
Description Logics

Franz Baader

Theoretical Computer Science, TU Dresden, Germany
baader@inf.tu-dresden.de

Abstract. Description Logics (DLs) are a well-investigated family of
logic-based knowledge representation formalisms, which can be used to
represent the conceptual knowledge of an application domain in a struc-
tured and formally well-understood way. They are employed in various
application domains, such as natural language processing, configuration,
and databases, but their most notable success so far is the adoption
of the DL-based language OWL as standard ontology language for the
semantic web.

This article concentrates on the problem of designing reasoning pro-
cedures for DLs. After a short introduction and a brief overview of the
research in this area of the last 20 years, it will on the one hand present
approaches for reasoning in expressive DLs, which are the foundation for
reasoning in the Web ontology language OWLDL. On the other hand, it
will consider tractable reasoning in the more light-weight DL EL, which
is employed in bio-medical ontologies, and which is the foundation for
the OWL 2 profile OWL2EL.

1 Introduction

In their introduction to The Description Logic Handbook [11], Brachman and
Nardi point out that the general goal of knowledge representation (KR) is to
“develop formalisms for providing high-level descriptions of the world that can
be effectively used to build intelligent applications” [32]. This sentence states in a
compact way some of the key requirements that a KR formalism needs to satisfy.
In order to be accepted as a formalism in this sense, a knowledge representa-
tion language needs to be equipped with a well-defined syntax and a formal,
unambiguous semantics, which was not always true for early KR approaches
such as semantic networks [101] and frames [90]. A high-level description con-
centrates on the representation of those aspects relevant for the application at
hand while ignoring irrelevant details. In particular, this facilitates the use of
relatively inexpressive languages even though they may not be able to faithfully
represent the whole application domain. Intelligent applications should be able
to reason about the knowledge and infer implicit knowledge from the explicitly
represented knowledge, and thus the effective use of the knowledge depends on
the availability of practical reasoning tools.

Description logics (DLs) [11] are a family of logic-based knowledge repre-
sentation formalisms that are tailored towards representing the terminological

S. Tessaris et al. (Eds.): Reasoning Web 2009, LNCS 5689, pp. 1–39, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 F. Baader

knowledge of an application domain in a structured and formally well-understood
way. They allow their users to define the important notions (classes, relations,
objects) of the domain using concepts, roles, and individuals; to state constraints
on the way these notions can be interpreted; and to deduce consequences such
as subclass and instance relationships from the definitions and constraints. The
name description logics is motivated by the fact that, on the one hand, classes
are described by concept descriptions, i.e., expressions that are built from atomic
concepts (unary predicates) and atomic roles (binary predicates) using the con-
cept and role constructors provided by the particular DL; on the other hand,
DLs differ from their predecessors, such as semantic networks and frames, in
that they are equipped with a formal, logic-based semantics. For example, in
a conference domain, we may have classes (concepts) like Person, Speaker, Au-
thor, Talk, Participant, PhD student, Workshop, Tutorial; relations (roles) like
gives, attends, attended by, likes; and objects (individuals) like Richard, Frank,
Paper 176. A speaker can be defined as a person that gives a talk:

Speaker ≡ Person � ∃gives.Talk,

we can say that Frank is a speaker and attends the DL tutorial using the
assertions:

Speaker(FRANK), attends(FRANK, DL TUTORIAL), Tutorial(DL TUTORIAL),

and state the constraints that tutorials are only attended by PhD students:

Tutorial � ∀attended by.PhD student,

and that the relation attended by is the inverse of the relation attends:

attended by ≡ attends−1.

DLs have been employed in various application domains, such as natural lan-
guage processing, configuration, databases, and biomedical ontologies, but their
most notable success so far is probably the adoption of the DL-based language
OWL1 as standard ontology language for the semantic web [69,15]. The three
main reasons for the adoption of DLs as ontology languages are

– the availability of a formal, unambiguous semantics, which is based on the
Tarski-style semantics of first-order predicate logic, and is thus fairly easy
to describe and comprehend;

– the fact that DLs provide their users with various carefully chosen means of
expressiveness for constructing concepts and roles, for further constraining
their interpretations, and for instantiating concepts and roles with individ-
uals;

– the fact that DL systems provide their users with highly-optimized inference
procedures that allow them to deduce implicit knowledge from the explicitly
represented knowledge.

1 http://www.w3.org/TR/owl-features/

Description Logics 3

The formal semantics of DLs and typical concept and role constructors as well as
the formalism for expressing constraints will be introduced in the next section. In
the remainder of this section, we concentrate on the inference capabilities of DL
systems. The subsumption algorithm determines subconcept-superconcept rela-
tionships: C is subsumed by D iff all instances of C are necessarily instances of
D, i.e., the first concept is always interpreted as a subset of the second concept.
For example, given the definition of Speaker from above, Speaker is obviously
subsumed by Person. In general, however, induced subsumption relationships
may be much harder to detect. The instance algorithm determines induced in-
stance relationships: the individual i is an instance of the concept description C
iff i is always interpreted as an element of C. For example, given the assertions
for Frank and the DL tutorial from above, the constraint for tutorials, and the
constraint expressing that attends is the inverse of attended by, we can deduce
that FRANK is an instance of Phd student. The consistency algorithm determines
whether a knowledge base (consisting of a set of assertions and a set of termi-
nological axioms, i.e., concept definitions and constraints) is non-contradictory.
For example, if we added a disjointness constraint

Speaker � PhD student � ⊥

for speakers and PhD students to the conference knowledge base introduced so
far, then this knowledge base would become inconsistent since it follows from the
knowledge base that Frank is both a speaker and a PhD students, contradicting
the stated disjointness of these two concepts.

In order to ensure a reasonable and predictable behavior of a DL system,
these inference problems should at least be decidable for the DL employed by
the system, and preferably of low complexity. Consequently, the expressive power
of the DL in question must be restricted in an appropriate way. If the imposed
restrictions are too severe, however, then the important notions of the application
domain can no longer be expressed. Investigating this trade-off between the
expressivity of DLs and the complexity of their inference problems has been one
of the most important issues in DL research. The research related to this issue
can be classified into the following five phases.2

Phase 1. (1980–1990) was mainly concerned with implementation of systems,
such as Klone, K-Rep, Back, and Loom [33,88,100,87]. These systems em-
ployed so-called structural subsumption algorithms, which first normalize the
concept descriptions, and then recursively compare the syntactic structure of
the normalized descriptions [93]. These algorithms are usually quite efficient
(polynomial), but they have the disadvantage that they are complete only for
very inexpressive DLs, i.e., for more expressive DLs they cannot detect all the
existing subsumption/instance relationships. At the end of this phase, early for-
mal investigations into the complexity of reasoning in DLs showed that most
DLs do not have polynomial-time inference problems [30,94]. As a reaction, the

2 Note, however, that the assigned temporal intervals are only rough estimates, and
thus should not be taken too seriously.

4 F. Baader

implementors of the Classic system (the first industrial-strength DL system)
carefully restricted the expressive power of their DL [99,29].

Phase 2. (1990–1995) started with the introduction of a new algorithmic
paradigm into DLs, so-called tableau-based algorithms [108,50,66]. They work
on propositionally closed DLs (i.e., DLs with full Boolean operators) and are
complete also for expressive DLs. To decide the consistency of a knowledge base,
a tableau-based algorithm tries to construct a model of it by breaking down the
concepts in the knowledge base, thus inferring new constraints on the elements
of this model. The algorithm either stops because all attempts to build a model
failed with obvious contradictions, or it stops with a “canonical” model. Since
in propositionally closed DLs, subsumption and satisfiability can be reduced
to consistency, a consistency algorithm can solve all inference problems men-
tioned above. The first systems employing such algorithms (Kris and Crack)
demonstrated that optimized implementations of these algorithm lead to an ac-
ceptable behavior of the system, even though the worst-case complexity of the
corresponding reasoning problems is no longer in polynomial time [14,35]. This
phase also saw a thorough analysis of the complexity of reasoning in various
DLs [50,51,49,47]. Another important observation was that DLs are very closely
related to modal logics [103].

Phase 3. (1995–2000) is characterized by the development of inference proce-
dures for very expressive DLs, either based on the tableau-approach [70,71]
or on a translation into modal logics [44,45,43,46]. Highly optimized systems
(FaCT, Race, and Dlp [67,61,98]) showed that tableau-based algorithms for
expressive DLs lead to a good practical behavior of the system even on (some)
large knowledge bases. In this phase, the relationship to modal logics [44,104]
and to decidable fragments of first-order logic was also studied in more detail
[28,96,59,57,58,75], and applications in databases (like schema reasoning, query
optimization, and integration of databases) were investigated [36,40,42].

During Phase 4 (2000–2005), industrial strength DL systems employing very
expressive DLs and tableau-based algorithms were developed [115,62,109], with
applications like the Semantic Web or knowledge representation and integration
in bio-informatics in mind. In this phase, the Web Ontology Language OWL,
whose sublanguages OWLDL and OWL Lite are based on expressive DLs, be-
came an official W3C recommendation,3 thus boosting the use of DLs for the
definition of ontologies. On the more foundational side, this phase saw the de-
velopment of alternative approaches for reasoning in expressive DLs, such as
resolution-based approaches [73,74,2,72,78], which use an optimized translation
of DLs into first-order predicate logic and then apply appropriate first-order
resolution provers, and automata-based approaches [41,86,84,114,25,13], which
are often more convenient for showing ExpTime complexity upper-bounds than
tableau-based approaches.

We are now in Phase 5, where on the one hand even more expressive DLs with
highly-optimized tableau-based algorithms [68] are proposed as basis for the
3 http://www.w3.org/TR/owl-features/

Description Logics 5

new Web Ontology Language OWL2.4 On the other hand, more light-weight
DLs are investigated and proposed as profiles of OWL2,5 such as members of
the EL family [7,8], for which the subsumption and the instance problem are
polynomial, and of the DL Lite family [38,39], for which the instance problem
and query answering are polynomial w.r.t. data complexity. Another important
development in this phase is that inference problems other than the classical ones
(subsumption, instance, consistency) are gaining importance, such as query an-
swering (i.e., answering conjunctive queries w.r.t. DL knowledge bases)
[1,55,85,95], pinpointing (i.e., exhibiting the axioms responsible for a given con-
sequence) [105,97,89,22,24], and modularization (i.e., extracting a part of a
knowledge base that has the same consequence as the full knowledge base, for
consequences formulated using a certain restricted vocabulary) [60,79,110].

2 Basic Definitions

As mentioned above, a key component of a DL is the description language, which
allows its users to build complex concepts (and roles) out of atomic ones. These
descriptions can then be uses in the terminological part of the knowledge base
(TBox) to introduce the terminology of an application domain, by defining con-
cepts and imposing additional (non definitional) constraints on their interpreta-
tion. In the assertional part of the knowledge base (ABox), facts about a specific
application situation can be stated, by introducing named individuals and re-
lating them to concepts and roles. Reasoning then allows us to derive implicit
knowledge from the explicitly represented one. In the following, we introduce
these four components of a DL more formally.

2.1 The Basic Description Language ALC and Some Extensions

Starting with a set of concept names (atomic concepts) and role names (atomic
roles), concept descriptions are built using concept constructors. The semantics
of concept descriptions is defined using the notion of an interpretation, which
assigns sets to concepts and binary relations to roles. First, we introduce the
constructors available in the basic description language ALC,6 together with
their semantics.

Definition 1 (ALC concept descriptions). Let NC be a set of concept names
and NR a set of role names. The set of ALC concept descriptions is the smallest
set such that

– all concept names are ALC concept descriptions;
– if C and D are ALC concept descriptions, then so are ¬C, C�D, and C�D;

4 http://www.w3.org/TR/2009/WD-owl2-overview-20090327/
5 http://www.w3.org/TR/owl2-profiles/
6 Following the usage in the literature, we will sometimes call description languages

like ALC “Description Logics,” thereby ignoring the additional ingredients of a DL,
such as the terminological formalism.

6 F. Baader

– if C is an ALC concept description and r ∈ NR, then ∃r.C and ∀r.C are
ALC concept descriptions.

An interpretation is a pair I = (ΔI , ·I) where the domain ΔI is a non-empty
set and ·I is a function that assigns to every concept name A a set AI ⊆ ΔI and
to every role name r a binary relation rI ⊆ ΔI ×ΔI . This function is extended
to ALC concept descriptions as follows:

– (C �D)I = CI ∩DI , (C �D)I = CI ∪DI , (¬C)I = ΔI \ CI ;
– (∃r.C)I = {x ∈ ΔI | there is a y ∈ ΔI with (x, y) ∈ rI and y ∈ CI};
– (∀r.C)I = {x ∈ ΔI | for all y ∈ ΔI , (x, y) ∈ rI implies y ∈ CI}.

As usual, the Boolean constructors �,�,¬ are respectively called conjunction,
disjunction, and negation. We call a concept description of the form ∃r.C an
existential restriction, and a concept description of the form ∀r.C a value re-
striction. In the following, we will us as an abbreviation for A � ¬A, where
A is an arbitrary concept name (top concept, which is always interpreted as
the whole domain), ⊥ as an abbreviation for ¬ (bottom concept, which is al-
ways interpreted as the empty set), and C ⇒ D as an abbreviation for ¬C �D
(implication).

The following are examples of ALC concept descriptions that may be of in-
terest in the conference domain. Assume that Participant, Talk, Boring, DL are
concept names, and attends, gives, topic are role names. The description

Participant � ∃attends.Talk

describes conference participants that attend at least on talk,

Participant � ∀attends.(Talk � ¬Boring)

describes conference participants that attend only non-boring talks, and

Speaker � ∃gives.(Talk � (Boring � ∀topic.DL))

describes speakers giving a talk that is boring or has as its only topic DL.

Relationship with first-order logic. Given the semantics of ALC concept
descriptions, it is easy to see that ALC can be viewed as a fragment of first-
order predicate logic.7 Indeed, concept names (which are interpreted as sets)
are simply unary predicates, and role names (which are interpreted as binary
relations) are simply binary predicates. For a given first-order variable x, anALC
concept description C is translated into a formula τx(C) with free variable x:

– τx(A) := A(x) for concept names A;
– τx(C �D) := τx(C) ∧ τx(D);
– τx(C �D) := τx(C) ∨ τx(D);

7 More information about the connection between DLs and first-order predicate logic
can be found in [28].

Description Logics 7

– τx(¬C) := ¬τx(C);
– τx(∀r.C) := ∀y.(r(x, y)→ τy(C)) where y is a variable different from x;
– τx(∃r.C) := ∃y.(r(x, y) ∧ τy(C)) where y is a variable different from x.

Regarding the semantics, any first-order interpretation I (over the signature
consisting of the concept names in NC as unary predicates and the role names
in NR as binary predicates) can be viewed as an ALC interpretation and vice
versa. Intuitively, the first-order formula τx(C) describes all domain elements
d ∈ ΔI that make τx(C) true if x is replaced by them. It is easy to see that this
set coincides with the interpretation of the concept description C, i.e.,

CI = {d ∈ ΔI | I |= τx(C)[x← d]}.
The resolution-based approaches for reasoning in DLs are based on such a trans-
lation to first-order predicate logic. It should be noted, however, that the trans-
lation sketched above does not yield arbitrary first-order formulae. Instead, we
obtain formulae belonging to known decidable fragments of first-order predicate
logic: the guarded fragment [58] and the two-variable fragment [91,59]. Intu-
itively, the formulae of the form τx(C) belong to the guarded fragment since
every quantified variable y is guarded by a role r(x, y). Regarding membership
in the two-variable fragment, it is easy to see that it is enough to use just two
first-order variables x, y in the translation: in τx one uses y as the variable dif-
ferent from x, and in τy one uses x for this purpose.

Relationship with modal logics. There is also a close connection between
DLs and modal logics. In particular, ALC is just a syntactic variant of the
basic multimodal logic K [103], where “multimodal” means that one has several
pairs of box and diamond operators, which are indexed with the name of the
corresponding transition relation. In the following, we assume that the reader is
familiar with the basic notions of modal logics (see, e.g., [27] for more details).
Intuitively, concept names A correspond to propositional variables a and role
names r to names for transition relations r. An ALC concept description C is
translated into a modal formula θ(C) as follows:

– θ(A) := a for concept names A;
– θ(C �D) := θ(C) ∧ θ(D);
– θ(C �D) := θ(C) ∨ θ(D);
– θ(¬C) := ¬θ(C);
– θ(∀r.C) := �rθ(C));
– θ(∃r.C) := ♦rθ(C)).

Regarding the semantics, any ALC interpretation I can be viewed as a Kripke
structure KI (and vice versa): every element w of ΔI is a possible world of KI ,
the world w makes the propositional variable a true iff w ∈ AI for the concept
name A corresponding to a, and there is a transition from world w to world
w′ with the transition relation r iff (w, w′) ∈ rI . The translation function θ
preserves the semantics in the following sense: CI is the set of worlds that make
θ(C) true in KI .

The translation-based approaches that reduce reasoning in DLs to reasoning
in appropriate modal logics are based on (extensions of) this translation.

8 F. Baader

Additional constructors. ALC is only one example of a description language.
DL researchers have introduced many additional constructors and investigated
various description languages obtained by combining such constructors. Here, we
only introduce qualified number restrictions as examples for additional concept
constructors, and inverse roles as example for a role constructor (see [5] for an
extensive list of additional concept and role constructors).

Qualified number restrictions are of the form (≥n r.C) (at-least restriction)
and (≤n r.C) (at-most restriction), where n ≥ 0 is a non-negative integer, r ∈
NR is a role name, and C is a concept description. The semantics of these
additional constructors is defined as follows:

(≥n r.C)I := {d ∈ ΔI | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≥ n},
(≤n r.C)I := {d ∈ ΔI | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≤ n},

where card(X) yields the cardinality of the set X . Using qualified number re-
strictions, we can define the concept of all persons that attend at most 20 talks,
of which at least 3 have the topic DL:

Person � (≤ 20 attends.Talk) � (≥ 3 attends.(Talk � ∃topic.DL)).

The inverse role constructor applies to a role name r and yields its inverse r−1,
where the semantics is the obvious one, i.e.,

(r−1)I := {(e, d) | (d, e) ∈ rI}.

Inverse roles can be used like role names within concept descriptions. Using the
inverse of the role attends, we can define the concept of a speaker giving a boring
talk as

Speaker � ∃gives.(Talk � ∀attends−1.(Bored � Sleeping)).

In the following, we will use the notion “concept description” to refer to a descrip-
tion built using the (concept and role) constructors of some description language.
Indeed, the definitions of the other three components of a DL (terminological
formalism, assertional formalism, reasoning) is independent of the description
language. Accordingly, we will also use the notion “role description” to refer to
a role name or a role description (such as r−1) built using the constructors of
some description language.

2.2 Terminological Knowledge

In its simplest form, a TBox introduces names (abbreviations) for complex de-
scriptions.

Definition 2. A concept definition is of the form A ≡ C where A is a concept
name and C is a concept description. Given a set T of concept definitions, we
say that the concept name A directly uses the concept name B if T contains
a concept definition A ≡ C such that B occurs in C. Let uses be the transitive

Description Logics 9

Woman ≡ Person � Female

Man ≡ Person � ¬Female

Talk ≡ ∃topic.�

Speaker ≡ Person � ∃gives.Talk

Participant ≡ Person � ∃attends.Talk

BusySpeaker ≡ Speaker � (≥ 3 gives.Talk)

BadSpeaker ≡ Speaker � ∀gives.(∀attends−1.(Bored � Sleeping))

Fig. 1. A TBox for the conference domain

closure of the relation “directly uses.” We say that T is cyclic if there is a concept
name A that uses itself, and acyclic otherwise.

A TBox is a finite set T of concept definitions that is acyclic and such that
every concept name occurs at most once on the left-hand side of a concept
definition in T . Given a TBox T , we call the concept name A a defined concept
if A occurs on the left-hand side of a definition in T . All other concept names
are called primitive concepts. An interpretation I is a model of the TBox T if
it satisfies all its concept definitions, i.e., AI = CI holds for all A ≡ C in T .

Fig. 1 shows a small TBox with concept definitions relevant in our example
domain. Modern DL systems allow their users to state more general constraints
for the interpretation of concepts and roles.

Definition 3. A general concept inclusion axiom (GCI) is of the form C � D
where C, D are concept descriptions. A finite set of GCIs is called a general
TBox.

An interpretation I is a model of the general TBox T if it satisfies all its
GCIs, i.e., CI ⊆ DI holds for all GCIs C � D in T .

Obviously, the concept definition A ≡ C is equivalent (in the sense that is has
the same models) to the pair of GCIs A � C, C � A, which shows that TBoxes
can be expressed using general TBoxes. Thus, we assume in the following that
the notion of a general TBox subsumes the notion of a TBox. In general, GCIs
with complex concept descriptions on their left-hand side cannot be expressed
with the help of TBoxes. Using GCIs we can, e.g., say that talks in which all
attendants are sleeping are boring

Talk � ∀attends−1.Sleeping � Boring,

and that PC chairs cannot as well be authors

Author � PCchair � ⊥.

10 F. Baader

Lecturer(FRANZ), teaches(FRANZ, Tut03),

Tutorial(Tut03), topic(Tut03, ReasoningInDL), DL(ReasoningInDL)

Fig. 2. An ABox for the conference domain

In some applications, it also makes sense to consider a generalization of TBoxes
where one only allows the use of unambiguous definitions, but dispenses with
the acyclicity requirement. Such cyclic TBoxes T are thus finite sets of concept
definitions such that every concept name occurs at most once on the left-hand
side of a concept definition in T (see, e.g., [4,21] for details).

2.3 Assertional Knowledge

Assertions can be used to state facts about named individuals. Thus, we assume
that there is a third set NI of names, called individual names, which is disjoint
with the sets of concept and role names. An interpretation additional assigns an
element aI ∈ ΔI to every individual name a ∈ NI .

Definition 4. Let C be a concept description, r be a role description, and
a, b ∈ NI . An assertion is of the form C(a) (concept assertion) or r(a, b) (role
assertion). An ABox is a finite set of assertions.

An interpretation I is a model of the ABox A if it satisfies all its assertions,
i.e., aI ∈ CI holds for all concept assertions C(a) ∈ A and (aI , bI) ∈ rI holds
for all role assertions r(a, b) ∈ A.

Fig. 2 shows a small ABox with assertions describing a specific DL tutorial.

2.4 Inference Problems

DL systems provide their users with inference capabilities that allow them to
derive implicit knowledge from the one explicitly represented. The following are
the most important “classical” inference problems supported by DL systems.

Definition 5. Let T be a generalized TBox, A an ABox, C, D concept descrip-
tions, and a an individual name.

– C is subsumed by D w.r.t. T (C �T D) iff CI ⊆ DI for all models I of T .
– C is equivalent to D w.r.t. T (C ≡T D) iff CI = DI for all models I of T .
– C is satisfiable w.r.t. T iff CI �= ∅ for some model I of T .
– A is consistent w.r.t. T iff it has a model that is also a model of T .
– a is an instance of C w.r.t. A and T (A |=T C(a)) iff aI ∈ CI for all models
I of T and A.

One might think that, in order to realize the inference component of a DL
system, on needs to design and implement five algorithms, each solving one of
the above inference problems. Fortunately, this is not the case since there exist
the following polynomial time reductions, which only require the availability
of the concept constructors conjunction and negation in the description language:

Description Logics 11

– Subsumption can be be reduced in polynomial time to equivalence:

C �T D iff C �D ≡T C

– Equivalence can be be reduced in polynomial time to subsumption:

C ≡T D iff C �T D and D �T C

– Subsumption can be be reduced in polynomial time to (un)satisfiability:

C �T D iff C � ¬D is unsatisfiable w.r.t. T

– Satisfiability can be be reduced in polynomial time to (non-)subsumption:

C is satisfiable w.r.t. T iff not C �T ⊥

– Satisfiability can be be reduced in polynomial time to consistency:

C is satisfiable w.r.t. T iff {C(a)} is consistent w.r.t. T

– The instance problem can be reduced in polynomial time to (in)consistency:

A |=T C(a) iff A ∪ {¬C(a)} is inconsistent w.r.t. T

– Consistency can be reduced in polynomial time to the (non-)instance
problem:

A is consistent w.r.t. T iff A �|=T ⊥(a)

Thus, if one is only interested in terminological reasoning (i.e., satisfiability,
equivalence, and subsumption), it is enough to have a satisfiability algorithm.
If one is additionally interested in assertional reasoning (i.e., consistency and
instance), then it is enough to have a consistency algorithm.

Another important observation is that reasoning w.r.t. a normal (i.e., not
general) TBox can be reduced to reasoning w.r.t. the empty TBox.8 Intuitively,
TBoxes merely state that defined concepts are abbreviations for certain com-
plex concept descriptions. These complex descriptions can be made explicit by
expanding the definitions from T : given a concept description C, its expan-
sion exp(C, T) w.r.t. T is obtained by exhaustively replacing all defined concept
names A occurring on the left-hand side of concept definitions A ≡ C by their
defining concept descriptions C. For example, w.r.t. the TBox of Fig. 1, the
concept description Woman � BusySpeaker is expanded to

Person � Female � Person � ∃gives.Talk � (≥ 3 gives.Talk),

which is equivalent to Person � Female � (≥ 3 gives.Talk).

8 Instead of saying “w.r.t. ∅” one usually says “without a TBox,” and omits the index
T for subsumption, equivalence, and instance, i.e., writes ≡,
, |= instead of ≡T ,

T , and |=T .

12 F. Baader

A0 ≡ ∀r.A1 � ∀s.A1

A1 ≡ ∀r.A2 � ∀s.A2

...
An−1 ≡ ∀r.An � ∀s.An

Fig. 3. A TBox T that causes exponential blow-up during expansion

It is easy to show that C �T D iff exp(C, T) � exp(D, T). Similar reduc-
tion are possible for the other inference problems. It should be noted, however,
that these reductions are in general exponential. For example, expanding the
concept description A0 w.r.t. the TBox of Fig. 3 yields an expanded description
exp(A0, T) that contains the concept name An 2n times. This exponential blow-
up can sometimes be avoided by devising satisfiability algorithms that explicitly
take acyclic TBoxes into account. For example, satisfiability of ALC concept de-
scriptions w.r.t. TBoxes is PSpace-complete, and without TBoxes this problem
is of exactly the same complexity [107,83]. However this is not always the case:
in Section 4, we will introduce the DL FL0, for which reasoning w.r.t. TBoxes
is considerably more difficult than reasoning without them [94].

For some expressive DLs it is possible to reduce reasoning w.r.t. a general
TBox to reasoning without a TBox [10,70], but for ALC this is not possible, i.e.,
one really needs to design algorithms that take GCIs into account.

Compound inferences. Some of the most important inference problems in
DLs are of a compound nature in the sense that, in principle, they can be reduced
to multiple invocations of the more basic inference problems mentioned above.
However, when the goal is to achieve an efficient implementation, it is vital to
consider compound inferences as first-class citizens since a näıve reduction to
the basic inference problems may be too inefficient [12]. Here, we define two of
these compound inference problems, but do not deal with the efficiency issue.

Classification. Given a (general) TBox T , compute the restriction of the sub-
sumption relation “�T ” to the set of concept names used in T .

Realization. Given an ABox A, a (general) TBox T , and an individual name
a, compute the set RA,T (a) of those concept names A that are used in T ,
satisfy A |=T A(a), and are minimal with this property w.r.t. the subsumption
relation “�T ”.

Complexity of reasoning. In the 1980ies, it was a commonly held belief that
reasoning in knowledge representation systems should be tractable, i.e., of poly-
nomial time complexity. The precursor of all DL systems, Klone [33], as well
as its early successor systems, like K-Rep [88], Back [100], and Loom [87],
indeed employed polynomial-time subsumption algorithms. Later on, however,
it turned out that subsumption in rather inexpressive DLs may be intractable
[82], that subsumption in Klone is even undecidable [106], and that subsump-
tion w.r.t. a TBox in a description language with conjunction (�) and value

Description Logics 13

restriction (∀r.C)9 is intractable [94]. The reason for the discrepancy between
the complexity of the subsumption algorithms employed in the above mention
early DL systems and the worst-case complexity of the subsumption problems
these algorithms were supposed to solve was, as mentioned in the introduction,
due to the fact that these systems employed sound, but incomplete subsumption
algorithms, i.e., algorithms whose positive answers to subsumption queries are
correct, but whose negative answers may be incorrect.

The use of incomplete algorithms has since then largely been abandoned in
the DL community, mainly because of the problem that the behavior of the
systems is no longer determined by the semantics of the description language: an
incomplete algorithm may claim that a subsumption relationship does not hold,
although it should hold according to the semantics. This left the DL community
with two ways out of the complexity dilemma:

– Employ expressive DLs with sound and complete, but intractable inference
procedures.

– Employ inexpressive DLs that allow the use of sound, complete, and tractable
inference procedures.

In the next two sections, we treat these two approaches in more detail.
It should be noted that here we have barely scratched the surface of the

research on the complexity of reasoning in DLs. Indeed, DL researchers have
investigated the complexity of reasoning in a great variety of DLs in detail.
Giving an overview of the results obtained in this direction in the last 20 years
is beyond the scope of this article. We refer the reader to overview articles such
as [47,18] and the Description Logic Complexity Navigator10 for more details.

3 Reasoning in Expressive DLs

As mentioned in the introduction, a variety of of reasoning techniques have been
introduced for expressive DLs. Here, we describe tableau-based and automata-
based approaches in some detail, but do not treat approaches based on transla-
tions to first-order or modal logic.

Before looking at specific inference procedures in detail, let us first state some
general requirements on the behavior of such procedures:

– The procedure should be a decision procedure for the problem, which means
that it should be:
• sound, i.e., the positive answers should be correct;
• complete, i.e., the negative answers should be correct;
• terminating, i.e., it should always give an answer in finite time

– The procedure should be as efficient as possible. Preferably, it should be
optimal w.r.t. the (worst-case) complexity of the problem.

9 All the systems mentioned above supported these two concept constructors, which
were at that time viewed as being indispensable for a DL.

10 http://www.cs.man.ac.uk/∼ezolin/dl/

14 F. Baader

– The procedure should be practical, i.e., easy to implement and optimize, and
behave well in applications.

Both tableau-based and automata-based approaches to reasoning in DLs yield
decision procedures. Tableau-based approaches often yield practical procedures:
optimized implementations of such procedures have turned out to behave quite
well in applications even for expressive DLs with a high worst-case complexity.
However, these practical procedures are often not optimal w.r.t. the worst-case
complexity of the problem: in particular, satisfiability in ALC w.r.t. general
TBoxes is ExpTime-complete, but it is very hard to design a tableau-based
procedure for it that runs in deterministic exponential time. In contrast, it is
quite easy to design an ExpTime automata-based procedure for this problem,
but there are no practical implementations for this procedure.

3.1 Tableau-Based Approaches

The most widely used reasoning technique for DLs is the tableau-based approach,
which was first introduced in the context of DLs by Schmidt-Schauß and Smolka
[108], though it had already been used for modal logics long before that [53].
In this section, we first describe this technique for the case of consistency of
an ABox (without a TBox11) in our basic DL ALC. Then we show how the
approach can be extended to deal with qualified number restrictions and with
general TBoxes.

Given an ALC ABox A0, the tableau algorithm for consistency tries to con-
struct a finite interpretation I that is a model of A0. Before we can describe
the algorithm more formally, we need to introduce an appropriate data struc-
ture in which to represent the (partial descriptions of) finite interpretations that
are generated during the run of the algorithm. The original paper by Schmidt-
Schauß and Smolka [108], and also many other papers on tableau algorithms for
DLs, introduce the new notion of a constraint system for this purpose. How-
ever, if we look at the information that must be expressed (namely, the elements
of the interpretation, the concept descriptions they belong to, and their role
relationships), we see that ABox assertions are sufficient for this purpose.

It will be convenient to assume that all concept descriptions are in negation
normal form (NNF), i.e., that negation occurs only directly in front of concept
names. Using de Morgan’s rules and the usual rules for quantifiers, any ALC
concept description can be transformed (in linear time) into an equivalent de-
scription in NNF. An ABox is in NNF if all the concept descriptions occurring
in it are in NNF.

Let A0 be an ALC ABox in NNF. In order to test consistency of A0, the al-
gorithm starts with A0, and applies consistency preserving transformation rules
(see Fig. 4) to this ABox. The transformation rule that handles disjunction is
nondeterministic in the sense that a given ABox is transformed into two new
ABoxes such that the original ABox is consistent iff one of the new ABoxes is so.
11 As mentioned above, inference problems w.r.t. a TBox can be reduced to the corre-

sponding ones without TBoxes by expanding the concept definitions from T .

Description Logics 15

The →�-rule
Condition: A contains (C1 � C2)(x), but not both C1(x) and C2(x).
Action: A′ := A∪ {C1(x), C2(x)}.

The →�-rule
Condition: A contains (C1 � C2)(x), but neither C1(x) nor C2(x).
Action: A′ := A∪ {C1(x)}, A′′ := A ∪ {C2(x)}.

The →∃-rule
Condition: A contains (∃r.C)(x), but there is no individual name z such that

C(z) and r(x, z) are in A.
Action: A′ := A∪{C(y), r(x, y)} where y is an individual name not occurring in

A.

The →∀-rule
Condition: A contains (∀r.C)(x) and r(x, y), but it does not contain C(y).
Action: A′ := A∪ {C(y)}.

Fig. 4. Tableau rules of the consistency algorithm for ALC

For this reason we will consider finite sets of ABoxes S = {A1, . . . ,Ak} instead
of single ABoxes. Such a set is consistent iff there is some i, 1 ≤ i ≤ k, such that
Ai is consistent. A rule of Fig. 4 is applied to a given finite set of ABoxes S as
follows: it takes an element A of S, and replaces it by one ABox A′ or by two
ABoxes A′ and A′′.

Definition 6. An ABox A is called complete iff none of the transformation
rules of Fig. 4 applies to it. The ABox A contains a clash iff {A(x), ¬A(x)} ⊆ A
for some individual name x and some concept name A. An ABox is called closed
if it contains a clash, and open otherwise.

The consistency algorithm for ALC works as follows. It starts with the singleton
set of ABoxes {A0}, and applies the rules of Fig. 4 (in arbitrary order) until
no more rules apply. It answers “consistent” if the set ̂S of ABoxes obtained
this way contains an open ABox, and “inconsistent” otherwise. The fact that
this algorithm is a decision procedure for consistency of ALC ABoxes is an easy
consequence of the following lemma.

Lemma 1. Let A0 be an ALC ABox in negation normal form.

1. Local correctness: the rules preserve consistency, i.e., if S′ is obtained from
the finite set of ABoxes S by application of a transformation rule, then S is
consistent iff S′ is consistent.

2. Termination: there cannot be an infinite sequence of rule applications

{A0} → S1 → S2 → · · · .

16 F. Baader

3. Soundness:12 any complete and open ABox A is consistent.
4. Completeness:13 any closed ABox A is inconsistent.

Proof 1. Local correctness: We treat the→∃-rule and the→�-rule in detail. The
other rules can be handled similarly.

First, assume that S′ is obtained from S by an application of the →∃-rule.
Then there is an ABox A ∈ S containing an assertion of the form (∃r.C)(x),
and S′ is obtained from S by replacing A by A′ := A ∪ {C(y), r(x, y)} where y
is an individual name not occurring in A.

Obviously, it is enough to show that A has a model iff A′ has a model. The
if-direction is trivial since A ⊆ A′. To show the only-if direction, assume that I
is a model of A. Since (∃r.C)(x) ∈ A, there is a d ∈ ΔI such that

(xI , d) ∈ rI and d ∈ CI .

Let I ′ be the interpretation that coincides with I, with the exception that yI′
=

d. Since y does not occur in A, I′ is a model of A. By the definition of yI′
, it is

also a model of {r(x, y), C(y)}, and thus of A′.
Second, assume that S′ is obtained from S by an application of the →�-rule.

Then there is an ABox A ∈ S containing an assertion of the form (C1 �C2)(x),
and S′ is obtained from S by replacing A by A′ := A ∪ {C1(x)} and A′′ :=
A ∪ {C2(x)}.

It is enough to show that A has a model iff A′ has a model or A′′ has a model.
The if-direction is again trivial since A ⊆ A′ and A ⊆ A′′. To show the only-if
direction, assume that I is a model of A. Since (C1 �C2)(x) ∈ A, we have

xI ∈ (C1 � C2)I = CI
1 ∪ CI

2 .

If xI ∈ CI
1 , then I is a model of A′. If xI ∈ CI

2 , then I is a model of A′′.

2. Termination: Define the label LA(x) of an individual name x in an ABox A
to consist of the concept descriptions in concept assertions for x, i.e.,

LA(x) := {C | C(x) ∈ A}.

Let S be a set of ABoxes reached by a finite number of rule applications, starting
with {A0}, and let A ∈ S. The following are easy consequences of the definition
of the tableau rules.

1. rule application is monotonic, i.e., every application of a rule to A extends
the label of an individual, by adding a new concept assertion, and does not
remove any element from a label;

12 Recall that soundness means that the positive answers of the algorithm are correct,
i.e., if the algorithm says “consistent,” then the input ABox A0 is indeed consistent.
This follows from the part 3. of the lemma together with part 1. (local correctness).

13 Recall that completeness means that the negative answers of the algorithm are cor-
rect, i.e., if the algorithm says “inconsistent,” then the input ABox A0 is indeed
inconsistent. This follows from the part 4. of the lemma together with part 1. (local
correctness).

Description Logics 17

2. concept descriptions occurring in labels in A are subdescriptions of concept
descriptions occurring in the initial ABox A0.

Clearly, these two facts imply that there can only be a finite number of rule
applications per individual. Thus, it remains to show that the number of newly
introduced individuals in a chain of rule applications is bounded as well. Let
us call an individual name occurring in A a new individual if it is not one of
the individuals already present in A0. We say that y is an r-successor of x if
r(x, y) ∈ A.

3. for a given individual x, an existential restriction in the label of x can trigger
at most one introduction of a new individual, and thus the number of new
individuals that are r-successors of an individual in A is bounded by the
number of existential restrictions in A0;

4. the length of successor chains of new individuals in A is bounded by the max-
imal size of the concept descriptions occurring in A0. This is an immediate
consequence of the following two facts:
– if x is a new individual in A, then it has a unique predecessor y
– the maximal size of concept descriptions in LA(x) is strictly smaller than

the maximal size of concept descriptions in LA(y).

Facts 3. and 4. yield an overall bound on the number of new individuals in A.
Since only a finite number of individuals can be introduced during rule appli-
cation, and only finitely many rules can be applied to a fixed individual, this
shows that overall we can have only a finite number of rule applications, which
completes the proof of termination.

3. Soundness: LetA be a complete and open ABox. To prove thatA is consistent,
we define the canonical interpretation IA, and show that it is a model of A:

1. The domain ΔIA of IA consists of the individual names occurring in A.
2. For all individual names x we define xIA := x.
3. For all concept names A we define AIA := {x | A(x) ∈ A}.
4. For all role names r we define rIA := {(x, y) | r(x, y) ∈ A}.

By definition, IA satisfies all the role assertions in A. To prove that IA satisfies
the concept assertions as well, we consider C(x) ∈ A and show xIA = x ∈ CIA

by induction on the size of C:

– C = A for A ∈ NC : x ∈ AIA is an immediate consequence of the definition
of AIA .

– C = ¬A for A ∈ NC : since A is open, A(x) �∈ A, and thus x �∈ AIA by the
definition of AIA .

– C = C1 �C2: since A is complete, (C1 �C2)(x) ∈ A implies that C1(x) ∈ A
and C2(x) ∈ A; by induction, this yields x ∈ CIA

1 and x ∈ CIA
2 , and thus

x ∈ (C1 � C2)IA .
– the other constructors can be treated similarly.

4. Completeness: the fact that a closed ABox cannot have a model is an imme-
diate consequence of the definition of a clash. ��

18 F. Baader

Theorem 1. The tableau algorithm introduced above is a decision procedure for
consistency of ALC ABoxes.

Proof. Started with a finite ALC ABox A0 in NNF, the algorithm always termi-
nates with a finite set of complete ABoxes A1, . . . ,An. Local correctness implies
that A0 is consistent iff one of A1, . . . ,An is consistent.

If the algorithm answers “inconsistent,” then all the ABoxes A1, . . . ,An are
closed. Completeness then yields that all the ABoxesA1, . . . ,An are inconsistent,
and thus A0 is inconsistent, by local correctness.

If the algorithm answers “consistent,” then one of the complete ABoxes
A1, . . . ,An, say Ai, is open. Soundness then yields that Ai is consistent, and
thus A0 is consistent, by local correctness.

To sum up, we have shown that the algorithm always terminates, and that
both the positive answers (“consistent”) and the negative answers (“inconsis-
tent”) are correct. ��

Adding qualified number restrictions. The description language obtained
from ALC by adding qualified number restrictions is called ALCQ. In order to
transform also ALCQ ABoxes into negation normal form, we additionally use
the following equivalence preserving rules:

¬(≥n + 1 r.C)� (≤n r.C)

¬(≥ 0 r.C)� ⊥
¬(≤n r.C)� (≥n + 1 r.C)

In the following, we assume that all ALCQ ABoxes are in NNF.
The main idea underlying the extension of the tableau algorithm for ALC

to ALCQ is quite simple. At-least restrictions are treated by generating the re-
quired role successors as new individuals. At-most restrictions that are currently
violated are treated by (non-deterministically) identifying some of the role suc-
cessors. To avoid running into a generate-identify cycle, we introduce explicit
inequality assertions that prohibit the identification of individuals that were in-
troduced to satisfy the same at-least restriction. This use of inequality assertions
also creates new types of clashes, which occur when an at-most restriction re-
quires some identification, but all identifications are prohibited by inequality
assertions.

To be more precise, the tableau algorithm for consistency of ALC ABoxes is
extended to ALCQ as follows:

– For each of the new concept constructors, we add a new tableau rule: the
→≥-rule and the →≤-rule are shown in Fig. 5.

– In the formulation of these rules, we have used inequality assertions, which
are of the form x � .= y for individual names x, y, and have the obvious
semantics that an interpretation I satisfies such an assertion iff xI �= yI .

– Finally, there are new types of clashes :

Description Logics 19

The →≥-rule
Condition: A contains (≥n r.C)(x), and there are no individual names z1, . . . , zn

such that r(x, zi), C(zi) (1 ≤ i ≤ n) and zi � .= zj (1 ≤ i < j ≤ n) are in A.
Action: A′ := A∪ {r(x, yi), C(yi) | 1 ≤ i ≤ n} ∪ {yi � .= yj | 1 ≤ i < j ≤ n}, where

y1, . . . , yn are distinct individual names not occurring in A.

The →≤-rule
Condition: A contains distinct individual names y1, . . . , yn+1 such that

(≤n r.C)(x) and r(x, y1), C(y1) . . . , r(x, yn+1), C(yn+1) are in A, and yi � .= yj

is not in A for some i, j, 1 ≤ i < j ≤ n + 1.
Action: For each pair yi, yj such that 1 ≤ i < j ≤ n + 1 and yi � .= yj is not in A,

the ABox Ai,j := [yi/yj]A is obtained from A by replacing each occurrence
of yi by yj .

Fig. 5. Tableau rules for qualified number restrictions

• x � .= x ∈ A for an individual name x.
• {(≤n r.C)(x)} ∪ {r(x, yi), C(yi) | 1 ≤ i ≤ n + 1} ∪ {yi � .= yj | 1 ≤ i <

j ≤ n + 1} ⊆ A for individual names x, y1, . . . , yn+1, an ALCQ concept
description C, a role name r, and a non-negative integer n.

The main question is then, of course, whether this extended algorithm really
yields a decision procedure for consistency of ALCQ ABoxes. To prove this, it
would be enough to show that the four properties stated in Lemma 1 also hold
for the extended algorithm. Local correctness and completeness are easy to show.
Unfortunately, neither soundness nor termination hold.

To see that the algorithm is not sound, consider the ABox

A0 := {(≥ 3 child.)(x), (≤ 1 child.Female)(x), (≤ 1 child.¬Female)(x)}.

Obviously, this ABox is inconsistent, but the algorithm does not find this out.
In fact, it would introduce three new individuals y1, y2, y3 as r-successors of x,
each belonging to . In an interpretation, the element yI

i (i = 1, 2, 3) belongs to
either FemaleI or to (¬Female)I , but in the ABox A1 obtained by applying the
→≥-rule to A0, the only concept assertion for yi (i = 1, 2, 3) is (yi). Thus, the
→≤-rule does not apply to A1, and A1 also does not contain a clash. The ABox
A1 is thus complete and open, but it is not consistent.

The soundness problem illustrated by this example can be avoided by adding
as a third rule the →choose-rule shown in Fig. 6, where ∼C denotes the negation
normal form of C. It is easy to show that this rule preserves local correctness,
and that its addition allows us to regain soundness.

However, we still need to deal with the termination problem. This problem is
illustrated in the following example. Consider the ABox

A0 := {A(a), r(a, a), (∃r.A)(a), (≤ 1 r.)(a), (∀r.∃r.A)(a), r(a, x), A(x)}.

20 F. Baader

The →choose-rule
Condition: A contains (≤n r.C)(x) and r(x, y), but neither C(y) nor ¬C(y).
Action: A′ := A∪ {C(y)}, A′′ := A ∪ {∼C(y)}.

Fig. 6. The →choose-rule for qualified number restrictions

The →∀-rule can be used to add the assertion (∃r.A)(x), which yields the new
ABox

A1 := A0 ∪ {(∃r.A)(x)}.

This triggers an application of the→∃-rule to x. Thus, we obtain the new ABox

A2 := A1 ∪ {r(x, y), A(y)}.

Since a has two r-successors in A2, the →≤-rule is applicable to a. By replacing
every occurrence of x by a, we obtain the ABox

A3 := {A(a), r(a, a), (∃r.A)(a), (≤ 1 r.)(a), (∀r.∃r.A)(a), r(a, y), A(y)},

Except for the individual names (i.e., y instead of x), A3 is identical to A1.
For this reason, we can continue as above to obtain an infinite chain of rule
applications.

We can easily regain termination by requiring that generating rules (i.e., the
rules →∃ and→≥, which generate new individuals) may only be applied if none
of the other rules is applicable. In the above example, this strategy would prevent
the application of the →∃-rule to x in the ABox A1 since the →≤-rule is also
applicable. After applying the →≤-rule (which replaces x by a), the →∃-rule is
no longer applicable since a already has an r-successor that belongs to A.

Consistency w.r.t. general TBoxes. Let T = {C1 � D1, . . . , Cn � Dn} be
a general TBox. It is easy to see that the general TBox consisting of the single
GCI

 � (¬C1 �D1) � . . . � (¬Cn �Dn)

is equivalent to T in the sense that it has the same models. Thus, it is sufficient
to deal with the case where the general TBox consists of a single GCI of the form
 � C for a concept description C. Obviously, this GCI says that every element
of the model belongs to C. Thus, to reason w.r.t. a general TBox consisting of
this GCI, it makes sense to add a new rule, the →	
C -rule, which adds the
concept assertion C(x) in case the individual name x occurs in the ABox, and
this assertion is not yet present.

Does the addition of the→	
C -rule yield a decision procedure for ABox con-
sistency w.r.t. the general TBox { � C}? Local correctness, soundness, and
completeness can indeed easily be shown, but the procedure does not terminate,
as illustrated by the following example. Consider the ABox A0 := {(∃r.A)(x0)},

Description Logics 21

and assume that we want to test its consistency w.r.t. the general TBox { �
∃r.A}. The procedure generates an infinite sequence of ABoxesA1,A2, . . . and in-
dividuals x1, x2, . . . such that Ai+1 := Ai∪{r(xi, xi+1), A(xi+1), (∃r.A)(xi+1)}.
Since all individuals xi (i ≥ 1) receive the same concept assertions as x1, we
may say that the procedure has run into a cycle.

Termination can be regained by using a mechanism that detects cyclic com-
putations, and then blocking the application of generating rules: the application
of the →∃- and the →≥-rule to an individual x is blocked by an individual y in
an ABox A iff LA(x) ⊆ LA(y).14 The main idea underlying blocking is that the
blocked individual x can use the role successors of y instead of generating new
ones. For example, instead of generating a new r-successor for x2 in the above
example, one can simply use the r-successor of x1. This yields an interpretation I
with ΔI := {x0, x1, x2}, AI := {x1, x2}, and rI := {(x0, x1), (x1, x2), (x2, x2)}.
Obviously, I is a model of both A0 and the general TBox { � ∃r.A}.

To avoid cyclic blocking (of x by y and vice versa), we consider an enumeration
of all individual names, and require that an individual x may only be blocked
by individuals y that occur before x in this enumeration. This, together with
some other technical assumptions, makes sure that a tableau algorithm using
this notion of blocking is sound and complete as well as terminating both for
ALC and ALCQ (see, e.g., [37,9] for details).

Complexity of reasoning. For ALC, the satisfiability and the consistency
problem (without TBox) are PSpace-complete [107,64]. The tableau algorithm
as described above needs exponential space, but it can be modified such that it
needs only polynomial space [107]. Both TBoxes [83] and qualified number re-
strictions [65,113] can be added without increasing the complexity. W.r.t. general
TBoxes, the satisfiability and the consistency problem are ExpTime-complete
[103]. However, it is not easy to show the ExpTime-upper bound using tableau
algorithms, though it is in principle possible [48,56]. As we will see in the next
section, automata-based algorithms are well-suited to show such ExpTime-upper
bounds. The tableau algorithms implemented in systems like FaCT, Racer, and
Pellet are not worst-case optimal, but they are nevertheless highly optimized
and behave quite well on large knowledge bases from applications.

3.2 Automata-Based Approaches

Although the tableau-based approach is currently the most widely used tech-
nique for reasoning in DLs, other approaches have been developed as well. In
general, a reasoning algorithm may be developed with different intentions in
mind, such as using it for an optimized implementation or using it to prove a
decidability or computational complexity result. Certain approaches may (for a
given logic) be better suited for the former task, whereas others may be better
suited for the latter—and it is sometimes hard to find one that is well-suited
for both. As mentioned above, the tableau-based approach often yields practical
algorithms, whereas it is not well-suited for proving ExpTime-upper bounds. In
14 Recall that LA(z) = {C | C(z) ∈ A} for any individual z occurring in A.

22 F. Baader

contrast, such upper bounds can often be shown in a very elegant way using
automata-based approach [41,86,84,114].15

In this subsection, we restrict our attention to concept satisfiability, possibly
w.r.t. (general) TBoxes. This is not a severe restriction since most of the other in-
teresting inference problems can be reduced to satisfiability.16 There are various
instances of the automata-based approach, which differ not only w.r.t. the DL
under consideration, but also w.r.t. the employed automaton model. However,
in principle all these instances have the following general ideas in common:

– First, one shows that the DL in question has the tree model property.
– Second, one devises a translation from pairs C, T , where C is a concept

description and T is a TBox, into an appropriate tree automata AC,T such
that AC,T accepts exactly the tree models of C w.r.t. T .

– Third, one applies the emptiness test for the employed automaton model to
AC,T to test whether C has a (tree) model w.r.t. T .

The complexity of the satisfiability algorithm obtained this way depends on the
complexity of the translation and the complexity of the emptiness tests. The
latter complexity in turn depends on which automaton model is employed.

Below, we will use a simple form of non-deterministic automata working on
infinite trees of fixed arity, so-called looping automata [116]. In this case, the
translation is exponential, but the emptiness test is polynomial (in the size of
the already exponentially large automaton obtained through the translation).
Thus, the whole algorithm runs in deterministic exponential time. Alternatively,
one could use alternating tree automata [92], where a polynomial translation is
possible, but the emptiness test is exponential.

Instead of considering automata working on trees of fixed arity, one could
also consider so-called amorphous tree automata [26,76], which can deal with
arbitrary branching. This simplifies defining the translation, but uses a slightly
more complicated automaton model. For some very expressive description logics
(e.g., ones that allow for transitive closure of roles [3]), the simple looping au-
tomata introduced below are not sufficient since one needs additional acceptance
conditions such as the Büchi condition [112] (which requires the occurrence of
infinitely many final states in every path).

The Tree Model Property. The first step towards showing that satisfiability
in ALC w.r.t. general TBoxes can be decided with the automata-based approach
is to establish the tree model property, i.e., to show that any ALC concept
description C satisfiable w.r.t. a general ALC TBox T has a tree-shaped model.
Note that this model may, in general, be infinite. One way of seeing this is to
consider the tableau algorithm introduced above, applied to the ABox {C(x)}
w.r.t. the representation of the general TBox T as a single GCI, and just dispose

15 The cited papers actually use automata-based approaches to show ExpTime results
for extensions of ALC.

16 Using the so-called pre-completion technique [64], this is also the case for inference
problems involving ABoxes.

Description Logics 23

I

r
r s

s
b c

a

{A}

{B} ∅

{B}
b

a1

b1

c ∅

c1 ∅

c2 ∅

s

a

{A}
bI

r

r

r

{A}

{B}

r s

s

s

Fig. 7. Unraveling of a model into a tree-shaped model

of blocking. Possibly infinite runs of the algorithm then generate tree-shaped
models. However, one can also show the tree model property of ALC by using
the well-known unraveling technique of modal logic [27], in which an arbitrary
model of C w.r.t. T is unraveled into a bisimilar tree-shaped interpretation.
Invariance of ALC under bisimulation [80] (which it inherits from its syntactic
variant multimodal K) then implies that the tree shaped interpretation obtained
by unraveling is also a model of C w.r.t. T .

Instead of defining unraveling in detail, we just give an example in Fig. 7,
and refer the reader to [27] for formal definitions and proofs. The graph on the
left-hand side of Fig. 7 describes an interpretation I: the nodes of the graph
are the elements of ΔI , the node labels express to which concept names the
corresponding element belongs, and the labelled edges of the graph express the
role relationships. For example, a ∈ ΔI belongs to AI , but not to BI , and it
has r-successor b and s-successor c. It is easy to check that I is a model of the
concept A w.r.t. the TBox

T := {A � ∃r.B, B � ∃r.A, A �B � ∃s.}.

The graph on the right-hand side of Fig. 7 describes (a finite part of) the corre-
sponding unraveled model, where a was used as the start node for the unraveling.
Basically, one considers all paths starting with a in the original model, but when-
ever one would re-enter a node one makes a copy of it. Like I, the corresponding
unraveled interpretation ̂I is a model of T and it satisfies a ∈ A

̂I .

Looping Tree Automata. As mentioned above, we consider automata working
on infinite trees of some fixed arity k. To be more precise, the nodes of the trees
are labelled by elements from some finite alphabet Σ, whereas the edges are

24 F. Baader

a

b b
a a

a

b

q1

q0

q1
q2

q2 q2q1

Fig. 8. A tree and a run on it

unlabeled, but ordered, i.e., there is a first, second, to kth successor for each
node. Such trees, which we call k-ary Σ-trees, can formally be represented as
mappings T : {0, . . . , k − 1}∗ → Σ. Thus, nodes are represented as words over
{0, . . . , k−1}, the root is the word ε, and a node u has exactly k successor nodes
u0, . . . , u(k−1), and its label is T (u). For example, the binary tree that has root
label a, whose left subtree contains only nodes labelled by b, and whose right
subtree has only nodes labelled by a (see the left-hand side of Fig. 8) is formally
represented as the mapping

T : {0, 1}∗ → {a, b} with T (u) =
{

b if u starts with 0
a otherwise

A looping automaton working on k-ary Σ-trees is of the form A = (Q, Σ, I, Δ),
where

– Q is a finite set of states and I ⊆ Q is the set of initial states;
– Σ is a finite alphabet;
– Δ ⊆ Q×Σ ×Qk is the transition relation.

We will usually write tuples (q, a, q1, . . . , qk) ∈ Δ in the form (q, a)→(q1, . . . , qk).
A run ofA = (Q, Σ, I, Δ) on the tree T : {0, . . . , k−1}∗ → Σ is a k-ary Q-tree

R : {0, . . . , k− 1}∗ → Q such that (R(u), T (u))→ (R(u0), . . . , R(u(k− 1))) ∈ Δ
for all u ∈ {0, . . . , k − 1}∗. This run is called accepting if R(ε) ∈ I.

For example, consider the automaton A = (Q, Σ, I, Δ), where

– Q = {q0, q1, q2} and I = {q0};
– Σ = {a, b};
– Δ consists of the transitions

(q0, a)→ (q1, q2), (q0, a)→ (q2, q1), (q1, b)→ (q1, q1), (q2, a)→ (q2, q2).

The k-ary Q-tree R from the right-hand side of Fig. 8 maps ε to q0, nodes starting
with 0 to q1, and nodes starting with 1 to q2. This tree R is an accepting run of
A on the tree T on the left hand side of Figure 8.

Description Logics 25

The tree language accepted by a given looping automaton A = (Q, Σ, I, Δ) is

L(A) := {T : {0, . . . , k − 1}∗ → Σ | there is an accepting run of A on T}.

In our example, the language accepted by the automaton consists of two trees,
the tree T defined above and the symmetric tree where the left subtree contains
only nodes labelled with a and the right subtree contains only nodes labelled
with b.

The Emptiness Test. Given a looping tree automaton A, the emptiness test
decides whether L(A) = ∅ or not. Based on the definition of the accepted lan-
guage, one might be tempted to try to solve the problem in a top-down manner,
by first choosing an initial state to label the root, then choosing a transition
starting with this state to label its successors, etc. However, the algorithm ob-
tained this way is non-deterministic since one may have several initial states,
and also several possible transitions for each state.

To obtain a deterministic polynomial time emptiness test, it helps to work
bottom-up. The main idea is that one wants to compute the set of bad states,
i.e., states that do not occur in any run of the automaton. Obviously, any state
q that does not occur on the left-hand side of a transition (q, ·) → (· · ·) is bad.
Starting with this set, one can then extend the set of states known to be bad
using the fact that a state q is bad if all transitions (q, ·)→ (q1, . . . , qk) starting
with q contain a bad state qj in their right-hand side. Obviously, this process
of extending the set of known bad states terminates after a linear number of
additions of states to the set of known bad states, and it is easy to show that
the final set obtained this way is indeed the set of all bad states. The accepted
language is then empty iff all initial states are bad. By using appropriate data
structures, one can ensure that the overall complexity of the algorithm is linear
in the size of the automaton. A more detailed description of this emptiness test
for looping tree automata can be found in [25].

The Reduction. Recall that we want to reduce the satisfiability problem for
ALC concepts w.r.t. general TBoxes to the emptiness problem for looping tree
automata by constructing, for a given input C, T , an automaton AC,T that
accepts exactly the tree-shaped models of C w.r.t. T .

Before this is possible, however, we need to overcome the mismatch between
the underlying kinds of trees. The tree-shaped models of C w.r.t. T are trees
with labelled edges, but without a fixed arity. In order to express such trees
as k-ary Σ-trees for an appropriate k, where Σ consists of all sets of concept
names, we consider all the existential restrictions occurring in C and T . The
number of these restrictions determines k. Using the bisimulation invariance of
ALC [80], it is easy to show that the existence of a tree-shaped model of C w.r.t.
T also implies the existence of a tree-shaped model where every node has at
most k successor nodes. To get exactly k successors, we can do some padding
with dummy nodes if needed. The edge label is simply pushed into the label of
the successor node, i.e., each node label contains, in addition to concept names,

26 F. Baader

exactly one role name, which expresses with which role the node is reached from
its unique predecessor. For the root, an arbitrary role can be chosen.

The states of AC,T are sets of subexpressions of the concepts occurring in C
and T . Intuitively, a run of the automaton on a tree-shaped model of C w.r.t.
T labels a node not only with the concept names to which this element of the
model belongs, but also with all the subexpressions to which it belongs. For
technical reasons, we need to normalize the input concept description and TBox
before we build these subexpressions. First, we ensure that all GCIs in T are of
the form � D by using the fact that the GCIs C1 � C2 and � ¬C1 � C2

are equivalent. Second, we transform the input concept description C and every
concept D in a GCI � D into negation normal form as described in Section 3.1.
In our example, the normalized TBox consists of the GCIs

 � ¬A � ∃r.B, � ¬B � ∃r.A, � (¬A � ¬B) � ∃s.,

whose subexpressions are ,¬A � ∃r.B,¬A, A, ∃r.B, B,¬B � ∃r.A,¬B, ∃r.A,
(¬A�¬B)�∃s.,¬A�¬B, ∃s.. Of these, the node a in the tree-shaped model
depicted on the right-hand side of Fig. 7 belongs to ,¬A�∃r.B, A, ∃r.B,¬B �
∃r.A,¬B, (¬A � ¬B) � ∃s., ∃s..

We are now ready to give a formal definition of the automaton AC,T =
(Q, Σ, I, Δ). Let SC,T denote the set of all subexpressions of C and T , RC,T
denote the set of all role names occurring in C and T , and k the number of
existential restrictions contained in SC,T . The alphabet Σ basically consists of
all subsets of the set of concept names occurring in C and T . As mentioned
above, in order to encode the edge labels (i.e., express for which role r the node
is a successor node), each “letter” contains, additionally, exactly one role name.
Finally, the alphabet contains the empty set (not even containing a role name),
which is used to label nodes that are introduced for padding purposes.

The set of states Q of AC,T consists of the Hintikka sets for C, T , i.e., subsets
q of SC,T ∪RC,T such that q = ∅ or

– q contains exactly one role name;
– if � D ∈ T then D ∈ q;
– if C1 � C2 ∈ q then {C1, C2} ⊆ q;
– if C1 � C2 ∈ q then {C1, C2} ∩ q �= ∅; and
– {A,¬A} �⊆ q for all concept names A.

The set of initial states I consists of those states containing C, and the transi-
tion relation Δ consists of those transitions (q, σ) → (q1, . . . , qk) satisfying the
following properties:

– q and σ coincide w.r.t. the concept and role names contained in them;
– if q = ∅, then q1 = . . . = qk = ∅;
– if ∃r.D ∈ q, then there is an i such that {D, r} ⊆ qi; and
– if ∀r.D ∈ q and r ∈ qi, then D ∈ qi.

It is not hard to show that the construction of AC,T indeed yields a reduction of
satisfiability w.r.t. general TBoxes in ALC to the emptiness problem for looping
tree automata.

Description Logics 27

Proposition 1. The ALC concept description C is satisfiable w.r.t. the general
ALC TBox T iff L(AC,T) �= ∅.

Obviously, the number of states of AC,T is exponential in the size of C and
T . Since the emptiness problem for looping tree automata can be decided in
polynomial time, we obtain an deterministic exponential upper-bound for the
time complexity of the satisfiability problem. ExpTime-hardness of this problem
can be shown by adapting the proof of ExpTime-hardness of satisfiability in
propositional dynamic logic (PDL) in [52].

Theorem 2. Satisfiability in ALC w.r.t. general TBoxes is ExpTime-complete.

4 Reasoning in the Light-Weight DLs EL and FL0

As mentioned in the introduction, early DL systems were based on so-called
structural subsumption algorithms, which first normalize the concepts to be
tested for subsumption, and then compare the syntactic structure of the nor-
malized concepts. The claim was that these algorithms can decide subsumption
in polynomial time. However, the first complexity results for DLs, also men-
tioned in the introduction, showed that these algorithms were neither polyno-
mial nor decision procedures for subsumption. For example, all early systems
used expansion of concept definitions, which can cause an exponential blow-up
of the size of concepts. Nebel’s coNP-hardness result [94] for subsumption w.r.t.
TBoxes showed that this blow-up cannot be avoided whenever the constructors
conjunction and value restriction are available. In addition, the early structural
subsumption algorithms were not complete, i.e., they were not able to detect
all valid subsumption relationships. These negative results for structural sub-
sumption algorithms together with the advent of tableau-based algorithms for
expressive DLs, which behaved well in practice, was probably the main reason
why structural approaches—and with them the quest for DLs with a polyno-
mial subsumption problem—were largely abandoned during the 1990s. More
recent results [6,34,7,8] on the complexity of reasoning in DLs with existential
restrictions, rather than value restrictions, have led to a partial rehabilitation of
structural approaches and light-weight DLs with polynomial reasoning problems
(see the description of Phase 5 in the introduction).

When trying to find a DL with a polynomial subsumption problem, it is clear
that one cannot allow for all Boolean operations, since then one would inherit
NP-hardness from propositional logic. It should also be clear that conjunction
cannot be dispensed with since one must be able to state that more than one
property should hold when defining a concept. Finally, if one wants to call the
logic a DL, one needs a constructor using roles. This leads to the following two
minimal candidate DLs:

– the DL FL0 [4], which offers the concept constructors conjunction, value
restriction (∀r.C), and the top concept;

– the DL EL [7], which offers the concept constructors conjunction, existential
restriction (∃r.C), and the top concept.

28 F. Baader

In the following, we will look at the subsumption problem17 in these two DLs in
some detail. Whereas subsumption without a TBox turns out to be polynomial
in both cases, we will also see that EL exhibits a more robust behavior w.r.t.
the complexity of the subsumption problem in the presence of TBoxes.

Subsumption in FL0. First, we consider the case of subsumption of FL0-
concept descriptions without a TBox. There are basically two approaches for
obtaining a structural subsumption algorithm in this case, which are based on
two different normal forms. One can either use the equivalence ∀r.(C � D) ≡
∀r.C � ∀r.D as a rewrite rule from left-to-right or from right-to-left. Here we
will consider the approach based on the left-to-right direction, whereas all of the
early structural subsumption algorithms were based on a normal form obtained
by rewriting in the other direction.18

By using the rewrite rule ∀r.(C�D)→ ∀r.C�∀r.D together with associativity,
commutativity and idempotence19 of �, any FL0-concept can be transformed
into an equivalent one that is a conjunction of concepts of the form ∀r1. · · · ∀rm.A
for m ≥ 0 (not necessarily distinct) role names r1, . . . , rm and a concept name A.
We abbreviate ∀r1. · · · ∀rm.A by ∀r1 . . . rm.A, where r1 . . . rm is viewed as a word
over the alphabet of all role names. In addition, instead of ∀w1.A � . . . � ∀w�.A
we write ∀L.A where L := {w1, . . . , w�} is a finite set of words over Σ. The term
∀∅.A is considered to be equivalent to the top concept , which means that it
can be added to a conjunction without changing the meaning of the concept.
Using these abbreviations, any pair of FL0-concept descriptions C, D containing
the concept names A1, . . . , Ak can be rewritten as

C ≡ ∀U1.A1 � . . . � ∀Uk.Ak and D ≡ ∀V1.A1 � . . . � ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role names. This
normal form provides us with the following characterization of subsumption of
FL0-concept descriptions [20]:

C � D iff Ui ⊇ Vi for all i, 1 ≤ i ≤ k.

Since the size of the normal forms is polynomial in the size of the original concept
descriptions, and since the inclusion tests Ui ⊇ Vi can also be realized in poly-
nomial time, this yields a polynomial-time decision procedure for subsumption
in FL0.

This characterization of subsumption via inclusion of finite sets of words can
be extended to TBoxes as follows. A given TBox T can be translated into a
finite (word) automaton20 AT , whose states are the concept names occurring in
17 Note that the satisfiability problem is trivial in FL0 and EL, since any concept

expressed in these languages is satisfiable. The reduction of subsumption to satisfi-
ability is not possible due to the absence of negation.

18 A comparison between the two approaches can be found in [17].
19 I.e., (A � B) � C ≡ A � (B � C), A � B ≡ B � A, and A � A ≡ A.
20 Strictly speaking, we obtain a finite automaton with word transitions, i.e., transitions

that may be labelled with a word over Σ rather than a letter of Σ.

Description Logics 29

A ≡ C � ∀r.B � ∀s.∀r.P
B ≡ ∀s.C
C ≡ ∀r.P

r

A P

CB s

sr

r ε

Fig. 9. An FL0 TBox and the corresponding acyclic automaton

T , and whose transitions are induced by the value restrictions occurring in T
(see Fig. 9 for an example). A formal definition of this translation can be found
in [4], where the more general case of cyclic TBoxes is treated. In the case of
TBoxes, which are by definition acyclic, the resulting automata are also acyclic.

For a defined concept A and a primitive concept P in T , the language
LAT (A, P) is the set of all words labeling paths in AT from A to P . The lan-
guages LAT (A, P) represent all the value restrictions that must be satisfied by
instances of the concept A. With this intuition in mind, it should not be sur-
prising that subsumption w.r.t. FL0 TBoxes can be characterized in terms of
inclusion of languages accepted by acyclic automata. Indeed, the following is a
characterization of subsumption in FL0 w.r.t. TBoxes:

A �T B iff LAT (A, P) ⊇ LT (B, P) for all primitive concepts P .

In the example of Fig. 9, we have LAT (A, P) = {r, sr, rsr} ⊃ {sr} = LAT (B, P),
and thus A �T B, but B ��T A.

Since the inclusion problem for languages accepted by acyclic finite automata
is coNP-complete [54], this reduction shows that the subsumption problem in
FL0 w.r.t. TBoxes is in coNP. As shown by Nebel [94], the reduction also works
in the opposite direction, which yields the matching lower bound. For cyclic
TBoxes, the subsumption problem corresponds to the inclusion problem for lan-
guages accepted by arbitrary finite automata, which is PSpace-complete, and
thus the subsumption problem is also PSpace-complete [4,77]. In the presence of
general TBoxes, the subsumption problem in FL0 actually becomes as hard as
for ALC, namely ExpTime-hard [7,63].

Theorem 3. Subsumption in FL0 is polynomial without TBox, coNP-complete
w.r.t. TBoxes, PSpace-complete w.r.t. cyclic TBoxes, and ExpTime-complete
w.r.t. general TBoxes.

Subsumption in EL. In contrast to the negative complexity results for sub-
sumption w.r.t. TBoxes in FL0, subsumption in EL remains polynomial even in
the presence of general TBoxes [34].21 The polynomial-time subsumption algo-
rithm for EL that will be sketched below actually classifies a given TBox T , i.e.,
21 The special case of cyclic TBoxes was already treated in [6].

30 F. Baader

it simultaneously computes all subsumption relationships between the concept
names occurring in T . This algorithm proceeds in four steps:

1. Normalize the TBox.
2. Translate the normalized TBox into a graph.
3. Complete the graph using completion rules.
4. Read off the subsumption relationships from the normalized graph.

A general EL-TBox is normalized if it only contains GCIs of the following form:

A1 �A2 � B, A � ∃r.B, or ∃r.A � B,

where A, A1, A2, B are concept names or the top-concept . One can transform
a given TBox into a normalized one by applying normalization rules. Instead of
describing these rules in the general case, we just illustrate them by an example,
where we underline GCIs on the right-hand side that need further rewriting:

∃r.A � ∃r.∃s.A � A �B � ∃r.A � B1, B1 � ∃r.∃s.A � A �B
B1 � ∃r.∃s.A � A �B � ∃r.∃s.A � B2, B1 �B2 � A �B

∃r.∃s.A � B2 � ∃s.A � B3, ∃r.B3 � B2,
B1 �B2 � A �B � B1 �B2 � A, B1 �B2 � B

For example, in the first normalization step we introduce the abbreviation B1 for
the description ∃r.A. One might think that one must make B1 equivalent to ∃r.A,
i.e., also add the GCI B1 � ∃r.A. However, it can be shown that adding just
∃r.A � B1 is sufficient to obtain a subsumption-equivalent TBox, i.e., a TBox
that induces the same subsumption relationships between the concept names
occurring in the original TBox. All normalization rules preserve equivalence in
this sense, and if one uses an appropriate strategy (which basically defers the
applications of the rule applied in the last step of our example to the end), then
the normal form can be computed by a linear number of rule applications.

In the next step, we build the classification graph GT = (V, V ×V, S, R) where

– V is the set of concept names (including) occurring in the normalized
TBox T ;

– S labels nodes with sets of concept names (again including);
– R labels edges with sets of role names.

It can be shown that the label sets satisfy the following invariants :

– B ∈ S(A) implies A �T B, i.e., S(A) contains only subsumers of A w.r.t.
T .

– r ∈ R(A, B) implies A �T ∃r.B, i.e., R(A, B) contains only roles r such that
∃r.B subsumes A w.r.t. T .

Initially, we set S(A) := {A,} for all nodes A ∈ V , and R(A, B) := ∅ for all
edges (A, B) ∈ V × V . Obviously, the above invariants are satisfied by these
initial label sets.

Description Logics 31

(R1) A1 � A2
 B ∈ T and A1, A2 ∈ S(A) then add B to S(A)
(R2) A1
 ∃r.B ∈ T and A1 ∈ S(A) then add r to R(A,B)
(R3) ∃r.B1
 A1 ∈ T and B1 ∈ S(B), r ∈ R(A,B) then add A1 to S(A)

Fig. 10. The completion rules for subsumption in EL w.r.t. general TBoxes

The labels of nodes and edges are then extended by applying the rules of
Fig. 10, where we assume that a rule is only applied if it really extends a label
set. It is easy to see that these rules preserve the above invariants. For example,
consider the (most complicated) rule (R3). Obviously, ∃r.B1 � A1 ∈ T implies
∃r.B1 �T A1, and the assumption that the invariants are satisfied before ap-
plying the rule yields B �T B1 and A �T ∃r.B. The subsumption relationship
B �T B1 obviously implies ∃r.B �T ∃r.B1. By applying transitivity of the
subsumption relation �T , we thus obtain A �T A1.

The fact that subsumption in EL w.r.t. general TBoxes can be decided in
polynomial time is an immediate consequence of the following statements:

1. Rule application terminates after a polynomial number of steps.
2. If no more rules are applicable, then A �T B iff B ∈ S(A).

Regarding the first statement, note that the number of nodes is linear and the
number of edges is quadratic in the size of T . In addition, the size of the label
sets is bounded by the number of concept names and role names, and each rule
application extends at least one label. Regarding the equivalence in the second
statement, the “if” direction follows from the fact that the above invariants are
preserved under rule application. To show the “only-if” direction, assume that
B �∈ S(A). Then the following interpretation I is a model of T in which A ∈ AI ,
but A �∈ BI :

– ΔI := V ;
– rI := {(A′, B′) | r ∈ R(A′, B′)} for all role names r;
– B′I := {A′ | B′ ∈ S(A′)} for all concept names A′.

More details can be found in [34,7].

Theorem 4. Subsumption in EL is polynomial w.r.t. general TBoxes.

In [7] this result is extended to the DL EL++, which extends EL with the bottom
concept, nominals, a restricted form of concrete domains, and a restricted form of
so-called role-value maps. In addition, it is shown in [7] that almost all additions
of other typical DL constructors to EL make subsumption w.r.t. general TBoxes
ExpTime-complete.

It should be noted that these results are not only of theoretical interest. In
fact, both the large medical ontology Snomed ct22 and the Gene Ontology23

22 http://www.ihtsdo.org/snomed-ct/
23 http://www.geneontology.org/

32 F. Baader

can be expressed in EL, and the same is true for large parts of the medical
ontology Galen [102]. First implementations of the subsumption algorithm for
EL sketched above behave well on these very large knowledge bases [19,81,111].

In [8], the DL EL++ is extended with reflexive roles and range restrictions
since these means of expressivity have turned out to be important in medical
ontologies. It is shown that subsumption remains tractable if a certain syntactic
restriction is adopted. The DL obtained this way corresponds closely to the
OWL2 profile OWL 2EL.24

Acknowledgement

This article is, on the one hand, based on the Description Logic tutorial by the
author, which he first taught at the 2005 Logic Summer School organized by the
Research School of Information Sciences and Engineering, Australian National
University, Canberra, Australia. This tutorial in turn took some inspirations
from the Description Logic tutorial taught by Carsten Lutz and Ulrike Sattler
at the 2005 ICCL Summer School on Logic-Based Knowledge Representation
organized by the International Center for Computational Logic, TU Dresden,
Germany. On the other hand, this article reuses some of the material from the
overview articles [23,18,16], written by the author in collaboration with Ian Hor-
rocks, Carsten Lutz, and Ulrike Sattler.

References

1. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: Quonto: Querying ontologies. In: Veloso, M.M., Kambhampati,
S. (eds.) Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005),
pp. 1670–1671. AAAI Press/The MIT Press (2005)

2. Areces, C., de Rijke, M., de Nivelle, H.: Resolution in modal, description and
hybrid logic. J. of Logic and Computation 11(5), 717–736 (2001)

3. Baader., F.: Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In: Proc. of the 12th Int. Joint Conf. on
Artificial Intelligence, IJCAI 1991 (1991)

4. Baader, F.: Using automata theory for characterizing the semantics of termino-
logical cycles. Ann. of Mathematics and Artificial Intelligence 18, 175–219 (1996)

5. Baader, F.: Description logic terminology. In: [11], pp. 485–495 (2003)
6. Baader, F.: Terminological cycles in a description logic with existential restric-

tions. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 325–330. Morgan
Kaufmann, Los Altos (2003)

7. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), Edinburgh, UK, pp. 364–369. Morgan Kaufmann, Los Altos (2005)

8. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark, K.,
Patel-Schneider, P.F. (eds.) Proceedings of the Fifth International Workshop on
OWL: Experiences and Directions (OWLED 2008), Karlsruhe, Germany (2008)

24 http://www.w3.org/TR/owl2-profiles/

Description Logics 33

9. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts.
Artificial Intelligence 88(1–2), 195–213 (1996)

10. Baader, F., Bürckert, H.-J., Nebel, B., Nutt, W., Smolka, G.: On the expressivity
of feature logics with negation, functional uncertainty, and sort equations. J. of
Logic, Language and Information 2, 1–18 (1993)

11. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

12. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.-J.: An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management 4, 109–132 (1994)

13. Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for de-
scription logics. Fundamenta Informaticae 57(2–4), 247–279 (2003)

14. Baader, F., Hollunder, B.: A terminological knowledge representation system with
complete inference algorithm. In: Boley, H., Richter, M.M. (eds.) PDK 1991.
LNCS (LNAI), vol. 567, pp. 67–86. Springer, Heidelberg (1991)

15. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. International Handbooks in Information Systems,
pp. 3–28. Springer, Berlin (2003)

16. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen,
F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation,
pp. 135–179. Elsevier, Amsterdam (2007)

17. Baader, F., Küsters, R., Molitor, R.: Structural subsumption considered from
an automata theoretic point of view. In: Proc. of the 1998 Description
Logic Workshop (DL 1998). CEUR Electronic Workshop Proceedings (1998),
http://ceur-ws.org/Vol-11/

18. Baader, F., Lutz, C.: Description logic. In: Blackburn, P., van Benthem, J., Wolter,
F. (eds.) The Handbook of Modal Logic, pp. 757–820. Elsevier, Amsterdam (2006)

19. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS,
vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

20. Baader, F., Narendran, P.: Unification of concepts terms in description logics. J.
of Symbolic Computation 31(3), 277–305 (2001)

21. Baader, F., Nutt, W.: Basic description logics. In: [11], pp. 43–95 (2003)
22. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic

EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667,
pp. 52–67. Springer, Heidelberg (2007)

23. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69, 5–40 (2001)

24. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Proceedings of the International Confer-
ence on Representing and Sharing Knowledge Using SNOMED (KR-MED 2008),
Phoenix, Arizona (2008)

25. Baader, F., Tobies, S.: The inverse method implements the automata approach
for modal satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS, vol. 2083, pp. 92–106. Springer, Heidelberg (2001)

26. Bernholtz, O., Grumberg, O.: Branching time temporal logic and amorphous
tree automata. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 262–277.
Springer, Heidelberg (1993)

http://ceur-ws.org/Vol-11/

34 F. Baader

27. Blackburn, P., de Rijke, M., de Venema, Y.: Modal Logic. Cambridge Tracts in
Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge
(2001)

28. Borgida, A.: On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence 82(1–2), 353–367 (1996)

29. Brachman, R.J.: “Reducing” CLASSIC to practice: Knowledge representation
meets reality. In: Proc. of the 3rd Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 1992), pp. 247–258. Morgan Kaufmann, Los
Altos (1992)

30. Brachman, R.J., Levesque, H.J.: The tractability of subsumption in frame-based
description languages. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence
(AAAI 1984), pp. 34–37 (1984)

31. Brachman, R.J., Levesque, H.J.: Readings in Knowledge Representation. Morgan
Kaufmann, Los Altos (1985)

32. Brachman, R.J., Nardi, D.: An introduction to description logics. In: [11], pp.
1–40 (2003)

33. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science 9(2), 171–216 (1985)

34. Brandt., S.: Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.)
Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004), pp. 298–302
(2004)

35. Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive de-
scription logics: Preliminary report. In: Proc. of the 1995 Description Logic Work-
shop (DL 1995), pp. 131–139 (1995)

36. Buchheit, M., Donini, F.M., Nutt, W., Schaerf, A.: A refined architecture for ter-
minological systems: Terminology = schema + views. Artificial Intelligence 99(2),
209–260 (1998)

37. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminologi-
cal knowledge representation systems. J. of Artificial Intelligence Research 1,
109–138 (1993)

38. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Veloso, M.M., Kambhampati, S.
(eds.) Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp.
602–607. AAAI Press/The MIT Press (2005)

39. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3), 385–429 (2007)

40. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query
containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS 1998), pp. 149–158
(1998)

41. Calvanese, D., De Giacomo, G., Lenzerini, M.: Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In: Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 84–89 (1999)

42. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Descrip-
tion logic framework for information integration. In: Proc. of the 6th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 2–13
(1998)

Description Logics 35

43. De Giacomo, G.: Decidability of Class-Based Knowledge Representation For-
malisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienza” (1995)

44. De Giacomo, G., Lenzerini, M.: Boosting the correspondence between descrip-
tion logics and propositional dynamic logics. In: Proc. of the 12th Nat. Conf.
on Artificial Intelligence (AAAI 1994), pp. 205–212. AAAI Press/The MIT Press
(1994)

45. De Giacomo, G., Lenzerini, M.: Concept language with number restrictions and
fixpoints, and its relationship with μ-calculus. In: Proc. of the 11th Eur. Conf. on
Artificial Intelligence (ECAI 1994), pp. 411–415 (1994)

46. De Giacomo, G., Lenzerini, M.: TBox and ABox reasoning in expressive de-
scription logics. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) ECAI-WS 1992,
pp. 316–327. Morgan Kaufmann, Los Altos (1996)

47. Donini, F.: Complexity of reasoning. In: [11], pp. 96–136 (2003)
48. Donini, F., Massacci, F.: EXPTIME tableaux for ALC. Acta Informatica 124(1),

87–138 (2000)
49. Donini, F.M., Hollunder, B., Lenzerini, M., Spaccamela, A.M., Nardi, D., Nutt,

W.: The complexity of existential quantification in concept languages. Artificial
Intelligence 2–3, 309–327 (1992)

50. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept
languages. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proc. of the 2nd Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR 1991),
pp. 151–162. Morgan Kaufmann, Los Altos (1991)

51. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: Tractable concept languages. In:
Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), Sydney,
Australia, pp. 458–463 (1991)

52. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
of Computer and System Sciences 18, 194–211 (1979)

53. Fitting, M.: Tableau methods of proof for modal logics. Notre Dame J. of Formal
Logic 13(2), 237–247 (1972)

54. Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-
completeness. W. H. Freeman and Company, San Francisco (1979)

55. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. In: Veloso, M.M. (ed.) Proc. of the 20th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 399–404 (2007)

56. Goré, R., Nguyen, L.A.: Exptime tableaux for ALC using sound global caching.
In: Proc. of the 2007 Description Logic Workshop (DL 2007), Brixen-Bressanone,
Italy (2007)

57. Grädel, E.: Guarded fragments of first-order logic: A perspective for new descrip-
tion logics? In: Proc. of the 1998 Description Logic Workshop (DL 1998). CEUR
Electronic Workshop Proceedings (1998), http://ceur-ws.org/Vol-11/

58. Grädel, E.: On the restraining power of guards. J. of Symbolic Logic 64, 1719–1742
(1999)

59. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable
first-order logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)

60. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for mod-
ularity of ontologies. In: Veloso, M.M. (ed.) Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 298–303 (2007)

61. Haarslev, V., Möller, R.: RACE system description. In: Proc. of the 1999 De-
scription Logic Workshop (DL 1999). CEUR Electronic Workshop Proceedings,
pp. 130–132 (1999), http://ceur-ws.org/Vol-22/

http://ceur-ws.org/Vol-11/
http://ceur-ws.org/Vol-22/

36 F. Baader

62. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–706. Springer,
Heidelberg (2001)

63. Hofmann, M.: Proof-theoretic approach to description-logic. In: Panangaden, P.
(ed.) Proc. of the 20th IEEE Symp. on Logic in Computer Science (LICS 2005),
pp. 229–237. IEEE Computer Society Press, Los Alamitos (2005)

64. Hollunder, B.: Consistency checking reduced to satisfiability of concepts in ter-
minological systems. Ann. of Mathematics and Artificial Intelligence 18(2–4),
133–157 (1996)

65. Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages.
In: Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 1991), pp. 335–346 (1991)

66. Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption algorithms for con-
cept description languages. In: Proc. of the 9th Eur. Conf. on Artificial Intelligence
(ECAI 1990), London, United Kingdom, Pitman, pp. 348–353 (1990)

67. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 1998), pp. 636–647 (1998)

68. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In:
Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. of the 10th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR 2006), Lake District,
UK, pp. 57–67. AAAI Press/The MIT Press (2006)

69. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

70. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. J. of Logic and Computation 9(3), 385–410 (1999)

71. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS
(LNAI), vol. 1705, pp. 161–180. Springer, Heidelberg (1999)

72. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive
datalog programs. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Proc. of
the 9th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2004), pp. 152–162. Morgan Kaufmann, Los Altos (2004)

73. Hustadt, U., Schmidt., R.A.: On the relation of resolution and tableaux proof
systems for description logics. In: Proc. of the 16th Int. Joint Conf. on Artificial
Intelligence (IJCAI 1999), pp. 110–117 (1999)

74. Hustadt, U., Schmidt, R.A.: Issues of decidability for description logics in the
framework of resolution. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS
(LNAI), vol. 1761, pp. 191–205. Springer, Heidelberg (2000)

75. Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order frag-
ments and description logics. Journal of Relational Methods in Computer Sci-
ence 1, 251–276 (2004)

76. Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related
results. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969,
pp. 552–562. Springer, Heidelberg (1995)

77. Kazakov, Y., de Nivelle, H.: Subsumption of concepts in FL0 for (cyclic) ter-
minologies with respect to descriptive semantics is PSPACE-complete. In: Proc.
of the 2003 Description Logic Workshop (DL 2003). CEUR Electronic Workshop
Proceedings (2003), http://CEUR-WS.org/Vol-81/

http://CEUR-WS.org/Vol-81/

Description Logics 37

78. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. In:
Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 662–677.
Springer, Heidelberg (2006)

79. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and mod-
ule extraction in description logics. In: Ghallab, M., Spyropoulos, C.D., Fako-
takis, N., Avouris, N. (eds.) Proc. of the 18th Eur. Conf. on Artificial Intelligence
(ECAI 2008), pp. 55–59. IOS Press, Amsterdam (2008)

80. Kurtonina, N., de Rijke, M.: Expressiveness of concept expressions in first-order
description logics. Artificial Intelligence 107(2), 303–333 (1999)

81. Lawley., M.: Exploiting fast classification of SNOMED CT for query and integra-
tion of health data. In: Cornet, R., Spackman, K. (eds.) Proc. of the 3rd Int. Conf.
on Knowledge Representation in Medicine (KR-MED 2008), Phoenix, Arizona,
USA (2008)

82. Levesque, H.J., Brachman, R.J.: Expressiveness and tractability in knowledge
representation and reasoning. Computational Intelligence 3, 78–93 (1987)

83. Lutz., C.: Complexity of terminological reasoning revisited. In: Ganzinger, H.,
McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705,
pp. 181–200. Springer, Heidelberg (1999)

84. Lutz, C.: Interval-based temporal reasoning with general TBoxes. In: Proc. of the
17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 89–94 (2001)

85. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS,
vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

86. Lutz, C., Sattler, U.: Mary likes all cats. In: Proc. of the 2000 Description Logic
Workshop (DL 2000). CEUR Electronic Workshop Proceedings, pp. 213–226
(2000), http://ceur-ws.org/Vol-33/

87. MacGregor, R.: The evolving technology of classification-based knowledge rep-
resentation systems. In: Sowa, J.F. (ed.) Principles of Semantic Networks,
pp. 385–400. Morgan Kaufmann, Los Altos (1991)

88. Mays, E., Dionne, R., Weida, R.: K-REP system overview. SIGART Bull. 2(3)
(1991)

89. Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: Proc. of the 21st Nat. Conf. on Artificial
Intelligence (AAAI 2006), AAAI Press/The MIT Press (2006)

90. Minsky, M.: A framework for representing knowledge. In: Haugeland, J. (ed.)
Mind Design. The MIT Press, Cambridge (1981); A longer version appeared in
The Psychology of Computer Vision (1975), Republished in [31]

91. Mortimer, M.: On languages with two variables. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik 21, 135–140 (1975)

92. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theoretical
Computer Science 54, 267–276 (1987)

93. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS
(LNAI), vol. 422. Springer, Heidelberg (1990)

94. Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelli-
gence 43, 235–249 (1990)

95. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in ex-
pressive description logics via tableaux. J. of Automated Reasoning 41(1), 61–98
(2008)

96. Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with
counting. In: Proc. of the 12th IEEE Symp. on Logic in Computer Science (LICS
1997), pp. 318–327. IEEE Computer Society Press, Los Alamitos (1997)

http://ceur-ws.org/Vol-33/

38 F. Baader

97. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A.,
Hagino, T. (eds.) Proc. of the 14th International Conference on World Wide Web
(WWW 2005), pp. 633–640. ACM, New York (2005)

98. Patel-Schneider, P.F.: DLP. In: Proc. of the 1999 Description Logic Work-
shop (DL 1999). CEUR Electronic Workshop Proceedings, pp. 9–13 (1999),
http://ceur-ws.org/Vol-22/

99. Patel-Schneider, P.F., McGuiness, D.L., Brachman, R.J., Resnick, L.A., Borgida,
A.: The CLASSIC knowledge representation system: Guiding principles and im-
plementation rational. SIGART Bull. 2(3), 108–113 (1991)

100. Peltason, C.: The BACK system — an overview. SIGART Bull. 2(3), 114–119
(1991)

101. Ross Quillian, M.: Semantic memory. In: Minsky, M. (ed.) Semantic Information
Processing, pp. 216–270. The MIT Press, Cambridge (1968)

102. Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In: Proceedings
of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI
1997), Stanford, CA. AAAI Press, Menlo Park (1997)

103. Schild., K.: A correspondence theory for terminological logics: Preliminary report.
In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991),
pp. 466–471 (1991)

104. Schild, K.: Querying Knowledge and Data Bases by a Universal Description Logic
with Recursion. PhD thesis, Universität des Saarlandes, Germany (1995)

105. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the
18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico,
pp. 355–362. Morgan Kaufmann, Los Altos (2003)

106. Schmidt-Schauß, M.: Subsumption in KL-ONE is undecidable. In: Brachman,
R.J., Levesque, H.J., Reiter, R. (eds.) Proc. of the 1st Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR 1989), pp. 421–431. Morgan
Kaufmann, Los Altos (1989)

107. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with unions
and complements. Technical Report SR-88-21, Fachbereich Informatik, Univer-
sität Kaiserslautern, Kaiserslautern, Germany (1988)

108. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

109. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of the 2004 Descrip-
tion Logic Workshop (DL 2004), pp. 212–213 (2004)

110. Suntisrivaraporn, B.: Module extraction and incremental classification: A prag-
matic approach for EL+ ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 230–244. Springer,
Heidelberg (2008)

111. Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. PhD thesis, Fakultät Informatik,
TU Dresden (2009),
http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008

112. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Com-
puter Science, ch. 4, vol. B, pp. 134–189. Elsevier Science Publishers, Amsterdam
(1990)

http://ceur-ws.org/Vol-22/
http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008

Description Logics 39

113. Tobies, S.: A PSPACE algorithm for graded modal logic. In: Ganzinger, H. (ed.)
CADE 1999. LNCS (LNAI), vol. 1632, pp. 52–66. Springer, Heidelberg (1999)

114. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, Germany (2001)

115. Tsarkov, D., Horrocks, I.: faCT++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)

116. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1), 1–37 (1994)

	Description Logics
	Introduction
	Basic Definitions
	The Basic Description Language \mathcal{ALC} and Some Extensions
	Terminological Knowledge
	Assertional Knowledge
	Inference Problems

	Reasoning in Expressive DLs
	Tableau-Based Approaches
	Automata-Based Approaches

	Reasoning in the Light-Weight DLs \mathcal{EL} and $\mathcal{FL_{0}}$

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

