
Technologies for the
Social Semantic Desktop

Michael Sintek1, Siegfried Handschuh2, Simon Scerri2, and Ludger van Elst1

1 Knowledge Management Department
German Research Center for Artificial Intelligence (DFKI) GmbH,

Kaiserslautern, Germany
{firstname.surname}@dfki.de

2 DERI, National University of Ireland, Galway
{firstname.surname}@deri.org

Abstract. The vision of the Social Semantic Desktop defines a user’s
personal information environment as a source and end-point of the Se-
mantic Web: Knowledge workers comprehensively express their informa-
tion and data with respect to their own conceptualizations. Semantic
Web languages and protocols are used to formalize these conceptualiza-
tions and for coordinating local and global information access.

A core challenge is to integrate existing legacy Desktop data into the
Social Semantic Desktop. Semantic lifting is the process of capturing the
semantics of various types of (semi-)structured data and/or non-semantic
metadataand translating suchdata intoSemanticWeb conceptualizations.

From the way the vision of the Social Semantic Desktop is being pur-
sued in the NEPOMUK project, we identified several requirements and
research questions with respect to knowledge representation. In addition
to the general question of the expressivity needed in such a scenario, two
main challenges come into focus: i) How can we cope with the heterogene-
ity of knowledge models and ontologies, esp. multiple knowledge mod-
ules with potentially different interpretations? ii) How can we support
the tailoring of ontologies towards different needs in various exploiting
applications?

In this paper, we present semantic lifting as a means to create semantic
metadata and the Nepomuk Representation Language (NRL) as a means
to represent these metadata. NRL is an approach to these two aforemen-
tioned questions that is based on named graphs for the modularization
aspect and a view concept for the tailoring of ontologies. This view con-
cept turned out to be of additional value, as it also provides a mechanism
to impose different semantics on the same syntactical structure.

We furthermore present some of the ontologies that have been de-
veloped with the help of NRL in the NEPOMUK project to build the
semantic foundations for the Social Semantic Desktop.

1 Overview

This paper constitutes the material for the lecture on the (Social)
Semantic Desktop given at the Reasoning Web Summer School 2009
(http://reasoningweb.org/2009/).

S. Tessaris et al. (Eds.): Reasoning Web 2009, LNCS 5689, pp. 222–254, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://reasoningweb.org/2009/


Technologies for the Social Semantic Desktop 223

In Sect. 2, we present the basic ideas of the Social Semantic Desktop. The
remaining sections describe technologies developed and used in NEPOMUK and
other projects to build the Social Semantic Desktop. Lifting (Sect. 3) is the pro-
cess of capturing the semantics of various types of (semi-)structured data and/or
non-semantic metadata and translating such data into relations, attributes and
concepts within an ontology. NRL (Sect. 4) is the NEPOMUK Representa-
tional (ontology) Language, developed as an extension to RDF/S with additional
support for named graphs and views, in order to fulfill some of the require-
ments of a representational language for the Social Semantic Desktop. Finally,
in Sect. 5, we present some of the resulting ontologies that have been developed in
NEPOMUK.

2 The Social Semantic Desktop

2.1 Motivation

The very core idea of the Social Semantic Desktop is to enable data interoper-
ability on the personal desktop based on Semantic Web standards and technolo-
gies, e. g., Ontologies and semantic metadata. The vision [13] aims at integrated
personal information management as well as at information distribution and col-
laboration, envisioning two expansion states: i) the Personal Semantic Desktop
for personal information management and later ii) the Social Semantic Desktop
for distributed information management and social community aspects.

In traditional desktop architectures, applications are isolated islands of data—
each application has its own data, unaware of related and relevant data in other
applications. Individual vendors may decide to allow their applications to inter-
operate, so that, e. g., the email client knows about the address book. However,
today there is no consistent approach for allowing interoperation and a system-
wide exchange of data between applications. Similarly, the desktops of different
users are also isolated islands—there is no standardized architecture for inter-
operation and data exchange between desktops. Users may exchange data by
sending emails or uploading it to a server, but so far there is no means for a
seamless communication between an application used by one person on their
desktop and an application used by another person on another desktop. The
knowledge exchange and integration problem on the desktop is thus similar to
that which exists on the Web.

The Social Semantic Desktop paradigm adopts ideas from the Semantic Web
(SW) paradigm [4], which offers a solution for the web. Formal Ontologies
capture both a shared conceptualization of desktop data and personal mental
models. RDF (Resource Description Format) serves as a common data repre-
sentation format. Together, these technologies provide a means to build the
semantic bridges necessary for data exchange and application integration. The
Social Semantic Desktop will transform the conventional desktop into a seam-
less, networked working environment, by loosening the borders between individ-
ual applications and the physical workspace of different users. By aligning the



224 M. Sintek et al.

Social Semantic Desktop paradigm with the Semantic Web paradigm, a Seman-
tic Desktop can be seen as both the source and the end-point of the Semantic
Web.

2.2 State of the Art

In the following we present a brief review of relevant research and development
approaches for the Social Semantic Desktop.

Gnowsis [23] was among the first research projects targeting a Semantic Desk-
top system. Its goal was to complement, rather than replace, established desktop
applications and the desktop operating system with Semantic Web features. The
primary focus of Gnowsis was on Personal Information Management (PIM). It
also addressed the issues of identification and representation of desktop resources
in a unified RDF graph.

The Haystack [20] project presents a good example for an integrated approach
to the Social Semantic Desktop field. Inter-application barriers are avoided by
simply replacing these applications with Haystack’s own word processor, email
client, image manipulation, instant messaging, etc.Haystack allows users to de-
fine their own arrangements and connections between views of information, thus
making it easier to find information located in the personal space.

The IRIS Semantic Desktop [8] (Integrate. Relate. Infer. Share) provided an
application framework that enables users to create a personal map across their
office-related information objects.

DeepaMehta [22] is an open source Semantic Desktop application based on the
Topic Maps standard. The DeepaMehta UI, which runs through a Web browser,
renders Topic Maps as a graph, similar to concept maps. Information of any
kind as well as relations between information items can be displayed and edited
in the same space. The user is no longer confronted with files and programs.

Although the systems we have looked at focused on isolated and complemen-
tary aspects, they clearly influenced the vision of the Social Semantic Desktop
presented in this paper. However our vision is more general and comprehensive.

2.3 Networked Collaborative Knowledge

We all face the problem of having increasingly more information on our desktops.
The average workspace covers hundreds of thousands of different files (including
emails), some of which we vaguely remember the place in which they were stored.
To make matters worse for the desktop user, the web has not only enabled further
information creation and dissemination, but has also opened wide the informa-
tion floodgates. Furthermore, this information is highly confined. The computer
desktop is our universal workspace, where we have all kinds of information in
different formats, and use it for various purposes in different applications. Some
of this data has little explicit representation, is not always suitably structured
and is trapped and imprisoned in applications, i. e., Data Silos. We have multi-
ple isolated information spaces on the desktop, e. g., email clients, file systems,
music managers, web browsers. The same is true for the collaborative web infor-
mation system we use, e. g., wikis, sharepoint, BSCW. These data silos prevent



Technologies for the Social Semantic Desktop 225

us from joint problem solving and collaboration, as well as answering questions
whose result is spread across multiple workspaces. In short, they hinder us from
exchanging personal content from one workspace to another.

The central idea of the Social Semantic Desktop focuses on how social and
collaborative activities and their coordination can be improved through semantic
technologies. Semantics hold the promise of automatic understanding and better
information organization and selective access, and providing standard means for
formulating and distributing metadata and Ontologies. Hence, semantic collab-
orative information management facilitates the integration of information be-
tween desktop applications and the Web, i. e., focused and integrated personal
information management along with information distribution and collaboration.

Classical collaborative information management takes place in controlled,
closed and comparatively small environments. In parallel, the WWW emerged
as a phenomenon that is unstructured, social, open, and which distributes infor-
mation on a large scale. Thus information is often disconnected on the Web. To
solve this we require computers to make sense of this information, hence mean-
ing, and thus semantics; to achieve computer-understandable data by exploiting
existing resources. These existing resources can be lifted by using formal lan-
guages, such as RDF/S or NRL (cf. Sect. 4). This enables us to network the
data and thus to achieve a higher level of new information.

Although knowledge is inherently strongly interconnected and related to peo-
ple, this interconnectedness is not reflected or supported by current information
infrastructures. The lack of interconnectedness hampers basic information man-
agement and problem-solving and collaboration capabilities, like finding, creating
and deploying the right knowledge at the right time.

Besides the creation of knowledge through observation, networking of knowl-
edge is the basic process to generate further knowledge. Networking knowledge,
can produce a piece of knowledge whose information value is far beyond the
mere sum of the individual pieces, i. e., it creates new knowledge. With the Web
we now have a foundational infrastructure in place that enables the linking of
information on a global scale. Furthermore, with the desktop we have an infras-
tructure that stores all our personal information models. Adding meaning moves
the interlinked information to the knowledge level: Web + Semantics + Desktop
= Social Semantic Desktop.

Now is the time to tackle the next step: exploiting semantics to create an
overall knowledge network that bridges the information islands in order to enable
people, organizations and systems to collaborate and interoperate on a global
scale.

In the following we will show how a Social Semantic Desktop can provide
answers to the following questions:

Q1: How do you structure your personal information on your desktop? How do
you structure your file system, your email and your bookmarks? Do you use
other means to manage your information?

Q2: How do you share and exchange the data with your colleagues? With
email—like most people, or with a Wiki, a share point system, etc.?



226 M. Sintek et al.

Q3: How do you find an expert in your organization, given it employs many
people as to make it hard for you to keep an overview?

2.4 User Mental Models

Representation of the users mental models take the form of a personal informa-
tion model (cf. Sect. 5.3). Lets envision an average desktop user called Claudia
(cf. Fig. 1), who is organizing her information in folders and emails. A close
look at it will reveal common topics in both structures, such as projects, orga-
nization, people, topics, etc.These mental models are currently isolated in her
applications, and the goal of the Semantic Desktop is to free this information
and represent it explicitly.

Therefore we propose to apply Semantic Web technologies to represent these
mental models, by utilizing existing and/or extended standards and RDF/S
vocabularies such as VCard for an optimal information representation and then
to lift (cf. Sect.3) the existing structured data up to a NRL representation (cf.
Sect. 4); thereby allowing the structuring of the mental model only once and not
several times.

2.5 Interconnected Desktops

The explicit classification scheme, encapsulated within the Personal Information
Model PIMO (cf. Sect. 5.3), helps individuals manage their desktop informa-
tion. The semantics of NRL allows for the automatic processing of this model
and the deduction of new knowledge. It creates a kind of a personal semantic
web: a semantically-extended supplement to the user’s view of their personal
information.

This research contributes to the so-called vocabulary “onion” by providing
PIMO, NIE (cf. Sect. 5.2) and other required vocabularies. An instance of the
PIMO represents a single user’s concepts, such as projects, tasks, organizations,
etc.The NIE set of ontologies provides vocabularies for describing information
elements (such as files, contact, calendar data, emails-s) which are commonly
present on the desktop and in collaborative systems.

By interconnecting such personal semantic desktops (cf. Fig. 1), e. g., via
a client server model or the use of P2P technology; we can easily exchange
information. Not only can we exchange data in the form of documents, but
also structured information about project, people, events, etc.; as well as the
personal models themselves. For example, Claudia might have developed a very
good structure for a project in which Dirk is also working, so she shares this
structure with Dirk, hence allowing him to re-use this information. Note that
this is not possible with current desktop systems—one cannot easily transfer
their project file folder structure to a colleague.

On top of the P2P networking (which allows content-based routing) we have
social protocols and algorithms that enable an explicit representation of rela-
tionships which is similar to social systems (e. g., LinkedIn1 and others), yet is

1 http://www.linkedin.com/

http://www.linkedin.com/


Technologies for the Social Semantic Desktop 227

Fig. 1. Interconnected Social Semantic Desktops

open in the sense that it allows for the creation of new connections and the
establishment of new relationships. This accelerates collaboration and allows for
the maintenance of shared views.

2.6 Achievements

We can conclude that via the Social Semantic Desktop we achieve a universal
platform for:

– Personal Information Management
– Distributed Information Management
– Social Expansion and Community Creation

The impact results in dramatic time savings, by i) filtering out marginal infor-
mation, ii) discovering vital information and building, as well as participating,
in communities of practice.

We manage personal information by mapping native structures onto our own
mental models and representing data in a unified way. The social aspect of shar-
ing and community building in an organization is done by connecting individual
semantic desktops.

The answers to the previous questions, with the Social Semantic Desktop now
in the picture, are thus:

A1: The user can manage and structure their personal information (mental
model) via PIMO.



228 M. Sintek et al.

A2: The user can share and exchange their personal information via the Social
Semantic Desktop network, which allows for a content-based routing and a
“link routing” based on social connections.

A3: The user can find experts within their social circle by using intelligent ser-
vices on top of the Social Semantic Desktop infrastructure. These utilize
the interest profile of the users’ PIMOs to detect and classify experts and
communities.

In the following chapters we will learn about the foundational technology which
enables the realization of the here presented general issues, i. e., methodologies
for the lifting of existing data onto personal information models, and the seman-
tic backbone of the Social Semantic Desktop—consisting of NRL and the rest of
the NEPOMUK Ontologies.

3 Semantic Lifting and Human Language Technologies
for the Semantic Desktop

3.1 Background

The Social Semantic Desktop requires metadata represented in RDF/NRL (cf.
Sect. 4) to operate. The RDF metadata can be the result of the following
processes:

– i) Lifting of existing structured data onto RDF
– ii) Usage of Human Language Technology (HLT) to capture knowledge from

text and transform that into RDF
– ii) Manual creation of metadata by linking, annotation or tagging

In this chapter we will focus on lifting and HLT. Semantic lifting is the process
of capturing the semantics of various types of (semi-)structured data and/or
non-semantic metadata and translating such data into relations, attributes and
concepts within an ontology. Candidate data for lifting includes non-semantic
metadata (e. g., in XML), emails, directory structures, files on disk, IMAP mail-
boxes, address books and schemas such as iCalendar2. The core challenges are
to integrate existing legacy Desktop data into the Social Semantic Desktop (cf.
Fig. 2); to expose or make explicit such data to both the Social Semantic Desk-
top and the Semantic Web; to reuse, rather than replace, existing data; and to
enhance, rather then replace, existing applications.

Human language technology (HLT), in its broadest sense, can be described as
computational methods for processing and manipulating language, for instance
text analysis, information extraction or controlled language. This technology has
materialized on the Semantic Desktop in the form of integration into the user’s
email client, personal meeting note-taker as well an automated textual analysis
of documents on their desktop.

2 http://en.wikipedia.org/wiki/ICalendar

http://en.wikipedia.org/wiki/ICalendar


Technologies for the Social Semantic Desktop 229

Fig. 2. Lifting unstructured data onto standard semantic representations

3.2 Lifting on the Semantic Desktop

In most cases, the process of lifting structured information onto an RDF layer in-
dexes data that exists in desktop applications. The data is converted to standard
vocabularies and stored in an RDF repository which serves as a local storage.
Existing systems have implemented a lifting service for a Semantic Desktop up
to varying degrees, e. g., Aperture, which is a Java application; Beagle++, a
Linux-Gnome desktop crawler; and Strigi, which is part of KDE 4. We will now
have a closer look at these systems.

Aperture: Aperture3 is a cross-platform java project. Aperture extracts data
from various information sources by crawling each source. It transforms the data
from the existing formats to RDF, using a set of purposely-developed Ontologies.
Aperture only does the crawling and extraction, since storage is usually handled
by a Sesame4 RDF data store.

Beagle++: Beagle++5 is based on Gnome Beagle. Beagle is a desktop and
search application. Gnome Beagle consists of sets of Backends and Filters. Every
backend is in charge of extracting metadata from various data sources.

Semantic extensions for extractors of Gnome Beagle towards Beagle++ are:
i) Path Annotation with WordNet, ii) Web Cache Metadata Generation, and iii)
Publication Metadata Generation from PDF files.

3 http://aperture.sourceforge.net/
4 http://www.openrdf.org/
5 http://beagle2.kbs.uni-hannover.de/

http://aperture.sourceforge.net/
http://www.openrdf.org/
http://beagle2.kbs.uni-hannover.de/


230 M. Sintek et al.

Strigi/Soprano: Nepomuk-KDE6 uses Strigi7 and Soprano8 as core component
for data lifting. Strigi, in a similar fashion to Aperture and Beagle++, crawls
the data available on the hard disk and extracts the file metadata as well as the
content of the files (where it makes sense to do so). As an example, audio files
often carry information about the artist in their metadata. On the other hand
while PDF files can contain metadata about the author, the author can also be
referred to in the content of the PDF file itself. Soprano runs in the Nepomuk
storage process. Strigi reads the data out of the files and passes the information
into Nepomuk/Soprano. Sesame9 or Redland10 are RDF repository backends for
Soprano. Soprano fully supports both PIMO and NIE as valid data formats.

3.3 Human Language Technology on the Semantic Desktop

In this section we brief the application of Human Language Technology (HLT)
to extract information from textual documents, and how techniques like con-
trolled language and natural language generation can be utilized to generate
user-friendly interfaces to the Semantic Desktop.

HLT applied on Textual Content. We first have a look at the application
of HLT for information extraction from textual content in order to create NRL-
based metadata from documents.

Keyphrase Extraction On the Semantic Desktop keyphrases are an important
instrument for cataloging and information retrieval purposes, e. g., Keyphrases
can be used for Semantic Tagging. In literature research, they provide a high-level
and concise summary of the content of textual documents or the topics covered
therein, allowing humans to quickly decide whether a given text is relevant. As
the amount of textual content on desktops grows fast, keyphrases can contribute
to manage large amounts of textual information, for instance by marking up
important sections in documents, i. e., to provide increased user experience in
document exploration.

As keyphrases are a description of textual data, the consideration of HLT tools
in order to automate the extraction process is obvious. While shallow techniques
are a long way from language understanding, in combination with statistical
processing they can be helpful in many ways, providing a first stop in auto-
matic content-metadata extraction, which then can be used as input for more
sophisticated technologies.

The main idea here is to use the keyphrases as a first step to propose a Se-
mantic Tag in order to annotate a document (cf. Sect. 5.1). The reduced set
of keyphrase candidates will provide a less noisy summary of the topics men-
tioned in a document. This reduced set, in fact, does enable querying ontology

6 http://nepomuk.kde.org/
7 http://strigi.sourceforge.net/
8 http://soprano.sourceforge.net/
9 http://www.openrdf.org/

10 http://librdf.org/

http://nepomuk.kde.org/
http://strigi.sourceforge.net/
http://soprano.sourceforge.net/
http://www.openrdf.org/
http://librdf.org/


Technologies for the Social Semantic Desktop 231

libraries (e. g., OntoSelect11 or Watson12) for good-fitting schemes, which then
can be retrieved for further semantic annotation in addition to the Semantic
Tags provided by the keyphrases.

Speech Act Detection One of the applied HLT on text technology of the Se-
mantic Desktop is based on speech act detection in email and instant messaging
conversations. The notion of a speech act pursued here is based on that defined
by John Searle [31]. At its most basic definition a speech act is an utterance,
understood more specifically as a performative utterance or an illocutionary act
(a term introduced by John L. Austin [1]), where it is assumed that by saying
something one actually is doing something. In our case, the utterances take the
form of typed text. For instance, a sentence from Claudia’s subordinate ask-
ing her politely to attend an important meeting, expresses the speaker’s (or the
sender of the sentence) wish for Claudia to attend, and sets a new requirement for
Claudia—to reply to the meeting suggestion. On the contrary, the same sentence
from Claudia’s manager will also express the wish of the sender for Claudia to
attend, but the expected requirement for Claudia will be to attend the meeting
without further ado.

Semanta13 is a fully-implemented system supporting Semantic Email, whereby
we have lifted email processes to a semantic level via speech act theory and a
formally-defined ad-hoc email workflow model. In our approach we considered
the fact that an email has one or more purposes, or Action Items. The content of
an email message can be summarized into a number of such items (e. g., Meeting
Request, Task Assignment, File Request, etc.). Once exchanged, every single
action item can be seen as the start, or continuation of a separate workflow.

The sMail Conceptual Framework [28] applies Speech Act Theory [31] to
the email communication process, in order to provide a formal structure and
semantics for these action items and their workflows. Email action items like the
ones above can be represented by a number of speech act instances provided in
the sMail ontology14. The Email Speech Act Workflow model [27] is then used
to support the user with handling email workflows, e. g., providing them with a
set of options when reacting to action items in email.

Computational linguistics technologies, namely Ontology-Based Information
Extraction (OBIE) techniques, are employed to provide semiautomatic annota-
tion of action items (speech acts) in email content. The information extraction
is based on a declarative model which classifies text into speech acts based on
a number of linguistic features like sentence form, tense, modality and the se-
mantic roles of verbs. The system deploys a GATE [9] corpus pipeline consisting
of a tokenizer, modified sentence splitter, POS tagger, keyphrase lookup via Fi-
nite State gazetteers and several JAPE [10] grammars. Email annotations are
represented in RDF, using a number of Ontologies (sMail, NMO, NCO, etc.)
and embedded within email messages. This enables semantic email to be used

11 olp.dfki.de/ontoselect/
12 http://watson.kmi.open.ac.uk/WatsonWUI/
13 http://smile.deri.ie/projects/semanta
14 http://ontologies.smile.deri.ie/smail

olp.dfki.de/ontoselect/
http://watson.kmi.open.ac.uk/WatsonWUI/
http://smile.deri.ie/projects/semanta
http://ontologies.smile.deri.ie/smail


232 M. Sintek et al.

as a vessel for the transportation and also the sharing of semantics across social
semantic desktops.

HLT to generate Interfaces. HLT can be applied to Controlled Language,
Natural Language Generation and Document Analysis in order to provide a user-
friendly interface to the Semantic Desktop. Below we provide examples of how
these techniques were utilised.

Controlled Language Interfaces Our research investigates how HL) Interfaces,
specifically Controlled Natural Languages (CNL) and applied Natural Language
Generation(NLG) can provide a user-friendly means for the non-expert users
or small organizations to exploit Semantic Web technologies specifically on the
Social Semantic Desktop.

Roundtrip Ontology Authoring[12] (ROA) is a process that allows non-expert
users to author or amend an ontology by using simple, easy-to-learn, controlled
natural language. The process is a combination of Controlled Language for In-
formation Extraction (CLIE) and Text Generation which is developed on top of
GATE.

Furthermore Controlled Language (CNL) [11] offers an incentive to the novice
user to annotate, while simultaneously authoring his/her respective documents
in a user-friendly manner, but simultaneously shielding him/her from the un-
derlying complex knowledge representation formalisms. A natural overlap exists
between tools, used for both ontology creation and semantic annotation. How-
ever, there is a subtle difference between both processes. Semantic annotation
has been described as both a process, as well as the outcome of the process.
Hence it describes i) the process of addition of semantic data or metadata to the
content given an agreed ontology and ii) the semantic data or metadata itself
as a result of this process. Of particular importance here is the notion of the
addition or association of semantic data or metadata to content.

Personalized Visual Document Collection Analysis The PIMO ontology can
also be used to aid scientists and analysts alike in exploring a text collection in
a personalized manner in addition to being a formal representation of parts of
knowledge workers’ spheres of interest.

Apart from the need to retrieve information from documents that are rele-
vant to certain topics of interest, knowledge workers often also need to explore
and analyze a collection of documents as a whole, to gain further understand-
ing. Unlike the information retrieval activity, the information analysis activity
aims to provide the users with an overall picture of a text collection as a whole,
on various dimensions instead of presenting them with the most relevant docu-
ments satisfying some search criteria. Given the amount and the unstructured
or weakly-structured nature of textual documents that analysts have to deal
with, developments in visualization research are beneficial in helping them to
gain needed insights in a timely manner.

In this context, we utilized an innovative visualization approach, called IVEA
[35,36], which leverages upon the PIMO ontology and the Coordinated Multiple
Views technique to support the personalized exploration and analysis of docu-
ment collections. IVEA allows for an interactive and user-controlled exploration



Technologies for the Social Semantic Desktop 233

process in which the knowledge workers can gain meaningful, rapid understand-
ing about a text collection via intuitive visual displays. Not only does it allow
the users to integrate their interests into the visual exploration and analysis ac-
tivity, but it also enables them to incrementally enrich their PIMO Ontologies
with entities matching their evolving interests in the process. With the newly
added entities, the PIMO ontology becomes a richer and better representation
of the users’ interests and hence can lead to better and more personalized explo-
ration and analysis experiences in the future. Furthermore, not only can IVEA
be beneficial to its targeted task, but it also provides an easy and incremental
way that requires minimal effort from the users to keep their PIMO Ontolo-
gies in line with their continuously changing interests. This, indirectly, can also
benefit other PIMO-based applications. The work leverages upon research in in-
formation visualization, information retrieval, and human language technology
for semantic annotation. These technologies are used in support of the larger
HCI goal of enabling effective personalized interactions between users and text
collections.

In the next chapters, we will learn about the underlying representation for-
malism for the lifted knowledge—NRL and the other Nepomuk Ontologies.

4 NRL—The NEPOMUK Representational Language

4.1 Motivation

The viewpoint of the user comprehensively generating, manipulating and ex-
ploiting private as well as shared and public data has to be adequately reflected
in the representational basis of a Social Semantic Desktop. While we think in
general the assumptions of knowledge representation in the Semantic Web are
a good starting point, the Semantic Desktop scenario generates special require-
ments. We identified two core questions which we try to tackle in the knowledge
representation approach presented in this paper:

1. How can we cope with the heterogeneity of knowledge models and ontologies,
esp. multiple knowledge modules with potentially different interpretation
schemes?

2. How can we support the tailoring of ontologies towards different needs in
various exploiting applications?

The first question is rooted in the fact that with heterogeneous generation and
exploitation of knowledge there is no “master instance” which defines and en-
sures the “interpretation sovereignty.” The second question turned out to be an
important prerequisite for a clean ontology design on the semantic desktop, as
many applications shall use a knowledge worker’s “personal ontology.”

From these general questions, we outlined the following five main requirements
for knowledge representation on the Social Semantic Desktop:

Epistemological adequacy of modeling primitives: In the Social Semantic
Desktop scenario, knowledge modeling is not only performed offline (e. g., by a



234 M. Sintek et al.

distinguished knowledge engineer), but also by the end user, much like in the
tagging systems of the Web 2.0 where a user can continuously invent new vo-
cabulary for describing his information items. Even if much of the complexity
of the underlying representation formalism can be hidden by adequate user in-
terfaces, it is desirable that there is no big epistemological gap between the way
an end-user would like to express his knowledge and the way it is represented in
the system.

Integration of open-world and closed-world assumptions: The main prin-
ciple of the SW is that it is an open world in which documents can add new
information about existing resources. Since the Web is a huge place in which
everything can link to anything else, it is impossible to rule out that a statement
could be true, or could become true in the future. Hence, the global semantic
web relies on a open-world semantic, with no unique-name assumption—the of-
ficial OWL and RDF/S semantics. On the other hand, the main principle on
the personal Semantic Desktop is that it is a closed-world as it mainly focuses
on personal data. While most people find it difficult to understand the logi-
cal meaning and potential inferences statements of the open-world assumption,
the closed-world assumption is easier to understand for the user. Hence, the
Personal Semantic Desktop requires the closed-world semantics with a unique-
name assumption or good smushing techniques to achieve the same effects. The
next stage of expansion of the personal semantic desktop is the Social Semantic
Desktop, which connects the individual desktops. This will require open-world
semantics (in between desktops) with local closed-world semantics (on the per-
sonal desktop). Thus the desktop needs to be able to handle external data with
open-world semantics. Therefore we require a scenario where we can always dis-
tinguish between data per se and the semantics or assumptions on that data. If
these are handled analogously, the semantic desktop, a closed-world in theory,
will also be able to handle data with open-world semantics.

Handling of multiple models: In order to adequately represent the social
dimension of distributed knowledge generation and usage [37], a module concept
is desirable which supports encapsulation of statements and the possibility to
refer to such modules. The social aspect requires a support for provenance and
trust information, when it comes to importing and exporting data. With the
present RDF model, importing external RDF data from another desktop presents
some difficulties, mainly revolving around the fact that there are no standard
means of retaining provenance information of imported data. This means that
data is propagated over multiple desktops, with no information regarding the
original provider and other crucial information like the context under which that
data is valid. This can result in various situations like ending up with outdated
RDF data with no means to update it, as well as redundant RDF data which
cannot be entirely and safely removed.

Multiple semantics: As stated before, the aspect of distributed (and indepen-
dently created) information requires the support of the open-world assumption
(as we have it in OWL and RDF/S), whereas local information created on a



Technologies for the Social Semantic Desktop 235

single desktop will have closed-world semantics. Therefore, applications will be
forced to deal with different kinds of semantics.

Multiple views: Also required by the social aspect is the support for multiple
views, since different individuals on different desktops might be interested in dif-
ferent aspects of the data. A view is dynamic, virtual data computed or collated
from the original data. The best view for a particular purpose depends on the
information the user needs.

In the next section, we will briefly discuss the state of the art which served as
input for the NEPOMUK Representation Language (NRL, [33,34])15. Sec. 4.3
gives an overview of our approach. The following sections elaborate on two
important aspects of NRL, the Named Graphs for handling multiple mod-
els (Sec. 4.4) and the Graph Views for imposing different semantics on and
application-oriented tailoring of models (Sec. 4.5). In Sec. 4.6, we present an
example which shows how the concepts presented in this paper can be applied.
Sec. 6 summarizes the NRL approach and discusses next steps.

4.2 State of the Art

The Resource Description Framework [17] and the associated schema language
RDFS [5] set a standard for the Semantic Web, providing a representational
language whereby resources on the web can be mapped to designated classes
of objects in some shared knowledge domain, and subsequently described and
related through applicable object properties. With the gradual acceptance of the
Semantic Web as an achievable rather than just an ideal World Wide Web sce-
nario, and adoption of RDF/S as the standard for describing and manipulating
semantic web data, there have been many attempts to improve some RDF/S
shortcomings to handling such data. Most where in the form of representational
languages that extend RDF/S, the most notable of which is OWL [2]. Other work
attempted to provide further functionalities on top of semantic data to that pro-
vided by RDF/S by revising the RDF model itself. The most successful idea
perhaps is the named graph paradigm, where identifying multiple RDF graphs
and naming them with distinct URIs is believed to provide useful additional
functionality on top of the RDF model. Given that named graphs are manage-
able sets of data in an otherwise structureless RDF triple space composed of all
existent RDF data, most of the practical problems arising from dealing with RDF
data, like dealing with invalid or outdated data as well as issues of provenance
and trust, could be addressed more easily if the RDF model supports named
graphs. The RDF recommendation itself does not provide suitable mechanisms
for talking about graphs or define relations between graphs [3,17,5,14]. Although
the extension of the RDF model with named graph support has been proposed
[7,32,19], and the motivation and ideas are clearly stated, a concrete extension
to the RDF model supporting named graph has not yet materialized. So far, a
basic syntax and semantics that models minimal manipulation of named graphs

15 Full specifications available at http://www.semanticdesktop.org/ontologies/nrl/

http://www.semanticdesktop.org/ontologies/nrl/


236 M. Sintek et al.

has been presented by participants of the Semantic Web Interest Group.16 Their
intent is to introduce the technology to the W3C process once initial versions
are finalized. The SPARQL query language [19], currently undergoing standard-
ization by the W3C, is the most successful attempt to provide a standard query
language for RDF data. SPARQL’s full support for named graphs has encour-
aged further research in the area. The concept of modularized RDF knowledge
bases (in the spirit of named graphs) plus views that can be used to realize the
semantics of a module (with the help of rules), amongst other things, has been
introduced in the Semantic Web rule language TRIPLE [32]. Recently, [30] in-
troduced the concept of Networked Graphs, which are a declarative mechanism
to define views over distributed RDF graphs with the help of SPARQL rules.

Since the existing approaches are incomplete wrt. the needs of NEPOMUK
and most Semantic Web scenarios in general, we propose a combination of named
graphs and TRIPLE’s view concept as the basis for NRL, the representational
language we are presenting. In contrast to TRIPLE, we will add the ability to
define views as an extension of RDF and named graphs at the ontological level,
thus we are not dependent on a specific rule formalism as in the case of TRIPLE.

In the rest of the NRL section, we will give a detailed description of the named
graphs and views features of NRL. Other features of NRL (which consist of some
RDFS extensions mainly inspired by Protégé and OWL) will not be discussed.

4.3 Knowledge Representation on the Social Semantic Desktop:
The NRL Approach

NRL was inspired by the need for a robust representational language for the
Social Semantic Desktop, that targets the shortcomings of RDF/S. NRL was
designed to fulfill requirements for the NEPOMUK Social Semantic Desktop
project,17 hence the particular naming, but it is otherwise domain-independent.

As discussed in the previous section, the most notable shortcoming of the
RDF model is the lack of support for handling multiple models. In theory Named
Graphs solve this problem since they are identifiable, modularized sets of data.
Through this intermediate layer handling RDF data, e. g., exchanging data and
keeping track of data provenance information, is much more manageable. This
has a great influence in the social aspect of the Social Semantic Desktop project,
since the success of this particular aspect depends largely on how to successfully
deal with these issues. All data handling on the semantic desktop including stor-
age, retrieval and exchange, will therefore be carried out through RDF graphs.
Alongside provenance data, more useful information can be attached to named
graphs. In particular we feel that named graphs should be distinguished by their
roles, e. g., Ontology or Instance Base.

Desktop users may be interested in different aspects of data in a named graph
at different times. Looking at the contents of an image folder for instance, the
user might wish to see related concepts for an image, or any other files related to

16 http://www.w3.org/2004/03/trix/
17 http://nepomuk.semanticdesktop.org/

http://www.w3.org/2004/03/trix/
http://nepomuk.semanticdesktop.org/


Technologies for the Social Semantic Desktop 237

it, but not necessarily both concurrently even if the information is stored in the
same graph. Additionally, advanced users might require to see data that is not
usually visible to regular users, like additional indirect concepts related to the
file. This would require the viewing application to realize the RDF/S semantics
over the data to yield more results. The desktop system is therefore required
to work with extended or restricted versions of named graphs in different situ-
ations. However, we believe that such manipulations over named graphs should
not have a permanent impact on the data in question. Conversely, we believe
that the original named graph should be independent of any kind of workable
interpretation executed by an application, which can be discarded if and when
they are no longer needed.

For this reason, we present the concept of Graph Views as one of the core
concepts in NRL. By allowing for arbitrary tailored interpretations for any es-
tablished named graph, graph views fulfill our idea that named graphs should not
innately carry any realized semantics or assumptions, unless they are themselves
views on other graphs for exactly that purpose, and that they should remain un-
changed and independent of any view applied on them. This means that different
semantics can be realized for different graphs if required. In practice, different
application on the semantic desktop will require to apply different semantics, or
assumptions on semantics, to named graphs. In this way, although the semantic
desktop operates in a closed-world, it is also possible to work with open-world
semantic views over a graph. Importing a named graph with predefined open-
world semantics on the semantic desktop is therefore possible. If required (and

Fig. 3. Overview of NRL—Abstract Syntax, Concepts and Semantics



238 M. Sintek et al.

meaningful), closed-world applications can then work with a closed-world se-
mantics view over the imported graph.

Fig. 3 gives an overview of the components of NRL, depicting both the syn-
tactical and the semantic blocks of NRL. The syntax box contains, in the upper
part, the NRL Schema language, which is mainly an extension of (a large subset
of) RDFS. The lower part shows how named graphs, graph roles, and views are
related, which will be explained in detail in the rest of this paper.

The left half of the figure sheds some light on the semantics of NRL, which
has a declarative and a procedural part. Declarative semantics is linked with
graph roles, i. e., roles are used to assign meaning to named graphs (note that
not all named graphs or views must be assigned some declarative semantics,
e. g., in cases when the semantics is (not) yet known or simply not relevant).
Views are also linked to view specifications, which function as a mechanism
to express procedural semantics, e. g., by using a rule system. The procedural
semantics has, of course, to realize the declarative semantics that is assigned to
a semantic view.

4.4 Handling Multiple Models: NRL Named Graphs

Named graphs (NGs) are an extension on top of RDF, where every distinct
RDF graph is identified by a unique name. NGs provide additional functionality
on top of RDF particularly with respect to metametadata (metadata about
metadata), provenance, and data (in)equivalence issues, besides making data
handling more manageable. Our approach is based on the work described in [7]
excluding however, the open-world assumption stated there. As stated earlier (cf.
Sec. 4.3) we believe that named graphs should not innately carry any realized
semantics or assumptions on the semantics. Therefore, despite being designed as
a requirement for the Semantic Desktop, which operates under a closed-world
scenario, NRL itself does not impose closed-world semantics on data. This and
other semantics can instead be realized through designated views on graphs.

A named graph is a pair (n, g), where n is a unique URI reference denoting the
assigned name for the graph g. Such a mapping fixes the graph g corresponding
to n in a rigid, non-extensible way. The URI representing n can then be used
from any location to refer to the corresponding set of triples belonging to the
graph g. A graph g′ consistent18 with a distinct graph g named n cannot be
assigned the same name n.

An RDF triple can exist in a named graph or outside any named graph. How-
ever, for consistency reasons, all triples must be assigned to some named graph.
For this reason NRL provides a special named graph, nrl:DefaultGraph. Triples
existing outside any named graph are considered part of this default graph. This
ensures backward compatibility with triples that are not based on named graphs.
This approach gives rise to the term RDF Dataset as defined in [19]. An RDF
dataset is composed of a default graph and a finite number of distinct named

18 Two different datasets asserting two unique graphs but having the same URI for a
name contradict one another.



Technologies for the Social Semantic Desktop 239

Fig. 4. NRL Named Graph Class Hierarchy

graph, formally defined as the set {g, (n1, g1), (n2, g2), ..., (nn, gn)} comprising of
the default graph g and zero or more named graphs (ni, gi).

NRL distinguishes between graphs and graph roles, in order to have orthog-
onal modeling primitives for defining graphs and for specifying their role. A
graph role refers to the characteristics and content of a named graph (e. g., sim-
ple data, an ontology, a knowledge base, etc.) and how the data is intended
to be handled. NRL provides basic Graph Metadata Vocabulary for annotating
graph roles, which vocabulary is extended in the Nepomuk Annotation Ontology
(NAO)19. Graph metadata is attached to roles rather than to the graphs them-
selves, because its more intuitive to annotate an ontology, for example, rather
than the underlying graph. Roles are more stable than the graphs they represent,
and while the graph for a particular role might change constantly, evolution of
the role itself is less frequent. An instantiation of a role represents specific type
of graph and the corresponding triple set data.

Fig. 4 depicts the class hierarchy supporting NGs in NRL. Graph roles are
defined as specialization of the general graph representation nrl:Data. A special
graph, nrl:DocumentGraph, is used as a marker class for graphs that are rep-
resented within and identified by a document URL. We now present the NRL
vocabulary supporting named graphs. General graph vocabulary is defined in
Sec. 4.4 while Sec. 4.4 is dedicated entirely to graph roles.

Graph Core Vocabulary

nrl:Graph and nrl:DocumentGraph. Instances of these classes represent
named graphs. The name of the instance coincides with the name of the
graph. The graph content for a nrl:DocumentGraph is located at the URL
that is the URIref for the nrl:DocumentGraph instance. This allows existing

19 http://www.semanticdesktop.org/ontologies/2007/08/15/nao

http://www.semanticdesktop.org/ontologies/2007/08/15/nao


240 M. Sintek et al.

RDF files to be re-used as named graphs, avoiding the need of a syntax like
TriG20 to define named graphs.

nrl:subGraphOf, nrl:superGraphOf, and nrl:equivalentGraph. These
relations between named graphs have the obvious semantics: they are
defined as ⊆, ⊇, and = on the bare triple sets in these graphs.

nrl:imports is a subproperty of nrl:superGraphOf and models graph imports.
Apart from implying the ⊇ relation between the triple sets, it also requires
that the semantics of the two graphs is compatible if used on, e. g., graphs
that are ontologies.

nrl:DefaultGraph. This instance of nrl:Graph represents the graph contain-
ing all triples existing outside any user-defined named graph. Since we do
not apply any semantics to triples automatically, this allows views to be
defined on top of triples defined outside of all named graphs analogously to
the named-graph case.

Graph Roles Vocabulary

nrl:Data. This subclass of nrl:Graph is an abstract class to make graph roles
easy-to-use marker classes. It represents the most generic role that a graph
can have, namely that it contains data.

nrl:Schema and nrl:Ontology are roles for graphs that represent data in
some kind of conceptualization model. nrl:Ontology is a subclass of
nrl:Schema.

nrl:InstanceBase marks a named graph to contain instances from schemas or
ontologies. The properties nrl:hasSchema and nrl:hasOntology relate an
instance base to the corresponding schema or ontology.

nrl:KnowledgeBase marks a named graph as containing a conceptual model
plus instances from schemas or ontologies.

nrl:GraphMetadata is used to mark graphs whose sole purpose is to
store metadata about other graphs. Data about a graph (Graph
Metadata) is thus stored in a corresponding graph having this role.
The property nrl:graphMetadataFor binds a metadata graph to the
graph being annotated. Although a graph can have multiple metadata
graphs describing it, there can only be one unique metadata graph
which defines the graph’s important core properties, e.g. whether it
is updatable (through nrl:updatable) or otherwise. NRL provides the
nrl:coreGraphMetadataFor property for this purpose, as a subproperty of
nrl:graphMetadataFor, to identify the core metadata graph for a graph.

nrl:Configuration is used to represent technical configuration data that is ir-
relevant to general semantic web data within a graph. Other additional roles
serving different purposes might be added in the future.

nrl:Semantics. Declarative semantics for a graph role can be specified by refer-
ring to instances of this class via nrl:hasSemantics. These will usually link
(via nrl:semanticsDefinedBy) to a document specifying the semantics in
a human readable or formal way (e. g., the RDF Semantics document [14]).

20 http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/

http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/


Technologies for the Social Semantic Desktop 241

4.5 Imposing Semantics on Graphs: NRL Graph Views

A named graph consists only of the enumerated triples in the triple set as-
sociated with the name, and does not inherently carry any form of semantics
(apart from the basic RDF semantics). However in many situations it is desir-
able to work with an extended or restricted interpretation of simple syntax-only
named graphs. These can be realized by applying some algorithm (e. g., specified
through rules) which enhances named graphs with entailment triples, returns a
restricted form of the triple set, or an entirely new triple set. To preserve the
integrity of a named graph, interpretations of one named graph should never re-
place the original. To model this functionality and retain the separation between
original named graph and any number of their interpretations, we introduce the
concept of Graph Views.

Views are different interpretations for a particular named graph. Formally, a
view is an executable specification of an input graph into a corresponding output
graph. Informally, they can be seen as arbitrary wrappings for a named graph.
Fig. 5 depicts graph view support in NRL. Views are themselves named graphs.
Therefore one can have a named graph that is a different interpretation, or view,
of another named graph. This modeling can be applied recurrently, yielding a
view of a view and so on.

View specifications can execute the view realization for a view, via a set of
queries/rules in a query/rule language (e. g., a SPARQL query over a named
graph21), or via an external application (e. g., an application that returns the
transitive closure of rdfs:subClassOf). As in the latter example, view real-
izations can also realize the implicit semantics of a graph according to some
language or schema (e. g., RDFS, OWL, NRL etc.). We refer to these as Se-
mantic Views, represented in Fig. 5 by the intersection of nrl:GraphView and
graph roles. One can draw a parallel between this figure and Fig. 3. In con-
trast to graph roles, which have only declarative semantics defined through the
nrl:hasSemantics property, semantic views also carry procedural semantics,
since the semantics of these graphs are always realized, (through nrl:realizes)
and not simply implied.

Views Vocabulary. In this section we briefly present the NRL vocabulary
supporting graph view specifications.

nrl:GraphView represents a view, modeled as a subclass of named graph.
A view is realized through a view specification, defined by an instance of
nrl:ViewSpecification via nrl:hasSpecification. The named graph on

21 A way for using SPARQL to realize view definitions (called Networked Graphs)
has been described in [30]. While Networked Graphs allow views to be defined in a
declarative way (in contrast to NRL’s somewhat procedural way), they lack many
of the features we think are important for a view language, e. g., they do do not
allow access to the underlying RDF graphs without any interpretation, and they
only allow views to be defined via SPARQL which excludes languages with more
advanced semantics like OWL and also languages that do not have a declarative
semantics.



242 M. Sintek et al.

Fig. 5. Graph Views in NRL

which the view is being generated is linked by nrl:viewOn. The separation
between different interpretations of a named graph and the original named
graph itself is thus retained.

nrl:ViewSpecification. This class represents a general view specification,
which can currently take one of two forms, modeled as the two subclasses
nrl:RuleViewSpecification and nrl:ExternalViewSpecification. As
discussed earlier, semantic views realize procedural semantics and are linked
to some semantics via nrl:realizes. This is however to be differentiated
from nrl:hasSemantics, which states that a named graph carries (through
a role) declarative semantics which is not necessarily (explicitly) realized via
a view specification.

nrl:RuleViewSpecification. Views can be specified by referring to a rule lan-
guage (via nrl:ruleLanguage) and a corresponding set of given rules (via
nrl:rule). These views are realized by executing the rules, generating the
required output named graph.

nrl:ExternalViewSpecification. Instances of this class map to the location
of (via nrl:externalRealizer) an external application, service, or program
that is executed to create the view.

4.6 Example: NRL in Use

In this section, we demonstrate the utilization of the various NRL concepts in
a more complex scenario: Ella is a biologist and works as a senior researcher at
Institute Pasteur in central Paris. She would like to compile an online knowledge
base describing animal species for her students to access. She knows that a rather
generic ontology describing the animal species domain, O1, is already available
(which, technically speaking, means it exists as a named graph). Someone else
had also supplied data consisting of a vast amount of instances for the animals
ontology as a named graph with the role of instance base, I1. However this
combined data does not provide extensive coverage of the animal kingdom as



Technologies for the Social Semantic Desktop 243

required by Ella. Therefore Ella hires a SW knowledge engineer to model another
ontology that defines further species not captured in O1, and this is stored as
another named graph, O2. Since Ella requires concepts from both ontologies,
the engineer merges O1 and O2 in the required conceptualization by creating
a named graph O as an ontology and defining it as supergraph of O1 and O2.
Furthermore, a number of real instances of the new animal species defined in O2

is compiled in an instance base, I2.
Ella now requires to use all the acquired and generated data to power a use-

ful service for the students to use. Schematic data from the graph O, and the
instances from I1 and I2 are all imported to a new graph, KB , acting as a knowl-
edge base. Ella would like the students to be able to query the knowledge base
with questions like ‘Are flatworms Deuterostomes or Platyzoa?’. Although by
traversing the animals hierarchy it is clear that they are Platyzoa, the statement
is not innately part of the graph KB . This can be discovered by realizing the
semantics of rdfs:subClassOf as defined in the RDFS semantics. However KB
might be required as is, with no assumed semantics, for other purposes. Directly
enriching KB with entailment triples permanently would make this impossible.

Therefore the knowledge engineer creates a view over KB for Ella, consisting of
the required extended graph, without modifying the original KB in any way. This
is done by defining a view specification that computes the procedural semantics
for KB . The specification uses a rule language of choice that provides a number
of rules, one of which computes the transitive closure of rdfs:subClassOf for
a set of RDF triples. Executing that rule over the triples in KB results in the
semantic view V1(KB), which consists of the RDF triples in KB plus the gener-
ated entailment triples. The separation between the underlying model and the
model with the required semantics is thus retained and through simple queries
over V1(KB), students can instantly get answers to their questions.

Ella later on decides to provide another service for younger students by us-
ing ‘Graph Taxonomy Extractor’, a graph visualization API that generates an
interactive graph depicting the animal hierarchy within V1(KB). However this
graph contains other information in addition to that required (e. g., properties
attributed to classes). Of course, Ella does not want to discard all this useful
information from V1(KB) permanently just to generate the visualization. The
knowledge engineer is aware of a Semantic Web application that does exactly
what Ella requires. The application acts as an external view specification and
generates a view, consisting of only triples defining the class hierarchy, over an in-
put named graph. The view generated by this application, V2(V1(KB)), is fed to
the API to effectively generate the interactive graph for the students to explore.

It is worth to note that all seven named graphs on which this last view is
generated upon are still intact and have not been affected by any of the opera-
tions along the way. If the knowledge engineer requires to apply some different
semantics over KB , it may still be done since generating V1(KB) did not have an
impact on KB . However, the content of KB needs to be validated, or generated,
each time it is used since one of its subgraphs (O1, O2, I1 and I2) can change.
Although from a practical point of view this might sound laborious, from a



244 M. Sintek et al.

conceptual point of view it solves problems regarding data consistency and avoids
other problems like working with outdated data that can’t be updated because
links to underlying models have been lost.

Fig. 6 presents the “dataflow” in our example scenario, demonstrating how
the theoretical basis of NRL can be applied in practice to effectively model data
for use in different scenarios in a clear and consistent way.

Fig. 6. NRL Dataflow Diagram

We now model the dataflow in Fig. 6 in TriG syntax.22 TriG is a straight-
forward extension of Turtle.23 Turtle itself is an extension of N-Triples24 which
carefully takes the most useful and appropriate things added from Notation325

while keeping it in the RDF model. TriG is a plain text format created for
serializing NGs and RDF Datasets. Fig. 7 demonstrates how one can make use
of the named graph paradigm and the syntax for named graphs:

[1] namespace declarations
[2-5] ontology graphs (ex:o1 and ex:o2 are defined and then imported into

ex:o)
[6-8] instance/knowledge base definitions
[9] contents of ontology ex:o2, defining extended animal domain

22 http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/
23 http://www.dajobe.org/2004/01/turtle/
24 http://www.w3.org/TR/rdf-testcases/#ntriples
25 http://www.w3.org/DesignIssues/Notation3

http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/
http://www.dajobe.org/2004/01/turtle/
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/DesignIssues/Notation3


Technologies for the Social Semantic Desktop 245

[1] @prefix nrl: <http://semanticdesktop.org/ontology/nrl-yyyymmdd#> .
@prefix ex: <http://www.example.org/vocabulary#> .

[2] ex:o2 rdf:type nrl:Ontology .
[3] <http://www.domain.com/o1.rdfs> rdf:type nrl:Ontology ,

nrl:DocumentGraph .
[4] ex:o1 rdf:type nrl:Ontology ;

nrl:equivalentGraph <http://www.domain.com/o1.rdfs> .
[5] ex:o rdf:type nrl:Ontology ;

nrl:imports ex:o1, ex:o2 .
[6] ex:i2 rdf:type nrl:InstanceBase ;

nrl:hasOntology ex:o2 .
[7] http://www.anotherdomain.com/i1.rdf> rdf:type nrl:InstanceBase,

nrl:DocumentGraph .
[8] ex:kb rdf:type nrl:KnowledgeBase ;

nrl:imports ex:o, ex:i2, <http://www.anotherdomain.com/i1.rdf> .
[9] ex:o2 {

ex:Animal rdf:type rdfs:Class .
## further Animal Ontology definitions here ## }

[10]ex:i2 {
ex:CandyCaneWorm rdf:type ex:Flatworm ;

## further Animal Instance definitions here ## }
[11] ex:v1kb rdf:type nrl:KnowledgeBase, nrl:GraphView ;

nrl:viewOn ex:kb ; nrl:superGraphOf ex:kb ;
nrl:hasSpecification ex:rvs .

[12] ex:rvs rdf:type nrl:RuleViewSpecification ;
nrl:realizes ex:RDFSSemantics ; nrl:ruleLanguage "SPARQL" ;
nrl:rule "CONSTRUCT {?s rdfs:subClassOf ?v} WHERE ..." ;
nrl:rule "CONSTRUCT {?s rdf:type ?v} WHERE ..." .

[13] ex:RDFSSemantics rdf:type nrl:Semantics ; rdfs:label "RDFS" ;
nrl:semanticsDefinedBy "http://www.w3.org/TR/rdf-mt/" .

[14] ex:v2v1kb rdf:type nrl:GraphView, nrl:KnowledgeBase ;
nrl:viewOn ex:v1kb ; nrl:hasSpecification ex:evs .

[15] ex:evs rdf:type nrl:ExternalViewSpecification ;
nrl:externalRealizer "GraphTaxonomyExtractor" .

Fig. 7. NRL Example—TriG Serialization

[10] contents of instance base ex:i2, defining instances of animals in (ex:o2
[11-13] ex:v1kb is defined as a view on ex:kb via the view specification

ex:rvs; furthermore, ex:v1kb is a super graph of ex:kb as it real-
izes the RDFS semantics and thus contains the original graph plus the
inferred triples; the view specification is realized (as an example) with
some SPARQL-inspired CONSTRUCT queries (for this to work, a real
rule language is required)

[14-15] similar to [11-13], but here we define ex:v2v1kb with the help of an
external tool, the “GraphTaxonomyExtractor”



246 M. Sintek et al.

5 NEPOMUK Ontologies

Being the representational language, NRL (see Sect. 4) serves as the language
required to define the vocabulary with which other lower-level Nepomuk ontolo-
gies are represented. All these ontologies can be understood as being instances of
NRL, which conceptually is to be found at the representational layer of the Nepo-
muk ontologies. As such we differentiated between three main ontology layers,
as depicted in the Ontologies Pyramid Fig. 8, in order of decreasing generality,
abstraction and stability:

1. Representational Layer
2. Upper Level Layer
3. Lower Level Ontologies

Other examples of vocabularies/schemas in the uppermost layer are RDF/S and
OWL. Whereas the representational ontologies include abstract high-level classes
and properties, constraints, etc.; upper-level ontologies provide a framework by
which disparate systems may utilize a common knowledge base and from which
more domain-specific ontologies may be derived. They are high-level, domain-
independent ontologies, characterized by their representation of common sense
concepts, i. e., those that are basic for human understanding of the world. Con-
cepts expressed in upper-level ontologies are intended to be basic and universal
to ensure generality and expressivity for a wide area of domains. In turn, lower
level ontologies (which are further layered into group and personal ontologies) are
domain-specific and provide more concrete representations of abstract concepts
found in the upper ontologies.

After discussing NRL in detail, we now provide an overview of the engineered
ontologies in the upper-level ontology layer. Lower-level ontologies have not been
designed by the Nepomuk ontologies task force, but by groups or individuals de-
veloping domain-specific applications for the Social Semantic Desktop. NRL, to-
gether with the upper-level ontologies discussed hereunder, form a central pillar
in the Social Semantic Desktop system, as they are used to model the environ-
ment and domain of the applications. All the described ontologies have been
published26 and although a few of them are open for future adjustments, they
are considered to be stable. The modularization of these ontologies in itself was
a challenge, especially given the layered approach described earlier. Even though
they are all upper-level ontologies, some of them require concepts and/or rela-
tionships from others, and therefore dependency relationships exist also within
the same level. The design of the upper-level ontologies sought to:

– Represent common desktop entities (objects, people, etc.)
– Represent trivial relationships between these entities, as perceived by the

desktop user
– Represent a user’s mental model, consisting of entities and their relationships

on their desktop
26 http://www.semanticdesktop.org/ontologies/

http://www.semanticdesktop.org/ontologies/


Technologies for the Social Semantic Desktop 247

Fig. 8. The Layered Nepomuk Ontologies Pyramid

Whereas the representation of high-level concepts like ‘user’, ‘contact’, ‘desktop’,
‘file’ was fairly straightforward, we also needed to leverage existing information
sources in order to make them accessible to semantic applications on the Social
Semantic Desktop. This information is contained within various structures main-
tained by the operating system and a multitude of existing ‘legacy’ applications.
These structures include specific kinds of entities like messages, documents, pic-
tures, calendar entries and contacts in address books. van Elst coined the term
‘native structures’ to describe them and ‘native resources’ for the pieces of in-
formation they contain [25].

A multitude of relationships exist between entities on the desktop. Although
in the user’s mind the majority of these relationships is considered trivial (files
belonging to the same folder, objects related to the same topic, file copies,
professional and social contacts), they remain implicit and undefined. Expos-
ing these relationships to semantic applications is the key to making the desk-
top truly semantic. The majority of the most basic relationships can be mined
through the user’s actions—organizing files in folders, rating desktop objects,
saving files from a contact into specific folders, etc.Applications on the desktop
will also provide means for enabling the user to define less trivial relationships



248 M. Sintek et al.

(e. g., through semantic annotation, tagging). During the design of the upper-
level ontologies; all kinds of relationships—from the most trivial to ones that
are more specific, were taken into account. The user’s mental models of how
information is stored and organized on their desktop are based on these entities
and their relationships—their desktop, files on their desktop, folder structures,
contacts who share data, etc.The design of a conceptual representation of per-
sonal information models was based on the way the users are used to express
their knowledge, such that the concepts and relationships in the ontologies re-
flect the world as seen by the desktop users. This eases the process of knowledge
acquisition from the user’s desktop structures and activities to their machine-
processable representation.

After providing our motivation, in the remaining subsections we will provide
an overview of each of the ontologies in the upper-level ontology pyramid layer.
The uppermost ontology in the upper-level layer (Fig. 8) is the Nepomuk Anno-
tation Ontology (NAO) [29] which defines trivial relationships between desktop
entities as conceived by the user. The Personal Information Model Ontology
(PIMO) [26] can be used to express personal information models of individuals,
whereas the Task Management Ontology (TMO) [6] is used to describe personal
tasks of individuals. The Nepomuk Information Element set of ontologies (NIE)
[18] defines common information elements that are to be found on the desktop,
together with a number of more specific ontologies whose aim is to represent
legacy data in its various forms.

5.1 Nepomuk Annotation Ontology (NAO)

The meaning of the term annotation is highly contextual. Depending on the con-
text, anything can be considered as annotation within a data set (or a named
graph). On the SSD, the average user is frequently seen creating representations
of objects on their desktop, while the more experienced user is also frequently
creating representations of concepts and their relationships. Within this context,
we consider annotation to be anything that goes further than creating resources
and defining their elementary relationships. A user can create an instance of a
‘Person’, and provide values for all the elementary properties that an instance
of ‘Person’ can have. The user can then go one step ahead and annotate the
resources with more information, of a textual (e. g., custom human-readable de-
scriptions) or non-textual (e. g., links to related resources) nature. In a typical
scenario there may be a number of domain-centric properties for the classes
‘Person’ (e. g., name, address, knows etc.) and ‘Document’ (e. g., author, title,
etc.). Via vocabulary in the annotation ontology the user can provide person-
alized, user-friendly labels and descriptions for a resource, as well as additional
information like tags and ratings. Generic relationships exist between resources
across multiple domains, and making these relationships explicit would be of
great benefit for the user. For example, a user may want to state that a ‘Docu-
ment’ is about some instance of ‘Person’. However this shallow kind of relation-
ship exists between other concepts in other domains. Vocabulary that is able
to express these generic relationships are provided by the annotation ontology.



Technologies for the Social Semantic Desktop 249

Although this information is optional and does not reflect the elementary nature
of a ‘Document’, it contributes to improved data unification and information
retrieval via user search.

Graph Metadata is a particular form of annotation, where instead of annotat-
ing general resources, one annotates instances of named graphs, e. g., to define
the type of graph role. The major difference is that while generic annotation can
be stored within any graph the user is working with (e. g., the graph where the
annotated resource is defined), metadata about a graph should always be stored
outside that graph, in a separate special named graph that is aptly represented
in NRL by the nrl:GraphMetadata role. Detailed specifications for this ontology
are available in full online [29].

5.2 Nepomuk Information Element (NIE)

The abbreviation NIE may refer to the NIE Ontology Framework as a whole or
to the NIE Core Ontology. The motivation for NIE lies in representing the multi-
tude of applications and data formats. Previous semantic desktop projects (e. g.,
Haystack Haystack [20] or Gnowsis [23]) had to develop their solutions. Some at-
tempts at standardization have been made (e. g., Adobe XMP27, Freedesktop.org
XESAM28) but a definite standard had not emerged before NIE’s conception.
Apart from large metadata description frameworks there exists a considerable
number of smaller single-purpose ontologies aimed at specific types of resources
(e. g., ICAL29 or VCARD30). A broad array of utilities has been developed for
extracting RDF metadata from desktop sources31.

Various problems have been identified with the pre-existing vocabularies.
They are expressed in many languages and the level of detail often leaves much
to be desired. The NIE Framework is an attempt to build upon that experience,
to provide unified vocabulary to describe typical native resources that may be of
interest to the user. These resources are intended to serve as raw data for other
semantic applications. They can be browsed, searched, annotated and linked with
each other. Data represented in NIE has three roles. First, NIE data is intended
to be generated by an extraction process. Second, RDF-based systems can cre-
ate NIE structures natively, without building on existing applications. Third,
data expressed in NIE can be imported back to native applications. Thus, the
resulting ontologies serve as a mediator between semantic and native applica-
tions. The full specifications for this ontology can be accessed online [18].

5.3 Personal Information Model Ontology (PIMO)

The scope of PIMO is to model data that is within the attention of the user and
needed for knowledge work or private use. The focus is on data that is accessed
27 http://www.adobe.com/products/xmp/
28 http://xesam.org/main/XesamAbout
29 http://www.ietf.org/rfc/rfc2445.txt
30 http://www.ietf.org/rfc/rfc2426.txt
31 http://simile.mit.edu/wiki/RDFizers

http://www.adobe.com/products/xmp/
http://xesam.org/main/XesamAbout
http://www.ietf.org/rfc/rfc2445.txt
http://www.ietf.org/rfc/rfc2426.txt
http://simile.mit.edu/wiki/RDFizers


250 M. Sintek et al.

through a Semantic Desktop or other personalized Semantic Web applications.
We call this the Personal Knowledge Workspace [15] or Personal Space of Infor-
mation [16], embracing all data needed by an individual to perform knowledge
work. Today, such data is typically stored in files, in Personal Information Man-
agement or in groupware systems. A user has to cope with different formats of
data, such as text documents, contact information, e-mails, appointments, task
lists, project plans, or an Enterprise Resource Planning system. Existing infor-
mation that is already stored in information systems is in the scope of PIMO,
but abstract concepts can also be represented, if needed. PIMO is based on the
idea that users have a mental model to categorize their environment. Each con-
cept in the environment of the user is represented as a Thing in the model, and
mapped to documents and other entities that mention the concept. Things can
be described via their relations to other Things or by literal RDF properties.

In PIMO, Things are connected to their equivalent resources using directed
relations. The design rationale was to keep the PIMO ontology itself, as well
as the data needed to create a PIMO for a user as minimal as possible. Inside
a user’s PIMO, duplication is avoided. PIMO builds on NRL, NIE and NAO.
By addressing all key issues: precise representation, easy adoption, easy to un-
derstand by users, extensibility, interoperability, reuse of existing ontologies and
data integration; PIMO provides a framework for creating personal information
management applications and ontologies. The detailed specifications for this on-
tology are available online [26].

5.4 Task Model Ontology (TMO)

The TMO is a conceptual representation of tasks for use in personal task man-
agement applications for the knowledge worker (KWer). It represents an agreed,
domain-specific information model for tasks and covers personal task manage-
ment use cases. As a domain model the TMO models the tasks a KWer deals
with in the context of the KWer’s other personal information. It thereby repre-
sents an activity-centric view on the KWer’s personal information, as it models
underlying tasks as well the relations to other personal information that is rele-
vant to that task. The KWer regards all personal information as a single body of
information [21], a personal information cloud including tasks. Information-wise,
the use cases focus on an individual KWer’s personal tasks and further related
personal information. The full specifications for this ontology are available on-
line [6] and they presents the state-of-the art in task models and the semi-formal
description of the ontology with links to the supported use cases.

6 Summary and Outlook

The Social Semantic Desktop as presented in this material provides a universal
platform for:

– Personal Information Management
– Distributed Information Management
– Social Expansion and Community Creation



Technologies for the Social Semantic Desktop 251

In order to operate, the Social Semantic Desktop requires metadata, which can
be extracted by:

– i) Lifting of existing structured data onto RDF
– ii) Usage of Human Language Technology (HLT) to capture knowledge from

text and transform that into RDF
– ii) Manual creation of metadata by linking, annotation or tagging

In order to soften the border between the Semantic Web and the Social Se-
mantic Desktop, we have applied Semantic Web knowledge representation for
the desktop. Aligning knowledge representation on a Social Semantic Desktop
with the general Semantic Web approaches (RDF, RDFS, OWL, etc.) promises
a comprehensive use of data and schemas and an active, personalized access
point to the Semantic Web [24]. In such a scenario, ontologies play an important
role, from very general ontologies stating which entities can be modeled on a
Semantic Desktop (e. g., people, documents, etc.) to rather personal vocabulary
structuring information items. One of the most important design decisions is the
question of the representational ontology, constraining the general expressivity
of such a system. In this paper, we concentrated on those parts of the NEPO-
MUK Representational Language (NRL) which are rooted in the requirements
which arose by the distributed knowledge representation and heterogeneity aspects
of the Semantic Desktop scenario, and which we think cannot satisfactorily be
dealt with by the current state of the art. In a nutshell, the basic arguments and
design principles of NRL are as follows:

– Due to the heterogeneity of the data-creating and data-consuming entities in
the social semantic desktop scenario, a single interpretation schema cannot
be assumed. Therefore, NRL aims at a strict separation between data (sets
of triples, graphs) and their interpretation/semantics.

– Imposing specific semantics to a graph is realized by generating views on
that graph. Such a generation is directed by an (executable) view specifica-
tion which may realize a declarative semantics (e. g., the RDF/S or OWL
semantics specified in a standardization document).

– Graph views cannot only be used for semantic interpretations of graphs, but
also for application-driven tailoring of a graph.32

– Handling of multiple graphs (with different provenance, ownership, level of
trust, etc.) is essential. Named graphs are the basic means targeting this
problem.

– Graphs can play different roles in different contexts. While for one applica-
tion a graph may be an ontology, another one may see it as plain data. These
roles can explicitly be specified.

While originally designed as a NEPOMUK internal standard for the Social Se-
mantic Desktop, we believe that the arguments also hold for the general Semantic
Web. This is especially true when we review the current trends which increasingly
32 This corresponds to a database-like view concept.



252 M. Sintek et al.

show a shift from the view of “the Semantic Web as one big, global knowledge
base” to “a Web of (machine and human) actors” with local perspectives and
social needs like trust, ownership, etc.

Within NEPOMUK, we have developed the approach technically, by comple-
menting the NRL standard with tools that facilitate its use by the application
programmer, as well as conceptually, by the development and integration of a
number of accompanying ontology standards 33; e. g., the annotation vocabulary
referenced earlier, an information element ontology, and an upper-ontology for
Personal Information Models.

Acknowledgements. This work was supported by the European Union IST
fund (Grant FP6-027705, Project NEPOMUK); by the German Federal Ministry
of Education, Science, Research and Technology (bmb+f), (Grant 01 IW F01,
Project Mymory: Situated Documents in Personal Information Spaces) and by
Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). The
authors would especially like to thank all contributors to NEPOMUK’s ontology
taskforce.

References

1. Austin, J.L.: How to do things with words. Harvard U.P., Cambridge (1962)
2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinnes, D., Patel-

Schneider, P., Stein, L.: OWL web ontology language reference (2004)
3. Beckett, D.: RDF/XML syntax specification (revised). W3C recommendation,

W3C (February 2004), http://www.w3.org/TR/rdf-syntax-grammar/
4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 89

(May 2001)
5. Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF Schema.

Technical report, W3C (February 2004), http://www.w3.org/TR/rdf-schema/
6. Brunzel, M., Grebner, O.: Nepomuk task model ontology specification. Technical

report, NEPOMUK Consortium (2008)
7. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust.

In: WWW 2005: Proceedings of the 14th international conference on World Wide
Web, pp. 613–622. ACM Press, New York (2005)

8. Cheyer, A., Park, J., Giuli, R.: Iris: Integrate. relate. infer. share. In: Decker, S.,
Park, J., Quan, D., Sauermann, L. (eds.) Proc. of Semantic Desktop Workshop at
the ISWC, Galway, Ireland, November 6, vol. 175 (2005)

9. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework
and graphical development environment for robust NLP tools and applications. In:
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (2002)

10. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns
Engine (2nd edn.). Research Memorandum CS–00–10, Department of Computer
Science, University of Sheffield (November 2000)

33 http://www.semanticdesktop.org/ontologies/

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-schema/
http://www.semanticdesktop.org/ontologies/


Technologies for the Social Semantic Desktop 253

11. Davis, B., Handschuh, S., Cunningham, H., Tablan, V.: Further Use of Controlled
Natural Language for Semantic Annotation. In: Proceedings of the 1st Seman-
tic Authoring and Annotation Workshop (SAAW 2006) at ISWC 2006, Athens,
Georgia, USA (2006)

12. Davis, B., Iqbal, A., Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Hand-
schuh, S.: RoundTrip Ontology Authoring. In: Sheth, A.P., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, pp. 50–65. Springer, Heidelberg (2008)

13. Decker, S., Frank, M.: The social semantic desktop. In: Proc. of the WWW 2004
Workshop Application Design, Development and Implementation Issues in the Se-
mantic Web (2004)

14. Hayes, P.: RDF semantics. W3C recommendation, W3C (February 2004),
http://www.w3.org/TR/rdf-mt/

15. Holz, H., Maus, H., Bernardi, A., Rostanin, O.: From lightweight, proactive infor-
mation delivery to business process-oriented knowledge management. Journal of
Universal Knowledge Management 0(2), 101–127 (2005)

16. Jones, W.P., Teevan, J.: Personal Information Management. University of Wash-
ington Press (October 2007)

17. Manola, F., Miller, E.: RDF primer. W3C recommendation, W3C (February 2004),
http://www.w3.org/TR/rdf-primer/

18. Mylka, A., Sauermann, L., Sintek, M., van Elst, L.: Nepomuk information element
framework specification. Technical report, NEPOMUK Consortium (2007)

19. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C work-
ing draft, W3C (2005), http://www.w3.org/TR/rdf-sparql-query/

20. Quan, D., Huynh, D., Karger, D.R.: Haystack: A platform for authoring end user
semantic web applications. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 738–753. Springer, Heidelberg (2003)

21. Ravasio, P., Tscherter, V.: Users’ theories of the desktop metaphor, or why we
should seek metaphor-free interfaces. In: Kaptelinin, V., Czerwinski, M. (eds.) Be-
yond the desktop metaphor: designing integrated digital work environments, pp.
265–294. MIT Press, Cambridge (2007)

22. Richter, J., Völkel, M., Haller, H.: DeepaMehta – A Semantic Desktop. In: Decker,
S., Park, J., Quan, D., Sauermann, L. (eds.) Proc. of Semantic Desktop Workshop
at the ISWC, Galway, Ireland, November 6, vol. 175 (2005)

23. Sauermann, L.: The gnowsis—using semantic web technologies to build a semantic
desktop. Diploma thesis, Technical University of Vienna (2003)

24. Sauermann, L., Dengel, A., Elst, L., Lauer, A., Maus, H., Schwarz, S.: Personal-
ization in the EPOS project. In: Bouzid, M., Henze, N. (eds.) Proceedings of the
International Workshop on Semantic Web Personalization, Budva, Montenegro,
June 12, pp. 42–52 (2006)

25. Sauermann, L., van Elst, L., Dengel, A.: PIMO—a framework for represent-
ing personal information models. In: Tochtermann, K., Haas, W., Kappe, F.,
Scharl, A., Pellegrini, T., Schaffert, S. (eds.) Proceedings of I-MEDIA 2007 and
I-SEMANTICS 2007 (2007)

26. Sauermann, L., van Elst, L., Moeller, K.: Nepomuk personal information model
ontology specification. Technical report, NEPOMUK Consortium (2007)

27. Scerri, S., Handschuh, S., Decker, S.: Semantic Email as a Communication Medium
for the Social Semantic Desktop. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 124–138. Springer, Hei-
delberg (2008)

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/


254 M. Sintek et al.

28. Scerri, S., Mencke, M., Davis, B., Handschuh, S.: Evaluating the Ontology un-
derlying sMail - the Conceptual Framework for Semantic Email Communication.
In: Proceedings of the 6th International conference of Language Resources and
Evaluation (LREC), Marrakech, Morocco (2008)

29. Scerri, S., Sintek, M., van Elst, L., Handschuh, S.: Nepomuk annotation ontology
specification. Technical report, NEPOMUK Consortium (2007)

30. Schenk, S., Staab, S.: Networked graphs: A declarative mechanism for SPARQL
rules, SPARQL views and RDF data integration on the web. In: Proceedings of
the 17th International World Wide Web Conference, Bejing, China (2008)

31. Searle, J.R.: Speech Acts. Cambridge University Press, Cambridge (1969)
32. Sintek, M., Decker, S.: TRIPLE–A query, inference, and transformation language

for the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, p. 364. Springer, Heidelberg (2002)

33. Sintek, M., van Elst, L., Scerri, S., Handschuh, S.: Distributed knowledge represen-
tation on the social semantic desktop: Named graphs, views and roles in NRL. In:
Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 594–608.
Springer, Heidelberg (2007)

34. Sintek, M., van Elst, L., Grimnes, G., Scerri, S., Handschuh, S.: Knowledge rep-
resentation for the distributed, social semantic web: Named graphs, graph roles
and views in nrl. In: Cuenca-Grau, B., Honavar, V., Schlicht, A., Wolter, F. (eds.)
Second International Workshop on Modular Ontologies, WoMO 2007 (2007)

35. Thai, V., Handschuh, S., Decker, S.: IVEA: An information visualization tool
for personalized exploratory document collection analysis. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 139–153. Springer, Heidelberg (2008)

36. Thai, V., Handschuh, S., Decker, S.: Tight coupling of personal interests with
multi-dimensional visualization for exploration and analysis of text collections. In:
IV 2008: Proceedings of the 12th International Conference on Information Visual-
isation, pp. 221–226. IEEE Computer Society, Los Alamitos (2008)

37. van Elst, L., Dignum, V., Abecker, A.: Towards agent-mediated knowledge man-
agement. In: van Elst, L., Dignum, V., Abecker, A. (eds.) AMKM 2003. LNCS
(LNAI), vol. 2926, pp. 1–31. Springer, Heidelberg (2004)


	Technologies for the Social Semantic Desktop
	Overview
	The Social Semantic Desktop
	Motivation
	State of the Art
	Networked Collaborative Knowledge
	User Mental Models
	Interconnected Desktops
	Achievements

	Semantic Lifting and Human Language Technologies for the Semantic Desktop
	Background
	Lifting on the Semantic Desktop
	Human Language Technology on the Semantic Desktop

	NRL—The NEPOMUK Representational Language
	Motivation
	State of the Art
	Knowledge Representation on the Social Semantic Desktop: The NRL Approach
	Handling Multiple Models: NRL Named Graphs
	Imposing Semantics on Graphs: NRL Graph Views
	Example: NRL in Use

	NEPOMUK Ontologies
	Nepomuk Annotation Ontology (NAO)
	Nepomuk Information Element (NIE)
	Personal Information Model Ontology (PIMO)
	Task Model Ontology (TMO)

	Summary and Outlook



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




