

Lecture Notes in Computer Science 5631
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Shlomo Geva Jaap Kamps
Andrew Trotman (Eds.)

Advances
in Focused Retrieval

7th International Workshop of the Initiative
for the Evaluation of XML Retrieval, INEX 2008
Dagstuhl Castle, Germany, December 15-18, 2008
Revised and Selected Papers

13

Volume Editors

Shlomo Geva
Queensland University of Technology
Faculty of Science and Technology
GPO Box 2434, Brisbane Qld 4001, Australia
E-mail: s.geva@qut.edu.au

Jaap Kamps
University of Amsterdam
Archives and Information Studies/Humanities
Turfdraagsterpad 9, 1012 XT Amsterdam, The Netherlands
E-mail: kamps@uva.nl

Andrew Trotman
University of Otago
Department of Computer Science
P.O. Box 56, Dunedin 9054, New Zealand
E-mail: andrew@cs.otago.ac.nz

Library of Congress Control Number: 2009933190

CR Subject Classification (1998): H.3, H.3.3, H.3.4, H.2.8, H.2.3, H.2.4, E.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-03760-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03760-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12727117 06/3180 5 4 3 2 1 0

Foreword

I write with pleasure this foreword to the proceedings of the 7th workshop of the
Initiative for the Evaluation of XML Retrieval (INEX). The increased adoption
of XML as the standard for representing a document structure has led to the
development of retrieval systems that are aimed at effectively accessing XML
documents. Providing effective access to large collections of XML documents is
therefore a key issue for the success of these systems. INEX aims to provide the
necessary methodological means and worldwide infrastructures for evaluating
how good XML retrieval systems are.

Since its launch in 2002, INEX has grown both in terms of number of par-
ticipants and its coverage of the investigated retrieval tasks and scenarios. In
2002, INEX started with 49 registered participating organizations, whereas this
number was more than 100 for 2008. In 2002, there was one main track, con-
cerned with the ad hoc retrieval task, whereas in 2008, seven tracks in addition
to the main ad hoc track were investigated, looking at various aspects of XML
retrieval, from book search to entity ranking, including interaction aspects.

INEX follows the predominant approach in information retrieval of evaluat-
ing retrieval approaches using a test collection constructed specifically for that
purpose and associated effectiveness measures. A test collection usually consists
of a set of documents, user requests (topics), and relevance assessments, which
specify the set of “right answers” for the requests. Throughout the years, INEX
faced a range of challenges regarding the evaluation of XML retrieval systems, as
the consideration of the structure led to many complex issues, which were not al-
ways identified at the beginning (e.g., the issue of overlap and a counting-based
effectiveness measure, the difficulty in consistently assessing elements using a
four-graded two-dimensional scale). In addition, limited funding was available,
for example, to pay assessors. This led to a research problem in itself, namely,
how to elicit quality assessments in order for the test collections to be reusable.
As a result, different theories and methods for the evaluation of XML retrieval
were developed and tested at INEX, e.g., the definition of relevance, a plethora
of effectiveness measures, leading to a now-stable evaluation setup and a rich
history of learned lessons. This is now allowing researchers worldwide to make
further progress in XML retrieval, including the investigation of other research
questions in XML retrieval, for instance, efficiency in 2008.

What I have greatly enjoyed with INEX is the people working together not
only to develop approaches for XML retrieval, but also methodologies for eval-
uating XML retrieval. Many of the people that actually joined INEX to test
their XML retrieval approaches got hooked on the problem of properly evaluat-
ing XML retrieval approaches. Three of them are the current INEX organizers,
Shlomo Geva, Jaap Kamps, and Andrew Trotman. I am very glad that they got
hooked, as they are dedicated and, even more importantly, enthusiastic people

VI Foreword

with extensive expertise in both building XML retrieval systems and evaluating
them. INEX is in very safe hands with them. Looking at the current proceed-
ings, I am delighted to see so many excellent works from people from all over the
world. Many of them met at the annual workshop, and I heard it was a great
success. Well done to all.

April 2009 Mounia Lalmas

Preface

Welcome to the 7th workshop of the Initiative for the Evaluation of XML Re-
trieval (INEX)! Now, in its seventh year, INEX is one of the established eval-
uation forums in information retrieval (IR), with 150 organizations worldwide
registering and over 50 groups participating actively in the different tracks. INEX
aims to provide an infrastructure, in the form of a large structured test collection
and appropriate scoring methods, for the evaluation of focused retrieval.

Information on the Web is a mixture of text, multimedia, and metadata, with
a clear internal structure, usually formatted according to the eXtensible Markup
Language (XML) standard, or another related W3C standard. While many of
today’s information access systems still treat documents as single large (text)
blocks, XML offers the opportunity to exploit the internal structure of documents
in order to allow for more precise access, thus providing more specific answers
to user requests. Providing effective access to XML-based content is therefore a
key issue for the success of these systems.

INEX 2008 was an exciting year for INEX, and brought a lot of changes. Seven
research tracks were included, which studied different aspects of focused informa-
tion access: Ad Hoc, Book, Efficiency, Entity Ranking, Interactive (iTrack), Link
the Wiki, and XML Mining. The aim of the INEX 2008 workshop was to bring
together researchers who participated in the INEX 2008 campaign. During the
past year, participating organizations contributed to the building of a large-scale
XML test collection by creating topics, performing retrieval runs, and providing
relevance assessments. The workshop concluded the results of this large-scale
effort, summarized and addressed issues encountered, and devised a work plan
for the future evaluation of XML retrieval systems. These proceedings report the
final results of INEX 2008. We accepted a total of 49 out of 53 papers, yielding
a 92% acceptance rate.

This was also the seventh INEX Workshop to be held at the Schloss Dagstuhl
– Leibniz Center for Informatics, providing a unique setting where informal in-
teraction and discussion occurs naturally and frequently. This has been essential
to the growth of INEX over the years, and we feel honored and privileged that
Dagstuhl housed the INEX 2008 Workshop. Finally, INEX was run for, but es-
pecially by, the participants. It was a result of tracks and tasks suggested by
participants, topics created by participants, systems built by participants, and
relevance judgments provided by participants. So the main thank you goes to
each of these individuals!

April 2009 Shlomo Geva
Jaap Kamps

Andrew Trotman

Organization

Steering Committee

Charlie Clarke University of Waterloo, Canada
Norbert Fuhr University of Duisburg-Essen, Germany
Shlomo Geva Queensland University of Technology,

Australia
Jaap Kamps University of Amsterdam, The Netherlands
Mounia Lalmas University of Glasgow, UK
Stephen Robertson Microsoft Research Cambridge, UK
Andrew Trotman University of Otago, New Zealand
Ellen Voorhees NIST, USA

Chairs

Shlomo Geva Queensland University of Technology,
Australia

Jaap Kamps University of Amsterdam, The Netherlands
Andrew Trotman University of Otago, New Zealand

Track Organizers

Ad Hoc
Shlomo Geva General, Queensland University of

Technology, Australia
Jaap Kamps General, University of Amsterdam,

The Netherlands
Andrew Trotman General, University of Otago, New Zealand
Ludovic Denoyer Document Collection, University Paris 6,

France
Ralf Schenkel Document Exploration, Max-Planck-Institut

für Informatik, Germany
Martin Theobald Document Exploration, Stanford University,

USA

Book
Antoine Doucet University of Caen, France
Gabriella Kazai Microsoft Research Limited, Cambridge, UK
Monica Landoni University of Strathclyde, UK

X Organization

Efficiency

Ralf Schenkel Max-Planck-Institut für Informatik, Germany
Martin Theobald Stanford University, USA

Entity Ranking

Gianluca Demartini L3S, Leibniz Universität Hannover, Germany
Tereza Iofciu L3S, Leibniz Universität Hannover, Germany
Arjen de Vries CWI, The Netherlands
Jianhan Zhu University College London, UK

Interactive (iTrack)

Nisa Fachry University of Amsterdam, The Netherlands
Ragnar Nordlie Oslo University College, Norway
Nils Pharo Oslo University College, Norway

Link the Wiki
Shlomo Geva Queensland University of Technology,

Australia
Wei-Che (Darren) Huang Queensland University of Technology,

Australia
Andrew Trotman University of Otago, New Zealand

XML Mining

Ludovic Denoyer University Paris 6, France
Patrick Gallinari University Paris 6, France

Table of Contents

Ad Hoc Track

Overview of the INEX 2008 Ad Hoc Track . 1
Jaap Kamps, Shlomo Geva, Andrew Trotman, Alan Woodley, and
Marijn Koolen

Experiments with Proximity-Aware Scoring for XML Retrieval at
INEX 2008 . 29

Andreas Broschart, Ralf Schenkel, and Martin Theobald

Finding Good Elements for Focused Retrieval . 33
Carolyn J. Crouch, Donald B. Crouch, Salil Bapat,
Sarika Mehta, and Darshan Paranjape

New Utility Models for the Garnata Information Retrieval System at
INEX’08 . 39

Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete,
Carlos Mart́ın-Dancausa, and Alfonso E. Romero

UJM at INEX 2008: Pre-impacting of Tags Weights 46
Mathias Géry, Christine Largeron, and Franck Thollard

Use of Multiword Terms and Query Expansion for Interactive
Information Retrieval . 54

Fidelia Ibekwe-SanJuan and Eric SanJuan

Enhancing Keyword Search with a Keyphrase Index 65
Miro Lehtonen and Antoine Doucet

CADIAL Search Engine at INEX . 71
Jure Mijić, Marie-Francine Moens, and Bojana Dalbelo Bašić

Indian Statistical Institute at INEX 2008 Adhoc Track 79
Sukomal Pal, Mandar Mitra, Debasis Ganguly, Samaresh Maiti,
Ayan Bandyopadhyay, Aparajita Sen, and Sukanya Mitra

Using Collectionlinks and Documents as Context for INEX 2008 87
Delphine Verbyst and Philippe Mulhem

SPIRIX: A Peer-to-Peer Search Engine for XML-Retrieval 97
Judith Winter and Oswald Drobnik

XII Table of Contents

Book Track

Overview of the INEX 2008 Book Track . 106
Gabriella Kazai, Antoine Doucet, and Monica Landoni

XRCE Participation to the Book Structure Task . 124
Hervé Déjean and Jean-Luc Meunier

University of Waterloo at INEX 2008: Adhoc, Book, and Link-the-Wiki
Tracks . 132

Kelly Y. Itakura and Charles L.A. Clarke

The Impact of Document Level Ranking on Focused Retrieval 140
Jaap Kamps and Marijn Koolen

Adhoc and Book XML Retrieval with Cheshire . 152
Ray R. Larson

Book Layout Analysis: TOC Structure Extraction Engine 164
Bodin Dresevic, Aleksandar Uzelac, Bogdan Radakovic, and
Nikola Todic

The Impact of Query Length and Document Length on Book Search
Effectiveness . 172

Mingfang Wu, Falk Scholer, and James A. Thom

Efficiency Track

Overview of the INEX 2008 Efficiency Track . 179
Martin Theobald and Ralf Schenkel

Exploiting User Navigation to Improve Focused Retrieval 192
M.S. Ali, Mariano P. Consens, Bassam Helou, and
Shahan Khatchadourian

Efficient XML and Entity Retrieval with PF/Tijah: CWI and University
of Twente at INEX’08 . 207

Henning Rode, Djoerd Hiemstra, Arjen de Vries, and
Pavel Serdyukov

Pseudo Relevance Feedback Using Fast XML Retrieval 218
Hiroki Tanioka

TopX 2.0 at the INEX 2008 Efficiency Track: A (Very) Fast
Object-Store for Top-k-Style XML Full-Text Search 224

Martin Theobald, Mohammed AbuJarour, and Ralf Schenkel

Aiming for Efficiency by Detecting Structural Similarity 237
Judith Winter, Nikolay Jeliazkov, and Gerold Kühne

Table of Contents XIII

Entity Ranking Track

Overview of the INEX 2008 Entity Ranking Track 243
Gianluca Demartini, Arjen de Vries, Tereza Iofciu, and Jianhan Zhu

L3S at INEX 2008: Retrieving Entities Using Structured Information . . . 253
Nick Craswell, Gianluca Demartini, Julien Gaugaz, and Tereza Iofciu

Adapting Language Modeling Methods for Expert Search to Rank
Wikipedia Entities . 264

Jiepu Jiang, Wei Lu, Xianqian Rong, and Yangyan Gao

Finding Entities in Wikipedia Using Links and Categories 273
Rianne Kaptein and Jaap Kamps

Topic Difficulty Prediction in Entity Ranking . 280
Anne-Marie Vercoustre, Jovan Pehcevski, and Vladimir Naumovski

A Generative Language Modeling Approach for Ranking Entities 292
Wouter Weerkamp, Krisztian Balog, and Edgar Meij

Interactive Track

Overview of the INEX 2008 Interactive Track . 300
Nils Pharo, Ragnar Nordlie, and Khairun Nisa Fachry

Link the Wiki Track

Overview of the INEX 2008 Link the Wiki Track . 314
Wei Che (Darren) Huang, Shlomo Geva, and Andrew Trotman

Link-the-Wiki: Performance Evaluation Based on Frequent Phrases 326
Mao-Lung (Edward) Chen, Richi Nayak, and Shlomo Geva

CMIC@INEX 2008: Link-the-Wiki Track . 337
Kareem Darwish

Stealing Anchors to Link the Wiki . 343
Philipp Dopichaj, Andre Skusa, and Andreas Heß

Context Based Wikipedia Linking . 354
Michael Granitzer, Christin Seifert, and Mario Zechner

Link Detection with Wikipedia . 366
Jiyin He

Wikisearching and Wikilinking . 374
Dylan Jenkinson, Kai-Cheung Leung, and Andrew Trotman

XIV Table of Contents

CSIR at INEX 2008 Link-the-Wiki Track . 389
Wei Lu, Dan Liu, and Zhenzhen Fu

A Content-Based Link Detection Approach Using the Vector Space
Model . 395

Junte Zhang and Jaap Kamps

XML Mining Track

Overview of the INEX 2008 XML Mining Track: Categorization and
Clustering of XML Documents in a Graph of Documents 401

Ludovic Denoyer and Patrick Gallinari

Semi-supervised Categorization of Wikipedia Collection by Label
Expansion . 412

Boris Chidlovskii

Document Clustering with K-tree . 420
Christopher M. De Vries and Shlomo Geva

Using Links to Classify Wikipedia Pages . 432
Rianne Kaptein and Jaap Kamps

Clustering XML Documents Using Frequent Subtrees 436
Sangeetha Kutty, Tien Tran, Richi Nayak, and Yuefeng Li

UJM at INEX 2008 XML Mining Track . 446
Mathias Géry, Christine Largeron, and Christophe Moulin

Probabilistic Methods for Link-Based Classification at INEX 2008 453
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, and
Alfonso E. Romero

Utilizing the Structure and Content Information for XML Document
Clustering . 460

Tien Tran, Sangeetha Kutty, and Richi Nayak

Self Organizing Maps for the Clustering of Large Sets of Labeled
Graphs . 469

ShuJia Zhang, Markus Hagenbuchner, Ah Chung Tsoi, and
Alessandro Sperduti

Author Index . 483

Overview of the INEX 2008 Ad Hoc Track

Jaap Kamps1, Shlomo Geva2, Andrew Trotman3,
Alan Woodley2, and Marijn Koolen1

1 University of Amsterdam, Amsterdam, The Netherlands
{kamps,m.h.a.koolen}@uva.nl

2 Queensland University of Technology, Brisbane, Australia
{s.geva,a.woodley}@qut.edu.au

3 University of Otago, Dunedin, New Zealand
andrew@cs.otago.ac.nz

Abstract. This paper gives an overview of the INEX 2008 Ad Hoc
Track. The main goals of the Ad Hoc Track were two-fold. The first goal
was to investigate the value of the internal document structure (as pro-
vided by the XML mark-up) for retrieving relevant information. This is
a continuation of INEX 2007 and, for this reason, the retrieval results
are liberalized to arbitrary passages and measures were chosen to fairly
compare systems retrieving elements, ranges of elements, and arbitrary
passages. The second goal was to compare focused retrieval to article
retrieval more directly than in earlier years. For this reason, standard
document retrieval rankings have been derived from all runs, and eval-
uated with standard measures. In addition, a set of queries targeting
Wikipedia have been derived from a proxy log, and the runs are also
evaluated against the clicked Wikipedia pages. The INEX 2008 Ad Hoc
Track featured three tasks: For the Focused Task a ranked-list of non-
overlapping results (elements or passages) was needed. For the Relevant
in Context Task non-overlapping results (elements or passages) were re-
turned grouped by the article from which they came. For the Best in
Context Task a single starting point (element start tag or passage start)
for each article was needed. We discuss the results for the three tasks,
and examine the relative effectiveness of element and passage retrieval.
This is examined in the context of content only (CO, or Keyword) search
as well as content and structure (CAS, or structured) search. Finally, we
look at the ability of focused retrieval techniques to rank articles, using
standard document retrieval techniques, both against the judged topics
as well as against queries and clicks from a proxy log.

1 Introduction

This paper gives an overview of the INEX 2008 Ad Hoc Track. There are two
main research question underlying the Ad Hoc Track. The first main research
question is that of the value of the internal document structure (mark-up) for
retrieving relevant information. That is, does the document structure help in
identify where the relevant information is within a document? This question,
first studied at INEX 2007, has attracted a lot of attention in recent years.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 1–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 J. Kamps et al.

Trotman and Geva [11] argued that, since INEX relevance assessments are not
bound to XML element boundaries, retrieval systems should also not be bound
to XML element boundaries. Their implicit assumption is that a system return-
ing passages is at least as effective as a system returning XML elements. This
assumption is based on the observation that elements are of a lower granular-
ity than passages and so all elements can be described as passages. The reverse,
however is not true and only some passages can be described as elements. Huang
et al. [4] implement a fixed window passage retrieval system and show that a
comparable element retrieval ranking can be derived. In a similar study, Itakura
and Clarke [5] show that although ranking elements based on passage-evidence is
comparable, a direct estimation of the relevance of elements is superior. Finally,
Kamps and Koolen [6] study the relation between the passages highlighted by the
assessors and the XML structure of the collection directly, showing reasonable
correspondence between the document structure and the relevant information.

Up to now, element and passage retrieval approaches could only be compared
when mapping passages to elements. This may significantly affect the compari-
son, since the mapping is non-trivial and, of course, turns the passage retrieval
approaches effectively into element retrieval approaches. To study the value of
the document structure through direct comparison of element and passage re-
trieval approaches, the retrieval results were liberalized to arbitrary passages.
Every XML element is, of course, also a passage of text. At INEX 2008, a simple
passage retrieval format was introduced using file-offset-length (FOL) triplets,
that allow for standard passage retrieval systems to work on content-only ver-
sions of the collection. That is, the offset and length are calculated over the text
of the article, ignoring all mark-up. The evaluation measures are based directly
on the highlighted passages, or arbitrary best-entry points, as identified by the
assessors. As a result it is now possible to fairly compare systems retrieving ele-
ments, ranges of elements, or arbitrary passages. These changes address earlier
requests to liberalize the retrieval format to ranges of elements [2] and later
requests to liberalize to arbitrary passages of text [11].

The second main question is to compare focused retrieval directly to tra-
ditional article retrieval. Throughout the history of INEX, participating groups
have found that article retrieval—a system retrieving the whole article by
default—resulted in fairly competitive performance [e.g., 7, 10]. Note that every
focused retrieval system also generates an underlying article ranking, simply by
the order is which results from different articles are ranked. This is most clear in
the Relevant in Context and Best in Context tasks, where the article ranking is
an explicit part of the task description. To study the importance of the underly-
ing article ranking quality, we derived article level judgments by treating every
article with some highlighted text as relevant, derived article rankings from every
submission on a first-come, first-served basis, and evaluated with standard mea-
sures. This will also shed light on the value of element or passage level evidence
for document retrieval [1]. In addition to this, we also include queries derived
from a proxy log in the topic set, and can derive judgments from the later clicks
in the same proxy log, treating all clicked articles as relevant for the query at

Overview of the INEX 2008 Ad Hoc Track 3

hand. All submissions are also evaluated against these clicked Wikipedia pages,
giving some insight in the differences between an IR test collection and real-world
searching of Wikipedia.

The INEX 2008 Ad Hoc Track featured three tasks:

1. For the Focused Task a ranked-list of non-overlapping results (elements or
passages) must be returned. It is evaluated at early precision relative to the
highlighted (or believed relevant) text retrieved.

2. For the Relevant in Context Task non-overlapping results (elements or pas-
sages) must be returned, these are grouped by document. It is evaluated by
mean average generalized precision where the generalized score per article is
based on the retrieved highlighted text.

3. For the Best in Context Task a single starting point (element’s starting tag
or passage offset) per article must be returned. It is also evaluated by mean
average generalized precision but with the generalized score (per article)
based on the distance to the assessor’s best-entry point.

We discuss the results for the three tasks, giving results for the top 10 par-
ticipating groups and discussing the best scoring approaches in detail. We also
examine the relative effectiveness of element and passage runs, and with content
only (CO) queries and content and structure (CAS) queries.

The rest of the paper is organized as follows. First, Section 2 describes the
INEX 2008 ad hoc retrieval tasks and measures. Section 3 details the collection,
topics, and assessments of the INEX 2008 Ad Hoc Track. In Section 4, we report
the results for the Focused Task (Section 4.2); the Relevant in Context Task
(Section 4.3); and the Best in Context Task (Section 4.4). Section 5 details
particular types of runs (such as CO versus CAS, and element versus passage),
and on particular subsets of the topics (such as topics with a non-trivial CAS
query). Section 6 looks at the article retrieval aspects of the submissions, both in
terms of the judged topics treating any article with highlighted text as relevant,
and in terms of clicked Wikipedia pages for queries derived from a proxy log.
Finally, in Section 7, we discuss our findings and draw some conclusions.

2 Ad Hoc Retrieval Track

In this section, we briefly summarize the ad hoc retrieval tasks and the sub-
mission format (especially how elements and passages are identified). We also
summarize the measures used for evaluation.

2.1 Tasks

Focused Task. The scenario underlying the Focused Task is the return, to
the user, of a ranked list of elements or passages for their topic of request. The
Focused Task requires systems to find the most focused results that satisfy an
information need, without returning “overlapping” elements (shorter is preferred
in the case of equally relevant elements). Since ancestor elements and longer

4 J. Kamps et al.

passages are always relevant (to a greater or lesser extent) it is a challenge to
choose the correct granularity.

The task has a number of assumptions:

Display: the results are presented to the user as a ranked-list of results.
Users: view the results top-down, one-by-one.

Relevant in Context Task. The scenario underlying the Relevant in Context
Task is the return of a ranked list of articles and within those articles the rel-
evant information (captured by a set of non-overlapping elements or passages).
A relevant article will likely contain relevant information that could be spread
across different elements. The task requires systems to find a set of results that
corresponds well to all relevant information in each relevant article. The task
has a number of assumptions:

Display: results will be grouped per article, in their original document order,
access will be provided through further navigational means, such as a docu-
ment heat-map or table of contents.

Users: consider the article to be the most natural retrieval unit, and prefer an
overview of relevance within this context.

Best in Context Task. The scenario underlying the Best in Context Task
is the return of a ranked list of articles and the identification of a best-entry-
point from which a user should start reading each article in order to satisfy the
information need. Even an article completely devoted to the topic of request
will only have one best starting point from which to read (even if that is the
beginning of the article). The task has a number of assumptions:

Display: a single result per article.
Users: consider articles to be natural unit of retrieval, but prefer to be guided

to the best point from which to start reading the most relevant content.

2.2 Submission Format

Since XML retrieval approaches may return arbitrary results from within docu-
ments, a way to identify these nodes is needed. At INEX 2008, we allowed the
submission of three types of results: XML elements; ranges of XML elements;
and file-offset-length (FOL) text passages.

Element Results. XML element results are identified by means of a file name
and an element (node) path specification. File names in the Wikipedia collection
are unique so that the next example identifies 9996.xml as the target document
from the Wikipedia collection (with the .xml extension removed).

<file>9996</file>

Overview of the INEX 2008 Ad Hoc Track 5

Element paths are given in XPath, but only fully specified paths are allowed.
The next example identifies the first “article” element, then within that, the
first “body” element, then the first “section” element, and finally within that
the first “p” element.

<path>/article[1]/body[1]/section[1]/p[1]</path>

Importantly, XPath counts elements from 1 and counts element types. For ex-
ample if a section had a title and two paragraphs then their paths would be:
title[1], p[1] and p[2].

A result element, then, is identified unambiguously using the combination of
file name and element path, as shown in the next example.

<result>

<file>9996</file>

<path>/article[1]/body[1]/section[1]/p[1]</path>

<rsv>0.9999</rsv>

</result>

Ranges of Elements. To support ranges of elements, elemental passages are
given in the same format.1 As a passage need not start and end in the same
element, each is given separately. The following example is equivalent to the
element result example above since it starts and ends on an element boundary.

<result>

<file>9996</file>

<passage start="/article[1]/body[1]/section[1]/p[1]"

end="/article[1]/body[1]/section[1]/p[1]"/>

<rsv>0.9999</rsv>

</result>

Note that this format is very convenient for specifying ranges of elements, e.g.,
the following example retrieves the first three sections.

<result>

<file>9996</file>

<passage start="/article[1]/body[1]/section[1]"

end="/article[1]/body[1]/section[3]"/>

<rsv>0.9999</rsv>

</result>

FOL passages. Passage results can be given in file-offset-length (FOL) format,
where offset and length are calculated in characters with respect to the textual
content (ignoring all tags) of the XML file. A special text-only version of the
collection is provided to facilitate the use of passage retrieval systems. File offsets
start counting a 0 (zero).
1 At INEX 2007, and in earlier qrels, an extended format allowing for optional

character-offsets was used that allowed these passages to start or end in the middle
of element or text-nodes. This format is superseded with the clean file-offset-length
(FOL) passage format.

6 J. Kamps et al.

The following example is effectively equivalent to the example element result
above.

<result>

<file>9996</file>

<fol offset="461" length="202"/>

<rsv>0.9999</rsv>

</result>

The paragraph starts at the 462th character (so 461 characters beyond the first
character), and has a length of 202 characters.

2.3 Evaluation Measures

We briefly summarize the main measures used for the Ad Hoc Track. Since
INEX 2007, we allow the retrieval of arbitrary passages of text matching the
judges ability to regard any passage of text as relevant. Unfortunately this simple
change has necessitated the deprecation of element-based metrics used in prior
INEX campaigns because the “natural” retrieval unit is no longer an element,
so elements cannot be used as the basis of measure. We note that properly
evaluating the effectiveness in XML-IR remains an ongoing research question at
INEX.

The INEX 2008 measures are solely based on the retrieval of highlighted text.
We simplify all INEX tasks to highlighted text retrieval and assume that systems
return all, and only, highlighted text. We then compare the characters of text
retrieved by a search engine to the number and location of characters of text
identified as relevant by the assessor. For best in context we use the distance
between the best entry point in the run to that identified by an assessor.

Focused Task. Recall is measured as the fraction of all highlighted text that
has been retrieved. Precision is measured as the fraction of retrieved text that
was highlighted. The notion of rank is relatively fluid for passages so we use
an interpolated precision measure which calculates interpolated precision scores
at selected recall levels. Since we are most interested in what happens in the
first retrieved results, the INEX 2008 official measure is interpolated precision
at 1% recall (iP[0.01]). We also present interpolated precision at other early
recall points, and (mean average) interpolated precision over 101 standard recall
points (0.00, 0.01, 0.02, ..., 1.00) as an overall measure.

Relevant in Context Task. The evaluation of the Relevant in Context Task
is based on the measures of generalized precision and recall [9], where the per
document score reflects how well the retrieved text matches the relevant text
in the document. Specifically, the per document score is the harmonic mean of
precision and recall in terms of the fractions of retrieved and highlighted text
in the document. We use an Fβ score with β = 1/4 making precision four times
as important as recall (at INEX 2007, F1 was used). We are most interested in

Overview of the INEX 2008 Ad Hoc Track 7

overall performances so the main measure is mean average generalized precision
(MAgP). We also present the generalized precision scores at early ranks (5, 10,
25, 50).

Best in Context Task. The evaluation of the Best in Context Task is based on
the measures of generalized precision and recall where the per document score
reflects how well the retrieved entry point matches the best entry point in the
document. Specifically, the per document score is a linear discounting function
of the distance d (measured in characters)

n − d(x, b)
n

for d < n and 0 otherwise. We use n = 500 which is roughly the number of
characters corresponding to the visible part of the document on a screen (at
INEX 2007, n = 1, 000 was used). We are most interested in overall performance,
and the main measure is mean average generalized precision (MAgP). We also
show the generalized precision scores at early ranks (5, 10, 25, 50).

3 Ad Hoc Test Collection

In this section, we discuss the corpus, topics, and relevance assessments used in
the Ad Hoc Track.

3.1 Corpus

The document collection was the Wikipedia XML Corpus based on the English
Wikipedia in early 2006 [3]. The Wikipedia collection contains 659,338 Wikipedia
articles. On average an article contains 161 XML nodes, where the average depth
of a node in the XML tree of the document is 6.72.

The original Wiki syntax has been converted into XML, using both general
tags of the layout structure (like article, section, paragraph, title, list and item),
typographical tags (like bold, emphatic), and frequently occurring link-tags. For
details see Denoyer and Gallinari [3].

3.2 Topics

The ad hoc topics were created by participants following precise instructions.
Candidate topics contained a short CO (keyword) query, an optional structured
CAS query, a one line description of the search request, and narrative with a
details of the topic of request and the task context in which the information need
arose. Figure 1 presents an example of an ad hoc topic. Based on the submitted
candidate topics, 135 topics were selected for use in the INEX 2008 Ad Hoc
Track as topic numbers 544–678.

In addition, 150 queries were derived from a proxy-log for use in the INEX
2008 Ad Hoc Track as topic numbers 679–828. For these topics, as well as the
candidate topics without a 〈castitle〉 field, a default CAS-query was added
based on the CO-query: //*[about(., "CO-query")].

8 J. Kamps et al.

<topic id="544" ct_no="6">

<title>meaning of life</title>

<castitle>

//article[about(., philosophy)]//section[about(., meaning of life)]

</castitle>

<description>What is the meaning of life?</description>

<narrative>

I got bored of my life and started wondering what the meaning of

life is. An element is relevant if it discusses the meaning of life

from different perspectives, as long as it is serious. For example,

Socrates discussing meaning of life is relevant, but something like

"42" from H2G2 or "the meaning of life is cheese" from a comedy is

irrelevant. An element must be self contained. An element that is a

list of links is considered irrelevant because it is not

self-contained in the sense that I don’t know in which context the

links are given.

</narrative>

</topic>

Fig. 1. INEX 2008 Ad Hoc Track topic 544

3.3 Judgments

Topics were assessed by participants following precise instructions. The asses-
sors used the new GPXrai assessment system that assists assessors in highlight
relevant text. Topic assessors were asked to mark all, and only, relevant text
in a pool of documents. After assessing an article with relevance, a separate
best entry point decision was made by the assessor. The Focused and Relevant
in Context Tasks were evaluated against the text highlighted by the assessors,
whereas the Best in Context Task was evaluated against the best-entry-points.

The relevance judgments were frozen on October 22, 2008. At this time 70
topics had been fully assessed. Moreover, 11 topics were judged by two separate
assessors, each without the knowledge of the other. All results in this paper
refer to the 70 topics with the judgments of the first assigned assessor, which is
typically the topic author.

– The 70 assessed topics were: 544–547, 550–553, 555–557, 559, 561, 562–563,
565, 570, 574, 576–582, 585–587, 592, 595–598, 600–603, 607, 609–611, 613,
616–617, 624, 626, 628, 629, 634–637, 641–644, 646–647, 649–650, 656–657,
659, 666–669, 673, 675, and 677.

In addition, there are clicked Wikipedia pages available in the proxy log for 125
topics:

– The 125 topics with clicked articles are numbered: 679–682, 684–685, 687–
693, 695–704, 706–708, 711–727, 729–732, 734–751, 753–776, 778, 780–782,
784, 786–787, 789–790, 792–793, 795–796, 799–804, 806–807, 809–810, 812–
813, 816–819, 821–824, and 826–828.

Overview of the INEX 2008 Ad Hoc Track 9

Table 1. Statistics over judged and relevant articles per topic

total # per topic
topics number min max median mean st.dev

judged articles 70 42,272 588 618 603 603.9 5.6
articles with relevance 70 4,887 2 376 49 69.8 68.9
highlighted passages 70 6,908 3 897 56 98.7 124.6
highlighted characters 70 11,471,649 1,419 1,113,578 99,569 163,880.7 202,757.2
Unique articles with clicks 125 225 1 10 1 1.8 1.5
Total clicked articles 125 532 1 24 3 4.3 3.8

Number of passages per article
1 2 3 4 5 6 7 8 9 10 11 12 14 15 18 19 33 87

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Fig. 2. Distribution of passages over articles

Table 1 presents statistics of the number of judged and relevant articles, and
passages. In total 42,272 articles were judged. Relevant passages were found
in 4,887 articles. The mean number of relevant articles per topic is 70, but
the distribution is skewed with a median of 49. There were 6,908 highlighted
passages. The mean was 99 passages and the median was 56 passages per topic.2

Table 1 also includes some statistics of the number of clicked articles in the
proxy log. There are in total 225 clicked articles (unique per topic) over in total
125 topics, with a mean of 1.8 and a median of 1 clicked article per topic. We
filtered the log for queries issued by multiple persons, and can also count the
total number of clicks. Here, we see a total of 532 clicks (on the same 225 articles
before), with a mean of 4.3 and a median of 3 clicks per topic. It is clear that
the topics and clicked articles from the log are very different in character from
the ad hoc topics.

Figure 2 presents the number of articles with the given number of passages.
The vast majority of relevant articles (3,967 out of 4,887) had only a single
highlighted passage, and the number of passages quickly tapers off.

2 Recall from above that for the Focused Task the main effectiveness measures is
precision at 1% recall. Given that the average topic has 99 relevant passages in 70
articles, the 1% recall roughly corresponds to a relevant passage retrieved—for many
systems this will be accomplished by the first or first few results.

10 J. Kamps et al.

Table 2. Statistics over best entry point judgement

topics number min max median mean st.dev
best entry point offset 70 4,887 1 87,982 14 1,738.1 4,814.3
first relevant character offset 70 4,887 1 87,982 20 1,816.1 4,854.2
fraction highlighted text 70 4,850 0.0005 1.000 0.583 0.550 0.425

Best entry point offset
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Fig. 3. Distribution of best entry point offsets

Assessors where requested to provide a separate best entry point (BEP) judg-
ment, for every article where they highlighted relevant text. Table 2 presents
statistics on the best entry point offset, on the first highlighted or relevant char-
acter, and on the fraction of highlighted text in relevant articles. We first look
at the BEPs. The mean BEP is well within the article with offset 1,738 but the
distribution is very skewed with a median BEP offset of only 14. Figure 3 shows
the distribution of the character offsets of the 4,887 best entry points. It is clear
that the overwhelming majority of BEPs is at the beginning of the article.

The statistics of the first highlighted or relevant character (FRC) in Table 2
give very similar numbers as the BEP offsets: the mean offset of the first relevant
character is 1,816 but the median offset is only 20. This suggests a relation
between the BEP offset and the FRC offset. Figure 4 shows a scatter plot the
BEP and FRC offsets. Two observations present themselves. First, there is a clear
diagonal where the BEP is positioned exactly at the first highlighted character
in the article. Second, there is also a vertical line at BEP offset zero, indicating
a tendency to put the BEP at the start of the article even when the relevant
text appears later on.

Finally, the statistics on the fraction of highlighted text in Table 2 show that
amount of relevant text varies from almost nothing to almost everything. The
mean fraction is 0.55, and the median is 0.58, indicating that typically over half
the article is relevant. Given that the majority of relevant articles contain such
a large fraction of relevant text plausibly explains that BEPs being frequently
positioned on or near the start of the article.

Overview of the INEX 2008 Ad Hoc Track 11

Best entry point offset
0 20000 40000 60000 80000 100000

F
irs

t r
el

ev
an

t c
ha

ra
ct

er
 o

ffs
et

0

20000

40000

60000

80000

100000

Fig. 4. Scatter plot of best entry point offsets versus the first relevant character

Table 3. Candidate Topic Questionnaire

B1 How familiar are you with the subject matter of the topic?
B2 Would you search for this topic in real-life?
B3 Does your query differ from what you would type in a web search engine?
B4 Are you looking for very specific information?
B5 Are you interested in reading a lot of relevant information on the topic?
B6 Could the topic be satisfied by combining the information in different (parts of)

documents?
B7 Is the topic based on a seen relevant (part of a) document?
B8 Can information of equal relevance to the topic be found in several documents?
B9 Approximately how many articles in the whole collection do you expect to contain

relevant information?
B10 Approximately how many relevant document parts do you expect in the whole

collection?
B11 Could a relevant result be (check all that apply): a single sentence; a single para-

graph; a single (sub)section; a whole article
B12 Can the topic be completely satisfied by a single relevant result?
B13 Is there additional value in reading several relevant results?
B14 Is there additional value in knowing all relevant results?
B15 Would you prefer seeing: only the best results; all relevant results; don’t know
B16 Would you prefer seeing: isolated document parts; the article’s context; don’t know
B17 Do you assume perfect knowledge of the DTD?
B18 Do you assume that the structure of at least one relevant result is known?
B19 Do you assume that references to the document structure are vague and imprecise?
B20 Comments or suggestions on any of the above (optional)

12 J. Kamps et al.

Table 4. Post Assessment Questionnaire

C1 Did you submit this topic to INEX?
C2 How familiar were you with the subject matter of the topic?
C3 How hard was it to decide whether information was relevant?
C4 Is Wikipedia an obvious source to look for information on the topic?
C5 Can a highlighted passage be (check all that apply): a single sentence; a single

paragraph; a single (sub)section; a whole article
C6 Is a single highlighted passage enough to answer the topic?
C7 Are highlighted passages still informative when presented out of context?
C8 How often does relevant information occur in an article about something else?
C9 How well does the total length of highlighted text correspond to the usefulness of

an article?
C10 Which of the following two strategies is closer to your actual highlighting:

(I) I located useful articles and highlighted the best passages and nothing more,
(II) I highlighted all text relevant according to narrative, even if this meant high-
lighting an entire article.

C11 Can a best entry point be (check all that apply): the start of a highlighted passage;
the sectioning structure containing the highlighted text; the start of the article

C12 Does the best entry point correspond to the best passage?
C13 Does the best entry point correspond to the first passage?
C14 Comments or suggestions on any of the above (optional)

3.4 Questionnaires

At INEX 2008, all candidate topic authors and assessors were asked to complete
a questionnaire designed to capture the context of the topic author and the topic
of request.

The candidate topic questionnaire (shown in Table 3) featured 20 questions
capturing contextual data on the search request.

The post-assessment questionnaire (shown in Table 4) featured 14 questions
capturing further contextual data on the search request, and the way the topic
has been judged (a few questions on GPXrai were added to the end).

The responses to the questionnaires show a considerable variation over topics
and topic authors in terms of topic familiarity; the type of information requested;
the expected results; the interpretation of structural information in the search
request; the meaning of a highlighted passage; and the meaning of best entry
points. There is a need for further analysis of the contextual data of the topics
in relation to the results of the INEX 2008 Ad Hoc Track.

4 Ad Hoc Retrieval Results

In this section, we discuss, for the three ad hoc tasks, the participants and their
results.

4.1 Participation

A total of 163 runs were submitted by 23 participating groups. Table 5 lists
the participants and the number of runs they submitted, also broken down over

Overview of the INEX 2008 Ad Hoc Track 13

Table 5. Participants in the Ad Hoc Track

Id Participant Fo
cu

se
d

R
el

ev
an

t
in

C
on

te
xt

B
es

t
in

C
on

te
xt

C
O

qu
er

y

C
A

S
qu

er
y

E
le

m
en

t
re

su
lt
s

P
as

sa
ge

re
su

lt
s

F
O

L
re

su
lt
s

#
va

lid
ru

ns

#
su

bm
it
te

d
ru

ns

4 University of Otago 0 6 0 6 0 3 3 0 6 6
5 Queensland University of Technology 6 6 6 15 3 9 9 0 18 18
6 University of Amsterdam 6 6 3 9 6 13 0 2 15 15
9 University of Helsinki 3 0 0 3 0 3 0 0 3 3

10 Max-Planck-Institut Informatik 3 1 1 5 0 5 0 0 5 5
12 University of Granada 3 3 3 9 0 9 0 0 9 9
14 University of California, Berkeley 2 0 1 3 0 3 0 0 3 3
16 University of Frankfurt 1 3 3 0 7 7 0 0 7 9
22 ENSM-SE 2 0 0 2 0 0 0 2 2 9
25 Renmin University of China 3 0 1 2 2 4 0 0 4 4
29 INDIAN STATISTICAL INSTITUTE 3 0 0 3 0 3 0 0 3 3
37 Katholieke Universiteit Leuven 6 0 0 3 3 6 0 0 6 6
40 IRIT 0 0 2 1 1 2 0 0 2 6
42 University of Toronto 2 0 0 0 2 2 0 0 2 3
48 LIG 3 2 0 5 0 5 0 0 5 5
55 Doshisha University 0 0 1 0 1 1 0 0 1 3
56 JustSystems Corporation 3 3 3 6 3 9 0 0 9 9
60 Saint Etienne University 3 0 0 3 0 3 0 0 3 9
61 Universit Libre de Bruxelles 0 0 0 0 0 0 0 0 0 2
68 University Pierre et Marie Curie - LIP6 2 0 0 2 0 2 0 0 2 2
72 University of Minnesota Duluth 2 2 2 6 0 6 0 0 6 6
78 University of Waterloo 3 3 4 10 0 8 2 0 10 13
92 University of Lyon3 5 5 5 15 0 15 0 0 15 15

Total runs 61 40 35 108 28 118 14 4 136 163

the tasks (Focused, Relevant in Context, or Best in Context); the used query
(Content-Only or Content-And-Structure); and the used result type (Element,
Passage or FOL). Unfortunately, no less than 27 runs turned out to be invalid and
will only be evaluated with respect to their “article retrieval” value in Section 6.

Participants were allowed to submit up to three element result-type runs
per task and three passage result-type runs per task (for all three tasks). This
totaled to 18 runs per participant.3 The submissions are spread well over the ad
hoc retrieval tasks with 61 submissions for Focused, 40 submissions for Relevant
in Context, and 35 submissions for Best in Context.

3 As it turns out, two groups submitted more runs than allowed: University of Lyon3
submitted 6 extra element runs, and University of Amsterdam submitted 4 extra
element runs. At this moment, we have not decided on any repercussions other than
mentioning them in this footnote.

14 J. Kamps et al.

Table 6. Top 10 Participants in the Ad Hoc Track Focused Task

Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP
p78-FOERStep 0.7660 0.6897 0.5714 0.4908 0.2076
p10-TOPXCOarti 0.6808 0.6799 0.5812 0.5372 0.2981
p48-LIGMLFOCRI 0.7127 0.6678 0.5223 0.4229 0.1446
p92-manualQEin� 0.6664 0.6664 0.6139 0.5583 0.3077
p9-UHelRun394 0.7109 0.6648 0.5558 0.5044 0.2268
p60-JMUexpe142 0.6918 0.6640 0.5800 0.5071 0.2347
p14-T2FBCOPARA 0.7319 0.6427 0.4908 0.4036 0.1399
p29-LMnofb020 0.6855 0.6365 0.5566 0.5152 0.2868
p25-weightedfi 0.6553 0.6346 0.5495 0.5263 0.2661
p5-GPX1COFOCe 0.6818 0.6344 0.5693 0.5180 0.2592

4.2 Focused Task

We now discuss the results of the Focused Task in which a ranked-list of non-
overlapping results (elements or passages) was required. The official measure
for the task was (mean) interpolated precision at 1% recall (iP[0.01]). Table 6
shows the best run of the top 10 participating groups. The first column gives the
participant, see Table 5 for the full name of group. The second to fifth column
give the interpolated precision at 0%, 1%, 5%, and 10% recall. The sixth column
gives mean average interpolated precision over 101 standard recall levels (0%,
1%, . . . , 100%).

Here we briefly summarize what is currently known about the experiments
conducted by the top five groups (based on official measure for the task, iP[0.01]).

University of Waterloo. Element retrieval run using the CO query. Descrip-
tion: the run uses the Okapi BM25 model in Wumpus to score all content-
bearing elements such as sections and paragraphs using Okapi BM25. In
addition, scores were boosted by doubling the tf values of the first 10 words
of an element.

Max-Planck-Institut für Informatik. Element retrieval run using the CO
query. Description: The TopX system retrieving only article elements, using
a linear combination of a BM25 content score with a BM25 proximity score
that also takes document structure into accout.

LIG Grenoble. An element retrieval run using the CO query. Description:
Based on a language Model using a Dirichlet smoothing, and equally weight-
ing element score and its context score, where the context score are based
on the collection-links in Wikipedia.

University of Lyon3. A manual element retrieval run using the CO query.
Description: Using indri search engine in Lemur with manually expanded
queries from CO, description and narrative fields. The run is retrieving only
articles.

University of Helsinki. An element retrieval run using the CO query. Descrip-
tion: A special phrase index was created based on the detection of phrases
in the collection, where the phrases are replication three times—effectively

Overview of the INEX 2008 Ad Hoc Track 15

Table 7. Top 10 Participants in the Ad Hoc Track Relevant in Context Task

Participant gP[5] gP[10] gP[25] gP[50] MAgP
p78-RICBest 0.4100 0.3454 0.2767 0.2202 0.2278
p92-manualQEin� 0.4175 0.3589 0.2692 0.2095 0.2106
p5-GPX1CORICe 0.3759 0.3441 0.2677 0.2151 0.2106
p10-TOPXCOallA 0.3681 0.3108 0.2386 0.1928 0.1947
p4-WHOLEDOC 0.3742 0.3276 0.2492 0.1962 0.1929
p6-inex08artB 0.3510 0.3008 0.2216 0.1741 0.1758
p72-UMDRic2 0.3853 0.3361 0.2357 0.1894 0.1724
p12-p8u3exp511 0.2966 0.2726 0.2169 0.1621 0.1582
p56-VSMRIP05 0.3281 0.2647 0.2113 0.1616 0.1500
p48-LIGMLRIC4O 0.3634 0.3115 0.2327 0.1721 0.1497

boosting query word occurrences in phrases. In addition, a standard key-
word index was used. The run using BM25 is a combination of the retrieval
status value on the word-index (94% of weight) and the phrase-index (6% of
weight).

Saint Etienne University. An element retrieval run using the CO query. De-
scription: A probabilistic model used to evaluate a weight for each tag: ”the
probability that tags distinguishes terms which are the most relevant”, i.e.
based on the fact that the tag contains relevant or non relevant passages.
The resulting tag weights are incorporated into an element-level run with
BM25 weighting.

Based on the information from these and other participants

– All ten runs use the CO query. The fourth run, p92-manualQEin, uses a
manually expanded query using words from the description and narrative
fields. The eighth run, p29-LMnofb020, is an automatic run using the title
and description fields. All other runs use only the CO query in the title field.

– All runs retrieve elements as results.
– The systems at rank second (p10-TOPXCOarti), fourth (p92-manualQEin),

and eighth (p29-LMnofb020), are retrieving only full articles.

4.3 Relevant in Context Task

We now discuss the results of the Relevant in Context Task in which non-
overlapping results (elements or passages) need to be returned grouped by the
article they came from. The task was evaluated using generalized precision where
the generalized score per article was based on the retrieved highlighted text. The
official measure for the task was mean average generalized precision (MAgP).

Table 7 shows the top 10 participating groups (only the best run per group is
shown) in the Relevant in Context Task. The first column lists the participant,
see Table 5 for the full name of group. The second to fifth column list generalized
precision at 5, 10, 25, 50 retrieved articles. The sixth column lists mean average
generalized precision.

16 J. Kamps et al.

Here we briefly summarize the information available about the experiments
conducted by the top five groups (based on MAgP).

University of Waterloo. Element retrieval run using the CO query. Descrip-
tion: the run uses the Okapi BM25 model in Wumpus to score all content-
bearing elements such as sections and paragraphs using Okapi BM25, and
grouped the results by articles and ranked the articles by their best scoring
element.

University of Lyon3. A manual element retrieval run using the CO query.
Description: the same as the Focused run above. In fact it is literally the
same article ranking as the Focused run. Recall that the run is retrieving
only whole articles.

Queensland University of Technology. Element retrieval run using the CO
query. Description: GPX run using a //*[about(.,keywords)] query, serving
non-overlapping elements grouped per article, with the articles ordered by
their best scoring element.

Max-Planck-Institut für Informatik. Element retrieval run using the CO
query. Description: An element retrieval run using the new BM25 scoring
function (i.e., considering each element as “document” and then comput-
ing a standard BM25 model), selecting non-overlapping elements based on
score, and grouping them per article with the articles ranked by their highest
scoring element.

University of Otago. Element retrieval run using the CO query. Description:
BM25 is used to select and rank the top 1,500 documents and whole docu-
ments are selected as the passage. The run is retrieving only whole articles.

Based on the information from these and other participants

– The runs ranked sixth (p6-inex08artB) and ninth (p56-VSMRIP05) are us-
ing the CAS query. The run ranked second, p92-manualQEin, is using a
manually expanded query based on keywords in the description and narra-
tive. All other runs use only the CO query in the topic’s title field.

– All runs retrieve elements as results.
– Solid article ranking seems a prerequisite for good overall performance, with

second best run, p92-manualQEin, the fifth best run, p4-WHOLEDOC, and
the ninth best run, p56-VSMRIP05, retrieving only full articles.

4.4 Best in Context Task

We now discuss the results of the Best in Context Task in which documents were
ranked on topical relevance and a single best entry point into the document was
identified. The Best in Context Task was evaluated using generalized precision
but here the generalized score per article was based on the distance to the as-
sessor’s best-entry point. The official measure for the task was mean average
generalized precision (MAgP).

Table 8 shows the top 10 participating groups (only the best run per group
is shown) in the Best in Context Task. The first column lists the participant,

Overview of the INEX 2008 Ad Hoc Track 17

Table 8. Top 10 Participants in the Ad Hoc Track Best in Context Task

Participant gP[5] gP[10] gP[25] gP[50] MAgP
p78-BICER 0.3896 0.3306 0.2555 0.2019 0.2238
p92-manualQEin� 0.4144 0.3688 0.2834 0.2244 0.2197
p25-weightedfi 0.3510 0.3058 0.2531 0.2042 0.2037
p5-GPX1COBICp 0.3711 0.3395 0.2605 0.2046 0.1989
p6-submitinex 0.3475 0.2898 0.2236 0.1706 0.1709
p10-TOPXCOallB 0.2417 0.2374 0.1913 0.1550 0.1708
p12-p8u3exp501 0.2546 0.2331 0.1952 0.1503 0.1468
p72-UMDBIC1 0.3192 0.2752 0.1891 0.1474 0.1455
p56-VSMRIP08 0.2269 0.2038 0.1748 0.1403 0.1317
p55-KikoriBest 0.2041 0.1958 0.1552 0.1210 0.0960

see Table 5 for the full name of group. The second to fifth column list generalized
precision at 5, 10, 25, 50 retrieved articles. The sixth column lists mean average
generalized precision.

Here we briefly summarize the information available about the experiments
conducted by the top five groups (based on MAgP).

University of Waterloo. Element retrieval run using the CO query. Descrip-
tion: the run uses the Okapi BM25 model in Wumpus to score all content-
bearing elements such as sections and paragraphs using Okapi BM25, and
kept only the best scoring element per article.

University of Lyon3. A manual element retrieval run using the CO query.
Description: the same as the Focused and Relevant in Context runs above.
In fact all three runs have literally the same article ranking. This run is
retrieving the start of the whole article as best entry point, in other words
an article retrieval run.

Renmin University of China. Element retrieval run using the CO query. De-
scription: using language model to compute RSV at leaf level combined with
aggregation at retrieval time, assuming independence.

Queensland University of Technology. Run retrieving ranges of elements
using the CO query. The run is always returning a whole article, setting
the BEP at the very start of the article. Description: GPX run using a
//*[about(.,keywords)] query, ranking articles by their best scoring ele-
ment, but transformed to return the complete article as a passages. This
is effectively an article level GPX run.

University of Amsterdam. Run retrieving FOL passages using the CO
query. Description: language model with local indegree prior, setting the
BEP always at the start of the article. Since the offset is always zero, this is
similar to an article retrieval run.

Based on the information from these and other participants

– As for the Relevant in Context Task, we see again that solid article rank-
ing is very important. In fact, we see runs putting the BEP at the start

18 J. Kamps et al.

Table 9. Statistical significance (t-test, one-tailed, 95%)

1 2 3 4 5 6 7 8 9 10
p78 - - - - - - - - -
p10 - - - - - - - -
p48 - - - - - - -
p92 - - - - - -
p9 - - - - -
p60 - - - -
p14 - - -
p29 - -
p25 -
p5

1 2 3 4 5 6 7 8 9 10
p78 - � � � � � � � �
p92 - - - � � � � �
p5 � - � � � � �
p10 - - - � � �
p4 - - � � �
p6 - - - �
p72 - - �
p12 - -
p56 -
p48

1 2 3 4 5 6 7 8 9 10
p78 - - � � � � � � �
p92 - - � � � � � �
p25 - � � � � � �
p5 � - � � � �
p6 - - - � �
p10 - - � �
p12 - - �
p72 - �
p56 �
p55

of all the retrieved articles at rank two (p92-manualQEin), rank four (p5-
GPX1COBICp), and rank five (p6-submitinex).

– The fourth ranked run, p5-GPX1COBICp, uses ranges of elements, albeit a
degenerate case where always the full article is selected. The fifth run, p6-
submitinex, uses fol passages, albeit again a degenerate case where the BEP
is always the zero offset.

– With the exception of the runs at rank nine (p56-VSMRIP08) and ten (p55-
KikoriBest), which used the CAS query, all the other best runs per group
use the CO query.

4.5 Significance Tests

We tested whether higher ranked systems were significantly better than lower
ranked system, using a t-test (one-tailed) at 95%. Table 9 shows, for each task,
whether it is significantly better (indicated by “�”) than lower ranked runs. For
example, For the Focused Task, we see that the early precision (at 1% recall) is a
rather unstable measure and none of the runs are significantly different. Hence we
should be careful when drawing conclusions based on the Focused Task results.
For the Relevant in Context Task, we see that the top run is significantly better
than ranks 3 through 10, the second best run better than ranks 6 through 10, the
third ranked system better than ranks 4 and 6 through 10, and the fourth and
fifth ranked systems better than ranks 8 through 10. For the Best in Context
Task, we see that the top run is significantly better than ranks 4 through 10, the
second and third runs significantly better than than ranks 5 to 10. The fourth
ranked system is better than the systems ranked 5 and 7 to 10, and the fifth
ranked system better than ranks 9 and 10.

5 Analysis of Run and Topic Types

In this section, we will discuss relative effectiveness of element and passage re-
trieval approaches, and on the relative effectiveness of systems using the keyword
and structured queries.

Overview of the INEX 2008 Ad Hoc Track 19

Table 10. Ad Hoc Track: Runs with ranges of elements or FOL passages

(a) Focused Task
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP
p5-GPX2COFOCp 0.6311 0.6305 0.5365 0.4719 0.2507
p22-EMSEFocuse� 0.6757 0.5724 0.4487 0.3847 0.1555

(b) Relevant in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP
p4-WHOLEDOCPA 0.3742 0.3276 0.2492 0.1962 0.1929
p5-GPX1CORICp 0.3566 0.3220 0.2430 0.1875 0.1900

(c) Best in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP
p5-GPX1COBICp 0.3711 0.3395 0.2605 0.2046 0.1989
p6-submitinex 0.3475 0.2898 0.2236 0.1706 0.1709
p78-BICPRplus 0.2651 0.2252 0.1666 0.1268 0.1254

5.1 Elements versus Passages

We received 18 submissions using ranges of elements of FOL-passage results,
from in total 5 participating groups. We will look at the relative effectiveness of
element and passage runs.

As we saw above, in Section 4, for all three tasks the best scoring runs used
elements as the unit of retrieval. Table 10 shows the best runs using ranges of
elements or FOL passages for the three ad hoc tasks. All these runs use the CO
query. As it turns out, the best focused run using passages ranks outside the
top scoring runs in Table 6; the best relevant in context run using passages is
ranked fifth among the top scoring runs in Table 7; and the best best in context
run using passages is ranked fourth among the top scoring runs in Table 8. This
outcome is consistent with earlier results using passage-based element retrieval,
where passage retrieval approaches showed comparable but not superior behavior
to element retrieval approaches [4, 5].

However, looking at the runs in more detail, their character is often un-
like what one would expect from a “passage” retrieval run. For Focused, p5-
GPX2COFOCp is an article run using ranges of elements; and p22-EMSEFocuse
is a manual query run using FOL passages. For Relevant in Context, both p4-
WHOLEDOCPA and p5-GPX1CORICp are article runs using ranges of ele-
ments. For Best in Context, p5-GPX1COBICp is an article runs using ranges of
elements; p6-submitinex is an article run using FOL passages; and p78-BICPRplus
is an element retrieving run using ranges of elements. So, all but two of the runs
retrieve only articles. Hence, this is not sufficient evidence to warrant any con-
clusion on the effectiveness of passage level results. We hope and expect that
the test collection and the passage runs will be used for further research into the
relative effectiveness of element and passage retrieval approaches.

20 J. Kamps et al.

Table 11. CAS query target elements over all 135 topics

Target Element Frequency
∗ 51
section 39
article 30
p 11
figure 3
body 1

Table 12. Ad Hoc Track CAS Topics: CO runs (left-hand side) versus CAS runs
(right-hand side)

(a) Focused Task
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP
p60-JMUexpe136 0.7321 0.7245 0.6416 0.5936 0.2934
p48-LIGMLFOCRI 0.7496 0.7209 0.5307 0.4440 0.1570
p78-FOER 0.7263 0.7089 0.6084 0.5485 0.2225
p5-GPX1COFOCe 0.7168 0.6972 0.6416 0.5616 0.2616
p29-LMnofb020 0.7193 0.6766 0.5926 0.5611 0.2951
p10-TOPXCOallF 0.7482 0.6680 0.5555 0.4871 0.1925
p25-weightedfi 0.6665 0.6634 0.5907 0.5646 0.2671
p6-inex08artB 0.6689 0.6571 0.5570 0.4961 0.2104
p9-UHelRun394 0.7024 0.6567 0.5602 0.5221 0.2255
p72-UMDFocused 0.7259 0.6491 0.4947 0.3812 0.1115

Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP
p6-inex08artB 0.6514 0.6379 0.5901 0.5248 0.2261
p56-VSMRIP02 0.7515 0.6333 0.4781 0.3667 0.1400
p5-GPX3COSFOC 0.6232 0.6220 0.5509 0.4626 0.2137
p25-RUCLLP08 0.5969 0.5969 0.5761 0.5545 0.2491
p37-kulcaselem 0.6824 0.5626 0.3532 0.2720 0.1257
p42-B2U0visith 0.6057 0.5364 0.4830 0.4449 0.1739
p16-001RunofUn 0.3111 0.2269 0.1675 0.1206 0.0365

(b) Relevant in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP
p78-RICBest 0.4808 0.3818 0.2994 0.2274 0.2485
p5-GPX1CORICe 0.3946 0.3518 0.2670 0.2169 0.2166
p4-WHOLEDOC 0.4020 0.3534 0.2508 0.2009 0.2125
p10-TOPXCOallA 0.3892 0.3220 0.2366 0.1910 0.1967
p92-manualQEin� 0.3818 0.3395 0.2515 0.1970 0.1933
p6-inex08artB 0.3762 0.3140 0.2293 0.1790 0.1900
p72-UMDRic2 0.3952 0.3434 0.2289 0.1868 0.1745
p12-p8u3exp511 0.3229 0.2880 0.2245 0.1631 0.1680
p48-LIGMLRIC4O 0.3818 0.3408 0.2461 0.1832 0.1583
p56-VSMRIP04 0.2315 0.2031 0.1675 0.1368 0.1275

Participant gP[5] gP[10] gP[25] gP[50] MAgP
p6-inex08artB 0.3757 0.3113 0.2334 0.1847 0.1937
p5-GPX3COSRIC 0.3482 0.3232 0.2381 0.1923 0.1764
p56-VSMRIP05 0.3401 0.2796 0.2143 0.1616 0.1501
p16-009RunofUn 0.0153 0.0156 0.0123 0.0095 0.0023

(c) Best in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP
p78-BICER 0.3935 0.3386 0.2544 0.1956 0.2172
p25-weightedfi 0.3342 0.3065 0.2390 0.1958 0.2004
p5-GPX1COBICp 0.3663 0.3358 0.2504 0.1926 0.1983
p92-manualQEin� 0.3728 0.3383 0.2599 0.2082 0.1952
p10-TOPXCOallB 0.2424 0.2419 0.1788 0.1457 0.1727
p6-submitinex 0.3505 0.3062 0.2278 0.1713 0.1716
p12-p8u3exp501 0.2586 0.2397 0.1934 0.1425 0.1448
p72-UMDBIC1 0.3222 0.2751 0.1757 0.1377 0.1369
p56-VSMRIP09 0.1562 0.1537 0.1377 0.1127 0.1038
p40-xfirmbicco 0.1594 0.1546 0.1367 0.1137 0.0661

Participant gP[5] gP[10] gP[25] gP[50] MAgP
p5-GPX3COSBIC 0.3109 0.2883 0.2235 0.1780 0.1661
p56-VSMRIP08 0.2123 0.1911 0.1481 0.1214 0.1228
p40-xfirmcos07 0.2381 0.1794 0.1348 0.1078 0.0908
p55-KikoriBest 0.1817 0.1721 0.1422 0.1123 0.0803
p16-006RunofUn 0.0307 0.0347 0.0307 0.0261 0.0128

5.2 CO versus CAS

We now look at the relative effectiveness of the keyword (CO) and structured
(CAS) queries. As we saw above, in Section 4, one of the best runs per group
for the Relevant in Context Task, and two of the top 10 runs for the Best in
Context Task used the CAS query.

Overview of the INEX 2008 Ad Hoc Track 21

Table 13. Top 10 Participants in the Ad Hoc Track: Article retrieval

Participant P5 P10 1/rank map bpref
p78-BICER 0.6286 0.5343 0.8711 0.3789 0.3699
p92-manualQEin� 0.6429 0.5886 0.8322 0.3629 0.3924
p10-TOPXCOarti 0.5943 0.5443 0.8635 0.3516 0.3628
p5-GPX1COBICe 0.5743 0.5257 0.7868 0.3413 0.3588
p37-kulcoeleme 0.5286 0.4557 0.7468 0.3268 0.3341
p25-weightedfi 0.4971 0.4657 0.7192 0.3255 0.3355
p29-VSMfbElts0 0.5543 0.4857 0.7955 0.3195 0.3388
p60-JMUexpe136 0.5457 0.4857 0.7843 0.3192 0.3383
p9-UHelRun293 0.5829 0.5029 0.7766 0.3144 0.3323
p4-SWKL200 0.5714 0.5000 0.7950 0.3107 0.3297

All topics have a CAS query since artificial CAS queries of the form

//*[about(., keyword title)]

were added to topics without CAS title. Table 11 show the distribution of target
elements. In total 86 topics had a non-trivial CAS query.4 These CAS topics
are numbered 544–550, 553–556, 564, 567, 568, 572, 574, 576–578, 580, 583, 584,
586–591, 597–605, 607, 608, 610, 615–625, 627, 629–633, 635–640, 646, 651–655,
658, 659, 661–670, 673, and 675–678. As it turned out, 39 of these CAS topics
were assessed. The results presented here are restricted to the 39 CAS topics.

Table 12 lists the top 10 participants measured using just the 39 CAS topics
and for the Focused Task (a), the Relevant in Context Task (b), and the Best
in Context Task (c). For the Focused Task the CAS runs score lower than the
CO query runs. For the Relevant in Context Task, the best CAS run would have
ranked fifth among the CO runs. For the Best in Context Task, the best CAS
run would rank seventh among the CO runs. Overall, we see the that teams
submitting runs with both types of queries have higher scoring CO runs, with
participant 6 as a notable exception for Relevant in Context.

6 Analysis of Article Retrieval

In this section, we will look in detail at the effectiveness of Ad Hoc Track submis-
sions as article retrieval systems. We look first at the article rankings in terms of
the Ad Hoc Track judgments—treating every article that contains highlighted
text as relevant. Then, we look at the article rankings in terms of the clicked
pages for the topics from the proxy log—treating every clicked article as relevant.

6.1 Article Retrieval: Relevance Judgments

We will first look at the topics judged during INEX 2008, the same topics as in
earlier sections, but now using the judgments to derive standard document-level
4 Note that some of the wild-card topics (using the “∗” target) in Table 11 had non-

trivial about-predicates and hence have not been regarded as trivial CAS queries.

22 J. Kamps et al.

Table 14. Top 10 Participants in the Ad Hoc Track: Article retrieval per task over
judged topics (left) and clicked pages (right)

(a) Focused Task
Participant P5 P10 1/rank map bpref
p92-manualQEin� 0.6429 0.5886 0.8322 0.3629 0.3924
p10-TOPXCOarti 0.5943 0.5443 0.8635 0.3516 0.3628
p5-GPX1COFOCp 0.5743 0.5257 0.7868 0.3413 0.3588
p37-kulcoeleme 0.5286 0.4557 0.7468 0.3268 0.3341
p78-FOER 0.5800 0.5043 0.7995 0.3259 0.3277
p29-VSMfbElts0 0.5543 0.4857 0.7955 0.3195 0.3388
p25-weightedfi 0.4971 0.4657 0.7192 0.3195 0.3324
p60-JMUexpe136 0.5457 0.4857 0.7843 0.3192 0.3383
p9-UHelRun293 0.5829 0.5029 0.7766 0.3144 0.3323
p6-inex08artB 0.5514 0.4800 0.7851 0.3010 0.3109

Participant P5 P10 1/rank map bpref
p5-Terrier 0.1594 0.0877 0.5904 0.5184 0.8266
p6-inex08artB 0.1623 0.0870 0.5821 0.5140 0.8150
p92-autoindri0 0.1565 0.0884 0.5601 0.4853 0.8211
p60-JMUexpe142 0.1536 0.0862 0.5624 0.4853 0.8250
p48-LIGMLFOCRI 0.1449 0.0833 0.5191 0.4596 0.7153
p10-TOPXCOarti 0.1522 0.0841 0.5164 0.4538 0.8167
p78-FOER 0.1304 0.0819 0.4979 0.4404 0.8136
p40-xfirmcos07 0.1217 0.0717 0.4301 0.3748 0.7184
p55-KikoriFocu 0.1261 0.0732 0.4334 0.3727 0.7785
p22-EMSEFocuse� 0.1203 0.0783 0.4233 0.3704 0.8105

(b) Relevant in Context Task
Participant P5 P10 1/rank map bpref
p92-manualQEin� 0.6429 0.5886 0.8322 0.3629 0.3924
p5-GPX1CORICp 0.5743 0.5257 0.7868 0.3413 0.3588
p78-RICBest 0.5886 0.5029 0.8161 0.3404 0.3422
p10-TOPXCOallA 0.5314 0.4843 0.8226 0.3122 0.3279
p60-JMUexpe150 0.5886 0.4900 0.8266 0.3119 0.3185
p4-SWKL200 0.5714 0.5000 0.7950 0.3107 0.3297
p6-inex08artB 0.5514 0.4800 0.7851 0.3010 0.3109
p56-VSMRIP05 0.5486 0.4543 0.7752 0.2880 0.3045
p72-UMDRic2 0.6000 0.5200 0.8579 0.2739 0.3048
p22-EMSERICStr� 0.5057 0.4543 0.7079 0.2728 0.3064

Participant P5 P10 1/rank map bpref
p5-Terrier 0.1594 0.0877 0.5904 0.5184 0.8266
p6-inex08artB 0.1623 0.0870 0.5821 0.5140 0.8150
p60-JMUexpe150 0.1536 0.0862 0.5624 0.4853 0.8167
p92-autoindri0 0.1565 0.0884 0.5601 0.4853 0.8211
p48-LIGMLRIC4O 0.1464 0.0841 0.5238 0.4647 0.7081
p78-RICBest 0.1348 0.0812 0.4979 0.4422 0.8126
p10-TOPXCOallA 0.1333 0.0775 0.5139 0.4397 0.7863
p72-UMDRic2 0.1275 0.0717 0.4560 0.4088 0.7526
p4-SWKL200 0.1159 0.0732 0.4168 0.3701 0.8007
p55-KikoriRele 0.1232 0.0710 0.4125 0.3501 0.7712

(c) Best in Context Task
Participant P5 P10 1/rank map bpref
p78-BICER 0.6286 0.5343 0.8711 0.3789 0.3699
p92-manualQEin� 0.6429 0.5886 0.8322 0.3629 0.3924
p5-GPX1COBICe 0.5743 0.5257 0.7868 0.3413 0.3588
p10-TOPXCOallB 0.5314 0.4843 0.8226 0.3290 0.3344
p25-weightedfi 0.4971 0.4657 0.7192 0.3255 0.3355
p60-JMUexpe157 0.5714 0.5000 0.8215 0.3098 0.3176
p6-submitinex 0.5486 0.4757 0.7793 0.2984 0.3086
p56-VSMRIP08 0.5486 0.4543 0.7752 0.2880 0.3045
p72-UMDBIC2 0.5914 0.5171 0.8511 0.2761 0.3022
p12-p8u3exp501 0.4829 0.4371 0.7044 0.2723 0.3061

Participant P5 P10 1/rank map bpref
p5-Terrier 0.1594 0.0877 0.5904 0.5184 0.8266
p6-submitinex 0.1594 0.0862 0.5673 0.4976 0.8164
p92-autoindri0 0.1565 0.0884 0.5601 0.4853 0.8211
p60-JMUexpe151 0.1536 0.0855 0.5624 0.4844 0.8214
p78-BICPRplus 0.1522 0.0841 0.5432 0.4673 0.7799
p10-TOPXCOallB 0.1333 0.0775 0.5139 0.4398 0.8205
p72-UMDBIC1 0.1275 0.0710 0.4482 0.4011 0.7398
p40-xfirmcos07 0.1217 0.0717 0.4301 0.3748 0.7160
p55-KikoriBest 0.1261 0.0732 0.4334 0.3727 0.7785
p56-VSMRIP08 0.1130 0.0659 0.3943 0.3445 0.7258

relevance by regarding an article as relevant if some part of it is highlighted
by the assessor. Throughout this section, we derive an article retrieval run from
every submission using a first-come, first served mapping. That is, we simply keep
every first occurrence of an article (retrieved indirectly through some element
contained in it) and ignore further results from the same article.

We use trec eval to evaluate the mapped runs and qrels, and use mean aver-
age precision (map) as the main measure. Since all runs are now article retrieval
runs, the differences between the tasks disappear. Moreover, runs violating the
task requirements—most notably non-overlapping results for all tasks, and hav-
ing scattered results from the same article in relevant in context—are now also
considered, and we work with all 163 runs submitted to the Ad Hoc Track.

Table 13 shows the best run of the top 10 participating groups. The first col-
umn gives the participant, see Table 5 for the full name of group. The second
and third column give the precision at ranks 5 and 10, respectively. The fourth
column gives the mean reciprocal rank. The fifth column gives mean average
precision. The sixth column gives binary preference measures (using the top
R judged non-relevant documents). Recall from the above that second ranked
run (p92-manualQEin) is a manual article retrieval run submitted to all three
tasks. Also the run ranked three (p10-TOPXCOarti) and the run ranked seven

Overview of the INEX 2008 Ad Hoc Track 23

Table 15. Top 10 Participants in the Ad Hoc Track: Clicked articles

Participant P5 P10 1/rank map bpref
p5-Terrier 0.1594 0.0877 0.5904 0.5184 0.8266
p6-inex08artB 0.1623 0.0870 0.5821 0.5140 0.8150
p60-JMUexpe150 0.1536 0.0862 0.5624 0.4853 0.8167
p92-autoindri0 0.1565 0.0884 0.5601 0.4853 0.8211
p78-BICPRplus 0.1522 0.0841 0.5432 0.4673 0.7799
p48-LIGMLRIC4O 0.1464 0.0841 0.5238 0.4647 0.7081
p10-TOPXCOarti 0.1522 0.0841 0.5164 0.4538 0.8167
p72-UMDRic2 0.1275 0.0717 0.4560 0.4088 0.7526
p40-xfirmcos07 0.1217 0.0717 0.4301 0.3748 0.7184
p55-KikoriFocu 0.1261 0.0732 0.4334 0.3727 0.7785

(p60-JMUexpe136) retrieve exclusively articles. The relative effectiveness of
these article retrieval runs in terms of their article ranking is no surprise. Fur-
thermore, we see submissions from all three ad hoc tasks. Most notably runs
from the Best in Context task at ranks 1, 2, 4, and 6; runs from the Focused
task at ranks 2, 3, 5, 7, 8, and 9; and runs from the Relevant in Context task at
ranks 2 and 10.

If we break-down all runs over the original tasks, shown on the left-hand
side of Table 14, we can compare the ranking to Section 4 above. We see some
runs that are familiar from the earlier tables: three Focused runs correspond to
Table 6, five Relevant in Context runs correspond to Table 7, and seven Best in
Context runs correspond to Table 8. More formally, we looked at how the two
system rankings correlate using Kendall’s Tau.

– Over all 61 Focused task submissions the system rank correlation is 0.517
between iP[0.01] and map, and 0.568 between MAiP and map.

– Over all 40 Relevant in Context submissions the system rank correlation
between MAgP and map is 0.792.

– Over all 35 Best in Context submissions the system rank correlation is 0.795

Overall, we see a reasonable correspondence between the rankings for the ad hoc
tasks in Section 4 and the rankings for the derived article retrieval measures.
The correlation with the Focused task runs is much lower than with the Relevant
in Context and Best in Context tasks. This makes sense, since the ranking of
articles is an important part of the two “in context” tasks.

6.2 Article Retrieval: Clicked Pages

In addition to the topics created and assessed by INEX participants, we also
included 150 queries derived from a proxy log, and can also construct pseudo-
relevance judgments by regarding every clicked Wikipedia article as relevant.

Table 15 shows the best run of the top 10 participating groups. The first col-
umn gives the participant, see Table 5 for the full name of group. The second
and third column give the precision at ranks 5 and 10, respectively. The fourth

24 J. Kamps et al.

column gives the mean reciprocal rank. The fifth column gives mean average
precision. The sixth column gives binary preference measures (using the top R
judged non-relevant documents). Compared to the judged topics, we immedi-
ately see much lower scores for the early precision measures (precision at 5 and
10, and reciprocal ranks), while at the same time higher scores for the overall
measures (map and bpref). This is a result of the very low numbers of rele-
vant documents, 1.8 on average, that make it impossible to get a grips on recall
aspects. The runs ranked first (p5-Terrier), fourth (p92-autoindri0), and sev-
enth (p10-TOPXCOarti) retrieve exclusively full articles. Again, it is no great
surprise that these runs do well for the task of article retrieval.

The resulting ranking is quite different from the article ranking based on the
judged ad hoc topics in Table 13. They have only one run in common, although
they agree on five of the ten participants. Looking, more formally, at the system
rank correlations between the two types of article retrieval we see the following.

– Over all 163 submissions, the system rank correlation is 0.357.
– Over the 76 Focused task submissions, the correlation is 0.356.
– Over the 49 Relevant in task submissions, the correlation is 0.366.
– Over the 38 Best in Context task submissions, the correlation is 0.388.

Hence the judged topics above and the topics derived from the proxy log vary
considerable. A large part of the explanation is the dramatic difference between
the numbers of relevant articles, with 70 on average for the judged topics and
1.8 on average for the proxy log topics.

7 Discussion and Conclusions

In this paper we provided an overview of the INEX 2008 Ad Hoc Track that
contained three tasks: For the Focused Task a ranked-list of non-overlapping
results (elements or passages) was required. For the Relevant in Context Task
non-overlapping results (elements or passages) grouped by the article that they
belong to were required. For the Best in Context Task a single starting point
(element’s starting tag or passage offset) per article was required. We discussed
the results for the three tasks, and analysed the relative effectiveness of element
and passage runs, and of keyword (CO) queries and structured queries (CAS).
We also look at effectiveness in term of article retrieval, both using the judged
topics and using queries and clicks derived from a proxy log.

When examining the relative effectiveness of CO and CAS we found that
for all tasks the best scoring runs used the CO query. This is in contrast with
earlier results showing that structural hints can help promote initial precision [8].
Part of the explanation may be in the low number of CAS submissions (28) in
comparison with the number of CO submissions (108). Only 39 of the 70 judged
topics had a non-trivial CAS query, and the majority of those CAS queries made
only reference to particular tags and not on their structural relations. This may
have diminished the value of the CAS query in comparison with earlier years.

Given the efforts put into the fair comparison of element and passage retrieval
approaches, the number of passage and FOL submissions was disappointing.

Overview of the INEX 2008 Ad Hoc Track 25

Eighteen submissions used ranges of elements or FOL passage results, whereas
118 submissions used element results. In addition, many of the passage or FOL
submissions used exclusively full articles as results. Although we received too
few non-element runs to draw clear conclusions, we saw that the passage based
approaches were competitive, but not superior to element based approaches.
This outcome is consistent with earlier results in [4, 5].

As in earlier years, we saw that article retrieval is reasonably effective at
XML-IR: for each of the ad hoc tasks there were three article-only runs among
the best runs of the top 10 groups. When looking at the article rankings inherent
in all Ad Hoc Track submissions, we saw that again three of the best runs of
the top 10 groups in terms of article ranking (across all three tasks) were in fact
article-only runs. This suggests that element-level or passage-level evidence is
still valuable for article retrieval. When comparing the system rankings in terms
of article retrieval with the system rankings in terms of the ad hoc retrieval
tasks, over the exact same topic set, we see a reasonable correlation especially
for the two “in context” tasks. The systems with the best performance for the ad
hoc tasks, also tend to have the best article rankings. Since finding the relevant
articles can be considered a prerequisite for XML-IR, this should not come as
a surprize. In addition, the Wikipedia’s encyclopedic structure with relatively
short articles covering a single topic results in relevant articles containing large
fractions of relevant text (with a mean of 55% of text being highlighted). While it
is straightforward to define tasks and measures that strongly favor precision over
recall, a more natural route would be to try to ellicit more focused information
needs that have natural answers in short excerpts of text.

When we look at a different topic set derived from a proxy log, and a shallow
set of clicked pages rather than a full-blown IR test collection, we see notable
differences. Given the low number of relevant articles (1.8 on average) compared
to the ad hoc judgments (70 on average), the clicked pages focus exclusively on
precision aspects. This leads to a different system ranking, although there is still
some agreement on the best groups. The differences between these two sets of
topics require further analysis.

Finally, the Ad Hoc Track had two main research questions. The first main
research question was the comparative analysis of element and passage retrieval
approaches, hoping to shed light on the value of the document structure as
provided by the XML mark-up. We found that the best performing system used
predominantly element results, although the number of non-element retrieval
runs submitted is too low to draw any definite conclusions. The second main
research question was to compare focused retrieval directly to traditional article
retrieval. We found that the best scoring Ad Hoc Track submissions also tend to
have the best article ranking, and that the best article rankings were generated
using element-level evidence. For both main research questions, we hope and
expect that the resulting test collection will prove its value in future use. After
all, the main aim of the INEX initiative is to create bench-mark test-collections
for the evaluation of structured retrieval approaches.

26 J. Kamps et al.

Acknowledgments. Jaap Kamps was supported by the Netherlands Organization
for Scientific Research (NWO, grants 612.066.513, 639.072.601, and 640.001.501).

References

[1] Callan, J.P.: Passage-level evidence in document retrieval. In: Proceedings of the
17th Annual International ACM SIGIR Conference, pp. 302–310 (1994)

[2] Clarke, C.L.A.: Range results in XML retrieval. In: Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, pp. 4–5 (2005)

[3] Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum 40, 64–69
(2006)

[4] Huang, W., Trotman, A., O’Keefe, R.A.: Element retrieval using a passage re-
trieval approach. In: Proceedings of the 11th Australasian Document Computing
Symposium (ADCS 2006), pp. 80–83 (2006)

[5] Itakura, K.Y., Clarke, C.L.A.: From passages into elements in XML retrieval. In:
Proceedings of the SIGIR 2007 Workshop on Focused Retrieval, pp. 17–22 (2007)

[6] Kamps, J., Koolen, M.: On the relation between relevant passages and XML docu-
ment structure. In: Proceedings of the SIGIR 2007 Workshop on Focused Retrieval,
pp. 28–32 (2007)

[7] Kamps, J., Marx, M., de Rijke, M., Sigurbjörnsson, B.: The importance of mor-
phological normalization for XML retrieval. In: Proceedings of the First INEX
Workshop, pp. 41–48 (2003)

[8] Kamps, J., Marx, M., de Rijke, M., Sigurbjörnsson, B.: Articulating information
needs in XML query languages. Transactions on Information Systems 24, 407–436
(2006)

[9] Kekäläinen, J., Järvelin, K.: Using graded relevance assessments in IR evalua-
tion. Journal of the American Society for Information Science and Technology 53,
1120–1129 (2002)

[10] Thom, J.A., Pehcevski, J.: How well does best in context reflect ad hoc XML
retrieval. In: Pre-Proceedings of INEX 2007, pp. 124–125 (2007)

[11] Trotman, A., Geva, S.: Passage retrieval and other XML-retrieval tasks. In: Pro-
ceedings of the SIGIR 2006 Workshop on XML Element Retrieval Methodology,
pp. 43–50 (2006)

A Appendix: Full Run Names

Group Run Label Task Query Results Notes
4 151 p4-SWKL200 RiC CO Pas
4 152 p4-WHOLEDOC RiC CO Ele Article-only
4 153 p4-WHOLEDOCPA RiC CO Pas Article-only
5 122 p5-Terrier BiC CO Pas Article-only
5 123 p5-Terrier Foc CO Pas Article-only
5 124 p5-Terrier RiC CO Pas Article-only
5 133 p5-GPX2COFOCp Foc CO Pas Article-only
5 138 p5-GPX1COBICe BiC CO Ele
Continued on Next Page. . .

Overview of the INEX 2008 Ad Hoc Track 27

Group Run Label Task Query Results Notes
5 139 p5-GPX1COFOCe Foc CO Ele
5 140 p5-GPX1CORICe RiC CO Ele
5 141 p5-GPX3COSBIC BiC CAS Ele
5 142 p5-GPX3COSFOC Foc CAS Ele
5 143 p5-GPX3COSRIC RiC CAS Ele
5 144 p5-GPX1COBICp BiC CO Pas Article-only
5 145 p5-GPX1COFOCp Foc CO Pas Article-only
5 146 p5-GPX1CORICp RiC CO Pas Article-only
6 255 p6-submitinex BiC CO FOL Article-only
6 264 p6-inex08artB RiC CAS Ele
6 265 p6-inex08artB RiC CO Ele
6 268 p6-inex08artB RiC CAS Ele
6 269 p6-inex08artB RiC CO Ele
6 270 p6-inex08artB Foc CAS Ele
6 271 p6-inex08artB Foc CO Ele
6 274 p6-inex08artB Foc CO Ele
6 276 p6-inex08artB Foc CO Ele
9 174 p9-UHelRun293 Foc CO Ele
9 176 p9-UHelRun394 Foc CO Ele
10 91 p10-TOPXCOallF Foc CO Ele
10 92 p10-TOPXCOallB BiC CO Ele
10 93 p10-TOPXCOallA RiC CO Ele
10 207 p10-TOPXCOarti Foc ? Ele Article-only
12 97 p12-p8u3exp501 BiC CO Ele
12 100 p12-p8u3exp511 RiC CO Ele
14 205 p14-T2FBCOPARA Foc CO Ele
16 233 p16-009RunofUn RiC CAS Ele
16 234 p16-006RunofUn BiC CAS Ele
16 244 p16-001RunofUn Foc CAS Ele
22 62 p22-EMSEFocuse Foc CO Ele Manual Invalid
22 66 p22-EMSEFocuse Foc CO FOL Manual
22 68 p22-EMSERICStr RiC CO Ele Manual Invalid
25 30 p25-RUCLLP08 Foc CAS Ele
25 278 p25-weightedfi Foc CO Ele
25 282 p25-weightedfi BiC CO Ele
29 238 p29-VSMfbElts0 Foc CO Ele
29 253 p29-LMnofb020 Foc CO Ele Article-only
37 227 p37-kulcaselem Foc CAS Ele
37 230 p37-kulcoeleme Foc CO Ele
40 54 p40-xfirmbicco BiC CO Ele
40 296 p40-xfirmcos07 BiC CAS Ele
40 297 p40-xfirmcos07 Foc CAS Ele Invalid
42 299 p42-B2U0visith Foc CAS Ele
48 59 p48-LIGMLFOCRI Foc CO Ele
Continued on Next Page. . .

28 J. Kamps et al.

Group Run Label Task Query Results Notes
48 72 p48-LIGMLRIC4O RiC CO Ele
55 279 p55-KikoriFocu Foc CAS Ele Invalid
55 280 p55-KikoriRele RiC CAS Ele Invalid
55 281 p55-KikoriBest BiC CAS Ele
56 190 p56-VSMRIP02 Foc CAS Ele
56 197 p56-VSMRIP04 RiC CO Ele Article-only
56 199 p56-VSMRIP05 RiC CAS Ele Article-only
56 202 p56-VSMRIP08 BiC CAS Ele
56 224 p56-VSMRIP09 BiC CO Ele
60 11 p60-JMUexpe136 Foc CO Ele Article-only
60 53 p60-JMUexpe142 Foc CO Ele
60 81 p60-JMUexpe150 RiC CO Ele Invalid
60 82 p60-JMUexpe151 BiC CO Ele Invalid
60 175 p60-JMUexpe157 BiC CO Ele Invalid
72 106 p72-UMDFocused Foc CO Ele
72 154 p72-UMDBIC1 BiC CO Ele
72 155 p72-UMDBIC2 BiC CO Ele
72 277 p72-UMDRic2 RiC CO Ele
78 156 p78-FOER Foc CO Ele
78 157 p78-FOERStep Foc CO Ele
78 160 p78-BICER BiC CO Ele
78 163 p78-BICPRplus BiC CO Pas
78 164 p78-RICBest RiC CO Ele
92 177 p92-autoindri0 BiC CO Ele Article-only
92 178 p92-autoindri0 Foc CO Ele Article-only
92 179 p92-autoindri0 RiC CO Ele Article-only
92 183 p92-manualQEin BiC CO Ele Manual Article-only
92 184 p92-manualQEin Foc CO Ele Manual Article-only
92 185 p92-manualQEin RiC CO Ele Manual Article-only

Experiments with Proximity-Aware Scoring for
XML Retrieval at INEX 2008

Andreas Broschart1,2, Ralf Schenkel1,2, and Martin Theobald1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany
{abrosch,schenkel,mtb}@mpi-inf.mpg.de

Abstract. Proximity enhanced scoring models significantly improve re-
trieval quality in text retrieval. For XML IR, we can sometimes enhance
the retrieval efficacy by exploiting knowledge about the document struc-
ture combined with established text IR methods. This paper elaborates
on our approach used for INEX 2008 which modifies a proximity scoring
model from text retrieval for usage in XML IR and extends it by taking
the document structure information into account.

1 Introduction

Term proximity has been a common means to improve effectiveness for text re-
trieval, passage retrieval, and question answering, and several proximity scoring
functions have been developed in recent years (for example, [4–7]). For XML
retrieval, however, proximity scoring has not been similarly successful. To the
best of our knowledge, there is only a single existing proposal for proximity-
aware XML scoring [1] that computes, for each text position in an element, a
fuzzy score for the query, and then computes the overall score for the element
as average score over all its positions.

Our proximity score for content-only queries on XML data [2] extends the
existing proximity score by Büttcher et al. [4], taking into account the document
structure when computing the distance of term occurrences.

2 Proximity Scoring for XML

To compute a proximity score for an element e with respect to a query
q = {t1 . . . tn} with multiple terms, we first compute a linear representation of
e’s content that takes into account e’s position in the document, and then apply
a variant of the proximity score by Büttcher et al. [4] on that linearization.

Figure 1 shows an example for the linearization process. We start with the se-
quence of terms in the element’s content. Now, as different elements often discuss
different topics or different aspects of a topic, we aim at giving a higher weight
to terms that occur together in the same element than to terms occurring close
together, but in different elements. To reflect this in the linearization, we intro-
duce virtual gaps at the borders of certain elements, whose sizes depend on the
element’s tag (or, more generally, on the tags of the path from the document’s

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 29–32, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

30 A. Broschart, R. Schenkel, and M. Theobald

Fig. 1. An XML document and its linearization

root to the element). In the example, gaps of section elements may be larger
than those of p (paragraph) elements, because the content of two adjacent p ele-
ments within the same section element may be considered related, whereas the
content of two adjacent section elements could be less related. Some elements
(like those used purely for layout purposes such as bold or for navigational pur-
poses such as link) may get a zero gap size. The best choice for gaps depends on
the collection. Gap sizes are currently chosen manually; an automated selection
of gap sizes is subject to future work.

Based on the linearization, we apply the proximity scoring model of Büttcher
et al. [4] for each element in the collection to find the best matches for a query
q = {t1, . . . , tn} with multiple terms. This model linearly combines, for each
query term, a BM25 content score and a BM25-style proximity score into a
proximity-aware score. Note that unlike the original, we compute these scores
for elements, not for documents, so the query-independent term weights in the
formulas are inverse element frequencies ief(t) = log2

N−ef(t)+0.5
ef(t)+1 , where N is

the number of elements in the collection and ef(t) is the number of elements
that contain the term t. Similarly, average and actual lengths are computed for
elements. The BM25 score of an element e for a query q is

scoreBM25(e, q) =
∑
t∈q

ief(t)
tf(e, t) · (k1 + 1)

tf(e, t) + K

To compute the proximity part of the score, Büttcher et al. first compute an
accumulated interim score acc(ti) for each query term ti that depends on the
distance of this term’s occurrences in the element to other, adjacent query term
occurrences. Formally, for each adjacent occurrence of a term tj at distance d
to an occurrence of ti, acc(ti) grows by ief(tj)/d2. The proximity part of an

Experiments with Proximity-Aware Scoring 31

element’s score is then computed by plugging the acc values into a BM25-style
scoring function:

scoreprox(e, q) =
∑
t∈q

min{1, ief(t)}acc(t) · (k1 + 1)
acc(t) + K

where, K=k·[(1 − b) + b · |e|
avgel] (analogously to the BM25 formula) and b, k1,

and k are configurable parameters that are set to b = 0.5 and k = k1 = 1.2,
respectively. In our modified version we consider every query term occurrence,
not only adjacent query terms which allows for index precomputation without
knowing the query load. The overall score is then the sum of the BM25 score
and the proximity score:

score(e, q) = scoreBM25(e, q) + scoreprox(e, q)

3 AdHoc Track Results

3.1 Results for Focused Task

Our recent development of TopX focused on improving its retrieval quality. For
the Focused Task, we submitted the following three runs:

– TopX-CO-Baseline-articleOnly: a CO run that considered the non-stem-
med terms in the title of a topic (including the terms in phrases, but not
their sequence) except terms in negations and stop words. We restricted the
collection to the top-level article elements and computed the 1,500 articles
with the highest scoreBM25 value as described in Section 2. Note that this
approach corresponds to standard document-level retrieval.

– TopX-CO-Proximity-articleOnly: a CO run that reranked the results of
the TopX-CO-Baseline-articleOnly run by adding the scoreprox part de-
scribed in Section 2. We used gaps of size 30 for section and p elements.
(Due to the limited number of runs we could not evaluate different gap sizes;
see [2] for a more thorough study with older INEX topics.)

– TopX-CO-Focused-all: an element-level CO run that considered the terms
in the title of a topic without phrases and negations, allowing all tags for
results. Note that, unlike our runs in previous years, we did not use a tag-
specific ief score, but a single global ief value per term; we demonstrated
in [3] that this gives better results for CO queries than tag-specific inverse
element frequencies.

Table 1 shows the official results for these runs. It is evident that element-level
retrieval generally yields a higher early precision than article-level retrieval, but

Table 1. Results for the Focused Task: interpolated precision at different recall levels
(ranks for iP[0.01] are in parentheses) and mean average interpolated precision

run iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
TopX-CO-Proximity-articleOnly 0.6808 0.6799 (3) 0.5812 0.5372 0.2981
TopX-CO-Baseline-articleOnly 0.6705 0.6694 (4) 0.5944 0.5474 0.2963
TopX-CO-Focused-all 0.7480 0.6471 (11) 0.5339 0.4687 0.1857

32 A. Broschart, R. Schenkel, and M. Theobald

the quality quickly falls behind that of article-level retrieval. This is reflected in
the official results where our article-level runs are at positions 3 and 4, whereas
the element-level run is at position 11. Proximity scoring with gaps can in general
help to improve early precision with article-level retrieval, at the cost of a slightly
reduced recall. However, the MAiP average of the proximity-based run slightly
improves over the baseline without proximity.

3.2 Other Tasks

We submitted a run to each of the other two tasks in the AdHoc track, where each
of them was based on the CO titles of topics and the BM25-style element-level
score shown in Section 2. To produce the runs for the RelevantInContext task,
we ran TopX in document mode which generated a list of documents ordered
by the highest score of any element within the document, together with a list of
elements and their scores for each document. This yielded reasonable results with
a MAgP value of 0.19470553, corresponding to rank 6 of all runs; this is a good
improvement over 2007, which we mainly attribute to the better performance of
the new scoring function.

To compute the best entry point for a document, we post-processed the Rele-
vantInContext runs by simply selecting the element with highest score from each
document and ordered them by score. This yielded reasonable results as well,
with a MAgP value of 0.17081437, corresponding to rank 13 among all runs.

4 Conclusions and Future Work

This paper presented a structure-aware proximity score for XML retrieval that
helps to improve the retrieval effectiveness of gap-free approaches for article-level
retrieval. Our future work will focus on automatic methods to determine good
gap sizes for elements, determining characteristics for queries where proximity
boosts performance, and extending proximity scoring to queries with structural
constraints.

References

[1] Beigbeder, M.: ENSM-SE at INEX 2007: Scoring with proximity. In: Preproceedings
of the 6th INEX Workshop, pp. 53–55 (2007)

[2] Broschart, A., Schenkel, R.: Proximity-aware scoring for XML retrieval. In: SIGIR,
pp. 845–846 (2008)

[3] Broschart, A., Schenkel, R., Theobald, M., Weikum, G.: TopX @ INEX 2007. In:
Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 49–56. Springer, Heidelberg (2008)

[4] Büttcher, S., Clarke, C.L.A., Lushman, B.: Term proximity scoring for ad-hoc re-
trieval on very large text collections. In: SIGIR, pp. 621–622 (2006)

[5] de Kretser, O., Moffat, A.: Effective document presentation with a locality-based
similarity heuristic. In: SIGIR, pp. 113–120 (1999)

[6] Rasolofo, Y., Savoy, J.: Term proximity scoring for keyword-based retrieval sys-
tems. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 207–218. Springer,
Heidelberg (2003)

[7] Song,R.,Taylor,M.J.,Wen,J.-R.,Hon,H.-W.,Yu,Y.:Viewing termproximity froma
differentperspective. In:Macdonald,C.,Ounis, I.,Plachouras,V.,Ruthven, I.,White,
R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 346–357. Springer, Heidelberg (2008)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 33–38, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Finding Good Elements for Focused Retrieval

Carolyn J. Crouch, Donald B. Crouch, Salil Bapat,
Sarika Mehta, and Darshan Paranjape

Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ccrouch@d.umn.edu

Abstract. This paper describes the integration of our methodology for the dy-
namic retrieval of XML elements [2] with traditional article retrieval to facili-
tate the Focused and the Relevant-in-Context Tasks of the INEX 2008 Ad Hoc
Track. The particular problems that arise for dynamic element retrieval in
working with text containing both tagged and untagged elements have been
solved [3]. The current challenge involves utilizing its ability to produce a rank-
ordered list of elements in the context of focused retrieval. Our system is based
on the Vector Space Model [8]; basic functions are performed using the Smart
experimental retrieval system [7]. Experimental results are reported for the Fo-
cused, Relevant-in-Context, and Best-in-Context Tasks of both the 2007 and
2008 INEX Ad Hoc Tracks. These results indicate that the goal of our 2008 in-
vestigations—namely, finding good focused elements in the context of the
Wikipedia collection--has been achieved.

1 Introduction

Our work for INEX 2008 centers on producing good elements in a focused retrieval
environment. Dynamic element retrieval—i.e., the dynamic retrieval of elements at
the desired degree of granularity—has been the focus of our investigations at INEX
for some time [2, 3]. We have demonstrated that our method works well for both
structured [1] and semi-structured text [3] and that it produces a result identical to that
produced by the search of the same query against the corresponding all-element index
[5]. In [3], we show that dynamic element retrieval (with terminal node expansion)
produces a result considerably higher than that reported by the top-ranked participant
for the INEX 2006 Thorough task. The picture changes, however, when overlap is no
longer allowed—i.e., when the task changes to focused retrieval. A review of our
INEX 2007 Ad Hoc results for all three tasks in [3] shows that in each case, our re-
sults rank in the mid-range of participant scores. In 2008, our goal is to improve those
results. Since the Ad Hoc tasks for INEX 2008 are identical to those of INEX 2007
and the evaluation procedures remain largely unchanged as well, we are able to com-
pare our 2008 results not only to those of other participants but also to our own earlier
(2007) results for the same tasks.

34 C.J. Crouch et al.

2 Experiments with the INEX 2007 and 2008 Collections

In this section, we include results produced by our current methods for the three
INEX Ad Hoc tasks, namely, Focused, Relevant-in-Context (RiC), and Best-in-
Context (BiC). To produce its best results, our system needs tuning to establish ap-
propriate values for Lnu-ltu term weighting with respect to a metric (e.g., iP[0.01] for
the Focused task); these results reflect that tuning. (See [3] for details.)

2.1 Focused Task Methodology

There are two important issues which arise with respect to the Focused and Relevant-
in-Context (RIC) tasks. The first relates to how the documents of interest (i.e., with
respect to a specific query) are identified. The second is the method by which the fo-
cused elements are selected from those documents. The results reported in [2] for 2007
compare the values achieved by dynamic element retrieval to (base case) all-element
retrieval. The focused elements themselves are selected based on correlation (i.e., the
highest-correlating element along a path is chosen). Thus, for these experiments, the
documents of interest were determined by the process of dynamic element retrieval
(see [2] for details), and the focused elements were selected based on correlation.

To improve these results, in 2008 we revised our approach to focused retrieval by
incorporating dynamic element retrieval with article retrieval as follows. For each
query, we retrieve n articles or documents. We then use dynamic element retrieval to
produce the rank-ordered list of all elements (from these n documents) having a posi-
tive correlation with the query. A parameter, m, represents the upper bound on the
number of focused elements that are reported after overlap is removed by one of the
three strategies described below. This is the method by which focused elements are
produced for the 2007 and 2008 Focused and RiC tasks reported here. Negative terms
(those preceded by a minus) are removed from both query sets.

Three focusing or overlap removal strategies were investigated in these experi-
ments. The section strategy chooses as the focused element the highest correlating
element along a path which is not a body. (Most of these turn out in fact to be sec-
tions. A body element appears in this list of focused elements if and only if none of its
child elements are ranked within the top m.). The correlation strategy chooses the
highest correlating element along a path as the focused element, without restriction on
element type, And the child strategy chooses the terminal element along a path as the
focused element (i.e., ignores correlation and always gives precedence to the child
rather than the parent).

All 2008 runs are evaluated against the most recent (i.e., corrected) relevance as-
sessments provided by INEX.

2.2 Ad Hoc Focused Task

The results produced for the INEX 2007 Focused Task are given in Table 1. In these
experiments, overlap is removed using the child strategy. Best results are produced

 Finding Good Elements for Focused Retrieval 35

when at most 25 documents are retrieved and 500 elements reported (n = 25, m = 500);
at 0.5386 this value would place at rank 1 in the 2007 rankings. (If negative terms are
not omitted from the query set, the best value is 0.5293 at n = 50 and m = 750, which
still exceeds the first place value in the rankings). Details of these experiments are
reported in [1, 6].

The results produced by the identical methodology (but using the section focusing
strategy) for the INEX 2008 Focused Task are given in Table 2. Best case results here
are produced at n = 25 and m = 100, where the value of iP[0.01] is 0.6709 (equivalent
to rank 4 in the 2008 rankings). Our INEX 2008 submission (which included negative
query terms and utilized the child strategy for overlap removal) produced a value of
0.6309 at iP[0.01] for a rank of 19.

Table 1. iP[0.01] Results for 2007 Focused Task (Child Strategy)

50 100 150 200 250 500 1000 1500 2000 3000 4000

25 0.4972 0.4734 0.5089 0.5144 0.5383 0.5386 0.5381 0.5381 0.5381 0.5381 0.5381

50 0.4751 0.4736 0.4747 0.4943 0.5338 0.5367 0.5343 0.5343 0.5343 0.5343 0.5343

100 0.4510 0.4429 0.4315 0.4538 0.4962 0.5242 0.5273 0.5238 0.5238 0.5238 0.5238

150 0.4398 0.4435 0.4351 0.4369 0.4557 0.5016 0.5066 0.5002 0.4964 0.4964 0.4964

200 0.4379 0.4445 0.4477 0.4361 0.4480 0.4829 0.4894 0.4928 0.4932 0.4893 0.4893

250 0.4697 0.4376 0.4513 0.4361 0.4603 0.4920 0.5031 0.5148 0.5136 0.5098 0.5098

500 0.4664 0.4244 0.4508 0.4444 0.4589 0.4746 0.4990 0.4900 0.4995 0.5052 0.5058

NUMBER OF
DOCUMENTS

NUMBER OF ELEMENTS

Table 2. iP[0.01] Results for 2008 Focused Task (Section Strategy)

50 100 150 200 250 500 1000 1500 2000 3000 4000

25 0.6589 0.6457 0.6451 0.6440 0.6458 0.6455 0.6455 0.6455 0.6455 0.6455 0.6455

50 0.6698 0.6471 0.6580 0.6486 0.6533 0.6521 0.6521 0.6521 0.6521 0.6521 0.6521

100 0.6709 0.6572 0.6443 0.6371 0.6384 0.6450 0.6446 0.6443 0.6443 0.6443 0.6443

150 0.6702 0.6572 0.6487 0.6412 0.6332 0.6372 0.6411 0.6409 0.6410 0.6410 0.6410

200 0.6679 0.6613 0.6518 0.6445 0.6339 0.6313 0.6348 0.6329 0.6327 0.6327 0.6327

250 0.6697 0.6748 0.6555 0.6488 0.6511 0.6357 0.6353 0.6356 0.6355 0.6355 0.6355

500 0.6662 0.6689 0.6544 0.6480 0.6517 0.6269 0.6336 0.6334 0.6317 0.6337 0.6333

NUMBER OF
DOCUMENTS

NUMBER OF ELEMENTS

36 C.J. Crouch et al.

Tables 3 and 4 show the results of the corresponding experiments for the 2008 Fo-
cused Task when the correlation and child focusing strategies, respectively, are used.
Although the correlation strategy shows relatively decent results on the whole, the
child strategy is clearly not competitive.

Table 3. iP[0.01] Results for 2008 Focused Task (Correlation Strategy)

50 100 150 200 250 500 1000 1500 2000 3000 4000

25 0.6563 0.6599 0.6610 0.6620 0.6620 0.6621 0.6621 0.6621 0.6621 0.6621 0.6621

50 0.6576 0.6598 0.6603 0.6605 0.6607 0.6611 0.6611 0.6611 0.6611 0.6611 0.6611

100 0.6568 0.6592 0.6592 0.6592 0.6595 0.6595 0.6599 0.6599 0.6599 0.6599 0.6599

150 0.6563 0.6582 0.6583 0.6585 0.6585 0.6586 0.6592 0.6593 0.6593 0.6593 0.6593

200 0.6539 0.6554 0.6554 0.6556 0.6558 0.6558 0.6565 0.6565 0.6565 0.6565 0.6565

250 0.6553 0.6564 0.6565 0.6568 0.6568 0.6570 0.6571 0.6576 0.6576 0.6576 0.6576

500 0.6533 0.6544 0.6546 0.6549 0.6550 0.6551 0.6554 0.6554 0.6554 0.6560 0.6561

NUMBER OF
DOCUMENTS

NUMBER OF ELEMENTS

Table 4. iP[0.01] Results for 2008 Focused Task (Child Strategy)

50 100 150 200 250 500 1000 1500 2000 3000 4000

25 0.6252 0.6213 0.6155 0.6151 0.6266 0.6150 0.6150 0.6150 0.6150 0.6150 0.6150

50 0.6107 0.5961 0.6083 0.5800 0.6015 0.6155 0.6057 0.6057 0.6057 0.6057 0.6057

100 0.6162 0.5822 0.5698 0.5755 0.5778 0.5890 0.6035 0.6003 0.6003 0.6003 0.6003

150 0.6160 0.5975 0.5757 0.5630 0.5643 0.5751 0.5903 0.5907 0.5906 0.5906 0.5906

200 0.6107 0.5958 0.5742 0.5734 0.5661 0.5699 0.5840 0.5754 0.5819 0.5820 0.5820

250 0.6119 0.6065 0.5955 0.5846 0.5782 0.5733 0.5779 0.5904 0.5784 0.5849 0.5786

500 0.6082 0.5993 0.6060 0.5870 0.5941 0.5516 0.5762 0.5690 0.5759 0.5679 0.5717

NUMBER OF
DOCUMENTS

NUMBER OF ELEMENTS

2.3 Ad Hoc Retrieval-in-Context Task

The RiC results are produced using the elements produced by the Focused task and
grouping them by article. Results are reported in document-rank order. Table 5 shows

 Finding Good Elements for Focused Retrieval 37

the 2007 best case result with an MAgP value of 0.1415 at n = 250, m = 4000 (rank 9
for the 2007 rankings). (See [1, 6] for details.) 2008 RiC results are shown in Table 6.
The best value based on the section focusing strategy is achieved at n = 500, m = 2000,
where MAgP = 0.1771 (which would rank at 15 for 2008). The correlation focusing
strategy produces very similar but slightly higher values (e.g., 0.1783 at n = 500,
m = 2000) across the table; it is not shown here. Our submitted run (which includes
negative terms) produced a MAgP value of 0.1723 and ranked 18.

Table 5. MAgP Results for 2007 RIC Task (Child Strategy)

50 100 150 200 250 500 1000 1500 2000 3000 4000

25 0.0767 0.0821 0.0865 0.0915 0.0951 0.0978 0.0977 0.0977 0.0977 0.0977 0.0977

50 0.0772 0.0889 0.0946 0.0980 0.1034 0.1129 0.1155 0.1154 0.1154 0.1154 0.1154

100 0.0772 0.0908 0.0989 0.1021 0.1098 0.1190 0.1305 0.1310 0.1315 0.1313 0.1313

150 0.0741 0.0913 0.0991 0.1048 0.1084 0.1197 0.1288 0.1345 0.1343 0.1346 0.1343

200 0.0750 0.0918 0.0982 0.1041 0.1088 0.1203 0.1299 0.1350 0.1375 0.1371 0.1374

250 0.0771 0.0921 0.0987 0.1040 0.1113 0.1243 0.1330 0.1385 0.1408 0.1408 0.1415

500 0.0772 0.0911 0.0985 0.1032 0.1112 0.1230 0.1326 0.1373 0.1393 0.1391 0.1405

NUMBER OF
DOCUMENTS

NUMBER OF ELEMENTS

Table 6. MAgP Results for 2008 RIC Task (Section Strategy)

50 100 150 200 250 500 1000 1500 2000 3000 4000

25 0.1004 0.1047 0.1050 0.1048 0.1048 0.1038 0.1038 0.1038 0.1038 0.1038 0.1038

50 0.1141 0.1231 0.1260 0.1294 0.1296 0.1279 0.1271 0.1271 0.1271 0.1271 0.1271

100 0.1153 0.1343 0.1385 0.1418 0.1445 0.1506 0.1478 0.1471 0.1471 0.1471 0.1471

150 0.1139 0.1362 0.1437 0.1478 0.1499 0.1580 0.1586 0.1571 0.1570 0.1565 0.1565

200 0.1143 0.1367 0.1444 0.1488 0.1524 0.1607 0.1650 0.1633 0.1627 0.1617 0.1617

250 0.1146 0.1353 0.1464 0.1499 0.1533 0.1635 0.1689 0.1674 0.1665 0.1659 0.1652

500 0.1153 0.1350 0.1468 0.1551 0.1561 0.1662 0.1734 0.1771 0.1768 0.1752 0.1728

NUMBER OF
DOCUMENTS

NUMBER OF ELEMENTS

2.4 Ad Hoc Best-in-Context Task

Finding the Best Entry Point (BEP) is a task which is not related to focused retrieval.
In 2007, we examined a number of factors which might be useful in determining the

38 C.J. Crouch et al.

BEP, including correlation, tag set membership, physical location and combinations
of these factors [4]. For 2007, best results were obtained based purely on physical
position. In this case, a MAgP value of 0.1729, based on RiC input, was generated;
this value would appear at rank 10 in the 2007 rankings. A very similar result
(MAgP = 0.1722) was produced by a combination of two factors (tag set member-
ship and location). In 2008, our experiments with BEP were based purely on physi-
cal location; they use the name tag as BEP. Best results are achieved when 1500
articles are retrieved, with MAgP = 0.1875 (which would rank at 9 in the 2008
rankings).

3 Conclusions

Our 2008 agenda has centered on producing good focused elements. Our basic
method (which used the earlier, less effective child strategy focusing technique) nev-
ertheless performs very well for the 2007 Focused task, exceeding all ranked results.
When we apply the same methodology to the same task in 2008 (changing only to the
more effective section strategy for focusing), the best results rank near the top of the
2008 rankings. Ongoing experiments (not reported here) encourage us to believe that
we can substantially improve on these results.

With respect to the Relevant-in-Context task experiments, our current results (fal-
ling at rank 9 for 2007 and rank 15 for 2008) could clearly be improved. Best-in-
Context results are acceptable but would benefit from more experimentation.

References

[1] Bapat, S.: Improving the results for focused and relevant-in-context tasks. M.S. Thesis,
Department of Computer Science, University of Minnesota Duluth (2008),
http://www.d.umn.edu/cs/thesis/bapat.pdf

[2] Crouch, C.: Dynamic element retrieval in a structured environment. ACM TOIS 24(4),
437–454 (2006)

[3] Crouch, C., Crouch, D., Kamat, N., Malik, V., Mone, A.: Dynamic element retrieval in the
Wikipedia collection. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 70–79. Springer, Heidelberg (2008)

[4] Mehta, S.: Finding the best entry point. M.S. Thesis, Department of Computer Science,
University of Minnesota Duluth (2008), http://www.d.umn.edu/cs/thesis/mehta.pdf

[5] Mone, A.: Dynamic element retrieval for semi-structured documents. M.S. Thesis, De-
partment of Computer Science, University of Minnesota Duluth (2007),
http://www.d.umn.edu/cs/thesis/mone.pdf

[6] Paranjape, D.: Improving focused retrieval. M.S. Thesis, Department of Computer Sci-
ence, University of Minnesota Duluth (2007),
http://www.d.umn.edu/cs/thesis/paranjape.pdf

[7] Salton, G. (ed.): The Smart Rretrieval System—Experiments in Automatic Document
Processing. Prentice-Hall, Englewood Cliffs (1971)

[8] Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Comm.
ACM 18(11), 613–620 (1975)

New Utility Models for the Garnata Information
Retrieval System at INEX’08

Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete,
Carlos Mart́ın-Dancausa, and Alfonso E. Romero

Departamento de Ciencias de la Computación e Inteligencia Artificial
E.T.S.I. Informática y de Telecomunicación, Universidad de Granada,

18071 – Granada, Spain
{lci,jmfluna,jhg,cmdanca,aeromero}@decsai.ugr.es

Abstract. In this work we propose new utility models for the struc-
tured information retrieval system Garnata, and expose the results of
our participation at INEX’08 in the AdHoc track using this system.

1 Introduction

Garnata [5] is a Structured Information Retrieval System for XML documents,
based on probabilistic graphical models [8,9], developed by members of the re-
search group “Uncertainty Treatment in Artificial Intelligence” at the University
of Granada. Garnata has already been tested at two editions of the INEX Work-
shop [4,6], and its theoretical basis is explained in more detail in [1,2].

Garnata computes the relevance degree of each component or structural unit
in a document by combining two different types of information. On the one
hand, the specificity of the component with respect to the query: the more
terms in the component appear in the query, the more relevant becomes the
component, that is to say, the more clearly the component is only about (at
least a part of) the topic of the query. On the other hand, the exhaustivity of
the component with respect to the query: the more terms in the query match
with terms in the component, the more relevant the component is, i.e., the more
clearly the component comprises the topic of the query. The components that
best satisfy the user information need expressed by means of the query should
be, simultaneously, as specific and exhaustive as possible.

These two dimensions of the relevance of a component with respect to the
query are calculated in a different way. To compute the specificity, the probabil-
ity of relevance of each component is obtained through an inference process in a
Bayesian network representing the structured document collection. The exhaus-
tivity is obtained by first defining the utility of each component as a function of
the proportion of the terms in the query that appear in this component. Then the
Bayesian network is transformed into an influence diagram which computes the
expected utility of each component, by combining the probabilities of relevance
and the utilities in a principled way.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 39–45, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

40 L.M. de Campos et al.

In this work we propose a modification of the system by defining the utility
in a different manner, in such a way that those components that do not contain
most of the query terms are penalized more heavily. By defining a parametric
model, it is possible to adjust the degree of utility to make the system behave
more similarly to a strict AND (if not all or almost all the query terms are in
the considered component, this one will be scarcely relevant) or to a less strict
AND.

2 Utility Models in the Garnata System

As we focus in this work on the utility component of the Garnata system, we will
not enter into details of the Bayesian network model representing the document
collection. This model is able to efficiently compute the posterior probabilities
of relevance of all the structural units U of all the documents, given a query Q,
p(U |Q). These probabilities represent the specificity component of each struc-
tural unit U : the more terms indexing U also belong to Q, the more probable is
U .

The Bayesian network is then enlarged by including decision variables RU ,
representing the possible alternatives available to the decision maker (retrieve
unit U), and utility variables VU , thus transforming it into an influence dia-
gram. The objective is to compute the expected utility of each decision given Q,
EU(RU |Q).

In Garnata the utility value VU of each structural unit U is made of a compo-
nent which depends on the involved unit, other component which depends only
on the kind of tag associated to that unit, and another component independent
on the specific unit (these three components are multiplied in order to form the
utility value, see [4]).

The part depending on the involved unit, which is the only one we are going
to modify, is defined as the sum of the inverted document frequencies of those
terms contained in U that also belong to the query Q, normalized by the sum of
the idfs of the terms contained in the query: a unit U will be more useful (more
exhaustive), with respect to a query Q, as more terms of Q also belong to U :

nidfQ(U) =

∑
T∈An(U)∩Q idf(T)∑

T∈Q idf(T)
(1)

An(U) in the previous equation represents the set of terms contained (either
directly or indirectly) in the structural unit U .

3 New Utility Models

As it can be observed from Eq. (1), the utility or exhaustivity of a structural
unit U with respect to a query Q grows linearly with the number of query
terms appearing in U (reaching a maximum equal to 1 when all the terms of the

New Utility Models for the Garnata Information Retrieval System 41

query appear in the unit). In our experience with the system in different ap-
plications [3,4], we have observed that this linear growing, when combined with
the probabilities computed from the Bayesian network (which measure speci-
ficity), can cause that small structural units, which only match with a fraction
of the query terms, become more relevant that other, greater structural units
that contain more terms from the query. In many cases this behaviour is not
the expected one, because probably a user who employs several terms to express
his/her query is expecting to find most of these terms in the structural units
obtained as the answer of the system to this query. For that reason we believe
that it is interesting to define other utility models which give more importance
(in a non-linear way) to the appearance of most of the terms in the query.

In this work we propose a parametric non-linear utility model that, as the
parameter grows, the more terms from the query must be contained in a struc-
tural unit in order to get a high utility value for this unit. A way of obtaining
this behaviour is through the use of the following transformation:

nidfQ,n(U) = nidfQ(U)
e(nidfQ(U))n − 1

e − 1
(2)

In this way, when n = 0 we have nidfQ,0(U) = nidfQ(U), that is to say, we
reproduce the original model, and the greater the value of the integer parameter
n, we obtain a behaviour more similar to a strict AND operator. In Figure 1 we
can observe several plots of the function x exn−1

e−1 for different values of n.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x
x*(exp(x)-1)/(e-1)

x*(exp(x*x)-1)/(e-1)
x*(exp(x*x*x)-1)/(e-1)

x*(exp(x*x*x*x*x)-1)/(e-1)

Fig. 1. Function x exn−1
e−1

, for n = 0, 1, 2, 3, 5

42 L.M. de Campos et al.

4 Experimental Results

In this INEX 2008 edition, we have participated submitting nine runs in the
AdHoc track (content only). More specifically, three in each of the Focused,
Relevant in Context and Best in Context sub-tasks. Table 1 shows the positions
in the ranking according to the official evaluation measures (MAgP for Best in
Context and Relevant in Context, and iP [0.01] for Focused), the sub-task and
finally the run identifier.

Table 1. Runs submitted to the INEX’2008 AdHoc tasks and positions in the rankings

Position Value Sub-task RunId
52 0.468856 Focused p8 u3 exp 5 1110
53 0.467071 Focused p8 u3 exp 3 1110
54 0.448733 Focused p15 u3 exp 5 1110
25 0.158177 Relevant in Context p8 u3 exp 5 1110
26 0.158177 Relevant in Context p8 u3 exp 5 0100
27 0.152320 Relevant in Context p8 u3 exp 3 1110
18 0.146799 Best in Context p8 u3 exp 5 0100
19 0.146536 Best in Context p8 u3 exp 3 0100
22 0.138141 Best in Context p15 u3 exp 3 0100

Table 2. Importance of the different types of units used in the official runs

Tag Weight file 8 Weight file 15
name 20 200
title 20 50
caption 10 30
collectionlink 10 30
emph2 10 30
emph3 10 30
conversionwarning 0 0
languagelink 0 0
template 0 0
default value 1 1

With respect to the parameters, we have used the weight files 8 and 15 (p8
and p15 as prefixes of the run identifiers), and utility file 3 (u3, contained in the
identifiers), with the first values presented in Table 2 and in Table 3 the second
ones (see [4] for details about these parameters and their use within the model).
We have experimented with two values of the parameter n in Eq. (2), 3 and 5
(exp 3 and exp 5, also contained in the identifiers). These values were selected by
means of experimentation with previous INEX collections. Finally, the suffix of
the run identifier corresponds to the values of each of the four configurations of
the component of the utility function independent on the involved unit (see [4]).

New Utility Models for the Garnata Information Retrieval System 43

Table 3. Relative utility values of the different types of units used in the official runs

Tag Utility file 3 Tag Utility file 3
conversionwarning 0 section 1.25
name 0.85 p 1.5
title 0.85 body 2.0
collectionlink 0.75 emph2 1.0
languagelink 0.0 emph3 1.0
article 2.5 default value 1.0

Table 4. Comparison between runs with and without applying the transformation in
Eq. (2)

With nidfQ(U) With nidfQ,n(U) %Change Sub-tasks Run Id.
0.366249 0.468856 28.01 Focused p8 u3 exp 5 1110
0.366249 0.467071 27.53 Focused p8 u3 exp 3 1110
0.341804 0.448733 31.28 Focused p15 u3 exp 5 1110
0.083034 0.158177 90.50 Relevant in Context p8 u3 exp 5 1110
0.067706 0.158177 133.62 Relevant in Context p8 u3 exp 5 0100
0.083034 0.152320 83.44 Relevant in Context p8 u3 exp 3 1110
0.075842 0.146799 93.56 Best in Context p8 u3 exp 5 0100
0.075842 0.146536 93.21 Best in Context p8 u3 exp 3 0100
0.078910 0.138141 75.06 Best in Context p15 u3 exp 3 0100

Although there has been a significant reduction of runs submitted in this 2008
edition – measured as focused retrieval – (Focused: from 79 last year to 61 this
edition; Relevant in Context: from 66 to 40; Best in context: from 71 to 35), we
could say that in terms of the percentiles of the positions in the rankings, we are
improving our results in Relevant in Context (from percentiles 66-74 last year,
to 62-67 this year) and Best in Context (from 63-70 to 51-62), and keeps more
or less the same positions in Focused (from 84-89 to 85-88).

It is noticeable that within the Focused task, Garnata’s performance is rela-
tively low, and keeps more or less the same positions than last year, and how
the methods described in [4] for adjusting the output for the requirements of the
other two tasks make a good job from the raw results generated by Garnata.
Clearly Best in Context is the sub-task where the performance is higher, and
where the best improvement is achieved.

In order to better determine the improvement obtained by the new utility
model presented in this paper, we have run an experiment without using the
transformation presented in Eq. (2), but applying instead the original Eq. (1),
nidfQ(U). Table 4 shows the values of the official evaluation measures with the
old utility model used in previous editions (first column), this year with the new
model (second column) and the percentage of change (third column). As noticed,
the percentages of change are generally quite large, and this fact confirms our
initial hypothesis that the new transformation could improve the results.

44 L.M. de Campos et al.

We have carried out another series of experiments, motivated by the following
fact: we realised that among the systems obtaining the best results in the official
competition at INEX’08 [7], there are many systems that do not return any
possible structural unit as a result but only some of them, typically only content-
bearing elements like section, paragraphs or the complete article. In contrast,
our official runs retrieved almost any elements, and this may be a source of poor
behaviour specially when removing overlapping elements. So, we have repeated
our official experiments but filtering the results in order to retrieve only article,
or only article, body, section and paragraph elements. This can be easily done
by using an utility file giving weight zero to all the structural units except the
selected ones (with weight equal to one). The results of these experiments are
displayed in Table 5.

Table 5. Runs retrieving only content-bearing elements and positions in the rankings

article+section+... only article
Position Value Position Value Sub-task RunId

48 0.517808 52 0.482262 Focused p8 u3 exp 5 1110
46 0.524948 52 0.478478 Focused p8 u3 exp 3 1110
52 0.474641 54 0.455649 Focused p15 u3 exp 5 1110
20 0.171119 27 0.157455 Relevant in Context p8 u3 exp 5 1110
24 0.164420 27 0.157455 Relevant in Context p8 u3 exp 5 0100
22 0.168308 27 0.155347 Relevant in Context p8 u3 exp 3 1110
20 0.146501 14 0.168893 Best in Context p8 u3 exp 5 0100
22 0.140705 14 0.167468 Best in Context p8 u3 exp 3 0100
24 0.131170 18 0.148391 Best in Context p15 u3 exp 3 0100

We can observe that this strategy of retrieving only the more general elements
is useful for the Focused and Relevant in Context tasks, where we would obtain
better positions in the ranking (going from percentiles 85-88 to 75-85 in Focused
and from 62-67 to 50-60 in Relevant in Context, when using the four elements
selected). However, the results are slightly worse for the Best in Context task
(going from percentiles 51-63 to 57-68) in the case of using the four elements
but better when using only the article element. These results point out that the
choice of the structural elements to be retrieved has a non-negligible impact on
the performance of an XML retrieval system.

5 Concluding Remarks

In this paper we have presented the participation of the University of Granada
group in the 2008 INEX edition in the AdHoc tasks. This is based on the work
developed in previous years, but introducing a new utility model which gives
more importance (in a non-linear way) to the appearance of most of the terms

New Utility Models for the Garnata Information Retrieval System 45

in the query. We have shown in the previous section that this new approach
considerably improves the results with respect to not using it.

With respect to the comparison of our results with the rest of participants,
we could say that we are in the middle of the rankings, improving with respect
to the last edition of INEX.

Regarding future research in the context of INEX, we have to work in the
improvement of the raw results of Garnata, as they are the base for the differ-
ent sub-tasks, and in the filtering strategy used to remove overlapping elements.
Also, we have designed an approach to answer CAS queries, which will be eval-
uated in the next edition of the evaluation campaign.

Acknowledgments. This work has been jointly supported by the Spanish Con-
sejeŕıa de Innovación, Ciencia y Empresa de la Junta de Andalućıa, Ministerio de
Ciencia de Innovación and the research programme Consolider Ingenio 2010, un-
der projects TIC-276, TIN2008-06566-C04-01 and CSD2007-00018, respectively.

References

1. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: Using context information in
structured document retrieval: An approach using Influence diagrams. Information
Processing & Management 40(5), 829–847 (2004)

2. De Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: Improving the context-based
influence diagram for structured retrieval. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 215–229. Springer, Heidelberg (2005)

3. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Mart́ın, C., Romero, A.E.:
An information retrieval system for parliamentary documents. In: Pourret, O.,
Naim, P., Marcot, B. (eds.) Bayesian Networks: A Practical Guide to Applications,
pp. 203–223. Wiley, Chichester (2008)

4. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Mart́ın-Dancausa, C.J.,
Romero, A.E.: The Garnata information retrieval system at INEX 2007. In: Fuhr,
N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 57–69. Springer, Heidelberg (2008)

5. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E.: Garnata: An
information retrieval system for structured documents based on probabilistic graph-
ical models. In: Proceedings of the Eleventh International Conference of Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU),
pp. 1024–1031 (2006)

6. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E.: Influence di-
agrams and structured retrieval: Garnata implementing the SID and CID models
at INEX 2006. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS,
vol. 4518, pp. 165–177. Springer, Heidelberg (2007)

7. Geva, S., Kamps, J., Trotman, A. (eds.): INEX 2008 Workshop Pre-proceedings
(2008)

8. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)
9. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-

ference. Morgan and Kaufmann, San Mateo (1988)

UJM at INEX 2008: Pre-impacting of Tags
Weights

Mathias Géry, Christine Largeron, and Franck Thollard

Université de Lyon, F-42023, Saint-Étienne, France
CNRS UMR 5516, Laboratoire Hubert Curien

Université de Saint-Étienne Jean Monnet, F-42023, France
{mathias.gery,christine.largeron,franck.thollard}@univ-st-etienne.fr

Abstract. This paper1 addresses the impact of structure on terms
weighting function in the context of focused Information Retrieval (IR).
Our model considers a certain kind of structural information: tags that
represent logical structure (title, section, paragraph, etc.) and tags re-
lated to formatting (bold, italic, center, etc.). We take into account the
tags influence by estimating the probability that a tag distinguishes rel-
evant terms. This weight is integrated in the terms weighting function.
Experiments on a large collection during INEX 2008 IR competition
showed improvements for focused retrieval.

1 Introduction

The focused information retrieval (IR) aims at exploiting the documents struc-
ture (e.g. HTML or XML markup) in order to retrieve the relevant elements
(parts of documents) for a user information need. The structure can be used to
emphasize some particular words or some parts of the document: the importance
of a term depends on its formatting (e.g. bold font, italic, etc.), and also on its
position in the document (e.g., title terms versus text body).

Different approaches have been proposed to integrate the structure at the step
of querying or at the step of indexing. Following [2], we propose to integrate the
structure in the weighting function: the weights of terms are based not only on
the terms frequencies in the documents and in the collection, but also on the
terms position in the documents. This position can be defined by XML tags.
This approach raises two questions: how to choose the structural weights? How
to integrate them in the classical models?

Some works propose to choose empirically the tags and their weights [5] or
to learn them automatically using genetic algorithms [8]. These approaches use
generally less than five tags. We propose to learn automatically the tags weights,
without limit on the number of tags.

Concerning the integration of the structure weights, Robertson et al. suggests
to preserve the non linearity of the BM25 weighting function by pre-impacting
1 This work has been partly funded by the Web Intelligence project (région Rhône-

Alpes, cf. http://www.web-intelligence-rhone-alpes.org)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 46–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.web-intelligence-rhone-alpes.org

UJM at INEX 2008: Pre-impacting of Tags Weights 47

structure on the terms frequencies instead of impacting it directly on the global
terms weights [6]. We propose to apply this approach in the context of focused
XML IR.

The main contribution of this paper is a formal framework integrating struc-
ture, introduced in the next section. We present in section 3 our experiments
and in section 4 our results in the INEX 2008 competition.

2 A Structured Document Model

We consider in this paper the problem of extending the classical probabilistic
model [7] that aims at estimating the relevance of a document for a given query
through two probabilities: the probability of finding a relevant information and
the probability of finding a non relevant information.

Our model takes into account the structure at two levels. Firstly, the logical
structure (e.g. tags section, paragraph, table, etc.) is used in order to select the
XML elements that are handled at the indexing step. These elements are the only
ones that can be indexed, ranked and returned to the user. Secondly, the format-
ting structure (e.g. bold font, italic, etc.) and the logical structure are integrated
into the terms weighting function. For a given tag we can estimate if it empha-
sizes terms in relevant documents or term in non relevant part of documents. A
learning step computes a weight for each tag, based on the probability, to distin-
guish relevant terms and non relevant ones. At querying step, the relevance of
an element is estimated based on the weights of the terms it contains, combined
with the weights of the tags labeling those terms.

2.1 Term Based Score of XML Elements

The relevance of an element ej for a query Q is function of the weights of the
query terms ti that appear in the element. We use the weighting function BM25
[7]:

wji =
tfji ∗ (k1 + 1)

k1 ∗ ((1 − b) + (b ∗ ndl)) + tfji
∗ log

N − dfi + 0.5
dfi + 0.5

(1)

With tfji: frequency of ti in ej; N : number of elements in the collection; dfi:
number of elements containing the term ti; ndl: ratio between the length of ej

and the average element length; k1 and b: classical BM25 parameters.

2.2 Tag Based Score of XML Elements

The relevance of an element ej relatively to the tags is based on the weights,
noted w′

ik, of each term ti labelled by a tag bk. We used a learning set LS in
which the relevant elements for a given query are known. Given the set R (resp.
NR) that contains the relevant (resp. non relevant) elements, a contingency table
can be built:

48 M. Géry, C. Largeron, and F. Thollard

R NR LS = R ∪ NR
tik ∈ ej rik nrik = nik − rik nik

tik /∈ ej R − rik N − nik − R + rik N − nik

Total R NR = N − R N

With R: number of relevant terms; NR: number of non relevant terms. rik:
number of times term ti labelled by bk is relevant;

∑
i rik: number of relevant

terms labelled by bk; nik: number of times term ti is labelled by bk; nrik =
nik − rik: number of times term ti labelled by bk is not relevant.

Then, w′
ik can be used to distinguish relevant terms from non relevant ones

according to the tags that mark them. This is closely related to probabilistic
IR model, but in our approach tags are considered instead of terms and terms
instead of documents.

w′
ik =

P (tik|R)(1 − P (tik|NR))
P (tik|NR)(1 − P (tik|R))

=
rik × (NR − nrik)
nrik × (R − rik)

(2)

Moreover, we hypothesize that the property for a tag to distinguish relevant
terms does not depend on terms, i.e. the weight of a tag bk should be the same
for all terms. We finally estimate for each tag bk a weight w′

k:

w′
k =

∑
ti∈T w′

ik

|T | (3)

2.3 Global Score of XML Elements

In order to compute a global score, we propose a linear combination fclaw
2

between the weight wji of a term ti and the average of the weights w′
k of the

tags bk that mark the term3:

fclaw(ej) =
∑

tik∈ej/ti∈Q

wji ×
∑

k/tik=1 w′
k

|{k/tik = 1}| (4)

In previous experiments [3], fclaw slightly improved recall but the results were
not convincing. Even if the estimation of the tag weights must be carefully
addressed, it appears that the way such weights are integrated into the final
score is essential. Following [6], we take advantage of the non linearity of BM25
by pre-impacting the tags weights at the term frequency level. More precisely,
tf is replaced by ttf4in BM25:

ttfji = tfji ×
∑

k/tik=1 w′
k

|{k/tik = 1}| (5)

2 CLAW: Combining Linearly Average tag-Weights.
3 wji: the BM25 weight of term ti in element ej , cf. eq. 1.
4 TTF: Tagged Term Frequency. tik = 1 means that ti is labelled by bk.

UJM at INEX 2008: Pre-impacting of Tags Weights 49

3 Experiments

We have experimented these models during the INEX 2008 IR competition in a
classic IR way (granularity: full articles) as well as in a focused IR way (granu-
larity: XML elements). The English Wikipedia XML corpus [1] contains 659,388
strongly structured articles, which are composed of 52 millions of XML elements
(i.e. 79 elements on average; with an average depth of 6.72). The whole articles
(textual content + XML structure) represent 4.5 Gb while the textual content
only 1.6 Gb. The original Wiki syntax has been converted into XML, using both
general tags of the logical structure (article, section, paragraph, title, list and
item), formating tags (like bold, emphatic) and frequently occurring link-tags.

3.1 Experimental Protocol

The corpus enriched by the INEX 2006 assessments on 114 queries has been used
as a training set in order to estimate the tags weights w′

k. We have evaluated
our approach using the 70 queries of INEX 2008.

Our evaluation is based on the main INEX measures (iP [x] the precision value
at recall x, AiP the interpolated average precision, and MAiP the interpolated
mean average precision [4]). Note that the main ranking of INEX competition
is based on iP [0.01] instead of the overall measure MAiP , in order to take into
account the importance of precision at low recall levels.

Each run submitted to INEX is a ranked list containing at most 1 500 XML
elements for each query. Some runs retrieve all the relevant elements among the
first 1 500 XML returned elements, and some others retrieve only part of them.
Note that a limit based on a number of documents (instead of e.g. a number of
bytes) allows to return more information and therefore favours runs composed
by full articles. We have calculated R[1500] (the recall at 1 500 elements) and
S[1500] (the size of these 1 500 elements in Mbytes).

3.2 Tags Weighting

We have manually selected 16 tags (article, cadre, indentation1, item, li, nor-
mallist, numberlist, p, row, section, table, td, template, th, title, tr) in order to
define the XML elements to consider. These logical structure tags will be con-
sidered during the indexing step and therefore those will define the elements the
system will be able to return.

Regarding the other tags (namely the formatting tags), we first selected the
61 tags that appear more than 300 times in the 659,388 documents. We then
manually removed 6 tags: article, body (they mark the whole information), br,
hr, s and value (considered not relevant).

The weights of the 55 remaining tags were computed according to equation
w′

k in equation 3. Table 1 presents the top 6 tags and their weights, together with
the weakest 6 ones and their weights. Their frequencies in the whole collection
is also given.

50 M. Géry, C. Largeron, and F. Thollard

Table 1. Weight w′
k of the 6 strongest and 6 weakest tags

Top strongest weights Top weakest weights
tag weight freq. tag weight freq.
h4 12,32 307 emph4 0,06 940
ul 2,70 3’050 font 0,07 27’117
sub 2,38 54’922 big 0,08 3’213
indentation1 2,04 135’420 em 0,11 608
section 2,01 1’610’183 b 0,13 11’297
blockquote 1,98 4’830 tt 0,14 6’841

4 Results: Focused Task

Our aim was firstly to obtain a strong baseline, secondly to experiment fo-
cused retrieval (i.e. elements granularity) against classic retrieval (i.e. full ar-
ticles granularity), and thirdly to experiment the impact of tags weights in the
BM25 weighting function. Table 2 presents the 3 runs that we have submitted
to INEX 2008 Ad-Hoc in focused task. The structure is not taken into account
in R1, where the documents are returned to the user (articles granularity) as
well as in R2 where the elements are returned (elements granularity), while in
R3 the tags weights are integrated in BM25 in a focused retrieval (elements
granularity - TTF)

Table 2. Our 3 runs submitted to INEX 2008 Ad-Hoc, focused task

Run (name) Granularity Tags weights
R1 (JMU expe 136) articles -
R2 (JMU expe 141) elements -
R3 (JMU expe 142) elements TTF

4.1 Parameters

The parameters of the chosen weighting functions (namely BM25) were tuned
in order to improve classic retrieval (articles granularity) and focused retrieval
(elements granularity). Among the parameters studied to improve the baseline,
we can mention the use of a stoplist, the optimization of BM25 parameters (k1 =
1.1 and b = 0.75), etc. Regarding the queries, we set up a better ”andish” mode
and consider or and and, etc Some specific parameters (e.g. the minimum
size of the returned elements) were also tuned for focused retrieval.

Our baseline and all other runs have been obtained automatically, and using
only the query terms (i.e the title field of INEX topics). We thus do not use
fields description, narrative nor castitle.

UJM at INEX 2008: Pre-impacting of Tags Weights 51

4.2 INEX Ranking: iP [0.01]

Our system gives very interesting results compared to the best INEX systems.
Our runs are compared on the figure 1 against FOERStep, the best run sub-
mitted to INEX 2008 according to iP [0.01] ranking, on 61 runs yet evaluated in
the focused task. This run outperforms our runs at very low recall levels. Our
run R1 gives the best results at recall levels higher than 0.05. This is also shown
by the MAiP presented in table 3.

Fig. 1. Recall / Precision of 3 runs on 61 runs yet evaluated in the focused task

Table 3 presents the results of our 3 runs submitted to the track Ad-Hoc
(focused task).

Table 3. Our 3 runs compared to 61 ”focused” runs

Run (rank) iP [0.01] MAiP R[1500] S[1500]
FOERStep (winner) 0.6897 0.2076 0.4468 78

R1: articles (14) 0.6412 0.2801 0.7871 390
R2: elements (37) 0.5697 0.1208 0.2761 51
R3: elements+TTF (9) 0.6640 0.2347 0.6097 234

4.3 Articles Versus Elements

Our second aim was to compare classic retrieval of full articles versus focused
retrieval of XML elements. We therefore indexed either the whole articles or the
elements, and the parameters of the system were tuned also for focused retrieval.

52 M. Géry, C. Largeron, and F. Thollard

It is interesting to notice that the BM25 model applied on full articles (R1)
outperforms our focused retrieval results (R2) considering MAiP , despite the
fact that BM25 parameter ndl is designed to take into account different docu-
ments lengths and thus documents granularities. Classic IR weighting functions,
indexing and querying process, are undoubtedly not well adapted to focused re-
trieval. However, this is consistent with other results obtained during the INEX
2007 campaign where some top ranked systems only consider (and therefore
return) full articles.

On the other hand, the focused run R2 returns a smallest quantity of informa-
tion. Indeed, the total size of the 1 500 XML elements returned (for each query)
is reduced to 51 Mb instead of 390 Mb for classic retrieval of full articles.

4.4 Pre-impacting of Tags Weights on Terms Weights

Finally, our third aim was to experiment the impact of tag weights in term
weighting function in a focused retrieval scheme. In order to understand the
pro and cons of our structured model, the weighting functions and the same
parameters used for the baseline runs were also used with our structured model.

The figure 1 shows that our TTF strategy (R3) improves dramatically the
focused retrieval at low recall levels (from 0.5697 to 0.6640 following iP [0.01]
ranking). However, it does not improve focused retrieval enough to reach better
results than classic retrieval.

These results confirm also that, according to Robertson and al. [6], it is impor-
tant to keep the non linearity of the BM25 weighting function by ”pre-impacting”
term position in the structure of document (in other terms, tags weights) on the
terms frequencies (strategy TTF) instead of ”post-impacting” it directly on the
terms weights (strategy CLAW, cf. [3]).

5 Conclusion

We proposed in [3] a new way of integrating the XML structure in the classic
probabilistic model. We consider both the logical structure and the formatting
structure. The logical structure is used at indexing step to define elements that
correspond to part of documents. These elements will be indexed and potentially
returned to the user. The formatting structure is integrated in the document
model itself. During a learning step using the INEX 2006 collection, a weight is
computed for each formatting tag, based on the probability that this tag dis-
tinguishes relevant terms. During the querying step, the relevance of an element
is evaluated using the weights of the terms it contains, but each term weight is
modified by the weights of the tags that mark the term.

The baselines are rather strong as the score of the BM25 run on article (run
R1) is ranked seven of the competition according to the iAP [0.01] ranking.

Our strategy TTF gives better results than focused retrieval (R2) and classic
retrieval (R1) at low recall levels (iP [0.01]). That shows the interest of focused
IR (R3 vs R1), and the interest of using structure (R3 vs R2). Pre-impacting

UJM at INEX 2008: Pre-impacting of Tags Weights 53

the structure on terms frequencies (TTF, R3) gives also better results than
”post-impacting” it on final terms weights (CLAW, [3]). Actually, TTF changes
significantly the performances of the methods when considering the iP [0.01] or
the MAiP measure.

TTF (R3) gives also good recall results (MAiP = 0.2347; R[1500] = 0.6097).
Focused IR eliminates more non relevant elements than relevant elements (R3
vs R1): R[1500] decreases by 16% while S decreases by 40%.

We have presented a document model integrating explicitly the structural
information in the weighting function, and a learning process of tags weights. We
reach the same conclusions than [6] about the interest of pre-impacting structure,
with a very different collection, a more heterogeneous one that contains a much
larger set of tags (> 1 thousand).

In previous experiments, a basic average function, that considers all the tags
equally (CLAW), gives better results than other combining functions (multipli-
cation, only the closest tag, etc.). But, we think that a finest combining function
(e.g. taking into account the distance between terms and tags) should improve
the results.

References

1. Denoyer, L., Gallinari, P.: The wikipedia XML corpus. In: SIGIR forum, vol. 40,
pp. 64–69 (2006)

2. Fuller, M., Mackie, E., Sacks-Davis, R., Wilkinson, R.: Coherent answers for a large
structured document collection. In: SIGIR, pp. 204–213 (1993)

3. Géry, M., Largeron, C., Thollard, F.: Integrating structure in the probabilistic model
for information retrieval. In: Web Intelligence, pp. 763–769 (2008)

4. Kamps, J., Pehcevski, J., Kazai, G., Lalmas, M., Robertson, S.: INEX 2007 evalua-
tion measures. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 24–33. Springer, Heidelberg (2008)

5. Rapela, J.: Automatically combining ranking heuristics for html documents. In:
WIDM, pp. 61–67 (2001)

6. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple
weighted fields. In: CIKM, New York, USA, pp. 42–49 (2004)

7. Robertson, S.E., Sparck Jones, K.: Relevance weighting of search terms.
JASIST 27(3), 129–146 (1976)

8. Trotman, A.: Choosing document structure weights. IPM 41(2), 243–264 (2005)

Use of Multiword Terms and Query Expansion
for Interactive Information Retrieval

Fidelia Ibekwe-SanJuan1 and Eric SanJuan2

1 ELICO, Université de Lyon 3
4, Cours Albert Thomas, 69008 Lyon, France

ibekwe@univ-lyon3.fr
2 LIA & IUT STID, Université d’Avignon

339, chemin des Meinajaries, Agroparc BP 1228,
84911 Avignon Cedex 9, France
eric.sanjuan@univ-avignon.fr

Abstract. This paper reports our participation in the INEX 2008 Ad-
Hoc Retrieval track. We investigated the effect of multiword terms on
retrieval effectiveness in an interactive query expansion (IQE) frame-
work. The IQE approach is compared to a state-of-the-art IR engine (in
this case Indri) implementing a bag-of-word query and document rep-
resentation, coupled with pseudo-relevance feedback (automatic query
expansion(AQE)). The performance of multiword query and document
representation was enhanced when the term structure was relaxed to ac-
cept the insertion of additional words while preserving the original struc-
ture and word order. The search strategies built with multiword terms
coupled with QE obtained very competitive scores in the three Ad-Hoc
tasks: Focused retrieval, Relevant-in-Context and Best-in-Context.

1 Introduction

The INEX Ad-Hoc track evaluates the capacity of IR systems to retrieve rel-
evant passages from structured documents (XML elements) rather than whole
documents. As this is our first participation in INEX, we tested two basic ideas:
(i) evaluate the performance of a state-of-art IR engine designed for full docu-
ment retrieval; (ii) evaluate the effectiveness of multiword terms for representing
queries and documents coupled with query expansion (QE) and compare it to
a bag-of-word approach coupled with the same QE mechanism. Here, a mul-
tiword term is taken to mean a syntactic construct usually associated with a
noun phrase. Multiword terms are undeniably richer in information content and
are less ambiguous than lone words. Moreover, recent experiments in IR in the
biomedical domain, especially the TREC Genomic Track [1] showed that multi-
word terms and NLP processing hold promise for IR when applied to a corpus
from a technical domain with a more homogeneous content. The hypotheses we
wished to test were the following:

1. Can multiword terms gathered interactively from the from top n ranked
documents returned by an initial query improve retrieval effectiveness?

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 54–64, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Use of Multiword Terms and Query Expansion 55

2. More importantly, can a language model that preserves the structure of noun
phrases coupled with a QE mechanism perform better than a bag-of-word
model coupled with the same QE mechanism?

To implement our different search strategies, we used the Indri search engine
in the Lemur package1. The rest of the paper is organized as follows: section 2
describes the Ad-Hoc retrieval tasks; section 3 presents our approach for mul-
tiword term selection and the different search strategies implemented; section 4
analyzes results and finally section 5 draws some conclusions from our research
experiments.

2 Ad-Hoc Retrieval Tasks

The official corpus for Ad-Hoc retrieval is the 2006 version of the English Wiki-
pedia comprising 659,388 articles without images [2]. Participants were asked
to submit query topics corresponding to real life information need. A total of
135 such topics were collected, numbered from 544-678. A topic consists of four
fields: content only field (<CO> or <Title>) with a multiword term expression
of the topic; a content only + structure version of the topic (<CAS>) which is
the title with indication of XML structure where the relevant elements may be
found; a <description> field which is a slightly longer version of the title field;
and a <narrative> field comprising a summary with more details about the ex-
pected answers. Typically, the narrative would indicate things to eliminate from
relevant documents and draw boundaries that can be geographic, spatial, genre
or historical in nature. Some title fields contained boolean signs that required
systems to explicitly exclude (-) or include (+) certain terms in the relevant
answer elements.

<topic id=”546” ct no=”8”>
<title> 19th century imperialism </title>
<castitle>article[about(., history)]
section[about(., 19th century imperialism)]</castitle>
<description>Describe the imperialism around the 19th century.</description>
<narrative>I am writing a thesis on 19th century imperialism. I am interested in
which countries and why they practiced imperialism and how it affected the rest of
the world. An element describing earlier or later than 19th century is acceptible if it
supports the context of 19th century imperialism. But an element that describes post
ww2 imperialism is far off. An element that describes about a history book/theory on
the topic is also acceptable, but an element describing a person who is not directly
related to the topic is not. E.g. An article about Hitler is acceptable, but not a novelist
who fought in ww1.</narrative>
</topic>

Fig. 1. Example of a topic in the Ad-Hoc retrieval track

1 http://www.lemurproject.org/lemur/IndriQueryLanguage.php

56 F. Ibekwe-SanJuan and E. SanJuan

The Ad-Hoc track has 3 tasks

1. Focused retrieval: this requires systems to return a ranked list of relevant
non-overlapping elements or passages.

2. The Relevant-in-Context (RiC) task builds on the results of the focused task.
Systems are asked to select, within relevant articles, several non-overlapping
elements or passages that are specifically relevant to the topic.

3. The Best-in-Context (BiC) task is aimed at identifying the best entry point
(BEP) to start reading a relevant article.

3 Multiword Term Selection and Query Expansion

We first describe the document representation model in section 3.1, then the
query representation (3.2) and finally our multiword term selection process (3.3).
Section 3.4 describes the different search strategies we implemented using both
automatic Indri search as a baseline and different parameters of the Indri QE
feature.

3.1 Document Representation

The Wikipedia corpus was indexed using the Indri engine. No pre-processing was
performed on the corpus. In particular, no lemmatization was performed and no
stop word lists were used. The idea was to test the performance of an existing
IR engine on raw texts without using any lexical resources. A nice feature of
the Indri index is that word occurrences and positions in the original texts are
recorded. A multiword term t is represented as an ordered list of nouns, adjec-
tives and/or prepositions, t = wn...w0, where w0 is necessarily a noun. Thus, a
multiword term is not simply a sequence of nominals (nouns and adjectives) but
a syntactic construct corresponding to noun phrases in English where the last
element is compulsorily a noun and the order of the words must be preserved.
These noun phrases should ideally be interpretable out of context, thus corre-
spond to concepts or objects of the real world. Multiword terms are encoded in
Indri language using the “#4” operator. Therefore t is encoded as #4(wn...w0).
This operator will match any sequence of words in documents with at most 4
optional words inserted into it.

3.2 Query Representation

Given a query Q, the user selects some (possibly all) multiword terms in Q.
If several terms are selected, we use the indri belief operator “#combine” to
combine these terms. Hence, the initial query Q is translated by the user in an
indri query Q′ of the form

#combine(#4(w1,n1 ...w1,0)...#4(wi,ni ...wi,0))

Use of Multiword Terms and Query Expansion 57

where:

– i and ni are integers with i > 0.
– wi,k can be a noun, and adjective or a preposition.

We did not make use of the “+, -” boolean operators included in the initial
topic description. We also tested the belief operators “#or” that is implemented
as the complement of fuzzy conjunction, but its behavior appeared to be more
confusing for the document ranking task. For more details on the Indri query
language, see2.

3.3 Interactive Multiword Term Selection and Query Expansion

Following an initial query Q to the Indri search engine using only the title
field, we consider the top 20 ranked documents based on Q query. The user
selects up to 20 multiword terms appearing in these documents. This leads to
acquiring synonyms, abbreviations, hypernyms, hyponyms and associated terms
with which to expand the original query term. The selected multiword terms are
added to the initial Indri query Q using the syntax described in §3.2. This gives
rise to a manually expanded query Q′ which will be automatically expanded in
a Q′′ query using Indri QE feature with the following parameters: the number N
of added terms is limited to 50 and are all extracted from the D = 4 top ranked
documents using the query Q′. Moreover, in the resulting automatic expanded
query Q′′, Q′ is weighted to w = 10%. Figure 2 gives an example of multiword
query terms used to expand topic 544. These multiword terms were acquired
from the top 20 ranked document following the initial query from the title field.
This interactive query expansion process required on the average 1 hour for each
topic.

These three parameters (D = 4, N = 50, w = 10) were optimized on the
TREC Enterprise 2007 data on the CSIRO website corpus3. Hence, the QE
parameters were optimized on a different corpus than the one on which it is
being tested now, i.e., Wikipedia.

3.4 Search Strategies

We first determined a baseline search which consisted in submitting the text in
the title field of queries to Indri, without stop word removal, without attempt-
ing to extract any kind of terms, single or multiword. We then devised more
elaborate search strategies, including the interactive multiword term selection
process described in §3.3. The different search strategies mainly involved using
the expanded set of multiword terms with other features of the Indri search en-
gine such as QE and term weighting. These two features were combined with
various possibilities of multiword term representation: bag-of-word, fixed struc-
ture, term relaxation (allowing insertion of n additional words). The precise
2 http://www.lemurproject.org/lemur/IndriQueryLanguage.php
3 Australian Commonwealth Scientific and Industrial Research Organisation,

http://www.csiro.au/

58 F. Ibekwe-SanJuan and E. SanJuan

#combine(#band(#1(nature of life) philosophy)
#1(significance of life)
#1(meaning of life)
#combine(#1(meaning of life) #or(socrates plato aristotle))
#band(#1(meaning of life) philosophy)
#band(#1(meaning of life) existence)
#band(#1(meaning of life) metaphysics)
#band(#1(existence) existentialism)
#band(#2(purpose life) religion)
#band(#2(purpose life) philosophy)
#band(#3(purpose life) religion)
#band(#3(purpose life) philosophy)
#band(#1(reflection of life) philosophy)
#1(philosophy of life)
#1(philosophy of existence)
#combine(#1(philosopher of life) #or(socrates plato aristotle))
#band(#1(source of life) philosophy)
#band(#2(life wheel) philosophy)
#band(#1(center of life) philosophy)
#band(#1(direction of life) philosophy))

Fig. 2. Example of an expanded query with multiword terms for topic 544 on the
“Meaning of life”

parameters for each implemented search strategy is detailed hereafter. In the
official INEX conference, we submitted five different runs for the three Ad-Hoc
retrieval tasks. Thus our runs were not differentiated by task. We carried out
additional experiments after the INEX’s official evaluation in order to further
test the effect of term relaxation on the performance of our search strategies.
The different search strategies are summarized in table 1.

Table 1. Ad-hoc runs

RunID Approach
ID92 manual multiword term with Indri with #1, #2 and #or operators
manualExt multiword term with Indri with #4 and #combine operators
ID92 auto automatic one word query with Indri #combine operator
autoQE ID92 auto with automatic Indri Query expansion (QE)
ID92 manualQE ID92 manual with QE
manualExtQE manualExt with QE
ID92 manual weighting multiword term with Indri term weighting (TW)
ID92 manual weightingQE multiword term with Indri TW and QE

Only strategies whose ID begin by “ID92...” were submitted to the official
INEX Ad-Hoc Retrieval evaluation. The search strategies in italics were per-
formed after the official evaluation.

Use of Multiword Terms and Query Expansion 59

Baseline bag-of-word search. We carried out two automatic search strategies
labeled “ID92 auto” and “autoQE” respectively, using only the text from the
title field of the topic, without stopword removal. These constitute our baseline.
“ID92 auto” was submitted to INEX, meanwhile it appeared after evaluation
that its scores could be slightly improved using the QE function with default
parameters. We thus carried out the additional strategy labelled “autoQE”.

Multiword terms with Query Expansion. In “ID92 manual”, the multi-
word terms gathered during the process described in section 3.3 were combined
with operators #n with n ≤ 2 (n = 1 requires an exact match of the term,
n = 2 allows for one insertion in the term) and linked by the “#or” operator. In
“ID92 manualQE”, we combined the above parameters with the QE mechanism.
Note that only the selection of multiwords from the initial Indri ranked docu-
ments is manual. The QE function in Indri is automatic once the parameters
are fixed. After the official evaluation, we ran additional experiments using the
same principle but further relaxed the number of words that can be inserted
into the multiword terms (n = 4). This gave rise to search strategies labeled
“manualExt” and “manualExtQE” respectively. In both cases, we used the be-
lief operator “#combine”.

Query term weighting. Here, we experimented with “scrapping” the mul-
tiword term structure. In “ID92 manual weighting”, the multiword terms in
“ID92 manual” were converted into a bag of weighted words in the following
way:

1. each word w occurring in at least one query term is used.
2. its weight is set to c + 0.1×m where c is the number of query terms with w

as head word (for example “teacher” in “head teacher”) and m the number
of terms where it appears as a modifier word (for example “head” in “head
teacher”).

3. we then used the Indri operator “weight” to combine these words and their
weights.

An additional strategy added the QE function to this vector space model rep-
resentation of the queries thus giving rise to the “ID92 manual weightingQE”
run.

4 Results

Two types of evaluation were provided in the Ad-Hoc retrieval tasks: (i) XML
element or passage retrieval, (ii) full article retrieval.

4.1 Evaluation Protocol

For the focused task, the official measure is interpolated precision at 1% recall
(iP[0.01]). However, results are also calculated for interpolated precision at other
early recall points (0.00, 0.01, 0.05 and 0.10). Mean average interpolated preci-
sion [MAiP] over 101 standard recall points (0.00, 0.01, 0.02, ..., 1.00) is given
as an overall measure.

60 F. Ibekwe-SanJuan and E. SanJuan

4.2 Focused Retrieval Evaluation

Table 2 shows the scores obtained by all our runs in all three tasks. For each
task, a first column shows the score obtained in the official measure while the
second column gives the run’s rank out of all submitted runs for that task. We
will analyze the results of the focused search here. The analysis of the RiC and
BiC results is done in sections 4.3 and 4.4 respectively. For the runs done after
the evaluation, we can only provide the scores but not their ranks.

Table 2. Scores at INEX 2008 ad-hoc tasks

Task Focus RiC BiC
Measure iP[0.01] Rank gP[1] MAgP Rank gP[1] MAgP Rank
manualExtQE 0.693 - 0.61 0.215 - 0.61 0.225 -
ID92 manualQE 0.666 6th 0.55 0.211 3rd 0.56 0.220 2nd
ID92 manual 0.642 13th 0.55 0.158 24th 0.55 0.166 14th
ID92 manual weightingQE 0.622 24th 0.52 0.185 12th 0.48 0.195 6th
ID92 manual weighting 0.589 30th 0.47 0.148 32nd 0.42 0.153 17th
autoQE 0.574 - 0.46 0.197 - 0.43 0.201 -
ID92 auto 0.566 38th 0.44 0.171 19th 0.40 0.175 10th

For the focused task, 61 runs from 19 different institutions were submitted.
Three systems retrieving full articles, including ours were amongst the 10 top-
most systems. Four of our search strategies were ranked in the first half of all
submitted runs. Our “ID92 manualQE” strategy that combined manual multi-
word term selection with automatic QE was persistently better than the other
four at all levels of recall. It was ranked 4th by institutions and 6th when con-
sidering all submitted runs. However one must be cautious when drawing any
conclusion from these results as iP[0.01] corresponds roughly to the precision af-
ter 1 relevant document has been retrieved. The term weighting strategies which
transformed the multiword query terms into a vector space model obtained lower
scores although the variant with QE (ID92 manual weightingQE) performed sig-
nificantly better than the variant without QE (ID manual weighting). The lowest
scores were observed for the baseline Indri on single words with or without au-
tomatic QE (autoQE, ID92 auto). The additional experiments carried out after
official evaluation showed that multiword term relaxation (manualExt) improved
our official scores, and that when QE is added (manualExtQE), the score signif-
icantly increases from an iP[0.01]=0.674 to iP[0.01]=0.693, slightly surpassing
the score obtained by the best system in the focused task with an iP[0.01]=0.690.

Relaxing the multiword term structure. Figure 3 takes a closer look at
the precision/recall for our search strategies implementing multiword terms with
QE. More precisely, this figure compares:

1. a state of art automatic IR system (Indri) using automatic QE features
(autoQE),

Use of Multiword Terms and Query Expansion 61

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Recall

iP

manualExtQE
manualExt
ID92manual
autoQE

Fig. 3. Impact of multiword terms, query expansion and term relaxation on preci-
sion/recall for the focused task

2. IR with manually selected multiword terms where term structure and word
order are preserved (ID92 manualQE),

3. the same strategy as in (2) but using a relaxed structure of terms by allowing
insertion of additional words into the terms (manualExt).

4. the same strategy as in (3) but with automatic QE (manualExtQE).

For low recall levels (iP[0.05] and lower), all strategies with manually selected
multiword terms have similar scores and clearly outperform their baseline coun-
terpart. We can see from figure 3 that the two strategies using a more relaxed
term structure (manualExtQE, manualExt) performed better than all the others.
At iP[0.15], “manualExtQE” implementing the combination of the two features -
QE with a relaxed term structure, clearly outperformed all other three runs and
consequently all official INEX 2008 evaluated runs. In fact t-Tests with signif-
icance level α=0.05 show that average score of manualExtQE between iP[0.0]
and iP[0.25] is significantly higher than the average score of any of our other
search strategies. It follows from these results that a relaxed multiword term
structure combined with QE works better than a crisp one.

Multiword vs. bag-of-words representation of queries. We now study the
behaviour of the strategies that implement a vector space model representation
of multiword terms combined with term weighting. For that we plot in figure 4
the precision/recall for:

62 F. Ibekwe-SanJuan and E. SanJuan

– “ID92 manual weighting” where all multiword terms were represented by a
bag of weighted words;

– its variant “ID92 manual weightingQE” with automatic QE;
– the former two are compared with our best strategy (manualExtQE) and

with the baseline run with QE (autoQE).

The best score for bag-of-word model was obtained by weighting the words
according to their grammatical function in the term, i.e., head or modifier word.
This is a way to project some of the multiword term structure onto the vector
space model. However, even with this improvement, the strategies preserving the
structure of multiword terms (manualExtQE, manualExt) significantly outper-
form the vector space model representation of queries. This is clearly visible in
figure 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Recall

iP

manualExtQE
ID92manual_weightingQE
ID92manual_weighting
autoQE

Fig. 4. Bag of word query representation vs multiword term structure

It appears that the bag-of-word representation of multiword terms without QE
(ID92 manual weighting) is competitive with the scores obtained by the baseline
run (autoQE) on top ranked documents. When we consider higher recall levels
(0.25), it performs worse than the baseline.

4.3 Relevant-in-Context Task

A total of 40 runs were submitted for this task by all participating groups. The
official INEX evaluation once again showed that systems retrieving full articles

Use of Multiword Terms and Query Expansion 63

instead of XML elements or passages were very competitive [3]. Table 2 shows
the scores obtained by all our runs at different recall levels, their MagP and
overall ranks.

Our “ID92 manualQE” run was ranked at the 3rd position out of all submit-
ted runs and outperformed all our other runs. This is followed by the
“ID92 manualQE”. Surprisingly, the additional baseline approach with QE
(autoQE) with a MAgP of 0.197 outperformed both the multiword term ap-
proach without QE (ID92 manual, MAgP=0.158) and the same approach with
weighting and QE (ID92 manual weightingQE, MAgP=0.185) whereas these two
runs had higher precision values at early recall levels (gP[1-5]). It follows that
for the Relevant-in-Context measure that combines several levels of recall, mul-
tiword terms used alone for queries are not sufficient. It is necessary to enrich
them using top ranked documents to increase recall. In fact this phenomenon
was also observed in the results of the focused task. Multiword terms queries
without QE obtained lower scores than the baseline at higher levels of recall.

4.4 Best-in-Context Task

Our search strategies basically conserve the same order of performance as in the
RiC task with all runs moving forward to higher ranks (see table 2). Particu-
larly noticeable is the good performance of the “ID92 manualQE” run, ranked
2nd out of 35 submitted runs. The relaxed version “manualExtQE” does even
better with a MAgP=0.225, thereby slightly outperforming the best system in
the official evaluation (MAgP=0.224) at this task. Surprisingly again, the score
of “ID92 auto” is among the 10 best systems (MAgP=0.175). When the QE
mechanism is added (autoQE), it obtains a MAgP score of 0.201 thereby out-
performing the system ranked 5th in the official evaluation (MAgP=0.120).

4.5 Document Retrieval Evaluation

INEX official evaluation also provided judgements full article retrieval. Retrieved
elements or passages were ranked by descending order of relevance and judged
on a first-come, first-served basis. Hence an element or passage represents the
first occurrence of the document from which it was taken. For runs retrieving full
articles, it was the classical case of document ranking. Evaluation was carried
out over all submitted runs irrespective of task. A total of 163 submitted runs
were ranked. Precision scores were calculated also at early recall levels of 5, 10
while mean average precision (MAP) was used as the official measure.

Table 3 shows the evaluation scores for our best strategies. Among the 163 runs
that were submitted by participating groups, our “manual ID 92manualQE”
strategy with a map of 0.3629 was ranked at the 3rd position. Also, this same
strategy with relaxed term structure “manualExtQE” gives a score (map=0.3796)
slightly better than the best ranked system (map=0.3789) and significantly out-
performs our baseline “autoQE” (map=0.3700) from P5-P30 recall levels.

The reason for this very good performance of the “autoQE” run could be
because qrels have been simply derived from those for focused task by considering

64 F. Ibekwe-SanJuan and E. SanJuan

Table 3. Scores for full document retrieval. Total runs submitted: 163.

Participant Rank P5 P10 1/rank map bpref
manualExtQE - 0.6580 0.5942 0.8742 0.3796 0.4076
autoQE - 0.6171 0.5471 0.8055 0.3700 0.3724
p92-manualQEin 3rd 0.6371 0.5843 0.8322 0.3629 0.3917

that any document with a single relevant passage is relevant regardless of the
size of the relevant passage within the document. On the contrary, the Focused
and RiC measures takes the portion of the relevant passages into consideration.

5 Concluding Remarks

In this study, we tested the assumption that query and document representa-
tion with multiword terms, combined with query expansion (QE) can yield very
competitive results. We tested this hypothesis against two baseline strategies
implementing the bag-of-word representation using the Indri search engine with
QE feature. The results obtained on the Wikipedia corpus in the three Ad-Hoc
Retrieval tasks are very promising. All the search strategies implementing a
multiword representation of queries and documents with QE were consistently
ranked among the top five systems in the official INEX evaluation and out-
performed the baseline strategies adopting a bag-of-word representation, even
combined with QE. On the whole, our experiments have shown that using man-
ually expanded multiword terms which are further expanded automatically with
a query expansion mechanism is a promising research direction for IR when deal-
ing with topically homogenous collection of texts such as Wikipedia articles. In
the future, we intend to address how the interactive multiword term selection
process may be automated.

References

1. Ruch, F., Tbahriti, I., Gobeill, J., Aronson, A.: Argumentative feedback: A
linguistically-motivated term expansion for information retrieval. In: Proceedings
of the Joint Conference COLING-ACL 2006, Sydney, July 17-21 (2006)

2. Denoyer, L., Gallinari, P.: The wikipedia xml corpus. In: SIGIR Forum, p. 6 (2006)
3. Kamps, J., Geva, S., Trotman, A., Woodley, A., Koolen, M.: Overview of the inex

2008 ad hoc track. In: PreProceedings of the 15th Text Retrieval Conference (INEX
2008), Dagstuhl, Germany, December 15-18, pp. 1–27 (2008)

Enhancing Keyword Search with
a Keyphrase Index

Miro Lehtonen1 and Antoine Doucet1,2

1 Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

FI–00014 University of Helsinki
Finland

{Miro.Lehtonen,Antoine.Doucet}~@cs.helsinki.fi
2 GREYC CNRS UMR 6072,

University of Caen Lower Normandy
F-14032 Caen Cedex

France
Antoine.Doucet~@info.unicaen.fr

Abstract. Combining evidence of relevance coming from two sources —
a keyword index and a keyphrase index — has been a fundamental part
of our INEX-related experiments on XML Retrieval over the past years.
In 2008, we focused on improving the quality of the keyphrase index and
finding better ways to use it together with the keyword index even when
processing non-phrase queries. We also updated our implementation of
the word index which now uses a state-of-the-art scoring function for
estimating the relevance of XML elements. Compared to the results from
previous years, the improvements turned out to be successful in the INEX
2008 ad hoc track evaluation of the focused retrieval task.

1 Introduction

The interest in developing methods for keyphrase search has decreased recently
in the INEX community partly because most of the queries are not keyphrase
queries [1]. However, we believe that indexing interesting phrases found in the
XML documents can be useful even when processing non-phrase queries. As
the XML version of the Wikipedia is full of marked-up phrases, we have been
motivated to work on the quality of the phrase index, as well, in order to capture
those word sequences that document authors really intended to be phrases.

In the previous years, our ad hoc track results have not been at the same
level with the best ad hoc track results. We believed that the reason lay in
the keyword index and the tfidf scoring function because the top results were
achieved with the probabilistic retrieval model. Lesson learned: we introduced
BM25 as the new scoring function for the keyword index. The latest results of
the INEX 2008 evaluation show great improvement from previous years. How
much the improvement is due to the state-of-the-art scoring function and how
much to the improved phrase index is still unclear, though.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 65–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

66 M. Lehtonen and A. Doucet

This article is organised as follows. Section 2 describes our IR system as
it was implemented in 2008. In Section 3, we show how the keyphrases are
extracted from the document collection into a keyphrase index. Section 4 details
the scoring methods for both the word index and the keyphrase index. The results
of the evaluation are presented in Section 5, and finally, we draw conclusions and
directions for future work in Section 6.

2 System Description

Our system was built on the EXTIRP architecture [2]. With one pass of the whole
collection XML documents, we select a set of disjoint XML fragments which are
indexed as an atomic unit of text. We can apply the paradigm of document
retrieval to the fragments because they do not overlap. The indexed fragments
of XML are entire XML elements in a predefined size range of 150–7,000 XML
characters. The total number of indexed fragments is 1,022,062 which is just
over 1.5 fragments per article. The number is relatively low because most of the
Wikipedia articles are too small to be further divided into smaller fragments.

Two separate inverted indices are built for the fragments. A word index is cre-
ated after punctuation and stopwords are removed, case folded, and the remain-
ing words are stemmed with the Porter algorithm [3]. The phrase index where
a phrase is defined as a Maximal Frequent Sequence (MFS) [4] is described in
Section 3.2.

3 The Anatomy of a Keyphrase Index

Building a keyphrase index starts from finding or detecting the word sequences
that should be considered keyphrases. As we are indexing hypertextual XML
documents, it is natural to use the characteristics of hypertext documents and
the markup language in the analysis as we detect passages that are potentially
indexed keyphrases. The analysis is followed by a text mining method for ex-
tracting the Maximal Frequent Sequences from the word sequence.

3.1 Phrase Detection and Replication

Most of the XML markup in the Wikipedia articles describes either the presen-
tation of the content or the hyperlink structure of the corpus, both of which
show as mixed content with inline level XML elements. In these cases, the start
and end tags of the inline level elements denote the start and the end of a word
sequence that we call an inline phrase. These phrases include the anchor texts of
hyperlinks as well as phrases with added emphasis, e.g., italicized passages. An
exact definition for the XML structures that qualify was presented at the INEX
2007 workshop [5]. Intuitively, the inline phrases are highly similar to the multi-
word sequences that text mining algorithms extract from plain text documents.
Therefore, the tags of the inline elements are strong markers of potential phrase
boundaries. Because phrase extraction algorithms operate on word sequences

Enhancing Keyword Search with a Keyphrase Index 67

without XML, we incorporate the explicit phrase marking tags into the word
sequence by replicating the qualified inline phrases.

Considering the effect of replication, we only look at the character data
(CDATA) as the tags and other XML markup are parsed and removed before
phrase extraction. The most obvious effect is the increase in phrase frequency of
the replicated inline phrases with a similar side effect on the individual words
they compose of. Moreover, the distance between the words preceding and fol-
lowing the phrase increases, which makes the phrase boundaries more explicit to
those phrase extraction algorithms that allow gaps in the multiword sequences.

Duplicating the inline phrases lead to a 10–15% improvement in the MAiP on
the INEX 2007 topics [6], but more recent experiments where the phrases were
replicated three times have shown even further improvement when tested on the
same topics. Note that these results depend on the phrase extraction algorithm
and that other algorithms than ours may lead to different figures. Anyway, we
chose to see if the triplication of the inline phrases works on the INEX 2008
topics, as well, and built the phrase index correspondingly.

3.2 MFS Extraction

The phrase index is based on Maximal Frequent Sequences (MFS) [4]. A sequence
is said to be frequent if it occurs more often than a given sentence frequency
threshold. It is said to be maximal if no other word can be inserted into the
sequence without reducing the frequency below the threshold. This permits to
obtain a compact set of document descriptors, that we use to build a phrase
index of the collection.

The frequency threshold is decided experimentally, because of the compu-
tational complexity of the algorithm. Although lower values for the threshold
produce more MFSs, the computation itself would take too long to be practical.

To be able to extract more descriptors, we clustered the XML fragments of
the Wikipedia collection into 250 disjoint clusters. This permits to fasten the
extraction process and to locally lower frequency threshold values. The result is
a phrasal description of the document collection that is enhanced both in terms
of quality and quantity of the descriptors. The drawback of this approach is a less
compact document description. To perform this divide-and-conquer extraction
of MFS, we used the MFS MineSweep algorithm which is discussed in full
detail in [7].

3.3 Arguments for Two Phrase Extraction Methods

Extracting the marked-up phrases and computing the frequent word sequences
are both adequate methods for finding interesting phrases in hypertext doc-
uments. However, as our method that utilizes XML markup ignores the tag
names, it generates a substantial amount of noise even though most marked
phrases are captured. Examples of this noise include infrequent phrases that oc-
cur in few documents and various passages where the typeface differs from the
surrounding content. Moreover, if words are inserted in the middle of a phrase,

68 M. Lehtonen and A. Doucet

it shows as multiple marked up words instead of a single phrase with gaps in it.
Therefore, the markup is not as reliable indicator of a phrase as the statistical
occurrences of word sequences.

Maximal Frequent Sequences is a rather stable definition for an indexed
phrase. First, the extracted word sequences are statistically frequent. Second,
natural variation in the sequences is allowed in the form of gaps within the
phrase. Replication of the marked up phrases changes the word sequence where
the maximal sequences are computed. Incorporating the markup-based compo-
nent in the text mining algorithm further stabilizes the method, which on the
whole improves the quality of the phrase index [6].

4 Scoring XML Fragments

When processing the queries, we compute two separate RSV values that are later
combined: a Word RSV value based on a word index, and an MFS RSV value based
on the phrase index.

The Word RSV is calculated using Okapi BM25 as implemented in the Lemur
Toolkit [8], while the MFS RSV is computed through loose phrase matching, in
an identical way as in earlier versions of our system [9]. An exact match of the
query phrase is not required, but gaps between query words and a different order
of the query terms do contribute less to the score than an exact match.

The combination of both RSV values is done as follows. First, both values
are normalized into the [0,1] range, using Max Norm, as presented by Lee [10].
Following this step, both RSVs are aggregated into a single RSV through linear
interpolation, so that the aggregated RSV = α * Word RSV + β * MFS RSV.

In previous INEX participations, α was the number of distinct query terms
and β was the number of distinct query terms in the query phrases. Post INEX
2007 experiments showed better performance with absolute values throughout
the topic set, and we have decided to rely on such a new setting for our 2008
experiments as well, with α ranging between 92 and 94 and β = 100 - α.

The relatively low value of β is due to the fact that the phrase index only
contains words that are frequent enough in phrasal context, that is, frequent
enough in conjunction with at least one other word. Important words that do
not co-occur sequentially do not appear in the phrasal index. For this reason,
the phrasal RSV not self-sufficient and should be perceived as a complement of
the word RSV.

5 Results

We submitted three runs for the ad hoc track task of focused retrieval. The
configurations of the submitted runs were based on experiments on the ad hoc
track topics of INEX 2007, according to which the best proportion of weight
given to terms and phrases would be around 92:8–94:6. The weight is given to
the word index component is part of the Run ID. The initial results including
70 topics with assessments are shown in Table 1.

Enhancing Keyword Search with a Keyphrase Index 69

Table 1. Evaluation of our three official runs submitted for the focused retrieval task

Run ID iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
UHel-Run1-92 0.6920 0.6534 0.5568 0.4996 0.2256
UHel-Run2-93 0.7030 0.6645 0.5583 0.5028 0.2271
UHel-Run3-94 0.7109 0.6648 0.5558 0.5044 0.2268

None of the submitted runs is significantly better than the other two runs
although the interpolated precision does show moderately different figures at
the lowest levels of recall. However, the results are similar to those of our earlier
experiments on INEX 2007 topics where the precision peaks when α is set be-
tween 92 and 94. Compared to the peak values, if α is set to 0, precision drops
by over 30%, whereas setting α to 100 (BM25 baseline) results in a modest
decline of 1–5% depending on the recall point. However, we have not yet con-
ducted this experiment on the 2008 topics and can thus not confirm the previous
observations.

6 Conclusion and Future Work

The biggest change in our system from 2007 took place in the scoring function
that contributes over 90% of the total relevance score of each XML fragment.
We discarded tfidf and replaced it with BM25 which assumes the probabilistic
model for information retrieval. Thanks to that update, our results are now com-
parable with the best results overall. The results also confirm that our phrase
index slightly improves precision from a baseline where BM25 is the only scoring
function as the optimal weight given to the phrase score is around 7%. Investi-
gating whether the weights should be different for different types of queries is
part of our future work.

References

1. Doucet, A., Lehtonen, M.: Let’s phrase it: INEX topics need keyphrases. In: Pro-
ceedings of the SIGIR 2008 Workshop on Focused Retrieval, pp. 9–14 (2008)

2. Lehtonen, M., Doucet, A.: Extirp: Baseline retrieval from wikipedia. In: Fuhr,
N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 115–120.
Springer, Heidelberg (2007)

3. Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)
4. Ahonen-Myka, H.: Finding all frequent maximal sequences in text. In: Mladenic,

D., Grobelnik, M. (eds.) Proceedings of the 16th International Conference on Ma-
chine Learning ICML 1999 Workshop on Machine Learning in Text Data Analysis,
Ljubljana, Slovenia, pp. 11–17. J. Stefan Institute (1999)

5. Lehtonen, M., Doucet, A.: Phrase detection in the Wikipedia. In: Fuhr, N., Kamps,
J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 115–121.
Springer, Heidelberg (2008)

70 M. Lehtonen and A. Doucet

6. Lehtonen, M., Doucet, A.: XML-aided phrase indexing for hypertext documents.
In: SIGIR 2008: Proceedings of the 31st annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pp. 843–844. ACM,
New York (2008)

7. Doucet, A., Ahonen-Myka, H.: Fast extraction of discontiguous sequences in text:
a new approach based on maximal frequent sequences. In: Proceedings of IS-LTC
2006, “Information Society, Language Technology Conference”, pp. 186–191 (2006)

8. Lemur: Lemur toolkit for language modeling and ir (2003)
9. Doucet, A., Aunimo, L., Lehtonen, M., Petit, R.: Accurate Retrieval of XML Doc-

ument Fragments using EXTIRP. In: INEX 2003 Workshop Proceedings, Schloss
Dagstuhl, Germany, pp. 73–80 (2003)

10. Lee, J.H.: Combining multiple evidence from different properties of weighting
schemes. In: Proceedings of the 18th annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 180–188. ACM Press,
New York (1995)

CADIAL Search Engine at INEX

Jure Mijić1, Marie-Francine Moens2, and Bojana Dalbelo Bašić1

1 Faculty of Electrical Engineering and Computing, University of Zagreb,
Unska 3, 10000 Zagreb, Croatia

{jure.mijic,bojana.dalbelo}@fer.hr
2 Department of Computer Science, Katholieke Universiteit Leuven,

Celestijnenlaan 200A, 3001 Heverlee, Belgium
sien.moens@cs.kuleuven.be

Abstract. Semi-structured document retrieval is becoming more popu-
lar with the increasing quantity of data available in XML format. In this
paper, we describe a search engine model that exploits the structure of
the document and uses language modelling and smoothing at the docu-
ment and collection levels for calculating the relevance of each element
from all the documents in the collection to a user query. Element priors,
CAS query constraint filtering, and the +/- operators are also used in
the ranking procedure. We also present the results of our participation
in the INEX 2008 Ad Hoc Track.

Keywords: Focused retrieval, Index database, Language model, Search
engine.

1 Introduction

Information retrieval has become a part of our everyday lives. With the growing
amount of available information, it has become challenging to satisfy a specific
information need. We expect the retrieval procedure to find the smallest and
most relevant information unit available, especially if our information need is
very specific. Information retrieval procedures usually return whole documents
as a result of a user query, but with the increasing number of semi-structured
XML data sources, the information unit size can be varied from whole documents
to sections, paragraphs, or even individual sentences. The choice of an appro-
priate information unit size is left to the retrieval procedure, which determines
which portions of a document are considered relevant. If the search procedure is
returning parts of a document, it is necessary to eliminate overlapping content
so that the user does not have to inspect duplicate content. This reduces the
time it takes for the user to browse through the results.

The outline structure of the documents we are searching could also be known,
so the user could specify additional structural constraints in the query, i.e., to
return only relevant paragraphs or images. Such queries are called content-and-
structure (CAS) queries, as opposed to content-only (CO) queries, which do
not have those structural constraints and contain only the keywords from the

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 71–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

72 J. Mijić, M.-F. Moens, and B.D. Bašić

query. Using CAS queries, the user can generate a more specific query that could
improve the retrieved results.

The structure of the document could also be exploited in the ranking of the
document elements. The location of the returned element in the document could
indicate its potential relevance. For example, elements at the beginning of the
document could be considered to be more relevant in most cases. Also, elements
that are nested deep in the document structure could be considered less relevant.

In Section 2, we give an overview of our search engine and how it is modelled.
In Section 3, we describe the ranking method used in our search engine and the
data model that the method requires. In Section 4, we present and discuss the
ad hoc results for our runs, and in Section 5, we give our concluding remarks.

2 System Overview

Our search engine [5] was developed for the CADIAL project [1]. The search
engine provides access to a collection of Croatian legislative documents and has
built-in support for morphological normalization for Croatian language [9]. All
of the documents have a similar structure, which consists of a title, introduc-
tion, body, and signature. Furthermore, the body is divided into articles, i.e.,
articles of a law, not articles as documents, and each article into paragraphs.
This document structure can prove to be useful, as it can be exploited by the
retrieval procedures. This was the main motivation for our participation in the
INEX Ad Hoc Track, as the documents from the Wikipedia collection used in
that track also have a similar tree like structure and are written in XML format.
The documents from the Wikipedia collection contain tags such as article, body,
section, paragraph, table, and figure.

For the purpose of text processing, we use the Text Mining Tools (TMT)
library [8]. The most basic text processing operation is tokenization, which is
implemented for use with the UTF-8 character set that we use for internal text
representation. Input documents are in XML format, and any part of the docu-
ment can be indexed. The search engine can also use an inflectional lexicon for
morphological normalization, but we did not have a lexicon built for the English
language, so we instead used stemming, specifically the Porter stemmer [7].

At the core of our search engine is an index database containing all words
found in the document collection, along with their respective positions in the
documents. Words are stored in their normalized form if morphological normal-
ization is used, or stems of words are stored if stemming is used. The index
database also contains additional statistical data needed for the new ranking
method we implemented for the INEX Ad Hoc Track: see remark further, as
well as the structure of the elements for each document in the collection. The
list of document elements to index is defined during the process of indexing, so
we can choose which elements to index, i.e., article, body, section, paragraph, and
figure, or to index the documents without their structure, i.e., only the article
root tag. A document collection index database is built using an index builder
tool, and than saved to a file in binary format. Serialization and deserialization
procedures used are also implemented in the TMT library.

CADIAL Search Engine at INEX 73

3 Ranking Method and Underlying Data Model

We implemented a new ranking method in our search engine that can exploit
the document structure and be relatively straightforward and efficient to use on
a large document collection. We also added support for CAS queries and the +/-
keyword operators.

3.1 Language Model

For our ranking method, we used language modelling [6]. The basic idea behind
this method is to estimate a language model for each element, and then rank the
element by the likelihood of generating a query with the given language model.
Therefore, we can calculate the relevance of every element e to the specified
query Q:

P (e|Q) = P (e) · P (Q|e), (1)

where P (e) defines the probability of element e being relevant in the absence of
a query; and P (Q|e) is the probability of the query Q, given an element e. We
estimated the element priors in the following way:

P (e) =
1

1 + elocation
· 1
1 + edepth

, (2)

where elocation is the local order of an element, ignoring its path; and edepth is the
number of elements in the path, including e itself. For example, for an element
/article[1]/body[1]/p[5], the location value is 5, and its depth is 3. A similar
formula for calculating element priors was used in previous work by Huang et
al. [3]. We experimented with this formula, and found that changing the coef-
ficients in the formula does not improve the results any further. The formula,
in this simple form, yields noticeable improvements in the retrieval performance.

For a query Q = (q1, q2, ..., qm), assuming the query terms to be independent,
P (Q|e) can be calculated according to a mixture language model:

P (Q|e) =
m∏

i=1

(1 − λd − λc)Pelem(qi|e) + λdPdoc(qi|D) + λcPcol (qi|C), (3)

where λd is the smoothing factor for the document level; λc is the smooth-
ing factor for the collection level; and Pelem(qi|e), Pdoc(qi|D), Pcol(qi|C) are
probabilities of the query term qi given the element, document, and collection,
respectively. The smoothing is done on two levels: the document and the collec-
tion levels, with the restriction that λd, λc ∈ [0, 1] and λd + λc < 1. Wang et al.
[10] found that smoothing on both the document and collection levels produced
significantly better results than just smoothing on the whole collection. They
used the Two-Stage smoothing method, and compared it to the Dirichlet priors
and Jelinek-Mercer smoothing method. We chose to use our smoothing method

74 J. Mijić, M.-F. Moens, and B.D. Bašić

because the values of the smoothing factors λd and λc have a very intuitive
meaning. Although we considered additional smoothing at the section level, we
did not implement it, because the section elements could be nested in each other,
so we would not have a constant number of smoothing factors.

The probabilities of the query term qi given the element, document, or a
collection are calculated in the following way:

Pelem(qi|e) =
tf(qi|e)

length(e)
, (4)

Pdoc(qi|D) =
tf(qi|D)

length(D)
, (5)

Pcol(qi|C) =
tf(qi|C)

length(C)
, (6)

where tf(qi|e), tf(qi|D), tf(qi|C) are the term frequency of the query term qi

in the element, document, and collection, respectively; length(e), length(D),
length(C) are the length of the element, document, and collection, respectively,
in terms of the number of words.

3.2 Ranking the Elements

In the ranking procedure, other factors may influence the scores for each element.
Elements are first scored using the language model formula 1, and then filtered
according to the structural constraints from the CAS query, if there are any. For
example, if the CAS query specifies that the user wants to find a figure, then
elements that contain the element figure in their XPath are promoted to the top
of the rank. The promotion of these elements is done sequentially from top to
bottom, so the order of relevance for these elements is preserved.

We also implemented the +/- keyword operators, meaning that keywords from
the query marked with the plus operator must be contained in the returned
element, and keywords marked with the minus operator must not be contained
in the element. For performance reasons, this operation is integrated in the
calculation of the probabilities in the language model, so elements that do not
satisfy the constraints of these operators, i.e., those that do not contain keywords
marked with the plus operator or do contain keywords marked with the minus
operator, are automatically assigned a score of zero.

Finally, when all the retrieved elements are ranked, we have to eliminate
overlapping elements so that the ranking procedure does not return duplicate
content. This is done simply by iterating through the results from top to bottom
and eliminating elements whose XPath is fully contained in any of the previous
elements’ XPath, or if any of the previous elements’ XPath is fully contained in
the XPath of the element currently being analyzed.

3.3 Index Database

The index database is the backbone of our search engine. In the database, we
store the positions of words in every element from the document collection being

CADIAL Search Engine at INEX 75

Table 1. Tag set of indexed elements

No. Tag name
1 article
2 body
3 section
4 p
5 table
6 figure
7 image

indexed. Along with word indices, some other statistical data is also stored for
use in language modelling. Each element is represented with its own language
model, so some data must be stored separately for every element in the collection,
e.g., term frequencies for every term that the element contains, and the element
length. The data is stored for all overlapping elements in the document collection.
The size of the index database is therefore dependent on the number of elements
we want to index, i.e., the depth of the document structure we want to process.
For example, it might not be very useful to index individual table cells as separate
elements, so instead we can choose to index the entire table as one element and
therefore reduce the size of the index database. We chose to index only elements
that are most likely to be relevant, as shown in Table 1.

The document as a whole is also considered as an element. Other statistical
data that is stored in the index database includes the term frequencies for the
entire collection, number of elements containing each term, unique term count,
total term count, and total element count.

Collection information is also stored in the index database. Information such
as the structure of the elements being indexed, i.e., the parent child relations of
the elements in the document, needs to be stored in order for the language model
to perform the necessary smoothing operations at the document and collection
level, and also to reconstruct the proper XPath for every retrieved element.

4 Ad Hoc Results

The evaluation in the INEX Ad Hoc Track was performed on the Wikipedia
collection based on the English Wikipedia in early 2006 [2]. The collection con-
tains 659,338 articles in XML format. Results for our runs are given in Table 2
and are sorted by the interpolated precision measure at 1% recall, i.e., iP[0.01],
which is the official measure of the focused retrieval task in the INEX Ad Hoc
Track. Other measures include interpolated precision at other early levels of
recall, i.e., iP[0.00], iP[0.05], iP[0.10], and mean average interpolated precision
over 101 standard levels of recall, i.e., MAiP. The best result for each measure
is marked in boldface. The name of the run contains the type of query used, i.e.,
CO for content-only and CAS for content-and-structure query. It also contains
the returned information unit, i.e., document or element, and the smoothing

76 J. Mijić, M.-F. Moens, and B.D. Bašić

Table 2. Official results for our runs

No. Run iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
1 co-document-lc6 0.6393 0.5953 0.5094 0.4732 0.2566
2 cas-element-ld5-lc4 0.6688 0.5539 0.4085 0.3275 0.1449
3 co-element-ld2-lc5 0.6913 0.5429 0.4038 0.2955 0.1008
4 co-element-ld2-lc1 0.6725 0.5251 0.3951 0.2987 0.0942
5 cas-element-ld2-lc5 0.6500 0.5207 0.3602 0.2629 0.1148
6 cas-element-ld1-lc6 0.6649 0.5064 0.3688 0.2638 0.1147

factors used, i.e., ld for document level and lc for collection level. Note that
the smoothing factors are in the range from 0.0 to 1.0 with the restriction that
λd+λc < 1, so for the run cas-element-ld5-lc4 the smoothing factors are λd = 0.5
and λc = 0.4. Along with the focused retrieval ranking, article retrieval ranking
was derived from the retrieval results and mean average precision, i.e., MAP,
measure was used for the evaluation of article retrieval.

Immediately from the results, we can see that the retrieval of the whole doc-
ument gives better performance at higher levels of recall than element retrieval,
as can be seen from the precision-recall graph in Fig. 1. Only at very low lev-
els of recall, i.e., iP[0.00], does element retrieval outperform document retrieval.
Similar results, where the document retrieval outperforms element retrieval at
iP[0.01] and at higher levels, were seen in previous years and in some of the sys-
tems in this year’s Ad Hoc Track. This could, perhaps, be a consequence of the
way in which we perform relevance assessments, where fully relevant documents
are assigned to most of the topics. Another problem could be that the articles
in the Wikipedia collection are very specific to their content, and the topics
are usually not very specific. This leads to a situation where many articles are
marked as fully relevant, and only a few have some specific relevant elements.

Smoothing factors also had a significant impact on the retrieval performance.
As we mentioned previously, retrieving whole documents outperformed element
retrieval at higher levels of recall, so it is reasonable to expect that higher smooth-
ing at the document level would yield better results. This can be seen in our
cas-element-ld5-lc4 run in Fig. 1, where higher smoothing at the document level
contributes to significantly better performance at higher levels of recall than
other runs with lower smoothing at the document level, e.g., cas-element-ld2-
lc5 and cas-element-ld1-lc6. Liu et al. [4] also found that the document score
greatly influenced the retrieval performance. They implemented a separate doc-
ument and element index, and combined the document and element score.

The use of CAS query constraint filtering did improve retrieval performance
overall, especially at midrange levels of recall. At low levels of recall the difference
is not significant, and even at iP[0.00], the performance is slightly worse than the
run using CO queries. Perhaps more complex processing of CAS queries could
yield some improvement at low levels of recall, although most of the topics did
not use the structural features of CAS queries.

Although we did not do a direct comparison on the influence of the +/-
keyword operator and element priors on the retrieval performance, we did notice

CADIAL Search Engine at INEX 77

Fig. 1. Precision recall graph for our runs

during development that using both the operators and element priors did in fact
improve performance slightly.

Overall, in the focused retrieval ranking, we achieved 29th place out of 61 runs,
with an iP[0.01] measure of 0.5953, while the first place run achieved an iP[0.01]
measure of 0.6896. In the document retrieval ranking, we achieved 9th place out
of 76 runs, with an MAP measure of 0.3232, while the first place run achieved
an MAP measure of 0.3629. This difference between our focused retrieval rank
and article retrieval rank is to be expected, as our system performs better in
ranking whole articles than ranking article elements.

5 Conclusion

We developed a search engine that exploits the structure of documents and im-
plemented a simple ranking method that uses language modelling and smoothing
at two levels: the document and the collection level. Retrieving whole documents
performed better than element retrieval at higher levels of recall, which could
perhaps be attributed to the nature of the topics. Element retrieval performed
better than document retrieval only at the lowest level of recall, i.e., iP[0.00].
Filtering of elements’ structural path to the CAS query constraints contributed
to the improvement in retrieval performance, as well as the higher smoothing
factor at the document level. We have also used element priors and implemented
the +/- keyword operators, which we noticed tend to improve the retrieval per-
formance, but we did not investigate their impact on performance in detail.

We developed our system from the ground up, putting an emphasis on simplic-
ity, efficiency, and effectiveness. Language modelling proved to be very effective,

78 J. Mijić, M.-F. Moens, and B.D. Bašić

and yet relatively simple. This was our first year participating in the INEX Ad
Hoc Track, and we are pleased with the results. There is much room left for
improvements, e.g., relevance feedback and incorporating link evidence, but we
will leave that for future work.

Acknowledgments. This work was performed at Katholieke Universiteit Leu-
ven, during the first author’s stay as a visiting scholar. This work has been
jointly supported by the Ministry of Science, Education and Sports, Republic of
Croatia and the Government of Flanders under the grant No. 036-1300646- 1986
and KRO/009/06 (CADIAL).

References

1. Dalbelo Bašić, B., Tadić, M., Moens, M.-F.: Computer Aided Document Indexing
for Accessing Legislation, Toegang tot de wet. Die Keure, Brugge, pp. 107–117
(2008)

2. Denoyer, L., Gallinari, P.: The wikipedia XML corpus. In: ACM SIGIR Forum,
vol. 40, pp. 64–69. ACM Press, New York (2006)

3. Huang, F.: The role of shallow features in XML retrieval. In: INEX 2007 Workshop
Proceedings, pp. 33–38 (2007)

4. Liu, J., Lin, H., Han, B.: Study on reranking XML retrieval elements based on com-
bining strategy and topics categorization. In: INEX 2007 Workshop Proceedings,
pp. 170–176 (2007)

5. Mijić, J., Dalbelo Bašić, B., Šnajder, J.: Building a search engine model with
morphological normalization support. In: ITI 2008 Proceedings of the 30th Inter-
national Conference on Information Technology Interfaces, pp. 619–624 (2008)

6. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval.
In: SIGIR 1998: Proceedings of the 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 275–281. ACM
Press, New York (1998)

7. Porter, M.F.: An algorithm for suffix stripping. Program: electronic library and
information systems 40(3), 211–218 (2006)

8. Šilić, A., Šarić, F., Dalbelo Bašić, B., Šnajder, J.: TMT: Object-oriented text clas-
sification library. In: ITI 2007 Proceedings of the 29th International Conference on
Information Technology Interfaces, pp. 559–566 (2007)

9. Šnajder, J., Dalbelo Bašić, B., Tadić, M.: Automatic acquisition of inflectional lex-
ica for morphological normalisation. Information Processing & Management 44(5),
1720–1731 (2008)

10. Wang, Q., Li, Q., Wang, S.: Preliminary work on XML retrieval. In: INEX 2007
Workshop Proceedings, pp. 70–76 (2007)

Indian Statistical Institute at INEX 2008 Adhoc
Track

Sukomal Pal, Mandar Mitra, Debasis Ganguly, Samaresh Maiti,
Ayan Bandyopadhyay, Aparajita Sen, and Sukanya Mitra

Information Retrieval Lab, CVPR Unit
Indian Statistical Institute, Kolkata

India
{sukomal r,mandar,samaresh t,ayan t,aparajita t,sukanya t}@isical.ac.in,

debasis@synopsys.com

Abstract. This paper describes the work that we did at Indian Statis-
tical Institute towards XML retrieval for INEX 2008. Besides the Vector
Space Model (VSM) that we have been using since INEX 2006, this year
we implemented the Language Modeling (LM) approach in our text re-
trieval system (SMART) to retrieve XML elements against the INEX
Adhoc queries. Like last year, we considered Content-Only (CO) queries
and submitted three runs for the FOCUSED sub-task. Two runs are
based on the Vector Space Model and one uses the Language Model.
One of the VSM-based runs (VSMfbElts0.4) retrieves sub-document-
level elements. Both the other runs (VSMfb and LM-nofb-0.20) retrieve
elements only at the whole-document level. We applied blind feedback
for both the VSM-based runs; no query expansion was used in the LM-
based run. In general, the relative performance of our document-level
runs is respectable (ranked 15/61 and 22/61 according to the official
metric). Though our element retrieval run does reasonably (ranked 16/61
by iP[0.01]) according to the early-precision metrics, we think there is
plenty of scope to improve our element retrieval strategy. Our immedi-
ate next task is therefore to focus on how to improve true element-level
retrieval.

1 Introduction

Traditional Information Retrieval systems return whole documents in response
to queries, but the challenge in XML retrieval is to return the most relevant
parts of XML documents which meet the given information need. Since INEX
2007 [1], arbitrary passages are permitted as retrievable units, besides the usual
XML elements. A retrieved passage consists of textual content either from within
an element or spanning a range of elements. Since INEX 2007, the adhoc retrieval
task has also been classified into three sub-tasks: a) the FOCUSED task which
asks systems to return a ranked list of elements or passages to the user; b) the
RELEVANT in CONTEXT task which asks systems to return relevant elements
or passages grouped by article; and c) the BEST in CONTEXT task which
expects systems to return articles along with one best entry point to the user.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 79–86, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

80 S. Pal et al.

Each of the three subtasks can be based on two different query variants:
Content-Only(CO) and Content-And-Structure(CAS) queries. In the CO task,
a user poses a query in free text and the retrieval system is supposed to return the
most relevant elements/passages. A CAS query can provide explicit or implicit
indications about what kind of element the user requires along with a textual
query. Thus, a CAS query contains structural hints expressed in XPath [2] along
with an about() predicate.

This year we submitted three adhoc focused runs, two using a Vector Space
Model (VSM) based approach and one using a Language Modeling (LM) ap-
proach. VSM sees both the document and the query as bags of words, and uses
their tf-idf based weight-vectors to measure the inner product similarity as a
measure of closeness between the document and the query. The documents are
retrieved and ranked in decreasing order of the similarity-value. In the LM ap-
proach, the probability of a document generating the query terms is taken as
the measure of similarity between the document and the query.

We used a modified version of the SMART system for the experiments at
INEX 2008. Of the two VSM-based runs, one retrieves elements at the whole-
document level, while the other does sub-document-level element retrieval. For
both these runs, we used blind feedback after the initial document retrieval. This
year we also incorporated the LM approach within SMART. Our third run was
based on this implementation and works at the document level. All three runs
were for the FOCUSED sub-task of the Adhoc track, and considered CO queries
only. In the following section, we describe our general approach for all these runs,
and discuss results and further work in Section 4.

2 Approach

2.1 Indexing

We first shortlisted about thirty tags that correspond to elements containing use-
ful information: <p>, <ip1>, <it>, <st>, <fnm>, <snm>, <atl>, <ti>, <p1>,
<h2a>,<h>, <wikipedialink>, <section>, <outsidelink>, <td>, <body>, etc.
Documents were parsed using the libxml2 parser, and only the textual portions
included within the selected tags were used for indexing. Similarly, for the topics,
we considered only the title and description fields for indexing, and discarded
the inex-topic, castitle and narrative tags. No structural information from either
the queries or the documents was used.

The extracted portions of the documents and queries were indexed using sin-
gle terms and a controlled vocabulary (or pre-defined set) of statistical phrases
following Salton’s blueprint for automatic indexing [3]. Stopwords were removed
in two stages. First, we removed frequently occurring common words (like know,
find, information, want, articles, looking, searching, return, documents, rele-
vant, section, retrieve, related, concerning, etc.) from the INEX topic-set. Next,
words listed in the standard stop-word list included within SMART were re-
moved from both documents and queries. Words were stemmed using a varia-
tion of the Lovins’ stemmer implemented within SMART. Frequently occurring

Indian Statistical Institute at INEX 2008 Adhoc Track 81

word bi-grams (loosely referred to as phrases) were also used as indexing units.
We used the N-gram Statistics Package (NSP)1 on the English Wikipedia text
corpus and selected the 100,000 most frequent word bi-grams as the list of candi-
date phrases. Documents and queries were weighted using the Lnu.ltn [4] term-
weighting formula. Based on our INEX 07 experiments, we used slope = 0.4
and pivot = 80, which yielded the best results for early precision. For each of
135 adhoc queries(544-678), we retrieved 1500 top-ranked XML documents or
non-overlapping elements.

2.2 Document-Level Retrieval

We submitted two runs at the document level. One was based on the LM ap-
proach and the other on the VSM approach.

LM approach: (LM-nofb-0.20) We implemented the language modelling frame-
work as described by Hiemstra [5] within the SMART system [6]. In this model,
the similarity-score between a document D and a query Q = (T1, T2, . . . , Tn) of
length n is given by

Sim(D, Q) = log(
∑

t

tf(t, d)) +
n∑

i=1

log(1 +
λitf(ti, d)

∑
t df(t)

(1 − λi)df(ti)
∑

t tf(t, d)
) (1)

where tf(t, d) denotes the term frequency of term t in document d, df(t) denotes
the document frequency of term t, and λi is the importance of term ti. We used
λi = λ = 0.20 for all i as this value yielded the best result over the INEX 2007
dataset. No feedback was used in this run.

VSM approach: For the VSMfb run, we used blind feedback to retrieve whole
documents. We applied automatic query expansion following the steps given
below for each query (for more details, please see [7]).

1. For each query, collect statistics about the co-occurrence of query terms
within the set S of 1500 documents retrieved for the query by the baseline
run. Let dfS(t) be the number of documents in S that contain term t.

2. Consider the 50 top-ranked documents retrieved by the baseline run. Break
each document into overlapping 100-word windows.

3. Let {tl, . . . , tm} be the set of query terms (ordered by increasing dfS(ti))
present in a particular window. Calculate a similarity score Sim for the
window using the following formula:

Sim = idf (t1) +
m∑

i=2

idf (ti) ×
i−1
min
j=1

(1 − P (ti|tj))

where P (ti|tj) is estimated based on the statistics collected in Step 1 and is
given by

documents in S containing words ti and tj
documents in S containing word tj

1 http://www.d.umn.edu/∼tpederse/nsp.html

82 S. Pal et al.

This formula is intended to reward windows that contain multiple matching
query words. Also, while the first or “most rare” matching term contributes
its full idf (inverse document frequency) to Sim, the contribution of any
subsequent match is deprecated depending on how strongly this match was
predicted by a previous match — if a matching term is highly correlated to
a previous match, then the contribution of the new match is correspondingly
down-weighted.

4. Calculate the maximum Sim value over all windows generated from a docu-
ment. Assign to the document a new similarity equal to this maximum.

5. Rerank the top 50 documents based on the new similarity values.
6. Assuming the new set of top 20 documents to be relevant and all other

documents to be non-relevant, use Rocchio relevance feedback to expand
the query. The expansion parameters are given below:

number of words = 20
number of phrases = 5

Rocchio α = 4
Rocchio β = 4
Rocchio γ = 2.

For each topic, 1500 documents were retrieved using the expanded query.

2.3 Element-Level Run

For element-level retrieval, we adopted a 2-pass strategy. In the first pass, we
retrieved 1500 documents for each query using the method described in 2.1.

In the second pass, these documents were parsed using the libxml2 parser. All
elements in these 1500 documents that contain text were identified, indexed and
compared to the query. The elements were then ranked in decreasing order of
similarity to the query. In order to avoid any overlap in the final list of retrieved
elements, the nodes for a document are sorted in decreasing order of similarity,
and all nodes that have an overlap with a higher-ranked node are eliminated.

3 Evaluation

Since INEX 2007, five metrics (viz. iP [0.00], iP [0.01], iP [0.05], iP [0.10] and
MAiP) have been used to measure the retrieval performance of systems partic-
ipating in the FOCUSED adhoc task. Among these iP [0.01] was taken as the
official measure to rank competing systems. As these measures are extensions of
their counterparts in standard document retrieval, they are expected to behave
similarly. In earlier work [8], we showed that early precision measures (iP [0.00],
iP [0.01]) are more error-prone and less stable to incomplete judgments, whereas
MAiP is the least vulnerable among these metrics. Our work considered eval-
uation with reduced query-sets (query-sampling) and reduced pool-sizes (pool-
sampling), chosen at random.

Indian Statistical Institute at INEX 2008 Adhoc Track 83

The pool-sampling experiments reported in [8] have two major shortcom-
ings. One, different systems get affected differently based on how the system
in question retrieves the omitted elements, specifically at what position of the
ranked list. This leads to non-uniform reductions in the score across systems.
Two, all the retrievable units (here XML elements) irrespective of their ranks
get the same probability of inclusion in (or exclusion from) the reduced sampled
pool. Thus, this experiment does not necessarily indicate how system-rankings
would differ if we gradually reduced the pool-depth. These experiments were,
therefore, re-done by systematically re-creating the pool from the INEX 2008
adhoc focused submissions.

We considered all 76 submissions to create the pool, dynamically setting the
pool-depth for each query in order to match the original poolsize for that query
at INEX 2008. We did not get exactly matched numbers since some of the
systems admissibly changed their submissions after pooling was done. We also
surprisingly discovered that a substantial number of documents and their ele-
ments retrieved by various systems at early ranks did not figure in the pool,
even though some of them on deeper investigation were found to be actually
relevant. The fact was brought to the attention of the organizers. A corrected,
more recent version of the relevance assessments as well as results were released.

Although the revision of the qrels and the result-set was a significant by-
product of our pooling experiments, the actual experimental results are not at
a reportable stage.

4 Results

The results as reported in the INEX08 website using relevance judgements for 70
topics are shown in Table 1. Table 2 shows the figures obtained if the evaluation
is done at the document level, instead of at the element level.

Table 1. Results for the FOCUSED, CO task (element retrieval)

Run Id iP@0.00 iP@0.01 iP@0.05 iP@0.10 MAiP Official Rank
VSMfb 0.6363 0.6242 0.5509 0.5019 0.2735 22/61
VSMfbElts0.4 0.7152 0.6348 0.4805 0.4259 0.1538 16/61
LM-nofb-0.20 0.6854 0.6364 0.5565 0.5152 0.2868 15/61

Best Run (FOERStep) 0.7660 0.6897 0.5714 0.4908 0.2076 1/61

Table 2. Document-level evaluation for the FOCUSED, CO task

Run Id MAP Official Rank
VSMfb 0.3091 24/61
VSMfbElts0.4 0.3195 14/61

LM-nofb-0.20 0.2999 28/61
BEST (manualQE indri03 focused) 0.3629 1/61

84 S. Pal et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

INEX 2008: Results of ISI runs
metric: interpolated Precision/Recall

task: Focused, query: CO, Retrieval: Element

VSMfb
VSMfbElts0.4
LMnoFB0.20

FOERStep(BEST)
manualQE_indri03_focused

Fig. 1. Interpolated P - R graph for ISI runs

According to the official metric (iP [0.01]), our best run is LM-nofb-0.20, and
considering precision at the first retrieval unit (iP [0.00]), our element run VSMf-
bElts0.4 is the best. However, these early-precision metrics are not very reli-
able [8,9]. The graphs in Figure 1 clearly show that our document-level runs
(VSMfb and LM-nofb-0.20) are considerably better than the element-level run.
This is reflected in their respective MAiP scores as well. The document- level
runs achieve scores of 0.2735 and 0.2868 — the difference in these two scores
was not found to be statistically significant (p = 0.23 for a two-tailed t-test).
The element-level run achieves a score of only 0.1538, which was found to be
significantly lower than the scores of the document-level runs on the basis of a
t-test. More details about the relative performance of the two document-level
runs and the element-level run are shown in Table 3.

Table 3. Comparison between document-level and element-level runs (AiP)

Run Id Better than Worse than
VSMfbElts0.4 VSMfbElts0.4

LM-nofb-0.20 72(69) 8(7)
VSMfb 60(58) 10(10)

Indian Statistical Institute at INEX 2008 Adhoc Track 85

Table 4. Comparison between document-level and element-level runs (iP[0.00] and
ip[0.01])

Run Id iP[0.00] iP[0.01]
Better than Worse than Better than Worse than

VSMfbElts0.4 VSMfbElts0.4 VSMfbElts0.4 VSMfbElts0.4
LM-nofb-0.20 28(22) 42(25) 35(28) 35(27)
VSMfb 28(20) 42(27) 36(29) 34(23)

The figures in the table show the number of queries for which a run performs
better or worse than another run, as measured by AiP. The figures in parentheses
correspond to the number of queries for which the relative performance difference
is at least 5%.

A similar comparison on the basis of iP [0.00] and iP [0.01] is shown in Table 4.
Since the elements retrieved by VSMfbElts are typically considerably shorter
than full documents, the first relevant element retrieved by this run is likely
to be more focused than the first relevant element (a full document, actually)
retrieved by the other runs. Also, the irrelevant elements preceding the first
relevant element are likely to be shorter. Thus, the element level run performs
better in terms of iP [0.00]. At subsequent recall points, however, the performance
of the element-level run drops. Thus, the differences in iP [0.01] values between
the various runs is marginal. This suggests that our ranking of sub-document
level elements needs to be significantly improved.

5 Conclusion

This was our third year at INEX. Our main objective this year was to see the
performance of the LM approach vis-a-vis VSM. Thus, we implemented LM
within the SMART retrieval system. Its performance was encouraging as it fares
the best among our runs. However the retrieval was at the document-level only.
We need to extend this approach to element-level retrieval. Among the VSM
runs, the document-level run is quite satisfactory. For the element-level run,
however, there is plenty of room for improvement. We need to study the effect
of document length normalization in-depth for XML collections in general and
adopt a suitable strategy for the Wikipedia corpus. More generally, effective
term-weighting schemes for different element-tags in the XML tree seems to be
a promising field of enquiry. We hope these will be exciting exercises which we
plan to do in the coming days.

References

1. INEX: Initiative for the Evaluation of XML Retrieval (2008),
http://www.inex.otago.ac.nz

2. W3C: XPath-XML Path Language(XPath) Version 1.0,
http://www.w3.org/TR/xpath

http://www.inex.otago.ac.nz
http://www.w3.org/TR/xpath

86 S. Pal et al.

3. Salton, G.: A Blueprint for Automatic Indexing. ACM SIGIR Forum 16(2), 22–38
(1981)

4. Buckley, C., Singhal, A., Mitra, M.: Using Query Zoning and Correlation within
SMART: TREC5. In: Voorhees, E., Harman, D. (eds.) Proc. Fifth Text Retrieval
Conference (TREC-5), NIST Special Publication 500-238 (1997)

5. Hiemstra, D.: Using language models for information retrieval. PhD thesis, Univer-
sity of Twente (2001)

6. Ganguly, D.: Implementing a language modeling framework for information re-
trieval. Master’s thesis, Indian Statistical Institute (2008)

7. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In:
SIGIR 1998, Melbourne, Australia, pp. 206–214. ACM, New York (1998)

8. Pal, S., Mitra, M., Chakraborty, A.: Stability of inex 2007 evaluation measures.
In: Proceedings of the Second International Workshop on Evaluating Information
Access (EVIA), pp. 23–29 (2008),
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings7/

pdf/EVIA2008/06-EVIA2008-PalS.pdf

9. Fuhr, N., Kamps, J., Lalmas, M., Malik, S., Trotman, A.: Overview of the INEX
2007 Ad Hoc Track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX
2007. LNCS, vol. 4862, pp. 1–23. Springer, Heidelberg (2008)

http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings7/pdf/EVIA2008/06-EVIA2008-PalS.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings7/pdf/EVIA2008/06-EVIA2008-PalS.pdf

Using Collectionlinks and Documents as Context
for INEX 2008

Delphine Verbyst1 and Philippe Mulhem2

1 LIG - Université Joseph Fourier, Grenoble, France
Delphine.Verbyst@imag.fr

2 LIG - CNRS, Grenoble, France
Philippe.Mulhem@imag.fr

Abstract. We present in this paper the work of the Information Re-
trieval Modeling Group (MRIM) of the Computer Science Laboratory of
Grenoble (LIG) at the INEX 2008 Ad Hoc Track. We study here the use
of non structural relations between document elements (doxels) in con-
junction with document/doxel structural relationships. The non struc-
tural links between doxels of the collection come from the collectionlink
doxels. We characterize the non structural relations with relative exhaus-
tivity and specificity scores. Results of experiments on the test collection
are presented. Our best run is in the top 5 for iP[0.01] values for the
Focused Task.

1 Introduction

This paper describes the approach used by the MRIM/LIG research team for the
Ad Hoc Track of the INEX 2008 competition. Our goal here is to show that the
use of non structural links and the use of structural links lead to high quality
results for an information retrieval system on XML documents. We consider
that handling links between doxels in a “smart” way may help an information
retrieval system, not only to provide better results, but also to organize the
results in a way to overcome the usual simple list of documents. For INEX 2008
runs, we obtained very good results for low recall values (0.00 and 0.01).

First of all, we define one term: a doxel is any part of an XML document
between its opening and closing tag. We do not make any kind of difference
between a doxel describing the logical structure of the document (like a title
or a paragraph) or not, like anchors of links or words that are emphasized),
a relation between doxels may come from the structural composition of the
doxels, or from any other source. Assume that an xml document is “<A>This
is an example of <C>XML</C> document”. This document
contains 3 doxels: the first is delimited by the tag A, the second is delimited
by the tag B, and the third is delimited by the tag C. We also consider that
a compositional link relates A to B, and A to C. We will also depict B and
C as direct structural components of A. In the following, the non structural
relations between doxels will be referred to as the non structural context of the
doxels. Our assumption is that document parts are not only relevant because of

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 87–96, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

88 D. Verbyst and P. Mulhem

their content, but also because they are related to other document parts that
answer the query. The document that contains a doxel d will be referred as the
structural context of d. In some way, we revisit the Cluster Hypothesis of van
Rijsbergen [13], by considering that the relevance value of each document is
impacted by the relevance values of related documents.

In the proposal described here, we first build inter-relations between doxels,
and then characterize these relations using relative exhaustivity and specificity at
indexing time. We also build explicit relationships between the doxels and their
container document. These two elements are used by the matching process.

The rest of this paper is organized as follows: after commenting in section 2
related works, we describe the non structural links that were used in our ex-
periments in part 3, the structural links used in part 4, then the doxel space is
described in detail in section 5, in which we propose a document model using
the context. Section 6 introduces our matching in context process. Results of the
INEX 2008 Ad Hoc track are presented in Section 7, where we present the five
(three for the Focused task, and two for the Relevant in Context task) officially
submitted runs by the LIG. We conclude in part 8.

2 Related Works

If we concentrate on approaches that retrieve doxels based on the documents
structure, we can separate approaches that use the structure of documents at
indexing time from those that use this structure during the query processing.
Among the approaches that focus on the indexing of doxels, the work of Cui, Wen
and Chua [2] propagates index terms of the document tree structure from the
leaves to the root, by pruning the terms that appear in the content representation
of the direct structural components of a doxel. The advantage of this approach
is to reduce the size of index, since the index takes into account the transitivity
of doxel composition. The difficulty of such work is to carry out a large number
of pruning and still to maintain a good quality of results. From a more theo-
retical point of view, the work of Lalmas [6], based on Dempster-Shafer theory,
indexes a doxel using the terms that index its components, proposing then a
spreading of indexing terms. Among the proposals that process structured doc-
uments at query time the work of [4] manages a priori probability of doxels using
their relative position and depth in the document. If we consider the history of
the domain, Wilkinson’s approach [16] falls into this category. Approaches us-
ing probabilistic networks [7] or [8] also use the structural relationships between
doxels at query time. In the proposal described here, we make use of such struc-
tural links by combining the matching values of the whole documents and of the
doxels. This approach has been proven to be effective in the context of INEX.

The use of non structural links, such as Web links or similarity links has been
studied in the past. Well known algorithms such as Pagerank [1] or HITS [5]
do not seamlessly integrate the links in the matching process. Savoy, in [11],
showed that the use of non structural links may provide good results, without
qualifying the strength of the inter-relations. In [12], Smucker and Allan show

Using Collectionlinks and Documents as Context for INEX 2008 89

that similarity links may help navigation in the result space. Last year, for our
first participation at INEX [14], our approach using non-structural links and a
vector space model outperformed runs which did not make use of links. This
year, we go further by refining the non structural relationships used, and by
integrating during the matching phase the relevance status value (RSV) of the
document that contains a relevant doxel.

3 Non Structural Context

The idea of considering non structural neighbours was proposed in [15], in order
to facilitate the exploration of the result space by selecting the relevant doxels,
and by indicating potential good neighbours to access from one doxel.

The INEX 2008 collection contains several links between doxels and docu-
ments, like collectionlink, unknownlinks, languagelinks and outsidelinks for
instance. From these links, only the collectionlinks denote links inside the INEX
2009 collection, where the others link to extenal web pages for instance. In the
following, we make only use of collectionlink, to avoid depending of oustide
collection data. An example of a collectionlink (from the document 288041)
is : <collectionlink xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type=
"simple" xlink:href="10581.xml">. For our needs, the most important attribute
for such tag is xlink:href, that indicates the target of the link. In the original
INEX 2009 collection, the targets of collectionlinks are only whole documents,
and not documents part. As indicated earlier, we want to characterize in detail
non structural relations between doxels, and not only from doxels to whole doc-
ument doxels. We choose then to extend the original collectionlinks in a way
to obtain relations from doxels to any doxel. To do that, we extend the initial
collectionlink doxel c with a document target ct with the following processing :

– assume that c is a direct structural components of a doxel d of type Td,
– we compute the similarity s (using the cosine according to the vector space

model) between d and all components of ct of type Td,
– we keep all the components above with the similarity value greater than a

threshold T,
– we generate all of these components of ct in the context of c.
– we keep the initial link going from c to the document ct.

The reason why we do consider doxels composed of collectionlink is that very
often the text of a collectionlink is very small and the matching with other doxels
is unreliable.

The figure 1 describes graphically a simple example of such process. We see that
a collectionlink (dotted line) goes from the doxel A (element of a document d1) to
the document doxel d2. The doxel composed by A is B, and the type of the doxel
B is t. The doxels B and C that compose d1 are also of type t. So, according to
the steps described above, we check if the two links “A to C” and “A to D” are
created or not (links with dashed lines in figure 1). Assume that the similarity s
between B and C is 0.9 and the similarity between B and D is 0.4, and that the

90 D. Verbyst and P. Mulhem

threshold T is equal to 0.8. Then, the link that goes from A to C is created and
stored as a new non structural link, but the link from A to D is not created (it
is crossed in figure 1).

d1 d2

A

B

C

D

Fig. 1. Example of created non-structural links

Initially, there are 17 013 512 collectionlinks in the INEX 2008 collection.
With the process described above we generated 115 million of non structural
links.

4 Structural Links

We describe now the use of the structural links as they are used in our proposal.
Assume that we build the transitive closure Tc of the compositional links (cf.
introduction) between doxels, filtered to keep only the links with source a doc-
ument doxel and target a non-document doxel. When there exists a link Tc in
going from a document D to a doxel d, we generate a structural link going from
the doxel d to the document D, expressed by a function Doc so that Doc(d)=D.
Using this process, we generated 28 million structural links.

5 Doxel Space

5.1 Doxel Content

The representation of the content of doxel di is a vector generated from a usual
vector space model using the full text content of the doxel: di = (wi,1, ..., wi,k).
Such a representation has proved to give good results for structured document
retrieval [3]. The weighting scheme retained is a simple tf.idf , with idf based
on the whole corpus and with the following normalizations: the tf is normalized
by the max of the tf of each doxel, and the idf is log-based, according to the
document collection frequency. To avoid an unmanageable quantity of doxels,

Using Collectionlinks and Documents as Context for INEX 2008 91

we kept only doxels having the following tags: article, p, collectionlink, title,
section, item. The reason for using only these elements was because, except for
the collectionlinks, we assume that the text content for these doxels is not too
small. The overall number of doxels considered by us here is 29 291 417.

5.2 Characterizing Non Structural Doxel Context

To characterize the non structural relations between doxels, we propose to define
relative exhaustivity and relative specificity. These features are inspired by the
definitions of specificity and exhaustivity proposed at INEX 2005 [9], and are
supposed to define precisely the nature of the link. Consider a non compositional
relation from the doxel d1 to the doxel d2:

– The relative specificity of this relation, noted Spe(d1, d2), denotes the extent
to which d2 focuses on the topics of d1. For instance, if d2 deals only with
elements from d1, then Spe(d1, d2) should be close to 1.

– The relative exhaustivity of this relation, noted Exh(d1, d2), denotes the
extent to which d2 deals with all the topics of d1. For instance, if d2 discusses
all the elements of d1, then Exh(d1, d2) should be close to 1.

The values of these features are in [0, 1]. Generraky, these features behave
in an opposite way: when Spe(d1, d2) is high, then Exh(d1, d2) is low, and vice
versa. However this is not always true: when two doxels have the same texte
content, then their relative exhaustivity and specificity should be equal to 1.

Relative specificity and relative exhaustivity between two doxels are exten-
sions of the overlap function [10] of the index of d1 and d2: these values reflect
the amount of overlap between the source and target of the relation. We define
relative specificity and relative exhaustivity on the basis of the non normalized
doxel vectors w1,i and w2,i (respectively for d1 and d2) as follows.

We estimate values of the exhaustivity and the specificity of d1 and d2, based
on a vector where weights are tf.idf

Exh(d1, d2) =

∑
i|w2,i �=0 w2

1,i∑
i w2

1,i

(1)

Spe(d1, d2) =

∑
i|w1,i �=0 w2

2,i∑
i w2

2,i

(2)

These two values scores are in [0, 1] if we assume that no doxel is indexed by
a null vector.

6 Matching in Context

As we have characterized the doxel context, the matching process should re-
turn doxels relevant to the user’s information needs regarding both content and
structure aspects, and considering the context of each relevant doxel.

92 D. Verbyst and P. Mulhem

We define the matching function as a linear combination of a standard match-
ing result without context, a matching result based on relative specificity and
exhaustivity, and a matching coming from the rank of the documents according
to the query processed. The retrieval status value RSV (d, q) for a given doxel d
and a given query q is thus given by:

RSV (d, q) = α ∗ RSVcontent(d, q) + (1 − α) ∗ RSVcontext(d, q) (3)

+revrank(RSVcontent(Doc(d), q)),

where α ∈ [0, 1] is experimentally fixed, RSVcontent(d, q) is the score without
considering the set of neighbours Vd of d (i.e. cosine similarity),

RSVcontext(d, q) =
∑

d′∈Vd

β ∗ Exh(d, d′) + (1 − β) ∗ Spe(d, d′)
|Vd| RSVcontent(d′, q)

(4)

where β ∈ [0, 1] is used to focus on exhaustivity or specificity, and
revrank(RSVcontent(Doc(d), q)) the reverse rank of the matching result for each
document of the collection: considering that the system returns N results, the
reverse rank of the first document is N, the reverse rank of the second document
is N-1, and so on.

According to what is done now, the part of the fomula above weighted by α
and 1−α is in [0, 1], so adding the ranking of the documents induces a grouping
by document of the doxels.

7 Experiments and Results

The INEX 2008 Adhoc track consists of three retrieval tasks: the Focused Task,
the Relevant In Context Task, and the Best In Context Task. We submitted 3
runs for the Focused Task, and 2 runs for the Relevant In Context Task. For
all these runs, we used only the title of the INEX 2008 queries as input for
our system: we removed the words prefixed by a ’-’ character, and we did not
consider the indicators for phrase search. The size of the vocabulary we used is
210 000.

First of all, we have evaluated our system with INEX 2007 collection to tune
the α and β parameters and the number of non structural neighbours used. The
best results were achieved with α = 0.5 and β = 0.0, which means that the non
structural context is as important as the context of the doxels, and that only
the exhaustivity is considered. We considered 4 non structural neighbours, the
ones with the higher similarity values according to part 3 . For the use of the
structured context, we tested a ranking based on a Vector Space Model (similar
to what was described earlier), abbreviated VSM, and a ranking based on a
Language Model using a Dirichlet smoothing, abbreviated ML.

Using Collectionlinks and Documents as Context for INEX 2008 93

7.1 Focused Task

The INEX 2008 Focused Task is dedicated to find the most focused results that
satisfy an information need, without returning “overlapping” elements. In our
focused task, we experiment with two different rankings.

For the runs LIG-ML-FOCRIC-4OUT-05-00 and LIG-VSM-FOCRIC-4OUT-
05-00, as explained by the matching formula, the results are grouped by doc-
ument, so results are somewhat similar to Relevant In Context (RIC) results
(except for the ordering of the doxels in each document).

The last run, namely, FOC-POSTLM-4OUT-05-00 is a bit different in nature:
we generated a binary value (1 for relevant document and 0 for non relevant
document) for the document matching, and we filter the doxels belonging to
relevant documents, without changing their matching value.

We present our results for the focused task in Table 1 showing precision val-
ues at given percentages of recall, and in Figure 2 showing the generalized preci-
sion/recall curve. These results show that runs based on the use of the Language
Model outperform at recall values lower than 0.2 the VSM document based con-
text. Between recall values of 0.3 and 0.5, the VSM gives better results than
the LM. The post processing using language model document matching does
not give good results. Each of these curves drops sharply, which leads to a low
MAiP compared to other participants runs.

Table 1. Focused Task for LIG at INEX2008 Ad Hoc Track

Run precision precision precision precision
at 0.0 recall at 0.01 recall at 0.05 recall at 0.10 recall

LIG − ML − FOCRIC 0.7127 0.6678 0.5223 0.4229
MAiP = 0.1441

LIG − V SM − FOCRIC 0.5555 0.5187 0.4407 0.3762
MAiP = 0.1339

FOC − POSTLM 0.4756 0.4191 0.3741 0.3035
MAiP = 0.0958

7.2 Relevant in Context Task

For the Relevant In Context Task, we take “default” focused results and re-
ordered the first 1500 doxels such that results from the same document are
clustered together. It considers the article as the most natural unit and scores
the article with the score of its doxel having the highest RSV.

We submitted two runs :

– LIG − V SM − RIC − 4OUT − 05 − 00 : a run similar to the LIG-VSM-
FOCRIC-4OUT-05-00, except that the doxels are ordered in sequence of
their apparition in each document. In this run, we set λ = 0.5 and β = 0.0
and four neighbours;

94 D. Verbyst and P. Mulhem

Fig. 2. Interpolated Precision/Recall - Focused Task LIG Ad Hoc

– LIG−LM−RIC−4OUT−05−00 : a run similar to the LIG-LM-FOCRIC-
4OUT-05-00, except that the doxels are ordered by their apparition in each
document. In this run, we set λ = 0.5 and β = 0.0 and four neighbours.

For the relevant in context task, our results in terms of non-interpolated gen-
eralized precision at early ranks gP [r], r ∈ {5, 10, 25, 50} and non-interpolated
Mean Average Generalized Precision MAgP are presented in Table 2, and the
interpolated Recall/Precision curve is presented in Figure 3. In these results,
we see that the use of language model document ranking for doxels retrieval
always outperforms the use of vector space based (+55% for MAgP). Similarly
to our Focused runs, our results for the Relevant in Context task drop sharply
when recall values increase, but the precision is above 62% for a recall of 0,
which means that our best approach gives accurate results for the first query
results.

Table 2. Relevant In Context Task for INEX2007 Ad Hoc

Run gP[5] gP[10] gP[25] gP[50]
LIG − V SM − RIC − 4OUT − 05 − 00 0.2444 0.2023 0.1756 0.1360

MAgP = 0.0961
LIG − LM − RIC − 4OUT − 05 − 00 0.3595 0.3069 0.2303 0.1708

MAgP = 0.1486

Using Collectionlinks and Documents as Context for INEX 2008 95

0.2 0.2942 0.1935
0.3 0.2262 0.1513
0.4 0.1675 0.091
0.5 0.1285 0.066
0.6 0.0649 0.0401
0.7 0.0348 0.0275
0.8 0.0211 0.00137
0.9 0.0117 0.0103

1 0 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LIG-LM-RIC-4OUT-05-00

LIG-VSM-RIC-4OUT-05-00

Fig. 3. Interpolated Recall/Precision - Relevant in Context Task LIG Ad Hoc

8 Summary and Conclusion

In the INEX 2008 Ad Hoc track, we integrated two contexts (the four most
similar doxels in a collectionlink document target and the full document rank)
with the RSV of doxels. We submitted runs implementing our proposals for
the Focused and Relevant in Context Ad Hoc Tasks. For each of these tasks,
we showed that combining content and context leads to good results, especially
when considering full document language models. One explanation is that such
models are well adapted for full documents, and using the context of doxel in
a second step is a good approach. For our second participation to INEX, our
best runs are ranked in the top 10 runs of participants systems at least in the
Focused Task at iP[0.01]. However, we plan to improve our baseline to obtain
better results in the following directions:

– For the best results obtained by our approach, we used a vector space model
for the doxels and a language model for the full documents. We will focus
in the future on proposing a more consistent approach that relies only on
language models. We will then face the problem of modeling very short doxels
with language models.

– We will also consider to redefine the non structural context of doxel, by
studying other features that can be used to characterize the inter doxel
relationships.

References

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

2. Cui, H., Wen, J., Chua, T.: Hierarchical indexing and flexible element retrieval
for structured documents. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633,
pp. 73–87. Springer, Heidelberg (2003)

96 D. Verbyst and P. Mulhem

3. Huang, F., Watt, S., Harper, D., Clark, M.: Robert Gordon University at INEX
2006: Adhoc Track. In: INEX 2006 Workshop Pre-Proceeding, pp. 70–79 (2006)

4. Huang, F., Watt, S., Harper, D., Clark, M.: Compact representation in xml re-
trieval. In: Comparative Evaluation of XML Information Retrieval Systems (INEX
2006), pp. 65–72 (2007)

5. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

6. Lalmas, M., Vannoorenberghe, P.: Modelling xml retrieval with belief functions.
In: Proceedings of the CORIA 2004 conference, pp. 143–160 (2004)

7. Myaeng, S.-H., Jang, D.-H., Kim, M.-S., Zhoo, Z.-C.: A flexible model for retrieval
of sgml documents. In: SIGIR 1998, pp. 138–145. ACM Press, New York (1998)

8. Piwowarski, B., Gallinari, P.: A bayesian framework for xml information re-
trieval: Searching and learning with the inex collection. Information Retrieval 8(4),
655–681 (1995)

9. Piwowarski, B., Lalmas, M.: Interface pour l’evaluation de systemes de recherche
sur des documents XML. In: Premiere COnference en Recherche d’Information et
Applications (CORIA 2004), Toulouse, France, March 2004, pp. 109–120. Hermes
(2004)

10. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval, ch. 6,
p. 203. McGraw-Hill, Inc., New York (1986)

11. Savoy, J.: An extended vector-processing scheme for searching information in hy-
pertext systems. Inf. Process. Manage. 32(2), 155–170 (1996)

12. Smucker, M.D., Allan, J.: Using similarity links as shortcuts to relevant web pages.
In: SIGIR 2007: Proceedings of the 30th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pp. 863–864. ACM
Press, New York (2007)

13. van Rijsbergen, C.: Information retrieval, 2nd edn., ch. 3. Butterworths (1979)
14. Verbyst, D., Mulhem, P.: Lig at inex 2007 ad hoc track: Using collectionlinks as

context. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 138–147. Springer, Heidelberg (2008)

15. Verbyst, D., Mulhem, P.: Doxels in context for retrieval: from structure to neigh-
bours. In: SAC 2008: Proceedings of the 2008 ACM symposium on Applied com-
puting, pp. 1122–1126. ACM Press, New York (2008)

16. Wilkinsion, R.: Moeffective retrieval of structured documents. In: Proceedings of
the 17th Annual International ACM-SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 311–317 (1998)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 97–105, 2009.
© Springer-Verlag Berlin Heidelberg 2009

SPIRIX: A Peer-to-Peer Search Engine
for XML-Retrieval

Judith Winter and Oswald Drobnik

J.W. Goethe University, Institute for Informatics, Frankfurt, Germany
{winter,drobnik}@tm.informatik.uni-frankfurt.de

Abstract. At INEX 2008 we presented SPIRIX, a Peer-to-Peer search engine
developed to investigate distributed XML-Retrieval. Such investigations have
been neglected by INEX so far: while there is a variety of successful and effec-
tive XML-Retrieval approaches, all current solutions are centralized search
engines. They do not consider distributed scenarios, where it is undesired or
impossible to hold the whole collection on one single machine. Such scenarios
include search in large-scale collections, where the load of computations and
storage consumption is too high for one server. Other systems consist of differ-
ent owners of heterogeneous collections willing to share their documents with-
out giving up full control over their documents by uploading them on a central
server. Currently, there are research solutions for distributed text-retrieval or
multimedia-retrieval. With INEX and innovative techniques for exploiting
XML-structure, it is now time to extend research to distributed XML-Retrieval.
This paper reports on SPIRIX’ performance at INEX’08.

Keywords: Distributed XML-Retrieval, INEX, Distributed Search, XML
Information Retrieval, Efficiency, Peer-to-Peer.

1 Introduction

Many of the solutions presented at INEX are quite effective in terms of Information
Retrieval (IR) quality. However, all current solutions are centralized search engines.
This is sufficient for the current INEX test collection, consisting of nearly 660000
Wikipedia articles in XML format for the main ad-hoc track. In practice, collections
such as those stored in digital libraries are much more voluminous and do not fit on
one computer. Also, search should not be limited to one collection only, but a search
engine should have access to a wide variety of collections offered, for instance, by
public institutions such as universities or the private collections of users willing to
share them. Thus, distributed XML-Retrieval systems should be investigated in order
to search large-scale or scattered collections. Additionally, much more powerful
search engines can be built by pooling computers together – the load of computations
and storage consumption can then be distributed over all participating nodes.

However, this comes at the cost of traffic between those nodes. Hence, distributed
search engines have to consider efficiency as well as effectiveness. In terms of XML-
Retrieval, a distributed search engine has to ensure an appropriate distribution of both
content and structural information. On the other hand, structure can be used to perform

98 J. Winter and O. Drobnik

the distributed search more effectively and efficiently, for example when selecting
postings in the routing process.

To the best of our knowledge, none of the content-oriented XML-Retrieval solutions
currently consider distributed aspects. In this paper, we present the first distributed
XML-Retrieval system that performs content-oriented search for XML-documents. Our
system is based on a structured P2P system.

P2P networks are emerging infrastructures for distributed computing, where peers –
autonomous and equal nodes – are pooled together. Resources that are shared between
the peers include hardware such as disk storage and CPU usage as well as information
stored in files (e.g. documents). Unlike classical client/server systems, there is no cen-
tral control, but a high degree of self-organization, such that P2P systems are very
flexible, adapt to new situations (such as joining and leaving of nodes), and thus may
scale to theoretically unlimited numbers of participating nodes.

A P2P network can be organized as a Structured Overlay Network where a logical
structure is laid on top of a physical network, e.g. to allow for search of distributed
resources by use of application-specific keys. Distributed hash tables (DHT) can be
used to route messages to a peer storing an object specified by a unique identifier
(ID), without knowing the peer’s physical address. The data structure for the routing
table, and thus the logical structure of the overlay network, depends on the DHT algo-
rithm used. For example, the Chord protocol maintains a DHT ring and maps peers
and keys to an identifier ring [9]. Commonly, DHT-based algorithms structure an
overlay network such that efficient lookup of objects can be performed.

There are an increasing number of XML-documents among the growing amount of
objects shared by P2P applications, especially since public and private institutions
such as museums have started to share their Digital Libraries. There are a number of
search engines for P2P networks, for example the DHT-based systems [2] and [7].
However, none of these approaches supports XML-Retrieval techniques. Schema-
based P2P-networks [3], on the other hand, consider structure for the routing, but
existing solutions (such as [1]) do not provide IR techniques for content-oriented
search.

In this paper, we propose the first distributed XML-Retrieval system named SPIRX
(Search Engine for P2P IR in XML-documents). It provides a series of features such as
CAS queries, the capacity to weight different XML-elements differently, and element
retrieval. On the one hand, this system takes advantage of XML-structure to make the
search for XML-documents more precise, that is, structure is used to achieve a system
that is more effective than current P2P-IR solutions. On the other hand, XML-structure
can be involved in the routing to make the search process more efficient, e.g. by select-
ing posting list and postings based on evidence from both content and structure. To
demonstrate the proposed approach as an XML-Retrieval system, we participated in
INEX 2008. This paper describes motivation, research questions, technical details,
submitted runs for the ad-hoc track, and preliminary evaluation results of our system.

2 A P2P Search Engine for XML-Documents

The following section describes SPIRIX, a search engine for P2P Information Re-
trieval (IR) of XML-documents. First, we present the architecture and system design

 SPIRIX: A Peer-to-Peer Search Engine for XML-Retrieval 99

of SPIRIX, focusing in particular on the techniques for extracting and storing struc-
tured information while indexing. Second, we outline where and how structure can be
used in the process of answering a given INEX query.

2.1 System Design – How XML-Structure Is Distributed While Indexing

The smallest object indexed by SPIRIX is what we denote by XTerm: a tuple consist-
ing of a stemmed non-stopword term and its structure. A term’s structure is denoted
as the path from the document root element to the term element in the XML-
document tree expressed with XPath but without element numbers. To reduce the
variety of different structures, we apply methods such as mapping of syntactically
different but semantically similar tags, as well as stopword removal and stemming of
tags.

For each indexed collection, a temporary inverted index for all extracted XTerms is
built locally, where the vocabulary consists of keys that are combinations of all
XTerms with the same content while each XTerm maintains its own posting list (see
figure 1). Each posting refers to a document, but its score is computed based on evi-
dence from the document’s weight (tf, idf), from its element weights, and from the
peer assigned to the document (peerScore). More details about our impact ordering
and the full formula are given in [10].

Fig. 1. Example of a key in the inverted index

In the same parsing phase, we build a temporary statistic index (document index
and element index) by collecting the statistics for each document and for selected
elements which are treated as independent documents. So far, only fixed tags (para-
graphs and sections) are considered as potential relevant elements. We are currently
extending the method to elements that have been found relevant in the past or were
specially marked by the indexing user.

After creation of the temporary inverted index, we scan this index and build com-
binations of frequent keys to support multi term queries. These combinations are
called highly discriminative keys (HDK) and are stored in the HDK index.

Finally, all temporary indexes are distributed over the network. For message trans-
port, we integrated a P2P protocol named SpirixDHT that has been developed to sup-
port efficient transport of messages between peers when retrieving XML-documents.
This protocol is based on Chord and has been adapted to the special requirements of
XML-retrieval as described in [10]. That is, in a network of n peers, we can store and
locate information identified by unique IDs with DHT techniques in O(log(n)) hops.
The inverted index is distributed by storing the posting lists on different peers. As ID
that is hashed to assign a posting list to its according peer, we use the posting list
key’s content. This guarantees that all posting lists referring to the same term are
stored on the same peer, because in the routing they are most likely to be used to-
gether. The statistic index is distributed by hashing the unique ID of each document

apple \book\chapter doc1(12.8), doc2(12.4)
 \article\p doc2(25.3), doc3(12.7), doc4(10.7)

100 J. Winter and O. Drobnik

(which is calculated by the peer’s IP-address, its port, and the local document name,
or which is created by storing the exact number of global documents in the DHT). To
ensure that element statistics are stored on the same peer as their root document, the
hashed IDs of elements are chosen to be identical with those of their root documents.

P2P networkP2P network
Index storage component

Inverted Index Statistics Index

INFORMATION RETRIEVAL

PEER-TO-PEER

APPLICATION

Document
index

Retrieval unit
index

Frequent
XTerm index

HDK
index

Frequent
XTerm index

HDK
index

Fig. 2. Parts of the distributed global indexes are stored on each peer

By applying these distribution techniques, SPIRIX is based on global indexes (in-
verted index and statistics index) which are not stored centrally but distributed over
all participating peers. If peers leave the network or new participants join, the indexes
are automatically redistributed as the network organizes itself. For example, a new
peer can take over some of the stored information for which its direct neighbour has
been responsible. Figure 2 shows the different parts of the global indexes that are
stored locally on each peer and that are managed by the index storage component as
part of the IR complex on each peer.

2.2 System Use – Where XML-Structure Is Used While Querying

How is the distributed information used in the querying process, and above all, where
is XML-structure applied to improve performance?

Retrieval includes routing and ranking, and consists of two steps: first, to locate the
posting lists of all query terms, merge them and select promising postings. For this
step, routing requests are sent over the P2P network. Second, locate the statistics for
the selected postings, such that the referenced documents and elements can be ranked.
For this step, ranking requests are sent. In contrast to common P2P search engines
that perform routing and ranking solely based on content evidence, SPIRIX includes
XML-structure in both steps.

Routing: Especially for multi term queries, where posting lists have to be sent be-
tween peers for merging, not all postings can be selected as this would significantly
increase network traffic for large-scale collections with big posting lists. For the se-
lection of posting lists, we compute the similarity between the structural hint of a
CAS query and the structure of an XTerm’s posting list using the functions described
in [12]. Only those posting lists are considered where the structural similarity exceeds
a threshold. Furthermore, only top k entries from the chosen posting lists are selected.
For this purpose, the postings are ordered by impact based on evidence from docu-
ment-, element-, and peer-level but also based on the structural similarity of the origi-
nal posting list. Postings of XTerms that match the CAS hint closely thus get a higher
impact factor than less similar ones.

 SPIRIX: A Peer-to-Peer Search Engine for XML-Retrieval 101

Ranking: For each selected posting, a ranking request is sent to the peer that is as-
signed to the referenced document. The relevance is then computed using an exten-
sion of the vector space model: query, document, and elements are represented as
vectors whereby each component contains the weight of an XTerm. That is, the
weight of a term is split into individual weights for its different structures. Second, the
weight itself is computed using structure: it is computed as the product of the weight
of the XTerm’s content and the structural similarity between XTerm and CAS query
term. Third, the weight of the XTerm’s content is computed with an adaptation of
BM25E [8] such that different elements can be weighted differently, e.g. “titles” can
get higher weights than “links”. So far we have not been able to show improvement
using this method so we set all weights to 1; however, we want to provide this feature
in case we or others can use it to make future improvements to Wikipedia or maybe
other, more semantically structured collections. Finally, all relevance computations
are performed not only for the selected documents but also for their potential relevant
element (whose statistics are stored on the same peer for better access) to achieve
more focused and specific results. Similar to related work, e.g. [5], we assume a
strong correlation between the relevance of an element and its parent document.
Therefore, the parent document influences the ranking of elements: the score of an
element is computed based on the stored statistics but smoothed by the score of its
parent document.

q = {apple, \book}

1. Routing
request (q)

p0

p4

p7

p9

2. Ranking
request (q,dok1)

apple, \book dok1(4.8), dok2(4.1)…
apple, \novel dok4(12.9)

2. Ranking
request (q,dok4)

Dok4=(1,4,0,0,3,…)

Dok1=(0,1,5,1,3,…)

3. Result = {(dok1/sec,5.4)}

3.
Res

ult
=

{(d
ok

2,
12

.4
),

(d
ok

2/
ch

ap
, 1

1.
2)

}

Fig. 3. Retrieval process for single term query q = {apple,\book} based on SpirixDHT

Figure 3 displays the process of answering a query q. First, q is routed to Peer p4
which is assigned to the hash of apple and holds all posting lists for XTerms with
content apple. On p4, posting lists and postings are selected according to q by taking
into account the postings’ weight multiplied with the similarity to \book. Postings
dok1 and dok4 are selected, and routing requests are sent to peers p7 and p9 which are
responsible for holding the statistics of these documents and their elements. Peer p7

and peer p9 both receive the query, calculate results and send these back to the
querying peer p0.

102 J. Winter and O. Drobnik

3 Participating in INEX 2008

3.1 INEX Tracks

2008 was the first year that the University of Frankfurt participated in INEX. We
chose two tracks: the ad-hoc track and the efficiency track. Our participation in the
efficiency track is described in [12]. We concentrate on the ad-hoc track.

3.2 INEX Tasks (Ad-Hoc Track)

Our main task was the focused task. To answer a topic for this task, 5000 documents
are chosen from the posting list of each query term. Note that this is done on separate
peers, that is, before the posting lists are merged. Their relevance plus the relevance
of selected elements from these documents is then computed. Overlapping is filtered
out by ordering the results by document ID and element offset. If two results have
identical document IDs and one offset is the first part of the other one, only the result
with the higher relevance is kept.

We submitted the same results – filtered by the corresponding rules – to the
BestInContext task (BIC) and to the RelevantInContext task (RIC) as well to see how
SPIRIX performs in these tasks. However, due to bugs in the BIC/RIC-Filters these
runs were not successful and ended up with a precision of nearly 0%.

3.3 University of Frankfurt Runs (Ad-Hoc Track)

We participated in order to demonstrate SPIRIX as an XML-Retrieval system. Fur-
thermore, we were interested in a comparison of different methods implemented in
our system. These include:

• CO versus CAS: do structural hints help to improve ranking or routing?
• How do different ranking functions perform?
• How do different structural similarity functions perform (ranking and routing)?
• How does the amount of selected postings affect precision?
• Element versus document retrieval – where does SPIRIX perform better?

For the official runs, we decided to compare different ranking functions. For each
run, 5000 postings were selected from the posting lists and the structural similarity
function described in [11] was used. For each task, three runs were submitted for
three different ranking functions: a tf*idf-Baseline, a variant of BM25E, and a variant
of BM25E with weights>1 for the elements article, body, section, paragraph, bold
and with weights<1 for the elements collectionlink, languagelink, unknownlink,
wikipedialink and template.

3.4 Tuning the System – Balance between Effectiveness and Efficiency

Participating in the ad-hoc track, we aimed for high precision. Thus, for many pa-
rameters that influence the balance between effectiveness and efficiency, we chose
values that aim at effectiveness including e.g. global statistics. For early termination
(selection of postings), we decided for a compromise of 5000 postings. Regarding

 SPIRIX: A Peer-to-Peer Search Engine for XML-Retrieval 103

storage of structural information, we used methods to shorten the structure length
which results in an index that is much smaller and easier to handle, but which also
reduces precision by approximately 5%.

Global statistics: SPIRIX is based on a DHT which enables the collection and stor-
age of global statistics. Usually, we estimate these statistics from the locally stored
part of the distributed document index that contains randomly hashed samples from
the collection. This estimation technique saves the messages necessary for distributing
and accessing global statistics at the cost of reduced precision, depending on the esti-
mations. Therefore, for the INEX runs, the exact global statistics were used.

Early termination (Selection of 5000 postings): Due to our system architecture,
taking all postings from a posting list is not efficient as this leads to many ranking
request messages. However, precision increases with the amount of selected postings
(up until a collection specific point). Thus, the best 5000 documents were selected
from each query term’s posting list. Note that this is done on separate peers and thus
without merging – we lose precision for multi term queries when good documents are
on positions > 5000. For Wikipedia, 5000 postings are sufficient for most topics.

4 Evaluation

The performance of SPIRIX in the ad-hoc track (focused task) is shown in table 1.
The official result for the submission in July 2008 shows a precision of 0,20 and rank
64 out of 76 participants for the document run (with 0,36 being the top achieved pre-
cision). For focused retrieval, the official result is 0,27. The achieved search quality
establishes SPIRIX as an XML-Retrieval system but is rather low in comparison to
other systems. This was due to bugs in the overlapping filters resulting in illegal du-
plicates such that only our baseline run – with a simple tf*idf-variant as ranking
model – could be officially evaluated. After correcting the filtering bugs, we ran the
evaluation ourselves and could report a precision of 0,52 at the INEX workshop in
December 2008 (with 0,68 achieved at rank 1 by University of Waterloo).

Table 1. Performance at INEX2008, measured in iP[0.01]

 July 2008
(official result)

July 2008
(official result)

Dec. 2008
(presented at workshop)

Feb. 2009
(efficiency track)

Track/Task Dokument Retrieval
(AdHoc /Focused)

Focused Retrieval
(AdHoc /Focused)

AdHoc/ Focused AdHoc/ Focused

iP[0.01]
SPIRIX

0,20 0,27 0,52 0,679

iP[0.01]
Best system

0,36 (Lyon) 0,69 (Waterloo) 0,69 (Waterloo) 0,69 (Waterloo)

Rank 64 of 76 58 of 61 ca. 47 of 61 ca. 4 of 61

We can now report on a SPIRIX run of 0,679 precision for the focused task. This

run was officially submitted (after the INEX workshop, though) to the efficiency
track, in order to compare the 5 submitted P2P-based runs with an optimized run

104 J. Winter and O. Drobnik

where all parameters were set to simulate a client/server search engine. The increase
in precision was not achieved by adapting to the INEX 2008 topics but by improve-
ments in the indexing and ranking process of SPIRIX and by keeping all posting lists
on one peer to simulate a client/server-system.

Fig. 4. iP[0.01] for each single topic

To analyze SPIRIX’ performance in order to get hints for future improvements, we
looked at the precision for each single topic as displayed in figure 4. The variety over
the topics is as wide as possible: the precision is anything between 0 and 1. A third of
the topics was answered successfully with a precision of more than 0,90. For 19 out of
70 topics, even a precision of 0,99 could be achieved. More than half of all topics
could be answered with a precision of more than 0,45. Only for 15 topics was the
achieved precision less than 0,10. These were mainly topics with many terms or diffi-
cult topics. For example, topic no. 677 asked for articles about terracotta figures
showing horses. Only two documents in the whole Wikipedia collection have been
assessed as relevant to this topic.

5 Conclusion

In this paper, we have proposed the first distributed search engine for XML-
documents. SPIRIX is based on a structured P2P system and offers a whole variety of
XML-Retrieval features such as taking advantage of CAS queries, weighting different
elements differently, and element retrieval. We participated in INEX 2008 to demon-
strate SPIRIX as an XML-Retrieval system with an IR quality comparable to central-
ized XML-Retrieval. University of Frankfurt participated in INEX 2008 for the first
time, and the implementation of our first prototype was not ready until one week
before the run submission deadline. Thus, most of our runs for the official submission
failed due to technical errors. The only officially evaluated run was our baseline run
in which we achieved a precision of 27% – high enough to claim that SPIRIX is in-
deed a XML-Retrieval system. However, after fixing the filters a re-evaluation with
the new INEX 2008 tool could show a precision of 52%, which was reported at the
INEX workshop in Dagstuhl in December 2008. Further improvements in SPIRIX’s
indexing and ranking process as well as simulating a client/server-architecture have
now enabled us to report a precision of 67,9%, which is comparable to the search
quality that the top-10 INEX systems achieved in 2008.

 SPIRIX: A Peer-to-Peer Search Engine for XML-Retrieval 105

Acknowledgements. We would like to thank Andrew Trotman and Shlomo Geva for
endless hours of discussion about the challenges and opportunities of XML-IR for
P2P, for loads of critical remarks – always constructive –, and for sharing their view
of XML-IR.

References

[1] Abiteboul, S., Manolescu, I., Polyzotis, N., Preda, N., Sun, C.: XML processing in DHT
networks. In: IEEE 24th Internat Conference on Data Engineering (ICDE 2008) (2008)

[2] Bender, M., Michel, S., Weikum, G., Zimmer, C.: The MINERVA Project - Database Se-
lection in the Context of P2P Search. In: BTW Conference 2005 (2005)

[3] Koloniari, G., Pitoura, E.: Peer-to-Peer Management of XML Data: Issues and Research
Challenges. SIGMOD Rec. 34(2) (2005)

[4] Li, J., Loo, B., Hellerstein, J., Kaashoek, F., Karger, D., Morris, R.: On the Feasibility of
Peer-to-Peer Web Indexing and Search. In: Proc. of the Second International Workshop
on Peer-to-Peer Systems (2003)

[5] Mass, Y., Mandelbrod, M.: Component Ranking and Automatic Query Refinement for
XML Retrieva. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS,
vol. 3493, pp. 73–84. Springer, Heidelberg (2005)

[6] Michel, S., Triantafillou, P., Weikum, G.: KLEE - A Framework for Distributed Top-k
Query Algorithms. In: Proc. of 31st VLDB Conference, Trondheim, Norway (2005)

[7] Podnar, I., Rajman, M., Luu, T., Klemm, F., Aberer, K.: Scalable Peer-to-Peer Web Re-
trieval with Highly Discriminative Keys. In: Proc. of IEEE 23rd International Conference
on Data Engineering (ICDE 2007), Istanbul, Turkey (2007)

[8] Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted
fields. In: Proc. of CIKM 2004. ACM Press, New York (2004)

[9] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, F., Dabek, F., Balakrish-
nan, H.: Chord - A Scalable Peer-to-peer Lookup Protocol for Internet Applications.
IEEE/ACM Transactions on Networking 11(1) (2003)

[10] Winter, J.: Routing of Structured Queries in Large-Scale Distributed Systems. In:
LSDS_IR 2008 at ACM CIKM 2008, Napa Valley, California, USA (October 2008)

[11] Winter, J., Drobnik, O.: An Architecture for XML Information Retrieval in a Peer-to-Peer
Environment. In: ACM PIKM2007 at CIKM 2007, Lisbon, Portugal (2007)

[12] Winter, J., Jeliazkov, N.: Recognition of Structural Similarity To Increase Performance.
In: Preproceedings of the 7th International Workshop of the INitiative for the Evaluation
of XML Retrieval (INEX 2008), Dagstuhl, Germany (2008)

[13] Yee, W.G., Nguyen, L.T., Jia, D., Frieder, O.: Efficient Query Routing by Improved Peer
Description in P2P Networks. In: Proc. of ACM/ICST Infoscale (2008)

[14] Zhang, J., Suel, T.: Optimized Inverted List Assignment in Distributed Search Engine Ar-
chitectures. In: Proc. of 21th IPDPS 2007, California, USA (2007)

Overview of the INEX 2008 Book Track

Gabriella Kazai1, Antoine Doucet2, and Monica Landoni3

1 Microsoft Research Cambridge, United Kingdom
gabkaz@microsoft.com

2 University of Caen, France
doucet@info.unicaen.fr

3 University of Lugano
monica.landoni@unisi.ch

Abstract. This paper provides an overview of the INEX 2008 Book
Track. Now in its second year, the track aimed at broadening its scope
by investigating topics of interest in the fields of information retrieval, hu-
man computer interaction, digital libraries, and eBooks. The main topics
of investigation were defined around challenges for supporting users in
reading, searching, and navigating the full texts of digitized books. Based
on these themes, four tasks were defined: 1) The Book Retrieval task
aimed at comparing traditional and book-specific retrieval approaches,
2) the Page in Context task aimed at evaluating the value of focused re-
trieval approaches for searching books, 3) the Structure Extraction task
aimed to test automatic techniques for deriving structure from OCR and
layout information, and 4) the Active Reading task aimed to explore suit-
able user interfaces for eBooks enabling reading, annotation, review, and
summary across multiple books. We report on the setup and results of
each of these tasks.

1 Introduction

As a result of numerous mass-digitization projects [2], e.g., Million Book project1,
efforts of the Open Content Alliance2, and the digitization work of Google3, the
full texts of digitized books are increasingly available on the Web and in digital
libraries. The unprecedented scale of these efforts, the unique characteristics of
the digitized material, as well as the unexplored possibilities of user interactions
present exciting research challenges and opportunities, see e.g., [7].

Motivated by the need to foster research in this domain, the Book Track was
launched in 2007 as part of the INEX initiative. The overall goal of the track
is to promote inter-disciplinary research investigating techniques for support-
ing users in reading, searching, and navigating the full texts of digitized books
and to provide a forum for the exchange of research ideas and contributions.
In 2007, the track concentrated on identifying infrastructure issues, focusing

1 http://www.ulib.org/
2 www.opencontentalliance.org/
3 http://books.google.com/

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 106–123, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.ulib.org/
www.opencontentalliance.org/
http://books.google.com/

Overview of the INEX 2008 Book Track 107

on information retrieval (IR) tasks. In 2008, the aim was to look beyond and
bring together researchers and practitioners in IR, digital libraries, human com-
puter interaction, and eBooks to explore common challenges and opportunities
around digitized book collections. Toward this goal, the track set up tasks to
provide opportunities for investigating research questions around three broad
topics:

– IR techniques for searching collections of digitized books,
– Users’ interactions with eBooks and collections of digitized books,
– Mechanisms to increase accessibility to the contents of digitized books.

Based around these main themes, four specific tasks were defined

1. The Book Retrieval (BR) task, framed within the user task to build a reading
list for a given topic, aimed at comparing traditional document retrieval
methods with domain-specific techniques exploiting book-specific features,
such as the back of book index or associated metadata, like library catalogue
information,

2. The Page in Context (PiC) task aimed to test the value of applying focused
retrieval approaches to books, where users expect to be pointed directly to
relevant book parts,

3. The Structure Extraction (SE) task aimed to evaluate automatic techniques
for deriving structure from OCR and layout information for building hyper-
linked table of contents, and

4. The Active Reading task (ART) aimed to explore suitable user interfaces
enabling reading, annotation, review, and summary across multiple books.

In this paper, we discuss the setup and results of each of these tasks. First,
in Section 2, we give a brief summary of the participating organisations. In Sec-
tion 3, we describe the corpus of books that forms the basis of the test collection.
The following three sections detail the four tasks: Section 4 summarises the BR
and PiC tasks, Section 5 reviews the SE task, and Section 6 discusses ART. We
close in Section 7 with a summary and further plans.

2 Participating Organisations

A total of 54 organisations registered for the track (double from last year’s 27),
of which 15 took part actively throughout the year (up from 9 last year), see
Tables 1 and 2. For active participants, the topics they created and assessed, and
the runs they submitted are listed in Table 1. In total, 19 groups downloaded the
book corpus, 11 groups contributed 40 search topics, 2 groups submitted runs
to the Structure Extraction task, 4 to the Book Retrieval task, 2 to the Page
in Context task, and 2 are currently participating in the Active Reading task.
A total of 17 participants from 10 known4 groups contributed to the relevance
assessments.
4 Three of the assessors did not provide an affiliation (topics assessed: 8, 60, 68).

108 G. Kazai, A. Doucet, and M. Landoni

Table 1. Active participants of the INEX 2008 Book Track, contributing topics,
runs, and/or relevance assessments (BR = Book Retrieval, PiC = Page in Context,
SE = Structure Extraction, ART = Active Reading Task)

ID Organisation Topics Runs Assessed topics
6 University of Amsterdam 51, 52, 65 3 BR, 7 PiC 8, 9, 21, 29, 51, 52, 57,

60
7 Oslo University College 12
14 University of California, Berke-

ley
66, 67 3 BR, ART

17 University of Strathclyde 9, 21, 55
30 CSIR, Wuhan University 36, 38, 39, 42
31 Faculties of Management and In-

formation Technologies, Skopje
40, 46, 47, 48

41 University of Caen 60, 61 31, 37, 60
43 Xerox Research Centre Europe 4 SE
52 Kyungpook National University 44, 45, 49, 50 ART 1
54 Microsoft Research Cambridge 55, 56, 57, 58,

62, 63, 64, 70
1, 3, 5, 8, 21, 22, 27,
31, 36, 51, 53, 55, 56,
57, 62, 63, 64

56 JustSystems Corporation 53, 54, 59 53, 54
62 RMIT University 31, 37, 41, 43 10 BR 5, 8, 21, 27, 31, 36, 37,

39, 41, 57, 60, 64, 69
78 University of Waterloo 32, 33, 34, 35 2 BR, 6 PiC 12, 51, 53, 62
86 University of Lugano 68, 69 3, 15, 68, 70
125 Microsoft Development Center

Serbia
3 SE

3 The Book Corpus

The track builds on a collection of 50,239 digitized out-of-copyright books, pro-
vided by Microsoft Live Search and the Internet Archive. The corpus is made up
of books of different genre, including history books, biographies, literary studies,
religious texts and teachings, reference works, encyclopedias, essays, proceedings,
novels, and poetry.

The OCR text of the books has been converted from the original DjVu for-
mat to an XML format referred to as BookML, developed by Microsoft De-
velopment Center Serbia. BookML provides additional structure information,
including markup for table of contents entries. 50,099 of the books also come
with an associated MAchine-Readable Cataloging (MARC) record, which con-
tains publication (author, title, etc.) and classification information.

The basic XML structure of a typical book in BookML (ocrml.xml) is a se-
quence of pages containing nested structures of regions, sections, lines, and words
([coords] represents coordinate attributes, defining the position of a bounding
rectangle for a region, line or word, or the width and height of a page):

Overview of the INEX 2008 Book Track 109

<document>

<page pageNumber=‘‘I-N’’ label=‘‘PT_CHAPTER’’ [coords] key=‘‘0’’ id=‘‘0’’>

<region regionType=‘‘Text’’ [coords] key=‘‘0’’ id=‘‘0’’>

<section label=SEC BODY’’ key=‘‘408’’ id=‘‘0’’>

<line [coords] key=‘‘0’’ id=‘‘0’’>

<word [coords] key=‘‘0’’ id=‘‘0’’ val=‘‘Moby’’/>

<word [coords] key=‘‘1’’ id=‘‘1’’ val=‘‘Dick’’/>

</line>

<line [...]>

<word [...] val=‘‘Herman’’/>

<word [...] val=‘‘Melville’’/>

</line> [...]

</section> [...]

</region> [...]

</page> [...]

</document>

BookML provides a set of labels (as attributes) indicating structure informa-
tion in the full text of a book and additional marker elements for more complex
texts, such as a table of contents. For example, a label attribute may indicate the
semantic unit that an XML element is likely to be a part of, e.g., a section may be
part of a header (SEC HEADER), a footer (SEC FOOTER), the back of book

Table 2. Passive participants of the INEX 2008 Book Track

ID Organisation ID Organisation
Passive participants (Corpus download only)
4 University of Otago 42 University of Toronto
10 Max-Planck-Institut Informatik 116 University of the Aegean
Passive participants
5 Queensland University of Technology 104 UCLV
8 University College London 107 University of Sci. and Tech. of China
9 University of Helsinki 112 Hitachi, Ltd.
15 University of Iowa 115 IIT
19 University of Ca Foscari di Venezia 117 Iran
21 MPP 118 M.Tech Student
27 University at Albany (also ID=76) 127 UNICAMP
29 Indian Statistical Institute 148 UEA
32 CUHK 158 George Mason University
39 University of New South Wales 160 Universite Jean Monnet
51 Suny-Albany 161 University of California, Santa Cruz
60 Saint Etienne University 164 Isfahan University
66 University of Rostock 165 Universidad de Oriente
88 Independent 166 Drexel University
91 Auckland University of Technology 171 Chinese University of Hong Kong
93 Wuhan Institute of Technology 174 Alexandria University
96 Cairo Microsoft Innovation Center 181 COLTEC
100 Seoul National University

110 G. Kazai, A. Doucet, and M. Landoni

index (SEC INDEX), the table of contents (SEC TOC), or the body of the page
(SEC BODY), etc. A page may be labeled as a table of contents page (PT TOC),
an empty page (PT EMPTY), a back of book index page (PT INDEX), or as
a chapter start page (PT CHAPTER), etc. Marker elements provide detailed
markup, e.g., for table of contents, indicating entry titles (TOC TITLE), and
page numbers (TOC CH PN), etc.

The full corpus, which totals around 400GB, was distributed on USB HDDs
(at a cost of 70GBP). In addition, a reduced version (50GB, or 13GB com-
pressed) was made available for download. The reduced version was generated
by removing the word tags and propagating the values of the val attributes as
text content into the parent (i.e., line) elements.

4 Information Retrieval Tasks

Focusing on IR challenges, two search tasks were investigated: 1) Book Retrieval
(BR), in which users search for whole books in order to build a reading list on a
given topic, and 2) Page in Context (PiC), in which users search for information
in books on a given topic and expect to be pointed directly at relevant book parts.
Both these tasks used the corpus of over 50,000 books described in Section 3,
and the same set of test topics (see Section 4.3). This was motivated by the
need to reduce the relevance assessment workload and to allow possible future
comparisons across the two tasks.

A summary of the tasks, the test topics, the online relevance assessment sys-
tem, the collected assessments, and the evaluation results are described in the
following sections. Further details and the various DTDs, describing the syntax of
submission runs, are available online in the track’s Tasks and Submission Guide-
lines at http://www.inex.otago.ac.nz/tracks/books/taskresultspec.asp.

4.1 The Book Retrieval (BR) Task

This task was set up with the goal to compare book-specific IR techniques with
standard IR methods for the retrieval of books, where (whole) books are returned
to the user. The user scenario underlying this task is that of a user searching for
books on a given topic with the intent to build a reading or reference list. The
list may be for research purposes, or in preparation of lecture materials, or for
entertainment, etc.

Participants of this task were invited to submit either single runs or pairs of
runs. A total of 10 runs could be submitted. A single run could be the result
of either generic (non-specific) or book-specific IR methods. A pair of runs had
to contain both types, where the non-specific run served as a baseline which
the book-specific run extended upon by exploiting book-specific features (e.g.,
back-of-book index, citation statistics, book reviews, etc.) or specifically tuned
methods. One automatic run (i.e., using only the topic title part of a test topic

http://www.inex.otago.ac.nz/tracks/books/taskresultspec.asp

Overview of the INEX 2008 Book Track 111

for searching and without any human intervention) was compulsory. A run could
contain, for each test topic, a maximum of 1000 books (identified by their 16
character long bookID5), ranked in order of estimated relevance.

A total of 18 runs were submitted by 4 groups (3 runs by University of Am-
sterdam (ID=6); 3 runs by University of California, Berkeley (ID=14); 10 runs
by RMIT University (ID=62); and 2 runs by University of Waterloo (ID=78)),
see Table 1.

4.2 The Page in Context (PiC) Task

The goal of this task was to investigate the application of focused retrieval ap-
proaches to a collection of digitized books. The task was thus similar to the
INEX ad hoc track’s Relevant in Context task, but using a significantly different
collection while also allowing for the ranking of book parts within a book. The
user scenario underlying this task was that of a user searching for information in
a library of books on a given subject. The information sought may be ’hidden’
in some books (i.e., it forms only a minor theme) while it may be the main focus
of some other books. In either case, the user expects to be pointed directly to
the relevant book parts. Following the focused retrieval paradigm, the task of a
focused book search system is then to identify and rank (non-overlapping) book
parts that contain relevant information and return these to the user, grouped by
the books they occur in.

Participants could submit up to 10 runs, where one automatic and one manual
run was compulsory. Each run could contain, for each topic, a maximum of
1000 books estimated relevant to the given topic, ordered by decreasing value
of relevance. For each book, a ranked list of non-overlapping XML elements,
passages, or book page results estimated relevant were to be listed in decreasing
order of relevance. A minimum of one book part had to be returned for each
book in the ranking. A submission could only contain one type of results, i.e.,
only XML elements or only passages; result types could not be mixed.

A total of 13 runs were submitted by 2 groups (7 runs by the University
of Amsterdam (ID=6); and 6 runs by the University of Waterloo (ID=78)),
see Table 1. All runs contained XML element results (i.e., no passage based
submissions were received).

4.3 Test Topics

The test topics are representations of users’ informational needs, i.e, the user is
assumed to search for information on a given subject. As last year, all topics were
limited to deal with content only aspects (i.e., no structural query conditions).

Participants were asked to create and submit topics for which at least 2 but
no more than 20 relevant books were found using an online Book Search system
(see Section 4.4).

5 The bookID is the name of the directory that contains the book’s OCR file, e.g.,
A1CD363253B0F403

112 G. Kazai, A. Doucet, and M. Landoni

<?xml version=‘‘1.0’’ encoding=‘‘ISO-8859-1’’?>

<!DOCTYPE inex topic SYSTEM ‘‘bs-topic.dtd’’>

<inex topic track=‘‘book’’ task=‘‘book-retrieval/book-ad-hoc’’

topic id=‘‘62’’ ct no=‘‘2008-37’’>

<title> Attila the hun </title>

<description> I want to learn about Attila the Hun’s character, his way of

living and leading his men, his conquests, and rule.

</description>

<narrative>

<task> I was discussing with some friends about Attila the Hun. What I

found interesting was the difference in our perceptions of Attila: As a

great hospitable king vs. a fearsome barbarian. I want to find out more

about Attila’s character, his way of living as well as about his wars to

better understand what he and his era of ruling represents to different

nations.

</task>

<infneed> Any information on Attila’s character, his treatment of others, his

life, his family, his people’s and enemies’ view on him, his ambitions,

battles, and in general information on his ruling is relevant, and so is any

information that can shed light on how he is perceived by different nations.

Poems that paint a picture of Attila, his court and his wars are also relevant.

</infneed>

</narrative>

</inex_topic>

Fig. 1. Example topic from the INEX 2008 Book Track test set

A total of 40 new topics (ID: 31-70) were contributed by 11 participating
groups (see Table 1), following the topic format described below. These were
then merged with the 30 topics created last year for the PiC task (ID: 1-30). An
example topic is shown in Figure 1.

Topic Format. The topic format remained unchanged from 2007, each topic
consisting of three parts, describing the same information need, but for different
purposes and at different level of detail:

<title>: represents the search query that is to be used by systems for the
automatic runs. It serves as a short summary of the user’s information need.

<description>: is a natural language definition of the information need.
<narrative>: is a detailed and unambiguous explanation of the information

need and a description of what makes a book part relevant or irrelevant.
The narrative is taken as the only true and accurate interpretation of the
user’s need. It consists of the following two parts:
<task>: a description of the user task for which information is sought,

specifying the context, background and motivation for the information
need.

<infneed>: a detailed explanation of what information is sought and what
is considered relevant or irrelevant.

Overview of the INEX 2008 Book Track 113

4.4 Relevance Assessment System

The Book Search system (http://www.booksearch.org.uk), developed at Mi-
crosoft Research Cambridge, is an online web service that allows participants to
search, browse, read, and annotate the books of the test corpus.

For the collection of relevance assessments, a game called the Book Explorers’
Competition was designed and deployed, where assessors (as individuals or as
members of teams) competed for prizes sponsored by Microsoft Research. The
competition involved reading books and marking relevant content inside the
books for which assessors were rewarded points. Assessors with the highest scores
at the close of the competition were pronounced the winners. The game was
modeled as a two-player game with competing roles: explorer vs. reviewer. An
explorer’s task was to judge the set of pooled pages as well as to locate and mark
additional relevant content inside books. Reviewers then had the task of checking
the quality of the explorers’ work by providing their own relevance assessments
for each page that has been judged by at least one explorer. During this process,
the reviewers could see the relevance assessments of all the explorers who assessed
a particular page. In addition to the passage level exploration, both explorers
and reviewers were required, independently (information was not shared), to
assign a degree of relevance to the book as a whole (on a scale from 0 to 5,
with 5 designating the highest degree of relevance). For further details on the
relevance assessment gathering process, please refer to [8].

Screenshots of the assessment system are shown in Figures 2 and 3. Figure 2
shows the list of books in the assessment pool to be judged for a given topic.
The list was built by pooling all the submitted runs, i.e., both BR and PiC runs,
using a round robin process and merging additional search results from the Book
Search system itself. Selecting a book from the list, opened the Book Viewer
window (see Figure 3). There, assessors could browse through the book and
search inside it, or go through the pages listed in the Assessment tab, which were
pooled from the submitted PiC runs. Assessors could highlight text fragments
on a page by drawing a highlight-box over the page image. They could also
mark a whole page or a range of pages as relevant/irrelevant. A detailed user
manual and system description is available at http://www.booksearch.org.
uk/BECRulesAndUserManual.pdf.

Two rounds of the Book Explorers’ Competition were run. The first round
(run in Dec 2008) lasted two weeks and resulted in three winners. One of them
participated as an individual assessor and the other two formed a team. The
second round (run in Jan 2009) spanned four weeks and yielded four winners.
All four assessors belonged to the same team; one among them also achieving
the highest individual score.

4.5 Collected Relevance Assessments

The collection of relevance assessments was frozen on the 25th of February 2009.
The data collected includes the highlight-boxes drawn by assessors on a page, the
binary relevance labels assigned by judges to a page, any notes and comments

http://www.booksearch.org.uk
http://www.booksearch.org.uk/BECRulesAndUserManual.pdf
http://www.booksearch.org.uk/BECRulesAndUserManual.pdf

114 G. Kazai, A. Doucet, and M. Landoni

Fig. 2. Screenshot of the relevance assessment module of the Book Search system: List
of books in the assessment pool for a selected topic

Fig. 3. Screenshot of the relevance assessment module of the Book Search system:
Book Viewer window with Assessment tab listing pooled pages to judge

Overview of the INEX 2008 Book Track 115

Table 3. Collected Relevance Assessments (25 February 2009)

Topic Books Pages
ID Total Judged Relevant Irrelevant Skipped Total Judged Relevant Irrelevant

25 topics - used in evaluation
3 4 4 0 0 414 360 101
8 15 1 14 2 562 23 551
9 235 35 199 2 5991 285 5818
12 133 11 116 9 5660 48 5612
21 66 31 37 1 6026 1400 4696
22 30 12 18 0 956 244 712
27 35 21 14 1 365 101 274
31 18 9 17 0 129 46 97
36 9 7 2 0 1073 1043 30
37 15 7 11 0 120 34 99
39 25 7 18 0 358 27 331
41 14 9 5 0 370 276 94
51 135 15 107 14 1813 555 1270
52 41 23 18 0 1651 199 1456
53 1000 14 986 0 88 76 12
54 385 10 375 0 107 104 3
55 29 20 9 0 2108 397 1714
56 13 7 6 0 139 62 77
57 171 25 147 4 845 83 764
60 85 56 30 6 508 226 310
62 100 38 61 2 868 215 672
63 38 7 31 0 303 37 266
64 23 9 14 0 757 669 89
68 1 1 0 0 313 206 107
69 16 3 13 0 75 12 63
25 2636 382 2248 41 31599 6728 25218

Additional assessments - not used in evaluation
1 999 0 999 0 55 0 54
5 33 0 33 2 495 145 495
15 1 0 1 0 0 0 0
29 5 0 4 1 421 0 421
70 0 0 0 0 495 7 488
5 1038 0 1037 3 1466 154 1458

29 3674 382 3285 44 33120 6889 26724

added for a page, and the relevance degree assigned to the books. In total, 3674
unique books and 33,120 unique pages were judged across 29 topics, and 1019
highlight boxes were drawn by 17 assessors. Table 3 provides a breakdown of the
assessments per topic. For more details on the collected data, please refer to [8].

From the collected assessments, separate book-level and page-level assessment
sets (qrels) were produced, where multiple relevance labels assigned by multiple

116 G. Kazai, A. Doucet, and M. Landoni

assessors were averaged. For example, a book with assigned relevance degrees of
3 and 5 (by two assessors from the multi-grade scale of 0-5) yielded an averaged
score of 4. Note that the score that appears in the qrels is this value multiplied
by 10. The page-level qrel set is similarly the average of the binary scores (0-1)
assigned by multiple assessors to a page, multiplied by 10. For example, a page
with scores of {0, 1, 1, 1} yielded 0.75*10. A weighted version of the qrel sets was
also released to participants, where assessors’ topic familiarity was taken into
account: w =

∑
f ·r∑
f , where w is the weighted average, r is the relevance score

given to a page or book by the assessor, and f is the assessor’s familiarity with
the topic (as provided by the assessor on a seven point scale, where 1 meant
practically no knowledge about the topic and 7 represented an expert on the
area). For example, if a book was rated as 3 by an assessor with familiarity of
6, and rated as 5 by an assessor with familiarity of 1, then the weighted score is
(3 · 6 + 5 · 1)/(6 + 1) = 3.28.

Table 4. Evaluation results for the BR runs

ParticipantID+RunID MAP iP[0.00] iP[0.10] P5 P10 P20
14 BOOKSONLY 0.0837 0.3761 0.3135 0.192 0.136 0.082
14 MARCONLY 0.0386 0.2302 0.1421 0.088 0.056 0.046
14 MERGEMARCDOC 0.0549 0.3076 0.2528 0.144 0.088 0.064
54 BSS 0.0945 0.3715 0.2484 0.168 0.136 0.09
6 BST08 B clean trec 0.0899 0.4051 0.2801 0.176 0.132 0.096
6 BST08 B square times sim100 top8 fw trec 0.0714 0.2771 0.223 0.152 0.12 0.088
6 inex08 BST book sim100 top8 forward trec 0.0085 0.1058 0.0406 0.032 0.02 0.01
62 RmitBookTitle 0.0747 0.2469 0.2195 0.128 0.104 0.094
62 RmitBookTitleBoolean 0.0747 0.2469 0.2195 0.128 0.104 0.094
62 RmitBookTitleInfneed 0.067 0.331 0.1999 0.136 0.1 0.086
62 RmitBookTitleInfneedManual 0.0682 0.2757 0.1868 0.112 0.108 0.088
62 RmitConPageMergeTitle 0.05 0.2414 0.2017 0.104 0.072 0.064
62 RmitConPageMergeTitleBoolean 0.05 0.2414 0.2017 0.104 0.072 0.064
62 RmitConPageMergeTitleInfneedManual 0.0544 0.2786 0.2126 0.128 0.084 0.058
62 RmitPageMergeTitle 0.0742 0.3022 0.2601 0.144 0.116 0.084
62 RmitPageMergeTitleBoolean 0.0741 0.3022 0.2601 0.144 0.116 0.084
62 RmitPageMergeTitleInfneedManual 0.1056 0.3671 0.3456 0.216 0.132 0.098
78 1 0.0193 0.117 0.0683 0.024 0.012 0.01
78 2 0.0214 0.1162 0.0678 0.024 0.012 0.008

4.6 Evaluation Measures and Results

Both IR tasks were evaluated using standard IR measures reported by trec eval
v8.16. The ranking of books in both the BR and PiC runs was evaluated as
traditional document retrieval, by comparing the ranked list of books returned
by systems to the book-level qrel set. To do this, the runs were first converted
to TREC format, during which some runs were truncated at rank 1000; rank
values were derived based on the ordering of book results in a run; and the rsv
was set to 1000− rank.
6 http://trec.nist.gov/trec_eval/index.html

http://trec.nist.gov/trec_eval/index.html

Overview of the INEX 2008 Book Track 117

Table 5. Book-level evaluation results for the PiC runs

ParticipantID+RunID MAP iP[0.00] iP[0.10] P5 P10 P20
6 BST08 P clean trec 0.078 0.3359 0.2077 0.136 0.108 0.096
6 BST08 P plus B trec 0.0761 0.3734 0.2028 0.136 0.116 0.078
6 BST08 P plus sim100 top8 fw trec 0.0707 0.2794 0.1775 0.128 0.092 0.08
6 BST08 P times B trec 0.0532 0.3179 0.1905 0.112 0.068 0.048
6 BST08 P times sim100 top8 fw trec 0.0646 0.3408 0.1643 0.136 0.1 0.074
6 BST08 P with B trec 0.0785 0.3761 0.2189 0.152 0.116 0.088
6 BST08 P with sim100 top8 fw trec 0.053 0.2532 0.1645 0.128 0.096 0.062
78 3 0.0214 0.1162 0.0678 0.024 0.012 0.008
78 4 0.0513 0.278 0.2096 0.096 0.076 0.05
78 5 0.0214 0.1162 0.0678 0.024 0.012 0.008
78 6 0.0495 0.2744 0.205 0.096 0.076 0.048
78 7 0.0495 0.2744 0.205 0.096 0.076 0.048
78 8 0.0495 0.2744 0.205 0.096 0.076 0.048

Table 6. Page-level evaluation results for the PiC runs (precision, recall and the har-
monic mean of precision and recall (F-measure))

ParticipantID+RunID P R F
6 BST08 P clean trec 0.069 0.028 0.027
6 BST08 P plus B trec 0.069 0.028 0.027
6 BST08 P plus sim100 top8 fw trec 0.069 0.028 0.027
6 BST08 P times B trec 0.069 0.028 0.027
6 BST08 P times sim100 top8 fw trec 0.069 0.028 0.027
6 BST08 P with B trec 0.064 0.027 0.025
6 BST08 P with sim100 top8 fw trec 0.068 0.028 0.026
78 3 0.066 0.084 0.045
78 4 0.068 0.096 0.048
78 5 0.069 0.098 0.056
78 6 0.070 0.11 0.057
78 7 0.059 0.14 0.065
78 8 0.059 0.14 0.065

The ranking of book parts in the PiC task was evaluated at page-level for each
book, treating each page as a document and comparing the ranked list of pages
returned by systems to the page-level qrels for that book, and then averaging
over the run (where additional relevant, but not retrieved books were given 0
scores). Note that retrieved XML elements that were at a finer granularity level
than page elements were converted to page-level results to match the qrel set
granularity.

Tables 4, 5, and 6 show the results for the BR, PiC book-level, and PiC page-
level evaluations, respectively. In addition, Figure 4 shows the recall/precision
curves for BR runs.

118 G. Kazai, A. Doucet, and M. Landoni

Fig. 4. Recall/precision curves for BR runs

We summarise below the main findings, but note that since the qrels vary
greatly across topics, these should be treated more as preliminary observations.

For the BR task, the 4 submitting groups experimented with various tech-
niques, e.g., using book content vs. MARC record information [9], ranking books
by document score vs. best element score [5], or ranking books by the percentage
of pages retrieved [12], as well as incorporating Wikipedia evidence [6]. The best
performing run was a run submitted by RMIT (ID=62), ranking books by the
percentage of pages retrieved using BM25 over a page level index (MAP=0.1056).
The general conclusion, however, for the other 3 groups’ experiments was that
the simple book content based baseline performed better than any attempts to
combine book-specific evidence to improve performance. This suggests that there
is still plenty to be done in discovering suitable ranking strategies for books.

For the PiC task, the 2 submitting groups mostly experimented with ways
of combining document and element level scoring methods [5,6]. The best per-
forming runs, based on book-level scores, were submitted by the University of
Amsterdam (ID=6), who found that while focused retrieval methods were able to
locate relevant text within books, page level evidence was of limited use without
the wider context of the whole book. The best page-level results were achieved
by the University of Waterloo (ID=78), ranking book parts by element score
and using no cutoff to limit the size of the ranked list (runs: 78 7 and 78 8).

5 The Structure Extraction (SE) Task

The goal of this task was to test and compare automatic techniques for extract-
ing structure information from digitized books and building a hyperlinked table
of contents (ToC). The task was motivated by the limitations of current digitiza-
tion and OCR technologies that produce the full text of digitized books with only

Overview of the INEX 2008 Book Track 119

minimal structure markup: Pages and paragraphs are usually identified, but
more sophisticated structures, such as chapters, sections, etc., are typically not
recognised.

Participants of the task were provided a sample collection of 100 digitized
books of different genre and styles in DjVu XML format. Unlike the BookML
format of the main corpus, the DjVu files only contain markup for the basic struc-
tural units (e.g., page, paragraph, line, and word); no structure labels and mark-
ers are available. In addition to the DjVu XML files, participants were distributed
the PDF of books or the set of JPEG image files (one per book page).

Participants could submit up to 10 runs, each containing the generated table
of contents for the 100 books in the test set.

A total of 7 runs were submitted by 2 groups (3 runs by Microsoft Develop-
ment Center Serbia (MDCS) (ID=125), and 4 runs by Xerox Research Centre
Europe (XRCE) (ID=43)).

5.1 Evaluation Measures and Results

For the evaluation of the SE task, the ToCs generated by participants were
compared to a manually built ground-truth, created by hired assessors, using a
structure labeling tool built by Microsoft Development Center Serbia. The tool
allowed assessors to attach labels to entries and parts of entries in the printed
ToC of a book (using the PDF file as source).

Performance was evaluated using recall/precision like measures at different
structural levels (i.e., different depths in the ToC). Precision was defined as the
ratio of the total number of correctly recognized ToC entries and the total num-
ber of ToC entries; and recall as the ratio of the total number of correctly recog-
nized ToC entries and the total number of ToC entries in the ground-truth. The
F-measure was then calculated as the harmonic of mean of precision and recall.
For further details on the evaluation measures, please see http://www.inex.
otago.ac.nz/tracks/books/INEXBookTrackSEMeasures.pdf. The ground-
truth and the evaluation tool can be downloaded from http://www.inex.otago.
ac.nz/tracks/books/Results.asp#SE.

The evaluation results are given in Table 7. According to this, the best perfor-
mance (F = 53.47%) was obtained by the MDCS group (ID=125), who extracted

Table 7. Evaluation results for the SE task (complete ToC entries)

ParticipantID+RunID F-measure
125 MDCS 53.47%
125 MDCS NAMES AND TITLES 52.59%
125 MDCS TITLES ONLY 23.24%
43 HF ToC prg Jaccard 10.27%
43 HF ToC prg OCR 10.18%
43 HF TPF ToC prg Jaccard 10.10%
43 HF ToC lin Jaccard 5.05%

http://www.inex.otago.ac.nz/tracks/books/INEXBookTrackSEMeasures.pdf
http://www.inex.otago.ac.nz/tracks/books/INEXBookTrackSEMeasures.pdf
http://www.inex.otago.ac.nz/tracks/books/Results.asp#SE
http://www.inex.otago.ac.nz/tracks/books/Results.asp#SE

120 G. Kazai, A. Doucet, and M. Landoni

ToCs by first recognizing the page(s) of a book that contained the printed ToC
[10]. The XRCE group (ID=43) relied on title detection within the body of a
book and achieved a score of F = 10.27% [3].

6 The Active Reading Task (ART)

The main aim of ART is to explore how hardware or software tools for reading
eBooks can provide support to users engaged with a variety of reading related
activities, such as fact finding, memory tasks, or learning. The goal of the investi-
gation is to derive user requirements and consequently design recommendations
for more usable tools to support active reading practices for eBooks. The task is
motivated by the lack of common practices when it comes to conducting usabil-
ity studies of e-reader tools. Current user studies focus on specific content and
user groups and follow a variety of different procedures that make comparison,
reflection, and better understanding of related problems difficult. ART is hoped
to turn into an ideal arena for researchers involved in such efforts with the crucial
opportunity to access a large selection of titles, representing different genres and
appealing to a variety of potential users, as well as benefiting from established
methodology and guidelines for organising effective evaluation experiments.

ART is based on the large evaluation experience of EBONI [11], and adopts
its evaluation framework with the aim to guide participants in organising and
running user studies whose results could then be compared.

The task is to run one or more user studies in order to test the usability of es-
tablished products (e.g., Amazon’s Kindle, iRex’s Ilaid Reader and Sony’s Read-
ers models 550 and 700) or novel e-readers by following the provided EBONI-
based procedure and focusing on INEX content. Participants may then gather
and analyse results according to the EBONI approach and submit these for over-
all comparison and evaluation. The evaluation is task-oriented in nature. Par-
ticipants are able to tailor their own evaluation experiments, inside the EBONI
framework, according to resources available to them. In order to gather user
feedback, participants can choose from a variety of methods, from low-effort on-
line questionnaires to more time consuming one to one interviews, and think
aloud sessions.

6.1 Task Setup

Participation requires access to one or more software/hardware e-readers (al-
ready on the market or in prototype version) that can be fed with a subset of
the INEX book corpus (maximum 100 books), selected based on participants’
needs and objectives. Participants are asked to involve a minimum sample of
15/20 users to complete 3-5 growing complexity tasks and fill in a customised
version of the EBONI subjective questionnaire, usually taking no longer than
half an hour in total, allowing to gather meaningful and comparable evidence.
Additional user tasks and different methods for gathering feedback (e.g., video
capture) may be added optionally. A crib sheet (see below) is provided to par-
ticipants as a tool to define the user tasks to evaluate, providing a narrative

Overview of the INEX 2008 Book Track 121

describing the scenario(s) of use for the books in context, including factors af-
fecting user performance, e.g., motivation, type of content, styles of reading,
accessibility, location and personal preferences.

ART crib sheet. A task crib sheet is a rich description of a user task that forms
the basis of a given user study based on a particular scenario in a given context.
Thus, it aims to provide a detailed explanation of the context and motivation of
the task, and all details that form the scenario of use:

– Objectives: A summary of the aims and objectives of the task from the users’
point of view, i.e., what is it that users are trying to achieve in this task.

– Task: Description of the task.
– Motivation: Description of the reasons behind running the task.
– Context: Description of the context of the task in terms of time and re-

sources available, emphasis and any other additional factors that are going
to influence task performance.

– Background: Description of any background knowledge required to accom-
plish the task.

– Completion: Description of how to assess whether the task has been com-
pleted or not.

– Success: Description of whether the task has been completed successfully.

Participants are encouraged to integrate questionnaires with interviews and
think aloud sessions when possible, and adapt questionnaires to fit into their
own research objectives whilst keeping in the remit of the active reading task.

We also encourage direct collaboration with participants to help shape the
tasks according to real/existing research needs. In fact one of the participants
explained how English written material was not much use for their experiments
as they were targeting Korean speaking users, so it was agreed that they would
use their own book collection while still adopting the ART evaluation framework
to ensure results were comparable at the end.

Our aim is to run a comparable but individualized set of studies, all contribut-
ing to elicit user and usability issues related to eBooks and e-reading.

Since ART is still ongoing, there is no data to be presented at this point.

7 Conclusions and Plans

The Book Track this year has attracted a lot of interest and has grown to double
the number of participants from 2007. However, active participation remained
a challenge for most due to the high initial set up costs (e.g., building infras-
tructure). Most tasks also require advance planning and preparations, e.g., for
setting up a user study. This, combined with the late announcement and adver-
tising of some of the tasks has limited active participation this year. In particular,
we received expressions of interest for the Structure Extraction and the Active
Reading tasks, but the deadlines prohibited most people from taking part. We

122 G. Kazai, A. Doucet, and M. Landoni

aim to address this issue in INEX 2009 by raising awareness early on in the start
of the INEX year and by ensuring continuity with the tasks established this year.

As a first step in this direction, we are proposing to run the Structure Extrac-
tion task both at INEX 2009 and at ICDAR 2009 (International Conference on
Document Analysis and Recognition) with an increased set of 1,000 books.

Both the Book Retrieval and Page in Context tasks will be run again in 2009,
albeit with some modifications. The BR task will be shaped around the user
task of compiling a reading list for selected Wikipedia articles, while we aim to
expand the PiC tasks to tree retrieval [1].

The greatest challenge in running these two tasks has been the collection of
relevance assessments. Due to the huge effort required, we decided to depart
from the traditional method of relevance assessment gathering (i.e., one judge
per topic), and designed a system where multiple judges assess the same topic.
Implemented as an online game, assessors contributed relevance labels for pas-
sages, pages, and whole books on the topics they were interested in and for any
number of books on that topic. This way of collecting judgements is aimed to
provide a more realistic expectation on the assessors, but it also comes with
its own risks. Attracting a sufficiently large group of dedicated assessors is one
of the risks, for example. To address this issue, we are currently looking at us-
ing Amazon’s Mechanical Turk service, as well as investigating the possibility
of opening up the Book Search system and allowing users to create their own
topics and saving their searches and book annotations for these. Other risks in-
clude the question of the quality of the collected relevance data due to a mixture
of expert and non-expert judges. Working toward a solution, we introduced a
number of measures, such as requiring assessors to specify their familiarity with
their selected topics, as well as allowing users to quality check each other’s work.
We aim to explore additional measures in our future work.

We also plan to re-run this year’s Active Reading task in 2009. We found that
the introduction of ART was a challenge for number of reasons:

– Because of its original approach to evaluation, which is quite far away from
the classic TREC paradigm, and the relative difficulty in framing ART in a
formal way, the task organisation has suffered delays that have affected the
availability of participants to get fully involved in it;

– User studies are per se risky and unpredictable and the idea of running a
number of those in parallel in order to compare and combine results added
an extra layer of uncertainty to the task, somehow discouraging participants
that were used to a more stochastic approach to evaluation;

– The formalisation of the procedure and protocols to be followed when run-
ning user studies was designed on purpose to be flexible and unconstructive
in order to accommodate for participants’ specific research needs. This flexi-
bility, however, was interpreted by some as a lack in details that discouraged
them from taking part.

– Opening up to different communities that were not yet involved in INEX
required concentrated effort in order to advertise and raise awareness of

Overview of the INEX 2008 Book Track 123

what INEX’s aims and objectives and in particular what ART’s goals were.
Some of this effort was simply too late for some interested parties.

The organisation of ART has proved a valuable experience though that has
given us the opportunity to explore different research perspective while focusing
on some of the practical aspects of the task. We believe that the effort that has
gone into setting up ART this year will be rewarded by a more successful task
next year.

Acknowledgements

The Book Track in 2008 was supported by the Document Layout Team of Mi-
crosoft Development Center Serbia. The team contributed to the track by pro-
viding the BookML format and a tool to convert books from the original OCR
DjVu files to BookML. They also contributed to the Structure Extraction task
by helping us prepare the ground-truth data and by developing the evaluation
tools.

References

1. Ali, M.S., Consens, M.P., Kazai, G., Lalmas, M.: Structural relevance: a common
basis for the evaluation of structured document retrieval. In: CIKM 2008: Pro-
ceeding of the 17th ACM Conference on Information and Knowledge Management,
pp. 1153–1162. ACM Press, New York (2008)

2. Coyle, K.: Mass digitization of books. Journal of Academic Librarianship 32(6),
641–645 (2006)

3. Déjean, H., Meunier, J.-L.: XRCE participation to the book structure task. In:
Geva, et al. (eds.) [4]

4. Geva, S., Kamps, J., Trotman, A. (eds.): Advances in Focused Retrieval: 7th In-
ternational Workshop of the Initiative for the Evaluation of XML Retrieval (INEX
2008). LNCS, vol. 5631. Springer, Heidelberg (2009)

5. Itakura, K., Clarke, C.: University of Waterloo at INEX 2008: Adhoc, book, and
link-the-wiki tracks. In: Geva, et al. (eds.) [4]

6. Kamps, J., Koolen, M.: The impact of document level ranking on focused retrieval.
In: Geva, et al. (eds.) [4]

7. Kantor, P., Kazai, G., Milic-Frayling, N., Wilkinson, R. (eds.): BooksOnline 2008:
Proceeding of the 2008 ACM workshop on Research advances in large digital book
repositories. ACM, New York (2008)

8. Kazai, G., Milic-Frayling, N., Costello, J.: Towards methods for the collective gath-
ering and quality control of relevance assessments. In: SIGIR 2009: Proceedings of
the 32nd Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. ACM Press, New York (2009)

9. Larson, R.: Adhoc and book XML retrieval with Cheshire. In: Geva, et al.
(eds.) [4]

10. Uzelac, A., Dresevic, B., Radakovic, B., Todic, N.: Book layout analysis: TOC
structure extraction engine. In: Geva, et al. (eds.) [4]

11. Wilson, R., Landoni, M., Gibb, F.: The web experiments in electronic textbook
design. Journal of Documentation 59(4), 454–477 (2003)

12. Wu, M., Scholer, F., Thom, J.A.: The impact of query length and document length
on book search effectiveness. In: Geva, et al. (eds.) [4]

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 124–131, 2009.
© Springer-Verlag Berlin Heidelberg 2009

XRCE Participation to the Book Structure Task

Hervé Déjean and Jean-Luc Meunier

Xerox Research Centre Europe
6 Chemin de Maupertuis, F-38240 Meylan

Firstname.lastname@xrce.xerox.com

Abstract. We present here XRCE participation to the Structure Extraction task
of the INEX Book track. After briefly explaining the method used for detecting
table of contents and their corresponding entries in the book body, we will
mainly discuss the evaluation and the main issues we faced, and eventually
we will propose improvements for our method as well as for the evaluation
framework/method.

1 Introduction

We present in this paper our participation to the Structure Extraction task of the INEX
Book. Our objective was to assess a component, a table of contents detector, pre-
sented in [1], [2], with the minimal effort. By minimal effort, we mean: the initial
input (segmentation and text) was taken almost as provided. Especially, no preproc-
essing was used to improve it. But more important, no specific tuning was done with
regard to the collection. This fact will be highlighted in the Evaluation Section, since
some books do not comply with our assumptions about table of contents.

The rest of the article is structured as follows: we will explain the processing done
for the collection. Then the method for detecting the Table of contents is sketched.
We will explain the postprocessing and the different parameters used in our runs.
Eventually we will discuss the results of the evaluation.

2 Pre-processing

The first step simply consists in reformatting the XML INEX format into our internal
format, mostly renaming tag names and adding some internal attributes (such as
unique IDs for each tag). This was performed using XSLT technology, with some
difficulty for the largest books.

A second step consists in detecting pages headers and footers, which often intro-
duce noisy for our table of contents detector (see [1]).

A heuristics has been used for run 4 in order to improve the ToC page detection
based on the detected page headers and footers.

3 The ToC Detector

The method is detailed in [1], [2] and in this section we will only sketch its outline.
The design of this method has been guided by the interest in developing a generic

 XRCE Participation to the Book Structure Task 125

method that uses very intrinsic and general properties of the object known as a table
of contents. In view of the large variation in shape and content a ToC may display, we
believe that a descriptive approach would be limited to a series of specific collections.
Therefore, we instead chose a functional approach that relies on the functional proper-
ties that a ToC intrinsically respects. These properties are:

1. Contiguity: a ToC consists of a series of contiguous references to some other parts
of the document itself;

2. Textual similarity: the reference itself and the part referred to share some level of
textual similarity;

3. Ordering: the references and the referred parts appear in the same order in the
document;

4. Optional elements: a ToC entry may include (a few) elements whose role is not to
refer to any other part of the document, e.g. decorative text;

5. No self-reference: all references refer outside the contiguous list of references
forming the ToC.

Our hypothesis is that those five properties are sufficient for the entire characteri-
zation of a ToC, independently of the document class and language. In the Evaluation
and Discussion section, we will discuss the cases where theses hypotheses were not
valid.

Three steps permit us to identify the area of the document containing the ToC text.
Firstly, links are defined between each pair of text blocks in the whole document sat-
isfying a textual similarity criterion. Each link includes a source text block and a tar-
get text block. The similarity measure we currently use is the ratio of words shared by
the two blocks, considering spaces and punctuation as word separators. Whenever the
ratio is above a predefined threshold, the similarity threshold, a pair of symmetric
links is created. In practice, 0.5 is a good threshold value to tolerate textual variation
between the ToC and the document body while avoiding too many noisy links. The
computation of links is quadratic to the number of text blocks and takes most of the
total computation time. However, searching for the ToC in the N first and last pages
of the document leads to linear complexity without loss of generality.

Secondly, all possible ToC candidate areas are enumerated. A brute force approach
works fine. It consists in testing each text block as a possible ToC start and extending
this ToC candidate further in the document until it is no longer possible to comply
with the five properties identified above. A ToC candidate is then a set of contiguous
text blocks, from which it is possible to select one link per block so as to provide an
ascending order for the target text blocks.

Thirdly, we employ a scoring function to rank the candidates. The highest ranked
candidate table of contents is then selected for further processing. Currently, the scor-
ing function is the sum of entry weights, where an entry weight is inversely propor-
tional to the number of outgoing links. This entry weight characterizes the certainty of
any of its associated links, under the assumption that the more links initiate from a
given source text block, the less likely that any one of those links is a "true" link of a
table of contents.

126 H. Déjean and J.-L. Meunier

4 Post-processing

This step mainly transforms the output of the ToC detector into the INEX format. Our
component marks up the ToC entry and the body heading. From this information, the
required page number was extracted. For the required title, we selected the title of the
ToC entry, which, as we will see in the Evaluation section, will impact the evaluation.

5 The Different Runs

Several runs were conducted with different values for the main parameters, in particu-
lar the processing can be performed either at the line or paragraph level and the simi-
larity measure can be the one described above, called Jaccard, or a dynamic time
warping alternative (DTW). So we performed the following runs:

1. Paragraph level, Jaccard similarity: The Jaccard similarity consists in computing
the ratio of the cardinal of the intersection to the union of normalized words of two
text blocks, i.e. the paragraphs in this run.

2. Paragraph level, DTW similarity: the DTW consists in finding the best alignment
of words of two blocks of text, the similarity between two words being established
from an edit distance. The DTW similarity is more robust to OCR errors than the
Jaccard but is computationally more intensive, usually twice more.

3. Line level, Jaccard similarity: here the considered blocks of text are the lines.
4. Paragraph Level, Jaccard similarity, with an additional heuristic to determine the

ToC position.

We encountered memory issues with some of the largest documents and had to break
our batches in several parts. Eventually we are not able to report accurately on the
processing time.

Applying our standard ToC method prevented us from computing the level of the
ToC entries, so we voluntarily set it to 1 for all entries despite this is clearly wrong.

6 Evaluation and Discussion

Let us review the results of the various runs, with a particular look at the first one
because the other runs share many identical issues with it.

6.1 Run 1: Paragraph Level, Jaccard Similarity

We reproduce below the result of the Inex metric.

Table 1. Inex results for the run 1

All books – run 1 Precision Recall F-Measure

Titles 25,98% 20,90% 22,13

Levels 14,43% 11,95% 12,45

Links 22,01% 18,16% 19,19

Complete entries 10,86% 9,30% 9,62

Entries disregarding depth 22,01% 18,16% 19,19

 XRCE Participation to the Book Structure Task 127

These results appear overall quite bad. Actually, because the title matching be-
tween the run and the ground truth is critical to the evaluation method, any error on
the title induces an error for all other criteria. For instance, a link with a valid destina-
tion but incorrect title will count as an error and a miss. In addition the conditions for
title to match were quite strict, tolerating 20% of the shortest string as maximum edit
distance with an additional condition on the first and last 5 characters. It turned out
that an additional or missing word such as ‘Chapter’ as the beginning of the title suf-
fices to discard entirely the title.

Under those conditions, 22% of precision at the link level with 26% correct titles,
means in fact that among the entries with a correct title, 85% of them had a valid link.
To examine this phenomenon further, we computed another link measure that ignores
the title. We compare two links by comparing the page number they point to, so we
consider a run output as a sequence of page numbers and compute the edit distance
between the run and groundtruth sequences, which gives us a precision & recall
measure. In other words, the Inex measure views an output as a unordered set of en-
tries identified by their title, while our proposed complementary measure views an
output as an ordered sequence of entries identified by the page pointed by each entry.
Our measure, which we shall call ‘hyperlink’ focuses more on document navigation
needs, and the quality of the extracted titles can be measured in a second step. Our
‘hyperlink’ measure is given Table 2 below.

Table 2. ‘Hyperlink’ measure, which ignore title errors, for the run 1

All books Precision Recall F-Measure

Hyperlinks (i.e. ignoring titles) 71% 40% 51

This result is more conform to what we generally observe although the recall is
particularly low. The histogram below shows an interesting aspect, where books tend
to go either well or bad but more rarely in the middle. This behavior can be exploited
thanks to automated quality assurance methods.

Table 3. Histogram of the “hyperlink” F1 distribution, for the run 1

F1

0

5

10

15

20

25

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

F1

128 H. Déjean and J.-L. Meunier

Now, looking in detail at the error on the first book, we found several main
causes of errors and misses:

 Ground truth errors: we saw 7 wrong additional entries, which seems to
have been automatically generated from the ToC of an advert page at the
end of the book (see page 640).

 Title errors: our run does not include the ‘Chapter XX” at the beginning
of the title, discarding about 90% of the found entries.

 One error is caused by the ToC not conforming to the ordering property,
our method rely upon.

 Combined OCR noise and segmentation issues, .e.g. the ToC contains
‘Chapter XX – some title’ while the same information is split over two
paragraph in the document body. Combined with OCR errors, typically a
‘B’ instead of a ‘E’, the similarity threshold is not met.

Unfortunately, those problems combined with the importance of the title in the
Inex measure lead to important measure variation, as exemplified below on the first
book:

Table 4. Variable results depending on the measure, for book #0 in run 1

Book #0 – run 1 Precision Recall F-Measure

Inex (title + linkls) 5% 4% 4

Hyperlinks, INEX ground truth 92% 69% 79

Hyperlinks, fixed ground truth 92% 80% 86

With respect to the ToC level, we have observed that the distribution of entries for
level 1, 2 and 3 was about 33%, 36% and 26% respectively. This stresses the impor-
tance of reconstructing the ToC hierarchy.

6.2 Run 2: Paragraph Level, DTW Similarity

The DTW similarity should better deal with OCR errors, but to our surprise the results
are not better. It turned out that the SW extracted 1% more links (36):

Table 5. Inex results for the run 2

All books – run 2 Precision Recall F-Measure

Titles 24,38% 20,31% 21,45

Levels 13,15% 11,43% 11,90

Links 20,87% 18,02% 18,84

Complete entries 10,12% 9,26% 9,47

Entries disregarding depth 20,87% 18,02% 18,84

Our ‘hyperlinks’ measure shows a minor improvement:

 XRCE Participation to the Book Structure Task 129

Table 6. Hyperlink measure, which ignore title errors, for the run 2

All books Precision Recall F-Measure

Hyperlinks (i.e. ignoring titles) 71% 41% 52

6.3 Run 3: Line Level, Jaccard Similarity

Working at line level does not make much sense with the Inex evaluation method.

Table 7. Inex results for the run 3

All books – run 3 Precision Recall F-Measure

Titles 16,53% 15,41% 15,46

Levels 7,44% 7,24% 7,13

Links 14,46% 13,47% 13,53

Complete entries 5,54% 5,42% 5,33

Entries disregarding depth 14,46% 13,47% 13,53

Our Hyperlink measure shows a loss in precision.

Table 8. Hyperlink measure, which ignore title errors, for the run 3

All books Precision Recall F-Measure

Hyperlinks (i.e. ignoring titles) 61% 42% 50

6.4 Ground Truth Issues

The ground truth used for this evaluation suffers from several coherence issues:

 Should the links point to the title page of a chapter or to the actual start of
its text? Compare for instance the documents #13 0050CA95E49A5E97
and #20 00A4141D9CC87E65.

 Should the label of the entry (chapter, section,…) or its number be part of
the extracted title? This choice has an enormous impact on the whole
evaluation because of the importance of the title in the measure design.
The choice made for the groundtruth is not consistent across all books. In
fact, given a book, the choice can be difficult since the body and ToC
pages can differ on this matter.

 ToC entry segmentation for old-style ToC, shown below, the subentries
should be extracted or not, independently of the presence of a page locator
since the document body shows clearly that there are subsections.

6.5 Evaluation Method Issues and Suggestions

Given the previous observations, we suggest some improvement for measuring the
quality of the results:

130 H. Déjean and J.-L. Meunier

Fig. 1. Excerpt from book #3 (0008D0D781E665AD) and #52 (0E5E2F4BC9008492) showing
a chapter title as well as the title of the subsections. In the first case the ground truth indicates
the subsections but not in the second one (probably because of the absence of page number?).

 Results at the book level should be made available.
 Case normalization: the measure should be computed in a case-

independent way. Indeed certain documents can have a title in uppercase
in the ToC but in lowercase or capitalized form in the document body.

 In some applications, such as providing hyperlinks for navigation pur-
pose, the quality of the links is more important than the exactitude of the
title, provided it reads well and has some appropriate meaning. So we
suggest measuring the link quality independently of the title quality. In
fact, the latter should be measured as a complementary indication, e.g.
computing an edit distance with the ground truth title.

 When the title is used as primary quality measure, a less strict title match-
ing function should be used unless a sound and methodic way to deter-
mine uniformly the title has been designed.

Note: Some of those issues have been now corrected.

7 Conclusion

It is difficult to draw conclusions because of the issues found with the ground truth,
and to less extent with the evaluation method. The numerical results of the evaluation
remain disputable in our opinion. However, this evaluation confirms a known prob-
lem of our method: it can confuse a Table of Illustrations with a Table of Contents.
This caused on this collection a loss of about 45% in precision and ~20% in recall.
Similarly, the indexes caused a ~15% loss in recall. The challenge is now to turn this
into an advantage by typing the found table.

We have found very interesting the corpus proposed for the INEX, composed of
historical documents with a large variety of table of contents. Many of them were
challenging because of the need for segmenting entries at a lower level than the para-
graph level, as shown in figure 1.

 XRCE Participation to the Book Structure Task 131

Some ToC did not respect at all the properties we enforce, since some ToC entries
were short sentence summarizing the section contents rather than reproducing some
title present in the document body, e.g. book #3 0008D0D781E665AD.

It would have been very useful to have a human evaluation of the results, in order
to give a perspective different than the one underlying the ground truth preparation or
quality measure design.

We are grateful to the organizers and thank them for their work.

References

1. Déjean, H., Meunier, J.-L.: Structuring Documents according to their Table of Contents. In:
Proceedings of the 2005 ACM symposium on Document engineering, pp. 2–9. ACM Press,
New York (2005)

2. Déjean, H., Meunier, J.-L.: On Tables of Contents and how to recognize them. International
Journal of Document Analysis and Recognition, doi:10.1007/s10032-009-0078-8

University of Waterloo at INEX 2008:
Adhoc, Book, and Link-the-Wiki Tracks

Kelly Y. Itakura and Charles L.A. Clarke

University of Waterloo, Waterloo, ON N2L3G1, Canada
{yitakura,claclark}@cs.uwaterloo.ca

Abstract. In this paper, we describe University of Waterloo’s ap-
proaches to the Adhoc, Book, and Link-the-Wiki tracks. For the Adhoc
track, we submitted runs for all the tasks, the Focused, the Relevant-
in-Context, and the Best-in-Context tasks. The results show that we
ranked first among all participants for each task, by the simple scoring
of elements using Okapi BM25. In the Book track, we participated in the
Book retrieval and the Page-in-Context tasks, by using the approaches
we used in the Adhoc track. We attribute our poor performance to lack
of training. In the Link-the-Wiki track, we submitted runs for both File-
to-File and Anchor-to-BEP tasks, using PageRank [1] algorithms on top
of our previous year’s algorithms that yielded high performance. The
results indicate that our baseline approaches work best, although other
approaches have rooms for improvement.

1 Introduction

In 2008, University of Waterloo participated in the Adhoc, the Book, and the
Link-the-Wiki tracks. In the Adhoc track, we implemented both passage and
element retrieval algorithms to compare the relation between the best passages
and the best elements. This is in contrast to our 2007 runs [4] that compared the
passage-based element retrieval algorithm against the simple element retrieval
algorithm. We scored elements and passages using a biased BM25 and language
modeling [6], in addition to Okapi BM25 [7] to see the effect of scoring functions
in retrieval results.

In the Book track, we implemented our tried and true element retrieval algo-
rithm with Okapi BM25 to retrieve best books and pages.

In the Link-the-Wiki track, we added PageRank algorithm [1] in addition to
using anchor density [4,8] for the numbers of links to return for each topic.

This paper is organized as follows. In Section 2, we describe our approaches
to the Adhoc track, and in Section 3, we describe our approaches to the Book
track. In Section 4, we describe our approaches in the Link-the-Wiki track. We
conclude this paper with directions for future work in Section 5.

2 Ad Hoc Track

In the Adhoc track, as in the past year, the basic retrieval algorithms used are
element retrieval and passage retrieval.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 132–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

University of Waterloo at INEX 2008 133

The only difference between element retrieval and passage retrieval is the
retrieval unit. In element retrieval, we only scored the following elements in
corpus. These were the results of manual examination in [3],

<p>, <section>, <normallist>, <article>, <body>, <td>, <numberlist>,
<tr>, <table>, <definitionlist>, <th> ,<blockquote>, <div>, ,
<u>.

In passage retrieval, we scored passages of any word-lengths longer than 25
words, including elements.

To score an element or a passage, we converted each topic into a disjunction
of query terms without negative query terms. We located positions of all query
terms and XML tags using Wumpus [2]. We then used two versions of Okapi
BM25 [7] to score passages and elements. The score of an element/passage P
using Okapi BM25 is defined as follows.

s(P) ≡
∑
t∈Q

Wt
fP,t(k + 1)

fP,t + k(1 − b + b plP
avgdl)

, (1)

where Q is a set of query terms, Wt is an IDF value of the term t in the collection,
fP,t is the sum of term frequencies in a passage P , plP is a passage length of
P , and avgdl is an average document length in Wikipedia collection to act as a
length normalization factor.

Using a biased Okapi BM25, the first α words’ term frequency is multiplied
by β. The reason behind this is that because in Best-in-Context task it appears
that the closer the best entry point is to the beginning of an article, the more
relevant it is judged, we thought that the closer the terms are to the beginning
of an element the more relevant they are.

We tuned parameters using INEX2007 Adhoc track evaluation scripts dis-
tributed via email by the organizers. Our tuning approach was such that the
sum of all relevance scores, ip[0.00], ip[0.01], ip[0.05], ip[0.10], and MAiP are
maximized. However, by looking at the training results, the choice of the param-
eters did not seem much different if we had chosen the official metrics, ip[0.01]
for the Focused task, and MAiP for Relevant-in-Context and Best-in-Context
task.

2.1 Focused Task

In the focused task, after scoring all elements and passages, we eliminated over-
laps and returned the top 1500 elements and passages. There are four runs we
submitted. For element retrieval, we submitted three runs using Okapi BM25
(FOER) with parameters k = 4 and b = 0.8, the biased Okapi BM25 (FOER-
Step) with α = 10, β = 2, k = 3, and b = 0.8. For passage retrieval, we submitted
a run using Okapi BM25 with k = 4 and b = 1.2.

Our biased Okapi BM25 approach ranked first amongst 19 participants and
the 61 runs. Table 1 shows the results of our individual runs.

134 K.Y. Itakura and C.L.A. Clarke

Although our biased Okapi BM25 approach performed better than the sim-
ple BM25, it did not give substantial improvement. However, it may give an
insight into efficient scoring by possibly only scoring the first words of an ele-
ment/passage and ignoring the rest. This would not only reduce the length of
elements/passages to score, but also the number of elements/passages to score
because many of them overlap at the beginning. A look into the scores of all
elements/passages that start at the same character is necessary.

The passage run was disqualified because of overlaps. While training with
correct overlap elimination, the evaluation scores of the passage run was some-
what lower than that of BM25 run. Re-evaluation of the correct unofficial run
confirms this. However, the overall impression is that Okapi BM25 is the best
scoring function and that users prefer element results to passage results. One
question left is, would users prefer ranges of elements over single elements or
passages?

Table 1. Results of Waterloo’s Runs in the Adhoc Track Focused Task

Run (run ID) Rank ip[0.01]
Biased Okapi (FOERStep) 1 0.68965708

Okapi BM25 (FOER) 2 0.68800831
Passage Retrieval (unofficial) (42) 0.554286743

2.2 Relevant-in-Context Task

In the Relevant-in-Context task, the results of the top 1500 elements/passages
using Okapi BM25 in the Focused task was grouped in two different ways. The
first way (RICArt) is to rank the articles according to the score of the articles
themselves with parameters k = 2 and b = 0.8, the second way (RICBest) is to
rank the articles according to the scores of the highest scoring elements/passages
the article contains with k = 2 and b = 0.8.

Our run with best element score ranked first amongst 11 participants and
their 40 runs. Table 2 shows the results of our individual runs.

Because there was no substantial difference between ranking articles by the
article scores and ranking articles by their best element scores, it may be as
effective to fetch the articles with the highest articles score first, and then run
element retrieval on the retrieved set.

Table 2. Results of Waterloo’s Runs in the Adhoc Track Relevant-in-Context Task

Run (run ID) Rank ip[0.01]
Best Element Score (RICBest) 1 0.22779217

Article Score (RICArt) 2 0.22705669

University of Waterloo at INEX 2008 135

2.3 Best-in-Context Task

In the Best-in-Context task, we recorded the scores of the best element/passage
in each article for biased and simple Okapi BM25, and returned the top 1500
elements/passages. The parameters used for element retrieval with Okapi BM25
(BICER) are k = 1.2 and b = 0.4, for element retrieval with biased Okapi BM25
(BICERStep) are α = 10, β = 2, k = 0.6, and b = 0.4, and for passage retrieval
using Okapi BM25 (BICPRPlus) are k = 1.4 and b = 0.8.

Our simple Okapi BM25 based run scored the first amongst 13 participants
and their 35 runs. Table 3 shows the results of our individual runs.

The performance of all the approaches are similar during the training phase
and the results are fully what we had expected. As in the Focused task, the
biased Okapi function did similarly well to a simple Okapi BM25, implying a
possible efficiency improvement. The results of the passage run is not impressive
as expected. This fact is quite alarming given that the only difference between
the two approaches is the unit of scoring; the highest scoring passage must be
quite far apart from the highest scoring element. This explains why our passage-
based element retrieval run of INEX 2007 was not as effective as the simple
element retrieval run.

Table 3. Results of Waterloo’s Runs in the Adhoc Track Best-in-Context Task

Run (run ID) Rank ip[0.01]
Okapi BM25 (BICER) 1 0.2237906

Biased Okapi BM25 (BICERStep) 3 0.21267588
Passage Retrieval (BICPRPlus) 24 0.12535625

3 Book Track

In the Book track, we employed the element retrieval algorithm with Okapi
BM25 as described in Section 2. The only difference is the unit of scoring, which
are document, page, region, and section. Since we had no training data available
from previous years, we ran our algorithms with arbitrary parameters.

3.1 Book Search Task

In the Book search task, Run 78-1 was obtained by ranking books according to
the document scores, and Run 78-2 was obtained by ranking books according
to their best element scores. The results in Table 4 indicate that both runs per-
form similarly. Because in the relevant-in-context task in the adhoc track, article
scoring performed similarly to best-element scoring, and article scoring is more
efficient, we think article-scoring is preferable in tasks that require us to rank
articles/books. Our runs performed very poorly compared to other institutions

136 K.Y. Itakura and C.L.A. Clarke

Table 4. Results of Waterloo’s Runs in the Book Track Book Retrieval Task

Run (run ID) Rank (out of 19) MAP
by best element scores (78-2) 17 0.0214

by book scores (78-1) 18 0.0193

and we think it is due to the lack of training. Because training takes time, in the
coming years, we would like to use language modeling to score elements.

3.2 Page-in-Context Task

All runs for the Page-in-Context task differed in how the books were ranked.
Within books, elements are scored by element scores. Run 78-3 ordered books
by their best element scores, Run 78-4 ordered books by the books’ score with
manual query expansion. The manual query expansion was done by observing
the query phrases and adding any extra query phrases that may be helpful to
disambiguate the queries. For example, if the query phrase is just “mouse”, but
the description of the user’s information need suggests that it pertains to the
animal mouse, as opposed to the computer mouse, the expanded query phrase
would be “animal mouse”. Query expansion normally increases precision, but
it also increases the processing time. Since one of the goal of book search is to
create an efficient search system, our assumption is that applying query expan-
sion only on the whole book score maybe reasonable. Other effort to shorten
search processing time was to make a distributed search. The problem with this
approach was that in order to create a merged list of top scoring elements pre-
cisely, for each distributed node, it was necessary to compute and store all the
element scores, which was costly. To see how much of top elements for each node
could be cut-off without affecting the results, we made the above two runs with
various cut-off values, including no cut-off.

Table 5 shows the results of our runs. There was only one other participant,
so we cannot compare our performance against others well, but we think we
performed poorly and need training. Between the two approaches, it seems that
screening out books by the book score not only performs better than by their
best element scores, but more efficient. However, the better performance may be

Table 5. Results of Waterloo’s Runs in the Book Track Page-in-Context Task

Run (run ID) Rank (out of 13) MAP
by book scores+1000 cut-off (78-4) 8 0.0513

by best book scores+3000 cut-off (78-6) 9 0.0495
by best element scores+no cut-off (78-7) 9 0.0495
by best book scores+no cut-off (78-8) 9 0.0495

by best element scores+1000 cut-off (78-3) 12 0.0214
by best element scores+3000 cut-off (78-5) 12 0.0214

University of Waterloo at INEX 2008 137

due to manual query expansion. Nevertheless, manual query expansion to score
all the possible passages/elements in the book collection seems very inefficient,
so along with the experience from the adhoc relevant-in-context, and the book
retrieval tasks, we think a good heuristic is to screen documents/books by their
scores first.

As for how many top elements to compute/store in each distributed node, we
can only say that we only need to score and store a small fraction of all possible
elements.

4 Link the Wiki Track

Following the previous year’s successful run, we decided to extend our basic
approaches for both incoming and outgoing links by incorporating PageRank [1].
Our File-to-File runs mirror our Anchor-to-BEP runs by employing the same
algorithms, but abstracting out to the article level. Therefore, in this section, we
describe our approaches to Anchor-to-BEP runs.

4.1 Outgoing Links

As in the last year, the basic ingredient to computing outgoing links is the
following ratio, γ.

γ =
� of files that has a link from anchor a to a file d

� of files in which a appears at least once

Because this year, we are allowed to specify multiple destinations for a given
anchor phrase, for each anchor phrase that appear in the corpus, we computed γ
for the most frequent destination, but kept up to four other destinations on the
list. We sorted all anchor phrases by γ, and then for each topic file, we looked
for the locations of the anchor phrase. Once the anchor phrases are located, we
listed the destinations in the order of frequency in the corpus. We specified the
best entry point as the beginning of the article. We call this baseline run (a2a#1
for Anchor-to-BEP f2f#2 for File-to-File).

In the second, anchor-density-based run (a2a#2,f2f#2), we computed the
maximum number of anchor phrases that a topic file can contain using the size
of the topic file. As in [4], we define the anchor density δ as

δ =
number of anchor strings in the file

size of the file in bytes
.

We computed that anchor density is linear and that there are 3.584 anchor per
KB of a document in the corpus and set the number of anchor phrases in the
topic files accordingly.

In the third, PageRank-based run (a2a#3,f2f#3), instead of ordering the an-
chor phrases by the γ values, we ordered them by the PageRank value. For this
run, there is no cut-off values as in the second run.

Official results in Table 6 and Table 7 indicate that both for File-to-File
and Anchor-to-BEP runs, our first runs without an anchor density performed

138 K.Y. Itakura and C.L.A. Clarke

Table 6. Results of Waterloo’s File-to-File Runs in LTW Outgoing Tasks

Run (run ID) Rank (out of 21) MAP
baseline (f2f#1) 3 0.33453

anchor density (f2f#2) 7 0.29203
PageRank (f2f#3) 10 0.20532

Table 7. Results of Waterloo’s Anchor-to-BEP Runs LTW Outgoing Tasks

Run Rank (out of 28) MAP
baseline (a2a#1) 5 0.4071

PageRank (a2a#3) 10 0.3835
anchor density (a2a#2) 11 0.3835

best among our submissions. For File-to-File task, the run with anchor density
performed much better than the PageRank run, and for Anchor-to-BEP task, the
two runs performed similarly. Compared to other participants, our File-to-File
run ranked the third,and Anchor-to-BEP run the second.

Our anchor density approach did not perform as well as the baseline run
because the official metrics is mean average precision.

4.2 Incoming Links

The first run of the incoming links (a2a#1, f2f#1) is done exactly the same as in
Waterloo’s last year’s run. For each topic file, we created a query that consists
of the topic title, and looked for the files that contains the title. We did not
differentiate between the articles that contain the query term, but we simply
picked the first 250 articles in the corpus. The best entry point to the topic file
was set to the beginning of the article. We call this baseline.

For the second, element-retrieval-based run (a2a#2,f2f#2), we used the same
set of query terms, but applied the element retrieval algorithm in the Adhoc
track to rank the article that contains the query terms according to its highest
element score.

For the third, PageRank-based run (a2a#3,f2f#3), we took the result of our
third outgoing run (a2a#3,f2f#3) to compute a topic oriented PageRank [5] and
reranked all articles containing the query term by these values.

Currently the official evaluation is only available at the file-to-file level as
in Table 8. Although our PageRank-based run performed closed to the QUT’s

Table 8. Results of Waterloo’s File-to-File Runs in LTW Incoming Tasks

Run Rank (out of 24) MAP
PageRank (f2f#3) 2 0.55633
baseline (f2f#1) 3 0.55403

element retrieval (f2f#2) 5 0.53501

University of Waterloo at INEX 2008 139

best performing run, it is a little disappointing that our baseline run performed
equally as well. The element-retrieval-based run may be improved if we train on
previous year’s data set.

5 Conclusions and Future Work

This year, we extended our previous year’s best performing algorithms to im-
prove the performance. Unfortunately, our simple algorithms from the previous
years not only did the best amongst all our runs in the Adhoc and Link-the-
Wiki tracks, but also did best amongst all the runs in all the tasks in the Adhoc
track. This may indicate the uselessness of the XML structure. On the other
hand, since it seems that the passage runs do not perform as well as our element
runs, marking up elements do seem useful. Moreover, the effect of specifying
ranges of elements as opposed to the current approaches of choosing the single
elements or passages is a new area to investigate.

A very interesting area of future research is the effect of positioning within a
document to the relevance. Maybe the poor performance of passage retrieval in
the Best-in-Context task is because the highest scoring passage within a document
is located further down in the document than the second highest scoring passage
that starts close to the beginning of the document. Therefore combining the score
of a passage with the positional/structured information seems promising.

References

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, Proceedings of the Seventh International
World Wide Web 30(1-7), 107–117 (1998)

2. Büttcher, S.: The Wumpus Search Engine (2007), http://www.wumpus-search.org
3. Clarke, C.L.A.: Controlling Overlap in Content-oriented XML retrieval. In:

SIGIR 2005: Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 314–321. ACM Press,
New York (2005)

4. Itakura, K.Y., Clarke, C.L.A.: University of Waterloo at INEX2007: Adhoc and
link-the-wiki tracks. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX
2007. LNCS, vol. 4862, pp. 417–425. Springer, Heidelberg (2008)

5. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation rank-
ing: Bringing order to the Web. Technical Report 1999-66, Stanford InfoLab
(November 1999)

6. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In:
SIGIR 1998: Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 275–281. ACM Press,
New York (1998)

7. Robertson, S., Walker, S., Beaulieu, M.: Okapi at TREC-7: Automatic ad hoc,
filtering, vlc and interactive track. In: 7th Text REtrieval Conference (1998)

8. Zhang, J., Kamps, J.: Link detection in XML documents: What about repeated
links. In: Proceedings of the SIGIR 2008 Workshop on Focused Retrieval, pp. 59–66
(2009)

http://www.wumpus-search.org

The Impact of Document Level Ranking on Focused
Retrieval

Jaap Kamps1,2 and Marijn Koolen1

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

Abstract. Document retrieval techniques have proven to be competitive meth-
ods in the evaluation of focused retrieval. Although focused approaches such as
XML element retrieval and passage retrieval allow for locating the relevant text
within a document, using the larger context of the whole document often leads to
superior document level ranking. In this paper we investigate the impact of using
the document retrieval ranking in two collections used in the INEX 2008 Ad hoc
and Book Tracks; the relatively short documents of the Wikipedia collection and
the much longer books in the Book Track collection. We experiment with several
methods of combining document and element retrieval approaches. Our findings
are that 1) we can get the best of both worlds and improve upon both individual
retrieval strategies by retaining the document ranking of the document retrieval
approach and replacing the documents by the retrieved elements of the element
retrieval approach, and 2) using document level ranking has a positive impact on
focused retrieval in Wikipedia, but has more impact on the much longer books in
the Book Track collection.

1 Introduction

In this paper we investigate the impact of document ranking for focused retrieval by
comparing standard document retrieval systems to element retrieval approaches. In the
evaluation of focused retrieval as studied in INEX, document retrieval techniques have
proven to be competitive methods when compared with sub-document level retrieval
techniques[3]. Although focused approaches such as XML element retrieval and pas-
sage retrieval allow for locating the relevant text within a document, using the larger
context of the whole document often leads to better document ranking [7]. Our aim is
to investigate the relative effectiveness of both approaches and experiment with com-
bining the two approaches to get the best of both worlds. That is, we want to exploit the
better document ranking performance of a document retrieval strateties and the higher
within-document precision of an element retrieval strategy. To study the impact of us-
ing the document retrieval ranking we perform our experiments on the two collections
used in the INEX 2008 Ad hoc and Book Tracks; the relatively short documents of the
Wikipedia collection and the much longer books in the Book Track collection.

The paper is structured as follows. First, in Section 2, we report the results for the Ad
Hoc Track. Then Section 3 presents our retrieval approach in the Book Track. Finally,
in Section 4, we discuss our findings and draw some conclusions.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 140–151, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Impact of Document Level Ranking on Focused Retrieval 141

2 Ad Hoc Track

For the INEX 2008 Ad Hoc Track we investigate several methods of combining article
retrieval and element retrieval approaches. We will first describe our indexing approach,
then the run combination methods we adopted, the retrieval framework, and finally per
task, we present and discuss our results.

The document collection for the Ad hoc track is based on the English Wikipedia [14].
The collection has been converted from the wiki-syntax to an XML format [1]. The
XML collection has more than 650,000 documents and over 50,000,000 elements using
1,241 different tag names. However, of these, 779 tags occur only once, and only 120
of them occur more than 10 times in the entire collection. On average, documents have
almost 80 elements, with an average depth of 4.82.

2.1 Retrieval Model and Indexing

Our retrieval system is based on the Lucene engine with a number of home-grown
extensions [5, 9]. For the Ad Hoc Track, we use a language model where the score for
a element e given a query q is calculated as:

P (e|q) = P (e) · P (q|e) (1)

where P (q|e) can be viewed as a query generation process—what is the chance that the
query is derived from this element—and P (e) an element prior that provides an elegant
way to incorporate query independent evidence [4].

We estimate P (q|e) using Jelinek-Mercer smoothing against the whole collection,
i.e., for a collection D, element e and query q:

P (q|e) =
∏
t∈q

((1 − λ) · P (t|D) + λ · P (t|e)) , (2)

where P (t|e) = freq(t,e)
|e| and P (t|D) = freq(t,D)∑

e′∈D |e| .
Finally, we assign a prior probability to an element e relative to its length in the

following manner:

P (e) =
|e|β∑
e |e|β

, (3)

where |e| is the size of an element e. The β parameter introduces a length bias which is
proportional to the element length with β = 1 (the default setting). For a more thorough
description of our retrieval approach we refer to [12]. For comprehensive experiments
on the earlier INEX data, see [10].

Our indexing approach is based on our earlier work [2, 6].

– Element index: Our main index contains all retrievable elements, where we index
all textual content of the element including the textual content of their descendants.
This results in the “traditional” overlapping element index in the same way as we
have done in the previous years [11].

– Article index: We also build an index containing all full-text articles (i.e., all wiki-
pages) as is standard in IR.

142 J. Kamps and M. Koolen

For all indexes, stop-words were removed, but no morphological normalization such as
stemming was applied. Queries are processed similar to the documents, we use either
the CO query or the CAS query, and remove query operators (if present) from the CO
query and the about-functions in the CAS query.

2.2 Combining Article and Element Retrieval

Our experiments with combining runs all use the same two base runs:

– Article: a run using the Article index; and
– Element: a run using the element index.

Both runs use default parameters for the language model (λ = 0.15, β = 1.0). As
shown by Kamps et al. [7], article retrieval leads to a better document ranking, whereas
element retrieval fares better at retrieving relevant text within documents. For the Ad
hoc Focused task, where the retrieved elements of different documents maybe inter-
leaved in the ranking, we would expect that element retrieval achieves high early pre-
cision, while document retrieval, given that it will return whole documents which are
often not relevant in their entirety, will have lower early precision. On the other hand,
we expect that a document retrieval approach will have relatively little difficulty identi-
fying long articles that have large a fraction of text highlighted as relevant, and therefore
return them in the top ranks. The first few returned documents will thus contain a rel-
atively large fraction of all the highlighted text with good within-document precision,
resulting in a fairly slow drop in precision across the first recall percentages. For the
Relevant in Context task, where retrieved elements have to be grouped by document,
and introducing a document ranking score and a within-document retrieval score, we
expect the document retrieval approach to rank the documents better and with a perfect
within-document recall (due to it retrieving all text in the document) have a reasonable
within-document score. With element retrieval, we expect the within-document preci-
sion to be better than that of the document retrieval approach, but it will have less recall
and a worse document ranking. We therefore assume that a combined approach, using
the document ranking of an article level run with the within document element ranking
of an element level run, outperforms both runs on the “in context” tasks.

We experiment with three methods of combining the article and element results.

1. ArtRank: Retain the article ranking, replacing each article by its elements retrieved
in the element run. If no elements are retrieved, use the full article.

2. Multiplication: Multiply element score with article score of the article it belongs
to. If an element’s corresponding article is not retrieved in the top 1,000 results of
the article run, use only the element score.

3. CombSUM: Normalise retrieval scores (by dividing by highest score in the results
list) and add the article score to each element score (if article is not in top 1,000
results for that topic, only element score is used). Thus elements get a boost if the
full article is retrieved in the top 1,000 results of the article run.

Our Focused and Relevant in Context submissions are all based on the following
base “Thorough” runs:

The Impact of Document Level Ranking on Focused Retrieval 143

Table 1. Results for the Ad Hoc Track Focused Task (runs in emphatic are not official submis-
sions)

Run iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
Article 0.5712 0.5635 0.5189 0.4522 0.2308
Element 0.6627 0.5535 0.4586 0.4062 0.1710
ArtRank 0.6320 0.6025 0.5054 0.4569 0.1991
CombSUM 0.6556 0.5901 0.4983 0.4553 0.1989
Multiplication 0.6508 0.5614 0.4547 0.4117 0.1815
Element CAS 0.6196 0.5607 0.4941 0.4396 0.2000
ArtRank CAS 0.6096 0.5891 0.5361 0.4629 0.2140
CombSUM CAS 0.6038 0.5811 0.5158 0.4506 0.2044
Multiplication CAS 0.6077 0.5855 0.5328 0.4601 0.2126

– ArtRank: submitted as inex08 art B1 loc in 100 and el B1 T
– CombSUM: submittedinex08 art B1 loc in 100 comb sum el B1 T
– Multiplication: inex08 art B1 loc in 100 x el B1 T

We also made CAS versions of these Thorough runs, using the same filtering method
as last year [2]. That is, we pool all the target elements of all topics in the 2008 topic
set, and filter all runs by removing any element type that is not in this pool of target
elements. Our official runs for all three tasks are based on these Thorough runs. Because
of the lengthy names of the runs, and to increase clarity and consistency of presentation,
we denote the official runs by the methods used, instead of the official run names we
used for submission.

2.3 Focused Task

To ensure the Focused run has no overlap, it is post-processed by a straightforward list-
based removal strategy. We traverse the list top-down, and simply remove any element
that is an ancestor or descendant of an element seen earlier in the list. For example,
if the first result from an article is the article itself, we will not include any further
element from this article. In the case of the CAS runs, we first apply the CAS filter and
then remove overlap. Doing this the other way around, we would first remove possibly
relevant target elements if some overlapping non-target elements receive a higher score.

Table 1 shows the results for the Focused Task. Somewhat surprisingly, the Article
run outperforms the Element run on the official Focused measure iP[0.01], although
the Element run fares much better at the earliest precision level iP[0.00]. Thus, already
after 1% recall, document retrieval has a higher precision than element retrieval. A
possible explanation is that, given the encyclopedic nature of the collection, for many
of the Ad hoc topics there will be a Wikipedia entry that is almost entirely relevant and
form more than 1% of the total relevant text. As mentioned earlier, it seems plausible
that a document retrieval approach finds these pages relatively easy, and 1% recall is
often achieved with the first one or two results, thus with reasonable precision. Both
CombSUM and Multiplication attain higher scores for iP[0.00] than ArtRank, but the
latter keeps higher precision at further recall levels. The Multiplication method loses
much more precision than the other two methods. Compared to the baseline runs Article

144 J. Kamps and M. Koolen

Table 2. Results for the Ad Hoc Track Relevant in Context Task (runs in emphatic are not official
submissions)

Run gP[5] gP[10] gP[25] gP[50] MAgP
Article 0.3376 0.2807 0.2107 0.1605 0.1634
Element 0.2784 0.2407 0.1879 0.1471 0.1484
ArtRank 0.3406 0.2820 0.2120 0.1627 0.1692
CombSUM 0.3281 0.2693 0.2099 0.1615 0.1665
Multiplication 0.3295 0.2827 0.2136 0.1654 0.1695
Element CAS 0.3378 0.2837 0.2236 0.1719 0.1703
ArtRank CAS 0.3437 0.2897 0.2207 0.1712 0.1734
CombSUM CAS 0.3481 0.2991 0.2200 0.1726 0.1752
Multiplication CAS 0.3482 0.2888 0.2198 0.1724 0.1748

and Element, the combination methods ArtRank and CombSUM lead to substantial
improvements at iP[0.01], where the Multiplication method performs slightly worse
than the Article run. However, the standard Article run clearly outperforms all other
runs when looking at overall precision.

Looking at the CAS runs, we see that the differences are small, with ArtRank lead-
ing to the highest iP[0.01] and MAiP scores. The CAS filtering method leads to im-
provements in overall precision—all MAiP scores go up compared to the non CAS
variants—but has a negative effect for early precision as both iP[0.00] and iP[0.01]
scores go down, except for the Multiplication run, where the iP[0.01] score goes up.
Also, the CAS version of the Multiplication run does improve upon the Article run for
precision up to 10% recall.

2.4 Relevant in Context Task

For the Relevant in Context task, we use the Focused runs and cluster all elements be-
longing to the same article together, and order the article clusters by the highest scoring
element. Table 2 shows the results for the Relevant in Context Task. The Article run is
better than the Element across the ranking, which is to be expected, given the results
reported in [7]. It has a superior article ranking compared to the Element run, and as
we saw in the previous section, it even outperformed the Element run on the official
measure for the Focused task. However, this time, the combination methods ArtRank
and Multiplication do better than the Article run on all reported measures, except for
the Multiplication run on gP[5]. Since they use the same article ranking as the Article
run, the higher precision scores of the ArtRank and Multiplication show that the ele-
ments retrieved in the Element run can improve the precision of the Article run. The
CombSUM method, while not far behind, fails to improve upon the Article run on early
precision levels (cutoffs 5, 10, and 25). Through the weighted combination of article
and element scores, its article ranking is somewhat different from the article ranking of
the Article run (and the ArtRank and Multiplication runs).

The CAS filtering method leads to further improvements. The Element CAS run out-
performs the standard Article run, and the combination methods show higher precision
scores than their non CAS counterparts at all rank cutoffs. This time, the CombSUM
method benefits most from the CAS filter. Whereas it was well behind on performance

The Impact of Document Level Ranking on Focused Retrieval 145

Table 3. Results for the Ad Hoc Track Best in Context Task (runs in emphatic are not official
submissions)

Run gP[5] gP[10] gP[25] gP[50] MAgP
Element 0.2372 0.2213 0.1778 0.1384 0.1394
Article 0.3447 0.2870 0.2203 0.1681 0.1693
Article offset 190 0.2462 0.2042 0.1581 0.1204 0.1228
ArtRank 0.2954 0.2495 0.1849 0.1456 0.1580
CombSUM 0.2720 0.2255 0.1872 0.1487 0.1560
Multiplication 0.2782 0.2399 0.1866 0.1496 0.1577
Element CAS 0.2758 0.2410 0.1929 0.1517 0.1487
ArtRank CAS 0.3101 0.2616 0.1952 0.1539 0.1587
CombSUM CAS 0.3081 0.2547 0.1942 0.1532 0.1581
Multiplication CAS 0.3098 0.2595 0.1944 0.1545 0.1596

compared to the other two combination methods, its CAS version has the highest scores
for gP[10], gP[50] and MAgP. Perhaps surprisingly, the Element CAS run is even on par
with the combined runs. For the Focused task, the Element CAS run scored well below
the combined runs at later rank cutoffs, but when grouped by article, the differences
at the later cutoff levels are very small. In fact, the Element CAS run has the highest
score at gP[25]. The CAS filter could have an effect on the document ranking of the
Element run.

2.5 Best in Context Task

The aim of the Best in Context task is to return a single result per article, which gives
best access to the relevant elements. We experimented with three methods of selecting
the best entry point:

– Highest Scoring Element: the highest scoring element (HSE) returned for each ar-
ticle. We use this on the ArtRank combined run;

– offset 0: the start of each returned article; and
– offset 190: the median distance from the start of the article of the best entry points

in the 2007 assessments.

Table 3 shows the results for the Best in Context Task.
The Article run is far superior to the Element run for the Best in Context Task, at

all rank cutoffs and in MAgP. In fact, the Article run outperforms all combined runs
and CAS runs. The combined ArtRank run does better than the pure article run with
BEPs at offset 190. Note that both these two runs have the same article ranking as
the standard Article run. The highest scoring element is thus a better estimation of the
BEP than the median BEP offset over a large number of topics. However, using the
start of the element clearly outperforms both other runs. Of the three run combination
methods, ArtRank gets better scores at early precision levels (cutoffs 5 and 10), but is
overtaken by the Multiplication method at further cutoff levels. All three combinations
do outperform the Element run and the article run with fixed offset of 190.

The CAS runs again improve upon their non CAS variants, showing that our filtering
method is robust over tasks, retrieval approaches and combination methods. As for the

146 J. Kamps and M. Koolen

non CAS variants, ArtRank gives the best early precision, but the Multiplication gets
better precision at later cutoff levels.

The combination methods consistently improve upon the Element retrieval approach,
but are far behind the standard Article run. This means that our focused retrieval tech-
niques fail to improve upon an article retrieval approach when it comes to selecting the
best point to start reading a document. A closer look at the distribution of BEPs might
explain the big difference between the standard Article run and the other runs. The me-
dian BEP offset for the 2008 topics is 14 and 49% of all BEPs is at the first character.
This shows that choosing the start of the article will in most cases result in a much better
document score than any offset further in the document.

2.6 Findings

To sum up, the combination methods seem to be effective in improving early precision.
For the official Focused measure, iP[0.01], they lead to improvements over both the Ar-
ticle run and the Element run. The ArtRank method gives the best results for the official
measure. Although the Element run scores slightly better at iP[0.00], the combination
methods show a good trade off between the good overall precision of the Article run
and the good early precision of the Element run. Combining them with the CAS filter
improves their overall precision but hurts early precision.

For the Relevant in Context task, all three methods improve upon the Article and Ele-
ment runs for MAgP. The ArtRank method shows improvement across all cutoff levels.
The Multiplication method leads to the highest MAgP scores of the three methods. The
CAS filter further improves their effectiveness, although the differences are small for
the ArtRank method. Here, the combined runs show the best of both worlds: the good
article ranking of the Article run and the more precise retrieval of relevant text within
the article of the Element run.

In the Best in Context task, of the three combination methods ArtRank scores better
on early precision, while the other two methods do better at later cutoff levels. However,
no focused retrieval method comes close to the effectiveness of the pure Article run.
With most of the BEPs at, or very close to, the start of the article, there seems to be
little need for focused access methods for the Wikipedia collection. This result might be
explained by the nature of the collection. The Wikipedia collection contains many short
articles, where the entire article easily fits on a computer screen, and are all focused on
very specific topics. If any text in such a short article is relevant, it usually makes sense
to start reading at the beginning of the article.

Finally, the CAS filtering method shows to be robust over all tasks and focused re-
trieval methods used here, leading to consistent and substantial improvements upon the
non CAS filtered variants.

3 Book Track

For the Book Track we investigate the effectiveness of using book level evidence for
page level retrieval, and experiment with using Wikipedia as a rich resource for top-
ical descriptions of the knowledge found in books, to mediate between user queries

The Impact of Document Level Ranking on Focused Retrieval 147

and books in the INEX Book Track collection. We use Indri [13] for our retrieval ex-
periments, with default settings for all parameters. We made one index for both book
and page level, using the Krovetz stemmer, no stopword removal, and created two base
runs, one at the book level and one at the page level. The INEX Book Track collection
contains 50,239 out-of-copyright books. The books have on average 321 pages and just
over 100,000 words. An average page has 323 words. An important difference with the
Wikipedia collection, apart from document length, is the difference in structural infor-
mation in the form of XML markup. In the Wikipedia articles, the markup is based on
the layout, containing markup for sections, paragraphs, tables, lists, figures, etc. The
books contain only minimal markup, based on the individually scanned pages. That is,
there is no layer of elements about sections or chapters in between the page level and
book level. Although there is information about the start of chapters and sections in
the attributes of <marker> elements, they provide no information about where these
chapters and sections end. To make use of this information for retrieval, it would require
either substantial changes to our indexing approach or a pre-processing step to adjust
the XML markup by introducing actual chapter and section elements.

Before we analyse the impact of book level ranking on the retrieval of individual
pages, we will discuss the various book level runs we submitted for the Book Retrieval
Task.

3.1 Book Retrieval Task

Koolen et al. [8] have used Wikipedia as an intermediary between search queries and
books in the INEX Book collection. They experimented with using the link distance be-
tween so called query pages—Wikipedia pages with titles exactly matching the
queries—and book pages—each book in the collection is associated with one or more
Wikipedia pages based on document similarity—as external evidence to improve re-
trieval performance. We adopt this approach with the aim to investigate its effectiveness
on queries that have no exact matching Wikipedia page.

We obtained the query pages by sending each query to the online version of Wiki-
pedia and choosing the first returned result. If the query exactly matches a Wikipedia
page, Wikipedia automatically returns that page. Otherwise, Wikipedia returns a results
list, and we pick the top result. The idea is that most search topics have a dedicated
page on Wikipedia. With the 70 topics of the 2008 collection, we found dedicated Wi-
kipedia pages for 23 queries (38.6%). The book pages are obtained by taking the top
100 tf.idf terms of each book (w.r.t. the whole collection) as a query to an Indri index
of all Wikipedia pages.1 Next, we computed the link distance between query pages and
book pages by applying a random walk model on the Wikipedia link graph to obtain
a measure of closeness between these pages. Books associated with Wikipedia pages
closer in the link graph to the query page have a higher probability of being relevant [8].
We then combine these closeness scores with the retrieval scores from an Indri run.

The probability of going from node j at step s from the query node to node k is
computed as:

Ps+1|s(k|j) = Ps|s−1(j) ∗ ljk

lj
(4)

1 This is based on the Wikipedia dump of 12 March, 2008.

148 J. Kamps and M. Koolen

Table 4. Results for the Book Retrieval Task (the Closeness ordered run is not an official
submission

Run MAP P(0.0) P(0.1) P5 P10
Book 0.0899 0.4051 0.2801 0.1760 0.1320
Book2 ∗ Closeness 0.0714 0.2771 0.2230 0.1520 0.1200
Closeness 0.0085 0.1058 0.0406 0.0320 0.0200
Closeness ordered 0.0302 0.2163 0.0978 0.0960 0.0600

where ljk is the number of links from node j to node k, lj is the total number of links
from node j and Ps|s−1(j) is the probability of being at node j after step s. Experimen-
tally, using the INEX 2007 Book Track data, we found that the best closeness scores
for the books are obtained by simply adding the closeness scores of the top 8 Wikipedia
pages retrieved for that book.

We submitted the following runs:

– Book: a baseline book level Indri run (submitted as 6 BST08 B clean trec)
– Closeness: a run using only the closeness scores (submitted as

6 inex08 BST book sim100 top8 forward trec)
– Book2 ∗ Closeness: a combination of the baseline Indri and the closeness scores,

computed as Indri(q, b)2 ∗ closeness(q, b) for a book b and topic q (submitted as
6 BST08 B square times sim100 top8 fw trec)

Table 4 shows the results for our submitted runs based on the first release of the
relevance judgements, containing judgements for 25 topics. The number of judgements
per topic varies greatly. Some topics have only one or two judged books, while others
have hundreds of judged books. We have to be careful in drawing conclusions from
these results. The standard run performs best on all measures. The official run based on
closeness scores alone performs very poorly, based on a simple error. Only 1,000 results
per topic were allowed to be submitted. In generating a run from the closeness scores,
the first 1,000 scores for each topic were used. However, the closeness scores were not
ordered, the first 1,000 were not the highest scores. Therefore, we add the results of
on unofficial run – Closeness ordered – based on the 1,000 highest closeness scores
per topic. Although still well below the baseline run, it is clearly much better than the
erroneous official run. As the baseline run is clearly the best of these runs, and the Page
in Context runs submitted to the INEX 2008 Book Track are derived from this baseline,
we will only use this book level run in the following section.

3.2 Page in Context

As in the Ad Hoc Track (Section 2), we experiment with methods of re-ranking the
page level runs using the ranking of a book level run. Because Indri scores are always
negative (the log of a probability, i.e. ranging from −∞ to 0), combining scores can
lead to unwanted effects (page score + book score is lower than page score alone).
We therefore transform all scores back to probabilities by taking the exponents of the
scores.

We experimented with the following three methods.

The Impact of Document Level Ranking on Focused Retrieval 149

1. CombSum: add exponents of page score and book score (if the book is not retrieved,
use only page score. Submitted as 6 BST08.P plus B.xml).

2. Multiplication: multiply exponents of page and book scores (if book is not re-
trieved, discard page. Submitted as 6 BST08.P times B.xml).

3. BookRank: retain the book ranking, replacing each book by its pages retrieved in
the Page run. If no pages are retrieved, use the whole book.

The official evaluation measures and results of the Page in Context are not yet re-
leased, but the relevance judgements are available. To allow a direct comparison of our
methods on the Ad hoc and Book Tracks, we evaluated our Page in Context runs using
the Focused and Relevant in Context measures of the Ad hoc track.

We transformed the Book Track assessments into FOL format in the following way.
First, we computed the number of pages of each book and the length of the actual text,
and the average page length. Giving all pages in a book this same average length, we
then compute the page offsets of judged pages and retrieved pages by multiplying the
average page length by 1− the page number. That is, a book with 500 pages and 1
million characters has an average page length of 2,000 characters. Thus, page 54 in that
book has length 2,000 and starts at offset (54− 1) ∗ 2, 000 = 106, 000. For the Focused
task, we rank the individual pages on their scores, without grouping them per book.
For the Relevant in Context evaluation, which requires results from the same document
to be grouped, we use the officially submitted Page in Context runs, where the book
ranking is based on the highest scoring pages of each book.

The results of the Page in Context runs evaluated using the Ad hoc measures for the
Focused task (see Section 2.3) are shown in Table 5. We see that for overall precision,
the Book run has low precision scores compared to the Book Retrieval Task, because
it is penalised for retrieving the whole books instead of only the relevant pages. How-
ever, the more focused page level runs have even lower precision scores (except for the
earliest precision score of the BookRank run). This somewhat surprising result can be
explained by the fact that the original Page run contains only a very small portion –
141 out of 6,477 – of the relevant pages. The early precision is comparable to that of
the Book run, but rapidly drops. The reason for the very low precision scores after 5%
recall is that our runs contain up to 1,000 retrieved pages, which is not enough for most
topics to reach even 5% recall.

Among the page level runs, the BookRank run clearly outperform the standard
Page run and CombSUM , showing that the book level ranking helps. Boosting pages
from highly ranked books leads to substantial improvements in precision across the
ranking. Apart from that, retaining the whole book when no individual pages for that
have been retrieved has a big impact on recall. Especially further down the results list,
the Book run finds relevant books that are not found by the Page run. The BookRank
run also improves upon the Book run at iP[0.00], showing that focused methods can
indeed locate the relevant text within books. The big difference between the Page and
BookRank runs, as well as the low precision of the Page run by itself show that page
level evidence is of limited use without the wider context of the whole book.

The results of the Page in Context runs evaluated using the Ad hoc measures for
the Relevant in Context task (see Section 2.4) are shown in Table 6. We see a similar
pattern as with the Focused Task results. The Book run receives low scores because

150 J. Kamps and M. Koolen

Table 5. Results for the Book Track Page in Context Task (using Focused measures)

Run iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
Book 0.1690 0.1690 0.0999 0.0957 0.0393
Page 0.1559 0.1002 0.0030 0.0017 0.0037
BookRank 0.2650 0.1618 0.0838 0.0838 0.0280
CombSUM 0.1666 0.1045 0.0095 0.0083 0.0054
Multiplication 0.0349 0.0247 0.0035 0.0030 0.0015

Table 6. Results for the Book Track Page in Context Task (using Relevant in Context measures)

Run gP[5] gP[10] gP[25] gP[50] MAgP
Book 0.0567 0.0309 0.0147 0.0087 0.0254
Page 0.0242 0.0164 0.0098 0.0058 0.0088
BookRank 0.0581 0.0315 0.0147 0.0082 0.0273
CombSUM 0.0231 0.0158 0.0090 0.0064 0.0102
Multiplication 0.0061 0.0031 0.0027 0.0015 0.0047

it retrieves a lot of irrelevant text. Focused techniques should be able to achieve much
better precision. Again, only the BookRank run can compete with the Book run, and
improves upon it with early and overall precision. The fact that the BookRank run has
lower precision than the Book run further down the ranking shows that at these lower
ranks, the whole books do better than the individually retrieved pages of these books.
Although this might partly be caused by the low number of pages retrieved, the low
precision scores for the Focused evaluation show that the content of individual pages is
not very effective for locating the relevant information in books containing hundreds of
pages.

4 Discussion and Conclusions

For the Ad Hoc Track, we investigated the effectiveness of combining article and ele-
ment retrieval methods and found that the ArtRank method, where the article run de-
termines the article ranking, and the element run determines which part(s) of the text is
returned, gives the best results for the Focused Task. For the Relevant in Context Task,
the Multiplication method is slightly better than ArtRank and CombSUM, but for the
CAS runs, where we filter on a pool of target elements based on the entire topic set, the
CombSUM method gives the best performance overall. The combination methods are
not effective for the Best in Context Task. The standard article retrieval run is far supe-
rior to any focused retrieval run. With many short articles in the collection, all focused
on very specific topics, it makes sense to start reading at the beginning of the article,
making it hard for focused retrieval techniques to improve upon traditional document
retrieval. The CAS pool filtering method is effective for all three tasks as well, showing
consistent improvement upon the non CAS variants for all measures.

For the Book Track, we experimented with the same run combination methods as
in the Ad Hoc Track. As for the Ad hoc Track using the Wikipedia collection, we
see that for the Book Track, a document retrieval approach is a non-trivial baseline.

The Impact of Document Level Ranking on Focused Retrieval 151

However, for the long documents in the Book Track collection, where an individual
pages forms only a small part in a much wider context, the impact of the document level
ranking on focused retrieval techniques is much bigger than for the short documents in
the Wikipedia collection. Using only page level evidence, the precision is very low,
indicating that the content of individual pages seems not very effective in locating all
the relevant text spread over multiple pages in a book. By using the ranking of the
book level run, and replacing the whole content of a book only when individual pages
of that book are retrieved, the combination can improve upon standard document level
retrieval.

Acknowledgments. Jaap Kamps was supported by the Netherlands Organization for Sci-
entific Research (NWO, grants # 612.066.513, 639.072.601, and 640.001.501). Marijn
Koolen was supported by NWO under grant # 640.001.501. # 639.072.601.

References

[1] Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum 40, 64–69 (2006)
[2] Fachry, K.N., Kamps, J., Koolen, M., Zhang, J.: Using and detecting links in wikipedia.

In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 388–403. Springer, Heidelberg (2008)

[3] Fuhr, N., Kamps, J., Lalmas, M., Malik, S., Trotman, A.: Overview of the INEX 2007 ad
hoc track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS,
vol. 4862, pp. 1–23. Springer, Heidelberg (2008)

[4] Hiemstra, D.: Using Language Models for Information Retrieval. PhD thesis, Center for
Telematics and Information Technology, University of Twente (2001)

[5] ILPS: The ILPS extension of the Lucene search engine (2008),
http://ilps.science.uva.nl/Resources/

[6] Kamps, J., Koolen, M., Sigurbjörnsson, B.: Filtering and clustering XML retrieval results.
In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 121–136.
Springer, Heidelberg (2007)

[7] Kamps, J., Koolen, M., Lalmas, M.: Locating relevant text within XML documents. In:
Proceedings SIGIR 2008, pp. 847–849. ACM Press, New York (2008)

[8] Koolen, M., Kazai, G., Craswell, N.: Wikipedia Pages as Entry Points for Book Search. In:
Proceedings of the Second ACM International Conference on Web Search and Data Mining
(WSDM 2009). ACM Press, New York (2009)

[9] Lucene: The Lucene search engine (2008), http://lucene.apache.org/
[10] Sigurbjörnsson, B.: Focused Information Access using XML Element Retrieval. SIKS dis-

sertation series 2006-28, University of Amsterdam (2006)
[11] Sigurbjörnsson, B., Kamps, J., de Rijke, M.: An Element-Based Approach to XML Re-

trieval. In: INEX 2003 Workshop Proceedings, pp. 19–26 (2004)
[12] Sigurbjörnsson, B., Kamps, J., de Rijke, M.: Mixture models, overlap, and structural hints

in XML element retreival. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX
2004. LNCS, vol. 3493, pp. 196–210. Springer, Heidelberg (2005)

[13] Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language-model based search
engine for complex queries. In: Proceedings of the International Conference on Intelligent
Analysis (2005)

[14] Wikipedia: The free encyclopedia (2008), http://en.wikipedia.org/

http://ilps.science.uva.nl/Resources/
http://lucene.apache.org/
http://en.wikipedia.org/

Adhoc and Book XML Retrieval with Cheshire

Ray R. Larson

School of Information
University of California, Berkeley

Berkeley, California, USA, 94720-4600
ray@ischool.berkeley.edu

Abstract. For this year’s INEX UC Berkeley focused on the Book track
and also submitted two runs for the Adhoc Focused Element search task
and one for the Best in Context task. For all of these runs we used
the TREC2 logistic regression probabilistic model. For the Adhoc Ele-
ment runs and Best in Context runs we used the “pivot” score merging
method to combine paragraph-level searches with scores for document-
level searches.

1 Introduction

In this paper we will first discuss the algorithms and fusion operators used in
our official INEX 2008 Book Track and Adhoc Focused and Best in Context
track runs. Then we will look at how these algorithms and operators were used
in the various submissions for these tracks, and finally we will discuss problems
in implementation, and directions for future research.

2 The Retrieval Algorithms and Fusion Operators

This section largely duplicates earlier INEX papers in describing the probabilis-
tic retrieval algorithms used for both the Adhoc and Book track in INEX this
year. Although These are the same algorithms that we have used in previous
years for INEX and in other evaluations (such as CLEF), including a blind rele-
vance feedback method used in combination with the TREC2 algorithm, we are
repeating the formal description here instead of refering to those earlier papers
alone. In addition we will again discuss the methods used to combine the results
of searches of different XML components in the collections. The algorithms and
combination methods are implemented as part of the Cheshire II XML/SGML
search engine [10,8,7] which also supports a number of other algorithms for dis-
tributed search and operators for merging result lists from ranked or Boolean
sub-queries.

2.1 TREC2 Logistic Regression Algorithm

Once again the principle algorithm used for our INEX runs is based on the Logis-
tic Regression (LR) algorithm originally developed at Berkeley by Cooper, et al.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 152–163, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Adhoc and Book XML Retrieval with Cheshire 153

[5]. The version that we used for Adhoc tasks was the Cheshire II implementa-
tion of the “TREC2” [4,3] that provided good Thorough retrieval performance in
the INEX 2005 evaluation [10]. As originally formulated, the LR model of prob-
abilistic IR attempts to estimate the probability of relevance for each document
based on a set of statistics about a document collection and a set of queries in
combination with a set of weighting coefficients for those statistics. The statis-
tics to be used and the values of the coefficients are obtained from regression
analysis of a sample of a collection (or similar test collection) for some set of
queries where relevance and non-relevance has been determined. More formally,
given a particular query and a particular document in a collection P (R | Q, D)
is calculated and the documents or components are presented to the user ranked
in order of decreasing values of that probability. To avoid invalid probability
values, the usual calculation of P (R | Q, D) uses the “log odds” of relevance
given a set of S statistics derived from the query and database, such that:

log O(R|C, Q) = log
p(R|C, Q)

1 − p(R|C, Q)
= log

p(R|C, Q)
p(R|C, Q)

= c0 + c1 ∗ 1√|Qc| + 1

|Qc|∑
i=1

qtfi

ql + 35

+ c2 ∗ 1√|Qc| + 1

|Qc|∑
i=1

log
tfi

cl + 80

− c3 ∗ 1√|Qc| + 1

|Qc|∑
i=1

log
ctfi

Nt

+ c4 ∗ |Qc|

where C denotes a document component and Q a query, R is a relevance variable,
and

p(R|C, Q) is the probability that document component C is relevant to query
Q,

p(R|C, Q) the probability that document component C is not relevant to query
Q, (which is 1.0 - p(R|C, Q))

|Qc| is the number of matching terms between a document component and a
query,

qtfi is the within-query frequency of the ith matching term,
tfi is the within-document frequency of the ith matching term,
ctfi is the occurrence frequency in a collection of the ith matching term,
ql is query length (i.e., number of terms in a query like |Q| for non-feedback

situations),
cl is component length (i.e., number of terms in a component), and
Nt is collection length (i.e., number of terms in a test collection).
ck are the k coefficients obtained though the regression analysis.

154 R.R. Larson

Assuming that stopwords are removed during index creation, then ql, cl, and
Nt are the query length, document length, and collection length, respectively.
If the query terms are re-weighted (in feedback, for example), then qtfi is no
longer the original term frequency, but the new weight, and ql is the sum of
the new weight values for the query terms. Note that, unlike the document and
collection lengths, query length is the relative frequency without first taking the
log over the matching terms.

The coefficients were determined by fitting the logistic regression model speci-
fied in log O(R|C, Q) to TREC training data using a statistical software package.
The coefficients, ck, used for our official runs are the same as those described
by Chen[1]. These were: c0 = −3.51, c1 = 37.4, c2 = 0.330, c3 = 0.1937 and
c4 = 0.0929. Further details on the TREC2 version of the Logistic Regression
algorithm may be found in Cooper et al. [4].

2.2 Blind Relevance Feedback

It is well known that blind (also called pseudo) relevance feedback can substan-
tially improve retrieval effectiveness in tasks such as TREC and CLEF. (See
for example the papers of the groups who participated in the Ad Hoc tasks in
TREC-7 (Voorhees and Harman 1998)[12] and TREC-8 (Voorhees and Harman
1999)[13].)

Blind relevance feedback is typically performed in two stages. First, an initial
search using the original queries is performed, after which a number of terms are
selected from the top-ranked documents (which are presumed to be relevant).
The selected terms are weighted and then merged with the initial query to for-
mulate a new query. Finally the reweighted and expanded query is run against
the same collection to produce a final ranked list of documents. It was a simple
extension to adapt these document-level algorithms to document components
for INEX.

The TREC2 algorithm has been been combined with a blind feedback method
developed by Aitao Chen for cross-language retrieval in CLEF. Chen[2] presents
a technique for incorporating blind relevance feedback into the logistic regression-
based document ranking framework. Several factors are important in using blind
relevance feedback. These are: determining the number of top ranked documents
that will be presumed relevant and from which new terms will be extracted, how
to rank the selected terms and determining the number of terms that should
be selected, how to assign weights to the selected terms. Many techniques have
been used for deciding the number of terms to be selected, the number of top-
ranked documents from which to extract terms, and ranking the terms. Harman
[6] provides a survey of relevance feedback techniques that have been used.

Obviously there are important choices to be made regarding the number of
top-ranked documents to consider, and the number of terms to extract from
those documents. For this year, having no truly comparable prior data to guide
us, we chose to use the top 10 terms from 10 top-ranked documents. The terms
were chosen by extracting the document vectors for each of the 10 and computing
the Robertson and Sparck Jones term relevance weight for each document. This

Adhoc and Book XML Retrieval with Cheshire 155

weight is based on a contingency table where the counts of 4 different conditions
for combinations of (assumed) relevance and whether or not the term is, or is
not in a document. Table 1 shows this contingency table.

Table 1. Contingency table for term relevance weighting

Relevant Not Relevant
In doc Rt Nt − Rt Nt

Not in doc R − Rt N − Nt − R + Rt N − Nt

R N − R N

The relevance weight is calculated using the assumption that the first 10
documents are relevant and all others are not. For each term in these documents
the following weight is calculated:

wt = log

Rt

R−Rt

Nt−Rt

N−Nt−R+Rt

(1)

The 10 terms (including those that appeared in the original query) with the
highest wt are selected and added to the original query terms. For the terms
not in the original query, the new “term frequency” (qtfi in main LR equation
above) is set to 0.5. Terms that were in the original query, but are not in the
top 10 terms are left with their original qtfi. For terms in the top 10 and in the
original query the new qtfi is set to 1.5 times the original qtfi for the query.
The new query is then processed using the same TREC2 LR algorithm as shown
above and the ranked results returned as the response for that topic.

2.3 Result Combination Operators

As we have also reported previously, the Cheshire II system used in this evalu-
ation provides a number of operators to combine the intermediate results of a
search from different components or indexes. With these operators we have avail-
able an entire spectrum of combination methods ranging from strict Boolean
operations to fuzzy Boolean and normalized score combinations for probabilis-
tic and Boolean results. These operators are the means available for performing
fusion operations between the results for different retrieval algorithms and the
search results from different components of a document.

For the Adhoc Focused and Best In Context runs we used a merge/reweighting
operator based on the “Pivot” method described by Mass and Mandelbrod[11] to
combine the results for each type of document component considered. In our case
the new probability of relevance for a component is a weighted combination of the
initial estimate probability of relevance for the component and the probability
of relevance for the entire article for the same query terms. Formally this is:

P (R | Q, Cnew) = (X ∗ P (R | Q, Ccomp)) + ((1 − X) ∗ P (R | Q, Cart)) (2)

156 R.R. Larson

Where X is a pivot value between 0 and 1, and P (R | Q, Cnew), P (R | Q, Ccomp)
and P (R | Q, Cart) are the new weight, the original component weight, and
article weight for a given query. Although we found that a pivot value of 0.54
was most effective for INEX04 data and measures, we adopted the “neutral”
pivot value of 0.4 for all of our 2008 adhoc runs, given the uncertainties of how
this approach would fare with the new database.

3 Database and Indexing Issues

We used the latest version of the Wikipedia database for this year’s Adhoc runs,
and created a number of indexes similar to those described in previous INEX
papers[9].

Table 2. Wikipedia Article-Level Indexes for INEX 2008

Name Description Contents Vector?
docno doc ID number //name@id No
names Article Title //name Yes
topic Entire Article //article Yes
topicshort Selected Content //fm/tig/atl Yes

//abs
//kwd
//st

xtnames Template names //template@name No
figure Figures //figure No
table Tables //table No
caption Image Captions //caption Yes
alltitles All Titles //title Yes
links Link Anchors //collectionlink No

//weblink
//wikipedialink

Table 2 lists the document-level (/article) indexes created for the INEX data-
base and the document elements from which the contents of those indexes were
extracted.

Table 3. Wikipedia Components for INEX 2006

Name Description Contents
COMPONENT SECTION Sections //section
COMPONENT PARAS Paragraphs //p | //blockquote | //indentation1|

//indentation2|//indentation3
COMPONENT FIG Figures //figure

Adhoc and Book XML Retrieval with Cheshire 157

As noted above the Cheshire system permits parts of the document subtree
to be treated as separate documents with their own separate indexes. Tables 3
& 4 describe the XML components created for INEX and the component-level
indexes that were created for them.

Table 3 shows the components and the path used to define them. The first,
refered to as COMPONENT SECTION, is a component that consists of each
identified section in all of the documents, permitting each individual section of a
article to be retrieved separately. Similarly, each of the COMPONENT PARAS
and COMPONENT FIG components, respectively, treat each paragraph (with
all of the alternative paragraph elements shown in Table 3), and figure (<figure>
... </figure>) as individual documents that can be retrieved separately from the
entire document.

Table 4. Wikipedia Component Indexes for INEX 2006

Component
or Index Name Description Contents Vector?
COMPONENT SECTION
sec title Section Title //section/title Yes
sec words Section Words * (all) Yes
COMPONENT PARAS
para words Paragraph Words * (all) Yes
COMPONENT FIG
fig caption Figure Caption //figure/caption No

Table 4 describes the XML component indexes created for the components
described in Table 3. These indexes make the individual sections (such as COM-
PONENT SECTION) of the INEX documents retrievable by their titles, or
by any terms occurring in the section. These are also proximity indexes, so
phrase searching is supported within the indexes. Individual paragraphs (COM-
PONENT PARAS) are searchable by any of the terms in the paragraph, also
with proximity searching. Individual figures (COMPONENT FIG) are indexed
by their captions.

Few of these indexes and components were used during Berkeley’s simple
runs of the 2006 INEX Adhoc topics. The two official submitted Adhoc runs
and scripts used in INEX are described in the next section.

We decided to try the same methods on the Book Track data this year, but we
did not use multiple elements or components, since the goal of the main Books
Adhoc task was to retrieval entire books and not elements. We did, however
create the same indexes for the Books and MARC data that we created last
year as shown in Table 5, for the books themselves we used a single index of the
entire document content. We did not use the Entry Vocabulary Indexes used in
last year’s Book track runs.

The indexes used in the MARC data are shown in Table 5. Note that the tags
represented in the “Contents” column of the table are from Cheshire’s MARC to

158 R.R. Larson

Table 5. MARC Indexes for INEX Book Track 2008

Name Description Contents Vector?
names All Personal and Corporate //FLD[1670]00, //FLD[1678]10, No

names //FLD[1670]11
pauthor Personal Author Names //FLD[170]00 No
title Book Titles //FLD130, //FLD245, //FLD240,

//FLD730, //FLD740, //FLD440, No
//FLD490, //FLD830

subject All Subject Headings //FLD6.. No
topic Topical Elements //FLD6.., //FLD245, //FLD240,

//FLD4.., //FLD8.., //FLD130,
//FLD730, //FLD740, //FLD500, Yes
//FLD501, //FLD502
//FLD505, //FLD520, //FLD590

lcclass Library of Congress //FLD050, //FLD950 No
Classification

doctype Material Type Code //USMARC@MATERIAL No
localnum ID Number //FLD001 No
ISBN ISBN //FLD020 No
publisher Publisher //FLD260/b No
place Place of Publication //FLD260/a No
date Date of Publication //FLD008 No
lang Language of Publication //FLD008 No

XML conversion, and are represented as regular expressions (i.e., square brackets
indicate a choice of a single character).

3.1 Indexing the Books XML Database

Because the structure of the Books database was derived from the OCR of
the original paper books, it is primarily focused on the page organization and
layout and not on the more common structuring elements such as “chapters”
or “sections”. Because this emphasis on page layout goes all the way down to
the individual word and its position on the page, there is a very large amount
of markup for page with content. For this year’s original version of the Books
database, there are actually NO text nodes in the entire XML tree, the words
actually present on a page are represented as attributes of an empty word tag in
the XML. The entire document in XML form is typically multiple megabytes in
size. A separate version of the Books database was made available that converted
these empty tags back into text nodes for each line in the scanned text. This
provided a significant reduction in the size of database, and made indexing much
simpler. The primary index created for the full books was the “topic” index
containing the entire book content.

We also created page-level “documents” as we did last year. As noted above
the Cheshire system permits parts of the document subtree to be treated as

Adhoc and Book XML Retrieval with Cheshire 159

Fig. 1. Berkeley Adhoc Element Retrieval Results

separate documents with their own separate indexes. Thus, paragraph-level com-
ponents were extracted from the page-sized documents. Because unique object
(page) level indentifiers are included in each object, and these identifiers are
simple extensions of the document (book) level identifier, we were able to use
the page-level identifier to determine where in a given book-level document a
particular page or paragraph occurs, and generate an appropriate XPath for it.

Indexes were created to allow searching of full page contents, and component
indexes for the full content of each of individual paragraphs on a page. Because
of the physical layout based structure used by the Books collection, paragraphs
split across pages are marked up (and therefore indexed) as two paragraphs.
Indexes were also created to permit searching by object id, allowing search for
specific individual pages, or ranges of pages.

We encountered a number of system problems dealing with the Books data-
base this year, since the numbers unique terms exceeded the capacity of the
integers used to store them in the indexes. For this year, at least, moving to
unsigned integers has provided a temporary fix for the problem but we will need
to rethink how statistical summary information is handled in the future – per-
haps moving to long integers, or even floating point numbers and evaluating
the tradeoffs between precision in the statistics and index size (since moving to
Longs could double index size).

160 R.R. Larson

Fig. 2. Top 10 (by group) Adhoc Retrieval Runs

4 INEX 2008 Adhoc Track Runs

We submitted three runs this year to the Adhoc “Focused” track, two for the CO
Element search tasks, and one for the “Best in context” task. Figure 1 shows the
precision/recall curves for the two Element search runs. The better performing
run used a fusion of paragraph with full document (topic) search and had an
iP at 0.01 of 0.6395. This was ranked number twelve out of the sixty-one runs
submitted, and since many of the top-ranked runs came from the same groups,
the run appeared in the “top ten” graph on the official site (reproduced as Figure
2). As Figure 2 shows, the run was fairly strong for precision at low recall levels,
but overall showed a lack of recall placing it much lower than the majority of
the top ten submissions at higher recall levels. We had intended this run to use
the blind feedback mechanism described above, but fail to specify it correctly.
As a result the run used only the TREC2 logistic regression algorithm and the
weighted merging described above, but with no blind feedback.

Our second “Focused” run used a fusion of paragraphs with searches on the
“name” element of the Wikipedia documents. This run, also shown in Figure
1 had an iP at 0.01 of 0.5410, and ranked forty-third out of sixty-one runs - a
much poorer showing. This run also was intended to use the blind feedback, but
did not.

Adhoc and Book XML Retrieval with Cheshire 161

Fig. 3. Book Retrieval Task Runs (ircl prn0.00-1.00

As an unofficial experiment after we discovered the lack of blind feedback in
these runs, we ran the same script as for our first official run (using paragraphs
and the topic index) but correctly specified the use of blind feedback in addition
to the TREC2 Logistic Regression algorithm. This unofficial run obtained a iP
at 0.01 of 0.6586, which would have ranked tenth if it had been submitted. This
run is shown in Figure 1 as “POSTRUN” and indicates how the lack of blind
feedback in our official submissions adversely impacted the results.

Our Best in context run basically took the raw results data from the Adhoc
focused run using paragraphs and topics, and selected the top-ranked paragraphs
for each document as the “best in context”, all other elements were eliminated
from the run. The results clearly show that this is not a very effective strategy,
since our results of a MAgP of 0.0542 was ranked thirty-second out of thirty-five
runs submitted overall.

5 INEX 2008 Book Track Runs

We submitted three runs for the Book Search task of the Books track, one using
MARC data only, one using full Book contents only, and a third performing a
merge of the MARC and Book data. The results of these runs are compared in
Figure 3. Other measures of effectiveness for these runs (including their relative
ranks across all runs in the track) are shown in Table 6.

162 R.R. Larson

Table 6. Book Retrieval Task result measures

MAP ircl prn ircl prn ircl prn P5 P10
Name MAP rank 0.00 0.10 rank P5 rank P10 rank
BOOKSONLY 0.08 4 0.38 0.31 2 0.19 2 0.14 1
MARCONLY 0.04 16 0.23 0.14 16 0.09 16 0.06 16
MERGE 0.05 12 0.31 0.25 6 0.14 6 0.09 12

We are also participating in the “Active Reading” task of the Books track
which is still underway with no result to report yet.

6 Conclusions and Future Directions

For all of the Adhoc (focused and best in context) runs that we submitted this
year, only paragraphs were used as the retrieved elements, and we did not (as in
previous years) attempt to merge the results of searches on multiple elements.
This helps to partially explain both the low recall for the Focused task and
the low score of the Best in context task. The failure to correctly specify blind
feedback in the runs also had a negative impact. However, since this is the first
year when we have managed to submit any runs for the Focused task without
them being disqualified for overlap, we can consider it a significant improvement.
We note for the future that double-checking scripts before running them, and
submitting the results is very good idea.

References

1. Chen, A.: Multilingual information retrieval using english and chinese queries.
In: Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) CLEF 2001. LNCS,
vol. 2406, pp. 44–58. Springer, Heidelberg (2002)

2. Chen, A.: Cross-Language Retrieval Experiments. In: Peters, C., Braschler, M.,
Gonzalo, J. (eds.) CLEF 2002. LNCS, vol. 2785, pp. 28–48. Springer, Heidelberg
(2003)

3. Chen, A., Gey, F.C.: Multilingual information retrieval using machine translation,
relevance feedback and decompounding. Information Retrieval 7, 149–182 (2004)

4. Cooper, W.S., Chen, A., Gey, F.C.: Full Text Retrieval based on Probabilistic
Equations with Coefficients fitted by Logistic Regression. In: Text REtrieval Con-
ference (TREC-2), pp. 57–66 (1994)

5. Cooper, W.S., Gey, F.C., Dabney, D.P.: Probabilistic retrieval based on staged
logistic regression. In: 15th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Copenhagen, Denmark, June
21-24, pp. 198–210. ACM, New York (1992)

6. Harman, D.: Relevance feedback and other query modification techniques. In:
Frakes, W., Baeza-Yates, R. (eds.) Information Retrieval: Data Structures &
Algorithms, pp. 241–263. Prentice Hall, Englewood Cliffs (1992)

Adhoc and Book XML Retrieval with Cheshire 163

7. Larson, R.R.: A logistic regression approach to distributed IR. In: SIGIR 2002:
Proceedings of the 25th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Tampere, Finland, August 11-15,
pp. 399–400. ACM Press, New York (2002)

8. Larson, R.R.: A fusion approach to XML structured document retrieval. Informa-
tion Retrieval 8, 601–629 (2005)

9. Larson, R.R.: Probabilistic retrieval approaches for thorough and heterogeneous
xml retrieval. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS,
vol. 4518, pp. 318–330. Springer, Heidelberg (2007)

10. Larson, R.R.: Probabilistic retrieval, component fusion and blind feedback for XML
retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS,
vol. 3977, pp. 225–239. Springer, Heidelberg (2006)

11. Mass, Y., Mandelbrod, M.: Component ranking and automatic query refinement
for xml retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004.
LNCS, vol. 3493, pp. 73–84. Springer, Heidelberg (2005)

12. Voorhees, E., Harman, D. (eds.): The Seventh Text Retrieval Conference
(TREC-7). NIST (1998)

13. Voorhees, E., Harman, D. (eds.): The Eighth Text Retrieval Conference (TREC-8).
NIST (1999)

Book Layout Analysis:
TOC Structure Extraction Engine

Bodin Dresevic, Aleksandar Uzelac, Bogdan Radakovic, and Nikola Todic

Microsoft Development Center Serbia,
Makedonska 30, 11000 Belgrade, Serbia

{bodind,aleksandar.uzelac,bogdan.radakovic,nikola.todic}@microsoft.com

http://www.microsoft.com/scg/mdcs

Abstract. Scanned then OCRed documents usually lack detailed layout
and structural information. We present a book specific layout analysis
system used to extract TOC structure information from the scanned and
OCRed books. This system was used for navigation purposes by the live
books search project. We provide labeling scheme for the TOC sections
of the books, high level overview for the book layout analysis system, as
well as TOC Structure Extraction Engine. In the end we present accuracy
measurements of this system on a representative test set.

Keywords: book layout analysis, TOC, information extraction, TOC
navigation, ocrml, bookml.

1 Introduction

Book layout analysis as described in this paper is a process of extracting struc-
tural information from scanned and OCRed books. The main purpose of this
work was to enable navigation experience for the live book search project, a
clickable TOC experience, in mid 2007. More precisely, the task was to isolate
TOC pages from the rest of the book, detect TOC entries and locate the target
page where TOC entries are pointing to. In this paper we shall focus on the
second part, TOC structure extraction.

There are two aspects of the problem; the first one is related to acquir-
ing/extracting information from raw OCR (words, lines and bounding boxes),
i.e. performing in depth analysis of TOC pages. On any TOC page there are sev-
eral types of information which we shall roughly divide in two: TOC entries and
other. Each TOC entry is a single smallest group of words with the same title
target somewhere in the book (usually specified by the page number at the end
of the entry). Everything other than TOC entries we shall ignore, implying other
stuff does not yield significant information to be treated. With this defined —
the TOC Structure Extraction Engine is responsible for providing following in-
formation about TOC entries:

• Separating TOC entries from other less important content of the page
• Separating TOC entries among themselves

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 164–171, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.microsoft.com/scg/mdcs

Book Layout Analysis: TOC Structure Extraction Engine 165

• Establishing TOC entry target page
• Establishing TOC entry relative significance
• Determining TOC entry internal structure

The second aspect of the problem is related to the presentation of extracted
information. For presentation purposes we have devised a labeling scheme which
supports all possible scenarios for TOC pages.

2 Labeling Scheme

At this point we shall introduce several new ideas regarding the actual labeling
of TOC pages. We have previously mentioned TOC entries in an informal way
and now we shall define a TOC entry in a more rigorous manner. A TOC entry is
a single referee to a target (part, chapter section, first line, first couple of words
in some line...) somewhere in the book. The target cannot begin in the middle
of a line (we emphasize the case of a single word in the middle of the target
line — this is not considered to be TOC entry, but rather an index entry). In
the same manner we shall disregard entries with a number of targets (again, we
would consider this entry to be an index rather than TOC).

To illustrate the point we have prepared an example, taken from Charles Fran-
cis Adams 1890 book “Richard Henry Dana”, published by Houghton Boston.
We took an excerpt from the table of contents of that book. In Fig. 1 below we
have presented three TOC entries. All three have the same structure; they all
consist of a chapter number (IV, V, and VI) at the beginning of the line, then
there is a title (“Round the World”, and so on), a separator (a number of dots
in each line), and finally a page number for each entry (178, 248, and 282).

Fig. 1. Example of three TOC entries

To ensure that each entry is in fact a TOC entry it is not sufficient to consider
a TOC page alone, target pages need be considered as well. As an illustration we
shall observe page 178 and its content (shown in Fig. 2 below). After inspection it
is clear that the first entry from Fig. 1 indeed targets page 178, i.e. there are both
chapter number (the same as indicated in TOC entry) and chapter title (again,
the same as indicated in TOC entry). We observe that the chapter number is
of somewhat different structure than in the TOC entry on TOC page (namely,
there is keyword “CHAPTER” in front of the actual chapter number, and the
chapter name appears in the line preceding the actual title line), nevertheless the
target page is correct. Furthermore, both the chapter number and the chapter

166 B. Dresevic et al.

title are spatially separated from the rest of the text on that page (we shall refer
to the rest of the page as a body), the font, although the same type and size, it
is in all capital letters, which is yet another significant feature to further ensure
that our target page is in fact correct.

Fig. 2. Example of TOC entry target page

Given a simple example (such as the previous one), one can induce a minimal
set of labels needed for labeling TOC entries. The most important label is clearly
a title one, indicating a number of words that represent a TOC entry title. In our
labeling scheme we refer to this label as a TOC CHAPTER TITLE. Next in line
of importance is the page number, providing information about the target page
for each entry. In our labeling scheme we refer to this label as a TOC CHAPTER
PAGE NUMBER. Then we have TOC CHAPTER NAME label, which in the
example above refers to a chapter number IV; in general TOC chapter name
label could consist of both keyword (like “CHAPTER” or “SECTION”) and
a number. At last there is TOC CHAPTER SEPARATOR label, which is self
explanatory.

With the most important labels defined we are left with the duty of defining
those less common/important. Again, we shall start with an example, an excerpt
from the same TOC page as in the previous example is taken and shown in Fig. 3
below.

Fig. 3. Example of TOC TITLE and NONE labels

Book Layout Analysis: TOC Structure Extraction Engine 167

Simple visual inspection is sufficient to ensure “CONTENTS OF VOL. II.”
should never be identified as a TOC entry, but rather as the title of the given
TOC page. That is why we label this (and similar) group of words with a TOC
TITLE label.

Another quick inspection is enough to rule out “CHAPTER” and “PAGE”
words in the line preceding the first TOC entry; these two are surely not a TOC
entry (neither of the two is targeting any title later in the book). To a viewer
it is clear that the first word (“CHAPTER”) stands for the horizontal position
of chapter numbers, while the second word (“PAGE”) stands for the horizontal
position of page numbers for each TOC entry below. These two words are not
of particular importance, especially compared to TOC entry labels, and that is
why we introduce another label for negligible text, TOC NONE label. Because
neither of the two words in question are actually linking to any target page,
these words are not relevant for navigation nor for indexing purposes — that is
how we validate our labeling decision. Furthermore, any other text that cannot
possibly link to a target page is labeled the same way. A good example would
be a page with severe errors in OCR, e.g. some text is recognized where no text
exist.

Finally, there is one last type of less-important words that could be found on
TOC pages. Observe the example in Fig. 4 (last three entries), where the author
of the given title is specified in the same line with a chapter title, separator
and page number. This example is taken from “Representative one-act plays”
by Barrett Harper Clark, published by Brown Boston Little in 1921. It makes
sense to distinguish a title from an author name; yet again, instead of an author
name there could be any other text, and so far we observed several patterns, a
year of publishing, a short summary of a chapter, rating, etc. All such text we
label using TOC CHAPTER ADDITION label. We may decide to further fine
sub-class the addition label in the future, and use several labels instead.

Fig. 4. Example of TOC CHAPTER ADDITION labels

So far we have discussed labels for each word on a TOC page, i.e. each word is
labeled using one of the proposed labels. As a short summary we shall list them
all here once more:

168 B. Dresevic et al.

• TOC NONE label, for negligible text
• TOC TITLE label
• TOC entry labels:

◦ TOC CHAPTER NAME label
◦ TOC CHAPTER TITLE label
◦ TOC CHAPTER SEPARATOR label
◦ TOC CHAPTER PAGE NUMBER label
◦ TOC CHAPTER ADDITION label

At this point we shall introduce another dimension to the labeling problem. It
is clear that labeling of individual words is not sufficient. For instance by looking
at Fig. 4 one can observe that the first two entries are somewhat different than
the others; the later entries are referencing one-act plays (as indicated by the
book title), and the first two are giving preface and historical background for
the plays in the book. On further inspection it can be observed that the first two
entries have roman numerals for chapter page numbers, while the remaining TOC
entries have arabic digits. This same pattern is observed to be common for most
of the books we had access to. That is why we decided to introduce an additional
label/attribute for each TOC entry, where an entry is either of introductory or
of regular type (with introductory entries being ones with roman numerals).

The third dimension of labeling problem is related to defining a TOC entry.
There are cases of TOC pages where entries are in more than one line, e.g. the
second entry in Fig. 5 is in two lines (there are three entries in Fig. 5). In that and
similar cases (where entries are in two or more lines) it is necessary to introduce
yet another label for each word of each TOC entry, specifying whether any given
word is a continuation of previous entry. If any given word is not a continuation
of previous, then it is the beginning of a new TOC entry.

Fig. 5. Example of entry continuation

The last dimension of the labeling problem relates to establishing relative
significance of each TOC entry on the TOC page. Relative significance of the
entry is represented in the form of a logical depth level. Observe the structure
presented in Fig. 6 (excerpt taken from “Managing and Maintaining a Microsoft
Windows Server 2003 Environment for an MCSE Certified on Windows 2000”
by Orin Thomas, published by Microsoft Press, 2005), there are five TOC en-
tries presented in three structural/hierarchical groups, with a different relative
significance assigned to each.

Book Layout Analysis: TOC Structure Extraction Engine 169

Fig. 6. Example of depth level

The entry in the first line is at highest hierarchical level, which is in this
case indicated with keyword “CHAPTER”, blue font color, bold characters, and
higher font size. Not to be forgotten, horizontal level of indentation is also a
strong feature, especially for the following entries. The second and third TOC
entries in Fig. 6 are one step below the level of the first one, resulting in level 2
in the hierarchy. At last, TOC entries four and five are at level 3 in the hierarchy.

We are now ready to summarize proposed labels for TOC page, four dimen-
sions of the labeling problem are (categorized in hierarchical order):

• Hierarchical level of an entry
◦ entry type (introductory vs. regular entries)
◦ entry depth level

• Hierarchical level of a word
◦ beginning vs. continuation of a word within an entry
◦ word labels (name, title, separator, page number, addition, negligible

text, toc page title)

3 Book Layout Engine

As previously stated, we consider raw OCR information as the input. This con-
sists of words (strings), lines (list of words in each line) and bounding boxes of
each word. Provided with this information we aim to detect and process TOC
pages. There are a few prerequisites for the TOC Structure Extraction Engine,
each of them listed below.

The first step in this process is to perform page classification and detect TOC
pages. The next step would be detection of the page numbers, e.g. assigning each
physical page of the book with a unique logical page number. At last, each TOC
page is processed to detect the scope of the TOC section. These three steps are
sufficient for the TOC Structure Extraction Engine to perform.

4 TOC Structure Extraction Engine

In the introduction we have specified the responsibilities of the TOC Structure
Extraction Engine. Later on while discussing the labeling scheme we have spec-
ified the means of exposing this information. Here we shall discuss the engine
itself.

170 B. Dresevic et al.

It is worth noting that engine is developed on two sets of books, training and
a blind test set, to prevent specialization. At last, the results presented later in
the text are measured against the representative set (a third set, with no books
from the previous two sets).

The first thing in the engine would be to distinguish between important and
negligible portions of the TOC section. As specified by the labeling scheme,
there are several possible cases of negligible text, the title of the TOC page, false
positive OCR errors (usually words instead of the pictures), and random text.
The engine is detecting each based on the pattern occurrences in the training
set.

While it is feasible to separate entries among themselves without additional
information, we have chosen to detect chapter names and chapter page numbers
first, and only then proceed to the spatial entry detection. Again, this part of the
engine is based on the pattern occurrences in the training set. As one possible
implementation we can suggest Conditional Random Fields[1], which is a good
framework for labeling sequential data.

Once we have entries we can proceed to the linking, where a fuzzy search
technique is used to locate the entry title on the target page. It is worth noting
that detection of page numbers (assigning each physical page of the book with a
unique logical page number) comes handy here, because it provides a significant
hint of where to look for the target title. Parameters of the fuzzy search are
based on the pattern occurrences in the training set.

At last, relative significance of the entries is obtained after clustering, where
each cluster represent a single level of significance. Parameters and features of
the clustering are based on the training set.

5 Representative Set

In order to measure the accuracy of the TOC engine a fairly large test set needs
to be selected due to the various layouts applied to books throughout history.
Also, topics and publishers typically have specific templates for the book and
TOC layout. Since storing large quantities of book data and performing tests on
it is a costly process, a representative set has been created.

The representative set is a subset (200 books) of a much larger test set (180,000
books). It has better feature distribution (compared to the entire book corpus)
than 93% of the random sets of the same size and gives a good picture of how
the engine will perform in real-time situations.

6 Results

In this section we shall present some results on the representative set (blind set).
Each of the four major parts of the TOC Structure Extraction are measured for
precision and recall.

We shall start with the entry internal structure (word label) engine; chap-
ter names are detected with 98.56% precision and 98.63% recall; chapter page

Book Layout Analysis: TOC Structure Extraction Engine 171

numbers are detected with 99.97% precision and 99.07% recall; not surprising
joint chapter titles and additions (as a single measure) are detected with 99.36%
precision and 99.80% recall. The total number of human labeled chapter page
number words is 9,512, while the total number of chapter name words is 7,206.
The total number of chapter title and addition words is 52,571.

Spatial entry detection (we only consider entries which are entirely correct
in a spatial sense — all words in an entry must be correct for the entry to be
considered spatially correct) is with 92.91% precision and 95.45% recall. Total
number of human labeled entries is 9535.

Linking detection is with 91.29% precision and 93.78% recall (98.25% condi-
tional to entry being spatially correct).

Depth level 1 is detected with 80.51% precision and 84.58% recall (90.91%
conditional to entry being spatially correct).

Reference

1. Ye, M., Viola, P.: Learning to Parse Hierarchical Lists and Outlines Using Con-
ditional Random Fields. In: Proceedings of the Ninth international Workshop
on Frontiers in Handwriting Recognition, pp. 154–159. IEEE Computer Society,
Washington (2004)

The Impact of Query Length and Document
Length on Book Search Effectiveness

Mingfang Wu, Falk Scholer, and James A. Thom

RMIT University, Melbourne, Australia
{mingfang.wu,falk.scholer,james.thom}@rmit.edu.au

Abstract. This paper describes the RMIT group’s participation in the
book retrieval task of the INEX booktrack in 2008. Our results suggest
that for book retrieval task, using a page-based index and ranking books
based on the number of pages retrieved may be more effective than di-
rectly indexing and ranking whole books.

1 Introduction

This paper describes the participation of the RMIT group in the Initiative for
the Evaluation of XML retrieval (INEX) book search track in 2008, specifically
the book retrieval task. Book search is an important track at INEX – books
are generally much larger documents than the scientific articles or the wikipedia
pages that have been used in the main ad hoc track at INEX. The book corpus
as provided by Microsoft Live Book Search and the Internet Archive contains
50 239 digitized out-of-copyright books. The contents of books are marked up
in an XML format called BookML [1]. The size of this XML marked up corpus
is about 420 Gb. With book retrieval, structure is likely to play a much more
important role than in retrieval from collections of shorter documents.

This is the first year of RMIT’s participation in the book search track at
INEX, and we explore the effectiveness of book retrieval by experimenting with
different parameters, namely: the length of queries and the length of documents
being indexed and retrieved. We begin by describing our approach in the next
section, which is followed by our results, and then the conclusion.

2 Our Approach to Book Retrieval Task

The book retrieval task investigates on a typical scenario in which a user searches
for relevant books on a given topic with the intent to build a reading or reference
list. With this task, we attempted to explore the following research questions.

1. What is a suitable length for a query? Does adding more query terms improve
retrieval effectiveness?

2. What is the most suitable index and search granularity? Should we treat the
whole book or a just a section or page of a book as a searchable document
unit?

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 172–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Impact of Query Length and Document Length on Book Search 173

To answer these research questions, we experimented with various query con-
struction strategies, two different units of searchable document, as well as the
combinations of query length and searchable document unit. We undertook 12
runs in total, of which 10 official runs were submitted into the pool for evaluation.

2.1 Query Construction

The test collection has a total of 70 test topics that were contributed by par-
ticipating groups in 2007 and 2008. Participating groups also contributed to the
relevance assessment of these topics. At the time of writing, there are 25 (out
of 70) topics assessed (or partially assessed), with at least one relevant book be-
ing identified. Thus our evaluation is based only on the completed assessments
for these 25 topics (this is the version of the book track assessments known as
v250209 from 25th February 2009).

<inex_topic track="book" task="book-retrieval/book-ad-hoc"

topic_id="41" ct_no="2008-13">

<title>

Major religions of the world

</title>

<description>

I am interested to learn about the origin of the world’s major

religions, as well as their commonalities and differences.

</description>

<narrative>

<task>

Having met people from different cultural and religious

background, I am keen to learn more about their religions

in order to understand them better.

</task>

<infneed>

A concise book that has direct comparison of the world’s

popular religions would be an ideal pick. If this book can

not be found, multiple books about the origin and believes

of each religion should also be acceptable.

</infneed>

</narrative>

</inex_topic>

Fig. 1. A sample topic

Topics from the book track collection contain three components: title, de-
scription and narrative. The narrative component is further decomposed into
two sub-components: task and information need. An example of such a topic is
shown in Figure 1. As we can see, the title, description and information need
components provide specificity of a search context in an increasing order: the
title mostly represents a query that a user would type into a search box, the

174 M. Wu, F. Scholer, and J.A. Thom

description provides more details of what information is required, while the task
and the information need depict the context of the potential use to be made of
the searched books, and the criteria on which books should be counted as being
relevant or irrelevant.

Generally, long queries describe information needs more specifically than those
short ones [3]. It has also been reported that long and short queries perform
differently [2]. We set out to investigate, given a book collection where the length
of a book is much longer than other types of documents such as a newswire
article or a web page from TREC test collection, whether long queries would
perform better than short queries. So we explored the following four approaches
to constructing queries from different components of a topic.

Title: Use all words from the topic title element.
Title+Infneed: Use all words from the topic title and the topic information

need element.
TitleBoolean: Boolean operator “AND” is inserted between query words as in

Title.
Title+InfneedManual: Use all words as in Title, and add some manually

selected words from the information need element.

Consider the sample topic shown in Figure 1. Applying our four different
approaches results in the following queries (after stopping and stemming):

Title: major religion world
TitleBoolean: major AND religion AND world
Title+Infneed: major religion world concis book direct comparison world pop-

ular religion ideal pick book found multipl book origin believ religion accept
Title+InfneedManual: major religion world direct comparison world popular

religion

The average query length for the set of 25 assessed topics is 2.6 terms for the
set of Title (or TitleBoolean) queries, 25.3 terms for the set of Title+Infneed
queries, and 13.4 terms for the set of Title+InfneedManual queries.

2.2 Index Construction and Runs

We used the Zettair search engine1 for indexing and searching in all of our
submitted runs. After preprocessing into documents but before indexing, we
removed off all XML tags, leaving with a corpus of about 30GB for indexing.
It took about 2 hours elapsed time to create an index on a shared 4 CPU
(2.80GHz) Intel Pentium running Linux. For retrieval, we applied the BM25
similarity function [4] for document weighting and ranking (with k1 = 1.2 and
b = 0.75). During indexing and searching, words from a stoplist were removed
and the Porter stemmer was applied. We created separate indexes based on
book-level evidence and page-level evidence.
1 http://www.seg.rmit.edu.au/zettair/

The Impact of Query Length and Document Length on Book Search 175

Ranking Based on Book-level Evidence

The book-level index treated each book as a document. We sent the four sets of
queries (Title, TitleBoolean, Title+Infneed, and Title+InfneedManual)
to the search engine using this index, generating four book-level runs.

RmitBookTitle
RmitBookTitleBoolean
RmitBookTitleInfneed
RmitBookTitleInfneedManual

Ranking Based on Page-level Evidence

On average, a book from the collection contains 36 455 words. Sometimes, a
topic is only mentioned in passing in a book, and may not be the main theme of
the book. In order to promote those books dedicated primarily to the topic, we
require a topic be mentioned in most parts of a book. We therefore experimented
to break a book down into pages by using the “page” tag and constructed a
corpus in which each page was treated as a document.

There are a total of 16 975 283 pages (documents) in this page corpus. Both
book and page collections have 1 831 505 097 indexable terms of which 23 804 740
are distinct terms. The average document length is 589 370.9 bytes per book and
1 793.6 per page, and the average number of terms in each document is 102 041
per book and 302 per page.

We used the following two methods to estimate a book’s relevance to the
topic.

1. In the first page-level evidence ranking method, we first retrieve the top 3 000
pages and then rank books according to percentage of pages retrieved per
book.

2. The second page-level evidence ranking method is similar to the first one but
ranks books based on the maximum number of continuous pages retrieved
from the book as a percentage of the total number of pages in the book.

Combing these two page-level evidence ranking methods and our four query
types, we had another eight runs as follows:

RmitPageMergeTitle: Query terms are the same as in RmitBookTitle,
books are ranked according to the method 1;

RmitConPageMergeTitle: Query terms are the same as in RmitBookTitle,
books are ranked according to the method 2;

RmitPageMergeTitleBoolean: Queries are the same as in RmitBookTi-
tleBoolean, books are ranked according to the method 1;

RmiConPageMergeTitleBoolean: Queries are the same as in RmitBook-
TitleBoolean, books are ranked according to the method 2;

RmitPageMergeTitleInfneed: Query terms are the same as in RmitBook-
TitleInfneed, books are ranked according to the method 1;

176 M. Wu, F. Scholer, and J.A. Thom

RmitConPageMergeTitleInfneed: Query terms are the same as in Rmit-
BookTitleInfneed, books are ranked according to the method 2.

RmitPageMergeTitleManual: Query terms are the same as in RmitBook-
TitleInfneedManual, books are ranked according to the method 1;

RmitConPageMergeTitleManual: Query terms are the same as in Rmit-
BookTitleInfneedManual, books are ranked according to the method 2.

3 Results

Table 1 shows performance of twelve runs as measured in precision at 5 (P@5), 10
(P@10) and 20 (P@20) books retrieved, average interpolated precision averages
at 0.00 and 0.10 recall, and MAP (mean average precision). In what follows, we
make observations about both query type and length, and document type and
length, based on the measure P@5.

Table 1. Experimental result for the book search task (the additional runs in italics
were not included in the pool of submitted runs)

incl prn incl prn
Run ID P@5 P@10 P@20 MAP 0.00 0.10
RmitBookTitle 0.128 0.104 0.094 0.075 0.247 0.220
RmitBookTitleBoolean 0.128 0.104 0.049 0.075 0.247 0.220
RmitBookTitleInfneed 0.136 0.100 0.086 0.067 0.331 0.200
RmitBookTitleInfneedManual 0.112 0.108 0.088 0.068 0.276 0.187
RmitPageMergeTitle 0.144 0.116 0.084 0.074 0.302 0.260
RmitPageMergeTitleBoolean 0.144 0.116 0.084 0.074 0.302 0.260
RmitPageMergeTitleInfneed 0.168 0.108 0.090 0.079 0.358 0.291
RmitPageMergeTitleInfneedManual 0.216 0.132 0.098 0.106 0.367 0.346
RmitConPageMergeTitle 0.104 0.072 0.064 0.050 0.241 0.202
RmitConPageMergeTitleBoolean 0.104 0.072 0.064 0.050 0.241 0.202
RmitConPageMergeTitleInfneed 0.104 0.072 0.046 0.039 0.224 0.130
RmitConPageMergeTitleInfneedManual 0.128 0.084 0.058 0.054 0.279 0.213

Query Type and Length

We observe the following trends regarding queries.

– The three runs with Boolean queries (RmitBookTitleBoolean, RmitPage-
MergeTitleBoolean and RmitConPageMergeTitleBoolean) have almost the
same performance as their corresponding runs without Boolean operators
(RmitBookTitle, RmitPageMergeTitle and RmitConPageMergeTitle). This
might be because the topic title is typically short (average of 2.6 terms),
indeed 7 out of the 25 topics have only one query term.

– When a whole book is treated as a document, including the information need
in the queries (RmitBookTitleInfneed) has a small improvement of 6.3% over
just using the topic title as the queries (RmitBookTitle). However, manually
adding terms from the information need (RmitBookTitleInfneedManual) is
worse than the plain title queries.

The Impact of Query Length and Document Length on Book Search 177

– When a page of a book is treated as a document, the two runs with man-
ually added terms from the information need (RmitPageMergeTitleInfneed-
Manual and RmitConPageMergetitleInfneedManual) performed better than
their corresponding runs with the title only queries (RmitPageMergeTitle
and RmitConPageMergeTitle) (by 50% and 23.0% for ranking method 1
and 2 respectively), and the corresponding runs with queries including the
information need as well as the title (RmitPageMergeTitleInfneed and Rmit-
ConPageMergeTitle) (by 28.6% and 23.0% for ranking method 1 and 2 re-
spectively).

– The average length of the queries that added all the terms from the infor-
mation need to the title (Title+Infneed) is almost double the length of the
queries where the added terms were manually selected from the information
need (Title+InfneedManual). This might be an explanation for why the runs
with the Title+Infneed queries worked better for documents of book length,
while the Title+InfneedManual queries worked better for documents of page
length.

Document Type and Length

We observe the following trends regarding document ranking.

– The first page-level evidence ranking method (run IDs starting with Rmit-
Page) has the best performance regardless of query type. The four runs
from this method improved over counterpart book runs by 12.5%, 12.5%.
23.5% and 92.8% respectively. In particular, the run where terms from the
information need were manually added to title (RmitPageMergeTitleInfneed-
Manual), improved the performance over the base run (RmitBookTitle) by
68.8%. Incidentally, this run also performed the best amongst all submitted
runs across all participating groups in terms of the measures MAP, P@5,
P@20 and incl prn0.10.

– The second page ranking method (run IDs starting with RmitConPage) gives
worse performance for almost every query type, except the run RmitCon-
PageMergeTitleInfneedMnaual, which is better than its corresponding book
run RmitBookTitleInfneedManual by 14.3%.

4 Concluding Remarks

This paper has reported the results of the RMIT group’s participation in the
INEX book search track in 2008. We explored the impact of variation of query
length and document size on the effectiveness of the book retrieval task. Based on
the current relevance assessments, the evaluation shows that treating a page of
a book as a searchable unit and ranking books based on the percentage of pages
retrieved performs better than indexing and retrieving whole book as a search
unit. The search performance can be further improved by adding additional
query words that describe information need.

This work provides a baseline for further experiments in structured informa-
tion retrieval, in particular developing new approaches to book retrieval and in
exploring other tasks such page-in-context.

178 M. Wu, F. Scholer, and J.A. Thom

References

1. Kazai, G., Doucet, A., Landoni, M.: Overview of the INEX 2008 book track. In:
INEX 2008 Workshop Proceedings (2008)

2. Kumaran, G., Allan, J.: A case for shorter queries, and helping users create them. In:
Proceedings of Human Language Technologies: The Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 220–227
(2006)

3. Phan, N., Bailey, P., Wilkinson, R.: Understand the relationship of information need
specificity to search query length. In: Proceedings of SIGIR 2007, pp. 709–710 (2007)

4. Robertson, S., Walker, S., Hancock-Beaulieu, M.M., Gatford, M.: Okapi at TREC-3.
In: Proceedings of TREC-3, pp. 109–126 (1994), trec.nist.gov/pubs/

trec.nist.gov/pubs/

Overview of the INEX 2008 Efficiency Track

Martin Theobald1 and Ralf Schenkel1,2

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany

Abstract. This paper presents an overview of the Efficiency Track that was
newly introduced to INEX in 2008. The new INEX Efficiency Track is intended
to provide a common forum for the evaluation of both the effectiveness and ef-
ficiency of XML ranked retrieval approaches on real data and real queries. As
opposed to the purely synthetic XMark or XBench benchmark settings that are
still prevalent in efficiency-oriented XML retrieval tasks, the Efficiency Track
continues the INEX tradition using a rich pool of manually assessed relevance
judgments for measuring retrieval effectiveness. Thus, one of the main goals is
to attract more groups from the DB community to INEX, being able to study
effectiveness/efficiency trade-offs in XML ranked retrieval for a broad audience
from both the DB and IR communities. The Efficiency Track significantly ex-
tends the Ad-Hoc Track by systematically investigating different types of queries
and retrieval scenarios, such as classic ad-hoc search, high-dimensional query ex-
pansion settings, and queries with a deeply nested structure (with all topics being
available in both the NEXI-style CO and CAS formulations, as well as in their
XPath 2.0 Full-Text counterparts).

1 General Setting

1.1 Test Collection

Just like most INEX tracks, the Efficiency Track uses the 2007 version of the INEX-
Wikipedia collection [2] (without images), an XML version of English Wikipedia ar-
ticles initially introduced for INEX 2006 and slightly revised in 2007. The collection
is available for download from the INEX website http://www.inex.otago.ac.
nz/ for registered participants, or directly from http://www-connex.lip6.fr/

˜denoyer/wikipediaXML/. Although this 4.38 GB XML-ified Wikipedia collec-
tion is not particularly large from a DB point-of-view, it has a rather irregular structure
with many deeply nested paths, which will be particularly challenging for traditional
DB-style approaches, e.g., using path summaries. There is no DTD available for INEX-
Wikipedia.

1.2 Topic Types

One of the main goals to distinguish the Efficiency Track from traditional Ad-Hoc re-
trieval is to cover a broader range of query types than the typical NEXI-style CO or
CAS queries, which are mostly using either none or only very little structural infor-
mation and only a few keywords over the target element of the query. Thus, two nat-
ural extensions are to extend Ad-Hoc queries with high-dimensional query expansions

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 179–191, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.inex.otago.ac.nz/
http://www.inex.otago.ac.nz/
http://www-connex.lip6.fr/~denoyer/wikipediaXML/
http://www-connex.lip6.fr/~denoyer/wikipediaXML/

180 M. Theobald and R. Schenkel

and/or to increase the amount of structural query conditions without sacrificing the IR
aspects in processing these queries (with topic description and narrative fields
providing hints for the human assessors or allowing for more semi-automatic query ex-
pansion settings, see Figure 1). The Efficiency Track focuses on the following types of
queries (also coined “topics” in good IR tradition), each representing different retrieval
challenges:

– Type (A) Topics: 540 topics (no. 289–828) are taken over from previous Ad-hoc
Track settings used in 2006–2008, which constitute the major bulk of topics used
also for the Efficiency Track. These topics represent classic, Ad-Hoc-style, focused
passage or element retrieval (similar to the INEX Ad-Hoc Focused subtask 2006–
2008, see for example [3]), with a combination of NEXI CO and CAS queries.
Topic ids are taken over from the Ad-Hoc track as well, thus allowing us to reuse
assessments from the Ad-Hoc Track for free.

– Type (B) Topics: 21 topics (no. 829–849) are derived from interactive, feedback-
based query expansion runs, kindly provided by the Royal School Of Library And
Information Science, Denmark, investigated in the context of the INEX Interactive
Track 2006 [5,6]. These CO topics are intended to simulate high-dimensional query
expansion settings with up to 112 keywords (topic no. 844), which cannot be eval-
uated in a conjunctive manner and are expected to pose a major challenge to any
kind of search engine. Respective expansion runs have been submitted by RSLIS
also to the 2006 Ad-Hoc track, such that relevant results are expected to have made
it into the relevance pools of INEX 2006 Ad-Hoc track assessments as well. An
additional adhocid attribute marks the original Ad-Hoc id of the topic that it has
been derived from, such that—at least incomplete—assessments are available for
these type (B) topics.

– Type (C) Topics: 7 new topics (no. 850–856) have been developed and submitted
by Efficiency Track participants in 2008. These topics represent high-dimensional,
structure-oriented retrieval settings over a DB-style set of CAS queries, with deeply
nested structure but only a few keyword conditions. Assessments were originally
intended to get accomplished by Efficiency Track participants as well, but were
then skipped due to the low amount of newly proposed type (C) topics and the low
respective impact on overall result effectiveness as compared to the more than 500
Ad-Hoc topics that already come readily assessed. The evaluation of runtimes how-
ever remains very interesting over this structure-enhanced set of type (C) topics.

1.3 Topic Format and Assessments

Just like the original NEXI queries, type (A) queries have some full-text predicates such
as phrases (marked by quotes “”), mandatory keywords (+), and keyword negations (-).
Although participants were encouraged to use these full-text hints, they are not manda-
tory just like in other INEX tracks. Because of their high-dimensional nature, most type
(B) and (C) queries require IR-style, non-conjunctive (aka. “andish”) query evaluations
that can either preselect the most significant query conditions or dynamically relax both
the structure- and content-related conditions at query processing time. The reuse of
type (A) and (B) lead to 308 topics for which assessments from the INEX 2006–2008

Overview of the INEX 2008 Efficiency Track 181

Ad-hoc Tracks are available. An additional conversion to the new 2008 version of the
INEX-Eval tool and the (passage-based) assessments format was needed to incorporate
the 2008 assessment files (QRels) and has meanwhile been made available online for
download from the track homepage1.

<topic id="856" type="C">
<co_title>

State Parks Geology Geography +Canyon
</co_title>
<cas_title>\

//article//body[about(.//section//p, State Park) and
about(.//section//title, Geology) and
about(.//section//title, Geography)]

//figure[about(.//caption, +Canyon)]
</cas_title>
<xpath_title>

//article//body[.//section//p ftcontains "State Park" and
.//section//title ftcontains "Geology" and
.//section//title ftcontains "Geography"]

//figure[.//caption ftcontains "Canyon"]
</xpath_title>

<description>
I’m looking for state parks with sections describing
their geology and/or geography, preferably with a figure of
a canyon as target element.

</description>
<narrative>
State park pages often follow the common pattern of having
sections entitled with "Geology" or "Geography". I’m
particularly interested in those pages with a figure of a
canyon, e.g., the Grand Canyon.

</narrative>
</topic>

Fig. 1. Example type (C) topic (no. 856)

All topic titles are provided in the NEXI syntax (in both their CO and CAS formu-
lations) and (new for the Efficiency Track) in their corresponding XPath 2.0 Full-Text
specification. XPath 2.0 queries were automatically generated from the respective NEXI
CAS titles, while the CAS title itself was taken over from the CO title and wrapped into
a pseudo target element of the form //*[about(...)] whenever there was no ac-
tual CAS title available.

A “Call for Structure-Enhanced Queries” for the new type (C) queries was issued
to all registered INEX participants in early May 2008. The final set of 568 Efficiency
Track topics was released in early July 2008, with the intention to keep a relatively
tight time window between the release of the topics and the run submission deadline to
prevent people from overtuning to particular topics.

1.4 Sub-tasks

The Efficiency Track particularly encourages the use of top-k style query engines. The
result submission format includes options for marking runs as top-15, top-150, and
top-1500 (the latter corresponding to the traditional Ad-hoc submission format), using

1 http://www.inex.otago.ac.nz/tracks/efficiency/efficiency.asp

http://www.inex.otago.ac.nz/tracks/efficiency/efficiency.asp

182 M. Theobald and R. Schenkel

either a Focused (i.e., non-overlapping),Thorough (incl. overlap), or Article re-
trieval mode (see below). Automatic runs may use either the title field, including the
NEXI CO, CAS, or XPATH titles, additional keywords from the narrative or descrip-
tion fields, as well as automatic query expansions if desired. At least one automatic and
sequential run with topics being processed one-by-one is mandatory for each participat-
ing group. Participants are invited to submit as many runs in different retrieval modes
as possible.

– Article: This is the mode that corresponds to a classical search engine setting to the
largest extent. All documents may be considered either in their plain text or XML
version. Moreover, queries can be used in both their CO and CAS (incl. XPath 2.0
Full-Text) formulation. In the Article-Only/CO combination this setting resembles
a classical IR setting with entire documents as retrieval units and plain keywords as
queries. Article-only runs are always free of overlapping results.

– Thorough: The Thorough mode represents the original element-level retrieval
mode used in INEX 2003-2005. Here, any element correctly identified as relevant
to the query will contribute to the recall of the run. This setting intentionally allows
overlapping elements to be returned, since removing overlap may mean a substan-
tial burden for different systems. We thus re-conceal the Thorough setting used in
previous INEX years with respect to efficiency aspects, such that actual query pro-
cessing runtimes can be clearly distinguished from the runtime needed to remove
overlapping results (which typically is a costly post-processing step).

– Focused: Focused (i.e., overlap-free) element- and/or passage-level retrieval typi-
cally is favorable from a user point-of-view and therefore replaced the Thorough
retrieval as primary retrieval mode in the Ad-hoc Track in 2006. Here, the reported
runtimes should include the time needed to remove overlap, which may give rise
to interesting comparisons between systems following both Thorough and Focused
retrieval strategies.

2 Run Submissions

The submission format for all Efficiency Track retrieval modes is defined by the follow-
ing DTD, depicted in Figure 2. The following paragraph provides a brief explanation of
the DTD fields:

– Each run submission must contain the following information:

• participant-id - the INEX participant id
• run-id - your run id
• task - either focused, thorough, or article
• query - either automatic or manual mode (at least one automatic mode using

exactly one of the title fields is required; in manual mode any form of manual
query expansion is allowed)

• sequential - queries being processed sequentially or in parallel (indepen-
dent of whether distribution is used)

Overview of the INEX 2008 Efficiency Track 183

<!ELEMENT efficiency-submission (topic-fields,
general_description,
ranking_description,
indexing_description,
caching_description,
topic+) >

<!ATTLIST efficiency-submission
participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
task (article|thorough|focused) #REQUIRED
query (automatic|manual) #REQUIRED
sequential (yes|no) #REQUIRED
no_cpu CDATA #IMPLIED
ram CDATA #IMPLIED
no_nodes CDATA #IMPLIED
hardware_cost CDATA #IMPLIED
hardware_year CDATA #IMPLIED

topk (15|150|1500) #IMPLIED >
<!ELEMENT topic-fields EMPTY>
<!ATTLIST topic-fields
co_title (yes|no) #REQUIRED
cas_title (yes|no) #REQUIRED
xpath_title (yes|no) #REQUIRED
text_predicates(yes|no) #REQUIRED
description (yes|no) #REQUIRED
narrative (yes|no) #REQUIRED >

<!ELEMENT general_description (#PCDATA)>
<!ELEMENT ranking_description (#PCDATA)>
<!ELEMENT indexing_description (#PCDATA)>
<!ELEMENT caching_description (#PCDATA)>
<!ELEMENT topic (result*)>
<!ATTLIST topic
topic-id CDATA #REQUIRED
total_time_ms CDATA #REQUIRED
cpu_time_ms CDATA #IMPLIED
io_time_ms CDATA #IMPLIED >

<!ELEMENT result (file, path, rank, rsv?) >
<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Fig. 2. DTD for Efficiency Track run submissions

– Furthermore, each run submission should contain some basic system and retrieval
statistics:

• no cpu - the number of CPUs (cores) in the system (sum over all nodes for a
distributed system)

• ram - the amount of RAM in the system in GB (sum over all nodes for a
distributed system)

• no nodes - the number of nodes in a cluster (only for a distributed system)
• hardware cost - estimated hardware cost (optional)
• hardware year - date of purchase of the hardware (optional)
• topk - top-k run or not (if it is a top-k run, there may be at most k elements

per topic returned)

– Each run submission should also contain the following brief system descriptions
(keywords), if available:

• general description - a general system and run description

184 M. Theobald and R. Schenkel

• ranking description - the ranking strategies used
• indexing description - the indexing structures used
• caching description - the caching hierarchies used

– Each topic element in a run submission must contain the following elements:

• topic id - the id of the topic
• total time ms - the total processing time in milliseconds: this should in-

clude the time for parsing and processing the query but does not have to con-
sider the extraction of resulting file names or element paths (needed to create
the above format for the run submission)

– Furthermore, each topic element of a run submission should contain the following
elements:

• cpu time ms - the CPU time spent on processing the query in milliseconds
• io time ms - the total I/O time spent on physical disk accesses in

milliseconds

Providing CPU and I/O times is optional for each topic. Also, it is sufficient to pro-
vide a list of matching elements along with their path locators (as canonical XPath
expressions—see, again, the Ad-hoc Track settings [3]). Providing relevance score val-
uesrsvwas also optional. In article retrieval mode, all results’ element paths had to
be /article[1]. Moreover, the many different types of (optional) description fields
are supposed to encourage participants to provide detailed descriptions along with their
run submissions.

Particularly interesting for the Efficiency Track submissions is the runtime field,
of course. This can optionally be split into cpu time and io time, the latter two
of which had not been used by any of the participants, though. We therefore focus on
actual wallclock running times as efficiency measure for our 2008 setting. Top-k runs
with less than 1,500 ranks have only been submitted by University of Frankfurt and
Max-Planck-Institut Informatik. Distribution has only been used by the University of
Frankfurt, using a cluster with 8 nodes.

3 Metrics

To assess the quality of the retrieved results, the Efficiency Track applies the same met-
rics as used in the Ad-Hoc track. Runs in Focused or Articlemode were evaluated
with the interpolated precision metric [4], using the evaluation toolkit from INEX 2008;
the assessments for the topics from 2006 and 2007 have been converted to the new
Qrel-based format. Runs in Thorough mode were evaluated with the precision-recall
metric as implemented in inex eval [1] after converting the Qrels from 2008 to the
old XML-based assessment format. In the future, the track will probably use metrics
implemented in EvalJ2.

2 http://evalj.sourceforge.net/

http://evalj.sourceforge.net/

Overview of the INEX 2008 Efficiency Track 185

4 Participants

An overall amount of 20 runs were submitted by 5 participating groups. The following
paragraphs provide short system descriptions submitted by the participants.

Max-Planck-Institut Informatik [Part.ID 10]. For the INEX Efficiency Track 2008,
we were just on time to finish and (for the first time) evaluate our brand-new TopX 2.0
prototype. Complementing our long-running effort on efficient top-k query processing
on top of a relational back-end, we now switched to a compressed object-oriented stor-
age for text-centric XML data with direct access to customized inverted files, along
with a complete reimplementation of the engine in C++. Core of the new engine is a
multiple-nested block-index structure that seamlessly integrates top-k-style sorted ac-
cess to large blocks stored as inverted files on disk with in-memory merge-joins for
efficient score aggregations.

University of Frankfurt [Part.ID 16]. University of Frankfurt has developed Spirix,
a Peer-to-Peer (P2P) search engine for Information Retrieval of XML-documents. The
underlying P2P protocol is based on a Distributed Hash Table (DHT). Due to the dis-
tributed architecture of the system, efficiency aspects have to be considered in order
to minimize bandwidth consumption and communication overhead. Spirix is a top-k
search engine aiming at efficient selection of posting lists and postings by consider-
ing structural information, e.g. taking advantage of CAS queries. As collections in P2P
systems are usually quite heterogeneous, no underlying schema is assumed but schema-
mapping methods are of interest to detect structural similarity. The runs submitted to
the INEX efficiency track compare different structure similarity functions which are
then used to improve efficiency of routing and ranking.

University of Toronto [Part.ID 42]. Task: Thorough. The query is sequential and
automatic. System description: one virtual CPU running over an AMD Opteron Pro-
cessor 250 at 2.39 GHz. Note the virtual machine runs Red Hat 4 which runs GSX (of
which the virtual machines have Windows XP Professional 2002). There is 2,048 MB
of RAM topk = 1500. Only the CAS title is used. Text predicates are not used. Descrip-
tion of the run: structural relevance and/or relaxed heuristics with boosting of terms
based on summary plus multiple index selection. Ranking description: Lucene’s default
scoring is boosted with values obtained from the MCH probabilities for the summary
and boost parameters in use. Post-processing for the removal of overlap relies on the
summary and boost parameters in use as well. Indexing description: top-level article,
section, and paragraph element-level indexes are built then combined depending on the
tags in the CAS title of the topic. Caching description: Lucene’s internal caching which
is reset between topics. The summary and MCH parameters are reloaded before each
topic.

University of Twente & CWI [Part.ID 53]. The efficiency submission from CWI
and University of Twente was testing the performance of the current PF/Tijah XML
retrieval system. PF/Tijah does not use top-k query processing but profits from highly

186 M. Theobald and R. Schenkel

tuned containment join and scoring algorithms that are implemented as physical op-
erators in the MonetDB database back-end and have direct low-level access to the
data. With the 4 submissions we also evaluated two different query semantics: the
first interpreting an about predicate as a boolean filter, the other regarding it only
as scoring operator. While the first interpretation shows a higher performance dealing
with smaller intermediary results, we expected the second to yield a higher retrieval
quality.

JustSystems Corporation [Part.ID 56]. JustSystems Corporation has developed an
IR-based XML search engine. The system has an inverted-file index and a relative
inverted-path (RIP) list. For CO queries, the system computes RSV scores with TF-
IDF-based node weights in a bottom-up manner. For CAS queries, the system computes
RSV scores with TF-IDF-based node weights in a bottom-up manner, which are also
constrained by manually-rewritten XPath expressions taken from the CAS titles. A dis-
tinctive feature of the system is that RSV scores are computed over fragmented nodes
from bottom-up at the time of retrieving, thus the system makes its index size compar-
atively small. Additionally, the new system is built in Java 1.5, which is also able to
eliminate undesignated XPaths at the time of retrieving.

5 Results

Table 1 summarizes all run parameters as they were delivered in the runs’ headers.
Table 2 summarizes all effectiveness (iP, MAiP) and efficiency results (avg.&sum of
wallclock runtimes in milliseconds) for the respective number of topics processed
(#topics). Tables 3–5 summarize the results by topic type for all Focused runs (with
effectiveness results only being available for type (A) and (B) topics). Figure 3 depicts
detailed interpolated precision plots for all Focused and (the only) Article-only run(s);
while Figure 4 depicts classic precision-recall plots for the Thorough runs. Figures 5–6
finally depict the respective interpolated precision plots split by type (A) and (B) topics
(type (C) plots are skipped due to the lack of assessments).

We received an overall amount of 21 runs submitted by 5 different groups. Accord-
ing to the run descriptions submitted by the participants, systems varied from classic
IR engines with XML-specific ranking capabilities to highly specialized XQuery en-
gines with full-text extensions. As for efficiency, average running times per topic var-
ied from 91 ms to 17.19 seconds over the entire batch of 568 topics, from 19 ms to
4.72 seconds over the 540 type (A) topics, from 845 ms to 14.58 seconds over the
21 type (B) topics, and from 41 ms to 18.19 seconds over the 7 type (C) topics, re-
spectively. Similarly to the Ad-Hoc Track results, article-only runs generally yielded
very good efficiency results, as they clearly constitute an easier retrieval mode, how-
ever also at a comparable effectiveness level. Overall effectiveness results were gener-
ally comparable to the Ad-hoc Track (albeit using different topics), with the best runs
achieving a MAiP value of 0.19 and interpolated (early) precision values of 0.67 at 1%
recall (iP[0.01]) and 0.49 at 10% recall (iP[0.10]), respectively. Up to now, none of the
systems made use of the XPath-FT-based topic format, which leads to the conclusion
that so far only systems traditionally used in INEX were also used for the Efficiency
Track.

Overview of the INEX 2008 Efficiency Track 187

Table 1. Run parameters as taken from the submission headers

Part.ID Run ID Task #CPU RAM #Nodes Hardw.Cost Year Top-k Cache Seq. Aut. Title Fields

10 TOPX2-Eff08-CAS-15-Focused-W Foc. 4 16 1 8,000 Eur 2005 15 OS+TopX Yes Yes CAS
10 TOPX2-Eff08-CAS-15-Thorough-W Tho. 4 16 1 8,000 Eur 2005 15 OS+TopX Yes Yes CAS
10 TOPX2-Eff08-CAS-150-Focused- Foc. 4 16 1 8,000 Eur 2005 150 OS+TopX Yes Yes CAS
10 TOPX2-Eff08-CAS-1500-Focused-W Foc. 4 16 1 8,000 Eur 2005 1500 OS+TopX Yes Yes CAS
10 TOPX2-Eff08-CO-15-Focused-W Foc. 4 16 1 8,000 Eur 2005 15 OS+TopX Yes Yes CO
10 TOPX2-Eff08-CO-15-Thorough-W Tho. 4 16 1 8,000 Eur 2005 15 OS+TopX Yes Yes CO
10 TOPX2-Eff08-CO-150-Focused-W Foc. 4 16 1 8,000 Eur 2005 150 OS+TopX Yes Yes CO
10 TOPX2-Eff08-CO-1500-Focused-W Foc. 4 16 1 8,000 Eur 2005 1500 OS+TopX Yes Yes CO
16 SPIRIX-ARCH Foc. 8 8 8 n/a 2008 150 n/a Yes Yes CAS
16 SPIRIX-CSRU Foc. 8 8 8 n/a 2008 1500 n/a Yes Yes CAS
16 SPIRIX-FINE Foc. 8 8 8 n/a 2008 150 n/a Yes yes CAS
16 SPIRIX-NOSIM Foc. 8 8 8 n/a 2008 150 n/a Yes Yes CAS
16 SPIRIX-PATHSIM Foc. 8 8 8 n/a 2008 150 n/a Yes Yes CAS
16 SPIRIX-STRI Foc. 8 8 8 n/a 2008 150 n/a Yes Yes CAS
42 B2U0 full-depth-heur Foc. 1 2 1 n/a n/a 1500 Lucene Yes Yes CAS
42 B2U0 full-depth-sr Tho. 1 2 1 n/a n/a 1500 Lucene Yes Yes CAS
53 pftijah article strict Art. 1 8 1 1,000 Eur 2008 1500 DBMS Yes Yes CO
53 pftijah asp strict Tho. 1 8 1 1,000 Eur 2008 1500 DBMS Yes Yes CAS
53 pftijah asp vague Tho. 1 8 1 1,000 Eur 2008 1500 DBMS Yes Yes CAS
53 pftijah star strict Tho. 1 8 1 1,000 Eur 2008 1500 DBMS Yes Yes CAS
56 VSM RIP Foc. 1 2 1 1,500 USD 2004 1500 None Yes Yes CO+CAS

Table 2. Effectiveness/efficiency summary of all runs

Part.ID Run ID iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP AVG MS. SUM MS. #Topics

Focused

10 TOPX2-Eff08-CAS-15-Focused-W 0.4587 0.3878 0.2592 0.1918 0.0662 90.99 51,499 566
10 TOPX2-Eff08-CAS-150-Focused-W 0.4747 0.4282 0.3494 0.2915 0.1094 112.32 63,574 566
10 TOPX2-Eff08-CAS-1500-Focused-W 0.4824 0.4360 0.3572 0.3103 0.1241 253.42 143,436 566
10 TOPX2-Eff08-CO-15-Focused-W 0.4751 0.4123 0.2793 0.1971 0.0726 49.79 28,180 566
10 TOPX2-Eff08-CO-150-Focused-W 0.4955 0.4520 0.3674 0.3114 0.1225 85.96 48,653 566
10 TOPX2-Eff08-CO-1500-Focused-W 0.4994 0.4560 0.3749 0.3298 0.1409 239.73 135,688 566
16 SPIRIX-ARCH 0.4953 0.4950 0.4544 0.3892 0.1601 100.97 28,779 70
16 SPIRIX-CSRU 0.7134 0.6787 0.5648 0.4915 0.1890 4,723.80 1,346,284 70
16 SPIRIX-FINE 0.4888 0.4882 0.4528 0.3898 0.1628 101.78 29,010 70
16 SPIRIX-NOSIM 0.4943 0.4854 0.4443 0.3940 0.1651 103.23 29,421 70
16 SPIRIX-PATHSIM 0.4997 0.4957 0.4550 0.3885 0.1588 105.30 30,013 70
16 SPIRIX-STRI 0.4821 0.4821 0.4260 0.3942 0.1573 100.48 28,637 33
42 B2U0 full-depth-heur 0.4388 0.3964 0.3344 0.3013 0.1357 2,994.00 1,679,634 561
56 VSM RIP 0.4836 0.4058 0.3077 0.2553 0.0895 4,807.55 2,730,687 568

Article

53 pftijah article strict 0.4599 0.4272 0.3689 0.3346 0.1839 701.98 398,722 568

Thorough P@0.01 P@0.05 P@0.10 MAP

10 TOPX2-Eff08-CAS-15-Thorough-W 0.1811 0.0288 0.0069 0.0053 89.31 50,549 566
10 TOPX2-Eff08-CO-15-Thorough-W 0.1890 0.0357 0.0084 0.0065 70.91 40,133 566
42 B2U0 full-depth-sr 0.2196 0.0541 0.0077 0.0080 3,519.59 1,974,492 561
53 pftijah asp strict 0.2674 0.1008 0.0294 0.0136 2,306.08 1,309,854 568
53 pftijah asp vague 0.2653 0.1120 0.0357 0.0141 8,213.05 4,665,010 568
53 pftijah star strict 0.2415 0.1029 0.0471 0.0169 17,186.03 9,761,663 568

188 M. Theobald and R. Schenkel

Table 3. Summary over all 540 type (A) topics (Focused runs only)

Part.ID Run ID MAiP AVG MS. SUM MS. #Topics

10 TOPX2-Eff08-CO-15-Focused-W 0.0712 18.88 10,157 538
10 TOPX2-Eff08-CO-150-Focused-W 0.1234 49.12 26,427 538
10 TOPX2-Eff08-CO-1500-Focused-W 0.1430 191.27 102,903 538
10 TOPX2-Eff08-CAS-15-Focused-W 0.0643 48.84 26,276 538
10 TOPX2-Eff08-CAS-150-Focused-W 0.1094 61.25 32,953 538
10 TOPX2-Eff08-CAS-1500-Focused-W 0.1249 165.53 89,055 538
16 SPIRIX-ARCH 0.1601 100.97 28,779 70
16 SPIRIX-CSRU 0.1890 4,723.80 1,346,284 70
16 SPIRIX-FINE 0.1628 101.78 29,010 70
16 SPIRIX-NOSIM 0.1651 103.23 29,421 70
16 SPIRIX-PATHSIM 0.1588 105.30 30,013 70
16 SPIRIX-STRI 0.1573 100.48 28,637 33
42 B2U0 full-depth-heur 0.1373 2,716.45 1,450,584 534
53 pftijah article strict 0.1884 604.51 326,438 540
56 VSM RIP 0.0936 4,253.85 2,297,077 540

Table 4. Summary over all 21 type (B) topics (Focused runs only)

Part.ID Run ID MAiP AVG MS. SUM MS. #Topics

10 TOPX2-Eff08-CO-15-Focused-W 0.0915 844.67 17,738 21
10 TOPX2-Eff08-CO-150-Focused-W 0.1094 1038.90 21,817 21
10 TOPX2-Eff08-CO-1500-Focused-W 0.1125 1468.67 30,842 21
10 TOPX2-Eff08-CAS-15-Focused-W 0.0915 1044.71 21,939 21
10 TOPX2-Eff08-CAS-150-Focused-W 0.1096 1074.66 22,568 21
10 TOPX2-Eff08-CAS-1500-Focused-W 0.1124 1479.33 31,066 21
42 B2U0 full-depth-heur 0.1143 8,052.14 169,095 21
53 pftijah article strict 0.1224 3,212.52 67,463 21
56 VSM RIP 0.0329 14,583.33 306,250 21

0.5

0.6

0.7

0.8

interpolated precision - focused - all topics

B2U0_full-depth-heur

pftijah_article_strict

VSM_RIP

TOPX2-Eff08-CO-15-Focused-W

TOPX2-Eff08-CO-150-Focused-W

TOPX2-Eff08-CO-1500-Focused-W

TOPX2-Eff08-CAS-15-Focused-W

TOPX2-Eff08-CAS-150-Focused-W

TOPX2-Eff08-CAS-1500-Focused-W

0.0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

iP
re

ci
si

o
n

Recall

SPIRIX-CSRU

SPIRIX-NOSIM

SPIRIX-PATHSIM

SPIRIX-FINE

SPIRIX-ARCH

SPIRIX-STRI

Fig. 3. Interpolated precision plots for all Focused and Article runs

Overview of the INEX 2008 Efficiency Track 189

Table 5. Summary over all 7 type (C) topics (Focused runs only)

Part.ID Run ID MAiP AVG MS. SUM MS. #Topics

10 TOPX2-Eff08-CO-15-Focused-W n/a 41.00 287 7
10 TOPX2-Eff08-CO-150-Focused-W n/a 58.86 412 7
10 TOPX2-Eff08-CO-1500-Focused-W n/a 277.57 1,943 7
10 TOPX2-Eff08-CAS-15-Focused-W n/a 469.42 3,286 7
10 TOPX2-Eff08-CAS-150-Focused-W n/a 1150.14 8,051 7
10 TOPX2-Eff08-CAS-1500-Focused-W n/a 3330.71 23,315 7
42 B2U0 full-depth-heur n/a 14,629.86 102,409 7
53 pftijah article strict n/a 688.71 4,821 7
56 VSM RIP n/a 18,194.29 127,360 7

precision-recall plot - all thorough runs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

P
re

ci
si

o
n

pftijah_star_strict

pftijah_asp_strict

pftijah_asp_vague

B2U0_full-depth-sr

TOPX2-Eff08-CO-15-Thorough-W

TOPX2-Eff08-CAS-15-Thorough-W

Fig. 4. Precision-recall plots for all Thorough runs

190 M. Theobald and R. Schenkel

0.5

0.6

0.7

0.8

interpolated precision - focused - only type A topics

B2U0_full-depth-heur

pftijah_article_strict

VSM_RIP

TOPX2-Eff08-CO-15-Focused-W

TOPX2-Eff08-CO-150-Focused-W

TOPX2-Eff08-CO-1500-Focused-W

TOPX2-Eff08-CAS-15-Focused-W

TOPX2-Eff08-CAS-150-Focused-W

TOPX2-Eff08-CAS-1500-Focused-W

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

iP
re

ci
si

o
n

Recall

SPIRIX-CSRU

SPIRIX-NOSIM

SPIRIX-PATHSIM

SPIRIX-FINE

SPIRIX-ARCH

SPIRIX-STRI

Fig. 5. Interpolated precision plots for type (A) Focused runs

interpolated precision - focused - only type B topics

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

iP
re

ci
si

o
n

B2U0_full-depth-heur

pftijah_article_strict

VSM_RIP

TOPX2-Eff08-CO-15-Focused-W

TOPX2-Eff08-CO-150-Focused-W

TOPX2-Eff08-CO-1500-Focused-W

TOPX2-Eff08-CAS-15-Focused-W

TOPX2-Eff08-CAS-150-Focused-W

TOPX2-Eff08-CAS-1500-Focused-W

Fig. 6. Interpolated precision plots for type (B) Focused runs

Overview of the INEX 2008 Efficiency Track 191

6 Conclusions

This paper gave an overview of the INEX 2008 Efficiency Track. We intend to continue
and expand this track in upcoming INEX years, thus hoping to increase the general
visibility of this project and to attract more people from the DB&IR fields to efficient
XML-IR settings. We also aim to establish the Efficiency Track, along with its large
body of IR-style topics and readily available assessments, as a reference benchmark for
more realistic XML-IR experiments outside the INEX community. One step towards
this direction was to introduce queries in the more common XPath 2.0 Full-Text syntax.

References

1. Overview of the INitiative for the Evaluation of XML retrieval (INEX). In: Fuhr, N.,
Gövert, N., Kazai, G., Lalmas, M. (eds.) INitiative for the Evaluation of XML Retrieval
(INEX). Proceedings of the First INEX Workshop, Dagstuhl, Germany, December 8–11
(2002); ERCIM Workshop Proceedings, Sophia Antipolis, France, ERCIM (March 2003),
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf

2. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. In: SIGIR Forum (2006)
3. Fuhr, N., Kamps, J., Lalmas, M., Malik, S., Trotman, A.: Overview of the INEX 2007 Ad Hoc

Track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 1–23. Springer, Heidelberg (2008)

4. Kamps, J., Pehcevski, J., Kazai, G., Lalmas, M., Robertson, S.: INEX 2007 Evaluation Mea-
sures. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 24–33. Springer, Heidelberg (2008)

5. Malik, S., Larsen, B., Tombros, A.: Report on the INEX 2005 Interactive Track. SIGIR Fo-
rum 41(1), 67–74 (2006)

6. Malik, S., Tombros, A., Larsen, B.: The Interactive Track at INEX 2006. In: INEX,
pp. 387–399 (2006)

http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf

Exploiting User Navigation to Improve Focused
Retrieval

M.S. Ali, Mariano P. Consens, Bassam Helou, and Shahan Khatchadourian

University of Toronto
{sali,consens,bassam,shahan}@cs.toronto.edu

Abstract. A common approach for developing XML element retrieval
systems is to adapt text retrieval systems to retrieve elements from docu-
ments. Two key challenges in this approach are to effectively score struc-
tural queries and to control overlap in the output across different search
tasks. In this paper, we continue our research into the use of navigation
models for element scoring as a way to represent the user’s preferences
for the structure of retrieved elements. Our goal is to improve search
systems using structural scoring by boosting the score of desirable el-
ements and to post-process results to control XML overlap. This year
we participated in the Ad-hoc Focused, Efficiency, and Entity Ranking
Tracks, where we focused our attention primarily on the effectiveness of
small navigation models. Our experiments involved three modifications
to our previous work; (i) using separate summaries for boosting and
post-processing, (ii) introducing summaries that are generated from user
study data, and (iii) confining our results to using small models. Our
results suggest that smaller models can be effective but more work needs
to be done to understand the cases where different navigation models
may be appropriate.

1 Introduction

At INEX 2008, the University of Toronto investigated the effectiveness of using
XML summaries [8] in structural scoring for XML retrieval. An XML summary
is a graph-based model that is found by partitioning elements in the collection.
By weighting the graph, it represents a navigation model of users traversing ele-
ments in their search for relevant information to satisfy their information need.
Our use of navigation models was originally developed for use with the perfor-
mance evaluation measure structural relevance (SR) [5,2]. SR is a measure of the
expected relevance value of an element in a ranked list, given the probability of
whether the user will see the element one or more times while seeking relevant
information in the higher-ranked results [5]. SR has been shown to be a stable
measure that effectively evaluates element, passage, document and tree retrieval
systems [2]. Its effectiveness has been validated using navigation models based
on either collection statistics or user assessments.

Our search engine uses the Lucene text retrieval system as its basis. Our
main adaptation of it is that we index the collection based on XML elements

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 192–206, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Exploiting User Navigation to Improve Focused Retrieval 193

as documents. Specifically, for INEX 2008, we considered indexes for article,
section and p elements. This allowed us to consider the scoring of elements in
much the same way as documents would be scored in classical text retrieval.
To structurally score elements, we employed boosts corresponding to the label
path of the candidate element. In focused retrieval, a significant problem of
using Lucene in this way is that it does not prevent overlap (which is known to
degrade the quality of results) and so a post-processor is used to control overlap.
A key feature of our approach is that both score boosting and post-processing
use navigation models in structural scoring.

Our approach to structural scoring involved: (i) using separate and indepen-
dent navigation models for boosting and post-processing, (ii) introducing nav-
igation models that are generated from user study data, and (iii) focusing on
the effectiveness of very small models. In this paper, we show how navigation
models have been integrated into structural scoring by using concepts from struc-
tural relevance. In particular, we show experimentally how post-processing can
be used to not only control overlap, but also to improve the system effective-
ness. We do this by presenting three different approaches to post-processing: (a)
INEX overlap control where the lowest ranking element in a pair of overlapping
elements is removed from the results, (b) Navigation overlap control where the
element which was most highly weighted using a pre-selected navigation model
is removed from the results, and (c) Ranked list control where the set of elements
from the same document that had the highest structural relevance [2] would be
included in the system output.

Existing approaches to XML retrieval have relied on rote return structures and
ad-hoc tuning parameters for structural scoring of elements. A naive approach
assumes that XML documents are structured as articles, and so only logical
elements such as articles, sections and paragraphs are returned in the search
results. Another approach is to allow users to specify structure, such as using
NEXI which is a notation for expressing XML queries that includes structural
constraints and hints [15]. NEXI can be used in conjunction with XPATH to
retrieve strict XML structural paths according to what the user specifies in the
query. Other approaches to structural retrieval, like XRANK [9] or Clarke’s Re-
ranking Algorithm [7], use element weighting schemes to iteratively score and
re-rank results to improve the final system output. In this work, we rely on a
probabilistic model of navigation developed for the evaluation measure structural
relevance. Other models exist, most notably the model that underlies the PRUM
evaluation measure [12].

We first investigated the effectiveness of using XML summaries as a way to
introduce structural scoring into XML retrieval at INEX 2007 in the Thorough
Ad Hoc Track in element retrieval [3]. Our initial approach allowed complex
modeling of user navigation using large models that were derived solely from
collection statistics in XML summaries (such as element length, element depth
and element label paths). In this work, we greatly extend this work, and, in
particular, focus on the effectiveness of using smaller models, and weighting
schemes that are based on user assessments.

194 M.S. Ali et al.

The paper is structured as follows. In Section 2, we review the preliminary
concepts of the information seeking behaviour of users and structural relevance.
In Section 3, we present the navigation models that we used in INEX 2008. In
Section 4, we present the XML retrieval system that was used in this work. In
Section 5, we present our results for INEX 2008. Finally, in Section 6 we discuss
our findings and future work.

2 Preliminary Concepts

In structural scoring in XML retrieval, the key challenge is to differentiate among
candidate elements those that meet the user’s preference for elements whose
structure supports how they fulfill their information need or those that minimize
the redundancy that a user will experience while seeking for relevant information
from search results. The goal of a focused system is to retrieve non-overlapping
elements (or passages) that contain relevant information. For INEX 2008, only
focused results, which contain no overlapping elements, are considered. We show
how the more general concept of redundancy in structural relevance can be used
as an effective way to address problems with overlap in XML retrieval [10] by
providing a means to structurally score XML elements based on user preferences
and XML element structural characteristics.

In this work, the redundancy between elements is measured using structural
relevance and found using different navigation models of how users experience
redundancy while browsing for relevant information in retrieved documents. In
Section 2.1, the information seeking behaviour of users fulfilling an information
need is presented. This is followed by Section 2.2 where structural relevance and
its underlying probabilistic model of redundancy based on user navigation is
presented.

2.1 Information Seeking Behaviour

In element retrieval, we assume that users consult the system output going from
one rank to the next, visiting the element in context [2]. The user stops consult-
ing the output when their information need has been satisfied. A visited element
is considered to have been seen by the user. After seeing an element, the user
may visit additional elements by browsing out of the element into the rest of
its parent XML document. This process of visiting, browsing and seeing con-
tent (in elements) within documents to seek relevant information is called user
navigation. During this process the user may encounter content in already seen
elements, and, thus, redundant content. If the user tolerates redundant content,
then the relevant content that is seen a number of times remains relevant to the
user. If the user does not tolerate redundant content, then relevant content is
considered non-relevant if already seen. In this work, we assume that the user
does not tolerate (redundancy) seeing content more than once. In structural rel-
evance, overlap is a special-case of redundancy where overlapping elements are
on the same XML branch in the same document instance [5].

Exploiting User Navigation to Improve Focused Retrieval 195

2.2 Structural Relevance

Structural relevance (SR) [2] is a measure of the relevance of the results given
that the user may find some of the results in the output redundant. SR depends
on the user’s browsing history, which is the set of elements that a user has
viewed, and a model of how the user navigates to obtain relevant information
in documents. We calculate SR as the expected relevance value of a ranked list
given that the user does not find results in the output redundant (seen more
than once) given their browsing history:

SR(R) =
k∑

i=1

rel(ei) · (1 − π
m(ei)
(ei)

) (1)

where the system output R = {e1, e2, . . . , ek} is a ranked list of k elements, the
browsing history m(ei) is the number of elements in R that are higher-ranked
than ei and are from the same document as ei, π(ei) is the probability that
element ei will be navigated to from a higher-ranked element from the same
document in R, and rel(ei) ∈ [0, 1] is the relevance value of element ei where
rel(e) > 0 if e is relevant, and not relevant otherwise, rel(e) = 0.

User navigation to element e, π(e), is the probability that the user will see the
element e each time he or she visits the document that contains element e. The
probability π(e) is a steady-state probability. We calculate π(e) using a weighted
graph of the elements in the collection. Each node in the graph corresponds to a
partition of the elements in the collection s.t. every element in the collection is in
a partition. Weights are then ascribed to the edges (or paths) in the graph. We
denote the weighted graph as a Navigation Graph. The partitioning scheme and
weighting scheme together are called the Navigation Model. To determine the
steady-state probability, first, the weights on the outgoing edges of each node
are normalized by dividing the weight of each edge of a node by the sum of all of
the weights of the outgoing edges of the node. These normalized values are put
into matrix format with the rows and columns corresponding to the normalized
weight between nodes in navigation graph. We call this a transition matrix. The
transition matrix is iteratively multiplied with itself until all rows are equal [13]
(pp. 200–213). The equal rows contain the steady-state probabilities π(e) which
are used in this work to calculate SR as shown in Equation 1.

3 Proposed Navigation Models for INEX 2008

Navigation models represent how users navigate between elements while seeking
relevant information from structured search results. In structural scoring, we use
these models to both boost candidate retrieval elements and for post-processing
ranked lists to control overlap. In this section, we provide the background to
understand what is entailed in a navigation model and the navigation models
considered in INEX 2008.

XML structural summaries (referred to as summaries) provide a way to repre-
sent navigation models based on the structure of documents in the collection. We

196 M.S. Ali et al.

Fig. 1. Examples of (i) Document instance, (ii) p∗ summary, (iii) p∗|c summary, and
(iv) user navigation graph

refer to these models as summary navigation models. A structural summary is a
graph partition which divides the original graph into blocks so that each block’s
extent contains the elements having a similar neighbourhood (paths, subtrees,
etc.); a structural summary then represents the relationships between sets of
document elements with a similar neighbourhood.

The summaries were built using the AxPRE framework [8] which captures
all existing structural summaries available in the literature by using an axis
path regular expression language to define the neighbourhood by which to group
similar document elements. For example, a p∗ summary partitions XML elements
based on their incoming label paths, since p∗ is the axis path regular expression
describing paths of parent (p) axis traversals to the root element, and groups
elements having the same label path to the root into the extent of the same block.
Similarly, a p∗|c summary is the axis path regular expression describing paths of
parent (p) with a single child (c) axis traversals, thus grouping elements having
the same label path to the root and the same set of children element labels.
Figure 1 shows an example Wikipedia article instance in (i), its p∗ summary in
(ii), and its p∗|c summary in (iii). For instance, in Figure 1(ii) block S2 contains
document elements e2 and e3 in its extent.

In our summary navigation models, edges between blocks are bi-directionally
weighted based on collection statistics. The different weighting statistics explored
in our submission include content length, extent size, and element depth. Con-
tent length weighting uses the sum of character lengths of each block’s extent
elements. Extent size is the number of elements in a block’s extent. Finally, depth
weights are the same as content length but damped (divided) by the path depth
of the block (easily determined by counting the number of labels in a block’s
label path to the root).

Using the methodology for finding π(e) described in the previous section,
and 2343 randomly selected Wikipedia articles summarized using a p∗ sum-
mary and whose partitions were mapped to the user navigation graph shown

Exploiting User Navigation to Improve Focused Retrieval 197

in Figure 1(iv), we get Table 2C which shows summary navigation models for
Wikipedia based on path, content and depth weights.

Navigation models can also be generated from user assessments. We refer to
these models as user navigation models. In [6], assessments from the INEX 2006
Interactive Track user study were used to produce user navigation models. The
INEX 2006 user study consisted of 83 participants for 12 assessment topics with
user activity recorded for 818 documents from the INEX 2006 Wikipedia collec-
tion [11]. Figure 1(iv) shows the five types of XML elements that participants
visited in the 2006 user study; namely, ARTICLE, SEC, SS1, SS2, and OTHER. These
correspond to elements whose label paths are the root /article (ARTICLE), a sec-
tion path /article/body/section (SEC), a subsection path SEC/section (SS1), a
sub-subsection path SS1/section (SS2), and all other elements’ paths (OTHER).
We call Figure 1(iv) the user navigation graph.

Table 1. Number of visits (mean time spent)

Destination
Source ARTICLE SEC SS1 SS2 OTHER

ARTICLE 0 (0) 138 (100.4) 18 (48.7) 1 (22) 2 (76)
SEC 278 (57.0) 372 (14.7) 41 (11.3) 0 (0) 0 (0)
SS1 46 (13.1) 50 (10.2) 50 (9.52) 0 (0) 1 (48)
SS2 4 (12.3) 2 (264.5) 13 (5.3) 0 (0) 0 (0)
OTHER 7 (27.7) 0 (0) 1 (4) 0 (0) 4 (26)

Table 1 tabulates the observed visits and mean time spent in visits for element
assessments by participants in the INEX 2006 user study. For instance, partici-
pants visited SS2 elements and then navigated to element ARTICLE 4 times. The
mean time spent in SS2 before navigating to element ARTICLE was on average
12.3 seconds. This led to an overall time, which we refer to as an episode, of 12.3
x 4 = 49.2 seconds. The most visited element was SEC, and the largest mean time
spent occurred in navigations to SEC elements from ARTICLE. These assessments
of user navigation can be used to weight the paths in the user navigation graph
in Figure 1(iv). The resultant navigation probabilities p(e; f) for the user navi-
gation model, based on normalizing the number of visits in Table 1, are shown
in Table 2A. Similarly, we can generate user navigation models (based on the
same user navigation graph) for the observed time-spent and episodes. The user
navigation models developed in [6] are shown in Table 2B.

Additionally, we investigated the use of trivial navigation models that were
composed of two nodes; a main node that would contain one type of element
and the other node which would include all other elements in the collection.
The main node has a high steady-state probability (we used 0.999) and the
other node would have a correspondingly small steady-state probability (0.001).
We proposed two trivial models; namely the article model and the ss2 model.
These have the effect of an exclusion filter in that the elements in the main
node will be less preferred in the results than other nodes. The proposed trivial
navigation models are shown in Figure 2. For INEX 2008, five navigation models

198 M.S. Ali et al.

Table 2. (A) Example transition matrix, (B) User models, & (C) Summary models

A. Normalized Weights for Visits

Destination
Source ARTICLE SEC SS1 SS2 OTHER

ARTICLE 0.0 0.87 0.11 0.01 0.01
SEC 0.40 0.54 0.06 0.0 0.0
SS1 0.31 0.34 0.0 0.0 0.01
SS2 0.21 0.11 0.68 0.0 0.0
OTHER 0.58 0.0 0.08 0.0 0.33
B. User Navigation Models

ARTICLE SEC SS1 SS2 OTHER

Visit 0.281 0.606 0.105 0.002 0.006
Episode 0.410 0.531 0.050 0.001 0.009
Time spent 0.318 0.209 0.129 0.028 0.317
C. Summary Navigation Models

ARTICLE SEC SS1 SS2 OTHER

Path 0.361 0.537 0.087 0.014 0.001
Content 0.103 0.434 0.089 0.013 0.361
Depth 0.309 0.435 0.067 0.008 0.181

Fig. 2. Trivial navigation models used in INEX 2008

were considered: summary navigation models path and depth (Table 2C), user
navigation model visit (Table 2B), and, the article and ss2 trivial navigation
models (Figure 2).

In this section, we have presented how different navigation models are gener-
ated, and presented the 5 navigation models that we used in INEX 2008. In the
next section, we present a description of our search system, how we implemented
boosts, and a description of the different post-processors that we used in INEX
2008.

4 System Description

This section provides details on how we implemented our search engine, which
is based on Apache Lucene.

Exploiting User Navigation to Improve Focused Retrieval 199

4.1 Lucene

The p∗ structural summary of the Wikipedia XML collection, originally gener-
ated using code from DescribeX [4], consisted of 55486 summary nodes (with
aliasing on tags containing the substrings link, emph, template, list, item,
or indentation). The extents in the structural summary were then mapped to
the navigation graph shown in Figure 1(iv) to produce the summary navigation
models. As the collection was summarized, modified Apache Lucene [1] code was
used to index the tokens. The posting list also included character offsets. Tokens
not excluded from the stop word filter had punctuation symbols removed and
the tokens maintained their case. The structural summary was generated at the
same time as each document was indexed, and the payload information for each
token occurrence included the summary partition in which the token appears.

To accommodate the structural hints in the INEX topics, separate indexes
were built for each tag identified by the structural hint present within the set
of INEX topics which included article, section, and p. For example, building
an index for the p tag would index the first p element and its children, including
nested p elements, until its respective closing tag. Thus, a file with multiple non-
overlapping indexed elements will create multiple documents within the index,
and these non-overlapping elements are easily identified since the index stores the
character offsets as previously mentioned. This results in having element-level
documents which allows the calculation of idf scores for terms within elements.
The index sizes (which includes term frequencies, file paths and the payload
information) were 6.07GB for tag article, 4.84GB for tag section, and 4.63GB
for tag p.

Lucene’s query parser was adapted to accept Top-X [14] NEXI queries with
structural hints. The queries were encoded using boolean operators to represent
tokens that were mandatory, optional, or to be excluded. Double quotes indicat-
ing adjacent tokens were removed since token positions were not indexed. Prior
to running a query, the query was examined for any structural hints and the
required indexes were searched as a single merged index using Lucene’s regular
application interface. If no structural hints were identified, the complete set of
element indexes were used in the search.

In the Content Only (CO) sub-task, queries are specified using keywords and
content-related conditions. Structure can be included in the query as hints to
reduce the number of returned elements. CO queries with structural hints are
called Content Only + Structure (CO+S) queries. For CO+S queries, it is left
to the discretion of the search engine to interpret it as either strict or vague.
Our system used the element labels in structural hints to include or exclude
specific search indexes while processing the query. Queries were not explicitly
interpreted as either strict or vague. The score of elements was composed of
two main factors; (i) content relevance, and (ii) a score boost based on the label
path of the smallest element (Section 4.2) that enclosed the content. The highest
scoring elements from Lucene were then post-processed (Section 4.3) to ensure
that the final results returned were focused.

200 M.S. Ali et al.

4.2 Boosting Strategies

The collection was indexed at the element-level for article, section, and p.
In our experiments, we included runs with score boosting per term occurrence
and using the average of the term scores as a modifier to Lucene’s original
document score. The boost used was the stationary probability π(e) of the par-
tition in the summary of the element in which the term occurs. The baseline
payload score per occurrence was set to 1 and the boosted term score was the
baseline plus the stationary probability. The scenarios reported in this paper
include runs with either no boosting, boosted using the path summary nav-
igation model (Table 2B), or boosted using the visit user navigation model
(Table 2C).

4.3 Post-processing Algorithms

The purpose of post-processing is to control overlap and produce focused runs
from Lucene’s results. We present three different approaches to post-processing.
The first approach, called INEX Overlap Control and shown in Figure 3, removes
all parent-child overlap from the ranked list by comparing each pair of elements
ei and ej in R, and removing the lower-ranked element if they are on the same
branch.

The second approach, called Navigation Overlap Control and shown in
Figure 4, involves removing parent-child overlap where overlapped elements were
ranked closely to one another (in the results reported here, the window size
was set to 10 rank positions). Instead of removing the lowest ranked overlapped
element, the element with the highest steady-state probability was removed from
the ranked list. This is akin to removing the element most likely to be visited
by an element within the same document using any path.

The third approach, called Ranked List Overlap Control and shown in Fig-
ure 5, was developed in INEX 2007 and involves computing SR for scenarios
where redundant elements (i.e., from the same document) are systematically re-
moved or reordered in the ranked list until the highest scoring scenario is found.
We assume that all redundant elements are relevant and place the restriction
that a document cannot be excluded from the ranked list by removing all of its
elements that were present in the original result list.

So, the post-processing of overlap used either; (i) a simple heuristic to remove
the lowest ranked elements that were overlapped; (ii) a more complex heuris-
tic to remove the most redundant overlapped elements; or (iii) an algorithm to
find the most structurally relevant non-overlapped set of elements. To determine
redundancy and structural relevance in post-processing, we used four naviga-
tion models; namely, a trivial navigation model based on article elements being
redundant, a second trivial navigation model based on sub-subsection elements
being redundant, a depth summary navigation model, and a path user navigation
model.

Exploiting User Navigation to Improve Focused Retrieval 201

Algorithm. INEX Overlap Control
Input: Ranked list R = e1, e2, . . . of k elements.
Output: Ranked list with overlapped elements removed R∗

1: let m be the length of R∗, initialize as m = 1
2: for i = 1 to k do
3: skip = false
4: for j = 1 to i − 1 do
5: if ei and ej are on same branch then
6: skip = true
7: end if
8: end for
9: if skip = false then
10: R∗[m] = ei

11: m = m + 1
12: end if
13: end for

Fig. 3. Remove lowest ranked overlapped elements from a ranked list

Algorithm. Navigation Overlap Control
Input: Ranked list R = e1, e2, . . . of k elements.
Input: Summary graph S with navigation π(e) for element e.
Output: Ranked list with overlapped elements removed R∗

1: let window be the minimum distance between competing elements
2: let m be the length of R∗, initialize as m = 1
3: for i = 1 to k do
4: skip = false
5: for j = 1 to k do
6: if ei and ej are on same branch then
7: if |i − j| > 10 OR πei > πej

then
8: skip = true
9: end if
10: end if
11: end for
12: if skip = false then
13: R∗[m] = ei

14: m = m + 1
15: end if
16: end for

Fig. 4. Remove the least isolated overlapped elements

Algorithm. Ranked List Overlap Control
Input: Ranked list R = e1, e2, . . . of k elements.
Input: Summary graph S

Output: Ranked list R
′

in Ω
Output: Ranked list in Ω with highest SRP Rsr

Output: Ranked list with overlapped elements removed R∗

1: let n be number of overlapped elements in R
2: let Ω be the scenarios of R
3: for R

′ ∈ Ω do
4: if SR(R

′
)/k > SR(R∗)/k AND then

5: Rsr = R
′

6: end if
7: end for
8: R∗ = INEX List Control(Rsr)

Fig. 5. Find the highest scoring scenario

202 M.S. Ali et al.

5 Results INEX 2008

In this section, we present our results from our participation in INEX 2008 in
the Ad-Hoc Focused Track (Section 5.1), the Efficiency Track (Section 5.2), and
the Entity Ranking Track (Section 5.3).

5.1 Ad-Hoc Focused Element Retrieval Content-Only Sub-Task

We submitted results for the Ad-hoc Focused Track using element retrieval in
the Content-Only Sub-Task. We submitted 3 runs: B2U0 visit-heur, B2U0 tiny-
path-sr, and B2U0 tiny-path-heur. Runs B2U0 visit-heur and B2U0 tiny-path-
heur were boosted using the navigation models visit (Table 2B) and path
(Table 2C), respectively. Both of these runs were post-processed using INEX over-
lap control. They showed similar performance. Unfortunately, the B2U0 tiny-
path-sr run (which was boosted and post-processed using the path summary
navigation model in Table 2C), was not admissible in the focused task due to
overlap in the run (because of a syntax error in the ranked list overlap control
post-processor code). Our results reported here show an extended set of runs that
are indicative of the effectiveness of our proposed approach to structural scor-
ing, and we rename the runs B2U0 visit-heur and B2U0 tiny-path-heur to PATH
INEX NONE and VISIT INEX NONE, respectively in Table 3 and Figure 6.

The runs reported here are top-100 results for the Wikipedia collection across
235 topics in INEX 2008 evaluated using the official INEX measures (inex eval)
MAiP and (inex eval) interpolated precision across interpolated recall points.
The purpose of these runs was to investigate empirically whether there existed
predictable combinations of boosting and post-processing that would result in
more effective systems.

In Table 3, we show the MAiP evaluations for all tested configurations. The
configuration for each run consisted of the type of navigation model used to
boost results (Boost), the approach used to post-process the run to remove over-
lap (Overlap), and the navigation model used by the approach for removing
overlap (Navigation). For instance, our best run was first boosted using the
visit user navigation model, and then post-processed with the depth summary
navigation model. The NAV runs (navigation overlap control using the algo-
rithm shown in Figure 4) did not perform well (a maximum MAiP of 0.102 with
boosting using the visit user navigation model was observed). In INEX 2007
[3], we observed that post-processing with the depth summary navigation model
improved the effectiveness of systems. This was a full summary of the collec-
tion with a navigation graph that consisted of 55486 nodes, as opposed to the
smaller model of only 5 nodes used this year. Moreover, we note that regardless
of the boost, the best overall post-processor (by MAiP) was the depth sum-
mary navigation model. Additionally, we observed that, for each boost (NONE,
PATH, VISIT), the relative performance of the post-processor configurations
(Overlap-Navigation pairs in Table 3) was consistent, and was (listed from best
configuration to worst) SR-DEPTH � INEX-NONE � SR-SS2 � NAV-DEPTH
� SR-VISIT � SR-ARTICLE.

Exploiting User Navigation to Improve Focused Retrieval 203

Table 3. Mean-average interpolated precision using HiXEval for INEX 2008 Focused
Runs (k=100, 235 topics)

Boost Overlap Navigation MAiP

NONE INEX NONE 0.111
NONE NAV DEPTH 0.0924
NONE SR ARTICLE 0.0685
NONE SR DEPTH 0.130
NONE SR SS2 0.10172
NONE SR VISIT 0.0817
PATH INEX NONE 0.115
PATH NAV DEPTH 0.107
PATH SR ARTICLE 0.0745
PATH SR DEPTH 0.139
PATH SR SS2 0.106
PATH SR VISIT 0.080
VISIT INEX NONE 0.123
VISIT NAV DEPTH 0.102
VISIT SR ARTICLE 0.0723
VISIT SR DEPTH 0.145

VISIT SR SS2 0.116
VISIT SR VISIT 0.089

In Figure 6, we show the interpolated I-R curves for the six best runs reported
in Table 3. The runs were within +/-0.05 precision of each other across recall
points. Using MAiP, significant differences in overall performance were observed;
the depth summary navigation model and INEX overlap control consistently
performed better than the other configurations. From these results (and obser-
vations from INEX 2007 using large models), it seems that system effectiveness
can be improved by using separate summaries for boosting and post-processing.
Moreover, we observed similar performance within the small models (specifically
that the depth model out-performed other models) as in large models, suggesting
that the size of the model is not as important as the type of model used. Finally,
these preliminary results suggest that boosting is effective, and that boosting
with a user navigation model is more effective than using summary navigation
models. It remains to be seen whether these observations can be generalized
across search tasks.

5.2 Efficiency Track

The Efficiency Track is a forum for the evaluation of both the effectiveness and
efficiency of XML ranked retrieval approaches. The approach taken at INEX
2008 is to time sequential query runs. Three query categories were provided:
ad-hoc-style (category A), high-dimensional content retrieval (category B), and
high-dimensional content retrieval (category C). Even though categories B and
C involved many structural hints, the queries were interpreted in a relaxed

204 M.S. Ali et al.

Fig. 6. Interpolated precision-recall in Focused Task using summary boosts, INEX
overlap heuristics, and optimal structural relevance (k = 100, 285 topics)

manner, meaning that a result missing tags or keywords is still a valid result.
Each query’s execution time includes two main components. First, the time re-
quired to interpret the query, retrieve candidate elements from one or more
indexes, and return back a posting list with thorough results. Second, the time
to post-process the results using SR to output focused results.

Figure 7 shows a histogram of the query execution times for all 568 queries
returning the top 1500 result using the SR-DEPTH boost and post-processor
combination as it was the best navigation model and overlap post-processor from
the different combinations tested in Figure 3. Just over half of the queries took
under 2s to execute with a median query time of 1703ms. A sizable proportion
(about 16%) of the queries took more than 5 seconds to execute and includes 35
queries which needed more than 10s to complete.

By each query type, our times were as follows:

(A) 540 Queries. Ad-Hoc-style, average query time is 3166 ms with times
varying from 15 to 26063 ms.

(B) 21 Queries. High-dimensional content retrieval, average query time is
8460 ms, with times varying from 188 to 61141 ms.

(C) 7 Queries. High-dimensional structure retrieval. average query time is
12090 ms, with times varying from 2948 to 35328 ms.

Exploiting User Navigation to Improve Focused Retrieval 205

Fig. 7. Histogram of query times in the INEX 2008 Efficiency Track

Our system was run on Windows XP in a virtual machine using VMWare GSX
on a Sun Fire V20xz Server cluster running on Red Hat Enterprise Linux. The
VM was configured the 2048 MB of RAM and one virtual 2.39 GHz CPU running
over an AMD Opteron Processor 250. Our performance is affected to some extent
by virtualization. Nevertheless, we prefer to conduct our experiments in a virtual
environment for convenience reasons (e.g., highly simplified reproducibility of
experiments).

5.3 Entity Ranking

The Entity Ranking Track uses the Wikipedia data, where systems may exploit
the category metadata associated with entities in entity retrieval. For example,
consider a category “Dutch politicians”. The relevant entities are assumed to be
labelled with this category or other closely related category in the categorization
hierarchy, e.g. “politicians”. Our participation involved developing 6 new topics
and conducting assessments. We did not submit runs this year and leave this as
an area of future work for applying the methods presented in this paper.

6 Conclusions

In this work, we have shown how navigation models can be used effectively in
both element score boosting and in the post-processing of overlap. The models
can be derived either from collection statistics or user assessments. The most sig-
nificant observation in this work is that small models based on either assessments
or collection statistics can be used. Our results in INEX 2007 suggested that the

206 M.S. Ali et al.

depth summary navigation model was a good model to use for post-processing.
In this study, our results have corroborated with the observations in INEX 2007,
but, importantly we have shown that smaller models can be used. Small models
are more easily interpreted and more efficient to use in our computations. In
the future, we hope to generalize this methodology for structural scoring as a
way to test and compare how different search engines handle different structural
constraints and hints.

References

1. Apache Lucene Java (2008), http://lucene.apache.org
2. Ali, M.S., Consens, M.P., Kazai, G., Lalmas, M.: Structural relevance: a com-

mon basis for the evaluation of structured document retrieval. In: CIKM 2008,
pp. 1153–1162. ACM Press, New York (2008)

3. Ali, M.S., Consens, M.P., Khatchadourian, S.: XML retrieval by improving struc-
tural relevance measures obtained from summary models. In: Fuhr, N., Kamps, J.,
Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 34–48. Springer,
Heidelberg (2008)

4. Ali, M.S., Consens, M.P., Khatchadourian, S., Rizzolo, F.: DescribeX: Interacting
with AxPRE Summaries. In: ICDE 2008, pp. 1540–1543. IEEE Computer Society
Press, Los Alamitos (2008)

5. Ali, M.S., Consens, M.P., Lalmas, M.: Structural Relevance in XML Retrieval
Evaluation. In: SIGIR 2007 Workshop on Focused Retrieval, pp. 1–8 (2007)

6. Ali, M.S., Consens, M.P., Larsen, B.: Representing user navigation in XML retrieval
with structural summaries. In: ECIR 2009 (in press, 2009)

7. Clarke, C.: Controlling overlap in content-oriented XML retrieval. In: SIGIR 2005,
pp. 314–321. ACM Press, New York (2005)

8. Consens, M.P., Rizzolo, F., Vaisman, A.A.: AxPRE Summaries: Exploring the
(Semi-)Structure of XML Web Collections. In: ICDE 2008, pp. 1519–1521 (2008)

9. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked keyword
search over xml documents. In: SIGMOD 2003. ACM Press, New York (2003)

10. Kazai, G., Lalmas, M., de Vries, A.P.: The overlap problem in content-oriented
xml retrieval evaluation. In: SIGIR 2004, pp. 72–79. ACM Press, New York (2004)

11. Malik, S., Tombros, A., Larsen, B.: The Interactive Track at INEX 2006. In:
Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518,
pp. 387–399. Springer, Heidelberg (2007)

12. Piwowarski, B., Gallinari, P., Dupret, G.: Precision recall with user model-
ing (PRUM): Application to structured information retrieval. ACM Trans. Inf.
Syst. 25(1), 1 (2007)

13. Ross, S.M.: Introduction to Probability Models, 8th edn. Academic Press,
New York (2003)

14. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versatile query engine
for TopX search. In: Proc. VLDB Conf., pp. 625–636 (2005)

15. Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). In:
Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493,
pp. 16–40. Springer, Heidelberg (2005)

http://lucene.apache.org

Efficient XML and Entity Retrieval
with PF/Tijah:

CWI and University of Twente at INEX’08

Henning Rode1, Djoerd Hiemstra2, Arjen de Vries1, and Pavel Serdyukov2

1CWI Amsterdam, The Netherlands
2CTIT, University of Twente, The Netherlands

Abstract. The paper describes the submissions of CWI and University
of Twente to the efficiency and entity ranking track of INEX 2008. With
the INEX participation, we demonstrate and evaluate the functionality
of our open source XML retrieval system PF/Tijah.

1 Introduction

PF/Tijah is a research prototype created by the University of Twente and CWI
Amsterdam with the goal to create a flexible environment for setting up search
systems. By integrating the PathFinder (PF) XQuery system [1] with the Ti-
jah XML information retrieval system [2] it combines database and information
retrieval technology. The PF/Tijah system is part of the open source release
of MonetDB/XQuery developed in cooperation with CWI Amsterdam and the
University of Tübingen.

PF/Tijah is first of all a system for structured retrieval on XML data. Com-
pared to other open source retrieval systems it comes with a number or unique
features [3]:

– It can execute any NEXI query without limits to a predefined set of tags.
Using the same index, it can easily produce a “focused”, “thorough”, or “ar-
ticle” ranking, depending only on the specified query and retrieval options.

– The applied retrieval model, score propagation and combination operators
are set at query time, which makes PF/Tijah an ideal experimental platform.

– PF/Tijah embeds NEXI queries as functions in the XQuery language. This
way the system supports ad hoc result presentation by means of its query
language. The efficiency task submission described in the following section
demonstrates this feature. The declared function INEXPath for instance com-
putes a string that matches the desired INEX submission format.

– PF/Tijah supports text search combined with traditional database query-
ing, including for instance joins on values. The entity ranking experiments
described in this article intensively exploit this feature.

With this year’s INEX experiments, we try to demonstrate the mentioned
features of the system. All experiments were carried out with the least possible

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 207–217, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

208 H. Rode et al.

pre- and post-processing outside PF/Tijah. Section 2 shows with the applica-
tion of the system to the INEX efficiency track, how a wide range of different
NEXI queries can be executed efficiently. Section 3 demonstrates how combined
database and retrieval queries provide a direct solution to specialized tasks like
entity ranking.

2 Efficiency

The INEX efficiency task combines retrieval quality and performance. In order to
test the performance on a wide range of different queries, the task uses a query set
of 568 structured queries combined from other tasks and collected over the last
several years. The queries vary with respect to the number of terms contained in
them and their structural requirements. A subset for instance represents typical
relevance feedback queries containing a considerable higher number of query
terms.

The retrieval efficiency of PF/Tijah was improved in the last year with respect
to several aspects, which we wanted to test by our submissions. The index struc-
ture, containment joins, and score computation had been changed [4] to improve
the execution of simple query patterns such as

//tag[about(., term query)]

PF/Tijah creates a full-text index on top of Pathfinder’s pre/post encoding
of XML files [5]. Instead of assigning a pre-order value to complete text-nodes
as done by the Pathfinder, the Tijah full-text index enumerates each single
term. Both the Pathfinder encoding and the separate full-text index are held
in database tables. An “inverted” table is created by clustering the table (pre-
order values) on tag- and term ID.

PF/Tijah does not use top-k query processing strategies. Neither tag-term
pairs nor scores are precalculated or indexed in order avoid redundancy on the
one hand, and to allow at query time the application of arbitrary ranking func-
tions on the other hand. The applied ranking function is specified in PF/Tijah
for each single query. Furthermore, PF/Tijah’s containment join operator re-
lies on input sorted in document order. Node sequences sorted on score order
as they are typically accessed in the top-k query processing framework do not
match this requirement. PF/Tijah does not implement any caching strategy it-
self. However, the underlying database system tries to make use of the operating
system’s caching functionalities.

2.1 Submissions

We submitted four runs, one “article” ranking and three “thorough” element
rankings. Since PF/Tijah does not support top-k query processing, all submitted
runs return the complete set of the 1500 highest ranked elements for each query.
The applied ranking function for all submissions follows the language modeling
framework for retrieval. The so-called NLLR, normalized logarithmic likelihood

Efficient XML and Entity Retrieval with PF/Tijah 209

ratio, compares the within-element and within-query distribution for each query
term. The ranking aggregates single term scores on the level of scored elements.
Query terms marked by a leading ‘-‘ to indicate that they should not occur in
relevant elements were removed from the queries, since PF/Tijah currently does
not support this feature. For the same reason, phrases were treated as normal
query terms only.

For repeatability we report here the complete XQuery that was used to pro-
duce the ranking in PF/Tijah. The XQuery below was generated for Topic 856.
The individual queries only substitute the inside NEXI string accordingly. The
costly function call producing the required INEX path string was omitted when
running time measurements, since it does not reflect the retrieval performance
itself:

declare function INEXPath($n as node()) as xs:string

{

let $paths :=

for $a in $n/ancestor-or-self::*

where local-name($a) ne "docs"

return if (local-name($a) eq "article")

then concat(local-name($a),"[1]")

else concat(local-name($a),"[",

string(1 + count($a/preceding-sibling::*

[local-name() eq local-name($a)])),"]")

return string-join($paths, "/")

};

let $opt := <TijahOptions returnNumber="1500" ir-model="NLLR"

prior="NO_PRIOR" txtmodel_returnall="FALSE"/>

let $nexi := "//article//body[about(.//section//p, State Park) and

about(.//section//title, Geology) and

about(.//section//title, Geography)]

//figure[about(.//caption, Canyon)]"

return <topic id="856"> {

for $res at $rank in tijah:queryall($nexi, $opt)

return <result><file> {

concat("",$res/ancestor-or-self::article/name/@id)}</file>

<path>{INEXPath($res)}</path>

<rank>{$rank}</rank></result> }

</topic>

For the article ranking we automatically created NEXI queries by substitution
of the placeholder ?CO-TITLE? below with the content-only (CO) field of the
query topic:

//article[about(., ?CO-TITLE?)]

The run should show how our XML retrieval system performs when used as a
standard document retrieval system.

210 H. Rode et al.

In contrast, the “thorough” element rankings use the content-and-structure
(CAS) field of each query topic. The first “thorough” run, called star-strict,
executes the unmodified CAS query as provided in the query topic. The final
two runs perform a slight modification. Since the new PF/Tijah system is tuned
towards queries starting with a tag-name selection rather than searching in all
element nodes, we translated queries starting with the pattern

//*[about(., terms)]...

to

//(article|section|p)[about., terms)]...

The runs based on this modification are called asp-strict and asp-vague. The
distinction between these is explained below.

Thinking in terms of XPath, the base of the NEXI language, the scoring pred-
icates [about(., terms)] are first of all evaluated to a boolean value, causing
those elements to pass that satisfy the query. If the predicates are translated to
a scoring operator in the algebra tree, that only assigns scores to all elements,
the predicate becomes obsolete as a filter and the side effect of the predicate
evaluation, the score assignment, has become the primary aim. This is clearly
not the only possible query interpretation. We can require that an element has
to reach a certain score threshold in order to satisfy the predicate condition.
The least strict setting of such a threshold would be to filter out all zero scored
element. In other words, the about function would assign a true value to all
elements that contain at least one of the query terms. For a query of the form

//article[about(., xml)]//p[about(.,ir)]

strict semantics will pass only those articles that match the keywords of the
first about, whereas vague semantics also considers results of paragraphs about
“ir” that are not occurring within articles about “xml”. The two submitted runs,
asp-strict and asp-vague, compare the different query interpretation with respect
to retrieval quality and performance.

2.2 Results

The test system used for all time measurements in this article was an INTEL
Core2 Quad machine running on 2.4 Ghz with 8 GB main memory. The necessary
index structures could hence be held in memory, but not in the considerably
smaller CPU caches. Queries were executed sequentially. For time measurements,
we omitted the generation of the INEXPath as mentioned above and stored only
node identifiers instead. We measured the full execution of the query, including
the query compilation phase.

Table 1 shows an overview on the execution times of the different runs. The
article ranking is obviously faster on average than the three other runs evaluating

Efficient XML and Entity Retrieval with PF/Tijah 211

Table 1. Execution time overview in sec

run avg time sum time min time max time
article 0.702 399 0.327 11.814
star-strict 17.186 9762 0.324 330.495
asp-strict 2.306 1310 0.324 52.388
asp-vague 8.213 4665 0.444 1235.572

the CAS query. Since some CAS queries in the query set issue a simple fielded
search, it is not surprising that the minimal execution time stays almost the
same for all runs. Looking at the average and maximal execution time for a
single query, we observe, however, huge differences. Most of the time differences
can be attributed to queries that contain the pattern //* in the NEXI path.
If a posting list of a certain tagname is fetched from the inverted index, the
system guarantees the pre-order sortedness of the list, which is required for the
subsequent containment evaluation. Fetching the entire inverted index, however,
will not return a pre-order sorted element list, and therefore requires a resorting
of the entire node set. The difference becomes apparent when comparing the
execution times of the two runs star-strict and asp-strict. Even the expensive
substitute pattern selecting all article, section, and p nodes shows still a
better performance.

Evidently, the application of strict query semantics yield a better query per-
formance. The average total execution is around four times faster than in the
case of a vague interpretation. The early filtering on intermediary result sets
especially helps on highly structured queries. Consequently, we observe simi-
lar minimal execution times but clear differences when looking at the highest
times measured for evaluating a single query. The differences of the two query
interpretations needs to be studied as well in terms of retrieval quality.

Table 2. Retrieval quality presented in official measures

run MAiP iP[0.10] iP[0.5] iP[0.01]
article 0.1839 0.3346 0.3689 0.4272

MAP P@0.10 P@0.5 P@0.01
star-strict 0.0169 0.0471 0.1029 0.2415
asp-strict 0.0136 0.0294 0.1008 0.2674
asp-vague 0.0141 0.0357 0.1120 0.2653

Table 2 reports the official measurements used in the efficiency track, which
differ for “article” and “thorough” run submissions. Therefore, we can only com-
pare our three “thorough” runs. The substitution of //*-queries sacrifices recall
but not early precision. The two asp runs even yield a slightly higher precision
on top of the ranked list. Comparing the strict and vague semantics we observe

212 H. Rode et al.

as expected a better retrieval quality when applying the vague “andish” inter-
pretation. The differences, however, stay again small when looking at the top of
the retrieved list.

3 Entity Ranking

The INEX entity ranking task searches for entities rather than articles or ele-
ments with respect to a given topic. With entities we mean here unique instances
of a given type, such as “Hamburg” and “München” being an instance of type
“German cities”. For a given query topic such as “hanseatic league” and target
entity type “German cities” a good entity retrieval system should return “Ham-
burg”, but not “München” since it is off topic, or “Novgorod” since it is not a
German city.

The target type is given as a Wikipedia category in the INEX task. Fur-
thermore, each retrieved entity needs to have its own article in the Wikipedia
collection. Obviously, this decision is only suitable for entity ranking within an
encyclopedia, where we can assume that most mentioned entities in fact have
their own entry. In consequence, a baseline ranking is achieved by a straight-
forward article ranking on the Wikipedia corpus combined with an appropriate
category filtering mechanism.

The INEX task further provides a few relevant example entities for each query
topic. The given entities can be used as relevance feedback to improve the initial
text query or to redefine the set of target categories. Another application for the
example entities comes with the list completion task. This task asks to derive
appropriate target categories automatically from the given relevant entities.

Our main aim for this year’s track participation was to express entity ranking
queries completely in the XQuery language. Hence, we wanted to show that
PF/Tijah is “out of the box” able to express and evaluate complex entity ranking
queries with a high retrieval quality. One preprocessing step, however, turned out
to be unavoidable. The INEX wikipedia corpus comes without category tagging
in the provided XML format. Instead, the categorization of all articles is provided
by separate plain text files. In order to unify all given information, we integrated
the category tagging in the XML corpus itself as shown in the following example:

<article><name id="13467">Hamburg</name>

<body>....</body>

<category id="5654">cities in germany</category>

<category id="52414">port cities</category>

</article>

In addition to the title keywords, target categories, and relevant entities pro-
vided with each search topic, we generated for each search topic an additional list
of relevant derived categories. Namely those categories assigned to the specified
relevant entities. The derived relevant categories are used as mentioned above
for refinement of the target categories as well as for the list completion task:

Efficient XML and Entity Retrieval with PF/Tijah 213

for $topic in doc("topics.xml")//inex topic

let $relevant entities := $topic//entity/@id

return collection("wikipedia")//

article[name/@id =

$relevant entities]//category/@id

3.1 Submissions

We submitted six runs, four runs for the entity ranking task, and two list com-
pletion submissions. The submissions can also be divided into three runs based
solely on a direct article ranking, and three other runs using also the scores of
adjacent articles in the link graph.

We start by describing the direct article rankings. The ranking and category
filtering is performed by a single XQuery, which is shown below. The fields fields
?QID?, ?QTERMS?, ?CATS?, ?DERIVEDCATS? were substituted according to the
given query topic:

(: part1 - retrieval :)

let $query_num := "?QID?"

let $q_terms := tijah:tokenize("?QTERMS?")

let $opt := <TijahOptions ir-model="LMS" returnNumber="1000"

collection-lambda="0.5"/>

let $nexi := concat("//article[about(.,", $q_terms, ")]")

let $tijah_id := tijah:queryall-id($nexi, $opt)

let $nodes := tijah:nodes($tijah_id)

(: part2 - determine target categories :)

let $targetcats := distinct-values(((?CATS?), (?DERIVEDCATS?)))

(: part3 - filtering and output generation :)

for $a at $rank in $nodes

let $score := if ($a//category/@id = $targetcats)

then tijah:score($tijah_id, $a)

else tijah:score($tijah_id, $a) * 0.0000001

order by $score descending

return string-join((string($query_num), "Q0", concat("WP",$a/name/@id),

string($rank), string($score), "ER_TEC"), " ")

The presented XQuery ranks in the first part all articles of the Wikipedia col-
lection according to the topic of the query. We applied here a standard language
modeling retrieval model with the smoothing factor set to λ = 0.5. Moreover,
the result set was limited to the top 1000 retrieved articles.

The second part determines the target categories. Whereas our first run
ER TC uses only the categories provided with the query topic, the second run
ER TEC refines the target category set by uniting the given and derived cat-
egories as shown in the query. The list completion LC TE, on the other hand,
uses only the derived but not the given categories.

214 H. Rode et al.

The final part performs the actual filtering and required TREC-style output
generation. Notice that the applied filtering in fact only performs a reordering
and does not remove articles from the ranked list. Last year’s experiments had
clearly shown that the reordering comes with a higher recall compared to the
filtering technique.

The other three runs ER TC idg, ER TEC idg, LC TE idg exploit the re-
trieval scores of adjacent nodes and follow otherwise a symmetrical experiment
schema with respect to the used target categories. The underlying idea behind
the exploitation of link structure is adopted from other entity ranking tasks
such as expert finding, where we typically find a number of topical relevant
documents that mention relevant entities, but entities do not have a textual de-
scription themselves. A sample cutout of such a graph is visualized in Figure 1.
The edges here symbolize containment of entities within documents. Entities are
then ranked by a propagation of scores from adjacent documents.

Although entity ranking on the Wikipedia corpus is different since entities
are represented by their own articles and have a text description themselves, it
still often occurs the articles outside the target category carry valuable infor-
mation for the entity ranking. Recall the above given example query searching
for German cities in the hanseatic league. We will find Wikipedia entries about
the history of the hanseatic league listing and linking to all major participat-
ing cities. While such article remains outside the target category, the links to
relevant city pages are of high value for the ranking. Especially, when a city’s
description itself does not reach far enough into history. We developed last year a
ranking method matching this condition [6]. The personalized weighted indegree
measure tries to combine the article ranking itself w(e|q) with the ranking of
other Wikipedia entries w(e′|q) linking entity e:

PwIDG(e) = μw(e|q) + (1 − μ)
∑

e′∈Γ (e)

w(e′|q) (1)

A corresponding indegree score computation can be expressed as well in
XQuery. The below shown query part substitutes the score computation in the
previous entity ranking example and sets the parameter μ to 0.85:

Fig. 1. Part of a link graph containing entities ei and other documents dj

Efficient XML and Entity Retrieval with PF/Tijah 215

for $a at $rank in $nodes

let $in_score := sum(

for $l in $nodes//collectionlink[@*:href =

concat($a/name/@id, ".xml")]

let $source_article := exactly-one($l/ancestor::article)

return tijah:score($tijah_id, $source_article)

)

let $score := if ($a//category/@id = $targetcats)

then 0.85 * tijah:score($tijah_id, $a) + 0.15 * $in_score

else (0.85 * tijah:score($tijah_id, $a) + 0.15 * $in_score)

* 0.0000001

order by $score descending

return string-join((string($query_num), "Q0", concat("WP",$a/name/@id),

string($rank), string($score), "1_cirquid_ER_TEC_idg"), " ")

Notice that each link between two entities is counted separately here. We
tested before a version of the query that establishes only one link between two
entities e1 and e2 even if e1 links e2 multiple times. Initial tests on last years
data indicated, however, a higher retrieval quality for the above presented query.

3.2 Training

We trained the parameter μ on the data of last year’s entity ranking task. For
the chosen relevance propagation method a setting of μ = 0.85 showed the best
performance with respect to precision on top of the retrieved list as well as for
mean average precision. The training results are presented in Table 3.

Table 3. Retrieval quality depending on the setting of μ

μ 0.8 0.85 0.9 0.95
MAP 0.3373 0.3413 0.3405 0.3349
P10 0.3739 0.3783 0.3717 0.3630

3.3 Results

The official evaluation measure for the INEX XER track is called “xinfAP” [7].
It makes use of stratified sampling for estimating average precision. Table 4 gives
an overview of the results for all our submitted runs. For the entity ranking task,
it shows that extending the target category set by derived categories from the
provided feedback entities considerably improves the results. This observation
was expected. We showed in last year’s INEX experiments that extending the
target category set by child categories improves retrieval as well. Both results
can be explained by the fact that articles in Wikipedia that are assigned to
a certain category are not necessarily assigned to the parent category as well.
Hence, extending the target category set by similar categories always improves

216 H. Rode et al.

Table 4. Retrieval quality presented in official measures

ER TC ER TEC LC TE

xinfAP 0.235 0.277 0.272
ER TC idg ER TEC idg LC TE idg

xinfAP 0.274 0.326 0.274

recall. Applying the indegree method results in another clear improvement for
the entity ranking task, however we did not achieve the same positive effect for
list completion.

4 Conclusions

We demonstrated with this article the flexibility and effectiveness of the cho-
sen approach to integrate the retrieval language NEXI with the database query
language XQuery. The PF/Tijah system allows to express a wide range of INEX
experiments without changes to the system itself. Often time consuming pre- and
post-processing of data is not necessary or reduced to simple string substitutions
of query terms for each given query.

Although PF/Tijah does not apply top-k query processing techniques, it shows
a good performance on a wide range of NEXI queries. Future developments
should address the currently bad supported retrieval on the entire node set,
issued by //*-queries.

The INEX entity ranking task demonstrates how standard retrieval functions
can be applied to non-standard retrieval tasks with the help of score propagation
expressed on the XQuery level. A combined DB/IR system as PF/Tijah can
demonstrate here its full advantage.

References

1. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.: Mon-
etDBXQuery: a fast XQuery processor powered by a relational engine. In: SIGMOD
2006: Proceedings of the 2006 ACM SIGMOD international conference on Manage-
ment of data, pp. 479–490. ACM, New York (2006)

2. List, J., Mihajlovic, V., Ramı́rez, G., de Vries, A., Hiemstra, D., Blok, H.E.: Tijah:
Embracing Information Retrieval methods in XML databases. Information Retrieval
Journal 8(4), 547–570 (2005)

3. Hiemstra, D., Rode, H., van Os, R., Flokstra, J.: PFTijah: text search in an XML
database system. In: Proceedings of the 2nd International Workshop on Open Source
Information Retrieval (OSIR), Seattle, WA, USA, Ecole Nationale Supérieure des
Mines de Saint-Etienne, pp. 12–17 (2006)

4. Rode, H.: From Document to Entity Retrieval. PhD thesis, University of Twente,
CTIT (2008)

5. Grust, T., van Keulen, M., Teubner, J.: Accelerating XPath evaluation in any
RDBMS. ACM Trans. Database Syst. 29, 91–131 (2004)

Efficient XML and Entity Retrieval with PF/Tijah 217

6. Rode, H., Serdyukov, P., Hiemstra, D.: Combining Document- and Paragraph-Based
Entity Ranking. In: Proceedings of the 31th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2008),
pp. 851–852 (2008)

7. Yilmaz, E., Kanoulas, E., Aslam, J.A.: A simple and efficient sampling method for
estimating ap and ndcg. In: SIGIR 2008: Proceedings of the 31st annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pp. 603–610. ACM Press, New York (2008)

Pseudo Relevance Feedback Using Fast XML Retrieval

Hiroki Tanioka

Innovative Technology R&D, JustSystems Corporation,
108-4 Hiraishi-Wakamatsu Kawauchi-cho Tokushima-shi Tokushima, Japan

hiroki.tanioka@justsystems.com

Abstract. This paper reports the result of experimentation of our approach using
the vector space model for retrieving large-scale XML data. The purposes of the
experiments are to improve retrieval precision on the INitiative for the Evaluation
of XML Retrieval (INEX) 2008 Adhoc Track, and to compare the retrieval time
of our system to other systems on the INEX 2008 Efficiency Track. For the INEX
2007 Adhoc Track, we developed a system using a relative inverted-path (RIP)
list and a Bottom-UP approach. The system achieved reasonable retrieval time for
XML data. However the system has a room for improvement in terms of retrieval
precision. So for INEX 2008, the system uses CAS titles and Pseudo Relevance
Feedback (PRF) to improve retrieval precision.

1 Introduction

There are two approaches for XML information retrieval (IR): one based on database
models, the other based on information retrieval models. Our system is based on the
vector space model[3] from information retrieval.

Our system uses keywords (multi-word terms, single words) as the query and sepa-
rates XML[1] documents into two parts: content information (the keywords) and struc-
tural information. XML nodes correspond to retrieval units, and nodes that include
query terms can be quickly retrieved using an inverted-file list. For very large XML
documents, all XML nodes are indexed to each term directly included in the node it-
self, but not the node’s children or more distantly related nodes. During the retrieval
phase, the score of a retrieved node is calculated by merging the scores from its descen-
dant nodes. To merge scores while identifying parent-child relationships, the system
employs a relative inverted-path list (RIP list)[6] that uses nested labels with offsets to
save the structural information.

For INEX 2008, our experiments target both CO and CAS titles. The system ac-
cepts CO titles, which are terms enclosed in <title> tags. Furthermore, the system can
accept CAS titles as a constrained condition, which are XPath[2] representations en-
closed in <castitle> tags. Additionally, for improving retrieval precision, the system
adopts Pseudo Relevance Feedback (PRF)[5]. The rest of this article is divided into
three sections. In section 2, we describe the IR model for XML documents. In section 3,
we describe experimental results. And in section 4, we discuss results and future work.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 218–223, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Pseudo Relevance Feedback Using Fast XML Retrieval 219

2 XML Information Retrieval

2.1 TF-IDF Scoring

Our system uses a TF-IDF scoring function for retrieval. TF-IDF is additive, therefore a
node score can be easily calculated by merging the scores of its descendant nodes. The
TF-IDF score L j of the jth node is composed of the term frequency t fi of the ith term
in the query, the number of nodes fi including the ith term, and the number of all the
nodes n in the XML collection.

L j =

t∑

i=1

t fi · log(
n
fi

) (1)

However, if the node score is the sum of the scores of its descendants, there is the
problem that the root node always has the highest score in the document. Therefore, the
score R j of the jth node is composed of the number T j of terms contained in the jth
node, the score Lk of the kth descendant of the jth node, and the number Tk of terms
contained in the kth node.

T j =
∑

k childreno f j

Tk (2)

R j =
∑

k childreno f j

D · Lk (3)

R′j =
R j

T j
(4)

where D(= 0.75) is a decaying constant. And the TF-IDF score R j is normalized by the
number of terms T j,

Then let α be the set of terms included in the query and β j be the set of terms included
in the jth node. The conjunction, γ j = α ∩ β j, is the set of query terms included in the
jth node. For every node,

δ j =
⋃

k childreno f j

γk (5)

S j =
Q
q
· count(δ j) (6)

where Q(= 30) is a constant number, and q is the number of terms in the query. S j is
one of the heuristic scores we call a leveling score. If a node contains all terms in the
query, the leveling score is the highest.

RS V j = R′j + S j (7)

After that, the score RS V j of jth node is composed of the TF-IDF score R′j and the
leveling score S j. Then the retrieved results are chosen from the node list, which is
sorted in descending order of RS V scores. All the parameters are determined using a
few topics of the Focused task of the INEX 2007 Adhoc Track[6].

220 H. Tanioka

2.2 Simplified XML Database

Our system uses either CO titles or CAS titles for XML retrieval. For CAS titles, the
system separates a CAS title into some parts which consist of a combination of terms
with XPaths in advance of retrieving. If a retrieved node including the terms is matched
with the XPath, the retrieved node’s score is multiplied by 1.1. For example, a CAS title
is separeted as follows,

A CAS title:
<castitle>
//article[about(., philosophy)]//section[about(., meaning of life)]
</castitle>

Terms: philosophy meaning of life
XPaths: //article//section

The system treats an XML tag included in an XPath like a term, the following tuple
is appended into the postings file. And an XPath can be instantly cross-checked with
the simplified XML database which uses a postings file and a RIP list.

T F(= 1) means a term frequency which is a constant number. The RIP list is ex-
panded for recording a tag ID to each node ID, and the RIP list also preserves a distance
between a node and its parent node.

Tag-ID: {Node-ID, T F}
Node-ID: {Distance, Tag-ID}

For checking XPathA, a node N0 which is equal to the tail node <title> can be re-
trieved in the postings file. Then, the parent node <figure> of the node <title>
is compared with the parent node N1 of the retrieved node N0 using the RIP list. If
the compared node N1 means <figure>, the parent node <sec> of the node <figure> is
compared with the parent node N2 of the node N1.

XPathA: /sec/figure/title

XPathret: /N2/N1/N0

If all the nodes in XPathA are matched the nodes N0, N1 and N2 in a row, XPathret

(/N2/N1/N0) corresponds to XPathA (/sec/figure/title). The simplified XML database ac-
cepts an asterisk operator (*) which means the repetition of an arbitrary XML tag.

For checking XPathB, the simplified XML database just retrieves the node <title>
in the postings file, because the parent node of <title> is unconcerned. For checking
XPathC, all the retrieved nodes in the postings file are targeted for the tail node (*).
Inevitably, the simplified XML database retrieves <figure> with the node (*) skipped.

XPathB: /*/title

XPathC: /figure/*

Therefore, the simplified XML database can accept inquiries regarding XPath using
both the postings list and the RIP list with a Bottom-UP approach.

Pseudo Relevance Feedback Using Fast XML Retrieval 221

Table 1. Some results on the Focused Task in the Adhoc Track

Run ID Condition iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
RIP 01 (official) VSM 0.7162 0.5225 0.3872 0.2897 0.0992
RIP 02 (official) VSM/CAS 0.7233 0.5549 0.4275 0.3259 0.1153
RIP 03 (official) VSM/PRF 0.6289 0.5241 0.3854 0.3107 0.1044
RIP 04 (unofficial) VSM/CAS/PRF 0.6378 0.5585 0.4490 0.3584 0.1179

∗Metric: iP[x] means interpolated Precision / Recall (invalid submissions are discarded.), as in-
terpolated precision at x recall.

2.3 Pseudo Relevance Feedback

The retrieving method with Pseudo Relevance Feedback (PRF) is reported as a powerful
yet simple approach in RIA Workshop[5]. When we extend our system with a PRF
method to improve retrieval precision, the system operates as follows,

1. Retrieving XML nodes with original query terms.
2. Extracting terms in the top 10 retrieved XML nodes.
3. Choosing the top 20 ranked terms in the extracted terms.
4. Retrieving XML nodes with both original query terms and the chosen terms.

The PRF method chooses the top 20 ranked terms in the TF-IDF score as additional
query terms in the top 10 retrieved XML nodes.

3 Experimental Results

To index the INEX 2008 Adhoc Track document collection, the system first parses all
the structures of each XML document with an XML parser and then parses all the text
nodes of each XML document with an English parser1. The size of the index containing
both content information and structure information is about 8.32 GB. Thereafter, the
system uses the same index in every experiment.

3.1 INEX 2008 Adhoc Track

In INEX 2008 Adhoc Track, our experiments target both CO and CAS titles. The system
accepts CO titles, which are terms enclosed in <title> tags. The system can accept CAS
titles with XPath as a constrained condition, which are XML tags enclosed in <castitle>
tags.

There are the Focused task, the Relevant in Context task, and the Best in Context
task in the INEX 2008 Adhoc Track. All the tasks are the same as in the INEX 2007
Adhoc Track. Hence the system parameters are tuned for the Focused task on a few
topics from INEX 2007.

1 The English parser of a morphological analyzer uses the Hidden Markov Model and the bigram
made by JustSystems Corporation. Also the English parser stems terms and removes some
terms which consist of two characters or smaller.

222 H. Tanioka

Table 2. Run parameters in the Efficiency Track

Run ID #CPU RAM GB #Nodes Year Top-k Cache
TOPX2-Eff08-CO-1500-Focused-W 4 16 1 2005 1,500 OS+TopX
003-Uni Frankfurt,Architect-S 8 16 8 n/a 1,500 n/a
B2U0 full-depth-heur 1 2 1 n/a 1,500 Lucene
VSM RIP 1 2 1 2008 1,500 None

∗VSM RIP works on a machine which has 2.10GHz CPU, 2GHz RAM and 150GB SATA HDD
in Java 1.6.0 12. Each run is chosen as the best MAiP in each affiliate.

Table 3. Some results on the Focused Task in the Efficiency Track

Run ID iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP AVG MS..
TOPX2-Eff08-CO-1500-Focused-W 0.4994 0.4560 0.3749 0.3298 0.1409 239.73
003-Uni Frankfurt,Architect-Sim 0.2070 0.1960 0.1812 0.1669 0.0768 326,098.75
B2U0 full-depth-heur 0.4388 0.3964 0.3344 0.3013 0.1357 2,994.00
VSM RIP 0.4836 0.4058 0.3077 0.2553 0.0895 3,167.86
VSM RIP A - - - - 0.0936 2,751.27
VSM RIP B - - - - 0.0329 10,905.61
VSM RIP C - - - - n/a 12,091.42

∗Metric: iP[x] means interpolated Precision / Recall (invalid submissions are discarded.), as in-
terpolated precision at x recall.

The system is installed on the PC which has 2.1GHz CPU, 2GB RAM, and 150GB
SATA HDD, and the system is implemented in Java 1.6.0 12. The time it takes to parse
and load the 659,388 files on the PC is about 8.17 hours excluding file-copying time.
The database size is about 3.18 GB on HDD.

Table 1 shows revised results for the Focused task using the main evaluation measure
for INEX 2008, because submitted scores included erroneous results. RIP 02, which
uses the CAS titles, was the best of our runs, ranking 41th in the official ranking with
a iP[0.01] score of 0.5535 (revised score of 0.5549). Then, RIP 04 was unofficially
the best score as MAiP. As RIP 01 is a baseline run, RIP 02 and RIP 04 both use the
CAS titles instead of the CO titles and runs RIP 03 and RIP 04 use PRF. RIP 04 is an
unofficial run, which achieves the highest MAiP score.

Also, RIP 03 scores better than RIP 01 at MAiP but lower at iP[0.00]. So the addi-
tional query terms boosted up the overall precision but introduced some noise as well,
resulting in lower early precision.

3.2 INEX 2008 Efficiency Track

In INEX 2008 Efficiency Track, our experiment uses Type A Topics, Type B Topics and
Type C Topics. Table 2 shows the PC environment. Table 3 shows some results[4] on
the Focused Task in the Efficiency Track. VSM RIP means results regarding a total of
three topic types.

Pseudo Relevance Feedback Using Fast XML Retrieval 223

Even though we ran our system on a single processor, it achieved reasonable retrieval
time for type A topics while retaining good early precision.

4 Conclusions

According to the experimental results, the runs using the CAS titles achieve higher
precision than the runs using the CO titles, indicating that the described approach can
effectively use structural hints to improve performance. The runs using PRF improve
precision at 1% recall and overall precision, showing that element-based relevance feed-
back can augment the query while keeping focus on the topic.

According to the experimental results in the Efficiency Track, VSM RIP did rela-
tively well in precision and retrieval time. If the system uses the PRF method, it is
important that the system has high-speed performance in order to adjust parameters.
Even the precision of the system is expected to be further improved with a combination
of CAS titles and the PRF method, a bunch of problems still remain. These problems
are regarding not only a term weighting as a vector space model issue but also a noise
rejection as an issue for using structural hints.

Acknowledgement

This paper was inspired by the advice of Dr. David A. Evans at JustSystems Evans
Research, Inc. The author would like to thank David and other JSERI members who
commented on the problem of experiment. This scoring method was simplified based
on comments of Dr. Minoru Maruyama at Shinshu University. The author would like to
express his appreciation for Dr. Maruyama’s brilliant comments.

References

1. Extensible Markup Language (XML) 1.1, 2nd ed., http://www.w3.org/TR/xml11/
2. XML Path Language (XPath) Version 1.0., http://www.w3.org/TR/xpath
3. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communica-

tions of the ACM 18, 613–620 (1975)
4. Kamps, J., Pehcevski, J., Kazai, G., Lalmas, M., Robertson, S.: INEX 2007 Evaluation Mea-

sures. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 24–33. Springer, Heidelberg (2008)

5. Montgomery, J., Luo, S.L., Callan, J., Evans, D.A.: Effect of varying number of documents in
blind feedback: analysis of the 2003 NRRC RIA workshop ”bf numdocs” experiment suite.
In: SIGIR 2004: Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, pp. 476–477. ACM, New York (2004)

6. Tanioka, H.: A Fast Retrieval Algorithm for Large-Scale XML Data. In: Fuhr, N., Kamps,
J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 129–137. Springer,
Heidelberg (2008)

http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xpath

TopX 2.0 at the INEX 2008 Efficiency Track
A (Very) Fast Object-Store for Top-k-Style XML Full-Text Search

Martin Theobald1, Mohammed AbuJarour3, and Ralf Schenkel1,2

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany
3 Hasso Plattner Institute, Potsdam, Germany

Abstract. For the INEX Efficiency Track 2008, we were just on time to fin-
ish and evaluate our brand-new TopX 2.0 prototype. Complementing our long-
running effort on efficient top-k query processing on top of a relational back-end,
we now switched to a compressed object-oriented storage for text-centric XML
data with direct access to customized inverted files, along with a complete reim-
plementation of the engine in C++. Our INEX 2008 experiments demonstrate ef-
ficiency gains of up to a factor of 30 compared to the previous Java/JDBC-based
TopX 1.0 implementation over a relational back-end. TopX 2.0 achieves over-
all runtimes of less than 51 seconds for the entire batch of 568 Efficiency Track
topics in their content-and-structure (CAS) version and less than 29 seconds for
the content-only (CO) version, respectively, using a top-15, focused (i.e., non-
overlapping) retrieval mode—an average of merely 89 ms per CAS query and 49
ms per CO query.

1 Introduction

TopX is a native IR-engine for semistructured data with IR-style, non-conjunctive (aka.
“andish”) query evaluations, which is particular challenging for efficient XPath-like
query evaluations because of the huge intermediate set of candidate result elements, i.e.,
when any XML element matching any of the query conditions may be a valid result. In
this “andish” retrieval mode, the result ranking is solely driven by score aggregations,
while the query processor needs to combine both content-related and structural aspects
of so-called content-and-structure (CAS) queries into a single score per result element.
Here, high scores for some query dimensions may compensate weak (even missing)
query matches at other dimensions. Thus, the query processor may dynamically relax
query conditions if too few matches would be found in a conjunctive manner, whereas
the ranking allows for the best (i.e., top-k) matches be cut-off if too many results would
be found otherwise. Queries are more difficult to evaluate in “andish” mode than typical
DB-style conjunctive queries, as we can no longer use conjunctive merge-joins (corre-
sponding to intersections of index list objects), but we need to find efficient ways of
merging index lists in a non-conjunctive manner (corresponding to unions of index list
objects, or so-called “outer-joins” in DB terminology). Top-k-style evaluation strate-
gies are crucial in these XML-IR settings, not only for pruning index list accesses (i.e.,
physical I/O’s) but also for pruning intermediate candidate objects that need to be man-
aged dynamically (i.e., in main memory) at query processing time. Pruning also the

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 224–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

TopX 2.0 at the INEX 2008 Efficiency Track 225

latter in-memory data structures is particularly beneficial for good runtimes if CPU-
time becomes a dominating factor, e.g., when XPath evaluations are costly, or when
many index lists already come from cache.

TopX 2.0 combines query processing techniques from our original TopX 1.0 proto-
type [10,9] and carries over ideas for block-organized inverted index structures from
our IO-Top-k algorithm [1] to the XML case. The result is a novel, object-oriented stor-
age (albeit our index objects have a very regular structure) for text-oriented XML data,
with sequential, stream-like access to all index objects. Just like the original engine,
TopX 2.0 also supports more sophisticated cost models for sequential and random ac-
cess scheduling along the lines of [5,6,9]. In the following we focus on a description
of our new index structure and its relation to the element-specific scoring model we
propose, while the non-conjunctive XPath query processor remains largely unchanged
compared to TopX 1.0 (merely using merge-joins over entire index blocks instead of
per-document hash-joins). Moreover, the TopX core engine has been refurbished in the
form of a completely reimplemented prototype in C++, with carefully designed data-
structures and our own cache management for inverted lists, also trying to keep the
caching capabilities of modern CPU’s in mind for finding appropriate data structures.

Core of the new engine is a multiple-nested block-index structure that seamlessly
integrates top-k-style sorted access to large blocks stored as inverted files on disk with
in-memory merge-joins for efficient score aggregations. The main challenge in design-
ing this new index structure was to marry no less than three different paradigms in
search engine design: 1) sorting blocks in descending order of the maximum element
score they contain for threshold-based candidate pruning and top-k-style early termina-
tion; 2) sorting elements within each block by their id to support efficient in-memory
merge-joins; and 3) encoding both structural and content-related information into a
single, unified index structure.

2 Scoring Model

We refer the reader to [9] for a thorough discussion of the scoring model, while we
merely aim to briefly review the most important concepts here. Our XML-specific ver-
sion of Okapi BM25 has proven to be effective (and therefore remained unchanged,
compare to, e.g., [2]) during four years of INEX Ad-hoc Track participations. It al-
lows for the exact precomputation of fine-grained scores for the major building blocks
of a CAS query—tag-term pairs in our case—with specific scores for each element-
type/term combination. Computing individual weights for tag-term pairs introduces a
certain factor of redundancy compared to a plain per-article/term scoring model, as each
term occurrence is recursively propagated “upwards” the document tree, and its fre-
quency is then aggregated with more occurrences of the same term (thus treating each
XML element in the classic IR notion of a document). This volitional redundancy fac-
tor for materializing the scoring model (formally defined below) roughly corresponds
to the average depth of a text node in the collection, while we aim to compensate the
storage and I/O overhead through index compression, a novel feature for TopX 2.0. In
the following, we distinguish between content scores, i.e., scores for the tag-term pairs
of a query, and structural scores, i.e., scores assigned to additional navigational tags as
they occur in longer path conditions or branching path queries.

226 M. Theobald, M. AbuJarour, and R. Schenkel

2.1 Content Scores

For content scores, we make use of element-specific statistics that view the full-content
of each XML element (i.e., the concatenation of all its descending text nodes in the
entire subtree) as a bag of words:

1) the full-content term frequency, ftf(t, n), of term t in node n, which is the number
of occurrences of t in the full-content of n;

2) the tag frequency, NA, of tag A, which is the number of nodes with tag A in the
entire corpus;

3) the element frequency, efA(t), of term t with regard to tag A, which is the number
of nodes with tag A that contain t in their full-contents in the entire corpus.

The score of a tag-term pair of an element e with tag A with respect to a content con-
dition of the form //T[about(., t)] (where T either matches A or is the tag
wildcard operator ∗) is then computed by the following BM25-inspired formula:

score(e,T[about(., t)]) =
(k1 + 1) ftf(t, e)

K + ftf(t, n)
· log

(
NA − efA(t) + 0.5

efA(t) + 0.5

)

with K = k1

(
(1 − b) + b

∑
t′ ftf(t′, e)

avg{∑t′ ftf(t′, e′) | e′ with tag A}
)

We used the default values of k1 = 1.25 and b = 0.75 as Okapi-specific tuning param-
eters (see also [3] for tuning Okapi BM25 on INEX). Note that our notion of tag-term
pairs enforces a strict evaluation of the query conditions, i.e., only those elements whose
tag matches the target element of the query are returned.

For a content condition with multiple terms, the score of an element satisfying the tag
constraint is computed as the sum of the element’s content scores for the corresponding
content conditions, i.e.:

score(e,//T[about(., t1 . . . tm)]) =
m∑

i=1

score(e,//T[about(., ti)])

Note that content-only (CO) queries have not been in the primary focus when defin-
ing this scoring function, rather than keyword conditions as sub-conditions of structural
queries. CO queries are therefore evaluated with the tag wildcard operator “*” which
matches any tag. The score for a “*”-term pair then is the same as the score for the orig-
inal tag-term pair. Hence an XML document yields as many “*”-tag matches as there a
distinct tags that also match the term condition, possibly each with a different score.

2.2 Structural Scores

Given a query with structural and content conditions, we transitively expand all struc-
tural query dependencies. For example, in the query //A//B//C[about(., t)]
an element with tag C has to be a descendant of both A and B elements (where branching
path expressions can be expressed analogously). This process yields a directed acyclic
query graph with tag-term conditions as leaves, tag conditions as inner nodes, and all

TopX 2.0 at the INEX 2008 Efficiency Track 227

transitively expanded descendant relations as edges. Our structural scoring model then
counts the number of navigational (i.e., tag-only) conditions that are completely sat-
isfied by the structure of a candidate element and assigns a small and constant score
mass c for every such tag condition that is matched. This structural score mass is then
aggregated with the content scores, again using summation. In our INEX 2008 setup,
we have set c = 0.01, whereas content scores are normalized to [0, 1]. That is, we em-
phasized the relative weights of structural conditions much less than in previous INEX
years, where we used a structural score mass of c = 1.0.

3 Index Structures

Just like in the original TopX 1.0 prototype, our key for efficient query evaluation is
a combined inverted index for XML full-text search that combines content-related and
structural information of tag-term pairs, as well as a smaller structure-only index that
lets us evaluate additional tag conditions of a CAS query. These two index structures
directly capture the scoring model described in Section 2. For both index structures,
XML elements (matching a given tag-term pair or an individual tag, respectively) are
grouped into so-called element blocks of elements that share the same tag, term, and
document id. Novel for TopX 2.0 is a second level of nesting, where element blocks
are in turn grouped into larger, so-called document blocks, with element blocks be-
ing sorted in ascending order of their document id within each document block, which
allows for efficient m-way merge-joins between document blocks when evaluating
multi-dimensional queries. Top-k-style index pruning is further supported by sorting
the document blocks in descending order of their maximum element-block score. By
default, TopX uses a pre-/post-order/level-based labeling scheme [7] to capture the
structural information, which proved to be superior to, for-example, Dataguide-based
techniques over heterogeneous collections such as INEX-Wikipedia and/or typical
NEXI-style CAS queries that heavily make use of the descendant axis. Note that we
may skip the level information when using the NEXI-style descendant axis only, and
we thus focus on (pre, post, score) triplets in the following. In summary, TopX main-
tains two separate inverted files:

– the content index that stores, for each tag-term pair, all elements with that tag that
contain the term, including their BM25-based relevance score and their pre- and
post labels.

– the structure index that stores, for each tag, all elements with that tag, including
their pre- and post label.

3.1 Previous Relational Encoding

TopX uses tuples of the format (tag, term, docid, pre, post, score, maxscore) as basic
schema for the content index, and (docid, tag, pre, post) for the structure index, respec-
tively. Note that maxscore is the maximum score per document id docid, element id
pre, tag, and term, which is needed to enforce a respective grouping of tuples into the
element block structure in a relational schema with sorted access in descending order of
maxscore [10]. To illustrate the redundancy that arises from a relational encoding of

228 M. Theobald, M. AbuJarour, and R. Schenkel

this multi-attribute schema, we quickly review the previous DB schema used in TopX
1.0 that is highly redundant in two orthogonal ways: first, because of the materializa-
tion of the scoring model discussed above, with a different score for each tag and term;
and second, because of the frequent repetition of attributes (used as keys) required for
a relational encoding. Here, a denormalized schema is necessary to implement efficient
sorted (i.e., sequential) access to element blocks stored in descending order of their
maxscore in a database table. In typical DBMS’s, B+-trees are the method of choice
for such an index structure with precomputed blocks and sorted access to leaf nodes
via linked lists (pointers to other leaf blocks). Note that some DBMS’s support the use
of so-called Index-Only-Tables (IOT’s) to store the entire table directly as a B+-tree.
Assuming a simple 32-bit (i.e., 4-byte) based encoding of integers for the docid, tag,

Content Index Structure Index

(4+4+4+4+4+4+4) bytes X 567,262,445 tag term pairs

16 GB

(4+4+4+4) bytes X 52,561,559 tags

0.85 GB

Fig. 1. Relational encoding and rough space consumption for TopX 1.0 on INEX-Wikipedia

term, pre, post attributes and 32-bit floating-point numbers for score and maxscore,
we get a rough space consumption of 16 GB for the more than 560 million tag-term
pairs and 0.85 GB for the more than 50 million tags we extract from INEX-Wikipedia,
respectively (see also Section 5). This corresponds to an index blowup of a factor of
about 4 compared to the 4.38 GB of XML sources for this collection.

Thus, a better approach is to keep the volitional redundancy that arises from our fine-
grained scoring model but to encode this into a customized block structure that avoids
the redundancy that is due to a relational encoding. These blocks are stored directly
on disk in the spirit of a more compact object-oriented storage—however with very
regular object structure. Our goal is to compress the index to a sensible extent, thus to
save CPU time by keeping the fully precomputed scoring model over tag-term-pairs
(with element-specific scores of terms), but to use moderate compression techniques to
keep the index size at least similar to the overall size of the original XML data and thus
to also spare I/O costs.

3.2 Content Index

TopX 2.0 maintains a single, binary inverted-file for content constraints, coined content
index, whose structure is depicted in Figure 2. Here, the content index consists of in-
dividual index lists for two example tag-term pairs //sec[about(.,‘‘XML’’)]
and //title[about(.,‘‘XML’’)], along with their respective file offsets. These
are further subdivided into histogram, document and element blocks.

TopX 2.0 at the INEX 2008 Efficiency Track 229

ff t 0 b t
sec[“xml”]

7 4 5 9 0 …

offset=0 bytes

23 48 0 8

docid=1

k

Histogram
Block

2 15 0.9
Docid=2

10 8 0.5

23 48 0.8

B
m
en
tB

lo
ck

BB

2 24 0.7

3 11 0.3

docid=5B

D
oc
um

Li
st ConBB

5 23 0.5

7 21 0.3

docid=3

In
de
x

ntentInde

Elem
en

Block

6 15 0.6

13 17 0 5

24 15 0.1

docid=6B

exnt

title[“xml”]

13 17 0.5

14 32 0.3

…
BB

title[xml]

offset=122,564 bytes
L

…
B – Block Separator
L – List Separator

Fig. 2. Inverted and nested block structure of the content index for TopX 2.0

Index Lists. Index lists are the largest units in our index structure. For the structural
index, an index list contains all tag-term pairs of elements contained in the collection
(whereas for the content index, an index list contains all the elements’ tags that occur in
the collection). Sequential and random access to these inverted files is implemented by
two auxiliary dictionaries each (see below). The physical end of an index list is marked
by a special list separator byte L to prevent the stream decoder from jumping into the
next list when an index list has been entirely scanned.

Element Blocks. Each element block consists of a header, which contains the docu-
ment’s id (docid), and one or more entries of (pre, post, score) triplets, where each
triplet corresponds to one element within that document that matches the tag-term pair.
For efficient evaluation of queries with structural constraints, each entry in an element
block consists not only of the element’s id (which corresponds to its pre value) and
score, but also encodes the post attribute, i.e., the entire information to locate and score
an element within the XML document. Element block sizes are data-dependent, i.e., an
element block contains as many (pre, post, score) triplets as there are XML elements
in the document that match the term condition. The physical end of an element block
is marked by another reserved separator byte B that indicates the beginning of the next
document block.

Document Blocks. As opposed to element blocks, the size of a document block is a
configurable parameter of the system and merely needs to be chosen larger than the
size of the largest element block. The sequence of document blocks for a tag-term pair
is constructed by first computing, for each element block, the maximal score of any
element in that block. Within a document block, element blocks are then resorted by

230 M. Theobald, M. AbuJarour, and R. Schenkel

document id, to support efficient merge joins of other element blocks with the same
document id (as opposed to the hash-joins needed in TopX 1.0). This sequence of ele-
ment blocks is grouped into document blocks of up this fixed size, and the document
blocks are then sorted by descending maximum element-block score, i.e., the maxi-
mum maxscore among all element blocks they contain. Block sizes can be chosen
generously large, typically in the order of 256–512KB, and block accesses are counted
as a single I/O operation on disk. A document block ends as soon as adding another
element block would exceed such a 256KB block boundary. The next document block
then again contains element blocks with similar maxscore sorted by descending docu-
ment id docid. The physical end of document block is marked by an additional (second)
separator byte B.

Histograms. To support probabilistic pruning techniques [10,9] and more sophisti-
cated cost models for random access scheduling [1], the inverted file can include his-
tograms that allow us to estimate, for a given tag-term pair, how many documents have
a maximal score below or above a certain value. We use fixed-width histograms with a
configurable number of h buckets. For a given tag-term pair, bucket i stores the num-
ber of documents whose maximal score is in the interval [1 − i−1

h ; 1 − i
h [. bounds can

be derived from h and i) for tag-term pairs with at least two document blocks, as his-
tograms are only used to decide how many blocks should be read beyond the first block.
For these tag-term pairs, the dictionary entry points to the beginning of the histogram
instead of the first document block.

Auxiliary Access Structures. TopX maintains an additional, hash-based and persistent
dictionary [8] to store the offset, for each tag-term pair, in the above binary inverted
file, pointing to where the first document block in the inverted list for that tag-term
pair starts for sorted access (SA). The dictionary itself is addressed via random access
only, similarly to an extensible hash-index in a DBMS, using a 64-bit hash of the tag-
term condition as key and fetching the offset from the structural index as 64-bit value.
This dictionary is usually small enough to be largely cached in main memory, allowing
for a very efficient access to the file offsets. A second such file-based dictionary can
optionally be maintained to find the right offset for random accesses (RA) to document
blocks, using 64-bit hashes of tag-term pair plus document id as key in this case.

3.3 Structure Index

TopX maintains a similar inverted file to store, for a given tag, all elements with that
tag name, along with their pre and post labels. The overall structure of this file, coined
structure index, is similar to that of the inverted file for content constraints—a sequence
of document blocks for each tag, which in turn consist of a sequence of element blocks.
Each element block consists of one pre-/post-order entry for each element in the docu-
ment matching the tag. Note that there is no score entry needed, as scores for structural
constraints are constant and can therefore be dropped from the index. No histogram
headers are needed in this index structure for the same reason. In contrast to the content
index, element blocks are simply stored in ascending order of document id.

TopX 2.0 at the INEX 2008 Efficiency Track 231

For the sorted access (SA) entry points, a dictionary stores, for each tag, the offset
to the first document block in the inverted file for this tag. Analogously to the content
index, another optional dictionary can be used to also support random access (RA)
to this structural index. This stores, for each tag and document id, the offset to the
document block that contains the document’s element block, if such a block exists.

3.4 CPU-Friendly Compression

Switching from a relational encoding to a more object-oriented storage already reduces
the index size down to about 8 GB—less than half the size needed for a relation schema
but still almost twice as much as for the XML source files. Fast decompression speed
and low CPU overhead is more important than a maximum-possible compression ra-
tio for our setting. Moreover, with the large number of different attributes we need to
encode into our block index, we do not assume a specific distribution of numbers per
block, e.g., with most numbers being small, which rules out Huffman or Unary codes.
We also intentionally avoid more costly compression schemes like PFor-Delta (compare
to [11]) that need more than one scan over the compressed incoming byte stream (not to
mention dictionary-based techniques like GZip and the a-like). We thus employ differ-
ent (simple) compression techniques for different parts of the index based on variations
of delta and variable-length encodings requiring only linear scans over the incoming
byte stream, thus touching each byte fetched from disk only exactly once.

Within each document block, there is a sequence of element blocks which are ordered
by document id. Here, we exploit the order and store, instead of the document id of
an element block, the delta to the document id of the previous block. This value is
compressed with a variable-byte compression scheme. Moreover, within each element
block, we first sort the entries by their pre value. We can now also use delta encoding
for the pre values to save storage space for smaller numbers. However, many element
blocks contain just a single entry, so delta encoding alone is not sufficient. For most
short documents, values of pre and post attributes are fairly small (i.e., they can be
stored with one or two bytes), but there may still be some values which require three
bytes. We therefore encode these values with a variable number of bytes and use an
explicit length indicator byte to signal the number of bytes used for each entry. Scores
on the other hand are 32-bit floating point numbers between 0 and 1, but storing them
in this format would be far too precise for our needs. Instead, we designate a fixed
number of bytes to store such a score and store, instead of a floating point value s, the
corresponding integer value

⌊
s · 28

⌋
(if we use a single byte), or

⌊
s · 216

⌋
if we use

two bytes. These integer values are then stored with a variable number of bytes, where
the actual number of bytes needed is again stored in the encoding byte of the entry. To
further reduce space consumption, we write each (pre, post, score) triplet within an
element block into a single bit code sequence, allowing us to use even less than one
byte per attribute if the numbers are small. Using a fixed precision of only 6 bits for the
score attribute and up to 13 bits for the pre and post attributes, we only need a single
length-indicator byte per triplet. If pre and post exceed 213 = 8, 196, we can switch to
two bytes per length indicator.

232 M. Theobald, M. AbuJarour, and R. Schenkel

4 Caching

TopX 2.0 also comes with its own cache management, as opposed to the previous TopX
1.0 that could only rely on the underlying system’s and DBMS’s general caching strate-
gies. Index lists (either top-k-style pruned index list prefixes, or even entire lists) are
decoded, and the in-memory data structures are now explicitly kept as cache for sub-
sequent queries. If TopX 2.0 is compiled and run in a 64-bit environment, it may be
configured to use generous amounts of memory for the cache. For our Efficiency Track
experiments, we set the maximum cache size to up to 2,048 content and structure-
related index lists, which led to maximum memory consumption of up to about 4 GB
of main memory. For the caching itself, we currently employ a simple least-frequently-
used (LFU) pruning strategy, which keeps the frequently used index lists in memory,
such that for example the entire set of structural index lists used in the benchmark top-
ics such as article or section quickly come completely from cache after a few
queries are issued.

5 Experiments

5.1 Index Construction and Size

Indexing the INEX Wikipedia corpus [4] consisting of 659,388 XML documents with
TopX yields about 567 million tag-term pairs and about 52 million tags (number of
indexed elements) as depicted in Table 3. The average depth of an element is 6.72 which
is a good indicator for the redundancy factor our scoring model involves. A comparison
of storage sizes for the indexes is also depicted in Figure 3, while the uncompressed
size of the corpus is 4.38 GB. We used no stemming for faster and more precise top-k
runs. Stopwords were removed for the index construction.

Fig. 3. Comparison of storage space needed for a relational encoding (TopX 1.0) and a more
object-oriented, compressed encoding (TopX 2.0), in GB

All experiments in this paper were conducted on a quad-core AMD Opteron 2.6 GHz
with 16 GB main memory, running 64-bit Windows Server. Caching was set to up to
2,048 index lists which resulted in a maximum main memory consumption of about 4
GB during the benchmark execution. All runtimes were measured over a hot system
cache (i.e., after an initial execution of all queries), and then with varying usages of
the TopX 2.0 internal cache (with a C suffix of runs ids indicating that the internal
cache was cleared after each query, and with W indicating that the cache was kept

TopX 2.0 at the INEX 2008 Efficiency Track 233

Table 1. Statistics for the content and structure indexes

Content Index Structure Index
index objects 567,262,445 (overall tag-term pairs) 52,561,559 (overall tags)
index lists 20,810,942 (distinct tag-term pairs) 1,107 (distinct tags)
document blocks 20,815,884 2,323
element blocks 456,466,649 8,999,193

index size (relational, uncompressed) 16 GB 0.85 GB
index size (object-oriented, uncompressed) 8.6 GB 0.43 GB
index size (object-oriented, compressed) 3.47 GB 0.23 GB

size of dictionary (SA) 0.55 GB 176 KB
size of dictionary (RA, optional) 2.24 GB 0.27 GB

and managed in a LFU manner). Each benchmark run however started with an empty
internal cache and warm disk cache. The size of the RA dictionary is listed here only
for completeness, as random-access scheduling has no longer been used for the TopX
2.0 experiments. Note that TopX 1.0 heavily relied on random access scheduling to
accelerate candidate pruning because of the relatively bad sequential throughput when
using a relational back-end, as compared to the relatively good random-access caching
capabilities of most DBMS’s, which makes random access scheduling more attractive
over a relational back-end. With plain disk-based storage and large document block
sizes of 256 KB, we were able to spare random accesses altogether.

Index construction still is a rather costly process, taking about 20 hours over INEX-
Wikipedia to fully materialize the above index structure from the XML source
collection—due to our explicit pre-computations but to the benefit of very good query
response times. We achieve a compression factor of more than 2 compared to an un-
compressed storage, which helps us keep the index size in the same order as the original
data. Altogether, we obtain a factor of 4 less storage space compared to an uncom-
pressed relational encoding.

5.2 Summary of Runs

Table 2 summarizes all Efficiency Track runs, using various combinations of Focused
vs. Thorough, CO vs. CAS, as well as top-k points of k = 15, 150, 1, 500, the latter
being the original result size demanded by the Ad-Hoc track.

Table 2. Effectiveness vs. efficiency summary of all TopX 2.0 runs

Run ID iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP AVG MS. SUM MS. #Topics
Focused
TOPX2-Eff08-CO-15-Focused-W 0.4751 0.4123 0.2793 0.1971 0.0726 49.79 28,180 566
TOPX2-Eff08-CO-150-Focused-W 0.4955 0.4520 0.3674 0.3114 0.1225 85.96 48,653 566
TOPX2-Eff08-CO-1500-Focused-W 0.4994 0.4560 0.3749 0.3298 0.1409 239.73 135,688 566
TOPX2-Eff08-CAS-15-Focused-W 0.4587 0.3878 0.2592 0.1918 0.0662 90.99 51,499 566
TOPX2-Eff08-CAS-150-Focused-W 0.4747 0.4282 0.3494 0.2915 0.1094 112.32 63,574 566
TOPX2-Eff08-CAS-1500-Focused-W 0.4824 0.4360 0.3572 0.3103 0.1241 253.42 143,436 566
Thorough
TOPX2-Eff07-CO-15-Thorough-W n/a n/a n/a n/a n/a 70.91 40,133 566
TOPX2-Eff07-CAS-15-Thorough-W n/a n/a n/a n/a n/a 89.31 50,549 566
Focused (cold internal cache)
TOPX2-Eff07-CO-15-Focused-C 0.4729 0.4155 0.2795 0.1979 0.0723 51.65 29,234 566
TOPX2-Eff07-CAS-15-Focused-C 0.4554 0.3853 0.2583 0.1905 0.0655 96.22 54,461 566

234 M. Theobald, M. AbuJarour, and R. Schenkel

The iP and MAiP effectiveness measures reflect the 308 Ad-Hoc topics from INEX
2006–2008 for which assessments were readily available. Only 566 out of 568 topics
were processed due to a rewriting problem that led to empty results for two of the topics.
We generally observe a very good early precision at the lower recall points, which is
an excellent behavior for a top-k engine. Compared to overall results from the Ad-Hoc
Track, we however achieve lower recall at the top-1,500 compared to the best partici-
pants (also due to not using stemming and strictly evaluating the target element of CAS
queries). TopX 2.0 however shows an excellent runtime behavior of merely 49.70 ms.
average runtime per CO and 90.99 ms. average runtime per CAS query. Also, starting
each query with a cold internal cache (but warm system cache) instead of a warm in-
ternal cache consistently shows about 10 percent decrease in runtime performance for
both the CO and CAS modes.

interpolated precision - all topics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

iP

TOPX2-Eff08-CO-15-Focused-W

TOPX2-Eff08-CO-150-Focused-W

TOPX2-Eff08-CO-1500-Focused-W

TOPX2-Eff08-CAS-15-Focused-W

TOPX2-Eff08-CAS-150-Focused-W

TOPX2-Eff08-CAS-1500-Focused-W

Fig. 4. Interpolated precision plots of all TopX 2.0 Efficiency Track runs

5.3 Efficiency Runs by Topic Type

Tables 3–5 depict the TopX 2.0 performance summaries grouped by topic type. We see
a very good runtime result of only 19 ms average processing time for CO topics and 49
ms on average per CAS query for the type (A) (i.e., classic Ad-Hoc topics) and top-15
runs. Also, CO retrieval does not only seem to be more efficient but also more effective
than a respective CAS mode, with a maximum MAiP value of 0.14 for CO compared to
0.12 for CAS (returning the top-1,500 elements in Focused mode). As expected, there is
a serious runtime increase for type (B) topics, with up to 112 query dimensions, but only
comparably little additional overhead for larger values of k, as runtimes are dominated
by merging the huge amount of index lists here (in fact most top-k approaches seem to
degenerate for high-dimensional queries). Type (C) topics were very fast for the small
value of k = 15 but then showed a high overhead for the larger values of k, i.e., when
returning the top-150 and top-1,500. As no assessments were available for the 7 type
(C) (structure-enhanced) topics, the respective effectiveness fields are left blank.

TopX 2.0 at the INEX 2008 Efficiency Track 235

Table 3. Summary of all TopX 2.0 Focused runs over 538 type (A) topics

Run ID MAiP AVG MS. SUM MS. #Topics

TOPX2-Eff08-CO-15-Focused-W 0.0712 18.88 10,157 538
TOPX2-Eff08-CO-150-Focused-W 0.1234 49.12 26,427 538
TOPX2-Eff08-CO-1500-Focused-W 0.1430 191.27 102,903 538
TOPX2-Eff08-CAS-15-Focused-W 0.0643 48.84 26,276 538
TOPX2-Eff08-CAS-150-Focused-W 0.1094 61.25 32,953 538
TOPX2-Eff08-CAS-1500-Focused-W 0.1249 165.53 89,055 538

Table 4. Summary of all TopX 2.0 Focused runs over 21 type (B) topics

Run ID MAiP AVG MS. SUM MS. #Topics

TOPX2-Eff08-CO-15-Focused-W 0.0915 844.67 17,738 21
TOPX2-Eff08-CO-150-Focused-W 0.1094 1038.90 21,817 21
TOPX2-Eff08-CO-1500-Focused-W 0.1125 1468.67 30,842 21
TOPX2-Eff08-CAS-15-Focused-W 0.0915 1044.71 21,939 21
TOPX2-Eff08-CAS-150-Focused-W 0.1096 1074.66 22,568 21
TOPX2-Eff08-CAS-1500-Focused-W 0.1124 1479.33 31,066 21

Table 5. Summary of all TopX 2.0 Focused runs over 7 type (C) topics

Run ID MAiP AVG MS. SUM MS. #Topics

TOPX2-Eff08-CO-15-Focused-W n/a 41.00 287 7
TOPX2-Eff08-CO-150-Focused-W n/a 58.86 412 7
TOPX2-Eff08-CO-1500-Focused-W n/a 277.57 1,943 7
TOPX2-Eff08-CAS-15-Focused-W n/a 469.42 3,286 7
TOPX2-Eff08-CAS-150-Focused-W n/a 1150.14 8,051 7
TOPX2-Eff08-CAS-1500-Focused-W n/a 3330.71 23,315 7

6 Conclusions and Future Work

This paper introduces our new index structure for the TopX 2.0 prototype and its ini-
tial evaluation on the INEX 2008 Efficiency Track. TopX 2.0 demonstrates a very good
allround performance, with an excellent runtime for keyword-oriented CO and typical
CAS queries and still good runtimes for very high-dimensional content (type B) and
strucural (type C) query expansions. Overall we believe that our experiments demon-
strate the best runtimes reported in INEX so far, while we are able to show that this
performance does not have to be at the cost of retrieval effectiveness. The scoring
model and non-conjunctive query evaluation algorithms remained unchanged compared
to TopX 1.0, which also managed to achieve ranks 3 and 4 in the Focused Task of the
2008 Ad-hoc Track.

References

1. Bast, H., Majumdar, D., Theobald, M., Schenkel, R., Weikum, G.: IO-Top-k: Index-
optimized top-k query processing. In: VLDB, pp. 475–486 (2006)

2. Broschart, A., Schenkel, R., Theobald, M., Weikum, G.: TopX @ INEX 2007. In: Fuhr,
N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 49–56.
Springer, Heidelberg (2008)

236 M. Theobald, M. AbuJarour, and R. Schenkel

3. Clarke, C.L.A.: Controlling overlap in content-oriented XML retrieval. In: Baeza-Yates,
R.A., Ziviani, N., Marchionini, G., Moffat, A., Tait, J. (eds.) SIGIR, pp. 314–321. ACM
Press, New York (2005)

4. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. In: SIGIR Forum (2006)
5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: PODS.

ACM Press, New York (2001)
6. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput.

Syst. Sci. 66(4), 614–656 (2003)
7. Grust, T.: Accelerating XPath location steps. In: Franklin, M.J., Moon, B., Ailamaki, A.

(eds.) SIGMOD Conference, pp. 109–120. ACM Press, New York (2002)
8. Helmer, S., Neumann, T., Moerkotte, G.: A robust scheme for multilevel extendible hash-

ing. In: Computer and Information Sciences - 18th International Symposium (ISCIS),
pp. 220–227 (2003)

9. Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: efficient and ver-
satile top-k query processing for semistructured data. VLDB J. 17(1), 81–115 (2008)

10. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versatile query engine for TopX
search. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.-Å., Ooi, B.C. (eds.)
VLDB, pp. 625–636. ACM Press, New York (2005)

11. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in search
engines. In: WWW ’08: Proceeding of the 17th international conference on World Wide
Web, pp. 387–396. ACM Press, New York (2008)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 237–242, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Aiming for Efficiency by Detecting Structural Similarity

Judith Winter, Nikolay Jeliazkov, and Gerold Kühne

J.W. Goethe University, Department of Computer Science, Frankfurt, Germany
{winter,kuehne}@tm.informatik.uni-frankfurt.de,

nikolay.jeliazkov@gmail.com

Abstract. When applying XML-Retrieval in a distributed setting, efficiency
issues have to be considered, e.g. reducing the network traffic involved in an-
swering a given query. The new Efficiency Track of INEX gave us the opportu-
nity to explore the possibility of improving both effectiveness and efficiency by
exploiting structural similarity. We ran some of the track’s highly structured
queries on our top-k search engine to analyze the impact of various structural
similarity functions. We applied those functions first to the ranking and based
on that to the query routing process. Our results indicate that detection of struc-
tural similarity can be used in order to reduce the amount of messages sent
between distributed nodes and thus lead to more efficiency of the search.

Keywords: XML Retrieval, Structural Similarity, Distributed Search, INEX.

1 Introduction and Motivation

While most systems participating in INEX aim at effectiveness in terms of precision
and recall, we focus our research on distributed IR solutions where good performance
includes both effectiveness and efficiency. Therefore, we took a great interest in the
new Efficiency Track, especially after the cancellation of the heterogeneous track.
Our motivation to participate in it was based on several practical and theoretical con-
siderations. First of all, our system is based on a peer-to-peer (P2P) network where
network traffic between peers has to be considered. We cannot send long posting lists
but have to prune them which corresponds to the particular encouragement of top-k
style search engines in the Efficiency Track. Secondly, our system exploits structural
user hints to improve both effectiveness in the ranking process and efficiency in the
routing process. Contrary to INEX’s ad-hoc topics, which consist of many CO and
poorly structured CAS queries, the high-dimensional structured type-C queries of the
efficiency track offer an excellent opportunity to test more sophisticated structural
similarity functions. Thirdly, many ad-hoc participants tune their systems for the
Wikipedia collection whereas most P2P systems face heterogeneous collections based
on different schemas and varying in content and structure. Hence, a more database-
oriented view of INEX would be in our interest, e.g. a discussion on the application of
schema-mapping methods in XML-retrieval. Finally, efficiency issues such as reduc-
ing the amount of messages between peers are of major concern in P2P-IR. The op-
portunity to discuss these challenges with other participants interested in efficiency
issues is highly appreciated, e.g. to analyze how XML structure can help.

238 J. Winter, N. Jeliazkov, and G. Kühne

In this paper, different structural similarity functions are compared in order to take
advantage of richly structured CAS queries. Our runs were performed with the top-k
search engine Spirix [6] that is based on a P2P network. We first evaluate the use of
CAS queries in the ranking of XML documents and then apply our results on the rout-
ing process of Spirix to improve its effectiveness and efficiency.

2 Measuring Structural Similarity

Detecting similarity between structures is a current area of research. Existing solu-
tions propose different strategies and functions to calculate the similarity between the
given structural conditions in a query and the structures found in a collection. For ex-
ample, [1] proposes a novel XML scoring method that accounts for both structure and
content while considering query relaxations. According to [2], scoring strategies for
structure can be divided into four groups depending on the thoroughness they achieve
in analyzing the similarity: perfect match, partial match, fuzzy match, and baseline
(flat). In the first case, only exact matching structures are considered, thus only re-
trieving relevant documents with the search terms found in the exact XML context as
specified by the user. In the case of the partial match strategies, one of the compared
structures has to be a sub-sequence of the other and the overlapping ratio is measured.
The fuzzy match type of functions takes into account gaps or wrong sequences in the
different tags. The baseline strategy ignores the specified XML structures, thus result-
ing in a conventional IR technique and losing the possible benefits of XML structured
documents.

We analyzed several functions as representatives of the mentioned types of strate-
gies. A formula which determines whether the query or the found structure is a sub-
sequence of the other one and then measures the overlapping ratio between them
(partial match) is proposed in [2]. The group of the fuzzy match type of similarity func-
tions performs deeper analysis of the considered structures and noticeably expands the
flexibility and the possibility of a precise ranking of all found structures for a search
term according to their similarity to the query structure. In order to achieve this, [5]
handles the structures as sequences of tags and uses a strategy of counting the costs for
transforming one structure into another. It is based on the Levenstein Edit Distance [4],
a method used to compute the similarity between two strings by counting the opera-
tions delete, insert and replace needed to transform one string into another. This
method allows similar measuring of the difference between XML structures by
considering every tag as a single character.

Another approach for the similarity analysis of XML structures within the scope of
fuzzy type strategies is the definition of a number of factors describing specific prop-
erties of the compared structures and combining them in a single function. Five such
factors are proposed in [3], divided in two major groups - semantic and structural.
The first group consists of the factors semantic completeness (SmCm), measured by
the ratio of found query tags to the total amount of tags in the query structure, and
semantic correctness (SmCr), measured as a function of all semantic similarities be-
tween the tags in the query and the target structures. Within the structural group,
three factors are distinguished in [3]. Structural completeness (StCm) represents the
overall coverage of the query XML tree by the target tree - how many of the wanted

 Aiming for Efficiency by Detecting Structural Similarity 239

hierarchical parent-child relationships between the tags are satisfied by an analogous
pair in the found structure. The structural correctness (StCr) is computed as the com-
plement of the amount of found but reversed hierarchical pairs in respect to all found
pairs. The structural cohesion (StCh) represents the deviation of the found XML
structure from the query and is calculated by the complement of the ratio between the
non-relevant tags and the total amount of tags in the target.

3 Using Structural Similarity for XML-Retrieval

Can detecting structural similarity help to improve IR performance? We analyzed
several different types of functions, applied appropriate enhancements and evaluated
them with the INEX measures by using the Wikipedia document collection and a
selection of topics with structural conditions.

We developed the following formula based on [2] as a representative of the partial
match type of strategies:

α

β

+

+=
⋅

⎧⎛ ⎞
⎜ ⎟⎪⎪⎝ ⎠⎨
⎪
⎪⎩

1

1

1
, -

1(,)
(,), -

0,

q

q ru

ru
q ru

ru q ru q

s
if s is sub sequence of s

sSim s s
Sim s s if s is sub sequence of s

else

 (ArchSim)

sq represents the structural condition in the query and sru stands for the structure of the
search term found in the collection. Both parameters α and β allow for finer tuning of
the calculated similarity value.

We also implemented a tag dictionary that contains values for the similarity be-
tween known tags. For example, <author> and <writer> are rather similar and a pre-
cise similarity value can be assigned to these tags. We are considering the possibility
of giving the user the opportunity to define such similarities himself. As a representa-
tive of the class of functions based on cost calculation for transforming the query
structure into the target one, we used the method proposed in [5]. We implemented
and evaluated this method with a suitable normalization and, as above, an enhance-
ment with a tag dictionary was also applied (PathSim).

The five similarity factors from [3] capture different similarity aspects between two
XML structures. We used the arithmetic mean to compute the SmCr and measured the
similarities between tags with methods based on [4]. We used these factors to con-
struct combined similarity functions. In order to compare these functions, we built a
small but heterogeneous document collection with search terms occurring in many
different XML contexts, resulting in a number of structures to be compared and
ranked. Several functions were tested in the process with a number of parameters. We
achieved the best ranking results with the following formula:

β β δ γ δ γ
α α

+ − + + − −
= ⋅ + − ⋅⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠3

. (2). . . (3).
(1)

2 3

SmCm SmCr StCm StCr StCh
Sim (FineSim)

All similarity factors were normalized and parameter boundaries were set such that
the resulting single similarity value remains within the interval [0,1]. Parameter α
provides an opportunity to shift the weight of the similarity between the two classes

240 J. Winter, N. Jeliazkov, and G. Kühne

of factors – semantic and structural. The other parameters β, δ and γ can be used for
further fine-tuning. After evaluation, we chose the value α = 0.7. All other factors
were set to 1. We designed an appropriate index in order to support these strategies in
the context of P2P networks. For each term, a separate posting list for each of its
structures is stored. This allows efficient selecting of postings according to structural
similarity between hints in CAS topics and the stored structures of a specific term.

4 Evaluation

All similarity functions were implemented as a part of our P2P-based search engine
Spirix [6]. The hardware used was a Linux system with 8x2,5GHz Intel Xeon CPU
and 16GB of RAM. Of all Efficiency Track topics, we chose 80 richly structured top-
ics from the INEX 2007 ad-hoc track, which are part of the type-A topics in 2008, and
all type-C topics as those are high-dimensional structured queries. However, the type-
C topics were not assessed and have therefore not been officially evaluated. We later
submitted additional runs with all 70 assessed topics from the ad-hoc track of 2008,
which are also part of the type-A topics of the efficiency track.

Our runs aimed at comparing the three proposed structural similarity functions
with a baseline run, where no structure was used, as well as with a run where only
perfect matches were considered. We first compared the functions when using them
for ranking, i.e. aimed at improved effectiveness by using structural hints. Figure 1
shows the evaluation of the INEX 2007 topics, Table 2 displays the results using
INEX 2008 topics (focused task). Secondly, we applied the best performing similarity
function to improve efficiency during routing and retrieval.

Fig. 1. iP at recall <0.30, for the compared similarity functions (INEX’07 topics), 150 Postings

The strict/perfect match case resulted in very low retrieval quality, as the most
relevant documents were disqualified in the ranking process due to slight structural
differences. Thus, this strict handling of the structural hints specified by the user can

 Aiming for Efficiency by Detecting Structural Similarity 241

only be advantageous in database-oriented approaches and is of no use in the context
of IR. At recall-levels up to iP[0.22], an increase in interpolated precision can be ob-
served for the similarity functions PathSim and ArchSim, compared to the baseline. At
iP[0.01], for example, the baseline run achieves only 0,332 while the PathSim run
achieve 0,355 precision, which is an increase of 7% precision (+2,3 absolute preci-
sion). For higher recall-levels (above iP[0.30]), this advantage disappears and the
baseline strategy shows a better interpolated precision than any other case. Neverthe-
less, most users are interested in early precision only – for which the use of similarity
functions can lead to an improvement.

Table 2. Early Precision for the compared similarity functions (INEX’08 topics) and C-/S-Run

 Baseline (noSim) PathSim FineSim ArchSim Strict C-/S-Run

iP[0.00] 0,494295 0,503136 0,489814 0,495336 0,017178 0,713448

iP[0.01] 0,485375 0,499124 0,489141 0,494979 0,017178 0,678677

iP[0.05] 0,436580 0,446879 0,445057 0,445081 0,014737 0,564768

iP[0.10] 0,394112 0,389201 0,388817 0,388549 0,009871 0,491477

For the INEX 2008 topics, we did not select structured topics only but chose all 70

assessed topics. A significant improvement of 2,83% (+1,37 absolute precision) by
using the compared structural similarity functions is shown for the official INEX
measure, recall level iP[0.01]. However, this measure is known to be rather unstable
and the improvement decreases for higher recall level. From iP[0.09] on, the baseline
without using structure performs best.

Also shown in Table 2 is the performance of a tuned run for the INEX 2008 topics.
This run simulates a client/server environment by using only one node, by selecting
500 postings (which in other experiments we showed to be sufficient for this kind of
setting), by retrieving elements and by using BM25 (default parameters k, b). This run
performed quite well, with a interpolated precision of 0,6787 at iP[0.01]. Only 3 sys-
tems performed better at the focused task of the ad-hoc track.

Fig. 2. Using structure to improve routing and reduce the size of posting lists

242 J. Winter, N. Jeliazkov, and G. Kühne

Based on the results above, we applied the best performing structure function
PathSim on the routing process (this run was not submitted to the Efficiency Track
but is based on the results in Figure 1; interpolated precisions are slightly different
due to changes in the ranking algorithm). The postings (500 respective 2000 postings)
were selected using BM25E for the baseline run. In the better performing PathSim
run, the postings were selected by an impact factor proportional to the product of a
BM25E-based weight and the calculated structural similarity. Figure 2 displays how
calculating structural similarity can improve efficiency by helping to select the ade-
quate postings. For example, at iP[0.01] we achieve a better interpolated precision
(0,3580) by using PathSim, even if we select only 500 postings instead of 2000 for the
baseline. Thus, we can save more than 1500 postings.

5 Discussion

In this paper, our participation in the new Efficiency Track of INEX 2008 was dis-
cussed. We have welcomed the possibility of using higher dimensioned structural
hints, like the type-C topics, in order to retrieve more relevant and precise results, es-
pecially in the context of a convergence between IR-based and database-oriented ap-
proaches, where additional information such as XML structure can be exploited to
achieve good performance. The newly started Efficiency Track offers new possibili-
ties to continue the research in this field.

We have extended and evaluated various structural similarity functions. For the se-
lected structured topics, an improvement of performance could be achieved during
ranking and routing. This evaluation is an indication that structural hints can help in-
deed. In order to confirm the generality of this observation, we will extend our re-
search further. For this purpose, we will need more highly-structured topics which
should be more carefully constructed than the current ones. Additionally, we think
that the Wikipedia collection lacks the variety of needed rich semantic structures.

References

[1] Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and Con-
tent Scoring for XML. In: Proc. of VLDB, Trondheim, Norway (2005)

[2] Carmel, D., Maarek, Y., Mandelbrod, Mass, Y.: Soffer: Searching XML Documents via
XML Fragments. In: Proc. of the 26th Int. ACM SIGIR, Toronto, Canada (2003)

[3] Ciaccia, P., Penzo, W.: Adding Flexibility to Structure Similarity Queries on XML Data.
In: Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS
(LNAI), vol. 2522. Springer, Heidelberg (2002)

[4] Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10, 707–710 (1966)

[5] Vinson, A., Heuser, C., Da Silva, A., De Moura, E.: An Approach to XML Path Matching.
In: WIDM 2007, Lisboa, Portugal, November 9 (2007)

[6] Winter, J., Drobnik, O.: University of Frankfurt at INEX2008 – An Approach For Distrib-
uted XML-Retrieval. In: Preproc. of INEX 2008, Dagstuhl, Germany (2008)

Overview of the INEX 2008 Entity Ranking
Track

Gianluca Demartini1, Arjen P. de Vries2, Tereza Iofciu1,
and Jianhan Zhu3

1 L3S Research Center
Leibniz Universität Hannover

Appelstrasse 9a D-30167 Hannover, Germany
{demartini,iofciu}@L3S.de

2 CWI & Delft University of Technology
The Netherlands
arjen@acm.org

3 University College London
Adastral Park Campus
Ipswich, IP5 3RE, UK
jianhan.zhu@ucl.ac.uk

Abstract. In many contexts a search engine user would prefer to re-
trieve entities instead of just documents. Example queries include “Ital-
ian nobel prize winners”, “Formula 1 drivers that won the Monaco Grand
Prix”, or “German spoken Swiss cantons”. The XML Entity Ranking
(XER) track at INEX creates a discussion forum aimed at standardiz-
ing evaluation procedures for entity retrieval. This paper describes the
XER tasks and the evaluation procedure used at the XER track in 2008,
focusing specifically on the sampled pooling strategy applied first this
year. We conclude with a brief discussion of the predominant participant
approaches and their effectiveness.

1 Introduction

Many user tasks would be simplified if search engines would support typed
search, and return entities instead of just web pages. In 2007, INEX has started
the XML Entity Ranking track (INEX-XER) to provide a forum where re-
searchers may compare and evaluate techniques for engines that return lists
of entities. In entity ranking and entity list completion, the goal is to evaluate
how well systems can rank entities in response to a query; the set of entities
to be ranked is assumed to be loosely defined by a generic category, given in
the query itself, or by some example entities. The 2008 track continues to run
the entity ranking (ER) and list completion (LC) tasks. In addition, we setup
an entity relation search (ERS) pilot task investigating how well systems could
establish correct relations between entities. For evaluation purpose we adopted
a stratified sampling strategy for creating the assessment pools, using xinfAP as
the official evaluation metric [9].

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 243–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

244 G. Demartini et al.

The remainder of the paper is organized as follows. In Section 2 we present
details about the collection used in the track and the three different search
tasks. Next, in Section 3 we describe some experiments with respect to possible
sampling strategies to be used for creating the assessment pool. In Section 4 we
summarize the evaluation results. Finally, in Section 5, we conclude the paper.

2 INEX-XER Setup

The goal of the XER track at INEX is to evaluate systems built for returning enti-
ties instead of documents. Entity retrieval can be characterized as ‘typed search’.
In the specific case of the INEX XER track, categories assigned to Wikipedia
articles are used to define the entity type of the results to be retrieved. Topics
are composed of a set of keywords, the entity type(s), and, for the LC task, a
set of relevant entity examples.

Given this setup, expert finding [5] can be viewed as an instance of entity
ranking, where the entity type is fixed to “people”, and the query describes the
desired expertise. The analogy is however not perfect: in entity retrieval the
keywords in the query do not necessarily indicate expertise, but may capture
other types of people finding (including, e.g., general searches for politicians or
actors).

2.1 Data

Since data set and main tasks have not been modified, we only give a short
summary while referring to the XER 2007 overview paper for more information
[1]. The track uses the Wikipedia XML collection, where we exploit the category
metadata about the pages to define the entity types. Participants are challenged
to exploit fully Wikipedia’s rich text, structure and link information.

Entities are assumed to correspond loosely to those Wikipedia pages that
are labeled with the given category (or perhaps a sub-category of the given
category). Retrieval models for entity ranking should handle the situation that
the category assignments to Wikipedia pages are not always consistent and far
from complete. The human assessor is of course not constrained by the category
assignments made in the corpus when making his or her relevance assessments!

2.2 Tasks

XML Entity Ranking (XER) and List Completion (LC) concern information
needs represented as triples of type <query, category, entity>. The category
(that is entity type), specifies the type of objects to be retrieved. The query
is a free text description that attempts to capture the information need. The
entity attribute specifies a set of example instances of the given entity type.
ER runs are given as input the query and category attributes, where LC runs
are based on query and entity. In both cases, the system should return the
relevant entities, which are represented by the their corresponding Wikipedia
pages.

Overview of the INEX 2008 Entity Ranking Track 245

2.3 Topics

Participants from eleven institutions have created a small number of (partial)
entity lists with corresponding topic text. Candidate entities correspond to the
names of articles that loosely belong to categories (for example may be sub-
category) in the Wikipedia XML corpus. As a general guideline, the topic title
should be type explanatory, i.e., a human assessor should be able to understand
from the title what type of entities should be retrieved. Some topics have been
extended for the ERS pilot task, as we will detail below.

2.4 The 2008 Test Collection

The test collection created during INEX XER 2008 consists of 35 topics and
their assessments in an adapted trec eval format (adding strata information) for
the xinfAP evaluation script. Topics 101-149 are genuine XER topics, in that the
participants created these topics specifically for the track, and (almost all) topics
have been assessed by the original topic authors. From the originally proposed
topics, topics with less than 7 relevant entities and topics with more than 74
relevant entities have been excluded from the test collection (because they would
be unstable or incomplete, respectively). Three more topics were dropped, one
on request of the topic assessor and two due to unfinished assessments, resulting
in a final XER 2008 test collection consisting of 35 topics with assessments.

2.5 Relation Search Pilot (ERS)

The motivation of the relation search (ERS) pilot task is that searchers may
want to know details about previously retrieved entities, and, specifically, their
relations with other entities. An example relation search seeks museums in the
Netherlands exhibiting Van Goghs artworks, and the cities where these museums
are located. A system needs to first find a number of relevant museums, and then
establish correct correspondence between each museum and a city. The ERS task
could help explore connections between information retrieval and related fields
like information extraction, social network analysis, natural language processing,
the semantic web, and question answering.

We divide ERS into an entity ranking phase followed by a relation search
phase. ERS information needs are represented as tuples of type <query,
category, entity, relation-query, target-category, target-entity>.
The first three attributes have already been defined for the ER and LC tasks.
The relation-query gives a free text description of the relation between an
entity and a target entity. The target-category specifies the type of the target
entity, and target-entity specifies example instances of the target entity type.
We did collect 34 ERS topic versions based on the other tasks’ 49 topics; after
the selection process performed on the XER topics, 23 ERS topics are left as part
of the final set. Unfortunately, only two participants submitted ERS runs (four
in total). Given the very low number of runs, we did not pursue the assessments
needed for the ERS task. A first discussion about ERS and its evaluation is
described in [10].

246 G. Demartini et al.

3 Investigation on Sampling Strategies

In INEX-XER 2008, we decided to use sampling strategies for generating pools
of documents for relevance assessments. The two main reasons for sampling are
to reduce the judging effort and to include into the pools also documents from
higher ranks.

The first aspect we have to analyse is how the comparative performances of
systems is affected while we perform less relevance judgements. We used the
2007 INEX-XER collection simulating the situation of performing less relevance
judgements. We compared three different sampling strategies, that is, a uniform
random sampling from the top 50 documents retrieved by the IRSs, a sampling
based on the relevance distribution among the different ranks, and a stratified
sampling with strata manually defined by looking at the distribution of relevance
from the previous year.

For the experimental comparison of the three different sampling approaches
we used the 24 INEX-XER topics from the 2007 collection. As only data from
2007 could be used at the time of the study (to design the XER 2008 track setup),
we used the leave-one-out approach for simulating the approach of learning from
past data. That is, we considered all the topics but one as previous year data. In
these topics the relevance assessments and, therefore, the relevance distribution
over the ranks is known. The relevance distribution computed on all the topics
but one is used for generating a random sample (based on such probabilities)
of documents from the runs. The systems’ ranking on the remaining topic (the
one left out and therefore not used for learning) is then computed and compared
with the original ranking. This process is iterated over all topics and the average
correlation value1 is taken.

3.1 Uniform Random Sampling

The first approach we decided to investigate is a Uniform Random Sampling of
retrieved documents which would allow to compute metrics such as infAP [8]. In
order to do so, we first randomly selected some ranks at which to take documents
from the runs. Then, we considered only the assessments on those documents
for ranking the systems, assuming that the other entities were not judged (and
therefore not relevant). Finally, we measured the correlation with the original
system ranking using the 24 XER topics from 2007. Figure 1 presents the result.
We conclude that the desirable high correlation is feasible as long as sufficiently
many assessments are made.

3.2 Relevance Based Random Sampling

In order to perform a sampling with a higher chance of selecting relevant docu-
ments into the pools, we used the distribution of relevance over ranks and learned
from the 2007 data the probability of finding a relevant entity at each rank (up
to 50 as the depth of 2007 pool) in the runs. We then sampled the 2008 runs
1 We used Kendall’s τ as measure for ranking correlation.

Overview of the INEX 2008 Entity Ranking Track 247

Fig. 1. Correlation results between the original system ranking and the ranking derived
using the strata-based sampling strategy

using such probability distribution. The relevance distribution in 2007 for ranks
up to 100 is displayed in Figure 2.

Figure 1 shows the correlation between the original system ranking and the
ranking derived from either the relevance based or the uniform random sampling.

3.3 Stratified Sampling

A third option to performing a sampling in order to construct pools for relevance
assessment is the stratified approach, which aims at including in the pools a big
number of relevant results. The idea is to perform sampling within each stratum
independently of the other. In this way it is possible to sample more documents in
higher strata and less from strata which are down in the ranking. Using stratified
sampling allows to compute xinfAP [9] as evaluation metric, which is a better
estimate of AP in the case of incomplete assessments. There is then the need
to optimally selecting the strata and the sampling percentage for each strata,
which is an open problem.

Considering the results shown in Figure 2, we decided to use the following
strata for the pool construction of INEX-XER 2008:

– 1,8 100%
– 9,31 70%
– 32,100 30%

248 G. Demartini et al.

Fig. 2. Distribution of relevance over rank of top 100 retrieved results in INEX XER
2007

This means that we include in the pool 45 documents from each run. In order to
compare this approach with the ones presented above, we computed the correlation
using the strata-based sampling strategy. The result is presented in Figure 1.

Stratified sampling with the selected parameters performs, in terms of IRS
ranking correlation, as well as uniform and relevance based sampling at 70%.
The two 70% sampling approaches make each run contribute 35 documents to
the pool while the stratified approach, by going down to rank 100 in the runs,
make each run contribute 45 documents. Given that we used the 2007 collection
for the experimental comparison we should notice that relevance assessments
have been performed up to rank 50. Therefore, several documents ranked from
51 to 100 may not have been assessed; so they are considered not relevant in the
experiments, even if they could be. If we want to fairly compare the judgement
effort of the three sampling approaches we have to count the number of docu-
ments the stratified sampling approach make the runs contribute up to rank 50,
which corresponds to 30 documents. In other words, stratified sampling gives a
slightly lower judging effort than the uniform random sampling and the relevance
based sampling for the same correlation in IRS rankings.

4 Results

At INEX XER 2008 six groups submitted 33 runs. The pools have been based on
all submitted runs, using the stratified sampling strategy detailed in the previous
Section. The resulting pools contained on average 400 entities per topic. The

Overview of the INEX 2008 Entity Ranking Track 249

evaluation results for the ER task are presented in Table 1, those for the LC
task in Table 2, both reporting xinfAP. In the LC task, the example entities
provided in the topics are considered not relevant as the system is supposed not
to retrieve them. The runs which name ends with “ fixed” have been corrected
by the organizers removing the example entities present in the topics.

Most participants used language modelling techniques as underlining infras-
tructure to build their Entity Ranking engines. For both the ER and the LC task

Table 1. Evaluation results for ER runs at INEX XER 2008

Run xinfAP
1 FMIT ER TC nopred-cat-baseline-a1-b8: 0.341

1 cirquid ER TEC idg.trec: 0.326
4 UAms ER TC cats: 0.317

2 UAms ER TC catlinksprop: 0.314
1 UAms ER TC catlinks: 0.311
3 cirquid ER TEC.trec: 0.277

2 cirquid ER TC idg.trec: 0.274
2 500 L3S08 ER TDC: 0.265

1 L3S08 ER TC mandatoryRun: 0.256
3 UAms ER TC overlap: 0.253

1 CSIR ER TC mandatoryRun: 0.236
4 cirquid ER TC.trec: 0.235

4 UAms ER TC cat-exp: 0.232
1 UAms ER TC mixture: 0.222

3 UAms ER TC base: 0.159
6 UAms ER T baseline: 0.111

Table 2. Evaluation results for LC runs at INEX XER 2008

Run xinfAP
1 FMIT LC TE nopred-stat-cat-a1-b8: 0.402
1 FMIT LC TE pred-2-class-stat-cat: 0.382
1 FMIT LC TE nopred-stat-cat-a2-b6: 0.363
1 FMIT LC TE pred-4-class-stat-cat: 0.353

5 UAms LC TE LC1: 0.325
6 UAms LC TEC LC2: 0.323

1 CSIR fixed: 0.322
2 UAms LC TCE dice: 0.319

5 cirquid LC TE idg.trec.fixed: 0.305
1 L3S08 LC TE mantadoryRun: 0.288

2 L3S08 LC TE: 0.286
5 cirquid LC TE idg.trec: 0.274
6 cirquid LC TE.trec.fixed: 0.272

1 CSIR LC TE mandatoryRun: 0.257
6 cirquid LC TE.trec: 0.249

5 UAms LC TE baseline: 0.133

250 G. Demartini et al.

Fig. 3. Number of retrieved entities which are present in the pool for INEX XER 2008
submitted runs

the best performing approach uses topic difficulty prediction by means of a four-
class classification step [7]. They use features based on the INEX topics defini-
tion and on the Wikipedia document collection obtaining 24% improvement over
the second best LC approach. Experimental investigation showed that Wikipedia
categories helped for easy topics and the link structure helped most for difficult
topics. As also shown in last INEX-XER edition (best performing group at INEX-
XER 2007), using score propagation techniques provided by PF/Tijah works in
the context of ER [6]. The third best performing approach uses categories and
links in Wikipedia [4]. They exploit distances between document categories and
target categories as well as the link structure for propagating relevance informa-
tion showing how category information leads to the biggest improvements.

For the LC tasks the same techniques performed well. Additionally, [4] also
used relevance feedback techniques using example entities. In [3] they adapted
language models created for expert search to the LC task incorporating category
information in the language model also trying to understand category terms in
the query text.

As for the use of the stratified sampling techniques we performed an analysis
of possible bias due to the order in which IRS have been considered when con-
structing the pool. A potential drawback of the stratified sampling approach is
that the order in which runs are considered for contributing to the pool could
influence the strata information in the evaluation process, as we select the strata
of the entity according to the run in which it was first encountered. Clearly, the
order of the runs does not influence the number of entities contributed from each
run in the pool, as Figure 3 shows that each run contributes an equal number

Overview of the INEX 2008 Entity Ranking Track 251

Fig. 4. Number of retrieved entities which are present in each stratum of the pool for
INEX XER 2008 submitted runs

of entities to the pool set (except for the four ERS runs, that have the shorter
bars). This conclusion is not valid anymore if we consider the run contribution
to each stratum. As in the pooling process we considered an entity being part
of the stratum where it was first encountered, the first runs considered had a
bigger contribution as for the strata information. It is possible to see such bias
in Figure 4 where run 1 FMIT ER TC nopred-cat-baseline-a1-b8 has the most
prominent presence in each stratum as it was the first run considered while cre-
ating the pool. Further research will have to show if this materializes into an
effect on the system’s ranking.

5 Conclusions

After the first edition of XER Track at INEX 2007 [1], the 2008 edition cre-
ated additional evaluation material for IR systems that retrieve entities instead
of documents. INEX XER 2008 created a set of 35 XER topics with relevance
assessments for both the ER and LC tasks. Together with the 25 XER topics
created in 2007, a collection of 60 topics is now available for evaluating En-
tity Retrieval systems. Future investigation will focus on evaluating the tasks
on a more recent Wikipedia collection annotated with Information Extraction
tools.

252 G. Demartini et al.

Acknowledgements. This work is partially supported by the EU Large-scale
Integrating Projects OKKAM2 - Enabling a Web of Entities (contract no. ICT-
215032), LivingKnowledge3 - Facts, Opinions and Bias in Time (contract no.
231126), VITALAS (contract no. 045389), and the Dutch National project
MultimediaN.

References

1. de Vries, A.P., Vercoustre, A.-M., Thom, J.A., Craswell, N., Lalmas, M.: Overview
of the INEX 2007 Entity Ranking Track. In: Fuhr, N., Kamps, J., Lalmas, M.,
Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 245–251. Springer, Heidelberg
(2008)

2. Geva, S., Kamps, J., Trotman, A.: Advances in Focused Retrieval, 7th International
Workshop of the Initiative for the Evaluation of XML Retrieval (INEX 2008).
LNCS, vol. 5631. Springer, Heidelberg (2009)

3. Jiang, J., Lu, W., Rong, X., Gao, Y.: Adapting Expert Search Models to Rank
Entities. In: Geva et al. [2]

4. Kaptein, R., Kamps, J.: Finding Entities in Wikipedia using Links and Categories.
In: Geva et al. [2]

5. Craswell, N., de Vries, A.P., Soboroff, I.: Overview of the trec-2005 enterprise track.
In: Proc. of TREC 2005 (2006)

6. Rode, H., Hiemstra, D., de Vries, A.P., Serdyukov, P.: Efficient XML and Entity
Retrieval with PF/Tijah: CWI and University of Twente at INEX 2008. In: Geva
et al. [2]

7. Vercoustre, A.-M., Pehcevski, J., Naumovski, V.: Topic Difficulty Prediction in
Entity Ranking. In: Geva et al. [2]

8. Yilmaz, E., Aslam, J.A.: Estimating average precision with incomplete and im-
perfect judgments. In: Yu, P.S., Tsotras, V.J., Fox, E.A., Liu, B. (eds.) CIKM,
pp. 102–111. ACM Press, New York (2006)

9. Yilmaz, E., Kanoulas, E., Aslam, J.A.: A simple and efficient sampling method
for estimating AP and NDCG. In: Myaeng, S.-H., Oard, D.W., Sebastiani, F.,
Chua, T.-S., Leong, M.-K. (eds.) SIGIR, pp. 603–610. ACM, New York (2008)

10. Zhu, J., de Vries, A.P., Demartini, G., Iofciu, T.: Relation Retrieval for Entities
and Experts. In: Future Challenges in Expertise Retrieval (fCHER 2008), SIGIR
2008 Workshop, Singapore (July 2008)

2 http://fp7.okkam.org/
3 http://livingknowledge-project.eu/

http://fp7.okkam.org/
http://livingknowledge-project.eu/

L3S at INEX 2008: Retrieving Entities Using
Structured Information

Nick Craswell1, Gianluca Demartini2, Julien Gaugaz2, and Tereza Iofciu2

1 Microsoft Research Cambridge
7 JJ Thomson Ave

Cambridge, UK
nickcr@microsoft.com
2 L3S Research Center

Leibniz Universität Hannover
Appelstrasse 9a D-30167 Hannover, Germany

{demartini,gaugaz,iofciu}@L3S.de

Abstract. Entity Ranking is a recently emerging search task in Infor-
mation Retrieval. In Entity Ranking the goal is not finding documents
matching the query words, but instead finding entities which match those
requested in the query.

In this paper we focus on the Wikipedia corpus, interpreting it as a
set of entities and propose algorithms for finding entities based on their
structured representation for three different search tasks: entity ranking,
list completion, and entity relation search. The main contribution is a
methodology for indexing entities using a structured representation. Our
approach focuses on creating an index of facts about entities for the
different search tasks. More, we use the category structure information
for improving the effectiveness of the List Completion task.

1 Introduction

Entity Ranking (ER) is an important step over the classical document search as it
has been done so far. The goal is to find entities relevant to a query rather than
just finding documents (or passages from documents) which contain relevant
information. Ranking entities according to their relevance with respect to a given
query is important in scenarios where the information load is bigger than what
the user can handle. That is, with a correct ranking scheme the system can
present the user with only entities of interest, and avoid the user having to
analyze the entire set of retrieved documents.

As a step in this direction, we present, in this paper, our approaches to ranking
entities in Wikipedia which are based on the usage of a structured representation
of entities in order to enable search. Conceptually, we represent an entity as a
set of attribute name / value pairs. For example an entity representing Albert
Einstein can be represented as follows:

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 253–263, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

254 N. Craswell et al.

first name Albert
last name Einstein
born 1879-03-14
died 1955-04-18
fields physics

We evaluate our approaches on the Wikipedia XML corpus provided within the
INEX 2008 initiative. The main contribution of this paper is a set of methodolo-
gies for representing entities in a structured fashion for enabling entity retrieval.
This is done using different representations for the different ER search tasks,
namely entity ranking (XER), list completion (LC), and entity relation search
(ERS).

The rest of the paper is organized as follows. In section 2 we describe the
algorithms developed for the three different search tasks. In section 3 we present
the experimental results on the INEX XER 2008 benchmark. In section 4 we
compare our techniques with previous work and, finally, in section 5 we conclude
the paper describing our future work.

2 Algorithms

In this section we describe the algorithms we designed and used for all the three
tasks that have been run at XER 2008: Entity Ranking, List Completion, and
Entity Relation Search. The official runs submitted for ER used state of the
art NLP techniques for this task as proposed in [2]. After that, we developed
and evaluated ER algorithms, which are described in Section 2.1, based on a
structured index of entities. For the LC task we designed an algorithm that
uses the structure of Wikipedia categories and, starting from example entities,
exploits hard and soft categories for retrieving additional entities (see Section
2.2). For the ERS task we designed a search algorithm on top of a structured
index based on sentence level entity co-occurrence (see Section 2.3).

2.1 Entity Ranking Task

For the Entity Ranking task we submitted two runs that have been built us-
ing state of the art techniques. Additionally, we developed techniques based on
structured indexing representing entities as a set of attribute/value pairs. In the
following we briefly describe the submitted runs which have been presented in
previous work [2] and we then focus on the description of the structured indexing
process for XER.

Entity Ranking using NLP techniques on Topic Title and Description.
The first XER run that we submitted to INEX 2008
(1 L3S08 ER TC mandatoryRun) uses only the title part of the topic and the
category information. It uses a combination of NLP and IE techniques on the
user query in order to improve and adapt it for the XER search task. The system
extends the original keyword query adding also related words (i.e., all relations

L3S at INEX 2008: Retrieving Entities Using Structured Information 255

from Wordnet, except antonyms) and synonyms, and it adds more weight on
named entities and key-concepts (e.g., the type of result which is needed by the
user) present in the original query by duplicating the respective terms. Addition-
ally, the key-concepts which are present in the original query are used to search
in the anchor-text of the outgoing links. Finally, the match of the category in-
formation in the query and the category information of the Wikipedia pages is
merged by linear combination in the final ranking of the results.

The second XER run we submitted to INEX 2008 (2 500 L3S08 ER TDC) is
using also the description part of the topic. The entire title and description are
used as a long query by the system in order to provide better results to the user.
A TF.IDF vector is built out of the query and Wikipedia articles are ranked
according to their cosine similarity to the query. Additionally, the title and the
category information in the topic is used for searching the category information in
the Wikipedia articles. This helps in ranking first the entities of the desired type.
Finally, also the outgoing links of the Wikipedia documents are used for finding
relevant entities. The topic title and the named entities present in the description
are used together for searching in the anchor text of the outlinks of a page. The
final score of the retrieved entities is computed as a linear combination of the
cosine similarity scores deriving by the previous steps. A detailed description of
the algorithms used for the submitted runs is presented in [2].

Entity Ranking using Structured Indexing. Even if we did not officially
submitt them, we also performed entity ranking experiments using a structured
index representation. We describe hereafter a first approach to generate a struc-
tured index from unstructured documents. By structured indexing we mean a
set of attribute name / value pairs. It comprises of two steps: entity reference
resolution and attribute extraction. We first identify the entity or entities refer-
enced in the document. Those references are then used for extracting attribute
name and values related to them from the text. Those two steps are described
in the following.

Entity Reference Resolution. For building the structured representation, we first
have to find references of the considered entity occurring in the Wikipedia page
at hand. It is presently done in two different ways depending on whether the
considered page is the page representing the entity, or a page linking to the page
representing the entity (e.g., Wikipedia list-of pages).

– On a page representing the considered entity: we consider entity oc-
currences are all set of terms similar to the page title. The title might have
two parts. The first part is called the main title, and is present in all titles.
The second part of a title is called sub-title and it consists of the terms in
the title occurring after a separating character like a ‘—’ or in parentheses
‘()’, ‘{}’ or ‘[]’. For example, in the title “Napoleon (1995 film)”, the main
title is “Napoleon” and the sub-title is “1995 film”. In this case we consider
a set of tokens on the page to be similar to the title, and thus representing
the considered entity, if it consists of either only the main title or the whole
title (main plus sub).

256 N. Craswell et al.

– On a page linking to the considered entity page: we consider as entity
occurrences the anchor text of the links.

Attribute Extraction. With help from a grammatical structure parser1 and man-
ually created rules on the grammatical structure, we extract attribute names
and values representing the entity presented by a Wikipedia page. Those rules
include:

– The entity reference is the subject of a sentence, the attribute name is an
active verb plus prepositions, and the attribute value is the object of the
verb.

– The entity reference is an object, the attribute name is a passive verb plus
prepositions, and the attribute value is the subject of the passive verb.

We present below the rules used. The syntax is the one of the Tregexpatternmatch-
ing tool2. The variable named “word” is replaced with the entity reference as de-
scribed above. The variables beginning with “name” are concatenated to form the
attribute name, and the variables beginning with “value” form the attribute value.

S < ((NP << word) $. (VP << (VBZ|VBD|VBG|VBN|VBP = name1 . (
VP < (TO = name2 $. (VP = value))))))

S < ((NP << (NP = name $. (PP < (IN $. (NP << word))))) $. (
VP << (TO $. VP = value)))

S < (‘‘ $. (NP << word $. (’’$. (VP << (
VBZ|VBD|VBG|VBN|VBP = name $. (
NP = value1 ?$. (/,/ $. PP = value2)))))))

NP << word . (TO $. (VP < (VB = name $. NP = value)))
S < (NP << word $. (VP < (VBZ|VBD|VBG|VBN|VBP = name $. (

PP = value1 $. PP = value2))))
word . (PP < (IN = name . NP = value))
S < (NP << word $. (VP < (VBZ|VBD|VBG|VBN|VBP = name1 $. (

ADVP = name2 $. (VP < VBZ|VBD|VBG|VBN|VBP = name3 < (PP < (
IN = name4 $. NP = value1 ?$. (/,/ $. PP = value2))))))))

S < ((NP << word) ?$. VBZ|VBD|VBG|VBN|VBP = name1 ?$..
ADVP = name2 $.. (VP << (VBZ|VBD|VBG|VBN|VBP = name2 $. (
NP = value1 ?$. (/,/ $. PP = value2)))))

Other ad-hoc rules were also created based on a training set of Wikipedia
pages, and the entity references in them. Those extracted attributes have the fol-
lowing particularities compared to attributes usually found in knowledge bases:

– Attribute names are less expressive and consist mostly of verbs plus modifiers
or prepositions.

– Attribute values are mostly longer, and noisier in the sense that not all the
terms of the attribute value are relevant. This is because the value consists
mostly of a whole verbal phrase.

1 http://nlp.stanford.edu/software/lex-parser.shtml
2 http://nlp.stanford.edu/software/tregex.shtml

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/tregex.shtml

L3S at INEX 2008: Retrieving Entities Using Structured Information 257

Table 1. Some representative example of extracted attributes

Entity Attribute Value
Albert Einstein was a Jewish German - born theoretical

physicist of profound genius , who
is widely regarded as the greatest
scientist of the 20th century

Albert Einstein described the “predatory phase of human de-
velopment”

Lausanne is a city in the French-speaking part
of Switzerland, situated on the
shores of Lake Geneva (French:
Lac Lman), and facing vian-les-
Bains (France)

Lausanne located some 60 km northeast of Geneva
Lausanne follows “La Nuit de Muses” (Museum’s

night) in the fall season
Lausanne boasts a dramatic panorama over the lake
Lausanne is the birthplace of: Umberto

Agnelli, Anthony Bloom, Franois-
Louis David, Bocion Johann,
Ludwig Burckhardt, Benjamin
Constant, Aloise Corbaz, Charles
Dutoit, Egon von Furstenberg,
Eugne Grasset, Bertrand Pic-
card, Charles Ferdinand, Ramuz
Thophile, Steinlen Elizabeth,
Thompson (Lady Butler), Bernard
Tschumi, Flix Vallotton

Lausanne has some alternative culture
Lausanne provide a diverse and rich musical life
Lausanne is E 37 N 46 10 56 31 6
Lausanne going to become the first city in Switzer-

land to have a real metro system,
with the m2 Line which will open
in 2008

This allows to extract attribute for 368,788 entities (56% of the total of 659,385
entities). The distribution of the number of attributes per entity is close to a
typical power-law with 29% of the entities having 80% of the attributes, and
an average of 1.4 attribute per entity description; and a manual assessment of
the attributes of 40 randomly picked entities showed a precision of 87%, i.e., in
average 87% of the attributes of an entity are extracted correctly. Recall of the
attribute extraction could not be assessed yet due to the considerable amount
of time it requires—reference to an entity is not only found in the entity’s page
but in the rest of the collection as well. In Table 1 we show some meaningful
examples of extracted attributes.

258 N. Craswell et al.

Fig. 1. List completion approach

In the future we will investigate how to leverage on already structured infor-
mation such as info boxes in Wikipedia (see [1]) in order to enrich our index. We
would then perform ER by retrieving relevant entities by performing a keyword
(full-text) query on an inverted index built on top of the attribute values for
all the identified entities. As future work we plan to extract a similar structure
from the user query. By representing the query as a set of attribute-value pairs
we can also take into account that two keywords belonging to a same attribute
in the query should also appear in the same attribute in the structured index.

2.2 List Completion Task

In this task the information need is specified by the topic title and the type
of the desired entities is given by example entities. From the INEX topics we
can not use the category information anymore, this has to be learned from the
examples entities with the help of the Wikipedia category structure.

Instinctively, one would say that if two entities are related by satisfying a
query need, they should have at least one common category. But, as Wikipedia
is a collaborative effort, entities usually belong to more than one category, de-
pending on what the authors considered appropriate. The category information
for entities is not always complete and sometimes is not entirely consistent and
correct as well. Thus, from the topic example entities (usually between three or
five) we need to discover which are the categories that will best satisfy the user
need.

In our approach, for the example entities we extract two sets of categories
from Wikipedia, as seen in Figure 1. The first set, which we call main categories,
consists of the direct categories the example entities belong to. From these cate-
gories we filter out the ones that are too general, i.e., that have a high indegree

L3S at INEX 2008: Retrieving Entities Using Structured Information 259

(i.e., the number of entities that belong to that category) and we keep the ones
with indegrees smaller than 1000. Each category from this set has a score com-
puted based on the number of entities belonging to it. The score for a category
is calculated as ten to the power of the number of occurring entities. Further-
more, the score is then divided by the category’s specificity score, based on the
indegree of the category, i.e. the number of Wikipedia entities belonging to that
category. The assumption is that the higher the indegree of a category is, the less
specific that category is. Therefore, we assume that the entities that belong to
less specific categories do not have a strong relation. For example, for a category
ci with n example entities belonging to it, it’s main score is computed based on
the following formula:

mainCategoryScore(ci) = 10n/categorySpecificity(ci) (1)

Where the category specificity is defined as categorySpecificity(c) =
min(5, log(m)), based on the Wikipedia link graph where category c has m
entities. We built these heuristic by manual tuning of the parameters.

The second set of categories, which we called soft categories, consists of the top
categories assigned to the linked entities. By linked entities we refer to entities
the examples entities link to in their description. The score of these categories
is given by the count of their occurrences in the linked entities. More, like the
main categories, the soft categories with an indegree higher than 1000 are filtered
out. This is done for avoiding the consideration of administrative Wikipedia
categories, such as birth and death categories. These scores are then divided
by the categories’ specificity score. For example, for a category ci with m linked
entities belonging to it, it’s soft score is computed based on the following formula:

softCategoryScore(ci) = m/categorySpecificity(ci) (2)

We then add the selected soft categories to the main categories, adding up the
scores when there are duplicates, as shown in the formula given bellow. From
the final set of categories we only keep top 30 categories, based on their final
scores.

categoryScore(ci) = mainCategoryScore(ci) + softCategoryScore(ci) (3)

For our first LC run (2 L3S08 LC TE), we extract from Wikipedia all the entities
that belong to the categories from the final set of categories built starting from
the example entities. We order the retrieved entities based on their popularity
and on the score of the categories (as defined above) they belong to. The score
for an entity ei belonging to n categories from the category set is obtained as
seen in the following formula:

score(ei) =
n∑

j=0

P (ei) ∗ categoryScore(cj) (4)

where the entity popularity is defined as P (e) = min(5, log(Le)), based on the
Wikipedia link graph where entity e has indegree Le.

260 N. Craswell et al.

It is possible to see that our first run only uses the example entities ignoring
other parts of the topic. For our second LC run (1 L3S08 LC TE mantadoryRun),
we also used the topic title. In order to use together title and example entities,
we search the collection (indexed using the vector space model with tf.idf weights
and cosine similarity) using the title and we combine such ranking with the one
obtained in our first run with the following formula:

rank(ei) := (ranktf.idf (ei) ∗ rankorig(ei))/2 (5)

where rankorig(ei) is the rank of entity ei according to our first run which uses
only the example entities, and ranktf.idf (ei) is the rank produced by cosine
similarity using tf.idf weighting scheme.

2.3 Entity Relation Search Task

Entity Relation Search is the step on top of Entity Ranking. After the system
retrieved results for a XER query, the users can ask the system to provide entities
which are related to the results with a given relation. For example, the user can
first query for “american countries” and then ask for the capital of each of the
results. For the Entity Relation Search task we have indexed relations between
entities from Wikipedia in a structured fashion. We consider two entities to be
related if they co-occur in a sentence sized window. For each two co-occurring
entities we have indexed the sentences in which they appear together. In Table 2
we show a snippet from our entity relation index, with a few examples for the
entities Flint River and Albert Einstein.

The Entity Relation Search runs that we submitted to INEX 2008 are based on
our two submitted XER runs. The first run (1 L3S ERS TC R T simpleoverlap) is
based on the title-only Entity Ranking Run (i.e., 1 L3S08 ER TC mandatoryRun).

Table 2. Entity relation index

Entity Predicate Entity
flint river the flint river with an area of 568

square miles is a tributary to the
tennessee river

flint river much of the 342 sq watershed
albert einstein he proposed the and also made ma-

jor contributions to the develop-
ment of and the theory provided
the foundation for the study of and
gave scientists the tools for un-
derstanding many features of the
universe that were discovered well
after einstein death

cosmological models

albert einstein he proposed the and also made ma-
jor contributions to the develop-
ment of and

theory of relativity

L3S at INEX 2008: Retrieving Entities Using Structured Information 261

It is using the entities retrieved by the XER run as left entities LE. Then, for
each left entity li ∈ LE a search for relevant right entities is performed. Possible
candidates are retrieved from the index: all triples containing as subject the
left entities are considered. All the right entities candidates are then ranked
according to a score which is computed as the overlap between the predicate in
the index and the Entity Relation Search Title in the topic.

The second ERS run (2 L3S08 ER TDC) is based based on our second XER
run (i.e., 2 500 L3S08 ER TDC) and it is computed as the first one.

3 Experiments

In this section we describe the experiments performed on the INEX XER 2008
benchmark in order to evaluate the proposed algorithms.

3.1 Experimental Setup

We first parse the document collection using standard Java libraries3. The next
step is the creation of an inverted index out of the XML Wikipedia document
collection. Starting from the parsed XML documents, we create a Lucene4 index5

with one Lucene document (i.e., a vector in the Vector Space) for each Wikipedia
document. After this, we create an index with different fields (acting as separate
inverted indexes, which can be combined for retrieval) for the title, text, and
category of Wikipedia entities. Using such technology we then implemented the
search algorithms described in Section 2.1. In the following we present official
and additional evaluation results of the described approaches on the INEX XER
2008 benchmark.

3.2 Experimental Results

In Table 3 it is possible to see that by using NLP techniques also on the descrip-
tion part of the topic (which is text written in natural language) we improve
search effectiveness. Evaluation results based on the structured index for the
XER task shown low effectiveness (i.e., 0.01 xinfAP). This can be explained by

Table 3. Entity Ranking Results

Run xinfAP
2 500 L3S08 ER TDC 0.265

1 L3S08 ER TC mandatoryRun 0.256

the very preliminary extraction schemes that have been used. As we believe that
3 We used the Java 6 javax.xml.stream.* classes.
4 http://lucene.apache.org/
5 The IR model used by Lucene is the term based Vector Space Model with standard

cosine similarity.

http://lucene.apache.org/

262 N. Craswell et al.

the overall approach is promising, as future step, we will build our structured
index based on better annotated Wikipedia collections such as [6,4].

As for the LC task, evaluation results6 (see Table 4) show that when using
also the ranking-by-title information we improve much over the simple use of
category information from the example entities.

Table 4. List Completion Results

Run xinfAP
2 L3S08 LC TE 0.256

1 L3S08 LC TE mantadoryRun 0.314

Evaluation results for the ERS task have not yet been released.

4 Related Work

Previous approaches to rank entities in Wikipedia exploited the link structure
between Wikipedia pages [5] or its category structure using graph based algo-
rithms [7]. Other approaches used semantic and NLP techniques to improve
effectiveness of ER systems [2,3].

With respect to previous approaches we based our algorithms on a structured
representation of entities at indexing level. For both the XER and ERS tasks we
used a structured index built using NLP techniques. For this reason, relevant to
our work are projects aiming at extracting and annotating entities and structure
in Wikipedia. For example, versions of Wikipedia annotated with state of the
art NLP tools are available [6,4].

Another relevant work is [8] which also aims at retrieving entities in Wikipedia
but without the assumption that an entity is represented by a Wikipedia page
as done in INEX XER. They rather annotate and retrieve any passage of a
Wikipedia article that could represent an entity. Our structured index allows
such kind of retrieval as well.

5 Conclusions and Further Work

In this paper we proposed a first step towards a structured indexing approach
for entity ranking. We proposed different indexing structures for the XER and
ERS tasks. For the LC task we developed an algorithm based on the category
structure of Wikipedia: by starting from the category information of the exam-
ple entities we can identify the desired entity types. Experimental results show
that the implemented approach for XER is not working well mainly because of

6 Evaluation results are different than the official ones as we fixed a software bug after
the runs submission.

L3S at INEX 2008: Retrieving Entities Using Structured Information 263

the few annotations we performed on the corpus. We aim at improving search
effectiveness of the XER task by using available collections annotated with state-
of-the-art NLP tools.

Acknowledgements. This work is partially supported by the EU Large-scale
Integrating Projects OKKAM7 - Enabling a Web of Entities (contract no. ICT-
215032) and LivingKnowledge8 - Facts, Opinions and Bias in Time (contract no.
ICT-231126).

References

1. Auer, S., Lehmann, J.: What Have Innsbruck and Leipzig in Common? Extracting
Semantics from Wiki Content. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, pp. 503–517. Springer, Heidelberg (2007)

2. Demartini, G., Firan, C.S., Iofciu, T., Krestel, R., Nejdl, W.: A Model for Ranking
Entities and Its Application to Wikipedia. In: LA-WEB (2008)

3. Demartini, G., Firan, C.S., Iofciu, T., Nejdl, W.: Semantically Enhanced Entity
Ranking. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.)
WISE 2008. LNCS, vol. 5175, pp. 176–188. Springer, Heidelberg (2008)

4. Ciaramita, M., Atserias, J., Zaragoza, H., Attardi, G.: Semantically Annotated
Snapshot of the English Wikipedia. In: European Language Resources Association
(ELRA) (ed.) Proceedings of the Sixth International Language Resources and Eval-
uation (LREC 2008), Marrakech, Morocco (May 2008)

5. Pehcevski, J., Vercoustre, A.-M., Thom, J.A.: Exploiting Locality of Wikipedia
Links in Entity Ranking. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven,
I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 258–269. Springer,
Heidelberg (2008)

6. Schenkel, R., Suchanek, F.M., Kasneci, G.: YAWN: A Semantically Annotated
Wikipedia XML Corpus. In: Kemper, A., Schöning, H., Rose, T., Jarke, M.,
Seidl, T., Quix, C., Brochhaus, C. (eds.) BTW. LNI, vol. 103, pp. 277–291. GI
(2007)

7. Tsikrika, T., Serdyukov, P., Rode, H., Westerveld, T., Aly, R., Hiemstra, D., de Vries,
A.P.: Structured Document Retrieval, Multimedia Retrieval, and Entity Ranking
Using PF/Tijah. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX
2007. LNCS, vol. 4862, pp. 306–320. Springer, Heidelberg (2008)

8. Zaragoza, H., Rode, H., Mika, P., Atserias, J., Ciaramita, M., Attardi, G.: Ranking
Very Many Typed Entities on Wikipedia. In: Silva, M.J., Laender, A.H.F., Baeza-
Yates, R.A., McGuinness, D.L., Olstad, B., Olsen, Ø.H., Falcão, A.O. (eds.) CIKM,
pp. 1015–1018. ACM, New York (2007)

7 http://fp7.okkam.org/
8 http://livingknowledge-project.eu/

http://fp7.okkam.org/
http://livingknowledge-project.eu/

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 264–272, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Adapting Language Modeling Methods for Expert Search
to Rank Wikipedia Entities

Jiepu Jiang, Wei Lu, Xianqian Rong, and Yangyan Gao

Center for Studies of Information Resources,
School of Information Management, Wuhan University, China

{jiepu.jiang,reedwhu,rongxianqian,gaoyangyan2008}@gmail.com

Abstract. In this paper, we propose two methods to adapt language modeling
methods for expert search to the INEX entity ranking task. In our experiments,
we notice that language modeling methods for expert search, if directly applied
to the INEX entity ranking task, cannot effectively distinguish entity types.
Thus, our proposed methods aim at resolving this problem. First, we propose a
method to take into account the INEX category query field. Second, we use an
interpolation of two language models to rank entities, which can solely work on
the text query. Our experiments indicate that both methods can effectively adapt
language modeling methods for expert search to the INEX entity ranking task.

Keywords: entity retrieval, entity ranking, language model, expert search.

1 Introduction

In this paper, we focus on how to adapt language modeling methods for expert search
to the INEX entity ranking task (XER), which aims at finding a list of relevant entities
according to a search query. A typical search query may involve several fields:

1. title: a text query field that describes the user’s search needs;
2. category: a structural field specifying Wikipedia categories of relevant entities.

For example, a typical INEX XER search query can be:

<title>songs of Bob Dylan</title>
<categories>
<category id="40340">bob dylan songs</category>
</ categories >

The XER task shares a lot of similarities with the TREC expert search task, which
can be considered as a special entity ranking task for persons only. Both tasks face the
challenge of finding and utilizing descriptive information of entities in the documents.
As a result, it is reasonable to adopt methods for expert search in the XER task.

Language modeling methods have been widely adopted in the expert search task.
We have applied two widely used language modeling methods for expert search
(i.e. model 1 and model 2 [1]) to the XER task. However, our experiments indicated
that both methods cannot effectively distinguish entity types. As a result, we mainly
focus on resolving this limitation.

 Adapting Language Modeling Methods for Expert Search to Rank Wikipedia Entities 265

First, we propose a method to take into account the INEX category query field,
which can be applied to both model 1 and model 2. Second, we interpolate the entity
model in model 1 with an entity category model, which solely works on the text
query. In our experiments, it is indicated that both methods can effectively distinguish
entity types. The first method was also adopted in our participation in INEX 2008.
But our experiments indicate that the second method is much more effective.

Although the INEX entity-ranking track involves two tasks, i.e. the entity ranking
task (XER) and the entity relation search task (ERS), we only discuss the XER task
here due to the lack of evaluation for the ERS task. For our methods taken for the list
completion task and ERS task, please refer to the pre-proceedings.

The remainder of this paper is organized as follows: section 2 reviews on language
modeling methods for expert search and methods adopted in the INEX entity ranking
task; in section 3, we describe our methods; section 4 evaluates the proposed meth-
ods; in section 5, we draw a conclusion.

2 Related Works

Language modeling methods are widely adopted for the expert search task. The
most widely used language modeling framework for expert search was defined by
Balog et al. [1] as model 1 and model 2. Further, refinements were made from vari-
ous aspects. Petkova et al. [2] considered the dependency between candidates and
terms. Balog et al. [3] elaborated candidate-document association. Serdyukov et al.
[4] explored the relevance propagation. Balog et al. [5] used non-local information
in the collection. For a complete review, please refer to [6].

Compared with expert search, less attention has been paid to the task of searching
general entities of various types. In 2007, INEX provided the first collection for entity
ranking, which is based on Wikipedia and involves a lot of useful features for entity
ranking: entities are manually labeled with categories; the hierarchy of categories is
given; entity occurrences are partly labeled in the documents.

Most of the methods adopted in INEX rely on the INEX category query field and
Wikipedia category labels to distinguish entity types. Vercoustre et al. [7] used a set-
based measure to calculate similarity between the INEX category query and the entity
Wikipedia categories. Demartini et al. [8] expanded the category set using YAGO to
improve the matching of entity types. Tsikrika et al. [9] adopted expert search model
in [4] for entity ranking, and expanded category matching with child categories.

In section 3, we propose two methods to adapt language modeling methods for ex-
pert search to the INEX entity ranking task.

3 Models

In this section, we describe our methods. First, we propose a method to take into ac-
count the INEX category query field in both model 1 and model 2. Second, we inter-
polate the entity model estimated in model 1 with a category model, which can help
model 1 better understand category query terms in the text query.

266 J. Jiang et al.

3.1 Language Modeling Methods for Expert Search

In section 3.1, we briefly describe two frequently used language modeling methods
for expert search, i.e. model 1 and model 2 [1]. Both methods rank entities (experts)
by p(e|q), and use co-occurrence information of entities to estimate the probability.
Assuming the same prior probability for each entity e, we can rank entities by p(q|e).

For model 1, an entity model θe is inferred for each entity e. We can estimate p(q|e)
as Eq.(1):

 (,)(|) (|) (|)tf t q
e e

t q

p q e p q p tθ θ
∈

= = ∏ (1)

In Eq.(1), tf(t,q) is the frequency of t in the query q. Further, θe can be inferred using
co-occurrence information of e in the collection.

For model 2, the estimation of p(q|e) is divided into each sub event space of d:

 (|) (| ,) (|)
d

p q e p q d e p d e= ×∑ (2)

Since there have been a lot of discussions on model 1 and model 2, we do not go
further here. Please refer to [1] for details.

3.2 Considering the INEX Category Query Field

In section 3.2, we propose a method to consider the INEX category query field, which
can be applied to both model 1 and model 2. We can represent the whole query as Q,
which contains two parts: the text query q and the INEX category query qcat. Then, we
rank entities by p(Q|e), which can be transformed as Eq. (3):

 (|) (, |) (|) (| ,)cat catp Q e p q q e p q e p q e q= = × (3)

Assuming q and qcat are independent, p(qcat|e,q) can be simplified to p(qcat|e):

 (|) (, |) (|) (|)cat catp Q e p q q e p q e p q e= = × (4)

In (4), p(q|e) can be estimated using model 1 or model 2. As a result, the rest of the
task is to estimate p(qcat|e).

In the INEX Wikipedia collection, entities are labeled with a list of categories. As a
result, we can represent e’s labeled categories as a category set, i.e. CATe{cati}. Also,
we can represent the INEX category query field as a category set, i.e. CATq{catj}.
Further, assuming that catj in CATq is generated independently, we estimate p(qcat|e)
in Eq. (5):

 (|) (|) (|)
j q

cat q e j e
cat CAT

p q e p CAT CAT p cat CAT
∈

= = ∏ (5)

It should be noted that in (5) we adopt qcat as a sequence of categories, although it is a
set and may be more reasonable to be estimated in Eq. (6):

 Adapting Language Modeling Methods for Expert Search to Rank Wikipedia Entities 267

 { }(|) (|) 1 (|)
j q j q

cat j e j e
cat CAT cat CAT

p q e p cat CAT p cat CAT
∈ ∉

⎛ ⎞ ⎛ ⎞
= × −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏ ∏ (6)

Here, we adopt Eq.(5) for the following considerations: on the one hand, it is contro-
versial to model categories that do not exist in CATq, since the category query field
are not ensured to be accurate, and Wikipedia labels are also not completely accurate;
on the other hand, a thorough estimation involving a large amount of unseen catego-
ries in (6) will consume a lot of computational resources.

In (5), p(catj|CATe) is estimated using a maximum likelihood estimation with a
Jelinek Mercer smoothing. Then, p(catj|CATe) can be further considered using each
cati in CATe:

 1 1

(|)
(|) (1) ()

| |
i e

j i
j e j

cat CAT e

p cat cat
p cat CAT p cat

CAT
λ λ

∈

= − × + ×∑ (7)

In (7), p(catj) is the probability of catj in the collection, which is estimated in (8). In
Eq. (8), ct(catj) is the number of entities in the collection that are labeled with catj.

()

()
()

i

j
j

i
cat

ct cat
p cat

ct cat
=
∑

 (8)

For p(catj|cati), we estimate it using some rule-based methods:

1. If catj = cati, or catj is cati’s parent category, we set p(catj|cati) to 1;
2. If catj is cati’s child category, we set p(catj|cati) to 1/|cati| (|cati| is the number

of child categories of cati);
3. For other circumstances, p(catj|cati) is set to 0.

Using this method, we provide a solution to consider the category query field into
current language modeling methods for expert search, which can help expert search
models better distinguish entity categories. This method can be applied to both model
1 and model 2.

3.3 Understanding Category Terms in Search Query

In section 3.3, we use an interpolation of an entity model and a category model to
understand category terms in the text query.

After manually checking all the search queries in INEX 07 and 08, we come to the
following conclusion: text query for the INEX entity ranking task consist of two kinds
of terms, i.e. topic terms and category terms.

We define topic terms as terms describing topical information of relevant entities,
while category terms are used to specify categories of relevant entities. For example,
for the query “songs of Bob Dylan”, relevant entities are topically relevant with “Bob
Dylan”, and should be songs. So, “Bob” and “Dylan” are topic terms, while “songs”
is a category term. Among the 95 queries in INEX 07 and 08, only 3 queries (Topic
50, 52 and 105) do not conform to our conclusion of entity ranking queries.

268 J. Jiang et al.

In contrast, queries for expert search only consist of topic terms. For example, the
user will propose the query “wheel motor” to search for experts related to the topic
“wheel motor”. Category terms are omitted in expert search, since it is unnecessary to
distinguish categories in the expert search task.

The difference between expert search queries and entity ranking queries is essential
in explaining why language modeling methods for expert search are not effective in
distinguishing entity categories. In language modeling methods for expert search, we
infer entity (expert) models using co-occurrence information of entities. Although the
entity models inferred are effective for expert search, considering that expert search
queries only consist of topic terms, the entity models inferred may only indicate an
approximation of probability distribution for topic terms. Thus, it is not surprising that
expert search models are not very effective in understanding the category information
need in the text query.

Thus, we infer two models for each entity e: Te is the distribution model for topic
terms, and Ce is the distribution model for category terms. Then, we can estimate
p(t|e) using an interpolation between Te and Ce:

 2 2(|) (|) (1) (|)e ep t e p t T p t Cλ λ= × + − × (9)

In Eq.(9), λ2 is a prior probability that a term will be generated from Te. Though it is
more reasonable to set different λ2 for different entities, we adopt a constant value for
λ2 as a simplification. Te can be inferred using model 1. In the INEX Wikipedia col-
lection, we can infer Ce using labeled categories of the entities.

For each entity e, we represent its labeled categories in the Wikipedia as a category
set CATe {cati}, in which cati is each labeled category in the set CATe. Then, we can
use CATe to estimate Ce, which can be further considered using each cati in CATe:

 (|) (| ,) (|)
i e

e i e i e
cat CAT

p t CAT p t cat CAT p cat CAT
∈

= ×∑ (10)

Assuming that the generation of t from cati is independent with CATe, p(t|cati,CATe)
can be simplified to p(t|cati):

 (|) (|) (|)
i e

e i i e
cat CAT

p t CAT p t cat p cat CAT
∈

= ×∑ (11)

For p(t|cati), we simply estimate it using category name of cati by a maximum likeli-
hood estimate in Eq.(12).

()

(|) (|)
()

i

mle
i

t cat

tf t
p t cat p t cat

tf t
∈

≈ =
∑

 (12)

For p(cati|CATe), we assign all categories with the equal weight and estimate it as
1/|CATe|, where |CATe| is the number of categories in the category set CATe. In the
end, we can represent p(t|Ce) as Eq.(13):

 Adapting Language Modeling Methods for Expert Search to Rank Wikipedia Entities 269

(|)

(|)
| |

i e

mle i
cat CAT

e
e

p t cat

p t C
CAT

∈=
∑

 (13)

Compared with the former method, this method can solely work on the text search
query, which can resolve the limitation of using the INEX category query field. But a
main limitation for this method is that Ce is estimated based on Wikipedia category
labels. This limitation is left as a future work.

4 Evaluation

4.1 Experiment Settings

In our experiments, we adopt the INEX Wikipedia collection to evaluate our methods.
Both INEX 2007 and 2008 queries are used. The INEX 2007 queries can be divided
into two groups: one group consists of queries generated from the INEX ad hoc task
(INEX 07 adhoc), and the other group consists of the genuine INEX 2007 XER query
(INEX 07 xer).

The INEX Wikipedia collection is a subset of Wikipedia, which contains lots of
semantic information. In this collection, entity occurrences are partly labeled in the
documents. Thus, we do not further recognize named entities. Besides, each entity is
also labeled with some categories. Category hierarchies are given. In our experiments,
we have found 659,388 entities labeled with 75,601 Wikipedia categories (113,483
categories are provided in total, but some of them are not labeled with any entity).

In the pre-processing stage, we remove XML tags. The indexing process removes
common stop words. Words are stemmed using Porter-Stemming algorithm.

Though official results in INEX 08 are evaluated using xinfAP, we use MAP as the
main evaluation measure in order to be consistent with INEX 2007 (we do not have
any method to evaluate xinfAP results for INEX 07 queries). The evaluation tool is
trec_eval.

4.2 Expert Search Models

In section 4.2, we will evaluate the effectiveness of expert search models in the entity
ranking task. In our experiments, we try to apply model 1 and model 2 to the INEX
entity ranking task. Please refer to [1] for details about these models. In both models,
we set the smoothing parameter λ to 0.5.

Table 1 shows evaluation results for model 1 and model 2 in the INEX 07 and 08
query sets, which are our baseline runs. It is indicated that both model 1 and model 2
are not very effective in the INEX entity ranking task. Besides, although previous
researches indicated that model 2 is more effective than model 1 in the expert search
task, model 1 apparently outperforms model 2 in all query sets of INEX.

270 J. Jiang et al.

Table 1. Evaluation results for model 1 and model 2 in the INEX entity ranking task

Model 1 Model 2 Query Set
MAP xinfAP MAP xinfAP

INEX07 0.2059 -- 0.1635 --
INEX07 adhoc 0.2588 -- 0.1783 --
INEX07 xer 0.1614 -- 0.1511 --
INEX08 0.1189 0.1189 0.0885 0.0885

4.3 Considering the INEX Category Query Field

In section 4.3, we evaluate the effectiveness of the method proposed in section 3.2,
which considers the INEX category query fields into expert search language models.
For a simplification, we set λ1 in Eq.(7) to 0.5. For efficiency consideration, we only
re-rank the top 500 entities returned by model 1 and model 2 when using the method
proposed in section 3.2.

Table 2. MAP results for the method that considers the INEX category query field

Query Set Mode 1 Model 1 +
Method in 3.2

Mode 2 Model 2 +
Method in 3.2

INEX07 0.2059 0.2522 (+ 22.49%) 0.1635 0.2167 (+ 32.54%)
INEX07 adhoc 0.2588 0.3374 (+ 30.37%) 0.1783 0.2776 (+ 55.69%)
INEX07 xer 0.1614 0.1806 (+ 11.90%) 0.1511 0.1656 (+ 09.60%)
INEX08 0.1189 0.2106 (+ 77.12%) 0.0885 0.1627 (+ 83.84%)

Table 2 shows evaluation results for the method that considers the INEX category
query field. It is indicated that, for both model 1 and model 2, this method can greatly
enhance the effectiveness. In INEX 08, we adopted a combination of this method and
model 11.

4.4 Considering Category Terms in Search Query

In section 4.4, we further consider category query terms into expert search model 1.
For a simplification, the parameter λ2 in (9) is set to 0.5. In our experiments, we try to
investigate the following problem:

1. Can the adaptation method proposed in 3.3 help expert search model?
2. Compared with the method in 3.2, can the method using only text query be

more effective?

Table 3 shows evaluation results for the method proposed in section 3.3 (the INEX
category query field is not used). In Table 3, it is indicated that the method proposed
in section 3.3 can also greatly enhance the effectiveness. Besides, compared with the

1 Due to a coding error, our officially submitted run 1_CSIR_ER_TC_mandatoryRun had used

a measure of p(catj|CATe) different from the method proposed in 3.2. But we mean to use the
method in 3.2. Results in Table.2 strictly conform to the method in section 3.2.

 Adapting Language Modeling Methods for Expert Search to Rank Wikipedia Entities 271

Table 3. MAP results for the method proposed in section 3.3

Query Set Model 1 Model 1 +
Method in 3.3

Model 1 +
Method in 3.2

INEX07 0.2059 0.2952 (+ 43.37%) 0.2522 (− 14.57%)
INEX07 adhoc 0.2588 0.3585 (+ 38.53%) 0.3374 (− 05.89%)
INEX07 xer 0.1614 0.2420 (+ 49.94%) 0.1806 (− 25.37%)
INEX08 0.1189 0.2942 (+147.43%) 0.2106 (− 28.42%)

method that considers the INEX category query field (in section 3.2), the interpolation
of two models is evidently more effective in all query sets.

It may indicate some problems of using the INEX category query field in the entity
ranking task. First, for a large collection containing a huge amount of entity categories
(such as the INEX Wikipedia collection), it is difficult and impractical for the user to
specify precisely all possible categories of relevant entities. Thus, when the user fails
to select out some possible categories for relevant entities, some relevant entities will
be excluded. Second, since the categories of relevant entities are specified in the text
query, it is also unnecessary to learn it using the structural category query field.

Further, we combine both methods into model 1. Table 4 shows evaluation results
of considering both methods into model 1, which means to estimate p(q|e) in Eq.(3)
using Eq.(8). However, in the experiments, it is indicated that the combination of two
methods is not ensured to receive better effectiveness than using the method proposed
in 3.3 only. This problem is left as a future work for us to discover.

In table 5, we gives out xinfAP for each method in INEX 08 query set.

Table 4. MAP results of considering both methods into model 1

Query Set Model 1 Model 1 +
Method in 3.2

Model 1 +
Method in 3.3

Model 1 +
Method in 3.2 & 3.3

INEX07 0.2059 0.2522 0.2952 0.2838
INEX07 adhoc 0.2588 0.3374 0.3585 0.3755
INEX07 xer 0.1614 0.1806 0.2420 0.2067
INEX08 0.1189 0.2106 0.2942 0.3042

Table 5. xinfAP results

Query Set Model 1 +
Method in 3.2

Model 2 +
Method in 3.2

Model 1 +
Method in 3.3

Model 1 +
Method in 3.2 3.3

INEX08 0.2106 0.1627 0.2942 0.3042

5 Conclusion

In this paper, we describe two methods to adapt language modeling methods for the
expert search task to the INEX entity ranking task. First, we propose a method to take
into account the INEX category query field, which can be applied to both model 1 and

272 J. Jiang et al.

model 2. Second, we use an interpolation between the entity model and the category
model to understand category terms in the text query.

In our experiments, it is indicated that both methods can effectively adapt language
modeling methods for expert search to the INEX entity ranking task. Compared with
the method that considers the INEX category query field, the method using category
terms (section 3.3) is more effective. However, a combination of both methods is not
ensured to further enhance the effectiveness.

References

1. Balog, K., Azzopardi, L., de Rijke, M.: Formal Models for Expert Finding in Enterprise
Corpora. In: Proceeding of the 29th annual international ACM SIGIR conference on Re-
search and development in information retrieval (SIGIR 2006), Seattle, Washington, USA,
pp. 43–50 (2006)

2. Petkova, D., Croft, W.B.: Proximity-Based Document Representation for Named Entity Re-
trieval. In: Proceedings of the 16th ACM conference on information and knowledge man-
agement (CIKM 2007), Lisbon, Portugal, pp. 731–740 (2007)

3. Balog, K., de Rijke, M.: Associating People and Documents. In: Macdonald, C., Ounis, I.,
Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 296–308.
Springer, Heidelberg (2008)

4. Serdyukov, P., Rode, H., Hiemstra, D.: Modeling multi-step relevance propagation for ex-
pert finding. In: Proceedings of 17th ACM conference on Information and knowledge man-
agement (CIKM 2008), Napa Valley, California, USA, pp. 1133–1142 (2008)

5. Balog, K., de Rijke, M.: Non-Local Evidence for Expert Finding. In: Proceedings of the 17th
ACM conference on information and knowledge management (CIKM 2008), Napa Valley,
California, USA, pp. 731–740 (2008)

6. Vercoustre, A., Thom, J.A., Pehcevski, J.: Entity Ranking in Wikipedia. In: Proceedings of
the 2008 ACM symposium on Applied computing (SAC 2008), Fortaleza, Ceara, Brazil
(2008)

7. Demartini, G., Firan, C.S., Iofciu, T.: L3S Research at INEX 2007: Query Expansion for
Entity Ranking Using a Highly Accurate Ontology. In: Fuhr, N., Kamps, J., Lalmas, M.,
Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 252–263. Springer, Heidelberg (2008)

8. Tsikrika, T., Serdyukov, P., Rode, H., Westerveld, T., Aly, R., Hiemstra, D., de Vries, A.P.:
Structured Document Retrieval, Multimedia Retrieval, and Entity Retrieval Using PF/Tijah.
In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 306–320. Springer, Heidelberg (2008)

Finding Entities in Wikipedia
Using Links and Categories

Rianne Kaptein1 and Jaap Kamps1,2

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

Abstract. In this paper we describe our participation in the INEX Entity Rank-
ing track. We explored the relations between Wikipedia pages, categories and
links. Our approach is to exploit both category and link information. Category
information is used by calculating distances between document categories and
target categories. Link information is used for relevance propagation and in the
form of a document link prior. Both sources of information have value, but using
category information leads to the biggest improvements.

1 Introduction

In the entity ranking track, our aim is to explore the relations and dependencies between
Wikipedia pages, categories and links. For the entity ranking task we have looked at
some approaches that proved to be successful in previous entity ranking and ad hoc
tracks. In these tracks it has been shown that link information can be useful. Kamps and
Koolen [2] use link evidence as document priors, where a weighted combination of the
number of incoming links from the entire collection and the number of incoming links
from the retrieved results for one topic is used. Tsikrika et al. [4] use random walks
to model multi-step relevance propagation from entities to their linked entities. For the
entity ranking track specifically also the category assignments of entities can be used.
Vercoustre et al. [5] use the Wikipedia categories by defining similarity functions be-
tween the categories of retrieved entities and the target categories. The similarity scores
are estimated using lexical similarity of category names. We combined and extended
the aforementioned approaches.

2 Model

In this section we describe how we use category information for entity ranking and list
completion, how we exploit link information and finally how we combine these sources
of information.

Category information. Although for each topic one or a few target categories are pro-
vided, relevant entities are not necessarily associated with these provided target cate-
gories. Relevant entities can also be associated with descendants of the target category

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 273–279, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

274 R. Kaptein and J. Kamps

or other similar categories. Therefore, simply filtering on the target categories is not suf-
ficient. Also, since Wikipedia pages are usually assigned to multiple categories, not all
categories of an answer entity will be similar to the target category. We calculate for each
target category the distances to the categories assigned to the answer entity. To calcu-
late the distance between two categories, we tried three options. The first option (binary
distance) is a very simple method: the distance is 0 if two categories are the same, and 1
otherwise. The second option (contents distance) calculates distances according to the
contents of each category, and the third option (title distance) calculates a distance ac-
cording to the category titles. For the title and contents distance, we need to calculate
the probability of a term occurring in a category. To avoid a division by zero, we smooth
the probabilities of a term occurring in a category with the background collection:

P (t1, ..., tn|C) =
∑n

i=1
λP (ti|C) + (1 − λ)P (ti|D)

where C, the category, consists either of the category title to calculate title distance,
or of the concatenated text of all pages belonging to that category to calculate contents
distance. D is the entire wikipedia document collection, which is used to estimate back-
ground probabilities. We estimate P (t|C) with a parsimonious model [1] that uses an
iterative EM algorithm as follows:

E-step: et = tft,C · αP (t|C)
αP (t|C) + (1 − α)P (t|D)

M-step: P (t|C) =
et∑
t et

, i.e. normalize the model

The initial probability P (t|C) is estimated using maximum likelihood estimation. We
use KL-divergence to calculate distances, and calculate a category score that is high
when the distance is small as follows:

Scat(Cd|Ct) = −DKL(Cd|Ct) = −
∑

t∈D

(
P (t|Ct) ∗ log

(
P (t|Ct)
P (t|Cd)

))

where d is a document, i.e. an answer entity, Ct is a target category and Cd a category
assigned to a document. The score for an answer entity in relation to a target category
S(d|Ct) is the highest score, or shortest distance from any of the document categories
to the target category.

In contrast to Vercoustre et al. [5], where a ratio of common categories between the
categories associated with an answer entity and the provided target categories is calcu-
lated, we take for each target category only the shortest distance from any answer entity
category to a target category. So if one of the categories of the document is exactly the
target category, the distance and also the category score for that target category is 0, no
matter what other categories are assigned to the document. Finally, the score for an answer
entity in relation to a query topic S(d|QT) is the sum of the scores of all target categories:

Scat(d|QT) =
∑

Ct∈QT
argmax

Cd∈d
S(Cd|Ct)

Besides the entity ranking task, the second task in the entity ranking track is list com-
pletion. Instead of the target category, for each topic a few relevant examples entities

Finding Entities in Wikipedia Using Links and Categories 275

are given. We treat all categories assigned to the example entities as target categories.
Our approach for using the category information is the same as before. But to get the
final score of an article in relation to a topic, we use two variants. The first one is:

SSum(d|QT) =
∑

ex∈QT

∑
Cex∈ex

argmax
Cd∈d

Scat(Cd|Cex)

In the second variant SMax(d|QT), instead of summing the score of each example cat-
egory, we only take the maximum score i.e. shortest distance for all example categories
of the entity examples to one of the categories of the document. Furthermore, we ap-
ply explicit relevance feedback based on the text of the example entities to expand the
query.

Link information. We implement two options to use the link information: relevance
propagation and document link degree prior. For the document link degree prior we use
the same approach as in [2]. The prior for a document d is:

PLink(d) = 1 +
IndegreeLocal(d)

1 + IndegreeGlobal(d)

The local indegree is equal to the number of incoming links from within the top ranked
documents retrieved for one topic. The global indegree is equal to the number of in-
coming links from the entire collection.

The second use of link information is through relevance propagation from initially
retrieved entities, as was done last year in the entity ranking track by Tsikrika et al. [4].

P0(d) = P (q|d)

Pi(d) = P (q|d)Pi−1(d) +
∑

d′→d
(1 − P (q|d′))P (d|d′)Pi−1(d′)

Probabilities P (d|d′) are uniformly distributed among all outgoing links from the doc-
ument. Documents are ranked using a weighted sum of probabilities at different steps:

P (d) = μ0P0(d) + (1 − μ0)
∑K

i=1
μiPi(d)

For K we take a value of 3, which was found to be the optimal value last year. We try
different values of μ0 and distribute μ1...μK uniformly, i.e. μ1...μK = 1/3.

Combining information. Finally, we have to combine our different sources of informa-
tion. We start with our baseline model which is a standard language model. We have two
possibilities to combine information. We can make a linear combination of the proba-
bilities and category score. All scores and probabilities are calculated in the log space,
and then a weighted addition is made. Alternatively, we can use a two step model. Rele-
vance propagation takes as input initial probabilities. Instead of the baseline probability,
we can use the scores of the run that combines the baseline score with the category in-
formation. Similarly, for the link degree prior we can use the top results of the baseline
combined with the category information instead of the baseline ranking.

276 R. Kaptein and J. Kamps

3 Experiments

In this section we describe our experimental results on the training and the test data.

3.1 Training Results

For our training data we use the 25 genuine entity ranking test topics that were de-
veloped for the 2007 entity ranking track. For our baseline run and to get initial prob-
abilities we use the language modeling approach with Jelinek-Mercer smoothing, Porter
stemming and pseudo relevance feedback as implemented in Indri [3] to estimate
P (d|q). We tried different values for the smoothing λ. We found λ = 0.1 gives the
best results, with a MAP of 0.1840 and a P10 of 0.1920. For the document link degree
prior we have to set two parameters: the number of top documents to use, and the weight
of the document prior. For the number of top documents to use, we try 50, 100, 500 and
1,000 documents. For the weight of the prior we try all values from 0 to 1 with steps of
0.1. Only weights that give the best MAP and P10 are shown in Table 1.1

Table 1. Document link degree prior results

docs Weight MAP P10
Baseline 0.1840 0.1920

50 0.6 0.1898 - 0.2040 -

50 0.5 0.1876 - 0.2000 -

100 0.7 0.1747 - 0.2000 -

100 0.3 0.1909 - 0.1920 -

500 0.5 0.1982◦ 0.2000 -

500 0.3 0.1915 - 0.2040◦

1,000 0.5 0.1965 - 0.1960 -

1,000 0.4 0.1965◦ 0.2000 -

Table 2. Category distances results

Dist. Weight MAP P10
Binary 0.1 0.2145 - 0.1880 -

Cont. 0.1 0.2481•◦ 0.2320◦

Title 0.1 0.2509◦ 0.2360◦

Cont. 0.05
0.2618•◦ 0.2480•◦

Title 0.05

The results of using category information are summarized in Table 2. The weight
of the baseline score is 1.0 minus the weight of the category information. For all three
distances, a weight of 0.1 gives the best results. In addition to these combinations, we
also made a run that combines the original score, the contents distance and the title
distance. When a single distance is used, the title distance gives the best results. The
combination of contents and title distance gives the best results overall.

In our next experiment we combine all information we have, the baseline score, the
category and the link information. Firstly, we combine all scores by making a linear
combination of the scores and probabilities (shown in Table 3). Secondly, we combine
the different sources of information by using the two step model (see Table 4). Link in-
formation is mostly useful to improve early precision, depending on the desired results
we can tune the parameters to get optimal P10, or optimal MAP. Relevance propagation
performs better than the document link degree prior in both combinations.

1 Significance of increase over the baseline according to the t-test, one-tailed, at significance
levels 0.05 (◦), 0.01 (•◦), and 0.001 (•).

Finding Entities in Wikipedia Using Links and Categories 277

Table 3. Results linear combination

Link Info Weight MAP P10
Prior 0.3 0.2682•◦ 0.2640•◦

Prop. 0.1 0.2777•◦ 0.2720•◦

Table 4. Results two step model

Link info Weight MAP P10
Prior 0.5 0.2526•◦ 0.2600•◦

Prop. 0.2 0.2588•◦ 0.2960 •

Prop. 0.1 0.2767•◦ 0.2720•◦

For the list completion task, we use the examples for relevance feedback. To evaluate
the list completion results, example entities are removed from our ranking. Applying
explicit and pseudo relevance feedback leads to the results given in Table 5. Additional

Table 5. Feedback results

RF PRF MAP P10
No No 0.1409 0.1240
Yes No 0.1611 0.1600
Yes Yes 0.1341 0.1960

Table 6. List Completion results

Dist. Weight S(A|QT) Ct MAP P10
Baseline LC 0.1611 0.1600

Cont. 0.1 Sum No 0.2385•◦ 0.2520◦

Cont. 0.9 Sum Yes 0.2467• 0.2560◦

Cont. 0.2 Max No 0.1845 - 0.2360 -

Title 0.1 Sum No 0.2524•◦ 0.2640◦

Title 0.9 Sum Yes 0.2641• 0.2760◦

Title 0.5 Max No 0.1618 - 0.2080 -

Cont. 0.05
Sum No 0.2528• 0.2640◦

Title 0.05

pseudo relevance feedback after the explicit feedback, only improves early precision,
and harms MAP. We take the run using only relevance feedback as our baseline for the
list completion task.

When we look at the previous entity ranking task, the largest part of the improvement
comes from using category information. So here we only experiment with using the cat-
egory information, and not the link information. We have again the different category
representations, content and category titles. Another variable here is how we combine
the scores, either add up all the category scores SSum(A|QT) or taking only the max-
imum score SMax(A|QT). Not part of the official task, we also make some runs that
use not only the categories of the example entities, but also the target category(ies)
provided with the query topic. In Table 6 we summarize some of the best results. The
combination of contents and title distance, does not lead to an improvement over using
only the title distance. The maximum score does not perform as well as the summed
scores. We use all categories assigned to the entity examples as target categories, but
some of these categories will not be relevant to the query topic introducing noise in the
target categories. When the scores are summed, this noise is leveled out, but when only
the maximum score is used it can be harmful. Comparing the list completion and the
entity ranking task, the list completion task has a slightly lower baseline score, but the
results of both tasks when category information is used, are very similar.

278 R. Kaptein and J. Kamps

3.2 Test Results

The test data consists of 35 new entity ranking topics.We use the parameters that gave
the best results on the training data, i.e. baseline with pseudo-relevance feedback and
λ = 0.1, weights of contents and title category information is 0.1, or 0.05 and 0.05 in
the combination. For the link prior we use the top 100 results, and the two-step model
is used to combine the information. In Table 7 our results on the test topics are shown.
Using the category information leads to an improvement of 100% over the baseline, the
score is doubled! Even when we rerank the top 500 results retrieved by the baseline
using only the category information, the result are significantly better than the baseline,
with a MAP of 0.2405. Since the category information is so important, it is likely that
relevant pages can be found outside the top 500. Indeed, when we rerank the top 2500,
but still evaluating the top 500, our results improve up to a MAP of 0.3519. Furthermore,
we found that on the test data doubling the weights of the category information leads
to slightly better results. Similar to the training results, relevance propagation performs
better than the link prior, and leads to small additional improvements over the runs using
category information.

Table 7. Results on the 2008 test topics

Results Category info Link info MAP P10
Baseline 0.1586 0.2257

500 Title 0.1 No 0.3059• 0.4171•

Title 0.2 No 0.3164• 0.4400•

Cont. 0.1 No 0.3031• 0.4086•

Cont. 0.2 No 0.3088• 0.4200•

Title 0.05 Cont. 0.05 No 0.3167• 0.4343•

Title 0.1 Cont. 0.1 No 0.3189• 0.4400•

Title 0.05 Cont. 0.05 Prior 0.5 0.3196• 0.4371•

Title 0.05 Cont. 0.05 Prop. 0.1 0.3324• 0.4543•

2500 Title 0.1 No 0.3368• 0.4343•

Title 0.2 No 0.3504• 0.4514•

Title 0.2 Prop. 0.1 0.3519• 0.4629•

For the list completion task we submitted two runs. These runs use only the category
information, in the form of category titles and summing scores over categories. Curi-
ously, the run using only the examples scores slightly better than the run that uses also
the specified target categories, with MAP of 0.325 and 0.323 respectively.

4 Conclusion

We have presented our entity ranking approach where we use category and link infor-
mation. Category information is the factor that proves to be most useful and we can do
more than simply filtering on the target categories. Category information can both be ex-
tracted from the category titles and from the contents of the category. Link information

Finding Entities in Wikipedia Using Links and Categories 279

can also be used to improve results, especially early precision, but these improvements
are smaller. In future research, we will look in more detail at the list completion task to
derive more focused target categories from the example entities.

Acknowledgments. This research is funded by the Netherlands Organization for Scien-
tific Research (NWO, grant # 612.066.513).

References

[1] Hiemstra, D., Robertson, S., Zaragoza, H.: Parsimonious language models for information
retrieval. In: Proceedings SIGIR 2004, pp. 178–185. ACM Press, New York (2004)

[2] Kamps, J., Koolen, M.: The importance of link evidence in Wikipedia. In: Macdonald, C.,
Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956,
pp. 270–282. Springer, Heidelberg (2008)

[3] Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language-model based search
engine for complex queries. In: Proceedings of the International Conference on Intelligent
Analysis (2005)

[4] Tsikrika, T., Serdyukov, P., Rode, H., Westerveld, T., Aly, R., Hiemstra, D., de Vries, A.P.:
Structured document retrieval, multimedia retrieval, and entity ranking using PF/Tijah. In:
Focused Access to XML Documents, pp. 306–320 (2007)

[5] Vercoustre, A.M., Pehcevski, J., Thom, J.A.: Using wikipedia categories and links in entity
ranking. In: Focused Access to XML Documents, pp. 321–335 (2007)

Topic Difficulty Prediction in Entity Ranking

Anne-Marie Vercoustre1, Jovan Pehcevski2, and Vladimir Naumovski2

1 INRIA, Rocquencourt, France
anne-marie.vercoustre@inria.fr

2 Faculty of Management and Information Technologies, Skopje, Macedonia
{jovan.pehcevski,vladimir.naumovski}@mit.edu.mk

Abstract. Entity ranking has recently emerged as a research field that
aims at retrieving entities as answers to a query. Unlike entity extraction
where the goal is to tag the names of the entities in documents, entity
ranking is primarily focused on returning a ranked list of relevant en-
tity names for the query. Many approaches to entity ranking have been
proposed, and most of them were evaluated on the INEX Wikipedia test
collection. In this paper, we show that the knowledge of predicted classes
of topic difficulty can be used to further improve the entity ranking per-
formance. To predict the topic difficulty, we generate a classifier that uses
features extracted from an INEX topic definition to classify the topic into
an experimentally pre-determined class. This knowledge is then utilised
to dynamically set the optimal values for the retrieval parameters of our
entity ranking system. Our experiments suggest that topic difficulty pre-
diction is a promising approach that could be exploited to improve the
effectiveness of entity ranking.

1 Introduction

The INitiative for Evaluation of XML retrieval (INEX) started the XML Entity
Ranking (XER) track in 2007 [4] with the goal of creating a test collection
for entity ranking using the Wikipedia XML document collection [6]. The XER
track was run again in 2008, introducing new tasks, topics and pooling strategies
aiming at improving the XER test collection [5]. The objective of the two INEX
XER tracks was to return names of entities rather than full documents that
correspond to those entities as answers to an INEX topic. Different approaches
to entity ranking have been proposed and evaluated on the two INEX Wikipedia
XER test collections, which resulted in many advances to this research field.
However, little attention has been put on the impact of the different types (or
classes) of topics on the entity ranking performance.

Predicting query difficulty in information retrieval (IR) has been the subject
of a SIGIR workshop in 2005 that focused both on prediction methods for query
difficulty and on the potential applications of those predicted methods [2]. The
applications included re-ranking answers to a query, selective relevance feedback,
and query rewriting. On the other hand, the distinction between easy and diffi-
cult queries in IR evaluation is relatively recent but offers important insights and
new perspectives [8,23]. The difficult queries are defined as the ones on which

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 280–291, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Topic Difficulty Prediction in Entity Ranking 281

the evaluated systems are the less successful. The initial motivation for query
difficulty prediction was related to the need for evaluation measures that could
be applied for robust evaluation of systems across different collections [19,20].
Recently, Mizzaro [13] also advocated that the evaluation measures should re-
ward systems that return good results on difficult queries more than on easy
ones, and penalise systems that perform poorly on easy queries more than on
difficult ones.

In this paper, we build on the above arguments and develop a method for
query (topic) difficulty prediction in the research field of XML entity ranking.
Our approach is based on the generation of a topic classifier that can classify
INEX XER topics from a number of features extracted from the topics them-
selves (also called static or a-priori features) and possibly from a number of
other features calculated at run time (also called dynamic or a-posteriori fea-
tures). The main goal is to apply the topic difficulty prediction to improve the
effectiveness of our entity ranking system that was evaluated as one of the best
performing XER systems at INEX 2007 and 2008 [4,5].

2 Topic Difficulty Classification

In this section, we classify the INEX XER topics by their difficulty. After a
brief description of the two INEX XER tracks, we present our methodology to
identifying the different classes of topics.

2.1 XML Entity Ranking at INEX

The two INEX XER test collections comprise 46 topics (2007) and 35 topics
(2008) with corresponding relevance assessments available, most of which were
proposed and assessed by the track participants [4,5]. Figure 1 shows an ex-
ample of an INEX 2007 XER topic definition. In this example, the title field
contains the plain content only query, the description provides a natural lan-
guage description of the information need, and the narrative provides a detailed
explanation of what makes an entity answer relevant. In addition to these fields,
the categories field provides the target category of the expected entity an-
swers (used in the entity ranking task), while the entities field provides a few
examples of the expected entity answers (used in the list completion task).

Eight participating groups submitted in total 35 XER runs in 2007, while six
participants submitted another 33 XER runs in 2008. The INEX XER track does
not offer a large test collection, however this is currently the only test collection
available for the purposes of our topic difficulty classification. In this paper we
focus on the list completion task, corresponding to a training data set comprising
a total number of 46 topics and 17 runs, and a testing data set comprising a
total number of 35 topics and 16 runs.

2.2 Identifying Classes of Topics

The classification of topics into groups is based on how well the runs submitted
by participating systems answered to the topics. For each topic, we calculate the

282 A.-M. Vercoustre, J. Pehcevski, and V. Naumovski

<inex_topic>

<title>circus mammals</title>

<description>

I want a list of mammals which have ever been tamed to perform in circuses.

</description>

<narrative>

Each answer should contain an article about a mammal which can be a part

of any circus show.

</narrative>

<categories>

<category id="138">mammals</category>

</categories>

<entities>

<entity id="379035">Asian Elephant</entity>

<entity id="4402">Brown Bear</entity>

</entities>

</inex_topic>

Fig. 1. INEX 2007 XER topic definition

topic difficulty using the Average Average Precision (AAP) measure [14]. AAP
is the average AP of all the submitted runs for a given topic: the higher the
AAP, the easier the topic.

We define two methods for grouping topics into classes depending on the
number of groups we want to build, either two or four classes to experiment with
two different types of classes. For grouping the topics into two classes (Easy and
Difficult), we use the mean AAP measure as a splitting condition: if AAP for
a given topic is superior to the mean AAP (calculated across all topics) then
the topic is classified as Easy otherwise it is classified as Difficult. For grouping
the topics into four classes (Easy, Moderately Easy, Moderately Difficult, and
Difficult), we use the mean AAP and the standard deviation around the mean
as a splitting condition:

if AAP >= (mean AAP + stDev) then Easy topic
if AAP >= (mean AAP) and AAP < (mean AAP + stDev) then
Moderately Easy topic
if AAP >= (mean AAP - stDev) and AAP < (mean AAP) then Mod-
erately Difficult topic
if AAP < (mean AAP - stDev) then Difficult topic

The above two or four classes of INEX XER topics are then used as a ba-
sis for evaluating our automatic feature-based topic classification algorithm, as
described in Section 4.

Topic Difficulty Prediction in Entity Ranking 283

3 Our Entity Ranking System

Our approach to identifying and ranking entities combines: (1) the full-text
similarity of the entity page with the query; (2) the similarity of the page’s
categories with the categories of the entity examples; and (3) the link contexts
found in the top ranked pages returned by a search engine for the query.

We developed an XER system that involves the following modules.

1. The topic module takes an INEX topic as input and generates the corre-
sponding full-text query and the list of entity examples.

2. The search module sends the query to a search engine1 and returns a list of
scored Wikipedia pages. The assumption is that a good entity page is a page
that answers the query.

3. The link extraction module extracts the links from a selected number of
highly ranked pages, together with the information about the paths of the
links (XML paths). The assumption is that a good entity page is a page that
is referred to by a page answering the query; this is an adaptation of the
HITS [9] algorithms to the problem of entity ranking.

4. The linkrank module calculates a weight for a page based (among other
things) on the number of links to this page. The assumption is that a good
entity page is a page that is referred to from contexts with many occurrences
of the entity examples. A coarse context would be the full page that contains
the entity examples. Smaller and better contexts may be elements such as
paragraphs, lists, or tables [16].

5. The category similarity module calculates a weight for a page based on the
similarity of the page categories with the categories attached to the entity
examples. The assumption is that a good entity page is a page associated
with a category close to the categories of the entity examples [18].

6. The full-text module calculates a weight for a page based on its initial search
engine score.

The global score S(t) for a target entity page is calculated as a linear combina-
tion of three normalised scores, the linkrank score SL(t), the category similarity
score SC(t), and the full-text score SZ(t):

S(t) = αSL(t) + βSC(t) + (1 − α − β)SZ(t) (1)

where α and β are two parameters whose values can be tuned differently de-
pending on the entity retrieval task.

Details of the global score and the three separate scores can be found in
previous publications [16,18]. In this paper we are interested in automatically
adapting the values of α and β parameters to the topic, depending on the topic
class. By predicting the optimal values for α and β parameters that correspond
to each class of topic difficulty, we aim at improving the performance score of
our system over the current best performance score that uses pre-defined static
values for the α and β parameters.
1 We used Zettair, an open source search engine: http://www.seg.rmit.edu.au/zettair/

284 A.-M. Vercoustre, J. Pehcevski, and V. Naumovski

4 Topic Difficulty Prediction

In this section we present our methodology for predicting topic difficulty. Our
approach is based on generating a classifier to classify topics in two or four
classes (as described in Section 2). The classifier is built using features extracted
from the INEX topic definition. We use the open source data mining software
Weka [21] developed by the University of Waikato. Weka is a collection of ma-
chine learning algorithms for data mining tasks that, given a training set of
topics, can generate a classifier from the topics and their associated features.

4.1 Topic Features

From the specific structure of the INEX 2007 XER topics we developed 32 dif-
ferent a-priori features. We call these a-priori (or static) features because each of
them can be calculated by using only the topic definition before any processing
is made by our system. The features include the number of words (excluding
stop-words) found in the topic title, the topic description and the topic narra-
tive, respectively; the number of verbs and sentences found in the description
or narrative part, as well as the number of words in the union or intersection
of these parts of the topic. Additional features are built using the ratio be-
tween previous features, for example the ratio between the number of words
in the title and the description, or the ratio between the number of sentences
in the description and the narrative. The idea is that if the narrative needs
more explanation than the title or the description, it may be because good
answers could be difficult to identify among many irrelevant pages. Counting
verbs required some natural language processing. We used the NLTK toolkit
software [12] which especially helped with the different features concerning verb
forms.

Other a-priori features are related to the target categories and the entity
examples listed in the topic. The target categories can be either very broad or
very specific and they represent indications about the desired type of answer
entities, not hard constraints. There could be a correlation between the number
of target categories and the topic performance that we wanted to identify. Other
features involve not just the topic description but also the INEX Wikipedia test
collection, for example, the number of Wikipedia pages attached to the target
categories. We also count the number of different Wikipedia categories attached
to the entity examples in the topic. Finally we create features that represent the
union or intersection of target categories and categories attached to the entity
examples.

We also defined a few a-posteriori (dynamic) features that could be calculated
at run time, i.e. when sending the topic (query) to our system. These features
include the number of links from the highly ranked pages returned by the search
engine, the number of contexts identified in those pages and the number of
common categories attached to the entity examples and the answer entities.

Topic Difficulty Prediction in Entity Ranking 285

Table 1. Nine topic features that correlated well with the topic difficulty prediction.
In the table, w stands for words, narr for narrative, desc for description, t cat for
target categories, and e cat for categories attached to entity examples. For example,
#sent narr is the number of sentences in the narrative part of the INEX topic.

Number Description Features

1 Topic definition features #sent narr
2 – 6 Ratio of topic definition #w title/#w narr, #w intersec(title,narr)/#w union(title,narr)

features #w intersec(desc,narr)/#w union(desc,narr),
#w intersec(title,desc)/#w union(title,desc,narr),
#w intersec(desc,narr)/#w union(title,desc,narr)

7 – 8 Topic definition and #pages per t cat, #intersec(e cat)
Wikipedia features

9 Ratio of topic definition #intersec(e cat)/#union(e cat)
and Wikipedia features

4.2 Topic Classifier

The next step was to identify among the 32 features those that best correlated
with the topic difficulty, i.e. the features that would be usable by a classifier to
predict between different classes of topics. We first generated many classifiers,
each one associated with a random subset of the 46 INEX 2007 XER topics.
The classifiers were generated using the Weka j48 classifier based on the well
known Quinlan’s C4.5 statistical classifier [17], with each training topic subset
classified using the topic classification explained in Section 2. We then manually
analysed all the decision trees generated by Weka to identify the features that
were actually used by the generated classifiers. As a result, we could extract a
small subset of nine features that correlated well with topic difficulty.

Table 1 shows the nine features used to generate the training topic subsets.
We discovered that the dynamic (a-posteriori) features had no influence on the
generated classifiers, and so we only used the a-priori features.

4.3 Training and Testing Topic Sets

For each training subset of INEX 2007 XER topics that we used previously for
generating a classifier, we used the testing set comprising all the 35 INEX 2008
XER topics for evaluating the performance of this classifier. We tried many
different mostly random combinations of training topic subsets, but because of
their relatively small sizes on average the accuracy of the correctly classified
instances was around 71%.

To improve the accuracy, we used a well known approach that combines several
decision trees, each generated from slightly different topic sets. This is known
as Random Forests [1] and was used in query prediction by Yom-Tov et al. [22].
Before implementing the combined classifier, we carefully built the training topic
set for each individual predictor so that the included topics were representative
of different features.

We manually divided the training set of 46 INEX 2007 XER topics into four
subsets of around 35 topics each. We had to do it manually in order to get as

286 A.-M. Vercoustre, J. Pehcevski, and V. Naumovski

Table 2. Accuracy achieved by the six two-class classifiers on the 35 INEX 2008 topics

Class
2

Classifier Correct Incorrect

1 24/35 (68%) 11/35 (32%)
2 25/35 (71%) 10/35 (29%)
3 25/35 (71%) 10/35 (29%)
4 25/35 (71%) 10/35 (29%)
5 24/35 (68%) 11/35 (32%)

combined 26/35 (74%) 9/35 (26%)

much different and representative topics as possible, especially because of the
small topic subset sizes. So those four subsets and the one with all 46 topics
made five different training sets from which we built five separate classifiers. For
these and the final combined classifier we also had to build a testing topic set
that does not include any of the training topics. The INEX 2008 XER topic set
was used for this purpose.

4.4 Validation of Topic Difficulty Prediction

The final topic difficulty prediction classifier was built using a simple voting
system which is the reason why we needed an odd number of classifiers. For
building a two-class classifier the voting algorithm is trivial: for a topic we get a
prediction from the five classifiers and count the number of predictions as Easy
and the number of predictions as Difficult; the majority gives the prediction for
the final classifier. For example, if the predictions from the five classifiers are
[diff, easy, easy, diff, diff], the combined prediction is Difficult.

The combined two-class classifier resulted in a precision of 74% on our testing
set which is better than what we could achieve with a single classifier. Table 2
shows the accuracy achieved by each of the six classifiers.

We also considered the possibility of building a four-class classifier (Easy, Mod-
erately Easy, Moderately Difficult, and Difficult). A similar voting algorithm is
used by simply choosing diff : easy = 0:5 and diff : easy = 5:0 to be predicted
as Easy and Difficult topics, respectively, with the diff : easy = (1:4 | 2:3) and
diff : easy = (4:1 | 3:2) combinations resulting in Moderately Easy and Moder-
ately Difficult topics, respectively. The combined four-class classifier resulted in
an accuracy of 31% on our testing set which was much less than that achieved
by the two-class classifier.

5 Applying Topic Difficulty Prediction in Entity Ranking

Our objective with topic difficulty prediction was to improve the performance
of our XER system by dynamically tuning the values for system parameters

Topic Difficulty Prediction in Entity Ranking 287

Table 3. Estimated values for optimal α/β system parameters, as measured by MAP
using the 46 topics of the INEX 2007 XER training collection

Class
2 4

Easy Diff Easy modEasy modDiff Diff
Measure α β α β α β α β α β α β

MAP 0.2 0.6 0.1 0.8 0.0 0.7 0.2 0.6 0.1 0.8 0.5 0.0

according to the predicted topic class. Specifically, for each of the 35 INEX 2008
topics in the testing set, we adapt the values for the α and β system parameters
in accordance with the estimated optimal values observed on the training set.

5.1 Choosing Optimal System Parameters by Topic Difficulty

We first estimated the optimal values for the system parameters by using the 46
INEX 2007 XER training topics and by also taking into account their correspond-
ing topic difficulty classes. We generated all the possible 66 runs by respectively
varying the values of α and β from 0 to 1 by increment of 0.1. For each topic, we
then measured the average precision (AP) for each run and ordered the runs by
decreasing value of AP. This way we could identify the values of the two (α, β)
parameters that performed best for each individual topic. To estimate which (α,
β) pair would be optimal for a given topic difficulty class, we used the topics that
belong to a particular class (such as Easy), and calculated the mean AP (MAP)
for each run that appeared at least once among the ten highly ranked runs for
a given topic.2 We then ordered the runs by decreasing scores and identified the
highest ranked run as the optimal (α, β) pair for each topic difficulty class. We
did this both for the two and the four classes of topic difficulty.

Table 3 shows the estimated optimal values for (α, β) as measured by MAP,
when using two or four classes of topic difficulty. Interestingly, with the four-
class prediction the optimal parameter values for the Easy topics are (α = 0.0,
β = 0.7), i.e. the link score is ignored. For the Difficult topics the opposite effect
is observed with the category score ignored and a high weight spread evenly on
the link score α and the Zettair score (1 - α - β).

5.2 Evaluation of the Predicted Topic Performance

We now use our combined topic difficulty prediction algorithm (described in
Section 4) to tune and evaluate the performance of our XER system on the 35
INEX 2008 XER testing topics. According to the estimated prediction, we aim
at dynamically setting the α and β parameters to their optimal values shown in
Table 3. We did two sets of experiments, respectively with two and four classes
of topic difficulty. We use MAP as our choice of evaluation measure.

2 The value ten was determined experimentally on the XER training topic set.

288 A.-M. Vercoustre, J. Pehcevski, and V. Naumovski

Table 4. Evaluation of the predicted topic performance, as measured by MAP using
the 35 topics of the INEX 2008 XER testing collection. The † symbol shows statistical
significance over the Baseline run (p < 0.05).

Class
2 4

Easy Diff Easy modEasy modDiff Diff
Run 0.2 0.6 0.1 0.8 0.0 0.7 0.2 0.7 0.1 0.8 0.6 0.0

Baseline N/A 0.36280 N/A
Predicted 0.38085 0.30769
Optimal 0.38705 0.38431
Perfect N/A 0.45746† N/A

To evaluate the benefits of using topic difficulty prediction, we compare the
performances of four different runs:

1. Baseline run that does not use topic prediction with parameter vales set
to (α=0.2, β=0.6). This was the best performing entity ranking run at
INEX 2007 (for the list completion task) when using the MAP measure.

2. Predicted run with parameter values set according to the estimated topic
difficulty prediction on the training collection. The difficulty of a particular
INEX 2008 XER testing topic was first predicted by our topic prediction
algorithm, and the system parameter values were then set to the estimated
optimal values for that topic difficulty class (as shown in Table 3).

3. Optimal run with parameter values set to the estimated optimal values on the
training collection. Given the previously determined difficulty of a particular
INEX 2008 XER testing topic (by applying the AAP measure on all the
INEX 2008 submitted runs), the system parameter values were set to the
estimated optimal values for that topic difficulty class. This is the best run
we could aim at by using our topic difficulty prediction algorithm.

4. Perfect run with parameter values set to the best values (out of all the 66
value combinations) that can be achieved for each topic on the INEX 2008
XER testing collection. This is the run that produces the absolute best
performance with our current XER system.

The results are presented in Table 4. The table shows that a two-class pre-
diction of topic difficulty is performing better than the baseline (our last year
best run), although the difference in performance is not statistically significant.
These two runs were among the top four best performing runs at INEX 2008,
all of which were submitted by our participating group. On the other hand, the
four-class prediction of topic difficulty resulted in decreased performance, which
is mainly due to the fact that the topic prediction algorithm is specifically de-
signed for two-class rather than for four-class prediction. Although the results
are promising, we recognise that the small size of the training and testing topic
sets do not allow for very conclusive evaluation.

Topic Difficulty Prediction in Entity Ranking 289

6 Related Work

The approaches to query prediction can generally be grouped into two types:
static prediction approaches, based on intrinsic characteristics of the query and
possibly the document collection [8]; and dynamic prediction approaches, which
use characteristics of the top ranked answers to the query [23].

Hao Lang et al. [11] evaluate query performance based on the covering topic
score that measures how well the topic of the query is covered by documents
retrieved by the system (dynamic prediction). Cronen-Townsend et al. [3] pro-
pose to predict query performance by computing the relative entropy (clarity
score) between a query language model and the corresponding collection lan-
guage model (static prediction).

Mothe and Tanguy [15] predict query difficulty based on linguistic features,
using TreeTagger for part-of-speech tagging and other natural language pro-
cessing tools. Topic features include morphological features (number of words,
average of proper nouns, average number of numeral values), syntactical features
(average conjunctions and prepositions, average syntactic depth and link span)
or semantic features (average polysemy value). They found that the only pos-
itively correlated feature is the number of proper nouns, although the average
syntactic link span and the average polysemy value also have some correlation
with topic difficulty. We use some morphological or syntactic features in our
topic prediction algorithm, but we also take advantage of the structure of the
topic (title, description, narrative).

Kwok [10] uses Support Vector Machine (SVM) regression to predict the weak-
est and strongest queries in the TREC 2004 topic set (static prediction). Their
choice of features include inverse document frequency of query terms and aver-
age term frequency in the collection. They found that features based on term
frequencies could predict correctly even with short queries.

Yom-Tov et al. [22] predict query difficulty by measuring the contribution
of closely related query terms, using features such as the overlap between the
k-top answers to a sub-query (a query based on one query term) and to the full
query. They experimented with two different query predictors: an histogram-
based predictor and a modified decision tree. The difficulty predictor was used
for selective query expansion or reduction.

Grivolla et al. [7] propose several classifiers to predict easy and difficult
queries. They use decision tree and SVM types of classifiers, and select use-
ful features among a set of candidates; the classifiers are trained on the TREC
8 test collection. The features are computed from the query itself (static fea-
tures), the retrieval results and the knowledge about the retrieval process (dy-
namic features). They tested many different classifiers but did not combine them.
Our approach is very similar to theirs, although we use different topic-specific
features, a combined classifier and different test collection (INEX instead of
TREC).

290 A.-M. Vercoustre, J. Pehcevski, and V. Naumovski

7 Conclusion and Future Work

We have presented our experiments in predicting topic difficulty and its applica-
tion to the system we have developed for XML entity ranking. We demonstrated
that it is possible to predict accurately a two-class level of topic difficulty with
a classifier generated from a selected number of static features extracted from
the INEX topic definition and the Wikipedia document collection. We also ex-
perimented with dynamic features from the intermediary results of the query
processing but those features did not correlate well with the topic prediction.
The more interesting result is related to the analysis of four classes of topic dif-
ficulty and their impact on the optimal parameter values for our XER system:
for the Easy topics, the use of Wikipedia categories is very important while for
the Difficult topics the link structure plays a very important role.

The application of topic prediction in tuning our system has shown encourag-
ing improvement over our last year best result but we need a larger test collection
to confirm the significance of our findings. The major limitation of our topic pre-
diction approach is that it relies on the INEX topic definition that is much richer
than standard Web queries. In the future we plan to develop a dynamic query
prediction approach based (among other things) on the query similarity scores
of the relevant entities retrieved by our XER system.

Acknowledgements

Most of this work was completed while Vladimir Naumovski was doing his in-
ternship at INRIA in 2008.

References

1. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
2. Carmel, D., Yom-Tov, E., Soboroff, I.: Predicting query difficulty - methods and

applications. SIGIR Forum 39(2), 25–28 (2005)
3. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In:

Proceedings of the 25th ACM SIGIR conference on Research and development in
information retrieval (SIGIR 2002), Tampere, Finland, pp. 299–306 (2002)

4. de Vries, A.P., Vercoustre, A.-M., Thom, J.A., Craswell, N., Lalmas, M.: Overview
of the INEX 2007 entity ranking track. In: Fuhr, N., Kamps, J., Lalmas, M.,
Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 245–251. Springer, Heidelberg
(2008)

5. Demartini, G., de Vries, A.P., Iofciu, T., Zhu, J.: Overview of the INEX 2008
entity ranking track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008.
LNCS, vol. 5631. Springer, Heidelberg (2009)

6. Denoyer, L., Gallinari, P.: The Wikipedia XML corpus. SIGIR Forum 40(1), 64–69
(2006)

7. Grivolla, J., Jourlin, P., de Mori, R.: Automatic classification of queries by expected
retrieval performance. In: Proceedings of the SIGIR workshop on predicting query
difficulty, Salvador, Brazil (2005)

Topic Difficulty Prediction in Entity Ranking 291

8. He, B., Ounis, I.: Query performance prediction. Information Systems 31(7),
585–594 (2006)

9. Kleinberg, J.M.: Authoritative sources in hyperlinked environment. Journal of the
ACM 46(5), 604–632 (1999)

10. Kwok, K.: An attempt to identify weakest and strongest queries. In: Proceedings
of the SIGIR workshop on predicting query difficulty, Salvador, Brazil (2005)

11. Lang, H., Wang, B., Jones, G., Li, J.-T., Ding, F., Liu, Y.-X.: Query performance
prediction for information retrieval based on covering topic score. Journal of Com-
puter Science and technology 23(4), 590–601 (2008)

12. Loper, E., Bird, S.: NLTK: The natural language toolkit. In: Proceedings of the
ACL 2002 Workshop on Effective tools and methodologies for teaching natural
language processing and computational linguistics, Philadelphia, Pennsylvania,
pp. 63–70 (2002)

13. Mizzaro, S.: The good, the bad, the difficult, and the easy: Something wrong
with information retrieval evaluation? In: Macdonald, C., Ounis, I., Plachouras,
V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 642–646.
Springer, Heidelberg (2008)

14. Mizzaro, S., Robertson, S.: HITS hits TREC: Exploring IR evaluation results
with network analysis. In: Proceedings of the 30th ACM SIGIR conference on Re-
search and development in information retrieval (SIGIR 2007), Amsterdam, The
Netherlands, pp. 479–486 (2007)

15. Mothe, J., Tanguy, L.: Linguistic features to predict query difficulty. In: Proceed-
ings of the SIGIR workshop on predicting query difficulty, Salvador, Brazil (2005)

16. Pehcevski, J., Vercoustre, A.-M., Thom, J.A.: Exploiting locality of Wikipedia
links in entity ranking. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I.,
White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 258–269. Springer, Heidelberg
(2008)

17. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Francisco (1993)

18. Thom, J.A., Pehcevski, J., Vercoustre, A.-M.: Use of Wikipedia categories in entity
ranking. In: Proceedings of 12th Australasian Document Computing Symposium
(ADCS 2007), Melbourne, Australia, pp. 56–63 (2007)

19. Voorhees, E.M.: The TREC robust retrieval track. In: Proceedings of the Thir-
teenth Text Retrieval Conference (TREC 2004) (2004)

20. Webber, W., Moffat, A., Zobel, J.: Score standardization for inter-collection com-
parison of retrieval systems. In: Proceedings of the 31st ACM SIGIR conference
on Research and development in information retrieval (SIGIR 2008), Singapore,
pp. 51–58 (2008)

21. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques (2/E). Morgan Kaufmann, San Francisco (2005)

22. Yom-Tov, E., Fine, S., Carmel, D., Darlow, A., Amitay, E.: Juru at TREC 2004:
Experiments with prediction of query difficulty. In: Proceedings of the Thirteenth
Text Retrieval Conference (TREC 2004) (2004)

23. Zhou, Y., Croft, W.B.: Query performance prediction in web search environments.
In: Proceedings of the 30th ACM SIGIR conference on Research and development
in information retrieval (SIGIR 2007), Amsterdam, The Netherlands, pp. 543–550
(2007)

A Generative Language Modeling Approach for
Ranking Entities

Wouter Weerkamp, Krisztian Balog, and Edgar Meij

University of Amsterdam, ISLA, Science Park 107, 1098XG Amsterdam, The Netherlands
{w.weerkamp,k.balog,edgar.meij}@uva.nl

Abstract. We describe our participation in the INEX 2008 Entity Ranking track.
We develop a generative language modeling approach for the entity ranking and
list completion tasks. Our framework comprises the following components: (i)
entity and (ii) query language models, (iii) entity prior, (iv) the probability of
an entity for a given category, and (v) the probability of an entity given another
entity. We explore various ways of estimating these components, and report on
our results. We find that improving the estimation of these components has very
positive effects on performance, yet, there is room for further improvements.

1 Introduction

The Enitity Ranking track of this year’s INEX features three tasks: entity ranking, list
completion, and entity relation search [3]. In our participation, we focus on the first and
second tasks, leaving entity relation search for coming years. Both tasks (entity rank-
ing and list completion) are aimed at retrieving entities from a semi-structured docu-
ment collection. The document collection at hand is Wikipedia [4], and an entity is a
Wikipedia article by definition.

The entity ranking task aims at retrieving entities given a certain topic and Wikipedia
category: the goal is to identify the entities that are relevant given the topic and fit within
the given category. The list completion task is slightly different and aims at adding
entities of the same type to a small sample set of entities. Again, we also have the topic
and category available, but as additional information we get one or more entities as
examples.

In our participation we use a generative language modeling approach to model
both tasks. This approach has been successfully applied in many information retrieval
tasks [1, 5, 7, 8, 10]. Language models are attractive because of their foundations in sta-
tistical theory, the great deal of complementary work on language modeling in speech
recognition and natural language processing, and the fact that very simple language
modeling retrieval methods have performed quite well empirically.

A large portion of this paper is directed to the modeling of entity ranking and the
estimation of the various components this framework offers us. We submitted a total of
six runs, again with a focus on the entity ranking task (four runs).

The remainder of this paper introduces the modeling of the entity ranking task in
Section 2, and of the list completion task in Section 3. Next, we discuss the estimation
of the various components of both models in Section 4 and the experimental setup

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 292–299, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Generative Language Modeling Approach for Ranking Entities 293

in Section 5. The submitted runs (Section 6) and their results and discussion of these
results (Section 7) follow, and we conclude in Section 8.

2 Modeling Entity Ranking

Entities are ranked by their probability of being relevant given a query q and a set of
categories C, that is P (e|q, C). We assume that q and C are conditionally independent
and, moreover, that each of the categories c ∈ C are mutually independent. Formally:

P (e|q, C) = P (e|q) · P (e|C) (1)

= P (e|q) ·
∏
c∈C

P (e|c).

To estimate the probability of an entity given the query P (e|q), we apply Bayes’ rule
and drop the denominator P (q) which is constant for all entities and, thus, does not
influence the ranking:

P (e|q) ∝ P (q|e) · P (e). (2)

Here, P (q|e) expresses the probability that q is generated by entity e, and P (e) is the
a priori probability of an entity being relevant (independent of the query). For the sake
of simplicity, P (e) is assumed to be uniform, and is not included in the equations from
now onwards.

We infer an entity model for each entity e, such that the probability of a term given
the entity model is P (t|θe). This model is then used to predict how likely the entity
would produce query q. Each query term is assumed to be sampled identically and inde-
pendently. Thus, the query likelihood is obtained by taking the product of the individual
term probabilities across all terms in the query:

P (q|θe) =
∏
t∈q

P (t|θe)n(t,q), (3)

where n(t, q) denotes the number of times t is present in q. Putting together our choices
so far (Eqs. 1, 2, and 3) we obtain the following:

P (e|q, C) =
∏
t∈q

P (t|θe)n(t,q) ·
∏
c∈C

P (e|c). (4)

For computational reasons, we move to the log domain, and use the following formula
for ranking entities:

log P (e|q, C) ∝
(∑

t∈q

P (t|θq) · log P (t|θe)

)
+

∑
c∈C

log P (e|c). (5)

Note that n(t, q) has been replaced with P (t|θq), where θq is referred to as the query
model. This allows us more flexible weighting of query terms. Three important compo-
nents remain to be defined: the entity model θe, the query model θq , and the probability
of an entity given a category P (e|c). These will be introduced in the following sections.

294 W. Weerkamp, K. Balog, and E. Meij

3 Modeling List Completion

The list completion task is modeled similarly to the entity ranking task, with the addition
that the probability of the entity is also conditioned on a set of example entities, E.
We assume that example entities are conditionally independent from the query and the
categories, as well as mutually independent from each other. Formally:

P (e|q, C, E) = P (e|q, C) ·
∏

e′∈E

P (e|e′). (6)

Again, we perform this computation in the log domain:

log P (e|q, C, E) = log P (e|q, C) +
∑
e′∈E

log P (e|e′). (7)

The estimation of P (e|q, C) has already been discussed in Section 2. A new component
to be defined is the probability of an entity e given entity e′: P (e|e′). In other words,
this probability expresses the similarity of two entities.

4 Estimating the Components

In this section we detail how various components of the models introduced in the pre-
vious sections are estimated. Specifically, we discuss the implementation of the entity
model θe, the query model θq, the probability of an entity given a set of categories
P (e|C), and finally, the probability of an entity given another entity P (e|e′).

4.1 Entity Model

The entity is represented as a multinomial probability distribution over terms. To esti-
mate P (t|θe) we smooth the empirical entity model with the background collection to
prevent zero probabilities:

P (t|θe) = (1 − λe) · P (t|e) + λe · P (t) (8)

Since entities correspond to Wikipedia articles, this way of modeling an entity is iden-
tical to constructing a smoothed document model for each Wikipedia page. The choice
of the smoothing parameter λe is discussed in Section 5.

4.2 Query Model

Our baseline query model P (t|θq) is set to n(t, q) · |q|−1, where n(t, q) is the number of
occurrences of term t in query q, and |q| is the query length. Essentially, the probability
mass is distributed uniformly across query terms. Since this representation of the query
is quite sparse, we would like to add more terms to the original query. By mixing new
terms and original query terms, we end up with the following equation:

P (t|θq) = (1 − λq) · P (t|q̂) + λq · P (t|q), (9)

where P (t|q̂) is the probability of the term given the expanded query.

A Generative Language Modeling Approach for Ranking Entities 295

Balog et al. [2] introduce various methods for constructing expanded query models
by sampling terms from a set of example documents (complementing the textual query).
Based on the information provided with the topic statement, we have three straightfor-
ward ways of applying these methods to our current scenario, by (i) treating all entities
belonging to the target categories as examples (both for entity ranking and list com-
pletion), (ii) employing a blind-relevance feedback approach, in which we perform a
baseline run and look at the categories which are assigned to the 10 highest-ranked en-
tities (category feedback for entity ranking), or (iii) using the example entities (only
list completion). Specifically, we use the best performing method, maximum likelihood
(ML), from [2] to estimate the expanded query model P (t|q̂).

4.3 Entity-Categories Probability

The probability of an entity e given a set of target categories C, P (e|C), is computed
as follows. Let cat(e) denote the set of categories e is assigned to. The overlap ratio
between cat(e) and the set of target categories C is used as an estimate of P (e|C):

P (e|C) =
|cat(e) ∩ C|

|C| , (10)

where |C| is the size of the set of target categories. We experiment further with this way
of estimating P (e|C), by introducing a parameter δ to control the weight of the overlap
between the two sets C and cat(e) and dropping the term in the denominator:

P (e|C) ∝ δ · |cat(e) ∩ C|. (11)

Based on initial experiments we set δ = 6.
Further, we hypothesize that the target categories for each topic, as used in Eqs. 10

and 11, are not exhaustive. Therefore, in order to amend this set of categories, we apply
a simple expansion strategy. We leverage the hierarchical structure of Wikipedia cate-
gories, by expanding the set of target categories with their subcategories, up to certain
depth. Based on preliminary experiments, we set the maximum depth to three.

4.4 Entity-Entity Probability

Our model for the list completion task involves the estimation of the similarity between
two entities. This is expressed as P (e|e′), the probability of an entity e given another
entity e′ (see Eq. 6). We estimate this probability based on set overlap between the
categories assigned to each of the entities. To this end, we employ a standard set-based
similarity measure, Dice’s coefficient, calculated as follows:

P (e|e′) =
2 · |cat(e) ∩ cat(e′)|
|cat(e)| + |cat(e′)| , (12)

where cat(e) and cat(e′) are the set of categories assigned to entities e and e′,
respectively.

296 W. Weerkamp, K. Balog, and E. Meij

5 Experimental Setup

5.1 Document Representation

Besides representing the entity (Wikipedia page) by its entire textual content (referred
to as full representation), we opted for a second representation. Assuming that most
valuable information on a Wikipedia page is presented at the beginning of the article, we
select only the first paragraph of each article. This paragraph is the new representation
of the entity (refered to as paragraph representation). For the sake of comparability of
runs, we use the full representation in almost all cases.

5.2 Document Preprocessing

Document preprocessing consisted of removing stopwords only. Besides the “standard”
English stopwords, we added several Wikipedia-specific stopwords to the stopword list
(e.g. disambiguation, category, and stub).

5.3 Smoothing Parameter

For the smoothing parameter λe in Eq. 8, we set λe equal to |e|
β+|e| , where |e| is the

length of the entity (i.e., the number of terms in the entity’s representation). Essentially,
the amount of smoothing is proportional to the length of the entity (and is like Bayes
smoothing with a Dirichlet prior [6]). If there is very few content available for the
entity (i.e., the corresponding article is very short) then the model of the entity is more
uncertain, leading to a greater reliance on the background probabilities. We set β to be
the average entity length, i.e. β = 409 for the full representation and β = 42 for the
paragraph representation.

5.4 Query Modeling Parameter

For the construction of the new query model (Eq. 9), we need to set λq and decide on
the number of terms in the new query. For the entity ranking task, in which we select
our expansion terms from the category feedback approach, we set λq = 0.5 and select
the 20 terms with the highest probability. For the list completion task we set λq = 0.2
and again select the top 20 terms to be included in the new query.

6 Submitted Runs

This section lists our submitted runs (six in total) and the configuration used for each
(note that all runs use the full representation, unless stated otherwise). For the entity
ranking task the following four runs were submitted:

6 UAms ER T baseline: Our baseline run using Eq. 3.
3 UAms ER TC overlap: Overlap run using Eq. 5; we estimate P (e|C) as in Eq. 11,

and use an expanded category set C up to depth three.

A Generative Language Modeling Approach for Ranking Entities 297

4 UAms ER TC cat-exp: Expanded overlap run; similar to run 3 UAms ER T
overlap, except that we model the query according to Eq. 9, where expansion terms
are selected using the category feedback method. We select the top 2 categories and
use the entities within these categories as examples.

1 UAms ER TC mixture: Mixture run; we construct two runs using Eq. 5, one on
the full representation and one on the paragraph representation. Each run estimates
P (e|C) as in Eq. 11, and uses an expanded category set C up to depth three (para-
graph representation) or two (full representation). Both runs are combined using a
linear rank combination with a weight of 0.1 for the paragraph representation and
0.9 for the full representation.

The remaining two runs were submitted for the list completion task:

5 UAms LC TE baseline: Our baseline run using Eq. 7; we model the query accord-
ing to Eq. 9 and select expansion terms from the provided example entities.

2 UAms LC TCE dice: Our overlap run; similar to run 5 UAms LC T baseline. We
estimate P (e|e′) using Eq. 12 and P (e|C) as in Eq. 11, and use an expanded cate-
gory set C up to depth two.

7 Results and Discussion

We report on the results of our submissions and the best performing run among all
submitted runs for each task. The metric used for measuring performance is xinfAP [9].
Significance is tested against our best performing run, using a two-tailed paired t-test
and α = .05.

Table 1. Results for the entity ranking task. Significant differences against our best performing
run are marked with *.

Run xinfAP
1 FMIT ER TC nopred-cat-baseline-a1-b8 0.341
3 UAms ER TC overlap 0.253
4 UAms ER TC cat-exp 0.232
1 UAms ER TC mixture 0.222 *
6 UAms ER T baseline 0.111

Table 1 presents the results for the entity ranking task, in decreasing order of perfor-
mance. Our main finding are as follows. Taking category information into account
(6 UAms ER T baseline vs. the other runs) improves performance. Despite the appar-
ent increase over the baseline, in terms of xinfAP scores, these differences are not sig-
nificant. We leave the investigation of this to further work. Adding additional features
(besides using category information) seems less beneficial; query expansion using
the category feedback method (method (ii) in Section 4.2) has a slight negative
effect on performance (4 UAms ER TC cat-exp vs. 3 UAms ER TC overlap). Mixing
the two document representations, full and paragraph, hurts performance
(1 UAms ER TC mixture vs. 3 UAms ER TC overlap), in this case significantly so.

298 W. Weerkamp, K. Balog, and E. Meij

Table 2. Results for the list completion task. Significant differences against our best performing
run are marked with *.

Run xinfAP
1 FMIT LC TE nopred-stat-cat-a1-b8 0.402
2 UAms LC TCE dice 0.319
5 UAms LC TE baseline 0.133 *

Results for the list completion task are shown in Table 2. We observe that adding es-
timates of P (e|e′) and P (e|C) to the baseline yields in substantial and significant im-
provements over our (naive) baseline. Further analysis is needed to see which of the
components makes up for most of this improvement.

8 Conclusion

We described the approach, submitted runs, and results of our participation in this year’s
INEX Entity Ranking track. Our focus lied on the entity ranking and list completion
tasks, and our chief aim was to develop a general language modeling framework to
model these in a uniform and theoretically sound way. Given the models we intro-
duced, we are left with plenty of choices on how to estimate the various components
these models offer. For most of these components we applied simple options which
mainly make use of the category information available in Wikipedia. Results show that
using category and entity information in different ways leads to increases in perfor-
mance over simple baselines, yet there is room for further improvements. Based on
these initial findings, in further work we aim at investigating additional, more elaborate
ways of estimating the various components, and exploring their impact on performance.
Since we made quite strong independence assumptions regarding our input variables,
in another line of work we are planning on examining these dependencies.

References

[1] Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise cor-
pora. In: SIGIR 2006, pp. 43–50 (2006)

[2] Balog, K., Weerkamp, W., de Rijke, M.: A few examples go a long way: constructing query
models from elaborate query. In: SIGIR 2008, pp. 371–378 (2008)

[3] Demartini, G., de Vries, A.P., Iofciu, T., Zhu, J.: Overview of the INEX 2008 entity ranking
track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631. Springer,
Heidelberg (2009)

[4] Denoyer, L., Gallinari, P.: The Wikipedia XML corpus. SIGIR Forum 40, 64–69 (2006)
[5] Hiemstra, D.: Using Language Models for Information Retrieval. PhD thesis, University of

Twente (2001)
[6] Mackay, D.J.C., Peto, L.: A hierarchical dirichlet language model. Natural Language Engi-

neering 1(3), 1–19 (1994)

A Generative Language Modeling Approach for Ranking Entities 299

[7] Miller, D., Leek, T., Schwartz, R.: A hidden Markov model information retrieval system.
In: SIGIR 1999, pp. 214–221 (1999)

[8] Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: SIGIR
1998, pp. 275–281 (1998)

[9] Yilmaz, E., Kanoulas, E., Aslam, J.A.: A simple and efficient sampling method for estimat-
ing ap and ndcg. In: SIGIR 2008, pp. 603–610 (2008)

[10] Zhai, C.: Statistical language models for information retrieval a critical review. Foundations
and Trends in Information Retrieval 2, 137–213 (2008)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 300–313, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Overview of the INEX 2008 Interactive Track

Nils Pharo1, Ragnar Nordlie1, and Khairun Nisa Fachry2

1 Faculty of Journalism, Library and Information Science, Oslo University College, Norway
nils.pharo@jbi.hio.no, ragnar.nordlie@jbi.hio.no

2 Archives and Information Studies, University of Amsterdam, The Netherlands
k.n.fachry@uva.nl

Abstract. This paper presents the organization of the INEX 2008 interactive
track. In this year’s iTrack we aimed at exploring the value of element retrieval
for two different task types, fact-finding and research tasks. Two research
groups collected data from 29 test persons, each performing two tasks. We de-
scribe the methods used for data collection and the tasks performed by the par-
ticipants. A general result indicates that test persons were more satisfied when
completing research task compared to fact-finding task. In our experiment, test
persons regarded the research task easier, were more satisfied with the search
results and found more relevant information for the research tasks.

1 Introduction

The INEX interactive track (iTrack) is a cooperative research effort run as part of the
INEX Initiative for the Evaluation of XML retrieval [1]. The overall goal of INEX is
to experiment with the potential of using XML to retrieve relevant parts of documents
through the provision of a test collection of XML-marked Wikipedia articles. The
main body of work within the INEX community has been the development and testing
of retrieval algorithms. Interactive information retrieval (IIR) [2] aims at investigating
the relationship between end users of information retrieval systems and the systems.
This aim is approached partly through the development and testing of interactive
features in the IR systems and partly through research on user behavior in IR systems.
In the INEX iTrack the focus has been on how end users react to and exploit the po-
tential of IR systems that facilitate the access to parts of documents in addition to the
full documents.

The INEX interactive track (iTrack) was run for the first time in 2004 [3], repeated
in 2005 [4] and again in 2006/2007 [5] (due to technical problems the tasks scheduled
for 2006 were actually run in early 2007). Although there has been variations in task
content and focus, some fundamental premises has been in force throughout:

• a common subject recruiting procedure
• a common set of user tasks and data collection instruments such as

questionnaires
• a common logging procedure for user/system interaction
• an understanding that collected data should be made available to all partici-

pants for analysis

 Overview of the INEX 2008 Interactive Track 301

This has ensured that through a manageable effort, participant institutions have had
access to a rich and comparable set of data on user background and user behavior, of
sufficient size and level of detail to allow both qualitative and quantitative analysis.
This has already been the source of a number of papers and conference presentations
([6], [7], [8], [9], [10], [11], [12]).

In 2008, we wanted to preserve as much of the "common effort" quality of the pre-
vious years as possible. We invited the participants to participate in a minimum ex-
perimental effort using the system and data provided and described below. Within the
framework of the track, participants could then design their own investigations under
certain constraints, such as:

• The collection of documents was the same as the one used for the INEX ad hoc
retrieval task [13], i.e., in 2008 a collection of xml-coded Wikipedia articles.

• The IR system developed for the 2006 track was made available for the par-
ticipants to use, either alone or in comparison with participants’ own sys-
tem(s).

• Each participating site was responsible for recruiting a minimum of 8 (but
preferably more) test persons to participate in the study as searchers.

• The participants were required to make their data available to all participat-
ing groups, and describe their collection process and experimental procedure
in a way which would make it possible for others to interpret and use the
data.

2 Tasks

For the 2008 iTrack the experiment was designed with two categories of tasks, from
each of which the searchers were instructed to select one out of three alternative
search topics constructed by the track organizers. The original intention was to also
give the searchers the opportunity to perform one self-generated task, but it was un-
fortunately not possible to implement this in our IR system. The two categories of
tasks were, respectively, fact-findings tasks (category 1) and research tasks (category
2). The tasks were intended to represent information needs believed to be typical for
Wikipedia users. In order to ensure a certain amount of user-system interaction, we
also wanted the tasks to be so complex that searchers needed to access more than one
individual article to solve them. In order to diminish system learning effect, the order
of tasks performed by searchers was rotated by category.

The Fact-Finding Tasks

sto1. As a frequent traveler and visitor of many airports around the world you are
keen on finding out which is the largest airport. You also want to know the
criteria used for defining large airports.

sto2. The "Seven summits" are the highest mountains on each of the seven conti-
nents. Climbing all of them is regarded as a mountaineering challenge. You
would like to know which of these summits were first climbed successfully.

302 N. Pharo, R. Nordlie, and K.N. Fachry

sto3. In the recent Olympics there was a controversy over the age of some of the
female gymnasts. You want to know the minimum age for Olympic com-
petitors in gymnastics.

The Research Tasks

sto4. You are writing a term paper about political processes in the United States
and Europe, and want to focus on the differences in the presidential elections
of France and the United States. Find material that describes the procedure
of selecting the candidates for presidential elections in the two countries.

sto5. Every year there are several ranking lists over the best universities in the
world. These lists are seldom similar. You are writing an article discussing
and comparing the different ranking systems and need information about the
different lists and what criteria and factors they use in their ranking.

sto6. You have followed the news coverage of the conflict between Russia and
Georgia over South Ossetia. You are interested in the historic background
for the conflict and would like to find as much information about it as possi-
ble. In particular you are interested in material comparing this conflict with
the parallel border conflict between Georgia and Abkhazia.

3 Participating Groups

Originally 7 groups expressed their interest in participating in the i-Track experi-
ments. Unfortunately, in the end only two groups were able to perform experiments;
University of Amsterdam and Oslo University College. Fifty-six sessions, 14 in Am-
sterdam and 42 in Oslo, performed by 29 test persons were recorded successfully
(i.e. without system failure and with completed questionnaires).

4 Research Design

4.1 Search System

The experiments were conducted on a java-based retrieval system built within the
Daffodil framework [14], which resides on a server at and is maintained by the Uni-
versity of Duisburg. The search system interface is quite similar to the one used in the
2005 and 2006 i-Tracks.

The system returns elements of varying granularity (full Wikipedia articles, sec-
tions or sub-sections of articles) based on the hierarchical xml-coded document struc-
ture. Figure 1 shows the result list interface of the program. In the top left corner is
the query box, below it we see the result list. Relevant elements are grouped by
document in the result list and up to three high ranking elements are shown per docu-
ment. To help searchers select query terms, the system has a related term feature

 Overview of the INEX 2008 Interactive Track 303

which presents the searcher with a set of potential query terms, generated through
analysis of term frequency in the top-ranked elements. These appear in a box show-
ing terms related to the current query. Using mouse-over, searchers can view the con-
text from which the related terms were generated.

Fig. 1. Daffodil result list view

When a searcher clicks on the result list to examine a document, the system enters
document view mode, where the entire full text of the document is shown, with back-
ground highlighting for high ranking elements (Figure 2). In addition to this, the
document view screen shows a Table of Contents generated from the XML formatting
of the documents. From the ToC, the searcher can choose individual sections and
subsections for closer examination. In the ToC, the system’s relevance estimation is
also indicated through color-coding of relevant elements. In addition, the ToC shows
elements that the searcher has viewed (indicated by an eye -) and/or relevance
assessed (coded as shown in Figure 3).

4.2 Document Corpus

The document corpus used was the same as the one used in the 2006 i-track and in the
other 2008 INEX tracks. It consists of more than 650,000 encyclopedia articles ex-
tracted from Wikipedia [15]. The articles are structurally formatted in XML.

304 N. Pharo, R. Nordlie, and K.N. Fachry

Fig. 2. Document view

Fig. 3. Relevance scores

4.3 Online Questionnaires

During the course of the experiment, searchers were issued brief online questionnaires
to support the analysis of the log data. Before the search tasks were introduced, the
searchers were given a pre-experiment questionnaire, with demographic questions
such as searchers’ age, education and experience in information searching, particu-
larly in searching and using Wikipedia. Each search task was preceded with a pre-task
questionnaire, which concerned searchers’ perceptions of the difficulty of the search
task, their familiarity with the topic etc. After each task, the searcher was asked to fill
out a post-task questionnaire. The intention of the post-task questionnaire was to learn
about the searchers’ use of and their opinion on various features of the search system,
in relation to the task they had just completed. The experiment was closed with a
post-experiment questionnaire, which elicited the searchers’ general opinion of the
search system. The responses to the questionnaires were logged in a database.

 Overview of the INEX 2008 Interactive Track 305

4.4 Relevance Assessments

The system was designed to have searchers assess the relevance of each item they
looked at. These could be either full articles or article elements. The relevance scale
(see fig. 3) was similar to the one used in the 2006 interactive track, based on work by
Pehcevski [16]. It aims to balance the need for information on the perceived granular-
ity of retrieved elements and their degree of relevance, and is intended to be simple
and easy to visualize [5]. The system did not oblige searchers to perform relevance
judgments, but in the instructions for the experiment they were told to “select an as-
sessment for each viewed piece of information with regards to how you consider it to
be of help in solving the task.” Searchers were not given any more specific instruc-
tions on how to perform the relevance judgments; they were, for instance, not re-
quired to view each retrieved element as independent from other components viewed.
Experiences from user studies (e.g. [17]) clearly show that users learn from what they
see during a search session. To impose a requirement on searchers to discard this
knowledge were thought to create an artificial situation and restrain the searchers
from interacting with the retrieved elements in a natural way.

Five different relevance scores were defined. The scores express two aspects or
dimensions in relation to solving the task:

1. How much relevant information does the part of the document contain? It
may be highly relevant, partially relevant or not relevant.

2. How much context is needed to understand the element? It may be just
right, more or less.

This is combined into the five scores:

Relevant, but too broad, contains relevant information, but also a substantial

amount of other information.
Relevant, contains highly relevant information, and is just the right in size to be

understandable.
Relevant, but too narrow, contains relevant information, but needs more context

to be understood.
Partially relevant, has enough context to be understandable, but contains only

partially relevant information.
Not relevant, does not contain any relevant information that is useful for solving

the task.

4.5 Logging

All search sessions were logged and saved to a database. The logs registered and time
stamped the events in the session and the actions performed by the searcher, as well
as the responses from the system.

5 Experimental Procedure

Each experiment was performed following the standard procedure outlined below.
Steps 7 to 10 were repeated for each of the two tasks performed by the searcher. The

306 N. Pharo, R. Nordlie, and K.N. Fachry

tasks were automatically assigned according to a Latin square design to secure a bal-
anced distribution of the order of the research and fact-finding tasks.

1. Experimenter briefed the searcher, and explained format of study. The

searcher read and signed the Consent Form.
2. The experimenter logged the searchers into the experimental system. Tuto-

rial of the system was given with a training task provided by the system.
The experimenter handed out and explained the system features document.

3. Any questions answered by the experimenter.
4. The control system administered the pre-experiment questionnaire.
5. Topic descriptions for the first task category administered, and a topic

selected
6. Pre-task questionnaire administered.
7. Task began by clicking the link to the search system. Maximum duration for

a search was 15 minutes, at which point the system issued a “timeout”
warning. Task ended by clicking the “Finish task” button.

8. Post-task questionnaire administered.
9. Steps 5-8 repeated for the second task.
10. Post-experiment questionnaire administered.

6 Data Analysis

In this section, we summarize our preliminary analysis of the questionnaire data and
the transaction log files. More detailed analyses will be the subject of further research
from the participating institutions.

Table 1. Distribution of tasks and sessions

Task Type Task Sessions
Fact-finding Sto1 13
 Sto2 8
 Sto3 5
Research Sto4 9
 Sto5 9
 Sto6 12
Total 56

Table 1 shows the distribution of tasks and sessions, due to a technical error one

searcher performed two research tasks and one searcher performed only one task (also
a research task) thus it is not a completely even distribution of task types (26 fact-
finding tasks and 30 research tasks).

6.1 Questionnaire Data

Questionnaire results reported in this report are based on the data of test persons who
completed the questionnaire.

 Overview of the INEX 2008 Interactive Track 307

Pre-Experiment Questionnaire

A total number of 27 test persons completed the questionnaire (9=Male, 18=Female).
Test persons had a mean age of 30.33 years and with the exception of six test persons,
all were students. Test persons’ mean experience with searching for information using
the Web was 8.22 years. When asked about how often they search, our test persons’
mean search experience using digital libraries was 3.60, using search engines was
4.81, and using Wikipedia was 3.81 (where 1=never, 2 = once or twice a year, 3 =
once or twice a month, 4 = once or twice a week and 5 = once or more times a day).

As we were using Wikipedia, we administered test persons’ experiences with
Wikipedia in detail. First, we asked about the test persons’ search purposes with
Wikipedia. Out of 27 test persons, 25 of them mentioned that they used Wikipedia for
fact-finding purposes, none of them used Wikipedia for decision making, 10 test per-
sons used Wikipedia for research and 9 test persons used Wikipedia for entertainment.
When asked if they generally found what they were looking for when using Wikipe-
dia, they responded positively (their mean experience was 3.96), and when asked if
they trust the information in Wikipedia, subjects mean experience was 3.41 (where
1=strongly disagree, 2=disagree, 3=not sure, 4=agree and 5=strongly agree). Lastly,
our pre-experiment questionnaire result indicated that only 1 out of 27 test persons
mentioned that he or she occasionally has edited articles in Wikipedia and none of our
users ever have created new articles in Wikipedia.

Pre-Task Questionnaire

Table 2. Pre-task questionnaire, with answers on a 5-point scale (1-5)

Q2.1: How familiar are you with the topic of the search task?
Q2.2: How interesting do you find the topic of the search task?
Q2.3: How easy do you think it will be to find information for this task

Table 3. Pre-task responses on searching experience: mean scores and standard deviations
(in brackets)

Type Q2.1 Q2.2 Q2.3
All tasks 1.96 (0.78) 3.43 (0.73) 3.22 (0.68)
Fact Finding 1.81 (0.84) 3.26 (0.68) 3.59 (0.53)
Research 2.11 (0.74) 3.59 (0.69) 2.85 (0.72)

Each task was preceded with a pre-task questionnaire, collecting information re-

garding test persons’ familiarity, level of interest and easiness of the search topic.
Table 2 shows the items asked in the pre-task questionnaire. The answer categories
used a 5-point scale (1=not at all, 3=somewhat and 5=extremely). Test persons’ re-
sponses are presented in table 3.

As shown in table 3, the research task was rated slightly higher compared to fact-
finding task in terms of test person’s familiarity with the topic (Q2.1) and level of
interest (Q2.2) of the search task. Only in terms of perceived easiness to find informa-
tion for the task (Q2.3), the fact-finding task was rated higher.

308 N. Pharo, R. Nordlie, and K.N. Fachry

Post-Task Questionnaire

Table 4 shows the items asked in the post-task questionnaire. The answer categories
used a 5-point scale (1=not at all, 3=somewhat and 5=extremely). Test persons’ re-
sponses are summarized in Table 5. If we look at the responses over all tasks, the
average response varies from 2.83 to 4.46 signaling that the test persons rated the
tasks positively.

We also looked at the responses for each task type. As shown in table 5, for all ques-
tions asked with the exception of Q3.1 and Q3.8, the research task was rated higher than
the fact-finding task. Here, we see that test persons understood both tasks very well
(Q3.1). Fact-finding received higher responses on average, which makes sense given the
nature of the simulated tasks and thereby confirms that the chosen simulated tasks rep-
resent the particular task types. The research task was regarded easier (Q3.2) and more
similar to the searching task that our test persons typically perform (Q3.3), compare to
the fact-finding task. This may be a result of our selection of test persons who all had an
academic education. Moreover, test persons were more satisfied with the search results
provided by the system (Q3.6) for the research task. A possible explanation is that the
research tasks are more open-ended than the fact-finding tasks where test persons need
to find specific and precise answers. Hence, additional material provided by the system
may be more useful in the research task context. This explanation is supported by the
response when asked about the relevancy of the found information (Q3.7). Test persons
believed that they found more relevant results for the research tasks. This finding is also
coherent with the relevance assessment results where searchers found more articles and
more elements to be relevant when completing research tasks compare to when they
performed fact-finding tasks (see Section 6.2).

Table 4. Post-task questionnaire, with answers on a 5-point scale (1-5)

Q3.1: How understandable was the task?
Q3.2: How easy was the task?
Q3.3:

To what extent did you find the task similar to other searching tasks that you typically
perform?

Q3.4 Was it easy to perform the search for this task?
Q3.6: Are you satisfied with your search results?
Q3.7: How relevant was the information you found?
Q3.8: Did you have enough time to do an effective search?
Q3.9: How certain are you that you completed the task?
Q3.10 How well did the system support you in this task?*

Table 5. Post-task responses on searching experience: mean scores and standard deviations
(in brackets)

Type Q3.1 Q3.2 Q3.3 Q3.4 Q3.6 Q3.7 Q3.8 Q3.9 Q3.10
All tasks 4.46

(0.64)
3.13
(1.27)

3.46
(1.04)

3.31
(1.06)

3.02
(1.51)

3.50
(1.28)

3.04
(1.45)

2.83
(1.46)

3.02
(1.22)

Fact
Finding

4.63
(0.56)

3.00
(1.47)

3.30
(1.10)

3.19
(1.11)

2.56
(1.63)

3.07
(1.38)

3.07
(1.57)

2.63
(1.64)

2.70
(1.05)

Research 4.30
(0.67)

3.26
(1.06)

3.63
(0.97)

3.44
(1.01)

3.48
(1.25)

3.93
(1.04)

3.00
(1.36)

3.04
(1.26)

3.33
(0.91)

 Overview of the INEX 2008 Interactive Track 309

Next, we look at the time test persons spent on each task. On the question of
whether there was enough time for an effective search (Q3.8), responses for the fact-
finding tasks were higher than for the research tasks. This is also consistent with the
log result where test persons spent less time completing fact-finding tasks compared
to research tasks (see Section 6.2). This means that test persons had enough time for
the fact-finding task, but they stopped searching before the maximum allocated time
ran out. This could be because the system did not support them well enough in finding
relevant results (Q3.10) or they expected the system to do better in retrieving relevant
results (Q3.7) for fact-finding tasks. This is consistent with the assessment of task
completion (Q3.9) where, on average, test persons were less certain that they com-
pleted the fact-finding task compared to the research task. Also note that the standard
deviations for fact-finding tasks for almost all questions are larger than for the re-
search tasks. A possible explanation is again that several test persons were not satis-
fied with the results they found when completing the fact-finding task.

6.2 Log Statistics

In total 118 assessments were made of full articles, Table 6 shows the distribution of
assessment on the different relevance levels.

Table 6. Article relevance assessments

Fully relevant
Relevant,

but too broad
Relevant,

but too narrow
Partially relevant Not relevant

45 (38 %) 14 (12 %) 12 (10 %) 17 (14 %) 30 (25 %)

In Table 7, we see relevance distribution of articles for each topic, the results show

that the sessions generated by task sto6 (on the South Ossetia conflict), which is the
most popular research task, has returned more than half of the articles found to be

Table 7. Distribution of article relevance assessments per task

Topic Fully
relevant

Relevant,
but too broad

Relevant,
but too
narrow

Partially
relevant Not relevant

0 2 6 5 11 sto1
.0% 14.3% 14.3% 29.4% 34.4%

2 0 0 2 2 sto2
4.4% .0% .0% 11.8% 6.3%

2 0 0 4 11 sto3
4.4% .0% .0% 23.5% 34.4%

7 1 2 1 3 sto4
15.6% 7.1% 15.4% 15.4% 9.4%

9 1 3 4 3 sto5
20.0% 7.1% 23.1% 23.5% 9.4%

25 10 2 1 2 sto6
55.6% 71.4% 15.4% 5.9% 6.3%

45 14 13 17 32 Total
100.0% 100.0% 100.0% 100.0% 100.0%

310 N. Pharo, R. Nordlie, and K.N. Fachry

fully relevant. Even more interesting to see is that sessions dealing with the most
popular fact-finding task (sto1 – large airports) has not returned any fully relevant
articles.

Table 8 shows the distribution of relevance assessments on element level, i.e. as-
sessments of sections and subsections. Interestingly we also see that task sto6 also on
the element level has returned the highest number of fully relevant scores and that
sto1 only has returned 3 fully relevant elements.

Table 8. Distribution of element relevance assessments per task

Topic Fully relevant Relevant,
but too broad

Relevant,
but too
narrow

Partially
relevant Not relevant

3 2 1 3 5 sto1
2.7% 25.0% 3.3% 7.5% 10.6%

6 1 7 1 1 sto2
5.3% 12.5% 23.3% 2.5% 2.1%

0 0 0 0 1 sto3
.0% .0% .0% .0% 2.1%

5 2 4 7 3 sto4
4.4% 25.0% 13.3% 17.5% 6.4%

44 1 5 18 33 sto5
38.9% 12.5% 16.7% 45.0% 70.2%

55 2 13 11 4 sto6
48.7% 25.0% 43.3% 43.3% 8.5%

113 8 30 40 47 Total
100.0% 100.0% 100.0% 100.0% 100.0%

We have performed further analysis to investigate if there are any significant dif-
ferences between the two task types. A T-test shows a significant difference between
fully relevant assessment on both article (p=0.000) and element level (P=0.011) when
comparing fact-findings tasks and research tasks, but then one needs to be aware of
the heavy influence of relevance assessments for tasks sto1 and sto6. For fact-finding
tasks searchers found 0.15 fully relevant articles per session and 0.35 fully relevant
elements, compared to 1.37 fully relevant articles and 3.47 elements per session for
research tasks. Also fact-finding sessions resulted in significantly more non relevant
articles (1.197 compared to 0.583 for research tasks). This supports the findings from
the questionnaire analysis that searchers were more familiar with the research tasks
and found them easier to solve, and also that they believed they found more relevant
information for the research tasks.

Table 9. Queries per task

 Task type N Mean
Fact 26 5.88 Number of

queries Research 30 4.83

 Overview of the INEX 2008 Interactive Track 311

Table 10. Time per task

 Task type N Mean
Fact 26 653.15 Time in seconds
Research 30 767.10

We have also compared the task types with respect to number of queries (Table 9)

performed and time invested (Table 10). As can be seen the searchers performed more
queries in fact-finding sessions but, but spent more time to solve research tasks. In
other words research task sessions are characterized by searchers being more thor-
ough in their interaction with the individual article/element. A T-test did not report
significant difference between the two task categories in these matters, but the mean
time per task was very close to being significant (p=0.064).

7 Conclusions

We have reported the experimental design of the 2008 Inex interactive track and the
analysis of data related to the difference between searchers performing fact-finding
and research tasks. Although the number of participating institutions was low, we
have been able to collect a set of data that shows interesting results related to the two
task categories.

In general, searchers were more satisfied when completing the research task com-
pared to fact-finding task. We found that test persons regarded the research task eas-
ier, were more satisfied with the search result and found more relevant information
for the research task. This is plausibly related to the task type, where test persons
regard more information as relevant or useful when searching for a more open-ended
research task. Fact-finding tasks require a more specific and precise answer, which
may diminish the additional value of exploring a wide range of search results.

This finding is consistent with the relevance assessment results where searchers
found more relevant articles and elements when completing the research task com-
pared to the fact-finding task. Also fact-finding sessions resulted in significantly more
non-relevant articles than research sessions. Test persons reported that they were less
certain that they had completed the fact-finding task compared to the research task.

A general result seems to be that the system was better at supporting research tasks
than fact-finding tasks. This is particularly interesting since the participants claimed
to use Wikipedia more for fact-finding than for research tasks.

Acknowledgments

We would like to thank Ingo Frommholz, Norbert Fuhr, Claus-Peter Klas and Saadia
Malik from the University of Duisburg-Essen for their administration of the Daffodil
system. Khairun Nisa Fachry was supported by the Netherlands Organization for
Scientific Research (NWO) under grant # 639.072.601.

312 N. Pharo, R. Nordlie, and K.N. Fachry

References

[1] Malik, S., Trotman, A., Lalmas, M., Fuhr, N.: Overview of INEX 2006. In: Fuhr, N.,
Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 1–11. Springer,
Heidelberg (2007)

[2] Ruthven, I.: Interactive Information Retrieval. Annual Review of Information Science
and Technology 42, 43–91 (2008)

[3] Tombros, A., Larsen, B., Malik, S.: The Interactive Track at INEX 2004. In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 410–423.
Springer, Heidelberg (2005)

[4] Larsen, B., Malik, S., Tombros, A.: The interactive track at INEX 2005. In: Fuhr, N.,
Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. INEX 2005, pp. 398–410.
Springer, Heidelberg (2006)

[5] Larsen, B., Malik, S., Tombros, A.: The Interactive track at INEX 2006. In: Fuhr, N.,
Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 387–399. Springer,
Heidelberg (2007)

[6] Pharo, N., Nordlie, R.: Context Matters: An Analysis of Assessments of XML Documents.
In: Crestani, F., Ruthven, I. (eds.) CoLIS 2005. LNCS, vol. 3507, pp. 238–248. Springer,
Heidelberg (2005)

[7] Hammer-Aebi, B., Christensen, K.W., Lund, H., Larsen, B.: Users, structured documents
and overlap: interactive searching of elements and the influence of context on search be-
haviour. In: Ruthven, I., et al. (eds.) Information Interaction in Context: International
Symposium on Information Interaction in Context: IIIiX 2006. Proceedings, Copenha-
gen, Denmark, October 18-20, pp. 80–94. Royal School of Library and Information Sci-
ence, Copenhagen (2006)

[8] Malik, S., Klas, C.-P., Fuhr, N., Larsen, B., Tombros, A.: Designing a user interface for
interactive retrieval of structured documents: lessons learned from the INEX interactive
track? In: Gonzalo, J., Thanos, C., Verdejo, M.F., Carrasco, R.C., et al. (eds.) ECDL
2006. LNCS, vol. 4172, pp. 291–302. Springer, Heidelberg (2006)

[9] Kim, H., Son, H.: Users Interaction with the Hierarchically Structured Presentation in
XML Document Retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX
2005. LNCS, vol. 3977, pp. 422–431. Springer, Heidelberg (2006)

[10] Kazai, G., Trotman, A.: Users’ perspectives on the Usefulness of Structure for XML In-
formation Retrieval. In: Dominich, S., Kiss, F. (eds.) Proceedings of the 1st International
Conference on the Theory of Information Retrieval, pp. 247–260. Foundation for Infor-
mation Society, Budapest (2007)

[11] Larsen, B., Malik, S., Tombros, A.: A Comparison of Interactive and Ad-Hoc Relevance
Assessments. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 348–358. Springer, Heidelberg (2008)

[12] Pharo, N.: The effect of granularity and order in XML element retrieval. Information
Processing and Management 44(5), 1732–1740 (2008)

[13] Kamps, J., Geva, S., Trotman, A., Woodley, A., Koolen, M.: Overview of the INEX 2008
Ad Hoc Track. In: Proceedings from the 7th International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2009. Springer, Berlin (2009)

[14] Fuhr, N., Klas, C.P., Schaefer, A., Mutschke, P.: Daffodil: An integrated desktop for
supporting high-level search activities in federated digital libraries. In: Agosti, M.,
Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 597–612. Springer, Heidelberg
(2002)

 Overview of the INEX 2008 Interactive Track 313

[15] Denoyer, L., Gallinari, P.: The Wikipedia XML corpus. SIGIR Forum 40(1), 64–69
(2006)

[16] Pehcevski, J.: Relevance in XML retrieval: the user perspective. In: Trotman, A., Geva,
S. (eds.) Proceedings of the SIGIR 2006 Workshop on XML Element Retrieval Method-
ology, Seattle, Washington, USA, August 10, pp. 35–42. Department of Computer Sci-
ence, University of Otago, Dunedin, New Zealand (2006)

[17] Pharo, N.: The SST Method Schema: a tool for analyzing work task-based Web informa-
tion search processes. Doctoral Thesis. University of Tampere (2002)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 314–325, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Overview of the INEX 2008 Link the Wiki Track

Wei Che (Darren) Huang1, Shlomo Geva1, and Andrew Trotman2

1 Faculty of Science and Technology, Queensland University of Technology, Brisbane,
Australia

2 Department of Computer Science, University of Otago, Dunedin, New Zealand
w2.huang@student.qut.edu.au,

s.geva@qut.edu.au,
andrew@cs.otago.ac.nz

Abstract. The Link the Wiki track at INEX 2008 offered two tasks, file-to-file
link discovery and anchor-to-BEP link discovery. In the former 6600 topics
were used and in the latter 50 were used. Manual assessment of the anchor-to-
BEP runs was performed using a tool developed for the purpose. Runs were
evaluated using standard precision & recall measures such as MAP and preci-
sion / recall graphs. 10 groups participated and the approaches they took are
discussed. Final evaluation results for all runs are presented.

Keywords: Wikipedia, Link Discovery, File-to-File, Anchor-to-BEP, Assess-
ment, Evaluation.

1 Introduction

Trotman & Geva [1] introduced the Link the Wiki task in 2006. It ran at INEX for the
first time in 2007 [2]. This contribution discusses the track as it was run in 2008. The
track provides an independent evaluation forum for approaches to link discovery in
the Wikipedia. In 2007 the track examined file-to-file linking in the Wikipedia, but in
2008 this was extended to include anchor to best entry point (anchor-to-BEP) link
discovery. The goal is to investigate the linking methods and to develop a forum for
evaluation and application. A test set including document collection, qrels, metrics,
and tools for evaluating submissions [3] was constructed and is now provided for
future experimenters. The document collection was the INEX Wikipedia collection,
the topics (known as orphans) were documents from within the collection.

Ten groups from eight different organizations participated in the track. 25 runs
were submitted to the file-to-file task and 31 runs to the anchor-to-BEP task. All runs
were evaluated against a ground truth of those links already presented in the collec-
tion. Anchor-to-BEP runs were additionally evaluated against a ground truth deter-
mined through manual assessment. These manual assessments allow for file-to-BEP,
anchor-to-file, anchor-to-BEP and also file-to-file assessment; something that was
essential because many submitted runs were file-to-file runs despite the task being
defined as anchor-to-BEP; that is, the anchor texts were the document title and the
best entry point was the beginning of the target document.

 Overview of the INEX 2008 Link the Wiki Track 315

Anchor-to-BEP link discovery differs from traditional link discovery by pointing
from anchors directly to relevant material within the target document, rather than
pointing to simply the document [4][5]. The purpose of focused link discovery is to
identify anchors together with the corresponding best entry points such that the link is
relevant with respect to the anchor’s specific context. This simplifies the way people
discover the relevant information without browsing through the entire document.
Automated linking to a best entry point is especially useful for restricted screen de-
vices such as mobile. Few clicks to go through relevant information can be easily
achieved.

2 Document Collection

The document collection was the INEX Wikipedia collection of 659,388 articles. For
the file-to-file task 6600 documents were randomly selected from the collection. For
anchor-to-BEP assessment each participating group was asked to nominate 5 candidate
documents, 10 groups participated which resulted in 50 documents for manual assess-
ment. These documents were separated from the collection by removing all outgoing
links from the documents into the collection as well as all incoming links from the
collection into the documents. The separated documents are known as orphans.

The orphaning process itself was performed by the track participants. The exact
method was left to the participant however the requirement was that the process
should be equivalent to: orphaning one document; identifying the links to and from
that document; then returning the (original) document to the collection. In this way
each orphan was linked against the remainder of the collection as it would have been
if that orphan was presented for insertion into the collection.

3 Task Specification and Submission Format

The task was specified as twofold: the identification of links from the orphan into the
document collection; and the identification of links from the collection into the orphan.

In the anchor-to-BEP scenario the best 50 anchors within the orphan could be iden-
tified, and for each no more than 5 BEP destinations could be specified. Alongside
these the best 250 incoming links from anchor texts in the remaining collection to
BEPs within the orphan could be specified. For file-to-file evaluation the task was to
identify the best 250 outgoing and best 250 incoming links.

The specification of a file-to-file link is a special case of the specification of an an-
chor-to-BEP link. A file-to-file link is from the start of the source to the start of the
target. This reduction of the complex task to the less complex task provided a low-
cost entry into the track for those who had not participated before.

For submission purposes the orphans were identified by the triplet (topic-id, file
name, title). Although each is unique for each orphan (and are thus any one could
have been used) all three were used for clarity’s sake. Both the INEX ad hoc XPath
syntax and the INEX File-Offset-Length (FOL) formats were used for submissions.

316 W.C. Huang, S. Geva, and A. Trotman

All file offsets and lengths were specified as character offsets with respect to the text
content of the files; counting from zero; and ignoring all mark-up. An anchor might
be specified, for example, as (23816.xml, 1234, 8) but a BEP has no length so it
would be specified (23816.xml, 672). Examples of the anchor-to-BEPs formats are
given in Figure 1.

In order to facilitate the position identification of anchor and BEP, various re-
sources were made available to participants including: a text-only version of the col-
lection so that file-offset-lengths could be computed by counting characters from the
start of the file; XML2FOL, a program that produces a list of all the offsets and
lengths of all elements in an XML file; XML2FOLpassage, a program to convert any
INEX XPath specification into the FOL format.

Fig. 1. Sample Anchor-to-BEP Submission Format

4 Preparation of Qrels

For the file-to-file evaluation of the 6600 orphans the ground truth was constructed
without manual assessment. The links from the pre-orphan to the remaining collection
were extracted and used as the outgoing ground truth. The links from the collection
into the pre-orphans was used as the incoming ground truth. For anchor-to-BEP as-
sessment this is not possible because BEPs are rarely specified in the Wikipedia.

There are known problems with using the Wikipedia itself as the ground-truth:
some Wikipedia links are topically-obsolete or have been incorrectly assigned; link-
ing is not exhaustive; articles are unlikely to link to very recently added content; and
some links are inserted by bots. As a consequence, evaluation results may be biased
various ways. On the one hand, results may appear optimistic because some links are
trivial to discover (such as year-links). On the other hand, results may appear pessi-
mistic because useful links not already in the Wikipedia are considered non-relevant.
However, evaluation based on the Wikipedia ground-truth does measure performance
relative to what is present, and so it is reasonable to believe it is useful.

Although the Wikipedia does contain anchor-to-BEP links, in practice they are
rarely used. In order to evaluate anchor-to-BEP link discovery an evaluation result-set
was created through manual assessment. A special case of pooling was used in the
track – all links for a given orphan were pooled, then for each anchor, all BEPs were
pooled. The pool was assessed to completion.

<link>
 <anchor>
 <offset>234</offset>
 <length>24</length>
 </anchor>
 <linkto>
 <file>123.xml</file>
 <bep>334</bep>
 </linkto>
 ... <multiple links>
</link>

<link>
 <anchor>
 <start>/article[1]/p[5]/text()[3].12</start>
 <end>/article[1]/p[5]/text()[3].32</end>
 </anchor>
 <linkto>
 <file>43768.xml</file>
 <bep>/article[1]/p[3]/text()[4].40</bep>
 </linkto>
 ... <multiple links>
</link>

 Overview of the INEX 2008 Link the Wiki Track 317

5 Assessment

An assessment tool (see Figure 2) was used in 2008 to facilitate the assessment of link
discovery in both the anchor-to-BEP and file-to-file scenarios. As assessment is labo-
rious and time consuming, special care was taken to minimize the amount of mouse
motion and clicking – a single click could, for example, be used to specify a relevant
link.

Overlapping links were also addressed by the tool. Links for each anchor were
grouped for easy and clear presentation (for example, the anchor Modern Information
Retrieval may appear as the anchors: Information Retrieval or Modern Information
Retrieval), but the tool also captured each sub-anchor explicitly so that the assessor
could differentiate and judge with respect to each sub-anchor. File-to-file links were
presented as linking from the title of the document to the beginning of the target
document.

No concerns were raised about the tool. The number of links identified per topic
varied from 405 to 1722. An average of about 5 hours was spent assessment an or-
phan. Most links were file-to-file. Less than 10% of the links identified for each or-
phan were judged relevant.

6 Evaluation

6.1 The Evaluation Tool

An evaluation tool (ltwEval, see Figure 3) was developed for the track. Performance
measures including Mean Average Precision (MAP), precision at the number of rele-
vant documents (R-Prec), and precision at given retrieval cut-offs (P@5, P@10,
P@20, P@30, P@50 and P@250) were computed. The tool draws Interpolated Preci-
sion / Recall plots allowing graphical comparative analysis of multiple runs. LtwEval
is GUI driven and was written in Java for platform independence.

The tool gives the number of outgoing and incoming links in the qrels as well as in
each run (duplicate links being eliminated). Performance measures can be calculated
using all topics in the qrels or just the topics in the run. From the evaluation result
table (that displays all metrics), the color and used in graphing can be specified.

The Wikipedia ground-truth qrels (for both the 6600 file-to-file topics and the 50
anchor-to-BEP topics) can only be used to evaluate the submission runs in file-to-file
mode while the manual assessment results can be used to perform the evaluation in
several different modes. Besides evaluating file-to-file links, the anchor-to-BEP sub-
mission runs are also evaluated at file-to-BEP, anchor-to-file and anchor-to-BEP
modes. The file-to-BEP evaluation considers the entry point, weighting the link score
by BEP proximity in a similar manner to that used in the ad hoc track: the score drops
linearly to 0 over a distance of 1000 characters; an exact match is given a score of 1
while 0 is given to the BEP beyond 1000 characters. If more than one BEP is speci-
fied in the target document, the closest is used. The evaluation in anchor-to-file and
anchor-to-BEP mode considers only the first 50 anchors, and only the first BEP of
each anchor.

318 W.C. Huang, S. Geva, and A. Trotman

Fig. 2. The Assessment Tool

6.2 Metrics

In the INEX use case of link discovery it is important to rank the discovered links for
presentation to the page author. A typical scenario might involve a user who wishes to
inspect and then accept or reject recommended links. This use case was modeled in
the manual assessment evaluation where assessors did exactly this. In a realistic link
discovery setting the user is unlikely to trudge through hundreds of recommended
anchors, so the best anchors should be presented first. The link discovery system must
also balance extensive linking against link quality.

Traditional measures such as MAP, R-Prec, P@n and Interpolated Precision-Recall
plots address the problem of file-to-file link discovery well, but do not address the
performance of anchor-to-BEP methods at all well (because anchor and BEP near
misses are not considered); it is necessary to adapt metrics to the problem.

For evaluation purposes runs must be of a finite length (and quite short for manual
assessment purposes). Often there are more known relevant links in the qrels than the
assessment imposed submission length – in short, there are sometimes more than 50
relevant anchors in an orphan despite the submission requirements capping the num-
ber of anchors that can be identified at 50.

To address this problem MAP was altered so that it now corresponds to the maxi-
mum point of recall in a run or the actual number of relevant links, whichever is
smaller. That is, as the run length was limited to 50, the calculation of MAP was
based on a maximum recall of 50 relevant links. Because of this, a run consisting of
50 relevant links scores a MAP of 1.0 and the RP curve depicts a line-at-1.

An anchor may be defined by a user in several slightly different ways. For instance,
The Theory of Relativity, Theory of Relativity, and Relativity may be conceptually

General Information

Topic document content

Current anchor in the
Topic document

Linked document content

Best Entry Point (BEP)

Navigation Tree:
 - Anchor Text
 - Sub-Anchor Text
 - BEP links

Quick buttons:
 - Anchor Irrelevant
 - Linked document
Irrelevant

 Overview of the INEX 2008 Link the Wiki Track 319

identical anchors. Furthermore, if the anchor text occurred several times in a document
only one instance is likely to be anchored (according to the Wikipedia guidelines) and
so the location of an anchor may vary without becoming semantically incorrect (we
leave for further work the question of which occurrence of an anchor is best). During
assessment anchors were explicitly assessed as either relevant or irrelevant. Only rele-
vant anchors contributed to the score of a submission – through the score assigned to
the relevant links, if exist. In a quick pass over the orphan the assessor could reject all
anchors that were trivially irrelevant – even without looking at the linked documents.
Year links, for instance, could be rejected outright without the need for inspection of
the target.

Similarly to anchors, a BEP cannot be defined with absolute accuracy. Some rea-
sonable proximity to a designated BEP in the assessments must be allowed. So a BEP
might be considered relevant if, when viewed on a screen, it is no more than some
distance (N characters) away from a point chosen by an assessor. The track defined
the BEP score of a link as:

bep score = file score × [1 – (|bep_positionRun – bep_positionqrel| / N)]. (1)

So in summary, an anchor-to-BEP link was assessed as relevant on the basis of ap-
proximately matching both the anchor and the BEP of a relevant link in the assess-
ments. Anchors were either accepted or rejected. Having computed all individual
anchor-to-BEP link scores for accepted anchors, the document score can be derived
using the Average Precision in the usual manner. The MAP can then be computed
over the entire set of topics.

Measure by different
linking levels

Evaluation results (metrics)
for outgoing and incoming in
different runs

Interpolated Precision–
Recall Plot

3 baselines / qrels

File directories

Information on each run

Measure by All Topics or
Only submitted Topics

Fig. 3. The Evaluation Tool

320 W.C. Huang, S. Geva, and A. Trotman

7 Approaches to Link Discovery

This section describes some of approaches taken by track participants. In all, there
were 10 participating groups (including 2 independent groups from each of: the Uni-
versity of Amsterdam and from Queensland University of Technology).

The University of Amsterdam (de Rijke) submitted 3 runs for the file-to-file link
discovery. For the outgoing links, they selected anchors with LLR (Link Likelihood
Ratio) > 1 and used the anchor text as a query to retrieve target pages (searching in
the title field). For the incoming links, the topic title was used as a query to retrieve
the top 250 source pages within the language modeling framework. In anchor-to-BEP
link discovery, outgoing links were discovered by selecting anchors with LLR > 1 and
then retrieving the target page whose title matched (exact or partial) the anchor text.
The target pages were ranked according to the likelihood of the target title in the topic
page (p (Title | D)). Incoming links were retrieved by using the topic title to find exact
matches in the collection. In their third submission, the topic title was used as a query
to retrieve 250 candidate target pages (ranked by cosine similarity) and the pages
whose rsv was greater than 0.15 were selected as the outgoing links. Incoming links
used the same strategy to select the source pages with similarity greater than 0.026.

Lycos Europe GmbH submitted 2 runs for the file-to-file link discovery and 5 runs
for the anchor-to-BEP task. The approach used by Lycos is derived from Itakura &
Clarke's approach in 2007 [14]. The difference is that Lycos dynamically selected the
best-matching target for a given anchor text based on content similarity. For example,
in a text about computers, the anchor "Apple" is more likely to refer to the page "Ap-
ple Computers" than to the page "Apple Records". Moreover, the system also ana-
lyzed the links between the potential targets for all anchor texts so that they could see
which set of links were related (for example, the anchor "Apple" in a text that also
links to "The Beatles" should most likely link to "Apple Records" and not "Apple
Computers").

Know-Centre Graz submitted 2 runs for the file-to-file link discovery and 6 runs
for the anchor-to-BEP task. The outgoing links were identified using gazetteer match-
ing of page titles. The identified outgoing links were ranked using cosine similarity
based on noun vectors. The incoming links were identified similarly by searching for
the title and using the orphan documents nouns for calculating the cosine similarity.
The difference between the two runs (here referred to as run1 and run2) was the rank-
ing scheme. The outgoing links in run2 were ranked by the IDF frequency of the
occurring text in the corpus. Differently to the incoming links in run2, the nouns for
every sentence in the orphan document were used for calculating the cosine similarity
to the incoming link source, wherefrom the maximum cosine similarity on each sen-
tence was taken.

The University of Waterloo submitted 3 runs for the file-to-file link discovery and
3 runs for the anchor-to-BEP task. For the file-to-file link discovery, thir first run,
they utilized the same approach they used last year (which placed first). In their sec-
ond run, outgoing links were discovered using the same method as thr first, except
with the cut-off for the number of links to return according to the size of topic files.
Incoming links were selected using an element retrieval approach using BM25. For
their third run, Outgoing links were done using page rank while incoming links are
done using topic oriented page rank assuming that what was found for the outgoing

 Overview of the INEX 2008 Link the Wiki Track 321

links was correct. The algorithms used for the anchor-to-BEP task was the same,
except for finer granularity in specifying sources and destinations.

The Queensland University of Technology submitted 5 runs for the file-to-file task
and 6 runs for the anchor-to-BEP task. Several runs used the GPX search engine using
the same approach they used in 2007. Several runs used the Terrier search engine out
of the box to find document to document links was also tried. Finally, several runs
used frequent phrase mining to identify suitable anchors and links.

The University of Otago submitted 3 runs for the file-to-file link discovery and 3
runs for the anchor-to-BEP task. These runs were based on the Itakura & Clarke ap-
proach from 2007, but with particular attention paid to parsing issues.

8 Results and Conclusion

The tables 1 and 2 present the final assessment results using Mean Average Precision
(MAP). The figures 4-11 present the Interpolated Precision/Recall graphs of each run.

This is the second year of the Link-the-Wiki track at INEX, and the year the
anchor-to-BEP link discovery task was introduced. Since the anchor-to-BEP link
discovery can be applied in different scenarios to enhance the efficiency of the inter-
action it is important to build a standard procedure to measure the performance and
tools to facilitate the evaluation and assessment. This attempt has opened a door for
participants to share their suggestions and opinions for the track, which will improve
the capability of the track to facilitate further the link discovery research. Several
qrels sets for evaluating runs at different granularity levels were produced and used to
measure the performance of various approaches. The GUI-based tools balance the
time-consuming assessment and evaluation.

Because this was the first year for the anchor-to-BEP link discovery task it was ex-
pected (and seen) that some runs would contain invalid positions for anchors and
BEPs (some contained file-to-file links). Because of this, the relative comparison of
runs may be biased towards correctly formatted runs (at the expense of better but
incorrectly formatted runs).

Table 1. MAP of 6600 File-to-File topics link discovery evaluated by Wikipedia Ground Truth

Runs Out In Runs Out In
AmsterdamDeRijke_ltw01 0.2924 0.4800 Amsterdam_a2a_1 0.1071 0.3392
AmsterdamDeRijke_ltw02 0.3475 0.5249 Amsterdam_a2a_2 0.1088 0.2879
AmsterdamDeRijke_ltw03 0.1041 0.3345 Amsterdam_a2a_3 0.1017 0.3575
Otago_capConstSingleSearchWei 0.3045 0.4314 LycosF2F-1-1 0.2360 0.3266
Otago_capConstTitleOnly 0.3045 0.4869 LycosF2F-1-5 0.2379 0.3266
Otago_nonCap-FirstPara 0.7343 0.2228 Waterloo_f2f#1 0.3345 0.5540
KnowCenterGraz_globTFIDFSen 0.1407 0.5369 Waterloo_f2f#2 0.2920 0.5350
KnowCenterGraz_WordLvldisam 0.1129 0.5299 Waterloo_f2f#3 0.2053 0.5563
QUT_F-F_1 0.1026 0.0925 CMIC_F2F_01 - 0.4579
QUT_F-F_2 0.1026 0.2915 CMIC_F2F_02 - 0.5116
QUT_LTW_F2F_01 - 0.4322 CSIR_LTW_F2F_1 - 0.1645
QUT_GPXF2Ftitle 0.0566 - CSIR_LTW_F2F_2 0.0082 0.2940
QUT_GPXF2FnameInOut 0.1440 0.5713

322 W.C. Huang, S. Geva, and A. Trotman

Table 2. MAP of 50 Anchor-to-BEP topics evaluated by manual and Wikipedia ground-truths

Submission Runs F2F F2B A2F A2B Out In
WikipediaGroundTruthRun 0.2765 0.2079 0.3945 0.3888 1 1
LycosA2B-1-5 0.2463 0.2078 0.4973 0.4918 0.1193 0.1753
LycosA2B-1-1 0.2431 0.2050 0.4930 0.4876 0.1172 0.1753
LycosA2B-5-1 0.2427 0.2050 0.4931 0.4876 0.1169 0.1753
LycosA2B-1-0 0.2387 0.2008 0.4708 0.4656 0.1148 0.1753
Otago_capConst-SingleSearch 0.1745 0.1365 0.3952 0.3910 0.3810 0.2389
Otago_capConst-TitleOnly 0.1745 0.1365 0.3952 0.3910 0.3810 0.2408
Otago_nCapConst-WholeDoc 0.1724 0.1352 0.3896 0.3853 0.3769 0.0745
KnowCenterGrazdisamDocNoneSen 0.1546 0.1077 0.1764 0.1453 0.2370 0.1435
KnowCenterGrazdisamDocNoneTopic 0.1546 0.0603 0.2131 0.1968 0.2370 0.1429
KnowCenterGrazdisamTopicNonSen 0.1522 0.1058 0.2076 0.1662 0.2091 0.1695
KnowCenterGrazdisamTopicNonTopic 0.1522 0.0620 0.2643 0.2384 0.2091 0.1676
KnowCenterGrazglobalIDFSentence 0.1371 0.1222 0.2309 0.1895 0.2200 0.1725
KnowCenterGrazglobalIDFTopic 0.1371 0.0688 0.2873 0.2619 0.2200 0.1725
Waterloo_a2a#1 0.1282 0.1004 0.4111 0.4071 0.2191 0.2165
LycosA2B-0-1 0.1200 0.1051 0.3291 0.3249 0.0432 0.1753
QUT_LTWA2BnameRerank 0.1196 0.0946 0.3042 0.3012 0.1816 0.4615
Amsterdam_a2bep_5 0.1127 0.0847 0.2079 0.2058 0.1426 0.2349
QUT_GPXA2Bname 0.1110 0.0882 0.2912 0.2882 0.1522 0.4236
Waterloo_a2a#2 0.1071 0.0823 0.3355 0.3325 0.1854 0.1804
Waterloo_a2a#3 0.0882 0.0656 0.3874 0.3835 0.1710 0.2044
CMIC_LTW_01 0.0763 0.0576 0.1760 0.1740 0.1004 -
CSIR_LTW_A2BEP_2 0.0760 0.0478 0.1307 0.1237 0.0647 0.1577
Amsterdam_a2bep_1 0.0746 0.0556 0.1271 0.1261 0.0973 0.2349
Amsterdam_a2bep_3 0.0685 0.0518 0.0983 0.0975 0.0911 0.1566
Amsterdam_a2bep_2 0.0671 0.0491 0.1127 0.1115 0.0872 0.2349
QUT_Anchor-BEP_1 0.0524 0.0424 0.1149 0.1141 0.0729 0.0710
QUT_P9_GPXA2Btitle) 0.0487 0.0388 0.1725 0.1712 0.0533 0.4511

Fig. 4. 6600 File-to-File Topics Outgoing link discovery evaluated by Wikipedia Ground Truth

 Overview of the INEX 2008 Link the Wiki Track 323

Fig. 5. 6600 File-to-File Topics Incoming link discovery evaluated by Wikipedia Ground Truth

Fig. 6. 50 Anchor-to-BEP Outgoing link discovery evaluated by Wikipedia Ground Truth

Fig. 7. 50 Anchor-to-BEP Incoming link discovery evaluated by Wikipedia Ground Truth

324 W.C. Huang, S. Geva, and A. Trotman

Fig. 8. 50 Anchor-to-BEP Outgoing links: File2File Evaluation by Manual Ground Truth

Fig. 9. 50 Anchor-to-BEP Outgoing links: File2BEP Evaluation by Manual Ground Truth

Fig. 10. 50 Anchor-to-BEP Outgoing links: Anchor2File Evaluation by Manual Ground Truth

 Overview of the INEX 2008 Link the Wiki Track 325

Fig. 11. 50 Anchor-to-BEP Outgoing links: Anchor2BEP Evaluation by Manual Ground Truth

References

1. Trotman, A., Geva, S.: Passage Retrieval and other XML-Retrieval Tasks. In: The SIGIR
2006 Workshop on XML Element Retrieval Methodology, pp. 48–50 (2006)

2. Huang, W.C., Xu, Y., Trotman, A., Geva, S.: Overview of INEX 2007 Link the Wiki Track.
In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 373–387. Springer, Heidelberg (2008)

3. Huang, W.C., Xu, Y., Trotman, A., Geva, S.: Experiments and Evaluation of Link Discov-
ery in the Wikipedia. In: The SIGIR 2008 Focused Retrieval Workshop, Singapore (2008)

4. Voss, J.: Measuring Wikipedia. In: The 10th International Conference of the International
Society for Scientometrics and Informetrics (ISSI 2005) (2005)

5. Adafre, S.F., de Rijke, M.: Discovering missing links in Wikipedia. In: The SIGIR, Work-
shop on Link Discovery: Issues, Approaches and Applications (2005)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 326–336, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Link-the-Wiki: Performance Evaluation Based on
Frequent Phrases

Mao-Lung (Edward) Chen, Richi Nayak, and Shlomo Geva

Faculty of Science and Technology
Queensland University of Technology
chen@student.qut.edu.au,

r.nayak@qut.edu.au,
s.geva@qut.edu.au

Abstract. In this paper, we discuss our participation to the INEX 2008 Link-
the-Wiki track. We utilized a sliding window based algorithm to extract the fre-
quent terms and phrases. Using the extracted phrases and term as descriptive
vectors, the anchors and relevant links (both incoming and outgoing) are recog-
nized efficiently.

1 Introduction

With the information boom on the Internet, there are many encyclopaedia-like web-
sites for gathering and sharing knowledge. One of the leading website is Wikipedia,
which is a collaborative repository written and contributed by Internet users. With
rich articles and features in Wikipedia, the INEX (Initiative for the Evaluation of
XML Retrieval) organisers have collected and presented the documents and articles
into an XML dataset, named as INEX Wikipedia corpus. The corpus is large in size,
about 650,000 documents, and useful for various ranges of information retrieval and
data mining research. One of the research tracks organized by INEX is Link-the-Wiki,
which was introduced on 2006 [1]. The objective of this track is to automatically
discover the hyperlinks among Wikipedia web pages. The Link-the-Wiki track offers
many interesting challenges. One of them is related to the size and nature of the
Wikipedia data corpus. This corpus has more than 659,000 XML documents and is
about 5GB in size. The challenge includes performance on large dataset, handling
high dimensional, complex and noise-full data source.

This research utilises frequent phrases for link discovery. The assumption is that a
word or a phrase is linked with other documents (Web page) only if it is important in
its own document. In this research, the importance is measured by the frequency of the
word or the phrase in the document. Non-frequent words or phrases can be ignored for
linking purposes. This is also a way to deal with such a large dataset. We first attempt
to reduce the size, complexity and dimensionality of the dataset by extracting the fre-
quent terms and phrases from the corpus. We then discover the hyperlinks between
Web pages according to the extracted frequent phrases and terms. Empirical analysis
shows that the anchors and relevant links are recognized efficiently using the extracted
phrases and term as descriptive document vectors.

 Link-the-Wiki: Performance Evaluation Based on Frequent Phrases 327

This paper details the proposed approach. Section 2 provides an overview of the
proposed multi-stage approach. Section 3 describes the data pre-processing steps
including stop-words removal and stemming. Section 4 explains the Frequent Phrase
Extraction algorithm. The link discovery process including both incoming and outgo-
ing links is discussed in section 5. Section 6 gives the detail of empirical analysis. The
conclusion section summaries the research and offers some future extensions and
applications of this research.

2 Overview of the Proposed Approach

Figure 1 illustrates the proposed approach undertaken in this research. It includes four
main stages including data preparation, frequent phrase recognition, link discovery
and validation.

INEX Dataset Data Preparation Frequent Phrase
Recognition

INEX Evaluation

Validation

Link Discovery

Fig. 1. The proposed approach

Data Preparation: In the first stage of this approach, data cleaning, transformation
and preparation are performed. The Wikipedia documents in the INEX corpus require
a series of data cleaning process to get them ready for data mining. All the 659,000
documents of the Wikipedia corpus are stored into a relational database. By gathering
all the documents into data tables in a database, all the Wikipedia articles will be well
aligned. Any relational database, such as Microsoft SQL Server, Oracle and MySQL,
etc is an appropriate selection to reside the data. Once the articles have been arranged
into database, each document is processed with data parsing, word stemming and
stop-words removal.

Frequent Phrase Recognition: Initial data preparation steps including stop-word
removal and stemming are able to eliminate a certain amount of noise and reduce the
size of the corpus. However, the database is still very large in size and has redundant
information. In order to further reduce the size and complexity, the second stage in

328 M.-L. Chen, R. Nayak, and S. Geva

this research employs an algorithm to recognise and extract the frequent phrases from
each document. Each document is represented as a vector of descriptive phrases or
terms. It is hoped that after this step, database size and article complexity would be
remarkably decreased.

Link Discovery and Validation: With each document represented as frequent terms
and phrases, the link discovery step becomes straightforward. Each orphan document
is processed to recognize the appropriate anchors according to the existing frequent
phrases. Anchors of the orphan document are linked with the other documents (or
frequent phrases) in that they are present. The links of the recognized anchors can be
ranked and sorted according to the frequency of extracted frequent phrases. As to the
validation step, certain percentages of recognized links are examined manually for
evaluating their accuracy.

3 Data Pre-processing

Similar to a data mining task, data pre-processing is the first step of the proposed
approach. In this research, all the documents are organized into a database. The first
pre-processing step is to eliminate the XML tags from the input XML document and
transfer it into a plain text article. In addition, any word which is less than 2 charac-
ters was deleted during parsing. The next step is stop-word removal. There were some
difficulties encountered in using the standard and common stop-word lists to identify
the stop-words. These lists cover a wide range; as a result, some of the meanings were
lost or changed after the stop-words removal. For example, the word “new” is covered
in these lists. For some articles which have the phrase “New York”, it became only
“York” with the removal of the word “New”. Apparently, “New York” is totally dif-
ferent from “York”. The solution to this problem was to manually review the list of
stop-words. If a keyword that can be a part of a meaningful phrase should be excluded
from the stop-words list. The last step of data pre-processing is to stem the words.
This research employed a well-known stemming algorithm by Porter [2] to remove
the suffix from words in English.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Less than 50 words

Between 50 and 100 words

Between 100 and 200 words

Between 200 and 400 words

Between 400 and 800 words

Between 800 and 1500 words

More than 1500 words

Article Size

Q
u
a
n
ti
ty

Before

After

Fig. 2. Article size before and after pre-processing

 Link-the-Wiki: Performance Evaluation Based on Frequent Phrases 329

Figure 2 shows that the article size was effectively reduced by pre-processing. Af-
ter pre-processing, the distribution of article size was drift to left and distributed more
evenly than before pre-processing. The average size of articles was reduced almost
40% after pre-processing. It was average 389 words in a document before pro-
processing. It has condensed to average 234 words per document after preprocessing.

4 Frequent Phrase Extraction

A sliding-window based algorithm is used to extract the frequent phrases from each
single document. This algorithm recognizes and extracts the frequent terms and
phrases from each document independently in the corpus. Let D be the set of docu-
ments in the Wikipedia corpus. At this point we assume that each document is inde-
pendent from each other.

D = { d1, d2, d3, ………, dn } (1)

Considering each document independently, a set of frequent phrases from each
document is extracted. Frequent phrases are extracted from a document at the level of
sentences and paragraphs. Figure 3 shows the process of frequent phrase extraction in
which a document is modeled as a set of sentences. The algorithm applies a window
on a number of words. Several window sizes are used during the experiments. Using
the moving window, 1-term, 2-terms to n-terms frequent phrases are extracted (sev-
eral n-sizes are used in experiments). Output of this algorithm is a set of 1-term to n-
terms frequent phrases which belongs to that particular document.

d1 {p11…..p1q} d1

dn {pnt…..pnm} dn

Extraction(d1) ∈

Extraction (dn) ∈

Fig. 3. The inputs and outputs of frequent phrase extraction

5 Link Discovery

The link discovery task is to recognize the anchors in a set of orphan documents and
to recognize the appropriate incoming and outgoing links to these orphan documents
via these anchors. An incoming link is to identify a potential anchor term or phrase in
the corpus documents and refer the anchor to this particular orphan document. In
contrast, an outgoing link is to find out the potential anchor text within this orphan
document and point the anchor to an appropriate document. We utilized the extracted
frequent phrases to recognize the anchors and identify both incoming and outgoing
links as shown in figure 4.

330 M.-L. Chen, R. Nayak, and S. Geva

term1 term2

 term3

 term4

 term5

 term6 term7

Orphan Document

term 2 =

{d4, d7, d8}

d1 = {P11,..P1n}

d2= {P21,..P2m}

d3= {P31,..P3o}

d4= {P41,..P4p}

d5= {P51,..P5q}

d6= {P61,..P6r}

d7= {P71,..P7s}

d8= {P81,..P8t}

term 5 =

{d5, d6}

Extracted

Frequent Phrases

Fig. 4. The link discovery design with extracted frequent phrases

Each orphan document is scanned for a common term or phrase identified in the
corpus. Each term (or combinations of the terms in the window) of an orphan docu-
ment is matched with the extracted frequent phrases in the corpus. If a term (or
phrase) is matched with a frequent phrase, the link can be created by tracking back to
the original document. The sections below explain the detail process of identifying
outgoing and incoming links.

5.1 Outgoing Links

The first task in identifying outgoing links of an orphan document is to recognize the
anchors in the document which are phrases. A phrase is composed of multiple single
terms and is a set of element terms. Consider the following example. Assume that the
orphan document has an anchor that is “Australian Open Tennis Championship”.
This 4-terms phrase, P1, is a set of 4 elements, including t1= “Australian”, t2= “Open”,
t3= “Tennis” and t4 is “Championship”. The first challenge of outgoing link discovery
is how to identify “Australian Open Tennis Championship” as an anchor phrase pre-
sent in the orphan document.

P1 = {t1, t2, t3, t4} = {“Australian”, “Open”, “Tennis”, “Championship”} (2)

Without the

frequent phrase list

Orphan Doc : Dm

 t1 t2 t3 t4

pick up terms

individually

 tg th

With the frequent

phrase list

Orphan Doc : Dm

 t1 t2 t3 t4

pick up the

combinations of

terms as

phrases

 tg th

Frequent Phrase

List

t1 t2 t3 t4 P1

tg th Pn

Fig. 5. Comparing with / without the assistance of frequent phrase list

 Link-the-Wiki: Performance Evaluation Based on Frequent Phrases 331

Let us first consider the outgoing link discovery without the assistance of the Fre-
quent Phrase List. The link discovery algorithm considers t1 (“Australian”) individu-
ally and search the link for t1. As shown in figure 5 (left part), the program can only
pick up t1 (“Australian”), t2 (“Open”), t3 (“Tennis”) and t4 (“Championship”)
individually. Without the Frequent Phrase List, all these terms are independent from
each other and there exist no relationship among them.

In contrast, with the assistance of extracted frequent phrases, the procedure recog-
nizes the anchors {t1, t2, t3, t4} as a single phrase. As shown in figure 5 (right part), {t1,
t2, t3, t4} (“Australian Open Tennis Championship”) in the orphan document Dm is
recognized according to P1 in Frequent Phrase List. In this example, tg and th would
also be identified as a phrase Pn. In other words, the relationships among the individ-
ual terms are identified and stored in the Frequent Phrase List. This procedure
achieves a simulation of natural language and recognizes phrase anchors.

After the anchors have been recognized, the next task is locating the documents
which contain information about this anchor. For example, the articles containing
information about previous winners of “Australian Open Tennis Championship”
would be a good candidate. By exploiting the Frequent Phrase List, this link discovery
procedure executes a series of queries against the documents which contain the query
phrase. Figure 6 shows the link discovery procedure that first obtains the query phrase
(anchor) P1, and filters the list of documents. In this example, there are 3 documents
returned by this query, including Du, Dv, Dy. For example, if P1 is the “Australian
Open Tennis Championship”, the Du may be an article regarding the “The history of
Australian Open Tennis Championship”.

In summary, the phrase anchors from the orphan document are first recognized ac-
cording to a frequent phrase extraction algorithm. These anchors are then used to
identify the documents that have them to source the outgoing links.

Orphan Doc Dm

 ….. …

.. t1 t2 t3 t4 …

 . … … ….

t1 t2 t3 t4 P1

..

… .. … . .

… …… .

. ..

P1 Du

P1 Dv

P1 Dy

… ..

Du

. . ..t1 t2 t3 t4 …

Dv

.t1 t2 t3 t4 …

Dy

. . . . … .t1 t2
t3 t4 …. ..

Fig. 6. Finding the outgoing links for anchor P1

5.2 Incoming Links

The incoming link discovery uses the same concept as outgoing link discovery, but the
direction is reversed. The first task is identifying anchors in the orphan document. The

332 M.-L. Chen, R. Nayak, and S. Geva

frequent n-terms phrases are extracted from the orphan document. As shown in figure
7, the frequent phrases, P1, P2 , P3 and P4 are extracted and viewed as descriptive vec-
tors of this particular document Dm. The descriptive vectors can indicate the topics of
this orphan document. For instance, the possible frequent phrases from Dm are “Austra-
lian Open Tennis Championship”, “Melbourne Park”, “hard court”, “Grand Slam”.
The combination of these frequent phrases represents and describes this orphan docu-
ment to some extent.

Orphan Doc Dm

 ….. …

. …

 . … … …

.. . .. ….

…. …

… … …

. . . ….

Descriptive Vectors of Dm

t1 t2 t3 t4 P1

t6 t7 P２

tq ts P３

ti t j tk P４

Du

. . ..t1 t2 t3 t4 …

Dv

.t1 t2 t3 t4 …

Dy

. . . . … .t1 t2
t3 t4 …. ..

Fig. 7. Finding the incoming links for document Dm

The next step of incoming link discovery is to scan through the Wikipedia corpus

and find out the articles which have information about the “Australian Open Tennis
Championship”. These articles become the incoming links to this orphan document.
In figure 7 for example, P1 (“Australian Open Tennis Championship”) is a descriptive
vectors of document Dm. The last step of creating an incoming link is to store the
information of incoming document ID {Du, Dv, Dy} to the orphan document Dm.

6 Experiments and Discussion

The INEX 2008 Wikipedia corpus was processed according to the procedures ex-
plained in section 3. Each document was processed to extract frequent n-terms
phrases. In the experiments, n is taken up to 5. Each document is now represented by
the frequent n-terms phrases that it contains. The dimensionality and size of the origi-
nal corpus was apparently reduced by the frequent phrase extraction. The original
Wikipedia corpus was more than 5GB, while the total file size of extracted phrases
was only 1.2GB.

Table 1 gives some instances of recognised frequent (stemmed) phrases with their
frequency in an orphan document. The pre-processed document with a title “violin”
had a total of 7258 words. On the right hand part of Table1, it shows there are 492
frequent 1-term, 326 frequent 2-term and 79 recognized frequent 5-terms. This docu-
ment is now represented as a vector of 1528 terms/phrases.

 Link-the-Wiki: Performance Evaluation Based on Frequent Phrases 333

Table 1. Some instances of the extracted frequent phrases

Doc ID Freq Phrase n-terms
Doc 1 7 europ 1
Doc 1 9 violin 1
Doc 1 4 music instrument 2
Doc 1 6 standard pitch 2
Doc 1 12 finger posit 2
Doc 1 4 violin mak techniqu 3
Doc 1 5 type harmon artifici natur 4
Doc 1 6 vibrato common techniqu pitch 4
Doc 1 3 plai violin tune twist peg. 5

n-terms Quantity

1 492

2 326

3 381

4 250

5 79

Table 2 shows that when the article size (word count) was increased, the average

number of extracted phrases in that particular document was also raised as well. This
shows that the extracted phrases were sufficient enough to describe the original
document.

Table 2. The average frequency of every phrase

Document Size (Word Count) Average Frequency
Less than 200 3
Between 200 and 400 words 8
Between 400 and 700 words 16
Between 700 and 1000 words 29
Between 1,000 and 3,000 words 62
More than 3,000 words 214

By investigating the extracted Frequent Phrase List, some interesting observations

were made. For example, as shown figure 8, the comparison between total phrases
and unique phrases revealed the features of the natural language, English. There are a
total of 270,826 unique words (1-term phrases) in the corpus. It can be said that a
dictionary with about 270,000 words would explain almost everything in this world.

-

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

1-term 2-term 3-term 4-term 5-term
Total Phrases

Unique Phrases

Fig. 8. The comparison between total phrases and unique phrases

334 M.-L. Chen, R. Nayak, and S. Geva

However, there are many more 2-terms and 3-terms unique phrases in the corpus as
compared to 1-term, 4-term and 5-term unique phrases. It reveals that the 2-terms and
3-terms phrases are more descriptive and representative to explain a concept and more
accurate to describe meanings in the English language.

The link discovery procedures were applied on orphan documents to recognize the
potential anchor text and possible links within. This procedure is based on the inte-
grated n-terms which is the combination of 1-term to 5-terms. Frequent phrases in-
cluding 1-term to 5-terms are extracted from an orphan document and all of them are
considered as anchors. Any overlapping among the n-terms is removed. For example,
if a 2-term phrase is a sub-string of a 3-term phrase, this 2-term phrase will be re-
moved from n-term collection. Results in Table 3 show that this approach, represent-
ing the documents with frequent phrases only and then using these frequent phrases
for recognising links, is able to allocate sufficient quantity of links in those orphan
documents.

Table 3. The quantity of links discovered

Minima Maxima Discovered Links
Incoming Outgoing Incoming Outgoing

Small docs (less than 500 words) 16 21 90 106
Medium docs (500 ~ 2000 words) 36 54 278 295
Large docs (more than 2000 words) 127 176 523 610

As shown in Figure 9, the average of links discovered from small, medium and

large documents are 111, 302 and 631, respectively. The next task will be to rank
these links so the high quality links can only be reported. Moreover, the INEX Link-
the-Wiki evaluation can accept up to 250 incoming and 50 outgoing links for each

Fig. 9. The quantity of links discovered

 Link-the-Wiki: Performance Evaluation Based on Frequent Phrases 335

orphan document. The threshold for filtering the potential links is based on the rank-
ing of frequency of that particular phrase. For example, frequency of “finger posit” in
Table 1 is 12; while the “standard pitch” has frequency of 6 in the same Table 1. In
this scenario, the links of “finger posit” will be considered of higher importance than
the links of “standard pitch”.

IncomingPlot

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

Recall

In
te

rp
ol

at
ed

Pr
ec

is
io

n

Fig. 10. The plot of Incoming Links

Outgoing Plot

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

Recall

In
te

rp
ol

at
ed

P
re

ci
si

on

Fig. 11. The plot of Outgoing Links

The quality of links can be evaluated using Precision and Recall. Figure 10 and
Figure 11 show the quality of identified incoming links and outgoing links respec-
tively with the proposed approach. For the incoming links, this approach gives a fair
result with the precision up to almost 0.7. However, this approach did not perform
very well for identifying outgoing links. The precision of outgoing links only reached
a bit higher than 0.4.

There is one interesting issue raised by comparing the different results of incoming
and outgoing links. Both the incoming and outgoing links used the same tokenization
method. The Frequent Phrase Extraction (mentioned in section 4) is the fundamental
of both incoming and outgoing links. However, the recognition process of incoming
links is different from the process of recognizing outgoing links. Due to the difference
in nature of incoming and outgoing links, different procedures are implemented to
find these links. As a result, it is likely to improve the outgoing links and reach a
good result similar as incoming links.

7 Conclusions and Future Work

This paper presents our approach of discovering the incoming and outgoing links
based on frequent phrases. Through data pre-processing, Frequent Phrase Recogni-
tion, Link Discovery and Validation, this proposed approach was able to discover the
links automatically with certain accuracy. The precision of incoming links was found
to be 0.7; while the precision of outgoing links did not perform as well as incoming
links, only reached 0.4.

After conducting a series of experiments, results were found to support the hy-
pothesis and assumptions made in the research. For example, the complexity and
dimensions were effectively reduced by extracting the frequent phrases. The descrip-
tive information collected from frequent phrases was sufficient to a certain level to
undertake the Link-The-Wiki link discovery tasks.

336 M.-L. Chen, R. Nayak, and S. Geva

There are some possible future extensions of this research. From the perspective of
text mining, the recognition of frequent phrases is a difficult issue. In this research,
we did not consider the named entity recognition as a part of pre-processing. It is
hoped that the use of known entities such as nouns may improve the quality of an-
chors and consequently the links.

On the other hand, hyperlink is a particular feature of hypertext and web pages.
The hyperlinks discovered in the research were almost as meaningful as manually
maintained. In the future research, the precision of automatic link discovery would be
improved. As a result, the generic link discovery method would benefit the huge
amount of websites.

References

1. Trotman, A., Geva, S.: Passage Retrieval and other XML-Retrieval Tasks. In: Proceedings
of SIGIR 2006 Workshop on XML Element Retrieval Methodology, Seattle, Washington,
USA, pp. 48–50 (2006)

2. Porter, M.F.: An algorithm for suffix stripping. Automated Library and Information Sys-
tems 14, 130–137 (1980)

3. Kostoff, R.N., Tshiteya, R., Pfeil, K.M., Humenik, J.A.: Electrochemical power text min-
ing using bibliometrics and database tomography. Journal of Power Sources 110, 163–176
(2002)

4. Myat, N.N., Hla, K.H.S.: A Combined Approach of Formal Concept Analysis And Text
Mining For Concept Based Document Clustering. In: IEEE/WIC/ACM International Con-
ference on Web Intelligence 2005, p. 4 (2005)

5. Girju, R., Badulescu, A., Moldovan, D.: Learning semantic constraints for the automatic
discovery of part-whole relations. In: 2003 Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology, vol. 1.
Association for Computational Linguistics, Edmonton (2003)

6. Hideo, J., Mark, S.: Retrieving descriptive phrases from large amounts of free text. In: 9th
international conference on Information and knowledge management. ACM, McLean
(2000)

7. Parisut, J., Worapoj, K.: Dimensionality reduction of features for text categorization. In:
3rd conference on IASTED International Conference: Advances in Computer Science and
Technology. ACTA Press, Phuket (2007)

8. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: 8th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. ACM, New York (2002)

9. Yanjun, L., Soon, M.C.: Text document clustering based on frequent word sequences.
In: 14th ACM international conference on Information and knowledge management,
pp. 293–294. ACM, New York (2005)

10. Shen, D., Chen, Z., Yang, Q.Z.: H., Zhang, B., Lu, Y., Ma, W.: Web-page classification
through summarization. In: SIGIR 2004: Proceeding of the 27th ACM Int. Conference on
Research and development in information retrieval, Sheffield, pp. 242–249 (2004)

11. Lei, Z., Debbie, Z., Simeon, J.S., John, D.: Weighted kernel model for text categorization.
In: 5th Australasian conference on Data mining and analystics, vol. 61. Australian Com-
puter Society, Inc., Sydney (2006)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 337–342, 2009.
© Springer-Verlag Berlin Heidelberg 2009

CMIC@INEX 2008: Link-the-Wiki Track

Kareem Darwish

Cairo Microsoft Innovation Center,
Bldg B115, Smart Village

Km. 28 Cairo/Alexandria Desert Rd.
Abu Rawash, Egypt

kareemd@microsoft.com

Abstract. This paper describes the runs that I submitted to the INEX 2008
Link-the-Wiki track. I participated in the incoming File-to-File and the outgo-
ing Anchor-to-BEP tasks. For the File-to-File task I used a generic IR engine
and constructed queries based on the title, keywords, and keyphrases of the
Wikipedia article. My runs performed well for this task achieving the highest
precision for low recall levels. Further post-hoc experiments showed that con-
structing queries using titles only produced even better results than the official
submissions. For the Anchor-to-BEP task, I used a keyphrase extraction en-
gine developed in-house and I filtered the keyphrases using existing Wikipedia
titles. Unfortunately, my runs performed poorly compared to those of other
groups. I suspect that this was the result of using many phrases that were not
central to articles as anchors.

Keywords: Document Linking, keyphrase extraction.

1 Introduction

This paper presents the experiments I conducted at the Cairo Microsoft Innovation
Center (CMIC) for the INEX Link-the-Wiki track. I participated in the outgoing An-
chor-to-BEP (A2B) and the incoming File-to-File (F2F) tasks only. For the A2B task,
the task was reduced to an Anchor-to-File task by setting all the best entry points to 0.
The focus for the A2B task was on the identification of possible anchors via perform-
ing keyphrase extraction on the text of the orphan pages. The keyphrase extraction
algorithm that I used attempted to find all possible phrases, but neglected to determine
if the keyphrases are central to the page. Such a determination of centrality is crucial
for identifying good anchors. For the F2F task, I used generic information retrieval
techniques without any special processing for Wikipedia articles. I performed further
runs for the F2F task, and the results suggest that using the titles of articles only pro-
duced the best results.

This paper is organized as follows: Section 2 presents my keyphrase extraction
technique and survey existing techniques; section 3 presents my methodology for the
A2B and F2F tasks and reports on the results; and Section 4 concludes the paper.

338 K. Darwish

2 Keyphrase Extraction

Identifying a word sequence consisting of one or more words that represents a valu-
able concept in text is an important NLP problem. Such valuable concepts, which are
henceforth referred to as keyphrases, are often called keywords (if they are single
words), collocations and multi-word expressions, and are assumed to obey “semantic
non-compositionality, syntactic non-modifiability, and non-substitutability of compo-
nents by semantically similar words” [2, 4]. Conventionally, keyphrases represent the
central concepts in an article, and hence, a sequence of words can be a keyphrase in
one article and not in another. Another application is identifying salient words or
phrases that can serve as hypertext to link from one article to another. Depending on
the desired level of linking, a sequence of words may not have to be central to the
article, which was my target of the work presented in this paper. Perhaps the funda-
mental difference between the two aforementioned applications is that the first is
concerned with the top n valuable word sequences and the other is concerned with
“all” such word sequences.

Subsections 2.1 and 2.2 describe related work on keyphrase extraction and my
keyphrase extraction algorithm respectively.

2.1 Related Work

Much effort has gone in defining what keyphrases and there variants are [2, 4]. There
are many approaches to keyphrase extraction including approaches that use phrase
occurrence counts and part of speech patterns and word collocations, in which words
that co-occur with a mean distance that has low variance [4]. Other approach are based
on supervised learning in which a classifier is trained on features such as phrase loca-
tion in a text segment, a phrase term frequency and document frequency [6]. Another
approach is based on constructing a directed graph where the nodes represent tokens
from a reference corpus and weighted links between nodes indicating the count of
subsequent occurrences in text. After constructing the graph, graph walks over the
highest weighted links are used to extract keyphrases [3]. The list of approaches listed
above is by no means exhaustive, but provides a flavor of the most popular approaches.

2.2 Keyphrase Extraction System

I developed a keyphrase extraction technique that uses supervised machine learning in
which a support vector machine (SVM) classifier is trained on the following features:

1. The probability of sequence occurrence. Keyphrases are expected to have a
high probability of occurrence. The probability is computed using a language
model that is trained on a reference corpus. For this work, I trained the lan-
guage model on the Link-the-Wiki Wikipedia corpus.

2. The unigram occurrence probability of head and tail words. Head and tail
words are typically expected to be valuable words, which would indicate that
they have a low occurrence probability. The probability is computed using a
language model that is trained on Link-the-Wiki corpus.

 CMIC@INEX 2008: Link-the-Wiki Track 339

3. The sequence probability of words between head and tail words. These
words are assumed to connect between the head and tail words and hence
should have high probability of occurrence. For example, for the keyphrase
“Department of Energy” the connect sequence is just “of” and is expected to
be a common sequence. Again the probability is computed using a language
model that is trained on the Link-the-Wiki corpus.

4. The probability of Part-of-Speech (POS) sequence being a keyphrase. The
probability is computed using a language model that is trained on a list of
POS tagged keyphrases. The POS tagging was done using an in-house POS
tagger.

5. The percentage of digits.
6. The percentage of words with upper case letters.
7. The percentage of words that are a part of noun phrase chunk. The chunking

was done using an in-house chunker.
8. The number of words in a sequence.

My keyphrase extractor can be tuned to be recall or precision oriented. For the sub-
mitted runs, I tuned the system to be more precision oriented, because a user would
generally be willing to tolerate missing hyperlinks but would generally not tolerate
incorrectly assigned hyperlinks. My system achieves 40% recall when tuned to be
approximately 99% precise, as measured on a reference corpus. An important feature
that was omitted is a feature that measures the importance of the sequence in the arti-
cle. Such a feature can be the term frequency of the term, some combination of the
term frequency and inverse document frequency, or some other feature such as the
binomial log likelihood ratio [1].

3 Approach to Link-the-Wiki and Results

For the F2F task, I used the Indri search toolkit for indexing and searching the
Wikipedia articles. I used Indri with stop-word removal and no stemming or blind
relevance feedback. Indri combines inference network model with language modeling
[5]. I submitted two runs, namely CMIC_F2F_01 and CMIC_F2F_02. I used three
items to construct queries, namely the titles of Wikipedia articles (with the phrase
operator if a title was longer than 1 word), the keyphrases extracted from the articles,
and the top 20 terms from each article as ranked by term frequency only. For
CMIC_F2F_01 run, I constructed the queries from the titles and the keyphrases. As
for the CMIC_F2F_02 run, I constructed the queries using titles, keyphrases, and top
20 terms. The resultant mean average precision for the CMIC_F2F_01 and
CMIC_F2F_02 runs was 0.46 and 0.51 respectively. It is also noteworthy that
CMIC_F2F_02 achieved the highest precision among all the submitted runs for low
recall levels (recall < 0.25), which suggests that my approach is more precision ori-
ented and more suitable for generating a good small list of suggestions.

340 K. Darwish

I ran additional post-hoc experiments to identify the effects of the titles and the top
n-terms on retrieval effectiveness. For the ad-hoc runs, the queries were constructed
using: the titles only with and without the phrase operator (Raw and Phrase respec-
tively) or in combination of both; the Top n terms from the document where n was
either 10, 20, or 30; and a combination of the Top 10 terms and the titles. Table 1 and
Figure 1 report on the results of the submitted runs and the post-hoc runs. The results
show that the titles of the articles were the most effective for the F2F task. In fact,
constructing the queries using the titles with the phrase operator in combination with
the titles without the phrase operator yielded results that were better than the official
submitted runs. Also, adding the Top 10 terms to the titles improved retrieval effec-
tiveness when using the titles with the phrase operator only, while adding more terms,
namely Top 20 terms, degraded retrieval effectiveness. This is not surprising given
that searching using the Top 10 terms only performed better than the Top 20, which in
turn performed better than the Top 30 terms. Thus, I opted to perform no post-hoc
experiments with more than Top 10 terms.

When using the titles with and without the phrase operator, adding Top 10 terms
resulted in no improvement in retrieval effectiveness. The lack of improvement due to
adding top n terms to the queries constructed from titles is a bit counter intuitive be-
cause intuitively adding the top n terms to the queries should have a query expansion
effect. Further, this result contradicts experiments that I have run on other collections.

As the results suggest, constructing the queries for the F2F task using the titles of
the articles produces the best results and expanding the resultant queries using other
terms from the articles is unlikely to produce better retrieval effectiveness.

For the A2B task, I submitted one run, namely CMIC_LTW_01. For the run, I ex-
tracted the keyphrases in the orphan article and I filtered the keyphrases using the
titles of the articles in Wikipedia articles that I was allowed to link to. The filtering

Table 1. Results of the ad-hoc and post-hoc runs

Run Description MAP

Phrase Titles Titles w/ phrase operator 0.46

Raw Titles Titles w/o phrase operator 0.41

Raw + Phrase Titles Titles w & w/o phrase operator 0.54

Top 10 Top 10 0.32

Top 20 Top 20 0.27

Top 30 Top 30 0.25

Title + Top 10 Title w/phrase operator + Top 10 0.50

 Title w/ & w/o phrase operator 0.54

CMIC_F2F_01 Title w/phrase operator + Top 20 0.46

CMIC_F2F_012 Title w/phrase operator + Top 20 + Keyphrases 0.51

 CMIC@INEX 2008: Link-the-Wiki Track 341

0

0.1

0.2

0.3

0.4

0.5

0.6

MAP

MAP

Fig. 1. Results of the ad-hoc and post-hoc runs

involved allowing a keyphrase to match any title that was either an exact match or one
that subsumes the keyphrase completely. For example, in article 100011 entitled
Otago, the keyphrase “Firth of Clyde” was linked to the article 144233 entitled “Firth
of Clyde”, and the keyphrase “Free Church of Scotland” was allowed to link to arti-
cles 554606 and 909535 entitled “Free Church of Scotland” and “Free Presbyterian
Church of Scotland” respectively. Unfortunately, my results were dismal with a mean
average precision of 0.05. I suspect that my runs performed poorly because many of
the keyphrases that were chosen to be anchors were not central to the articles and
were hence deemed irrelevant by assessors.

4 Conclusion

This paper presented the CMIC runs to the INEX Link-the-Wiki track. I did well in
the F2F task, but dismally in the A2B task. For the F2F, using generic information
retrieval techniques in combination with keyphrase and key word extraction produced

342 K. Darwish

acceptable results with a mean average precision of 0.51, which is a little over 10%
less than the best submission to the track (QUT9_GPXF2FnameInOut – mean average
precision of 0.57). Further, my best submission achieved the highest precision levels,
compared to all the other submissions, for low levels of recall (recall < 0.25). This is
desirable because one would want to link an orphan Wikipedia article to a small num-
ber of articles and precision for those articles needs to be as high as possible. Further
post-hoc runs suggest that using titles of the articles for which we want to find incom-
ing links with any other terms yielded retrieval effectiveness that is better than my
submitted runs. The results is a bit counter intuitive as it suggests that performing
query expansion using selected text from the articles we want to link to did not im-
prove retrieval effectiveness.

For the A2B task, my runs lagged significantly, mostly because I over generated
anchors, many of them were not central to the articles. My keyphrase extraction algo-
rithm needs to be modified to account for the centrality of the extracted keyphrase to
articles. This can be achieved by retraining my classifier using an extra feature such
as term frequency, inverse document frequency, binomial log ratio, or some other
measure of centrality.

References

1. Dunning, T.E.: Accurate methods for the statistics of surprise and coincidence. Computa-
tional Linguistics 19(1), 61–74 (1993)

2. Evert, S.: The Statistics of Word Cooccurrences: Word Pairs and Collocations. Ph.D. Dis-
sertation, Institut für maschinelle Sprachverarbeitung, University of Stuttgart (2004)

3. Hammouda, K., Kamel, M.: Efficient Phrase-based Document Indexing for Web Document
Clustering. IEEE Transactions on Knowledge and Data Engineering 16(10), 1279–1296
(2004)

4. Manning, C., Schutze, H.: Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge (1999)

5. Metzler, D., Croft, W.B.: Combining the Language Model and Inference Network Ap-
proaches to Retrieval. Information Processing and Management Special Issue on Bayesian
Networks and Information Retrieval 40(5), 735–750 (2004)

6. Turney, P.D.: Coherent keyphrase extraction via web mining. In: Proceedings of IJCAI,
Acapulco, Mexico, pp. 434–439 (2002)

Stealing Anchors to Link the Wiki

Philipp Dopichaj, Andre Skusa, and Andreas Heß

Lycos Europe GmbH
Carl-Bertelsmann-Str. 29

P.O. Box 315
33311 Gütersloh

Germany
dopichaj@acm.org, andre.skusa@googlemail.com, mail@andreas-hess.info

Abstract. This paper describes the Link-the-Wiki submission of Lycos
Europe. We try to learn suitable anchor texts by looking at the anchor
texts the Wikipedia authors used. Disambiguation is done by using tex-
tual similarity and also by checking whether a set of link targets “makes
sense” together.

1 Introduction

In this paper, we describe the Link-the-Wiki submission of Lycos Europe. Details
about INEX and the Link-the-Wiki track are given elsewhere in these proceed-
ings, so we do not repeat them here. In this paper, we use new text to refer to
the text which should be linked (conceptually, this is a text entered by a user of
the platform without any links; the aim of the system is to support the user to
find suitable links). We use anchor text or anchor to refer to the link label, that
is, the clickable part of the text that links to a target page.

Our approach to the Link-the-Wiki task is based on that described by Itakura
and Clarke [2]: All existing anchor texts from the training collection are indexed
along with their link targets, and the new text is scanned for these anchor texts to
find links. In accordance with the Link-the-Wiki task specification, the training
collection does not include any of the topics or references to them.

The main difference is that we try to select the best-matching target dynam-
ically whereas Itakura and Clarke use a static mapping from anchor text to
target – the target is always the page most frequently referenced by the anchor.
For example, in a text about computers, the anchor Apple is more likely to refer
to the page Apple Computers than to the page Apple Records. We use heuristics
based on text similarity and link structure to determine which of the potential
targets is the most likely real target.

Finding outgoing links is done in the following steps:

1. The potential anchor texts are identified. The chosen anchor texts do not
overlap, and each anchor text has one or more potential targets associated
with it.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 343–353, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

344 P. Dopichaj, A. Skusa, and A. Heß

2. For each potential anchor text, a ranking of the potential targets in the
context of the new text is performed. Furthermore, general statistical infor-
mation obtained at indexing time – like the absolute frequency of the anchor
text/target in the training collection – is used.

Our main focus is finding outgoing links, as opposed to finding incoming
links from existing documents to the newly-added content. Outgoing links are
determined in two main steps that will be described in the following sections:

1. Finding the parts of the texts that should serve as links to other documents
(anchor texts).

2. Finding the correct target pages for the anchor texts in case of ambiguities.

The second point means that even if a given anchor text is known to refer to
some other document, it is not necessarily known to which article it refers.

2 Preparations for Finding Outgoing Links

This section describes how potential anchor texts are found in the new text and
also what index structures are needed to support this.

2.1 Finding Potential Anchor Texts

The first step toward identifying links in a new document is to find potential
anchors; this is done by searching for occurrences of the training anchors in the
new text. We give preference to longer anchor texts: For example, in the example
text from figure 1a, we have the sequence Mac OS X v10.2. Potential anchors
include Mac, Mac OS, and Mac OS X v10.2 ; here, the last one is the longest
anchor text, so it is selected. In case of overlapping anchor texts, the anchor
occurring earlier is selected.

Using word boundaries as implemented in the Java regex package for anchor
detection does not work for two reasons:

– Due to the idiosyncrasies of the INEX Wikipedia collection, spurious spaces
are inserted or removed around markup, even in the middle of words, so
word boundaries cannot be trusted.

– Anchors may only partly cover a given word; this is bad style, but there
are instances where child as part of children is linked to the corresponding
article. For other languages like German, compound words can be formed
without spaces, so this might happen more frequently.

Although the second case is rare – especially in the English version of Wikipedia
used for INEX –, the first reason is sufficient to justify the decision not to analyze
word boundaries.

The result of this stage is a collection of non-overlapping anchor texts that
might be turned into links. Based on the training data set, we know for each
anchor set the possible target pages as well as the absolute frequency of references
to a certain target page under the given name. We now have to develop a ranking
of the targets for every potential anchor.

Stealing Anchors to Link the Wiki 345

Apple bundled a similar program, Sherlock 3 , with Mac OS X v10.2 .
(a) Input text.

[[Apple]] bundled a similar program, [[Sherlock 3]] , with [[Mac OS X v10.2]] .

(b) Selected anchors.

Apple: Apple Computer, APPLE, Apple Records, Apple (album),
Apple II family, Malus, Apple Store (retail),
Apple (super mario), Yabluko, Apple I

Sherlock 3: Sherlock 3
Mac OS X v10.2: Mac OS X v10.2

(c) Possible targets of the selected anchors

[[Apple Computers|Apple]] bundled a similar program, [[Sherlock 3]] , with
[[Mac OS X v10.2]] .

(d) Final linked text, with the Apple anchor directed to Apple computers.

Fig. 1. Processing of an input text from the Wikipedia article Karelia Watson

2.2 Reducing the Size of the Anchor Index

Our approach requires statistics about the existing links in the training collec-
tion. We examine every link in the collection and store the anchor text along
with the target page’s ID. Then, we count the number of occurrences for each
anchor text/target page pair to see how often a given anchor text is used to refer
to the given page.

This information is sufficient input for our approach, but to both keep the
index size small and remove spurious entries, we remove all anchor text/target
page pairs with one of the following properties:

– The length of the anchor text is less than 5 or greater than 60 characters. Very
long anchors include anchors like Best Writing, Story and Screenplay Based
on Factual Material or Material Not Previously Published or Produced ; they
mostly refer to very specific page titles that are unlikely to occur in normal
text. Short anchors are removed because they are usually ambiguous and
they can lead to false positives.

– The anchor text refers to ten or more different pages. This implies that the
anchor text is very general like, for example, her father.

– The anchor text occurs less than five times in the collection.

The numbers used were chosen in a rather ad-hoc fashion; further research
is required to determine whether these numbers are good (or even whether the
filtering is needed at all). We will test this once the results and evaluation tools
are available.

346 P. Dopichaj, A. Skusa, and A. Heß

3 Link Target Disambiguation

In many cases, anchor texts refer to only one possible target, like Sherlock 3
in the example in figure 1c. However, the anchor text Apple from the same
example shows that there is not always a one-to-one mapping of anchor texts to
target pages, so the link detector has to make a choice. Furthermore, it may be
necessary to remove spurious anchors.

One obvious problem is that anchor texts are frequently only sensible in the
context in which they occur; for example, the anchor text “her father” refers
to different persons depending on who “her” refers to. Since low-level informa-
tion about the document frequency of terms is not available in our setup, we
could not use Itakura and Clarke’s formula for selecting anchors to index, so we
implemented the simple heuristics from section 2.2.

The remainder of this section is based on the following values that influence
the choice of which targets to use for a given anchor:

1. The rank of this target for this anchor, based on the total number of refer-
ences;

2. the rank of the target page when doing a full-text search for the new article’s
title; and

3. the rank of the target page when doing a full-text search for the new article’s
full text (optional).

We chose to use a linear combination of these factors to obtain the final rank
of a target.

3.1 Analysis of Anchor/Link Frequency

In absence of any other information, the link finder can still look at the prior
probability of a given anchor text referring to a given target. This information
can be obtained by analyzing the frequencies of the different target pages for
a certain anchor text. For example, in the INEX collection, the anchor Apple
refers to Apple Computer 399 times, to APPLE 83 times and to Apple Records
65 times, so in absence of any further information, Apple Computer is most likely
the correct target.

3.2 Analysis of the Target Text

Simply using the frequency of targets in the training collection, however, does not
take into account the context provided by the new document: for example, the
text of the document should already give a strong indication whether the article
is about computers or music. Thus, a straightforward approach is to calculate
the textual similarity of the new text and the possible targets; if the new text
and a target have a high similarity, it is likely that they are about the same
general topic (like computers or music).

In our implementation, we implement this by doing a single full-text search
for the complete new text respectively its title on an index that comprises the

Stealing Anchors to Link the Wiki 347

Table 1. Target distribution of the anchor Apple (case sensitive)

Rank Count Target page

1 399 Apple Computer
2 83 APPLE
3 65 Apple Records
4 7 Apple (album)
5 2 Apple II family
6 2 Malus
7 1 Apple Store (retail)
7 1 Apple (super mario)
7 1 Yabluko
7 1 Apple I

full texts of all articles in the test collection. This results in a single ranked list
of articles that are somehow related to the new text; for every anchor text that
is found in the new text, the highest-ranked article from this list is chosen.

3.3 Analysis of the Link Structure

According to our observation, it is likely that the documents that are linked from
the same source document are connected. This is because these pages typically
share a main topic, so if two topics are mentioned (or pages are referenced)
on the same source page, these topics are more likely to be connected than two
randomly chosen topics. We can exploit this to find the correct link target among
a set of candidates; for every such set, we determine how many links to the target
pages for the other anchor texts exist. The more links exist, the more likely the
target is to be the correct link target for this anchor.

Figure 2 demonstrates that the pages linked from a single page tend to be
heavily connected. We can see that APPLE is not connected to the pages that
are actually referenced from the source page at all and that Apple Records only
has one link, whereas Apple Computer has many links in this cluster of pages.

The link analysis will not work properly if there is a very low number of
targets (or, more generally, if the potential targets are mostly unconnected). In
this case, the link finder should select potential targets even if they are isolated.
The exact mechanism and threshold for this are the subject of future research.

3.4 Combination of These Approaches

Of course, it is possible to combine the evidence to obtain better quality. Since
each of the approaches can be used to find a ranked list of possible targets for a
given anchor text, we chose to use a weighted combination of the different ranks
as the basis for the final decision. Given the example rankings from table 2,
and the weights w1 = 1 (anchor/link frequency), w2 = 5 (text similarity), and
w3 = 2 (link analysis) results in a final value of 12 for Apple Computer, of 13 for
Apple Records, and of 24 for Apple I. Thus, in this case, the link target Apple

348 P. Dopichaj, A. Skusa, and A. Heß

Java programming language

Sun Microsystems

Objective-C

Operating system

2002

2001

Apple Computer

Mac OS X

Cocoa (API)Apple Macintosh Mac OS X v10.2

Sherlock 3

Apple Records

APPLE

Fig. 2. The link network for pages linked from the page Karelia Watson. Our focus is
on the shaded items, which are potential targets for the anchor text apple. The Apple
Records and APPLE pages (in rectangles) are not linked from this page, but shown
here for demonstration.

Table 2. Example for combining the different aspects of target rankings

Target Anchor/link freq. Text sim. Link analysis

Apple Computer 1 2 1
Apple Records 2 1 3
Apple I 3 3 2

Computers has the lowest combined rank and is selected as the final target.
(Note that a higher weight value decreases the influence of the corresponding
factor.)

Since we did not finish the implementation of link-based target disambiguation
in time, we only submitted runs using anchor/link frequency and text similarity.
For text similarity, we search the full text of all articles for occurrences of the
title of the new page to be linked. From a quality point of view, it would proba-
bly be better to search for the complete body text of the new article – otherwise
we implicitly assume that the concept is already mentioned in the existing arti-
cles, although it does not have an article of its own. Unfortunately, the cost for
doing this was prohibitive on our setup, so we had to settle for searching for the

Stealing Anchors to Link the Wiki 349

titles only. We used the different combinations of text similarity–anchor/link
frequency weight, from equal weights for both (run LycosA2B-1-1), a weight of 5
for one and 1 for the other (runs LycosA2B-1-5 and LycosA2B-5-1). Furthermore,
we submitted runs using only one of the two factors (runs LycosA2B-0-1 and
LycosA2B-1-0).

Note that we do not actually calculate a best entry point in the target file –
we always use the start of the document instead.

3.5 Limitations

One base limitation of our work is that we assume that the collection already
contains a large number of related articles. As Huang et al. [1] note, this assump-
tion does not hold for a batch upload of related articles where links between the
articles are at least as important as links to or from the collection. Another
potential problem is that the anchor texts that have been used by the authors
might not be meaningful (for example, “click here”).

We believe, however, that the approach can work well in the right circum-
stances. We plan to use it on a community platform about German history,
with the anchors from the German Wikipedia as a training set. The results from
preliminary tests are quite promising.

4 Finding Incoming Links

Our current implementation for finding incoming links is simplistic: we simply
search for the new document’s title in the full-text index to determine a ranked
list of candidate sources. (Note that no phrase search is performed, so in effect
the results may contain pages where the terms from the title occur out of order.)
Next, the title of the new document is searched for in each candidate’s text, and
the first occurrence is added to the list of links, ordered by the rank of the text
search. Finally, all pages in which the title is not found verbatim – this may
happen if the title comprises several words – are added to the end of the list.
For example, if the title is Apple Computer, pages containing only “Apple” are
ranked behine pages containg the full title.

5 Results and Discussion

At the time of writing, the evaluation tools have not been made public yet, so our
evaluation only includes the official results; this means that we cannot discuss
the effect of the network analysis.

5.1 Anchor to File

Although the original task was to find the best entry points in the link targets,
many participants (including Lycos) always used the start of the document as

350 P. Dopichaj, A. Skusa, and A. Heß

the best entry point. Because of this, the anchor-to-best-entry-point results were
also evaluated as anchor-to-file results, ignoring the best entry points if available.

Figure 3 shows that it pays to use a combination of text similarity and an-
chor/link frequency; the runs using both features better the runs using only
one of the features. Interestingly, the exact weights used do not affect the re-
sults significantly, an equal weight for both factors performs as well as a 1:5
weight ratio in favor of either factor. On the other hand, omitting text similarity
leads to a much higher loss in precision than omitting anchor/link frequency
weights.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

sim. 1, freq. 5
sim. 5, freq. 1
sim. 1, freq. 1

only text similarity
only link/anchor frequency

Fig. 3. Comparison of the Lycos runs for Anchor2BEP. “Best run” takes the maximum
precision of all other runs for every recall (thus this is not an actual run). Clearly it
pays to use both text similarity and anchor/link frequency.

As figure 4 shows, it betters both the best submitted runs by other organiza-
tions and even the Wikipedia ground truth for most of the precision-recall curve.
(The Wikipedia ground truth does not get perfect results because apparently
the assessors disagreed with the article authors about what constitutes a good
link.) Minor deficits can be seen in the high-recall regions (starting around 0.6),
where our method trails the maximum of the other submissions by a significant
margin.

The results for the global measures mean average precision (MAP) and R-
precision (see table 3) are inconclusive: whereas the MAP of our method is
significantly higher than that of all other methods (arounf 0.49 compared to at
most 0.42 for the others), including the Wikipedia ground truth, our R-precision
(0.40448) is lower than that of the best run, Amsterdam_a2bep_5 (0.42146).
The reason for this is unclear; these measures have generally been shown to be
highly correlated in information retrieval.

Stealing Anchors to Link the Wiki 351

T
ab

le
3.

O
ffi

ci
al

re
su

lt
s

fo
r

an
ch

or
-t

o-
fil

e
ev

al
ua

ti
on

.T
he

hi
gh

es
t

nu
m

be
rs

in
ea

ch
co

lu
m

n
ar

e
hi

gh
lig

ht
ed

;f
or

al
l
gi

ve
n

re
ca

ll
po

in
ts

as
w

el
l

as
M

A
P,

ou
r

ru
n

L
yc

os
A

2B
-1

-5
ha

s
th

e
be

st
re

su
lt

.
Fo

r
R

-p
re

ci
si
on

,
th

is
ru

n
is

su
rp

as
se

d
by

ru
n

A
m

st
er

da
m

_
a2

be
p_

5
an

d
th

e
W

ik
ip

ed
ia

gr
ou

nd
tr

ut
h.

352 P. Dopichaj, A. Skusa, and A. Heß

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

sim. 1, freq. 1
Wikipedia ground truth

best run by other participant

Fig. 4. Lycos versus Wikipedia ground truth and best of other submissions for An-
chor2BEP

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
nc

ho
r2

F
ile

Anchor2BEP

Fig. 5. Mean average precision for anchor-to-best-entry-point and anchor-to-file re-
sults. There is a strong correlation, only a few runs stand out.

5.2 Anchor to Best Entry Point

Surprisingly, the results for the anchor-to-best-entry-point evaluation do not
differ much from the results for the anchor-to-file results (see figure 5). The
main reason is presumably that most participants actually submitted anchor-
to-file results to this task; furthermore, in many cases, the best entry point in
a link target will in fact be at the very start of the document. Since the results
are virtually identical, we will not discuss them here.

Stealing Anchors to Link the Wiki 353

5.3 File to File

Although our main focus was on the anchor-to-file runs, we also submitted runs
to the file-to-file task. Instead of sorting the targets for every found anchor, all
targets for all anchors were put in a single list, ordered by the calculated scores.
The submission was formed by taking the first unique entries from this list.
Unsurprisingly, our runs did not perform well in this task, both for the outgoing
and the incoming links.

6 Conclusions and Future Work

We have confirmed that the basic approach of Itakura and Clarke [2] works
very well as a baseline for new methods. We have shown that this method can
be improved significantly by incorporating textual similarity to disambiguate
anchor texts that could refer to several articles (the original method only used
frequency statistics). Unfortunately, the run-time penalty for this can be rather
high, since a similarity search on all articles is required for each file (but not for
every anchor!). State-of-the-art search engines are quite fast, so this should not
be a major problem in all but the most time-critical settings.

Our submission should be regarded as a first attempt at the problem; in
particular, we have not yet evaluated using network analysis for disambiguation.
In preliminary experiments, we have found this to be quite successful, but we
still need to perform more elaborate experiments on the INEX corpus. In future
work, we plan to address this by taking more factors into account.

Acknowledgements

The research presented in this paper was partially funded by the German Federal
Ministry of Economy and Technology (BMWi) under grant number 01MQ07008.
The authors are solely responsible for the contents of this work. We thank our
colleagues at Lycos Europe as well as the anonymous reviewers who gave valuable
feedback.

References

1. Huang, D.W.C., Xu, Y., Trotman, A., Geva, S.: Overview of INEX 2007 link the
wiki track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 373–387. Springer, Heidelberg (2008)

2. Itakura, K.Y., Clarke, C.L.A.: The University of Waterloo at INEX2007: Adhoc
and Link-the-Wiki tracks. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.)
INEX 2007. LNCS, vol. 4862, pp. 417–425. Springer, Heidelberg (2008)

Context Based Wikipedia Linking

Michael Granitzer1, Christin Seifert2, and Mario Zechner2

1 Knowledge Management Institute
Graz University of Technology

Inffeldgasse 21a, 8010 Graz
mgranitzer@tugraz.at

http://kmi.tugraz.at/
2 Know-Center Graz

Inffeldgasse 21a, 8010 Graz
{mzechner,cseifert}@know-center.at

http://www.know-center.at/

Abstract. Automatically linking Wikipedia pages can be done either
content based by exploiting word similarities or structure based by ex-
ploiting characteristics of the link graph. Our approach focuses on a
content based strategy by detecting Wikipedia titles as link candidates
and selecting the most relevant ones as links. The relevance calculation
is based on the context, i.e. the surrounding text of a link candidate.
Our goal was to evaluate the influence of the link-context on selecting
relevant links and determining a links best-entry-point. Results show,
that a whole Wikipedia page provides the best context for resolving link
and that straight forward inverse document frequency based scoring of
anchor texts achieves around 4% less Mean Average Precision on the
provided data set.

Keywords: INEX, Link-the-Wiki, Context Exploitation.

1 Introduction

This paper outlines the efforts taken by the Know-Center Graz in the Link-
the-Wiki Track of INEX 2008. The track focuses on automatically linking an
orphan page to already existing Wikipedia pages (outgoing links; out-links) and
from already existing Wikipedia pages to the orphan page (incoming links; in-
links). In contrast to last years focus on identifying source and target pages of
a link, this years track also includes the identification of anchor position and
best-entry-points (BEP). Anchor positions mark the character position of a link
in the source page; best-entry-points in the target page.

In last years Link-the-Wiki Track [6], matching page titles for identifying link
candidates have been quite successful [4]. It was shown that without considering
contextual information around the link, reasonable results could be achieved; a
fact supported also from outside the INEX community [10]. Besides page titles,
link structure provides valuable information. In [7] an algorithm using anchor

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 354–365, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://kmi.tugraz.at/
http://www.know-center.at/

Context Based Wikipedia Linking 355

texts and link structures achieved a very high accuracy. However, non of these
approaches took the context of a link, i.e. its surrounding text, into account,
while [4] argued on the potential of such approaches.

In our approach we evaluate the potential of different context types to cal-
culate the relevance of a possible link candidate. Link candidate identification
itself utilizes word sequence matching based on a finite state machine gazetteers.
Thereby, entries of the gazetteer contain not only the title of a Wikipedia page,
but also anchor texts, similar to work reported in [7]. Link candidates via
gazetteer matching are ranked subsequently using different context types, i.e.
different ranges of words surrounding the anchor. This context based relevance
should allow a more precise selection of correct hyperlinks hopefully removing
high frequent, irrelevant links like for example “The” or “Are”.

Our major contribution is an in depth analysis of different context types com-
pared to straight forward, context free scoring mechanisms. Besides the official
runs we also present a detailed parameter study using the “trec val” evalua-
tion tool and t-tests for estimating the influence of different parameter sets and
syntactic matching properties like case sensitivity.

Experiments are evaluated on the Wikipedia XML Corpus consisting of
659,413 Wikipedia pages and split into two test sets by the track organizers.
The file-to-file test set, has around 6.600 test documents with existing Wikipedia
links as ground truth. The anchor-to-bep test set consists of around 50 manually
annotated topics. The candidate page for automatic linking, a wiki page having
all links removed from, is called an orphan page. In the following we refer to the
corpus without the test set as the Wikipedia corpus. The two runs are distin-
guished as file-to-file run, having 6.600 test documents and anchor-to-bep run
having 50 topics.

In the following, section 2 outlines the corpus preparation and preprocessing
and defines the anchor context types. This anchor context is used in section 3 to
explain our link selection and scoring mechanism. Experiments, official results
as well as internal parameter studies are shown in section 4, followed by the
conclusion in section 5.

2 Preprocessing and Context Types

The Wikipedia corpus is indexed using the open source search engine Lucene [5]
applying standard stop word removal and stemming. For each Wikipedia page
the title and all anchors of links pointing to this page are extracted and stored
as gazetteer list. For matching, this list transform into a finite state machine
(FSM) consisting of three states. A start state serving as entry point, interme-
diate states retaining the structure of the FSM, and final states containing the
URL of the Wikipedia page. Transitions between states of the FSM consist of
words occurring in a gazetteer entry. Beginning at the start state, transitions
are followed recursively if the transitions word occurs in the word sequence to
match. If upon matching a final state is reached, an annotation pointing to the

356 M. Granitzer, C. Seifert, and M. Zechner

particular Wikipedia page is added. In this way gazetteer matching allows us
to annotate word sequences with hyperlinks for a large number of possible link
targets at a reasonable speed.

Orphan pages are preprocessed using the OpenNLP toolkit [1]. Preprocessing
includes tokenization, sentence detection and part-of-speech tagging. Afterwards,
the document is segmented into non-overlapping parts, defining the context for
the following relevance calculations. In our experiments we distinguish between
the following context types:

– Document: Most straightforward, the whole document is taken as context.
– Section: Sections are provided via the XML-Schema and correspond to the

Wikipedia sections of articles.
– Paragraph: Similar to sections, paragraphs are also provided via the XML

Schema.
– Topics: Topics are automatically annotated based on sentence clustering.

Blocks of similar sentences are found and annotated as topic using the well
known C99 segmentation algorithm[2].

– Sentences: Sentences are obtained from the sentence detector of the
OpenNLP pipeline and serve as smallest possible context.

The context based linking strategies introduced in the next section exploit
those context types in order to determine the relevance of a link.

3 Linking Strategies

For a given orphan page do, our system determines a set of n possible in-links
I = {< l1, s1 > . . . < ln, sn >} and a set of m possible out-links O = {< l1, s1 >
. . . < lm, sm >}. Each out-link/in-link is assigned a score si determining the
confidence of the system in generating such a link. One link is - as defined in the
LTW result set specification - a quadruple lh =< sh, th, sph, bh > where for link
lh, sh denotes the source page, th the target page, sph the span (i.e. character
based start and end position) of the link in the source document and bh the
best-entry-point in the target document.

In the following we present how the different properties have been determined,
differentiating between out-link and in-link generation. While both follow the
same conceptual approach, their implementation varies for reducing time com-
plexity in the in-link generation step.

3.1 Out-Link Generation

Out-link generation starts with preprocessing the orphan document do as out-
lined in section 2. Matching the content of the document with the FSM- gazetteer
returns a set of possible out-link candidates O, whereby for each link li ∈ O we
know its source si, its target ti and its span spi. For each link we determine the
anchor context, that is the context the link span is contained in. All nouns of
the anchor context are extracted and fed into the retrieval backend as Boolean

Context Based Wikipedia Linking 357

OR query. To speed up this potentially large OR query we restrict the result set
to pages pointed to by all links in the anchor context simply by adding all link
target identifiers (i.e. the file name of the page) as AND query part. Thus, for
all links contained in the span of the current anchor context we are receiving a
score s. In particular the query is formulated as

(ID = t1 OR . . . OR ID = tn) AND (w1 OR w2 . . . OR wk)

with {w1 . . .wk} as the nouns of the anchor context and tk as unique identifier
for the kth link target and ”ID = “ specifying the search on the metadata field
containing the unique identifiers of a Wikipedia page. Formally, the score (named
anchor context score in the following) returned is obtained from standard Lucene
ranking as

si = coordw,i ∗ norm(w) ∗
∑
t∈w

√
tft,i ∗ idf2

t

norm(i)
(1)

where

– tft,i is the frequency of term t in document i

– idft = 1 + log #D
#Dt+1 is the inverse document frequency with #D as the

number of documents in the corpus and #Dt the number of documents
containing term t

– norm(w) is the norm of the query calculated as
√∑

k idf2
k

– norm(i) is the length norm of document i, namely the number of terms
contained in document i

– and coordw,i is a overlapping factor increasing the score the higher the num-
ber of overlapping terms between query and documents are.

The Lucene scoring equation has been proven as reliable heuristic for full text
searching. It can be seen as an heuristic version of a cosine similarity between
anchor context and target document with emphasize towards the number of
overlapping words. This assumption is quite naturally for resolving the context
of a link. For example “tree” in computer science will occur more frequently with
terms describing data structures than the “tree” in nature. Thus, depending
on the position of a link in the document and its surrounding text we receive
different scores hopefully disambiguating the tree data structure from the forest
tree.

Besides context based scoring method an evaluation scheme solely based on
the inverse document frequency of an anchor text is used for comparison reasons.
The rational behind is that high frequent anchor texts like “The” or “Are”
occur in nearly every document and therefore provide no additional information
independent whether they are a true links or not. In particular the score, named
anchor IDF in the following, is calculated as

si = log
#D

#Da + 1

where #D is the number of wiki pages in the corpus and #Da the number of
wiki pages containing the anchor text of the link.

358 M. Granitzer, C. Seifert, and M. Zechner

For the file-to-file task links pointing to the same target t but having different
spans sp are merged. We distinguish three different merging strategies, namely
the highest score of the link, the average score of the link or simply by counting
the number of links to a target t.

3.2 In-Link Generation

In-link generation is in principle similar to out-link generation with the difference
that in a first step we have to determine the source document dj of a particular
link. Again we utilize title matching for doing so, but in contrast to out-link
generation the title is used as search string instead of gazetteer matching. Simi-
larly to out-link generation we are determining different contexts in the orphan
document to assign a score to a link. Given the nouns of this context as sequence
< w1, . . . , wk > we are sending the following query to the backend:

“title” AND (w1 OR w2 . . . OR wk)

where “title” indicates a phrase query for the title of the orphan page. Again
the score is calculated as outlined in equation 1.

From the result set we obtain a ranked list of possible link source candidates. If
the context is different than the whole document, merging strategies are required
to merge the ranked lists of the different contexts. As for out-link generation,
we calculate the relevance either as the highest relevance of a link, the average
relevance of a link or simply by counting the occurrences of a link. Taking the n
best source candidates is either the input for determining the best-entry-points
or gives us already the result for the file-to-file linking task.

3.3 Best-Entry-Point Detection

Both in-link and out-link generation provides a list of best matching links includ-
ing target page, source page and the span of a link. In the final step, best-entry-
points are determined again based on the link context. Our hypothesis is that
the best-entry-point in the link target has to be similar to the anchor context.
Furthermore, if the title of the source page is contained in the link target, those
parts of the target document are preferred entry points. Since we obtain a score
for each entry point, results are ranked and the best five entry points are taken
as result.

In particular, similarity is calculated using a simple vector space model with
local TFIDF weighting. Given the link target t, the textual content of the target
is preprocessed and decomposed into segments tr,1 . . . tr,k. Segments are either
sentences or topics and correspond to the context defined in section 2. After
filtering out all non-noun words, each segment is converted into a term vector.
The weight of a term is calculated according to the TFIDF scheme, but based
on the extracted segments, as:

Context Based Wikipedia Linking 359

wr,l = tfr,l ∗ log(
(#R + 1)
#Rl + 1

) (2)

where wr,l is the weight of term l in segment r, tfr,l is the number of times a term
l occurs in segment r divided by all terms in segment s, #R is the number of
segments in the target document and #Rl is the number of segments containing
term l.

Similarly to the target segments, the anchor context in the source document -
denoted as a - is also converted into a term vector by filtering all non-nouns and
applying equation 2.

The ranking of best-entry-points is obtained by calculating the cosine simi-
larity between anchor context −→a and all target segments

−→
t r,1 . . .

−→
t r,k and rank

them accordingly. Segments containing the title of the anchor page are favored
by increasing the similarity as follows:

s(−→a ,
−→
t r,i) =

⎧⎨
⎩

title ∈ tr,i : (1 +
−→a ·−→t r,i

‖−→a ‖∗‖−→t r,i‖)/2

title /∈ tr,i :
−→a ·−→t r,i

‖−→a ‖∗‖−→t r,i‖
(3)

Best entry points are returned as starting point of the text segment since we
assume that a reader does not want to start reading in the middle of a sentence
or paragraph.

4 Implementation and Evaluation Details

As outlined above, Lucene [5] has been used as search backend and OpenNLP [1]
for preprocessing. All algorithms are developed in Java, including the gazetteer
component. Since our approach, at least for out-link detection, heavily relies on
gazetteer matching the question is whether a gazetteer with low runtime and low
memory resource consumption is feasible. In our FSM approach the gazetteer
with titles and anchors consisted of around 1.7 million entries and used up around
800 MB main memory. Additionally, gazetteer entries may be distributed using
distributed computing techniques like Map & Reduce [3] and thus scaling up is
possible in our approach.

Runtime behavior also satisfies interactive requirements. On a dual core laptop
with 4GB of main memory file-to-file runs took around 64 minutes using the more
complex anchor context scoring - that is around 1.7 documents per second. After
finding the link candidates, best-entry-point matching does not increase runtime
complexity. Thus, the overall process can be seen as computational tractable and
scalable.

The runs can be differentiated in file-to-file in-link/out-link generation, anchor
detection and best-entry-point detection. File-to-file runs are evaluated on the
6.600 topics defined by the organizers. Anchor detection and best-entry-point
detection are conducted on the 50 topics defined by the participants. After the
development of our algorithms we did an in depth parameter analysis by taking
the available ground truth of the 6.660 topics test set and evaluated file-to-file

360 M. Granitzer, C. Seifert, and M. Zechner

and anchor-to-file runs on it. This allowed an in depth evaluation of all runs but
the manually assessed 50 topic based anchor-to-bep runs.

4.1 Parameter Analysis

Basically our experiments are focused on analysing the following parameters:

– Case sensitive (CS) matching distinguished between considering the case in
gazetteer matching or not.

– Longest Common Sequence Matching (LCS) removed overlapping gazetteer
annotations by taking those annotations with the longest common sequence
of tokens.

– Title only matching only considers page titles in the gazetteer while other-
wise anchors of links are also included in the gazetteer list.

– The context level determined the type of context to use for the anchor context
scoring scheme. If no context was provided the anchor IDF scoring scheme
was used.

– For the file-to-file runs 3 different merging strategies - maximum, average
and count- for aggregating anchors on the file level have been considered

Permutation of the different parameters yielded 120 test runs for the file-
to-file task and 40 test runs for the anchor-to-file task. Since in-link creation is
conceptually similar, we restricted the parameter analysis task to out-link detec-
tion only. In order to cope with the large number of runs, statistical significance
testing was used to determine the influence of the different parameters.

For determining the most influential parameters, we started determining sta-
tistically significant differences between runs using a one-sided paired t-test [9].
Statistically significant differences allow us to calculate a parameter value’s “suc-
cess rate”, defined as how often a run with the particular parameter value is
significantly better than all other runs. More formally, given B(ri) resp. W (ri)
as the number of runs where run i is significantly better resp. more worse and
given Rpa=v as the set of runs where parameter pa has value v, the success rate
Spa=v of value v for parameter pa is calculated as

Spa=v =

∑
ri∈Rpa=v

B(ri)∑
ri∈Rpa=v

B(ri) +
∑

ri∈Rpa=v
W (ri)

(4)

By ranking parameter values according to their success rate the most influential
parameter value, i.e. those parameter values most often participating in success-
ful run, can be estimated. In other words, by selecting a parameter value with a
high success rate it is very likely that this run will perform good, independent
of the other parameter values.

By analysing file-to-file runs it turned out that context based evaluation
strategies had an overall success rate of around 67% outperforming all other
parameters. Also, only using page titles yields to a higher success rate of around
62% than using gazetteers based on anchor texts. Merging links using the max-
imum score also turned out to outperform the average score and count based

Context Based Wikipedia Linking 361

merging strategy. Case sensitive vs. case insensitive matching as well as longest
common sequence matching did not have a huge impact on the performance of
a run. Analyzing the context parameter for file-to-file runs more closely showed
that taking the whole document gives a success rate of 96%. Thus, nearly ev-
ery time the whole document is used as anchor context the run outperforms all
other runs. Topic detection also turned out to have a high success rate (82%),
outperforming sentences, paragraph and sections as topic. However, for the later
two it must be noted that a large number of queries did not have sections or
paragraphs assigned, thereby biasing the results. Similar results are achieved by
the anchor-to-file task. However, different to the file-to-file runs anchor idf based
scoring turned out to be as good as context based scoring.

Table 1. Results for out-link Generation for the file-to-file run with 6600 orphan test
pages and the anchor-to-file task with 50 orphan pages. Runs with no context used the
anchor IDF scoring method. NA depicts measures not available due to missing ground
truths.

Task Title Only LCS CS Context MAPintern MAPofficial MAPreeval

file-to-file (6.600) true false false document 0.548 0.1129 0.516
file-to-file (6.600) true true false none 0.5038 0.1407 0.475
file-to-file (6.600) true false true document 0.471 NA NA
file-to-file (6.600) true true true none 0.4508 NA NA
file-to-file (6.600) false true true none 0.4392 NA NA
file-to-file (6.600) true false true topic 0.4258 NA NA
file-to-file (6.600) false true false none 0.4215 NA NA
file-to-file (6.600) false false true document 0.3827 NA NA
anchor-to-file (50) true false false document NA 0.2131 0.2350
anchor-to-file (50) true false false topic NA 0.2643 0.2908
anchor-to-file (50) true false false sentence NA 0.2309 0.309
anchor-to-file (50) true true false none NA 0.2873 0.3130

4.2 Official Results

We submitted 2 runs for the file-to-file task for comparing the best anchor con-
text method with the context free anchor IDF approach. For anchor-to-bep we
submitted a combination of 3 different out-link generation and 4 different in-link
generation approaches again distinguishing between context based and context
free approaches. For the remaining parameters we took the best choices obtained
by the parameter analysis.

MAP of the official and the best internal runs for out-link generation are
depicted in table 1. Due to an error in the submission format, our official runs
scored much more worse than our internal benchmarks. We corrected the submis-
sion error on the submitted files and re-evaluated the results. Those re-evaluated
mean average precisions are depicted as MAPreeval in the tables. Figure 1 shows
the precision recall curve for the out-going links comparing official with the in-
official results for the submitted runs and comparing the official runs with the

362 M. Granitzer, C. Seifert, and M. Zechner

Fig. 1. Precision-Recall curve of our out-link file-to-file runs comparing the official runs
with the corrected runs and with the official results of the best LTW 08 runs

Table 2. Results for in-link generation file-to-file

Parameters file-to-file anchor-to-bep
Title as OR Query context MAPintern MAPofficial MAPreevaluated MAPofficial

false document 0.6355 0.5300 0.625 0.2384
false sentence 0.5938 NA NA 0.1895
false topic NA NA NA 0.2619
false no context 0.5938 0.5369 0.606 0.1968
true document 0.5066 NA NA NA
true sentence 0.4088 NA NA NA
true no context 0.4088 NA NA NA

Fig. 2. Precision-Recall curve of our in-link file-to-file runs comparing the official runs
with the corrected runs and with the official results of the best LTW 08 runs

best runs in the Link-The-Wiki track. By correcting the submission format our
runs performed quite well and would be ranked 2nd. It can be observed that
considering the context of a link improves mean average precision by around
4%. While the increase is significant, we would have expected a larger increase
through the more complex anchor context scoring mechanisms. Also, if the an-
chor context is other than the whole document, the differences becomes smaller
and is nearly negligible.

Context Based Wikipedia Linking 363

Fig. 3. Precision-Recall curve of our anchor-to-file runs compared to the best runs of
other participants

Fig. 4. Precision-Recall curve of our anchor-to-bep runs compared to the best runs of
other participants

Similar performance figures can be observed for in-link detection, as shown in
table 2. The difference between the best context scoring method - again a docu-
ment based context - and the context free scoring method is smaller, with around
2% on the re-evaluated runs. Overall file-to-file in-link generation did quite well
compared to the best runs of the track (see figure 2). The original runs have
been ranked third, while the re-evaluated runs achieved the highest map. Also,
precision-recall curves provide high precision values over large parts of the recall.

Anchor-to-file results of the manually assessed 50 topic task are provided in
table 1 and precision-recall curves compared to the best other runs is shown
in figure 3 . Overall, the performance of anchor detection was lower than what
could be expected from file-to-file matching. Also, re-evaluation did not provide a
huge increase due to the smaller size of links per topic. For the manually assessed

364 M. Granitzer, C. Seifert, and M. Zechner

anchors it seems that our context based scoring scheme does not score well,
especially since our top scoring run is based on no context at all.
Anchor-to-bep evaluation, depicted in table 2 and figure 4, shows very low mean
average precision compared to the other participants. In contrast, file-to-bep
evaluation performed well with an map of 12.219 compared to the best map of
20.79 from Lycos and being very close to the second best group of runs from
Otago. Since the evaluation measure penalizes missing the exact position lin-
early with the number of characters, only those runs using sentences as context
achieved a good BEP score. Topic based runs performed considerable worse.
Overall, results on the manually assessed runs point toward the hypothesis that
vector space based approaches using words surrounding a link are not discrimi-
native enough for achieving reasonable accuracy values.

5 Conclusion

In this paper we have outlined context based methods for automatically detect-
ing links between Wikipedia pages. Experiments showed that considering the
context of an link increases precision by around 4%. However, the choice of the
type of context is critical. The whole document seems to be best suited as an-
chor context, followed by automatically detected topics. Predefined document
structures like sections and paragraph are bad context choices, decreasing ac-
curacy below the straightforward IDF approach. Constructing gazetteers from
page titles only seem to be more appropriate than using anchor texts, from which
follows that using context based scoring schemes hardly resolves noisy links in-
troduced by anchor texts. Results obtained by the experiment point toward the
hypothesis that vector space based approaches using words surrounding a link
are not powerful enough, especially for anchor and BEP detection. Hence, se-
quence based approaches, language models or link based methods (c.f. [7]) may
be required for achieving reasonable accuracies.

In the future we plan to focus more on machine learning based approaches. As
shown in recent work [8], machine learning can achieve rather high user judged
accuracy while retaining parameter robustness. Another fruitful future challenge
is the automatic labeling of link types. For example the page “Berlin” linking
to “Germany” marks a part-of relationship while a link between “Berlin” and
“Capital” marks a is-a relationship. Automatically identifying such relationship
types may have both, a huge practical as well as a huge theoretical impact in
the context of semantic wikis.

Acknowledgement. The Know-Center is funded within the Austrian COMET
Program - Competence Centers for Excellent Technologies - under the auspices
of the Austrian Federal Ministry of Transport, Innovation and Technology, the
Austrian Federal Ministry of Economy, Family and Youth and by the State
of Styria. COMET is managed by the Austrian Research Promotion Agency
FFG.

Context Based Wikipedia Linking 365

References

1. Baldridge, T.M.J., Bierner, G.: Opennlp: The maximum entropy framework (2001),
http://maxent.sourceforge.net/about.html (last visited June 2008)

2. Choi, F.Y.Y.: Advances in domain independent linear text segmentation. In: Pro-
ceedings of the first conference on North American chapter of the Association
for Computational Linguistics, pp. 26–33. Morgan Kaufmann Publishers Inc.,
San Francisco (2000)

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

4. Geva, S.: Gpx: Ad-hoc queries and automated link discovery in the wikipedia,
pp. 404–416 (2008)

5. Hatcher, E., Gospodnetic, O.: Lucene in Action (In Action series). Manning Pub-
lications (December 2004)

6. Huang, D.W.C., Xu, Y., Trotman, A., Geva, S.: Overview of inex 2007 link the
wiki track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 373–387. Springer, Heidelberg (2008)

7. Itakura, K.Y., Clarke, C.L.: University of waterloo at inex2007: Adhoc and link-
the-wiki tracks, pp. 417–425 (2008)

8. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: CIKM 2008: Pro-
ceeding of the 17th ACM conference on Information and knowledge mining,
pp. 509–518. ACM, New York (2008)

9. Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance
tests for information retrieval evaluation. In: CIKM 2007: Proceedings of the six-
teenth ACM conference on Conference on information and knowledge management,
pp. 623–632. ACM, New York (2007)

10. Wu, F., Weld, D.S.: Autonomously semantifying wikipedia. In: CIKM 2007: Pro-
ceedings of the sixteenth ACM conference on Conference on information and knowl-
edge management, pp. 41–50. ACM, New York (2007)

http://maxent.sourceforge.net/about.html

Link Detection with Wikipedia

Jiyin He

University of Amsterdam, Science Park 107, 1098 XG Amsterdam, The Netherlands
j.he@uva.nl

Abstract. This paper describes our participation in the INEX 2008
Link the Wiki track. We focused on the file-to-file task and submitted
three runs, which were designed to compare the impact of different fea-
tures on link generation. For outgoing links, we introduce the anchor
likelihood ratio as an indicator for anchor detection, and explore two
types of evidence for target identification, namely, the title field evidence
and the topic article content evidence. We find that the anchor likelihood
ratio is a useful indicator for anchor detection, and that in addition to
the title field evidence, re-ranking with the topic article content evidence
is effective for improving target identification. For incoming links, we use
exact match and retrieval method with language modeling approach, and
find that the exact match approach works best. On top of that, our ex-
periment shows that the semantic relatedness between Wikipedia articles
also has certain ability to indicate links.

1 Introduction

In this paper, we describe our participation in the INEX 2008 Link-The-Wiki
(LTW) track. The goal of the LTW track is to automatically identify hyperlinks
between documents. The 2006 Wikipedia collection is used as the development
and test data, which contains the ground truth of linked documents. This year’s
LTW track consists of two sub-tasks, namely, the file-to-file (f2f) task and the
anchor-text to Best Entry Point (BEP) task. We focused on the f2f task and
submitted three runs. The task is formulated as follows: a set of 6600 Wikipedia
articles are randomly picked from the collection as topic pages; the participants
are supposed to discover at most 250 incoming and 250 outgoing links between
the topic pages and the rest of the collection.

In our participation in the Link-the-Wiki track, the goal is to explore different
features that indicate links betweenWikipedia articles, as well as to develop a
generative approach to automatic link generation. The runs we submitted were
designed to compare the impact of different features on link generation, which
we will specify in detail in the following sections.

The rest of the paper is organized as follows. Section 2 describes the ap-
proaches we use to generate the outgoing links and Section 3 describes the ap-
proaches for incoming links. Section 4 presents the experimental settings and
the runs we submitted. In section 5 the results of the official runs are discussed
and analyzed. Section 6 concludes the paper.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 366–373, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Link Detection with Wikipedia 367

2 Outgoing Links

Our approach to identifying outgoing links can be seen as a two-step procedure:
anchor text detection (i.e., where to start a link) and target identification (i.e.,
which article should be linked). Although in the f2f task, only the target article
is required, i.e., the exact anchor text or the position of an anchor text is not
required, it is useful to identify the anchor texts, since the identified anchor texts
have strong indication on which articles should be selected as target. In addition
to the two-step procedure, we also experiment with the semantic relatedness
between Wikipedia articles as an indicator of existing links, which does not
involve the identification of anchor text. We discuss this kind of feature in 2.4.

2.1 Anchor Detection - Anchor Likelihood Ratio

For anchor text detection, we introduce the anchor likelihood ratio measure
(ALR). Since the Wikipedia articles are well-structured and interconnected, the
existing links provide an indication of the patterns about linked articles. Mi-
halcea and Csomai [1] proposed the link probability measure which measures
the likelihood of a word sequence being an anchor text by calculating the ratio
between the number of times a word sequence is used as an anchor text and the
number of times this word sequence occurs in the collection. The likelihood es-
timation is a reasonable measure and is proved to be useful. However, the value
of the likelihood is a continuous number between 0 and 1, which needs a thresh-
old to determine wether the word sequence is an anchor text and this threshold
is heuristically set. By modifying this measure, we try to model it without a
“magic” threshold.

For a given word sequence w, we assume that it can be sampled from two
different underlying models: the anchor model θA and the background collection
model θC . To select the model for generating the word sequence, we take the
likelihood ratio between the two models, which is formulated as:

ALRw(θA||θC) =
P (w|θA)
P (w|θC)

(1)

Given Eq. 1, it is obvious that the larger the value of the likelihood ratio, the
more likely that the word sequence w is generated by the anchor model. Par-
ticularly, when ALRw > 1, it expresses that the anchor model is preferred over
the collection model, and therefore we can obtain a non-magic threshold at
ALRw = 1.

To estimate the probability of P (w|θA) and P (w|θC), we simply use the maxi-
mum likelihood, i.e., P (w|θA) = |w∈A|

|A| , P (w|θC) = |w∈C|
|C| , where A is the anchor

collection, C is the collection of all ngrams and |.| denotes the number of elements
in a collection.

In practice, for a given Wikipedia article, we extract all possible n-grams and
rank them according to the ALR score.

368 J. He

2.2 Target Identification - Title Field Evidence

For target identification, we use a language modeling approach. In Wikipedia, the
title of an article is the main concept of the article and is usually the same as or
similar to the anchor texts that are linked with it. We model this relationship by
assuming that a given anchor text can be generated by the language models that
generate the titles. Thus the problem boils down to estimating the probability
that the given anchor text a is generated from a given title model θt by applying
the Bayes’ Theorem.

P (θt|a) =
P (a|θt)P (θt)

P (a)
, (2)

where the P (θt) is assumed to be uniformly distributed and P (a) is the same
for all anchors, which can be dropped since it does not affect the ranking. For
estimating the probability P (a|θt), we take the joint probability of the terms in
an anchor text given the title model, and assume that those terms are sampled
identically and independently.

P (a|θt) =
∏

wa∈a

P (wa|θt) (3)

To estimate P (wa|θt), we simply use the maximum likelihood (ML) of the anchor
term wa generated by the title model. To avoid zero probabilities, we smooth
P (wa|t) with the background collection of all Wikipedia titles CT using the
Jelinek-Mercer method to obtain P (wa|θt):

P (wa|θt) = (1 − λ) · P (wa|t) + λ · P (wa|CT), (4)

where
P (wa|θt) =

n(wa, t)∑
w′

a
n(w′

a, t)
(5)

In this equation, n(wa, t) and n(w′
a, t) are the number of times terms wa and w′

a

occur in a candidate target article’s title t.

2.3 Target Identification - Topic Article Content Evidence

Since most Wikipedia titles are short, it is very likely to end up with equal prob-
abilities for different target candidates, especially in cases where disambiguation
articles are involved. In order to solve this disambiguation problem, we try to
incorporate an additional evidence source, the topic article content evidence.
The underlying assumption is that if a candidate target article is the real target
article for a given topic article, the content of the topic article should semanti-
cally relate to the terms in the title field of the candidate target article. Based
on this assumption, we model the problem as to estimate the probability that
the language model of the topic article θd generates the title of the candidate
target article t. Similar as before, we apply Bayes’ Theorem to estimate this
probability.

Link Detection with Wikipedia 369

P (θd|t) =
P (t|θd)P (θd)

P (t)
, (6)

where P (t) is ignored for ranking, and P (θd) is assumed to be uniformly dis-
tributed. The same ML estimation is applied to calculate P (t|θd):

P (t|θd) =
∏

wt∈t

P (wt|θd) (7)

Again, JM smoothing is applied to avoid zero probabilities.

2.4 Semantic Relatedness between Articles

An earlier work in link generation with Wikipedia [2] involves clustering highly
similar articles around a given topic article and suggest links between the topic
article and those similar articles in the cluster. The assumption behind this
approach is that, linked articles should be semantically similar. One of our sub-
mitted runs is designed to test this assumption, of which the details are to be
discussed in Section 4.

Before actually generating the official run, we did a sanity check on this as-
sumption. We construct two sets of Wikipedia articles. The first set is a set of 500
articles which are randomly sampled from the Wikipedia collection. In order to
have articles with valid content, we only sample from the un-redirected articles
(non-article pages such as image pages and category pages are not included).
Then we calculate the pairwise cosine similarity scores between the 500 samples.
The second set is obtained by collecting the target articles that are linked with
the 500 samples and we only calculate the similarity scores between the linked
pairs. Figure 1(a) and 1(b) shows the histogram of the similarity scores between
random articles and that between linked articles. It is clear from the plot that
in the first set, the similarity scores between two random articles are very low,
mostly close to 0 and below 0.1. In the second situation, the histogram is more
widely spread and has a large portion of article pairs whose similarity scores
are higher than 0.1. The difference exhibits in the distribution of the similarity
scores among random Wikipedia articles and that of the linked articles suggests
that: linked articles are more likely to be semantically similar. We submit a run
to test the actually effectiveness using the semantic relatedness between articles
for link detection.

3 Incoming Links

Our approach for identifying incoming links is quite straightforward. We experi-
ment with two types of methods: The first method is based on exact matching of
titles. We get the articles that contain the exact matches of the title of the topic
article and select random 250 articles as linked articles. In this case, we simply
ignore the context of the matched terms and assume that the existence of a link
is context-independent. The second method is a rank-based approach. In this

370 J. He

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000

14000

similarity scores

nu
m

be
r

of
 d

oc
 p

ai
rs

Histogram of the similarity scores beween random pages

(a) Similarity scores between random
articles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

similarity scores

nu
m

be
r

of
 d

oc
 p

ai
rs

Histogram of similarity scores between linked pages

(b) Similarity scores between linked
articles

Fig. 1. Histogram of similarity scores

case, we perform a retrieval run using the title of the topic article as query. The
top 250 articles are selected as the linked articles. Further thresholding on these
250 articles is also explored, and we describe this later in detail in our submitted
runs section.

4 Experimental Settings and Runs

4.1 Experiment Settings

In this section, we discuss the experimental settings and the design of our submit-
ted runs. We use the content only Wikipedia articles as input. All the XML-tags
are removed and the XML-structures of the documents are ignored in our ex-
periments. For preprocessing, we use Porter stemmer for both topic articles and
target articles without stop words removal. All the topic articles are virtually
deleted from the collection. For all retrieval experiments for incoming links, we
use the Lemur toolkit1. We use the KL model with JM smoothing. Smoothing
parameter λ (e.g., in Eq. 4) is heuristically set to 0.1 for all experiments (i.e. the
background statistics have little impact).

4.2 Submitted Runs

We submitted three runs to the LTW track, which are designed to compare the
impact of different features on generating the links.

ltw01

Outgoing links: For a given topic article, we select n-grams whose ALR is larger
than 1 as anchor texts ; use the anchor text as query to retrieve target articles
from the collection of all Wikipedia titles; the top-ranked article is selected as
the target article.
1 http://www.lemurproject.org

Link Detection with Wikipedia 371

Incoming links: We use the title of the topic article as query and retrieve top
250 articles from the collection as the source articles that are linked to the given
topic.

Run description: We use this run as our baseline run.

ltw02

Outgoing links: For a given topic article, we select n-grams with ALR larger
than 1 as anchor texts; retrieve the target article whose title matches (exact or
partial) the anchor text; re-rank the target articles based on the topic article
content evidence (i.e., Eq. 6), and select the top-ranked article as the target
article.

Incoming link: use the topic title to find exact matches in the collection, select
random 250 articles as the incoming source article.

Run description: We compare this run with ltw01. For outgoing links, we
use this run to test if re-ranking with topic-article content evidence would help
disambiguate the target articles. For incoming links, this run compares the exact
match method and the retrieval method.

ltw03

Outgoing links: We use the topic title as query to retrieve 250 candidate target
articles, rank them by cosine similarity to the topic article, and select the articles
whose similarity score is larger than 0.15 as target.

Incoming links: We use the same strategy as that of the outgoing links, but
select the articles whose similarity score is larger than 0.026 as linked articles.

Here, 0.15 is the average cosine similarity between linked articles that are
sampled from the collection; 0.026 is the threshold for “exceptionally” high sim-
ilarity between two random articles2. Different thresholds indicate that we would
like outgoing links to emphasize on precision, and incoming links to emphasize
on recall.

Run description: This run checks an assumption: the linked articles should be
semantically similar. Here we do not try to identify anchor text.

5 Results and Discussion

In this section, we report on the results of our submitted runs and our observa-
tions from the results. Table 1 lists the evaluation results of the submitted runs.
The metrics used for measuring the performance are MAP, R-Prec, Precision at
5(P@5) and Precision at 10(P@10). Besides, figure 2 shows the precision-recall
plots for both incoming and outgoing links.

2 We rank the pairwise similarity scores among the random set of articles in descending
order, and take the score at top 5% as the threshold.

372 J. He

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on
Outgoing links

ltw01
ltw02
ltw03

(a) Precision-Recall plot for outgoing
links

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on

Incoming links

ltw01
ltw02
ltw03

(b) Precision-Recall plot for incoming
links

Fig. 2. Precision-Recall plots for the submitted runs

We see that for both outgoing links and incoming links, run ltw02 has bet-
ter performance than ltw01, in terms of all metrics. From this observation, we
have following conclusions. For outgoing links, the re-ranking with topic arti-
cle content evidence does help to improve the performance, especially in early
precision, which is shown in 2(a). Since we apply the same method for anchor
detection in both ltw01 and ltw02, the improvement in the final results suggests
that the topic article content evidence has an impact on target identification, in
terms of disambiguation of the target articles. For incoming links, the fact that
ltw02 is better than ltw01 suggests that simple title match works better than
retrieval-based method.

On the other hand, Run ltw03 performs consistently worse than the other two
runs in both outgoing and incoming links. However, early precision for incoming
links does not completely fail, suggesting that the semantic relatedness between
articles could be a reasonable feature for indicating a link. Further experiments
on combining the features, i.e., the ALR and the semantic similarity between
articles are needed.

Table 1. Evaluation of the submitted runs; highest scores are marked as boldface

Outgoing links

Runs MAP R-Prec P@5 P@10

ltw01 0.2925 0.4288 0.4063 0.46578
ltw02 0.3475 0.4461 0.6369 0.6130
ltw03 0.1041 0.1590 0.3748 0.2890

Incoming links

Runs MAP R-Prec P@5 P@10

ltw01 0.4801 0.4933 0.6161 0.5733
ltw02 0.5250 0.5478 0.6648 0.6264
ltw03 0.3345 0.3604 0.5244 0.4540

Link Detection with Wikipedia 373

6 Conclusion

We described our participation in INEX 2008 link-the-wiki track. We submitted
three runs in the file-to-file task. For outgoing links we based our runs on a
two-step procedure, i.e., anchor detection and target identification. For anchor
detection, we use the anchor likelihood ratio (ALR), and for target identification,
we apply the language modeling approaches to model different types of evidence.
For incoming links, we apply two very simple method, i.e., exact match and re-
trieval with the title of the topic page. On top of that, we also submit a run that
only use the semantic similarity between pages as an indication of a link. The
result shows that it is a reasonable feature but it alone is not powerful enough
for link detection. For future work, we plan to experiment with combining the
features and develop a unified framework for combination. Particularly, we would
like to experiment with machine learning techniques, which make less assump-
tions on the model form so that the features can be incorporated flexiblely.

References

1. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge.
In: CIKM 2007: Proceedings of the sixteenth ACM conference on information and
knowledge management, pp. 233–242. ACM Press, New York (2007)

2. Fissaha Adafre, S., de Rijke, M.: Discovering missing links in Wikipedia. In: Pro-
ceedings of LinkKDD 2005 Workshop (2005)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 374 – 388, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Wikisearching and Wikilinking

Dylan Jenkinson, Kai-Cheung Leung, and Andrew Trotman

Department of Computer Science
University of Otago, Dunedin, New Zealand

{dylan,kcleung,andrew}@cs.otago.ac.nz

Abstract. The University of Otago submitted three element runs and three pas-
sage runs to the Relevance-in-Context task of the ad hoc track. The best Otago
run was a whole-document run placing 7th. The best Otago passage run placed
13th while the best Otago element run placed 31st. There were a total of 40 runs
submitted to the task. The ad hoc result reinforced our prior belief that passages
are better answers than elements and that the most important aspect of the fo-
cused retrieval is the identification of relevant documents. Six runs were sub-
mitted to the Link-the-Wiki track. The best Otago run placed 1st (of 21) in file
to file automatic assessment and 6th (of 28) with manual assessment. The Itaku-
ra & Clarke algorithm was used for outgoing links, with special attention paid
to parsing and case sensitivity. For incoming links representative terms were se-
lected from the document and used to find similar documents.

1 Introduction

Otago participated in the Relevance-in-Context task of the ad hoc track submitting six
runs, three passage and three element runs. The passage runs compared the Otago
2007 algorithm to a previous algorithm examined by Otago, the Kullback-Leibler
model, and to whole document retrieval. The result suggests that whole document is
better than passage retrieval and that there is little difference between the other two
algorithms.

Otago also participated in the Link-the-Wiki track, preferring a variant of the Itaku-
ra & Clarke algorithm for outgoing links, and searching for the orphan title for docu-
ments that should link to the orphan. The results suggest that the Itakura & Clarke
algorithm is a solution to the linking problem when measured against the ground truth
of the Wikipedia itself.

2 Wikisearching

2.1 The Otago 2007 Passage Algorithm

The approach taken by Otago at INEX 2007 [1] was two step. First, relevant docu-
ments were identified using BM25. Second, all the occurrences of all the search terms
with a document were identified (stemming with Porter’s algorithm) and a fixed sized

 Wikisearching and Wikilinking 375

window of 300 words placed on the centroid. The centroid was defined as the mean of
the term locations within the document, or alternatively the mean of those within one
standard deviation of the true mean.

2.2 The Kullback-Leibler Passage Algorithm

In earlier experiments at Otago, Huang et al. [2] examined techniques for identifying
relevant passages within a relevant document and converting those into elements by
taking the smallest element that fully enclosed the passage. Of the passage selection
methods examined, the Kullback-Leibler model was the most effective:
 KL W|Q P t|W log p t|Wp t|D

where W is a window within a document, D, and t is a search term of query, Q, and

 t| 0.5|W| 1

and
 t| 0.5|D| 1

where tfD is the number of occurrences of t in D and |D| is the length of document D
(and likewise for tfW with respect to the window, W).

Several strategies for choosing the window were examined. The sliding non-
overlapping window of size 400 words was shown to be effective on the INEX IEEE
document collection (measured with MAep and iMAep).

Itakura and Clarke [3] suggest that methods of identifying elements from passages
are not as effective as methods of identifying elements directly. This is, in part, be-
cause the conversion from a passage to an element usually involves increasing the
size of the passage and the extra text is often non-relevant text. That is, the conversion
from a passage to an element is unlikely to affect recall but is likely to decrease preci-
sion. If this is the case then the prior result of Huang et al. is understated. This moti-
vates our comparison to Kullback-Leibler to Otago 2007 in INEX 2008 where all
results are measured as if passages.

2.3 The Beigbeder Element Algorithm

Beigbeder [4] proposes a method of scoring elements based on fuzzy proximity. If a
document contains one occurrence of one search term, then the fuzzy proximity (fp)
to term occurrence t, for location p is

 , 0

where k is a controlling parameter.

376 D. Jenkinson, K.-C. Leung, and A. Trotman

If the document contains more than one term occurrence of the same term then the
fuzzy proximity is defined as the fuzzy proximity to the closest term occurrence (that
is, max(fp) with respect to that term). If the document contains multiple search terms
then the fuzzy proximity is defined as the minimum fuzzy proximity to all search
terms.

The fuzzy score of an element in a document is computed as the sum of fuzzy
proximity scores for each term in the element, normalized by the length of the ele-
ment. However, as the documents are hierarchically structured, if a search term occurs
in the title of a section then the fuzzy proximity of a term in the element to the search
term in the title is defined as 1.

2.4 Small Improvements

Beigbeder’s algorithm treats all terms as equal whereas it is usual for scoring algo-
rithms to weight terms differently. The algorithm is thus extended to include some
aspect of the strength of a search term (IDF). The IDF weighted fuzzy proximity, fp’
is given by

 , 0

the variant of IDF chosen is
 0.50.5

where N is the number of documents in the collection and n is the number of docu-
ments in which the term occurs. We set k=200.

Problematically, if a search term is missing from the document then the fuzzy
proximity to that term is always zero and so no part of the document is considered
relevant (due to the min() function). Using the sum of fuzzy proximity weights in
place of the minimum overcomes this problem.

The Beigbeder algorithms is of general interest as it is a method of identifying
relevant elements as a function of term proximity, and can be extended to identify
relevant passages. A comparison of the original Beigbeder algorithm and the Otago
variant; as well as to the Otago passage runs will help answer the question of whether
passages or elements are the best result to the Relevance-in-Context task.

2.5 Documents

At INEX 2007 an RMIT University ad hoc submission demonstrated that a full-
document run could be more effective at focused retrieval than a focused run [5].
This is because the F measure of recall and precision pre-selects choosing whole

 Wikisearching and Wikilinking 377

documents as 100% recall within a document can be easily realized. Whole document
runs were, therefore, submitted for comparison to the focused retrieval runs.

2.6 Otago Ad Hoc 2008 Runs and Results

Three runs were submitted to the Relevance-in-Context passage task. In all cases
documents were identified using BM25 (k1=1.2, k3=7.0, b=0.75) and then one passage
was identified for each document in the top 1500 documents. The rank order of the
final results was BM25. Stemming was not used.

WHOLEDOC_PASSAGE: The whole document was returned as the passage.

DYLAN_200: A fixed sized window of 200 words was placed on the centroid of the
search terms within the document. The standard deviation method was used to com-
pute the centroid.

SW_KL_200: The Kullback-Leibler method with a sliding window of 200 words was
used to identify a relevant passage.

Three runs were submitted to the Relevance-in-Context element task, BM25 was used
to identify the top 1500 documents, one element was identified, and the results re-
ranked based on the Beigbeder score. For these experiments k=200.

WHOLEDOC: The whole document was returned as an element (this run is identical
to WHOLEDOC_PASSAGE and was submitted as a sanity check).

BEIGBEDER_ORIG: Elements were scored using Beigbeder’s algorithm.

BEIGBEDER_IDF: Elements were scored using the IDF weighed version of Beig-
beder’s algorithm. Due to a bug in our code we actually implemented the product of
the sum of the IDF and fp scores in place of the sum of the product.

2.7 Wikisearching Results

The results are presented in Table 1 where it can be seen that WHOLEDOC and
WHOLEDOC_PASSAGE do, indeed, score the same thus passing the sanity check.

Table 1. Ad hoc Relevance-in-Contest task results

Run Type MAgP
WHOLEDOC_PASSAGE Passage 0.192

WHOLEDOC Element 0.192
SW_KL_200 Passage 0.183
DYLAN_200 Passage 0.182

BEIGBEDER_IDF Element 0.149
BEIGBEDER_ORIG Element 0.107

378 D. Jenkinson, K.-C. Leung, and A. Trotman

The passage algorithms are superior to the element algorithms with the Kullback-
Leibler approach bettering the Otago 2007 approach by a very small amount. The IDF
enhancement to Beigbeder’s algorithm increases the precision substantially, but not
sufficiently to better the passage runs.

3 Wikilinking

The Link-the-Wiki task, first included in INEX in 2007, requires participants to au-
tomatically identify hypertext links between documents in the Wikipedia. The user
model is that of a user who creates a new Wikipedia entry and would like to link that
entry to pre-existing entries in the Wikipedia (and vice versa).

The production of a new article can be simulated by taking an existing Wikipedia
document and removing all trace of it from the collection. Link identification software
can then be applied to the collection and the orphaned document. A comparison of the
automatically generated links to the original collection gives some measure of the
quality of the link detection system – that is, the original links are considered to be
the gold-standard by which systems are compared.

Exactly this approach was taken in the INEX 2007 Link-the-Wiki track, and was
used again for document-to-document linking in 2008. In 2008, 6600 documents
(about 1% of the document collection) were randomly selected and orphaned for
document-to-document link detection.

New in 2008 is the anchor-to-BEP linking task, in which the task is to identify the
best orphan anchor from which to link from and the best-entry-point (BEP) in the
target document from which to link to. Unlike document-to-document linking, anc-
hor-to-BEP linking requires manual assessment because the Wikipedia documents are
typically not a priori marked-up in this way. For 2008, 50 anchor-to-BEP documents
were suggested by task participants and were orphaned for the experiment. A limit of
50 anchors per document was imposed (for practical reasons) and at most each anchor
could link to 5 locations in the Wikipedia.

Two separate problems exist with identifying links, the identification of outgoing
links (from the orphan to the collection) and the identification of incoming links (from
the collection to the document).

3.1 Outgoing Links

Although the Otago runs in 2007 were adequate, those of Itakura & Clarke [6] were
substantially better – effort was, therefore, spent investigating methods of improving
their technique. It should be noted that the Itakura & Clarke algorithm relies on a pre-
existing heavily interlinked document collection (such as the Wikipedia). In the case
where no prior links exist in the collection the techniques of Geva [7] which were also
successful in INEX 2007 can be used.

 Wikisearching and Wikilinking 379

3.1.1 The Itakura and Clarke Algorithm
The Itakura & Clarke algorithm relies entirely on pre-existing links between docu-
ments within the document collection. Of the link types available in the collection,
only the <collectionlink> type is utilized because the other link types do not link be-
tween two documents in the collection (for example, a <wikipedialink> links from a
document in the collection to a document in the Wikipedia that is not in the INEX
collection).

Initially a list of all the links within the document collection is created. This is gen-
erated by parsing each document in the collection and extracting the anchor text of the
link and the target document id.

Next from the output of the previous stage, a list of target documents is created for
each unique anchor text in the collection. For a given anchor text in the collection, the
most frequent target is most likely to be the correct target.

For each anchor text / target pair a strength value (γ) is constructed

where np is the number of documents that link from the anchor to the target and af is
the number of documents in which the anchor text occurs.

An orphaned document is then parsed and the first location of each anchor in the
pre-generated list is located. For overlapping anchors (for example, “Lennon” and
“John Lennon”) the longest possible anchor is chosen as a longer anchor is more
likely to be correct than a short anchor. A limit of 250 anchors per document was
enforced by the Link-the-Wiki track definition.

3.1.2 Small Improvements
After implementing the Itakura & Clarke algorithm verbatim a small number of im-
provements were identified.

The algorithm defines the anchor text as all text occurring between the tags, con-
verted to lowercase, and including punctuation. Anchor texts often contain punctuation
at the end thus creating a distinction between “John Lennon” and “John Lennon.”. We
stripped punctuation from the anchors thus conflating these two cases.

Anchor texts beginning at the start of a sentence are capitalized for grammatical
reasons so the algorithm converts the text into lower case. Unfortunately this results
in the loss of the distinction between “unfinished music” and “Unfinished Music” (the
two part experimental work by John Lennon and Yoko Ono). Geva [7] identifies the
importance of case in link detection so the case conversion step was dropped.

Finally, over-weighting γ for capitalized terms in the orphan will help identify
proper noun conflicts (such as Unfinished Music). A capitalization constant, Π, is
added to γ where terms in the orphan were found capitalized.

Figure 1 compares the improvements to the original algorithm using the INEX
2007 Link-the-Wiki topics. The line labeled “Waterloo” is the Itakura & Clarke run as
submitted. Removing punctuation (Alphanumeric) from the anchor list improves the

380 D. Jenkinson, K.-C. Leung, and A. Trotman

algorithm, removing case folding (Case Sensitive) leads to further improvements.
Weighting (Weighed) includes punctuation removal, case sensitivity, and weighted γ,
and was the best experimental run on the 2007 orphans.

Figure 2 shows the effect of Π on precision, a value of 0.3 is best for early preci-
sion, but a value of 0.1 holds the precision longer resulting in the highest mean aver-
age precision.

3.1.3 Best Entry Points
Several studies have shown the best entry point for Wikipedia documents is the start
of the document. [1, 8]. No further investigation was performed on BEPs.

3.1.4 Multiple Targets
The Link-the-Wiki task specification for 2008 allowed at most 5 targets for each anc-
hor point. The Itakura & Clarke algorithm was, consequently, extended so that the γ
value was computed for not just the most common target, but also for all targets of an
anchor text. The γ values represent the probability of the target document being the
correct target; consequently choosing the top five documents (by γ) for each anchor
text satisfies the track requirements.

3.2 Incoming Links

The best Otago run at INEX 2007 achieved an excellent early precision (P@5) score
of 0.751. The experiments described in this section were conducted in an effort to
improve the overall performance (MAP) and were conducted on the 2007 Link-the-
Wiki oprhans.

3.2.1 The Otago 2007 Algorithm
The algorithm for detecting incoming links relies on a simple theme extraction tech-
nique used to identify the semantic content of the document.

For each unique term (excluding stop words) in the orphaned document the Otago
2007 algorithm [1] computes the actual frequency of that term, af

where tf is the number of occurrences of the term in the orphan and dl is the length of
the orphan (in terms); to the expected frequency, ef

where cf is the number of occurrences of the term in the collection, df is the number
of documents containing the term and ml is the mean length of a document. Ranking
the terms in the orphan by ratio of af to ef (st),

 Wikisearching and Wikilinking 381

Fig. 1. Small improvements on the Itakura & Clarke algoritm (Waterloo) are seen when punc-
tuation is removed (Alphanumeric), when case folding is removed (Case Sensitive) and when
uppercase anchors are preferred over lowercase anchors (Weighted)

Fig. 2. Effect of varying Π on the precision. Small value of Π (0.3) is best for early precision
but a very small score (0.1) holds the precision higher longer (best for MAP).

0.6

0.7

0.8

0.9

0 10 20 30 40 50

P
re

ci
si

on

Recall

Precision of Outgoing Link Methods

Alphanumeric Case Sensitive Weighted Waterloo

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
re

ci
si

on
 S

co
re

Value of Π , the ProperNoun Constant

The Effect of Π on Precision

P@5 P@10 P@20 p@30 P@50

382 D. Jenkinson, K.-C. Leung, and A. Trotman

provides a list of terms in order of occurrence relative to expected occurrence. If this
ratio is larger than 1 the term occurs in the document more often than expected, if it is
less than 1 it occurs less frequently than expected. The top ranked terms are repre-
sentative themes of the document and are used to construct queries. The results of
these queries are documents relevant to the themes of the orphan and therefore these
documents should link to the orphan.

3.2.2 Improvements – Multiple Searches
For INEX 2007, queries were constructed by taking the top n terms from the st-
ordered term-list and performing a query, extracting the top n * 50 results and then
concatenating them to the list of results until a total of 250 results were found. That is,
for n=2, three searches were performed, the first identifying the top 100 results and
the second identifying the next 100 results, and the last identifying the remaining 50
results. There was no theoretic justification for this approach; it was motivated by
time constraints. It is of note, however, that it was not an unsuccessful approach.

By merging the results of each separate query on the rsv (in this case the BM25
score) good targets that match other than the top theme will be placed high in the re-
sults list. This approach might also place documents that are good matches for non-key
themes high in the results list because of a high rsv with respect to a non-key term.

To alleviate this problem the BM25 score for each search term can be weighted.
The strength of a term with respect to the orphan has already been computed (st) and
so that is a reasonable value to choose.

The best Otago run at INEX 2007 used two searches of 4 terms each, producing a
total of 250 results in the results list. Using merging and weighted merging on the
2007 orphans the best number was 2.

 The results are shown in Table 2. The best runs submitted to INEX 2007 (by any
participant) achieved a score of 0.484 and is listed for comparative purposes. The best
Otago run at INEX 2007 achieved a score of 0.339 which is better than the score
achieved by result merging (0.319) but not as good as the 0.350 achieved by weighted
result merging.

Figure 3 shows the early precision scores for the same three techniques. Of particu-
lar interest is that although the MAP score for weighted merging is highest, the early
precision scores of the Otago 2007 run are highest.

Table 2. MAP scores for different approaches to multiple searches. The weighted merging of
queries containing 2 terms each achieved a better score than the best Otago 2007 run, however
not as good as the best run submitted by any institute.

Run MAP
Top INEX 2007 run 0.484
Weighted merge 0.350
Otago 2007 0.339
Merged 0.319

 Wikisearching and Wikilinking 383

Fig. 3. Early precision scores for the three merging techniques. Although the MAP of weighted
merge is highest, the early precision of Otago 2007 is highest.

Fig. 4. A comparison of the multiple search technique to the single search technique suggests
that the single search technique is best

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

P
re

ci
si

on

Recall

Precision of merging methods

Otago 2007 Weighted merge Merge

0

0.1

0.2

0.3

0.4

1 2 3 4 5

M
A

P

Number of Search Terms

Comparison of Single and Multiple Approaches

Mulitple Searches Single Search Single Search Contribution

384 D. Jenkinson, K.-C. Leung, and A. Trotman

3.2.3 Improvements – Single Searches
With the multiple search technique the contribution of each separate search to the
final precision score is unclear. It is also unclear whether or not a better approach is to
simply perform one search with the given number of terms and to use the top 250
results.

Two experiments were conducted: in the first, n search terms were used and n * 50
results were retrieved; in the second, n search terms were used but the full 250 results
were retrieved. The first experiment computes the contribution of the first search to
the multi-search whereas the second compares multi-searching with single-searching.
The results were compared to the multiple search technique without merging and
without weighting.

Figure 4 shows the contribution of the first search is a substantial proportion of the
final result of the multiple search approach. It also shows the superiority of the single
search technique when the full 250 results are retrieved. The improvements decrease
as the number of terms per query increases to 5 as the number of documents retrieved
per query in the multiple query approach tends to the full 250.

3.2.4 Weighted Search Terms
The experiments examining multiple searches showed that MAP could be improved if
the search terms were weighted by st. Improvements are therefore expected in the
single search approach if the individual search terms in a single query are weighted.
The weights could be taken from the st score, but we chose to learn weights using
Genetic Algorithms [9].

Trotman [10] and later Robertson et al. [11] modify the term frequency component
of BM25 to include a separate weight for each structure within a document. We use
their approach to weight term frequencies based not on the structure, but on the posi-
tion of the term in the query (where query terms are sorted in decreasing st score).
The new term frequency score use in the BM25 equation, tf, is given by

tf = tft * cq

where tft is the true term frequency of the term in the document; and cq is a constant
weight for a term at position q in the query, varying from 0 to 1.

If the weight of cq is 0 then the search term will be discarded from the query. If it is
1 then the true term frequency will be used, otherwise the influence of the term fre-
quency will be linearly scaled by cq. Good values for cq are expected to decrease as a
function of distance from the start of the query, reaching 0 when adding new terms
creates an ambiguous query.

Experiments were conducted to learn weights for queries of lengths between 2 and
10 search terms1. The population size was 50, crossover rate was 0.9, mutation rate
was 0.05, and reproduction rate was 0.05. The learning was run for 10 generation.
Elitism was used. Many iterations of the learning were conducted and the best
weights of the best run were recorded.

1 In the case of a single search term the weight has a scaling effect which does not affect the

relative rank order of the results; and so has no effect on MAP.

 Wikisearching and Wikilinking 385

For the best MAP score achieved for queries ranging from 2 to 8 search terms, Ta-
ble 3 shows the weights that were learned. It can be seen that the first two terms are
responsible for the majority of the performance.

Figure 5 shows that weighting search terms results in an increase in precision for
all tested cases (with the exception of a single search term). It should be noted that the
experiments over-fit the weights to the orphan documents; unfortunately there is an
insufficient number of orphans (in the 2007 set) to conduct a traditional learn / vali-
date / evaluate experiment.

Table 3. Best learned weights for different queriy lengths

Search Terms Weights (from first to last term)
2 0.96, 0.95
3 0.99, 0.96, 0.04
4 0.97, 0.73, 0.05, 0.06
5 0.95, 0.83, 0.14, 0.1, 0.01
6 0.89, 0.97, 0.44, 0.41, 0, 0.06
7 0.8, 0.95, 0.75, 0.29, 0, 0.07, 0.25
8 1, 0.88, 0.14, 0.05, 0, 0.22, 0.08, 0.19

Table 4. MAP scores of the runs using terms from different parts of the document

Run MAP
Title 0.410
Overview 0.143
Document 0.080
Otago 2007 0.339
Weighted merge 0.350

3.2.5 Other Sources of Search Terms
The experiments thus far suggest that the best approach is to perform a single search
using a small number (two or three) highly representative search terms to identify
document that should point to the orphan. The approach to identifying terms involved
identifying document themes by simple text processing techniques. Wikipedia docu-
ments, however, are structured and include a title as well as a brief overview of the
content of the document. These document structures might be used as a method of
identifying good representative document-thematic terms, or the whole document (as
seen by others [12]) might be used.

The title of the Wikipedia document is held between <name> tags. These were
processed to remove duplicate search terms and stop words, and then used as queries.

The overview of the Wikipedia document occurs as an untitled section before the
first titled section. It was extracted by using all text before the first <title> tag of the
document, stop words and duplicate terms removed and used as the query.

386 D. Jenkinson, K.-C. Leung, and A. Trotman

Fig. 5. Effect of weighting individual search terms in the query

Fig. 6. Different sources of search terms. The title is a more effective source of terms than the
overview which is better than the whole document. For early precision the best source was the
approach used by Otago at INEX 2007.

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10

M
A

P

Search Terms

Weighting Individual Search Terms

Weighted Unweighted

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50

P
re

ci
si

on

Recall

Different Sources of Search Terms

Overview Title Document Otago 2007

 Wikisearching and Wikilinking 387

The full-text of the Wikipedia document can easily by extracted by removing all
XML tags from the document, removing stop and duplicate words, and used as the
query.

Figure 6 shows the effect on early recall of the different techniques. Selecting
terms from the whole document is better than using the title which is better than the
overview which in turn is better than the whole document. However, the result is
somewhat different when the MAP scores are compared; Table 4 presents the MAP
scores and it can be seen that using the title is better overall than the other approaches,
even bettering the weighted merge approach from above.

3.3 Otago Link-the-Wiki 2008 Runs

3.3.1 File-to-File Linking
Three runs were submitted, each used BM25 (k1=0.421, k3=242.61, b=0.498)

• capConstant-SingleSearchWeighted: outgoing links identified using the Otago
version of Itakura & Clarke with Π = 0.1. Incoming links identified using the
weighted merge method with 4 terms and weights of 0.97, 0.73. 0.05 & 0.06.

• capConstant-TitleOnly: outgoing links identified using Otago Itakura & Clarke
with Π = 0.1. Incoming links we identified using the orphan title.

• nonCap-FirstPara: outgoing links were identified using Otago Itakura & Clarke
without Π. Incoming links were identified using the outline of the orphan.

3.3.2 Anchor-to-BEP Linking

• capConstant-SingleSearch-A2B: same as capConstant-SingleSearchWeighted.
• capConstant-TitleOnly-A2B: same as capConstant-TitleOnly.
• nCapConstant-WholeDocument-A2B: same as nonCap-FirstPara, but using the

whole document for the query.

3.4 Wikilinking Results

Noncap-FirstPara performed exceptionally well (1st place of 21) in file-to-file auto-
matic assessment, scoring an outgoing MAP of 0.7343. The next best run was from
Amsterdam with a MAP of 0.3475. This result raised questions about the validity of
the implementation. A cold-room re-implementation resulted in MAP scores very
similar to those reported. Investigation as to why the other Otago runs did not
perform as well in file-to-file ranking suggests that case-sensitivity can have a cata-
strophic effect; if the index is built case-sensitive and the orphan is parsed case-
insensitive then a substantial number of links can be missed and the performance
degrades substantially. For incoming links, run capConstant-TitleOnly placed 9th
(of 4) with a MAP of 0.4870. Little conclusion can be drawn from an ineffective run.

In anchor-to-BEP outgoing linking, run capConstant-SingleSearch-A2B placed 6th
(of 28, MAP=0.3910) and capConstant-TitleOnly-A2B placed 7th with the same MAP
(to 4 decimal places). Of particular note, the highly effective algorithm for file-to-file
linking was not so for anchor-to-BEP. This appears to be because many links in the
Wikipedia documents are assessed as not-relevant by the assessor. Preliminary expe-
riments suggest that identifying year-links and not including them in a manual run
will improve performance.

388 D. Jenkinson, K.-C. Leung, and A. Trotman

4 Conclusions

Experiments were conducted to gain insights into effective method of searching for
the Relevance-in-Context task. In passage retrieval the Otago 2007 algorithm was
compared to the Kullback-Leibler model, and virtually no difference was seen in the
performance in the 2008 topics. This suggests the simpler Otago algorithm may be an
effective alternative algorithm, especially when efficiency is an issue. In element
retrieval the Beigbeder algorithm was compared to an IDF weighted variant and sub-
stantial improvements were seen on the 2008 topics – suggesting there is further room
for improvement on Beigbeder’s work.

In the Link-the-Wiki task the Itakura & Clarke algorithm was used for outgoing
links. It was extended by removing punctuation from the anchors, and adding case
sensitivity weighting. Results show that a careful implementation of this algorithm
can produce near-perfect results in file-to-file linking, but not for manual assessment.
In further work we will investigate methods to improve the algorithm’s performance
when assessed by a manual assessor. Our algorithms were not effective for outgoing
links (placing 9th of 24); we will be investigating incoming links in further work.

Acknowledgements

Funded in part by a University of Otago Research Grant.

References

1. Jenkinson, D., Trotman, A.: Wikipedia Ad Hoc Passage Retrieval and Wikipedia Docu-
ment Linking. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS,
vol. 4862, pp. 426–439. Springer, Heidelberg (2008)

2. Huang, W., Trotman, A., O’Keefe, R.A.: Element Retrieval Using a Passage Retrieval Ap-
proach. Australian Journal of Intelligent Information Processing Systems 9, 80–83 (2006)

3. Itakura, K., Clarke, C.: From Passages into Elements in XML Retrieval. In: Trotman, A.,
Geva, S., Kamps, J. (eds.) SIGIR 2007 Workshop on Focused Retrieval, pp. 17–22 (2007)

4. Beigbeder, M.: ENSM-SE at INEX 2007: Scoring with proximity. In: Preproceedings of
INEX 2007, pp. 53–55 (2007)

5. Fuhr, N., Kamps, J., Lalmas, M., Malik, S., Trotman, A.: Overview of the INEX 2007
Ad Hoc Track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 1–23. Springer, Heidelberg (2008)

6. Itakura, K.Y., Clarke, C.L.: University of Waterloo at INEX2007: Adhoc and Link-the-
Wiki Tracks. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS,
vol. 4862, pp. 417–425. Springer, Heidelberg (2008)

7. Geva, S.: GPX: Ad-Hoc Queries and Automated Link Discovery in the Wikipedia.
In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 404–416. Springer, Heidelberg (2008)

8. Kamps, J., Koolen, M., Lalmas, M.: Where to Start Reading a Textual XML Document?
In: 30th SIGIR (2007)

9. Holland, J.H.: Adaptatio. In: Natural and Artificial Systems. Univ. Michigan Press (1975)
10. Trotman, A.: Choosing Document Structure Weights. IP&M 41, 243–264 (2005)
11. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted

fields. In: 13th CIKM, pp. 42–49 (2004)
12. Fachry, K.N., Kamps, J., Koolen, M., Zhang, J.: Using and Detecting Links in Wikipedia.

In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 388–403. Springer, Heidelberg (2008)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 389–394, 2009.
© Springer-Verlag Berlin Heidelberg 2009

CSIR at INEX 2008 Link-the-Wiki Track

Wei Lu, Dan Liu, and Zhenzhen Fu

Center for Studies of Information Resources,
School of Information Management, Wuhan University, P.R. China

{reedwhu,DanLiu.whu,zhenzhenfu}@gmail.com

Abstract. In this paper, we describe methods taken by CSIR in the INEX 2008
Link-the-Wiki track. For the incoming link detection, we use p(d|t), the prob-
ability to generate a document, when given the topic file, to judge which docu-
ments are proper link sources for the given topic. For the file-to-file task of
outgoing link detection, we take a two-step approach: first, we identify a group
of candidate target documents by literally matching the topic file title and
document content; then, candidate documents are ranked by the number of in-
coming links. For the anchor-to-BEP task, we use p(d|a,t), the probability to
generate a document, when given the topic file and an anchor name, to select
anchors and link targets for a given topic.

1 Introduction

Link discovery between documents aims at discovering the potential links between
given documents by analyzing the texts, which will be very helpful for the access of
relevant document when acquiring information.

INEX introduced link discovery into the Wikipedia corpus as the Link-the-Wiki
track in 2007. The task is to recommend incoming and outgoing links for a given
Wikipedia document automatically.

There are two separate tasks in INEX 2008, i.e. file-to-file task and anchor-to-BEP
task, both of which have to find incoming and outgoing links. For the file-to-file task,
links are at file level. For the anchor-to-BEP task, anchor texts in the source document
and the destination offsets of links in the target document have to be specified.

This is the first year for the Center for Studies of Information Resources to partici-
pate in the INEX Link-the-Wiki track. We have submitted 4 runs, 2 for the file-to-file
task and 2 for the anchor-to-BEP task. For each task, the two submitted runs differ in
the approaches of incoming link detection.

For the incoming link detection, we rank candidate documents by p(d|t), the prob-
ability to generate a document, when given the topic file. The same incoming link
detection method is used in the two sub tasks.

For the outgoing link detection, in the file-to-file task, we firstly identify all the
candidate target documents by matching the content of the topic file with all the
document titles of the Wikipedia collection, and then rank the candidate documents
by the number of incoming links. Finally, we output the top 250 anchors as results. In
the anchor-to-BEP task, we rank the candidate documents by p(d|a,t), the probability

390 W. Lu, D. Liu, and Z. Fu

to generate a document, when given the topic file and an anchor name. The anchors
are selected by a window-based technique. The top 50 anchors with the highest
p(d|a,t) score are outputted as final results.

The rest of this paper is structured as follows: in section 2, we briefly review re-
lated works; in section 3, we explain our methods; section 4 evaluates our methods; in
section 5, we draw a conclusion.

2 Related Work

In INEX 2007’s Link-the-Wiki track, 4 participants were involved in [1]. Jenkinson et
al. [2] identified over-represented terms in topic files, and used BM25 to identify
potential relevant documents in order to create link between topic file and relevant
documents. Itakura et al. [3] firstly created a list of outgoing links specified by an
anchor and the destination file for each topic and then selected the most frequent
target file for each anchor. Fachry et al. [4] firstly retrieved the top 100 similar docu-
ments, and then detected incoming links by line-matching for every line of each of the
100 documents with all lines of the topic file, outgoing links by iterating over all lines
of the topic file and matching the lines top-down with the 100 documents. Geva et al.
[5] identified incoming links by searching elements that were about the topic name
element, and identified outgoing links by a systematic search for anchor text in topic
file that matches existing document names.

Besides, Huang et al. improved their approaches used in the outgoing link found
task, they reordered candidate anchors by some assumed principles. For example,
they take it as a principle that numbers and single terms have less probability as an
anchor [6]. Zhang et al. focused on outgoing links and investigated link density, and
especially repeated occurrences of links with the same anchor text and destination.
They used link density/anchor distance and repeated candidate links to assist link
discovery [7].

3 Approaches

3.1 File-to-File Task

The file-to-file task needs to find out 250 outgoings and 50 incomings for each topic.
For this task, we submitted 2 runs: LTW_F2F_1 and LTW_F2F_2. Our submitted two
runs use different approaches in finding incomings, and adopt the same method in
finding outgoings.

3.1.1 Outgoing
Our method of finding outgoings in the file-to-file task is based on the following
assumption: outgoings are generated in a document which contains terms of the topic
title. So, we suppose that if a title of a document A is in the current topic file B, there
should be an outgoing link from B to A. Additionally, not only the title of the docu-
ment but also its different variants is used to match. We consider names of anchors
which link to a document A as variants of the title of A, and extract these names in the
experiment’s pre-processing stage.

 CSIR at INEX 2008 Link-the-Wiki Track 391

After finding a group of candidate outgoings, we rank them by their probability as
an outgoing. Those who have more incoming links are considered to have more pos-
sibility as an outgoing and are treated as outgoing links for a given topic. In the pre-
process stage, the number of incoming links of each document has been counted. The
possibility of a document d as an outgoing is defined as Eq. (1):

 Number of incomings of d
Possibility as an outgoing = (1)
 Max incomings of all docs

3.1.2 Incoming
We assume that if two documents are about similar themes, they can link to each
other. So, we use p(d|t), the probability of a topic file generating a document, to judge
whether a document is an incoming link.

 p(content|title) Language model
p(d|t) =
 p(content|main content of topic file) VSM

We use two different approaches to estimate p(d|t). For the first run we use lan-
guage model, and for the second run we use the default vector space model of Lucene.

We define the main content of the topic file as sequence of important words in the
file. In our runs, we simply generate the main content of the topic by the following
steps: replace some symbols by blank, such as “\”,“&” and so on, delete words
less than 5 letters for efficiency consideration, and the remaining terms constitute the
main content.

3.2 Anchors to BEP Task

The anchor-to-BEP task needs to find out 50 anchors and 5 target files per anchor,
totally 250 outgoings, and 50 incomings.

We submitted 2 runs: LTW_A2BEP_1 and LTW_A2BEP_2. The two runs differ
from each other in that their incomings are generated by different approaches.

3.2.1 Outgoing
We assume that an anchor can be linked to a document if the anchor and the topic file
are both relevant to the document. Then, we can rank the documents by p(d|a,t), the
probability of a specified anchor and topic file to generate the document.

Assuming t and a are independent, p(d|a,t) can be transformed into Eq. (2):

(,)) () ()
(| ,) (|) (|)

(,) () ()

p da dt p da p dt
p d a t p d a p d t

p a t p a p t
= = = (2)

Firstly, we choose those candidate anchors. After replace some symbols by blank,
such as “\”, “&” and so on, and delete words less than 3 letters for efficiency
consideration, we use a window-based method to determine the candidate anchors.
The size of the windows differs from 1 to 7. For example, for a sentence in topic file
18845.xml:

A stay mouse is a part of the standing rigging…

392 W. Lu, D. Liu, and Z. Fu

stay mouse, stay mouse part, stay mouse part the, stay mouse part the standing, stay
mouse part the standing rigging, mouse, mouse part are all valid candidate anchors.

Secondly, for every candidate anchor, we calculate p(d|a). This process is as fol-
lows: (1) Determine whether there are documents which are named as the candidate
anchor. If the candidate anchor is exactly the same as the topic or one of the incoming
anchor names of the document, we assign p(d|a) to 1. (2) Use the candidate anchor as
query and search for the query in the “incoming anchor names” field of the index. In
this step, we output a maximum of 50 documents for the next stage. (3) Use the can-
didate anchor as query and search for the query in the “content” field. Finally, we
output a maximum of 50 documents for the next stage.

Thirdly, we calculate p(d|t) and p(d|a,t). In this process, we use the main content of
the topic file as query and search for the query in the “content and incoming anchor
names” field. Then, we output the top 1000 documents to estimate p(d|a,t).

Fourthly, we rank all the anchors by the score of the candidate anchors, choose the
top 50 anchors. The score of a candidate anchor is calculated by the highest target
files’ score of the anchor in our runs. For anchors with the same offset, which means
that they are overlapped, we choose either the one with highest score or longest length
if they have the same score.

At last, the BEP of the anchor in the target file is assigned by the index of the an-
chor in the target file or 0 if the index is -1.

3.2.2 Incoming
The approach used in finding incoming is the same as what we use in finding incom-
ing for the file-to-file task. We set all the BEP of the topic file as 0. For the offset and
length of the link anchor, we simply calculate the index of the topic title in the target
link file and its length.

4 Result and Discussion

Table 1 gives out the evaluation results of our submitted runs. For the file-to-file task,
results are evaluated based on the original links that exist in the Wikipedia articles.
For the anchor-to-BEP task, automatic assessment of file-to-file level is performed for

Table 1. The evaluation result of link-the-Wiki track

Run ID Link Type Eval Type MAP R-Prec P@5
CSIR_LTW_F2F_1 In Automatic 0.16456 0.18356 0.2580.
CSIR_LTW_F2F_2 In Automatic 0.29403 0.33810 0.60348
CSIR_LTW_F2F_2 Out Automatic 0.00820 0.02116 0.02967

CSIR_LTW_A2BEP_1 In Automatic 0.12454 -- --
CSIR_LTW_A2BEP_2 In Automatic 0.15773 0.19124 0.63600

Automatic 0.06468 0.14368 0.32800
Manual at F2F 0.07595 0.15473 0.31200
Manual at F2BEP 0.04780 0.10460 0.25240
Manual at A2F 0.13070 0.10081 0.19600

CSIR_LTW_A2BEP_2 Out

Manual at A2BEP 0.12370 0.09610 0.18316

 CSIR at INEX 2008 Link-the-Wiki Track 393

both incoming and outgoing finding, while manual assessment of file-to-file and file-
to-BEP level and manual assessment of anchor-to-file and anchor-to-BEP level are
performed for outgoing finding. The manual assessments are based on those topics
assessed as relevant by a human assessor.

Our observations from the results are as follows:
For finding incomings, using the main content of the topic file as query is better

than just using the title of the topic file either for file-to-file or anchor-to-BEP task.
For finding outgoings of the file-to-file task, we have ignored the fact that those

document which have lots of incomings are mostly those about countries, places,
years or lists. Moreover, learning from the statistical result of table 1, we can find that
they take account for only a small percentage of the Wikipedia corpus. Hence, our
assumption that those who have lots of incomings have a greater possibility as outgo-
ing links for a given topic is in some sense unreasonable.

For finding outgoings of the anchor-to-BEP task, file-to-file level and anchor-to-
file assessment are better than file-to-BEP and anchor-to-BEP level assessment re-
spectively, which means our BEP assigning approach needs to be improved.

5 Conclusion and Future Work

In this year’s Link-the-Wiki track, we submitted 2 runs for each of the sub-task. For
the incoming link detection, we expressed it as p(d|t), the probability to generate a
document, when given the topic file. For the outgoing links of the file-to-file task, we
take a two step approach—first identifying a cluster of candidate target documents by
doing string matching of topic file title and document content, and then ordering these
documents by the number of incoming links they already have, and for the outgoing
links of the anchor-to-BEP task, we expressed it as p(d|a,t), the probability to gener-
ate a document, when given the topic file and an anchor name, to select anchors and
link targets for a given topic.

From the official evaluation result, we find that there are still some problems in our
approaches, and the way we processing the topic file needs further consideration. As
Link-the-Wiki can be deemed as a specific application of link discovery in the
Wikipedia corpus, we would try to adopt more automatic link generation methods in
next year's Link-the-Wiki track.

References

1. Huang, D.W.C., Xu, Y., Trotman, A.: Overview of INEX 2007 Link the Wiki Track. In: Fuhr,
N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 373–387.
Springer, Heidelberg (2008)

2. Jenkinson, D., Trotman, A.: Wikipedia Ad Hoc Passage Retrieval and Wikipedia Document
Linking. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS,
vol. 4862, pp. 426–439. Springer, Heidelberg (2008)

3. Itakura, K.Y., Clarke, C.L.A.: University of Waterloo at INEX2007:Ad Hoc and Link-the-
Wiki Tracks. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS,
vol. 4862, pp. 417–425. Springer, Heidelberg (2008)

394 W. Lu, D. Liu, and Z. Fu

4. Fachry, K.N., Kamps, J., Koolen, M., Zhang, J.: The University of Amsterdam at INEX
2007. In: Focused Access to XML Documents, 6th International Workshop of the Initiative
for the Evaluation of XML Retrieval, INEX 2007, Dagstuhl Castle, Germany, December
17-19, pp. 388–402 (2007)

5. Geva, S.: GPX@INEX 2007:Ad-Hoc Queries and Automated Link Discovery in the
Wikipedia. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS,
vol. 4862, pp. 404–416. Springer, Heidelberg (2008)

6. Huang, D.W.C., Trotman, A., Geva, S.: Experiments and Evaluation of link discovery in the
wikipedia. In: Proceedings of SIGIR workshop on Focused Retrieval (2008)

7. Zhang, J., Kamps, J.: Link Detection in XML Documents: What about repeated links? In:
Proceedings of SIGIR workshop on Focused Retrieval (2008)

A Content-Based Link Detection Approach
Using the Vector Space Model

Junte Zhang1 and Jaap Kamps1,2

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

Abstract. Link detection can be seen as a special application of Focused
Retrieval. This paper presents a content-based link detection approach
using the Vector Space Model. We present our results, and conclude by
discussing the merits and deficiencies of our approach.

1 Introduction

This paper reports on our participation in the Link The Wiki (LTW) track
of INEX. LTW is aimed at detecting or discovering missing links between a
set of Wikipedia topics, and the remainder of the collection, hence effectively
establishing cross-links between those documents using IR techniques. Existing
links were removed from the topics, making these documents ‘orphans’ that could
be linked to potential ‘fosters’. This means that hypertext has be constructed
automatically. Many hypertext systems have been based on the Dexter Hypertext
Reference Model [2], and subsequently our system as outlined in this paper is
also compliant with this model.

LTW consisted of two tasks. The first task was a continuation of the track of
last year with the detection of links between whole files. The second task used
50 selected orphan topics, and went further than link detection on the document
level, as links had to be established between spans of characters within one
document and spans of characters with another document. The latter is here a
Best Entry Point (BEP), i.e. the best point where the user can start reading
in a document, which makes link detection particularly a special application of
Focused Retrieval. A maximum of 5 BEPs per anchor value was allowed. What
both tasks had in common was that it consisted of 2 sub-tasks; the detection of
links from an ‘orphan’ (outgoing) and to an ‘orphan’ (incoming).

Detected links are treated as uni-directional hyperlink arcs. The issue of link
density and link repetition as mentioned in [3] has not been addressed, henceforth
we restricted our experimentation to detecting unique cross-links between docu-
ments. In Sections 2 and 3, we present our approaches. The results are presented
and discussed in Section 4, and we conclude with our findings in Section 5.

2 Detection of Document-to-Document Links

We employ a content-based (and thus collection-independent) approach with IR
techniques as previously outlined in [1]. This means we do not rely on learning,

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 395–400, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

396 J. Zhang and J. Kamps

Fig. 1. System overview of a content-based link detection approach

heavy heuristics or existing link structures in the Wikipedia, and only use the
orphaned topics as evidence. An overview of our system is depicted in Fig. 1.

We adopt a breadth m–depth n technique for automatic text structuring for
identifying the anchor values and links, i.e. a fixed m number of documents
accepted in response to a query (step 1) and a fixed n number of iterative searches
(step 2). The similarity on the document level and text segment level (substrings
of a line) is used as evidence. We used the whole document (i.e. full-text content)
as a query (not only title), because in prior experiments we found that this
performed best. The standard Vector Space Model (VSM) implementation of
Lucene was used for retrieval, i.e., for a collection D, document d, and query q:

sim(q, d) =
∑
t∈q

tft,q · idft
normq

· tft,d · idft
normd

· coordq,d · weightt , (1)

where tft,X =
√

freq(t, X); idft = 1 + log |D|
freq(t,D) ; normq =

√∑
t∈q tft,q · idft 2;

normd =
√|d|; and coordq,d = |q∩d|

|q| .

Before the actual link detection starts, some pre-processing is done by ex-
tracting for each topic the title enclosed within the <name> tag and storing that
in a hash-table for substring matching. We do not apply case-folding, but we do
remove any existing disambiguation information put between brackets behind
the title. Only titles of > 3 characters length are considered.

We do not assume that links are reciprocal or bi-directional, so we have dif-
ferent approaches for detecting outgoing and incoming links. A threshold of 250
was set for both types of links, and repeated links were not allowed. Links also
appear locally within a document to improve the navigation there, but this was
outside the scope of the LTW track. So there is (a) an outgoing link for an ‘or-
phan’ topic when the title of a ‘foster’ document occurs in the orphan topic. and
(b) there is an incoming link for an orphan when the title of the orphan occurs
in a foster document. We describe the following 2 runs:

A Content-Based Link Detection Approach Using the Vector Space Model 397

a2a 1. The whole orphan document is used as a query. The pool of plausible
‘foster’ (candidate) documents is the top 300 returned by this query.

a2a 3. The whole orphan document is used as a query. The pool of plausible
candidate links is the top 500 of the ranked list.

3 Detection of Anchor-to-BEP Links

The Anchor-to-BEP task is based on a hypertext mechanism called anchoring [2].
The actual anchor value had to be specified using the File-Offset-Length (FOL)
notation, which at the same time serves as the anchor identifier [2]. At the same
time, the BEP of the outgoing link had to be provided. For all of these runs, we
assume that the BEP is always the start of the document (i.e. offset = 0). Multiple
links per anchor were only computed for the run a2bep 5.

a2bep 1. The whole orphan document is used as query, and the top 300 results
is used to find potential cross-links.

a2bep 3. The whole orphan document is used as query. The top 50 ranking
documents is harvested. Each of these documents is used again as a query
to retrieve its top 6 results; resulting in 300 foster documents.

a2bep 5. This run is similar to the first Anchor-to-BEP run, but we expanded
this run by allowing more than 1 BEP for each anchor. We use the depth-first
strategy, and the broader-narrower conceptualization of terms by re-grouping
the extracted list of titles based on a common substring. For example, the
anchor value “Gothic” could refer to the document “Gothic”, but also to
documents with the titles “Gothic alphabet”, “Gothic architecture”, “Gothic
art”, “Gothic Chess”, and so on.

4 Experimental Results and Discussion

Our results are evaluated against the set of existing links (in the un-orphaned
version of the topics) as ground truth, both for the sample of 6,600 topics in
the first task, as well as the 50 topics in the second task. The results of our
runs are depicted in Table 1 for links on the document-level and in Table 2 for
the Anchor-to-BEP links. Additionally, the outgoing Anchor-to-BEP links were
assessed manually (see Table 3), so there are no results for the incoming links.

Table 1. Document-to-Document runs with Wikipedia as ground truth

Run Links MAP R-Prec P@10 Rank

a2a 1 In 0.33927 0.35638 0.57082 15/24
a2a 3 0.35758 0.37508 0.58585 14/24

a2a 1
Out

0.10716 0.17695 0.19061 15/21
a2a 3 0.10174 0.16301 0.17073 19/21

398 J. Zhang and J. Kamps

Table 2. Anchor-to-BEP runs with Wikipedia as ground truth

Run Links MAP R-Prec P@10 Rank

a2bep 1

In
0.23495 0.25408 0.80400 7/27

a2bep 3 0.15662 0.16527 0.77400 23/27
a2bep 5 0.23495 0.25408 0.80400 8/27

a2bep 1

Out
0.09727 0.20337 0.27400 20/30

a2bep 3 0.09106 0.18296 0.32800 23/28
a2bep 5 0.14262 0.24614 0.47000 14/30

Table 3. Anchor-to-BEP runs based on manual assessments

Run Links MAP R-Prec P@10 Rank

Wikipedia

Out

0.20790 0.31258 0.45996 1/28
a2bep 1 0.05557 0.12511 0.14195 23/28
a2bep 3 0.05181 0.13368 0.18699 24/28
a2bep 5 0.08472 0.16822 0.31773 16/28

Table 4. Number of Document-to-Document links

Links Measure Qrel a2a 1 a2a 3

In Mean 35.66 17.04 19.66
Median 21 9 9

Out
Mean 36.31 109.09 123.76

Median 28 95 110

Table 5. Number of Anchor-to-BEP links

Links Measure Qrel (auto) a2bep 1 a2bep 3 a2bep 5

In Mean 278.32 62.96 23.2 62.96
Median 134 29.5 17 29.5

Out
Mean 79.18 36.82 25.72 26.02

Median 62 41 24 26.5

Generally, our approach performed better for detecting incoming links than
outgoing ones. We achieved the highest early precision for incoming links detec-
tion. Table 3 suggests that the existing links in the Wikipedia do not suffice or
is a spurious ground truth given the user assessments, where MAP = 0.27653 for

A Content-Based Link Detection Approach Using the Vector Space Model 399

Document-to-Document links, and MAP = 0.20790 for Anchor-to-BEP links.
For example, when we compare the scores of automatic (Table 2) vs manual
evaluation (Table 3) of outgoing links, we see that the actual set of detected
links is only a small subset of what users really want.

These results, especially the sub-optimal results for the outgoing links and
the general results on the document-level, warrant some reflection on several
limitations of our approach. We did exact string matching with the titles of the
candidate foster topics and did not apply case-folding or any kind of normal-
ization. This means we could have incorrectly discarded a significant number of
relevant foster documents (false negatives). Moreover, we could missed a signifi-
cant number of linkable candidates in step 1 due to the limitations of the VSM.
Conversely, this means effectively under-generating the incoming and outgoing
links, however, for task 1 we over-linked the outgoing links in the topics (see
Tables 4 and 5). Interestingly, we found that we can significantly improve the
accuracy of the detection of our outgoing links by generating multiple BEPs for
an anchor, which partly deals with the issue of underlinking.

5 Conclusions

In summary, we continued with our experimentation with the Vector Space
Model and simple string processing techniques for detecting missing links in
the Wikipedia. The link detection occurred in 2 steps: first, a relevant pool of
foster (candidate) documents is collected; second, substring matching with the
list of collected titles to establish an actual link. We used entire orphaned doc-
uments (full-text) as query, with the idea to use all textual content as maximal
evidence to find ‘linkable’ documents.

Clearly, we showed the limitations of this full-text approach based on the
VSM, especially on the document level. A content-based full-text approach is
not competitive against anchor-based approaches, however, a content-based ap-
proach adheres most strictly to an obvious assumption of link detection, namely
that documents do not already have existing links as evidence and these cannot
be used to ‘re-establish’ links, which is not necessarily equal to ‘detection’.

A competitive content-based link detection approach that discovers high qual-
ity links is needed, for example for detecting links in legacy or cultural heritage
data. The impact of link detection on those datasets and domains will be large
(for users and systems), since there are no such links yet (which would enable
new navigation and search possibilities), and the alternative is expensive manual
linking. To improve our approach, we are considering to experiment more with
the granularity in a document to find focusedly link candidates (besides title and
whole document), such as on the sentence level.

Acknowledgments. This research is supported by the Netherlands Organization
for Scientific Research (NWO) under project number 639.072.601.

400 J. Zhang and J. Kamps

References

[1] Fachry, K.N., Kamps, J., Koolen, M., Zhang, J.: Using and detecting links in
wikipedia. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 388–403. Springer, Heidelberg (2008)

[2] Halasz, F., Schwartz, M.: The Dexter hypertext reference model. Commun.
ACM 37(2), 30–39 (1994)

[3] Zhang, J., Kamps, J.: Link detection in XML documents: What about repeated
links? In: SIGIR 2008 Workshop on Focused Retrieval, pp. 59–66 (2008)

Overview of the INEX 2008 XML Mining Track
Categorization and Clustering of XML Documents in a

Graph of Documents

Ludovic Denoyer and Patrick Gallinari

LIP6 - University of Paris 6

Abstract. We describe here the XML Mining Track at INEX 2008.
This track was launched for exploring two main ideas: first identifying
key problems for mining semi-structured documents and new challenges
of this emerging field and second studying and assessing the potential of
machine learning techniques for dealing with generic Machine Learning
(ML) tasks in the structured domain i.e. classification and clustering of
semi structured documents. This year, the track focuses on the super-
vised classification and the unsupervised clustering of XML documents
using link information. We consider a corpus of about 100,000 Wikipedia
pages with the associated hyperlinks. The participants have developed
models using the content information, the internal structure information
of the XML documents and also the link information between documents.

1 Introduction

The XML Document Mining track1 was launched for exploring two main ideas:
first identifying key problems for mining semi-structured documents and new
challenges of this emerging field and second studying and assessing the potential
of machine learning techniques for dealing with generic Machine Learning (ML)
tasks in the structured domain i.e. classification and clustering of semi structured
documents.

This track has run for four editions during INEX 2005, 2006, 2007 and 2008
and the fifth phase is currently being launched. The three first editions have
been summarized in [1] and [2] and we focus here on the 2008 edition.

Among the many open problems for handling structured data, the track fo-
cuses on two generic ML tasks applied to Information Retrieval: while the pre-
ceding editions of the track concerned supervised classification/categorization
and unsupervised clustering of independent document, this track is about the
classification and the clustering of XML documents organized in a graph of doc-
uments. The goal of the track was therefore to explore algorithmic, theoretical
and practical issues regarding the classification and clustering of interdependent
XML documents. In the following, we first describe the task and the corpus used
in this edition, we then describe the different models submitted this year and
comment the results. We then conclude by explaining the future of the XML
Mining track for INEX 2009.

1 http://xmlmining.lip6.fr

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 401–411, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://xmlmining.lip6.fr

402 L. Denoyer and P. Gallinari

2 Categorization/Clustering of a Graph of XML
Documents Organized

Dealing with XML document collections is a particularly challenging task for
ML and IR. XML documents are defined by their logical structure and their
content (hence the name semi-structured data). Moreover, in a large majority
of cases (Web collections for example), XML documents collections are also
structured by links between documents (hyperlinks for example). These links can
be of different types and correspond to different information: for example, one
collection can provide hierarchical links, hyperlinks, citations, Most models
developed in the field of XML categorization/clustering simultaneously use the
content information and the internal structure of XML documents (see [1] and [2]
for a list of models) but they rarely use the external structure of the documents
i.e the links between documents.

In the 2008 track, we focus on the problem of classification/clustering of XML
documents organized in graph. More precisely, this track was composed of:

– a single label classification task where the goal was to find the single category
of each document. This task consider a tansductive context where, during
the training phase, the whole graph of documents is known but the labels of
only a part of them are given to the participants (Figure 1).

– a single label clustering task where the goal was to associate each docu-
ment to a single cluster, knowing both the documents and the links between
documents (Figure 2).

Training set Final labeling

Fig. 1. The supervised classification task. Shapes correspond to categories, circle nodes
are unlabeled nodes.

Overview of the INEX 2008 XML Mining Track 403

Training set Final labeling

Fig. 2. The unsupervised clustering task. Shapes correspond to categories, circle nodes
are unlabeled nodes. The categories are discovered automatically.

3 Corpus

3.1 Graph of XML Documents

The corpus provided is a subset of the Wikipedia XML Corpus [3]. We have
extracted a set of 114,336 documents and the links between documents. These
links corresponds to the links provided by the authors of the Wikipedia articles
or automatically generated by Wikipedia. Note that we have only kept the links
that concern the 114,333 documents of the corpus and we have removed the links
that point to other articles.

XML Documents. The documents of this corpus are the original XML docu-
ments of the Wikipedia XML Corpus. Table 3.1 gives some statistics about the
documents. Note that:

– The number of documents is important and classification/clustering models
with a low complexity have to be used.

– The documents are large and the number of distinct words is greater than
160,000 (with a classical Porter Stemmer preprocessing) which does not cor-
respond to the classical Text Categorization case where the vocabulary is
usually smaller.

Graph Topology. The provided corpus is composed 636,187 directed links that
correspond to hyperlinks between the documents of the corpus. Each document
is pointed by 5.5 links on average and provide 5.5 links to other documents.
Figure 3 (a) gives the distribution of the number of in-links and out-links and
shows that a large majority of documents are concerned by less than 10 links.

404 L. Denoyer and P. Gallinari

Number of documents 114,336
Number of training documents 11,437
Number of test documents 102,929
Mean size of each document 408 words
Number of distinct words 166,619

(a) (b)

Fig. 3. (a) In-links, Out-links distribution: Each point corresponds to a docu-
ment. The X-axis is the number of in-links and the Y-axis is the number of out-links (b)
The distribution of the number of documents w.r.t in-links and out-links:
The Y-axis corresponds to the number of documents while the X-axis corresponds to
the number of in-links/out-links. For example, about 8000 documents have 5 in-links.

(a) (b)

Fig. 4. (a) In-links distribution: Each point corresponds to a document. The X-axis
is the number of in-links and the Y-axis is the size of each document (b) Out-links
distribution: Each point corresponds to a document. The X-axis is the number of
out-links and the Y-axis is the size of each document.

Figure 3 (b) shows the correlation between the number of in-links and out-
links by document. Figure 4 shows the correlation between the size (the num-
ber of words) of the documents and the number of in-links and out-links. These

Overview of the INEX 2008 XML Mining Track 405

figures clearly show that the number of links (in-links and out-links) directly
depends on the sizes of the documents. This means that larger documents are
more cited than smaller ones. This characteristic is specific to Wikipedia and
does not fit well with Web graph for examples.

The global corpus topology is dense: the corpus is composed of one central
component where a large majority of documents are linked to and some very
small ”islands” of documents that are not linked to this component. This is due
to the sampling method we have used in order to extract this corpus from the
whole Wikipedia XML Corpus. The underlying idea was to only keep documents
with links because the goal of the task was to use the links structure as a relevant
information for classification and clustering. Note that this topology does not
correspond to the whole Wikipedia topology and a future work could be to try
to sample a subset of Wikipedia keeping the same topology.

3.2 Labels

In order to provide a single label classification/clustering benchmark, we have
labeled the documents with a subset of the original Wikipedia categories. These
categories have not been chosen randomly in the whole set of categories2 and
we have kept a subset of categories that allow reasonable performances for the
supervised classification task using a Naive Bayes classifier. Table 1 describes
the set of the 15 categories kept here and provide some statistics about the
distribution of these categories among the corpus.

Table 1. The set of 15 categories and the number of documents for each category

Category Number of documents
reference 14905
social institutions 8199
sociology 1165
sports 9435
fiction 6262
united states 29980
categories by nationality 6166
europe 991
tourism 2880
politics by region 7749
urban geography 7121
americas 6088
art genres 2544
demographics 3948
human behavior 6933

2 The Wikipedia XML Corpus provide more than 20,000 possible categories , one
document can belong to many categories.

406 L. Denoyer and P. Gallinari

Labels and Graph Structure. In figure 5 , we measure the correlation be-
tween the categories and the graph structure. This figure shows that for a large
majority of categories, a document that belongs to category c is connected
to documents that belongs to the same category. The graph provided in the
track is smooth in the sense that the label information does not mainly change
among the graph structure. The graph structure seems very relevant for clas-
sification/clustering in the sense that, if one is able to find the category of a
document, it can propagate this information among the out-links of this docu-
ment to find the labels of the neighbors. Note that for some categories, the graph
is also relevant, but not smooth: 83.52 % of the out-links of ”United states” doc-
uments point to ”Demographics” documents. We hope that the proposed models
will capture this correlation between categories and links.

Fig. 5. The number in cell line i and column j corresponds to the percentage of links of
out-links starting from a document of category i that points to a document of category
j. the diagonal of the matrix corresponds to the percentages of smooth links that link
two documents of the same category.

3.3 Train/Test Splits

For the categorization task, we have provide the labels of 10 % of the documents
as a training set. These labels have been choosen randomly among the documents
of the corpus. Figure 6 shows a piece of corpus.

3.4 Evaluation Measures

The track was composed of one supervised categorization task and one unsuper-
vised clustering task. The organizers have made a blind evaluation on the testing
corpus.

Overview of the INEX 2008 XML Mining Track 407

Fig. 6. Piece of the corpus. Only 10 % of the nodes are labeled.

Categorization: For categorization, we have asked the participants to submit
one category for each of the documents of the testing set. We have then evaluated
the correlation between the categories found by the participants and the real
categories of the documents. For each category, we have computed a recall that
corresponds to the percentage of documents of the category that have been
correctly classified.

Clustering: For the clustering task, the participants have submitted a cluster
index for each of the documents of the testing set. We have then evaluated if
the obtained clustering corresponds to the real categories of the documents. For
each submitted cluster, we have computed a purity measure that is a recall of
the cluster considering that the cluster belongs to the category of the majority
of its documents. We have also used a micro average purity and a macro average
purity in order to summarize the performances of the different models over all
the documents and all the clusters. Note that the evaluation of clustering is
very difficult and it is still an open problem particularly with semi-structured
document where clusters can correspond to structural clusters or to thematic

408 L. Denoyer and P. Gallinari

clusters. The measure proposed here just gives an idea of how much a model is
able to find the 15 categories in an unsupervised way.

4 Participants and Submissions

We briefly present here the contributions of the participants to this track. Note
that, while the graph structure was provided, some participants only developed
categorization/clustering models based on the content and internal structure of
the documents without using the hyperlinks information.

4.1 Categorization Models

[4] The paper proposes an extension of the Naive Bayes model to linked docu-
ments. This model considers that the probability of a category knowing a docu-
ment is composed by a mixture of three different categories:

P (cat|d) = αP0(cat|d) + βP1(cat|d) + (1 − α − β)P2(cat|d) (1)

where α and β are the mixture coefficients 0 ≤ α + β ≤ 1 and

– P0 is the classical naive bayes probability based on the content of d
– P1 is the probability of the document pointed by the out-links of d
– P2 is the probability of the documents that point to d

[5] The authors also propose an extension of the naive bayes model that uses
the relationship between categories and directly tries to capture the information
presented in figure 5. Basically, they consider that the probability of a category
is weighted by the probability of this category knowing the categories of the
neighbors of the document to classify.

[6] In this article, the authors use a pure graph-based semi-supervised method
based on the propagation of the labels of the labeled nodes. This method di-
rectly learns a decision function that correctly classifies training examples and
that is smooth among the whole graph-structure - considering both labeled and
unlabeled examples. The learning algorithm is a label expansion algorithm that
simultaneously learn a content classifier and propagate the labels of labeled nodes
to unlabeled ones.

[7] The method submitted is a pure content-based method that does not use
any content information. This method is a vector-space model where the size of
the index is reduced by a features selection algorithm. While this method does
not use the graph structure, it performs surprisingly well on the categorization
task.

[8] Here, the authors propose to use a classical SVM with a TF-IDF repre-
sentation of documents where the term frequencies have been replaced by link
frequencies (LF-IDF). The SVM used for classification is a multi class SVM.

Overview of the INEX 2008 XML Mining Track 409

4.2 Clustering Models

[8] The paper proposes to use K-trees for document clustering. K-trees are
Tree Structured Vector Quantizers which correspond to trees of clusters where
the clusters are based on a vectorial representation of documents. K-trees are
interesting because they scale very well with a large number of examples.

[9] The authors propose to make clustering based on the extraction of frequent
subtrees using both the content and the internal structure information. The
idea is to represent each document as a vector in both the space of a subset of
frequent subtrees extracted from the whole corpus and the space of words. This
representation is then used with classical clustering methods.

[10] The model proposed is based on the computation of a latent semantic kernel
that is used as a similarity to perform clustering. This kernel only used content
information but it is computed on a set of clusters extracted using the structural
information.

[11] The article uses an extension of Self Organizing Map called GraphSOM and
a new learning algorithm from document clustering. The new learning methods
is an improvement of the classical one in term of stability and complexity and
allows us to deal with large scale collections.

5 Official Results

We present here the results obtained by the different participants of the track.
The results have been computed by the organizers on the test labels.

Fig. 7. Best recall obtained by each participant for the classification task

410 L. Denoyer and P. Gallinari

5.1 Categorization

Figure 7 shows the best results for each submitted models3. We show that the two
best models (more than 78% recall) are obtained using classical vectorial clas-
sifiers (SVMs) with an appropriated document representation that mainly only
uses the content information (and link frequencies for De Vries et al.). The three
other models that better use the graph structure perform between 73.8 % and
68.1 % in term of recall. Note that the model by Romero et al. and the model by
Fachry et al. are based on Naive Bayes extensions and perform better than a sim-
ple Naive Bayes model (but worse than a SVM method). At last, the propagation
model by Chidlovskii et al. give reasonnably good results on this task.

5.2 Clustering

Figure 8 shows the results of the best submitted models for 15 clusters in term of
macro and micro purity. One can see that almost all these models perform around
50% micro-purity which is a nice performance for a clustering model. Note that
these 50% can directly be compared to the 78% recall obtained by the supervised
methods showing that supervision improves unsupervised learning by 28%.

Fig. 8. Macro-purity and Micro-purity obtained by each participant for the clustering
task

6 Conclusion

We have presented here the different models and results obtained during the
XML Document Mining Track at INEX 2008. The original idea of this track was
to provide simultaneously XML documents with a graph structure. The graph
labeling task is a promising task that corresponds to many real applications

3 Additional results can be found in the participants publications and on the website:
http://xmlmining.lip6.fr

Overview of the INEX 2008 XML Mining Track 411

(classification on the Web, classification on Social networks, ...) and the XML
Mining track is a first step to develop new models for text categorization/
clustering in a graph structure.

Acknowledgments

We would like to thank all the participants for their efforts and hard work.

References

1. Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2005 and inex
2006: categorization and clustering of xml documents 41(1), 79–90 (2007)

2. Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2007 categoriza-
tion and clustering of xml documents 42(1), 22–28 (2008)

3. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus (2006)
4. Fachry, K.N., Kamps, J., Kaptein, R., Koolen, M., Zhang, J.: The University of

Amsterdam at INEX 2008: Ad Hoc, Book, Entity Ranking, Interactive, Link the
Wiki, and XML Mining Tracks. In: Workshop of the INitiative for the Evaluation
of XML Retrieval (2008)

5. de Campos, L.M., Fernandez-Luna, J.M., Huete, J.F., Romero, A.E.: Probabilistic
Methods for Link-based Classification at INEX 2008. In: Workshop of the INitiative
for the Evaluation of XML Retrieval (2008)

6. Chidlovskii, B.: Semi-supervised Categorization of Wikipedia collection by Label
Expansion. In: Workshop of the INitiative for the Evaluation of XML Retrieval
(2008)

7. Mathias Gery, C.L., Moulin, C.: UJM at INEX 2008 XML mining track. In: Work-
shop of the INitiative for the Evaluation of XML Retrieval (2008)

8. Vries, C.M.D., Geva, S.: Document Clustering with K-tree. In: Workshop of the
INitiative for the Evaluation of XML Retrieval (2008)

9. Kutty, S., Tran, T., Nayak, R., Li, Y.: Combining the structure and content of XML
documents for Clustering using frequent subtress. In: Workshop of the INitiative
for the Evaluation of XML Retrieval (2008)

10. Tran, T., Kutty, S., Nayak, R.: Utilizing the Structure and Data Information for
XML Document Clustering. In: Workshop of the INitiative for the Evaluation of
XML Retrieval (2008)

11. Zhang, S., Hagenbuchner, M., Tsoi, A., Sperduti, A.: Self Organizing Maps for the
clustering of large sets of labeled graphs. In: Workshop of the INitiative for the
Evaluation of XML Retrieval (2008)

Semi-supervised Categorization of Wikipedia Collection
by Label Expansion

Boris Chidlovskii

Xerox Research Centre Europe
6, chemin de Maupertuis, F–38240 Meylan, France

Abstract. We address the problem of categorizing a large set of linked docu-
ments with important content and structure aspects, for example, from Wikipedia
collection proposed at the INEX XML Mining track. We cope with the case where
there is a small number of labeled pages and a very large number of unlabeled
ones. Due to the sparsity of the link based structure of Wikipedia, we apply the
spectral and graph-based techniques developed in the semi-supervised machine
learning. We use the content and structure views of Wikipedia collection to build
a transductive categorizer for the unlabeled pages. We report evaluation results
obtained with the label propagation function which ensures a good scalability on
sparse graphs.

1 Introduction

The objective of the INEX 2008 XML Mining challenge is to develop machine learning
methods for structured data mining and to evaluate these methods for XML document
mining tasks. The challenge proposes several datasets coming from different XML col-
lections and covering a variety of classification and clustering tasks.

In this work, we address the problem of categorizing a very large set of linked XML
documents with important content and structural aspects, for example, from Wikipedia
online encyclopedia. We cope with the case where there is a small number of labeled
pages and a much larger number of unlabeled ones. For example, when categorizing
Web pages, some pages have been labeled manually and a huge amount of unlabeled
pages is easily retrieved by crawling the Web. The semi-supervised approach to learning
is motivated by the high cost of labeling data and the low cost for collecting unlabeled
data. Withing XML Mining challenge 2008, the Wikipedia categorization challenge
has been indeed set in the semi-supervised mode, where only 10% of page labels are
available at the training step.

Wikipedia (http://www.wikipedia.org) is a free multilingual encyclopedia project sup-
ported by the non-profit Wikipedia foundation. In April 2008, Wikipedia accounted for
10 million articles which have been written collaboratively by volunteers around the
world, and almost all of its articles can be edited by anyone who can access the Wiki-
pedia website. Launched in 2001, it is currently the largest and most popular general
reference work on the Internet. Automated analysis, mining and categorization of Wiki-
pedia pages can serve to improve its internal structure as well as to enable its integration
as an external resource in different applications.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 412–419, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Semi-supervised Categorization of Wikipedia Collection by Label Expansion 413

Any Wikipedia page is created, revised and maintained according to certain policies
and guidelines [1]. Its edition follows certain rules for organizing the content and struc-
turing it in the form of sections, abstract, table of content, citations, links to relevant
pages, etc.. In the following, we distinguish between four different aspects (or views)
of a Wikipedia page:

Content - the set of words occurred in the page.
Structure - the set of HTML/XML tags, attributes and their values in the page. These

elements control the presentation of the page content to the viewer. In the extended
version, we may consider some combinations of elements of the page structure, like
the root-to-leaf paths or their fragments.

Links - the set of hyperlinks in the page.
Metadata - all the information present in the page Infobox, including the template,

its attributes and values. Unlike the content and structure, not all pages include
infoboxes [3].

We use these alternative views to generate a transductive categorizer for the Wiki-
pedia collection. One categorizer representing the content view is based on the text of
page. Another categorizer represents the structural view, it is based on the structure and
Infobox characteristics of the page.

Due to the transductive setting of the XML Mining challenge, we test the graph-
based semi-supervised methods which construct the similarity graph W = {wij} and
apply a function propagating labels from labeled nodes to unlabeled ones. We first
build the content categorizer, with weights wij being the textual similarity between two
pages. We then build the structure categorizer, where weights wij are obtained from the
structure and Infobox similarity between the pages. Finally, we linearly combine the
two categorizers to get the optimal performance.

2 Graph-Based Semi-supervised Learning

In the semi-supervised setting, we dispose labeled and unlabeled elements. In the graph-
based approach [4,5] to linked documents, one node in the graph represents one page.
We assume a weighted graph G having n nodes indexed from 1 to n. We associate with
graph G a symmetric weight matrix W where all weights are non-negative (wij > 0),
and weight wij represents the similarity between nodes i and j in G. If wij = 0, there
is no edge between nodes i and j.

We assume that the first l training nodes have labels, y1, y2, . . . , yl, where yi are from
the category label set C, and the remaining u = n − l nodes are unlabeled. The goal
is to predict the labels yl+1, . . . , yn by exploiting the structure of graph G. According
to the smoothness assumption, a label of an unlabeled node is likely to be similar to the
labels of its neighboring nodes. A more strongly connected neighbor node will more
significantly affect the node.

Assume the category set C includes c different labels. We define the binary label
vector Yi for node i, where Yi = {yij|yij = 1 if j = yi, 0 otherwise}. We equally
introduce the category prediction vector Ŷi for node i. All such vectors for n nodes
define a n × c-dimensional score matrix Ŷ = (Ŷ1, . . . , Ŷn). At the learning step, we

414 B. Chidlovskii

determine Ŷ using all the available information. At the prediction step, the category
labels are predicted by thresholding the score vectors Ŷl+1, . . . , Ŷn.

The graph-based methods assume the following:

1. the score Ŷi should be close to the given label vectors Yi in training nodes, and
2. the score Ŷi should not be too different from the scores of neighbor nodes.

There exist a number of graph-based methods [5]; we test some of them and report
on one called the label expansion [4]. According to this approach, at each step, node
i in graph G receives a contribution from its neighbors j weighted by the normalized
weight wij , and an additional small contribution given by its initial value. This process
can be expressed iteratively using the graph Laplacian matrix L = D − W , where
D = diag(di), di =

∑
j wij . The normalized Laplacian L = D−1/2LD−1/2 = I −

D−1/2WD−1/2 can be used instead of L to get a similar result. The process is detailed
in Algorithm 1 below.

Algorithm 1. Label expansion
Require: Symmetric matrix W, wij ≥ 0 (and wii := 0)
Require: Labels yi for xi, i = 1, . . . , l
Ensure: Labels for xl+1, . . . , xn

1: Compute the diagonal degree matrix D by dii :=
∑

j wij

2: Compute the normalized graph Laplacian L := I − D−1/2WD−1/2

3: Initialize Ŷ (0) := (Y1, . . . , Yl, 0,0, . . . ,0), where Yi = {yik|yik = 1 if k = yi, 0
otherwise}

4: Choose a parameter α ∈ [0, 1)
5: while not converged to Ŷ (∞) yet do
6: Iterate Ŷ (t+1) := αLŶ (t) + (1 − α)Ŷ (0)

7: end while
8: Label xi by argmaxjŶ

(∞)
i

It has been proved that Algorithm 1 always converges [4]. Indeed, the iteration equa-
tion can be represented as follows

Ŷ (t+1) = (αL)t+1Ŷ (0) + (1 − α)
t∑

i=0

(αL)iŶ (0). (1)

Matrix L is a normalized Laplacian, its eigenvalues are known to be in [-1, 1] range.
Since α < 1, eigenvalues of αL are in (-1,1) range. Therefore, when t → ∞, (αL)t →
0.

Using the matrix decomposition, we have
∑∞

i=0(αL)i → (I − αL)−1, so that we
obtain the following convergence:

Ŷ (t) → Ŷ (∞) = (1 − α)(I − αL)−1Ŷ (0). (2)

The convergence rate of the algorithm depends on specific properties of matrix W , in
particular, the eigenvalues of its Laplacian L. In the worst case, the convergence takes
O(kn2) time, where k is the number of neighbors of a point in the graph.

Semi-supervised Categorization of Wikipedia Collection by Label Expansion 415

On the other hand, the score matrix Ŷ can be obtained by solving a large sparse
linear system (I −αL)Ŷ = (1−α)Y (0). This numerical problem has been intensively
studied [2], and efficient algorithms, whose computational time is nearly linear in the
number of non-zero entries in the matrix L. Therefore, the computation gets faster as
the Laplacian matrix gets sparser.

2.1 Category Mass Regularization

Algorithm 1 generates a c-dimensional vector Ŷi for each unlabeled node i, where c is
the number of categories and each element ŷij between 0 and 1 gives a score for cat-
egory j. To obtain the category for i, Algorithm 1 takes the category with the highest
value, argmaxj ŷij . Such a rule works well when categories are well balanced. How-
ever, in real-world data categories are often unbalanced and the categorization resulting
from Algorithm 1 may not reflect the prior category distribution.

To solve this problem, we perform the category mass normalization, similarly to [6].
It rescales categories in such a way that their respective weights over unlabeled exam-
ples match the prior category distribution estimated from labeled examples.

Category mass normalization is performed in the following way. First, let pj de-
note the prior probability of category j estimated from the labeled examples: pj =
1
l

∑l
i=1 yij . Second, the mass of category j as given by the average of estimated weights

of j over unlabeled examples, mj = 1
u

∑n
i=l+1 ŷij . Then the category mass normaliza-

tion consists in scaling each category j by the factor vj = pj

mj
. In other words, instead

of the decision function argmaxj ŷij , we categorize node i in the category given by
argmaxj vj ŷij . The goal is to make the scaled masses match the prior category distri-
bution, i.e. after normalization we have that for all j

pj =
vjmj∑c
i=1 vimi

.

Generally, such a scaling gives a better categorization performance when there are
enough labeled data to accurately estimate the category distribution, and when the un-
labeled data come from the same distribution. Moreover, if there exists such m that
each category mass is mj = mpj , i.e., the masses already reflect the prior category
distribution, then the mass normalization step has no effect, since vj = 1

m for all j.

2.2 Graph Construction

The label expansion algorithm starts with a graph G and associated weighted matrix W .
To build the graph G for the Wikipedia collection, we first reuse its link structure by
transforming directed links into undirected ones. We analyze the number of incoming
and outcoming links for all pages in the Wikipedia collection. Figure 1 shows the In-Out
frequencies for the corpus; note the log scale set for all dimensions.

In the undirected graph, we remove self-links as required by Algorithm 1. We then
remove links between nodes with high weights wij having different labels in order to
fits the smoothness condition. It turns out that the link graph is not totally connected.

416 B. Chidlovskii

Fig. 1. Wikipedia nodes: In-Out frequencies

Fig. 2. Wikipedia corpus: the link graph plotted with LGL package

Figure 2 plots the link graph with the help of the Large Graph Layout package1. As
the figure shows, the graph includes one connected component and about 160 small
components covering less than 1% of collection. The right plot in Figure 2 additionally
projects the category information on the link graph, where each category is shown by a
particular color.

We are also interested in building graphs G which are different the original link
structure. The standard approach [4] is to build the k-NN (Nearest Neighbors) graph

1 http://bioinformatics.icmb.utexas.edu/lgl/

Semi-supervised Categorization of Wikipedia Collection by Label Expansion 417

by taking the top k weights wij for each node. Unfortunately, the exhaustive k-NN
procedure is infeasible even for the Wikipedia fragment used in the challenge. Thus we
build a graph G′ by modifying G with randomly sampling of node pairs from Wikipedia
and selecting the top k=100 ones per node. Note using the content or structure similarity
will produce different versions of G′. In the evaluation section, we report results of tests
run on both G and G′ graphs.

Content matrix. To generate a content weighted matrix W , we extract descriptor xi

for node i in the graph by using ”bag-of-words” model and the tf-idf values, (term
frequency-inverted document frequency) as xij = tfij · idfi, where

– tfij is the term frequency given by ni,j∑
k nk,j

, where nij is the number of occurrences
of the term in document dj , and the denominator is the number of occurrences of
all terms in document dj .

– idfi is the inverted document frequency log n
|{dj:ti∈dj}| , where n is the total number

of documents and |{dj : ti ∈ dj}| is the number of documents where the term ti
occurs.

The tf-idf weighting scheme is often used in the vector space model together with
cosine similarity to determine the similarity between two documents.

Layout matrix. In the structure graph, node descriptors xi are generated following
the ”bag-of-tags” approach which is similar to bag-of-words used in the content graph.
Instead of words, it uses elements of the page structure. In the HTML formatted pages,
the presentation is guided by instructions encoded as HTML tags, attributes and their
values. The HTML structure forms a nested structure. The “bag-of-tags“ model might
have different instantiations, below we report some of them, where the terms form one
of the following sets:

1. Set of tag names, like (table) or (font),
2. Set of descendant tag pairs, like (table,span) or (tr,td),
3. Set of root-to-leaf paths in HTML page, like (html,body,table,tr,td),
4. Set of (tag,attribute) pairs, like (table, font),
5. Set of (tag,attribute,attribute value) triples, like (table,font,times).

For each of the above sets, we extract descriptors xi for node i according to the con-
ventional tf-idf weights. We build the weighted matrix W using the structure similarity
between pages evaluated with ”bag-of-tags“ model and one of the listed tag sets.

Similarity measures. Once we have obtained description vectors xi for all nodes in
graph G, we can get the weighted matrix W by measuring a similarity between two
nodes i and j in G. Two possible measures are the following:

1. The Gaussian (RBF) kernel of width σ, wij = exp
(
− ||xi−xj||2

2σ2

)
, where the width

σ is evaluated from the variance of the descriptors xi.
2. The standard cosine function, wij = xi·xj

||xi|| ||xj|| .

418 B. Chidlovskii

3 Evaluation

The collection used in the INEX XML Mining challenge is composed of n=114,366
pages from the Wikipedia XML Corpus; 10% of these pages have been annotated
(l=11,437) with c=15 categories, 90% of pages (u=102,929) are unannotated. Some
global characteristics of the corpus is given in Table 1. The word set is composed of all
lexemized keywords; neither non-English words not stop words were excluded.

Table 1. Wikipedia collection: some global characteristics

Set Size Set Size Set Size

Text words 727,667 Tag+attribute pairs 5,772 Infobox templates 602
Infobox tags 1,208 Root-to-leaf paths 110,099 Hyperlinks 636,187
Tags 1,257 Tag+attribute+value triples 943,422

In all experiments, we measure the accuracy of a transductive categorizer using 10-
fold cross validation on the training set (in the presence of unlabeled data). As the base-
line method, we used the semi-supervised learning with the multi-class SVM, with xi

node descriptors being feature values. We also combine content, structure and infobox
views, by concatenating the corresponding descriptors. However, direct concatenation
of these alternative views brings no benefit (see ’Content+Tag+Attr+IB’ line in Table 2).

For the label expansion method, we tested the link-based graph G and the sampling-
enriched link graph G′, with matrices Wc and Ws being generated with content or struc-
ture similarity measures, respectively. Using tag+attribute descriptors enriched with
infoboxes generates a transductive categorizer whose performance is comparable to
the content categorizer. Finally, the best performance is achieved by combining two
graphs G′ with weights wij obtained the content and structure similarity. The resulting
weighted matrix is obtained as W = αWs + (1−α)Wc with the optimal α = 0.34 ob-
tained by the cross validation. The right column in Table 2 reports the evaluation results
for different (graph, similarity) comvinations and aligns them with the SVM results.

Three submissions to the INEX challenge have been done with three values of α:
0.34, 0.37 and 0.38. They yielded the accuracy values 73.71%, 73.79% and 73.47%,

Table 2. Performance evaluation for different methods

SVM Method Accuracy(%) LP Method Accuracy (%) Comment

Content 73.312 G-Content 72.104 Cosine
G′-Content 75.03 idem

Tag+Attr 72.744 G′-Tag+Attr 72.191 Gaussian, δ=1.5
Paths 59.432 G′-Paths 64.824 idem
Tag+Attr+InfoBox 72.921 G-Tag+Attr+IB 70.287 idem
Content+Tag+Attr+IB 73.127 G′-Tag+Attr+IB 74.753 idem

G′-Content + G′-TAIB 77.572 α=0.34

Semi-supervised Categorization of Wikipedia Collection by Label Expansion 419

respectively. Despite the high density, these results are a clear underperformance with
respect to the cross validation tests and results by the relatively simpler SVM classi-
fiers. Nevertheless, the graph-based methods clearly represent a powerful mechanism
for classifying the linked data like Wikipedia; thus we intend to conduct further studies
to realize their potential.

4 Conclusion

We applied the graph-based semi-supervised methods to the categorization challenge
defined on Wikipedia collection. The methods benefit from the recent advances in spec-
tral graph analysis and offer a good scalability in the case of sparse graphs. From the
series of experiments on the Wikipedia collection, we may conclude that the optimal
graph construction remains the main issue. In particular, the good choice of the graph
generator and node similarity distance is a key to get an accurate categorizer. The use
of the Wikipedia link graph offers the baseline performance, while the sampling tech-
nique brings a clear improvement. Nevertheless, its impact remains limited as the graph
smoothness requirement is satisfied only partially. To better satisfy the requirement, we
would need a smarter sampling technique and an extension of the method toward the
graph regularization and an advanced text analysis.

Acknowledgment

This work is partially supported by the ATASH Project co-funded by the French Asso-
ciation on Research and Technology (ANRT).

References

1. Riehle, D.: How and why Wikipedia works: an interview with Angela Beesley, Elisabeth
Bauer, and Kizu Naoko. In: Proc. WikiSym 2006, New York, NY, USA, pp. 3–8 (2006)

2. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2008)
3. Wu, F., Weld, D.S.: Autonomously semantifying Wikipedia. In: CIKM 2007: Proc. 16th ACM

Conf. Information and Knowledge Management, pp. 41–50 (2007)
4. Zhou, D., Bousquet, O., Navin Lal, T., Weston, J., Olkopf, B.S.: Learning with local and global

consistency. In: Advances in NIPS 16, pp. 321–328. MIT Press, Cambridge (2004)
5. Zhu, X.: Semi-supervised learning literature survey. In: University of Wisconsin-Madison, CD

Department, Technical Report 1530 (2005)
6. Zhu, X., Ghahramani, Z., Lafferty, J.: Semisupervised learning using Gaussian fields and har-

monic functions. In: Proc. 12th Intern. Conf. Machine Learning, pp. 912–919 (2003)

Document Clustering with K-tree

Christopher M. De Vries and Shlomo Geva

Faculty of Science and Technology,
Queensland University of Technology, Brisbane, Australia

chris@de-vries.id.au, s.geva@qut.edu.au

Abstract. This paper describes the approach taken to the XML Min-
ing track at INEX 2008 by a group at the Queensland University of
Technology. We introduce the K-tree clustering algorithm in an Infor-
mation Retrieval context by adapting it for document clustering. Many
large scale problems exist in document clustering. K-tree scales well with
large inputs due to its low complexity. It offers promising results both in
terms of efficiency and quality. Document classification was completed
using Support Vector Machines.

Keywords: INEX, XML Mining, Clustering, K-tree, Tree, Vector Quan-
tization, Text Classification, Support Vector Machine.

1 Introduction

The XML Mining track consists of two tasks, classification and clustering. Clas-
sification labels documents in known categories. Clustering groups similar doc-
uments without any knowledge of categories. The corpus consisted of 114,366
documents and 636,187 document-to-document links. It is a subset of the XML
Wikipedia corpus [1]. Submissions were made for both tasks using several tech-
niques.

We introduce K-tree in the Information Retrieval context. K-tree is a tree
structured clustering algorithm introduced by Geva [2] in the context of signal
processing. It is particularly suitable for large collections due to its low com-
plexity. Non-negative Matrix Factorization (NMF) was also used to solve the
clustering task. Applying NMF to document clustering was first described by
Xu et. al. at SIGIR 2003 [3]. Negentropy has been used to measure clustering
performance using the labels provided for documents. Entropy has been used by
many researchers [4,5,6] to measure clustering results. Negentropy differs slightly
but is fundamentally measuring the same system property.

The classification task was solved using a multi-class Support Vector Ma-
chine (SVM). Similar approaches have been taken by Joachims [7] and Tong and
Koller [8]. We introduce a representation for links named Link Frequency Inverse
Document Frequency (LF-IDF) and make several extensions to it.

Sections 2, 3, 4, 5, 6 and 7 discuss document representation, classification,
cluster quality, K-tree, NMF and clustering respectively. The paper ends with a
discussion of future research and a conclusion in Sects. 8 and 9.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 420–431, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Document Clustering with K-tree 421

2 Document Representation

Document content was represented with TF-IDF [9] and BM25 [10]. Stop words
were removed and the remaining terms were stemmed using the Porter algorithm
[11]. TF-IDF is determined by term distributions within each document and the
entire collection. Term frequencies in TF-IDF were normalized for document
length. BM25 works with the same concepts as TF-IDF except that is has two
tuning parameters. The BM25 tuning parameters were set to the same values
as used for TREC [10], K1 = 2 and b = 0.75. K1 influences the effect of term
frequency and b influences document length.

Links were represented as a vector of LF-IDF weighted link frequencies. This
resulted in a document-to-document link matrix. The row indicates the origin
and the column indicates the destination of a link. Each row vector of the matrix
represents a document as a vector of link frequencies to other documents. The
motivation behind this representation is that documents with similar content
will link to similar documents. For example, in the current Wikipedia both car
manufacturers BMW and Jaguar link to the Automotive Industry document.
Term frequencies were simply replaced with link frequencies resulting in LF-IDF.
Link frequencies were normalized by the total number of links in a document.

All representations were culled to reduce the dimensionality of the data. This
is necessary to fit the representations in memory when using a dense representa-
tion. K-tree will be extended to work with sparse representations in the future.
A feature’s rank is calculated by summation of its associated column vector.
This is the sum of all weights for each feature in all documents. Only the top n
features are kept in the matrix and the rest are discarded. TF-IDF was culled
to the top 2000 and 8000 features. The selection of 2000 and 8000 features is
arbitrary. BM25 and LF-IDF were only culled to the top 8000 features.

3 Classification Task

The classification task was completed using an SVM and content and link infor-
mation. This approach allowed evaluation of the different document representa-
tions. It allowed the most effective representation to be chosen for the clustering
task.

SVMmulticlass [12] was trained with TF-IDF, BM25 and LF-IDF representa-
tions of the corpus. BM25 and LF-IDF feature vectors were concatenated to
train on both content and link information simultaneously. Submissions were
made only using BM25, LF-IDF or both because BM25 out performed TF-IDF.

3.1 Classification Results

Table 1 lists the results for the classification task. They are sorted in order of de-
creasing recall. Recall is simply the accuracy of predicting labels for documents
not in the training set. Concatenating the link and content representations did
not drastically improve performance. Further work has been subsequently per-
formed to improve classification accuracy.

422 C.M. De Vries and S. Geva

Table 1. Classification Results

Name Recall Name Recall

Expe 5 tf idf T5 10000 0.7876 Expe 4 tf idf T5 100 0.7231
Expe 3 tf idf T4 10000 0.7874 Kaptein 2008NBscoresv02 0.6981
Expe 1 tf idf TA 0.7874 Kaptein 2008run 0.6979
Vries text and links 0.7849 Romero nave bayes 0.6767
Vries text only 0.7798 Expe 2.tf idf T4 100 0.6771
Boris inex tfidf1 sim 0.38.3 0.7347 Romero nave bayes links 0.6814
Boris inex tfidf sim 037 it3 0.7340 Vries links only 0.6233
Boris inex tfidf sim 034 it2 0.7310

3.2 Improving Representations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

cosine similarity between linked documents

lin
k

co
u

n
t

636,187 INEX XML Mining Links

Fig. 1. Text Similarity of Links

Several approaches have been carried out
to improve classification performance.
They were completed after the end of of-
ficial submissions for INEX. The same
train and test splits were used. All fea-
tures were used for text and links, where
earlier representations were culled to the
top 8000 features. Links were classi-
fied without LF-IDF weighting. This was
to confirm LF-IDF was improving the
results. Document length normalization
was removed from LF-IDF. It was noticed
that many vectors in the link represen-
tation contained no features. Therefore,
inbound links were added to the repre-
sentation. For i, the source document and j, the destination document, a weight
of one is added to the i, j position in the document-to-document link matrix.
This represents an outbound link. To represent an inbound link, i is the destina-
tion document and j is the source document. Thus, if a pair of documents both
link to each other they receive a weight of two in the corresponding columns
in their feature vectors. Links from the entire Wikipedia were inserted into this
matrix. This allows similarity to be associated on inbound and outbound links
outside the XML Mining subset. This extends the 114,366×114,366 document-
to-document link matrix to a 114,366×486,886 matrix. Classifying links in this
way corresponds to the idea of hubs and authorities in HITS [13]. Overlap on out-
bound links indicates the document is a hub. Overlap on inbound links indicates
the document is an authority. The text forms a 114,366×206,868 document term
matrix when all terms are used. The link and text representation were combined
using two methods. In the first approach text and links were classified separately.
The ranking output of the SVM was used to choose the most appropriate la-
bel. We call this SVM by committee. Secondly, both text and link features were

Document Clustering with K-tree 423

Table 2. Classification Improvements

Dimensions Type Representation Recall

114,366 Links (XML Mining subset) unweighted 0.6874
114,366 Links (XML Mining subset) LF-IDF 0.6906
114,366 Links (XML Mining subset) LF-IDF no normalization 0.7095
486,886 Links (Whole Wikipedia) unweighted 0.7480
486,886 Links (Whole Wikipedia) LF-IDF 0.7527
486,886 Links (Whole Wikipedia) LF-IDF no normalization 0.7920
206,868 Text BM25 0.7917
693,754 Text, Links (Whole Wikipedia) BM25 + LF-IDF committee 0.8287
693,754 Text, Links (Whole Wikipedia) BM25 + LF-IDF concatenation 0.8372

converted to unit vectors and concatenated forming a 114,366×693,754 matrix.
Table 2 highlights the performance of these improvements.

The new representation for links has drastically improved performance from
a recall of 0.62 to 0.79. It is now performing as well as text based classification.
However, the BM25 parameters have not been optimized. This could further
increase performance of text classification. Interestingly, 97 percent of the cor-
rectly labeled documents for text and link classification agree. To further explain
this phenomenon, a histogram of cosine similarity of text between linked docu-
ments was created. Figure 1 shows this distribution for the links in XML Mining
subset. Most linked documents have a high degree of similarity based on their
text content. Therefore, it is valid to assume that linked documents are highly
semantically related. By combining text and link representations we can disam-
biguate many more cases. This leads to an increase in performance from 0.7920
to 0.8372 recall. The best results for text, links and both combined, performed
the same under 10 fold cross validation using a randomized 10% train and 90%
test split.

LF-IDF link weighting is motivated by similar heuristics to TF-IDF term
weighting. In LF-IDF the link inverse document frequency reduces the weight
of common links that associate documents poorly and increases the weight of
links that associate documents well. This leads to the concept of stop-links that
are not useful in classification. Stop-links bare little semantic information and
occur in many unrelated documents. Consider for instance a document collection
of the periodic table of the elements, where each document corresponds to an
element. In such a collection a link to the “Periodic Table” master document
would provide no information on how to group the elements. Noble gases, alkali
metals and every other category of elements would all link to the “Periodic
Table” document. However, links that exist exclusively in noble gases or alkali
metals would be excellent indicators of category. Year links in the Wikipedia
are a good example of a stop-link as they occur with relatively high frequency
and convey no information about the semantic content of pages in which they
appear.

424 C.M. De Vries and S. Geva

4 Document Cluster Quality

The purity measure for the track is calculated by taking the most frequently oc-
curring label in each cluster. Micro purity is the mean purity weighted by cluster
size and macro is the unweighted arithmetic mean. Taking the most frequently
occurring label in a cluster discards the rest of the information represented by
the other labels. Due to this fact negentropy was defined. It is the opposite of
information entropy [14]. If entropy is a measure of uncertainty associated with
a random variable then negentropy is a measure of certainty. Thus, it is better
when more labels of the same class occur together. When all labels are evenly
distributed across all clusters the lowest possible negentropy is achieved.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2 Class Problem

p(class 1)

f(
x,

 1
−x

)

negentropy
entropy

Fig. 2. Entropy Versus Negentropy

Negentropy is defined in Equations
(1), (2) and (3). D is the set of all
documents in a cluster. X is the set of
all possible labels. l(d) is the function
that maps a document d to its label
x. p(x) is the probability for label x.
H(D) is the negentropy for document
cluster D. The negentropy for a clus-
ter falls in the range 0 ≤ H(D) ≤ 1
for any number of labels in X . Fig-
ure 2 shows the difference between en-
tropy and negentropy. While they are
exact opposites for a two class prob-
lem, this property does not hold for
more than two classes. Negentropy al-
ways falls between zero and one because it is normalized. Entropy is bounded by
the number of classes. The difference between the maximum value for negentropy
and entropy increase when the number of classes increase.

l(d) = {(d1, x1), (d2, x2), . . . , (d|D|, x|D|)} (1)

p(x) =
|{d ∈ D : x = l(d)}|

|D| (2)

H(D) = 1 +
1

log2 |X |
∑
x∈X

p(x) �=0

p(x) log2 p(x) (3)

The difference between purity and negentropy can easily be demonstrated
with an artificial four class problem. There are six of each of the labels A, B,
C and D. For each cluster in Solution 1 purity and negentropy is 0.5. For each
cluster in Solution 2 the purity is 0.5 and the negentropy is 0.1038. Purity makes
no differentiation between the two solutions. If the goal of document clustering
is to group similar documents together then Solution 1 is clearly better because
each label occurs in two clusters instead of four. The grouping of labels is better
defined because they are less spread. Figures 3 and 4 show Solutions 1 and 2.

Document Clustering with K-tree 425

Cluster Label Counts

1 A=3, B=3
2 A=3, C=3
3 B=3, D=3
4 C=3, D=3

A B A C B D C D

Fig. 3. Solution 1

Cluster Label Counts

1 A=3, B=1, C=1, D=1
2 B=3, C=1, D=1, A=1
3 C=3, D=1, A=1, B=1
4 D=3, A=1, B=1, C=1

A B C D B C D A C D A B D A B C

Fig. 4. Solution 2

5 K-tree

The K-tree algorithm is a height balanced cluster tree. It can be downloaded
from http://ktree.sf.net. It is inspired by the B+-tree where all data records
are stored in the leaves at the lowest level in the tree and the internal nodes
form a nearest neighbour search tree. The k-means algorithm is used to perform
splits when nodes become full. The constraints placed on the tree are relaxed in
comparison to a B+-tree. This is due to the fact that vectors do not have a total
order like real numbers.

B+-tree of order m

1. All leaves are on the same level.
2. Internal nodes, except the root, contain between �m

2 � and m children.
3. Internal nodes with n children contain n − 1 keys, partitioning the children

into a search tree.
4. The root node contains between 2 and m children. If the root is also a leaf

then it can contain a minimum of 0.

K-tree of order m

1. All leaves are on the same level.
2. Internal nodes contain between one and m children. The root can be empty

when the tree contains no vectors.
3. Codebook vectors (cluster representatives) act as search keys.
4. Internal nodes with n children contain n keys, partitioning the children into

a nearest neighbour search tree.
5. The level immediately above the leaves form the codebook level containing

the codebook vectors.
6. Leaf nodes contain data vectors.

The leaf nodes of a K-tree contain real valued vectors. The search path in
the tree is determined by a nearest neighbour search. It follows the child node
associated with nearest vector. This follows the same recursive definition of a B+-
tree where each tree is made up of a smaller sub tree. The current implementation
of K-tree uses Euclidean distance for all measures of similarity. Future versions
will have the ability to specify any distance measure.

http://ktree.sf.net

426 C.M. De Vries and S. Geva

5.1 Building a K-tree

The K-tree is constructed dynamically as data vectors arrive. Initially the tree
contains a single empty root node at the leaf level. Vectors are inserted via a
nearest neighbour search, terminating at the leaf level. The root of an empty
tree is a leaf, so the nearest neighbour search terminates immediately, placing
the vector in the root. When m + 1 vectors arrive the root node can not contain
any more keys. It is split using k-means where k = 2 using all m + 1 vectors.
The two centroids that result from k-means become the keys in a new parent.
New root and child nodes are constructed and each centroid is associated with a
child. The vectors associated with each centroid from k-means are placed into the
associated child. This process has created a new root for the tree. It is now two
levels deep. The root has two keys and two children, making a total of three nodes
in the tree. Now that the tree is two levels deep, the nearest neighbour search
finds the closest centroid in the root and inserts it in the associated child. When
a new vector is inserted the centroids are updated along the nearest neighbour
search path. They are weighted by the number of data vectors contained beneath
them. This process continues splitting leaves until the root node becomes full.
K-means is run on the root node containing centroids. The keys in the new root
node become centroids of centroids. As the tree grows internal and leaf nodes
are split in the same manner. The process can potentially propagate to a full
root node and cause construction of a new root. Figure 6 shows this construction
process for a K-tree of order three (m = 3).

0 1 2 3 4 5 6 7 8 9 10 11 12

x 10
4

0

50

100

150

200

250

300

350

400

number of documents

ti
m

e
(s

ec
o

n
d

s)

K−tree and k−means Performance Comparison
INEX XML Mining Collection

k−means
K−tree

Fig. 5. K-tree Performance

The time complexity of building a
K-tree for n vectors is O(n log n).
An insertion of a single vector has the
time complexity of O(log n). These
properties are inherent to the tree
based algorithm. This allows the K-
tree to scale efficiently with the num-
ber of input vectors. When a node
is split, k-means is always restricted
to m + 1 vectors and two centroids
(k = 2). Figure 7 compares k-means
performance with K-tree where k for
k-means is determined by the number
of codebook vectors. This means that
both algorithms produce the same
number of document clusters and this is necessary for a meaningful compar-
ison. The order, m, for K-tree was 50. Each algorithm was run on the 8000
dimension BM25 vectors from the XML mining track.

5.2 K-tree Submissions

K-tree was used to create clusters using the Wikipedia corpus. Documents were
represented as 8000 dimension BM25 weighted vectors. Thus, clusters were

Document Clustering with K-tree 427

node vector child l ink k-means performed on enclosed vectors

the dashed parts represent the nearest neighbour search

level 1

level 2

level 3

root node

nodes above the leaves contain codebook vectors

leaf nodes contain the data vectors

nodes above the codebook level are clusters of clusters

Fig. 6. K-tree Construction

formed using text only. This representation was used because it was most ef-
fective text representation in the classification task. The K-tree was constructed
using the entire collection. Cluster membership was determined by comparing
each document to all centroids using cosine similarity. The track required a sub-
mission with 15 clusters but K-tree does not produce a fixed number of clusters.
Therefore, the codebook vectors were clustered using k-means++ where k = 15.
The codebook vectors are the cluster centroids that exist above the leaf level.
This reduces the number of vectors used for k-means++, making it quick and
inexpensive. As k-means++ uses a randomised seeding process, it was run 20
times to find the solution with the lowest distortion. The k-means++ algorithm
[15] improves k-means by using the D2 weighting for seeding. Two other submis-
sion were made representing different levels of a K-tree. A tree of order 100 had
42 clusters in the first level and a tree of order 20 had 147 clusters in the second
level. This made for a total of three submissions for K-tree.

Negentropy was used to determine the optimal tree order. K-tree was
built using the documents in the 10% training set from the classification task. A
tree was constructed with an order of 800 and it was halved each time.

428 C.M. De Vries and S. Geva

Negentropy was measured in the clusters represented by the leaf nodes. As the
order decreases the size of the nodes shrinks and the purity increases. If all

0 100 200 300 400 500 600 700 800
0.4

0.5

0.6

0.7

0.8

0.9

1

K−tree order

n
eg

en
tr

o
p

y

INEX XML Mining Collection
Labeled documents only

left as is
rearranged

Fig. 7. K-tree Negentropy

clusters became pure at a certain size
then decreasing the tree order fur-
ther would not improve negentropy.
However, this was not the case and
negentropy continued to increase as
the tree order decreased. This is ex-
pected because there will usually be
some imperfection in the clustering
with respect to the labels. Therefore,
the sharp increase in negentropy in a
K-tree below an order of 100 suggests
that the natural cluster size has been
observed. This can be seen in Fig. 7.
The “left as is” line represents the
K-tree as it is built initially. The “re-
arranged” line represents the K-tree when all the leaf nodes have been reinserted
to their nearest neighbours without modifying the internal nodes.

Negentropy was calculated using the 10% training set labels provided on clus-
ters for the whole collection. This was used to determine which order of 10, 20
or 35 fed into k-means++ with k = 15 was best. A tree of order 20 provided the
best negentropy.

6 Non-negative Matrix Factorization

NMF factorizes a matrix into two matrices where all the elements are ≥ 0. If V
is a n × m matrix and r is a positive integer where r < min(n, m), NMF finds
two non-negative matrices Wn×r and Hr×m such that V ≈ WH . When applying
this process to document clustering V is a term document matrix. Each column
in H represents a document and the largest value represents its cluster. Each
row in H is a cluster and each column is a document.

The projected gradient method was used to solve the NMF problem [16]. V
was a 8000× 114366 term document matrix of BM25 weighted terms. The algo-
rithm ran for a maximum of 70 iterations. It produced the W and H matrices.
Clusters membership was determined by the maximum value in the columns of
H . NMF was run with r at 15, 42 and 147 to match the submissions made with
K-tree.

7 Clustering Task

Every team submitted at least one solution with 15 clusters. This allows for a
direct comparison between different approaches. It only makes sense to compare
results where the number of clusters are the same. The K-tree performed well
according to the macro and micro purity measures in comparison to the rest of

Document Clustering with K-tree 429

Table 3. Clustering Results Sorted by Micro Purity

Name Size Micro Macro Name Size Micro Macro

K-tree 15 0.4949 0.5890 QUT LSK 1 15 0.4518 0.5594
QUT LSK 3 15 0.4928 0.5307 QUT LSK 4 15 0.4476 0.4948
QUT Entire collection 15 15 0.4880 0.5051 QUT LSK 2 15 0.4442 0.5201
NMF 15 0.4732 0.5371 Hagenbuchner 15 0.3774 0.2586

Table 4. Comparison of Different K-tree Methods

Method Clusters Micro Macro Clusters Micro Macro Clusters Micro Macro

left as is 17 0.4018 0.5945 397 0.5683 0.6996 7384 0.6913 0.7202
rearranged 17 0.4306 0.6216 371 0.6056 0.7281 5917 0.7174 0.7792
cosine 17 0.4626 0.6059 397 0.6584 0.7240 7384 0.7437 0.7286

the field. The difference in macro and micro purity for the K-tree submissions
can be explained by the uneven distribution of cluster sizes. Figure 9 shows that
many of the higher purity clusters are small. Macro purity is simply the average
purity for all clusters. It does not take cluster size into account. Micro purity
does take size into account by weighting purity in the average by the cluster
size. Three types of clusters appear when splitting the x-axis in Fig. 9 in thirds.
There are very high purity clusters that are easy to find. In the middle there are
some smaller clusters that have varying purity. The larger, lower purity clusters
in the last third are hard to distinguish. Figure 8 shows clusters sorted by purity
and size. K-tree consistently found higher purity clusters than other submissions.
Even with many small high purity clusters, K-tree achieved a high micro purity
score. The distribution of cluster size in K-tree was less uniform than other
submissions. This can be seen in Figure 8. It found many large clusters and
many small clusters, with very few in between.

The K-tree submissions were determined by cosine similarity with the cen-
troids produced by K-tree. The tree has an internal ordering of clusters as well.
A comparison between the internal arrangement and cosine similarity is listed in
Table 4. This data is based on a K-tree of order 40. Levels 1, 2 and 3 produced
17, 397 and 7384 clusters respectively. Level 3 is the above leaf or codebook
vector level. The “left as is” method uses the K-tree as it is initially built. The
rearranged method uses the K-tree when all vectors are reinserted into the tree
to their nearest neighbour. The cosine method determines cluster membership
by cosine similarity with the centroids produced. Nodes can become empty when
reinserting vectors. This explains why levels 2 and 3 in the rearranged K-tree
contain less clusters. Using cosine similarity with the centroids improved purity
in almost all cases.

430 C.M. De Vries and S. Geva

0 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

clusters sorted by purity

cl
u

st
er

 p
u

ri
ty

INEX 2008 XML Mining Submissions (15 clusters)

 QUT Entire 15
QUT LSK 1
QUT LSK 2
QUT LSK 3
QUT LSK 4
K−tree
NMF
Hagenbuchner

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

clusters sorted by size

cl
u

st
er

 s
iz

e

INEX 2008 XML Mining Submissions (15 clusters)

QUT Entire 15
QUT LSK 1
QUT LSK 2
QUT LSK 3
QUT LSK 4
K−tree
NMF
Hagenbuchner

Fig. 8. All Submissions with 15 Clusters

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
K−tree (15 clusters)

clusters sorted by purity

cl
u

st
er

 p
ro

p
er

ty

purity
size

Fig. 9. K-tree Breakdown

8 Future Work

The work in this area falls into two categories, XML mining and K-tree. Further
work in the XML mining area involves better representation of structure. For
example, link information can be included into clustering via a modified similar-
ity measure for documents. Future work with the K-tree algorithm will involve
different strategies to improve quality of clustering results. This will require ex-
tra maintenance of the K-tree as it is constructed. For example, reinsertion of
all data records can happen every time a new root is constructed.

9 Conclusion

In this paper an approach to the XML mining track was presented, discussed and
analyzed. A new representation for links was introduced, extended and analyzed.

Document Clustering with K-tree 431

It was combined with text to further improve classification performance. The K-
tree algorithm was applied to document clustering for the first time. The results
show that it is well suited for the task. It produces good quality clustering
solutions and provides excellent performance.

References

1. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)
2. Geva, S.: K-tree: a height balanced tree structured vector quantizer. In: Proceedings

of the 2000 IEEE Signal Processing Society Workshop Neural Networks for Signal
Processing X, vol. 1, pp. 271–280 (2000)

3. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative ma-
trix factorization. In: SIGIR 2003: Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval,
pp. 267–273. ACM Press, New York (2003)

4. Surdeanu, M., Turmo, J., Ageno, A.: A hybrid unsupervised approach for docu-
ment clustering. In: KDD 2005: Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining, pp. 685–690. ACM Press,
New York (2005)

5. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering.
In: Third IEEE International Conference on Data Mining. ICDM 2003, November
2003, pp. 541–544 (2003)

6. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering tech-
niques 34, 35 (2000)

7. Joachims, T.: Text categorization with Support Vector Machines: Learning with
many relevant features. In: Text categorization with Support Vector Machines:
Learning with many relevant features, pp. 137–142 (1998)

8. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2, 45–66 (2002)

9. Salton, G., Fox, E.A., Wu, H.: Extended boolean information retrieval. Communi-
cations of the ACM 26(11), 1022–1036 (1983)

10. Robertson, S., Jones, K.: Simple, proven approaches to text retrieval. Update
(1997)

11. Porter, M.: An algorithm for suffix stripping. Program: Electronic Library and
Information Systems 40(3), 211–218 (2006)

12. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large Margin Methods
for Structured and Interdependent Output Variables. Journal of Machine Learning
Research 6, 1453–1484 (2005)

13. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

14. Shannon, C., Weaver, W.: The mathematical theory of communication. University
of Illinois Press (1949)

15. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
SODA 2007: Proceedings of the eighteenth annual ACM-SIAM symposium on Dis-
crete algorithms, Philadelphia, PA, USA, pp. 1027–1035. Society for Industrial and
Applied Mathematics (2007)

16. Lin, C.: Projected Gradient Methods for Nonnegative Matrix Factorization. Neural
Computation 19(10), 2756–2779 (2007)

Using Links to Classify Wikipedia Pages

Rianne Kaptein1 and Jaap Kamps1,2

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

Abstract. This paper contains a description of experiments for the 2008 INEX
XML-mining track. Our goal for the XML-mining track is to explore whether
we can use link information to improve classification accuracy. Our approach
is to propagate category probabilities over linked pages. We find that using link
information leads to marginal improvements over a baseline that uses a Naive
Bayes model. For the initially misclassified pages, link information is either not
available or contains too much noise.

1 Introduction

Previous years of the XML mining track have explored the utility of using XML docu-
ment structure for classification accuracy. It proved to be difficult to obtain better per-
formance [1]. This year the data consists of a collection of wikipedia XML documents
that have to be categorized into fairly high-level wikipedia categories and the link struc-
ture between these documents. Link structure has been found to be a useful additional
source of information for other tasks such as ad hoc retrieval [2] and entity ranking [3].
Our aim at the XML Mining Track is to examine whether link structure can also be
exploited for this classification task.

2 Classification Model

For our baseline classification model we use a classical Naive Bayes model [4]. The
probability of a category given a document is:

P (cat|d) =
P (d|cat) ∗ P (cat)

P (d)
(1)

Since P (d) does not change over the range of categories we can omit it. For each
document the categories are ranked by their probabilities, and the category with the
highest probability is assigned to the document:

ass cat(d) = arg max
cat∈cats

P (d|cat) ∗ P (cat)

= arg max
cat∈cats

P (t1|cat) ∗ P (t2|cat) ∗ .. ∗ P (tn|cat) ∗ P (cat) (2)

where ti...tn are all terms in a document. The probability of a term occurring in a
category is equal to its term frequency in the category divided by the total number of

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 432–435, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Using Links to Classify Wikipedia Pages 433

terms in the category. Feature (term) selection is done according to document frequency.
We keep 20% of the total number of features [5]. We propagate category information
over links as follows:

P0(cat|d) = P (cat|d)

P1(cat|d) =
∑
d→d′

P (d|d′)P (cat|d′)

P2(cat|d) =
∑

d′→d′′
P (d|d′′)P (cat|d′′) (3)

where d′ consist of all documents that are linked to or from d, and d′′ are all documents
that are linked to or from all documents d′. The probabilities are uniformly distributed
among the incoming and/or outgoing links. The final probability of a category given a
document is now:

P ′(cat|d) = μP0(cat|d) + (1 − μ)(αP1(cat|d) + (1 − α)P2(cat|d)) (4)

The parameter μ determines the weight of the original classification versus the weight
of the probabilities of the linked documents. Parameter α determines the weight of the
first order links versus the weight of the second order links.

3 Experimental Results

Documents have to be categorized into one of fifteen categories. For our training exper-
iments, we use 66% of the training data for training, and we test on the remaining 33%.
Throughout this paper we use accuracy as our evaluation measure. Accuracy is defined
as the percentage of documents that is correctly classified, which is equal to micro av-
erage recall. Our baseline Naive Bayes model achieves an accuracy of 67.59%. Macro
average recall of the baseline run is considerably lower at 49.95%. All documents in the
two smallest categories are misclassified. Balancing the training data can improve our
macro average recall.

When we use the link information we try three variants: do not use category infor-
mation of linked data, use category information of the training data, and always use
category information of linked data. Other parameters are whether to use incoming or
outgoing links, μ and α. For parameter μ we tried all values from 0 to 1 with steps
of 0.1, only the best run is shown. The results are given in Table 1. The accuracy of
the runs using link information is at best only marginally better than the accuracy of
the baseline. This means that the difficult pages, which are misclassified in the baseline
model, do not profit from the link information. The links to or from pages that do not
clearly belong to a category and are misclassified in the baseline run, do not seem to
contribute to classification performance. These linked pages might also be more likely
to belong to a different category.

On the test data we made two runs, a baseline run that achieves an accuracy of
69.79%, and a run that uses in- and outlinks, α = 0.5 and μ = 0.4, with an accu-
racy of 69.81%. Again the improvement in accuracy when link information is used is
only marginal.

434 R. Kaptein and J. Kamps

Table 1. Training Classification results

Inlinks Outlinks In- and Outlinks
Link info α μ Accuracy μ Accuracy μ Accuracy
Baseline 0.6759 0.6759 0.6759
None 0.75 1.0 0.6759 1.0 0.6759 1.0 0.6759
None 1.0 1.0 0.6759 1.0 0.6759 1.0 0.6759
Training 0.5 0.5 0.6793 0.4 0.6777 0.4 0.6819
Training 0.75 0.5 0.6793 0.5 0.6777 0.5 0.6806
Training 1.0 0.6 0.6780 0.5 0.6780 0.6 0.6777
All 0.5 0.5 0.6780 0.3 0.6816 0.4 0.6858
All 0.75 0.6 0.6780 0.3 0.6848 0.5 0.6819
All 1.0 0.6 0.6784 0.4 0.6858 0.6 0.6787

 0

 0.2

 0.4

 0.6

 0.8

 1

0-500
501-1000

1001-1500

1501-2250

2251-3500

>3500

A
cc

ur
ac

y

Length in characters

Training
Test

Fig. 1. Accuracy vs. document length

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6

A
cc

ur
ac

y

First category
Second category

Fig. 2. Accuracy of first two categories

4 Analysis

We try to analyze on which kind of pages the most errors are made in our baseline run.
Considering the length of pages, shorter pages do not tend to be more difficult than
longer pages as can be seen in Fig. 1. When the output probabilities of the two highest
scoring categories lie close together, the page is more likely to be misclassified. This
is shown in Fig. 2 where we divided the training data over 6 bins of approximately the
same size sorted by the fraction (Pcat1/Pcat2).

In our baseline run pages without links also seem to get misclassified more often
than pages with in- and/or outlinks (see Fig. 3). When link information is available, and
we try to use it, there are two sources of error. The first source of error, is that not all
linked pages belong to the same category as the page to classify (see Table 2). However,
when we classify pages that have links using only the link information, there are some
cases where the accuracy on these pages is well above the accuracy of the complete set.
To obtain our test data we have used both incoming and outgoing links, which means
that almost half of the pages do not belong to the same category as the page to classify.
Secondly, we only know the real categories of the pages in the training data, which
is only 10% of all data. For all pages in the test data, we estimate the probability of

Using Links to Classify Wikipedia Pages 435

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 >3

A
cc

ur
ac

y

Number of links

Outlinks training data

Inlinks training data

Outlinks test data

Inlinks test data

Fig. 3. Accuracy vs. number of links

Table 2. Statistics of training and test data

pages links % links with same cat.
Data total with inlinks with outlinks with links /page inlinks outlinks links
Training 11,437 2,627 (23%) 5,288 (46%) 5,925 (52%) 0.7 76.8% 41.1% 45.8%
Test 113,366 88,174 (77%) 103,781 (91%) 107,742 (94%) 5.6 77.2% 53.4% 59.0%

each category belonging to that page. With a classification accuracy of almost 70%,
this means we introduce a large additional source of error.

5 Conclusion

It is difficult to use link information to improve classification accuracy. A standard
Naive Bayes model achieves an accuracy of almost 70%. While link information may
provide supporting evidence for the pages that are easy to classify, for the difficult pages
link information is either not available or contains too much noise.

Acknowledgments. This research is funded by the Netherlands Organization for Scien-
tific Research (NWO, grant # 612.066.513).

References

[1] Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2007 categorization and
clustering of xml documents. SIGIR Forum 42(1), 22–28 (2008)

[2] Kamps, J., Koolen, M.: The importance of link evidence in Wikipedia. In: Macdonald, C.,
Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956,
pp. 270–282. Springer, Heidelberg (2008)

[3] Vercoustre, A.M., Pehcevski, J., Thom, J.A.: Using wikipedia categories and links in entity
ranking. In: Focused Access to XML Documents, pp. 321–335 (2007)

[4] Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Sur-
veys 34, 1–47 (2002)

[5] Williams, K.: Ai: categorizer - automatic text categorization. Perl Module (2003)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 436–445, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Clustering XML Documents Using Frequent Subtrees

Sangeetha Kutty, Tien Tran, Richi Nayak, and Yuefeng Li

Faculty of Science and Technology
Queensland University of Technology

GPO Box 2434, Brisbane Qld 4001, Australia
{s.kutty,t4.tran,r.nayak,y2.li}@qut.edu.au

Abstract. This paper presents an experimental study conducted over the INEX
2008 Document Mining Challenge corpus using both the structure and the con-
tent of XML documents for clustering them. The concise common substructures
known as the closed frequent subtrees are generated using the structural infor-
mation of the XML documents. The closed frequent subtrees are then used to
extract the constrained content from the documents. A matrix containing the
term distribution of the documents in the dataset is developed using the ex-
tracted constrained content. The k-way clustering algorithm is applied to the
matrix to obtain the required clusters. In spite of the large number of documents
in the INEX 2008 Wikipedia dataset, the proposed frequent subtree-based clus-
tering approach was successful in clustering the documents. This approach sig-
nificantly reduces the dimensionality of the terms used for clustering without
much loss in accuracy.

Keywords: Clustering, XML document mining, Frequent mining, Frequent
subtrees, INEX, Wikipedia, Structure and content.

1 Introduction

Due to the inherent flexibility in structure representation, eXtensible Markup Lan-
guage (XML) is fast becoming a ubiquitous standard for data representation and ex-
change on the Internet as well as in Intranets. The self-describing nature of XML
documents has resulted in their acceptance in a wide range of industries from educa-
tion to entertainment and business to government sectors.

With the rapid growth of XML documents, many issues arise concerning the effec-
tive management of these documents. Clustering has been perceived as an effective
solution to organize these documents. This involves grouping XML documents based
on their similarity, without any prior knowledge of the taxonomy[2]. Clustering has
been frequently applied to group text documents based on similarity of content. How-
ever, XML document clustering presents a new challenge as the document contains
structural information as well as text data (or content). The structure of the XML
documents is hierarchical in nature, representing the relationship between the ele-
ments at various levels.

Clustering of XML documents involves consideration of two document input fea-
tures, namely structure and content, for determining the similarity between them.

 Clustering XML Documents Using Frequent Subtrees 437

Most of the existing approaches do not focus on utilizing these two features due to
increased computational storage and processing. However, in order to achieve mean-
ingful clustering results, it is essential to utilize both these XML document dimen-
sions. This study not only combines the structure and content of XML documents
effectively but also provides an approach that helps to reduce the dimensions for clus-
tering without considerable loss in accuracy.

In this paper, we utilize the Prefix-based Closed Induced Tree Miner (PCIT-
Miner)[3] algorithm to generate the closed frequent induced (CFI) subtrees. CFI is
then utilized to extract the content information from the XML documents. The ex-
tracted content information which contains the document terms is represented in the
Vector Space Model (VSM). A pair-wise distance based clustering method is then
applied on the VSM to group the XML documents.

The assumption that we have made in this paper, based on the previous re-
search[4], is that the structure of XML documents in the absence of their schema
could be represented using frequent subtrees. Also, the content corresponding to the
frequent subtrees is important, whereas the content contained within infrequent sub-
trees is redundant and hence can be removed.

The rest of this paper is organized as follows: Section 2 provides the overview of
our approach. Section 3 covers the details about the pre-processing of structure. Sec-
tion 4 details the structure mining to extract the common substructures among the
XML documents. Section 5 discusses the extraction of content using the common
substructures. The clustering process is covered in Section 6. In Section 7, we present
the experimental results and discussion.

2 An Overview

As illustrated in Fig.1, there are four major phases in the approach that we have
adopted for the INEX 2008 Document Mining Challenge corpus. The first phase is
the pre-processing of XML documents to represent their structure. The structure of
XML documents is modeled as a document tree. Each document tree contains nodes
which represent the tag names. PCITMiner[3] is then applied to generate the CFI
subtrees from the document trees in the second phase for a given support threshold.

Content Extraction using CFI

subtrees

Utilize the

CFI to

develop

the CD

matrix and

extract the

content

Represent

the
extracted

content in

a term-

document
matrix

Clustering

Pre-processing

XML

documents

Pre-processed

Document

Frequent Subtree Mining

Apply

PCITMiner

on

document

trees

Extract

Closed

Frequent

Induced

Subtrees

(CFI)

Fig. 1. Overview of the clustering method

438 S. Kutty et al.

The CFI subtrees distribution is represented as a CD Matrix. This matrix is used in
the third phase to extract and preprocess the content within the CFI subtrees.. The pre-
processed content is represented as a term-document matrix, TDoc|Term|×|D|, where
Term represents the terms corresponding to the CFI subtrees and D represents the
XML document in the given dataset. Each cell in the TDoc matrix represents the
number of occurrences of the terms for the set of closed frequent subtrees in a given
XML document. This matrix is used in the final phase to compute the similarity be-
tween the XML documents for the clustering of the dataset. The next section de-
scribes each phase in more detail.

3 Phase 1: Pre-processing of Structure

In the pre-processing phase, each XML document is modeled into a tree structure
with nodes representing only the tag names. These tag names are then mapped to
unique integers for ease of computation. The semantic and syntactic meanings of
the tags are ignored since the Wikipedia documents conform to the same schema
using the same tag set. Additionally, previous research has shown that the semantic
variations of tags do not provide any significant contribution to the clustering
process[2, 4]. We will consider the content contained within nodes to determine
their semantic similarity. Other node information such as data types, attributes and
constraints is also ignored as the empirical evaluation revealed that this information
did not contribute to any improvement in accuracy.

The structure of the XML document has many representations depending on its us-
ability, such as graph, tree and path. Rather than using path representation, which has
been used by a number of researchers[2, 5], we have chosen to use tree representation
since the tree representation preserves the sibling information of the nodes. As shown
in Fig. 2, the pre-processing of XML documents involves three sub-phases:

1. Parsing
2. Representation
3. Duplicate branches removal

Fig. 2. The Pre-processing phase

 Clustering XML Documents Using Frequent Subtrees 439

3.1 Parsing

Each XML document in the INEX Wikipedia corpus is parsed and modeled as a
rooted labeled ordered document tree. As the document tree has a root node and all
the nodes are labeled using the tag names, it is rooted and labeled. The left-to-right
ordering is preserved among the child nodes of a given parent in the document tree
and therefore they are ordered.

3.2 Representation

The document trees need to be represented in a way that is suitable for mining in the
next phase. We utilize the depth-first string format[6], a popular tree representation to
represent the document trees. The depth-first string encoding traverses a tree in the
depth-first order beginning from the root node. It represents the depth-first traversal
of a given document tree in a string-like format where every node has a “–1” to repre-
sent backtracking and “#” to represent the end of the string encoding. For a document
tree T with only one node r, the depth-first string of T is S(T) = lr# where l is the inte-
ger label of the root node r. For a document tree T with multiple nodes, where r is the
root node and the children nodes of r are r1,...,rk preserving left to right ordering, the
depth-first string of T is S(T)= lr lr1

-1 lr2
-1…lrk

-1#.

3.3 Duplicate Branches Removal

An analysis of the INEX Wikipedia dataset reveals that a large number of document
trees contain duplicate branches. These duplicate branches are redundant information
for structure mining and hence they cause additional overhead in the mining process.
In order to remove the duplicate branches, the document tree is converted into a series
of paths. The duplicate paths of the document trees are identified using string match-
ing, and are removed. The remaining paths are combined together to create document
trees without any duplicate branches.

4 Phase 2: Structure Mining

The structure mining phase involves mining the frequent subtrees. Instead of utilizing
all the structures (nodes) for content extraction, we need to identify only the frequent
or common subtrees. The assumption is that the content corresponding to infrequent
subtrees should not play an important role in clustering. These nodes and their combi-
national structure are not common among the corpus so the content within these struc-
tures should also not be distinguishable for segmenting the corpus. Firstly document
trees are mined for frequent subtrees for a given user-specified support threshold.
However, there could be a very large number of frequent subtrees generated at the
lower support threshold. In order to control the explosion we utilize closed frequent
subtrees which are condensed representations of frequent subtrees without any infor-
mation loss[7]. Frequent subtree mining on XML documents can be formally defined
as follows:

440 S. Kutty et al.

Problem Definition for Frequent Subtree Mining on XML Documents
Given a collection of XML documents D = {D1, D2, D3,…,Dn} modeled as document
trees DT = {DT1, DT2, DT3 ,…,DTn} where n represents the number of XML docu-
ments or document trees in the corpus. There exists a subtree DT' ⊆ DTk that pre-
serves the parent-child relationship among the nodes as that of the document tree DTk.
This type of subtree is called as an induced subtree.

Support(DT') (or frequency(DT')) is defined as the number of document trees in
DT in which DT' is an induced subtree. An induced subtree DT' is frequent if its sup-
port is not less than a user-defined minimum support threshold. In other words, DT' is
a frequent induced subtree in the document trees in DT such that,

frequency (DT')/|DT| ≥ min_supp

(1)

where min_supp is the user-given support threshold and |DT| is the number of docu-
ment trees in the document tree dataset DT.

Due to the large number of frequent subtrees generated at lower support thresholds,
recent researchers have focused on using condensed representations without any in-
formation loss [3]. The popular condensed representation is the closed frequent sub-
tree which is defined as follows.

Problem Definition for Closed Frequent Induced (CFI) Subtree
For a given document tree dataset, DT = {DT1, DT2, DT3,…,DTn}, if there exists two
frequent induced subtrees DT' and DT'', the frequent induced subtree DT' is a closed
representation of DT'' iff for every DT' ⊇ DT'', supp(DT') = supp(DT'') and there
exists no superset for DT' having the same support as that of DT'. This property is
called as closure.

DT
1
 DT

2
DT

3
 DT

4

cfi1 1 0 1 1

cfi2 0 1 0 1

cfi3 1 1 1 0

Fig. 3. CD matrix

In order to generate the closed frequent induced subtrees from the pre-processed
document trees, PCITMiner[3] is utilized. This algorithm adopts the partition-based
approach to determine the CFI subtrees. After CFI subtrees are generated from the
corpus, their distribution in the corpus is modeled as a boolean subtree-document
matrix, denoted by CD|CFI|×|DT|, where CFI subtrees represent the closed frequent

 Clustering XML Documents Using Frequent Subtrees 441

induced subtrees and DT represents the document trees in the given document tree
collection. Each cell in the CD matrix has a Boolean value to indicate the presence or
absence of a given closed frequent induced subtree {cfi1, cfi2,…,cfin} in the document
tree {DT

1
,DT

2
,DT

3
,…,DT

n
}. Fig. 3 shows a CD matrix which stores the structural

information of the XML documents distributed in the corpus. The CD matrix is repre-
sented as CD|CFI|×|DT|, with closed frequent induced subtrees {cfi1, cfi2, cfi3} in the
document trees DT = {DT1, DT2, DT3 ,DT4}.

5 Phase 3: Content Extraction and Pre-processing

The CD matrix is used to extract the content from each of the XML documents. Using
the CD matrix, the CFI subtrees present in a given XML document are listed. For
every node label in the CFI subtree in the given document, its corresponding node
values (or content) are extracted. Though the CD matrix does not include the occur-
rence of the CFI subtree in a given document, the content corresponding to every
occurrence of the CFI subtree is stored.

The extracted content is a list of terms which is then pre-processed using the fol-
lowing steps:

1. Stop-word removal
2. Stemming
3. Integer removal
4. Shorter length words removal

5.1 Stop-Word Removal

Stop words are words that are considered poor as index terms[8], such as words that
occur very frequently(‘the’, ‘of’, ‘and’). These words need to be removed prior to
performing any natural language processing or data analysis. The most common stop
list available for English text, from Christopher Fox, contains a list of 421 words[9].
Fox’s stop list includes variants of the stop words, such as the word ‘group’ with its
variants: ‘groups’, ‘grouped’ and ‘grouping’.

However, there are always pitfalls in using the common stop list without any modi-
fication to suit to the domain under investigation. For example, the use of a common
stop list causes the removal of the word ‘back’ even though ‘back’ (a part of the
body) is a useful term in the medical domain. It is therefore essential to customize the
stop list, considering the domain specific knowledge, in order to avoid removing
important words. In this research, the stop word list has been customised considering
the tag names of the XML documents; it contains 536 stopwords.

5.2 Stemming

Word stemming is a process to remove affixes (suffixes or prefixes) from the words
and/or to replace them with the root word. For example, the word ‘students’ becomes
‘student’ and the word ‘says’ becomes ‘say’. This research uses the most commonly
used Porter stemming algorithm for affix removal[10].

442 S. Kutty et al.

5.3 Integer Removal

Due to the huge size of the Wikipedia dataset and its very large number of unique
terms; it is essential to reduce the dimension of the dataset without any information
loss. A careful analysis of the dataset revealed that there were a large number of inte-
gers that not contribute to the semantics of the documents and hence these were re-
moved in the pre-processing step. The filenames of the XML documents and the links
to other XML documents which were integers were retained.

5.4 Shorter Length Words Removal

Also based on the analysis of the dataset, words with fewer than 4 charactersare not
meaningful, thus, they were removed. After the pre-processing of the extracted con-
tent, the content is represented as a term-document matrix where each cell in that
matrix contains the term frequency of that corresponding term in the respective
document.

The pre-processed content is represented as a term-document matrix, TDoc|Term|×|D|,
where Term represents the terms corresponding to the CFI subtrees for the respective
document in the collection D. Each cell in the TDoc matrix contains the term fre-
quency for the corresponding set of closed frequent subtrees in a given XML docu-
ment. This matrix contains a reduced number of terms in comparison to the entire
collection, as the terms corresponding to infrequent subtrees were removed. The TDoc
matrix is used in the next phase to compute the similarity between the XML docu-
ments for the clustering of the dataset.

6 Phase 4: Clustering

The term-document matrix generated from the previous phase becomes input to a
partitional clustering algorithm. The k-way clustering algorithm[11] is used in this
research as it groups the documents in the required number of clusters. The k-way
clustering solution computes cluster by performing a sequence of k-1 repeated bisec-
tions. The input matrix is first clustered into two groups, and then one of these groups
is chosen and bisected further. This process of bisection continues until the desired
number of bisections is reached. During each step of bisection, the cluster is bisected
so that the resulting 2-way clustering solution locally optimizes a particular criterion
function[11].

7 Experiments and Discussion

We used the Microsoft Visual C++ 2005 implementation of PCITMiner[3]. The same
development environment was used to implement the algorithm for content extraction
using closed frequent induced subtrees. A number of experiments were conducted on
the Wikipedia corpus using the INEX XML Mining Challenge 2008 testing dataset.
The testing dataset contains 114,366 documents and the required number of clusters

 Clustering XML Documents Using Frequent Subtrees 443

for the INEX result submission was 15 clusters. To cluster the XML documents, the
k-way clustering algorithm implemented in CLUTO[11] is applied to the term-
document matrix representing the constrained content of documents.

The two commonly used clustering measures, namely Micro F1 (intra-cluster pu-
rity) and Macro F1 (inter-cluster purity), are used to evaluate the accuracy of the clus-
tering solutions which are based on the F1-measure. The F1 measure can be defined by

 F1=
Recall Precision

Recall* Precision* 2

+
 (2)

 Precision =
FPTP

TP

+
 (3)

 Recall =
FNTP

TP

+
 (4)

where TP denotes True Positives, FP denotes False Positives, and FN denotes False
Negatives. Micro-average F1 is calculated by summing up the TP, FP and FN values
from all the categories individually. Macro-average F1, on the other hand, is derived
from averaging the F1 values over all the categories. The best clustering solution for
an input data set is the one where micro- and macro-average F1 measures are close to
1. Table 1 summarises the clustering results for INEX Wikipedia XML Mining Track
2008.

Table 1. Submitted clustering results for INEX Wikipedia XML Mining Track 2008

Approaches No. of clusters Micro F1 Macro F1

Hagenbuchner-01 15 0.26 0.38

15 0.45 0.56 QUT LSK_1

30 0.53 0.57

Vries_15k_20k 15 0.49 0.59

15 0.48 0.51 QUT collection_15
(Our approach) 30 0.53 0.58

From Table 1, it is very clear that our proposed approach performs better than the

structure-only approach using Self-Organizing Map (SOM) of Hagenbuchner-01.
Also, our approach showed not much loss in accuracy to other content-only methods
such as QUT LSK_1 using Latent Semantic Kernel (LSK) and Vries_15k_20k using
K-tree and BM25 representation. Hence, our method is suitable for combining the
structure and content of XML documents without compromising on the accuracy.

In order to measure the reduction in the number of terms, a Vector Space Model
(VSM) was built on all the terms of the documents and clustering was then applied on
it. Table 2 summarises the dimensionality reduction in both the number of unique
terms and the total number of terms.

444 S. Kutty et al.

Table 2. Dimensionality reduction

No. of
Clus Method

Micro-
avg F1

Macro-
avg F1

Num of
Uniq. Terms

#Num of
terms

Our
Approach 0.53 0.58 442509 8528006

30

On all the
terms (without

dimension
reduction) 0.54 0.58 896050 13813559

From the experimental results summarised in Table 2 it is evident that, in spite of

the reduction in the number of unique terms and the total number of terms by about
50% and 40% respectively, there is not any significant loss in accuracy of the cluster-
ing solution. This confirms that the content within the infrequent trees can be avoided
as it is surplus for the clustering solution. The proposed approach is able to effectively
combine the structure and content for clustering the documents, and to reduce the
dimensionality.

8 Conclusion

In this paper, we have proposed and presented the results of a clustering approach
using frequent subtrees for mining both the structure and content of XML documents
on the INEX 2008 Wikipedia dataset. The main aim of this study is to explore and
understand the importance of the content and structure of the XML documents for the
clustering task. In order to cluster the XML documents, we have used content corre-
sponding to the frequent subtrees in a given document and have generated a terms by
document matrix. Using the matrix, we have computed the similarity between XML
documents then clustered them based on their similarity values. We have demon-
strated that by including the structure we could not only reduce the dimensionality but
also provide more meaningful clusters.

References

1. Nayak, R., Witt, R., Tonev, A.: Data Mining and XML Documents. In: International Con-
ference on Internet Computing (2002)

2. Tran, T., Nayak, R.: Evaluating the Performance of XML Document Clustering by Structure
Only. In: Comparative Evaluation of XML Information Retrieval Systems, pp. 473–484
(2007)

3. Kutty, S., Nayak, R., Li, Y.: PCITMiner-Prefix-based Closed Induced Tree Miner for find-
ing closed induced frequent subtrees. In: Sixth Australasian Data Mining Conference
(AusDM 2007). ACS, Gold Coast (2007)

 Clustering XML Documents Using Frequent Subtrees 445

4. Nayak, R.: Investigating Semantic Measures in XML Clustering. In: Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 1042–1045.
IEEE Computer Society Press, Los Alamitos (2006)

5. Aggarwal, C.C., et al.: Xproj: a framework for projected structural clustering of xml
documents. In: Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 46–55. ACM, San Jose (2007)

6. Chi, Y., et al.: Frequent Subtree Mining-An Overview. In: Fundamenta Informaticae,
pp. 161–198. IOS Press, Amsterdam (2005)

7. Kutty, S., Nayak, R., Li, Y.: XML Data Mining: Process and Applications. In: Song, M.,
Wu, Y.-F. (eds.) Handbook of Research on Text and Web Mining Technologies. Idea
Group Inc., USA (2008)

8. Rijsbergen, C.J.v.: Information Retrieval. Butterworth, London (1979)
9. Fox, C.: A stop list for general text. ACM SIGIR Forum 24(1-2), 19–35 (1989)

10. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
11. Karypis, G.: CLUTO-Software for Clustering High-Dimensional Datasets | Karypis Lab,

May 25 (2007), http://glaros.dtc.umn.edu/gkhome/views/cluto

UJM at INEX 2008 XML Mining Track�

Mathias Géry, Christine Largeron, and Christophe Moulin

Université de Lyon, F-42023, Saint-Étienne, France
CNRS UMR 5516, Laboratoire Hubert Curien

Université de Saint-Étienne Jean Monnet, F-42023, France
{mathias.gery,christine.largeron,christophe.moulin}@univ-st-etienne.fr

Abstract. This paper reports our experiments carried out for the INEX
XML Mining track, consisting in developing categorization (or classifi-
cation) and clustering methods for XML documents. We represent XML
documents as vectors of indexed terms. For our first participation, the
purpose of our experiments is twofold: Firstly, our overall aim is to set
up a categorization text only approach that can be used as a baseline
for further work which will take into account the structure of the XML
documents. Secondly, our goal is to define two criteria (CC and CCE)
based on terms distribution for reducing the size of the index. Results
of our baseline are good and using our two criteria, we improve these
results while we slightly reduce the index term. The results are slightly
worse when we sharply reduce the size of the index of terms.

1 Introduction

The INEX XML Mining Track is organized in order to identify and design ma-
chine learning algorithms suited for XML documents mining [1]. Two tasks are
proposed: clustering and categorization. Clustering is an unsupervised process
through which all the documents must be classified into clusters. The problem
is to find meaningful clusters without any prior information. Categorization (or
classification) is a supervised task for which, given a set of categories, a train-
ing set of preclassified documents is provided. Using this training set, the task
consists in learning the classes descriptions in order to be able to classify a new
document in one of the categories.

This second task is considered in this article. Moreover, even if the content
information (the text of the documents), the structural information (the XML
structure of the documents) and the links between the documents can be used
for this task, we have only exploited the textual information. Indeed, this is our
first participation to this track and our aim was to design a framework that could
be used as a baseline for further works dealing with structured documents.

More precisely, we focus on the preprocessing step, particularly the features
selection, which is an usual step of the knowledge discovery process [8,3,2]. On

� This work has been partly funded by the Web Intelligence project (région Rhône-
Alpes, cf. http://www.web-intelligence-rhone-alpes.org).

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 446–452, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.web-intelligence-rhone-alpes.org

UJM at INEX 2008 XML Mining Track 447

textual data, this step can be essential for improving the performance of the cat-
egorization algorithm. It exists a lot of words in the natural language, including
stop words, synonymous, etc.. These words are not equally useful for categoriza-
tion. Moreover, their distribution must also be considered. For example, words
that appear in a single document are not useful for the categorization task.

So, we need to extract from the text a subset of terms that can be used
to efficiently represent the documents in view of their categorization. In this
paper, the documents are represented according to the vector space model (VSM
[5]). Our aim is to adapt some VSM principles, for example the measure of
the discriminatory power of a term, to the categorization task. We propose two
criteria based on terms distribution aiming at extracting the indexing terms from
the training set corpora. After a brief presentation of the VSM given to introduce
our notations in section 2, these criteria are defined in the following section. Our
categorization approach is described in section 3 while the experiments and the
obtained results are detailed in sections 4 and 5.

2 Document Model for Categorization

2.1 Vector Space Model (VSM)

Vector space model, introduced by Salton and al. [5], has been widely used for
representing text documents as vectors which contain terms weights. Given a
collection D of documents, an index T = {t1, t2, ..., t|T |}, where |T | denotes the
cardinal of T , gives the list of terms (or features) encountered in the documents
of D. A document di of D is represented by a vector di = (wi,1, wi,2, ..., wi,|T |)
where wi,j represents the weight of the term tj in the document di. In order to
calculate this weight, TF.IDF formula can be used.

2.2 TF: Term Representativeness

TF (Term Frequency), the relative frequency of term tj in a document di, is
defined by:

tfi,j =
ni,j∑
l ni,l

where ni,j is the number of occurrences of tj in document di normalized by the
number of terms in document di. The more frequent the term tj in document
di, the higher is the tfi,j .

2.3 IDF: Discriminatory Power of a Term

IDF (Inverse Document Frequency) measures the discriminatory power of the
term tj . It is defined by:

idfj = log
|D|

|{di : tj ∈ di}|

448 M. Géry, C. Largeron, and C. Moulin

where |D| is the total number of documents in the corpus and |{di : tj ∈ di}|
is the number of documents in which the term tj occurs at least one time. The
less frequent the term tj in the collection of documents, the higher is the idfj .

The weight wi,j of a term tj in a document di is then obtained by combining
the two previous criteria:

wi,j = tfi,j × idfj

The more frequent the term tj is in document di and the less frequent it is in
the other documents, the higher is the weight wi,j .

3 Criteria for Features Selection

This VSM is widely used for text mining and information retrieval, as well for
free format document like scientific articles as for semi structured document
written in markup languages like HTML or XML.

But, in the context of categorization, even for limited collections, the dimen-
sionality of the index can be exceedingly large. For example, in INEX collection,
652 876 non trivial words have been identified. This is a real problem for cat-
egorization since the terms belonging to this bag of words are not necessarily
discriminatory features of the categories. So, we introduced two criteria (CC
and CCE) in order to select a subset of T providing a description of the doc-
uments belonging to the same category. We consider that these terms must be
very frequent in the documents of the category and, on the contrary, that they
must be infrequent in the other categories.

3.1 Category Coverage criteria (CC)

Let dfk
j be the number of documents in the category Ck where term tj appears,

and fk
j be the frequency of documents belonging to Ck and including tj :

dfk
j = |{di ∈ Ck : tj ∈ di}|, k ∈ {1, ...r} (1)

fk
j =

dfk
j

|Ck| (2)

The higher the number of documents of Ck containing tj , the higher is fk
j .

On the other hand, the term tj could be considered as a discriminant term if
most of the documents, where tj appears, belongs to the same category. Thus,
a first criteria, noted CC (Category Coverage), is computed as follows:

CCk
j =

dfk
j

|Ck| ∗
fk

j∑
k fk

j

CCk
j =

(fk
j)2∑
k fk

j

If the value of CCk
j is high, then tj is a characteristic feature of the category

Ck.

UJM at INEX 2008 XML Mining Track 449

3.2 Category Coverage Entropy Criteria (CCE)

The frequency fk
j considers the number of documents containing tj but it does

not take into account the number of occurrences of tj in the category. It is the
reason why we consider also pk

j the frequency of tj in the category Ck and a
measure commonly used in information theory, called entropy, which evaluates
the purity of the categories for the term tj . In the context of text categorization,
it measures the discriminatory power of tj . Let nk

j be the number of occurrences
of tj in the documents of Ck and pk

j the corresponding frequency:

nk
j =

∑
di∈Ck

ni,j pk
j =

nk
j∑

k=1,r nk
j

The Shannon entropy Ej of the term tj is given by [6]:

Ej = −
∑

k=1,r

(pk
j) ∗ log2(pk

j)

The entropy is minimal, equal to 0, if the term tj appears only in one category.
We consider that this term might have a good discriminatory power for the cat-
egorization task. Conversely, the entropy is maximal if tj is not a good feature
for representing the documents i.e. if tj appears in all the categories with the
same frequency.

We propose a second criteria, denoted CCE (Category Coverage Entropy),
combining fk

j (from CC) and entropy. CCE is defined by:

CCEk
j = (alpha ∗ fk

j) + (1 − alpha) ∗ (1 − Ej

MaxE
)

where alpha is a parameter and MaxE is the maximal value of E. When the
term tj is characteristic of the category Ck, the value of the criteria is high.

For each category, a subset of the terms of T corresponding to the highest
values of the criterion is built. Then, the index is defined as the union of these
subsets.

4 Experiments

4.1 Collection INEX XML Mining

The collection is composed of 114 336 XML documents of the Wikipedia XML
Corpus. This subset of Wikipedia represents 15 categories, each corresponding
to one subject or topic. Each document of the collection belongs to one cat-
egory. In the XML Mining Track, the training set is composed of 10% of the
collection.

450 M. Géry, C. Largeron, and C. Moulin

4.2 Preprocessing

The first step of the categorization approach that we propose, consists in a
preprocessing of the collection. It begins by the construction of the list all the
terms (or features) encountered in the documents of the collection. This index
of 652 876 terms is build using the LEMUR software1. The Porter Algorithm [4]
has also been applied in order to reduce different forms of a word to a common
form. This operation reduces the index to 560 209 terms. However, it still re-
mains a large number of irrelevant terms that could degrade the categorization,
e.g.: numbers (7277, -1224, 0d254c, etc.), terms with less than three characters,
terms that appear less than three times, or terms that appear in almost all the
documents of the training set corpus. The index obtained at this stage is denoted
I. In our experiments, its size is reduced to 161 609 terms on all the documents
of the collection and to 77 697 on the training set.

4.3 Features Selection

However, as explained in the previous section, the terms of I are not necessarily
appropriated for the categorization task inasmuch they are not discriminatory
for the categories. This is the reason why our criteria based on entropy and
on frequency are used to select more suited features. The terms were sorted
according to CC and CCE and only those corresponding to the highest values
are retained. In our experiments, the top 100 terms by class and the top 10 000
terms by class were considered for each criteria to build four indexes, denoted
respectively CC100 and CC10000 using CC and CCE100 and CCE10000 using
CCE. Table 1 indicates the size of these indexes.

Table 1. Indexes sizes

Index number of words
I 77697

CC100 1 051
CC10000 75 181
CCE100 909

CCE10000 77 580

Using one of these indexes, the content of a document is then represented by
the tf.idf vector model described in the first section.

The second step is the categorization step itself. Two usual methods of clas-
sification are used: Support Vector Machines (SVM) and k-nearest neighbors.
Only the most promising results obtained with the SVM were submitted. SVM
was introduced by Vapnik for solving two class pattern recognition problems
using Structural Risk Minimization principal[7]. In our experiments, the SVM

1 Lemur is available at the URL http://www.lemurproject.org

http://www.lemurproject.org

UJM at INEX 2008 XML Mining Track 451

algorithm available in the Liblinear library2 has been used. The results provided
by this approach are presented in the next section.

5 Experimental Results

This work has been done with a dual purpose: firstly develop a categorization
text approach usable as a baseline for further work on XML categorization taking
into account the structure, and secondly evaluate performances of this method
using our selection features approach.

5.1 Global Results

We have submitted 5 experiments using our 5 indexes presented in table 1.
The global results of XML Mining 2008 are synthesized in table 2 (participant:
LaHC).

Table 2. Summary of all XML Mining results

Rank Participant Run Recall Documents
1 LaHC submission.expe 5.tf idf T5 10000.txt 0.7876 102 929
2 LaHC submission.expe 3.tf idf T4 10000.txt 0.7874 102 929
3 LaHC submission.expe 1.tf idf TA.txt 0.7873 102 929
4 Vries Vries classification text and links.txt 0.7849 102 929
5 boris boris inex.tfidf.sim.037.it3.txt 0.7379 102 929
6 boris boris inex.tfidf1.sim.0.38.3.txt 0.7347 102 929
7 boris boris inex.tfidf.sim.034.it2.txt 0.7309 102 929
8 LaHC submission.expe 4.tf idf T5 100.txt 0.7230 102 929
9 kaptein kaptein 2008NBscoresv02.txt 0.6980 102 929
10 kaptein kaptein 2008run.txt 0.6978 102929
11 romero romero naive bayes links.txt 0.6813 102 929
12 LaHC submission.expe 2.tf idf T4 100.txt 0.6770 102 929
13 romero romero naive bayes.txt 0.6767 102 929
14 Vries Vries classification links only.txt 0.6232 102 929
15 Vries Vries classification text only.txt 0.2444 92 647

5.2 Baseline Results

Our baseline corresponds to the first experiment (expe 1), which was ranked 3th
with a quite good recall: 0.7873.

5.3 Selection Features Improves Results

When we select 10 000 terms for each class using CCE (expe 3) and CC
(expe 5), we reduce the size of the index to respectively 77 580 and 75 181.

2 http://www.csie.ntu.edu.tw/~cjlin/liblinear/ - L2 loss support vector ma-
chine primal

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

452 M. Géry, C. Largeron, and C. Moulin

This reduction is small compared to the size of the baseline index (77 697).
However, it lets us to slightly improve our baseline to 0.7874 with CCE and
0.7876 with CC. These three runs obtained the three best results of the XML
Mining challenge.

5.4 Selection Features Reduces Indexes

The last two submitted runs correspond to the selection of the first 100 terms
for each class using CCE (expe 2) and CC (expe 4). As presented in table 1,
the size of the index is sharply reduced to 909 terms for CCE and 1 051 for
CC. This reduction respectively correspond to 85% and 74% of the size of the
baseline index. Even if the obtained results are lower than the results obtained
with larger indexes, they are still relatively good. Indeed, the obtained recall is
0.6770 with CCE and 0.7230 with CC.

6 Conclusion

We proposed a categorization text approach for XML documents that let us
obtain a good baseline for further work. For now we just used CC and CCE
criteria as a threshold to select terms in order to build the index. For future
work, we aim at exploiting the computed value of CC and CCE to improve
the categorization. Moreover, we could use the structure information of XML
documents represented by the links between document to improve even more
the results.

References

1. Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2007 categoriza-
tion and clustering of xml documents. SIGIR Forum 42(1), 22–28 (2008)

2. Forman, G., Guyon, I., Elisseeff, A.: An extensive empirical study of feature selection
metrics for text classification. Journal of Machine Learning Research 3, 1289–1305
(2003)

3. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

4. Porter, M.F.: An algorithm for suffix stripping. In: Readings in information retrieval,
pp. 313–316 (1997)

5. Salton, G., McGill, M.J.: Introduction to modern information retrieval.
McGraw-Hill, New York (1983)

6. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

7. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
8. Yang, Y., Pedersen, J.: A comparative study on feature selection in text categoriza-

tion. In: Int. Conference on Machine Learning ICML 1997, pp. 12–420 (1997)

Probabilistic Methods for Link-Based
Classification at INEX 2008

Luis M. de Campos, Juan M. Fernández-Luna,
Juan F. Huete, and Alfonso E. Romero

Departamento de Ciencias de la Computación e Inteligencia Artificial
E.T.S.I. Informática y de Telecomunicación, Universidad de Granada,

18071 – Granada, Spain
{lci,jmfluna,jhg,aeromero}@decsai.ugr.es

Abstract. In this paper we propose a new method for link-based classi-
fication using Bayesian networks. It can be used in combination with any
content only probabilistic classsifier, so it can be useful in combination
with several different classifiers. We also report the results obtained of
its application to the XML Document Mining Track of INEX’08.

1 Introduction

The 2008 edition of the INEX Workshop was the second year that members
of the research group “Uncertainty Treatment in Artificial Intelligence” at the
University of Granada participate in the Document Mining track. Our aim is
as in previous editions, to provide a solution to the proposed problems on the
framework of Probabilistic Graphical Models (PGMs).

The corpus given for 2008 differs slightly on the one of the previous year [3].
Again, as in 2007, it is a single-label corpus (a subset of the AdHoc one [2]
but using a different set of 16 categories). Moreover, this year a file with the
list of links between XML documents has been added. Because the track has
been substantially changed, it would be firstly interesting to check the utility
of using the link information. We will show later that those links add relevant
information for the categorization of documents.

On the other hand, given that the 2008 corpus is coming from the same source
(Wikipedia) as the 2007 corpus, we think that it might not be worthwhile to use
the structural information of the documents for categorization. In [1] we showed
that even using some very intuitive XML document transformations to flat text
documents, classification accuracy was not improving, getting worse in some of
the cases. In this year, then, we have used a more pragmatic approach, directly
ignoring the structural information by simply removing XML tags from the
documents.

This work is structured as follows: firstly we perform a study of the link struc-
ture in the corpus, in order to show its importance for categorization. Secondly,
we present our model for categorization, based on Bayesian networks, with some
variants. Then, we make some experiments on the corpus to show how our model
performs, and finally, we list some conclusions and future works.

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 453–459, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

454 L.M. de Campos et al.

2 Linked Files. Study on the Corpus

As we said before, we are given a set of links between document files as ad-
ditional training information, making some explicit dependencies arise between
documents. This information violates a “natural” assumption of traditional clas-
sification methods: the documents are independent of each other. This case of
non independent documents can have different forms; and the graph of relation-
ships among documents are not neccesarily regular (it can be a general directed
graph, neither a tree nor a forest).

Clearly, for the problem of document categorization, these intra-corpus depen-
dences could be ignored, applying “traditional” text categorization algorithms
but, as we will show afterwards, the information from linked files can be a very
valuable data.

But, how are those links supposed to help in the final process of text cat-
egorization? Obviously, not all kinds of links are equal, because they can give
different information (even none). A careful review of those different kinds of
dependencies represented by hyperlinks (regularities) is given by Yang [6], and
following her terminology we can conjecture that we are in a “encyclopedia reg-
ularity”. We reproduce here her definition:

One of the simplest regularities is that certain documents with a class
label only link with documents with the same class label. This regularity
can be approximately found in encyclopedia corpus, since encyclopedia
articles generally reference other articles which are topically similar.

We have plotted, in figure 2, a matrix where the rows and columns are one
of the 16 categories. Each matrix value mi,j represents the probability that a
document of class i links a document of class j, estimated from the training
document collection.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

Fig. 1. Probability that a document from category i links a document from category j

As it can be seen (the matrix has a strong weight in its diagonal), documents
of one category tend to link documents of the same category. Moreover, doing
the same plot with the probability of a document of class i being linked by a

Probabilistic Methods for Link-Based Classification at INEX 2008 455

document of class j, and another one with the probability of a document of class
i links or is linked by a document of class j, we obtain a similar result (a matrix
with a high weight for the diagonal values).

Thus, although we could think that only the outlinks tend to be useful, we
can affirm that also inlinks are useful, and also consider the links without any
direction.

3 Proposed Method

3.1 Original Method

The method proposed is an extension of a probabilistic classifier (we shall use
in the experiments the Naive Bayes classifier but other probabilistic classifiers
could also be employed) where the evidence is not only the document to classify,
but this document together with the set of related documents. Note that, in
principle, we will try to use only information which is available in a natural way
for a text classifier. Considering that different documents are processed through
batch processing, the information easily available to a system, given a document,
is the set of documents it links (not the set of documents that link it).

Consider a document d0 which links with documents d1, . . . , dm. We shall
consider the random variables C0, C1, . . . , Cm, all of them taking values in the
set of possible category labels. Each variable Ci represents the event “The class
of document di is”. Let ei be the evidence available concerning the possible
classification of each document di (the set of terms used to index the document
di or the class label of di). The proposed model can be graphically represented
as the Bayesian network displayed in figure 2.

C0

Cm

em

C1

e1

... ...

... ...

e0

Fig. 2. Bayesian network representing the proposed model

The independencies represented by the Bayesian network are the following:
given the true class of the document we want to classify, the categories of
the linked documents are independent among each other. Moreover, given the

456 L.M. de Campos et al.

true category of a linked document, the evidence about this category due to the
document content is independent of the original category of the document we
want to classify.

Our objective is to compute the posterior probability p(C0|e), where e is all
the available evidence concerning document d0, e = {e0, e1, . . . , em}. It can be
proven that, taking into account the independencies represented in the Bayesian
network, this probability can be expressed as follows:

p(C0 = c0|e) ∝ p(C0 = c0|e0)
m∏

i=1

(∑
ci

p(Ci = ci|c0)
p(Ci = ci|ei)
p(Ci = ci)

)
(1)

As we can observe in equation (1), the posterior probability of C0 has two
components: a part which only depends on the evidence associated to the doc-
ument d0 to be classified (p(C0 = c0|e0)) and another part related with the
information about the class labels of each one of the documents linked with d0,
which can be obtained using its own local evidence (p(Ci = ci|ei)). This infor-
mation is combined with the estimated probabilities of a linked document being
of class ci given that the document linking to it is of class c0.

The posterior probabilities p(C0 = c0|e0) and p(Ci = ci|ei) can be obtained
using some standard probabilistic classifier, whereas the probabilities p(Ci = ci)
and p(Ci = ci|c0) can be estimated from the training data simply by following
these formulas:

p(Ci = ci) =
Ni

N

and

p(Ci = ci|c0) =
L0i + 1

L0• + |C|
where Ni is the number of training documents classified by category i, N
is the total number of documents, L0i is the number of links from documents
of category 0 to category i, L0• is the total number of links from documents of
category 0, and |C| is the number of categories. Note that in the estimation of
p(Ci = ci|c0) we have used Lapace smoothing. In all our posterior experiments,
using Laplace gives better results than not using it.

Therefore, we can think of the proposed model as a method to modify the re-
sults offered by a base probabilistic classifier taking into account the information
available about the linked documents and the relationships between categories
(the prior probabilities p(Ci = ci) and the values p(Ci = ci|cj)).

3.2 Extension to Inlinks and Undirected Links

The independencies represented by the Bayesian network are not directly related
with the direction of the links. Instead of outlinks, we could think of the previous
model as a model that takes into consideration the incoming links. Thus, the

Probabilistic Methods for Link-Based Classification at INEX 2008 457

ei (i > 0) variables would represent the documents that link to one (instead of
the files linked by one), and the formula (1) would still be valid. In the case of
the incoming links, we should reestimate the dependencies among categories as
follows:

p(Ci = ci|c0) =
Li0 + 1

L•0 + |C|
where Li0 is, as previously stated, the number of links from documents of cat-
egory i to category 0, and L•0 is the total number of links to documents of
category 0.

Moreover, in the collective classification literature, the direction of the links
is often not considered, so, we also could propose a model where ei (i > 0)
represent the documents linked or being linked (that is to say, neighboured) by
the document to classify. In that case, the probabilities would be these:

p(Ci = ci|c0) =
Li0 + L0i + 1

L•0 + L0• + |C| .

Therefore, these would be our three models: the original one (with incoming
links), and the extensions using outlinks and undirected links.

4 Experimental Results

To make the values comparable with the submitted runs, we have also performed
some experiments on the test set in order to show the effectiveness (recall) of
our approach. First of all we study the two submitted runs, a baseline (flat text
classifier) and our proposals (combined with Naive Bayes):

– A classical Naive Bayes algorithm on the flat text documents: 0.67674 of
recall.

– Our model (outlinks): 0.6787 of recall.

The two aditional models which were not submitted to the track give the
following results:

– Our model (inlinks): 0.67894 of recall.
– Our model (neighbours): 0.68273 of recall.

Although all our methods improve the baseline, the results achieved are not
really significant. In order to justify the value of our model, we are asking now
ourselves which is the predicting power of our proposal, by making some addi-
tional computations in an “ideal setting”. This “ideal setting” is, for a document
being classified, to be surrounded (linking, linked by or both of them) with doc-
uments whose class membership is perfectly known (and hence we can set for
a related document dk of category ci, P (Ck = ci|dk) = 1 -the true class- and
P (Ck = cj |dk) = 0 -the false categories- ∀cj �= ci). Remember that, in previ-
ous experiments, a surrounding file whose category was not known should be

458 L.M. de Campos et al.

first classified by Näıve Bayes, and then that estimation (the output probability
values) was used in our model.

So, the procedure is the following: for each document to classify, look at the
surrounding files. For each one, if it is a training file, use that information (per-
fect knowledge), and if it is a test file, use also its categorization information
taken from the test set labels to have our file related to documents with per-
fect knowledge. This “acquired” knowledge is obviously removed for the next
document classification.

In this “ideal setting” we have made two experiments: one combining näıve
Bayes with our model (like the second one of the previous two), and one which
combined a “blind classifier” (the one that gives equal probability to each cate-
gory) with our model. The first should be better than the two previous ones, and
the second one could give us an idea of the true contribution to the predictive
power of our model, despite the underlying basic classifier used.

– Model for outlinks in an “ideal setting” using Naive Bayes as a base classifier:
0.69553 of recall.

– Model for outlinks in an “ideal setting” using a “blind classifier”: 0.46500 of
recall.

– Model for inlinks in an “ideal setting” using Naive Bayes as a base classifier:
0.69362 of recall.

– Model for inlinks in an “ideal setting” using a “blind classifier”: 0.73278 of
recall.

– Model for neighbours in an “ideal setting” using Naive Bayes as a base
classifier: 0.70212 of recall.

– Model for neighbours in an “ideal setting” using a “blind classifier”: 0.66271
of recall.

The first experiment provides the desired result: the recall is improved (al-
though not so much). The small improvement could be due, in some part, to
the extreme values given in this corpus by the Naive Bayes classifier (very close
to 0 and 1). The introduction of these values in the final formula, as the first
factor in the final posterior probability of each document, makes difficult to
take into account (in the categories of the values close to 0) the information
provided by the second factor (the combination of the information given by all
the linked files), vanishing in some cases because of the low value of the first
factor.

However, the second experiment showed us that, only using link information,
and ignoring all content information of the document to classify, in this “ideal
setting” of knowing the true class of each surrounding document, our method
can reach 0.46500, 0.73278 or 0.66271 of recall. In the case of the inlinks, ignoring
the content of the document to classify and perfectly knowing the values of the
categories of the surrounding documents, gives better results than using this
content. Besides, these values are clearly high, whichg gives us the idea of the
predictive power of link information in this problem.

Probabilistic Methods for Link-Based Classification at INEX 2008 459

5 Conclusions and Future Works

We have proposed a new model for classification of linked documents, based on
Bayesian networks. We have also justified the possibly good performance of the
model in an “ideal” environment, with some promising results. Regrettably, our
results in this track have been very discrete, reaching the final positions and not
improving so much the näıve Bayes baseline.

To improve those poor results in the future, we could use a classifier (proba-
bilistic) with a better performance. Such a classifier could be a logistic regression
procedure, a higher dependence network or just a SVM with probabilistic out-
put (using Platt’s algorithm [5]). The probability assignments should also be
“softer”, in the sense that several categories should receive positive probability
(näıve Bayes tended to concentrate all the probability in one category, zeroing
the others and making the information provided by the links not useful, in some
way).

As future work we would like to study this problem as a collaborative classifi-
cation problem (see, for instance [4], and try to apply this method in one of the
particular solutions (those that need a “local classifier”) that are being given to it.

Acknowledgments. This work has been jointly supported by the Spanish Con-
sejeŕıa de Innovación, Ciencia y Empresa de la Junta de Andalućıa, Ministerio de
Ciencia de Innovación and the research programme Consolider Ingenio 2010, un-
der projects TIC-276, TIN2008-06566-C04-01 and CSD2007-00018, respectively.

References

1. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E.: Probabilis-
tic Methods for Structured Document Classification at INEX 2007. In: Fuhr, N.,
Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 195–206.
Springer, Heidelberg (2008)

2. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum 40(1), 64–69
(2006)

3. Denoyer, L., Gallinari, P.: Report on the XML mining track at INEX 2007 catego-
rization and clustering of XML documents. SIGIR Forum 42(1), 22–28 (2008)

4. Sen, P., Getoor, L.: Link-based Classification, Technical Report CS-TR-4858, Uni-
versity of Maryland, Number CS-TR-4858 - February 2007 (2007)

5. Platt, J.: Probabilistic Outputs for Support Vector Machines and Compar-
isons to Regularized Likelihood Methods. In: Smola, A., Bartlett, P., Scholkopf,
B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers. MIT Press,
Cambridge (1999)

6. Yang, Y., Slattery, S.: A study of approaches to hypertext categorization. Journal
of Intelligent Information Systems 18, 219–241 (2002)

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 460–468, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Utilizing the Structure and Content Information for
XML Document Clustering

Tien Tran, Sangeetha Kutty, and Richi Nayak

Faculty of Science and Technology
Queensland University of Technology

GPO Box 2434, Brisbane Qld 4001, Australia
{t4.tran,s.kutty,r.nayak}@qut.edu.au

Abstract. This paper reports on the experiments and results of a clustering ap-
proach used in the INEX 2008 document mining challenge. The clustering ap-
proach utilizes both the structure and content information of the Wikipedia
XML document collection. A latent semantic kernel (LSK) is used to measure
the semantic similarity between XML documents based on their content fea-
tures. The construction of a latent semantic kernel involves the computing of
singular vector decomposition (SVD). On a large feature space matrix, the
computation of SVD is very expensive in terms of time and memory require-
ments. Thus in this clustering approach, the dimension of the document space
of a term-document matrix is reduced before performing SVD. The document
space reduction is based on the common structural information of the Wikipedia
XML document collection. The proposed clustering approach has shown to be
effective on the Wikipedia collection in the INEX 2008 document mining
challenge.

Keywords: Wikipedia, clustering, LSK, INEX 2008.

1 Introduction

Most electronic data on the web, nowadays, is presented in the form of semi-
structured data, such as in XML or HTML format. Semi-structured data, usually, does
not follow a specific structure and its data is nested and heterogeneous. Due to the
continuous growth of semi-structured data on the web, the need to efficiently manage
these data becomes inevitable. Data mining techniques such as clustering has been
widely used to group data based on their common features without prior knowledge
[1]. Data or document clustering has become important in applications such as data-
base indexing, data-warehouse, data integration and document engineering.

A number of clustering approaches for semi-structured documents have been
proposed based on the commonality of document content information [2, 3] or of docu-
ment structural information [4, 5]. The content and the structural information of semi-
structured documents provide a lot of information in aiding the clustering process.
The content-based approaches [6, 7] usually utilize techniques such as vector space
model [8] (VSM) for representing and measuring the similarity between document for

 Utilizing the Structure and Content Information for XML Document Clustering 461

clustering. However, the vector space model using tf-idf weighting method [8] is asso-
ciated with a number of limitations [9]. Firstly, it assigns weights to terms according to
term frequency and ignores the semantic association of terms. Secondly, it does not
perform well when both the structural and content features are used together to infer
the similarity of the XML documents [6]. Therefore, for the INEX 2008 document
mining challenge we constructed a semantic kernel based on the latent semantic analy-
sis [10] to determine the semantic similarity between the content of the Wikipedia
documents. In practice, latent semantic kernel performs better than tf-idf weighting for
learning the semantic similarity between the content of documents; however, it is much
more expensive to use in terms of computational time and memory requirements.

For the clustering of Wikipedia collection in the INEX 2008 document mining
challenge, documents are first grouped based on the document structural information.
Based on the structural groupings, the document space is then reduced and a latent
semantic kernel is constructed using the document content in the Wikipedia collec-
tion. The kernel is later used to group the Wikipedia collection based on the content
similarity of the Wikipedia documents. This paper is structured as follows. The next
section explains the clustering approach which has been used for the INEX 2008
document mining challenge in more detail. Section 3 is the discussion of our cluster-
ing results along with other participants. The paper is then concluded in section 4.

Fig. 1. Overview of the clustering approach

2 The Clustering Approach

Figure 1 illustrates the overview of the clustering approach used in the INEX 2008
document mining challenge. The Wikipedia XML document collection is first clustered
based on the structural information present in the Wikipedia documents. The output of
the clustering process in the groupings of the Wikipedia documents according to the

XML
Documents

Structure
Mining and
Clustering

 Cn

 C2

 C1

Latent
Semantic

Kernel

Document
Clustering

 Cn

 C2

 C1

Content
Learning

462 T. Tran, S. Kutty, and R. Nayak

commonality of their structural information. The structure-based clustering solution is
not used for the final clustering solution because the structural information in collections
such as the Wikipedia is not sufficient enough in classifying the documents. In this
clustering approach, the structure-based clustering solution is utilized to reduce the
document space of a term-document matrix which is then used to build a latent semantic
kernel for learning the semantic similarity between the Wikipedia documents based on
their content features.

For example, given a collection of XML documents {d1, d2 ... dn}, a term-document
matrix X of m n can be derived, where m stands for the number of unique terms and
n stands for the number of documents in the collection. It is very computational ex-
pensive (and sometimes infeasible) to construct a LSK on this matrix. Thus in the
INEX 2008 challenge, the matrix X is modified into a term-document matrix X' of m
× n' where m stands for the number of unique terms and n' stands for the modified
number of documents which is lesser than n documents. This is done based on an
assumption that by reducing the document dimension and keeping the original term
dimension intact allows the resulting kernel to retain the terms of the whole input
collection for a better content similarity measure between the Wikipedia documents.
When applying Singular Value Decomposition (SVD) on X', the matrix is decomposed
into 3 matrices (equation 1), where U and V have orthonormal columns of left and
right singular vectors respectively and Z is a diagonal matrix of singular values or-
dered in decreasing magnitude.

TUZVX =' (1)

The SVD model can optimally approximate matrix X' with a smaller sample of
matrices by selecting k largest singular values and setting the rest of the values to
zero. Matrix Uk of size m × k and matrix Vk of size n' × k may be redefined along
with k × k singular value matrix Zk (equation 2). This can approximate the matrix X'
in a k -dimensional document space.

T
kkknm VZUX =×

∧

'' (2)

Matrix '
∧
X is known to be the matrix of rank k, which is closest in the least squares

sense to X' [11]. Since Uk is the matrix containing the weighting of terms in a reduced
dimension space, it can be used as a kernel for latent learning the semantic between
concepts. The Uk matrix becomes the semantic kernel that is used to group the
Wikipedia documents based on their content features.

Example. Let us take a collection D that contains 4 XML documents {d1, d2, d3,, d4}
as shown in figure 2; element names in the documents are shown as embraced within
brackets, where <R> is the root element and <Ei> is the internal element or leaf ele-
ment. The content of a document is denoted by T. Table 1 shows an example of a
term-document matrix X. Assume that these terms are extracted after the standard text
pre-processing of stop-word removal and stemming.

 Utilizing the Structure and Content Information for XML Document Clustering 463

Table 1. Example of an X matrix

 d1 d2 d3 d4
t1 2 1 2 2
t2 2 2 2 0
t3 2 2 2 0
t4 2 2 1 4
t5 2 0 2 0
t6 1 0 0 0
t7 2 2 2 1
t8 0 1 0 1
t9 1 1 1 0
t10 0 1 0 0

d1

<R>
 <E1>t1, t2, t3
 <E2>t4, t3, t6
 <E3>t5, t4, t7
 <E3.1>t5, t2, t1
 <E3.2>t7, t9

d2

<R>
 <E1>t1, t4
 <E2>t3, t3
 <E3>t4, t7
 <E3.1>t2, t9
 <E3.2>t2, t7, t8, t10

d3

<R>
 <E1>t1, t2
 <E2>t3, t3
 <E3>t5, t4, t7
 <E3.1>t5, t2, t1
 <E3.2>t7, t9

d4

<R>
 <E1>t1, t4
 <E3>t4, t7
 <E3>t4, t8
 <E1>t1, t4

Fig. 2. Example of a collection D that contains 4 XML documents

2.1 Structure Mining and Clustering

The first step in the clustering approach is to determine the structural commonality
among the Wikipedia documents. Given a collection of XML documents {d1, d2... dn},
denoted by D, and a set of distinct paths {s1, s2... sf}, denoted by S, extracted from the
collection D. A path contains element names from the root element to the leaf ele-
ment. The leaf element is the element containing the textual content. The structure of
the documents in a collection is modelled as a path-document matrix SDf × n, where f
is the number of distinct paths in collection D and n is the number of documents in
collection D.

Example. Revisiting the example of the collection D in figure 2, an example of a
path-document matrix SD is shown in table 2.

464 T. Tran, S. Kutty, and R. Nayak

Table 2. Example of a SD matrix

 d1 d2 d3 d4
R/E1 1 1 1 2
R/E2 1 1 1 0
R/E3/E3.1 1 2 1 0
R/E3/E3.2 1 0 1 0
R/E3 1 1 1 2

A structural clustering solution SC is obtained by applying a k-partitioning cluster-

ing method [12] on the SD matrix. The number of clusters for the document structure is
equaled to the number of clusters in the final clustering solution which is 15 clusters.

2.2 Latent Semantic Kernel and Content Learning

The clustering solution SC contains documents belonging to each cluster according to
their structural similarity. The contents of least important documents, determined by tf-
idf, from each cluster in SC are merged together resulting in a smaller document space
which are then used to construct a term-document matrix X' of m × n'. The document
space is reduced such that the computing of SVD (Singular Value Decomposition) on
the matrix X' can be done successfully. The resulting latent semantic kernel P, which is
the matrix Uk from equation 2, is then used to determine the semantic association be-
tween the content of each pair of documents in the Wikipedia collection.

Given a collection of XML documents D, a set of distinct terms {t1, t2... tm}, denoted
by T, is extracted from D after the pre-processing of the content in the Wikipedia
documents. Terms are words that appear in the textual content of the leaf elements in
the Wikipedia documents. The pre-processing of the content involves the removal of
unimportant terms and word stemming. The removal of unimportant terms includes
stop words which are terms considered not to be important such as 'the', 'of', 'and', etc.
With extensive experiments, integers and terms with length lesser than 4 are found not
to be important, thus they are also removed from the term set.

The content of a Wikipedia document di is modeled as a vector [t1, t2... tm] which
contains the frequencies of the terms, in set T, appearing in the document, where the
vector has the same dimensional space as the term space in the matrix kernel P. Given
two vectors dx and dy, the semantic similarity between the content of the two docu-
ments is measured as shown in equation 3.

||||
),(

y
T

x
T

y
TT

x
yx dPdP

dPPd
ddmsemanticSi = (3)

2.3 Document Clustering

Using equation 3 described in the previous section, a pair-wise document similarity
matrix can be generated by computing the semantic similarity between each pair of

 Utilizing the Structure and Content Information for XML Document Clustering 465

the Wikipedia documents based on their content features. The Wikipedia collection
in the INEX 2008 document mining track has 114,366 documents to be clustered. The
dimension of a pair-wise document similarity matrix generated from this collection
will be 114,366 × 114,366. However, it is not possible to store and process on such a
large pair-wise document similarity matrix with the standard available memory space.
Thus in the challenge, only the first 1000 closest document similarity distances asso-
ciated with each document in the Wikipedia collection are used for the clustering task.
By selecting r closest number of document similarity distances associated with each
document in a collection, it, sometimes, can improve the clustering process by dis-
carding the outlier similarities from the pair-wise document similarity matrix.

With a number of experiments and analysis with the 11,437 Wikipedia training
documents, it has shown in figure 3 that using 1000 closest document similarity dis-
tances associated with each document in the training collection performs much better
in macro F1 than using the pair-wise document similarity matrix of 11,437 × 11,437.
The results in figure 3 show that when the micro F1 measure improves, the macro F1
measure degrades. Even though, the 1000 closest document similarity distances asso-
ciated with each document is not the best clustering solution, however, it is the bal-
ance between micro and macro values and it is closer to the solution generated from
pair-wise document similarity matrix of 11,437 × 11,437.

So, instead of having a pair-wise document similarity matrix of 114,366 × 114,366,
we have a similarity matrix of 114,366 × 1000 for the clustering of the Wikipedia
collection for the INEX 2008 document mining challenge. Using the similarity matrix
of 114,366 × 1000, a k-partitioning clustering method [12] is used. The clustering
method performs by first dividing the input collection, using the similarity matrix of
114,366 × 1000, into two groups, and then one of these two groups is chosen to be
bisected further. The process is repeated until the number of bisections in the process
equals the number of user-defined clusters.

Fig. 3. Accuracy of clustering with different r values on the training collection

466 T. Tran, S. Kutty, and R. Nayak

3 Experiments and Discussion

As mentioned before, the experiments were performed using the Wikipedia collection
containing 114,366 documents from the INEX 2008 document mining challenge for
the clustering task. The structure mining as described in section 2.1 is applied to find
similar structured clusters within the collection. Then a selected number of documents
from each cluster are used to construct the latent semantic kernel. The document di-
mensional space was reduced down to 257 by conducting this process. After the pre-
processing of the content in the Wikipedia documents, which involved the removal of
unimportant word and word stemming, 446,294 terms were extracted and used for the
construction of the latent semantic kernel P. The kernel P is built by decomposing the
term-document matrix of 446,294 × 257 using SVD and 200k singular values are
selected for the kernel.

The required number of clusters for the Wikipedia collection was 15 clusters. Two
evaluation methods were used to evaluate the performance of the clustering solutions
in the INEX 2008 challenge: Micro F1 and Macro F1 measures. There were a total of
4 participants in the clustering task. Many submissions were submitted by the partici-
pants, Table 3 shows only the best result from each participant with 15 clusters.
Hagenbuchner-01 approach, using a mixture of the document template, document
element tag and document content features for the grouping of the Wikipedia collec-
tion, has the worse clustering solution. Vries_15k_20k approach outperforms QUT
collection_15 and our approach (QUT LSK_1) but not significantly.

All these three approaches, Vries_15k_20k, QUT collection_15 and ours, use vec-
tor space model for representing and processing of the Wikipedia documents.
Vries_15k_20k approach uses BM2 [13] for term weighting which has shown to per-
form well. QUT collection_15 approach reduces the dimension of a term-document
matrix X by first mining the frequent sub-trees of the documents. Instead of using the
whole content of the documents in the Wikipedia collection, only the content con-
strained within the frequent sub-trees is used for determining the similarity between
the documents. Our clustering performs well on the macro F1 measure.

Table 3. Participants’ clustering results on the Wikipedia collection with 15 clusters

Name Micro F1 Macro F1
Hagenbuchner-01 0.26 0.38
QUT collection_15 0.48 0.51
Vries_15k_20k 0.49 0.59
QUT LSK_1 (Our Approach) 0.45 0.56

Figure 4 shows the distribution of the 114,366 Wikipedia documents in the 15 clus-
ters discovered from our approach. From the figure, we can see that the majority of
the documents in clusters 0, 1, 2, 4, 5 and 6 are from class 471. Thus, our approach
can only discovered 9 classes from the Wikipedia collection. Six classes have not
been able to be discovered from our approach are 323, 897, 943, 526, 1131 and 1530.
Besides classes 897 and 1530, the other classes contain relatively small amount of
documents which is why our approach can not discovered them.

 Utilizing the Structure and Content Information for XML Document Clustering 467

Fig. 4. The distribution of the 114,366 Wikipedia documents in the 15 clusters discovered from
our approach

Based on a number of experiments and analysis, the following can be ascertained
from our clustering approach: (1) Our approach performs efficiently well even though
the semantic kernel is constructed with a reduced document space; (2) Instead of
using a pair-wise similarity matrix of 114,366 × 114366, we used a matrix of 114,366
× 1000 for the grouping of the Wikipedia collection. Even though a lot of the docu-
ment similarity distances have been discarded, our clustering result is not much dif-
ference when comparing with other participants. By selecting r closest number of
document similarity distances associated with each document in a collection, it can
still produce an effective clustering solution, and; (3) Even though the consideration
of the structure-only similarity produced a poor clustering solution, in this case we
have achieved 0.29 for the micro F1 and 0.33 for the macro F1 on the structure-based
clustering solution, however it has been utilized in our approach for selecting the
documents in constructing a latent semantic kernel for learning the semantic similarity
between the content of the Wikipedia documents. The clustering solution with the
content is much better than the clustering solution with the structure-only information
or a mixture of features such as in Hagenbuchner-01 approach.

4 Conclusion and Future Work

In this paper, we have proposed using a clustering approach that utilizes both the
structural and the content information of XML documents for XML document cluster-
ing. First the structure is used to group the XML documents, then, a semantic kernel
is built with a selected number of documents belonging to each cluster. The kernel is

468 T. Tran, S. Kutty, and R. Nayak

then used to cluster the content of the Wikipedia XML documents. The results ob-
tained from the experiments shows that the clustering approach performs effectively
on the Wikipedia dataset. Results are comparative to other methods applied on this
collection.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Diego (2001)

2. Kurgan, L., Swiercz, W., Cios, K.J.: Semantic mapping of xml tags using inductive ma-
chine learning. In: CIKM 2002, Virginia, USA (2002)

3. Shen, Y., Wang, B.: Clustering schemaless xml document. In: Meersman, R., Tari, Z.,
Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888,
pp. 767–784. Springer, Heidelberg (2003)

4. Nayak, R., Tran, T.: A Progressive Clustering Algorithm to Group the XML Data by
Structural and Semantic Similarity. IJPRAI 21(3), 1–21 (2007)

5. Nayak, R., Xu, S.: XCLS: A Fast and Effective Clustering Algorithm for Heterogenous
XML Documents. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006.
LNCS, vol. 3918, pp. 292–302. Springer, Heidelberg (2006)

6. Doucet, A., Lehtonen, M.: Unsupervised classification of text-centric xml document col-
lections. In: INEX 2006, pp. 497–509 (2006)

7. Yao, J., Zerida, N.: Rare patterns to improve path-based clustering. In: INEX 2007,
Dagstuhl Castle, Germany, December 17-19 (2007)

8. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill
Book Co., New York (1989)

9. Garcia, E.: Description, Advantages and Limitations of the Classic Vector Space Model
(2006)

10. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent semantic kernels. JJIS 2002 18(2)
(2002)

11. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Dis-
course Processes, 259–284 (1998)

12. Karypis, G.: Cluto – software for clustering high-dimensional datasets – karypis lab
13. Sparck, J.K., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval:

Development and comparative experiments. IP&M 36(6), 779–808, 809–840

Self Organizing Maps for the Clustering of Large Sets of
Labeled Graphs

ShuJia Zhang, Markus Hagenbuchner, Ah Chung Tsoi, and Alessandro Sperduti

1 University of Wollongong, Wollongong, Australia
{sz603,markus}@uow.edu.au

2 Hong Kong Baptist University, Hong Kong
act@hkbu.edu.hk

3 University of Padova, Padova, Italy
sperduti@math.unipd.it

Abstract. Data mining on Web documents is one of the most challenging tasks
in machine learning due to the large number of documents on the Web, the un-
derlying structures (as one document may refer to another document), and the
data is commonly not labeled (the class in which the document belongs is not
known a-priori). This paper considers latest developments in Self-Organizing
Maps (SOM), a machine learning approach, as one way to classifying documents
on the Web. The most recent development is called a Probability Mapping Graph
Self-Organizing Map (PMGraphSOM), and is an extension of an earlier Graph-
SOM approach; this encodes undirected and cyclic graphs in a scalable fashion.
This paper illustrates empirically the advantages of the PMGraphSOM versus the
original GraphSOM model in a data mining application involving graph struc-
tured information. It will be shown that the performances achieved can exceed
the current state-of-the art techniques on a given benchmark problem.

1 Introduction

The Self-Organizing Map (SOM) is a popular unsupervised machine learning method
which allows the projection of high dimensional data onto a low dimensional display
space for the purpose of clustering or visualization [1]. Recent works proposed models
of SOMs for inputs which can be expressed in terms of graphs, thus providing rela-
tional aspects (expressed as links) among objects (nodes of the graph) [2,3,4,5]. This
paper describes the most recent extension to SOM which allows the processing of cyclic
graphs, and demonstrates its ability on a clustering task involving 114, 366 XML for-
matted documents from Wikipedia. The dataset has been made available as part of a
competition on XML mining and XML clustering [6]. Each document is represented
by a node in the graph. The topology of the graph is defined by the hyperlink structure
between documents. Textual content available for each document can be used to label
the nodes.

It can be stated that most except the most exotic learning problems are suitably
represented by richer structures such as trees and graphs (graphs include vectors and
sequences as special cases). For example, data in molecular chemistry are more appro-
priately represented as a graph where nodes represent the atoms of a molecule, and links

S. Geva, J. Kamps, and A. Trotman (Eds.): INEX 2008, LNCS 5631, pp. 469–481, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

470 S. Zhang et al.

between nodes represent atomic bindings. The nodes and links in such graphs may be
labeled, e.g. to describe the type of atom, or the strength of an atomic binding.

Most approaches to machine learning deal with vectorial information, and hence, the
traditional approach to the processing of structured data such as sequences and graphs
involves a pre-processing step to “squash” a graph structure into a vectorial form such
that the data can be processed in a conventional way. However, such pre-processing
step may result in the removal of important structural relations between the atomic
entities of a graph. Hence, it is preferable to design algorithms which can deal with
graph structured data directly without requiring such a pre-processing step.

Early works by Kohonen [1] suggested an extension of the SOM to allow for the clus-
tering of phonemes (sub-strings of audio signals) for speech recognition applications.
More recently, SOMs have been extended to the following situation: the projection from
a domain of graphs to a fixed-dimensional display space [2,3,4,5]. The pioneering work
presented in [2] introduced a SOM for Structured Data (SOM-SD) which allowed the
processing of labeled directed ordered acyclic graph structured data (with supersource)
by individually processing the atomic components of a graph structure (the nodes, the
labels, and the links). The basic idea is to present to a SOM an input vector which is
a representation of a node from a given graph, a numeric data label which may be at-
tached to the node, and information about the mappings of the offsprings of the node.
A main difference of this method when compared with the traditional SOM is that the
input vectors are dynamic (i.e. they can change during training). This is because the
mapping of the node’s offsprings can change when the codebook vectors of the SOM
are updated, and hence, the input vector to a corresponding node changes. In practice, it
has been shown that such dynamics in the input space do not impose a stability problem
to the training algorithm [2].

When processing a node, the SOM-SD requires knowledge of the mappings of the
node’s offsprings. This imposes a strict causal processing order by starting from ter-
minal nodes (which do not have any offsprings), and ending at the supersource node
(which has no parent nodes or incoming links). In other words, the SOM-SD can-
not, without modification, encode cyclic graphs, and cannot differentiate identical sub-
graphs which occur in different contextual settings.

The shortcoming of the SOM-SD was addressed through the introduction of a Con-
textual SOM-SD (CSOM-SD) [4] which allows for the inclusion of information about
both the ancestors and the descendants of a given node, and hence, it permits the en-
coding of contextual information about nodes in a directed graph. A problem with [4]
is that the improved ability to discriminate between identical substructures can create
a substantially increased demand on mapping space, and hence, the computational de-
mand can be prohibitive for large scale learning problems. A second problem is that
the method cannot process cyclic graphs, as is required for the given XML clustering
task.

The GraphSOM is a subsequent extension which allows for the processing of cyclic
or undirected graphs, and was shown to be computationally more efficient than a
CSOM-SD for large scale learning problems [5]. However, the processing time required
for training a GraphSOM can remain large for the addressed learning task due to the

Self Organizing Maps for the Clustering of Large Sets of Labeled Graphs 471

need to use small learning rates to guarantee the stability of the approach. This sta-
bility issue is addressed in [7], allowing for much faster training time and improved
performances.

This paper is structured as follows: Section 2 introduces pertinent concepts of SOM
and its extensions to the graph domain. The experimental setting and experimental find-
ings are presented in Section 3. Conclusions are drawn in Section 4.

2 Self-Organizing Maps for Graphs

In general, SOMs perform a topology preserving mapping of input data through a pro-
jection onto a low dimensional display space. For simplicity, this paper assumes the
display space to be a two dimensional one. The display space is formed by a set of
prototype units (neurons) which are arranged on a regular grid. There is one prototype
unit associated with each element on the lattice. An input to a SOM is expected to be an
k-dimensional vector, the prototype units must be of the same dimension. A codebook
consisting of a k-dimensional vector with adjustable elements is associated with each
prototype unit. The elements of the prototype units are adjusted during training by (1)
obtaining the prototype unit which best matches a given input, and (2) adjusting the
elements of the winner units and all its neighbors. These two steps are referred to as the
“competitive step” and “cooperative step”, respectively. An algorithmic description is
given as follows:

1) Competitive step: One sample input vector u is randomly drawn from the input data
set and its similarity to the codebook vectors is computed. When using the Euclidean
distance measure, the winning neuron is obtained through:

r = arg min
i

‖(u− mi)T Λ‖, (1)

where mi refers to the i−th prototype unit, the superscript T denotes the transpose of
a vector, and Λ is a k × k dimensional diagonal matrix. For the standard SOM, all
diagonal elements of Λ equal to 1.

2) Cooperative step: mr itself as well as its topological neighbours are moved closer
to the input vector in the input space. The magnitude of the attraction is governed by the
learning rate α and by a neighborhood function f(Δir), where Δir is the topological
distance between the neurons mr and mi. It is common to use the Euclidean distance
to measure the distance topologically. The updating algorithm is given by:

Δmi = α(t)f(Δir)(mi − u), (2)

where α is the learning rate decreasing to 0 with time t, f(·) is a neighborhood function
which controls the amount by which the codebooks are updated. Most common is the
Gaussian neighborhood function: f(Δir) = exp

(
(−‖li − lr‖2)/2σ(t)2

)
, where the

spread σ is called neighborhood radius which decreases with time t, lr and li are the
coordinates of the winning neuron and the i-th prototype unit in the lattice respectively.

472 S. Zhang et al.

These two steps together constitute a single training step and they are repeated a
given number of iterations. The number of iterations must be fixed prior to the com-
mencement of the training process so that the rate of convergence in the neighborhood
function, and the learning rate, can be calculated accordingly.

Note that this training procedure does not utilize any ground truth (target) informa-
tion). This renders the algorithm to be an unsupervised learning algorithm which is
useful to applications for which target information is not available. Note also that the
computational complexity of this algorithm scales linearly with the size of the training
set, and hence, this explains its suitability to data mining tasks.

When processing graphs, an input vector x is formed for each node in a set of graphs
through concatenation of a numerical data label u which may be associated with the
node, and the state information about the node’s offsprings or neighbors. The literature
describes two possibilities of computing the state [2,4,5]:

SOM-SD approach: The state of an offspring or neighbor can be the mapping of
the offspring or the neighbor [2,4]. In this case, the input vector for the j-th node is
xj = (uj ,ych[j]), where uj is a numerical data vector associated with the j-th node,
ych[i] is the concatenated list of coordinates of the winning neuron of all the children of
the j-th node. Since the size of vector ych[i] depends on the number of offsprings, and
since the SOM training algorithm requires constant sized input vectors, padding with a
default value is used for nodes with less than the maximum outdegree of any graph in
the training set.

GraphSOM approach: The state of an offspring or neighbor can be the activation of
the SOM when mapping all the node’s neighbors or offsprings [5]. In this case, the input
vector is formed through xj = (uj ,Mne[j]), where uj is defined as before, and, Mne[j]
is a m-dimensional vector containing the activation of the map M when presented with
the neighbors of node j. An element Mi of the map is zero if none of the neighbors
are mapped at the i-th neuron location, otherwise, it is the number of neighbors that
were mapped at that location. This latter approach produces fixed sized input vectors
which do not require padding. Note that the latter approach requires knowledge of the
mappings of all neighbors of the given node. The availability of these mappings cannot
be assured when dealing with undirected or cyclic graphs. This is overcome in [5] by
utilizing the mappings from a previous time step. The approximation is valid since
convergence is guaranteed. The GraphSOM can process undirected or cyclic graphs.

It can be observed that the inclusion of state information in the input vector provides
a local view of the graph structure. The iterative nature of the training algorithm ensures
that local views are propagated through the nodes in a graph, and hence, structural
information about the graph is passed on to all reachable nodes.

It can be observed that the concatenation of data label and state produces hybrid input
vectors. The diagonal matrix Λ is used to control the influence of these two components
on the mapping. The diagonal elements λ11 · · ·λpp are set to μ ∈ (0; 1), all remaining
diagonal elements are set to 1 − μ, where p = |u|. Thus, the constant μ influences the
contribution of the data label, and the state component to the Euclidean distance. Note
that if |u| = |x| and μ = 1 then the algorithm reduces to Kohonen’s basic SOM training
algorithm.

Self Organizing Maps for the Clustering of Large Sets of Labeled Graphs 473

Fig. 1. A 2-dimensional map of size 5×2 (left), and an undirected graph (right). Each hexagon is
a neuron. ID, codebook, and coordinate value for each neuron is shown. For each node, the node
number, and coordinate of best matching codebook is shown.

After training a SOM on a set of training data it becomes possible to produce a
mapping for input data from the same problem domain but which may not necessarily be
contained in the training dataset. The degree of the ability of a trained SOM to properly
map unseen data (data which are not part of the training set) is commonly referred to
as the generalization performance. The generalization performance is one of the most
important performance measures. However, in this paper, rather than computing the
generalization performance of the SOM, we will evaluate the performance on the basis
of micro purity and macro purity. This is performed to comply with guidelines set out
by the INEX-XML mining competition.

The GraphSOM provides a mechanism for processing the given XML mining tasks.
However, we discovered recently a stability problem with GraphSOM in [7] which
we will describe by using an example. Consider the example shown in Figure 1. This
figure shows a SOM of size 5 × 2, and an undirected graph containing 5 nodes. For
simplicity, we assume that no data label is associated with any node in the graph. When
processing node w = 3 with a GraphSOM, the network input is the k-dimensional
vector x3 = (0, 0, 2, 0, 0, 1, 0, 0, 0, 0). This is because two of the neighbors of node
3 are mapped to the coordinate (1, 3) which refers to the 2-nd neuron, and the third
neighbour of node 3 is mapped at (2, 1) which refers to the 5-th neuron. The algorithm
proceeds with the execution of Eq. 1 and Eq. 2. Due to the weight changes in Eq. 2 it is
possible that the mapping of neighbors w=0, w=1, and w=4 change. Assume that there
is a minor change in the mapping of node w=0, for example, to the nearby location
(1, 4). However, the Euclidean distance measure in Eq. 1 does not make a distinction
as whether a mapping changed to a nearby location or to a far away location; the con-
tribution to the Euclidean distance remains the same. This defeats the very purpose to
achieve topology preserving properties, and can cause alternating states to occur. To
counter this behavior it is necessary to either reduce the learning rate to a very small
value (causing long training times due to an increased demand on the iterations), or to
use a large value for μ (minimizing the effectiveness of the structural information). The
problem can be overcome by accounting for the fact that changes in the mapping of
nodes are most likely to be a location near a previous winning location. This is done
with the recent introduction of the Probability Mapping GraphSOM [7] as follows:

474 S. Zhang et al.

Table 1. Document counts for different classes in the training dataset

Class-ID 471 49 339 252 1530 1542 10049 380 897 4347 9430 1310 5266 323 1131
Size 2945 1474 915 866 789 696 679 639 637 592 405 294 264 128 114

Probability Mapping GraphSOM: Due to the effects of Eq. 2 it is most likely that
the mapping of a node will be unchanged at the next iteration. But since all neurons
are updated, and since neurons which are close to a winner neuron (as measured by
Euclidean distance) are updated more strongly (controlled by the Gaussian function),
and, hence, it is more likely that any change of a mapping will be to a nearby location
than to a far away location. These likelihoods are directly influenced by the neighbor-
hood function and its spread. This is taken into account by representing a mapping in

subsequent iterations as follows: Mi = 1
σ(t)

√
2π

e
− ‖li−lr‖2

2σ(t)2 , where σ(t) decreases with

time t towards zero, all other quantities are as defined before. The computation is accu-
mulative for all neighbors of the current node. Note that the term 1

σ(t)
√

2π
normalizes

the states such that
∑

i Mi ≈ 1.0. It can be observed that this approach accounts for
the fact that during the early stages of the training process it is likely that mappings can
change significantly, whereas towards the end of the training process, as σ(t) → 0, the
state vectors become more and more similar to the hard coding method of GraphSOM.
The approach is known under the acronym PMGraphSOM. It will be observed in Sec-
tion 3 that the PMGraphSOM allows the use of large learning rates, and hence, reduces
the required training time significantly while providing an overall improvement in the
clustering performance.

3 Experiments

The experiments were conducted on a set of XML formatted documents; the task is to
cluster the data. The dataset consists of 114, 366 Web documents from Wikipedia, and
contains hyperlink information. The dataset produces one graph consisting of 114, 366
nodes, each of which representing one document. These nodes are connected based on
the hyperlinks between documents. There are a total of 636, 187 directed links between
the documents in the dataset. The maximum number of out links (outdegree) from a
document is 1527, and on an average, each document has 11 neighboring documents
(either linked by or linked to). 10% of the documents are labeled; each labeled docu-
ment belongs to one of 15 classes. The labels are exclusively used for testing purposes,
and are not used during training. The goal of the task is to associate each document with
a cluster so that all documents within the same cluster are labeled alike. A closer exami-
nation of the distribution of patterns amongst the pattern classes revealed that the dataset
is heavily unbalanced. This is shown in Table 1. For example, Table 1 shows that the
class with ID “471” is approximately 21 times the size of class with ID “1131”. Since
SOM and its variants, like PMGraphSOM are unsupervised machine learning schemes,
and hence, we must not use class membership information in the pre-processing phase
(i.e. to balance the dataset). We expect that this imbalance will affect the quality of the

Self Organizing Maps for the Clustering of Large Sets of Labeled Graphs 475

clustering by the GraphSOM and PMGraphSOM. No doubt were we allowed to make
use of this prior information in balancing the dataset, the clustering learning task would
become simpler, and would affect the results positively.

XML structure, and textual content were available for each document. This allowed
us to add a numerical data label to each node in a graph to represent some of the fea-
tures of the corresponding document. We mainly considered three types of document
features: XML tags, Document templates, and Document text. All three types of fea-
tures were extracted in the same way. Due to the limitation on feature space dimension,
we apply PCA (Principal Component Analysis) [8] and other approaches to reduce the
dimension after extraction. We briefly describe the steps as follows:

– For each document in the dataset, extract only XML tags for further analysis
– Count the number of unique XML tags (denoted by n) contained in the full set, and

then initialize n-dimensional tag vectors for all the documents
– For each document, update the tag vector by counting the occurrences of the tags

and assigning the number of counts to the corresponding element
– Since the value of n could be large, it requires some dimension reduction. Doc-

uments are separated into 16 groups, the first 15 groups correspond to the given
classes, and all unlabeled documents are covered by the 16th group.

– For each unique tag, compute the percentage of documents within each group con-
taining this particular tag and build a 16 × n matrix

– For each row in the matrix, compute the standard deviation of the percentages
among different groups. The matrix can partially show whether a particular tag
can contribute to differentiate document classes; based on this information, we can
filter some tags according to following rules:
1. Remove tags which are not contained in any labeled documents.
2. Remove tags which are not contained in any unlabeled documents.
3. Remove tags where the standard deviation is less than a given threshold.

– Use PCA to reduce the dimension by keeping the first k principal components

These k-dimensional vectors were attached to each document as the data label for train-
ing. In this dataset, there are a total of 626 unique tags and 83 of them exist in the train-
ing document set. After the application of the above described procedures and the PCA,
we kept 3-dimensional tag information label. Similarly, we built a 5-dimensional text
data label, and 4-dimensional template vector.

We also used the “rainbow” module from the Bag of Word model [9] as an alter-
native feature extraction approach to PCA. By employing the knowledge of class label
information attached to the training document, we selected a total of 47 text words with
top information gain associated with different document classes. Then we built a text
vector for each document by counting the occurrences of each selected word.

A composite 12-dimensional vector consisting of 5-dimensional text information,
4-dimensional template information and 3-dimensional tag information is used for the
experiments. For comparison purposes, we also used a 10-dimensional template-only
data label (reduced by PCA), and a 47-dimensional text information by using the “rain-
bow” module of the Bag of Word package in separate experiments. The dimensions
were the result of various trial-and-error experiments which revealed the best ratio
between performance and training times.

476 S. Zhang et al.

Performances will be measured in terms of classification performance, clustering
performance, macro purity, and micro purity. Macro purity, and micro purity are defined
in the usual manner. Classification and clustering performance are computed as follows.

Classification: After training, we selected the neurons which are activated at least by
one labeled document. For each neuron we find the largest number of documents with
the same class label and associate this class label to this neuron. For all nodes in the
graph we re-compute the Euclidean distance only on those activated neurons. Re-map
the node to the winning neuron and assign the label of the winning neuron to this node.
For each labeled document, if its original attached label matches the new label given by
the network we count it as a positive result. Then we could measure the classification
performance by computing the percentage of the number of positive results out of the
number of all labeled documents.

Clustering: This measure is to evaluate the clustering performance. For all nodes in
the graph, we compute the Euclidean distance to all neurons on the map and obtain the
coordinates of the winning neurons. Then we applied K-means clustering on these coor-
dinates. By using different values for K, we could obtain different numbers of clusters.
Within each cluster, we find which class of documents are in the majority and associate
the class label to this cluster. For all labeled documents, we count it as a positive result if
its original attached label matches the label of the cluster which this document belongs
to. The cluster performance can then be computed as the percentage of the number of
positive results out of the number of all labeled documents.

3.1 Results

The training of the PMGraphSOM requires the adjustment of a number of training pa-
rameters such as α(0), μ, σ(0), the network size, and the number of training iterations.
The optimal value of these parameters is problem dependent, and are not known a pri-
ori. A trial and error method is used to identify a suitable set of training parameters.
To extract clusters from a trained SOM, we applied K-means clustering to the mapped
data of a trained PMGraphSOM. By setting K to a constant value, we can extract ex-
actly K clusters from a SOM. The performance of these two maps when setting K to
be either 15 or 512 is shown in Table 2. Table 2 presents our results as was submitted
to the INEX-2008 mining challenge. In comparison, Table 3 presents the best result
obtained by other participants. It can be seen that our approach is somewhat average
when compared with the others. Nevertheless, a general observation was that the train-
ing of a reasonably sized PMGraphSOMs required anywhere between 13 hours and 27
hours whereas the training of a GraphSOM of similar size and with similar parameters
required about 40 days (approximately one iteration per day). The time required to train
the GraphSOM is long, and hence, training was interrupted, and the experiments instead
focused solely on PMGraphSOM.

We later found that the main reason which held us back from producing better results
was due to the unbalanced nature of the dataset. This is illustrated by Table 4 and Table 5
respectively which present the confusion matrices of the training data set and the testing
data set produced by these SOMs.

Self Organizing Maps for the Clustering of Large Sets of Labeled Graphs 477

Table 2. Summary of our results of the INEX’08 XML clustering task

Name #Clusters MacroF1 MicroF1 Classification Clustering
hagenbuchner-01 15 0.377381 0.2586290 76.9782 40.1
hagenbuchner-02 512 0.5369338 0.464696 50.52024 47.6
hagenbuchner-03 512 0.5154928 0.470362 50.52024 48.8

Table 3. Summary of results of the INEX’08 XML clustering task by other participants

Name #Clusters MacroF1 MicroF1
QUT Freq struct 30+links 30 0.551382 0.5440555
QUT collection 15 15 0.5051346 0.4879729
QUT Freq struct 30 30 0.5854711 0.5388792
QUT LSK 7 30 0.5291029 0.5025662
QUT LSK 3 15 0.5307000 0.4927645
QUT LSK 1 15 0.5593612 0.4517649
QUT LSK 2 15 0.5201315 0.4441753
QUT LSK 8 30 0.5747859 0.5299867
QUT LSK 6 30 0.5690985 0.5261482
QUT LSK 4 15 0.4947789 0.4476466
QUT LSK 5 30 0.5158845 0.5008087
QUT Freq struct 15 15 0.4938312 0.4833562
QUT collection 30 30 0.5766933 0.5369905
QUT Freq struct 15+links 15 0.5158641 0.515699
Vries 20m level2 147 0.6673795 0.5979084
Vries 100m level1 42 0.6030854 0.5276347
Vries nmf 15 15 0.5371134 0.4732046
Vries nmf 147 147 0.5870940 0.5912981
Vries 15k 20m 15 0.5890083 0.4948717
Vries nmf 42 42 0.5673114 0.5437669

Table 4 refers to the SOM of a given size which produced the best classification per-
formance, whereas Table 5 refers to a SOM of the same size which produced the best
clustering performance. In Table 4 the values on the diagonal are the number of docu-
ments correctly classified. A total of 8804 out of 11437 training patterns are classified
correctly (micro purity is 68.84%). However, the results show that the generalization
ability of the trained map is considerably low; the micro purity value dropped to 18.8%
for the testing data set. In comparison, the SOM shown in Table 6 shows comparatively
more consistent performance for both the training dataset and the testing data set.

Here a total of 48.3% training documents are classified correctly. It can be ob-
served that for the above two experiments, the worst performing classes are the smallest
classes, and hence, constitute a main contribution to the observed overall performance
levels. In the former experiment, we used 12 dimension labels which combined text,
template name and tags information of the documents while in the latter experiment we
only attached 10 dimensional labels of template information. Even though a larger map
was used for the former experiment, it cannot produce reasonable results. The combined

478 S. Zhang et al.

Table 4. Confusion Matrix for training documents generated by PMGraphSOM trained using
mapsize=160x120, iteration=50, grouping=20x20, σ(0)=10, μ=0.95, α(0)=0.9, label: text=5 +
template=4 + tag=3

10049 1131 1310 1530 1542 252 323 339 380 4347 471 49 5266 897 9430 %

M
ac

ro
F

1:
76

.9
78

2
M

ic
ro

F
1:

68
.8

48
9627 0 0 8 0 2 0 7 4 4 2 19 0 6 0 92.3417

5 42 1 3 5 6 1 3 6 3 3 17 1 12 6 36.8421
17 0 169 12 1 9 0 4 17 6 1 29 5 24 0 57.4830
29 0 4 598 2 6 0 6 23 3 3 66 8 41 0 75.7921
41 0 7 21 372 26 0 24 25 23 21 80 7 49 0 53.4483
34 0 0 31 3 601 0 6 31 23 1 81 8 46 1 69.3995
4 0 0 6 4 7 61 3 4 6 4 21 3 5 0 47.6563

36 1 9 32 4 20 0 588 35 23 7 103 11 46 0 64.2623
16 0 0 9 2 2 0 9 486 4 4 74 1 32 0 76.0563
34 0 1 16 3 6 0 6 25 404 3 53 10 31 0 68.2432
44 0 4 31 2 24 0 38 41 22 2590 90 15 39 5 87.9457
61 0 2 9 3 4 0 16 4 6 6 1293 1 68 1 87.7205
11 0 0 0 1 1 0 4 16 1 3 28 185 14 0 70.0758
39 0 1 3 2 2 0 5 3 6 6 24 0 546 0 85.7143
21 0 4 13 6 16 2 9 18 3 18 36 5 12 242 59.7531

Table 5. Cluster purity when using mapsize=160x120, iteration=50, grouping=20x20, σ(0)=10,
μ=0.95, α(0)=0.9, label: text=5 + template=4 + tag=3

10049 1131 1310 1530 1542 252 323 339 380 4347 471 49 5266 897 9430 Macro
F1

Micro
F1

Train 92.3 36.8 57.5 75.8 53.469.447.764.376.1 68.287.987.7 70.185.7 59.8 76.97868.848
Test 14.5 0.9 8.5 23.0 10.717.6 1.614.813.8 11.875.026.8 4.413.2 20.5 32.97218.283

features may focus too much on the training documents and this produces a lower gen-
eralization performance than the one using the template features. It indicates that the
training can be ineffective without a good set of features regardless to the size of a map.

In order to evaluate training performance by using different features, we conducted
an experiment by using the 47-dimensional text vector generated via the Bag of Word
model after the competition. Table 7 presents a summary of the confusion matrices for
the set of training documents and set of testing documents respectively, produced by
the best trained SOM so far. The corresponding map is shown in Figure 2. The results
indicate that the Bag of Word based feature selection approach can provide more useful
data labels which would benefit the clustering task.

Apart from selecting useful features for the training task, the size of the network can
be increased to overcome issues related to imbalance in a data set. Note that the dataset

Table 6. Cluster purity when using mapsize=120x100, iteration=50, grouping=10x10, σ(0)=10,
μ=0.99995, α(0)=0.9, label: 10-dim. template

10049 1131 1310 1530 1542 252 323 339 380 4347 471 49 5266 897 9430 Macro
F1

Micro
F1

Train 58.3 29.8 39.8 60.2 54.751.4 8.649.058.4 52.785.679.9 22.738.5 35.6 62.42948.342
Test 28.8 24.7 24.2 41.5 37.833.8 1.431.240.2 29.581.761.5 10.519.5 25.0 48.13132.752

Self Organizing Maps for the Clustering of Large Sets of Labeled Graphs 479

Table 7. Cluster purity using mapsize=400x300, iteration=60, grouping=40x60, σ(0)=20,
μ=0.99, α(0)=0.9, label: 47-dim. text (BagOfWords-based approach)

10049 1131 1310 1530 1542 252 323 339 380 4347 471 49 5266 897 9430 Macro
F1

Micro
F1

Train 78.1 60.5 60.5 68.8 60.375.440.682.861.5 60.589.770.1 62.562.2 41.5 73.09665.012
Test 76.8 56.0 65.3 67.9 58.576.541.881.961.2 62.788.970.6 62.161.2 43.7 73.09664.998

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

49 252 323 339 380 471 897 1131
1310 1530 1542 4347 5266 9430 10049

Fig. 2. Mapping of all training data on a PMGraphSOM performing best in classifying the nodes

consists of 114,366 nodes which were mapped to a network of size 160 x 120 = 19200.
In other words, the mapping of nodes in the dataset is compressed by at least 83%.
Such high compression ratio forces the SOM to neglect less significant features and data
clusters, and hence, can contribute to a poor performance in clustering performance on
small classes. A study is conducted on the performance change when increasing the net-
work size. To allow a basis of comparison, the same set of data and parameters are used
while training the maps of different size. This is not generally recommended since some
training parameters (most notably μ) are dependent on the network size and should be
adjusted accordingly. Nevertheless, we keep these parameters constant to exclude the
influence of a parameter change on the analysis of the effects of a change in network
size. The results are summarized in Figure 3(left) where the x-axis indicates the propor-
tion of the number of neurons on the map to the number of documents and the y-axis
indicates the cluster purity. This shows that the clustering performance of the map can
be significantly improved by increasing the training map size. However, according to
the tendency of the curve, it can be predicted that it will get more and more difficult to
increase the cluster purity even if the map size is increased beyond the size of the dataset.

480 S. Zhang et al.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

MacroF1

1
2

3

4 & 5

6
7

8

MicroF1

1

2

3

4 & 5

6

7

8

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 10 20 30 40 50 60

1
2
3
4

5
6
7
8

Fig. 3. Cluster purity vs. Map size (left), and Cluster purity vs. Training iteration (right). The
horizontal scale of the plot on the left gives the ratio between network size and size of the dataset.

Figure 3 shows the cluster purity for 8 experiments by using different map sizes. For
each iteration, the macro purity value is plotted for all finished experiments. We ignore
the micro purity value here since it is consistent with macro purity in terms of the trend.
We could observe that the larger maps present obvious advantages on cluster purity even
at the very beginning of the training. The curves from the bottom to top are from using
map sizes in the ascending order. However, the performance improving speed of using
different sizes of maps is not in the same manner. The smallest map in use has 12, 000
neurons while the number of neurons on the largest map is about ten times of that.
However, the performance of the smallest map was increased about 0.2 at the end of the
training and the improvement of using largest map was small: 0.03. This experiment
also shows the upper limit of the clustering performance that the PMGraphSOM can
achieve using a particular feature set.

Since adaptive learning rate was used for the training, its decreases depend on the
number of iterations. Most curves in the figure show that the performance was not im-
proved gradually during training, but instead was fast increasing over a short period.
The fast increase corresponds to the steep part of the sigmoidal function, so it is pos-
sible to prolong the increase longer by stretching the sigmoidal function, This can be
performed by increasing the number of iterations. In Figure 3, the results of experiments
4 and 5 are using the same map settings and parameters except the number of training
iterations; these are shown in the form of hollow-square and filled-square respectively
in the graph. In experiment 5, we doubled the number of iterations of the one which was
set for experiment 4 (60 iterations). The curve of the results of experiment 5 is gener-
ated by plotting the macro purity value every two iterations. It can be observed that the
two curves corresponding to experiments 4 and 5 are nearly identical; this confirms that
the selected learning rate and number of iterations for these experiments is sufficient.

4 Conclusions

This paper presents an unsupervised machine learning approach to the clustering of
a relatively large scale data mining tasks requiring the clustering of structured Web

Self Organizing Maps for the Clustering of Large Sets of Labeled Graphs 481

documents from Wikipedia. It was shown that this can be achieved through a suitable
extension of an existing machine learning method based on the GraphSOM model. Ex-
perimental results revealed that the unbalanced nature of the training set is the main
inhibiting factor in this task, and have shown that the right feature selection technique,
and a sufficiently large map results in a network performance which exceeds the best of
any other competitors approach. More specifically, we have shown that a map exceeding
a size of 0.7 times the number of nodes in the training set outperforms any competitors
approach. The task of encoding of textual information embedded within the Wikipedia
documents was resolved by using a Bag of Word approach in combination with Prin-
cipal Component Analysis. This extracts and compresses the information. Work on the
proposed approach is ongoing with investigations on the effects of network size, and
feature extraction on the clustering performance.

Acknowledgment. This work has received financial support from the Australian Re-
search Council through Discovery Project grant DP0774168 (2007 - 2009).

References

[1] Kohonen, T.: Self-Organisation and Associative Memory, 3rd edn. Springer,
Heidelberg (1990)

[2] Hagenbuchner, M., Tsoi, A., Sperduti, A.: A supervised self-organising map for structured
data. In: Allison, N., Yin, H., Allison, L., Slack, J. (eds.) WSOM 2001 - Advances in Self-
Organising Maps, pp. 21–28. Springer, Heidelberg (2001)

[3] Günter, S., Bunke, H.: Self-organizing map for clustering in the graph domain. Pattern
Recognition Letters 23(4), 405–417 (2002)

[4] Hagenbuchner, M., Sperduti, A., Tsoi, A.: Contextual processing of graphs using self-
organizing maps. In: European symposium on Artificial Neural Networks, Poster track,
Bruges, Belgium, April 27-29 (2005)

[5] Hagenbuchner, M., Tsoi, A.C., Sperduti, A., Kc, M.: Efficient clustering of structured doc-
uments using graph self-organizing maps. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A.
(eds.) INEX 2007. LNCS, vol. 4862, pp. 207–221. Springer, Heidelberg (2008)

[6] Denoyer, L., Gallinari, P.: Initiative for the evaluation of xml retrieval, xml-mining track
(2008), http://www.inex.otago.ac.nz/

[7] Hagenbuchner, M., Zhang, S., Tsoi, A., Sperduti, A.: Projection of undirected and non-
positional graphs using self organizing maps. In: European Symposium on Artificial Neural
Networks - Advances in Computational Intelligence and Learning, April 22-24 (to appear,
2009)

[8] Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical
Magazine Series 6(2), 559–572 (1901)

[9] McCallum, A.K.: Bow: A toolkit for statistical language modeling, text retrieval, classifica-
tion and clustering (1996),
http://www.cs.cmu.edu/˜mccallum/bow

http://www.inex.otago.ac.nz/
http://www.cs.cmu.edu/~mccallum/bow

Author Index

AbuJarour, Mohammed 224
Ali, M.S. 192

Balog, Krisztian 292
Bandyopadhyay, Ayan 79
Bapat, Salil 33
Broschart, Andreas 29

Chen, Mao-Lung (Edward) 326
Chidlovskii, Boris 412
Clarke, Charles L.A. 132
Consens, Mariano P. 192
Craswell, Nick 253
Crouch, Carolyn J. 33
Crouch, Donald B. 33

Dalbelo Bašić, Bojana 71
Darwish, Kareem 337
de Campos, Luis M. 39, 453
Déjean, Hervé 124
Demartini, Gianluca 243, 253
Denoyer, Ludovic 401
de Vries, Arjen 207, 243
De Vries, Christopher M. 420
Dopichaj, Philipp 343
Doucet, Antoine 65, 106
Dresevic, Bodin 164
Drobnik, Oswald 97

Fachry, Khairun Nisa 300
Fernández-Luna, Juan M. 39, 453
Fu, Zhenzhen 389

Gallinari, Patrick 401
Ganguly, Debasis 79
Gao, Yangyan 264
Gaugaz, Julien 253
Géry, Mathias 46, 446
Geva, Shlomo 1, 314, 326, 420
Granitzer, Michael 354

Hagenbuchner, Markus 469
He, Jiyin 366
Helou, Bassam 192
Heß, Andreas 343

Hiemstra, Djoerd 207
Huang, Wei Che (Darren) 314
Huete, Juan F. 39, 453

Ibekwe-SanJuan, Fidelia 54
Iofciu, Tereza 243, 253
Itakura, Kelly Y. 132

Jeliazkov, Nikolay 237
Jenkinson, Dylan 374
Jiang, Jiepu 264

Kamps, Jaap 1, 140, 273, 395, 432
Kaptein, Rianne 273, 432
Kazai, Gabriella 106
Khatchadourian, Shahan 192
Koolen, Marijn 1, 140
Kühne, Gerold 237
Kutty, Sangeetha 436, 460

Landoni, Monica 106
Largeron, Christine 46, 446
Larson, Ray R. 152
Lehtonen, Miro 65
Leung, Kai-Cheung 374
Li, Yuefeng 436
Liu, Dan 389
Lu, Wei 264, 389

Maiti, Samaresh 79
Mart́ın-Dancausa, Carlos 39
Mehta, Sarika 33
Meij, Edgar 292
Meunier, Jean-Luc 124
Mijić, Jure 71
Mitra, Mandar 79
Mitra, Sukanya 79
Moens, Marie-Francine 71
Moulin, Christophe 446
Mulhem, Philippe 87

Naumovski, Vladimir 280
Nayak, Richi 326, 436, 460
Nordlie, Ragnar 300

484 Author Index

Pal, Sukomal 79
Paranjape, Darshan 33
Pehcevski, Jovan 280
Pharo, Nils 300

Radakovic, Bogdan 164
Rode, Henning 207
Romero, Alfonso E. 39, 453
Rong, Xianqian 264

SanJuan, Eric 54
Schenkel, Ralf 29, 179, 224
Scholer, Falk 172
Seifert, Christin 354
Sen, Aparajita 79
Serdyukov, Pavel 207
Skusa, Andre 343
Sperduti, Alessandro 469

Tanioka, Hiroki 218
Theobald, Martin 29, 179, 224

Thollard, Franck 46
Thom, James A. 172
Todic, Nikola 164
Tran, Tien 436, 460
Trotman, Andrew 1, 314, 374
Tsoi, Ah Chung 469

Uzelac, Aleksandar 164

Verbyst, Delphine 87
Vercoustre, Anne-Marie 280

Weerkamp, Wouter 292
Winter, Judith 97, 237
Woodley, Alan 1
Wu, Mingfang 172

Zechner, Mario 354
Zhang, Junte 395
Zhang, ShuJia 469
Zhu, Jianhan 243

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Ad Hoc Track
	Overview of the INEX 2008 Ad Hoc Track
	Introduction
	Ad Hoc Retrieval Track
	Tasks
	Submission Format
	Evaluation Measures

	Ad Hoc Test Collection
	Corpus
	Topics
	Judgments
	Questionnaires

	Ad Hoc Retrieval Results
	Participation
	Focused Task
	Relevant in Context Task
	Best in Context Task
	Significance Tests

	Analysis of Run and Topic Types
	Elements versus Passages
	CO versus CAS

	Analysis of Article Retrieval
	Article Retrieval: Relevance Judgments
	Article Retrieval: Clicked Pages

	Discussion and Conclusions
	Appendix: Full Run Names

	Experiments with Proximity-Aware Scoring for XML Retrieval at INEX 2008
	Introduction
	Proximity Scoring for XML
	AdHoc Track Results
	Results for Focused Task
	Other Tasks

	Conclusions and Future Work

	Finding Good Elements for Focused Retrieval
	Introduction
	Experiments with the INEX 2007 and 2008 Collections
	Focused Task Methodology
	Ad Hoc Focused Task
	Ad Hoc Retrieval-in-Context Task
	Ad Hoc Best-in-Context Task

	Conclusions
	References

	New Utility Models for the Garnata Information Retrieval System at INEX’08
	Introduction
	Utility Models in the Garnata System
	New Utility Models
	Experimental Results
	Concluding Remarks
	References

	UJM at INEX 2008: Pre-impacting of Tags Weights
	Introduction
	A Structured Document Model
	Term Based Score of XML Elements
	Tag Based Score of XML Elements
	Global Score of XML Elements

	Experiments
	Experimental Protocol
	Tags Weighting

	Results: Focused Task
	Parameters
	INEX Ranking: iP[0.01]
	Articles Versus Elements
	Pre-impacting of Tags Weights on Terms Weights

	Conclusion
	References

	Use of Multiword Terms and Query Expansion for Interactive Information Retrieval
	Introduction
	Ad-Hoc Retrieval Tasks
	Multiword Term Selection and Query Expansion
	Document Representation
	Query Representation
	Interactive Multiword Term Selection and Query Expansion
	Search Strategies

	Results
	Evaluation Protocol
	Focused Retrieval Evaluation
	Relevant-in-Context Task
	Best-in-Context Task
	Document Retrieval Evaluation

	Concluding Remarks
	References

	Enhancing Keyword Search with a Keyphrase Index
	Introduction
	System Description
	The Anatomy of a Keyphrase Index
	Phrase Detection and Replication
	MFS Extraction
	Arguments for Two Phrase Extraction Methods

	Scoring XML Fragments
	Results
	Conclusion and Future Work
	References

	CADIAL Search Engine at INEX
	Introduction
	System Overview
	Ranking Method and Underlying Data Model
	Language Model
	Ranking the Elements
	Index Database

	Ad Hoc Results
	Conclusion
	References

	Indian Statistical Institute at INEX 2008 Adhoc Track
	Introduction
	Approach
	Indexing
	Document-Level Retrieval
	Element-Level Run

	Evaluation
	Results
	Conclusion
	References

	Using Collectionlinks and Documents as Context for INEX 2008
	Introduction
	Related Works
	Non Structural Context
	Structural Links
	Doxel Space
	Doxel Content
	Characterizing Non Structural Doxel Context

	Matching in Context
	Experiments and Results
	Focused Task
	Relevant in Context Task

	Summary and Conclusion
	References

	SPIRIX: A Peer-to-Peer Search Engine for XML-Retrieval
	Introduction
	A P2P Search Engine for XML-Documents
	System Design – How XML-Structure Is Distributed While Indexing
	System Use – Where XML-Structure Is Used While Querying

	Participating in INEX 2008
	INEX Tracks
	INEX Tasks (Ad-Hoc Track)
	University of Frankfurt Runs (Ad-Hoc Track)
	Tuning the System – Balance between Effectiveness and Efficiency

	Evaluation
	Conclusion
	References

	Book Track
	Overview of the INEX 2008 Book Track
	Introduction
	Participating Organisations
	The Book Corpus
	Information Retrieval Tasks
	The Book Retrieval (BR) Task
	The Page in Context (PiC) Task
	Test Topics
	Relevance Assessment System
	Collected Relevance Assessments
	Evaluation Measures and Results

	The Structure Extraction (SE) Task
	Evaluation Measures and Results

	The Active Reading Task (ART)
	Task Setup

	Conclusions and Plans
	References

	XRCE Participation to the Book Structure Task
	Introduction
	Pre-processing
	The ToC Detector
	Post-processing
	The Different Runs
	Evaluation and Discussion
	Run 1: Paragraph Level, Jaccard Similarity
	Run 2: Paragraph Level, DTW Similarity
	Run 3: Line Level, Jaccard Similarity
	Ground Truth Issues
	Evaluation Method Issues and Suggestions

	Conclusion
	References

	University of Waterloo at INEX 2008: Adhoc, Book, and Link-the-Wiki Tracks
	Introduction
	Ad Hoc Track
	Focused Task
	Relevant-in-Context Task
	Best-in-Context Task

	Book Track
	Book Search Task
	Page-in-Context Task

	Link the Wiki Track
	Outgoing Links
	Incoming Links

	Conclusions and Future Work
	References

	The Impact of Document Level Ranking on Focused Retrieval
	Introduction
	Ad Hoc Track
	Retrieval Model and Indexing
	Combining Article and Element Retrieval
	Focused Task
	Relevant in Context Task
	Best in Context Task
	Findings

	Book Track
	Book Retrieval Task
	Page in Context

	Discussion and Conclusions
	References

	Adhoc and Book XML Retrieval with Cheshire
	Introduction
	The Retrieval Algorithms and Fusion Operators
	TREC2 Logistic Regression Algorithm
	Blind Relevance Feedback
	Result Combination Operators

	Database and Indexing Issues
	Indexing the Books XML Database

	INEX 2008 Adhoc Track Runs
	INEX 2008 Book Track Runs
	Conclusions and Future Directions
	References

	Book Layout Analysis: TOC Structure Extraction Engine
	Introduction
	Labeling Scheme
	Book Layout Engine
	TOC Structure Extraction Engine
	Representative Set
	Results

	The Impact of Query Length and Document Length on Book Search Effectiveness
	Introduction
	Our Approach to Book Retrieval Task
	Query Construction
	Index Construction and Runs

	Results
	Concluding Remarks
	References

	Efficiency Track
	Overview of the INEX 2008 Efficiency Track
	General Setting
	Test Collection
	Topic Types
	Topic Format and Assessments
	Sub-tasks

	Run Submissions
	Metrics
	Participants
	Results
	Conclusions
	References

	Exploiting User Navigation to Improve Focused Retrieval
	Introduction
	Preliminary Concepts
	Information Seeking Behaviour
	Structural Relevance

	Proposed Navigation Models for INEX 2008
	System Description
	Lucene
	Boosting Strategies
	Post-processing Algorithms

	Results INEX 2008
	Ad-Hoc Focused Element Retrieval Content-Only Sub-Task
	Efficiency Track
	Entity Ranking

	Conclusions
	References

	Efficient XML and Entity Retrieval with PF/Tijah: CWI and University of Twente at INEX’08
	Introduction
	Efficiency
	Submissions
	Results

	Entity Ranking
	Submissions
	Training
	Results

	Conclusions
	References

	Pseudo Relevance Feedback Using Fast XML Retrieval
	Introduction
	XML Information Retrieval
	TF-IDF Scoring
	Simplified XML Database
	Pseudo Relevance Feedback

	Experimental Results
	INEX 2008 Adhoc Track
	INEX 2008 Efficiency Track

	Conclusions
	References

	TopX 2.0 at the INEX 2008 Efficiency Track
	Introduction
	Scoring Model
	Content Scores
	Structural Scores

	Index Structures
	Previous Relational Encoding
	Content Index
	Structure Index
	CPU-Friendly Compression

	Caching
	Experiments
	Index Construction and Size
	Summary of Runs
	Efficiency Runs by Topic Type

	Conclusions and Future Work
	References

	Aiming for Efficiency by Detecting Structural Similarity
	Introduction and Motivation
	Measuring Structural Similarity
	Using Structural Similarity for XML-Retrieval
	Evaluation
	Discussion
	References

	Entity Ranking Track
	Overview of the INEX 2008 Entity Ranking Track
	Introduction
	INEX-XER Setup
	Data
	Tasks
	Topics
	The 2008 Test Collection
	Relation Search Pilot (ERS)

	Investigation on Sampling Strategies
	Uniform Random Sampling
	Relevance Based Random Sampling
	Stratified Sampling

	Results
	Conclusions
	References

	L3S at INEX 2008: Retrieving Entities Using Structured Information
	Introduction
	Algorithms
	Entity Ranking Task
	List Completion Task
	Entity Relation Search Task

	Experiments
	Experimental Setup
	Experimental Results

	Related Work
	Conclusions and Further Work
	References

	Adapting Language Modeling Methods for Expert Search to Rank Wikipedia Entities
	Introduction
	Related Works
	Models
	Language Modeling Methods for Expert Search
	Considering the INEX Category Query Field
	Understanding Category Terms in Search Query

	Evaluation
	Experiment Settings
	Expert Search Models
	Considering the INEX Category Query Field
	Considering Category Terms in Search Query

	Conclusion
	References

	Finding Entities in Wikipedia Using Links and Categories
	Introduction
	Model
	Experiments
	Training Results
	Test Results

	Conclusion
	References

	Topic Difficulty Prediction in Entity Ranking
	Introduction
	Topic Difficulty Classification
	XML Entity Ranking at INEX
	Identifying Classes of Topics

	Our Entity Ranking System
	Topic Difficulty Prediction
	Topic Features
	Topic Classifier
	Training and Testing Topic Sets
	Validation of Topic Difficulty Prediction

	Applying Topic Difficulty Prediction in Entity Ranking
	Choosing Optimal System Parameters by Topic Difficulty
	Evaluation of the Predicted Topic Performance

	Related Work
	Conclusion and Future Work
	References

	A Generative Language Modeling Approach for Ranking Entities
	Introduction
	Modeling Entity Ranking
	Modeling List Completion
	Estimating the Components
	Entity Model
	Query Model
	Entity-Categories Probability
	Entity-Entity Probability

	Experimental Setup
	Document Representation
	Document Preprocessing
	Smoothing Parameter
	Query Modeling Parameter

	Submitted Runs
	Results and Discussion
	Conclusion
	References

	Interactive Track
	Overview of the INEX 2008 Interactive Track
	Tasks
	Participating Groups
	Research Design
	Search System
	Document Corpus
	Online Questionnaires
	Relevance Assessments

	Experimental Procedure
	Data Analysis
	Questionnaire Data
	Log Statistics

	Conclusions
	References

	Link the Wiki Track
	Overview of the INEX 2008 Link the Wiki Track
	Introduction
	Document Collection
	Task Specification and Submission Format
	Preparation of Qrels
	Assessment
	Evaluation
	The Evaluation Tool
	Metrics

	Approaches to Link Discovery
	Results and Conclusion
	References

	Link-the-Wiki: Performance Evaluation Based on Frequent Phrases
	Introduction
	Overview of the Proposed Approach
	Data Pre-processing
	Frequent Phrase Extraction
	Link Discovery
	Outgoing Links
	Incoming Links

	Experiments and Discussion
	Conclusions and Future Work
	References

	CMIC@INEX 2008: Link-the-Wiki Track
	Introduction
	Keyphrase Extraction
	Related Work
	Keyphrase Extraction System

	Approach to Link-the-Wiki and Results
	Conclusion
	References

	Stealing Anchors to Link the Wiki
	Introduction
	Preparations for Finding Outgoing Links
	Finding Potential Anchor Texts
	Reducing the Size of the Anchor Index

	Link Target Disambiguation
	Analysis of Anchor/Link Frequency
	Analysis of the Target Text
	Analysis of the Link Structure
	Combination of These Approaches
	Limitations

	Finding Incoming Links
	Results and Discussion
	Anchor to File
	Anchor to Best Entry Point
	File to File

	Conclusions and Future Work
	References

	Context Based Wikipedia Linking
	Introduction
	Preprocessing and Context Types
	Linking Strategies
	Out-Link Generation
	In-Link Generation
	Best-Entry-Point Detection

	Implementation and Evaluation Details
	Parameter Analysis
	Official Results

	Conclusion
	References

	Link Detection with Wikipedia
	Introduction
	Outgoing Links
	Anchor Detection - Anchor Likelihood Ratio
	Target Identification - Title Field Evidence
	Target Identification - Topic Article Content Evidence
	Semantic Relatedness between Articles

	Incoming Links
	Experimental Settings and Runs
	Experiment Settings
	Submitted Runs

	Results and Discussion
	Conclusion
	References

	Wikisearching and Wikilinking
	Introduction
	Wikisearching
	The Otago 2007 Passage Algorithm
	The Kullback-Leibler Passage Algorithm
	The Beigbeder Element Algorithm
	Small Improvements
	Documents
	Otago Ad Hoc 2008 Runs and Results
	Wikisearching Results

	Wikilinking
	Outgoing Links
	Incoming Links
	Otago Link-the-Wiki 2008 Runs
	Wikilinking Results

	Conclusions
	References

	CSIR at INEX 2008 Link-the-Wiki Track
	Introduction
	Related Work
	Approaches
	File-to-File Task
	Anchors to BEP Task

	Result and Discussion
	Conclusion and Future Work
	References

	A Content-Based Link Detection Approach Using the Vector Space Model
	Introduction
	Detection of Document-to-Document Links
	Detection of Anchor-to-BEP Links
	Experimental Results and Discussion
	Conclusions
	References

	XML Mining Track
	Overview of the INEX 2008 XML Mining Track
	Introduction
	Categorization/Clustering of a Graph of XML Documents Organized
	Corpus
	Graph of XML Documents
	Labels
	Train/Test Splits
	Evaluation Measures

	Participants and Submissions
	Categorization Models
	Clustering Models

	Official Results
	Categorization
	Clustering

	Conclusion
	References

	Semi-supervised Categorization of Wikipedia Collectionby Label Expansion
	Introduction
	Graph-Based Semi-supervised Learning
	CategoryMass Regularization
	Graph Construction

	Evaluation
	Conclusion
	References

	Document Clustering with K-tree
	Introduction
	Document Representation
	Classification Task
	Classification Results
	Improving Representations

	Document Cluster Quality
	K-tree
	Building a K-tree
	K-tree Submissions

	Non-negative Matrix Factorization
	Clustering Task
	Future Work
	Conclusion
	References

	Using Links to Classify Wikipedia Pages
	Introduction
	Classification Model
	Experimental Results
	Analysis
	Conclusion
	References

	Clustering XML Documents Using Frequent Subtrees
	Introduction
	An Overview
	Phase 1: Pre-processing of Structure
	Parsing
	Representation
	Duplicate Branches Removal

	Phase 2: Structure Mining
	Phase 3: Content Extraction and Pre-processing
	Stop-Word Removal
	Stemming
	Integer Removal
	Shorter Length Words Removal

	Phase 4: Clustering
	Experiments and Discussion
	Conclusion
	References

	UJM at INEX 2008 XML Mining Track
	Introduction
	Document Model for Categorization
	Vector Space Model (VSM)
	TF: Term Representativeness
	IDF: Discriminatory Power of a Term

	Criteria for Features Selection
	Category Coverage criteria (CC)
	Category Coverage Entropy Criteria (CCE)

	Experiments
	Collection INEX XML Mining
	Preprocessing
	Features Selection

	Experimental Results
	Global Results
	Baseline Results
	Selection Features Improves Results
	Selection Features Reduces Indexes

	Conclusion
	References

	Probabilistic Methods for Link-Based Classification at INEX 2008
	Introduction
	Linked Files. Study on the Corpus
	Proposed Method
	Original Method
	Extension to Inlinks and Undirected Links

	Experimental Results
	Conclusions and Future Works
	References

	Utilizing the Structure and Content Information forXML Document Clustering
	Introduction
	The Clustering Approach
	Structure Mining and Clustering
	Latent Semantic Kernel and Content Learning
	Document Clustering

	Experiments and Discussion
	Conclusion and Future Work
	References

	Self Organizing Maps for the Clustering of Large Sets of Labeled Graphs
	Introduction
	Self-Organizing Maps for Graphs
	Experiments
	Results

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

