germany, May 2008, pp. 955–956
(2008)

36. Lidia Fuentes, J.M., Sánchez, P.: Execution and Simulation of (Profiled) UML
models using Pópulo. In: Proc. of the 2nd Int. Workshop on Modelling in Soft-
ware Engineering (MISE), 30th Int. Conference on Software Engineering (ICSE),
Leipzig, Germany, May 2008, pp. 75–81 (2008)

37. Xu, D., Xu, W.: State-based Incremental Testing of Aspect-Oriented Programs.
In: Proc. of the 5th Int. Conference on Aspect-Oriented Software Development
(AOSD), Bonn, Germany, March 2006, pp. 180–189 (2006)

38. Baker, P., Jervis, C.: Testing UML 2.0 Models Using TTCN-3 and the UML
2.0 Testing Profile. In: Gaudin, E., Najm, E., Reed, R. (eds.) SDL 2007. LNCS,
vol. 4745, pp. 86–100. Springer, Heidelberg (2007)

39. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A Survey of Self-
Management in Dynamic Software Architecture Specifications. In: Proceedings of
the 1st Workshop on Self-managed Systems (WOSS), Newport Beach, California,
USA, October-November 2004, pp. 28–33 (2004)

Dynamic Weaving of AO Executable UML Models 37

40. Zhang, J., Cheng, B.H.C.: Model-based Development of Dynamically Adaptive
Software. In: Proc. of the 28th Int. Conference on Software Engineering (ICSE),
Shanghai, China, May 2006, pp. 371–380 (2006)

41. Tarr, P., Ossher, H., Sutton, S.M., Harrison, W.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: Filman, R.E., Elrad, T., Clarke, S., Akşit,
M. (eds.) Aspect-Oriented Software Development, pp. 37–61. Addison-Wesley,
Reading (2005)

42. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

43. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
Merging of Statecharts Specifications. In: Proc. of the 29th Int. Conference on
Software Engineering (ICSE), Minneapolis, Minnesota, May 2007, pp. 54–64 (2007)

44. Whittle, J., Moreira, A., Araújo, J., Jayaraman, P.K., Elkhodary, A.M., Rabbi, R.:
An Expressive Aspect Composition Language for UML State Diagrams. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 514–528. Springer, Heidelberg (2007)

45. Dietz, P., Weigert, T., Weil, F.: Formal Techniques for Automatically Generat-
ing Marshalling Code From High-Level Specifications. In: Proc. of the 2nd Work-
shop on Industrial-Strength Formal Specification Techniques (WIFT), Boca Raton,
Florida, USA, October 1998, pp. 40–47 (1998)

46. Weigert, T., Dietz, P.: Automated Generation of Marshaling Code from High-
Level Specifications. In: Reed, R., Reed, J. (eds.) SDL 2003. LNCS, vol. 2708,
pp. 374–386. Springer, Heidelberg (2003)

47. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled. Addison-Wesley, Reading
(2004)

48. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(5)
(September 2003)

49. Mellor, S., Balcer, M.: Executable UML: A Foundation for Model Driven Archi-
tecture. Addison-Wesley Professional, Reading (2002)

50. Cottenier, T., van den Berg, A., Elrad, T.: Model Weaving: Bridging the Divide
between Elaborationists and Translationists. In: Proc. of 9th Int. Workshop on
Aspect-Oriented Modelling (AOM), 9th Int. Conference on Model Driven Engi-
neering, Languages and Systems (MoDELS), Genova, Italy (October 2006)

51. Bell, A.E.: Death by UML Fever. ACM Queue 2(1), 72–80 (2004)
52. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven

Architecture–Practice and Promise. Addison-Wesley Professional, Reading (2003)
53. Hailpern, B., Tarr, P.: Model-Driven Development: The Good, The Bad, and The

Ugly. IBM Systems Journal 45(3), 451–461 (2006)
54. Ho, W.M., Jézéquel, J.M., Pennaneac’h, F., Plouzeau, N.: A Toolkit for Weaving

Aspect-Oriented UML designs. In: Proc. of the 1st Int. Conference on Aspect-
oriented Software Development (AOSD), Enschede, The Netherlands, pp. 99–105
(2002)

55. Gray, J., Bapty, T., Neema, S., Schmidt, D.C., Gokhale, A., Natarajan, B.: An
Approach for Supporting Aspect-Oriented Domain Modelling. In: Pfenning, F.,
Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 151–168. Springer,
Heidelberg (2003)

56. Stein, D., Hanenberg, S., Unland, R.: A Graphical Notation to Specify Model
Queries for MDA Transformations on UML Models. In: Aßmann, U., Aksit, M.,
Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 77–92. Springer, Heidelberg
(2005)

38 L. Fuentes and P. Sánchez

57. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Executability into Object-
Oriented Meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

58. Cottenier, T., de Berg, A.V., Elrad, T.: Modelling Aspect Oriented Compositions.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 100–109. Springer,
Heidelberg (2006)

59. Cottenier, T., van den Berg, A., Elrad, T.: Joinpoint Inference from Behavioral
Specification to Implementation. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609,
pp. 476–500. Springer, Heidelberg (2007)

60. Groher, I., Völter, M.: XWeave: Models and Aspects in Concert. In: Proc. of
10th Int. Workshop on Aspect-Oriented Modelling (AOM), 6th Int. Conference
on Aspect-Oriented Software Development (AOSD), Vancouver, British Columbia,
Canada, March 2007, pp. 35–40 (2007)

61. Ubayashi, N., Sano, S., Otsubo, G.: A Reflective Aspect-Oriented Model Editor
Based on Metamodel Extension. In: Proc. of the 1st Int. Workshop on Modelling
in Software Engineering (MISE), 29th Int. Conference on Software Engineering
(ICSE), Minneapolis, Minnesota, USA (May 2007)

62. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model Composition
in Product Lines and Feature Interaction Detection Using Critical Pair Analysis.
In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

63. Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O., Jézéquel, J.M.:
Introducing Variability into Aspect-Oriented Modeling Approaches. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 498–513. Springer, Heidelberg (2007)

64. Popovici, A., Alonso, G., Gross, T.R.: Just-In-Time Aspects: Efficient Dynamic
Weaving for Java. In: Proc. of the 2nd Int. Conference on Aspect-Oriented Software
Development (AOSD), Boston, Massachusetts, USA, pp. 100–109 (2003)

65. Vanderperren, W., Suvée, D., Cibrán, M.A., Fraine, B.D.: Stateful Aspects in
JAsCo. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS,
vol. 3628, pp. 167–181. Springer, Heidelberg (2005)

66. Stein, D., Hanenberg, S., Unland, R.: Expressing Different Conceptual Models of
Joinpoint Selections in Aspect-Oriented Design. In: Proc. of the 5th Int. Conference
on Aspect-Oriented Software Development (AOSD), Bonn, Germany (March 2006)

67. Sánchez, P., Stein, D., Hanenberg, S.: Statecharts as an Intermediate Representa-
tion of JPDDs which Help Developers to Map Them to Executable Artifacts. In:
Proc. of the 12th Workshop on Aspect-Oriented Modelling (AOM), 7th Int. Con-
ference on Aspect-Oriented Software Development (AOSD), Brussels, Belgium,
March-April (2008)

68. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An Overview of CaesarJ. In:
Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Develop-
ment I. LNCS, vol. 3880, pp. 135–173. Springer, Heidelberg (2006)

69. Herrmann, S.: Object Teams: Improving Modularity for Crosscutting Collabora-
tions. In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591,
pp. 248–264. Springer, Heidelberg (2003)

70. Laguna, M.A., González-Baixauli, B., Marqués, J.M.: Seamless Development of
Software Product Lines. In: Consel, C., Lawall, J.L. (eds.) Proc. of the 6th Int.
Conference on Generative Programming and Component Engineering (GPCE),
Salzburg, Austria, October 2007, pp. 85–94 (2007)

On Language-Independent Model Modularisation

Florian Heidenreich1, Jakob Henriksson1, Jendrik Johannes1, and Steffen Zschaler2

1 Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
{florian.heidenreich,jakob.henriksson,

jendrik.johannes}@tu-dresden.de
2 Lancaster University
szschaler@acm.org

Abstract. As model-driven software development covers additional parts of the
development process, the complexity of software models increases as well. At
the same time, however, many modelling languages do not provide adequate
support for modularising models. For this reason, there has been an increasing
interest in the topic of model modularisation, often under the heading of aspect-
oriented modelling (AOM). The approaches range from techniques that closely
mimic concepts from aspect-oriented programming (AOP), such as AspectJ, to
very powerful composition techniques for specific types of models—for exam-
ple, state machines.

We believe that AOM is more than just copying the concepts of AOP at the mod-
elling level and should rightly include a large number of other model-composition
techniques. However, developing model composition techniques and tooling is
costly. To minimise the effort required, this paper presents a generic technique for
model composition. The technique is based on invasive software composition and
our Reuseware tooling and can be used with arbitrary modelling languages. The
basic technique itself is language independent, but it can be adapted to construct
language- and purpose-specific composition techniques for specific modelling lan-
guages and situations. Hence, it can be used both as a tool for developing specific
model-modularisation techniques and as an instrument of research for studying
basic properties and concepts of model modularisation. The paper gives a detailed
description of our approach and evaluates it using a number of examples.

1 Introduction

Model-driven development (MDD) [1] is increasingly viewed as one way of dealing
with the complexity of modern-day software. Its promise is that by making models our
primary development artefacts and generating the final application code from them, we
can achieve a higher level of abstraction in development, and thus, achieve an improved
understanding of more complex systems. MDD requires all models to completely de-
scribe the specific part and property of a system for which they have been constructed.
This completeness requirement leads to an increasing size of models used. Therefore, it
is often no longer possible to provide and use one single monolithic model of a system.
Rather, we need to be able to split complex models into less complex, partial models
that can be independently developed, maintained and studied.

S. Katz et al. (Eds.): Transactions on AOSD VI, LNCS 5560, pp. 39–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

40 F. Heidenreich et al.

Modern modelling notations used in the context of MDD, such as the Unified Model-
ing Language (UML) [2], already provide some modularisation support. This support—
for example UML’s packages, hierarchical classifiers and hierarchical state machines—
however, typically follows a dominant decomposition of the system to be developed.
For some formal specification techniques—for example, state machines [3] or Petri nets
[4]—other decomposition techniques are defined, but these are not typically supported
by modern modelling languages. Even worse, in the context of MDD, domain-specific
modelling languages (DSMLs) for very specific purposes are often developed in one or
a number of projects.

This situation has led to a lot of interest in model-modularisation techniques apart
from the dominant decomposition of a system. As the model modules studied in this
context often cross-cut the dominant decomposition, this research has typically been
performed under the heading of aspect-oriented modelling (AOM) [5,6]. AOM covers a
quite large range of approaches, from those, for example [7], mimicking aspect-oriented
programming (AOP) approaches (such as AspectJ [8]) to those, for example [9,10],
providing very powerful composition techniques for specific purposes and languages
using specific properties of modelling languages.

Developing such modularisation techniques and the supporting technology is costly
and error prone. At the same time, it needs to be repeated for every new DSML to be en-
riched with such concepts. Therefore, a generic approach is required that can be applied
efficiently to realise different specific model modularisation techniques. We discuss ex-
isting approaches that support modularisation techniques for DSMLs in Sect. 7.

To close this gap, in this paper, we present such a generic approach based on Invasive
Software Composition (ISC) [11] and implemented in our tool Reuseware [12]. ISC is
a generic, grey-box composition technique based on rewriting source code. It was for-
malised in the Reuseware approach [11,13] to be applicable to arbitrary context-free,
textual languages. In this paper, we extend that work to cover graph-structured, possi-
bly graphical languages. This paper is an extension of [14]. In that paper, we enhanced
Reuseware by introducing the notion of fragment queries to group model or source
code fragments. This enabled us to implement the concept of quantification [15], which
is at the heart of aspect orientation. Fragment queries and standard Reuseware com-
position concepts, however, provide a rather crude set of tools for expressing model
compositions. This paper extends and refines these simple concepts by adding the no-
tions of ports, port groups and composition steps, greatly reducing the complexity of
composition programs and enhancing the flexibility and expressiveness of the language-
independent composition technique. Furthermore, we discuss how arbitrary modelling
languages can be extended to integrate with our approach and how such an extension
can be designed such that existing tooling for the language can still be used.

The rest of this paper is structured as follows: We begin in the following section
by giving two motivating examples. Section 3 discusses requirements on a language-
independent solution for model modularisation. This is followed by a presentation of
our proposed solution in Sect. 4. In Sect. 5, we briefly discuss our tool Reuseware,
which implements the concepts presented in this paper. Section 6 shows how our initial
examples can be solved by our approach to support our claim of language independence.

On Language-Independent Model Modularisation 41

2 Motivating Examples

This section introduces two examples that we will use in the paper to explain our ap-
proach. The first example is based on UML activity diagrams, outlining a real-world
scenario. The second example is based on a toy DSL, explaining modularisation issues
in DSLs in an illustrative manner. It should be noted that we not only present examples
of concrete models but also of languages in which they are written. Our approach can
be applied to any language expressible by a metamodel.

2.1 Business Process Extension

Business processes can be described by behaviour modelling, for instance, using UML
activity diagrams. Often, general processes (e.g. a process for ordering goods in a shop-
ping system) can be defined once and specialised for a concrete system with special
requirements.

Although UML activity diagrams can be modularised into partitions in single mod-
els, reusing and combining parts of activities modelled separately is not well supported
by UML itself. We would like to define general processes with activity diagrams and
keep them extensible with specific activities for concrete application use-cases.

As an example, we look at the order processing activity modelled in Fig. 1. The
process contains a checking activity (the CustomerDataCheck action together with the
decision node below) that determines whether certain data (here customer data) are
consistent. We want to keep the order processing activity extensible such that additional
checks can be inserted in parallel to the customer data check.

To perform the extension, a developer need not to know anything about the ordering
process, but should know that check activities can be inserted. What this developer
needs to know is that a check activity has to have one incoming control flow (from
the checkFork node) and two outgoing flows (to the checkMerge and checkJoin nodes).
With this knowledge, the developer can design additional check activities, for instance,
the one from Fig. 2 that determines the customer’s credit card liquidity.

Such extensibility can be realised by thinking about models as components. Treating
the ordering process model (cf. Fig. 1) as a model component, almost the whole activity
should be encapsulated. Only the checkFork, checkMerge and checkJoin nodes (grey
boxes), to which the incoming and outgoing flows of additional checks can connect,
should be reflected in the composition interface. Looking at the credit card check (cf.
Fig. 2) as a model component, we can again hide the internal activity. We only think of
the initial (InitialNodeCREDIT) and final nodes (FINISH and CANCEL) as open spots
in the model which need to be manipulated through the composition interface.

Our approach will enable us to look at UML models as model components by util-
ising UML language specifics to define composition interfaces on UML models. With
our language-independent composition tooling, we can then easily define and execute a
composition of both presented activities resulting in the model shown in Fig. 3, where
only parts belonging to the composition interface of the model components (grey boxes)
were manipulated.

42 F. Heidenreich et al.

Fig. 1. An activity diagram for the control flow of an order process

Fig. 2. An activity diagram for credit-card checks that can extend the order process with an
additional check

2.2 Modular Ship and Cargo Distribution

In this example, we utilise the toy DSL TaiPan1 that was created to demonstrate features
of the Eclipse Graphical Modeling Framework [16]. Figure 4 shows a model defined in
the TaiPan language. The language can be used to model a configuration of an Aquatory
consisting of Ports, Routes between ports and Ships that may hold Items as cargo. Ships
travel on a Route and have a Port as destination. A special kind of ship is a Warship that
has the additional ability to execute EscortOrders (escorting another ship on its route)
or AttackOrders (besieging a port).

Let us assume that Ports, Ships and Items are complex model parts that consist of
several model elements and that there are many relations (Routes) between ports and
many relations (EscortOrders) between Ships. Then, it becomes obvious that certain
parts of a model can be reused in other models: the ports on the sea are always the
same, while the ships on it can be different. The part that models a certain item can be
reused everywhere it represents the cargo of a ship. We identified three different model
parts in a TaiPan model, which can be individually reused in other TaiPan models.

1 Available from http://wiki.eclipse.org/index.php/GMF Tutorial#Quick Start

On Language-Independent Model Modularisation 43

Fig. 3. A composition of the order process and the credit card check activity

1. Port model (Fig. 5). Here, the ports and routes between them are modelled. The
number of ports and routes and their names seldom change in this model. However,
details of the ports (e.g. its size and capacity) can change over time.

2. Flotilla model (Fig. 6). This models a flotilla of ships with their specifics and rela-
tions between them. Again, the number of ships and their names do not change so
often in one flotilla, while the escort orders between ships might do so often.

3. Cargo model (Fig. 7). Here, individual items of cargo are modelled. Assuming that
the model of a single item is not simple, this separation makes sense: only one item
type needs to be modelled once and can be reused for several ships.

We want to look at these partial models as model components and compose them into a
single TaiPan model, like the one in Fig. 4. We identify the following three components:

1. The port model should encapsulate details about the ports and routes, such as the
size of the ports. It should offer an interface that allows access to the port and route
names, such that they can be assigned to ships.

2. The flotilla model should encapsulate details about the ships and the relations be-
tween them (e.g. which war ship escorts which cargo ship). It should offer a com-
position interface that allows modification of port and route assignments, as well as
a composition interface to fill the load of a cargo ship.

3. The cargo model should encapsulate details about the different cargo types. It
should offer a composition interface that allows access to extract specific items
from the cargo model.

Through such a component-oriented way of thinking about the models, benefits are
gained over conventional model integration approaches (such as model transforma-
tions). Through encapsulation, two advantages are gained: First, it ensures that certain

44 F. Heidenreich et al.

Fig. 4. A TaiPan model

elements are not changed during composition, which increases the understanding of re-
lations between the components and the composition. The author of a component knows
and can control which elements are changed during composition through defining the
composition interface together with the component. Second, by knowing the encapsu-
lated details, the component author can change them without the risk of breaking the
composition. Through the clearly defined interfaces, composition becomes easier. One
has to bother only about the interface and not the internals of the models (in contrast
to model transformations, where extensive knowledge about the details of the involved
models is often required).

Our model composition approach will allow to easily introduce the notion of com-
position interfaces into the TaiPan language and use our language-independent compo-
sition tooling to quickly define compositions of TaiPan model components. Thus, we
can extend the language with new features that were not originally supported.

Were we to implement support for the two kinds of model compositions presented
above manually into the activity diagram and the TaiPan language, we would face a
daunting task indeed. For each language, we would have to design a modularisation

On Language-Independent Model Modularisation 45

Fig. 5. A port model

Fig. 6. A flotilla model

Fig. 7. A cargo model

mechanism, manually adjust the language metamodel and implement the transforma-
tions necessary to make it work. Having done so for one language, we would not be able
to reuse the effort spent once we move on to another language. Furthermore, whenever
the original language changes (for example, when the representation of ships in TaiPan
is modified to give more details of the internal structure of the ships), we would have
to manually redo the implementation of the modularisation mechanism—a sheer main-
tainance nightmare. In this paper, we will provide generic concepts that can be used to
easily implement a variety of composition approaches for arbitrary languages, including
for the TaiPan and activity-diagram examples.

46 F. Heidenreich et al.

Composition SystemComposition System

Component ModelComponent Model Composition LanguageComposition Language Composition TechniqueComposition Technique

Component Description LanguageComponent Description Language Composition Description LanguageComposition Description Language

Fig. 8. Terms relevant in describing composition systems

3 Requirements for a Language-Independent Modularisation
Technique

We can clearly see the need for generic support to implement modularisation techniques
for arbitrary domain-specific languages. This section discusses the requirements such a
generic support system needs to fulfil. We base our discussion on a classification defined
in [11], where a composition system is sub-divided into a component model, explain-
ing what components and their interfaces are, a composition technique, determining
how components can be composed, and finally, a composition language, which allows
composition programs to be formulated and concrete compositions to be described. Fol-
lowing this classification—an extended overview of which can be seen in Fig. 8—we
will consequently discuss our requirements on the component model, the composition
technique and the composition language.

3.1 Requirements on the Component Model

The purpose of a component model in a composition system is to define the units of
composition that should be usable for modularising a program or model. This requires
that the component model defines the notions of components, composition interfaces
and consistent compositions.

A definition of the term component identifies the units of composition. This can
range from a notion of binary, pre-compiled and immutable “black-box” components
as defined, for example, for Enterprise Java Beans [17] and CORBA Components [18]
to freely modifiable pieces of (structured) text (“white-box” components) as is, for ex-
ample, the case for some hypermedia document components [19]. Since, in this paper,
we are looking for a composition system that is independent of specific component
description languages2, we, of course, require a component definition that is indepen-
dent of the specific language used in expressing components. In particular, components
should be editable, analysable and maintainable by tools already available for the lan-
guage in which they are expressed, while should also be recognizable as components of
the composition system.

A composition interface makes explicit what parts of a component can be accessed
during composition, i.e. what information about the internal structure of a component
can be used when describing and executing compositions and how, if at all, this internal

2 A component description language is a language used to write components.

On Language-Independent Model Modularisation 47

structure can be adjusted. This is very much related to the different types of compo-
nents ranging from black-box to white-box. In particular, the composition interface of
a component defines whether the component is black-box or white-box or somewhere
in-between. For example, the interface of the black-box components of EJB is essen-
tially an operational interface, i.e. a list of signatures of operations that can be invoked
on the component to interact with it plus a technique for resolving a component name
into a component reference. For white-box, structured-text components, the interface is
defined by the structure of the text and the possibility to freely edit this text. We be-
lieve that a completely language-independent composition system must necessarily be
more open than a black-box system. Note that systems such as CORBA components
are language independent only to some degree in that they still restrict components to
those being expressed in programming languages that can be hidden behind an oper-
ational interface. We want to be more generic and also include modelling languages
and other techniques. At the same time, completely white-box systems give too little
control to component authors, and therefore we require a “grey-box” approach, i.e. an
approach where the structure of components can be inspected and manipulated during
composition, but the component author can control, through explicitly defined compo-
sition interfaces, the amount of inspection and manipulation possible. A similar idea
has recently been advocated in AOP through the concept of explicit pointcut interfaces
(XPIs) [20].

Consistent composition refers to conditions that must be fulfilled for two components
to be composable in a certain manner. In effect, this refines the constraints imposed by
composition interfaces, expressing not only what parts of a component’s structure can
be manipulated, but also how much these parts can be manipulated. We can distinguish
syntactic and semantic consistency. For example, the structure of text in the white-
box hypermedia systems discussed above provides syntactic consistency by asking that
the result of any composition (however much the individual components are modified)
must respect the structural constraints of the hypermedia language; that is, the com-
position result must be syntactically well formed. Semantic consistency requires that
semantic constraints induced by one component must not be weakened when the com-
ponent is used in a composition. For example, for black-box operation components
(such as CORBA components), we require that no behaviours that are not acceptable
for a component in isolation become acceptable simply by the component being used in
a composition. Semantic consistency very much depends on the specific semantics of
the component language. As semantics can differ very widely, we will restrict ourselves
to syntactic consistency in this paper.

3.2 Requirements on the Composition Language

The composition language of a composition system provides means of expressing com-
position programs, that is, of describing concrete compositions of concrete compo-
nents. Therefore, it needs to provide syntactic constructs denoting components and
their interfaces as well as for denoting individual steps in a composition. As other
formal languages, composition languages can be either declarative or imperative in na-
ture. Because they allow more freedom in actually executing the composition, we prefer
declarative composition languages.

48 F. Heidenreich et al.

Composition languages can be sub-divided into two parts:

1. Component Description Language: This is a language used to describe components
and their interfaces. It can be used either in addition to the component language or
can be used as an extension of the component language. In any case, because we are
looking for a technique independent of the component language, it must provide its
constructs with minimum impact on the component language. In particular, if tools
exist for analysing, editing or compiling components, these must not be affected by
the component description language.

2. Composition Description Language: This language is used to describe composi-
tions of existing components. It should provide generic constructs for referencing
components and their externally visible interfaces, and for expressing their compo-
sition. When using a composition description language, it should not be necessary
to know what language components are expressed in. As a relaxation of this re-
quirement, in this paper, we restrict ourselves to compositions of components that
are all written in the same language. In the future, it should also be possible to
compose components of different languages.

3.3 Requirements on the Composition Technique

The purpose of a composition technique in a composition system is to provide semantics
to the composition language. The composition technique defines the basic composition
operators that can be used in the composition description language and explains their
effects in terms of the composition result. Furthermore, it explains how composition
programs are interpreted.

We need a composition technique that can be defined independent of the language
in which components are written. We find that, in this case, it is easiest to provide a
composition technique based on rewriting of components.

4 Extending Invasive Software Composition for Model
Composition

This section presents our solution to the requirements for a language-independent
system for model composition described in the previous section.

4.1 A Language-Independent Component Model for Model Composition

As indicated in Sect. 3.1, a component model needs to define what the components and
their interfaces are. In addition, a generic component model needs to do so independent
of the language used for expressing the individual components. Our component-model
definition is based on concepts from ISC [11,12,13]. Figure 9 gives a graphical overview
of the main concepts of our component model. In the following, we will present and dis-
cuss these concepts. We will begin by discussing our notion of components—fragments
or fragment components—followed by a discussion of the interface of such components.

On Language-Independent Model Modularisation 49

ReferencePointReferencePoint VariationPointVariationPoint

AddressablePointAddressablePoint

pointName: String

AnchorAnchorPrototypePrototype SlotSlot HookHook

ContributingPortContributingPort ConfiguringPortConfiguringPort

PortPort

portName: String

ReceivingPortReceivingPort

FragmentFragment

PortGroupPortGroup

groupName: String

* * **

*

*

*

0..1

composition_interface

Fig. 9. Component model. These are the concepts available for describing components and their
interfaces.

Fragment Components. We introduce the concept of a fragment component—or frag-
ment for short—as our notion of a component. A fragment is a partial expression in
some formal language. This underlying language is called the core language. A frag-
ment can be partial in two ways:

1. A fragment can be incomplete. For textual languages, this means the fragment is
derived from a non-terminal other than the start symbol of the core-language gram-
mar. For a graphical language with a metamodel whose instances are not necessar-
ily trees, incompleteness means that the fragment only represents a sub-graph of
a valid metamodel instance. In our activity-diagram example, any combination of
activities and transitions would be an incomplete fragment unless they were also
embedded in an activity diagram and had at least one start and one stop activity.

2. A fragment can be generic. This means that some part of the fragment (whether
incomplete or not) is (intentionally) missing. For textual core languages, we can
potentially leave open any non-terminal defined in the core-language grammar. For
graphical languages, we can make almost any metamodel class generic.

To express genericity of a fragment, we introduce variation points. These are elements
within a fragment that can be used as place-holders for other fragments leaving some
part of a fragment unspecified. Further, we also need to be able to address fragments
or parts thereof. To this end, we introduce fragment reference points. Reference points
address fragments or sub-fragments and give them a name so that they can be used
in compositions. Hence, in general, a composition occurs when a variation point in
one fragment is replaced by another fragment addressed through some reference point.
Thus, variation points can be likened to formal parameters of procedures in imperative
programming, while reference points are similar to actual parameters for a composition.

50 F. Heidenreich et al.

Taking this analogy one step further, we need to distinguish between two cases that are
very similar to the passing of parameters “by value” or “by reference” that we often
find in imperative programming: We introduce the following two pairs of variation and
reference points:

1. Hook–Prototype. This corresponds to the intuitive notion of binding a fragment to
a variation point: The fragment, addressed by a prototype reference point, is copied
and then replaces the hook variation point.

2. Slot–Anchor. In analogy to the concept of passing by reference, no new copies of
any fragment are created when an anchor is bound to a slot. Instead, references to
the slot are replaced by references to the anchor.

It should be noted that when we say “replace” above, this does not necessarily imply that
the variation point is removed from its fragment. Whether a variation point is removed
after a composition step depends only on the maximum multiplicity of the references
pointing at it. A variation point is only removed after its maximum multiplicity has
been reached. Therefore, variation points can be bound multiple times as long as their
maximum multiplicity allows it.

Composition Interfaces. A fragment is addressed during composition through its com-
position interface. Before we describe the details of fragment composition interfaces,
we have to be aware that these interfaces are seen from two different perspectives.

1. Fragment developer viewpoint. The fragment developers (persons who write frag-
ments) look at the interfaces from “inside” of the fragment components. They de-
fine the interfaces and link them to the fragment’s contents.

2. Fragment user viewpoint. The fragment user (persons who reuse fragments defined
earlier) look at the composition interfaces from the “outside”. They address the
fragments in composition programs, without looking at the internal details of the
fragments.

A fragment composition interface is a collection of ports. Fragment developers define
the ports and assign them unique names. Furthermore, they link each port to a set of
variation and reference points in the fragment. Fragment users can then write com-
position programs in which they describe a composition by linking ports of different
fragments.

In addition to the grouping of addressable points into ports, ports can be organised
in port groups. A port group indicates to the fragment user that a set of ports should
be addressed together in a composition program. Fragment developers can decide how
they apply the two abilities of grouping addressable points according to the task at hand.
The more addressable points are grouped into a port, the more abstract the interface
becomes: details are hidden from the fragment user. If the grouping is shifted into port
groups with several ports, the interface becomes less abstract and more responsibility is
transferred to the fragment developer, as well as more flexibility.

The two important properties of a fragment’s composition interface are that it is
quantifying and typed. The former supports the high abstraction of interfaces, the latter
the consistent composition:

On Language-Independent Model Modularisation 51

– Quantifying refers to the fact that a port collects a set of variation and reference
points that are handled together during composition. The linkage between ports
and addressable points can be expressed not only by explicitly assigning points to
a port but also by giving a quantifying query expression over the set of addressable
points in a fragment. This grouping is independent of any structure dictated by the
fragment’s content.

– The typing of a port is determined by the typing of its associated addressable
points. These are typed in two dimensions: First, as discussed above, we distin-
guish four different types of addressable points: namely hooks, prototypes, slots,
and anchors. Since these types are given by the generic component model we call
this the language-independent type of the addressable point. Second, each varia-
tion point represents a specific metaclass and each reference point references an
instance of a specific metaclass; hence, all addressable points are also typed by
the metaclass they are associated with. Such a metaclass is given by a concrete
language and is therefore the language-dependent type of the addressable point.
The language-independent (language-dependent) type of a port is the set of all
the language-independent (language-dependent) types of its associated addressable
points.

Ports are categorised into three different categories by their language-independent types:

1. Configuring Ports contain only slots and anchors. They are used to configure a frag-
ment (by re-routing references from slots to anchors) and not to extend it with addi-
tional model elements. Notice that using only configuration ports in a composition
description makes no sense, as they can only be used to configure the composition
result.

2. Contributing Ports contain prototypes (but no hooks). They offer content (i.e. ad-
dition model elements) as extension to a fragment. They may also contain slots or
anchors for configuration.

3. Receiving Ports contain hooks (but no prototypes). They allow a fragment to be
extended with additional model elements. They may also contain slots or anchors
for configuration.

The distinction made above has conceptual and technical reasons. Conceptually, the
fragment user can easily recognise whether a port contributes new elements or expects
a contribution of elements without looking at the addressable points behind the port.
Since slots and anchors cannot be used to add new model elements to fragments, they
do not influence the contributing/receiving character of a port. The technical reason for
the distinction is that our composition technique needs to know, at each point of the
composition process between two fragments, which fragment is contributing and which
one is receiving model elements. The reasons for this will be explained in the context
of our composition technique in Sect. 4.3.

Configuring ports should be grouped with receiving or contributing ports into port
groups. The reason is that configuration (i.e. cross-referencing) makes no sense before
fragments are actually integrated. Thus, addressing configuring ports independently in
a composition program is not useful. Furthermore, the more abstract the interface, the
less often configuring ports are required—the slots and anchors are contained directly
in the contributing and receiving ports.

52 F. Heidenreich et al.

4.2 A Generic Composition Language for Model Composition

As stated in Sect. 3.2, the composition language can be split into the Component
Description Language and the Composition Description Language. A component de-
scription language is used by the fragment developer to describe fragments and their
interfaces. A composition description language is used by the fragment user to define
fragment composition programs. Thus, both languages inherit concepts of the compo-
nent model defined in the last section.

In our setting, the component description language can be any existing (or just de-
veloped) modelling language (a core language), extended to support the definition of
fragment composition interfaces. We call such an extended language a reuse language.
If this extension is done following the same formalism for any language, the com-
position description language can be defined independent of any specific component
description language. This is because the composition description language only re-
lies on the extended part of the reuse language, which is based on the concepts of the
language-independent fragment component model.

This section first describes the possibilities and the formalism to extend a core
language by extending its metamodel to make it usable as a component description lan-
guage. It then describes the (language-independent) composition description language.

Component Description Language. To turn an arbitrary core language into a reuse
language, which is usable as a component description language in our approach, we
need to perform a language extension. Two methods are applicable for this:

1. Extending the Core Language Metamodel. This method can be used to inject con-
structs for variation and reference point definitions into the core language. This
enables the fragment author to declare the interface of each fragment individually
by defining variation points and marking model elements as reference points. A
drawback, in some cases, is that tools which are already implemented on the basis
of the original metamodel might break3. For example, models containing variation
points may not be accepted by tooling based on the original metamodel. Alterna-
tively, such new metamodel constructs may be ignored by the tooling, or in the
worst case, even removed from the model.

2. Defining OCL Expressions over the Component Language Metamodel. In this ap-
proach, we define how the composition interface is extracted from fragments de-
fined in the core language. This approach can be used for two purposes: First, it
avoids the need for language extension because original language concepts can be
selected to represent addressable points (e.g. through naming conventions). Second,
it can be used to define a default interface for fragments which does not require ex-
plicit declaration by the fragment developer. Note that structural queries over meta-
model instances, as enabled by OCL, are sufficient because we only consider static
compositions of development artefacts.

3 As will be explained later, the extension is restricted and does not harm existing language con-
structs. If the language tools are build openly and allow for extension, the language extension
approach may still be feasible.

On Language-Independent Model Modularisation 53

MetaclassMetaclass

ReuseExtensionReuseExtension ReuseMetaclassExtensionReuseMetaclassExtension

SemanticExtensionSemanticExtension

isAddressablePoint: OCLExpression
portNameExpression: OCLExpression
pointNameExpression: OCLExpression
groupNameExpression: OCLExpression

slots *

anchors *
hooks *

prototypes *

extended_metaclass

1

Metamodelling Language
(EMOF)

SyntacticExtensionSyntacticExtension

Fig. 10. Metamodel of the reuse-extension language

Effectively, both approaches extend the core language. The first one syntactically and
semantically—by introducing new meaningful constructs into the core language. The
second one only semantically—by giving additional meaning to existing constructs. In
the following, we will refer to the first approach as a syntactic language extension and
to the second approach as a semantic language extension. Both concepts can also be
combined when extending a metamodel.

We call all such metamodel extensions reuse extensions. Figure 10 shows the meta-
model of a small language we use to describe reuse extensions. Reuse extensions can
be performed to provide constructs for expressing each of the four types of addressable
points. Hence, a ReuseExtension collects four sets of ReuseMetaclassEx-
tensions, one for each type of addressable point (hook, prototype, slot and
anchor). Each ReuseMetaclassExtension defines the extension on the basis
of a metaclass of the core metamodel4.

For each type of metamodel extension, there is a specific subclass of ReuseMeta-
classExtension. Semantic language extensions are captured by the Semantic-
Extension metaclass. The specific extension is defined by the following four
attributes, of which two are mandatory and two optional:

1. isAddressablePoint (required). This is a constraint expressed on instances of the
core metaclass. It results in true for those instances that should be interpreted as ad-
dressable points. Note that the language-independent type of the addressable point
is already determined by the association from ReuseExtension.

2. portNameExpression (required). If the isAddressablePoint constraint holds, this ex-
pression is used to extract the name of the port this addressable point belongs to.

3. pointNameExpression (optional). If the addressable point has a specific name, this
expression is used to extract it.

4. groupNameExpression (optional). If the addressable point and its port should be-
long to a specific port group, this expression is used to extract the name of the group.

Syntactic language extensions are more involved, because we also need to modify
the metamodel of the core language itself. Specifically, we need to introduce specific

4 Throughout the paper, we refer to the core metamodel as the metamodel representing the core
language.

54 F. Heidenreich et al.

HookHook

Step 1 Step 2

Step 3

HookHook Legend:

metaclass

inheritance relation

reference

Fig. 11. Steps of the language extension algorithm

metaclasses to be used for expressing addressable points. Such addressable-point meta-
model instances should be substitutable for their corresponding core metaclass every-
where in the extended language. For example, in the TaiPan example, we want to be
able to place a cargo hook wherever we would be able to place a specific piece of cargo.
At the same time, however, addressable points should not share any features specific
to core language elements. For example, for a cargo hook, we need not to express a
cargo name and amount. Typically, in metamodels, we use inheritance to express sub-
stitutability. However, we also use inheritance to share features between language el-
ements. Therefore, simply inserting new elements into the inheritance structure of the
core language would not fit our requirements. Instead, we need to use a slightly more
involved algorithm. Figure 11 illustrates the steps of this algorithm using a symbolic
example. In the following, we explain each step in turn:

1. Type hierarchy extraction. To separate the use of inheritance for substitutability
from its use for feature sharing, we duplicate the hierarchy of metamodel elements
of the core metamodel. For each core metaclass, we create a new abstract metaclass
and call it the type metaclass of the core metaclass. For each inheritance relation-
ship between two core metaclasses, an inheritance relationship between the corre-
sponding type metaclasses is introduced. (This is represented in Fig. 11 by simple
lines connecting two boxes. The upper box represents the super class of the lower
box.) In step 1 of Fig. 11, we show a symbolic core metamodel on the left and the
derived corresponding type hierarchy on the right. Notice that the type hierarchy
contains only classes and inheritance relations, but no references or other features
within these classes.

2. Addressable point introduction. For each ReuseMetaclassExtension, we
introduce an addressable point metaclass into the type hierarchy. The address-
able point metaclass inherits from the type metaclass of the core metaclass that is

On Language-Independent Model Modularisation 55

AddressablePointAddressablePoint

pointName: String
portName: String
groupName: String

ReferencePointReferencePoint VariationPointVariationPoint

AnchorAnchorPrototypePrototype SlotSlot HookHook

Fig. 12. Common metamodel that is integrated into reuse languages with syntactical extensions

extended. In the figure, we show how one core metaclass (the grey one) is extended.
To this end, we introduce a new class in the type hierarchy, represented by a hashed
box in the figure.

In addition, we integrate into each reuse language the metamodel from Fig. 12
introducing the different types of addressable points available. Depending on the
type of addressable point that is to be introduced for the core metaclass, the new
class in the type hierarchy also inherits from the corresponding class from Fig. 12.
For our TaiPan example from above, this would be the Hook metaclass. For pro-
totype and anchor metaclasses, a reference (content) to the core metaclass is also
added to hold the actual model element that is referenced.

3. Reference redirection. Finally, the two hierarchies of metaclasses need to be inte-
grated so that the new metaclasses from the type hierarchy are used instead of the
original core metaclasses. To this end, every reference to an extended core meta-
class (or to a superclass of an extended core metaclass) is redirected to the corre-
sponding type metaclass. Each core metaclass to which references existed that have
been redirected is made a subclass of its type metaclass. As a result, instances of
the extended core metaclass are substitutable by addressable points.

After the metamodel extension for a specific core language, fragments can be written
and their interfaces can be defined in the extended language. A composition system can
extract interfaces from the fragments to make them explicit by analysing the model ele-
ments of the fragment. All elements that are either instances of a subclass of a metaclass
from Fig. 12 or on which an isAddressablePoint constraint holds define the composition
interface of the fragment.

Composition Description Language. Figure 13 depicts the concepts of our Composi-
tion Description Language. A CompositionProgram consists of several Fragments and
their composition interface that is represented by Ports. A Port can either be a Con-
figuringPort, a ContributingPort or a ReceivingPort. Composition is realised through
different CompositionSteps where each CompositionStep consists of CompositionLinks
between two ConfiguringPorts (a ConfigurationLink) or one ContributingPort and one
ReceivingPort (a ContributionLink).

56 F. Heidenreich et al.

CompositionProgramCompositionProgram FragmentFragment PortPort

ContributingPortContributingPort

ReceivingPortReceivingPortConfiguringPortConfiguringPort

CompositionStepCompositionStep CompositionLinkCompositionLink

ContributionLinkContributionLinkConfigurationLinkConfigurationLink

* *

*
*

1
1

1 target

1 source

port2

port1

Fig. 13. Metamodel of the Composition Description Language

We defined a graphical syntax for expressing compositions of fragments that in-
cludes concepts for representing fragments, their composition ports and composition
links between those. In addition, means for defining composition steps are provided.
This syntax is supported by a graphical editor that is built on top of the Eclipse Platform
[21] and the Graphical Modeling Framework (GMF) [16]. An example of a fragment
composition program written in our editor is shown in Fig. 14. The pallette on the right
offers means to create composition links, composition steps, participations of composi-
tion links in composition steps and so-called fragment queries, which will be examined
later.

In our editor, a fragment is represented by a rectangle that has its composition ports
attached as circles, where contributing ports are depicted as black circles, receiving
ports as white circles and configuring ports as white circles with a dashed line. The
composition ports are automatically extracted from the fragment when the fragment
is dropped onto the editor canvas. Composition links are represented as lines between
composition ports. A configuring link is shown as a dashed line and a contributing link,
which defines a direction of composition from the contributing to the receiving port, as
an arrow visualising this direction. Within the fragment, a composition port group—
represented by a small rectangle—is connected to its participating composition ports.
To allow for grouping of composition links to steps, syntax for defining composition
steps is necessary. A composition step is represented by an ellipse that references all
associated composition links by dashed lines.

Sometimes, multiple fragments need to be composed in essentially similar ways.
In our activity-diagram example, there may be more than one check activity fragment
to be woven into the core activity. Although we could express each such composition
individually, this would require a lot of duplication in the composition code. To avoid
such duplication, we introduce the syntactical concept of fragment queries. An example
of a fragment query is the dashed box named FragmentA.* in Fig. 14. Note that
this is purely a concept of the composition language as every composition including a
fragment query can be transformed into a set of compositions without queries.

Fragment queries group a set of fragments and treat the complete group like a single
fragment. Figure 15 shows an overview of the essential syntactical concepts involved in

On Language-Independent Model Modularisation 57

Fig. 14. Fragment Composition Editor

MergedPortMergedPort MergedAddressablePointMergedAddressablePoint

*

*

AddressablePointAddressablePoint

matches (ap: AddressablePoint): Boolean
merge (aps: Set(AddressablePoint)): AddressablePoint

PortPort

matches (p: Port): Boolean
merge (ps: Set(Port)): Port

subPoints

*

subPorts

FragmentFragment
*

FragmentQueryFragmentQuery

PhysicalFragmentPhysicalFragment

subFragments

* *

Fig. 15. Essential concepts of fragment queries

expressing fragment queries. It can be seen that fragment queries can be nested hierar-
chically inside each other. An elemental fragment, as defined in the component model,
is represented by the PhysicalFragment class in the figure.

Fragment queries can be defined in essentially two ways: a) by enumerating the frag-
ments to be encompassed by the query and b) by providing an expression describing
the set of fragments to be included. Both approaches are supported by our composition
language using regular expressions as query expressions. Fragment queries add an addi-
tional level of quantification to the composition. It is interesting to see that this enables
us to distinguish quantification introduced by fragment developers (using groupings
between variation and reference points) and fragment users (using fragment queries).

58 F. Heidenreich et al.

1 c o n t e x t A d d r e s s a b l e P o i n t : : matches (ap : A d d r e s s a b l e P o i n t) : Boolean
2 pos t : r e s u l t = (t ypeM atch (ap)) and
3 (pointName = ap . pointName) and
4 (apE lemen t s . t y p e−>f o r A l l (t 1 |
5 ap . apE lemen t s . t y p e−>f o r A l l (c2 | c2 = c1)
6))
7
8 c o n t e x t A d d r e s s a b l e P o i n t : : t ypeM atch (ap : A d d r e s s a b l e P o i n t) : Boolean
9 pos t : r e s u l t = (s e l f . oclIsKindOf (P r o t o t y p e) and ap . oclIsKindOf (P r o t o t y p e)) or

10 (s e l f . oclIsKindOf (Anchor) and ap . oclIsKindOf (Anchor)) or
11 (s e l f . oclIsKindOf (S l o t) and ap . oclIsKindOf (S l o t)) or
12 (s e l f . oclIsKindOf (Hook) and ap . oclIsKindOf (Hook)) or
13 (s e l f . oclIsKindOf (M e r g e d A d d r e s s a b l e P o i n t) and
14 s u b P o i n t s−>f o r A l l (ape | ap . typeM atch (ape))) or
15 (ap . oclIsKindOf (M e r g e d A d d r e s s a b l e P o in t) and
16 ap . e l e m e n t s−>f o r A l l (ape | s e l f . t ypeM atch (ape)))

Listing 1. Definition of matching between addressable points. Two addressable points should be
merged if they have the same name, are of the same type, and the type of the elements they are
associated with is the same.

This adds a new level of control not supported by typical AOP/AOM realisations in the
literature.

To be able to view a fragment query as a fragment again, we need to define how
the fragment query’s composition interface is determined. Basically, the composition
interface of a fragment query reflects the interfaces of its element fragments. However,
variation and reference points of the same name and type that occur in different element
fragments are merged into one variation or reference point for the fragment query and
similarly for ports and port groups. To precisely define how the composition interface of
a fragment query is derived from the composition interfaces of its element fragments,
we need to introduce a few helper concepts. To do so, in the following, we use the
Object Constraint Language (OCL) [22] to formally express additional concepts for
our metamodel classes. The OCL constraints we will show in Listings 1 to 5 are hence
an integral part of the metamodel of our composition description language.

First, we need to define which variation or reference points should be merged. To this
end, in Fig. 15, we have introduced the operation matches() on addressable points
that returns true if two addressable points are sufficiently equal to be merged into
one. Listing 1 shows the definition of matches(). Note that these functions make
use of a—previously unshown—association from addressable points to elements of a
fragment. This association is accessed through its association end apElements.

The merging of matching addressable points is represented by another operation:
merge(). Listing 2 shows its specification. This operation always creates a Merged-
AddressablePoint collecting all the merged addressable points. Note that anchors
can only be merged with anchors, slots with slots, hooks with hooks and prototypes with
prototypes. The introduction of a MergedAddressablePoint allows composition
interfaces of fragment queries to be viewed in two ways:

1. From the outside, the addressable points in the composition interface of a fragment
query look just like any other addressable point. In particular, the elements they
refer to can be accessed through the apElements association end.

On Language-Independent Model Modularisation 59

1 c o n t e x t A d d r e s s a b l e P o i n t : : merge (aps : S e t (A d d r e s s a b l e P o i n t)) : A d d r e s s a b l e P o i n t
2 pre : aps−>f o r A l l (ap | s e l f . ma tches (ap))
3 pos t : (t ypeM atch (r e s u l t)) and
4 (r e s u l t . oclIsKindOf (M e r g e d A d d r e s s a b l e Po i n t)) and
5 (r e s u l t . pointName = pointName) and
6 (r e s u l t . s u b P o i n t s = aps−>c o l l e c t (ap |
7 i f (ap . oclIsKindOf (M e r g e d A d d r e s s a b l eP o i n t)) then
8 ap . s u b P o i n t s
9 e l s e

10 ap
11 e n d i f
12)−>un ion (
13 i f (s e l f . oclIsKindOf (M e r g e d A d d r e s s a b l e P o i n t)) then
14 s e l f . s u b P o i n t s
15 e l s e
16 s e l f
17 e n d i f
18)) and
19 (r e s u l t . apE lemen t s = r e s u l t . s u b P o i n t s . apE lemen t s)

Listing 2. Merge operation defined for addressable points

1 c o n t e x t P o r t : : matches (p : P o r t) : Boolean
2 pos t : r e s u l t = (portName = p . portName) and
3 (a d d r e s s a b l e P o i n t−>s i z e () = p . a d d r e s s a b l e P o i n t−>s i z e ()) and
4 (a d d r e s s a b l e P o i n t−>f o r A l l (ap | p . a d d r e s s a b l e P o i n t
5 −>e x i s t s (ap2 | ap . match (ap2)))) and
6 (p . a d d r e s s a b l e P o i n t−>f o r A l l (ap | a d d r e s s a b l e P o i n t
7 −>e x i s t s (ap2 | ap . match (ap2))))

Listing 3. Definition of matching between ports. Two ports should be merged if they have the
same name and group matching addressable points.

2. The composition system can further inspect merged addressable points and identify
for each sub-point the fragment it came from and the elements it refers to. This will
be used in describing the composition technique later in this section.

Based on these definitions of how to merge addressable points, we can now define how
ports are to be merged: We begin, again, by defining which ports may be merged. We
do so in the matches() operation of Port. Its definition can be seen in Listing 3.

Merging ports is done by merging all matching addressable points in the ports and
creating a new MergedPort of the same name and with all the merged addressable
points inside it. We refrain from expressing this in OCL as it is quite straightforward.

There are various ways of defining a fragment query’s composition interface from
the composition interfaces of its element fragments:

1. Maximal interface. Intuitively, the maximal interface is the union of all composi-
tion interfaces of all element fragments where matching ports have been merged as
defined by the merge() operation.

2. Minimal interface. The minimal interface contains only those ports that exist in all
element fragments. Merging applies as for the maximal interface.

3. Merging function. Such a merging function allows to merge ports fulfilling some
condition into one port, possibly with a new name. This approach can be combined
freely with the two above.

60 F. Heidenreich et al.

FragmentQueryFragmentQuery

useMaximalInterface: Boolean

MergeFunctionMergeFunction

matchPort (p: Port): Boolean
mapPort (p: Port): Port

mapping

0..1

Fig. 16. Metamodel of merge functions

Figure 16 shows the additional metamodel elements required for supporting merge
functions and minimal vs. maximal fragment-query interfaces. For each fragment query,
we can provide one additional merge function, which will handle all port merges for this
query. The merge function provides two query operations: matchPort is used to de-
termine if a given port is to be subject to treatment by the merge function and mapPort
is used to identify the port that is the result of applying the merge function.

Listing 4 shows how the composition interface of a fragment query is derived from
the composition interfaces of its element fragments. Lines 4–19 produce the maximal
interface, with lines 5–10 taking into account an optional merge function. The remain-
der from line 20 restricts the interface to the minimal interface if required. Finally, we
need to ensure that merged ports in a fragment query respect all the rules imposed by
any port groups in the participating fragments. This is shown formally in Listing 5.

Fragment queries expressed in our prototypical graphical composition description
language will always use the minimal composition interface. In addition, a merging
function can be provided, using regular expressions over port names to express the
matchPort operation. mapPort is implemented implicitly by creating a port with
a generated name. Fragment queries are represented by a rectangle with dashed lines
(cf. Fig. 14). Accompanying query expressions can be edited via a properties view in
the editor.

4.3 A Language-Independent Composition Technique for Model Composition

Once a composition program is defined over a set of fragments, it can be executed,
merging the involved fragments into bigger fragments or complete models. In this pro-
cess, each composition step is executed individually, transforming the fragments in-
volved. We will first look at the overall processing of composition programs and steps
and then look into the details of how fragments are merged. The processing of a com-
position is sketched in Fig. 17 to support the explanations below. At the end, we will
shortly discuss the interpretation of fragment queries.

Executing composition steps and programs. A composition program consists of
composition steps; each of them is executed individually. Before this can be done, the
execution order of the steps has to be determined. This order is controlled by the contri-
bution links. Such a link gives a certain role to the two fragments involved: one fragment
(defining the receiving port of the link) is the receiving fragment, the other (defining the
contributing port of the link) is the contributing fragment. Receiving fragments can be
compared to cores and contributing fragments to aspects in AOP. This means that we
can weave in a contributing fragment into several receiving fragments. In each com-
position step, the role of each fragment (involved through one or several links) has to

On Language-Independent Model Modularisation 61

1 c o n t e x t FragmentQuery
2 inv c o m p o s i t i o n I n t e r f a c e =
3 e l e m e n t F r a g m e n t s . c o m p o s i t i o n I n t e r f a c e
4 −> i t e r a t e (p : P o r t ; c m p I n t f : S e t (P o r t) = S e t{} |
5 i f (mapping−>notEmpty () and mapping . ma tchPor t (p)) then
6 −− merge u s i n g merging f u n c t i o n
7 c m p I n t f−>r e j e c t (p1 | p1 . ma tches (mapping . mapPort (p)))
8 −>i n c l u d i n g (p . merge (
9 c m p I n t f−>s e l e c t (p1 | p1 . ma tches (mapping . mapPort (p))))

10 . rename (mapping . mapPort (p) . name))
11 e l s e
12 i f (c m p I n t f−>e x i s t s (p1 | p . ma tches (p1))) then
13 −− merge i m p l i c i t l y match ing p o r t s
14 c m p I n t f−>exc luding (p1 | p . ma tches (p1))
15 −>i n c l u d i n g (p . merge (c m p I n t f−>s e l e c t (p1 | p . ma tches (p1))))
16 e l s e
17 c m p I n t f−>i n c l u d i n g (p)
18 e n d i f
19)
20 −>r e j e c t (p : P o r t |
21 (not u s e M a x i m a l I n t e r f a c e) and
22 e l e m e n t F r a g m e n t s−>e x i s t s (f | not f . c o m p o s i t i o n I n t e r f a c e−>e x i s t s (
23 p1 | p . ma tches (p1) or
24 (mapping−>notEmpty () and mapping . ma tchPor t (p1) and
25 p . ma tches (mapping . mapPort (p1)))
26)
27)
28)

Listing 4. Composition interface of a fragment query

1 c o n t e x t FragmentQuery
2 inv : s ubFragment s . po r tGroup−>f o r A l l (pg |
3 s e l f . po r tGroup−>e x i s t s (pg2 |
4 pg2 . p o r t . oclAsType (MergedPort) . s u b P o r t s−>c o n t a i n s A l l (pg . p o r t)
5)
6)

Listing 5. Port merges must additionally maintain any port groups set up on any contained
fragments

be clear. Otherwise, the composition step is invalid. The following restrictions for a
composition step can be derived from this:

1. The involvement of a fragment in a composition step has to be defined through at
least one contribution link. The other way around: A fragment cannot be involved in
a composition step through configuration links only. If it would be, it would neither
be receiving nor contributing.

2. If a fragment is involved in a composition step through more than one composition
link; all these links have to have the same direction, because a fragment cannot be
contributing and receiving within one composition step.

The composition program CP in Fig. 17 defines a composition of the three fragments
F1, F2 and F3 by declaring two composition steps, Step1 and Step2. F2 is involved
in both steps, because both have links to ports of F2. In the context of Step1, F2 is
a receiving fragment while F3 is a contributing fragment (and F1 is not involved). In

62 F. Heidenreich et al.

Legend:

model element

(can be reference point)

hook

Step2 Step1

Step2

slot

reference in model

contributing port

receiving port

configuring port

contribution link

configuration link

composition step

composition step

participation

F1‘ F2‘ F3

F1 F2‘ F3

F1 F2 F3

CP‘ (after the execution of Step1)

CP (original composition program)

CP‘‘ (after the execution of Step2)

fragment

addressable point

export to port

Fig. 17. Stepwise processing of a composition program

the context of Step2, however, F2 is a contributing fragment while F1 is a receiving
fragment (and F3 is not involved).

Executing a composition step means that all contributing fragments are integrated
into the receiving fragments—resulting in a new set of composed fragments of similar
size as the set of receiving fragments. During this process, the contributing fragments
are not directly integrated, but a fragment copy of them. Thus, the original contributing
fragments remain available as contributions for other steps executed at a later point.

When a composition step is successfully executed, it is removed from the program
and the receiving fragments of the step are replaced by the composed fragments. Thus,
the processing of the whole composition program is an iterative process in which even-
tually all steps have been executed and the set of composed fragments of the last
executed step is the result set.

When Step1 of CP (cf. Fig. 17) is executed, the result can be visualised as a mod-
ified composition program CP ′: The content of F3 (the only contributing fragment)
is copied and integrated into F2 (the only receiving fragment), leading to F2′. F2 is
replaced by F2′ and Step1 is removed.

As we have seen, only receiving fragments are modified and contributing ones re-
main unchanged by the execution of a step. This property determines the execution
order of steps. The next step to execute is always one where all contributing fragments
are not receiving fragments of any other remaining step in the composition program.
Thus, they can be safely copied because further modification cannot occur. Note that—
because the execution of a step modifies its receiving fragments and removes the step

On Language-Independent Model Modularisation 63

from the program—fragments that were receiving at the beginning of the composition
process lose this property at some point.

In the composition program CP of Fig. 17, Step1 can be executed, because its only
contributing fragment F3 is never a receiving fragment in the context of any step of CP .
On the other hand, Step2 cannot be executed, because its only contributing fragment
F2 is a receiving fragment in the context of another step (Step1). In CP ′ however,
where Step1 has been removed, Step2 can be executed resulting in CP ′′. F1′ in CP ′′

is the resulting model of the complete composition.
It is obvious that invalid composition programs can be defined where no step ful-

fils the required property—which basically means that they define cyclic dependencies
between the fragments. It might also be that such a situation is reached during the iter-
ative execution process if the program is not analysed beforehand. We believe that such
invalid programs are counter intuitive and will seldom occur in practice. Should they
occur, however, invalid programs can be detected by our tool.

Matching addressable points and merging fragments. Until now, we have described
the general process of executing composition steps. What we have not discussed yet is
how receiving and contributing fragment are merged concretely when a step is executed.

A merging is done per composition link and involves only the addressable points be-
hind the two ports the link connects. The first thing that has to be done, before the actual
merge, is to determine which variation point of a port can be replaced by which refer-
ence point of the other port. The first requirement is that anchors can only replace slots
and prototypes can only replace hooks (this is the language-independent typing). The
second necessary requirement for such a replacement is that the language-dependent
types (i.e., the metaclasses for which the addressable points were introduced) of both
points match. This means the language-dependent type of a reference point has to be the
same as, or a subclass of, the language-dependent type of variation point. This ensures
that the composed model, where the reference points replaced the variation points, is
still a syntactically valid instance of the metamodel of the used component description
language.

If, for each prototype involved in a composition step, a hook with a matching type
can be found, the composition is executable. This is necessary to physically integrate
the fragments. If some hooks, anchors or slots are not addressed, this is in general
no problem. It is also possible to address the same hook or slot multiple times if the
multiplicity of the affected references allow it. Sometimes also different matches are
possible. In such non-deterministic situations, the composition step is not valid.

To increase determinism, further matching strategies for addressable points are
needed. We use the naming of addressable points for this purpose: if a reference point
could be bound to different variation points, the names of the points are taken into
account. This was sufficient for the examples we inspected so far. However, with re-
spect to reuse, the names of the points might not match directly, additional matching
strategies—for example based on regular expressions—could be used.

For some compositions, it might well be required that not only the binding of proto-
types but also of other kinds of addressable points should be enforced when two ports
are linked. These questions, however, very much depend on the concrete language and

64 F. Heidenreich et al.

modularisation approach at hand. Therefore, further experiences are needed to learn
about the problems and requirements.

Once all pairs of hook–prototype and slot–anchor bindings are determined, the merg-
ing of fragments is simple. For a hook–prototype pair, the containing reference5 to the
hook is re-routed to the prototype or, in cases where the prototype concept was in-
troduced by a syntactic metaclass extension, to the element referenced in the content
reference of the prototypes (cf. Sect. 4.2). This effectively adds content to the fragment
that contains the hook. A slot–anchor pair is resolved by taking all non-containment
references to the slot and re-routing them to the anchor (or to the element referenced in
its content reference). It should be noted that re-routing references means that a hook
or slot can stay referenced for further addressing, if the multiplicities of all affected
references allow that.

Note that in the composition illustrated in Fig. 17, each port has only one address-
able point. Thus, the matching is straightforward. It is assumed in the figure that the
language-dependent types match in all three cases. When Step1 and Step2 are exe-
cuted, variation points are replaced with reference points.

Our implementation of the composition technique also enforces that all ports ad-
dressed on a contributing fragment in one composition step must be grouped into one
port group. While this is redundant for the execution of the composition—the group-
ing can be assumed by the fact that the ports are addressed together in one step—it is
essential information for the developer. If a fragment comes with a large composition
interface where different ports should be addressed in different composition steps, the
developer would have little chance to know which configuring ports are to be addressed
together with which contributing ports.

Executing fragment queries. As mentioned, fragment queries are solely constructs of
the composition definition language to ease composition program development. In the
general composition program execution process, fragment queries are treated as usual
fragments (i.e., they have a receiving or contributing character).

If a composition step is to be executed that involves a fragment query the query
is expanded. One can think of this process as drawing each fragment that is grouped
by the query individually into the composition program and then defining composition
steps for all possible compositions of the single fragments. If we define, for instance,
a composition step that involves one fragment query, which groups k fragments, as
receiving “fragment” and another fragment query, which groups l fragments, as con-
tributing “fragment” the transformation would produce l ∗k composition steps. Each of
these steps composes one fragment from the first query with one from the second query.
Then, all the steps are executed.

If receiving fragments belonged to a fragment query, the corresponding composed
fragments are again grouped into a fragment query that replaces the original query in
the composition program.

5 A containing reference is a reference that holds the actual definition of an element. Each ele-
ment in a model (with the exception of one root node) has exactly one. Which references are
containing is defined in the metamodel.

On Language-Independent Model Modularisation 65

In this section, we have demonstrated our language-independent model composition
approach in detail. In the next section, we explain how the approach and its concepts
have been implemented in a tool that can be used to solve the problems shown in the
introductory examples: the Reuseware Composition Framework.

5 Tooling: The Reuseware Composition Framework

The previous section demonstrated our language-independent model composition ap-
proach and its concepts. These concepts were implemented in the Reuseware Com-
position Framework, available from [12]. The implementation is based on the Eclipse
Modelling Framework (EMF) [23]. In this section, we briefly describe the architecture
of the tool, which we use in the next section to realise concrete solutions for the prob-
lems shown in the introductory examples.

The tooling is split into a developer kit, which is used to instantiate the framework
for concrete languages, and run time tooling, which is used by the end-users of com-
position systems. Section 5.1 describes the developer tooling and Sect. 5.2 the run time
functionality.

5.1 CoMoGen: The Reuseware Development Kit

The development kit is named CoMoGen, which stands for Component Model Gener-
ator. The name was given by the central functionality provided by the tool—generating
a new component model for a given language based on its metamodel. CoMoGen offers
the reuse extension metalanguage in which a developer can express syntactic as well as
semantic reuse extensions (cf. Sect. 4.2).

Figure 18 shows the architecture of CoMoGen. On the lowest layer, it uses the func-
tionality of EMF: EMF’s resource management is used to load and store metamodels;
EMF’s code generation is applied to generate metamodel code; EMF’s metamodeling
facilities—arranged around the metalanguage Ecore6—are utilised to construct, modify
and annotate metamodels.

Next, CoMoGen interacts with other EMF-based metamodeling tools that provide
metamodels and other specifications, for instance, about a language’s syntax. Examples
of such tools are Ecore metamodel editors (such as the one contained in [25]), the
mentioned GMF [16] or tools for defining textual syntax (such as EMFText [26]).

Our implementation then offers facilities to define composition systems (e.g., an ed-
itor for the reuse extension language) and the component model generator itself, which
modifies Ecore metamodels following the algorithm from Sect. 4.2 and adds annota-
tions with OCL expressions to the metamodels using Ecore’s annotation mechanism.

5.2 CoCoNut: The Reuseware Run Time

CoCoNut, the Composition Core Runtime, implements the composition algorithm and
provides tooling to define concrete model compositions. Due to the language indepen-
dence of our approach, the tooling, which is based on the language-independent con-
cepts only, can be reused in any composition system defined with Reuseware.

6 Ecore implements the OMG’s EMOF standard [24].

66 F. Heidenreich et al.

Fig. 18. Overview of the Reuseware Development Kit (CoMoGen) architecture

Fig. 19. Overview of the Reuseware Runtime (CoCoNut) architecture

The CoCoNut architecture is shown in Fig. 19. Again, we use EMF’s model re-
source management and Ecore-based model manipulation facilities to load, save and
compose model fragments. On top of this, CoCoNut implements an extended re-
source management, which explicitly knows about model fragments. This means that
it can identify fragments by unique identifiers and can present them—for instance, in
a fragment browser—by showing only their composition interfaces. Furthermore, Co-
CoNut includes composition program development tools such as the editor presented in

On Language-Independent Model Modularisation 67

Sect. 4.2. The composition engine implements the composition algorithm described in
Sect. 4.3 by using EMF facilities to copy and compose fragments in memory.

All components of CoCoNut are aware of the concepts of our composition approach.
They know that a certain element of a model fragment belongs to the fragment’s compo-
sition interface by inspecting its metaclass and evaluating OCL expressions annotated
to the fragment’s metamodel. Thus, a new composition system can be plugged into Co-
CoNut by providing a metamodel that has been extended and annotated by CoMoGen.
No additional implementation effort is required.

Latest information about the Reuseware Composition Framework and the available
tooling can be found on the Reuseware website [12].

6 Examples

In this section, we take up the examples introduced in Sect. 2. For each example, we
will demonstrate how the language extension (cf. Sect. 4.2) is performed to make the
applied modelling language a suitable component description language. Next, we show
how the composition interfaces for the example components are defined and discuss the
composition programs producing the desired results. Then, we briefly look at possible
variations of the composition programs to highlight the advantages of using fragment
model components rather than monolithic models.

6.1 Implementation of a Simple Business Process Extension System

To extend the UML activity diagram language, we perform only semantic extensions
to maintain tool support. However, to give the fragment developer control over defin-
ing addressable points, we apply a small UML profile and use semantic extensions to
map applied stereotypes to addressable points. The profile (reuseuml) is tailored for the
activity diagram scenario and is simplistic: it defines two stereotypes Anchor and Slot
each with the tagged values portName, groupName and pointName.

Table 1 enumerates all semantic extensions we defined. In (1) and (3), we define that
each activity offers an implicit extension point: one of the nodes (edges) is, in addition
to its native semantics, also a hook. We group them together into a port named after
the activity’s name such that they appear as a single extension point for the activity (a
receiving port). In (2) and (4), all elements contained in an activity (i.e. its nodes and
edges) are identified as prototypes and associated with a port named after the activity’s
name. Only nodes that have the Slot stereotype applied are ignored here. At last, (5) and
(6) define that nodes with a Slot (or Anchor) stereotype are treated as slots (or anchors
respectively). The properties of the addressable point are derived from the tagged values
of the stereotype application7.

We are now ready to prepare the order processing model from Fig. 1 and the credit
card check model from Fig. 2 for composition. The order processing model now im-
plicitly offers a receiving port OrderProcessingExtensionPoint (cf. 1 and 3 in Table 1).

7 The operation self.getValue (stereotypeApplication, ‘taggedValue’) can be used in the Eclipse
UML2 [27] implementation, which we use in our tool to obtain a tagged value of an applied
stereotype.

68 F. Heidenreich et al.

Table 1. Semantic UML language extension in the following format: (ref. number) (type of vari-
ation point) extension: (metaclass)

(1) hook extension: ActivityNode
isAddressablePoint self = self.activity.node–>any (true)
portNameExpression self.activity.name.concat(’ExtensionPoint’)
(2) prototype extension: ActivityNode
isAddressablePoint self.getAppliedStereotype(’reuseuml::Slot’).oclIsUndefined()
portNameExpression self.activity.name.concat(’Definition’)
groupNameExpression self.activity.name
(3) hook extension: ActivityEdge
isAddressablePoint self = self.activity.edge–>any (true)
portNameExpression self.activity.name.concat(’ExtensionPoint’)
(4) prototype extension: ActivityEdge
isAddressablePoint true
portNameExpression self.activity.nam.concat(’Definition’)
groupNameExpression self.activity.name
(5) slot extension: ActivityNode
isAddressablePoint not self.getAppliedStereotype(’reuseuml::Slot’).oclIsUndefined()

portNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Slot’), ’portName’)

groupNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Slot’), ’groupName’)

pointNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Slot’), ’pointName’)

(6) anchor extension: ActivityNode
isAddressablePoint not self.getAppliedStereotype(’reuseuml::Anchor’).oclIsUndefined()

portNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Anchor’),’portName’)

groupNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Anchor’),’groupName’)

pointNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Anchor’),’pointName’)

In addition, the checkFork, checkJoin and checkMerge nodes should be addressable to
connect additional check activities to them. We do that by applying stereotypes to these
nodes and setting the tagged values portName and pointName as shown in Table 2.

The credit card check model implicitly exports its content, i.e. its two actions and
all control flows—to a contributing port CreditCardCheckDefinition (cf. 2 and 4 in
Table 1). To connect the edges correctly to the nodes of the order processing model
later, we apply the slot stereotype on the initial and final nodes of the credit card check
model. We add them to the CreditCardCheck group and give them the same point names
(cf. Table 3) as used for the anchors (cf. Table 2) in the order processing model. This
enables the composition engine to match the anchors and slots as desired.

We now load the fragments into the composition program editor that displays their
composition interfaces only. In the composition program, we link the contributing port
CreditCardCheckDefinition with the receiving port OrderProcessExtensionPoint and
the two configuring ports CreditCardCheck and CheckActivitiesExtension. The two
links are assigned to the step ActivityComposition. When we execute the composition
program using our implementation of the composition technique from Sect. 4.3, we
obtain a composed model as shown in Fig. 3.

On Language-Independent Model Modularisation 69

Table 2. Anchor stereotype applications on the process order model (cf. Fig. 1) in the following
format: << (stereotype) >> (targeted model element) : (metaclass)

<<reuseuml::Anchor>> checkFork : ForkNode
portName CheckActivity
pointName IN
groupName
<<reuseuml::Anchor>> checkJoin : JoinNode
portName CheckActivity
pointName OUT YES
groupName
<<reuseuml::Anchor>> checkMerge : MergeNode
portName CheckActivity
pointName OUT NO
groupName

Table 3. Slot stereotype applications on the credit card check model (cf. Fig. 2)

<<reuseuml::Slot>> InitialNodeCREDIT : InitalNode
portName CheckActivity
pointName IN
groupName CreditCardCheck
<<reuseuml::Slot>> FINISH : FinalNode
portName CheckActivity
pointName OUT YES
groupName CreditCardCheck
<<reuseuml::Slot>> CANCEL : FinalNode
portName CheckActivity
pointName OUT NO
groupName CreditCardCheck

Fig. 20. The composition program to compose the order process and the credit card check

70 F. Heidenreich et al.

Table 4. Taipan language extension

(1) hook extension: Ship
isAddressablePoint self = self.aquatory.ships–>any (true)
portNameExpression ’shipExtension’
(2) prototype extension: Ship
isAddressablePoint true
groupNameExpression flotilla
portNameExpression ships
(3) slot extension: Port
syntactic extension
(4) anchor extension: Port
isAddressablePoint true
portNameExpression self.location.concat(’Port’)
(5) slot extension: Route
syntactic extension
(6) anchor extension: Route
isAddressablePoint true
portNameExpression self.description
(7) hook extension: LargeItem
syntactic extension
(8) prototype extension: LargeItem
isAddressablePoint true
portNameExpression self.article

This example has demonstrated how a system for the desired activity diagram com-
position can be defined. With this system, similar activity extensions and variations can
be defined and executed. For instance, imagine a scenario where a large set of check
activities that all declare a contributing port with an IN, an OUT YES and an OUT NO
slot (i.e. offer a similar composition interface) are available in a library. There might
be checks related to software products (CheckSW*.uml) and checks related to hard-
ware products (CheckHW*.uml). Companies want to incorporate checks according to
the products they sell into their ordering process. We can use a fragment query to tailor
the process by selecting a set of activities and composing them into the ordering pro-
cess. By varying the query, we can adjust the defined system to the customer’s needs:
CheckSW*.uml for a software selling company, CheckHW*.uml for a hardware selling
company and Check*.uml for a company selling both (Fig. 20).

6.2 Implementation of a Modular Ship and Cargo Distribution System

To add modularisation to the TaiPan language, we also use syntactic extensions. This
is possible because the tooling is generated with GMF and can be regenerated and
extended. Nevertheless, we also define some semantic metaclass extensions to introduce
a default composition interface for certain model components.

Table 4 enumerates all extensions performed. Extensions (1), (4) and (6) are defined
to make an aquatory model component extensible. Note that these are all semantic

On Language-Independent Model Modularisation 71

Fig. 21. The flotilla model with slots and hooks

extensions that define hooks (to put ships into the aquatory) and anchors (to enable
ships to address ports and routes). Thus, they define a default (or implicit) interface for
aquatory models and save the developer of such models the effort of defining each hook
and anchor explicitly. Still, the developer should be aware of the existence of the de-
fault interface, which he can always inspect in our composition program editor. All the
syntactic extensions, (3), (5) and (7), are intended for the developers of flotilla model
components. They can use slots for the ports and routes of ships. Inside the cargo bays
of ships, they can define hooks for large items. In addition, extension (2) will automati-
cally export each individual ship to the composition interface. Extension (8) defines all
large items in cargo model components to be prototypes such that they can be addressed
for composition with flotilla models.

The port and cargo models (cf. Figs. 5 and 7) do not require any further editing,
because they only offer a default interface. The flotilla is extended with defined slots
and hooks. We extended the TaiPan graphical editor to support the declaration of these
elements and used them in Fig. 218.

8 This was a surprisingly easy task, because the editor was generated from a very abstract model
(called sketch model in GMF) that assigns graphical representations to metaclasses. So we
only had to select graphics for slot and hook representations and assign them to the slot and
hook metaclasses of the reuse metamodel and then regenerate the editor.

72 F. Heidenreich et al.

Fig. 22. The composition program to compose the aquatory, flotilla and cargo model components

Figure 22 displays the composition program that composes the example aquatory,
flotilla and cargo model components into a single TaiPan model as shown in Fig. 4. The
composition is separated into three independent composition steps that are executed
one after another. It demonstrates how the flotilla model first receives—through the
two composition steps CargoIntoShip1 and CargoIntoShip2—and then contributes—
through the composition step FlotillaIntoAquatory. Interpreting the composition as an
aspect-weaving, the flotilla model first plays the role of a core and then of an aspect.

We can further use aspect-oriented concepts, when we replace the flotilla model in
the example by a fragment query grouping many such models as shown in Fig. 23. As-
suming that we have a second flotilla model MyFlottillaB.taipan in our repository, the
fragment query MyFlottilla.*.taipan groups the two flotilla models MyFlottilla.taipan
and MyFlottillaB.taipan. MyFlottillaB.taipan defines an additional ship with the ports
Ship3Port, Ship3Route and Ship3Cargo. Using regular expressions, we merge the ports
from the different flotilla models as follows:

– Ship(2|3)Port merges Ship2Port and Ship3Port.

– Ship(2|3)Route merges Ship2Route and Ship3Route.

– ships merges ships from MyFlottilla.taipan and ships from MyFlottillaB.taipan.

– Ship(2|3)Cargo merges Ship2Cargo and Ship3Cargo.

Similar to distributing an aspect over a core, we load the same cargo (tobacco)
into two ships in the CargoIntoShip2+3 composition step. Through the merged ports
Ship(2|3)Port and Ship(2|3)Route, we ensure that the two ships get the same route and
destination assigned in the FlotillaIntoAquatory composition step.

The composition step CargoIntoShip2+3 resembles an aspect-weaving: The frag-
ment query MyFlottilla.*.taipan and the port merge Ship(2|3)Cargo quantify over a
set of core flotilla models and the tobacco cargo aspect is distributed over it in a
cross-cutting manner.

On Language-Independent Model Modularisation 73

Fig. 23. The composition program to compose the aquatory, two flotilla and cargo model compo-
nents by applying a fragment query

6.3 Other Examples

In this section, we briefly discuss additional applications we were and are still working
on. More details and examples can be found on the Reuseware website [12].

Class Diagram Weaving. In this application, we introduced aspect-oriented concepts
into Ecore (which could similarly be done for UML or other languages with a class
concept). The idea is to distinguish between core classes, which are complete classes
that offer an interface for extension, and advice classes, which define operations and
features (possibly referring other advice classes) to be reused as extensions for core
classes. Advice classes can be woven into core classes, which means that all their oper-
ations and features are injected into the core class. If an advice class has references to
other advice classes, all these classes have to be bound in one composition step.

The composition system is defined in terms of semantic extensions only. To distin-
guish between core and advice classes, a name convention on the package that contains
the classes is used: a package with advice in its name contains advice, others contain
core classes. A core class has hooks for both its lists of operations and features. In ad-
dition, the class itself is an anchor. The two hooks and the anchor of each core class
are exported to a receiving port that is named like the class itself. An advice class, on
the contrary, defines two lists with prototypes, its operations and features, and itself as
a slot. The two prototype lists and the anchor of each advice class are exported to a
contributing port that is named like the class itself.

As an example, one can consider the, rather technical, aspect of a subject–observer
relationship that can be modelled in two related advice classes: Observer and Subject.
The two classes appear as contributing ports on the composition interface of the advice
fragment and can be linked individually to two classes of a core fragment in a com-
position step. A more detailed example and the complete definition of the composition
system can be found on the Web9.

9 http://reuseware.org/index.php/Ecore Aspect Weaving

74 F. Heidenreich et al.

Device ConfigurationConnection
2

* *

1

NetworkModel

Fig. 24. Excerpt from the metamodel of a network configuration DSL

Weaving Java Classes. As mentioned in the above application, the composition system
for class weaving can be ported to other languages that have a class concept. This is not
limited to graphical languages, but can also be done for textual languages, as long as
a proper metamodel exists (and a tool that can parse textual model definitions). We
defined such a metamodel for (a subset of) Java and then realised the class weaving
composition system for Java. We have already used this as an example in [14]. There,
we applied syntactic extension.

We modified the composition system to work with semantic extensions, similar to
the Ecore weaving system. Interestingly, we can reuse the composition programs de-
fined for Ecore fragments above for similar examples based on Java fragments, without
having to change the composition programs at all. In MDD, one can benefit from this,
for instance, in code generation: model fragments can be translated to code individual-
ly—reducing complexity of generation and keeping the separation of concerns from the
models down to the code, which is important when the code is manually modified after
generation. To integrate the code fragments, one can reuse the composition program
already defined on the modelling level. This is one direction of future work, where we
investigate how our approach can help in broader MDD settings, where different lan-
guages and composition systems are involved. More information about our experiments
with Java can be found on the Web10.

Including Modularisation and Aspect-Orientation in a DSL under development
When a DSL is developed, our approach can be used to add modularisation capabilities
to the language and profit from our existing tools for composition definition and exe-
cution. This example demonstrates this on a DSL for network configuration. Figure 24
shows an excerpt from the metamodel: A network model consist of connections and
devices that have a configuration attached. Now, independent definition and reuse of
configurations should be supported. Hence, we add hooks and prototypes for configu-
rations, and we are done with the definition.

Networks with hooks instead of concrete configurations and configuration prototype
fragments can now be modelled. Configurations can be bound to hooks using the com-
position editor. Because of the support for quantification through fragment queries and
merged ports, we can also distribute one configuration over a large network model.
More details about this example can be found on the Web11.

Query Modularisation. A complex composition system we built based on our earlier,
grammar-based, work [13] is a module system for the XML query language Xcerpt

10 http://reuseware.org/index.php/Java
11 http://reuseware.org/index.php/CIM DSL Extension

On Language-Independent Model Modularisation 75

[28]. Details about this systems are published in [13] and [29]. The system extends a
language that previously included no notion of modularisation with a module system
that performs encapsulation and enables the developer to import modules and to control
the data flow between modules.

The system was not defined through concepts introduced in this paper, but uses our
previous grammar-based approach. Information about the Xcerpt module system can
also be found on the Web12.

Managing Variability in Software Product Line Engineering. In Software Product
Line Engineering (SPLE), one of the main challenges is expressing and managing the
variable parts in product lines. Although there already exist different variability con-
cepts and patterns, all of them are tied to a specific level of abstraction in the software
development process (e.g. models or code).

Due to its language independence and its built-in concept for expressing variability,
ISC is an interesting technique to express and manage variability on each stage of a
multi-staged software development process, which we examined in a case study where
we developed a simple product line of time-sheet applications.

In this case study, we used Reuseware’s modularisation concepts to decompose the
variable parts of the product line on both the modelling level and code level. We cre-
ated fragments for each feature realisation and used Reuseware’s graphical composition
language to specify the composition of those variable parts of the product line with the
core. Since we aim at an automated product-instantiation process, we created a mapping
between conceptual variability models and composition steps of the composition pro-
grams using our tool FeatureMapper13 [30]. This mapping is interpreted by a dedicated
product-instantiation workbench we developed in the context of the case study, which
only executes the actual composition if the corresponding feature from the variability
model should be included in the concrete product variant.

7 Related Work

In [31], Klint et al. identify the need for an engineering approach to language de-
velopment. Our Reuseware tool, presented in this paper, can be viewed as a form of
meta-grammarware in their sense that is, as a “software that supports concrete grammar
use cases by some means of meta-programming, generative programming or domain-
specific language implementation” [31, p. 342]. Our approach uses metamodels (which
are grammars in the sense of Klint et al., who use the term grammar in a slightly more
general sense essentially as ‘anything describing a language’) to generate composition
systems and enable the execution of compositions through model or program transfor-
mation for languages that originally did not support composition.

As Reuseware and invasive software composition have originally been developed for
textual languages, in the following, we first discuss a number of related work in the area
of textual languages before also discussing some related work in modelling. For space

12 http://xcerpt.reuseware.org/
13 http://featuremapper.org

76 F. Heidenreich et al.

reasons, neither discussion is meant to be complete, but rather to give an insight into
some of the manifold research approaches in the expanding field of grammarware en-
gineering. We will particularly focus on approaches in the aspect-oriented community.

Several approaches exist that provide aspect orientation for the .NET platform and
claim that this makes their approaches language agnostic or independent. For example,
Aspect.NET [32] uses static weaving based on binary assemblies to provide AspectJ-
like AOP for .NET, Compose* [33] is an implementation of Composition Filters for
.NET. These approaches work on the level of the Common Language Infrastructure
(CLI) and hence are independent of specific programming languages. At the same time,
however, working at the CLI level also means that these approaches cannot provide
language-specific modularisation concepts. Our approach works at the level of each
individual language itself. While this makes it more complicated to mix modules of
different languages, it enables us to build custom modularisation techniques for each
language.

Fractal Aspect Components (FAC) [34] is an extension of the Fractal Component
Model [35] to support AOP. It aims at bridging the gap between Component-Based
Software Engineering and AOP. FAC introduces several additional concepts to the Frac-
tal Component Model to compose Aspectisable Components and Aspect Components.
FAC is similar to the Reuseware approach, because the component model is designed
in a language-independent way. This allows for conceptual reuse within different im-
plementations. It is, however, also different in many ways. For example, aspect binding
and composition programs do not abstract from the implementation of the component
model in FAC. With the graphical fragment composition editor, the Reuseware approach
provides a general-purpose way to express compositions independent of the fragment
component’s core language.

In [36], Gray and Roychoudhury present a technique for constructing aspect weavers
for arbitrary languages. They define an aspect-weaving language (called Aspect Do-
main), which can be used to define weavings for different languages. They argue that
a common superset of weaving operations can be applied to arbitrary languages, while
certain languages require specific extensions. The weaving language is comparable to
our composition language. One important difference is that Gray and Roychoudhury
do not extend languages, because their components (i.e. core and advice artefacts)
only have implicit composition interfaces—which is reasonable, since they focus on
legacy systems written in existing languages—while we focus on programs and models
under development. Furthermore, our approach can also deal with non-textual lan-
guages described by a metamodel.

The Mjølner System and the Beta language [37] were the first to introduce the con-
cept of slots. In Beta, any programming construct can be replaced by a slot typed with
the non-terminal corresponding to that construct. Beta also supports a notion of inheri-
tance of grammar types. Binding of slots happens when the name of a fragment and the
name of a slot in the same project match. Our approach extends the Beta approach in
two ways:

1. We introduce additional types of variation points, such as anchors, hooks and pro-
totypes. In addition, we introduce the new (language-independent) abstraction of
ports that gives more control to the fragment developer when defining an interface.

On Language-Independent Model Modularisation 77

The linking of ports is also an explicit operation allowing the definition and varia-
tion of composition programs, while Beta uses implicit matching of names only.

2. We extend the concept to any language that can be described by a metamodel.
Different from Beta, our tool allows arbitrary languages to be extended with a com-
position system.

The Software COMPOsition SysTem (COMPOST) [38], the demonstrator system of
[11], is a predecessor of our current system, which introduced many of the concepts
available in our approach, but was limited to Java and XML. For each new language
that should be supported by COMPOST, a large amount of implementation work is
required. In [13], we introduced the first version of the Reuseware system, which was
capable of extending grammar-based textual languages and performing compositions of
syntax trees, without the requirement for manual implementations. We took first steps in
extending these concepts towards metamodel-based (possibly graphical) languages in
[14]. There, we introduced the concept of fragment queries but did not elaborate on the
details of metamodel extension or the composition algorithm. Novel in the current work
are also the concepts of ports, composition links and composition steps, which were not
required in the syntax-tree composition approach [13] and were not yet applied in the
compositions presented in [14].

Our notion of fragment components is comparable to the notion of syntactic units
presented in [39]. Syntactic units are arranged in syntactic unit trees that can be likened
to composition programs. In this approach, the so-called extension spots can be defined
as alternatives for any fragment of code derivable from a non-terminal. Compared to our
approach, there is no formalisation of language extensions, which allows for tailored
extension of a language (to only allow the desired amount of variability) and generation
of language-specific tooling.

In the area of model-based approaches, Model Weaving is strongly related to the
work presented in this paper. It allows for combining two or more models to form a
composed or woven model. AMW, the Atlas Model Weaver [40], is a tool that allows
generating model transformations based on a so-called Weaving Model. The Weaving
Model consists of links between two or more models that are used to generate model
transformations and model weavings.

Another approach to model weaving presented in [9] by Heidenreich and Lochmann
stems from Product-Line Engineering and provides means to express Aspectual Fea-
tures in separate models, which are woven into a core model according to the feature
selection of the product line. The authors are using graph-rewrite systems to weave
the Aspectual Features to the core model. This idea was adopted in the design of the
XWeave [41] tool by Groher and Völter. XWeave is integrated in the openArchitec-
tureWare tool chain and uses name correspondence and regular expressions for model
weaving as our composition language does.

However, the work presented in this paper goes beyond existing model weaving. It
unifies weaving and composition operations on both model and text artefacts through
the general concepts of addressable points and fragment queries.

The Generic Modeling Environment (GME) [42,43] offers generic means to build
UML-based DSMLs and also allows for defining concrete syntax for those languages. It
supports partitioning of models according to aspects that are defined on the metamodel

78 F. Heidenreich et al.

level. While this increases understandability and maintainability of complex models, it
does not address the issue of reusability of language modules, the goal of Reuseware.
In [44], the authors introduce the concept of metamodel composition to GME, where
existing language modules and newly developed languages can be composed by dedi-
cated composition operators. This fosters reuse of modularisation techniques, which is
the driving force behind our work. Compared with the Reuseware approach, metamodel
composition as presented within GME does not allow for language-agnostic interpreta-
tion of the reused language modules.

Many aspect-oriented approaches to modelling have been developed, most of which
are specific to one particular modelling language. A large number of these approaches
are inspired by aspect technology as introduced in the area of AOP—for example, Zhang
et al. [7] present an approach to aspect-orientation for state machines that is closely
inspired by AspectJ technology. At the same time, approaches are beginning to appear
that show composition techniques differing from aspect-oriented ideas. For example,
in [10], Whittle et al. present an approach that uses pattern matching on state-machine
concrete syntax and graph transformation to describe aspects on state machines.

Fleurey et al. [45, and references therein] present a generic framework for compos-
ing different views on a model. The approach distinguished a matching and a merging
phase. The matching phase determines which model elements in two models should
be merged together, while the merging phase performs the actual merging. Merging
is implemented in a completely language-independent fashion. Matching is language
dependent and the match rules must, therefore, be provided in a specialisation of the
framework. However, the framework defines an interface for the match rules, which
is, to our understanding, based on matching metaclasses and signatures. Our approach
can also be seen to distinguish a matching and a merging phase. However, both phases
are expressed language-independently by composition diagrams in our composition de-
scription language. Specialisation to specific languages is only necessary to identify
how addressable points, etc. can be expressed for model components. In our approach,
matching must be done for each composition individually. In contrast, Fleurey et al.
[45] use matching rules that are defined once for a specific language and then applied
to multiple combinations of models. We are planning, however, to extend the approach
presented in this paper to support concepts similar to such matching rules. For textual
languages, we have already presented such an approach in [46] under the name of a
light-weight dedicated composition system (LWDCS).

C-SAW [47] is a general model transformation tool that also supports some form
of AOM independent of the specific modelling language. Developers write so-called
aspects or strategies, model transformations expressed in the Embedded Constraint
Language (ECL), querying for a number of model elements and then modifying these.
Reuseware also is based on model transformation. However, the collection of model ele-
ments to be transformed is encapsulated in an explicit construct—the model fragment—
rather than implicitly represented in a query inside the composition program.

8 Conclusions and Outlook

Modularising models is becoming increasingly important, especially due to the fact that
MDD approaches are requiring richer and more complex models to be constructed. Not

On Language-Independent Model Modularisation 79

only are models growing in complexity and becoming harder to overview, but many
different modelling languages—domain-specific modelling languages—are being de-
veloped alongside general-purpose ones such as UML. As we have demonstrated with
use-cases for both kinds of languages, it is important to be able to construct larger mod-
els from smaller and better understood ones. The first use-case concerned the modulari-
sation of UML activity diagrams, while the second use-case described how models of a
domain-specific language (called TaiPan) can be split into different concerns. We have
in this paper presented a language-independent approach to enable component-oriented
thinking and development for modelling languages.

We proposed two ways of extending modelling languages with component capabili-
ties. The first involves an extension of the underlying modelling language’s metamodel
in order to define components’ interfaces, while the second can extract such interfaces
implicitly. Avoiding metamodel extension has the benefit that already developed editors
and tools will not break. However, for certain domain-specific modelling languages,
an extension of the language metamodel can make sense and be an easier approach,
as we have demonstrated on the TaiPan modelling language. Hence, both approaches
can be useful depending on the particulars of the addressed language and the desired
modularisation.

We would not have been able to reach our solution without implementing the ideas
and applying them on examples. Our current implementation [12] is based on the
Eclipse Modeling Framework and offers GUI tooling as plug-ins for the Eclipse plat-
form. The main components of our tool are the graphical composition program editor
presented and a fragment management system that extends the general resource man-
agement of the Eclipse Modeling Framework [23]. Because of the integrated Eclipse
platform [21], on which many modelling tools are based, our tool can directly inter-
act with tooling of the used component description languages. These tools are used to
define fragments and view composition results. In the examples, for instance, we used
the TOPCASED UML Editor [25] and the TaiPan editor. The importance of provid-
ing such a tool should not be underestimated for future research: It enables us to do
case-studies more quickly and the good integration with existing modelling tools may
improve acceptance in the community.

For the future, we plan to do further case-studies to clarify the open questions of what
additional matching concepts are needed in composition program definitions to match
the ports of composition links and in fragment queries. This issue is also related to the
concepts of complex composition operators, which we introduced as means to define
composition systems for grammar-based languages [13,46]. Such operators allow for
the grouping of several composition operations that work together on a set of fragments
and variation points. This grouping is similar to the grouping of addressable points
into ports but defines the binding between variation and reference points explicitly. We
believe that both concepts can be unified and that complex composition operators can
be translated into composition programs of the approach presented in this paper. Doing
this would unite our grammar-based and our metamodel-based approaches.

In the future, we will formalise our composition technique, which we described in
this paper and implemented in the tool. This will give a formal definition of what a valid

80 F. Heidenreich et al.

and an invalid composition program is and will enable an analysis of the limits of our
approach.

We also see potential in applying our approach in a larger MDD process, where dif-
ferent languages are utilised. We believe our approach will show its advantages in such
a scenario, that is, where modularisation issues of all involved languages can be solved
with a common base component model and a language-independent composition de-
scription language. In general, it becomes easier to relate artefacts even when they are
written in different languages, because they share certain parts of their component mod-
els. Composition programs can, for instance, be reused at different abstraction levels of
an MDD process, where only details, but not the architecture, of a system change. We
took a first step in this direction in [14], where we used the same composition program
to compose UML and Java fragments.

Acknowledgments

This research has been co-funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Pro-
gramme project REWERSE number 506779 (http://rewerse.net) as well
as the 6th Framework Programme project MODELPLEX contract number 034081
(http://www.modelplex.org) and by the German Ministry of Education and
Research (BMBF) within the project feasiPLe (http://www.feasiple.de).

References

1. Ritsko, J.J., Seidman, D.I.: Preface. IBM Systems Journal – Special Issue on Model-Driven
Software Development 45(3) (2006)

2. Object Management Group: UML 2.0 infrastructure specification. OMG Document (October
2004), http://www.omg.org/cgi-bin/doc?ptc/04-10-14

3. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and merging of
statecharts specifications. In: 29th International Conference on Software Engineering (ICSE
2007), Minneapolis, MN, USA, pp. 54–63. IEEE Computer Society, Los Alamitos (2007)

4. Peterson, J.L.: Petri nets. ACM Computing Surveys 9(3), 223–252 (1977)
5. Aldawud, O., Cazzola, W., Elrad, T., Gray, J., Kienzle, J., Stein, D. (eds.): 10th Workshop

on Aspect-Oriented Modeling (AOM at AOSD 2007) co-located with the 6th International
Conference on Aspect-Oriented Software Development (AOSD 2007), Online Proc. (March
2007), http://www.aspect-modeling.org/aosd07/

6. Aldawud, O., Cazzola, W., Elrad, T., Gray, J., Kienzle, J., Stein, D. (eds.): 11th Interna-
tional Workshop on Aspect-Oriented Modeling (AOM at MoDELS 2007) co-located with
ACM/IEEE 10th International Conference on Model Driven Engineering Languages and
Systems MODELS 2007, Online Proc. (September 2007),
http://www.aspect-modeling.org/models07/

7. Zhang, G., Hölzl, M., Knapp, A.: Enhancing UML state machines with aspects. In: [48],
pp. 529–543

8. Colyer, A., Clement, A., Harley, G., Webster, M.: Eclipse AspectJ: Aspect-Oriented Pro-
gramming with AspectJ and the Eclipse AspectJ Development Tools (The Eclipse Series).
Addison-Wesley, Reading (2004)

http://rewerse.net
http://www.modelplex.org
http://www.feasiple.de
http://www.omg.org/cgi-bin/doc?ptc/04-10-14
http://www.aspect-modeling.org/aosd07/
http://www.aspect-modeling.org/models07/

On Language-Independent Model Modularisation 81

9. Heidenreich, F., Lochmann, H.: Using graph-rewriting for model weaving in the context
of aspect-oriented product line engineering. In: 1st Workshop on Aspect-Oriented Product
Line Engineering (AOPLE 2006) co-located with the International Conference on Generative
Programming and Component Engineering (GPCE 2006), Portland, Oregon, Online Proc.
(October 2006), http://www.softeng.ox.ac.uk/aople/aople1/

10. Whittle, J., Moreira, A., Araújo, J., Jayaraman, P., Elkhodary, A., Rabbi, R.: An expressive
aspect composition language for UML state diagrams. In: [48], pp. 514–528

11. Aßmann, U.: Invasive Software Composition. Springer, Secaucus (2003)
12. Software Technology Group, Technische Universität Dresden: Reuseware Composition

Framework (April 2008), http://www.reuseware.org
13. Henriksson, J., Heidenreich, F., Johannes, J., Zschaler, S., Aßmann, U.: Extending grammars

and metamodels for reuse: the reuseware approach. IET Software 2(3), 165–184 (2008)
14. Heidenreich, F., Johannes, J., Zschaler, S.: Aspect orientation for your language of choice.

In: [6], http://www.aspect-modeling.org/models07/
15. Filman, R., Friedman, D.: Aspect-oriented programming is quantification and oblivious-

ness. In: Workshop on Advanced Separation of Concerns co-located with OOPSLA 2000,
Minneapolis, MN, USA (October 2000)

16. The Eclipse Foundation: Graphical Modeling Framework (April 2008),
http://www.eclipse.org/gmf/

17. Sun Microsystems: Enterprise JavaBeans Specification, version 2.0. Final Release (August
2001)

18. Object Management Group: CORBA 3.0 new component chapters. OMG Document
(October 1999), http://www.omg.org/cgi-bin/doc?ptc/99-10-04

19. Fiala, Z.: Design and Development of Component-based Adaptive Web Applications. PhD
thesis, Technische Universität Dresden, Dresden, Germany (February 2007)

20. Sullivan, K., Griswold, W.G., Song, Y., Cai, Y., Shonle, M., Tewari, N., Rajan, H.: Informa-
tion hiding interfaces for aspect-oriented design. In: 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, Lisbon, Portugal, pp. 166–175. ACM Press, New York (2005)

21. The Eclipse Foundation: The Eclipse Platform (April 2008),
http://www.eclipse.org

22. Object Management Group: UML 2.0 OCL specification. OMG Document (October 2003),
http://www.omg.org/cgi-bin/doc?ptc/03-10-14

23. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson Education,
London (2003)

24. Object Management Group: MOF 2.0 core specification. OMG Document (January 2006),
http://www.omg.org/spec/MOF/2.0

25. The Topcased Project Team: TOPCASED (April 2008), http://www.topcased.org
26. Software Technology Group, Technische Universität Dresden: EMFText Tool (January

2008), http://www.emftext.org
27. The Eclipse Foundation: UML2 Project (April 2008),

http://www.eclipse.org/modeling/mdt/?project=uml2tools
28. Bry, F., Schaffert, S.: The XML query language Xcerpt: Design principles, examples, and

semantics. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002.
LNCS, vol. 2593, pp. 295–310. Springer, Heidelberg (2003)

29. Aßmann, U., Berger, S., Bry, F., Furche, T., Henriksson, J., Johannes, J.: Modular web queries
– from rules to stores. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II.
LNCS, vol. 4806, pp. 1165–1175. Springer, Heidelberg (2007)

30. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping Features to Models
(Informal Research Demonstration). In: Companion Proceedings of the 30th International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany (May 2008)

http://www.softeng.ox.ac.uk/aople/aople1/
http://www.reuseware.org
http://www.aspect-modeling.org/models07/
http://www.eclipse.org/gmf/
http://www.omg.org/cgi-bin/doc?ptc/99-10-04
http://www.eclipse.org
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/spec/MOF/2.0
http://www.topcased.org
http://www.emftext.org
http://www.eclipse.org/modeling/mdt/?project=uml2tools

82 F. Heidenreich et al.

31. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammarware. ACM
Transactions on Software Engineering 3(14), 331–380 (2005)

32. Safonov, V., Gratchev, M., Grigoryev, D., Maslennikov, A.: Aspect.NET – aspect-oriented
toolkit for Microsoft.NET based on Phoenix and Whidbey. In: Knoop, J., Skala, V. (eds.)
4th International Conference .NET Technologies, Plzen, Czech Republic, University of West
Bohemia, May 2006, pp. 19–30 (2006)

33. Garcı́a, C.F.N.: Compose* – a runtime for the.Net platform. Master’s thesis, Vrije Univer-
siteit Brussel, Belgium (August 2003), http://composestar.sf.net/

34. Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L.: A model for developing component-
based and aspect-oriented systems. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS,
vol. 4089, pp. 259–274. Springer, Heidelberg (2006)

35. The Fractal Project Team: The Fractal Project (April 2008),
http://fractal.objectweb.org/

36. Gray, J., Roychoudhury, S.: A technique for constructing aspect weavers using a program
transformation engine. In: Murphy, G.C., Lieberherr, K.J. (eds.) 3rd International Conference
on Aspect-Oriented Software Development (AOSD 2004), Lancaster, UK, pp. 36–45. ACM
Press, New York (2004)

37. Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Object-Oriented Programming in the
BETA Programming Language. Addison-Wesley, Reading (1993)

38. The COMPOST Consortium: The COMPOST system (April 2008),
http://www.the-compost-system.org

39. Majkut, M., Franczyk, B.: Generation of implementations for the model driven architecture
with syntactic unit trees. In: Crocker, R., Steele Jr., G.L. (eds.) 2nd Workshop Generative
Techniques in the context of MDA co-located with OOPSLA 2003, Anaheim, CA, USA,
Online Proc. (October 2003)

40. The AMW Project Team: Atlas Model Weaver (April 2008),
http://eclipse.org/gmt/amw/

41. Groher, I., Völter, M.: XWeave: Models and aspects in concert. In: [5],
http://www.aspect-modeling.org/aosd07/

42. Vanderbilt University, Institute for Software Integrated Systems: GME: The Generic Model-
ing Environment (2008), http://www.isis.vanderbilt.edu/Projects/gme/

43. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The generic modeling environment. Technical report, Vanderbilt
University, Institute for Software Integrated Systems, Nashville, TN, USA (2000)

44. Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P., Maroti, M.: On metamodel composition.
In: IEEE International Conference on Control Applications 2001 (CCA 2001), Mexico City,
Mexico, September 2001, pp. 756–760 (2001)

45. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A generic approach for automatic model com-
position. In: [6], http://www.aspect-modeling.org/models07/

46. Henriksson, J., Aßmann, U., Heidenreich, F., Johannes, J., Zschaler, S.: How dark should
a component black box be? The Reuseware Answer. In: Weck, W., Reussner, R., Szyper-
ski, C. (eds.) 12th International Workshop on Component-Oriented Programming (WCOP)
co-located with 21st European Conference on Object-Oriented Programming (ECOOP
2007). LNCS, vol. 4906, Berlin, Germany (July 2007)

47. Gray, J., Lin, Y., Zhang, J.: Automating change evolution in model-driven engineering. IEEE
Computer 39(2), 51–58 (2006)

48. Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.): 10th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2007). LNCS, vol. 4735.
Springer, Heidelberg (2007)

http://composestar.sf.net/
http://fractal.objectweb.org/
http://www.the-compost-system.org
http://eclipse.org/gmt/amw/
http://www.aspect-modeling.org/aosd07/
http://www.isis.vanderbilt.edu/Projects/gme/
http://www.aspect-modeling.org/models07/

Aspects across Software Life Cycle: A
Goal-Driven Approach

Nan Niu1, Yijun Yu2, Bruno González-Baixauli3, Neil Ernst1,
Julio Cesar Sampaio do Prado Leite4, and John Mylopoulos1

1 Dept. of Computer Science, University of Toronto, Canada
{nn,nernst,jm}@cs.toronto.edu

2 Computing Dept., The Open University, UK
y.yu@open.ac.uk

3 Dept. de Informática, Universidad de Valladolid, Spain
bbaixauli@infor.uva.es

4 Dept. de Informática, PUC-Rio, Brazil
julio@inf.puc-rio.br

Abstract. Goal modeling fits model-driven engineering (MDE) in that
it captures stakeholder concerns and the interdependencies using con-
cepts that are much less bound to the underlying implementation tech-
nology and are much closer to the problem languages. Aspect-oriented
software development (AOSD) provides language constructs to facilitate
the representation of multiple perceptions and to alleviate tangling and
scattering concerns. Synthesis of AOSD and MDE not only manages
software complexity but also improves productivity, as well as model
quality and longevity. In this paper, we propose a model-driven frame-
work for tracing aspects from requirements to implementation and test-
ing, where goal models become engineering assets and straightforward
model-to-code transformation bridges the gap between domain concepts
and implementation technologies. We test our hypotheses and evaluate
the framework’s applicability and usefulness with a case study of an
open-source e-commerce platform written in PHP.

1 Introduction

We use models when we try to understand phenomena, when we think about
problems, when we construct mechanisms, when we describe solutions, and when
we communicate to each other. The role of modeling in engineering is similar:
Models help in developing artifacts by providing information about the conse-
quences of building those artifacts before they are actually made [20]. The use
of models in engineering software is pervasive across different phases, from re-
quirements and design to verification and validation. It is the emerging paradigm
of model-driven engineering (MDE) [36], which advocates the systematic use of
models as primary engineering artifacts throughout the software life cycle.

Model-driven engineering is simply the notion that we can construct a model
of a system that we can then transform into the real thing [36]. One of the

S. Katz et al. (Eds.): Transactions on AOSD VI, LNCS 5560, pp. 83–110, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

84 N. Niu et al.

challenges faced in MDE is the escalating complexity of software and system
models [13]. For large-scale software development, the sheer size of models, the
intertwining relationships between intra- and inter-model elements, and the con-
cerns expressed across different models present a high adoption barrier to MDE
practice. A fundamental principle in addressing complexity is separation of con-
cerns [32]. Maintaining a clear separation of concerns throughout the software life
cycle has long been a goal of the software community. Aspect-oriented software
development (AOSD) provides explicit means to model concerns that crosscut
multiple system components. It is argued that the synthesis of MDE and AOSD
can not only provide effective support for managing software complexity but also
improve model quality and productivity [13].

In this paper, we propose a framework for tracing aspects from requirement
goal models to implementation and testing. Goal-oriented requirements engi-
neering (RE) uses goal models to elicit, specify, and analyze requirements [41].
We provide language support for modeling goal aspects and mechanisms for
transforming models to aspect-oriented programs. Test cases are derived from
requirements models to guide verification and validation of aspects. The bene-
fits of leveraging our framework are twofold. By separating crosscutting concerns
throughout requirements, implementation, and testing phases, we achieve a high
degree of modularity and traceability in software development. By driving im-
plementation and validation from stakeholder goals, we achieve a high level of
software quality and user satisfaction.

Our aim is to lay a foundation for goal-driven development techniques that
exploit aspect orientation to modularize concerns and to compose them into the
system implementation. We are also interested in exploring the extent to which
early aspects [1] can be traced and validated across software life cycle. To demon-
strate the idea, we present an exploratory case study showing the approach’s ap-
plication to an open-source e-commerce platform written in PHP. The purpose is
to describe our initial investigation into designing a model-driven framework for
capturing and implementing goal aspects, instantiate the framework to engineer
a real-world system, discuss the findings and preliminary results, examine costs,
benefits, and the scope of applicability of the proposed framework, and open up
new research avenues arising from our investigation. Our work also helps replace
hype with sound technical insights and lessons learned from experience with
complex systems.

Preliminary work on goal aspects was published in [45,46,47]. The emphasis
of [45] was to discover candidate aspects during goal-oriented requirements anal-
ysis, while the idea of tracing and validating the early identified goal aspects was
sketched in [47] and detailed in [46]. This paper brings together the essentials from
our earlier work, integrates the full-fledged aspect tracing method, and describes
a systematic empirical study, to offer a more complete treatment and a more crit-
ical evaluation of our framework. Section 2 lays the background and provides the
context of our research. Section 3 articulates and discusses the goal-oriented
model-driven aspect framework. Section 4 presents the case study and reports

Aspects across Software Life Cycle: A Goal-Driven Approach 85

Fig. 1. A strategic dependency model for media shop

our experience. Section 5 reviews related work. Section 6 draws some concluding
remarks and outlines future work.

2 Background

This section aims to situate our research within the existing literature on RE,
MDE and AOSD.

2.1 Goal Models

Recent research in RE has generated a number of notations for modeling stake-
holder goals and the relationships between them. Goals express, at various levels
of abstraction, stakeholders’ many objectives for the system under considera-
tion. Goal-oriented RE uses goal models to elicit, elaborate, structure, specify,
analyze, negotiate, document, and modify requirements [41].

Goal modeling shifts the emphasis in requirements analysis to the actors in
an organization, their goals, and the interdependencies between those goals,
rather than focusing on processes and objects, as in, for example, object-oriented
analysis [2]. This helps us understand why a new system is needed and lets
us effectively link software solutions to business needs. The i∗ framework [44]
uses goal models to provide criteria for justifying the presence of requirements,
for determining requirements completeness and trade-offs, and for validating
stakeholder concerns.

In i∗, stakeholders are represented as (social) actors who depend on each other
for goals to be achieved, tasks to be performed, and resources to be furnished.
Two types of models are involved in i∗: the strategic dependency model for
describing the network of relationships among actors and the strategic rationale
model for describing and supporting the reasoning that each actor goes through
concerning its relationships with other actors [44].

As an example, a strategic dependency model for media shop is shown in
Fig. 1. Media shop is a store selling different kinds of media items such as books,

86 N. Niu et al.

newspapers, magazines, audio CDs, and videotapes. The goal models developed
for media shop were presented in detail in [5]. As shown in Fig. 1, actors are
represented as circles, dependums—goals, softgoals, tasks, and resources—are
respectively, represented as ovals, clouds, hexagons, and rectangles, and depen-
dencies have the form depender → dependum → dependee. In Fig. 1, for in-
stance, customer depends on media shop to buy media items and media shop,
in turn, depends on customer to increase market share. Modeling such depen-
dencies among organizational actors helps tease out the business goals of the
intended software.

Goal-modeling frameworks such as i∗ distinguish between hard (functional)
goals—states that actors can attain—and softgoals, which can never be fully
satisfied. Non-functional requirements (NFRs) [6] such as reliability and effi-
ciency are typically expressed as softgoals to suggest that the intended software
is expected to satisfy them within acceptable limits, rather than absolutely.

Extensive work on goal-oriented RE has been carried out for the past decade.
A guided tour of this line of research is given in [41]. Experience shows that goal
modeling is particularly useful in the early requirements analysis phase [44],
which is concerned with the understanding of a problem by studying and mod-
eling the intentions of stakeholders and the strategic relationships amongst those
organizational actors. To make goal models a true engineering asset that
drives software development beyond the early-RE phase, detailed design and
implementation of goal models must be sought.

2.2 Engineering Goal Models Using Agent-Oriented Programming

An earlier effort to transform goal models into implementations was made in the
Tropos project [5]. The intuition is that using an agent-oriented programming
platform for the implementation seems natural, given that the requirements
model is defined in terms of actors, goals, and interdependencies amongst them.
An agent is an entity whose state is viewed as consisting of mental components
(e.g., capabilities, choices, and commitments), and so agenthood is in the mind
of the programmer [39]. The Tropos programming environment is supported by
JACK, a commercial product based on the beliefs-desires-intentions (BDI) agent
architecture rooted in artificial intelligence [3].

The natural and basic transformation from requirements to design and im-
plementation is to map actors to agents. Then, resources and tasks in i∗ models
are mapped to beliefs and intentions, and both functional goals and softgoals
are mapped to desires in the BDI architecture. Model refinement (e.g., decom-
positions and dependencies) and design generation are driven by the fulfillment
of each actor’s (agent’s) obligations.

A set of stereotypes, tagged values, and constraints are proposed to accommo-
date Tropos concepts with UML [2]. As an example, Fig. 2a depicts a refined i∗

strategic dependency model for media shop in UML using the stereotypes defined
in [5], notably � i∗actor � and � i∗dependency �. Such mapping in UML
could also be done in a similar way for strategic rationale or goal analysis models.
Making further design decisions requires the introduction of additional details

Aspects across Software Life Cycle: A Goal-Driven Approach 87

Fig. 2. Representing i∗ models for media shop in UML with stereotypes. a Strategic
dependency model. b Sequence diagram for ordering media items.

for each strategic actor and architectural component of a system. In Tropos, this
involves actor communication and actor behavior. Figure 2b presents such a de-
sign model for media shop: A sequence diagram that provides basic specification
for an intra-agent order processing protocol.

Despite the effort made by Tropos to implement i∗ models via agent-oriented
programming paradigm, a number of problems remain to be addressed. First,
agent-oriented programming has yet to prove its constructability and applicabil-
ity in mainstream software development, partly due to the lack of support for un-
derlying programming constructs and integrated development environments [4].
To overcome these deficiencies, the JACK intelligent agents development envi-
ronment adopts the widespread object-oriented (OO) concepts and extends the
popular Java language with the BDI model.

A second problem thus refers to the mismatch between agent and object ori-
entations, which can adversely affect design refinement and model transforma-
tion [4]. For example, the parameters for defining an object are unconstrained,
whereas those for defining an agent must be constrained by the notions of beliefs,
commitments, and choices. Another example is that no constraint needs to be

88 N. Niu et al.

specified on object message passing and responding, but honesty constraints on
agent methods must be specified [39]. A workaround solution used in Tropos, to
mitigate the mismatch, is to treat each actor as a single class, and then model
the behavior and communications among actors, as indicated in Fig. 2. However,
such an “actor↔class” mapping is rarely the case in OO modeling and design.
For instance, to effectively encapsulate information [2], we might design a single
“processor” abstract class, rather than having five distinct “processor” classes
in Fig. 2b. In this way, the specialized classes may be implemented as interfaces
at the code level.

Third, the distinction between hard goals and softgoals made in the early-RE
phase is blurred in design and implementation because both are transformed to
desires in Tropos BDI. As we shall see, this distinction needs to be preserved
throughout the software life cycle. Our proposed approach aims at addressing
the above limitations by leveraging ideas and techniques from AOSD.

2.3 Goal Aspects

Aspect-oriented software development applies the principle of separation of con-
cerns [32] to make systems modular so that the intended software is easier to
produce, maintain, and evolve [17]. The AOSD community has recognized the
importance of considering aspects early on in the software life cycle during anal-
ysis and design, as opposed to only at the implementation stage [31]. Aspects at
the requirements level present stakeholder concerns that crosscut the problem
domain, with the potential for a broad impact on questions of scoping, prioriti-
zation, and architectural design [26]. Discovering aspects early can help detect
conflicting concerns early, when trade-offs can be resolved more economically [1].

Aspects in goal models can be discovered using the correlations from hard
goals to softgoals along with a goal elicitation and refinement process based on
the V-graph model [45]. The formal process can be briefly explained as follows.
Initially, the stakeholders’ high-level concerns are elicited as abstract goals. The
functional ones are represented by hard goals and the non-functional ones are
represented by softgoals. Relations are also elicited as abstract contribution (cor-
relation) links from the hard goals to the softgoals that must be fulfilled by the
prescribed system-to-be.

During the refinement process, these abstract goals are recursively decom-
posed into more concrete ones through AND/OR decomposition rules [44]. When
a goal g is AND-decomposed into g1, . . . , gn then g is satisfied if and only if gi

are satisfied for all 1 ≤ i ≤ n. If g is OR-decomposed, it is satisfied if and only
if there exists an i such that gi is satisfied. As a result, several hierarchies of
the goal trees are derived. One must make sure that the abstract contribution
(correlation) links are maintained by introducing contribution links from more
concrete hard goals to the high-level softgoals.

At the end of the model refinement, all abstract goals are decomposed into a
set of goals that no longer need further decompositions. A model is well refined
if all intentional goals are operationalized, i.e. specific operations are defined
for the intended software to fulfill the goals [8]. These leaf-level operations are

Aspects across Software Life Cycle: A Goal-Driven Approach 89

Fig. 3. Illustration of goal aspects in media shop i∗ model. Goal aspects, together with
their advising tasks, are represented as first-class modules in the upper-right corner of
the goal model. The contribution links, from hard goals and functional tasks to goal
aspects, modularize the crosscuts that would otherwise be tangled and scattered in the
goal model.

called tasks that can be carried out by certain functions of the system-to-be.
The set of tasks are further categorized into functional and non-functional one,
depending on whether they are at the bottom of the decomposition hierarchy of
an abstract hard goal, or of an abstract softgoal. This model refinement must
be validated to maintain the abstract contribution links, which can often be
fulfilled by weaving the concrete non-functional (operationalized) tasks into the
functional tasks. As such, every OR-decomposed subgoal must fulfill the same
commitment to the softgoals as their parent goal does. It is often the case, if not
always, that non-functional tasks crosscut several functional ones that belong to
different OR-decomposed subtrees.

Figure 3 illustrates goal aspects for media shop. The top level softgoals, such
as “Security [system]” and “Usability [language]”, are captured as goal aspects,
which are represented as cloud-shape entities in Fig. 3. The softgoals are decom-
posed and eventually operationalized into advising tasks (hexagons in Fig. 3).
For modularization purposes, we represent the model entities that are relevant
to a goal aspect inside a dash-dotted circle, as shown in the upper-right corner
of Fig. 3.

The weaving of goal aspect is achieved by composing the advising tasks with
the functional tasks of effected hard goals. Such a weaving is similar to the

90 N. Niu et al.

weaving defined in aspect-oriented programming [17] in that it is the aspect’s
responsibility to specify the conditions (e.g. where and when) and the content
(advice) of weaving. Since a (weaved) goal model need not be executed, goal
aspect weaving is simpler than program aspect weaving. As an example, the
goal aspect “Customization [language]” is operationalized into an advising task
“Translate [language, NLS]”, meaning that the media shop is advised to trans-
late occurrences of natural language strings (NLS) into the desired language.
This advice crosscuts all hard goals that display Web pages and is intended to
enhance system usability for native users of the desired language. While the
weaving affects certain hard goals in the usability aspect, the basic function-
alities (e.g. “Informing”, “Reporting”, and “Shopping”) defined by these hard
goals via functional tasks shall remain functioning as expected.

It is crucial to represent and use NFRs during the development process be-
cause the quality concerns captured by NFRs are often regarded as architectural
drivers that evoke trade-off analysis among design alternatives [21]. However,
NFRs are hard to be allocated into independent modules and usually represent
tangled and scattered concerns; therefore they have huge potential to become
candidate early aspects [24]. The V-graph model [45] provides an effective way
to identify NFR-related goal aspects. Next, we introduce an approach to tracing
the aspects throughout software development.

3 Tracing Aspects across Software Life Cycle

The goal model not only captures stakeholder intentions and strategic depen-
dencies but also represents design decisions during goal decomposition and re-
finement. These decisions, such as the advising tasks related to softgoals, can
be transformed into concrete aspect-oriented implementations, thereby elevating
the goal model to be a primary artifact of development.

3.1 Framework Overview

Figure 4 gives an overview of our aspect-tracing framework. As in most MDE
approaches, two kinds of model transformation are present: model-to-model and
model-to-code [38]. Model-to-model transformation refers to the refinement of
goal models (Sect. 2.3). Model-to-code transformation, in our framework, refers
to the mapping from a goal model construct (e.g., goal aspect, advising task,
etc.) to some artifact in the code base.

The upper part of Fig. 4 highlights the early aspects discovery process dis-
cussed in Sect. 2.3. Aspect-oriented concepts are modeled explicitly in require-
ments at the beginning of the development process. Advising tasks, which
operationalize softgoals and relate to hard goals, are modularized as aspects
and weaved into the goal model to enable aspect-oriented requirements analy-
sis [31]. The resulting model, notably the goal model augmented with aspects, is
amenable to be transformed into aspect-oriented programs (AOP) [17]. To ease
this transformation, we provide language support for modeling goal aspects in

Aspects across Software Life Cycle: A Goal-Driven Approach 91

Fig. 4. Process overview of the aspect-tracing framework

Q7 (Sect. 3.2). It is worth bearing in mind that the requirements goal model
provides a cornerstone for system validation.

Key concepts of AOP implementation are depicted in the middle of Fig. 4.
Functional modules (f) and code aspects (advice + pointcut) are derived from
functional and advising tasks, respectively. The distinction between functional
goals and softgoals made in the requirements model is respected and preserved.
We choose different subject matters to include into program modules and ignore
others. Namely, the f modules focus on functionalities, whereas aspects mod-
ularize crosscutting NFR concerns in terms of operationalized advising tasks.
Such a separation-of-concern strategy results in an uncluttered structure. It also
mandates the separated concerns to be weaved together in the implementation.

The weaved system (f ◦ a) is obtained by composing advice (a) with bases
according to the pointcut expression (p). Some aspects identified at the require-
ments level may not be mapped to code at all. For example, a typical performance
requirement might state that the system shall complete a specific task within
2 seconds. These early identified aspects play a key role in monitoring the sys-
tem’s behavior. We record them as quality issues to establish their traceability
throughout the software life cycle. Deciding whether to implement a goal aspect
or to record it as an issue depends on two activities: prioritizing softgoals [21] and
defining quantitative measures [35]. While handling quality issues is important,

92 N. Niu et al.

we consider it to be our future work and discuss related research in Sect. 5. The
success criteria for aspects are specified in a test case (t), which gathers quality
metrics and shares with a the same pointcut (p). In another word, p is reused
from goal aspects to implementation (a) and testing (t). It is important to incor-
porate the metrics t so that one can measure system qualities with (f ◦a◦ t) and
without (f ◦ t) aspects. Note that our framework is viable for applying different
programming languages and weaving mechanisms such as AspectC, AspectJ or
HyperJ. We use phpAspect to illustrate our approach in Sect. 3.3.

System validation is shown in the lower part of Fig. 4 and is further discussed
in Sect. 3.4. The weaved system (f ◦ a) is subject to two tests. The first test
ensures that systems with and without aspects have the same functionality de-
fined by hard goals: H(f) = H(f ◦ a). Existing testing mechanisms, such as
unit testing, can be reused to validate whether the weaved system satisfies the
functional requirements. The second test checks whether the weaved system in-
deed improves system qualities in terms of the degree of softgoal satisfaction:
S(f ◦ t) < S(f ◦ a ◦ t). It is evident that validation is directed by stakeholder
goals and the many concerns emerged in design and implementation.

Our goal-driven framework enables not only forward mapping of crosscutting
concerns (e.g. from requirements to implementation) but also backward tracing
of aspects (e.g. from implementation to requirements). The case study presented
in Sect. 4 shows examples of both kinds. We intend a straightforward model
transformation scheme [38]—the heart and soul of our MDE framework—to
easily capture the application domain knowledge. In most cases, the relationship
between goal aspects and program aspects is a one-to-one mapping or is at least
intuitively clear from goal model refinement. Our framework currently focuses on
one-to-one mappings, trying to work out the basic scenarios. We plan to extend
the framework to deal with more complex cases that may involve many-to-many
mappings.

3.2 Goal Aspects in Q7

Q7, or 5W2H—why, who, what, when, where, how, how much—is a pseudo
programming language that captures the structure of requirements goal graphs,
including the major entities of the NFR framework [6]. The syntax of the lan-
guage is designed to facilitate the reuse of solutions in the non-functional do-
mains [18]. The semantic domain is formally depicted in GRL [12]. We exploit
the Q7 language to support the description of aspects in goal models.

The answers to the why and how questions respectively indicate the com-
position and decomposition relations between abstraction and implementation.
Adapted from the goal model of Fig. 3, the following example shows the
AND/OR decomposition relations among the hard goals for media shop. The
front page of the shop has the functionality for “informing” the end-users and
administrators. This goal is decomposed into “finding” and (&) “reporting”
relevant information. To find information, a user is allowed to “search” or (|)
“navigate” the shop. The nesting structure of curly braces helps visualize the
decomposition hierarchy of the goals.

Aspects across Software Life Cycle: A Goal-Driven Approach 93

Informing { &
Finding { |
Searching
Navigating

}
Reporting
...

}
The answers to the how much question show the degree of contributions be-
tween hard goals and softgoals. Q7 uses the labels “++”, “+”, “−”, and “−−”
to indicate the “make”, “help”, “hurt”, and “break” relations between the goals.
The answers to the what question connect the goal to its subject matter [48].
In Q7, such information is placed inside square brackets as topics of the goals or
softgoals. For example, when the system meets the media shop’s “Front [page]”
goal, it also makes (++) major top-level softgoals (“⇒”), such as “Security
[system]” and “Usability [language]”.

Front [page] {
...

} => ++ Security [system],
++ Usability [language] ...

The answers to the when question indicate the feasibility of the goals [18], and
those to the who question attribute a goal to an encapsulating module. In the
i∗ terminology [44], such a module is called an actor that either processes or
delegates a goal or a task to other actors via strategic dependencies. In Q7, we
use the idea of “namespaces” to represent the actor names. For example,

<MediaShop>::Front [page] { &
Managing [page]
...

}

Here, “MediaShop” is the actor that processes the goal “Front [page]”. If the
actor is not explicitly specified, a goal inherits the namespace from its parent
goal. Thus, “Managing [page]” belongs to the same “MediaShop” actor.

As an extension of the encapsulating actors, we create a new namespace to
modularize the aspect that cuts across multiple entities in the goal model. As
an example, the security aspect in Fig. 3 is represented as follows.

<aspect>::Security [system] { &
Confidentiality [credentials] <=+ [page] { &
Redirect [login]

}
Security [information flow] <=+ [account] { &
SSL [connection]

}
}

94 N. Niu et al.

The goal hierarchy within the aspect module is an advice and the leaf-level
tasks in the hierarchy are called advising tasks. These tasks do not exist by
themselves, since they have to be weaved into the functional goals by indicating
where to attach the advice. The answers to the where question are designed to
express the pointcut of an aspect, indicating which functional goals are suitable
for applying the advice. For example, the following Q7 statements show a point-
cut expression after the “⇐” symbol: + * [page], which matches the hard goals
of any name (indicated by the wildcard *), of the subject matter Web “page”,
and those helping (+) achieve the usability softgoal. The advising task translates
the “natural language string” (NLS) appeared in the Web page into the desired
language (e.g. Spanish or German). Note that a pointcut can also be specified
by enumerating the effected hard goals.

<aspect>::Usability [language] { &
Customization [language] <= + * [page] { &
Translate [language, NLS]

}
}

All matched goals are therefore the joinpoints of the aspect. A weaving algorithm
at the requirements level [18] has been implemented in the OpenOME modeling
tool [28] to identify the joinpoints and attach the advising tasks as siblings to
the joinpoint tasks. Both joinpoint tasks and advising tasks then share the same
parent, which is called the weaved goal. The weaving algorithm implemented in
Q7 makes it possible to analyze the weaved goal model through a goal analy-
sis tool, e.g. a goal reasoning algorithm [11]. It is important to articulate the
advice and pointcut of a goal aspect. Such an exercise not only supports aspect-
oriented requirements analysis [31] but also provides reusable information for
implementing and validating aspects, as shown in Fig. 4.

As we can see from the examples presented above, Q7 provides a quality-based
reuse mechanism for representing and modularizing crosscutting concerns in the
goal model. The Q7 language is capable of not only handling the characteristics
of the quality knowledge but also relating those with functional descriptions. In
addition, the textual form of Q7 greatly facilitates the tracing of stakeholder
concerns throughout the software life cycle, as we shall demonstrate via a case
study in Sect. 4.

3.3 Implementation in phpAspect

The early candidate aspects discovered in the goal model are suited to be engi-
neered as code aspects, but developers may choose other means to address these
crosscutting concerns (e.g. recorded as quality issues to monitor the resulting
system), as previously stated. Nevertheless, our approach explores the possibil-
ity to equip developers with a full-fledged aspect-oriented framework so that a
clear separation of concerns is promoted throughout software development.

Aspects across Software Life Cycle: A Goal-Driven Approach 95

Fig. 5. The weaving process implemented in phpAspect

As one can see from Fig. 4, functional and advising tasks from the require-
ments model are transformed into functional and aspectual modules in the imple-
mentation, respectively. Since the subject in our case study—osCommerce [29]—
is implemented in PHP, we select a solution for AOP in this language, ph-
pAspect1, to facilitate the discussion in implementing early aspects.

The phpAspect language is designed as an extension to PHP. It adds new
constructs, such as aspects, pointcuts, advices, and inter-types declarations, in-
spired by AspectJ for expressing aspects relating to objects and classes while
embracing specific features for Web-based applications. It provides pointcut ex-
pressions for constructions used in these applications, such as function call and
execution, Web-based variable access, XML/HTML enclosing context identifica-
tion, and the like. Moreover, phpAspect is able to weave aspect components in
portions of code that are embedded into XML or HTML elements.

Figure 5 shows how the weaving is performed in phpAspect. It uses a static
weaving process that performs source code transformation of a PHP program
with aspect extensions into a standard PHP program. The full implementation is
based on YAXX [42], which first converts the PHP program into a YACC parsing
tree in XML, then weaves the XML representation of the components with the
XML representation of the aspects through a customized XSLT stylesheet. The
weaved XML representation of the program is then transformed into the source
code through another reusable XSLT stylesheet that does the inverse of parsing
(unparsing).

The following code snippet shows an example of the security aspect for a Web
application. This aspect first introduces a credential checking around all Web
pages that require access authentication (captured with the checkCredentials
pointcut on goto method call). This checking prevents users from accessing a

1 Developed by William Candillon during the Google Summer of Code, see
http://code.google.com/soc/php/about.html

96 N. Niu et al.

Web page if they are not logged in or do not have the right credentials. In these
cases, users are redirected to a more appropriate page, either the login or index
page. Second, the security aspect checks that all cart operations performed by
the client are done in an HTTPS (SSL) mode and deny them otherwise.

<?php
aspect Security {
//Intercept all instantiations of a page
pointcut checkCredentials:call(Page->goTo($arg2));

//Intercept all method execution of the cart
pointcut checkSSL:exec(Cart->*(*));

//Around all page instantiations, check the credentials
around(User $user) checkCredentials {

if($user->hasCredentials($_GET[’page’],
$_GET[’action’])) {

proceed();
} elseif (!$user->isLoggedIn()) {

$thisJoinPoint->getObject()->goTo(’login.php’);
} else {

$thisJoinPoint->getObject()->goTo(’index.php’);
}

}

//Around all method execution of the Cart,
//We check whether the connection is SSL
around checkSSL {

if(!$_SERVER[’https’]) {
header("Location: https://{$_SERVER[’HTTP_HOST’]}

{$_SERVER[’REQUEST_URI’]}");
} else {

proceed();
}

}
}
?>

The above example not only demonstrates phpAspect’s competence in work-
ing out the implementation of goal aspects in question but also shows its capac-
ity to build the model-to-code transformation of interdependent concerns in the
system.

3.4 Aspects Validation

It is crucial to validate the implementation against stakeholder requirements
to check the faithfulness and appropriateness of the model transformation. We

Aspects across Software Life Cycle: A Goal-Driven Approach 97

propose a goal-based testing approach to ensure that system functionalities are
preserved and system qualities are enhanced by weaving aspects into base mod-
ules. This concept is highlighted by the validation flows in Fig. 4.

When it is concrete enough to express the function of a task in terms of input and
the expected output, a unit test case can be created to check whether the function
is violated by comparing the output of the implemented function with the expected
output of the required function. Therefore, the leaf-level functional task in the goal
model corresponds to a set of unit test cases that tells whether the base program
delivers the required functionality. Having enough unit test cases in terms of the
coverage of the input domain, the functional task can be labeled “tested”.

Aspects discovered in the goal model provide a baseline for code aspects val-
idation. If an advising task cuts across multiple functional tasks, the unit test
cases of the functional tasks at the joinpoints can be reused to test the function-
ality of the weaved system. This is because goal aspects must not change basic
functionalities defined by hard goals and functional tasks. The implementation
of aspects, therefore, has to preserve this property.

On the other hand, the degree of certain softgoal satisfaction must be en-
hanced by the weaved system. In other words, certain qualities in the system
with weaved aspects must outperform the one without aspects so that the ef-
fort of managing aspects in MDE can be justified. Measuring quality attributes
typically presents an obstacle to traditional testing mechanisms, since NFRs are
not always easy to be quantitatively measured. Our effort of modeling aspects
early in the requirements pays off here. The results from goal-oriented analysis,
including the quality metrics, the advising task and pointcut of goal aspects, can
be reused and extended to test softgoal satisfaction.

For example, the media shop keeps users from accessing a Web page if they are
not logged in or do not have the right credentials. We model this requirement as
a security aspect, and transform it to a code aspect in phpAspect, as explained in
Sect. 3.3. We can define a set of unit test cases that act as unauthorized agents
and try to break into the system. The expected output would be redirecting
these malicious visits to the login or index page. Since these security-related test
cases crosscut the ones devoted to testing system functionalities (e.g. shopping
and searching), they can be regarded as unit testing aspects [19], thereby reusing
the security aspect’s pointcut description to perform the test case weaving.

Note that validating goal aspects can be carried out by other means than
defining unit testing aspects. For example, typical Web layer components do not
lend themselves to unit testing, unless proper frameworks such as HttpUnit or
PHPUnit are employed. In order to ensure that shopping is done securely, testing
scripts can be developed to automatically verify that all cart operations are
performed in an HTTPS (SSL) mode. Even though such a test may not manifest
itself as a testing aspect, it takes full advantage of the early aspects analysis
results to check whether the desired level of softgoal satisfaction is achieved.

Another point worth noting is that to separate concerns in functional and
non-functional requirements, our use of goal aspects avoids changing basic func-
tionalities defined by hard goals and functional tasks. If one has to constrain a

98 N. Niu et al.

hard goal due to a goal aspect, such as “controlling certain access privilege to a
user”, then the hard goal is the same; yet it is constrained by an additional con-
dition caused by aspect weaving. As a result, the softgoal associated with access
control, namely security, is helped. A side effect of our weaving mechanism is
that the original function test must be extended, in this case, by constraining the
precondition of the function of the original hard goal. Thus, for those instances
that satisfy the constrained precondition, the hard goal functionality is still sat-
isfied; for the instances that fail the new precondition, the postcondition of the
composed function is undefined, i.e. they are not comparable to the postcondi-
tion of the original functions. The above example also explains the necessity of
generating testing aspects from goal aspects and their related functionalities.

3.5 Evolving Requirements Aspects

An important component of working with requirements models is adapting to
change: We do not expect our models to be valid for all situations. Consequently,
we have been developing a framework for managing requirements models much
like configuration management (CM) of source code. Our system consists of an
object-oriented version control system, named Molhado [22]; a query language
in OCL; and custom code to provide configuration support: temporal query,
commit, checkout, reporting and so on. Our implementation is implemented in
Eclipse, using the EMF modeling framework.

Changes to a model’s entities are mirrored and updated to the graph struc-
tures in the model-driven CM repository. The mirror maintains a mapping be-
tween the model in memory and the model in persistent storage. The mirror
mapping is necessary as the EMF-generated model does not use the Molhado-
specific in-memory data structure. Our mapping is implemented as follows.

For each modeling project, the mirror contains (with decreasing granularity):
1) a folder object, representing the project name; 2) leaf folders containing model
objects that are uniquely identified by name of goal model files; and 3) model
objects containing Molhado graph structure objects (i.e. nodes and edges) that
maintain a one-to-one mapping with the model objects in the EMF model. In
other words, not only the versions of files but also the versions of individual
objects are being maintained.

We have validated the tool using both aspect and aspect-less requirements
models. We convert the models from the textual Q7 language losslessly to our
EMF-derived metamodel. This allows us to leverage the suite of modeling tools
in the Eclipse project. Once the model is in the EMF format, we can edit it in
our custom graphical editor, and commit versions of that model to Molhado’s
file-based storage. The versioning system is fine-grained, with each object in the
model—goal, aspect, relation—getting a separate version.

How well does this configuration management system support changes in
aspect-oriented requirements models? We committed a version of our example
models using both aspects and no aspects to see how the tool performed. Version
1 of each model is a goal model with two aspects: usability and security. Version 2
adds the notion of language customization to the usability aspect as advice (Goal:

Aspects across Software Life Cycle: A Goal-Driven Approach 99

Usability [language], children Goal: Customization, Task: Translate). In the non-
woven model, this advice is separate, but in the non-aspectual context, the advice
is tightly integrated. From version 1 to version 2 of the non-woven model, a mere
three changes are made, reflecting the new advice. In the non-aspectual model,
in contrast, there are now those three advice elements, as well as the contribution
links between the functional elements and the aspects, amounting to six additional
linkages, which is nearly 15% more linkages in our small proof-of-concept model
(for reference, version 1 of the aspect model contains 22 links and 26 nodes). There
are 11 added links between version 1 of the aspect model and version 1 of the non-
aspectual model. We conclude that maintaining an evolving aspect version of the
model places less demand on the modeler than its non-aspectual counterpart.

4 Case Study

Case studies are an empirical inquiry to investigate a contemporary phenomenon
within its real-life context. We used an exploratory case study [43] as the basis for
our empirical evaluation. An exploratory case study is an in-depth exploration
of one particular case (situation or subject) for the purpose of gaining depth of
understanding into the issues being investigated. The design of a case study, in
the most elementary sense, is the logical sequence that connects the empirical
data to a study’s initial research questions, and ultimately, to its conclusions.
Our research questions focus on leveraging our framework in a real-world setting
and examining the consequences. Specifically, we derive the following hypotheses
to guide the study design:

1. Tracing broadly-scoped non-functional concerns across the software life cycle
is enabled by our framework;

2. The goal model, together with its refinement and transformation defined in
our framework, becomes a primary artifact in the development and validation
process; and

3. Software complexity is addressed by the synthesis of MDE and AOSD.

4.1 Data Collection

The subject in our study is osCommerce [29], an open-source platform written
in PHP, on which a Web-based media shop [5] development can be fully based.
In our previous work [45], we used osCommerce to show how to discover aspects
from media shop goal models. In particular, seven goal aspects were identified
in [45], among which we choose security and usability aspects as two embedded
units of analysis within the current case study. Such a selection is guided by the
previous work in a familiar e-commerce domain, and represents a typical case
and units of analysis since both security and usability are commonly discussed
early aspects in the literature [31].

The data collection in our study consisted of three parts. First, the goal model
with aspects for media shop was presented in [45] and further represented in

100 N. Niu et al.

Table 1. Tracing security (S) and usability (U) aspects in an osCommerce media shop

Concept Q7 phpAspect Validation

aspect (S) <aspect>::Security [system] aspect Security Use PHPUnit to verify

pointcut (S) <= + * [page] call(Page->goTo($arg2)) http authentication

<= + * [cart] exec(Cart->*(*)) and page redirection.

advice (S) { & Redirect [login] } checkCredentials{...} Validation result:
{ & SSL [connection] } checkSSL{...} security insured.

aspect (U) <aspect>::Usability [language] aspect Usability Language Use pspell and native-

pointcut (U) <= + * [page] call(Page->*printf(*)) speaker testers to check

<= + * [date] call(Data->strftime($arg2)) the correctness of lang-

<= + * [amount] exec(Amount->display($arg2)) uage translation, date

advice (U) { & Translate [language, NLS] } translatePage{...} display, and currencies.

{ & Display [format, date] } dateTimeFormat{...} Validation result:
{ & Convert [currency, amount] } convertCurrency{...} usability enhanced.

Q7. Second, the implementation of osCommerce in PHP was accessible through
open-source repositories. Our implementation of osCommerce’s code aspects in
phpAspect was available at [30]. Note that, currently, a human agent has to man-
ually carry out the model-to-code transformation; automatic support is planned
for future research. Third, the goal-based validation instrumentation was devel-
oped and gathered by some of the authors of this paper (also available at [30]).

It should be noted that case studies, like experiments, are generalizable to
theoretical propositions and not to populations or universe. In this sense, the case
study, like the experiment, does not represent a “sample”, and in doing a case
study, our goal will be to expand and generalize theories (analytic generalization)
and not to enumerate frequencies (statistical generalization) [43]. To this end,
we regard the selection of subject and units of analysis in our study sufficient.
We explicitly formulated three plausible hypotheses for testing, and expect to
make analytic generalization about these theoretical propositions.

4.2 Data Analysis

Table 1 summarizes the analysis results of tracing aspects in our subject osCom-
merce system. The mappings between goal aspects in Q7 and code aspects in
phpAspect can be readily spotted in Table 1. Specifically, the name of a goal
aspect corresponds to that of a code aspect. Moreover, we map goal’s topics into
parameterized pointcuts, and map softgoal’s operationalizations into advices.
The one-to-one correspondence between model aspect and code aspect pre-
sented in Table 1 is rather a coincidence due to the chosen units of analysis
than the norm of our framework. In more general and complex cases, advanced
many-to-many tracing mechanisms may be needed. Nevertheless, we favor a
straightforward model-to-code transformation scheme to bridge the gap between
domain concepts and implementation technologies. The results in Table 1 hap-
pen to illustrate this point.

Aspects across Software Life Cycle: A Goal-Driven Approach 101

We focus on the usability aspect in this section, as security is discussed in the
previous section as an illustration of our approach. The goal aspect “Usability
[language]” is AND-decomposed into 3 parts. One translates natural language
strings (NLS) appearing in a Web page to the local language. Another deals
with displaying date and time in the desired conventional format. The third
converts money amounts from a country’s currency into the local currency. The
Q7 representations for each pointcut and advice of the usability aspect (U) are
given in the second column of Table 1. Correspondingly, Table 1’s third col-
umn highlights these concepts’ counterparts in the phpAspect implementation.
The implemented aspects were weaved into osCommerce’s base modules by the
phpAspect weaver, as explained in Fig. 5.

The goal model plays a crucial role in system validation, and validation in
turn justifies the effort of modeling aspects early in the requirements phase. We
tested the weaved system in two respects: hard goal preservation and softgoal
enhancement. Unit test cases existed for validating the functional requirements of
the osCommerce system. Such test cases should not be affected by introducing
the aspects that implemented the NFRs. Therefore, we reused the functional
testing units without any change for checking the functionalities of the weaved
system. For example, the shopping cart sum computation must be the same
regardless of which natural language is used by the media shop customer. A unit
test case using PHPUnit [33] was reused.

require_once ’PHPUnit/Framework/TestCase.php’;
require_once ’classes/cart.class.php’;
class CheckoutTest extends

PHPUnit_Framework_TestCase {
private function getOrder(){
$cart = new Cart();
$cart->addItem(’Bread’, 2);
// 2.20 each in USD

$cart->addItem(’Butter’, 1);
// 3.20 each in USD

return $cart->getAmount();
}
public function testCheckoutTotal(){
$this->assertEquals(Currency::convert(
2*2.20+1*3.20, ’usd’), $this->getOrder());

}
}

We reused 22 functional unit test cases for the weaved system to ensure that
introducing goal aspects does not change the function of osCommerce. If one
introduces an aspect that does change the functionality of the original system,
we consider that either the function is not intended originally or new test case
needs to be designed and weaved into the original set of test cases along with
the code aspect. However, it is beyond the scope of this paper to discuss how

102 N. Niu et al.

Fig. 6. Screenshot of an osCommerce media shop shown in default language (English)

an aspect should implement a functional requirement, and how such an aspect
should be traced and validated.

Having checked that the weaved system preserved system functionalities, we
wanted to test whether the aspects indeed addressed the quality concerns, and
more importantly, whether they helped better achieve the original stakeholder
softgoals. Such a validation was guided by the quality metrics derived from
goal-oriented analysis. Taking “Usability [language]” for example, osCommerce
currently supported English, German, Spanish, and Japanese users. Figure 6
shows a Web page in the default language—English. The usability aspect should
render a Web page by using the language chosen by the user as natural as
possible. This included showing textual strings, date, and currency in the desired
language and format, as described earlier and indicated in Table 1. Figure 7
shows two screenshots of the weaved system after the language customization
aspect is applied.

We validated the usability aspect via two means. Native-speaker (in our case
Spanish and Japanese) testers confirmed that the language customization aspect
worked very well, in that most Web page contents shown in the desired language,
including date and currency, were semantically correct. To evaluate this result
in a triangulating fashion [43], we also chose the pspell testing harness [34] to
check the syntax of the resulting Web page texts automatically. The fact that
all customized pages contained less than 5% syntactic errors increased our confi-

Aspects across Software Life Cycle: A Goal-Driven Approach 103

Fig. 7. Screenshots of the weaved system that enhances usability for Spanish (upper)
and Japanese (lower) users

104 N. Niu et al.

dence that the aspects “weaved system indeed helped better meet stakeholders”
usability requirements.

4.3 Validity Discussion

Several factors can affect the validity of our exploratory case study: construct
validity, external validity, and reliability [43]. Construct validity concerns es-
tablishing correct operational measures for the concepts being studied. The key
construct in our study is the idea of a goal aspect. Although softgoals have huge
potential to become early aspects [24], others may argue that goal aspects can be
functional as well. We believe that goal aspects are intended to enhance system
qualities while preserving functionalities, and the early aspects community needs
to address it more thoroughly. External validity involves establishing the domain
to which a study’s findings can be generalized. In regard to external validity, we
chose Q7, phpAspect, and various testing mechanisms in tracing aspects across
an e-commerce application. Further empirical studies are needed to examine the
applicability and generality of our framework in coping with other modeling no-
tations, programming languages, and application domains. To reduce the threats
to reliability, which cares about demonstrating that the operations of a study
can be repeated with the same results, we selected an open-source project and
made all our empirical data publicly accessible [30]. Thus, our reported study
is replicable, and we believe we would obtain similar results if we repeated the
study.

When a developer needs to choose an approach to apply in (re-)engineering
an application such as osCommerce, which approach is most appropriate will de-
pend on the task at hand and what type of input is already available. We found
out from our case study that our proposed framework could be particularly
useful if multiple stakeholder roles were involved in the problem domain, inten-
tionally relying on each other for achieving their individual goals and softgoals.
In addition, goal-oriented modeling was preliminary to goal aspects discovery,
tracing, and validation, which seemed to be a major cost of applying our ap-
proach. Some limitations also arose from the study that we plan to investigate
further. First, deciding how to map a goal aspect, either to a code aspect or to
a quality issue, turned out to be non-trivial, and the framework should provide
guidelines or heuristics to facilitate the decision making. Second, the framework
should be extended to allow multiple, possibly conflicting, aspects to be weaved
at the same time. Third, automatic support for model transformation, especially
complex many-to-many mappings, was necessary for the framework to be more
scalable and extensible.

It is worthwhile discussing some experience from our study. When re-
engineering osCommerce using aspects, we wanted to achieve a high degree of
maintainability to facilitate modification and reuse. Aspects modularized code
that would be tangled and scattered otherwise. This not only led to a cleaner
code base but also addressed the complexity issue in that uncluttered views were
modeled and preserved in the development process. For instance, in the original
implementation, 603 natural language string variables were defined in each of

Aspects across Software Life Cycle: A Goal-Driven Approach 105

the English, German, Spanish, and Japanese language header files to be included
in specific Web pages. This caused scattered code duplication. We defined a sin-
gle usability aspect to modularize these language customization concerns, and
removed 3,990 lines of code, 7.6% from the whole code base. In addition to the
reduced complexity at the implementation level, the goal model is much closer
to the problem situation, which circumvents complexity at the conceptual level.

The above finding helped address the “maintainability” softgoal from the
developer’s perspective. However, “maintainability” was not originally an NFR
concern in the media shop goal model presented in [45]. Thus, we successfully
uncovered a missing part of the goal model during the engineering process. This
effectively improved the model’s quality and longevity because there were no
conceptual discontinuities that precluded backtracking. In this sense, one shall
not apply our framework in a strict forward-engineering way, but in an iterative
fashion within an integrated MDE process. We, therefore, conclude that the
exploratory case study presented positive empirical evidence for accepting our
three initial hypotheses.

5 Related Work

Goal modeling has become a central activity in RE [41]. It expresses concepts
that are fundamental for understanding and specifying stakeholder intentions
and concerns. The resulting goal model is a critical mass that supports various
kinds of analysis: trade-offs [6], completeness [8], propagation [11], semantics [12],
NFRs [21], interferences [25], aspects [45], and many more [41]. Unfortunately,
the literature has paid little attention to leveraging the goal model to drive the
software development. As a result, practitioners often consider the goal model a
nice-to-have artifact or document in the daily practice. Of course, if the model
ends up merely as documentation, it is of limited value because documentation all
too easily diverges from reality. Consequently, a key premise behind MDE is that
programs are (automatically) generated from their corresponding models [37].

The Tropos project [5] avoided the shortsighted view of treating models
merely as documentation, and used the goal model as a driving force in subse-
quent implementation. In particular, agent-oriented programming platform was
used to develop the goal model, because it seemed natural to map actors to
agents. As discussed in Sect. 2.2, several problems exist, among which the dis-
tinction between hard goals and softgoals is obscured in the software life cycle.
Because these model constructs were not explicitly connected to the actual soft-
ware, there was no way of ensuring that the developers followed the analysis
and design decisions captured in the goal model during implementation. They
would often change design intent during implementation—thereby invalidating
the model. Unfortunately, because the mapping between models and code is im-
plicit and the code is difficult to comprehend, such digressions would remain
undetected and could easily lead to downstream integration and maintenance
problems. Note that changing design intent is not necessarily a bad thing, but
it is bad if the change goes unobserved [37]. In contrast, we fully appreciate

106 N. Niu et al.

the distinction between hard goals and softgoals, and have devised a full-fledged
AOSD framework to transfer the design intent into implementations.

The straightforward model-to-code transformation proposed in our framework
shall not de-emphasize the model-to-model transformation, which in our case is
the refinement of goal models. It is well recognized that NFRs may not be aligned
cleanly and they often depend on or contradict with each other [6]. A major ad-
vantage of modeling aspects in goal models is to gain insights into the interplays
of NFRs and detect conflicting concerns early, when trade-offs can be resolved
more economically [1]. In [23], we presented a rigorous approach to based on
the repertory grid technique [9] and formal concept analysis [10], analyzing, re-
fining, and prioritizing stakeholders’ interrelated concerns. This concept-driven
approach [23] deals with goal model transformation in-depth, and can be seam-
lessly integrated with our current framework to capitalize on the productivity
improvements offered by MDE and AOSD.

When abstract NFRs (softgoals) are concretized, some concerns manifest
themselves as quality issues rather than specific code fragments, as shown in
Fig. 4. One way to handle these quality issues is to define the specification of
measurements independent of specific applications. Aside from the structural
transformation proposed in our framework, non-functional measurement refine-
ment can be applied to support MDE [35]. The idea is to have definitions of
measurements at different levels of abstraction, including provision of transfor-
mation rules. The measurement repository can be constructed independent of
application development and preferably at a far earlier time, so that the appli-
cation engineer can reuse the repository when addressing specific quality issues.
Structural and measurement refinements are by no means orthogonal: they both
connect to the functional models and their refinement [35]. Our approach com-
plements quality measurement development by providing mechanisms to specify
the joinpoints in the goal model and its transformations.

Aspects at the requirements level have been studied extensively in recent
years. A requirements aspect has been discovered (or more accurately made ex-
plicit) in many RE frameworks: a collaboration in requirements for software
components [14], an extension in a use case diagram [15], a softgoal in a goal
model [45], an instance of terminological interference in viewpoint-based require-
ments models [24], an NFR in a software requirements specification [7], and more.
A taxonomy of asymmetric requirements aspects is provided in [26]. Asymmetric
approaches have made the base-aspect distinction clear, i.e. aspects are relative
to the dominant decomposition criterion. On the contrary, a symmetric approach
does not separate base from aspects: requirements are decomposed in a uniform
fashion. This makes it possible to project any particular set of requirements on
a range of other requirements and to support a multi-dimensional separation of
concerns [40].

However, most work failed to take advantage of the early aspects model to
direct software development. A notable exception is the work presented in [16],
where proof obligations were introduced to formalize the validation of the aspec-
tual requirements. Their approach can be applied to programs of well-defined

Aspects across Software Life Cycle: A Goal-Driven Approach 107

axiomatic semantics. For the quality attributes that do not have a clear-cut
answer to satisfaction, it is necessary to validate whether and how much the
system can be improved after weaving the proposed aspects. For example, in-
stead of proving that a word is Spanish, we show how well it is understandable
by the Spanish-speaking users. Although we reuse unit testing for functional
requirements, we believe a complementary approach based on generating proof
obligations can better guide the validation of functional requirements.

6 Conclusions

Aspect-oriented software development offers language constructs to tackle soft-
ware complexity. Aspects provides the mechanism that enables the source code
to be structured to facilitate the representation of multiple perceptions and to
alleviate tangling and scattering concerns. Many of these concerns often arise
in the problem domain [27]. Therefore, it is important to identify and repre-
sent concerns that arise during the early phases of software development, and to
determine how these concerns interact.

Model-driven engineering tackles conceptual complexity in software develop-
ment. The major advantage of MDE is that we express models using concepts
that are much less bound to the underlying implementation technology and are
much closer to the problem languages [37]. Goal modeling fits in the MDE pic-
ture in that it captures stakeholder intentions, beliefs, commitments, and the
relationships among the various concerns. This higher level of abstraction makes
the goal model easier to specify, understand, and maintain.

In this paper, we have presented our initial investigation into designing a goal-
based framework that synthesizes AOSD and MDE, thereby managing complex-
ity in both language and conceptual dimensions. A goal aspect models a system
from a stakeholder-defined viewpoint. The aspect is a slice of a system model
that contains only information pertinent to the viewpoint. Our framework keeps
a clear separation of concerns across software life cycle, and the straightforward
model-to-code transformation helps bridge the gap between domain concepts and
implementation technologies. The goal model plays a key role in system valida-
tion and becomes a primary artifact in software development. Evolving require-
ments aspects help increase the model’s longevity. We evaluated the approach
via an exploratory case study that re-engineered a public domain e-commerce
platform. The study collected positive evidence to confirm the framework’s ap-
plicability and usefulness, as well as our hypotheses. We also verified the initial
AOP claim that it is natural to implement the globally concerned NFRs as
aspects that cut across the subsystems [17].

Our work can be continued in many directions. More in-depth empirical stud-
ies are needed to lend strength to the preliminary findings reported here. As-
pects other than security and usability can be carried out, and AOP languages
other than phpAspect can be tried out. It would be useful to extend our frame-
work’s ability to handle conflicts and trade-offs when composing multiple as-
pects at the same time. Also of interest would be providing automation support

108 N. Niu et al.

for our framework. The future research agenda also includes investigating the
framework’s applicability to handle functional aspects, incorporating advanced
many-to-many tracing mechanisms to cope with complex transformations, and
integrating non-functional measurement refinement to deal with quality issues.
Synthesis of AOSD and MDE has a rich value in tackling complexity and im-
proving productivity. We hope our work can become a key enabler for more
rigorous investigation in this area.

Acknowledgments. We would like to thank William Candillon, Steve Easter-
brook, Gilles Vanwormhoudt, Robin Laney, Bashar Nuseibeh, Eric Yu, and Rick
Salay for helpful discussions and for insightful comments on the osCommerce case
study. We also thank the anonymous reviewers for their constructive suggestions.

References

1. Baniassad, E., Clements, P.C., Araújo, J., Moreira, A., Rashid, A., Tekinerdoğan,
B.: Discovering early aspects. IEEE Software 23(1), 61–70 (2006)

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language: User
Guide. Addison-Wesley, Reading (1999)

3. Bratman, M.: Intention, Plans, and Practical Reason. Harvard Univ. Press,
Cambridge (1987)

4. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Towards an
agent oriented approach to software engineering. In: Wkshp on Objects and Agents
(2001)

5. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information sys-
tems engineering: the Tropos project. Information Systems 27(6), 365–389 (2002)

6. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, Dordrecht (2000)

7. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The detection and classification of
non-functional requirements with application to early aspects. In: Intl. RE Conf.,
pp. 39–48 (2006)

8. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Programming 20(1-2), 3–50 (1993)

9. Fransella, F., Bell, R., Bannister, D.: A Manual for Repertory Grid Technique, 2nd
edn. John Wiley & Sons, Ltd., Chichester (2004)

10. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1996)
11. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal

models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 167–181. Springer, Heidelberg (2002)

12. Goal-oriented requirement language (GRL): http://www.cs.toronto.edu/km/GRL/
(last accessed on February 20, 2009)

13. Gray, J., Lin, Y., Zhang, J.: Automating change evolution in model-driven engi-
neering. Computer 39(2), 51–58 (2006)

14. Grundy, J.: Aspect-oriented requirements engineering for component-based soft-
ware systems. In: Intl. Symp. on RE, pp. 84–91 (1999)

15. Jacobson, I.: Use cases and aspects – working seamlessly together. Journal of
Object Technology 2(4), 7–28 (2003)

16. Katz, S., Rashid, A.: From aspectual requirements to proof obligations for aspect-
oriented systems. In: Intl. RE Conf., pp. 48–57 (2004)

http://www.cs.toronto.edu/km/GRL/

Aspects across Software Life Cycle: A Goal-Driven Approach 109

17. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

18. Leite, J., Yu, Y., Liu, L., Yu, E., Mylopoulos, J.: Quality-based software reuse. In:
Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 535–550.
Springer, Heidelberg (2005)

19. Lesiecki, N.: Unit test your aspects – eight new patterns for verifying crosscutting
behavior. IBM Developer Works (2005)

20. Ludewig, J.: Models in software engineering – an introduction. Softw. and Systems
Modeling 2(1), 5–14 (2003)

21. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional re-
quirements: a process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–497
(1992)

22. Nguyen, T., Munson, E., Boyland, J., Thao, C.: An infrastructure for development
of object-oriented, multi-level configuration management services. In: Intl. Conf.
Softw. Eng., pp. 215–224 (2005)

23. Niu, N., Easterbrook, S.: Analysis of early aspects in requirements goal models: a
concept-driven approach. In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD
III. LNCS, vol. 4620, pp. 40–72. Springer, Heidelberg (2007)

24. Niu, N., Easterbrook, S.: Discovering aspects in requirements with repertory grid.
In: Early Aspects Wkshp at ICSE, pp. 35–41 (2006)

25. Niu, N., Easterbrook, S.: So, you think you know others’ goals? a repertory grid
study. IEEE Software 24(2), 53–61 (2007)

26. Niu, N., Easterbrook, S., Yu, Y.: A taxonomy of asymmetric requirements aspects.
In: Moreira, A., Grundy, J. (eds.) Early Aspects Workshop 2007 and EACSL 2007.
LNCS, vol. 4765, pp. 1–18. Springer, Heidelberg (2007)

27. Nuseibeh, B.: Crosscutting requirements. In: Intl. Conf. on AOSD, pp. 3–4 (2004)
28. Open OME (organization modelling environment):

http://www.cs.toronto.edu/km/openome/ (last accessed on February 20, 2009)
29. osCommerce: http://www.oscommerce.org/ (last accessed on February 20, 2009)
30. osCommerce’s phpAspect portal: http://www.cs.toronto.edu/~yijun/aspectPHP

(last accessed on February 20, 2009)
31. Rashid, A., Sawyer, P., Moreira, A., Araújo, J.: Early aspects: a model for aspect-

oriented requirements engineering. In: Intl. RE Conf., pp. 199–202 (2002)
32. Parnas, D.: On the criteria to be used in decomposing systems into modules. Comm.

ACM 15(12), 1053–1058 (1972)
33. PHPUnit: http://phpunit.sourceforge.net/ (last accessed on February 20,

2009)
34. pspell: http://php.net/manualen/ref.pspell.php (last accessed on February 20,

2009)
35. Röttger, S., Zschaler, S.: Tool support for refinement of non-functional specifica-

tions. Softw. and Systems Modeling 6(2), 185–204 (2007)
36. Schmidt, D.C.: Model-driven engineering. Computer 39(2), 25–31 (2006)
37. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5),

19–25 (2003)
38. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-

driven software development. IEEE Software 20(5), 42–45 (2003)
39. Shoham, Y.: Agent-oriented programming. Technical Report STAN-CS-1335-90,

Stanford Univ. (1990)

http://www.cs.toronto.edu/km/openome/
http://www.oscommerce.org/
http://www.cs.toronto.edu/~yijun/aspectPHP
http://phpunit.sourceforge.net/
http://php.net/manualen/ref.pspell.php

110 N. Niu et al.

40. Tarr, P.L., Ossher, H., Harrison, W.H., Sutton, S.M.: N degrees of separa-
tion: multi-dimensional separation of concerns. In: Intl. Conf. on Softw. Eng.,
pp. 107–119 (1999)

41. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Intl. Symp. on RE, pp. 249–262 (2001)

42. YAXX: http://yaxx.sourceforge.net/ (last accessed on February 20, 2009)
43. Yin, R.: Case Study Research: Design and Methods. Sage Publications, Thousand

Oaks (2003)
44. Yu., E.: Towards modelling and reasoning support for early-phase requirements

engineering. In: Intl. Symp. on RE, pp. 226–235 (1997)
45. Yu, Y., do Prado Leite, J.C.S., Mylopoulos, J.: From goals to aspects: discovering

aspects from requirements goal models. In: Intl. RE Conf., pp. 38–47 (2004)
46. Yu, Y., Niu, N., González-Baixauli, B., Mylopoulos, J., Easterbrook, S., do Prado

Leite, J.C.S.: Requirements Engineering and Aspects. In: Lyytinen, K., Loucopou-
los, P., Mylopoulos, J., Robinson, B. (eds.) Design Requirements Engineering: A
Ten-Year Perspective (to appear, 2009)

47. Yu, Y., Niu, N., González-Baixauli, B., Candillon, W., Mylopoulos, J., Easterbrook,
S., do Prado Leite, J.C.S., Vanwormhoudt, G.: Tracing and validating goal aspects.
In: Intl. RE Conf., pp. 53–56 (2007)

48. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM
TOSEM 6(1), 1–30 (1997)

http://yaxx.sourceforge.net/

Aspect-Oriented Model-Driven Software
Product Line Engineering

Iris Groher and Markus Voelter

Johannes Kepler University Linz, Austria
Independent Consultant, Goeppingen, Germany

Iris.Groher@jku.at, voelter@acm.org

Abstract. Software product line engineering aims to reduce develop-
ment time, effort, cost, and complexity by taking advantage of the com-
monality within a portfolio of similar products. The effectiveness of a
software product line approach directly depends on how well feature vari-
ability within the portfolio is implemented and managed throughout the
development lifecycle, from early analysis through maintenance and evo-
lution. This article presents an approach that facilitates variability im-
plementation, management, and tracing by integrating model-driven and
aspect-oriented software development. Features are separated in mod-
els and composed of aspect-oriented composition techniques on model
level. Model transformations support the transition from problem to so-
lution space models. Aspect-oriented techniques enable the explicit ex-
pression and modularization of variability on model, template, and code
level. The presented concepts are illustrated with a case study of a home
automation system.

Keywords: Software product line development,Aspect-oriented software
development, Model-driven software development.

1 Introduction

Most high-tech companies provide products for a specific market. Those prod-
ucts usually tend to have many things in common. An increasing number of
these companies realize that product line development [10] [41] fosters planned
reuse at all stages of the lifecycle, shortens development time, and helps staying
competitive.

Commonalities between products in the portfolio as well as the flexibility to
adapt to different product requirements are captured in so-called core assets.
Those reusable assets are created during domain engineering. During applica-
tion engineering, products are either automatically or manually assembled using
the assets created during the domain engineering process and completed with
product-specific artifacts.

Products usually differ by the set of features they include to fulfill customer
requirements. A feature is defined as an increment in functionality provided by
one or more members of a product line [6]. The effectiveness of a software prod-
uct line approach directly depends on how well feature variability within the

S. Katz et al. (Eds.): Transactions on AOSD VI, LNCS 5560, pp. 111–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

112 I. Groher and M. Voelter

portfolio is managed from early analysis to implementation and through main-
tenance and evolution. Variability of features often has widespread impact on
multiple artifacts in multiple lifecycle stages, making it a pre-dominant engineer-
ing challenge in software product line engineering.

Despite their crucial importance, features are rarely modularized and there is
only little support for incremental variation of feature functionality. The reason is
that feature-specific parts are often of crosscutting nature. On implementation
level, often pre-processors are used to wrap feature-specific code fragments in
#if-#endif statements. Listing 1 shows an implementation example of the eCos
operating system [16]. The Cyg Mutex constructor includes 29 lines of code.
Four lines of code implement the actual business logic (lines 1, 3, 4, and 29), two
lines set the tracing policy (lines 2 and 28), and 23 (almost unreadable) lines
implement optional features in this case.

1 Cyg Mutex : : Cyg Mutex () {
CYG REPORT FUNCTION() ; // trac ing po l i cy

3 l ocked = fa l se ;
owner = NULL;

5 #i f de f ined (CYGSEM KERNEL PRIORITY INVERSION PROTOCOL DEFAULT) &&
de f ined (CYGSEM KERNEL PRIORITY INVERSION PROTOCOL DYNAMIC)

7 #ifde f CYGSEM KERNEL PRIORITY INVERSION PROTOCOL DEFAULT INHERIT
pro toco l = INHERIT ;

9 #endif
#i fde f CYGSEM KERNEL PRIORITY INVERSION PROTOCOL DEFAULT CEILING

11 pro toco l = CEILING ;
c e i l i n g = CYGSEM KERNEL PRIORITY INVERSION PROTOCOL DEFAULT PRI;

13 #endif
#i fde f CYGSEM KERNEL PRIORITY INVERSION PROTOCOL DEFAULT NONE

15 pro toco l = NONE;
#endif

17 #else // not (DYNAMIC and DEFAULT def ined)
#ifde f CYGSEM KERNEL PRIORITY INVERSION PROTOCOL CEILING

19 #ifde f CYGSEM KERNEL PRIORITY INVERSION PROTOCOL DEFAULT PRIORITY
// i f there i s a de f au l t p r i o r i t y c e i l i n g defined , use tha t

21 // to i n i t i a l i z e the c e i l i n g .
c e i l i n g = CYGSEM KERNEL PRIORITY INVERSION PROTOCOL DEFAULT PRIORITY;

23 #else
c e i l i n g = 0 ; // Otherwise se t i t to zero .

25 #endif
#endif

27 #endif // DYNAMIC and DEFAULT def ined
CYG REPORT RETURN() ; // trac ing po l i cy

29 }

Listing 1. eCos implementation example [31]

Another pitfall is that features and architecture are often derived from re-
quirements in a non-systematic, ad hoc way. For software product lines it is
essential to know the relationship among requirements, the derived architecture,
the design, and the implementation artifacts. Consequently, a systematic way
to group requirements into features that are then related to architectural en-
tities and a seamless tracing of requirements throughout the whole lifecycle is
necessary.

As demonstrated, variability tends to crosscut multiple points in code as well
as different other artifacts in the software development lifecycle. Moreover, the

Aspect-Oriented Model-Driven Software Product Line Engineering 113

effects of variability and, in particular, new variations brought in by evolution
tend to propagate in ways that cannot be easily modeled or managed. New
requirements may necessitate changes to code, design, documentation, and user
manuals among many other artifacts and assets that go into making a product
line. Ensuring the traceability of requirements and their variations throughout
the software life cycle is key for successful software development in general, and
a successful product line in particular.

Also, the mapping between problem space and solution space is not trivial. The
problem space is concerned with end-user understandable concepts representing
the business domain of the product line. The solution space deals with the elements
necessary for implementing the solution, typically IT relevant artifacts. There is a
many-to-many relationship between entities in the problem space (requirements
and features) to entities in the solution space (software components).

Aspect-oriented software development (AOSD) [18, 29] improves the way soft-
ware is developed by providing means for modularizing crosscutting concerns.
They are encapsulated as aspects and powerful mechanisms support their sub-
sequent composition with other software artifacts. Aspects interact with other
artifacts at so-called joinpoints, well-defined points in the structure, or execu-
tion flow of an artifact or a program. Pointcut expressions quantify over the
joinpoints to select the set of actual composition points for a specific aspect.
An aspect weaver automatically composes aspects with the rest of the system,
either statically during compilation, dynamically at runtime, or at load-time.

Model-driven software development (MDSD) [21, 44] improves the way soft-
ware is developed by capturing key features of a system in models which are
developed and refined as the system is created. During the system’s life cycle,
models are synchronized, combined, and transformed between different levels of
abstraction and different viewpoints. In contrast to traditional modeling, mod-
els do not only constitute documentation but are processed by automated tools.
Thus models have to be formal. Every model is an instance of a metamodel. The
metamodel defines the vocabulary and grammar, i.e. the abstract syntax used
to build models. To be useful for MDSD, models have to be complete regarding
the abstraction level or viewpoint they describe.

While AOSD and MDSD are different in many ways–MDSD adds domain-
specific abstractions and AOSD offers improved support for concern modular-
ization across the life cycle as well as powerful composition mechanisms–they
also have many things in common, e.g. they help the developer to reason about
one concern at a time. Essentially, AOSD and MDSD complement each other.

We propose an approach that facilitates variability implementation, manage-
ment, and tracing from architectural modeling to implementation of product
lines by integrating both AOSD and MDSD. When building product lines, our
integrated approach increases productivity because

– Variability can be described more abstractly because in addition to the tra-
ditional mechanisms, variability is also described on model level.

– The mapping from problem to solution space can be formally described and
automated using model-to-model transformations.

114 I. Groher and M. Voelter

– Aspect-oriented techniques enable the explicit expression and modulariza-
tion of crosscutting variability on model, code, and generator level.

– Fine-grained traceability is supported since tracing is done on model element
level rather than on the level of code artifacts.

The presented concepts are illustrated with a case study of a home automation
system. The case study is based on real-world system requirements from Siemens
AG and demonstrates the benefits of the presented approach. We used data from
the case study to answer our research question:

Where and how can software product line development benefit from AOSD,
MDSD, and their combination?

The remainder of this article is organized as follows: Section 2 provides an
overview of our integrated aspect-oriented model-driven software product line
development approach. In addition it gives an overview of openArchitecture-
Ware, the MDSD framework our tools are based on. Section 3 illustrates the
selective adaptation of models and provides an overview of XWeave and XVar.
AO on model transformation level is discussed in Section 4. Section 5 discusses
AO on code generation level. Variability on code level is addressed in Sect. 6.
We report the case study we conducted at Siemens in Sect. 7. We conclude with
a summary and a note on future work in Sect. 8.

2 Aspect-Oriented Model-Driven Software Product Line
Engineering

This section gives an overview of what we call Aspect-Oriented Model-Driven
Software Product Line Engineering (AO-MD-PLE). The key parts are presented
in this section while the separate building blocks and tools are demonstrated in
detail in the subsequent sections.

Our approach [48] integrates AO and MDSD into product line development
to facilitate variability implementation, management, and tracing from archi-
tectural modeling to implementation. We argue that because models are more
abstract and hence less detailed than the code, variability on model level is
inherently less scattered and therefore simpler to manage (cf. Fig. 1).

AO-MD-PLE uses models to describe product lines. Variants are defined on
model level. Transformations generate running applications. AO techniques are
used to help define the variants in the models as well as in the transformers
and generators. We strongly believe that this is the case because domain-specific
models are typically less detailed than the code. From one piece of model, usu-
ally several pieces of the code are generated that depend on that model via
the generation rules. If one wants to change all the dependent locations in the
code manually, then these are obviously more places compared to changing the
model from which those code locations are generated. The fact that models
are less scattered can be explained via a related reasoning process. As already

Aspect-Oriented Model-Driven Software Product Line Engineering 115

Fig. 1. Mapping abstract models to detailed implementations

explained, a generator typically creates several distinct pieces of code in differ-
ent artifacts from the same model (e.g. data structures, database access code,
database schema, or XML schema). This means that the generated code that
belongs to a well-localized part of the model is scattered over different places in
different artifacts.

The approach we propose is as follows:

– We express the different product line artifact types and their instances using
models, i.e. we give them representations on model level. This allows for
processing these artifacts using model transformations.

– Mappings from problem to solution space are implemented as model-to-model
transformations. This enables to formally describe the mappings and auto-
mate their execution.

– Variable parts of the resulting system are assembled from pre-built assets
generated from models. This is more efficient and less error prone than man-
ual coding.

– Aspect-oriented modeling (AOM) [5, 9] is used to implement variability in
models. This supports the selective adaptation of models.

– AO on model transformation and code generation level [47] is used to
implement variability in transformers and generators.

– Aspect-oriented programming (AOP) [4, 28] is used to implement crosscut-
ting features on code level that cannot be easily modularized in the generator.

– Certain parts of the product will still be implemented manually because, for
economic reasons, developing a custom generator is too costly. The manually
written code is integrated with the generated code in well-defined ways.

An overview of AO-MD-PLE is given in Fig. 2. Domain requirements are cap-
tured in a problem space metamodel. Based on product requirements, a problem
space model is created that is an instance of the problem space metamodel. The
problem space metamodel defines the vocabulary and grammar, i.e. the abstract
syntax used to build the problem space model. The model itself is built using a

116 I. Groher and M. Voelter

Domain-specific language (DSL) [44]. A DSL is a formalism for building mod-
els. It encompasses a metamodel (in this case, the problem space metamodel)
as well as a definition of a concrete syntax that is used to represent the model.
The concrete syntax can be textual, graphical, or can be using other means such
as tables, trees, or dialogs. It is essential that the concrete syntax can sensibly
represent the concepts the DSL is intended to describe. A suitable editor has to
be provided that supports the creation of models using the DSL.

Both problem space metamodels and problem space models can be configured
using either model weaving or model tailoring. In model weaving, optional parts
are added to a minimal core, whereas in model tailoring, optional parts are
removed from an overall model.

The tool developed to support model weaving is called XWeave, and the tool
to support model tailoring is called XVar. Both allow the selective adaptation
of models and metamodels based on feature selections in configuration models.
The model configuration approach and the respective tools will be introduced
in great detail in Sect. 3.

A formal mapping is defined between the problem space metamodel and
the solution space metamodel. The defined mapping allows for an automatic
transformation of the problem space model into the solution space model. This
step can be repeated as desired. For example, one could first map the problem
space metamodel to a platform-independent model and map this metamodel to
a platform-specific model. This separation makes it possible to easily support
different platform technologies. Model transformations can be configured using
AO on transformation level.

We used an AO model transformation language called Xtend that supports the
selective adaptation of transformation functions. Again, model transformation
aspects can be linked to features defined in a feature model. AO on transforma-
tion level and the respective language will be illustrated in Sect. 4.

In order to create a running system, the code is generated from the solution
space model. This step can also be configured using AO on template level and is
supported by a language called Xpand. Code generation template weaving will
be described in Sect. 5. As a 100% generation is not realistic, manually written
code has to be integrated with the generated code in well-defined ways. Also,
it might be necessary to integrate pre-built reusable components in the form of
libraries into the generated system. Because in our approach all artifacts have
representations on model level, we can process them using model transforma-
tions. Based on the information in the models, we can determine whether a given
component (either manually written or pre-built) is part of a product and thus
has to be integrated.

Because it is in most cases necessary to include manually written code, variabil-
ity on source code level is an issue. We use AOP to implement positive variability
on code level. In addition, we developed a tool called XVar that supports negative
variability on code level. We will elaborate this in Sect. 6.

An important concern in software product lines is tracing, as stakeholders
want to be able to trace how a given requirement results in a certain software

Aspect-Oriented Model-Driven Software Product Line Engineering 117

Fig. 2. Aspect-oriented model-driven product line engineering

configuration. Using our AO-MD-PLE approach, this is relatively easy to do.
Since mappings between abstraction levels are based on formal model transfor-
mations, we can make sure that the mappings are made persistent in a trace
model. It can either be built automatically by the transformation engine or it
can be built manually by the transformation developer.

Since we trace between model elements, the trace is finer grained than in
current approaches where tracing happens between artifacts [27, 33]. Also, since
problem space concepts are also represented as models and these models have a
defined mapping to solution space models, we gain traceability from the problem
space over to the solution space.

In addition, tracing down to code level is an important issue. Specific regions
of the code need to be associated with model elements. For generated code, this is
straight forward since the generator knows which model elements are “in scope”

118 I. Groher and M. Voelter

when a given region of code is generated. For manually written code, it is more
challenging since a piece of hand-written code may implement any number of
requirements. This problem can be mitigated to some extent by clearly defining
the locations where manually written code can be integrated. An alternative
approach is to specify the trace from models to code manually. Tracing to library
code is again relatively easy to do in our approach as every library component
has some kind of representation on model level. We can then trace via model
element relationships.

On the other end of the spectrum, we also need to trace requirements. These
are different from problem space models as requirements are typically plain En-
glish text. To make them traceable, we need to somehow integrate them into the
“modeling world”. This can be done in various ways, depending on the tool that
is used to capture the requirements. For example, it would be possible to create
an EMF model [14] based on requirements managed with the DOORS [46] tool
and use the EMF model for tracing purposes.

2.1 openArchitectureWare

This section introduces openArchitectureWare (oAW) [38, 39], a toolkit for all
aspects of MDSD. The tools developed in the course of our work are all part of
the oAW framework.

oAW is an open source MDSD framework implemented in Java and integrates
a number of tool components. oAW supports arbitrary import model formats,
metamodels, and output code formats. oAW is integrated into Eclipse and pro-
vides various plug-ins that support model-driven development. It contributes to
and reuses components from the Eclipse Modeling Project [14].

At the core, there is a workflow engine that allows the definition of trans-
formation workflows by sequencing various kinds of workflow components. oAW
comes with pre-built workflow components for reading and instantiating models,
checking them for constraint violations, transforming them into other models,
and then finally, for generating code. oAW provides a family of specialized lan-
guages for specifying constraint checks, transformations, and code generators. All
of those languages are built on a common OCL-like expression language. Editors
and debuggers integrated into Eclipse are provided for all those languages.

Figure 3 provides an overview of oAW and its main building blocks. The list
explains the different components (marked with numbers) as follows:

1. Model verification using constraints: Both models and metamodels can be
checked for validity. In oAW, constraints are defined using the Checks
language.

2. Artifact generation: Any textual artifact can be generated from models using
the Xpand template language.

3. Integrating generated code with manually written code: The Recipe Frame-
work can be used to enforce rules on the code base. For example, a generator

Aspect-Oriented Model-Driven Software Product Line Engineering 119

Fig. 3. Overview of openArchitectureWare [38]

can generate an abstract base class from which developers extend their im-
plementation classes containing the business logic. Such rules can be specified
using Recipes.

4. Model modification: Models can be modified or completed using the Xtend
language.

5. Model transformation: Models can be transformed into other models using
the Xtend language. Typically, input and output models are instances of
different metamodels.

6. Loading and storing models: By default, EMF models are stored in XMI
[36] files. oAW provides workflow components for loading and storing models
from/to XMI files.

7. Model creation using UML tools: Models can be created and edited using
familiar UML tools such as Rational Rose [25] or MagicDraw [35]. oAW
provides adapters for various commonly used UML tools.

8. Textual model creation: oAW can also read textual models created with
custom-built textual editors based on its Xtext framework. The DSL is
described in EBNF, and the parser, metamodel, and customized editor is
created automatically.

9. oAW also integrates with custom graphical editors built using Eclipse GMF
[15]. oAW constraints can be evaluated inside GMF editors in real time, and
oAW can process models created with GMF.

The transformation and generation workflow is described using the oAW work-
flow language. As of version 4.2, workflow files are XML files that describe the

120 I. Groher and M. Voelter

steps that need to be executed in a generator run. Each of these steps is specified
with what is called a workflow component. A typical oAW workflow (Listing 2)
consists of loading one or more models, checking constraints on them, transform-
ing them into other models and then generating code from them.

The root element is named workflow, followed by the declaration of two work-
flow components. The first component has an attribute id and can be refer-
enced throughout this id. The attribute class refers to the Java class that
implements the workflow component. In the first component, an EMF model
(inputModel.xmi) is read from its XMI-based serialization format. The top-level
metamodel package is data.DataPackage. The read model is stored in a model
slot named model, which is used to pass the instantiated model to the transfor-
mation component. In the second workflow component, the model is transformed
by invoking a transformation function transform on the model. The function is
defined in the file model2model. The transformed model is available for further
processing in the transformedModel slot.

<workflow>
<component id=”xmiParser ”

c l a s s=”org . openarch i tec tureware . emf . XmiReader”>
<modelFi le va lue=” inputModel . xmi” />

<metaModelPackage va lue=”data . DataPackage” />
<outputS lot va lue=”model”/>

</component>

<transform id=”XtendComponent . model2model” >
<invoke va lue=”mode l2mode l : : t rans form(\${model }) ”/>
<outputS lot va lue=” transformedModel ”/>

</transform>
</workflow>

Listing 2. oAW example workflow

In oAW, model-to-model transformations are implemented using a language
called Xtend. It is a functional language for querying and navigating existing
models as well as building new models. Listing 3 shows an example transfor-
mation that transforms a model element Interface defined in the metamodel
sourceMM into a model element Service defined in the metamodel targetMM. It
sets the name of the target element of type Service to the name of the source
element of type Interface. The operations of the interface are copied from the
source to the target element.

create targetMM : : S e rv i c e I n t e r f a c e 2S e r v i c e (sourceMM : : I n t e r f a c e i n t f) :
setName (i n t f . name) −>
se tOperat ions ((L i s t) i n t f . op e ra t i on s . c lone ()) ;

Listing 3. oAW example Xtend transformation

Code generation is done using a language called Xpand. It is an object-oriented
template language that supports polymorphism. Listing 4 shows an example Xpand
template file. First, the metamodel is imported. Second, a new file with the name

Aspect-Oriented Model-Driven Software Product Line Engineering 121

of the entity Class including the class skeleton is generated. The template�name�
is substituted with a concrete value (the name of the class) at generation time.

<<IMPORT metamodel>>

<<DEFINE j avaClass FOR Class>>
<<FILE name + ” . java ”>>

pub l i c c l a s s <<name>> {
// add implementation o f c l a s s here

}

<<ENDFILE>>
<<ENDDEFINE>>

Listing 4. oAW example Xpand template

Each oAW language (Check, Xtend, Xpand) is based on a common expression
language and type system. This has the advantage that all the languages can
operate on the same models, metamodels, and meta metamodels have a common
look and feel to them, and are therefore easy to learn. The expressions framework
provides a uniform abstraction layer over different meta metamodels [39].

Integrating oAW and pure::variants. This section illustrates how the vari-
ant management tool pure::variants [42] has been integrated into oAW to enable
seamless and efficient aspect-oriented model-driven product line development.

pure::variants is a variant management tool that manages product line vari-
ability and assists in managing and assembling individual product variants. The
basic idea of pure::variants is to realize product lines by feature models and fam-
ily models. The problem space is captured with feature models and the solution
space is captured with family models, separately and independently. A family
model consists of so-called components. Components represent elements of the
software solution and contain parts like classes, objects, functions, variables, and
documentation. A feature model specifies the interdependencies of the features
of a product line. They represent all variability of the products in the product
line. pure::variants also supports the use of multiple feature models that are
hierarchically linked.

Users can select features required for the desired product from the feature
models. A configuration model represents such a selection of features.
pure::variants checks the validity of this selection, and if necessary, automati-
cally resolves dependency conflicts. A valid selection triggers an evaluation of
the family models that contain component definitions consisting of logical and
physical parts. The evaluation process results in an abstract description of the
selected solution in terms of components.

Within the oAW tooling, global configuration models can be queried, and
hence, MDSD activities can be performed based on the selection of features.
Workflow components, model-transformations, and code generation templates
can be linked to features. Their execution then depends on the presence or
absence of features in the configuration model.

122 I. Groher and M. Voelter

Fig. 4. Integration of pure::variants and oAW

As illustrated in Fig. 4(a), the data transfer between pure::variants and oAW
is done using EMF Ecore. An automatic variant model export has been inte-
grated into pure::variants. The oAW runtime reads this model and makes the
variant information available for querying by oAW workflows, transformations
and templates. In order for this integration to work, a metamodel for configu-
ration models (Fig. 4(b)) has been defined. A ConfigurationModel contains a
list of Features that again contain features (subfeatures). Features can contain
attributes that have a name and a value.

The dependency between workflow steps and features is expressed by the
surrounding < feature . . . > tag. Listing 5 shows an example. If and only if the
feature debug is selected in the global configuration model, code that implements
the debug feature is generated.

<feature e x i s t s=”debug”>
<component c l a s s= ’oaw . xpand2 . Generator>

. . . invoke generator that gene ra t e s debugging code
</component>

</f e a tu r e>

Listing 5. Dependency between workflow and features

It is also possible to access the configuration model directly from within trans-
formations or code generation templates. In Listing 6, the transformation func-
tion handleDebugFeature is only called if the debug feature is selected in the
configuration model.

create Se rv i c e t r a n s f o rm In t e r f a c e 2S e rv i c e (I n t e r f a c e f) :
. . .
hasFeature (”debug”) ? handleDebugFeature () −> this) : this ;

handleDebugFeature (System sys) :
se tValue ((S t r i ng) getFeatureAttributeValue (”debug” , ” l e v e l ”)) −>
. . .

Listing 6. Dependency between transformation and features

The integration of pure::variants and oAW also supports addressing properties
or attributes of features. The values of properties and attributes can be read and
used in the transformation or code generation templates. In Listing 6, the debug
level is read and handled within the transformation.

Aspect-Oriented Model-Driven Software Product Line Engineering 123

The integration of variant management tools other than pure::variants is eas-
ily possible. As long as the tool provides an export of variant information to the
defined metamodel in Fig. 4, oAW can read and interpret this information. The
variant information is then automatically available to the workflow, transforma-
tion, and generation engine.

3 Expressing Variability in Structural Models

This section describes concepts and tools that support the definition of
feature-based variability in structural models and hence the selective adapta-
tion of models. Structural models are models built with a creative construction
DSL. Features expressed in structural models can be linked to configuration
models. This enables the adaptation of those structural models based on the
feature selection in configuration models.

3.1 Positive Variability

The terms positive and negative variability have been initially introduced in [11].
As illustrated in Fig. 5, positive variability starts with a minimal core and selec-
tively adds additional parts. The core represents the model parts that are common
to all products within the product line. Varying model parts are attached to the
core based on the presence or absence of features in the configuration models.

Negative variability selectively takes away parts of a creative construction
model. It will be discussed in detail in Sect. 3.2

Fig. 5. Positive variability

When expressing variability in models, optional model elements have to be
connected to the core at specific points. This is analogous to the concept of
joinpoints in aspect-orientation. In AOP, joinpoints are those elements of the
programming language semantics which the aspects coordinate with [2]. In mod-
eling, joinpoints are elements of the modeling language which aspects coordinate
with. In product lines, variation points represent variability subjects within do-
main artifacts [41]. Domain artifacts include all kinds of development artifacts
such as requirements, architecture, design, code, and tests. This similarity in the
concept of a variation point and a joinpoint makes AOM and specifically model
weaving well-suited candidates for implementing positive variability in structural

124 I. Groher and M. Voelter

Fig. 6. Model weaving

models. Similar to weaving of code level aspects in traditional AO languages, as-
pects are defined on model level and are composed with a base model. Weaving
is technically done by an aspect weaver at designated joinpoints.

In the field of AOP, there are various joinpoint models around and many
are still under development. Joinpoint models heavily depend on the underlying
programming language and AO language [2]. Hence, the joinpoint model of AOM
depends on the underlying modeling language and the language used to express
aspects on model level. We introduce a model weaving approach including a
joinpoint model that supports the expression of aspects on model level and a
composition technique for base models and aspect models.

Figure 6 illustrates the concept of model weaving. A given base model (M A)
and an aspect model (M Aspect) are composed. The aspect model consists of
pointcut definitions that capture the points where in the base model additional
model elements should be added. In addition to the pointcut definitions, the
aspect model contains advices that represent the elements to be added. The
aspect model uses both name matching and pointcut expressions to select the
desired joinpoints. Both techniques will be explained in great detail later in this
section. In this case, the model element D of the aspect model M Aspect that is
derived from element C is added to the result model. The weaving rule applied
here is simple name matching. The elements named C in both models correspond,
and so both elements are combined. This results in C having a new child D in
the result model. The aspect element A* specifies that the dotted gray element
within A* should be added to all base elements whose name starts with A, in this
case, element A and element AB. This is an application of a pointcut expression.
After the weaving process a result model (M A’) is created that contains all
the original base model elements plus the aspect elements added at the desired
joinpoints.

A tool called XWeave1 [22, 23] has been developed that implements the con-
cepts presented above. It is based on Eclipse as a tool platform and Ecore as the
meta metamodel. Since it is an oAW workflow component, it easily integrates
into oAW-based model processing.

XWeave is a model weaver that can weave models that are either instances
of Ecore (called metamodels) or instances of these metamodels (called models).

1 XWeave is part of openArchitectureWare 4.2 and can be downloaded from
http://www.openarchitectureware.org/

Aspect-Oriented Model-Driven Software Product Line Engineering 125

The tool takes a base model as well as one or more aspect models as input and
weaves the content of the aspect model into the base model. Weaving an aspect
element means that all properties of the element, including its child elements,
are woven into the base model. Both aspect and base models must conform to
the same metamodel. The aspect model consists of definitions that capture the
points, where in the base model, the additional model elements should be added
(the pointcut in AO terms). It also contains these additional model elements (the
advice in AO terms). This is a form of asymmetric AO. During weaving, aspect
elements are physically woven into the base model. The result of this process
is an updated model. Subsequent tooling cannot tell the difference between a
woven and a non-woven model.

The joinpoint model of XWeave is based purely on the metamodel of the
base model and is thus generic. All elements of the base model are potential
joinpoints. This means that any model element of an EMF model can serve as a
joinpoint. Pointcuts select sets of those elements where additional elements can
be attached.

XWeave provides two ways of specifying pointcuts: name matching and ex-
plicit pointcut expressions. The next sections will introduce both approaches in
detail. For illustration purposes, all examples use the concrete syntax of UML.

Name Matching. Name matching means that if a model element in the aspect
model has a corresponding element in the base model (both name and type have
to be equal), the elements are combined. Combining the two elements means
that all children of the aspect element are added to the base element. In case of
a class, the woven class would hence include all attributes and operations from
the base element as well as those from the aspect element.

Figure 7 shows an example of name matching in XWeave to specify the desired
joinpoints. It is an application of metamodel weaving. The model in (a) shows
the metamodel of a simple state machine. The state machine has a list of states
linked by transitions. The metamodel only supports simple states. A variation
of this metamodel is to not only support simple states but also dedicated start
and stop states. The model in (b) illustrates the aspect model. StartState and
StopState are derived from State and should be woven to the base model. The
aspect element State has a corresponding element in the base model and is
therefore the point at which StartState and StopState are added. The model
in (c) shows the result model after weaving.

Pointcut Expressions. Another way of specifying pointcuts are explicit
pointcut expressions. They can be defined using oAW’s expression language.
Expressions can select one or more elements of the base model and are defined
externally to both aspect and base model in a separate expression file. Every
expression has a name. The named expressions (pointcuts) can be used in the
aspect model. If an aspect element’s name starts with %, $, or ? followed by the
name of a defined expression, the expression will be evaluated for this element.
The % sign introduces an expression that returns a collection of elements. The $

126 I. Groher and M. Voelter

Fig. 7. Metamodel weaving using name matching

character introduces an expression that returns a single element. The ? character
is followed by a String expression, i.e. it has to return a String. It can be used
to add any kind of name to the elements. In addition, it is possible to use * (the
asterisk) character as the name of an element. This matches all instances of that
particular type.

Pointcut expressions make it possible to select several joinpoints in the model
with only one declarative statement. This is referred to as the quantification
principle of AO [19]. Expressions must be parameterized with the type that
serves as the root for the base model. Whatever the expression returns, will be
used as the target for the weaving process.

To express pointcuts, XWeave uses the oAW expression language [39], which
is a syntactical mixture of OCL and Java. A complete reference of the language
can be found in [39].

Figure 8 illustrates an example of pointcut expressions. In (a) a state machine
model of an oven is presented. It is an instance of the metamodel presented in
Fig. 7. The oven can be either open, closed, or in cooking state. The aspect
models in (b) weave an emergency state into the base model including the re-
spective transitions. The aspect model on the left uses a pointcut expression to
select all states of type SimpleState using the pointcut expression pc. The right
side of figure (b) is an alternative to using the pointcut expression. The asterisk
matches all instances of a particular type, in this case, SimpleState. The model
in (c) shows the result after weaving.

The XWeave approach can be applied to both problem space models and
solution space models. This means that both domain models and software models
can be configured.

Aspect-Oriented Model-Driven Software Product Line Engineering 127

Fig. 8. Model weaving using pointcut expressions

Linking XWeave to Configuration Models. Model weaving assists in the
composition of different separated models into a consistent whole. It allows cap-
turing feature-dependent parts of models in aspect models. This technique sup-
ports a clear separation of variable model parts from the core and supports an
automatic composition to create a complete model representing a member of the
product line.

During domain engineering, the core2 and the aspects are developed. The
core represents model parts common to all products in the product line, and the
aspects represent features that are increments in functionality provided by one
or more members of the product line. During application engineering, the aspect
models are composed with the core according to a selection of features in a
configuration model. Consequently, the core is minimal in that it only contains
elements common to all products in the portfolio. Product-specific parts are
added when needed.

The dependency between aspect models and features is specified in the oAW
workflow. Aspects that implement optional parts of structural models are linked
to features defined in configuration models. Based on a selection of features,
the corresponding aspect models are woven to the base model. This dependency
between features and aspect models is illustrated in Fig. 9.

Listing 7 shows an example workflow. If the EmergencyStateFeature is present
in the global configuration model, XWeave weaves the content of the aspect
model into the oven model. Aspect and base model are illustrated in Fig. 8. The
base model is already in a workflow slot.
2 We will use the terms core and base model as synonyms.

128 I. Groher and M. Voelter

Fig. 9. Linking positive variability to configuration models

<feature e x i s t s=”EmergencyStateFeature ”>
<c a r t r i d g e f i l e=”org / openarch i tec tureware / u t i l /xweave/wf−weave−expr”

baseModelSlot=”ovenModel”
a sp e c tF i l e” emergencyStateAspect . xmi”
exp r e s s i o nF i l e=” exp r e s s i on s ”/>

</ feature>

Listing 7. XWeave workflow

3.2 Negative Variability

As illustrated in Fig. 10, negative variability selectively takes away parts of a
creative construction model based on the presence or absence of features in the
configuration models. This technique is fundamentally different to the technique
introduced in the previous section. When using negative variability to implement
feature-based variability in structural models, one has to build the “overall”model
manually and connect elements to certain features in a configuration model. The
model is then tailored based on a certain feature selection, thus model elements
are taken away from the full model.

Fig. 10. Negative variability

Figure 11 illustrates how subtractive variability on model level works. It shows
a simple feature model of a person database. A person can either have an interna-
tional phone number or a local phone number. There is also an optional feature,
namely, the possibility of adding state information for US citizens. Features of
the feature model are linked to elements of the structural model below. In this
case, attributes are connected to the features. Those elements are only present
in the model if and only if the corresponding features are part of a configuration.

Aspect-Oriented Model-Driven Software Product Line Engineering 129

Fig. 11. Negative variability in structural models

A tool called XVar3 [22] has been developed that implements the concepts
presented above. Similar to XWeave, it is based on Eclipse as a tool platform,
Ecore as the meta metamodel, and oAW as the tool for model processing.

Fig. 12. Linking negative variability to configuration models

Figure 12 illustrates how XVar links structural models to configuration mod-
els. A dependency model captures the relationships between model elements and
features. Depending on the selection of features, the structural model is tailored
to only contain the model elements needed for the respective configuration by
deleting model elements whose features are not selected. Deleting means that
the element itself and all references to this element are removed from the model.

Figure 13(a) shows the dependency model for the person database example.
Every element describes a dependency between a feature and the linked model el-
ements. The international phone feature is linked to the countryCode attribute
in class PhoneNumber, and the US citizens feature is linked to the state at-
tribute in class Address. According to this dependency model, the structural
model is tailored based on a concrete selection of features. Figure 13(b) illus-
trates a model that results if only the optional US Citizens and the Local

3 XVar is part of openArchitectureWare 4.2 and can be downloaded from
http://www.openarchitectureware.org/

130 I. Groher and M. Voelter

Fig. 13. Dependency model and result model

Phone features are selected. The International Phone feature is not part of
this configuration. Thus, the attribute countryCode of class PhoneNumber is
deleted from the structural model in Fig. 12.

XVar can tailor models that are either instances of Ecore (called metamodels)
or of these models (called models). The dependency between features and model
elements is specified in a separate dependency model. The advantage of defining
feature dependencies in an external model is that no invasive changes to the
model are required. All dependencies are explicitly listed in the dependency
model. The XVar approach can be applied to both problem space models and
solution space models.

3.3 Related Work

Positive Variability in Structural Models. The Atlas Model Weaver (AMW)
[17] is a tool created as part of the Atlas Model Management Architecture. It’s
primary goal is to establish links between models. In the first phase of working
with AMW, a number of links are established between two or more models. This
process can be done manually or semi-automatic. The result is called a weaving
model. Based on that model, one can generate model transformations that merge
models. AMW is similar to XWeave as both tools can weave or merge models.
There is, however, an important difference. AMW contains an interactive tool to
build weaving models, whereas XWeave uses name correspondence or pointcut
expressions.

C-SAW [20] is a general transformation engine for manipulating models based
on aspect specifications using ECL (a variant of OCL). The weaver traverses the
model and selects a set of elements to which the aspects should be applied. The
advice then modifies the selected element in some way, for example, by adding
a precondition or changing the element’s structure. C-SAW has been developed
to tackle the challenge of evolving large models in a consistent way. Instead of
applying a set of changes manually, one merely writes an aspect that applies
the changes to all selected elements in the model. Comparing it to XWeave

Aspect-Oriented Model-Driven Software Product Line Engineering 131

reveals that C-SAW does not weave models (in the sense of merging them) as
XWeave does. Rather, it efficiently applies (crosscutting) changes to a collection
of elements in a large model by automatically traversing the model and giving
the advice code a change to modify an element if it sees fit.

The Motorola WEAVR [12] is a model weaver developed as a plug-in for Telel-
ogic TAU. It supports weaving of UML statecharts that include action semantics
and are thus executable. There are two different types of joinpoints: action and
transition. Advices are encapsulated in a construct called connector. Similar
to XWeave, the Motorola WEAVR weaves aspects based on pointcut specifica-
tions. The main difference between the two approaches is that XWeave provides
a generic EMF-based solution that can weave arbitrary models and metamodels.
The Motorola WEAVR only supports weaving of UML statecharts.

XJoin [39] is a tool for establishing links between metamodels. The tool takes
two or more existing metamodels as input and adds relationships to join them.
The partial metamodels still keep their own identities and do not need to know
about the other ones. Using XJoin, different architectural viewpoints [30] can
be separately described and later combined. The difference to XWeave is that
XJoin does not weave models; it only establishes links between them. Both tools
are part of the oAW framework and thus integrate very well.

General AOM approaches [9] are also related to XWeave. Theme/UML [5],
for example, provides an extension to UML that supports concern modeling and
composition. Most AOM techniques are based on UML, which is an important
difference to XWeave. Also, most approaches lack tool support, which is essential
for a successful application of the technique in an industrial product line context.

Negative Variability in Structural Models. In [13], structural models are
connected to feature models to implement negative variability. A feature model
is linked to a UML model via stereotypes. Depending on the selected features,
the UML model changes. XVar also implements negative variability for struc-
tural models, but in contrast to [13], it provides a generic EMF-based solution.
Another important difference is that in XVar the links between model elements
and features are managed in a separate dependency model. In [13], the links are
managed using stereotypes, which requires invasive changes to the model that
should be tailored.

In [24], a tool is presented that supports linking features to parts of EMF
models. Changes made to structural models are recorded and can be associated
to features in the feature model. At product creation time, only the model el-
ements that belong to the currently selected features are present in the model.
This approach is similar to XVar in the way how it tailors models according to a
specific configuration. An important advantage of XVar is that it models depen-
dencies between features and model elements explicitly in a dependency model.
The tool presented in [24] only observes changes to the core, but the mapping
information is hidden in the tool.

The Gears variant management tool, [8] provides a plug-in for the Rhapsody
modeling tool. Models can become Gears core assets and thus include variation

132 I. Groher and M. Voelter

points. Different variants for model elements can be created and are selected
according to a specific configuration. The model does not change; only the gen-
erated code varies. XVar actually changes the model, which is the main difference
to the Gears/Rhapsody bridge. Also, Rhapsody only supports UML models.

4 Expressing Variability in Model Transformations

This section describes concepts and tools that support the definition of
feature-based variability in model transformations. Transformations can thus
be selectively adapted.

In model transformations, a model is transformed into another model, and
the input model is typically left unchanged. In Fig. 14a model M is transformed
into a model K. Both models are instances of different metamodels. The small
circle on the right symbolizes the unchanged model M. An important advantage
of model transformations is that a clean separation between models and also
between metamodels can be achieved. Also, different metamodels can evolve
independently.

There is also the notion of a model modification, where a model is modified
“in place”, i.e. the input model is changed, and no additional output model
is created. Since such a model modification is technically almost identical to a
model transformation as defined above, this section focuses exclusively on model
transformations.

Fig. 14. Model transformations

As demonstrated in the previous section, both models and metamodels can
vary using the concepts and tools we developed. This directly leads us to the
need of varying model transformations. New metamodel elements brought by
additional features must be added to the transformation workflow. Again, the
adaptation of model transformations is only required in case the respective fea-
tures are selected in the current configuration.

We solve this problem by applying AO to model transformations. The trans-
formation language Xtend [39] has been extended with support for aspects.

Xtend supports the application of advices to model transformation functions.
Only around advices are supported. Listing 8 shows the syntax of advices in

Aspect-Oriented Model-Driven Software Product Line Engineering 133

Xtend. The keyword around is followed by a pointcut that selects the points
where the advice should be applied. Any number of expressions can be executed
within the advice. By calling proceed(), the original transformation function is
executed.

around [po intcut] :
e xp r e s s i on ;

Listing 8. Around advices in Xtend

A pointcut consists of a fully qualified name and a list of parameter dec-
larations. The asterisk character is used to specify wildcards. Listing 9 shows
some examples of how pointcuts are specified. Parameter-type polymorphism is
considered when matching the pointcut.

my: : Extension : : d e f i n i t i o n /∗ matches ex tensions with the
s p ec i f i e d name ∗/

org : : oaw : : ∗ /∗ matches ex tensions pre f i x ed
with ’ org : : oaw : : ’ ∗/

∗Operation∗ /∗ matches ex tensions containing
’Operation ’ ∗/

∗ /∗ matches a l l ex tensions ∗/

Listing 9. Pointcut specifications in Xtend

As we want to apply advices only in case a certain feature is selected in the
current configuration, we need to link advices to features. Figure 15 illustrates
how this is done. Transformation aspects are connected to features in the oAW
workflow. The advice is then only applied to the transformation in case the
respective feature is selected.

Fig. 15. Variability in model transformations

Imagine one wants to deploy an optional tracing interceptor to a system. The
runtime infrastructure supports the use of interceptors for any component. In-
terceptors are available in libraries. Listing 11 shows the advice that is applied

134 I. Groher and M. Voelter

<transform id=”xtendComponent . t r a f o s ”>
<invoke va lue=” t ra f o s : : t r an s f o rmSys t em (inputModel) ”/>
<outputS lot va lue=”outputModel . xmi”/>

</transform>

<transformationAspect adv iceTarget=”xtendComponent . t r a f o s ”>
<extens ionAdvices va lue=” t rac i ng ”/>

</transformationAspect>

Listing 10. Adding transformation aspects to the workflow

to the transformation function transformSystem defined in the extension file
trafos. The advice is defined in a separate extension file named tracing. First,
the original transformation function is executed (by calling ctx.proceed()). A
local variable s is defined that stores the return value of the original transforma-
tion function. Then, a tracing interceptor is looked up in the library and added
to the list of deployed interceptors. At the end of the around advice, the variable
s is returned. Note that it is not necessary to explicitly list the return type in the
signature of the around advice as it is known from the signature of the original
transformation.

For the aspect to be applied to the transformation, it has to be added to the
workflow. Listing 10 shows how this works. The original transformation is ex-
ecuted by invoking the top-level function (transformSystem) in the trafos
extension file. Model transformation functions are defined in extension files
and are thus called extensions. The output of the transformation is stored
in the outputModel.xmi model file. The transformation aspect is configured
below. The target of the advice has to be specified (transformation with id
xtendComponent.trafos), including the extension file that contains the actual
advice (tracing).

Applying aspects to model transformations realizes positive variability on
transformation level. As an alternative, one could also develop the overall trans-
formation and exclude transformation steps in case a certain feature is selected.
This can be realized by calling the hasFeature(featureName) function from
within transformations and can be considered negative variability on transfor-
mation level.

around t r a f o s : : transformSystem(System sys) :
l e t s = ctx . proceed () : (

d ep l oyed In t e r c ep to r s . addAll (
l i b r a r y () . i n t e r c ep t o r s . findByName (” Trac ing In t e r c ep to r”))

−> s
) ;

Listing 11. Optional tracing interceptor advice

4.1 Related Work

The approach presented in [37] includes an aspect-oriented extension to a
model-to-text transformation language. Those so-called high-order transforma-
tions can be used to represent variability in product line engineering. The

Aspect-Oriented Model-Driven Software Product Line Engineering 135

approach is similar to our approach as an existing transformation language has
been extended with support for aspects. An important difference is that our
approach supports linking these aspects to features defined in a feature model.
The approach in [37] does not include this capability.

5 Expressing Variability in Code Generation Templates

This section describes concepts and tools that support the definition of
feature-based variability in code generation templates. Generators can thus be
selectively adapted.

A generator generates some textual output (e.g. code, build scripts, and XML
configuration files) from a model. The generator operates on the metamodel
of the DSL and thus has to know this metamodel. Figure 16 illustrates the
relationship among model, metamodel, and generator.

Fig. 16. Code generation

A template language including a suitable template engine is used to generate
the output. Templates support the generation of any text-based output.

In our approach, the code is generated from the final solution space model. As
metamodel, models, and the respective transformations can vary, we also need
to incorporate variability into the code generation process. We use AO on code
generation level for this purpose. The template language Xpand [39] provides
support for template aspects.

Xpand supports around advices whereby any execution of a template defini-
tion can be a joinpoint. The definition name part of a pointcut must match the
fully qualified name of the joinpoint’s definition. The asterisk character is used
to specify wildcards. Listing 12 shows the syntax of Xpand advices. The original
template definition can be called with proceed().

<<AROUND qua l i f i e dDe f i n i t ionName (paramete rLi st) FOR type>>
a sequence o f statements

<<ENDAROUND>>

Listing 12. Xpand around advice

136 I. Groher and M. Voelter

The parameters of the definitions we want to add our advice to can also be
specified in the pointcut. The rule is that the type of the specified parameter
must be the same or a super type of the corresponding parameter type of the
definition to be called (i.e. polymorphic dispatch is used on all arguments). In
addition, one can set the wildcard at the end of the parameter list to specify
that there might be none or more parameters of any kind. Listing 13 shows some
examples.

my: : Templ : : de f () /∗ template d e f i n i t i on without parameters ∗/
my: : Templ : : de f (S t r i ng s) /∗ template d e f i n i t i on with exac t l y one

parameter of type Str ing ∗/
my: : Templ : : de f (S t r i ng s , ∗) /∗ template d e f i n i t i on with one or more

parameters where the f i r s t parameter
i s o f type Str ing ∗/

my: : Templ : : de f (∗) /∗ template d e f i n i t i on with any number of
parameters ∗/

Listing 13. Wildcards in parameter definitions

As it is the case with model transformation aspects, we want generator advices
only to be applied in case a certain feature is selected in the current configura-
tion. The dependency between template aspects and features is specified in the
workflow (cf. Fig. 17).

Fig. 17. Variability in code generation templates

Imagine, one wants to add a reflection layer to inspect a generated system.
Specifically, if component instance states should be inspected, the data structures
representing the state need to be reflective. Of course, since this functionality is
for debugging purposes only, it is optional, i.e. it depends on whether the Debug
feature is selected or not.

In the following, we will only show the code generator aspect that is used to
add the reflection layer to generated state data structures. The code generator
for the data structures contains the following templates: typeClass generates a

Aspect-Oriented Model-Driven Software Product Line Engineering 137

Java class that represents the state data structure (basically a bean with getters
and setters). That template in turn calls the imports and body templates. Listing
14 shows the templates that will be adviced by the template aspect.

<<DEFINE typeClass FOR ComplexType>>
<<FILE f i leName ()>>

package <<implClassPackage ()>>;
<<EXPAND imports>>
pub l i c c l a s s {

<<EXPAND body>>
}

<<ENDFILE>>
<<ENDDEFINE>>

<<DEFINE imports FOR ComplexType>>
. . .

<<ENDDEFINE>>
<<DEFINE body FOR ComplexType>>

. . .
<<ENDDEFINE>>

Listing 14. Templates to be adviced

The piece of Xpand code in Listing 15 is the template aspect that adds the
reflection layer to the generated data structures. Note how the AROUND decla-
rations reference existing DEFINEs to advice them. targetDef.proceed() calls
the original template.

<<AROUND da t a : : a p i : : d a t a : : b od y FOR ComplexType>>
<<targe tDe f . proceed ()>>
<<EXPAND r e f l e c t i on Imp l ementa t i on>>

<<ENDAROUND>>

<<AROUND d a t a : : a p i : : d a t a : : im po r t s FOR ComplexType>>
<<targe tDe f . proceed ()>>
import smarthome . common. p lat form . MemberMeta ;
import smarthome . common. p lat form . ComplexTypeMeta;

<<ENDAROUND>>

<<DEFINE r e f l e c t i on Imp l ementa t i on FOR ComplexType>>
pr i va t e t r an s i en t ComplexTypeMeta meta = nu l l ;
pub l i c ComplexTypeMeta metaObject () {

}
pub l i c void metaSet(MemberMeta member , Object va lue) {

}
pub l i c Object metaGet (MemberMeta member) {

}
<<ENDDEFINE>>

Listing 15. Template aspect

Of course, to make this work as desired, we have to couple the aspect to the
configuration model. This dependency is specified in the workflow.

Applying aspects to code generation templates realizes positive variability on
generation level. Again, as an alternative, one could also develop the overall gener-
ator and exclude templates in case a certain feature is selected. This can be realized

138 I. Groher and M. Voelter

by calling the hasFeature(featureName) function from within the templates and
can be considered negative variability on generator level.

5.1 Related Work

In [32], a generative approach called Framed Aspects is proposed. Framed As-
pects combine AOP with frame technology to modularize crosscutting feature
implementations and improve evolution of product lines. In contrast, our ap-
proach includes aspects directly into code generation templates to incorporate
features into the code generation process. The approach presented in [32] only
parameterizes aspects.

The transformation engine of ArcStyler, CARAT [26], supports the specializa-
tion of cartridges. It allows to override generator code specified in a super
cartridge. While this kind of specialization is also possible with our approach.
However, our approach is more generic because it also supports quantification—
the ability to select a set of joinpoints using a pointcut to add generator behavior
in several places at once.

6 Expressing Variability in Code

For some features, developing a custom generator might be too costly. Thus,
for economic reasons, certain parts of the product will still be implemented
manually. In this case, variability has to be considered at code level.

We use AO on code level to realize positive variability. AspectJ [28] and
CaesarJ [4] are popular candidates for implementing features on code level.

Sometimes, a feature might be requested for which the product line architec-
ture may not provide the required configuration or customization hooks. Either
one has to manually tweak the generated code to accommodate the variant or
the product line architecture has to be adapted to include the additional hooks.
The latter approach is desirable, but for reasons of versioning, coordination, or
time pressure it is often not realistic. AOP can be very useful in this case. One
can hook into generated (or manually written) code at places where the prod-
uct line architecture does not provide hooks. Thus, the necessary change can
be accommodated without changing the product line architecture and without
manually changing the generated code—the change is external in the aspect.

To support negative variability on code level, we extended XVar [22, 39] with
additional capabilities. It is possible to include special comments to the code
that define the dependencies to features. In case the respective feature is not
part of the current configuration, the code implementing this feature is removed
from the code base. Listing 16 shows an example. A light switch can switch both
normal lights and dimmable lights. The feature Dimmable Lights is optional.
The example illustrates how special comments (starting with #) specify the
dependency to the feature. In case the feature is selected, the first statement is
part of the code base; in the other case, the second statement is included.

The XVar approach works well for simple, well-modularized features. For ex-
ample, an optional method call can depend on a feature and pruned from the

Aspect-Oriented Model-Driven Software Product Line Engineering 139

code base using XVar. Also, the approach can be used to first develop the overall
system that includes all options. Later, the code implementing the feature can
be refactored as an aspect.
public void execute () {

. . .
//# dimmableLights
parseLightsToSwitch (changedLights , s t a tu s . g e tS ta tu sL i gh tLeve l ()) ;
//˜# dimmableLights

//# ! dimmableLights
parseLightsToSwitch (changedLights) ;
//˜# ! dimmableLights

}

Listing 16. Negative variability on code level

6.1 Related Work

The main focus of research on AOSD in SPLE is targeted toward variability
implementation using AOP languages.

In [34], it is demonstrated how CaesarJ helps to overcome the deficiencies
of feature-oriented programming (FOP) and AOP for implementing variability.
CaesarJ supports both multi-abstraction modules and joinpoint interception.

The approach described in [3] introduces Aspectual Mixin Layers (AML)
which integrate both AOP and FOP by introducing aspects into mixin layers
and providing aspect refinement.

In [1], the capabilities of AO to implement variability are evaluated according
to defined criteria. The evaluation has shown that AOP is especially suitable for
variability across several components, i.e. crosscutting variability.

In [7], it was demonstrated how AspectC++ can be employed in a weather
station product line. The use of AspectC++ simplified the development process
since crosscutting product line features could be directly mapped to aspects.
Aspect C++ enabled configuring the appropriate level and therefore enhanced
the code reusability.

7 Home Automation Case Study

The case study to illustrate our approach is a home automation system (see also
[41]) called Smart Home. In homes, you will find a wide range of electrical and
electronic devices such as lights, thermostats, electric blinds, fire, and smoke de-
tection sensors, white goods such as washing machines, as well as entertainment
equipment.

Smart Home connects those devices and enables inhabitants to monitor and
control them from a common UI. The home network also allows the devices to
coordinate their behavior to fulfill complex tasks without human intervention.

Sensors are devices that measure physical properties of the environment and
make them available to Smart Home. Controllers activate devices whose state
can be monitored and changed. All installed devices are part of the Smart Home

140 I. Groher and M. Voelter

network. The status of devices can either be changed by inhabitants via the UI or
by the system using predefined policies. Policies let the system act autonomously
in case of certain events. For example, in case of smoke detection, windows get
closed and the fire brigade is called. Varying types of houses, different customer
demands, the need for short time-to-market, and cost savings drive the need for
a Smart Home product line and are the main causes of variability.

The case study includes six metamodels that each consist of more than 30
elements. The feature model of the home automation product line allows creating
314,250 different valid product instances. Smart Home consists of about 100
generated artifacts and about 180 hand-written artifacts including transformers
and generators.

The remainder of this section will explain how the techniques introduced in
Sect. 2 were used to implement the Smart Home product line.

7.1 Problem Space Modeling

In the problem space, Smart Home systems are formally described. A problem
space metamodel is defined as that contains entities such as buildings, floors,
rooms, the various kinds of sensors, and actuators. Note that this model does not
contain anything concerned with software or computing hardware. It formally
describes domain requirements. Figure 18 shows parts of the problem space
metamodel of Smart Home. Buildings contain floors and floors contain rooms.
Staircases connect the different floors in the house. Different kinds of devices are
located in rooms.

Using this metamodel, a DSL is built, which supports modeling Smart Home
systems from the perspective of a building architect or a home owner. The syntax
is semi-graphical and a customized tree view is developed. Figure 19 shows an
example of a house that is modeled using the DSL. This DSL is a creative
construction DSL. Note that in a real-world system, the building data would be
extracted from a CAD system.

7.2 Solution Space Modeling

The solution space comprises a component-based architecture. Figure 20 shows
the types viewpoint of this component metamodel. Additional viewpoints are
defined to express component instances, their connections, hardware structure
as well as the mapping of software component instances onto hardware nodes.
There is no need to provide a sophisticated concrete syntax for that domain since
the models are created by model transformations from problem space models.
Note that this metamodel is platform independent in that the generic component
architecture can be mapped onto various target platforms such as OSGi [40],
Spring [43], or JEE [45]. The case study implementation uses OSGi.

To a large extent, Smart Home systems consist of a specific arrangement of
pre-built sensors and actuators (although a specific system can have custom de-
vices). It therefore makes sense to keep a library of software components that
control certain types of hardware. We use a combination of manually written

Aspect-Oriented Model-Driven Software Product Line Engineering 141

Fig. 18. Problem space metamodel of Smart Home

Fig. 19. Example house

142 I. Groher and M. Voelter

Fig. 20. Platform-independent component metamodel: Types viewpoint

code (i.e. the business logic) and models to represent these components to be
able to use them to define a given system. Based on the problem space model,
the transformation instantiates, wires, and deploys those library software com-
ponents in the context of the software system generated for a particular building.

7.3 Solution Space Implementation

In realistic Smart Home scenarios, there are several target implementation tech-
nologies. For example, computing platforms and networking/bus technologies
change depending on the level of sophistication of a product. In our case study,
we selected OSGi as a target platform. We defined an extended OSGi metamodel
(cf. Fig. 21) and mapped the platform-independent component metamodel to the
OSGi metamodel using a model-to-model transformation.

The formally defined mappings allow us to automatically transform a problem
space model (cf. Fig. 19) into a platform-independent component model and in
turn into an OSGi model. Finally, we generate code from the OSGi model.

Figure 22 provides an overview of the metamodels, models, and transfor-
mations used in the Smart Home case study. Metamodel parts common to the
component metamodel and the OSGi metamodel were modeled in separate meta-
models. Common parts include data types and operations. We developed a tool

Aspect-Oriented Model-Driven Software Product Line Engineering 143

Fig. 21. OSGi metamodel

Fig. 22. Smart Home models and transformations overview

called XJoin4 which supports adding relationships between metamodels to join
them. The separate metamodels keep their own identities, and the partial models
do not need to know about the other ones. Sharing elements between metamod-
els has the obvious advantage of reducing duplication. However, there are other
more important benefits: Because the types of the model elements are literally
the same, the transformation is reduced to a simple cloning operation. Also,
one can share the same code generation templates, which typically simplifies the
volume of the templates significantly.

4 XJoin is part of openArchitectureWare 4.2 and can be downloaded from
http://www.openarchitectureware.org/

144 I. Groher and M. Voelter

7.4 Orthogonal Variability

We use a global feature model to incorporate features that are orthogonal to
the house structure. Those features require configuring the entities of the house,
the transformation, and generation process in one way or the other. For imple-
menting this orthogonal variability we use the concepts and tools described in
Sect. 2 and subsequent sections. We use pure::variants [42] for feature modeling.

Figure 23 shows parts of the feature model of Smart Home. It provides several
automation features that let the house act autonomously according to defined
policies. In addition, it provides debugging features and several alternatives with
respect to deployment. Optional features are indicated by a question mark, and
mandatory features are indicated by an exclamation point. Alternative features
are represented by arrows.

Fig. 23. Smart Home feature model

Due to space limitations, we can only provide details for two of these features,
namely the automation feature Automatic Windows and the debugging feature
Reflective Data Structures.

Automatic Windows. The Automatic Windows feature automatically opens
the windows if the temperature in a room raises above a certain threshold and
closes them if the temperature falls below a certain threshold. For this feature
to be included in a configuration, the necessary devices have to be woven into
the building model.

Figure 24 shows the aspect model that is responsible for weaving the
respective devices into the example house shown in Fig. 19. It weaves a ther-
mometer in every room that has at least one window and adds a window actuator
to the windows. The pointcut expressions used in the aspect model are shown in
Listing 17. rooms returns all rooms that have windows. This pointcut expression

Aspect-Oriented Model-Driven Software Product Line Engineering 145

is referenced with %rooms in the aspect model. The % sign is used because the
expression rooms returns a set of elements. To all of them, a thermometer should
be added and thermoName is a helper function that creates a sensible name for
this thermometer. The thermoName expression is referenced with ?thermoName in
the aspect model. The ? sign is used because the thermoName expression returns
a String expression. windows returns all windows of these rooms and a window
actuator is added to them. The windows expression is referenced with %windows
in the aspect model. The % sign is used because the expression windows returns
a set of elements.

Fig. 24. Window automation aspect

rooms (Bui ld ing this) : f l o o r s . rooms . s e l e c t (e | e . windows . s i z e >0);
windows (Bui ld ing this) : rooms () . windows ;
thermoName (Thermometer this) : ((Room) eContainer . name . toFi r stLower () +

”Thermometer” ;

Listing 17. Window automation pointcut expressions

The resulting (woven) model has a thermometer in each room to measure
the current temperature and a window actuator for each window to be able
to automatically open it. If the Automatic Windows feature is present in the
configuration model, XWeave [22, 23] weaves the content of the aspect model
into the house model. This dependency is specified in the workflow.

The additional devices have to be transformed into platform-independent
components. Also, the component that includes the business logic (i.e. the logic
that periodically checks the temperature and triggers the opening and closing
of the windows) has to be taken from the library and added to the platform-
independent component model. These additional transformation steps are im-
plemented as a model transformation aspect. Parts of the transformation aspect
and the original transformation function are shown in Listing 18. The function
createConfig transforms a floor into an object of type Configuration. The
around advice first calls the original function (cf. ctx.proceed()) and then han-
dles the additional devices. It creates an instance of a window actuator and adds
it to the list of component instances owned by the configuration. If a room has at
least one window and at least one thermometer, the handleWindowCoordinator
function is called. This function establishes a connection between windows and
thermometers.

There is no need to change the code generator as the variability is purely
handled on model and transformator level.

146 I. Groher and M. Voelter

around ps2cbd : : c r e a t eCon f i g (Floor f) :
l e t c on f i g = (Conf igurat ion) ctx . proceed () :

c on f i g . i n s t anc e s . addAll (
f . rooms . windows . ac tuator . c r e a t e In s tanc e ()) −>

(f . rooms . windows . s i z e > 0 &&
f . rooms . d ev i c e s . t ypeSe l e c t (Thermometer) . s i z e > 0)?

c on f i g . handleWindowCoordinator(f) : null −> c on f i g ;

create Conf igurat ion c r e a t eCon f i g (Floor f) :
c reateTrace (f , ” f l o o r 2 c on f i g u r a t i o n ”) −>

setName (f . name+” FloorConf igurat ion ”) ;

Listing 18. Window automation transformation advice

The business logic of the Automatic Windows feature (the actual opening or
closing of the windows in case the temperature reaches or falls below a certain
threshold) is pre-built in the form of a library component and included into
the final product in case the feature is selected. Since all pre-built components
have representations on model level, we can process them using model transfor-
mations (cf. the handling of the window coordinator in Listing 18). Based on
the information in the models, it is possible to determine whether the window
automation component is part of a product or not.

Light Simulation. The Light Simulation feature periodically turns on the
lights in the house. Its purpose is to simulate inhabitants being at home in case
they are on holiday. This feature should prevent burglars from breaking into the
house as it seems to be occupied.

around ps2cbd : : c r e a t eCon f i g (Floor f) :
l e t r e s = (Conf igurat ion) ctx . proceed () :

(f . rooms . l i g h t s . s i z e > 0)? r e s . hand leLightS imulator (f) : null −>
r e s ;

private hand leLightS imulator (Conf igurat ion this , Floor f) :
l e t c = f . c r e a t eL i gh tS imula to r () : (

i n s t anc e s . add (c) −>
connectors . add (f . c reateLightConnector (c))

) ;

Listing 19. Light simulation transformation advice

The business logic of the light simulation feature (the actual turning on of the
lights) is pre-built in the form of a library component. A transformation aspect
(shown in Listing 19) optionally transforms this component. In this case, the
variability is purely handled on model transformation level. The house model
and the code generator remain untouched. If the Light Simulation feature is
selected in the current configuration, the transformation aspect is woven into
the transformation from the problem space model to the platform-independent
component model. This dependency is specified in the workflow.

Aspect-Oriented Model-Driven Software Product Line Engineering 147

7.5 Tracing

In our approach, tracing is straightforward. Since mappings between abstraction
levels are based on formal model transformations, we make sure the mappings
are made persistent in a trace model. It can be built either automatically by
the transformation engine or manually by the transformation developer. We
implement the second approach since it allows developers to control the trace
granularity.

Our approach to traceability has two main advantages:

– Since we trace between model elements, the trace is finer grained than in
currently used approaches, where tracing happens between complete artifacts
[27, 33].

– Since problem space concepts are also represented as models, we gain trace-
ability from the problem space over to the solution space.

To be able to control the trace granularity, the trace model is built manually
by calling a createTrace (toElement, fromElement, traceKind) function at
the appropriate locations within the transformation functions and generation
templates. The trace conforming to the trace model is then emitted automati-
cally when the transformation and generation steps are done for a concrete input
model.

Since problem domain concepts are also represented as models, we gain full
traceability from the application domain over to the implementation domain.

Listing 20 illustrates how tracing data is collected in model to model trans-
formation functions. The function transform translates a system on component
level into a system on OSGi level. The call to createTrace creates a trace link of
kind cbdSystem2osgiSystem between the object sys of type cbdmm:System and
the newly created object of type osgimm:System.

create osgimm : : System trans form (cbdmm: : System sys) :
createTrace (sys , ” cbdSystem2osgiSystem ”) −>
setName (sys . name) −>
. . .

Listing 20. Tracing in model transformation functions

Listing 21 shows how tracing is done on code generation template level. A
trace link of kind componentImplementationClass is created between a service
component and its implementation class. Tracing links can be established by
calling VTRACE within the templates.

Based on the trace information collected in model transformation functions
and code generation templates, we can automatically build a trace model that
is available in memory as an EMF [14] model. It can be used by subsequent
transformation steps or analyzed in any way required. The trace model can also
be exported and made persistent for a given product variant as an XMI [36] file.
We also support an export of the trace information to HTML to make the trace
information more accessible for human reading.

148 I. Groher and M. Voelter

<<DEFINE componentBaseClass FOR ServiceComponent>>
<<FILE baseClassFi leName ()>>

package <<baseClassPackageName ()>>;
// <<VTRACE(th i s , ” componentImplementationClass ”)>>
pub l i c ab s t r ac t c l a s s <<baseClassName ()>> extends

<<platformBaseClassName ()>>
. . .

}
<<ENDFILE>>

<<ENDDEFINE>>

Listing 21. Tracing in code generation templates

8 Summary and Future Work

8.1 Research Questions Revisited

In Sect. 1, we define the research question we aim to answer based on data from
the case study we conducted at Siemens AG.

This research question is:

Where and how can software product line development benefit from AOSD,
MDSD, and their combination?

We started by modeling the problem space, i.e. by creating a metamodel of
the domain requirements. Next, we defined a metamodel of a platform neu-
tral component-based architecture and mapped the domain entities to compo-
nents. We then defined a metamodel of OSGi, created the mapping from the
component-based architecture metamodel, and developed the code generator.

The metamodels, mappings, and generator already provided the appropriate
means for dealing with all variability concerning the structure of the house.
Developers are now able to model different instances of houses and automatically
generate the appropriate OSGi code from them.

This leads us to the first important benefit: By integrating MDSD into SPLE,
creative construction DSLs can handle variability with respect to the structure or
behavior the DSL intends to model. A DSL allows to create models that are in-
stances of a defined metamodel, which is the metamodel of the domain. Variability
with respect to domain entities and their relations can be efficiently handled us-
ing a MDSD approach. Although DSLs only deal with structural variability and
in product lines, configurative variability is an important issue as well.

In our case study, we used AO concepts and techniques on model, transfor-
mator, generator, and code level to handle orthogonal variability. By orthogonal,
we mean variability that affects multiple domain entities and their subsequent
processing (i.e. transformation) steps. We used a feature model to describe the
configurative variability of the home automation system and realized the features
using AO at the appropriate levels.

This leads us to the second important benefit: Variability that is orthogonal
(and usually configurative) to the structure the DSL intends to model can be
efficiently addressed using AO techniques. Features can thus be localized in as-
pects and combined with the core as desired. The higher the abstraction level,

Aspect-Oriented Model-Driven Software Product Line Engineering 149

the fewer variation points exist. Features expressed on models level are thus in-
herently simpler than features expressed on code generation level. We therefore
argue to always express features on the highest possible level.

In AO systems, whenever more than one aspect is applied to a system, aspect
precedence is an issue, i.e. the advice ordering in case more than one advice
is applied at the same joinpoint. We solve this by explicitly coding the order
in which aspects are applied in the workflow. Workflow steps are executed in
sequential order, which means that the weaving process is strictly sequential.
One aspect is applied after the other in the order specified in the workflow. In
the case of XWeave, woven models can be the input of a weaving process again
as XWeave does not distinguish between a woven and a non-woven model. The
fact that one can actually look at the woven model has a positive impact on
understandability and usability.

Another important contribution of our approach is the integration of a variant
management tool (in this case, pure::variants) into the MDSD tool chain. Within
our tooling, configuration models can be queried, and hence, activities can be
performed based on the presence or absence of features in a configuration model.

In general, our approach is best suited for the development of new systems.
This is because of the inherent forward-engineering approach, i.e. the detailed
low-level code is generated from more abstract domain-specific models. There-
fore, a natural question is, how the presented approach can be used in scenarios,
where a system is already present. First, it is possible to apply the approach
to a part of a legacy system and leave the rest of the system as is. Second, an
MDSD approach can be used to define the overall architecture and generate im-
plementation skeletons, copying the implementation code from the old system
manually and adapting it to the new architectural structure. Finally, one can
try to extract models from the legacy system code base and then develop the
new system against those (this is, however, not very practical in many cases).

8.2 Future Research

In future we will work on the improvement of the tooling we introduced in this ar-
ticle. We will work on a better visualization of the dependencies between MDSD
artifacts and features. For example, the workflow components, transformation
steps, and templates that depend on a feature can be highlighted in the same
color. This facilitates maintainability of features.

Also, XWeave currently only supports additive weaving. In future, we extend
XWeave to support changing or overriding existing base model elements using
aspects. Another possible extension of XWeave is support for symmetric model
weaving. This kind of weaving does not distinguish between aspect and base
models. Models are woven together according to defined rules to form the final
system. Our observations show that in SPLE, typically, a core capturing the
commonality within a portfolio of similar products can be identified. Features
are increments in functionality and thus match well with the idea of weaving in
aspect-orientation.

150 I. Groher and M. Voelter

Currently, we do not deal with any issues related to runtime variability. This is
important as domain experts often want to customize the product on-site. Also,
the specific hardware configuration of the customer could be detected automat-
ically. In the future, we will tackle the question of how to use runtime weaving
of aspects to implement this diversity.

In addition, we will apply our approach in a second industrial case study to
further validate the developed concepts and tools.

Acknowledgments. This work is supported by AMPLE Grant IST-033710.
The authors would like to thank Christa Schwanninger for her valuable comments
on earlier drafts of this article.

References

[1] Anastasopoulos, M., Muthig, D.: An evaluation of aspect-oriented programming
as a product line implementation technology. In: Bosch, J., Krueger, C. (eds.)
ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp. 141–156. Springer, Heidelberg
(2004)

[2] AOSD Community Wiki. Glossary (2007), http://www.aosd.net/wiki/
[3] Apel, S., Leich, T., Saake, G.: Aspectual mixin layers: aspects and features in

concert. In: ICSE, pp. 122–131 (2006)
[4] Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An overview of CaesarJ. In:

Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Develop-
ment I. LNCS, vol. 3880, pp. 135–173. Springer, Heidelberg (2006)

[5] Baniassad, E.L.A., Clarke, S.: Theme: An approach for aspect-oriented analysis
and design. In: ICSE, pp. 158–167 (2004)

[6] Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: ICSE
2003: Proceedings of the 25th International Conference on Software Engineering,
Washington, DC, USA, pp. 187–197. IEEE Computer Society, Los Alamitos (2003)

[7] Beuche, D., Spinczyk, O.: Variant management for embedded software product
lines with pure: : consul and aspectc++. In: OOPSLA Companion, pp. 108–109
(2003)

[8] BigLever. Gears (2007), http://www.biglever.com/
[9] Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Alarcon, M.P., Bakker, J.,

Tekinerdogan, B., Clarke, S., Jackson, A.: Report synthesizing state-of-the-art
in aspect-oriented requirements engineering, architectures and design. Tech. Rep.
AOSD-Europe Deliverable D11, AOSD-Europe-ULANC-9, Lancaster University
(May 18, 2005)

[10] Clements, P.C., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison Wesley, Reading (2001)

[11] Coplien, J.O.: Multiparadigm Design for C++. Addison Wesley, Reading (1998)
[12] Cottenier, T., van den Berg, A., Elrad, T.: Joinpoint inference from behav-

ioral specification to implementation. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 476–500. Springer, Heidelberg (2007)

[13] Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

http://www.aosd.net/wiki/
http://www.biglever.com/

Aspect-Oriented Model-Driven Software Product Line Engineering 151

[14] Eclipse. Eclipse modeling framework (EMF) (2007),
http://www.eclipse.org/emf

[15] Eclipse. Graphical Modeling Framework (GMF) (2007),
http://www.eclipse.org/gmf/

[16] eCos. Operating system (2007), http://ecos.sourceware.org/
[17] Fabro, M.D.D., Valduriez, P.: Semi-automatic model integration using matching

transformations and weaving models. In: SAC, pp. 963–970 (2007)
[18] Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Devel-

opment. Addison-Wesley Longman, Amsterdam (2004)
[19] Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and

obliviousness. Tech. rep. (2000)
[20] Gray, J., Lin, Y., Zhang, J.: Automating change evolution in model-driven engi-

neering. IEEE Computer 39(2), 51–58 (2006)
[21] Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Appli-

cations with Patterns, Models, Frameworks, and Tools. Wiley, Chichester (2004)
[22] Groher, I., Voelter, M.: Expressing feature-based variability in structural models.

In: Workshop on Managing Variability for Software Product Lines (2007)
[23] Groher, I., Voelter, M.: XWeave: Models and Aspects in Concert. In: AOM 2007:

Proceedings of the 10th international workshop on Aspect-oriented modeling,
pp. 35–40. ACM Press, New York (2007)

[24] Heidenreich, F., Wende, C.: Bridging the gap between features and models. In:
Second Workshop on Aspect-Oriented Product Line Engineering (2007)

[25] IBM. Rational Rose (2007),
http://www-128.ibm.com/developerworks/rational/

[26] Interactive Objects. Arcstyler (2007), http://www.interactive-objects.com/
[27] Kannan, M., Ramesh, B.: Managing variability with traceability in product and

service families. In: HICSS, p. 76 (2002)
[28] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:

An overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 327–353. Springer, Heidelberg (2001)

[29] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

[30] Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50
(1995)

[31] Lohmann, D., Scheler, F., Tartler, R., Spinczyk, O., Schröder-Preikschat, W.: A
quantitative analysis of aspects in the ecos kernel. In: EuroSys 2006: Proceedings
of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2006,
pp. 191–204. ACM, New York (2006)

[32] Loughran, N., Rashid, A.: Framed aspects: Supporting variability and configura-
bility for AOP. In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004.
LNCS, vol. 3107, pp. 127–140. Springer, Heidelberg (2004)

[33] Maeder, P., Riebisch, M., Philippow, I.: Traceability for managing evolutionary
change. In: SEDE, pp. 1–8 (2006)

[34] Mezini, M., Ostermann, K.: Variability management with feature-oriented pro-
gramming and aspects. In: SIGSOFT FSE, pp. 127–136 (2004)

[35] No Magic. Magicdraw (2007), http://www.magicdraw.com/
[36] Object Management Group. XML Metadata Interchange (XMI) specification

(2007), http://www.omg.org/mof/
[37] Oldevik, J., Haugen, O.: Higher-order transformations for product lines. In: SPLC,

pp. 243–254 (2007)

http://www.eclipse.org/emf
http://www.eclipse.org/gmf/
http://ecos.sourceware.org/
http://www-128.ibm.com/developerworks/rational/
http://www.interactive-objects.com/
http://www.magicdraw.com/
http://www.omg.org/mof/

152 I. Groher and M. Voelter

[38] OpenArchitectureWare (2007), http://www.openarchitectureware.org
[39] OpenArchitectureWare. User guide version 4.2 (2007), http://www.eclipse.org/

gmt/oaw/doc/4.2/openArchitectureWare-42-reference.pdf

[40] OSGi Alliance. Osgi framework (2007), http://osgi.org/
[41] Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer, Berlin (2005)
[42] Pure systems. pure::variants (2007), http://www.pure-systems.com/
[43] Spring Framework (2007), http://www.springframework.org/
[44] Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-

ing, Management. Wiley & Sons, Chichester (2006)
[45] Sun Microsystems. Java Enterprise Edition (2007),

http://java.sun.com/javaee/

[46] Telelogic. DOORS (2007), http://www.telelogic.com/products/doors
[47] Voelter, M., Groher, I.: Handling variability in model transformations and gener-

ators. In: 7th OOPSLA Workshop on Domain-Specific Modeling (2007)
[48] Voelter, M., Groher, I.: Product line implementation using aspect-oriented and

model-driven software development. In: SPLC, pp. 233–242 (2007)

http://www.openarchitectureware.org
http://www.eclipse.org/gmt/oaw/doc/4.2/openArchitectureWare-42-reference.pdf
http://www.eclipse.org/gmt/oaw/doc/4.2/openArchitectureWare-42-reference.pdf
http://osgi.org/
http://www.pure-systems.com/
http://www.springframework.org/
http://java.sun.com/javaee/
http://www.telelogic.com/products/doors

Constraint-Based Model Weaving

Jules White1, Jeff Gray2, and Douglas C. Schmidt1

1 Vanderbilt University
Nashville, TN, USA

{jules,schmidt}@dre.vanderbilt.edu
2 University of Alabama, Birmingham

Birmingham, AL, USA
gray@cis.uab.edu

Abstract. Aspect-oriented modeling (AOM) is a promising technique for untan-
gling the concerns of complex enterprise software systems. AOM decomposes
the crosscutting concerns of a model into separate models that can be woven to-
gether to form a composite solution model. In many domains, such as multi-tiered
e-commerce web applications, separating concerns is much easier than deducing
the proper way to weave the concerns back together into a solution model. For
example, modeling the types and sizes of caches that can be leveraged by a Web
application is much easier than deducing the optimal way to weave the caches
back into the solution architecture to achieve high system throughput.

This paper presents a technique called constraint-based weaving that maps
model weaving to a constraint satisfaction problem (CSP) and uses a
constraint-solver to deduce the appropriate weaving strategy. By mapping model
weaving to a CSP and leveraging a constraint solver, our technique (1) generates
solutions that are correct with respect to the weaving constraints, (2) can incorpo-
rate complex global weaving constraints, (3) can provide weaving solutions that
are optimal with respect to a weaving cost function, and (4) can eliminate manual
effort that would normally be required to specify pointcuts and maintain them as
target models change. The paper also presents the results of a case study that ap-
plies our CSP weaving technique to a representative enterprise Java application.
Our evaluation of this case study showed a reduction in manual effort that our
technique provides.

Keywords: Model Weaving, Aspect Oriented Programming, Constraint Satisfac-
tion, Global Constraints.

1 Introduction

Developers of complex enterprise applications are faced with the daunting task of man-
aging not only numerous functional concerns, such as ensuring that the application
properly executes key business logic, but also meeting challenging non-functional re-
quirements, such as end-to-end response time and security. Enterprise domain solutions
have traditionally been developed using large monolithic models that either provide a
single view of the system or a limited set of views [20]. The result of using a limited
set of views to build the system is that certain concerns are not cleanly separated by the
dominant lines of decomposition and are scattered throughout the system’s models.

S. Katz et al. (Eds.): Transactions on AOSD VI, LNCS 5560, pp. 153–190, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 J. White, J. Gray, and D.C. Schmidt

Aspect-oriented modeling (AOM) [7,17,38] has emerged as a powerful method of
untangling and managing scattered concerns in large enterprise application models
[21,19]. With AOM, any scattered concern can be extracted into its own view. For ex-
ample, caching considerations of an application can be extracted into an aspect. Once
caching is separated into its own aspect, the cache sizes and types can be adjusted in-
dependent of the application components where the caches are applied. When a final
composite solution model for the application is produced, the various aspects are wo-
ven back into the solution model and the numerous affected modeling elements are
updated to reflect the independently modeled concerns.

Although concerns can often be separated easily into their own aspects or views, it is
hard to correctly or optimally merge these concerns back into the solution model. Merg-
ing the models is hard because there are typically numerous competing non-functional
and functional constraints, such as balancing encryption levels for security against end-
to-end performance, that must be balanced against each other without violating domain
constraints (such as maximum available bandwidth). Manual approaches for deriving
solutions to these types of constraints do not scale well.

Most current model weavers [9,16,21,38,45] rely on techniques such as specifying
queries or patterns to match against model elements, which are ideal for matching ad-
vice against methods and constructors in application code, but are not necessarily ideal
for static weaving problems. Many enterprise applications require developers to incor-
porate global constraints into the weaving process that can only be solved in a static
weaving problem. As discussed in Sect. 3.2, the techniques used to match against dy-
namic joinpoints, such as pattern matching, cannot capture global constraints, such as
resource constraints (e.g. total RAM consumed < available RAM), which are common
in enterprise applications. Because global constraints are not honored by the model
weaver, developers are forced to expend significant effort manually deriving weaving
solutions that honor them.

When weavers cannot handle global constraints, optimization, or dependency-based
constraints, traditional model weaving becomes a manual four stage process, as shown
in Fig. 1. The left-hand column shows the steps involved in model weaving problems
with global constraints in general. The right-hand column shows how these steps mani-
fest themselves in the cache weaving example. First, the advice and joinpoint elements
(e.g. caches and components) available in the solution model are identified in step 1.
Second, as shown in steps 2 and 3, because a weaver cannot handle global constraints or
optimization, developers manually determine which advice elements should be matched
to which model elements (e.g. the cache types, cache sizes, and the components to apply
the caches to). This second step requires substantial effort because it involves deriving
a solution to a complex set of global constraints.

In terms of deriving cache placements in an enterprise application, the second step
involves determining cache architectures that fit within the required memory budget
and respect the numerous dependency and exclusion constraints between caches. After
viable cache architectures are identified, a developer must use the expected request dis-
tribution patterns and queueing theory to predict the optimal cache architecture. As the
examples in Sect. 3 show, even for a small set of caches and potential cache locations,
the cache placement process requires significant work.

Constraint-Based Model Weaving 155

Fig. 1. The Model Weaving Process

In the third step, developers take this manually-derived solution and translate it into
pointcut definitions that match against model elements using regular expressions or
queries (e.g. a specification of how to insert the caching model elements into the mod-
els to implement the caching architecture). In some cases, the manually derived solu-
tion needs to be translated into the pointcut specification languages of multiple model
weavers so that the architecture can be implemented in a set of heterogeneous models
spanning multiple modeling tools. The model weavers then take these final specifica-
tions and merge the models. Each time the underlying solution models change (e.g. the
available memory for caching changes), the global constraints can cause the entire so-
lution to change (e.g. the previously used caches no longer fit in the budgeted memory)
and the entire three steps must be repeated from scratch.

This paper shows that the manual steps of deriving a weaving solution that meets
the global application requirements (steps 2 and 3) can be automated in many cases
by creating a weaver capable of handling global constraints and optimization. Creating
a weaver that can honor these constraints and optimize weaving allows developers to
translate the high-level application requirements into pointcut specifications and opti-
mization goals that can be used by the weaver when producing a weaving solution. Fi-
nally, because the weaver is responsible for deducing a weaving solution that meets the
overall application requirements, as the individual solution models change, the weaver
can automatically update the global weaving solution and re-implement it on behalf of
the developer for multiple model weaving platforms.

This paper shows how model weaving can be mapped to a constraint satisfaction
problem (CSP) [13,34,44]. With a CSP formulation of a model weaving problem, a
constraint solver can be used to derive a correct—and in some cases optimal—weaving

156 J. White, J. Gray, and D.C. Schmidt

solution. Using a constraint solver to derive a correct weaving solution provides the
following key benefits to model weaving:

– It ensures that the solution is correct with respect to the various modeled functional
and non-functional weaving constraints.

– A constraint solver can honor global constraints when producing a solution and not
just local regular expression or query-based constraints.

– A constraint solver automates the deduction of the correct weaving and saves con-
siderable effort in manual solution derivation.

– The weaving solution can automatically be updated by the solver when the core
solution models (and hence joinpoints) change.

– The solver can produce a platform-independentweaving solution (a symbolic weav-
ing solution that is not coupled to any specific pointcut language) where model
transformations [8,15] are applied to create a weaving solution for each required
weaving platform and

– The solver can derive an optimal weaving solution (with respect to a cost function)
in many cases.

The remainder of this paper is organized as follows: Section 2 presents the
multi-tiered Web application used as a case study throughout the paper; Section 3
shows current challenges in applying existing model weaving techniques to our case
study; Section 5 describes how constraint solving can be used to derive a correct weav-
ing solution and how it addresses the gaps in existing solutions; Section 4 presents a
mapping from model weaving to a CSP; Section 7 summarizes empirical results ob-
tained from applying constraint-based weaving to our case study; Section 8 compares
constraint-based weaving with related work; and Section 9 presents concluding remarks
and lessons learned.

2 Case Study: The Java Pet Store

This paper uses a case study based on Sun’s Java Pet Store [5] multi-tiered e-commerce
application. The Pet Store is a canonical e-commerce application for selling pets. Cus-
tomers can create accounts, browse the Pet Store’s product categories, products, and
individual product items (e.g. male adult Bulldog vs. female adult Bulldog).

The Pet Store application was implemented by Sun to showcase the capabilities of
the various Java 2 Enterprise Edition frameworks [43]. The Pet Store has since been
re-implemented or modified by multiple parties, including Microsoft (the .NET Pet
Store) [4] and the Java Spring Framework [6]. The Spring Framework’s version of the
Pet Store includes support for aspects via AspectJ [2] and Spring Interceptors and is
hence the implementation that we base our study on.

2.1 Middle-Tier Caching in the Pet Store

Our case study focuses on implementing caching in the middle-tier (i.e. the persistent
data access layer) of the Pet Store through caching aspects. The business logic and

Constraint-Based Model Weaving 157

views in the Pet Store are relatively simple and thus the retrieval and storage of per-
sistent data is the major performance bottleneck. In performance tests that we ran on
the Pet Store using Apache JMeter [1], the average response time across 3,000 requests
for viewing the product categories was 3 times greater for a remotely hosted database
than a remotely hosted database with a local data cache (25% hit rate). The same tests
also showed that caching reduced the worst case response time for viewing product
categories by a factor of 2.

Our experiments tested only a single middle-tier and back-end configuration of the
Pet Store. Many different configurations are possible. The Spring Pet Store can use a
single database for product and order data or separate databases. Data access objects
(DAOs) are provided for four different database vendors. Choosing the correct way of
weaving caches into the middle-tier of the Pet Store requires considering the following
factors:

– The workload characteristics or distributions of request types, which determine
what data is most beneficial to cache [32]. For example, keeping the product in-
formation in the cache that is most frequently requested will be most beneficial.

– The architecture of the back-end database servers providing product, account, and
order data to the application determines the cost of a query [31]. For example, in
a simple Pet Store deployment where the back-end database is co-located with the
Pet Store’s application server, queries will be less expensive than in an arrangement
where queries must be sent across a network to the database server.

– The hardware hosting the cache and the applications co-located with it will deter-
mine the amount of memory available for caching product data. If the Pet Store is
deployed on small commodity servers with limited memory, large caches may be
undesirable.

– The number of possible cache keys and sizes of the data associated with each cache
item will influence the expected cache hit rate and the penalty for having to transfer
a dataset across the network from the database to the application server [35]. For
example, product categories with large numbers of products will be more expensive
to serialize and transfer from the database than the information on a single product
item.

– The frequency that the data associated with the various middle-tier DAOs is up-
dated and the importance of up-to-date information will affect which items can be
cached and any required cache coherence schemes [35]. For example, product item
availability is likely to change frequently, making product items less suitable to
cache than product categories that are unlikely to change.

2.2 Modeling and Integrating Caches into the Pet Store

Aspect modeling can be used effectively to weave caches into the Pet Store to adapt
it for changing request distribution patterns and back-end database configurations. We
used this scenario for our case study to show that although caches can be woven into the
code and models to adapt the Pet Store for a new environment, creating and maintaining
a cache weaving solution that satisfies the Pet Store’s global application requirements
takes significant manual effort due to the inability of model weavers to encode and

158 J. White, J. Gray, and D.C. Schmidt

automate weaving with the global application constraints. Each time the global appli-
cation requirements change, the manually deduced global cache weaving solution must
be updated. Updating the global cache weaving solution involves a number of mod-
els and tools. Figure 2 shows the various models, code artifacts, and tools involved in
implementing caching in the Pet Store.

Fig. 2. Models and Tools Involved in the Pet Store

1. Modeling platforms. We have implemented models of different parts of the Pet Store
in two different modeling tools: the Generic Eclipse Modeling System (GEMS) [48]
and the Generic Modeling Environment (GME) [30]. GME was chosen due to its ex-
tensive support for different views, while GEMS was selected for its strengths in model
intelligence, which was used for automating parts of the deployment modeling process.
Using different tools simplifies the derivation of the deployment plan and the under-
standing of the system architecture but also requires some level of integration between
the tools.

Generic Eclipse Modeling System is a graphical modeling tool built on top of Eclipse
[41] and the Eclipse Modeling Framework (EMF) [12]. GEMS allows developers to use
a Visio-like graphical interface to specify metamodels and generate domain-specific
modeling language (DSML) tools for Eclipse. In GEMS, a deployment modeling tool
has been implemented to capture the various deployment artifacts, such as required Java
Archive Resources (JAR) files and their placement on application servers. Another Neat
Tool (ANT) [24] build, configuration, and deployment scripts can be generated from the
GEMS deployment model.

Generic Modeling Environment [30] is another graphical modeling tool similar to
GEMS that allows developers to graphically specify a metamodel and generate a DSML

Constraint-Based Model Weaving 159

editor. A modeling tool for specifying the overall component architecture of the Pet
Store has been implemented in GME. The GME architecture model is used to capture
the component types, the various client types, back-end database architecture, and ex-
pected distribution of client requests to the Pet Store. The GME architecture model is
shown in Fig. 3.

2. Model weaving tools. The caching aspect of the Pet Store is modeled separately from
the GEMS deployment model and GME architecture model. Each time the caching
model is updated, model weaving tools must be used to apply the new caching archi-
tecture to the GEMS and GME models. For the GME models, the C-SAW [42] model
weaver is used to merge the caching architecture into the architecture model. C-SAW re-
lies on a series of weaving definition files to perform the merger. Each manually derived
global cache weaving solution is implemented in C-SAW’s weaving definition files to
apply to the GME architecture models. Again, because we need two separate modeling
tools to produce the best possible deployment and architecture models, we must also
utilize and integrate two separate model weavers into the development process.

Fig. 3. GME Pet Store Architecture Model

The deployment models in GEMS need to be updated via a model weaver, such as the
Atlas Model Weaver (AMW) [16], which can interoperate with models based on EMF.
With AMW, developers specify two EMF models and a series of merger directives
(i.e. a weaving specification). AMW produces a third merged EMF model from the
two source models. Each global cache weaving solution must also be implemented as
a weaving specification for AMW. Once the AMW specification is implemented, the
cache weaving solution can be merged into the GEMS EMF-based deployment model
to include any required JAR files and cache configuration steps.

3. Code weaving tools. Finally, to apply the cache weaving solution to the legacy Pet
Store code, the Java cache advice implementations must be woven into the Pet Store’s

160 J. White, J. Gray, and D.C. Schmidt

middle-tier objects using AspectJ [2], which is a framework for weaving advice into
Java applications. Although the Spring framework allows the application of AspectJ
advice definitions to the Pet Store, it requires that the Spring bean definition files for
the Pet Store be updated to include the new AspectJ pointcuts and advice specifications.
A final third implementation of the global cache weaving solution must be created and
specified in terms of Spring bean definitions and AspectJ pointcuts.

Overall, there are three separate tool chains that the Pet Store cache weaving solution
must be implemented. First, C-SAW weaving specifications must be created to update
the GME architectural models. Second, AMW weaving specifications must be produced
to update the GEMS deployment models. Finally, the weaving solution must be turned
into AspectJ advice/pointcut definitions for weaving the caches into the Pet Store at run
time.

3 Model Weaving Challenges

One of the primary limitations of applying existing model weavers to the Pet Store case
study described in Sect. 2 is that the existing model weaver pointcut specifications can-
not encode global application constraints, such as memory consumption constraints,
and also cannot leverage global constraints or dependency-based weaving rules to pro-
duce an overall global weaving solution. Developers must instead document and derive
a solution for the overall global application constraints and implement the solution for
each of the numerous modeling and weaving platforms for the Pet Store. Moreover,
each time the underlying global application constraints change (e.g. the memory avail-
able for caches is adjusted), the overall global weaving solution must be recalculated
and implemented in the numerous modeling tools and platforms.

3.1 Differences between Aspect Weavers and Model Weavers

To understand why model weavers do not currently support global constraints and how
this can be rectified, we first must evaluate aspect weavers at the coding level, which
have influenced model weavers. Aspect weavers, such as AspectJ and HyperJ [3], face an
indeterminate number of potential joinpoints (also referred to as joinpoint shadows [23])
that will be passed through during application execution. For example, late-binding can
be used in a Java application to dynamically load and link multiple libraries for different
parts of the application.

Each library may have hundreds or thousands of classes and numerous methods per
class (each a potential joinpoint). An aspect weaver cannot identify which classes and
methods the execution path of the application will pass through before the process ex-
its. The weaver can therefore never ascertain the exact set of potential joinpoints that
will be used ahead of time. Although the weaver may have knowledge of every join-
point shadow, it will not have knowledge of which are actually used at run time. Model
weaving, however, faces a different situation than a run time aspect weaver. The key
differences are

Constraint-Based Model Weaving 161

– Model weaving merges two models of finite and known size.
– Because models have no thread of execution, the weaver can exactly ascertain what

joinpoints are used by each model.
– Model weaving speed is less critical than aspect weaving speed at run time and

adding additional seconds to the total weaving time is not unreasonable.

Because a model weaver has knowledge of the entire set of joinpoints used by the
models at its disposal, it can perform a number of activities that are not possible with
runtime weaving where the entire used set of target joinpoints is not known. For ex-
ample, a model weaver can incorporate global constraints into the weaving process. A
runtime weaver cannot honor global constraints because it cannot see the entire used
joinpoint set at once. To honor a global constraint, the weaver must be able to see the
entire target joinpoint set to avoid violating a global constraint.

Runtime aspect weaving involves a large number of potential joinpoints or joinpoint
shadows and is not well-suited for capturing and solving global application constraints
as part of the weaving process. When weaving must be performed on an extremely large
set of target joinpoints, the weaver must use a high-efficiency technique for matching
advice to joinpoints (every millisecond counts). The most common technique is to use
a query or regular expression that can be used to determine if a pointcut matches a
joinpoint. The queries and regular expressions are independent of each other, which
allows the weaver to quickly compare each pointcut to the potential joinpoints and
determine matches.

If dependencies were introduced between the queries or expressions (e.g. only match
pointcut A if pointcut B or C do not match), the weaver would be forced to perform
far less efficient matching algorithms. Moreover, since the weaver could not know the
entire joinpoint set passed through by the application’s execution thread ahead of time,
it could not honor a dependency, such as match pointcut A only if pointcuts B and C
are never matched, because it cannot predict whether or not B and C will match in
the future. Finally, when dependencies are introduced, there is no longer necessarily
a single correct solution. Situations can arise where the weaver must either choose to
apply A or apply B and C.

3.2 Challenge 1: Existing Model Weaving Poinctut Specifications Cannot
Encode Global Application Constraints

Most model weavers, such as C-SAW, AMW, and the Motorola WEAVR [14], have
adopted the approach of runtime weavers and do not allow dependencies between
pointcuts or global constraints. Because the model weaver does not incorporate these
types of constraints, developers cannot encode the global application constraints into
the weaving specification. Figure 4 presents the manual refactoring steps (the first six
steps) that must be performed when the modeled distribution of request types to the Pet
Store changes.

In the Pet Store case study, there are a number of dependencies and global constraints
that must be honored to find a correct weaving. We created caching advice implemen-
tations that capture all product queries and implementations that are biased towards,
specific data items such as the FishCache. The biased cache is used when the majority

162 J. White, J. Gray, and D.C. Schmidt

Fig. 4. Solution Model Changes Cause Weaving Solution Updates

of requests are for a particular product type. The FishCache and the generic product
cache should be mutually exclusive. The use of the FishCache is excluded if the per-
centage of requests for fish drops below 50%. Moreover, the generic product cache will
then become applicable and must be applied.

A small change in the solution model can cause numerous significant ripple effects in
the global application constraints and hence weaving solution. This problem of changes
to the solution models of an applicaiton causing substantial refactoring of the weaving
solution is well-known [22]. The problem becomes even more complex, however, with
the global weaving solution, where significant refactoring causes multiple implementa-
tions of the weaving specification to change.

The problem with managing this ripple effect with existing model weavers is that
both the FishCache and the generic product cache have a pointcut that matches the
same model element, the ProductDAO. With existing pointcut languages based on reg-
ular expressions or queries, there is no way to specify that only one of the two pointcut
definitions should be matched to the ProductDAO. The pointcut definitions only allow
the developer to specify matching conditions based on joinpoint properties and not on
the matching success of other pointcuts.

Developers often need to restrict the overall cache selection to use less than a speci-
fied amount of memory. For example, rather than having the FishCache and
GenericCache be mutually exclusive, the two caches could be allowed to be applied if
there is sufficient memory available to support both. Requiring that the woven caches fit
within a memory budget is a resource constraint on the total memory consumed by the
weaving solution and relies on specifying a property over the entire weaving solution.
Existing regular expression and query-based pointcut languages usually do not capture
these types of rules.

Another challenge of producing this weaving constraint on the memory consumed by
the caches is that it relies on properties of both the advice objects (e.g. the memory con-
sumed by the cache) and the joinpoint objects (e.g. the memory available to the hosting
object’s application server). Most model weaving pointcut languages allow specifying
conditions only against the properties of the target joinpoints and not over the advice
elements associated with the pointcut. To circumvent this limitation, developers must
manually add up the memory consumed by the advice associated with the pointcut and
encode it into the pointcut specification’s query (e.g. find all elements hosted by an
application server with at least 30 MB of memory).

Constraint-Based Model Weaving 163

3.3 Challenge 2: Changes to the Solution Model Can Require Significant
Refactoring of the Weaving Solution

As the solution models of the application that determine the set of joinpoints change,
each manual step in Fig. 4 may need to be repeated. The caching solution relies on
multiple solution models, such as the server request distribution model, the cache hit
ratio and service times model, and the PetStore software architecture model. A change
in any of these models can trigger a recalculation of the global weaving solution. Each
recalculation of the global weaving solution involves multiple complex caculations to
determine the new targets for caches. After the new cache targets are identified, the
implementation of the solution for each weaving platform, such as the C-SAW weaving
definition files, must be updated to reflect the new caching architecture.

For example, the correct weaving of caches into the Pet Store requires considering
the back-end organization of the product database. If the database is hosted on a sep-
arate server from the Pet Store’s application server, caching product information can
significantly improve performance, as described in Sect. 2. The cache weaving solu-
tion is no longer correct; however, if biased caches are applied to various product types
that are being retrieved from a remote database and the database is co-hosted with the
Pet Store’s application server. A developer must then update the weaving solution to
produce a new and correct solution for the updated solution model.

As seen in Fig. 5, not only are numerous manual steps required to update the weaving
solution when solution model changes occur but each manual step can be complex. For
example, re-calculating the optimal placement of caches using a queueing model is non-
trivial. Moreover, each manual step in the process is a potential source of errors that can
produce incorrect solutions and requires repeating the process. The large numbers of
solution model changes that occur in enterprise development, and the complexity of
updating the weaving solution to respect global constraints, make manually updating a
global weaving solution hard.

3.4 Challenge 3: Existing Model Weavers Cannot Leverage a Weaving Goal to
Find an Optimal Concern Merging Solution

Another challenge of encoding global application constraints into a weaving specifica-
tion is that global constraints create situations where there are multiple correct solu-
tions. Existing model weavers do not allow situations where there are multiple possi-
ble weaving solutions. Because the weaver cannot choose between weaving solutions,
developers must manually deduce the correct and optimal solution to use.

Optimizing a solution bound by a set of global constraints is a computationally inten-
sive search process. Searching for an optimal solution involves exploring the solution
space (the set of solutions that adhere to the global constraints) to determine the optimal
solution. This type of optimization search can sometimes be performed manually with
numerical methods, such as the Simplex [37] method, but is typically hard. In particular,
each time the solution models change, developers must manually derive a new optimal
solution from scratch.

For example, to optimize the allocation of caches to DAOs in the Pet Store,
developers must:

164 J. White, J. Gray, and D.C. Schmidt

Fig. 5. Challenges of Updating a Weaving Solution

– Evaluate the back-end database configuration to determine if product, account, or
other data must be cached to reduce query latency.

– Derive from the cache deployment constraints what caches can be applied to the
system and in what combinations.

– Determine how much memory is available to the caches and how memory con-
straints restrict potential cache configurations.

– Exhaustively compare feasible caching architectures using queuing analysis to de-
rive the optimal allocation of caches to DAOs based on DAO service rates with and
without caching and with various cache hit rates.

It is hard to manually perform these complex calculations each time the solution models
change or caching constraints are modified.

4 CSP-Based Model Weaving

To address the challenges described in Sect. 3, we have developed AspectScatter, which
is a static model weaver that can:

1. Transform a model weaving problem into a CSP and incorporate global constraints
and dependencies between pointcuts to address Challenge 1 from Sect. 3.2.

2. Using a constraint solver, automatically derive a weaving solution that is correct
with respect to a set of global constraints, eliminating the need to manually update
the weaving solution when solution models change, as described in Challenge 2
from Sect. 3.3.

3. Select an optimal weaving solution (when multiple solutions exist) with regard to a
function over the properties of the advice and joinpoints, allowing the weaver rather
than the developer to perform optimization, thereby addressing Challenge 3 from
Sect. 3.4.

4. Produce a platform-independent weaving model and transform it into multiple
platform-specific weaving solutions for AspectJ, C-SAW, and AMW through model
transformations, thus addressing the problems associated with maintaining the
weaving specification in multiple weaving platforms.

Constraint-Based Model Weaving 165

Fig. 6. Constraint-based Weaving Overview

Figure 6 shows an overview of AspectScatter’s weaving approach. In Step 1, develop-
ers describe the advice, joinpoints, and weaving constraints to AspectScatter using its
domain-specific language (DSL) for specifying aspect weaving problems with global
constraints. In Step 2, AspectScatter transforms the DSL instance into a CSP and uses
a constraint solver to derive a guaranteed correct and, if needed, optimal weaving so-
lution. In Step 3, AspectScatter transforms the solution into a platform-independent
weaving model. Finally, in Step 4, model transformations are used to transform the
platform-independent weaving model into specific implementations, such as C-SAW
weaving definition files, for each target weaving platform.

The remainder of this section presents a mapping from model weaving to a CSP. By
producing a CSP for model weaving, a constraint solver can be used to deduce a correct,
and in many cases, optimal solution to a weaving problem.

4.1 CSP Background

A CSP is a set of variables and a set of constraints over those variables. For example,
A < B < 100 is a CSP over the integer variables A and B. A solution to a CSP is a set
of values for the variables (called a labeling) that adheres to the set of constraints. For
example, A = 10,B = 50 is a valid labeling (solution) of the example CSP.

Solutions to CSPs are obtained by using constraint solvers, which are automated
tools for finding CSP solutions. Constraint solvers build a graph of the variables and
constraints and apply techniques, such as arc-consistency, to find the ranges that vari-
able values can be set to. Search algorithms then traverse the constraint network to hone
in on a valid or optimal solution.

A constraint solver can also be used to derive a labeling of a CSP that maximizes
or minimizes a specific goal function (i.e. a function over the variables). For exam-
ple, the solver could be asked to maximize the goal function A + B in our example
CSP. A maximal labeling of the variables with respect to this goal function would be
A = 98,B = 99.

166 J. White, J. Gray, and D.C. Schmidt

4.2 Mapping Cache Weaving to a CSP

Cache weaving can be used as a simple example of how a CSP can be used to solve
a weaving problem. In the following example, we make several assumptions, such as
the hit ratio for the caches being the same for both joinpoints, to simplify the problem
for clarity. Real weaving examples involving optimal caching or other types of global
constraints are substantially more difficult to solve manually and hence motivate our
constraint solver weaving solution.

Assume that there are two caches that can be woven into an application, denoted as
C1 and C2. Furthermore, assume that there are two joinpoints that the caches can be
applied to, denoted as J1 and J2. Let there be a total of 200K of memory available to
the caches. Furthermore, the two caches are mutually exclusive and cannot be applied
to the same joinpoint. Let the time required to service a request at J1 be 10 ms and the
time at J2 be 12 ms.

Each cache hit on C1 requires 2 ms to service and each cache hit on C2 requires 3
ms. All requests pass through both J1 and J2, and the goal is to optimally match the
caches to joinpoints and set their sizes to minimize the total service time per request.
The size of each cache, C1size and C2size, determines the cache’s hit ratio. For C1, the
hit ratio is C1size/500, and for C2, the hit ratio is C2size/700. Let us assume that cache
C1 is woven into joinpoint J1 and C2 is woven into joinpoint J2, the service time per
request can be calculated as

SvcTime = 2(C1size/500)+ 10(1−C1size/500)+ 3(C1size/700)+ 12(1−C1size/700)

With this formulation, we can derive the optimal sizes for the caches subject to the
global weaving constraint:

C1size +C2size < 200

The problem, however, is that we want to know not only the optimal cache size but also
where to weave the caches and the above formulation assumes that cache C1 is assigned
to J1 and C2 to J2. Thus, instead, we need to introduce variables into the service time
calculation to represent the joinpoint that each cache is actually applied to so that we do
not assume an architecture of how caches are applied to joinpoints. That is, we want to
deduce not only the cache sizes but also the best allocation of caches to joinpoints (the
caching architecture). Let the variable Mjk have value 1 if the jth cache Cj is matched
to joinpoint Jk and 0 otherwise. We can update our service time formula so that it does
not include a fixed assignment of caches to joinpoints:

SvcTime = 2(M11 ∗C1size/500)+ 3(M21∗C2size/700)+

10(1− ((M11 ∗C1size/500)+ (M21∗C2size/700)))+

2(M12 ∗C1size/500)+ 3(M22∗C2size/700)+

12(1− ((M12 ∗C1size/500)+ (M22∗C2size/700)))

The new formulation of the response time takes into account the different caches that
could be deployed at each joinpoint. For example, the service time at joinpoint J1 is
defined as

Constraint-Based Model Weaving 167

J1SvcTime = 2(M11 ∗C1size/500)

+3(M21 ∗C2size/700)+

+10(1− ((M11∗C1size/500)+ (M21∗C2size/500)))

In this formulation the variables M11 and M21 influence the service time calculation by
determining if a specific cache’s servicing information is included in the calculation. If
the cache C1 is applied to J1, then M11 = 1 and the cache’s service time is included in
the calculation. If the cache is not woven into J1, then M11 = 0, which zeros out the
effect of the cache at J1 since:

J1SvcTime = 2(0) . . .10(1− (0 +(M21∗C2size/500)))

Thus, by calculating the optimal values of the Mi j variables, we are also calculating the
optimal way of assigning the caches (advice) to the joinpoints.

To optimally weave the caches into the application, we need to derive a set of values
for the variables in the service time equation that minimizes its value. Furthermore, we
must derive a solution that not only minimizes the above equation’s value but respects
the constraints:

C1size +C2size < 200

(M11 = 1) ⇒ (M21 = 0)

(M21 = 1) ⇒ (M22 = 0)

because the cache sizes must add up to less than the alloted memory (200K) and both
caches cannot be applied to the same joinpoint.

When the constraint solver is invoked on the CSP, the output will be the values for
the Mi j variables. That is, for each Advice i and joinpoint j the solver will output the
value of the variable Mi j, which specifies if Advice, Ai, should be mapped to joinpoint,
B j. The Mi j variables can be viewed as a table where the rows represent the advice
elements, the columns represent the joinpoints, and the values (0 or 1) at each cell are
the solver’s solution as to whether or not a particular advice should be applied to a
specific joinpoint. Furthermore, any variables that do not have values set, such as the
cache sizes (C1size and C2size), will have optimal values set by the constraint solver.

Even for this seemingly simple weaving problem, deriving what joinpoints the
caches should be applied to and how big each cache should be is not easy to do manu-
ally. However, by creating this formulation of the weaving problems as a CSP, we can
use a constraint solver to derive the optimal solution on our behalf. The solution that the
solver creates will include not only the optimal cache sizes but also which joinpoints
each cache should be applied to, which would be very difficult to derive manually.

4.3 A General Mapping of Weaving to a CSP

Section 4.2 showed how a CSP could be used to solve a weaving problem involving
optimization and global constraints. This section presents a generalized mapping from

168 J. White, J. Gray, and D.C. Schmidt

Table 1. An Example Weaving Table

ProductDAO ItemDAO
ProductsCache M00 = 1 M01 = 0
FishCache M10 = 0 M11 = 0

a weaving problem to a CSP so that the technique can be applied to arbitrary model
weaving problems with global constraints.

We define a solution to a model weaving problem as a mapping of elements from
an advice set α to a joinpoint set β that adheres to a set of constraints γ. To represent
this mapping as a CSP, we create a table, called the weaving table, where for each
advice Ai in α and joinpoint B j in β, we define a cell (i.e. a variable in the CSP) Mi j.
If the advice Ai should be applied to the joinpoint B j, then Mi j = 1 (meaning the table
cell <i,j> has value 1). If Ai should not be applied to B j, then Mi j = 0. The rules for
building a weaving solution are described to the constraint solver as constraints over
the Mi j variables. An example weaving table where the ProductsCache is applied to
the ProductDAO is shown in Table 1.

Some weaving constraints are described purely in terms of the weaving table. For
example, Challenge 1 from Sect. 3.2 introduced the constraint that the FishCache
should only be used if the ProductsCache is not applied to any component. This con-
straint can be defined in terms of a constraint over the weaving table. If the FishCache
is A0 and the ProductsCache is A1, then we can encode this constraint as for all join-
points, j: (

n

∑
j=0

M0 j > 0

)
→

(
n

∑
j=0

M1 j = 0

)

Some examples of dependency constraints between advice elements that can be imple-
mented as CSP constraints on the weaving table are:

Advice0 requires Advice1 to always be applied to the same joinpoint:

∀B j ⊂ β,(M0 j = 1) → (M1 j = 1)

Advice0 excludes Advice1 from being applied to the same joinpoint:

∀B j ⊂ β,(M0 j = 1) → (M1 j = 0)

Advice0 requires between MIN . . .MAX of Advice1 . . .Advicek at the same joinpoint:

∀B j ⊂ β,(M0 j = 1) →
(

k

∑
i=1

Mi j ≥ MIN

)
∧

(
k

∑
i=1

Mi j ≤ MAX

)

4.4 Advice and Joinpoint Properties Tables

Other weaving constraints must take into account the properties of the advice and join-
point elements and cannot be defined purely in terms of the weaving table. To incor-
porate constraints involving the properties of the advice and joinpoints, we create two

Constraint-Based Model Weaving 169

Table 2. An Example Joinpoint Properties Table

%Fish Requests %Bird Requests
ProductDAO 65% (PT00 = 0.65) 20% (PT01 = 0.2)
ItemDAO 17% (PT10 = 0.17) 47% (PT11 = 0.47)

additional tables: the advice properties table and joinpoint properties table. Each row
Pi in the advice properties table represents the properties of the advice element Ai. The
columns of the advice table represent the different property types. Thus, the cell <i,j>,
represented by the variable PAi j, contains Ai’s value for the property associated with the
jth column. The joinpoint properties table is constructed in the same fashion with the
rows being the joinpoints (i.e. each cell is denoted by the variable PTi j). An example
joinpoint properties table is shown in Table 2.

Challenge 1 from Sect. 3.2 introduced the constraint that the FishCache should only
be applied to the ProductDAO if more than 50% (the majority) of the requests to the
ProductDAO are for fish. We can use the advice and joinpoint properties tables to en-
code this request distribution constraint. Let the joinpoint properties table column at
index 0 be associated with the property for the percentage of requests that are for Fish,
as shown in the the joinpoint properties table shown in Table 2. Moreover, let A1 be the
FishCache and B0 be the ProductDAO. The example request distribution constraint can
be encoded as M10 → (PT00 > 50).

4.5 Global Constraints

In enterprise systems, global constraints are often needed to limit the amount of mem-
ory, bandwidth, or CPU consumed by a weaving solution. Global constraints can nat-
urally be incorporated into the CSP model as constraints involving the entire set of
variables in the weaving table. For example, the memory constraint on the total amount
of RAM consumed by the caches, described in Challenge 1 from Sect. 3.2, can be spec-
ified as a constraint on the weaving and properties tables.

Let the joinpoint property table column at index 5, as shown in Table 3, represent the
amount of free memory available on the hosting application server of each joinpoint.
Moreover, let the advice property table column at index 4, as shown in Table 4, contain
the amount of memory consumed by each cache. The memory consumption constraint
can be specified as:

∀B j ⊂ β,

(
n

∑
i=0

PAi4 ∗Mi j

)
< PTj5

If an advice element is matched against a joinpoint, the corresponding Mi j variable
is set to 1 and the advice element’s memory consumption value PAi4 is added to the
total consumed memory on the target application server. The constraint that the con-
sumed memory be less than the available memory is captured by the stipulation that this
sum be < PTj5, which is the total amount of free memory available on the joinpoint’s
application server.

170 J. White, J. Gray, and D.C. Schmidt

Table 3. An Example Joinpoint Properties Table with Available Memory

. . . RAM on Application Server
ProductDAO . . . 1024K (PT05 = 1024)
.

Table 4. An Example Advice Properties Table with RAM Consumption

. . . RAM Consumed
ProductCache . . . 400K (PA04 = 400)
FishCache . . . 700K (PA14 = 700)

4.6 Joinpoint Feasibility Filtering with Regular Expressions and Queries

Some types of constraints, such as constraints that require matching strings against
regular expressions, are more naturally represented using existing query and regular
expression techniques. The CSP approach to model weaving can also incorporate these
types of constraint expressions. Regular expressions, queries, and other pointcut expres-
sions that do not have dependenices can be used as an initial filtering step to explicitly
set zero values for some Mi j variables. The filtering step reduces the set of feasible
joinpoints that the solver must consider when producing a weaving solution.

For example, the FishCache should only be applied to DAOs with the naming con-
vention "Product*". This rule can be captured with an existing pointcut language and
then checked against all possible joinpoints, as shown in Fig. 7. For each joinpoint j
that the pointcut does not match, the CSP variable Mi j for each advice element i associ-
ated with the pointcut is set to 0. Layering existing dependency-free pointcut languages
as filters on top of the CSP-based weaver can help to increase the number of labeled
variables provided to the solver and thus reduce solving time.

4.7 CSP-Weaving Benefits

Challenge 3 from Sect. 3.4 showed the need for the ability to incorporate a weaving goal
to produce an optimal weaving. Using a CSP model of a weaving problem, a weaving
goal can be specified as a function over the Mi j, PAi j, and PTi j variables. Once the
goal is defined in terms of these variables, the solver can be used to derive a weaving
solution that maximizes the weaving goal. Moreover, the solver can set optimal values
for attributes of the advice elements such as cache size.

Allowing developers to specify optimization goals for the weaver enables different
weaving solutions to be obtained that prioritize application concerns differently. For ex-
ample, the same Pet Store solution models can be used to derive caching solutions that
minimize response time at the expense of memory, balance response time, and memory
consumption, or minimize the response time of particular user actions, such as adding
items to the shopping cart. To explore these various solution possibilities, developers
update the optimization function provided to AspectScatter and not the entire weaving

Constraint-Based Model Weaving 171

Fig. 7. Joinpoint Feasibility Filtering

solution calculation process. With the manual optimization approaches required by ex-
isting model weavers, it is typically too time-consuming to evaluate multiple solution
alternatives.

Mapping aspect weaving to a CSP and using a constraint solver to derive a weaving
solution addresses Challenge 1 from Sect. 3.2. CSPs can naturally accomodate both
dependency constraints and complex global constraints, such as resource or schedul-
ing constraints. With existing model weaving approaches, developers manually identify
and document solutions to the global weaving constraints. With a CSP formulation of
weaving, conversely, a constraint solver can perform this task automatically as part of
the weaving process.

Manual approaches to create a weaving solution for a set of constraints have nu-
merous points where errors can be introduced. When AspectScatter is used to derive a
weaving solution, the correctness of the resulting solution is assured with respect to the
weaving constraints. Moreover, in cases where there is no viable solution, AspectScatter
will indicate that weaving is not possible.

A further benefit of mapping an aspect weaving problem to a CSP is that exten-
sive prior research on CSPs can be applied to deriving aspect weaving solutions.
Existing research includes different approaches to finding solutions [27], incorporat-
ing soft constraints [40], selecting optimal solutions or approximations in polyno-
mial time [11,18,39], and handling conflicting constraints. Conflict resolution has been
singled out in model weaving research as a major challenge [49]. Numerous exist-
ing techniques for over-constrainted systems [10,25,?,46] (i.e. CSPs with conflicting
constraints), such as using higher-order constraints, can be applied by mapping model
weaving to a CSP.

5 The AspectScatter DSL

Manually translating an aspect weaving problem into a CSP using the mapping pre-
sented in Sect. 4 is not ideal. A CSP model can accomodate global constraints and
dependencies but requires a complex mapping that must be performed correctly to

172 J. White, J. Gray, and D.C. Schmidt

produce a valid solution. Working directly with the CSP variables to specify a weaving
problem is akin to writing assembly code as opposed to Java or C++ code.

AspectScatter provides a textual DSL for specifying weaving problems and can au-
tomatically transform instances of the DSL into the equivalent CSP model for a con-
straint solver. AspectScatter’s DSL allows developers to work at the advice/joinpoint
level of abstraction and still leverage a CSP and constraint solver for deriving a weaving
solution.

The CSP formulation of an aspect weaving problem is not specific to any one par-
ticular type of joinpoint or advice. The construction and solving of the CSP is a math-
ematical manipulation of symbols representing a set of joinpoints and advice. As such,
the joinpoints could potentially be Java method invocations or model elements. In
Sect. 6, we discuss how these symbols are translated into platform-specific joinpoints
and advice. For this section, however, it is important to remember that we are only
declaring and stating the symbols and constraints that are used to build the mathemati-
cal CSP weaving problem.

For example, in the context of the cache weaving example, there are two different
types of platform-specific joinpoints. First, there are the joinpoints used by C-SAW,
which are types of model elements in a GME model. Second, there are AspectJ-type
joinpoints, which are the invocation of various methods on the Java implementations
of the ProductDAO, OrderDAO, etc. In the platform-independent model used by the CSP,
the joinpoint definition OrderDAO is merely a symbolic definition of a joinpoint. When
the platform-specific solution is translated into a platform-specific weaving solution,
OrderDAO is mapped to a model element in the GME model used by C-SAW and an
invocation of a query method on the Java implementation of the OrderDAO.

The basic format for an AspectScatter DSL instance is shown below:
ADVICE_1_ID
{
(DIRECTIVE;)*

}
...
ADVICE_N_ID
{
(DIRECTIVE;)*

}
JOINPOINT_1_ID
{
(VARIABLENAME=EXPRESSION;)*

}
...
JOINPOINT_N_ID
{
(VARIABLENAME=EXPRESSION;)*

}

The JOINPOINT declaration specifies a joinpoint, an element B j ⊂ β, which ADVICE
elements can be matched against. The JOINPOINT_ID is the identifier, such as "Order-
DAO," which is given as a symbolic name for the joinpoint. Each JOINPOINT element
contains one or more property declarations in the form of VARIABLENAME=EXPRESSION.
The columns for the joinpoint properties table are created by traversing all of the
JOINPOINT declarations and creating columns for the set of VARIABLENAMEs. The
*EXPRESSION that a JOINPOINT specifies for a VARIABLENAME becomes the entry for
that JOINPOINT’s row in the specified VARIABLENAME column, PTi j.

Constraint-Based Model Weaving 173

Table 5. AspectScatter DSL Directives

DIRECTIVE Applied To Description
Requires : ADVICE+ one or more other ADVICE elements Ensures that all of the

specified ADVICE elements are
applied to a JOINPOINT
if the enclosing ADVICE element is

Required : (true| f alse) an ADVICE element The enclosing ADVICE element
must be applied to at least
one JOINPOINT (if true).

Excludes : ADVICE+ one or more other ADVICE elements Ensures that none of the
specified ADVICE are
applied to the same JOINPOINT
as the enclosing ADVICE

Select : [MIN..MAX],ADV ICE+ a cardinality expression and
one or more other ADVICE Ensures that at least MIN

and at most MAX of the
specified ADVICE are
mapped to the same
JOINPOINT as the enclosing ADVICE

Target : CONSTRAINT an ADVICE element Requires that CONSTRAINT
hold true for the
ADVICE and JOINPOINT’s
properties if the
ADVICE is mapped
to the JOINPOINT

Evaluate :
(ocl|groovy),
FILT ER_EXPRESSION an ADVICE element Requires that FILTER_EXPRESSION

defined in OCL or Groovy
hold true for the
ADVICE and JOINPOINT’s
properties if the
ADVICE is mapped
to the JOINPOINT

De f ineVar : VARIABLENAME
(= EXPRESSION)? a weaving problem Defines a variable.

The final value for
the variable is bound
by the weaver and
must cause the optional
EXPRESSION to evaluate
to true

De f ine : VARIABLENAME
= EXPRESSION a weaving problem Defines a variable

and sets a constant
value for it

Goal : (maximize|minimize),
VARIABLE_EXPRESSION a weaving problem Defines an expression over the

properties of ADVICE and
JOINPOINTS that should be
maximized or minimized by
the weaving

174 J. White, J. Gray, and D.C. Schmidt

Table 6. AspectScatter DSL Expressions

EXPRESSION (CONSTANT|VARIABLE_EXPRESSION) An expression
(+|− |×)
(CONSTANT|VARIABLE_EXPRESSION)

CONSTRAINT (VARIABLE_EXPRESSION|CONSTANT) Defines a constraint that must hold
(< | > | = |! = | =< | >=) true in the final weaving solution.
(VARIABLE_EXPRESSION|CONSTANT)

VARIABLE_EXPRESSION (VARIABLE_V _EXPRESSION|CONSTANT) An expression over a set of variables
(+|− |×)
(VARIABLE_V _EXPRESSION|CONSTANT)

VARIABLE_V_EXPRESSION (Target|Source).VARIABLENAME The value of the specified defined
variable (VARIABLENAME)
on a ADVICE or JOINPOINT element.
Target specifies that the variable should
be resolved against the JOINPOINT
matched by the enclosing ADVICE.
Source specifies that the variable
should be resolved
against the enclosing
ADVICE element.

Each ADVICE declaration specifies an advice element that can be matched against the
set of JOINPOINT elements, an element Ai ⊂ α. The DIRECTIVES within the advice el-
ement specify the constraints that must be upheld by the weaving solution produced by
AspectScatter and the properties of the ADVICE element (values for the PAi j variables).
The directives available in AspectScatter are shown in Table 5.

As an example, the AspectScatter ADVICE definitions:

GenericCache
{
Excludes:FishCache;
DefineVar:CacheSize;

}
FishCache
{
}

defines two advice elements called GenericCache and FishCAche. The DIRECTIVEs
within the GenericCache declaration (between "{..}") specify the constraints that must
be upheld by the joinpoint it is associated with and the properties the advice element
defines. The GenericCache excludes the advice element FishCache from being ap-
plied to the same joinpoint as the GenericCache. The GenericCache declaration also
specifies a property variable, called CacheSize, which the weaver must determine a
value for.

Assume that the GenericCache is A2 and the FishCache is A1. The AspectScatter
specification would be transformed into: the mapping variables M20 . . .M2n, the advice
property variables PA20 . . .PA2k, an advice property table column for CacheSize, and
the CSP constraint ∀B j ⊂ β,(M2 j = 1) → (M1 j = 0).

The final part of an AspectScatter DSL instance is an optional set of global variable
definitions and an optimization goal. The global variable definitions are defined in an
element named Globals. Within the Globals element, properties can be defined that
are not specific to a single ADVICE or JOINPOINT. Furthermore, the Goal directive key

Constraint-Based Model Weaving 175

word can be used within the Globals element to define the function that the constraint
solver should attempt to maximize or minimize.

The values for variables provided by the weaver are determined by labeling the CSP
for the weaving problem. For example, the global constraints for the Pet Store weaving
problem define the goal as the minimization of the response time of the ItemDAO and
ProductDAO, as can be seen below:

Globals {
Define:TotalFish = 100;
Define:TotalBirds = 75;
Define:TotalOtherAnimals = 19;
Constraint:Sources.CacheSize.Sum < 1024;
Goal:minimize, ProductDAO.RequestPercentage * ProductDAO.ResponseTime +

ItemDAO.RequestPercentage * ItemDAO.ResponseTime;
}

Each Define creates a variable in the CSP and sets its value. The variable cre-
ated by the Define can then have a constraint bound to it. For example, the variable
TotalBirds is used in the constraint (∑n

j=0 M0 j > 0) → (TotalBirds < 80). This sim-
ple constraint states that the 0th advice element can only be applied to a joinpoint if
there are less than 80 birds.

The Constraint directive adds a constraint to the CSP. In the example above, the
specification adds a constraint that the sum of the cache sizes must be less than 1024.
The statement "Sources.CacheSize.Sum" is a special AspectScatter language expres-
sion for obtaining a value from a properties table (the advice properties table), a column
(CacheSize), and an operation (summation). Assuming CacheSize is the 0th column
in the advice properties table, the statement adds the following constraint to the CSP:

∀B j ⊂ β,

(
n

∑
i=0

(Mi j ∗PAi0) < 1024

)

Since no explicit values for each advice element’s CacheSize is set, these will be vari-
ables that the solver will need to find values for as part of the CSP solving process.
Because the response times of the DAOs are dependent on the size of each cache, the
CacheSize variables will be set by the weaver to minimize response time. Developers
can use the AspectScatter DSL to produce complex aspect weaving problems with both
global constraints and goals.

AspectScatter’s DSL also includes support for the filtering operations described in
Sect. 4.6. Filters to restrict the potential joinpoints that an advice element can be mapped
to can be defined using an object constraint language (OCL) [47] or Groovy [26] lan-
guage expression that must hold true for the advice/joinpoint mapping (i.e. the choice
of expression language is up to the user). Filters are defined via the Evaluate direc-
tive. For example, a Groovy constraint can be used to restrict the FishCache from being
applied to any order-related DAOs via a regular expression constraint:

FishCache {
...
Evaluate:groovy,{!target.name.contains("Order")};

}

An OCL constraint could be used to further restrict the FishCache to be only applied
to DAOs that receive requests from a category listing page:

176 J. White, J. Gray, and D.C. Schmidt

FishCache {
...
Evaluate:ocl,{target.requestsFrom->collect(x | x.name = ’ViewCategories.jsp’)->size() > 0};

}

As described in Sect. 4.6, the filter expressions defined via Evaluate are used to
preprocess the weaving CSP and eliminate unwanted advice/joinpoint combinations.

6 AspectScatter Model Transformation Language

The result of solving the CSP is a platform-independent weaving solution that sym-
bolically defines which advice elements should be mapped to which joinpoints. This
symbolic weaving solution still needs to be translated into a platform-specific weaving
model such as an AspectJ weaving specification. The platform-specific weaving speci-
fication can then be executed to perform the actual code or model weaving.

Each platform-independent weaving representation of the weaving solution can
be transformed into multiple platform-specific weaving solutions, such as AspectJ,
C-SAW, or AMW-specific weaving specifications. Producing a platform-independent
weaving model of the solution and transforming it into implementations for specific
tools allows AspectScatter to eliminate much of the significant manual effort required
to synchronize multiple weaving specifications across a diverse set of models, model-
ing languages, and modeling tools. For example, when the modeled request distribution
changes for the Pet Store, the C-SAW, AspectJ, and GEMS weaving specifications can
automatically be re-generated by AspectScatter, as shown in Step 4 of Fig. 6.

AspectScatter’s platform-independent weaving model can be transformed into a
platform-specific model with a number of Java-based model transformation tools such
as ATL [28]. AspectScatter also includes a simple model transformation tool based on
pointcut generation templates that can be used to create the platform-specific weaving
model. In this section, we show the use of the built-in transformation language in the
context of the C-SAW weaving definition files needed for the GME model.

C-SAW weaves the caching specification into the GME architecture according to a
set of weaving directives specified in a weaving definition file. The implementation of
the C-SAW weaving definition file that is used to merge caches into the architecture
model is produced from the platform-independent weaving solution model. To trans-
form the platform-independent solution into a C-SAW weaving definition file, an As-
pectScatter model transformation is applied to the solution to create C-SAW strategies
to update model elements with caches and C-SAW aspects to deduce the elements to
which the strategies should be applied. For each cache inserted into the GME architec-
ture model, two components must be added to the C-SAW weaving definition file. First,
the Strategy for updating the GME model to include the cache and connect it to the
correct component must be created, as shown below:

strategy ProductDAOAddGenericCache() {
declare parentModel : model;
declare component, cache : atom;
parentModel := parent();
component := self;
cache := parentModel.addAtom("Cache", "GenericCacheForProductDAO");
parentModel.addConnection("CacheInstallation",cache,component);

}

Constraint-Based Model Weaving 177

A root Aspect and Strategy must also be created that matches the root element
of the GME model and invokes the weaving of the individual DAO caches. The root
definitions are shown below:

aspect RootAspect()
{
rootFolder().models()->AddCaches();

}
strategy AddCaches()
{

declare parentModel : model;
parentModel := self;
parentModel.atoms("Component")->select(m|m.name() == "ProductDAO")->ProductDAOAddGenericCache ();
....

}

For each advice/joinpoint combination, the Strategy to weave in the cache must be
created. Moreover, for each advice/joinpoint combination, a weaving instruction must
be added to the root AddCaches strategy to invoke the advice/joinpoint-specific weaving
strategy.

To create the advice/joinpoint-specific cache weaving strategy, an AspectScatter
template can be created as follows:

#advice[*](for-each[list=targets]){#
strategy ${value}Add${advice}Cache() {

declare parentModel : model;
declare component, cache : atom;
parentModel := parent();
component := self;
cache := parentModel.addAtom("Cache", "${advice}CacheFor${value}");
parentModel.addConnection("CacheInstallation",cache,component);

}
#}#

The template defines that for all advice elements matched against joinpoints
*"advice[∗]", iterate over the joinpoints that each advice element is applied to
*"for-each[list=targets]", and create a copy of the template code between "{#"
and "#}" for each target joinpoint. Moreover, each copy of the template has the name
of the advice element and target element inserted into the placeholders "${advice}" and
"${value}", respectively. The "${advice}" placeholder is filled with the symbolic name
of the advice element from its ADVICE declaration in the AspectScatter DSL instance.

The "${value}" placeholder is the symbolic name of the joinpoint, which is also ob-
tained from its definition in the AspectScatter DSL instance that the advice element has
been mapped to. The properties of an advice element can also be referred to using the
placeholder "${PROPERTYNAME}." For example, the property CacheSize of the advice
element could be referred to and inserted into the template by using the placeholder
"${CacheSize}".

After deriving a weaving solution, AspectScatter uses the templates defined for
C-SAW to produce the final weaving solution for the GME model. Invoking the gener-
ated C-SAW file inserts the caches into the appropriate points in the architecture dia-
gram. A final woven Pet Store architecture diagram in GME can be seen in Fig. 8.

With existing weaving approaches, each time the global properties such as request
distributions change, developers must manually derive a new weaving solution. When

178 J. White, J. Gray, and D.C. Schmidt

Fig. 8. The GME Architecture Model with Caches Woven in by C-SAW

the properties of the solution models change, however, AspectScatter can automati-
cally solve for new weaving solutions, and then use model transformation to gener-
ate the platform-specific weaving implementations, thereby addressing Challenge 2
from Sect. 3.3. The CSP formulation of a weaving problem is based on the weav-
ing constraints and not specific solution model properties. As long as the constraint
relationships do not change, AspectScatter can automatically re-calculate the weaving
solution and regenerate the weaving implementations. For example, if new request dis-
tributions are obtained, AspectScatter can re-calculate the weaving solution to accomo-
date the new information. Automatically updating the weaving solution as the solution
model properties change can save substantial development effort across multiple solu-
tion model refactorings.

7 Applying Constraint-Based Weaving to the Java Pet Store

This section demonstrates the reduction in manual effort and complexity achieved by
applying AspectScatter to the Spring Java Pet Store to handle global constraints and
generate platform-specific weaving implementations. For comparison, we also applied
the existing weaving platforms C-SAW and AspectJ to the same code base using a
manual weaving solution derivation process. The results document the manual effort
required to derive and implement a caching solution for the Pet Store’s ItemDAO and
ProductDAO.

Constraint-Based Model Weaving 179

7.1 Manual Complexity Overview

It is difficult to directly compare the manual effort required to execute two different
aspect weaving processes. The problem is that there is no way of correlating the relative
difficulty of the individual tasks of each process. Furthermore, the relative difficulty of
tasks may change depending on the developer.

Although it is difficult to quantify the relative difficulty of the individual steps, we
can define functions M(W P) and M′(WP) to calculate the total number of manual steps
required for each process as a function of the size of the weaving problem (WP) input.
That is, as more advice elements, joinpoints, and constraints are added to the weaving
problem, how is the number of manual steps of each process affected? What we can
show is that one process exhibits a better algorithmic O bound for the number of manual
steps as a function of the input size.

Let us assume that each step in one process is E times harder than the steps in the
second process. This gives the formula:

E ∗Mstep = M′
step

Even if there is some unknown coefficient E , representing the extra effort of each step
in the process yielding M′(WP), if M′(WP) posseses a better O bound, then there must
exist an input, wpi ⊂WP (WP is sorted in ascending order based on size), for which:

E ∗M′(wpi) ≤ M(wpi)

and for all wpx ⊂ (wpi+1 . . .wpn):

E ∗M′(wpx) < M(wpx)

Once the size of the weaving problem reaches size wpi+1, even though the steps in M′
are E times more complicated than those in M(W P), the faster rate of growth of the
function M(W P) makes it less efficient. If we can calculate O bounds for the number of
manual steps required by each process as a function of the size of the weaving problem,
then we can definitively show that for large enough problems, the process with the better
O bound will be better.

In order to compare the AspectScatter-based approach to our original C-SAW and
AspectJ approach, we provide an example weaving problem involving global con-
straints and optimization. We apply each process to the problem to show the manual
steps involved in the two processes. Next, we calculate functions M(W P) and M′(W P)
for the traditional and AspectScatter processes, respectively, and show that M′(W P)
exhibits a superior O bound.

7.2 Experimental Setup

We evaluated both the manual effort required to use the existing weaving solutions to
implement a potentially non-optimal caching solution and the effort required to derive
and implement a guaranteed optimal caching solution. By comparing the two different
processes using existing weavers, we determined how much of the manual effort results

180 J. White, J. Gray, and D.C. Schmidt

Fig. 9. Manual Effort Required for Using Existing Model Weaving Techniques Without Caching
Optimization

from supporting multiple weaving platforms and how much results from the solution
derivation process. Both processes with existing tools were then compared to a process
using AspectScatter to evaluate the reduction in solution derivation complexity and
solution implementation effort provided by AspectScatter.

7.3 Deriving and Implementing a Non-optimal Caching Solution with Existing
Weaving Techniques

The results for applying existing weavers to derive and implement a non-optimal
caching solution are shown in Fig. 9. Each individual manual set of steps is associated
with an activity that corresponds to the process diagram shown in Fig. 4. The results
tables contain minimum and maximum values for the number of steps and lines of code.
The implementation of each step is dependent on the solution chosen. The minimum
value assumes that only a single cache is woven into the Pet Store, whereas the maxi-
mum value assumes every possible cache is used.

The top table in Fig. 9 shows the effort required to produce the initial caching solu-
tion and implementation for the Pet Store. In the first two steps, developers identify and
catalog the advice and joinpoint elements. Developers then pick a caching architecture
(which may or may not be good or optimal) that will be used to produce a weaving
solution. In the next three steps, developers must implement the weaving solution as a
C-SAW weaving definition file. Finally, developers must update the Spring bean defini-
tion file with various directives to use AspectJ to weave the caches into the legacy Pet
Store code base.

Constraint-Based Model Weaving 181

Fig. 10. Manual Effort Required for Using Existing Model Weaving Techniques With Caching
Optimization

Fig. 11. Manual Effort Required for Using Existing Model Weaving Techniques to Refactor
Optimal Caching Architecture

The bottom table in Fig. 9 documents the steps required to update the caching ar-
chitecture and weaving implementation to incorporate a change in the distribution of
request types to the Pet Store. In the first step, the developer derives a new caching
architecture. In the next 12 steps, developers remove any caches from the original
C-SAW and AspectJ implementations that are no longer used by the new solution and
implement the new caching solution using C-SAW and AspectJ.

7.4 Deriving and Implementing an Optimal Caching Solution with Existing
Weaving Techniques

Figure 10 presents the manual effort to derive and implement an optimal caching so-
lution for the Pet Store using existing weavers. The change in this experiment is that
it measures the manual effort required to derive an optimal solution for the Pet Store
by calculating the Pet Store’s response time using each potential caching architecture
and choosing the optimal one. The steps for implementing the weaving solution are
identical to those from the results presented in Fig. 9.

182 J. White, J. Gray, and D.C. Schmidt

The steps labeled Derive Optimal Caching Strategy in Fig. 10 presents the manual
optimal solution derivation effort incorporated into this result set. First, developers must
enumerate and check the correctness according to the domain constraints, or each po-
tential caching architecture for both the ProductDAO and ItemDAO. Developers must
then enumerate and check the correctness of the overall caching architectures produced
from each unique combination of ProductDAO and ItemDAO caching architectures.
After determining the set of valid caching architectures, developers must use the Pet
Store’s modeled request distribution, memory constraints, and response time goals to
derive the optimal cache sizes and best possible response time of each caching architec-
ture. Finally, developers select the optimal overall architecture and implements it using
C-SAW and AspectJ.

As shown in Fig. 11, refactoring the weaving solution to accomodate the solution
model change in request type distributions forces developers to repeat the entire process.
First, they must go back and perform the optimal solution derivation process again.
After a new result is obtained, the existing solution implementations in C-SAW and
AspectJ must be refactored to mirror the new caching structure.

7.5 Deriving and Implementing an Optimal Caching Solution Using
AspectScatter

Figure 12 contains the steps required to accomplish both the initial implementation of
the Pet Store caching solution and the refactoring cost when the request distribution
changes. In steps 1 and 2, developers use AspectScatter’s DSL to specify the caches,
joinpoints, and constraints for the weaving problem. Developers then define the weav-
ing goal, the response time of the application in terms of the properties of the joinpoints,
and advice elements woven into a solution. The goal is later used by AspectScatter to
ensure that the derived weaving solution is optimal.

The next two steps (3 and 4) require the developer to create a model transformation
using AspectScatter’s transformation templates, as described in Sect. 6, to specify how
to transform the platform-independent weaving solution into a C-SAW implementation.
The approach thus represents a higher-order transformation where C-SAW transfor-
mations are generated from more abstract transformation rules. The subsequent three
steps define a model transformation to produce the AspectJ implementation. Finally,
AspectScatter is invoked to deduce the optimal solution and generate the C-SAW and
AspectJ implementations.

The bottom of Fig. 12 presents the steps required to refactor the solution to
accomodate the change in request distributions. Once the aspect weaving problem is
defined using AspectScatter’s DSL, the change in request distributions requires updat-
ing one or both of the request distribution properties of the two joinpoints (i.e. the
ProductDAO and ItemDAO) in the AspectScatter DSL instance. After the properties are
updated, AspectScatter is invoked to recalculate the optimal caching architecture and re-
generate the C-SAW and AspectJ implementations using the previously defined model
transformations.

Constraint-Based Model Weaving 183

Fig. 12. Manual Effort Required for Using AspectScatter With Caching Optimization

7.6 Results Analysis and Comparison of Techniques

By comparing the initial number of lines of code (shown in Figs. 9–12) required to
implement the caching solution using each of the three techniques, the initial cost of
defining an AspectScatter problem and solution model transformations can be derived.
AspectScatter initially requires 81 lines of code versus between 24 and 100 for the
approach based on existing techniques. The number of lines of code required to imple-
ment the initial weaving specification grows at a rate of O(n), where n is the number of
advice and joinpoint specifications for both AspectScatter and existing approaches. The
more the advice and joinpoint specifications, the larger is each weaving specification.

The benefit of AspectScatter’s use of model transformations becomes most appar-
ent by comparing the refactoring results. AspectScatter only requires the developer
to change between 1–2 lines of code before invoking AspectScatter to regenerate the
C-SAW and AspectJ implementations. Using the existing weaving approaches, the
developer must change between 24–200 lines of code. Moreover, this manual effort
required by the existing approaches is incurred per solution model change. Thus,
AspectScatter requires a constant or O(1) number of changes per refactoring while
existing approaches require O(n) changes per refactoring.

For a single aspect weaving problem without optimization that is implemented and
solved exactly once, both AspectScatter and the manual weaving approach exhibit
roughly O(n) growth in lines of code with respect to the size of the weaving prob-
lem. The more caches that need to be woven, the larger the weaving specifications have
to be for both processes. For a single weaving in this scenario, we cannot directly show
that AspectScatter provides an improvement since it has an equivalent big O bound.

If we calculate the weaving cost over K refactorings, however, we see that As-
pectScatter exhibits a bound of O(2K + n) = O(K + n) lines of code. ApsectScatter
requires an initial setup cost of O(n) lines of code and then each of the K refactorings

184 J. White, J. Gray, and D.C. Schmidt

requires manually changing 1–2 lines of code. The manual approach requires O(n) lines
of code changes for each of the K refactorings because the developer may have to com-
pletely rewrite all of the joinpoint specifications. Over K refactorings, the manual pro-
cess requires O(Kn+n) = O(Kn) lines of code changes. Thus, AspectScatter provides
a better bound, O(K + n) < O(Kn), on the rate of growth of the lines of code changed
over multiple refactorings.

When optimization is added to the scenarios, AspectScatter’s reduction in manual
complexity becomes much more pronounced. With existing approaches, each time the
weaving solution is implemented, the developer must calculate the optimal cache weav-
ing architecture. Let γ be the number of manual steps required to calculate the optimal
cache weaving architecture; then the cost of implementing the initial weaving solution
with an existing approach is O(n+ γ). The developer must implement the O(n) lines of
code for the weaving specification and derive the optimal architecture.

Since we are doing a big O analysis, we will ignore any coefficients or differences in
difficulty between a step to implement a line of code and a step in the derivation of the
optimal caching architecture. We will say that n lines of code require n manual steps to
implement. The next question is how the number of steps γ grow as a function of the
size of the weaving problem. The caching optimization problem with constraints is an
instance of a mixed integer optimization problem, which is in NP, and thus has roughly
exponential complexity. Thus, γ = θn, where θ is a constant.

The overall complexity of the existing approach for the optimization scenario is
O(n+θn). Note that this complexity bound is for solving a single instance of the weav-
ing problem. Over K refactorings, the complexity bound is even worse at O(n + K(n +
θn)). With AspectScatter, the solver performs the optimization step on the developer’s
behalf and the θn manual steps are eliminated. When optimization is included and K
refactorings are performed, AspectScatter shows a significantly better bound on manual
complexity than existing approaches:

O(n + K) < O(n + K(n + θn))

One might argue that a developer wouldn’t manually derive the optimal caching archi-
tecture by hand but would instead use some automated tool. We note, however, that this
is essentially arguing for our approach, since we are using an external tool to derive
the caching architecture and then using code generation to automatically implement the
solution. Thus, even using an external tool would still require a developer to rewrite the
weaving specification after each refactoring and would also add setup cost for speci-
fying the weaving problem for the external tool and translating the results back into a
weaving solution. Our approach automates all of these steps on behalf of the developer.

A final analysis worth looking at is the effect of the number of weaving platforms on
the complexity of the weaving process. For both processes, the overhead of the initial
setup of the weaving solution is linearly dependent on the number of weaving platforms
used. In the experiments, AspectJ and C-SAW are used as the weaving platforms. Given
P weaving platforms, both processes exhibit an initial setup complexity of O(Pn).

With existing processes, when K refactorings are performed, the number of weaving
platforms impacts the complexity of each refactoring. Rather than simply incurring
O(n) complexity for each refactoring, developers incur O(Pn) per refactoring. This

Constraint-Based Model Weaving 185

leads to an overall complexity bound of O(Pn + KPn) for existing processes versus a
bound of O(Pn + K) for AspectScatter. As we showed in the previous analyses, even
for a single weaving platform, such as just AspectJ, AspectScatter reduces complexity.
However, when numerous weaving platforms are used AspectScatter shows an even
further reduction in complexity.

7.7 Weaving Performance

There is no definitive rule to predict the time required to solve an arbitrary CSP. The
solution time is dependent on the types of constraints, the number of variables, the
degree of optimality required, and the initial variable values provided to the solver.
Furthermore, internally, the algorithms used by the solver and solver’s implementation
language can also significantly affect performance.

Our experience with AspectScatter indicated that the weaving process usually takes
10 ms to a few seconds. For example, to solve a weaving problem involving the opti-
mal weaving of 6 caches that can be woven into any of 10 different components with
fairly tight memory constraints requires approximately 120 ms on an Intel Core 2 Duo
processor with 2 GB of memory. If a correct—but not necessarily optimal solution is
needed—the solving time is roughly 22 ms. Doubling the available cache memory bud-
get essentially halves the optimal solution derivation time to 64 ms. The same problem
expanded to 12 caches and 10 components requires a range from 94 ms to 2,302 ms
depending on the tightness (ı.e. amount of slack memory) of the resource constraints.

In practice, we found that AspectScatter quickly solves most weaving problems. It
is easy to produce synthetic modeling problems with poor performance, but realistic
model weaving examples usually have relatively limited variability in the weaving pro-
cess. For example, although a caching aspect could theoretically be applied to any com-
ponent in an application, this behavior is rarely desired. Instead, developers normally
have numerous functional and other constraints that bound the solution space signifi-
cantly. In the Pet Store, for example, we restrict caching to the four key DAOs that form
the core of the middle-tier.

In cases where developers do encounter a poorly performing problem instance, there
are a number of potential courses of action to remedy the situation. One approach is
to relax the constraints, e.g. allow the caches to use more memory. Developers can
also improve solving speed by accepting less optimal solutions, e.g. solving for a cache
architecture that produces an average response time below a certain threshold rather
than an optimal response time. Finally, developers can try algorithmic changes, such as
using different solution space search algorithms, e.g. simulated annealing [39], greedy
randomized adaptive search [39] and genetic algorithms [39].

8 Related Work

This section compares our research on AspectScatter to related work. Section 8.1
compares and constrasts AspectScatter to other model weavers. Section 8.2 compares
the CSP-based model weaving approach to other aspect-oriented modeling techniques.
Finally, Sect. 8.3 compares AspectScatter to other approaches for incorporating appli-
cation requirements into aspect-oriented modeling.

186 J. White, J. Gray, and D.C. Schmidt

8.1 Model Weaving

Reddy et al. [38] propose a technique that uses model element signatures and com-
position directives to perform model weaving. Reddy’s approach focuses on different
challenges of model weaving and is complementary to the constraint-based weaving ap-
proach used by AspectScatter. AspectScatter focuses on incorporating and automating
the solution and optimization of global weaving constraints. Reddy’s approach, how-
ever, is targeted toward the difficulties of identifying joinpoints and correctly modify-
ing the structure of a model to perform a merger. First, model element signatures can be
incorporated as a CSP filtering step, as described in Sect. 4.6. Second, the composition
directives developed by Reddy can be used to implement the platform-specific weaving
model produced by AspectScatter. In contrast, AspectScatter, can derive and optimize
the global weaving solution, which Reddy’s techniques are not designed to do.

Cottenier et al. [14] have developed a model weaver called the Motorola WEAVR.
The WEAVR provides complex weaving and aspect visualization capabilities for
models. Although WEAVR has numerous capabilities, it is designed for a different part
of the model weaving process than AspectScatter. AspectScatter sits above multiple
weaving platforms to manage the overall global weaving solution. Motorola WEAVR,
in contrast, is a specific weaving platform used to merge models and visualize model
weaving results. The two tools are synergistic. Motoroal WEAVR is a weaving plat-
form that provides numerous analytic and modeling capabilities. AspectScatter is a
high-level weaver that can be used to produce weaving specifications for WEAVR. Fur-
thermore, WEAVR is not designed to model and solve complex global constraints that
AspectScatter is built for.

8.2 Aspect-Oriented Modeling

Lahire et al. [29] motivate the need for and describe a potential solution for incorpo-
rating variability into AOM. Their work motivates some of the challenges addressed in
this paper, namely the challenge of managing variability in how advice can be applied
to joinpoints. AspectScatter offers an implementation of a solver designed to: (1) han-
dle the solution variability presented by Lahire et al., (2) incorporate global constraints
to ensure that individual variable solution weaving decisions produce an overall correct
solution, and (3) optimally choose values for points of variability when multiple solu-
tions are possible. Lahire et al. initially explore and describe a potential solution for
capturing and handling AOM variability. AspectScatter provides a concrete approach
to handling numerous facets described by Lahire et al.

Morin et al. [36] have also developed a generic model of aspect-oriented model-
ing. Their technique generalizes joinpoints to model snippets and pointcuts to model
templates. AspectScatter also adopts a generalized view of pointcuts and joinpoints.
AspectScatter provides global weaving constraints and optimization, whereas the tech-
niques developed by Morin et al. are for situations where there is no ambiguity in which
potential joinpoints a template should be matched against. AspectScatter automates part
of the weaving design process, the derivation of the global weaving solution, whereas
Morin et al. propose techniques to generically model how a weaving solution is applied.
Each technique is geared toward a different phase of the weaving process. AspectScatter

Constraint-Based Model Weaving 187

solves the weaving solution derivation challenges, and Morin et al. techniques address
the platform-specific weaving solution implementation.

8.3 Models and Constraints

Lengyel and Levendovszky [33] present a technique for validating the correctness of
model transformations by tying constraints to transformation rules. Lengyel’s technique
provides a method for identifying cross-cutting constraints and refactoring them into
aspects. These techniques for capturing transformation constraints as aspects is com-
plementary to AspectScatter. While Lengyel’s techniques are designed to help maintain
the correctness of model transformations, AspectScatter is designed to automatically
maintain the correctness of model weaving. Moreover, AspectScatter is designed to de-
rive solutions to constraints but Lengyel’s techniques are for checking constraints and
identifying aspects. Lengyel’s techniques could be used to help guarantee the correct-
ness of the transformations that AspectScatter uses to produce the platform-specific
weaving implementations.

Baniassad and Clarke [7] have developed an approach to help identify aspects in
designs and trace the relationship between aspects and requirements. Their approach
is related to AspectScatter’s incorporation of global system requirements and goals
into the aspect weaving specification. Baniassad and Clarke techniques help identify
and trace the aspects and their relationship with requirements whereas AspectScatter
is designed to capture and solve requirements guiding the placement of aspects into a
system. Thus, although the approaches are both related to understanding and managing
how requirements affect aspects, the challenges that Baniassad and Clarke address (i.e.
identification and tracing of aspects) are different than AspectScatter’s (i.e. capture and
solving of weaving requirements and goals).

9 Concluding Remarks

A significant amount of manual effort is incurred by the inability to encode the global
application requirements into the model weaving specification and honor them dur-
ing the weaving process. This gap in existing model weavers encourages developers to
manually derive and maintain solutions to the global weaving constraints as the under-
lying solution models evolve. Moreover, developers may need to implement the global
weaving solution in the pointcut languages of multiple model weavers.

This paper describes how providing a model weaver with knowledge of the entire
set of joinpoints used during the weaving process ahead of time makes it possible to
map model weaving to a CSP and use a constraint solver to derive a weaving that can
incorporate global, dependency, and expression-based constraints. From our experience
using AspectScatter’s approach of mapping model weaving to a CSP, we have learned
that CSP-based model weaving reduces manual effort by:

1. Capturing and allowing the weaver to solve the global application constraints re-
quired to produce a weaving solution,

2. Informing the weaver of the overall solution goals so that the weaver can derive the
best overall weaving solution with respect to a cost function, and

188 J. White, J. Gray, and D.C. Schmidt

3. Encoding using model transformations to automatically generate implementations
of the global weaving solution for each required weaving platform.

By capturing and leveraging this critical set of domain knowledge, AspectScatter can
automate the complex process of deriving weaving solutions and maintaining them as
solution models change. By applying Aspect Scatter to the Java Pet Store case study, we
showed that the CSP-based weaving approach scaled significantly better than existing
approaches in terms of the number of manual weaving steps. Although this paper has
focused on cache weaving, the same techniques could be applied to other domains, such
as optimally configuring applications for mobile devices.

AspectScatter is an open-source tool available from http://www.eclipse.org/
gmt/gems

Acknowledgment

This work was supported in part by the National Science Foundation under NSF
CAREER CCF-0643725.

References

1. Apache Foundation’s JMeter, http://jmeter.apache.org
2. AspectJ, http://www.eclipse.org/aspectj/
3. HyperJ, http://www.alphaworks.ibm.com/tech/hyperj
4. .NET Pet Store, http://msdn2.microsoft.com/en-us/library/ms978487.aspx
5. Sun Microsystem’s Java Pet Store Sample Application,

http://java.sun.com/developer/releases/petstore/
6. The Spring Framework, http://www.springframework.org/about
7. Baniassad, E., Clarke, S.: Theme: an Approach to Aspect-oriented Analysis and Design. In:

Proceedings of the 26th International Conference on Software Engineering, Scotland, UK,
May 2004, pp. 158–167 (2004)

8. Bézivin, J.: From Object Composition to Model Transformation with the MDA. In: Proceed-
ings of TOOLS, Santa Barbara, CA, USA, August 2001, pp. 350–354 (2001)

9. Bézivin, J., Jouault, F., Valduriez, P.: First Experiments with a ModelWeaver. In: Proceedings
of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development Workshop,
19th Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, Vancouver, Canada (March 2004)

10. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-based
CSPs and Valued CSPs: Basic Properties and Comparison. In: Jampel, M., Maher, M.J.,
Freuder, E.C. (eds.) CP-WS 1995, vol. 1106, pp. 111–150. Springer, Heidelberg (1996)

11. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-Based Constraint Satisfaction and Opti-
mization. Journal of the ACM 44(2), 201–236 (1997)

12. Budinsky, F.: Eclipse Modeling Framework. Addison-Wesley Professional, New York (2003)
13. Cohen, J.: Constraint logic programming languages. Communications of the ACM 33(7),

52–68 (1990)
14. Cottenier, T., van den Berg, A., Elrad, T.: The Motorola WEAVR: Model Weaving in a Large

Industrial Context. In: Proceedings of the International Conference on Aspect-Oriented Soft-
ware Development, Industry Track, Vancouver, Canada (March 2006)

http://www.eclipse.org/gmt/gems
http://www.eclipse.org/gmt/gems
http://jmeter.apache.org
http://www.eclipse.org/aspectj/
http://www.alphaworks.ibm.com/tech/hyperj
http://msdn2.microsoft.com/en-us/library/ms978487.aspx
http://java.sun.com/developer/releases/petstore/
http://www.springframework.org/about

Constraint-Based Model Weaving 189

15. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Approaches. IBM
Systems Journal 45(3), 621–646 (2006)

16. Del Fabro, M., Bézivin, J., Valduriez, P.: Weaving Models with the Eclipse AMW plugin. In:
Eclipse Modeling Symposium, Eclipse Summit Europe, Esslingen, Germany (October 2006)

17. Elrad, T., Aldawud, O., Bader, A.: Aspect-Oriented Modeling: Bridging the Gap between
Implementation and Design. In: Batory, D., Consel, C., Taha, W. (eds.) GPCE 2002. LNCS,
vol. 2487, pp. 189–201. Springer, Heidelberg (2002)

18. Fletcher, R.: Practical methods of optimization. Wiley-Interscience, New York (1987)
19. France, R., Ray, I., Georg, G., Ghosh, S.: An Aspect-Oriented Approach to Early Design

Modeling. IEE Proceedings-Software 151(4), 173–185 (2004)
20. Gomaa, H.: Designing Concurrent, Distributed, and Real-time Applications with UML.

Addison-Wesley, Reading (2000)
21. Gray, J., Bapty, T., Neema, S., Tuck, J.: Handling crosscutting constraints in domain-specific

modeling. Communications of the ACM 44(10), 87–93 (2001)
22. Hannemann, J., Murphy, G., Kiczales, G.: Role-based Refactoring of Crosscutting Concerns.

In: Proceedings of the 4th International Conference on Aspect-oriented Software Develop-
ment, Chicago, Illinois, USA, March 2005, pp. 135–146 (2005)

23. Hilsdale, E., Hugunin, J.: Advice Weaving in AspectJ. In: Proceedings of the 3rd Interna-
tional Conference on Aspect-oriented Software Development, Lancaster, UK, March 2004,
pp. 26–35 (2004)

24. Holzner, S.: Ant: The Definitive Guide. O’Reilly, Sebastopol (2005)
25. Jampel, M., Freuder, E., Maher, M.: Over-Constrained Systems. Springer, London (1996)
26. König, D., Glover, A., King, P., Laforge, G., Skeet, J.: Groovy in Action. Manning Publica-

tions (2007)
27. Kumar, V.: Algorithms for Constraint-Satisfaction Problems: A Survey. AI Magazine 13(1),

32–44 (1992)
28. Kurtev, I., van den Berg, K., Jouault, F.: Rule-based Modularization in Model Transformation

Languages Illustrated with ATL. In: Proceedings of the 2006 ACM Symposium on Applied
Computing, Dijon, France, April 2006, pp. 1202–1209 (2006)

29. Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O., Jézéquel, J.-M.: Intro-
ducing variability into Aspect-Oriented Modeling Approaches. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 498–513. Springer,
Heidelberg (2007)

30. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing domain-specific design environments. Computer 34(11), 44–51 (2001)

31. Li, W., Hsiung, W., Kalshnikov, D., Sion, R., Po, O., Agrawal, D., Candan, K.: Issues and
Evaluations of Caching Solutions for Web Application Acceleration. In: Proceedings of the
28th International Conference on Very Large Data Bases, Hong Kong, China (August 2002)

32. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B., Naughton, J.:
Middle-tier Database Caching for E-business. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, Madison, Wisconsin, June 2002, pp. 600–611
(2002)

33. László Lengyel, H.C., Levendovszky, T.: Identification of Crosscutting Concerns in
Constraint-Driven Validated Model Transformations. In: Proceedings of the Third Workshop
on Models and Aspects at ECOOP 2007, Berlin, Germany (July 2007)

34. Michel, L., Hentenryck, P.V.: Comet in context. In: PCK50: Proceedings of the Paris C.
Kanellakis Memorial Workshop on Principles of Computing & Knowledge, San Diego, CA,
USA, pp. 95–107 (2003)

35. Mohan, C.: Caching Technologies for Web Applications. In: Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, Rome, Italy, September 2001, p. 726 (2001)

190 J. White, J. Gray, and D.C. Schmidt

36. Morin, B., Barais, O., Jézéquel, J.-M., Ramos, R.: Towards a Generic Aspect-Oriented Mod-
eling Framework. In: Models and Aspects Workshop, at ECOOP 2007, Berlin, Germany
(July 2007)

37. Nelder, J., Mead, R.: A Simplex Method for Function Minimization. Computer Journal 7(4),
308–313 (1965)

38. Reddy, Y., Ghosh, S., France, R., Straw, G., Bieman, J., McEachen, N., Song, E., Georg,
G.: Directives for Composing Aspect-Oriented Design Class Models. In: Rashid, A., Ak-
sit, M. (eds.) Transactions on Aspect-Oriented Software Development I. LNCS, vol. 3880,
pp. 75–105. Springer, Heidelberg (2006)

39. Reeves, C.: Modern Heuristic Techniques for Combinatorial Problems. John Wiley & Sons,
Inc., New York (1993)

40. Schiex, T.: Possibilistic Constraint Satisfaction Problems or How to Handle Soft Con-
straints. In: Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence,
San Mateo, CA, USA, pp. 268–275 (1992)

41. Shavor, S., D’Anjou, J., McCarthy, P., Kellerman, J., Fairbrother, S.: The Java Developer’s
Guide to Eclipse. Pearson Education, Upper Saddle River (2003)

42. Software Composition and Modeling (Softcom) Laboratory. Constraint-Specification Aspect
Weaver (C-SAW). University of Alabama at Birmingham, Birmingham, AL,
http://www.cis.uab.edu/gray/research/C-SAW

43. Valesky, T.: Enterprise JavaBeans. Addison-Wesley, Reading (1999)
44. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press, Cambridge

(1989)
45. Voelter, M., Groher, I., Heidenheim, G.: Product Line Implementation using Aspect-Oriented

and Model-Driven Software Development. In: Proceedings of the 11th International Software
Product Line Conference, Kyoto, Japan, September 2007, pp. 233–242 (2007)

46. Wallace, R., Freuder, E.: Heuristic Methods for Over-constrained Constraint Satisfaction
Problems. In: Jampel, M., Maher, M.J., Freuder, E.C. (eds.) CP-WS 1995. LNCS, vol. 1106,
pp. 207–216. Springer, Heidelberg (1996)

47. Warmer, J., Kleppe, A.: The Object Constraint Language. Addison-Wesley, Reading (2003)
48. White, J., Schmidt, D.C., Mulligan, S.: The generic eclipse modeling system. In: Proceed-

ings of the Model-Driven Development Tool Implementors Forum at TOOLS 2007, Zurich,
Switzerland (June 2007)

49. Zhang, J., Cottenier, T., van den Berg, A., Gray, J.: Aspect Composition in the Motorola
Aspect-Oriented Modeling Weaver. Journal of Object Technology 6(7)

http://www.cis.uab.edu/gray/research/C-SAW

S. Katz et al. (Eds.): Transactions on AOSD VI, LNCS 5560, pp. 191–237, 2009.
© Springer-Verlag Berlin Heidelberg 2009

MATA: A Unified Approach for Composing UML Aspect
Models Based on Graph Transformation*

Jon Whittle1, Praveen Jayaraman2, Ahmed Elkhodary2, Ana Moreira3,
and João Araújo3

1 Dept. of Computing, Lancaster University, Bailrigg, Lancaster LA1 4YW
2 Dept. of Information and Software Engineering, George Mason University, Fairfax, VA 22030

3 Dept. of Informatics, FCT, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
whittle@comp.lancs.ac.uk, praveenjayaraman@yahoo.com,

aelkhoda@gmu.edu, {amm,ja}@di.fct.unl.pt

Abstract. This paper describes MATA (Modeling Aspects Using a Transforma-
tion Approach), a UML aspect-oriented modeling (AOM) technique that uses
graph transformations to specify and compose aspects. Graph transformations
provide a unified approach for aspect modeling in that the methods presented
here can be applied to any modeling language with a well-defined metamodel.
This paper, however, focuses on UML class diagrams, sequence diagrams and
state diagrams. MATA takes a different approach to AOM since there are no
explicit joinpoints. Rather, any model element can be a joinpoint, and composi-
tion is a special case of model transformation. The graph transformation execu-
tion engine, AGG, is used in MATA to execute model compositions, and
critical pair analysis is used to automatically detect structural interactions be-
tween different aspect models. MATA has been applied to a number of realistic
case studies and is supported by a tool built on top of IBM Rational Software
Modeler.

1 Introduction

Aspect model composition is the process of combining two models, MB and MA,
where an aspect model MA is said to crosscut a base model MB. As such, aspect model
composition is a special case of the more general problem of model fusion. A number
of techniques and languages have been developed to specify how MA crosscuts MB,
and, in particular, how MA and MB should be composed.

Broadly speaking, there have been, to date, two approaches for specifying aspect
model composition. In the first approach, MA and MB are composed by defining
matching criteria that identify common elements in MA and MB and then applying a
generic merge algorithm that equates the common elements. Typically, matching
criteria are based on easily identifiable properties of model elements. For example,

* This paper is an extended version of a paper previously published at the 2007 International

MODELS conference [1]. There was also a workshop paper on the MATA tool [2]. The main
new contributions are the section on code generation and the evaluation and discussion
section. The section on aspect interactions is also new.

192 J. Whittle et al.

two class diagram models can be merged by equating classes with the same name.
Examples of this approach include Theme/UML [3] as well as work by France et al.
[4]. In the second approach, mechanisms for specifying and weaving aspects from as-
pect-oriented programming (AOP) are reused at the modeling level. There has been a
significant amount of research, for example, that identifies a joinpoint model for a
modeling language and then uses the AspectJ advices of before, after, and around for
weaving. Examples of this type include [5, 6].

These two kinds of approaches are not always sufficient. A merge algorithm in the
first approach based on general matching criteria will never be expressive enough to
handle all model compositions. Matching by name, for example, may not work for
state diagrams. Given two states with the same name, the states may need to be
merged in one of a variety of ways depending on the application being modeled: (1)
the two states represent the same thing, which implies making the states equal; (2) the
two states represent orthogonal behaviors of the same object, which implies enclosing
the states by a new orthogonal region; (3) one state is really a submodel of the other,
which implies making one state a substate of the other; and (4) the behaviors of the
two states must be interleaved in a complex way, which implies weaving the actions
and transitions in a very application-specific way to achieve the desired result. Only
the first of these can be accomplished based on merge-by-name. Furthermore, these
are only four of the many possible options, and so it is not generally sufficient to
provide a number of pre-defined merge strategies. In practice, to overcome this
problem, the modeler may additionally specify what Reddy et al. [7] call composition
directives—that is, operators that override the default merge algorithm. However,
understanding the interactions between the default algorithm and the composition
directives is a difficult task, and, in particular, does not work easily for behavioral
models (cf. [8]).

In the second approach, specific elements in a model are allowed to be defined as
joinpoints and others are not. For example, in state diagrams, some approaches [5] de-
fine actions as joinpoints. Others, however, define states as joinpoints [9]. One could
even imagine more complex joinpoints, such as the pointcut of all orthogonal regions.
(This pointcut might be used, for example, by an aspect that sequentializes parallel
behaviors.) Defining only a subset of a model’s elements as joinpoints seems to be
overly restrictive. In addition, limiting advices to before, after, and around (as is done,
for example, by both [5] and [9]) is also rather restrictive since it may be desired to
weave behavior in parallel or as a sub-behavior of a behavior in the base.

This paper takes a step back to reassess the requirements for aspect modeling lan-
guages. The result is the technique and tool MATA (Modeling Aspects Using a
Transformation Approach), which tackles the above limitations by viewing aspect
composition as a special case of model transformation. In MATA, composition of a
base and aspect model is specified by a graph rule. Given a base model, MB, crosscut
by an aspect model, MA, a MATA composition rule merges MA and MB to produce a
composed model MAB. The graph rule r: LHS → RHS defines a pattern on the
left-hand side (LHS). This pattern captures the set of joinpoints, i.e. the points in MB
where new model elements should be added. The right-hand side (RHS) defines the
new elements to be added and specifies how they should be added to MB. MATA
graph rules are defined over the concrete syntax of the modeling language. This is in
contrast to almost all known approaches to model transformation, which typically

 MATA: A Unified Approach for Composing UML Aspect Models 193

define transformations at the meta-level, that is, over the abstract syntax of the model-
ing language. The restriction to concrete syntax is important for aspect modeling
because a modeler is unlikely to have enough detailed knowledge of the UML meta-
model to specify transformations over abstract syntax.

MATA currently supports composition for UML class, sequence, and state
diagrams. In principle, however, it is easy to extend MATA to other UML models (or,
indeed, other modeling languages as long as a metamodel for the language exists)
because the idea of using graph rules is broadly applicable. MATA makes no deci-
sions on joinpoint models, for example, which would limit the approach to specific
diagram types.

One advantage of using graph transformations for aspect model composition is that
graph transformations are a well-understood, formal technique with formal analysis
tools available. In particular, critical pair analysis can be used to automatically detect
dependencies and conflicts between graph rules. MATA applies critical pair analysis
to detect interactions between aspects. This can be done because each aspect is repre-
sented as a graph rule and so the problem of aspect interaction can be stated in terms
of dependencies between graph rules. Not all kinds of interactions can be detected–the
technique is limited to structural rather than semantic interactions–but critical pair
analysis offers a fully automatic, lightweight method for finding these structural inter-
actions between aspect models.

This paper gives a full description of the MATA language for aspect model com-
position, its underlying graph transformation representation, and the use of critical
pair analysis for detecting aspect interactions. It also describes the tool support for
MATA, which is implemented on top of IBM Rational Software Modeler. The contri-
butions of this paper can be divided into three categories as follows:

1. A unified, expressive approach for aspect model composition:

− MATA is agnostic with respect to the modeling language to be composed as
long as there is a well-defined metamodel for this language.

− MATA is more expressive than previous approaches because it views aspect
model composition as simply a special case of model transformation.

− MATA handles both structural and behavioral models in the same way.
2. A usable graph transformation language for aspect model composition:

− Graph rules in MATA are written in the concrete syntax of the modeling lan-
guage, not in the abstract syntax. This allows them to be specified graphically in
a way that is very similar to defining models for the underlying modeling
language.

− Graph rules in MATA provide support for sequence pointcuts, where a pointcut
is a sequence of elements, which allows rich specification methods available in
graph transformations to be available for aspect model composition, but in a
way that is accessible to model developers.

3. An automatic technique for detecting structural interactions between aspect
models:

− Critical pair analysis has been applied to detect interactions between models
given as UML class diagrams, sequence diagrams, and state diagrams.

194 J. Whittle et al.

The paper is organized as follows. Section 2 motivates why a new, unified, and expres-
sive approach to aspect model composition is needed. Section 3 provides background on
graph transformations necessary to describe the MATA approach. Section 4 describes
the MATA language and Sect. 5 explains the application of critical pair analysis for de-
tecting aspect interactions. Section 6 presents an extended example illustrating MATA
and is followed, in Sect. 7, by a description of MATA tool support and, in Sect. 8, by a
discussion of how MATA has been applied in practice. Conclusions follow in Sect. 9.

2 Motivation

This section motivates why existing approaches to aspect model composition are not
expressive enough. The goal here is to show either that existing approaches cannot
specify compositions in certain cases or that they cannot do it in an intuitive way. To
illustrate this, we use a simple but non-trivial, example of an aspect model composi-
tion and argue that previous approaches are non-optimal.

Note that this paper takes a rather general definition of the term aspect such that any
view of the system can be called an aspect. This means that many existing decomposi-
tion techniques (e.g. use cases and features) can be seen as aspects. This interpretation is
consistent with that of many authors [6, 10, 11]. The examples in the paper will reflect
this definition. This general view in particular means that our technique for handling as-
pect models works just as well for crosscutting and non-crosscutting concerns. In other
words, we handle aspectual and non-aspectual concerns in a uniform way.

Figure 1 is an example of using UML use cases to maintain separation of concerns
in a distributed application. The idea here (following [6]) is that the use case models
are maintained separately throughout system development and that they can be
composed at any time using aspect composition. The LHS is a use case for calling a
remote service and consists of a state dependent class ServiceController and a state
diagram that defines its behavior. The RHS is a use case for handling a network
failure, which contains the same class ServiceController, but with a different set of
attributes and a different state diagram. This second use case describes a limited
number of attempts to retry a service.

Call Remote
Service

ServiceController

S1

S3
entry: logReturnValue(..)

entry: updateGUI(..)
entry: enableGUI()

serviceRequest/
disableGUI()

ServiceController

retries : int;
MAX : int;

T1

T2

[retries>MAX]remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

/retries:=0

Handle
Network
Failure

S2
entry:callRemoteService(…)

ack(..)/

Fig. 1. Maintaining Use Case Separation of UML Models

 MATA: A Unified Approach for Composing UML Aspect Models 195

S1

S2
entry:callRemoteService(…)

serviceRequest/
disableGUI(); retries:=0

ServiceController

retries : int;
MAX : int;

entry: enableGUI()

[retries>MAX]
remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

ack(..)/logReturnValue(…);
updateGUI()

Fig. 2. Desired Composition of State Diagrams from Figure 1

The RHS crosscuts the LHS in the sense that whenever callRemoteService appears
on the LHS, the RHS behavior should be used to handle a failure. This turns out to be
a non-trivial example of crosscutting behavior. Prior to calling the remote service on
the LHS, a GUI is disabled (via the action disableGUI). The GUI is only re-enabled
(via the action enableGUI) once the remote service has been called successfully—the
service call succeeds, a log is taken, and the GUI is updated before the GUI is
re-enabled.

Now, consider the desired result from composing the RHS with the LHS—this is
shown in Fig. 2. Note that when failure-handling is incorporated, what is now needed
is that the GUI should be re-enabled whether the calling of the remote service suc-
ceeds or not. That is, even if the maximum number of retries is exceeded, enableGUI
must still occur. Furthermore, logging and updating must only occur if the service call
succeeds.

Capturing this composition is quite difficult if a composition model based on that
of AspectJ is used. Existing work on (AOM) might, for example, define a joinpoint as
the occurrence of the action callRemoteService. One might then insert behavior after
or around this joinpoint in such a way that enableGUI is called whether or not the
service call succeeds, and that logging/updating is not called in the failure scenario.
This is possible but would really require the definition of two separate aspects, each
with separate joinpoints—one joinpoint being the state containing action callRemote-
Service() to which the [retries<=MAX] transition would be added, and the other be-
ing the transition with event ack/ to which logReturnValue() and updateGUI() would
be added as actions. In addition, one would need to use an around advice to ignore the
first two entry actions in state S3. The effect is that the failure handling model on the
RHS gets broken into pieces, thus becoming harder to understand the failure handling
aspect in its own right. This effect goes against many of the ideas of modeling in that
models ought to be easily readable.

Capturing this composition using some kind of default merge algorithm is also dif-
ficult. For example, one could proceed by defining a correspondence between states
and then merging those states. The obvious thing to try would be to equate T1 and S2,
but the merge based on this correspondence would fail to re-enable the GUI if the
maximum number of retries is reached. If one tries to solve this, in addition, by equat-
ing T2 and S3, then the GUI will be re-enabled, but the logging and updating will
occur even if the remote service call fails, which is contrary to the requirements given

196 J. Whittle et al.

above. Therefore, composition directives would be needed to refactor the result of
equating states. The problem with such composition directives is that it is hard to
know exactly which directives to use because one has to first visualize the result of
the merging. For large state diagrams, it becomes very complex to be able to predict
where composition directives will need to be applied after the merge is complete.

As it turns out, one neat way to handle this example is by defining a so-called
sequence pointcut [12]. A sequence pointcut should be used when it is not enough to
consider a single element as a joinpoint, but instead, the joinpoint should be a se-
quence of elements. In this example, the key sequence starts with disabling the GUI
and ends with re-enabling the GUI. This is because the GUI must be both disabled
and re-enabled whatever the outcome of the remote service call. If one could specify
that the pointcut is the sequence of actions/events between disableGUI and en-
ableGUI, then one can easily capture the fact that the aspect should only apply to
sequences where the GUI is first disabled and then later re-enabled. This allows one
to specify, on the same diagram, that the failure handling (i.e. the aspect) behavior
begins after disableGUI and ends with enableGUI. Further details on how sequence
pointcuts can be defined in MATA are given in Sect. 4. Sequence pointcuts are not
currently possible with most AOM approaches†

1, although some AOP languages do
support them [12].

More generally, when composing crosscutting state diagrams, it may be desirable
to use advices that are more expressive than before, after or around. For example, an
aspect state diagram may need to be composed in parallel with a base state diagram,
or an aspect state diagram may need to be inserted inside a state in the base diagram
(i.e. the base state becomes a composite state). In fact, composition should allow two
diagrams to be composed using any of the syntactic constructs of the modeling lan-
guage. In the case of state diagrams, for example, composition could be achieved
using orthogonal regions, composite states, or even history states.

In other words, aspect-oriented model composition may require models to be com-
posed in complex ways rather than just before or after each other. Previous
approaches to AOM do not support such complex compositions. It is for this reason
that we propose a new model composition language in this paper.

3 Background

Before going on to explain the details of the MATA language, this section first
presents necessary background material. MATA is based on the technique of graph
transformations and so a brief introduction to graph transformations is given in this
section. We also briefly describe critical pair analysis, which will be used to detect
interactions between aspects.

3.1 Graph Transformations

A graph consists of a set of nodes and a set of edges. A graph transformation is a
graph rule r: L → R from a LHS graph L to a RHS graph R. The process of applying r

1 The only known approach that does allow this is joinpoint designation diagrams (JPDDs) [13]

but JPDDs do not support expressive advices.

 MATA: A Unified Approach for Composing UML Aspect Models 197

to a graph G involves finding a graph monomorphism h from L to G and replacing
h(L) in G with h(R). Graph transformations may also be defined over attributed typed
graphs. A typed graph is a graph in which each node and edge belongs to a type.
Types are defined in a type graph. An attributed graph is a graph in which each node
and edge may be labeled with attributes where each label is a (value, type) pair giving
the value of the attribute and its type. In a graph rule, variables may be used to capture
a set of possible values and/or a set of possible types.

Graph rules have previously been used for transforming UML models (e.g. UML
refactorings [14]). Such work requires that UML models be represented as graphs.
The usual approach is to define node types as the metaclasses in the UML metamodel.
Graph rules can then be shown graphically using object diagrams.

As an example, Fig. 3 shows a (simplified) fragment of the UML state machine
metamodel. A state machine contains 1 or more (orthogonal) regions, each of which
contains states. Each transition is from a source to a target state and has a trigger and
actions. States may also have actions. A state may contain 0 or more regions. A state
is composite if it contains 1 or more regions. If it contains 2 or more regions, then the
regions in this state are orthogonal. The State metaclass has an attribute isComposite
indicating whether or not the state is composite. Finally, states, triggers, and actions
have names (as represented by a generalization relationship to namedElement).

Figure 4 is an example graph transformation which moves all outgoing transitions
from a composite state to its substates. The notation used to define this graph trans-
formation is that of [14]. (We defer to [14] for the subtleties of this notation.) Nodes
in the graph are given as rectangles. Nodes are attributed and typed and so the UML
object diagram notation can be used to represent them. There are two additional nota-
tions. First, a set of nodes of a certain type is shown by a stacked rectangle. For
example, regions is a set of Regions associated with a composite state. Secondly, the
cross in the figure is a negative application condition and says that any match against
the LHS graph cannot have a substate with a transition trigger called triggerName.

State

isComposite :
Boolean

Region

Transition

0..1

*

1

*

1

1

* *

source
target

*

0..1

substates

subregions Trigger
0..1

1

namedElement

name : String

Action

0..1 *

StateMachine

0..1
1..*

*
0..1

Fig. 3. UML State Machine Metamodel

198 J. Whittle et al.

where ts is a set of copies of t

s1 : State
isComposite
= true

regions:
Region

subs: State

t : Transition

source

s2 : State

target

source

: Transition : Trigger

name =
triggerName

tr : Trigger

name =
triggerName

s1 : State
isComposite =
true

regions:
Region

subs: State

source

ts: Transitions

s2 : State
target

tr : Trigger
name =
triggerName

subregions

subregions

substates

substates

Fig. 4. Graph Rule to Move Down Transitions

The LHS in Fig. 4 matches any graph with at least one composite state with an outgo-
ing transition. Furthermore, there should not be a transition on any of the substates
with the same trigger. The RHS redirects the matched transition to all substates (by
creating copies) thus moving the transition down in the state hierarchy.

3.2 Critical Pair Analysis

Critical pair analysis is a technique invented for term rewriting systems to check
whether a set of rewrite rules is confluent. A set of rewrite rules is confluent if for all
x,u,w with x » u and x » w, there exists a z such that u » z and w » z. Here, » denotes
the application of zero or more rewrite steps–i.e. x » u means x rewrites to u in any
number of rewrite steps. If a set of rewrite rules is finitely terminating, that is, there
are no infinite rewriting sequences, then, confluence implies that all terms have
unique normal forms. This in turn implies that, for a given term, the set of rules can
be applied in any order and the result will be the same. This is an important property
because it allows rules to be applied exhaustively without any concern about interac-
tions or dependencies between rules.

As a simple example, consider a rewrite system consisting of two rules, p1 and p2
with p1: f(X,X) →X and p2: g(f(X,Y),X) →h(X), where X and Y are variables. This is
not a confluent rewrite system. This can easily be shown by choosing the term
g(f(a,a),a) for a constant a, which rewrites under p1 to g(a,a) and under p2 to h(a).
Since there is now no way to rewrite g(a,a) and h(a) to the same term, the rule set is
not confluent.

Critical pair analysis examines potential overlaps between rules. For instance, if X
is unified with Y, p1 and p2 overlap at f(X,X). This leads to two possible rewriting re-
sults for the term g(f(a,a),a) because either of the two rules can be applied.
(g(a,a),h(a)) is called a critical pair and corresponds to the two possible ways of re-
writing g(f(a,a),a). By analyzing all possible critical pairs, all potential overlaps are
examined, i.e. all ways that might lead to divergent results are analyzed. In essence,
therefore, critical pair analysis is a way of detecting structural interactions between
rules.

 MATA: A Unified Approach for Composing UML Aspect Models 199

Formally, critical pairs can be defined as follows. If x→y and u→v are two rewrite
rules with no variables in common (rename them if there are), and if x1 is a non-
variable subterm of x unifiable with u via most general unifier θ, then the pair yθ and
the result of replacing x1θ in xθ by vθ is called a critical pair.

Critical pair analysis has been adapted to graph rules—see, for example, [15]. In
the context of MATA, since an aspect is a graph rule, critical pair analysis can be
applied to detect overlaps, i.e. interactions, between aspects. When applied exhaus-
tively, critical pair analysis will find all aspects (i.e. graph rules) that are in conflict or
are dependent, where conflict and dependency are defined as follows:

• Aspect A conflicts with aspect B if the application of aspect A prevents aspect B
from being applied.

• Aspect B is dependent on aspect A if the application of aspect A is necessary for
aspect B to be applied.

Examples of conflicts and dependencies for UML aspect models are given in
Sect. 5.

4 Specifying and Composing Aspect Models with MATA

This section describes how to specify and compose aspect models with MATA.
MATA considers aspect composition as a special case of graph transformation. The
key difference with existing graph transformation approaches such as FUJABA [16]
and VIATRA2 [17] is that these approaches define transformations using the abstract
syntax of the modeling language. For example, the transformation in Fig. 4 refers to
metaclasses such as Region and State. Even for a simple transformation such as the
one in Fig. 4, the use of abstract syntax soon becomes complicated and it becomes
very difficult to specify such rules correctly. This is particularly true for UML
sequence diagrams because the metamodel for interactions in UML is quite compli-
cated. Since MATA is targeted toward model developers, not metamodeling experts,
its aspect models must be specified in a way that is intuitive for users unfamiliar with
the intricacies of the UML metamodel. This means that aspect rules should be speci-
fied using the concrete syntax of UML rather than UML metaclasses.

For the most part, specifying a graph rule over UML using concrete syntax is
straightforward. As long as a metaclass has a concrete visualization, users can draw
diagrams using this visualization and it can be translated automatically to the relevant
metaclass. Abstract metaclasses, which do not have a concrete syntax realization,
cannot be drawn using concrete syntax. Such abstract metaclasses cannot be used in
MATA and so MATA should not be viewed as a general purpose transformation lan-
guage, but rather a transformation language specialized toward aspect model compo-
sition. For aspect model composition, abstract metaclasses do not need to be used.

MATA aspect models, therefore, are graph rules written in concrete syntax that are
translated into equivalent abstract syntax for the purposes of executing the transfor-
mation. MATA does include some extensions to UML’s concrete syntax that are nec-
essary to support its notion of sequence pointcuts. Recall from Sect. 1 that sequence
pointcuts are used to match against a sequence of model elements in the base. In
MATA, this can be a sequence of transitions in state diagrams, or it can be a sequence
of messages in sequence diagrams. Sequence pointcuts turn out to be a very powerful

200 J. Whittle et al.

mechanism for specifying aspects in a way where the aspect is as ignorant as possible
of elements in the base.

The remainder of this section explains the MATA language in detail. First, an
overview of how to specify aspects in MATA is presented. This is followed by details
on specifying joinpoints and advices in MATA.

4.1 An Overview of Using Aspects in MATA

Figure 5 provides an overview of how aspect models are specified in MATA. A
model slice is defined as a collection of structural and behavioral models (UML class
diagrams, state diagrams, and sequence diagrams) that capture a particular view of the
system. The base model slice captures the core system model with crosscutting
concerns removed. An aspect model slice captures the models for a particular cross-
cutting concern.

The base model slice is composed of a set of base models. Similarly, an aspect
model slice is composed of a set of aspect models. Base models are written in stan-
dard UML. Aspect models are written in the MATA language and are defined as
increments of the base models or other aspect models. Each aspect model describes
the set of model elements affected by the aspect (i.e. the joinpoints) and how the base
model elements are affected (i.e. the advices). Note that an aspect model can only be
defined as an increment of a model of the same type; for example, sequence diagram
aspects can extend base sequence diagrams but not base state diagrams.

The following process can be used to develop and compose aspect models. The
modeler first develops the base model slice and a set of aspect model slices. Each
aspect model slice is written as an increment over the base model slice or as an in-
crement over other aspect model slices. The user then invokes the MATA composi-
tion engine to compose the base slice with a selected subset of the aspect slices.
 Before performing the composition, MATA applies critical pair analysis to detect in-
teractions within the set of chosen aspect slices. Interactions can be detected

<<relates to>>

Base
Model Slice

Aspect
Model Slice

Aspect
Model Slice

MATA
Models

MATA
Models

MATA
Models

MATA
Models

UML
Models

UML
Models

Composed
UML Models

Composed
UML Models

Conflict &
Dependency Detection

<<relates to>>

<<relates to>>

<<realized by>> <<realized by>>

Ordering

Composed
Model Slice

Fig. 5. An Overview of MATA

 MATA: A Unified Approach for Composing UML Aspect Models 201

between models of the same type. The results of this analysis are provided to the user
and result in one of the following three conclusions:

1. There are no interactions.
2. There are interactions that mean that the aspects must be applied in a particular

order. The user then specifies this order.
3. There are interactions that cannot be resolved by applying the aspects in a particu-

lar order. Instead, either the base or aspect models must be modified to remove
these unwanted interactions.

Once all interactions have been resolved either by (2) or (3), the modeler instructs
MATA to compose the chosen aspects with the base. The result is a new model slice
that can be inspected, analyzed, or from which code can be generated. Note that there is
no necessity to actually compose the models. The key point is that the MATA specifica-
tion contains a precise description of the aspect and base relationships. This description
can either be used in composition or can be used to generate aspect-oriented code by
generating the code for each model slice and generating the AOP code that specifies
how to weave the aspect code into the base. In fact, MATA comes with a code generator
that does exactly this, resulting in AspectWerkz [18] code (see Sect. 7).

Note that MATA does not address how to partition a problem into an appropriate
set of aspect slices, i.e. how to decide on the right set of aspects. This is a more
general problem, which is out of the scope of this paper, but existing techniques for
identifying aspects during requirements engineering, such as [19], could be applied to
identify requirements-level aspects and then model these aspects during the analysis
and design phases using MATA.

4.2 Joinpoints, Advices and Aspects in MATA

There are no explicit joinpoints in MATA. Any model element can be a joinpoint and
pointcuts are defined as patterns over these model elements. Similarly, there are no
restrictions on the advices in MATA. In particular, MATA is not limited to before,
after, and around advices. Instead, any model element of the underlying model lan-
guage can be used. For example, composition in parallel is allowed in state diagrams
using orthogonal regions.

Hence, an aspect model in MATA consists of two parts, a pattern and a composi-
tion specification. Application of an aspect model to an existing base model is done in
two stages:

1. Find a match for the pattern in the base model.
2. Modify the base model at the matched locations according to the composition

specification.

This is just a standard application of graph transformation techniques.

4.2.1 MATA’s Pattern Language
A pattern in MATA can be either a simple pattern or a complex pattern. (This distinc-
tion is made purely for presentational purposes.) A simple pattern is just a UML
model with some elements marked as pattern variables. Pattern variables are typed
over UML metaclasses and are regular expressions prefixed with a vertical bar “|” to

202 J. Whittle et al.

denote that they are variables. For a simple pattern, matching the pattern against a
UML base model consists of finding an instantiation of the pattern variables in the as-
pect model such that the structure of the aspect model is preserved. Standard efficient
algorithms for matching in graph transformations can be used for this [20].

Complex patterns include patterns that define sequence pointcuts. Sequence
pointcuts are currently provided for state diagrams and sequence diagrams, and are
described next.

Sequence pointcuts in state diagrams

Sequence pointcuts in state diagrams are a general way of matching against multiple
elements at once. This is particularly useful, for example, when one wants to match
against a sequence of transitions beginning and ending with a particular event, but
where the events on intermediate transitions are unimportant. Sequence pointcuts in-
troduce new concrete syntax into patterns because multiple model elements must be
matched against. However, the concrete syntax is extended in as minimal a way as
possible.

A state diagram sequence pointcut, therefore, is an abstract representation of a
family of state diagrams and contains pattern variables. In complex patterns represent-
ing sequence pointcuts, pattern variables have multiplicities. A pattern variable |X has
a multiplicity of one. A pattern variable |X+ has a multiplicity of one or more. A com-
plex state diagram pattern matches a state diagram if all the pattern variables can be
instantiated to elements of the state diagram in a way that preserves the variable’s
metaclass and multiplicity.

State Diagram Sequence Pointcut Syntax. We denote the type of a pattern variable
by (|X : T). Only the metaclasses in the list below are allowed to have pattern variable
multiplicities. We assume the metamodel of Fig. 3 in the remainder of this paper.

1. (|X : State) matches against a single state. (|X+ : State) matches against
one or more states and also matches the transitions between these states.
More precisely, |X+ will match a fully connected substate machine–that is,
each state included in the match must be connected by at least one transi-
tion to another state included in the match.

2. (|X : StateMachine) matches a single state machine. (|X+ : StateMachine)
is not allowed (because it is unnecessary).

3. (|X : Action) matches a single action. (|X+: Action) matches a sequence of
one or more actions.

4. (|X : Trigger) matches a single event. (|X+: Trigger) matches a sequence
of one or more events.

5. (|X : Region) matches a single orthogonal region. (|X+: Region) matches
one or more regions within the same composite state.

Whenever possible, the concrete syntax of a pattern variable is the same as the UML
concrete syntax of its type. See Fig. 6 for examples.

 MATA: A Unified Approach for Composing UML Aspect Models 203

a |X b

Matches any state diagram with
states a,b separated by a single
state

a |X+ b

Matches any state diagram with
states a,b separated by any number
of states and transitions (i.e. another
state machine)

|X

|Y

Matches any composite state
with exactly 2 orthogonal regions

|X

|Y+

Matches any composite state
with at least 2 orthogonal regions

entry: |X+
e/|Y+

Matches any state with one or more
entry actions and an outgoing transition
with event e and one or more actions

Matches any composite state, i.e.,
any state that contains one or more
states and transitions

(a)

(f)(e)

(d)
(c)

(b)

|X+

Fig. 6. State Diagram Pattern Examples

Figure 6(a), for example, matches any sequence of states starting with a state
named a, ending with a state named b, and with another state in between (different
from a and b). In contrast, the variable |X+ in Fig. 6(b) matches one or more states in
between a and b as well as any transitions between those states. This means that |X+
represents any number of states and transitions with at least one of those states con-
nected to the incoming transition shown, and at least one state connected to the outgo-
ing state shown. In a similar way, Fig. 6(c) and 6(d) show how to match against a
specific number of regions and one or more regions, respectively. Figure 6(e) is self-
explanatory. Figure 6(f) matches a state which contains a state machine, i.e. there
must be at least one substate, but the composite state may contain any number of
substates and transitions.

Note that, for any simple pattern, the name of the pattern variable may be
omitted–so, Fig. 6(a) would be equivalent if |X was removed.

State Diagram Sequence Pointcut Semantics. The pattern-matching semantics for
state diagram sequence pointcuts is given by mapping each pattern to a typed graph
consisting of instances of the appropriate metaclasses. If a pattern element has a mul-
tiplicity of one, it maps to a single instance of its metaclass. If it has multiplicity of
one or more, it maps to a set of instances. To illustrate, Fig. 7 shows the mapping to
metaclass instances for the patterns given in Fig. 6(c) and (d). The first pattern will
match any composite state with exactly two orthogonal regions. The second pattern
will match any state with at least 2 regions.

A slight complication is introduced by the use of |X+ to match against a set of states
and transitions in Fig. 6(b) and (f). In Fig. 6(f), for example, instead of mapping |X+ to
a set of instances of State, it must be mapped to an instance of Region containing any

204 J. Whittle et al.

number of instances of State and Transition. This issue arises because of the peculiari-
ties of the UML metamodel.

State Diagram Pattern Example. Figure 8 shows the state diagram pattern required
in the example of Sect. 2. Recall that a sequence pointcut was deemed to be useful.
The figure illustrates how to specify a sequence from callRemoteService to
enableGUI. The pattern variable |X+ matches against any number of actions in the
target state of the transition but will not match against enableGUI(). The effect is that
the state diagram pattern matches any sequence starting with the callRemoteService()
action, followed by a transition, and by one or more entry actions, and ending with the
action enableGUI().

isComposite
= true

isComposite
= true

:State

:State

|X

|Y

|X

|Y+

:Region

:Region

:Region

:Region

Fig. 7. Metaclass Instance Representation of Patterns

entry:callRemoteService(…)

entry: |X+
entry: enableGUI()

Fig. 8. State Diagram Sequence Pointcut for Figure 1

Sequence pointcuts in sequence diagrams

Sequence pointcuts are also supported in sequence diagrams, but are somewhat
simpler. A sequence pointcut here corresponds to any sequence of ordered model
elements, including messages and combined fragments. To match the concrete syntax
closely, a new interaction fragment is introduced, with interaction operator any. An
any fragment is a variable that will match against any sequence of messages and/or
combined fragments. In Fig. 9, the Call Remote Service use case from the LHS of
Fig. 1 is instead modeled as a sequence diagram. This is shown on the top half of
Fig. 9. The bottom half of Fig. 9 gives a sequence pointcut equivalent to that shown in
Fig. 8, but for sequence diagrams. Note how this sequence pointcut is agnostic about
the messages occurring in between callRemoteService and enableGUI.

 MATA: A Unified Approach for Composing UML Aspect Models 205

:Client

(a) Call Remote Service
Sequence Diagram

(b) Sequence Pointcut

serviceRequest

:Service
Controller

:GUI :Server

disableGUI
callRemoteService

ack

logReturnValue

updateGUI

enableGUI

:Service
Controller

:GUI :Server

enableGUI

callRemoteService

|X
any

Fig. 9. Sequence pointcuts for sequence diagrams

4.2.2 MATA’s Composition Specification Language
MATA’s pattern language identifies model elements in the base models that are
crosscut by the aspect models. MATA also gives a way to define how model elements
from the aspect should be composed with model elements from the base. MATA
represents an aspect as a graph rule r: L → R, where L and R are UML models, as a
single UML model in which model elements may be annotated with one of three
stereotypes— <<create>>, <<delete>> or <<context>>.

Given a pointcut definition as a MATA pattern, model elements from the aspect
that should be added to the pattern are marked with the <<create>> stereotype. Simi-
larly, elements may be removed using the <<delete>> stereotype. Simple examples
are shown in Fig. 10 for state diagrams. In (a), the pointcut is any state (where an ex-
plicit pattern variable |X has been omitted) and the aspect elements added are a state a
and a transition to a. In (b), the pointcut is any pair of states with a transition between
them, and the aspect element is a superstate that is added so that it contains these (and
only these) two states. In general, <<create>> and <<delete>> can be used to add (or
remove) any kind of aspectual model element. For example, an aspect could be added
as an orthogonal region to an existing base model that matches a state pattern—see
Fig. 10(c).

The use of <<create>> is “optimized” in the sense that if a state is stereotyped as
<<create>>, then any of its substates or transitions are also created. Hence, in
Fig. 10(a), the transition is created but does not need to explicitly be given a <<cre-
ate>> stereotype. This optimization reduces the number of stereotypes a user must
specify. However, in Figs. 10(b) and 10(c), the user wants to wrap a composite state
around existing states. To stop these substates from being created, they are stereo-
typed as <<context>>. <<context>> therefore overrides the “optimization”. In par-
ticular, in Fig. 10(b), although the outer state is marked with <<create>>, the use of
<<context>> means that the two inner states are matched against rather than created.

206 J. Whittle et al.

<<create>>
a

(a) (b)

ev/act
<<context>> <<context>>

<<create>>

(c)

<<context>> a

<<create>>

Fig. 10. Examples of Composition Specifications

MATA’s composition stereotypes can also be applied to class diagrams and se-
quence diagrams. We illustrate with some examples of sequence diagram composition
specifications.

Figure 11 gives an example MATA aspect rule to add parallel behavior in a
sequence diagram. Figure 11(a) is the MATA rule itself and (c) shows the application
of the rule to a particular example. (In (a), the lifelines are pattern variables—as be-
fore, the pattern variables do not need to be explicitly named.) Figure 11(a) has two
parts to it—the pattern to match against and elements to add. As with state diagrams,
<<create>> in MATA sequence diagrams is “optimized” so that if <<create>> is ap-
plied to a combined fragment, it will also be applied to everything inside the fragment
unless it is marked with <<context>>. Similarly, if <<create>> is applied to a lifeline,
it is also applied to any messages that are sent to or are received by this lifeline.
<<delete>> works in the same way.

<<create>>

ppar

r
s

<<context>>

(a) MATA rule, R1

a:A b:B
p

q
ppar

r
s

a:A b:B

q

(c) Application of rules R1 and R2

<<create>>

ppar

r
s

<<context>>

(b) MATA rule, R2

b <<context>>

any

R1

R2

b

b

ppar

q
b

a:A b:B

r

s

<<context>>

Fig. 11. MATA Rules

 MATA: A Unified Approach for Composing UML Aspect Models 207

Hence, for the par fragment in Fig. 11(a), <<create>> also applies to messages r
and s. To avoid <<create>> being applied to p, it is marked with <<context>>. There-
fore, the match defined in Fig. 11(a) is any pair of lifelines with a message p from one
lifeline to the other. The effect of applying the rule in Fig. 11(a) is to introduce a new
par fragment around all instances of message p, and this new fragment will have
messages r and s occur in parallel with p. This is shown in Fig. 11(c).

Figure 11 also shows an example of how sequence pointcuts and composition
specifications can be used together in MATA. The rule R2 in Fig. 11(b) will match
any two lifelines with messages p and b with any number of messages between p and
b. (Note that the messages matched by the any fragment need not have the same
sender and receiver lifelines as p and q–that is, the lifelines across which any is drawn
are irrelevant.) The result of applying the rule is shown in Fig. 11(c). Note how the
result is different than if rule R1 is applied. For R2, the pointcut is the sequence of
messages p, q, b, and so these messages all appear in the first operand of the par
fragment.

Semantics of MATA’s composition language

As already indicated, the use of the <<create>> and <<delete>> stereotypes are “op-
timized” to reduce the burden on the modeler of applying these stereotypes. This
“optimization” is governed by the rules of neighborhood; for example, if <<create>>
is applied to a model element, it is also applied to all of its neighbors. Similarly, it
holds true for <<delete>> and <<context>>. Since this optimization process can get
quite involved for complex examples, we define here precisely how the optimization
works.

The semantics is defined by transforming an aspect into the equivalent graph rule
in the form LHS → RHS. This is done in two steps. First, the stereotypes <<create>>,
<<delete>> and <<context>> are propagated throughout the aspect model. Second,
the stereotypes are eliminated by transforming the aspect into a graph rule.

In the first step, each stereotype is propagated to its neighbors. A neighbor may be
an immediate neighbor or a remote neighbor. For a given model element, its immedi-
ate neighbors are all those related model elements that are considered strongly related
to it. For example, the trigger events on a transition are strongly related to the transi-
tion itself because they cannot exist without the transition. States are strongly related
to their transitions because if a state is deleted, then its transitions must be deleted lest
a hanging transition remains. Container states are considered to be strongly related to
the elements they contain. For example, composite states are strongly related to the
contained states. On the other hand, a transition is not strongly related to its target or
source state because the transition can be deleted without deleting the states and the
result will still be a well-formed model.

Table 1 gives the immediate neighbors for the model elements considered in this
paper.

A remote neighbor of a model element is any neighbor of an immediate neighbor
of the model element. The immediate neighbors are designed both to ensure termina-
tion of the propagation process and, as much as possible, to avoid aspects introducing
ill-formed models.

208 J. Whittle et al.

There are two precedence rules that must be taken into account during the propaga-
tion process. This is because a model element may end up with more than one MATA
stereotype either because different stereotypes were propagated from different direc-
tions or because the user has specifically assigned a stereotype. In the former case,
<<context>> always takes precedence over <<delete>> or <<create>> and so
<<delete>> and <<create>> are removed in this case. In the latter case, the user-
defined stereotype always takes precedence. For example, if a model element is
marked as <<delete>> by the user but <<context>> is propagated to it, then
<<context>> is removed. If the propagation process ends up with <<create>> and
<<delete>> both applied to the same element, then there is an inherent inconsistency
in the aspect rule and the rule should not be applied. This can happen, for instance, if
the user specifies that a state should be deleted but an incoming transition to that state
should be created. Obviously, one cannot create a new transition to a state that is
marked for deletion.

The following summarizes the propagation process.

for each MATA-stereotyped model element, m, in the aspect model:

let N be the set of immediate neighbors of m;
propagate the MATA stereotypes of m to all elements of N;
for each n in N,

apply the propagation process
end foreach

end foreach

for each model element, m, in the aspect model:

eliminate MATA stereotypes according to the precedence rules
if m is stereotyped with both <<create>> and <<delete>>, STOP

end foreach

The second step of the semantics definition is to construct the equivalent graph

rule. This is done easily. <<create>> and <<delete>> are simply a way of representing
both the LHS and RHS of a graph rule on the same diagram. The familiar LHS→
RHS notation can be obtained by considering the LHS as all elements either with no
stereotype or with <<context>> or <<delete>>. The RHS is the LHS but with the
<<create>> elements added and the <<delete>> elements removed. The Appendix
discusses how we do the conversion from UML models in concrete syntax to typed
graphs.

Although the propagation algorithm is designed as much as possible to ensure the
result of applying an aspect is a well-formed model, there are still situations where
this cannot be guaranteed. For example, if state X has a transition to Y and both Y and
the transition are marked as <<context>>, whereas X is marked as <<create>>, then
this rule looks for an existing transition with some undefined source state and creates
a new source state for the transition. However, a transition cannot have two source
states. We leave as future work to define constraints over how rules are defined that
would either avoid such rules or alert the user. Experience has shown that such rules
rarely occur in practice.

 MATA: A Unified Approach for Composing UML Aspect Models 209

Table 1. Immediate Neighbors for Some Common Model Elements

The table should be read as follows. The second column lists model elements. For
each of these elements, if a MATA stereotype is applied to it, then all elements
from the third column are also given the stereotype. So, for example, if a class has a
<<delete>> stereotype, all associations connected to this class will also be deleted.

Diagram Model element Immediate Neighbors
Class diagram Class Connected Association, Contained

Attribute, Contained Operation
Aggregation or
Composition Asso-
ciation

Aggregate or Composite Classes

Generalization Child Classes
Other Association None

State diagram State Incoming or Outgoing transition, Subs-
tates, Entry or Exit Actions

 Transition Event on the transition, Action on the
transition, Guard on the transition

Event None
Action None

Sequence diagram Combined fragment Model elements contained in the frag-
ment

Lifeline Incoming or outgoing message
Message None

4.3 MATA Example

Finally, in this section, we return to the remote service call example introduced in
Fig. 1. We now consider how to specify this aspect composition in MATA. The base
model slice consists of the models on the LHS of Fig. 1. The aspect model slice is an
adaptation of the models on the RHS of Fig. 1. The aspect models must be put into
MATA syntax so that they define the failure handling behavior as an increment over
the base model slice. Figure 12 therefore shows the state-dependent part of the aspect
model slice for failure handling. To make it easier to read, elements that are created or
deleted are in bold italics. Note that a MATA rule contains the pattern to match
against, the aspect model elements, and the composition operators that detail how
those aspect elements are merged with the base. The effect of applying this rule is
that: (1) a match is found in the base model with the state diagram sequence pointcut,
and (2) the matched submodel of the base is modified by creating and deleting ele-
ments according to the <<create>> and <<delete>> composition operators. Note that
a combination of <<create>> and <<delete>> is used to move the actions that match
against |X+.

210 J. Whittle et al.

entry:callRemoteService(…)

entry: |X+ <<delete>>
entry: enableGUI()

<<create>>[retries>MAX]
remoteException/

<<create>>[retries<=MAX]
remoteException/
<<create>>callRemoteService(…);
<<create>>retries++

/ <<create>>|X+

Fig. 12. MATA Specification of the Example in Figure 1

5 Detecting Aspect Interactions

Since aspect models are represented as graph rules in MATA, critical pair analysis
can be applied, as explained in Sect. 3, to detect interactions between aspects. In this
section, we introduce a small example to illustrate how this works. The example is for
class diagrams, but the same principles apply to sequence and state diagrams.

Service
Controller

Server

Service
Controller

Proxy Server

<<delete>>

<<create>>

Validator
<<create>>

Service
Controller

Proxy Server

<<delete>>

<<create>>

Authenticator
<<create>>

Proxy ServerCache
<<create>>

(a)

(b)

(c)

(d)

Fig. 13. Simple Example of Aspect Model Interaction

(Note how the concept of immediate neighbor is used so that, for example,
<<create>> does not need to be applied to the association from Proxy to Cache.)

 MATA: A Unified Approach for Composing UML Aspect Models 211

Recall the ongoing example, which involves the call of a remote service from a
ServiceController to a Server. Figure 13(a) gives a simple class diagram illustrating
the relationship between ServiceController and Server. Figure 13 (b)-(d) shows three
aspects that might be specified to add functionality to the network communication.
Figure 13(b) introduces a basic proxy server that simply validates a request before
forwarding it. Figure 13(c) is an aspect introducing caching to an existing proxy, and
Fig. 13(d) adds an access control proxy. The intention is that all three of these aspects
will be added to the base so that all communication between the ServiceController
and Server goes through a caching, validating, access control proxy.

Following the process to use MATA outlined in Sect. 4.1, the modeler would
instruct MATA to apply all three aspects and, before actually composing the models,
it would apply critical pair analysis to detect dependencies and conflicts between the
aspects. Because of the simplicity of the example, it is easy to see in this case that
there are indeed serious aspect interactions and that a random order of application of
the aspects may result in an incorrect result. For example, if aspect 13(d) is applied to
the base first, then aspect 13(b) can no longer be applied because it cannot match the
result obtained after applying aspect 13(d)–aspect 13(d) removes the association be-
tween ServiceController and Server, which is needed to match and apply aspect
13(b). Aspect 13(c) will still apply but the result of applying the aspects in this order
means that, since 13(b) cannot be invoked, the proxy validity check will not occur.
For large examples, such details could easily be overlooked, resulting in incorrect
models as a result of applying aspects.

Table 2 summarizes the results of critical pair analysis applied to this example. The
table tells us that there is conflict from aspect 13(d) to aspect 13(b). In particular, this
means that if aspect 13(d) is applied, then aspect 13(b) cannot be. This matches the
intuition in the previous paragraph. Conflicts are generally more serious than depend-
encies. Dependencies can be dealt with by applying the aspects in a particular order
(and this can be specified in the MATA tool). Conflicts, on the other hand, can some-
times be resolved by enforcing an application order, but, in the worst case, imply a
fundamental inconsistency in the specification that should be fixed.

Table 2. Dependencies and Conflicts in Figure 13. An entry for row X and column Y implies a
dependency or conflict from X to Y.

row→column Aspect (b) Aspect (c) Aspect (d)
Aspect (b) Dependency Conflict
Aspect (c)
Aspect (d) Conflict Dependency

Table 3. Revised Dependencies and Conflicts

row→column Aspect (b) Aspect (c) Aspect (d)
Aspect (b) Dependency Dependency
Aspect (c)
Aspect (d)

212 J. Whittle et al.

For this example, the modeler might realize, based on the results in Table 2, that a
better model would allow aspect 13(b) to introduce the basic validating proxy and
then other aspects should add functionality layers on top of this proxy. This would re-
sult in modifying aspect 13(d) to only introduce the Authenticator. (It would look
identical to Fig. 13(c) except Authenticator would replace Cache.) Once this is done,
and critical pair analysis is re-run, the results in Table 3 are obtained. Table 3 shows
us that aspects 13(c) and 13(d) are now orthogonal since there are neither dependen-
cies nor conflicts between them. This implies that the application order of 13(c) and
13(d) is irrelevant. However, there are still dependencies from aspect 13(b) to the
other rules and so aspect 13(b) must be applied before those. The modeler should
therefore specify to apply 13(b) first followed by either 13(c) or 13(d).

6 Extended Example

The preceding sections have introduced the major concepts in MATA. To bring eve-
rything together, this section provides an extended example of MATA that includes
both static and dynamic models. A cell phone application is used to illustrate the
concepts that have been introduced so far.

We will model three use cases for a simple cell phone—Receive a Call, Take a
Message, and Notify Call Waiting. The goal here is to compose models for the three
use cases. To do this, we will consider Receive a Call to be the base use case, and the
other two use cases to be aspects. The base use case is modeled in UML, whereas the
aspect use cases are modeled as MATA models, that is, as increments of the base
models. Note that the models for the aspect use cases refer only to those elements in
the base that are needed for the modifications to take place.

Figure 14 shows (simplified) static and dynamic models for the base use case, Re-
ceive a Call. The phone contains a ringer, a phone component, a display unit, and a
keypad. Upon receiving an incoming call, the phone notifies the user by displaying
the caller information on the display unit and sending a ring message to the ringer.
The user is allowed to either accept the call (then hang up later) or not accept (i.e. dis-
connect) the call.

Figure 15 gives the behavior models for the two aspects: Take a Message and No-
tify Call Waiting. Figure 15(a) is a sequence diagram for Take a Message. If the
phone rings for a specified amount of time (i.e. there is a timeout), the call goes to a
messaging system. In MATA, this is specified by creating a new alt fragment since
forwarding to voice mail is an alternative scenario to the case where the callee accepts
the call. Note that an any fragment is used to match against all messages coming after
Ring in the base. This is needed since once a message is taken, the user should not be
able to pick up the call or disconnect it. Hence, the alt fragment must be wrapped
around all messages in the base concerned with call pick up or disconnect.

In Fig. 15(b), the aspect rule matches any two states that have a transition between
them with an event named Incoming call. The effect of the aspect is to add an addi-
tional transition capturing the voicemail behavior. When this rule is applied, the two
states will match against Idle and Waiting in Fig. 14(c). The effect is to add a transi-
tion from Waiting back to Idle.

 MATA: A Unified Approach for Composing UML Aspect Models 213

Caller User

alt

Incoming call

Phone Ringer Display

Display call info

Ring

Pick up

Hang up

Disconnect

Idle

On call

Waiting

Hang up/

Pick up/

Incoming call/

Display call info,
Ring

,

Disconnect/

Phone

Keypad

Display
+Ring()

Ringer

(a) Phone System Classes

(b) Receive a Call Scenario

(c) State Diagram for Phone

Fig. 14. Models for the Base Use Case

any

(a) Take A Message Scenario (b) Take A Message States

(c) Notify Call Waiting Scenario (d) Notify Call Waiting States

Phone Ringer

Ring

Voice

alt

Forward to voice mail

<<create>>

Caller User

Pick up

Incoming call

Phone Ringer Display

loop <<create>>

Display call info

OK

Put on hold

<<create>>

Waiting for hold
prompt

On call

Incoming call/
Display call info OK/

Put on hold

Incoming call/

<<create>>

timeout/Forward to voice mail

timeout

Hang up

<<context>>

<<create>>

Fig. 15. Aspect Models for Take a Message and Notify Call Waiting

214 J. Whittle et al.

Figure 15(c) introduces messages for putting an incoming call on hold when a call
is already underway. These new messages are only relevant when a call is taking
place, that is, in between messages Pick Up and Hang Up in the base. Hence, the loop
fragment is marked with a <<create>> stereotype and this fragment is inserted in
between Pick Up and Hang Up. Note that, in this case, it would be sufficient to leave
out the Hang Up message in 15(c), which, in effect, would insert the new behavior af-
ter Pick Up. However, we include Hang Up because there may eventually be other
occurrences of Pick Up, which should not be affected by the aspect.

Figure 15(d) introduces a new state, Waiting for hold prompt, into the base to cap-
ture the new behavior for the call waiting use case. Note that the two transitions in
15(d) implicitly have <<create>> stereotypes because they are immediate neighbors
of the newly created state.

6.1 Interactions between Aspects

We can see that there is a dependency between the two state diagram rules for Take a
Message and Notify Call Waiting. This dependency arises because Notify Call Wait-
ing creates a transition with event Incoming Call (Fig. 15(d)) whereas Take a Mes-
sage matches against the event Incoming Call (Fig. 15(b)). Hence, if Take a
Message is applied to the base before Notify Call Waiting then any incoming call that
is received during an existing call cannot be sent to voicemail. Figure 16 gives the re-
sults of composing the two aspects with the base in either order. In 16(a), Take a Mes-
sage is applied to the base before Notify Call Waiting. In 16(b), it is applied after. The
difference is that there is an extra transition from Waiting for hold prompt to On call
in 16(b) which captures the fact that an incoming call may be sent to voice mail even
when there is currently an active call taking place. The difference in the composed
state diagrams arises because the rule for Notify Call Waiting introduces a new transi-
tion with event Incoming call. Hence, when the Take a Message rule is applied in
16(b), there are two transitions with event Incoming call and so the rule applies twice.

Idle

On call

W aiting

Hang up/

Pick up/

Incoming call/
Display call info,
Ring

Disconnect/

timeout/
Forward to
voice mail

On call

Waiting for
hold prompt

Incoming
call/
Display call
info

OK/Put on hold

(a) Take A Message before
Notify Call Waiting (b) Take A Message after

Notify Call Waiting

t imeout/
Forward to
voice mail

Idle

On call

W aiting

Hang up/

Pick up/

Incoming call/
Displ ay call info,
Ring

Disconnect/

timeout/
Forward to
voice mail

On call

Waiting for
hold prompt

Incoming
call/
Display call
info

OK/Put on hold

Fig. 16. Base and Aspect State Diagrams Composed

 MATA: A Unified Approach for Composing UML Aspect Models 215

MATA detects these kinds of dependencies automatically. Ultimately, the modeler
must decide which order is the correct one, but MATA can at least provide some assis-
tance in flagging cases that must be considered more carefully. If there are no conflicts
or dependencies, then the rules can be applied in any order. Critical pair analysis is par-
ticularly important when aspects are reused in a different context than originally
intended since new conflicts and dependencies may then arise inadvertently.

7 Tool Support

7.1 Overview

This section describes the implementation of the MATA tool. MATA is designed as a
vendor-independent tool but currently works on top of IBM’s Rational Software
Modeler (RSM). Each model slice is modeled as a package. Within this package, the
class diagrams, sequence diagrams, and state diagrams for the slice are maintained. A
simple UML profile is applied so that the base model slice is stereotyped as <<base>>
and aspect model slices are stereotyped as <<aspect>>. Users may select a subset of
the aspects and the tool generates the composed model for all of these aspects and the
base. The user may also define an ordering of aspect composition in case one aspect
needs to be composed before another. If an ordering is not specified, the tool selects
an order non-deterministically. Critical pair analysis is always applied before compo-
sition and the results are presented to the user.

Since MATA uses graph transformations as the underlying theory, it relies on an
existing graph rule execution tool to apply graph rules. The graph rule execution tool
used is AGG [21]. MATA converts a UML base model slice, captured as an instance
of the UML2 metamodel by RSM, into an instance of a type graph, where the type
graph represents a simplified form of the UML2 metamodel. MATA composition
rules are converted into AGG graph rules and are executed on the base graph auto-
matically. The results are converted back into a UML2 compliant model and are
displayed in RSM. Critical pair analysis is done by AGG and the results are converted
into RSM so that detected dependencies and conflicts can be understood by the user.

The details of the conversion to type graphs are not given here. It suffices to say
that for simple patterns, the mapping is a straightforward transformation from a UML
metamodel instance to a type graph instance. Full details are given in [22]. For se-
quence pointcuts, the transformation is more complex because AGG does not directly
support these. The effect is achieved by tagging model elements to keep track of their
relative positioning and then using a sequence of graph rules to manipulate the se-
quence pointcut matches. This is an implementation detail that we do not go into here.
So far, sequence pointcuts have been implemented for sequence diagrams but not for
state diagrams.

In principle, MATA could use any existing graph rule execution tool (e.g.
VIATRA2 or FUJABA) as its underlying engine, but AGG was chosen because of its
support for critical pair analysis. Although built on top of an existing engine, MATA
provides some unique features that make it very suitable for aspect modeling and
composition, namely: (1) graph rules are defined graphically using the concrete syn-
tax of UML rather than using metaclasses; (2) MATA supports sequence pointcuts,
that is, an aspect may match against a sequence of messages or a sequence of

216 J. Whittle et al.

transitions. This is supported directly in the MATA rule syntax; (3) the stereotype
<<context>> is unique to MATA; and (4) dependencies and conflicts between aspects
can be detected automatically using critical pair analysis.

7.2 Generating AspectWerkz Code from MATA Models

In general, the user has a choice whether to compose the aspect and base models dur-
ing modeling or to compose them once code has been generated from them. In the
former case, the composed models can be used to generate code using existing code
generators. In the latter case, aspect-oriented code is generated automatically using
MATA’s built-in generator, which generates AspectWerkz [18] code. AspectWerkz
was chosen for its dynamic weaving capabilities2

‡ since this research has been con-
ducted within the context of a larger project on integrating model-driven development
and runtime weaving. The code generator, however, aims to decouple the MATA
representation from the particular AOP language used, and therefore, introduces an
intermediate layer in the mapping. This layer defines a metamodel of common AOP
language constructs and can be mapped to different AOP languages supporting those
constructs.

The remainder of this section gives a brief introduction to AspectWerkz, a short
description of the code generation facilities in MATA, and a short example.

7.2.1 AspectWerkz
AspectWerkz is a Java-based AOP language that does not add any new language
constructs to Java, but instead supports declaration of aspects via Java annotations.
AspectWerkz has now been merged with AspectJ. However, the full dynamic weav-
ing capabilities of AspectWerkz are not available in AspectJ and so we continue to
use AspectWerkz in this paper. AspectWerkz includes support for dynamic weaving
of aspects, which makes it possible to redefine advices and introductions at runtime
without any class reloading or new weaving phase as well as to declare new pointcuts
at run time. AspectWerkz was chosen to be the target of MATA’s code generator be-
cause of its ability to support research projects in adaptive systems. However, because
of the merge of AspectWerkz and AspectJ, it would be straightforward to adapt the
code generator to produce AspectJ code (albeit without the runtime weaving capabili-
ties). An alternative AOP language with run time weaving facilities would be PROSE
[23]. Partly because of the uncertainty of future runtime weaving languages, MATA’s
code generator has been implemented following MDA principles, that is, by mapping
first to an intermediate platform-independent aspect metamodel before mapping to
AspectWerkz.

In AspectWerkz, annotations can be used to define aspects (see Fig. 17). An aspect
is just a class with the annotation @Aspect. The usual advices–before, after and
around–can also be defined using annotations. For example, in Fig. 17(b), an around
advice is defined to add new behavior to method1 when field1 is set to 1. Introduc-
tions in AspectWerkz can be defined using mixins. Figure 17(c) shows a mixin for
adding new fields and methods to Class1. Note how the mixin is just a class with an
annotation.

2 Although Aspectwerkz has now been integrated into AspectJ 5, the runtime weaving capabili-

ties do not exist in AspectJ 5.

 MATA: A Unified Approach for Composing UML Aspect Models 217

public class Class1 {

int field1 = 0;
…

public void method1(String param) {
if(field1 == 0) {

object1.method1(param);
object2.method1();

}
}
public void method2()

{ /*method2 logic*/ }
…

}

@Aspect
public class Aspect1 {

@Around(“execution(public * *.Class1.method1(..))”)
public void around_method1(JoinPoint jp){

Class1 baseClass = (Class1) jp.getTarget();
if(baseClass.field1 == 1){

baseClass.object3.method1(param)
baseClass.object2.method1();
return;

} else {
jp.proceed();

}
}

}

@Mixin(“within(public *.Class1)”)
public class Class1Mixin {

public Class1Mixin(Object target)
{ Class1 baseClass = (Class1) target; }

int field2 = 0;
public void method3()

{ /*logic for the new method*/ }
public void method4()

{ /*logic for the new method*/ }
}

Influence on
Structure

Influence on
Behavior

(a)

(b)

(c)

Fig. 17. Syntax of AspectWerkz

7.2.2 Code Generation in MATA
MATA currently generates AspectWerkz code from UML class diagrams and UML
state diagrams. It takes a base model slice and a set of aspect model slices (selected by
the user) and generates Java code for the base model slice and an AspectWerkz aspect
for each of the aspect model slices. State diagrams are implemented using the State
pattern.

To maintain independence from the target AOP language, code is generated in two
phases. The first phase maps MATA models to an AOP metamodel that defines the
concepts common to the most widely used AOP languages but does not commit to a
particular AOP language. The second phase generates AspectWerkz code from this
metamodel but could be adapted fairly easily to generate, for example, AspectJ code.

The intricacies of the code generator are outside the scope of this paper. Instead, we
present a simple example. Recall the cell phone example from Sect. 6. Figure 14 shows
the base state diagram, whereas Fig. 15 shows an aspect state diagram that introduced a
new state and transitions for the Notify Call Waiting use case.

Figure 18 gives the code generated for these two state diagrams. The LHS of the fig-
ure is an implementation of the base state diagram using the State pattern. The RHS
uses mixins to add new states and transitions to the base behavior. Note, in this example,
that a single new state is created (Waiting for Hold Prompt). This is implemented as a
new object that implements the State interface. In Fig. 15, a new transition, Incoming
Call, is added to the On Call state. This is captured in the aspect code by a mixin ap-
plied to the OnCall class. There also needs to be a mixin applied to the Phone class to
redirect the new transition OK. The upper portion of the RHS of Fig. 18 is a book-
keeping code needed to ensure proper placement of the aspect code.

218 J. Whittle et al.

public class Caller
{ /* caller interfacing logic */ }

public class User
{ /* user interfacing logic */ }

public class Phone {
public void incomingCall(String info)

{ curState.incomingCall(info); }
public void pickUp() { curState.pickUp(); }
public void hangUp() { curState.hangUp(); }
public void disconnect() { curState.disconnect(); }

//State Machine Implementation
public interface State {

void incomingCall(String info);
void pickUp();
void hangUp();
void disconnect();

}
class Idle implements State {

public void incomingCall(String info) {
display.displayCallInfo(info);
ringer.ring();
curState = waiting;

}
void pickUp() { /*do nothing*/ }
void hangUp() { /*do nothing*/ }
void disconnect() { /*do nothing*/ }

} //other states follow the same approach...
}
public class Ringer() {

public void ring() { /*ringing logic*/ }
}
public class Display() {

public void displayCallInfo(String info)
{ /*display logic*/ }

}

@Mixin(“within(public * ReceiveACall.Phone)”)
public class Phone extends PeerClass {

//initialization code…
public void incomingCall(String info) {

curState.incomingCall(info); }
public void oK() { curState.oK(); }

//State Machine Implementation
interface State

{ void incomingCall(String info); void OK(); }
@Mixin(“within(public ReceiveACall.Phone$OnCall)”)
class OnCall extends PeerState implements State {

void incomingCall(String info){
display.displayCallInfo(info);
setCurState(waitingForHoldPrompt);

}
void OK() {/*do nothing*/ }

}
class WaitingForHoldPrompt extends PeerState implements State {

void OK(){
caller.putOnHold(); //instance of NotifyCallWaiting.Caller
setCurState(OnCall);

}
void incomingCall(String info) {/*do nothing*/ }

} // other mixins follow the same approach…

@Aspect
public class NotifyCallWaiting extends MAspect {

@Around(“execution(public * ReceiveACall.Caller.*(..))”
+” || execution(public * ReceiveACall.Phone.*(..))”
+ … /*all base classes referenced by the aspect*/)

public void crosscut(JoinPoint jp) {
if(enabled == true)

this.weave(jp);
else

jp.proceed();
}//…

Fig. 18. Code Generated for the Cell Phone Example

8 Evaluation and Discussion

This section presents a preliminary evaluation of MATA. In [24], the authors argue
that an aspect composition language should satisfy a number of basic requirements.
(The arguments made in [24] specifically address aspect-oriented requirements engi-
neering but the discussion generalizes to modeling). We include five of these re-
quirements here and assess whether MATA satisfies them. According to [24], an
aspect composition language should aim to be:

1) Environment-friendly. A composition language should allow an aspect to
be defined without requiring changes to the base model. In particular, the
base should not need to be structured or designed in a particular way to sup-
port the aspect. This is a special case of obliviousness. If a composition lan-
guage is very limited in expressiveness, for example, it might require the
base to be structured in a particular way. The base would still be oblivious to
the aspect, in the sense that it does not expose any aspect-specific interfaces,
but the composition could only take place under certain design restrictions
applied to the base. In the same way, an aspect should not need to be written
in a special way so that it can be composed with the base.

 MATA: A Unified Approach for Composing UML Aspect Models 219

2) Scalable. A composition language should scale to large industrial models.
3) Familiar. In order to ease adoption of the composition language, it should

already be familiar to model developers.
4) Formal. The composition technique should be as formal as possible without

the formalism becoming a barrier in practice.
5) Exhaustive. Models may be composed in many different, complex, and un-

expected ways. A composition technique must be exhaustive in that it should
provide the means to express all desired compositions. For example, for
composing sequence diagrams, composition rules should cover not just se-
quences and alternatives (i.e. before/after/around) but also concurrency,
loops, and interleaving.

We now assess how MATA performs against these criteria. We will focus in this pa-
per on exhaustiveness and will present the results of a small empirical study that
suggest that (1) MATA is more exhaustive than competing approaches and (2) that
exhaustiveness is required in practical examples. First, however, we will briefly
discuss the other requirements. Scientific studies have not yet been undertaken for
these.

8.1 Environment-Friendliness

Regarding the first requirement, MATA clearly satisfies it because MATA allows any
change to the base model. Hence, any design decisions in the base could ultimately be
modified. This is in contrast to other approaches in which only a selection of prede-
fined model elements are allowed to be joinpoints. Therefore, it might be difficult or
impossible to modify base elements not in this predefined selection. In Sect. 2, we
saw an example where approaches based on AspectJ might be able to define a compo-
sition but would do so in a non-optimal way because either the aspect or the base
model would have to be broken into fragments, that is, they would have to be written
in a particular way to support the composition. The treatment of this example using
MATA does not require such decomposition.

As noted above, this criterion is a special case of obliviousness. Recently, a num-
ber of authors [25, 26] have argued that full obliviousness is not desirable and that
programs should have well-defined interfaces for aspect composition (e.g. joinpoint
interfaces). While this argument does not negate the points made in the previous
paragraph, we broadly agree with this way of thinking and note that MATA could
easily support such interfaces in the future. Currently, all model elements are accessi-
ble as joinpoints, but these could potentially be limited by the user. The difference
with previous approaches would be that the modeler, instead of the language designer,
would have full control over which joinpoints to limit.

8.2 Scalability

This criterion is always difficult to provide evidence for. We have applied MATA in a
variety of settings for reasonably large examples, which tends to suggest, at least ini-
tially, that it is straightforward to specify aspects using MATA. The major application
areas to which we have applied MATA are as follows:

220 J. Whittle et al.

1. Modeling Software Product Lines. Jayaraman et al. [27] report on how
MATA was used to model features as aspects in software product line de-
velopment. Each feature is represented as a model slice as an increment
over other features. Critical pair analysis was applied to detect feature in-
teractions. As part of this work, Jayaraman et al. took an existing product
line–namely, the microwave oven product line from Gomaa’s book [28]–
and modeled it using MATA.

2. Maintaining the Separation of Use Cases throughout the Modeling Proc-
ess using the technique in [6]. We conducted an experiment to refactor a
number of student design solutions into an aspect-oriented MATA design
–see Sect. 8.5 for details.

3. Modeling Security Requirements as Aspects. We have applied MATA to
the problem of modeling security concerns during requirements engineer-
ing. In particular, security use cases were modeled as MATA sequence
diagrams and were composed with sequence diagrams for the base use
cases. This approach has been conducted on a number of case studies in-
cluding an electronic voting system [29] and requirements for a positive
train control system [30] under consideration by the Federal Railroad
Administration.

These case studies lend evidence that MATA can be used in practice. For larger indus-
trial models, there is, of course, an efficiency question regarding both the graph trans-
formation composition mechanism and critical pair analysis. For both of these, MATA
relies on AGG’s implementation. In our experience, we have found that composition is
very efficient. Critical pair analysis, however, can take time. The efficiency depends on
the complexity of the metamodel for the diagram being analyzed. For class diagrams,
critical pair analysis generally takes only a few seconds. For state diagrams, it can take a
few minutes on large examples. For sequence diagrams, it has taken up to one hour in
our most complex case study. This is because the interaction metamodel for UML is
very complex. In fact, we have made a number of simplifications to the metamodel to
allow us to translate it into a type graph in AGG that allows relatively efficient analysis.
This does mean that not all of the modeling elements in sequence diagrams are currently
supported by MATA. We consider it a future research question to develop an efficient
analyzer for large UML models. The work presented here provides evidence that the
analysis would be useful but further work is required on a more efficient implementa-
tion. In particular, critical pair analysis in AGG is a very general implementation and it
may be that it can be specialized for the specific tasks that MATA takes care of, mean-
ing that the efficiency could be improved.

8.3 Familiarity

For MATA, familiarity means that the MATA language should be as close to UML as
possible. Graph transformations are traditionally written over the abstract syntax of a
modeling language because this is the most general approach. However, in MATA,
aspects (which are graph rules) are written in concrete syntax with a small number of
extensions to support sequence pointcuts. The use of UML’s concrete syntax makes
MATA broadly applicable because no experience with metamodeling is required.

 MATA: A Unified Approach for Composing UML Aspect Models 221

8.4 Formality

Since MATA is based on graph transformations, it is founded on a strong formal foot-
ing. The application of critical pair analysis is possible because of this foundation.

8.5 Exhaustiveness

This is the main criterion considered in this paper. As discussed in Sect. 1, there have
been two types of approaches to AOM. The first is to use a generic merge algorithm
(that can be tailored) to compose an aspect and a base model. The second is to reuse
and adapt the joinpoint model and advices from AspectJ. Henceforth, we will refer to
the first approach as GM (for generic merge) and the second as AJ.

MATA is more exhaustive than either GM or AJ because any model element can be
a joinpoint and any model element can be an advice. However, the question remains
whether the additional expressiveness is actually required in practice. To answer this
question, we undertook an investigation of existing design solutions to see which kinds
of compositions are needed in practice. Our experiment attempted to answer the follow-
ing question: In practical examples, are model composition mechanisms like GM or AJ
enough or is more expressiveness needed? The investigation was undertaken for the use
case slice technique of Jacobson and Ng [6]. Use case slices are a way of maintaining a
use case-based decomposition throughout the development lifecycle. As an example, for
state diagrams, this means that each use case maintains its own state diagram and these
state diagrams are composed during late design or implementation to obtain the overall
design.

In [6], Jacobson and Ng do not adequately address how to compose use case slices
during design. Their approach is to apply AspectJ-like composition operators. The
hypothesis of this paper is that such operators are not expressive enough. To test this
hypothesis, we examined existing UML designs, refactored those designs to reflect the
use case slice technique of Jacobson and Ng, and then investigated the level of expres-
siveness required to compose designs from different use case slices. Because of the
availability of the models, we chose to study seven student team design solutions, each
expressed in UML consisting of use cases, class diagrams, interaction diagrams, and
state diagrams. Only the use cases and state diagrams were considered in the study, and
we focused on compositions of state diagrams from different use case slices.

Projects were conducted by teams of three to four students. Each of the seven pro-
jects tackled the same problem statement using the same set of use cases. The scale of
the student solutions is clearly not industrial in size and the results offered here are
meant to be just the first step.

Based on an analysis of the compositions required in the state-dependent use case
slices, we identified four categories of composition that occurred.

C1: One-to-One State Matching. The first category includes model compositions
that can be expressed using simple matching of states. In other words, for two state
diagrams, S1 and S2, with state sets Σ1 and Σ2, the composed state diagram S1• S2,
can be obtained by defining a one-to-one mapping θ: Σ1 → Σ2. Figure 19(a) gives an
example. In the student solutions, this case occurred typically when two use cases
defined state diagrams that were joined together into a loop.

222 J. Whittle et al.

C2: Many-to-many state matching. This category is an extension of the previous
one whereby states in the two state diagrams have a many-to-many relationship, i.e.
θ(σ) is a set for any state σ. This allows a much richer form of composition. In par-
ticular, it allows for the creation of composite states (see Fig. 19(b)).
C3: State diagram refactoring. In this category, one or more of the state diagrams
must be refactored to enable composition to take place. In other words, one state dia-
gram cannot be inserted in its entirety into the other. Rather, it must be broken up
before being inserted in multiple places. This type cannot be handled by state match-
ing because matching cannot refactor a state diagram. Figure 19(c) illustrates this.
C4: State diagram refinement. In this type of composition, additional behavior (i.e.
states and transitions) must be added when composition takes place. Clearly, state
matching does not apply because state matching cannot refine behavior. This type of
composition is necessary in cases where two use case slices have been developed in-
dependently but where there are dependencies between the slices that must be
resolved when the slices are composed. A typical example concerns access to data. If
a single use case slice reads from a data object, then no data access synchronization is
required. However, if another use case slice writes to this data object, when the two
use case slices are composed, an access synchronization mechanism such as mutual
exclusion must be added. Figure 19(d) gives an example.

Based on the student design solutions, we found that all four categories of compo-
sition occur for use case slice development. The relative frequency for the four
categories was as follows: 13%, 39%, 46% and 2%.

The GM approach supports only category C1 although it can be easily extended to
support C2 (as was done in [31]). It does not support categories C3 and C4.
The AJ approach does not support C2 since, for example, composite states cannot be
wrapped around multiple base states simply using before/after/around. The AJ ap-
proach partially supports categories C3--C4. In some cases, a composition of these
types requires container model elements to be wrapped around existing elements–see
Fig. 19(d), for instance. AJ does not support this. In some cases, especially for

A B C D

B/C A/D

A=D
B=C

e/a f/b

f/b

e/a(a) (b)

(c) (d)

A B C D

B

A=C=D

e/a f/b

e/aC D
f/b

A

A B C D
e/a f/b

E

A B
e/a

C
f/b

D

E

g/c

g/c

f/b

A B C D
e/a f/b

A B
e/a

C D

[IN(A)]f/b

[not IN(A)]f/wait

Fig. 19. Composition Categories

 MATA: A Unified Approach for Composing UML Aspect Models 223

category C1, quite complex compositions occur that could be specified by AJ, but the
aspect would have to be first refactored into multiple fragments, each of which is then
inserted at a different place in the base. We view this as a non-optimal approach to
composition because it involves representing fragments of an aspect model separately,
which leads to problems in reusability and readability. Finally, in other cases, AJ can-
not make a distinction between different kinds of composition. As an example, in Fig.
19(c), inserting the LHS state diagram after f/b could have two possible results: either
stay in state B or go to state D. With AJ, it is not generally possible to make such a
distinction.

MATA supports all categories because the entire state machine diagram syntax is
available. For example, two use case slices can be merged in parallel using UML or-
thogonal regions. The results of the investigation reveal that, at least for use case slice
composition, a greater degree of expressiveness is required in practice. Further inves-
tigation is required, of course, to see if these results are true for other aspect-oriented
software development methods.

9 Related Work

There is a large body of work on AOM, although much of this has been restricted to
structural models. Work of note that considers behavioral models is the Motorola
WEAVR tool for state machines [5], Song et al.’s work on weaving security aspects
into sequence diagrams [32], and Klein et al.’s work on semantic composition for in-
teraction diagrams [33]. The WEAVR tool considers actions in state machines as
joinpoints and uses “around” advices to weave in aspect state machines. WEAVR is
the first commercially available aspect modeling tool but focuses only on state ma-
chines. In addition, it is tailored toward SDL state machines and concentrates on ex-
ecutable modeling and so is more suited to detailed design rather than earlier analysis
and design phases.

There has been some work that composes aspect sequence diagrams. Song et al.
work [32] has only a very limited set of composition operators and does not provide
tool support. However, it does address how to verify the result of the composition by
annotating models with OCL expressions, which could then be checked against the
composed models. However, the work appears to be in its early stages. Reddy et al.
[34] compose aspect sequence diagrams by using special tags that allow an aspect to
be broken into pieces and then inserted at different points in the base–for example, at
the beginning, in the middle, or at the end of the base messages. Whilst interesting,
the MATA approach is more general and subsumes these operators. Indeed, earlier
work by some of the authors of this paper considered composition of sequence dia-
grams using a limited set of composition operators [35]. This work has also been sub-
sumed by MATA. Klein and Kienzle [36] describe a case study of composing aspect
sequence diagrams. In this approach, one sequence diagram describes the pointcut and
another describes the advice. The paper presents a case study using the semantic
composition of scenarios described in [33]. The latter is important work that goes be-
yond syntactic mechanisms for defining pointcuts but instead relies on the semantics
of the modeling language for matching an aspect. This reduces, to some extent, the
fragile pointcut problem for aspect sequence diagrams but does incur a performance
overhead. Such techniques could potentially be incorporated into MATA.

224 J. Whittle et al.

Other work on AOM includes, of course, Theme/UML [3]. Theme/UML is an
example of the generic matching approach considered in Sect. 8 and suffers the limi-
tations in expressiveness noted there. Katara and Katz [37] provide an approach for
AOM of sequence and state diagrams based on superimposition. This is quite similar
to MATA in that aspects are defined as increments over other models (either the base
or other aspects). However, Katara and Katz [37] does not support a fully-fledged pat-
tern language for defining pointcuts, which limits the quantification possible. Al-
though Katara and Katz do give consideration to identifying dependencies between
aspects, these dependencies must be found manually and documented on a so-called
concern diagram. Indeed, MATA can be thought of as providing automated support
for developing and/or validating such a concern diagram.

Generic aspects can be seen as a kind of design pattern. Hence, work on instantiat-
ing design patterns and applying aspect models is closely related. Indeed, there has
been some work on automatically instantiating generic descriptions of design patterns
[38, 39] and using such techniques in AOM [31, 40].

MATA views aspect composition simply as model transformation. This is a point
of view that has also been noted by others. A general discussion of the similarities of
model composition and model transformation is presented in [41]. One interesting
point described there, and discussed elsewhere, is that aspect composition could either
be specified by a generic model transformation language or by a dedicated aspect
composition language, or indeed that there is a spectrum of possibilities lying in be-
tween. MATA tends toward the use of a generic model transformation language but
tailors this to ensure familiarity of the language to modelers. In this sense, it is differ-
ent than using a completely general transformation language, such as the one based on
QVT, but retains the power and flexibility of a generic transformation language.
Dedicated aspect composition languages risk sacrificing expressiveness because a
limited number of composition operators would be provided. For example, France et
al. [42] provide such a limited number of matching and composition operators but the
user may override these if necessary, or indeed define new operators. However, this
requires programming skills. MATA brings flexible composition without requiring
any knowledge of programming or the need to understand the code in an existing
composition framework. France et al. [42] is also limited to class diagrams. It is not
clear how these techniques would extend to behavioral models.

MATA provides two key contributions to AOM. First, is the support for detecting
aspect interactions. Second, it supports sequence pointcuts. To date, there has been
limited support for detecting aspect interactions in AOM. Aspect interactions are a
well-recognized problem but research has tended to focus on how to document inter-
actions rather than uncover them automatically (cf. [37, 43--45]). The only known
work is [46], which translates aspect UML models into Alloy so that they can be veri-
fied. This approach does not consider behavioral diagrams but requires pre/post-
conditions to specify operations on class diagrams. Furthermore, it is more of a
general verification approach not specifically geared toward interactions. This means
that it could potentially uncover more semantic interactions (which MATA cannot)
but at the cost of a more expensive analysis. At the programming level, there has been
research on detecting interactions using static analysis [47, 48].

Although expressive pointcut mechanisms, such as sequence pointcuts, have been
considered for AOP [12], to the authors’ knowledge, this paper is the first work to

 MATA: A Unified Approach for Composing UML Aspect Models 225

bring expressive pointcuts to behavioral models. Related work that is closest to ours is
joinpoint designation diagrams (JPDDs) [13]. JPDDs are similar to defining patterns
using graph rules. Something similar to sequence pointcuts can be defined but the ad-
vices are limited to before/after/around. Furthermore, the advantage of using graph
rules is the existence of formal analysis techniques. In addition, JPDDs focus on de-
fining joinpoints and are not so much concerned with composition. MATA provides a
full composition tool in which very expressive composition relationships can be
specified. This is not possible with JPDDs.

This paper considers joinpoints to be static in the sense that the runtime semantics of
behavioral diagrams is not taken into consideration. Dynamic joinpoints can also be
defined for behavioral models, such as state diagrams [9]. However, since currently
models are most commonly used for communication and documentation, and are not
necessarily executed, static joinpoints are perhaps more useful in current modeling prac-
tices. It would be interesting to extend MATA to dynamic joinpoints, however.

More generally, model composition has been addressed outside of the AOSD
community. In particular, [49] investigates how to merge state machines using com-
position relationships and category theory. This is similar in many respects to our
work but has a different goal in that it addresses how to reconcile models produced by
different development teams.

10 Conclusion and Further Work

This paper has presented a new approach for AOM wherein aspect composition is
considered to be simply a special case of model transformation. A language and tool,
MATA, has been presented, which allows modelers to maintain aspect models sepa-
rately, detect structural interactions between aspects automatically, and compose a
chosen set of aspects automatically with a set of base models. The approach goes
beyond previous work in that:

• MATA provides a unified approach to aspect model composition. Any
modeling language with a well-defined metamodel can be handled in the
same way. Currently, UML class, sequence, and state diagrams are sup-
ported, but extensions to other modeling languages would be straightfor-
ward and would provide the same capabilities in detecting interactions and
automating composition.

• MATA provides a richer aspect composition language. Joinpoints are de-
fined by an expressive pattern language and any base model element (or
combination of elements) can be a pointcut. In particular, MATA provides
the first full support for sequence pointcuts at the aspect modeling level.

MATA is supported by a tool built on top of IBM’s Rational Software Modeler. It has
been applied in a range of application areas, including security modeling, software
product lines, and modeling of use case slices.

There are a number of interesting avenues for further work that would build upon
MATA. First, base models in MATA are currently completely open, in the sense that
any base model elements can be accessed by aspect models. This has shown to be ab-
solutely essential in some application areas. In particular, for the software product line

226 J. Whittle et al.

method PLUS [28], which can be handled in MATA by modeling features as aspects,
models of non-kernel features can be added to models of the kernel in many and var-
ied different ways. It would not have been possible to restrict the joinpoint model and
still allow the case studies from [28] to be modeled faithfully.

However, it may be desirable for other application areas to restrict the joinpoint
model so that only certain base model elements can be affected by an aspect. This
kind of approach would potentially support improved modular reasoning for aspects.
MATA could support such a technique easily as interfaces could be designed on top
of the existing language. In any case, we feel that the modeler should be in control of
whether or not full access is required by the aspects and it is not up to the language
designer to restrict the joinpoint model for him/her.

Another area where MATA could potentially be extended is to provide domain-
specific composition operators, built on top of the existing language. A key contribution
of this paper is that MATA allows all modeling languages to be handled in a uniform
way. However, the current composition operators in MATA are quite low level because
they are at the same level as the underlying modeling language. One could imagine de-
fining more abstract operators, for example, in software architecture composition that
would be then mapped down to MATA’s operators. This would raise the level of dis-
course of aspect modelers but would retain the strong benefits of the MATA founda-
tions. However, such a path should be taken with caution. A great deal of effort has
already gone into language design for existing modeling languages and it is not com-
pletely clear that an additional layer of abstraction would be beneficial.

Along similar grounds, MATA’s composition is purely syntactic currently. This
means that aspect modelers define aspects based on the syntactic elements of the un-
derlying modeling language. While this is in line with current practice in modeling, it
would be interesting to investigate semantics-based composition techniques, similar
to those developed for aspect-oriented requirements engineering languages [50]. This
would allow modelers to specify aspects in terms of semantic concepts of the domain
rather than syntactic modeling elements. For example, one might wish to define the
pointcut of all model elements related to access control. The techniques in [50] rely
on natural language processing techniques to extract semantic content from textual
requirements documents and it is not clear how such an approach could be adapted to
analysis and design models. However, it is certainly an open area of research that
could provide fruitful solutions to the fragile pointcut problem in AOM.

The usability of the MATA composition language has not yet been fully tested. Al-
though a number of realistic case studies have been undertaken, we have limited
experience with real users. The intricacies of the propagation algorithm are such that
it may be difficult to grasp for novices. However, use of propagation is always op-
tional and the user may choose to explicitly provide stereotypes. So far, MATA pro-
vides no support for validating the composition of base and aspect. It is possible to get
unexpected results if there are interactions between aspects that cannot be detected by
critical pair analysis. A simple example is if two aspects each create an instance of the
same class. Then the result will have two copies of this instance where only one may
be desired. There may be lightweight techniques that can help with validating the
composition. Another usability issue is in maintaining the generality of the aspects.
Generic aspects should be designed where possible so that they can be reused. This is

 MATA: A Unified Approach for Composing UML Aspect Models 227

certainly easy to do in MATA because of the rich pattern-matching facilities. How-
ever, from a usability point of view, more research is required as to how to guide
users to specify good (i.e. generically applicable) aspects.

One of the main points made in this paper is that aspect composition approaches
based on generic match and merge algorithms–for example, those that merge model
elements by name–are not very practical. This is a claim backed up by preliminary
empirical evidence in Sect. 8.5. On the other hand, there may be some advantages in
combining a MATA-like approach with these generic merge algorithms. Once again,
this could provide a way of raising the level of composition abstraction in MATA.
Care would need to be taken, however, to ensure that the problems of generic merge
algorithms–that the results of composition are hard to predict and adapt–do not carry
over to the MATA context.

Finally, we hope that the expressive composition mechanisms provided by MATA
might have some consequences for AOP. Whilst modeling is different from pro-
gramming, it seems that AOP could also benefit by more expressive pointcut lan-
guages or more expressive advices. We believe that the rich language available in
MATA might offer some insights as to how such languages should be developed.

References

[1] Whittle, J., Moreira, A., Araújo, J., Rabbi, R., Jayaraman, P., Elkhodary, A.: An Expres-
sive Aspect Composition Language for UML State Diagrams. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 514–528. Springer,
Heidelberg (2007)

[2] Whittle, J., Jayaraman, P.: MATA: A Tool for Aspect-Oriented Modeling based on Graph
Transformation. In: Workshop on Aspect Oriented Modeling at the International
MODELS Conference, Nashville, TN (2007)

[3] Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Approach.
Addison Wesley, Reading (2005)

[4] France, R., Ray, I., Georg, G., Ghosh, S.: Aspect-oriented approach to early design mod-
eling. In: IEE Proceedings - Software, vol. 151, pp. 173–186 (2004)

[5] Cottenier, T., van den Berg, A., Elrad, T.: Motorola WEAVR: Model Weav-ing in a Large
Industrial Context. In: Aspect-Oriented Software Development (AOSD), Vancouver,
Canada (2007)

[6] Jacobson, I., Ng, P.-W.: Aspect Oriented Software Development with Use Cases.
Addison-Wesley Professional, Reading (2004)

[7] Reddy, Y.R., Ghosh, S., France, R., Straw, G., Bieman, J., McEachen, N., Song, E.,
Georg, G.: Directives for Composing Aspect-Oriented Design Class Models. In: Rashid,
A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Development I. LNCS,
vol. 3880, pp. 75–105. Springer, Heidelberg (2006)

[8] Fleury, F., Baudry, B., France, R., Ghosh, S.: A Generic Approach for Automatic Model
Composition. In: Workshop on Aspect Oriented Modeling at MODELS 2007 (2007)

[9] Zhang, G., Hölzl, M., Knapp, A.: Enhancing UML State Machines with Aspects. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 529–543. Springer, Heidelberg (2007)

228 J. Whittle et al.

[10] Lopez-Herrejon, R., Batory, D.: Modeling Features in Aspect-Based Product Lines with
Use Case Slices: An Exploratory Case Study. In: Kühne, T. (ed.) MoDELS 2006. LNCS,
vol. 4364, pp. 6–16. Springer, Heidelberg (2007)

[11] Rashid, A.: Views, Aspects and Roles: Symphony or Random Noise? In: Panel Statement
at Views, Aspects and Roles Workshop associated with ECOOP 2005 (2005)

[12] Douence, R., Fritz, T., Loriant, N., Menaud, J.-M., Segura-Devillechaise, M., Sudholt,
M.: An Expressive Aspect Language for System Applications with Arachne. In: Aspect-
Oriented Software Development (AOSD), Chicago, Illinois, pp. 27–38 (2005)

[13] Stein, D., Hanenberg, S., Unland, R.: Expressing Different Conceptual Models of Join
Point Selections in Aspect-Oriented Design. In: Aspect-Oriented Software Development
(AOSD), Bonn, Germany, pp. 15–26 (2006)

[14] Markovic, S., Baar, T.: Refactoring OCL Annotated UML Class Diagrams. In: Briand,
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 280–294. Springer,
Heidelberg (2005)

[15] de Micheaux, N.L., Rambaud, C.: Confluence for Graph Transformations. Theoretical
Computer Science 154, 329–348 (1996)

[16] Wagner, R.: Developing Model Transformations with Fujaba. In: International Fujaba
Days, Bayreuth, Germany, pp. 79–82 (2006)

[17] Balogh, A., Varro, D.: Advanced Model Transformation Language Constructs in the
VIATRA2 Framework. In: ACM Symposium on Applied Computing (Model Transfor-
mation Track), Dijon, France, pp. 1280–1287 (2006)

[18] Boner, J., Vasseur, A.: Tutorial on AspectWerkz for Dynamic Aspect-Oriented Pro-
gramming. In: Aspect Oriented Software Development (2004)

[19] Moreira, A., Rashid, A., Araújo, J.: A Multi-Dimensional Separation of Concerns in Re-
quirements Engineering. In: International Conference on Requirements Engineering (RE),
Paris, France, pp. 285–296 (2005)

[20] Rudolf, M.: Utilizing Constraint Satisfaction Techniques for Efficient Graph Pattern
Matching. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998.
LNCS, vol. 1764, pp. 238–251. Springer, Heidelberg (2000)

[21] Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation
of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

[22] Jayaraman, P.: Interaction Verification and Model Composition in Product Lines Using
MATA in Dept. of Information and Software Engineering. MS Thesis Fairfax, VA.
George Mason University, USA (2007)

[23] Nicoara, A., Alonso, G.: Dynamic AOP with PROSE. In: International Workshop on
Adaptive and Self-Managing Enterprise Applications at CAiSE, Porto, Portugal (2005)

[24] Mussbacher, G., Amyot, D., Whittle, J., Weiss, M.: Flexible and Expressive Composition
Rules with Aspect-Oriented Use Case Maps (AoUCM). In: Moreira, A., Grundy, J. (eds.)
Early Aspects Workshop 2007 and EACSL 2007. LNCS, vol. 4765, pp. 19–38. Springer,
Heidelberg (2007)

[25] Griswold, W., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., Rajan, H.: Modu-
lar Software Design with Crosscutting Interfaces. IEEE Software 23, 51–60 (2006)

[26] Aldrich, J.: Open Modules: Modular Reasoning about Advice. In: Black, A.P. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 144–168. Springer, Heidelberg (2005)

[27] Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H.: Model Composition in Product
Lines and Feature Interaction Detection using Critical Pair Analysis. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp.
151–165. Springer, Heidelberg (2007)

 MATA: A Unified Approach for Composing UML Aspect Models 229

[28] Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
based Software Architectures. Addison-Wesley Object Technology Series (2005)

[29] Kohno, T., Stubblefield, A., Rubin, A., Wallach, D.: Analysis of an Electronic Voting
System. In: IEEE Symposium on Security and Privacy, pp. 27–40. IEEE Computer Soci-
ety Press, Los Alamitos (2004)

[30] Hartong, M., Goel, R., Wijesekera, D.: Use Misuse Case Driven Forensic Analysis of
Positive Train Control: A Preliminary Study. In: 2nd IFIP WG 11.9 International Confer-
ence on Digital Forensics, Orlando, FL

[31] Araújo, J., Whittle, J., Kim, D.-K.: Modeling and Composing Scenario-Based Require-
ments with Aspects. In: International Conference on Requirements Engineering, Kyoto,
Japan, pp. 58–67 (2004)

[32] Song, E., Reddy, R., France, R.B., Ray, I., Georg, G., Alexander, R.: Verifiable Composi-
tion of Access Control and Application Features. In: ACM Symposium on Access Con-
trol Models and Technologies (SACMAT), Stockholm, Sweden, pp. 120–129 (2005)

[33] Klein, J., Helouet, L., Jézéquel, J.-M.: Semantic-Based Weaving of Scenarios. In: Aspect-
Oriented Software Development (AOSD), Vancouver, Canada, pp. 27–38 (2006)

[34] Reddy, R., Solberg, A., France, R., Ghosh, S.: Composing Sequence Models Using Tags.
In: Aspect Oriented Modeling Workshop at MODELS 2006 (2006)

[35] Whittle, J., Araújo, J.: Scenario Modelling with Aspects. In: IEE Proceedings - Software,
August 2004, vol. 151, pp. 157–172 (2004)

[36] Klein, J., Kienzle, J.: Reusable Aspect Models. In: Aspect Oriented Modeling Workshop
at MODELS 2007 (2007)

[37] Katara, M., Katz, S.: Architectural Views of Aspects. In: Aspect-Oriented Software De-
velopment (AOSD), Boston, Massachusetts, pp. 1–10 (2003)

[38] Kim, D.-K.: Evaluating Conformance of UML Models to Design Patterns. In: Interna-
tional Conference on the Engineering of Complex Computer Systems (ICECCS),
Shanghai, China, pp. 30–31 (2005)

[39] Kim, D.-K., Whittle, J.: Generating UML Models from Domain Patterns. In: Software
Engineering Research, Management and Applications, pp. 166–173 (2005)

[40] Kim, D.K.: A Pattern-Based Technique for Developing UML Models of Access Control
Systems. In: 30th Annual International Computer Software and Applications Conference
(COMPSAC), Chicago, IL, pp. 317–324 (2006)

[41] Baudry, B., Fleurey, F., France, R., Reddy, R.: Exploring the Relationship between
Model Composition and Model Transformation. In: Aspect Oriented Modeling Workshop
at MODELS 2005 (2005)

[42] France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing Support for Model
Composition in Metamodels. In: IEEE International EDOC Conference, Annapolis,
Maryland (2007)

[43] Zhang, J., Cottenier, T., van den Berg, A., Gray, J.: Aspect Interference and Composition
in the Motorola Aspect-Oriented Modeling Weaver. In: Aspect Oriented Modeling Work-
shop at MODELS 2006 (2006)

[44] Sanen, F., Loughran, N., Rashid, A., Nedos, A., Jackson, A., Clarke, S., Truyen, E.,
Joosen, W.: Classifying and Documenting Aspect Interactions. In: Workshop on Aspects,
Components and Patterns for Infrastructure Software at AOSD, Bonn, Germany (2006)

[45] Bakre, S., Elrad, T.: Scenario-based Resolution of Aspect Interactions with Aspect Inter-
action Charts. In: Aspect-Oriented Software Development, Vancouver, Canada, pp. 1–6
(2007)

230 J. Whittle et al.

[46] Mostefaoui, F., Vachon, J.: Design-level Detection of Interactions in Aspect-UML Mod-
els using Alloy. Journal of Object Technology 6, 137–165 (2007)

[47] Douence, R., Fradet, P., Südholt, M.: A Framework for the Detection and Resolution of As-
pect Interactions. In: Generative Programming and Component Engineering, Pittsburgh, PA,
pp. 173–188 (2002)

[48] Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis of state-
ful aspects. In: Aspect Oriented Software Development, pp. 141–150 (2004)

[49] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and Merg-
ing of Statecharts Specifications. In: International Conference on Software Engineering,
pp. 54–64 (2007)

[50] Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-Based Com-position for
Aspect-Oriented Requirements Engineering. In: Aspect-Oriented Software Development
(AOSD), Vancouver, Canada, pp. 36–48 (2007)

Appendix

This appendix describes how MATA performs the conversion from a model in concrete
syntax to a type graph in AGG. This conversion process is performed automatically.

MATA considers a subset of the UML metamodel (we do not yet consider the full
UML2 metamodel) and maps it to a corresponding type graph. The type graph repre-
sents the metamodel in the AGG syntax. In the current scope, the chosen UML meta-
model subset contains commonly used modeling elements of class diagrams,
sequence diagrams, and state machines. MATA converts a base model into an AGG
graph and converts an aspect model into an AGG graph rule.

To illustrate, we present a simple example for a family of printers. A printer will be
modeled as the base and an optional feature, a sheet rotator (which allows printing on
both sides of a sheet), will be modeled as an aspect.

Class Diagrams

The base model contains an assembly of an abstract controller object called Printer.
The Printer aggregates PrintRoller and PrintNozzle objects. Figure 20 shows the class
diagram of the Printer base model in concrete UML syntax. The graph metamodel
used to represent the class diagram is shown in Fig. 21. The corresponding host graph
of the Printer base model is shown in Fig. 22. The class diagram concepts supported
by MATA are:

1. Class/Interface–A class or an interface is represented by a node of type
Classifier. The Type attribute indicates whether the node is a class or an
interface. Additional attributes such as Name and Visibility indicate the
name and visibility of the element. The attribute isAbstract is used to
represent an abstract class.

a. Property–A graph node of type Attribute represents properties of
classes and interfaces. These nodes are connected to the owning
Classifier nodes via an edge of type Owns. The attributes Name,

 MATA: A Unified Approach for Composing UML Aspect Models 231

Visibility, isStatic, Lower and Upper indicate the name, visibility,
static nature, lower and upper bound of the attribute, respectively.

b. Operation–A graph node of type Operation represents operations
supported by classes and interfaces. An operation node is con-
nected to the owning classifier node via an edge of type Owns.
The attributes Name, Visibility, isAbstract, and isStatic indicate
the name, visibility, abstract, and static nature of the operation,
respectively.

2. Generalization–An edge of type Extends represents the generalization
relationship between two classes or interfaces. The edge connects the cor-
responding nodes of type classifier.

3. Realization–An edge of type Implements represents the realization of an
interface by a class. In the graph metamodel, this edge connects a classi-
fier of type interface to a classifier of type class.

4. Association/Composition/Aggregation–An edge of type Association
represents a relationship between two classifiers. Table 4 explains the rep-
resentation of different kinds of relationships such as associations, compo-
sitions, and aggregations as well as other association-related attributes.

Fig. 20. Class diagram for Printer Kernel feature

Fig. 21. Graph metamodel for class diagram (in AGG syntax: e.g. String @Name means Name
is of type String)

232 J. Whittle et al.

Table 4. Graph metamodel attributes of an Association

Attribute Description

SourceAggregation Represents the aggregation kind of the source
classifier of the association.

TargetAggregation Represents the aggregation kind of the target
classifier of the association.

SourceRoleName Represents the name of the source role of the
association.

TargetRoleName Represents the name of the target role of the
association.

SourceLower Represents the lower bound of the source of the
association.

TargetLower Represents the lower bound of the target of the
association.

SourceUpper Represents the upper bound of the source of the
association.

TargetUpper Represents the upper bound of the target of the
association.

SourceVisibility Represents the visibility of the source of the
association.

TargetVisibility Represents the visibility of the target of the
association.

Classifier
@Name=”Printer”
@Visibility=Public
@isAbstract=true

Classifier
@Name=”PrintRoller”
@Visibility=Public
@isAbstract=false

Classifier
@Name=”PrintNozzle”
@Visibility=Public
@isAbstract=false

@Name=””
@SourceAggregation=False

@TargetAggregation=True
@SourceNavigable=True
@TargetNavigable=True

@SourceRoleName=””
@TargetRoleName=””

@SourceLower=0
@TargetLower=0

@SourceUpper=0
@TargetUpper=0

@SourceVisibility=0
@TargetVisibility=0

Association

@Name=””
@SourceAggregation=False
@TargetAggregation=True
@SourceNavigable=True
@TargetNavigable=True
@SourceRoleName=””
@TargetRoleName=””
@SourceLower=0
@TargetLower=0
@SourceUpper=0
@TargetUpper=0
@SourceVisibility=0
@TargetVisibility=0

Association

Fig. 22. Host graph for Printer Kernel class diagram

 MATA: A Unified Approach for Composing UML Aspect Models 233

Sequence Diagram

The Printer object receives a print command from an external user and sends a mes-
sage to the PrintRoller to lift a sheet from an external paper tray. Then, it sends a
message to the PrintNozzle to start printing on the sheet and when the sheet is printed,
the PrintRoller ejects the sheet. The process repeats if the print job requires more
sheets.

Figure 23 shows the sequence diagram of the Printer Kernel in concrete UML syntax.
The graph metamodel used to represent the sequence diagram is shown in Fig. 24. The
corresponding host graph of the Printer Kernel feature is shown in Fig. 25. The
sequence diagram related concepts supported by MATA are

1. Interaction–An interaction of type sequence diagram is represented by a
node of type Sequence Diagram.

2. OccurrenceSpecification/GeneralOrdering–An OccurrenceSpecification is
represented by a node of type Sequencer. The after association of Gener-
alOrdering is represented by an edge of type Next between two Sequencer
nodes. These nodes are also used to indicate the start and end of interac-
tion diagrams, interaction fragments and interaction operands. For exam-
ple, the start and end of an interaction are represented individually by two
sequencer nodes that are connected to the Sequence Diagram node by
edges of start and end type, respectively.

3. Lifeline–The lifeline of a participant in a sequence diagram is represented
by a node of type Class. The name of the lifeline is preserved by the Name
attribute of the node. MATA does not support explicit creation or destruc-
tion of a lifeline and assumes a lifeline to exist throughout the interaction
diagram.

4. CombinedFragment–A fragment is represented by a node of type Fragment.

a. InteractionOperator–The interaction operator of a fragment is
preserved by the Operator attribute of the node representing the
fragment.

b. InteractionConstraint–A constraint applied on a fragment is pre-
served by the Guard attribute of the node representing the
fragment.

c. Interaction operand–Each operand of a fragment is represented
by a node of type Operand.

5. Complete Asynchronous Message–Complete asynchronous messages are
represented using nodes of type Message. The name of the asynchronous
message is preserved by the Name attribute of the Message node. The send-
ing and receiving lifelines of a message are indicated by edges of type Re-
ceiver and Sender from the Message node to the class nodes, respectively.

6. EventOccurrence (Send/Receive)–The receive and send events of a
message are represented individually by sequencer nodes connected by an
edge of type Next.

234 J. Whittle et al.

Fig. 23. Sequence diagram for Printer Kernel feature

Message
String @Name

Class
String @Name

Sequencer

SenderReceiver

Start

End

Next

Fragment
String @Operator

String @Guard

Start End

Operand

Start

End

Sequence
Diagram

String @Name EndStart

Fig. 24. Graph metamodel for sequence diagram

 MATA: A Unified Approach for Composing UML Aspect Models 235

Sequence Diagram
@Name=”Printer”

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Message
@Name=”Print command”

Fragment
@Operator=”loop”

@Guard=””

Operand
Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Message
@Name=”Lift sheet”

Message
@Name=”Print sheet”

Message
@Name=”Sheet printed”

Message
@Name=”Eject sheet”

Sequencer

Sequencer

Sequencer

next

next

next

next

next

next

next

next

next

next

next

next

next

next

End

Start

End

Start

End

Start

End

Start

End

Start

End

Start

End

Start

End

Start

Class
@Name=”User”

Class
@Name=”Printer”

Class
@Name=”Print Roller”

Class
@Name=”Print Nozzle”

Sender

Receiver

Sender

Receiver

Sender

Receiver
Sender

Receiver

Sender

Receiver

next

Fig. 25. Host graph of Printer Kernel sequence diagram

MATA Syntax

MATA translates a UML model annotated with the MATA stereotypes to a graph
rule. The procedure for generating the graph rules is as follows:

1. Instantiate a graph rule with a left and a right graph.
2. For each element in the source model:

2.1. If the element is stereotyped with <<create>>, create a graph node and
add the node to the right graph.

2.2. If the element is stereotyped with <<delete>>, create a graph node and
add the node to the left graph.

2.3. If the element is stereotyped with <context>>, create two graph nodes
and add one to the left graph and the other to the right graph. Add
mapping information between the nodes.

2.4. If the element is not associated with any stereotype:

236 J. Whittle et al.

2.4.1. If the element is a nearest neighbor of another element in the
model then apply the stereotype of the neighbor to the element
and repeat step 2. For example, if a class element is stereotyped
with <<create>> or <<delete>> then the same stereotype is im-
plicitly applied to all attributes and methods that are owned by
the class.

2.4.2. Else, create two graph nodes and add one to the left graph and
the other to the right graph. Add mapping information between
the nodes.

Sheet rotator Aspect

The sheet rotator aspect adds flip sheet functionality to the PrintRoller object. The
static view transformation for this rule, called AddFlipMethod, is shown using
concrete syntax and graph syntax in Figs. 26 and 27, respectively.

+<<create>> FlipSheet()

PrintRoller

Fig. 26. Concrete syntax for rule AddFlipMethod

Fig. 27. Graph syntax for rule AddFlipMethod

This functionality is invoked only if one side of the sheet has been printed and the
print job requires more sheets. The Printer object adds an alternate flip sheet message
to an existing eject sheet message. The printer sends the lift sheet message only if the
sheet has been ejected or if the first sheet is being printed. Two separate transforma-
tions are used to execute these changes. The first rule to add an alternate flip sheet
message is called AddFlipMessage and is shown using UML concrete syntax and
graph syntax in Figs. 28 and 29, respectively. The second rule to make the lift sheet
message optional is called MakeLiftOptional and is not shown here.

 MATA: A Unified Approach for Composing UML Aspect Models 237

Fig. 28. Concrete syntax for rule AddFlipMessage

Fig. 29. Graph syntax for rule AddFlipMessage

Model-Driven Theme/UML

Andrew Carton, Cormac Driver, Andrew Jackson, and Siobhán Clarke

Distributed Systems Group,
Department of Computer Science and Statistics,

Trinity College Dublin, Ireland
{firstname.lastname}@cs.tcd.ie

Abstract. Theme/UML is an existing approach to aspect-oriented mod-
elling that supports the modularisation and composition of concerns,
including crosscutting ones, in design. To date, its lack of integration
with model-driven engineering (MDE) techniques has limited its ben-
efits across the development lifecycle. Here, we describe our work on
facilitating the use of Theme/UML as part of an MDE process. We have
developed a transformation tool that adopts model-driven architecture
(MDA) standards. It defines a concern composition mechanism, imple-
mented as a model transformation, to support the enhanced modularisa-
tion features of Theme/UML. We evaluate our approach by applying it
to the development of mobile, context-aware applications-an application
area characterised by many non-functional requirements that manifest
themselves as crosscutting concerns.

1 Introduction

Aspect-oriented software development (AOSD) extends the decomposition and
composition mechanisms of existing software development paradigms in order to
more effectively modularise interdependent concerns [5]. Theme/UML is part of
the broader Theme approach to aspect-oriented analysis and design [1], extend-
ing standard UML to explicitly support both the modularisation and composi-
tion of concerns in design.

We recently conducted an investigation into the application of Theme/UML
to the design of mobile, context-aware applications, which motivated much of the
work described in this paper. Mobile, context-aware computing is a computing
paradigm in which applications can discover and take advantage of contextual
information such as user location, time of day, nearby people/computing devices
and user activity [26]. Such applications can run on a range of diverse comput-
ing platforms and in multiple deployment environments, from personal digital
assistants and mobile phones running Java, to small embedded wearable devices
supporting C. In specifying applications of this nature, software developers must
consider non-functional mobility and context-awareness concerns that negatively
impact software complexity and therefore make the use of Theme/UML appro-
priate. It emerged from our investigation that although Theme/UML can aid
the modularisation of mobility and context-awareness concerns, the prevalence

S. Katz et al. (Eds.): Transactions on AOSD VI, LNCS 5560, pp. 238–266, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Model-Driven Theme/UML 239

of multiple target environments and the lack of support for automated model-
to-code transformations restricted the contribution our designs made towards
producing widely deployable solutions. This finding motivated extensions (with
supporting tools) to the Theme/UML approach that reduce the effort required
to progress from a single system model to multiple deployable applications de-
rived from this model. A model-driven software engineering process was adopted
to support the automatic generation of platform-specific models and code from
a generic model, thereby addressing platform heterogeneity.

Model-driven engineering (MDE) is an approach to software development that
emphasises the use of models as primary engineering artefacts. It addresses plat-
form heterogeneity by abstracting platform-independent models and providing
means to automatically transform these models to one or more specific target
platforms. The model-driven approach, through architectural separation of con-
cerns, promotes portability, interoperability and reusability [21].

In this paper, we present our work on integrating Theme/UML with an MDE
process. We have developed a tool that supports the specification of platform-
independent models with Theme/UML and subsequent automatic transforma-
tions to platform-specific models and code. This tool is compliant with the
model-driven architecture (MDA) standards defined by the Object Manage-
ment Group (OMG) [10], while retaining the general purpose and intention
of the original Theme/UML semantics. We have defined an MDA process
with a composition phase implemented as a model transformation, allowing
developers to avail of the enhanced modularisation features in Theme/UML.
Aspect-oriented platform-independent models, specified in Theme/UML, are au-
tomatically transformed to object-oriented platform-specific models and code,
giving the developer powerful decomposition and composition capabilities at de-
sign time without tying them to an aspect-oriented platform. To demonstrate our
approach, we implemented transformations to two mobile environments, J2ME
and .NET CF. We conducted a case study-based evaluation by applying the tool
to the implementation of a mobile, context-aware application with a number of
non-functional requirements that manifest themselves as crosscutting concerns.

The remainder of this paper is as follows. Section 2 describes the model-driven
Theme/UML tool from an implementation perspective, while Sect. 3 discusses
the application development process it facilitates. Section 4 presents a case study
of our approach as applied to the development of a mobile, context-aware ap-
plication with crosscutting requirements. Section 5 discusses related work while
Sect. 6 provides a summary of this paper and a brief overview of our continuation
of this work.

2 Model-Driven Theme/UML: Implementation

In this section, we present the implementation of the model-driven Theme/UML
tool. We first outline our initial design decisions and then describe the imple-
mentation phase. The section concludes with a discussion of the challenges and
difficulties encountered.

240 A. Carton et al.

2.1 Initial Design Decisions

Our initial design decisions concerned how best to integrate and implement
Theme/UML with current MDA guidelines, technologies and tools. Theme/UML
is defined as a meta-object facility (MOF)-based extension of the UML 1.3 beta
R7 metamodel [11]. This version of the UML originated before the OMG up-
dated their standards to conform to the MDA vision [22], currently at version
2.1.1. As such, this definition was not compatible with the current standards
and conventions, and consequently hindered our objective to offer Theme/UML
as an MDA solution. In order to achieve this objective, we investigated three
strategies.

The first strategy involves extending the UML 2.1 metamodel. This is a heavy-
weight solution that requires augmentation of the appropriate metaclasses and
metarelationships [17] to support the Theme/UML extensions. However, porting
Theme/UML to UML 2.1 proved prohibitively challenging, primarily because of
the significant dissimilarity between the two versions of the UML metamod-
els. Furthermore, invasive metamodel changes to the UML preclude the use of
standard UML tool support.

Next, we investigated the use of a marking1 UML profile to support the ex-
pression of a composition specification, while using UML Package Merge to re-
alise Theme/UML’s composition semantics. As a UML Profile is a lightweight
extension mechanism supported both at the modelling level and by the UML
compliance levels2, any compliant UML graphical tool would be adequate. The
UML Package Merge is part of the UML metamodel that allows one package
to be merged with another, accommodating the interoperability of tools by al-
lowing a higher level of compliance to be merged with a lower level one. In
Theme/UML, a theme is defined as an extension of a package; therefore UML
Package Merge could potentially have been used to define Theme/UML’s com-
position semantics by redefining the UML Package Merge at the metamodel level
[13]. However, heavyweight metamodel extensions had been ruled out as imprac-
tical due to lack of tool support. Investigating Package Merge as a foundation for
defining Theme/UML’s composition semantics proved to be unsuccessful at the
modelling level also, as it lacks the ability to support additional types [30]. Fur-
ther evidence suggested that the Package Merge is not suitable for meta-model
builders and the definition of transformations [29].

The third strategy, similar to the second, involved the definition of a marking
UML Profile. The process involves marking a model to indicate the composi-
tion specification and then mapping this specification to an instance of a new
composition metamodel. A composition metamodel defined in MOF can be used
to indicate the structure and behaviour of Theme/UML’s composition seman-
tics. We decided that this strategy was more favourable than the others for two
1 Marking is a technique that allows a set of elements in a UML model to be identified

for transformation in a non-invasive way [19].
2 UML is stratified into a number of horizontal layers of increasing capabilities called

compliance levels. These are points at which a tool can claim compliance to the
standard.

Model-Driven Theme/UML 241

reasons. The first advantage is gained from the distinct separation of the graph-
ical extensions in the UML and the definition of the composition semantics. The
composition semantics can evolve independently from the graphical extensions
by extending the composition metamodel. Likewise, if more expression is needed
in the marking, only the marking profile and the mapping to the composition
metamodel need to change. The second advantage relates to the difficulties of
using UML Package Merge in defining the composition semantics, in which their
structure and behaviour are expressed entirely in textual form in the UML stan-
dard. The use of a composition metamodel, in our opinion, better captures and
illustrates these semantics in a more formal manner.

Apart from deciding how best to integrate Theme/UML with the MDA pro-
cess, we had to decide on which, if any, third party tools to use. Given that
we were working with a standard modelling language, we adopted a standard
UML editor called MagicDraw3. This tool exports models in Eclipse Modelling
Framework XMI format, a format commonly supported by MDA tools. For code
generation, we adopted the openArchitectureWare (oAW)4 model-driven genera-
tor framework, which aids the production of source code from XMI. The decision
to adopt only standard tools and formats means that developers are free to use
one of the many UML editors or source code generators that support XMI.

2.2 Implementation

The design process is separated into three distinct phases that relate to the activ-
ity of the designer during that phase-the modelling phase, the composition phase
and the transformation phase. Figure 1 illustrates the mapping specifications
and definitions that enclose each phase with a description of their implementing
technologies parenthesised beneath each.

Modelling Phase. Designers use Theme/UML (see Appendix A for more de-
tails) during the modelling phase to modularise application concerns. Two re-
quirements had to be met in order to accomplish the implementation of our
MDA strategy at this phase.

1. Theme/UML’s composition semantics must be defined in the form of a mark-
ing profile.

2. A graphical UML tool is required that supports both the definition of a UML
profile and the standard UML features that Theme/UML requires (i.e. Class
and Interaction Diagrams).

The first requirement motivated the definition of a Theme/UML Marking Pro-
file, illustrated in Fig. 2, that extends UML 2.1 and supports the designer
in creating a composition specification. In this case, the marks guide the de-
signer in creating a composition specification by decorating the UML elements

3 MagicDraw 12.5, http://www.magicdraw.com
4 openArchitectureWare, http://www.openarchitectureware.org

http://www.magicdraw.com
http://www.openarchitectureware.org

242 A. Carton et al.

Fig. 1. Model-Driven Theme/UML Mappings and Definitions

Fig. 2. Theme/UML Marking Profile

Model-Driven Theme/UML 243

with stereotypes and tagged values from the Theme/UML Marking Profile. We
use this lightweight extension mechanism to support extension of Theme/UML
without requiring invasive changes at the UML metamodel level. There are five
stereotypes indicated in the Theme/UML Marking Profile. A theme stereotype
allows a UML Package to be marked to indicate that it may be used in a com-
position relationship. If the theme is to be designed as an aspect, then the
tagged definition template indicates the string that represents the template
parameters that trigger crosscutting behaviour. A merge stereotype is placed
on a Dependency to indicate the themes involved in a merge composition re-
lationship. The tagged definitions of this stereotype (themeName, matchType,
precedences, explicitResolve and defaultResolve) can be applied on the
stereotype to indicate the properties of the merge. The override stereotype can
be placed on a Dependency and indicates an override composition relationship,
while the tagged definition delete represents the elements to be deleted. A bind
stereotype is applied to a Dependency and is constrained as a binary dependency
between an aspect and base theme. The tagged definition binding represents
the elements that instantiate the templates of the aspect theme. Finally, an
explicit stereotype allows explicit matching of concepts in a composition rela-
tionship and the tagged definition mergedName indicates the composed value.

Magicdraw was chosen to meet our second requirement for three reasons. First,
it supports UML 2.1 modelling and therefore supports the implementation of a
UML Profile definition. Second, it exports to the Eclipse Modelling Framework5

(EMF) XML Metadata Interchange (XMI), which is compatible with transfor-
mations at the later stages of the MDA process. Third, it supports both class
and sequence UML diagrams, which is a necessity for Theme/UML.

After completing a design in Theme/UML, the tool exports two files-the
Theme/UML Marking Profile File and the UML 2 Diagram File. Both files
are serialised with the EMF XMI.

Composition Phase. The composition phase allows the designer to auto-
matically compose the model according to the composition specification that
was created during the modelling phase. This phase is implemented using two
transformations. The first transformation takes the two files from the output of
the Modelling Phase and maps them to create a composition model that is an
instance of the composition metamodel. The second transformation takes this
composition model and executes it to produce an EMF XMI file that holds the
object-oriented PIM. This horizontal transformation, as illustrated in the middle
of Fig. 1, is termed a composition.

Mapping. The first transformation is defined as a mapping from the
Theme/UML Marking Profile (c.f. Fig. 2) to the Composition Metamodel
(c.f. Fig. 3), as illustrated in Fig. 1. The mapping specification uses the UML
elements decorated with marks to transform them into a composition model.
This is achieved in two steps. In the first step, an associated element in the
ComposableElement hierarchy (c.f. Fig. 3) is created that corresponds to the
5 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

244 A. Carton et al.

Fig. 3. Theme/UML Composition Metamodel

UML element being mapped. For example, a UML Package with a theme stereo-
type applied in the UML Design Model specifies the creation of a Theme element
in the composition model. In the second step, a detailed composition specifica-
tion is created in the composition model that maps each composition relationship
and its properties in the UML Design Model to their equivalent in the compo-
sition metamodel. For example, a UML Dependency with a bind stereotype in
the UML Design Model specifies the creation of an AspectThemeMerge in the
composition model, with a binding tagged value on that stereotype, resulting
in the creation of its respective ReplacementSet and ReplacementCouples as
containing properties for that integration type.

As a result of using strings as tagged values, the mapping implementation heav-
ily relies on parsing techniques and the use of the Object Constraint Language
(OCL) as a means to extract and query elements in the UML model, respectively.

Model-Driven Theme/UML 245

In particular, OCL proved especially useful in supporting Theme/UML’s pointcut
selection mechanism.

Composition. Figure 3 illustrates the metamodel used to describe the struc-
ture and behaviour of Theme/UML’s composition semantics6. Each element
that can be involved in a composition is defined by a ComposableElement. A
ComposableElement implements a Matchable element that abstracts the notion
of a matching criterion. This matching criterion is specific to each element and
is implemented in a manner appropriate to the element being matched. For ex-
ample, a UML Operation is matched to the name of the operation, the types of
the parameters and the type of the return value. An Integration is an abstract
metaclass that describes the way in which themes are to be integrated. The three
integration strategies that Theme/UML defines are ThemeMerge, ThemeOverride
and AspectThemeMerge. Each have their additional metaclasses and metarela-
tionships that define how the integration is supported and behaves.

A ThemeMerge integration describes how base themes are to be composed. This
necessitates a definition of how overlapping specifications are resolved through
the Reconciliation hierarchy. An ExplicitReconciliation allows a designer
to indicate an explicit preference in the composed theme if elements in a merge
match, using one or more ExplicitValues. An ExplicitValue indicates the
specification of a single matching element, referencing the construct property
of the element and the value of that element upon composition. Likewise, a
DefaultReconciliation allows a designer to specify the default value for ele-
ments of a particular type if a conflict arises between elements of that type in
the composition. The reconciliation can have one or more DefaultValues. A
DefaultValue indicates the specification of a single matching element of a par-
ticular type and the value of that type upon reconciliation. The final reconcilia-
tion strategy defined by Theme/UML is precedence. A precedence reconciliation
specifies precedence on a composable element when a match occurs in a merge.
A precedence strategy is integrated into an attribute of a ComposableElement
rather than having its own metaclass.

The second integration strategy defined by Theme/UML, ThemeOverride,
describes how one theme’s specification is overridden by that of another theme.
This metaclass can contain a set of DeleteElements which indicate the elements
that get deleted upon the override.

The third integration strategy, AspectThemeMerge, specifies how an aspect
theme is composed with base themes. Each AspectThemeMerge has a number
of ReplacementSets equivalent to the number of sequence diagrams in each
aspect theme that it represents. Each ReplacementSet must have one trigger-
ing ReplacementCouple and can have many sequenced ReplacementCouples. A
ReplacementCouple references both a placeholder ComposableOperation and
its replacement ComposableOperation.

The composition metamodel was realised in Ecore and implemented using
EMF libraries. Ecore is the EMF’s meta metamodel and is synonymous with

6 Due to space limitations, Fig. 3 only illustrates a subset of the composable
elements.

246 A. Carton et al.

MOF, with some slight variations. The EMF implements both the UML 2 stan-
dard and the OCL standard with Ecore in Java and provides a supporting library
called UML2. The EMF also defines its own XMI schema that allows libraries
to read and write any EMF-based model.

While the composition metamodel defines the structure and behaviour of
Theme/UML’s composition semantics, a mapping specification defines how these
semantics are executed. In our approach, we implemented a mapping specification
that targets an object-oriented PIM. In this case, all the integration strategies are
executed. However, if a transformation to an AO PIM is desired, the metamodel is
extensible enough to support the definition of a mapping specification that only
executes some of the integration strategies (e.g. targeting an asymmetric AOP
platform would require only the overlapping specifications to be resolved).

Transformation Phase. The output from the composition phase is an object-
oriented PIM that can be transformed into a platform-specific model. Rather
than go straight from a PIM to code, we made the decision to go to an interme-
diate PSM. The reason for this is that the proposed approach is elaboration-
oriented, meaning the PIM is not computationally complete and does not
contain the full executable specification [18]. The PSM is open for re-factoring
and elaboration of low-level details by the designer. There are two transforma-
tions implemented in this phase, refinement and synthesis, which support the
developer in moving from a PIM-based design to a PSM-based design and finally
to code respectively.

After choosing a target platform, a model-to-model transformation refines the
object-oriented PIM into a PSM suitable to model the concepts for the chosen
platform. This refinement requires a number of platform-specific extensions. For
each PSM, a UML profile is created that extends the standard UML datatypes
with those that are specific to the language and platform. The profile can also
include the namespaces and datatypes needed to further elaborate the PSM.
The transformation was implemented using Java and the UML2 library.

The second transformation, illustrated as synthesis, allows a PSM to be trans-
formed into code. This transformation is implemented using a template-based
code-generation technology called XPand-part of the oAW framework. In gen-
eral, there are two main approaches for model-to-text (M2T) transformation,
visitor-based approaches and template-based approaches [3]. Template-based
tools such as XPand use a text-based declarative language as a means for se-
lection of model nodes and iterative expansion. We decided to use Xpand to
transform the UML class diagrams to code. For the generation of behavioural
code with sequence diagrams, we used a visitor-based approach implemented in
Java. Sequence diagrams are written in the UML in-order, and so a visitor-based
approach is more desirable than a template-based approach as the visitor can
step through the full trace in order and generate code on the fly. As XPand
supports Java extensions, the two approaches could be integrated, producing
both compilable structural and behavioural code from the class diagrams and
sequence diagrams respectively. The code generation capabilities could be ex-
tended by implementing support for standard UML behavioural diagrams.

Model-Driven Theme/UML 247

2.3 Discussion

This section discusses the difficulties and challenges we encountered while im-
plementing our approach to the integration of Theme/UML with current MDA
standards, guidelines and technologies.

Fig. 4. UML 2.1 sequence diagram

Modelling Triggering and Returning Messages. In Theme/UML, UML
sequence diagrams are used to indicate how and when the crosscutting occurs
in relation to the abstract templates of an aspect theme. The UML metamodel
in which Theme/UML was defined had no support for indicating a message in
the case where the sender or receiver was unknown. Consequently, this resulted
in these messages being drawn without a sender or receiver, violating a number
of constraints of the metamodel. This would be especially problematic in the
creation of a mapping specification, where it is assumed all UML models are
compliant to the constraints and are well-formed. However, the UML 2.1 meta-
model has improved the definition of sequence diagrams. A Gate is a connection
point for relating a Message outside an InteractionFragment with a Message
inside the InteractionFragment. With Gate support, the sender and receiver
of the initial triggering message can now be unspecified while conforming to the
constraints of the metamodel. Figure 4 shows the updated Theme/UML seman-
tics and notation for indicating triggering and returning operations, explicitly
indicating where the gates are.

248 A. Carton et al.

Modelling Composition Relationships. Theme/UML defines an n-ary com-
position relationship for elements that are to be composed by its merge. As a
profile extension can only mark existing UML metaclasses, profile extensions for
n-ary relationships were required. Association is restricted as a relationship
between certain types; therefore, Dependency is the next best option, allowing
n-ary relationships between NamedElements. It emerged that MagicDraw only
supported one-to-one relationships with a Dependency, and as such deviates
from the standard. To work around this, the desired relationships were emulated
by drawing an additional Dependency on the Dependency that was drawn be-
tween two model elements. This workaround could be successfully implemented
since a Dependency itself is a NamedElement. However, the solution necessitated
extra parsing logic to determine all the elements participating in a composition
relationship.

Modelling Sequence Diagrams. When we began designing our tool, we sur-
veyed a number of UML 2 modelling tools, including Topcased7, Poseidon8 and
Rational Software Architect9. We decided to use Magicdraw as the community
edition was free; it offered export to EMF XMI and had support for class and se-
quence diagrams. However, it emerged that the EMF XMI export implemented
by MagicDraw was faulty for sequence diagrams. We based an alternate ap-
proach on the UML2 editor provided by the UML2 library of the EMF. This
workaround involves using this tree-based graphical tool to create the sequence
diagrams by hand. The graphical tool offers the designer a little more abstrac-
tion than working with the raw XMI directly (which requires detailed knowledge
of the specification). Although this workaround is undesirable from a designer
perspective, it was the only option available as no other free tool surveyed was
capable of viewing or writing sequence diagrams to EMF XMI correctly. Once a
tool that supports sequence diagrams becomes available, it can be used instead.

Code Generation for Sequence Diagrams. A visitor-based approach was
adopted to generate code from sequence diagrams. However, we discovered that
the sequence diagrams in the UML 2.1 specification are currently unsuitable for
the purpose of code generation. The OMG Revision Task Force for UML10 cur-
rently lists a number of pending revisions. One such revision describes that the
arguments of a Message can only be ValueSpecifications, and the creation,
referencing and assignment of variables in the underlying model remains ambigu-
ous. To get around this restriction, a LiteralString is used to pass arguments
in textual form. However, this solution is undesirable because it precludes com-
plete validation of the model. We are currently awaiting publication of the next
UML 2 standard to evaluate the fixes for these issues in order to provide better
support for code generation from sequence diagrams.

7 http://www.topcased.org
8 http://www.gentleware.com
9 http://www-306.ibm.com/software/awdtools/architect/swarchitect

10 http://www.omg.org/issues

http://www.topcased.org
http://www.gentleware.com
http://www-306.ibm.com/software/awdtools/architect/swarchitect
http://www.omg.org/issues

Model-Driven Theme/UML 249

Selection of Transformation Tools. Prior to the design of our tool, we in-
vestigated a number of Model-to-Model (M2M) transformation languages such
as ATL11, Kermeta12 and oAW Xtend13. The UML 2 is a large and complex
metamodel, and writing valid transformations has been proven to be both chal-
lenging and intricate [8]. At that time, we found it easier to use the EMF and
UML2 libraries in Java. One of the difficulties we observed with tools like ATL
was that it was difficult to transform from a source UML model to a destination
UML model when changes to only a small number of meta-model items were
required. A tool such as ATL requires rules to copy every single element in the
UML metamodel (which is very large) to a new model. Using the libraries, copy-
ing a full model requires only a few lines of code and is therefore more feasible.
With the rapidly improving state of model-driven tools, however, modern M2M
tool support can potentially achieve what we desired during our development
phase. For example, ATL now supports superimposition, which allows new rules
to be superimposed onto another set of rules, e.g. a full UML2 copy transforma-
tion. Redoing our transformations in this manner may be an interesting piece
of future work as we believe that working with model-transformation tools is a
good way of reducing the complexities of designing mapping specifications and
increases extensibility and usability for both the developer and the user.

3 Model-Driven Theme/UML: Process

Tool support that integrates both aspect-orientation and MDA is inadequate
without a complementary systematic process that clearly defines its use. Previ-
ous research on aspect-oriented design (AOD) has amalgamated work on best
practises to produce a unified and refined AOD process [14]. Likewise, the MDA
Guide [22] provides a flexible and extensive treatise on model-driven processes.
Using both individual processes as a basis, we have devised an integrated process.

3.1 Process Phases

The requirements of the application should be analysed with a view to identifying
concerns before design begins. Theme/Doc, a concern identification approach,
supports aspect-oriented requirements analysis and provides explicit mappings
from its output to Theme/UML [1]. Theme/Doc can be realised in the MDA
process by taking the role of a computation-independent model, where a trans-
formation realises the mappings to a PIM. Other aspect-oriented requirements
analysis approaches can be used, provided a mapping exists to Theme/UML,
such as that outlined by Sánchez et al. [25]. It is not pertinent to the out-
lined approach whether this mapping is realised as a manual transformation
(indicated by completely elaborating the PIM) or by a semi-automatic transfor-
mation (where some artefacts are generated). Future work will investigate tool
11 http://www.eclipse.org/m2m/atl
12 http://www.kermeta.org
13 http://www.openarchitectureware.org

http://www.eclipse.org/m2m/atl
http://www.kermeta.org
http://www.openarchitectureware.org

250 A. Carton et al.

Fig. 5. The Model-Driven Theme/UML process

support for these mappings. If automation is provided, the designer would be-
gin with a set of pre-generated UML artefacts that could be further elaborated.
This process is illustrated in Fig. 5 as an activity diagram, with the three phases
represented by swimlanes.

Modelling Phase. The modelling phase illustrates two activities-modelling
base application concerns and modelling crosscutting concerns. As Theme/UML
supports a symmetric decomposition, and its concern spaces are considered
declaratively complete, both of these activities can be done concurrently and
independently of each other. This is illustrated by the fork in Fig. 5, and allows
themes to be designed in isolation–either by an individual or a team of design-
ers. Each theme is modelled inside a UML Package and should not reference any
element outside the package. This ensures that the concern is declaratively com-
plete. The UML Package has the stereotype theme applied from the Theme/UML
Profile. As aspect themes are modelled relative to their abstract templates, it is
necessary for the designer to indicate this using the tagged value template from
the Theme/UML Profile. Each theme has a sequence diagram for each sequence
of templates. This sequence diagram illustrates the interaction of the templates
with the behaviour of the theme itself.

When themes have been modelled, the designer applies the composition re-
lationships, specifying how themes are to be composed. At the coarsest level
of granularity, the individual themes themselves are marked for composition.
Support is also available to indicate finer compositions that deviate from the
composition specification of the composite container. Base themes use a merge
stereotype applied to a Dependency from the Theme/UML marking profile.
The themeName tagged definition indicates the name of the final composed

Model-Driven Theme/UML 251

theme. The matchType allows a matching strategy to be applied to the merge,
with the precedences stereotypes indicating the ascending order of the merge.
The defaultResolve and explicitResolve stereotypes are available as rec-
onciliation options if a conflict arises. An explicit stereotype, applied to a
Dependency, indicates a deviation from the default composition of a merge. The
bind stereotype is used similarly to the merge, but indicates how aspect themes
are composed with the base themes. The composition of the aspect theme is
indicated using a binding tagged value to show how the templates are instan-
tiated to the elements of the base themes. Once the composition relationships
have been applied, the designer can then proceed to the composition phase as
indicated in Fig. 5.

Composition Phase. Given a UML model with Theme/UML marks applied,
the designer can use the tool to compose themes. As illustrated in Fig. 5, the
designer can view the composed model and can then choose to take one of three
actions. The designer may go back to the modelling phase in the case that the
composition relationships need to be reapplied or adjusted due to the composed
model being incorrect or incomplete. The second possibility involves going back
to the start of the modelling phase to edit the model. Finally, the designer can
decide that the composed model is complete.

The next step in the process is refactoring the composed model. We decided
to make the composed model open for refactoring for two reasons. The first
reason is the possibility of cycles in generalisations. This problem may occur as
a result of merging different class hierarchies. The problem has been addressed
theoretically through the use of subject-oriented flattening [28,23]. Tool support
and process integration for this solution remain future work. Currently, if the
problem arises in the composed model, the designer can correct it manually.

The second reason for making the composed model open for refactoring is
the need to resolve ambiguities that may arise in the composed model. Conceiv-
ably, while designing themes, matching associations may get modelled at different
points in each class hierarchy.After composition, these will get duplicated and con-
sequently result in redundant associations. Theme/UML does not naturally cater
for these conceptual ambiguities in the semantics of its integration strategies.

Transformation Phase. To begin the transformation process, the designer
chooses the target platform. The tool takes the PIM, and using the mapping for
the target environment, produces a PSM representing the domain-specific exten-
sions of the PIM for that environment. In our approach, the object-oriented PIM
that is produced from composition is refined to either a J2ME or .NET CF PSM.
A PSM is a direct representation of the underlying platform, modelling precise
library support and features of the specific environment. From a pragmatic point
of view, it is usually not suitable to model the full specification in the PSM. For
example, one could imagine that programming a complex algorithm would be
much more effective through the use of code, rather than tediously modelling it
with a UML activity diagram [12]. If the full structural and behavioural spec-
ification is not modelled in the PSM, it can be specified subsequently in the

252 A. Carton et al.

source code. After elaborating the design of the PSM, the designer can trans-
form from model to code. This kind of transformation is known as synthesis or
code generation [20].

4 Case Study

In this section, we present an overview of a case study that we conducted in
order to assess the applicability of model-driven Theme/UML to an application
development scenario. The case study demonstrates how our approach facilitates
both the separation of concerns in a mobile, context-aware auction system and
the subsequent automatic composition of these concerns to produce platform-
specific models and source code. The auction system offers typical functionality
such as placing and browsing bids, managing accounts and purchasing goods. It
also offers context-awareness features such as notification of auctions that may
be of interest to the user, and mobility features such as ensuring that the user
is in a valid location before a transaction can proceed and adapting the user
interface (UI) to changes in the environment.

Analysis of the requirements specification for the auction system with
Theme/Doc identified six base themes and three aspect themes. The base themes
cater for the following behaviour:

– Enrolling with the system.
– Browsing auctions.
– Joining auctions.
– Bidding on auctions.
– Transferring credit.
– Administration of auctions.

The aspect themes support the following crosscutting behaviour:

– Adapting the UI (specifically the backlight) based on system events.
– Determining and querying user location.
– Recommending auctions based on user profile and auction history.

Starting at the modelling phase, the analysis provided by Theme/Doc allowed
us to create and elaborate a detailed design of each theme. In the interest of
brevity, we do not include design of all themes, although we include the enroll (cf.
Fig. 6) and join (cf. Fig. 7) base themes and the adapt-ui aspect theme (cf.
Figs. 9 and 10) as examples of themes designed for the auction system application.
We will refer to these themes throughout the remainder of the case study overview.

After completing the design, we applied the composition relationships to the
themes and their elements to create a specification that would indicate the in-
tegration of all the themes. Figure 8 illustrates a merge between the two base
themes, enroll and join. The merged theme is given a name, auctionSystem,
through the use of the themeName tag definition. Examination of the base themes
reveals that we generally used the same vocabulary to model the same concepts,
and so a match[name] matching criterion is attached to match elements with

Model-Driven Theme/UML 253

Fig. 6. MagicDraw screenshot of the enroll theme

Fig. 7. MagicDraw screenshot of the join theme

the same name and type. During this process, the concept of User in the enroll
theme was found to be the same as that of Customer in the join theme. An
explicit composition relationship was applied to resolve this conflict. This re-
lationship specifies that the two classes are the same and that they should be
merged under the unified Customer class.

Aspect themes can be integrated through the bind composition relationship.
A bind is defined as a specialisation of a merge integration and supports merging
of the structure and behaviour of an aspect theme with a base theme. Figures 9
and 10 illustrate the adapt-ui theme, along with its composition specification
to the base themes enroll and join. As illustrated in Fig. 1014, the sequence
diagrams in aspect themes specify how (advice) and when (joinpoint) in re-
lation to the abstract templates the crosscutting behaviour takes place. The

14 The sequence diagram is not currently shown as part of the aspect theme due to
the error with MagicDraw’s sequence diagram export behaviour (see Sect. 2.3). We
show a manually constructed sequence diagram as well as part of the UML2 tree
editor’s view of the behaviour under discussion.

254 A. Carton et al.

Fig. 8. MagicDraw screenshot of the base merge composition specification

Fig. 9. MagicDraw screenshot of adapt-ui and its composition specification

activateLight() joinpoint in the adapt-ui theme acts as a placeholder to the
operations identified in the bind statement. It is these operations that actually
trigger activation of the UI backlight following the base-aspect merge.

At the composition phase, we used the tool to take the themes and related
composition relationships and merged them. The result of this composition spec-
ification, applied in Fig. 8, is depicted in Fig. 11. For ease of illustration, we only
show the result of the bases being merged. Figures 12 and 13 show the result
of the full composition produced by the tool, i.e. the composition specification
applied in Fig. 8 and Fig. 9. The classes that were shared among multiple themes

Model-Driven Theme/UML 255

Fig. 10. Two views of the adapt-ui crosscutting behaviour

Fig. 11. Screenshot of the merged base

256 A. Carton et al.

Fig. 12. Screenshot of merging adapt-ui with the enroll and join themes

have been unified, e.g. the resultant merge of the same class has all the opera-
tions belonging to separate versions of that class before the merge. Also, there
is no User class as it has been merged with its new name, Customer.

The aspect theme was also composed with the base themes. For example,
the ActivityMonitor behaviour in the adapt-ui theme gets merged with the
AuctionSystem through the binding to the enroll theme. The logon and
enroll operations are renamed to do logon and do enrol, respectively. The
new logon and enroll operations now contain the crosscutting behaviour that
they have been merged with. The case is similar for the join theme.

With the object-oriented composition of themes completed and no refactor-
ing necessary, it was possible to produce a PSM. In the transformation phase,
we choose both available target platforms, J2ME and .NET CF. The tool was
used to transform the object-oriented design produced in the previous phase
into the two target PSMs, adding in more concrete detail for each specific plat-
form as appropriate. Figure 14 illustrates the J2ME PSM produced during the

Model-Driven Theme/UML 257

Fig. 13. Two views of the merged adapt-ui crosscutting behaviour

transformation process, depicting the modified datatypes for J2ME platform and
the automatically generated accessors and mutators.

At this point, either the J2ME PSM or the .NET CF PSM could be inspected.
As a PSM is refined from a computationally incomplete PIM (i.e. the approach
is elaboration-oriented), it was necessary to further elaborate the model both
structurally and behaviourally using platform-specific library extensions. Either
PSM can be elaborated partially or to completion at the model level, with the
remaining elaboration achieved through code. After elaboration, the PSM was
ready for synthesis, i.e. transformation to source code. The J2ME and .NET
CF source code that was automatically generated for the join method (which
includes crosscutting adapt-ui behaviour) is illustrated in Fig. 15.

4.1 Discussion

We observed from this case study that Model-Driven Theme/UML has a positive
impact on system modularity when applied to the development of an applica-
tion with crosscutting mobility and context-awareness concerns. Theme/UML
facilitated the separation of concerns at design time that would have otherwise
resulted in scattering and tangling in core system behaviour. Through the spec-
ification of composition relationships between modularised concerns, it was pos-
sible to produce a design with which the tool could operate. Given a collection
of modules and a description of their relationships, the tool automatically gener-
ated platform-specific models for J2ME and .NET CF platforms. The tool then
used these PSMs to generate source code for the respective target platforms,
saving time and reducing the risk of error introduction. The tool supports a
solution-focused development approach that allows developers to concentrate on
the design of the initial model and avail the benefits of automatic PSM and code
generation.

258 A. Carton et al.

Fig. 14. Screenshot of the platform-specific J2ME model

Fig. 15. Source code generated from the .NET CF (left) and J2ME (right) PSMs

Model-Driven Theme/UML 259

5 Related work

Composition Directives [24,27] is an approach implemented in Kermeta called
Kompose [6,7] and supports the composition of both aspect and base UML mod-
els. This work takes a hybrid symmetry approach to merging, i.e. the composition
procedure does not distinguish between an aspect and a base model, and was de-
signed to deal with the inadequacies of a simple name-based matching strategy.
For example, when merging two operations with the same name but different
argument lists or return values, a simple name-based matching strategy would
produce a merged result using just the names as matches. The Composition
Directives approach supports different model elements having unique, sensible
matching strategies, according to their syntactic properties. To accomplish this,
a composition metamodel was devised. The idea of a composition metamodel in
our work was originally inspired by this approach, but we subsequently focused
on supporting the original definition of the Theme/UML semantics. The similar-
ities include an abstraction of the matching criterion, as well as an enumeration
of the composition elements. In terms of differences, contrasting composition
algorithms are employed. Theme/UML defines an abstract integration type and
therefore the composition algorithm is iterative. Alternatively, Composition Di-
rectives defines a single merge implemented as a recursive composition algorithm.

The Atlas Model Weaver (AMW)15 is a tool that facilitates the creation of
links between models [4]. It is based on the Eclipse Modelling Framework (EMF)
and is part of the ATLAS Model Management Architecture (AMMA). The links
are stored in a weaving model that conforms to a weaving metamodel. AMW
can be used to support aspect weaving16, although it is not centred specifically
around the notion of aspect-orientation. While our approach specifies a meta-
model that defines how models get composed, AMW defines a metamodel for
weaving links between models. It allows models to be visualised in a tree-like
manner and supports the association of links between two metamodels or models
using the weaving metamodel. It also defines the notion of a weaving session in
which the weaving metamodel, the models and their metamodels are loaded and
links are defined and woven. Contrary to this approach, our approach uses a
UML profile to define the weaving/composition relationships at modelling time.
The AMW weaving process does not distinguish between primary and aspect
models, making it purely symmetric.

The Motorola WEAVR [2] is a commercial add-in to the Telelogic TAU tool17

and is designed for use in telecoms systems engineering. WEAVR is a translation-
oriented approach that includes a joinpoint model for state machines. It uses
the Specification and Description Languages (SDL) and UML standards to fully
model reactive discrete systems and produce executable code. Unlike our ap-
proach, which is elaboration-based, WEAVR is a translation-based approach
that uses state machines and an action language to fully specify the application

15 http://www.eclipse.org/gmt/amw
16 http://www.eclipse.org/gmt/amw/usecases/AOM
17 http://www.telelogic.com

http://www.eclipse.org/gmt/amw
http://www.eclipse.org/gmt/amw/usecases/AOM
http://www.telelogic.com

260 A. Carton et al.

logic at the model level. Similar to our approach, it uses a UML Profile to spec-
ify aspect-oriented extensions. For example, to illustrate an aspect, a class is
extended with the aspect stereotype, allowing tagged definitions in the form of
attributes, operations, signal definitions and ports, which are treated like inter-
type declarations. Furthermore, it allows precedence of connectors to be applied
to the same pointcut, aiding the management of aspect interference. This feature
is not catered for in Theme/UML.

XWeave is a model weaver that supports composition of different architectural
viewpoints. The weaver facilitates software product-line engineering, allowing for
variable parts of architectural models to be woven according to a specific prod-
uct configuration [9]. Xweave adopts a form of asymmetric aspect-orientation,
unlike Theme/UML, which defines both symmetric and asymmetric forms. As-
pect models are woven into a base model using two strategies, name matching
and explicit pointcut expressions. Name matching supports weaving through
equivalence of elements in the base and aspect models if both elements have
the same name and type. This is similar to the matching criterion defined in
our composition metamodel. Pointcut expression weaving is based on the oAW
expression language, which is itself similar to OCL. This approach is more pow-
erful than the wildcard-based string selection mechanism used by Theme/UML.
One drawback of the XWeave approach is the limited support for advice. Base
model elements cannot be removed, changed or overriden by aspect models and
hence they only support additive weaving. Theme/UML supports these features
through the semantics of its integration strategies.

Modelling Aspects Using a Transformation Approach (MATA) [15] is a UML
aspect-oriented modelling tool. Unlike our approach, which is based on model
composition, MATA uses graph transformations to specify and compose aspects.
Using the UML metamodel as a type graph, any UML model can therefore be
represented as an instance of this type graph and a transformation based on
graph theory applied on it. The tool currently supports class, sequence and state
diagrams. The aspect model consists of a set of graph rules that can be applied
as a graph transformation to the base model using a pattern. MATA is built on
top of IBM’s Rational Software Modeler and uses the graph rule execution tool
AGG as a back-end for graph transformations.

Klein et al. [16] suggest an approach for weaving multiple behavioural as-
pects using sequence diagrams. In their approach, a base scenario describes the
behaviour of the system using a sequence diagram, and a behavioural aspect de-
scribes a concern that crosscuts this base scenario. They propose various types
of pointcut, allowing joinpoints to be matched even when extra messages oc-
cur in between and also demonstrate how these can be statically woven. This
approach formally defines a more concise custom metamodel and addresses the
semantic difficulty of explicitly composing one sequence diagram with another.
Although this approach differs from Theme/UML in that it supports asymmetric
separation, it is considered a complimentary approach that could be integrated
to enhance Theme/UML’s support for behavioural modelling.

Model-Driven Theme/UML 261

6 Summary and Future Work

In this paper we have presented our efforts to integrate AOSD techniques
with the MDE process. We have described new tool support for model-driven
Theme/UML from both an implementation and a methodological perspective,
and illustrated the capabilities of the tool by means of a case study.

We are currently investigating revisions and extensions to the tool to support
both the modularisation of distributed, real-time embedded (DRE) concerns at
the model level and transformations to embedded platforms. In addition to this
work, we are developing an aspect-oriented MDE tool suite. The tool suite com-
bines the work described in this paper with similar work that was conducted in
tandem. This related work provides similar capabilities in terms of modularisa-
tion of concerns at the model-level, but differs from the approach described here
in terms of the types of transformations supported.

Acknowledgments

We would like to acknowledge the support of AOSD-Europe and of Lero: The
Irish Software Engineering Research Centre, funded by Science Foundation Ire-
land. Thanks also to Jorge Fox for his comments on earlier drafts of this paper.

References

1. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. The Theme Ap-
proach. Object Technology Series. Addison-Wesley, Boston (2005)

2. Cottenier, T., van den Berg, A., Elrad, T.: The Motorola WEAVR: Model Weaving
in a Large Industrial Context (2007)

3. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In:
OOPSLA 2003 Workshop on Generative Techniques in the context of Model Driven
Architecture (October 2003)

4. Didonet Del Fabro, M., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a
generic model weaver. In: Journées sur l’Ingénierie Dirigée par les Modèles (IDM
2005), pp. 105–114 (2005)

5. Filman, R.E., Elrad, T., Clarke, S., Akşit, M. (eds.): Aspect-Oriented Software
Development. Addison-Wesley, Boston (2005)

6. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A generic approach for automatic
model composition. In: Aspect Oriented Modeling (AOM) Workshop, Nashville,
USA (October 2007)

7. France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing support for
model composition in metamodels. In: EDOC 2007: Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing Conference, Washington,
DC, USA, p. 253. IEEE Computer Society, Los Alamitos (2007)

8. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-Driven Development
Using UML 2.0: Promises and Pitfalls. Computer 39(2), 59 (2006)

9. Groher, I., Voelter, M.: XWeave: models and aspects in concert. In: AOM 2007:
Proceedings of the 10th international workshop on Aspect-Oriented Modeling,
pp. 35–40. ACM Press, New York (2007)

262 A. Carton et al.

10. Object Management Group. Model-Driven Architecture, http://www.omg.org/mda
(accessed October 22, 2007)

11. Object Management Group. OMG UML Specification Version 1.3.,
ftp://ftp.omg.org/pub/docs/ad/99-06-03.pdf (accessed October 25, 2007)

12. Hailpern, B., Tarr, P.: Model-driven development: the good, the bad, and the ugly.
IBM Systems Journal 45(3), 451–461 (2006)

13. Jackson, A., Barais, O., Jézéquel, J.-M., Clarke, S.: Toward A Generic And Exten-
sible Merge. In: Models and Aspects workshop, at ECOOP 2006, Nantes, France
(2006)

14. Jackson, A., Clarke, S.: Towards a Generic Aspect Oriented Design Process.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 110–119. Springer,
Heidelberg (2006)

15. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition
in product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

16. Klein, J., Fleurey, F., Jézéquel, J.-M.: Weaving multiple aspects in sequence dia-
grams. In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD III. LNCS, vol. 4620,
pp. 167–199. Springer, Heidelberg (2007)

17. Object Management Group. UML 2.0 Infrastructure Specification,
http://www.omg.org/docs/ptc/03-09-15.pdf (accessed October 25, 2007)

18. McNeile, A.: MDA: The Vision with the Hole,
http://www.metamaxim.com/download/documents/MDAv1.pdf (accessed October
30, 2007)

19. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co., Inc., Boston (2002); foreword
By-Ivar Jacoboson

20. Mens, T., Czarnecki, K., Van Gorp, P.: Discussion – A Taxonomy of Model Trans-
formations. In: Bezivin, J., Heckel, R. (eds.) Language Engineering for Model-
Driven Software Development. Dagstuhl Seminar Proceedings, vol. 04101, Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany (2005)

21. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. Technical report, Object Man-
agement Group (OMG) (2003)

22. OMG. MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf
(accessed November 2, 2007)

23. Ossher, H., Kaplan, M., Katz, A., Harrison, W., Kruskal, V.: Specifying subject-
oriented composition. Theory and Practice of Object Systems 2(3), 179–202 (1996)

24. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for Composing Aspect-Oriented Design Class Mod-
els, pp. 75–105 (2006)

25. Sánchez, P., Fuentes, L., Jackson, A., Clarke, S.: Aspects at the Right Time. In:
Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Develop-
ment IV. LNCS, vol. 4640, pp. 54–113. Springer, Heidelberg (2007)

26. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In:
Proceedings of the Workshop on Mobile Computing Systems and Applications,
Santa Cruz, CA, US, pp. 85–90. IEEE Computer Society, Los Alamitos (1994)

27. Straw, G., Georg, G., Song, E., Ghosh, S., France, R.B., Bieman, J.M.: Model
composition directives. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, pp. 84–97. Springer, Heidelberg (2004)

http://www.omg.org/mda
ftp://ftp.omg.org/pub/docs/ad/99-06-03.pdf
http://www.omg.org/docs/ptc/03-09-15.pdf
http://www.metamaxim.com/download/documents/MDAv1.pdf
http://www.omg.org/docs/omg/03-06-01.pdf

Model-Driven Theme/UML 263

28. Walker, R.J.: Eliminating cycles in composed class hierarchies. Technical Report
TR-2000-07, University of British Columbia (2000)

29. Zito, A., Dingel, J.: Modeling UML 2 Package Merge With Alloy. In: 1st Alloy
Workshop (Alloy 2006), Portland, OR, USA, pp. 86–95 (2006)

30. Zito, A., Diskin, Z., Dingel, J.: Package Merge in UML 2: Practice vs. Theory?
In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 185–199. Springer, Heidelberg (2006)

Appendix

A Theme/UML Overview

The Theme Approach is an aspect-oriented methodology that encompasses the
requirements analysis, design and mapping to implementation phases of the de-
velopment lifecycle [1]. Theme/Doc provides a systematic means to analyse a
text-based requirements specification in order to identify base and crosscutting
concerns and the relationships between them. Theme/UML is an aspect-oriented
modelling language that supports the design of concerns and maintains the rela-
tionships previously identified by Theme/Doc. The Theme Approach also details
mapping specifications from Theme/UML to aspect-oriented programming lan-
guages such as AspectJ.

Theme/UML is aspect-oriented design language with an accompanying
methodology. The Theme/UML design language is a Meta-Object Facility
(MOF) extension of the UML 1.3 beta R7, enhancing standard UML with new
modularisation and compositional constructs. The accompanying methodology
provides guidelines on the use of these new constructs. The constructs include
a new type of classifier called a theme, a composition relationship and three
integration strategies-merge, override and bind.

Fig. 16. Designing with Theme/UML

264 A. Carton et al.

Fig. 17. Merge Integration Strategy

Fig. 18. Override Integration Strategy

A theme is a construct based on the existing definition of the standard UML
package and encapsulates the design specification of a base or aspect concern. As
illustrated in Fig. 16, a base theme is designed using the standard UML process
and can include any of the standard diagram types. An aspect theme is one that
encapsulates a crosscutting concern and is designed relative to the abstract tem-
plates, with sequence diagrams specifying when and how the templates interact
with the base themes.

As Theme/UML aligns to a symmetric decomposition, themes are consid-
ered to be declaratively complete. This means that the design specification of a
concern is self-contained and does not reference anything outside the theme in
which it is defined. This property allows a more rigorous separation of individual
themes from each other. Consequently, this property may result in overlapping

Model-Driven Theme/UML 265

Fig. 19. Bind Integration Strategy

concepts being represented in multiple individual theme designs. Consequently,
these concepts must be reconciled at composition time.

Theme/UML supports compositional constructs for both overlapping and
crosscutting specifications. An overlapping or shared concept can arise because
equivalent concepts can be considered in more than one theme. A merge inte-
gration strategy can exist between two or more themes and allows like-named
elements to be matched, thereby resolving conflicts between themes. Figure 17
illustrates a merge between two themes. The match[name] property indicates
that elements are to be matched and merged based on name and type. Theme-
Name(“NewTheme”) indicates that the result of the merged themes will produce a
new theme called NewTheme. To achieve resolution of conflicts, Theme/UML sup-
ports three reconciliation strategies. The first strategy, prec, indicates the prece-
dence of each theme’s design specification in the merge. Figure 17 illustrates that
the second theme has a higher precedence than the first theme, and therefore,
its design specification will get priority in the merge. The second reconciliation
strategy is an explicit reconciliation that takes the form resolve(Entity (property
= value)) and allows any property of any specific Entity in a theme to be assigned
a value. The third reconciliation strategy is a default reconciliation and has a sim-
ilar form, with Construct replacing the Entity instead (c.f. Fig. 17). In this case,
any property of a UML construct (e.g. operation visibility kind) can be given a
value (e.g. private) and this reconciliation gets executed during the merge. The
second kind of composition extension that Theme/UML supports for overlapping
specifications is called an override. An override, as indicated in Fig. 18, is a rela-
tionship between two themes where one theme’s design specification overrides the
other. The semantics of the integration properties are similar to the merge. One
difference is that elements can be explicitly indicated to be deleted in a theme
prior to the merge.

For crosscutting specifications, an integration strategy called a bind facili-
tates the composition of an aspect theme with a base theme. Figure 19 depicts
an aspect theme being bound to a base theme. The aspect theme is designed
in relation to the abstract templates. In this example, the triggering template

266 A. Carton et al.

operation is called A.trigger(). The sequence diagram illustrates the behaviour
of the aspect theme in relation to this triggering behaviour. The operation
do trigger() encapsulates the existing behaviour of the operation in the base
theme that is bound to the template method in the aspect theme. The sequence
diagram is important in representing how and when the crosscutting behaviour
is executed with respect to the base themes it is crosscutting. The bind specifica-
tion represents the instantiation of the aspect theme. The operation B.trigger() is
the operation being bound to, and the triggering template operation is replaced
with this method upon the aspect’s instantiation.

Author Index

Araújo, João 191

Carton, Andrew 238
Clarke, Siobhán 238

Driver, Cormac 238

Elkhodary, Ahmed 191
Ernst, Neil 83

Fuentes, Lidia 1

González-Baixauli, Bruno 83
Gray, Jeff 153
Groher, Iris 111

Heidenreich, Florian 39
Henriksson, Jakob 39

Jackson, Andrew 238
Jayaraman, Praveen 191
Johannes, Jendrik 39

Moreira, Ana 191
Mylopoulos, John 83

Niu, Nan 83

Sampaio do Prado Leite, Julio Cesar 83
Sánchez, Pablo 1
Schmidt, Douglas C. 153

Voelter, Markus 111

White, Jules 153
Whittle, Jon 191

Yu, Yijun 83

Zschaler, Steffen 39

	Title Page
	Preface
	Editorial Board
	Table of Contents
	Special Issue: Aspects and Model-Driven Engineering
	Dynamic Weaving of Aspect-Oriented Executable UML Models
	Introduction
	Dynamic Weaving of AO UML Models
	Motivating Example
	Our Approach

	Modelling the Sentient Vehicles in AOEM
	Executable UML in a Nutshell
	The Cooperating Sentient Vehicle Application
	Aspect Modelling
	Pointcut Modelling
	The {\tt Reconfigurator} Aspect

	Aspect-Oriented Dynamic Weaving
	Dynamic Weaving Process
	Reflective Executable UML
	Running the Aspect-Oriented Model

	Tool Support
	Discussion
	Related Work
	Conclusions and Future Work
	References

	On Language-Independent Model Modularisation
	Introduction
	Motivating Examples
	Business Process Extension
	Modular Ship and Cargo Distribution

	Requirements for a Language-Independent Modularisation Technique
	Requirements on the Component Model
	Requirements on the Composition Language
	Requirements on the Composition Technique

	Extending Invasive Software Composition for Model Composition
	A Language-Independent Component Model for Model Composition
	A Generic Composition Language for Model Composition
	A Language-Independent Composition Technique for Model Composition

	Tooling: The Reuseware Composition Framework
	CoMoGen: The Reuseware Development Kit
	CoCoNut: The Reuseware Run Time

	Examples
	Implementation of a Simple Business Process Extension System
	Implementation of a Modular Ship and Cargo Distribution System
	Other Examples

	Related Work
	Conclusions and Outlook
	References

	Aspects across Software Life Cycle: A Goal-Driven Approach
	Introduction
	Background
	Goal Models
	Engineering Goal Models Using Agent-Oriented Programming
	Goal Aspects

	Tracing Aspects across Software Life Cycle
	Framework Overview
	Goal Aspects in Q7
	Implementation in phpAspect
	Aspects Validation
	Evolving Requirements Aspects

	Case Study
	Data Collection
	Data Analysis
	Validity Discussion

	Related Work
	Conclusions
	References

	Aspect-Oriented Model-Driven Software Product Line Engineering
	Introduction
	Aspect-Oriented Model-Driven Software Product Line Engineering
	openArchitectureWare

	Expressing Variability in Structural Models
	Positive Variability
	Negative Variability
	Related Work

	Expressing Variability in Model Transformations
	Related Work

	Expressing Variability in Code Generation Templates
	Related Work

	Expressing Variability in Code
	Related Work

	Home Automation Case Study
	Problem Space Modeling
	Solution Space Modeling
	Solution Space Implementation
	Orthogonal Variability
	Tracing

	Summary and Future Work
	Research Questions Revisited
	Future Research

	References

	Constraint-Based ModelWeaving
	Introduction
	Case Study: The Java Pet Store
	Middle-Tier Caching in the Pet Store
	Modeling and Integrating Caches into the Pet Store

	Model Weaving Challenges
	Differences between Aspect Weavers and Model Weavers
	Challenge 1: Existing Model Weaving Poinctut Specifications Cannot Encode Global Application Constraints
	Challenge 2: Changes to the Solution Model Can Require Significant Refactoring of the Weaving Solution
	Challenge 3: Existing Model Weavers Cannot Leverage a Weaving Goal to Find an Optimal Concern Merging Solution

	CSP-Based Model Weaving
	CSP Background
	Mapping Cache Weaving to a CSP
	A General Mapping of Weaving to a CSP
	Advice and Joinpoint Properties Tables
	Global Constraints
	Joinpoint Feasibility Filtering with Regular Expressions and Queries
	CSP-Weaving Benefits

	The AspectScatter DSL
	AspectScatter Model Transformation Language
	Applying Constraint-Based Weaving to the Java Pet Store
	Manual Complexity Overview
	Experimental Setup
	Deriving and Implementing a Non-optimal Caching Solution with Existing Weaving Techniques
	Deriving and Implementing an Optimal Caching Solution with Existing Weaving Techniques
	Deriving and Implementing an Optimal Caching Solution Using AspectScatter
	Results Analysis and Comparison of Techniques
	Weaving Performance

	Related Work
	Model Weaving
	Aspect-Oriented Modeling
	Models and Constraints

	Concluding Remarks
	References

	MATA: A Unified Approach for Composing UML Aspect Models Based on Graph Transformation
	Introduction
	Motivation
	Background
	Graph Transformations
	Critical Pair Analysis

	Specifying and Composing Aspect Models with MATA
	An Overview of Using Aspects in MATA
	Joinpoints, Advices and Aspects in MATA
	MATA Example

	Detecting Aspect Interactions
	Extended Example
	Interactions between Aspects

	Tool Support
	Overview
	Generating AspectWerkz Code from MATA Models

	Evaluation and Discussion
	Environment-Friendliness
	Scalability
	Familiarity
	Formality
	Exhaustiveness

	Related Work
	Conclusion and Further Work
	References
	Appendix

	Model-Driven Theme/UML
	Introduction
	Model-Driven Theme/UML: Implementation
	Initial Design Decisions
	Implementation
	Discussion

	Model-Driven Theme/UML: Process
	Process Phases

	Case Study
	Discussion

	Related work
	Summary and Future Work
	References
	Appendix
	A Theme/UML Overview

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

