


Lecture Notes in Computer Science 5689
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Sergio Tessaris Enrico Franconi
Thomas Eiter Claudio Gutierrez
Siegfried Handschuh
Marie-Christine Rousset Renate A. Schmidt (Eds.)

Reasoning Web

Semantic Technologies
for Information Systems

5th International Summer School 2009
Brixen-Bressanone, Italy, August 30 – September 4, 2009
Tutorial Lectures

13



Volume Editors

Sergio Tessaris
Enrico Franconi
Free University of Bozen - Bolzano, Italy
E-mail:{tessaris,franconi}@inf.unibz.it

Thomas Eiter
Technische Universität Wien, Austria
E-mail: eiter@kr.tuwien.ac.at

Claudio Gutierrez
Universidad de Chile, Chile
E-mail: cgutierr@dcc.uchile.cl

Siegfried Handschuh
National University of Ireland, Ireland
E-mail: siegfried.handschuh@deri.org

Marie-Christine Rousset
University of Grenoble, France
E-mail: Marie-Christine.Rousset@imag.fr

Renate A. Schmidt
The University of Manchester, UK
E-mail: schmidt@cs.man.ac.uk

Library of Congress Control Number: 2009932138

CR Subject Classification (1998): H.5, I.2.4, H.3, C.2, I.1, F.3, F.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-03753-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03753-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12737505 06/3180 5 4 3 2 1 0



Preface

The Semantic Web is one of the major current endeavours of applied computer
science. The Semantic Web aims at enriching the existing Web with meta-data
and processing methods so as to provide Web-based systems with advanced (so-
called intelligent) capabilities, in particular with context-awareness and decision
support.

The advanced capabilities required in most Semantic Web application scenar-
ios primarily call for reasoning. Reasoning capabilities are offered by Semantic
Web languages that are currently being developed. Most of these languages,
however, are developed mainly from functionality-centred perspectives (e.g., on-
tology reasoning or access validation) or application-centred perspectives (e.g.,
Web service retrieval and composition). A perspective centred on the reasoning
techniques complementing the above-mentioned activities appears desirable for
Semantic Web systems and applications. The Summer School is devoted to this
perspective. The “Reasoning Web” series of annual Summer Schools was started
in 2005 on behalf of the work package “Education and Training (ET)” of the
Network of Excellence REWERSE.

This year’s edition focused on the use of semantic technologies to enhance
data access on the Web. For this reason, courses presented a range of techniques
and formalisms which bridge semantic-based and data-intensive systems.

The school introduced Semantic Web foundations with a strong perspective
on data management as well as applications of scalable semantic-based tech-
niques for data querying. Topics of the lectures where design and analysis of
reasoning procedures for Description Logics; Answer Set Programming basics,
its modelling methodology and its principal extensions tailored for Semantic
Web applications; languages for constraining and querying XML data; RDF
databases theory and efficient and scalable support for RDF/OWL data stor-
age, loading, inferencing and querying; tractable Description Logics and their
use for Ontology-Based Data Access; the Social Semantic Desktop, which de-
fines a user’s personal information environment as a source and end-point of the
Semantic Web.

We are grateful to all the lecturers and their co-authors for their excellent con-
tributions, to the Reasoning Web School Board, and the organisations that sup-
ported this event: the Free University of Bozen–Bolzano and STI2 International.

August 2009 Thomas Eiter
Enrico Franconi

Claudio Gutierrez
Siegfried Handschuh

Marie-Christine Rousset
Renate Schmidt
Sergio Tessaris



School Organisation

Programme Chairs

Sergio Tessaris Free University of Bozen-Bolzano, Italy
Enrico Franconi Free University of Bozen-Bolzano, Italy

Programme Committee

Thomas Eiter Vienna Technical University, Austria
Claudio Gutierrez Universidad de Chile, Chile
Siegfried Handschuh DERI Galway, Ireland
Marie-Christine Rousset University of Grenoble, France
Renate Schmidt University of Manchester, UK

Local Organisation

Stefano David Università Politecnica delle Marche, Italy
Enrico Franconi Free University of Bozen-Bolzano, Italy
Sergio Tessaris Free University of Bozen-Bolzano, Italy

Sponsoring Institutions

Free University of Bozen-Bolzano
http://www.unibz.it

STI International
http://www.sti2.org

REWERSE
http://rewerse.net

External Reviewers

Pablo Barcelo Universidad de Chile, Chile
Thomas Krennwallner Vienna Technical University, Austria
Mantas Simkus Vienna Technical University, Austria



Table of Contents

Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Franz Baader

Answer Set Programming: A Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner

Logical Foundations of XML and XQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Maarten Marx

Foundations of RDF Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez

Database Technologies for RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Souripriya Das and Jagannathan Srinivasan

Technologies for the Social Semantic Desktop . . . . . . . . . . . . . . . . . . . . . . . . 222
Michael Sintek, Siegfried Handschuh, Simon Scerri, and
Ludger van Elst

Ontologies and Databases: The DL-Lite Approach . . . . . . . . . . . . . . . . . . . 255
Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, and
Riccardo Rosati

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357



Description Logics

Franz Baader

Theoretical Computer Science, TU Dresden, Germany
baader@inf.tu-dresden.de

Abstract. Description Logics (DLs) are a well-investigated family of
logic-based knowledge representation formalisms, which can be used to
represent the conceptual knowledge of an application domain in a struc-
tured and formally well-understood way. They are employed in various
application domains, such as natural language processing, configuration,
and databases, but their most notable success so far is the adoption
of the DL-based language OWL as standard ontology language for the
semantic web.

This article concentrates on the problem of designing reasoning pro-
cedures for DLs. After a short introduction and a brief overview of the
research in this area of the last 20 years, it will on the one hand present
approaches for reasoning in expressive DLs, which are the foundation for
reasoning in the Web ontology language OWLDL. On the other hand, it
will consider tractable reasoning in the more light-weight DL EL, which
is employed in bio-medical ontologies, and which is the foundation for
the OWL 2 profile OWL2EL.

1 Introduction

In their introduction to The Description Logic Handbook [11], Brachman and
Nardi point out that the general goal of knowledge representation (KR) is to
“develop formalisms for providing high-level descriptions of the world that can
be effectively used to build intelligent applications” [32]. This sentence states in a
compact way some of the key requirements that a KR formalism needs to satisfy.
In order to be accepted as a formalism in this sense, a knowledge representa-
tion language needs to be equipped with a well-defined syntax and a formal,
unambiguous semantics, which was not always true for early KR approaches
such as semantic networks [101] and frames [90]. A high-level description con-
centrates on the representation of those aspects relevant for the application at
hand while ignoring irrelevant details. In particular, this facilitates the use of
relatively inexpressive languages even though they may not be able to faithfully
represent the whole application domain. Intelligent applications should be able
to reason about the knowledge and infer implicit knowledge from the explicitly
represented knowledge, and thus the effective use of the knowledge depends on
the availability of practical reasoning tools.

Description logics (DLs) [11] are a family of logic-based knowledge repre-
sentation formalisms that are tailored towards representing the terminological

S. Tessaris et al. (Eds.): Reasoning Web 2009, LNCS 5689, pp. 1–39, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 F. Baader

knowledge of an application domain in a structured and formally well-understood
way. They allow their users to define the important notions (classes, relations,
objects) of the domain using concepts, roles, and individuals; to state constraints
on the way these notions can be interpreted; and to deduce consequences such
as subclass and instance relationships from the definitions and constraints. The
name description logics is motivated by the fact that, on the one hand, classes
are described by concept descriptions, i.e., expressions that are built from atomic
concepts (unary predicates) and atomic roles (binary predicates) using the con-
cept and role constructors provided by the particular DL; on the other hand,
DLs differ from their predecessors, such as semantic networks and frames, in
that they are equipped with a formal, logic-based semantics. For example, in
a conference domain, we may have classes (concepts) like Person, Speaker, Au-
thor, Talk, Participant, PhD student, Workshop, Tutorial; relations (roles) like
gives, attends, attended by, likes; and objects (individuals) like Richard, Frank,
Paper 176. A speaker can be defined as a person that gives a talk:

Speaker ≡ Person � ∃gives.Talk,

we can say that Frank is a speaker and attends the DL tutorial using the
assertions:

Speaker(FRANK), attends(FRANK, DL TUTORIAL), Tutorial(DL TUTORIAL),

and state the constraints that tutorials are only attended by PhD students:

Tutorial � ∀attended by.PhD student,

and that the relation attended by is the inverse of the relation attends:

attended by ≡ attends−1.

DLs have been employed in various application domains, such as natural lan-
guage processing, configuration, databases, and biomedical ontologies, but their
most notable success so far is probably the adoption of the DL-based language
OWL1 as standard ontology language for the semantic web [69,15]. The three
main reasons for the adoption of DLs as ontology languages are

– the availability of a formal, unambiguous semantics, which is based on the
Tarski-style semantics of first-order predicate logic, and is thus fairly easy
to describe and comprehend;

– the fact that DLs provide their users with various carefully chosen means of
expressiveness for constructing concepts and roles, for further constraining
their interpretations, and for instantiating concepts and roles with individ-
uals;

– the fact that DL systems provide their users with highly-optimized inference
procedures that allow them to deduce implicit knowledge from the explicitly
represented knowledge.

1 http://www.w3.org/TR/owl-features/



Description Logics 3

The formal semantics of DLs and typical concept and role constructors as well as
the formalism for expressing constraints will be introduced in the next section. In
the remainder of this section, we concentrate on the inference capabilities of DL
systems. The subsumption algorithm determines subconcept-superconcept rela-
tionships: C is subsumed by D iff all instances of C are necessarily instances of
D, i.e., the first concept is always interpreted as a subset of the second concept.
For example, given the definition of Speaker from above, Speaker is obviously
subsumed by Person. In general, however, induced subsumption relationships
may be much harder to detect. The instance algorithm determines induced in-
stance relationships: the individual i is an instance of the concept description C
iff i is always interpreted as an element of C. For example, given the assertions
for Frank and the DL tutorial from above, the constraint for tutorials, and the
constraint expressing that attends is the inverse of attended by, we can deduce
that FRANK is an instance of Phd student. The consistency algorithm determines
whether a knowledge base (consisting of a set of assertions and a set of termi-
nological axioms, i.e., concept definitions and constraints) is non-contradictory.
For example, if we added a disjointness constraint

Speaker � PhD student � ⊥

for speakers and PhD students to the conference knowledge base introduced so
far, then this knowledge base would become inconsistent since it follows from the
knowledge base that Frank is both a speaker and a PhD students, contradicting
the stated disjointness of these two concepts.

In order to ensure a reasonable and predictable behavior of a DL system,
these inference problems should at least be decidable for the DL employed by
the system, and preferably of low complexity. Consequently, the expressive power
of the DL in question must be restricted in an appropriate way. If the imposed
restrictions are too severe, however, then the important notions of the application
domain can no longer be expressed. Investigating this trade-off between the
expressivity of DLs and the complexity of their inference problems has been one
of the most important issues in DL research. The research related to this issue
can be classified into the following five phases.2

Phase 1. (1980–1990) was mainly concerned with implementation of systems,
such as Klone, K-Rep, Back, and Loom [33,88,100,87]. These systems em-
ployed so-called structural subsumption algorithms, which first normalize the
concept descriptions, and then recursively compare the syntactic structure of
the normalized descriptions [93]. These algorithms are usually quite efficient
(polynomial), but they have the disadvantage that they are complete only for
very inexpressive DLs, i.e., for more expressive DLs they cannot detect all the
existing subsumption/instance relationships. At the end of this phase, early for-
mal investigations into the complexity of reasoning in DLs showed that most
DLs do not have polynomial-time inference problems [30,94]. As a reaction, the

2 Note, however, that the assigned temporal intervals are only rough estimates, and
thus should not be taken too seriously.



4 F. Baader

implementors of the Classic system (the first industrial-strength DL system)
carefully restricted the expressive power of their DL [99,29].

Phase 2. (1990–1995) started with the introduction of a new algorithmic
paradigm into DLs, so-called tableau-based algorithms [108,50,66]. They work
on propositionally closed DLs (i.e., DLs with full Boolean operators) and are
complete also for expressive DLs. To decide the consistency of a knowledge base,
a tableau-based algorithm tries to construct a model of it by breaking down the
concepts in the knowledge base, thus inferring new constraints on the elements
of this model. The algorithm either stops because all attempts to build a model
failed with obvious contradictions, or it stops with a “canonical” model. Since
in propositionally closed DLs, subsumption and satisfiability can be reduced
to consistency, a consistency algorithm can solve all inference problems men-
tioned above. The first systems employing such algorithms (Kris and Crack)
demonstrated that optimized implementations of these algorithm lead to an ac-
ceptable behavior of the system, even though the worst-case complexity of the
corresponding reasoning problems is no longer in polynomial time [14,35]. This
phase also saw a thorough analysis of the complexity of reasoning in various
DLs [50,51,49,47]. Another important observation was that DLs are very closely
related to modal logics [103].

Phase 3. (1995–2000) is characterized by the development of inference proce-
dures for very expressive DLs, either based on the tableau-approach [70,71]
or on a translation into modal logics [44,45,43,46]. Highly optimized systems
(FaCT, Race, and Dlp [67,61,98]) showed that tableau-based algorithms for
expressive DLs lead to a good practical behavior of the system even on (some)
large knowledge bases. In this phase, the relationship to modal logics [44,104]
and to decidable fragments of first-order logic was also studied in more detail
[28,96,59,57,58,75], and applications in databases (like schema reasoning, query
optimization, and integration of databases) were investigated [36,40,42].

During Phase 4 (2000–2005), industrial strength DL systems employing very
expressive DLs and tableau-based algorithms were developed [115,62,109], with
applications like the Semantic Web or knowledge representation and integration
in bio-informatics in mind. In this phase, the Web Ontology Language OWL,
whose sublanguages OWLDL and OWL Lite are based on expressive DLs, be-
came an official W3C recommendation,3 thus boosting the use of DLs for the
definition of ontologies. On the more foundational side, this phase saw the de-
velopment of alternative approaches for reasoning in expressive DLs, such as
resolution-based approaches [73,74,2,72,78], which use an optimized translation
of DLs into first-order predicate logic and then apply appropriate first-order
resolution provers, and automata-based approaches [41,86,84,114,25,13], which
are often more convenient for showing ExpTime complexity upper-bounds than
tableau-based approaches.

We are now in Phase 5, where on the one hand even more expressive DLs with
highly-optimized tableau-based algorithms [68] are proposed as basis for the
3 http://www.w3.org/TR/owl-features/



Description Logics 5

new Web Ontology Language OWL 2.4 On the other hand, more light-weight
DLs are investigated and proposed as profiles of OWL 2,5 such as members of
the EL family [7,8], for which the subsumption and the instance problem are
polynomial, and of the DL Lite family [38,39], for which the instance problem
and query answering are polynomial w.r.t. data complexity. Another important
development in this phase is that inference problems other than the classical ones
(subsumption, instance, consistency) are gaining importance, such as query an-
swering (i.e., answering conjunctive queries w.r.t. DL knowledge bases)
[1,55,85,95], pinpointing (i.e., exhibiting the axioms responsible for a given con-
sequence) [105,97,89,22,24], and modularization (i.e., extracting a part of a
knowledge base that has the same consequence as the full knowledge base, for
consequences formulated using a certain restricted vocabulary) [60,79,110].

2 Basic Definitions

As mentioned above, a key component of a DL is the description language, which
allows its users to build complex concepts (and roles) out of atomic ones. These
descriptions can then be uses in the terminological part of the knowledge base
(TBox) to introduce the terminology of an application domain, by defining con-
cepts and imposing additional (non definitional) constraints on their interpreta-
tion. In the assertional part of the knowledge base (ABox), facts about a specific
application situation can be stated, by introducing named individuals and re-
lating them to concepts and roles. Reasoning then allows us to derive implicit
knowledge from the explicitly represented one. In the following, we introduce
these four components of a DL more formally.

2.1 The Basic Description Language ALC and Some Extensions

Starting with a set of concept names (atomic concepts) and role names (atomic
roles), concept descriptions are built using concept constructors. The semantics
of concept descriptions is defined using the notion of an interpretation, which
assigns sets to concepts and binary relations to roles. First, we introduce the
constructors available in the basic description language ALC,6 together with
their semantics.

Definition 1 (ALC concept descriptions). Let NC be a set of concept names
and NR a set of role names. The set of ALC concept descriptions is the smallest
set such that

– all concept names are ALC concept descriptions;
– if C and D are ALC concept descriptions, then so are ¬C, C�D, and C�D;

4 http://www.w3.org/TR/2009/WD-owl2-overview-20090327/
5 http://www.w3.org/TR/owl2-profiles/
6 Following the usage in the literature, we will sometimes call description languages

like ALC “Description Logics,” thereby ignoring the additional ingredients of a DL,
such as the terminological formalism.



6 F. Baader

– if C is an ALC concept description and r ∈ NR, then ∃r.C and ∀r.C are
ALC concept descriptions.

An interpretation is a pair I = (ΔI , ·I) where the domain ΔI is a non-empty
set and ·I is a function that assigns to every concept name A a set AI ⊆ ΔI and
to every role name r a binary relation rI ⊆ ΔI ×ΔI . This function is extended
to ALC concept descriptions as follows:

– (C �D)I = CI ∩DI , (C �D)I = CI ∪DI , (¬C)I = ΔI \ CI ;
– (∃r.C)I = {x ∈ ΔI | there is a y ∈ ΔI with (x, y) ∈ rI and y ∈ CI};
– (∀r.C)I = {x ∈ ΔI | for all y ∈ ΔI , (x, y) ∈ rI implies y ∈ CI}.

As usual, the Boolean constructors �,�,¬ are respectively called conjunction,
disjunction, and negation. We call a concept description of the form ∃r.C an
existential restriction, and a concept description of the form ∀r.C a value re-
striction. In the following, we will us  as an abbreviation for A � ¬A, where
A is an arbitrary concept name (top concept, which is always interpreted as
the whole domain), ⊥ as an abbreviation for ¬ (bottom concept, which is al-
ways interpreted as the empty set), and C ⇒ D as an abbreviation for ¬C �D
(implication).

The following are examples of ALC concept descriptions that may be of in-
terest in the conference domain. Assume that Participant, Talk, Boring, DL are
concept names, and attends, gives, topic are role names. The description

Participant � ∃attends.Talk

describes conference participants that attend at least on talk,

Participant � ∀attends.(Talk � ¬Boring)

describes conference participants that attend only non-boring talks, and

Speaker � ∃gives.(Talk � (Boring � ∀topic.DL))

describes speakers giving a talk that is boring or has as its only topic DL.

Relationship with first-order logic. Given the semantics of ALC concept
descriptions, it is easy to see that ALC can be viewed as a fragment of first-
order predicate logic.7 Indeed, concept names (which are interpreted as sets)
are simply unary predicates, and role names (which are interpreted as binary
relations) are simply binary predicates. For a given first-order variable x, anALC
concept description C is translated into a formula τx(C) with free variable x:

– τx(A) := A(x) for concept names A;
– τx(C �D) := τx(C) ∧ τx(D);
– τx(C �D) := τx(C) ∨ τx(D);

7 More information about the connection between DLs and first-order predicate logic
can be found in [28].



Description Logics 7

– τx(¬C) := ¬τx(C);
– τx(∀r.C) := ∀y.(r(x, y)→ τy(C)) where y is a variable different from x;
– τx(∃r.C) := ∃y.(r(x, y) ∧ τy(C)) where y is a variable different from x.

Regarding the semantics, any first-order interpretation I (over the signature
consisting of the concept names in NC as unary predicates and the role names
in NR as binary predicates) can be viewed as an ALC interpretation and vice
versa. Intuitively, the first-order formula τx(C) describes all domain elements
d ∈ ΔI that make τx(C) true if x is replaced by them. It is easy to see that this
set coincides with the interpretation of the concept description C, i.e.,

CI = {d ∈ ΔI | I |= τx(C)[x← d]}.
The resolution-based approaches for reasoning in DLs are based on such a trans-
lation to first-order predicate logic. It should be noted, however, that the trans-
lation sketched above does not yield arbitrary first-order formulae. Instead, we
obtain formulae belonging to known decidable fragments of first-order predicate
logic: the guarded fragment [58] and the two-variable fragment [91,59]. Intu-
itively, the formulae of the form τx(C) belong to the guarded fragment since
every quantified variable y is guarded by a role r(x, y). Regarding membership
in the two-variable fragment, it is easy to see that it is enough to use just two
first-order variables x, y in the translation: in τx one uses y as the variable dif-
ferent from x, and in τy one uses x for this purpose.

Relationship with modal logics. There is also a close connection between
DLs and modal logics. In particular, ALC is just a syntactic variant of the
basic multimodal logic K [103], where “multimodal” means that one has several
pairs of box and diamond operators, which are indexed with the name of the
corresponding transition relation. In the following, we assume that the reader is
familiar with the basic notions of modal logics (see, e.g., [27] for more details).
Intuitively, concept names A correspond to propositional variables a and role
names r to names for transition relations r. An ALC concept description C is
translated into a modal formula θ(C) as follows:

– θ(A) := a for concept names A;
– θ(C �D) := θ(C) ∧ θ(D);
– θ(C �D) := θ(C) ∨ θ(D);
– θ(¬C) := ¬θ(C);
– θ(∀r.C) := �rθ(C));
– θ(∃r.C) := ♦rθ(C)).

Regarding the semantics, any ALC interpretation I can be viewed as a Kripke
structure KI (and vice versa): every element w of ΔI is a possible world of KI ,
the world w makes the propositional variable a true iff w ∈ AI for the concept
name A corresponding to a, and there is a transition from world w to world
w′ with the transition relation r iff (w, w′) ∈ rI . The translation function θ
preserves the semantics in the following sense: CI is the set of worlds that make
θ(C) true in KI .

The translation-based approaches that reduce reasoning in DLs to reasoning
in appropriate modal logics are based on (extensions of) this translation.



8 F. Baader

Additional constructors. ALC is only one example of a description language.
DL researchers have introduced many additional constructors and investigated
various description languages obtained by combining such constructors. Here, we
only introduce qualified number restrictions as examples for additional concept
constructors, and inverse roles as example for a role constructor (see [5] for an
extensive list of additional concept and role constructors).

Qualified number restrictions are of the form (≥n r.C) (at-least restriction)
and (≤n r.C) (at-most restriction), where n ≥ 0 is a non-negative integer, r ∈
NR is a role name, and C is a concept description. The semantics of these
additional constructors is defined as follows:

(≥n r.C)I := {d ∈ ΔI | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≥ n},
(≤n r.C)I := {d ∈ ΔI | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≤ n},

where card(X) yields the cardinality of the set X . Using qualified number re-
strictions, we can define the concept of all persons that attend at most 20 talks,
of which at least 3 have the topic DL:

Person � (≤ 20 attends.Talk) � (≥ 3 attends.(Talk � ∃topic.DL)).

The inverse role constructor applies to a role name r and yields its inverse r−1,
where the semantics is the obvious one, i.e.,

(r−1)I := {(e, d) | (d, e) ∈ rI}.

Inverse roles can be used like role names within concept descriptions. Using the
inverse of the role attends, we can define the concept of a speaker giving a boring
talk as

Speaker � ∃gives.(Talk � ∀attends−1.(Bored � Sleeping)).

In the following, we will use the notion “concept description” to refer to a descrip-
tion built using the (concept and role) constructors of some description language.
Indeed, the definitions of the other three components of a DL (terminological
formalism, assertional formalism, reasoning) is independent of the description
language. Accordingly, we will also use the notion “role description” to refer to
a role name or a role description (such as r−1) built using the constructors of
some description language.

2.2 Terminological Knowledge

In its simplest form, a TBox introduces names (abbreviations) for complex de-
scriptions.

Definition 2. A concept definition is of the form A ≡ C where A is a concept
name and C is a concept description. Given a set T of concept definitions, we
say that the concept name A directly uses the concept name B if T contains
a concept definition A ≡ C such that B occurs in C. Let uses be the transitive



Description Logics 9

Woman ≡ Person � Female

Man ≡ Person � ¬Female

Talk ≡ ∃topic.�

Speaker ≡ Person � ∃gives.Talk

Participant ≡ Person � ∃attends.Talk

BusySpeaker ≡ Speaker � (≥ 3 gives.Talk)

BadSpeaker ≡ Speaker � ∀gives.(∀attends−1.(Bored � Sleeping))

Fig. 1. A TBox for the conference domain

closure of the relation “directly uses.” We say that T is cyclic if there is a concept
name A that uses itself, and acyclic otherwise.

A TBox is a finite set T of concept definitions that is acyclic and such that
every concept name occurs at most once on the left-hand side of a concept
definition in T . Given a TBox T , we call the concept name A a defined concept
if A occurs on the left-hand side of a definition in T . All other concept names
are called primitive concepts. An interpretation I is a model of the TBox T if
it satisfies all its concept definitions, i.e., AI = CI holds for all A ≡ C in T .

Fig. 1 shows a small TBox with concept definitions relevant in our example
domain. Modern DL systems allow their users to state more general constraints
for the interpretation of concepts and roles.

Definition 3. A general concept inclusion axiom (GCI) is of the form C � D
where C, D are concept descriptions. A finite set of GCIs is called a general
TBox.

An interpretation I is a model of the general TBox T if it satisfies all its
GCIs, i.e., CI ⊆ DI holds for all GCIs C � D in T .

Obviously, the concept definition A ≡ C is equivalent (in the sense that is has
the same models) to the pair of GCIs A � C, C � A, which shows that TBoxes
can be expressed using general TBoxes. Thus, we assume in the following that
the notion of a general TBox subsumes the notion of a TBox. In general, GCIs
with complex concept descriptions on their left-hand side cannot be expressed
with the help of TBoxes. Using GCIs we can, e.g., say that talks in which all
attendants are sleeping are boring

Talk � ∀attends−1.Sleeping � Boring,

and that PC chairs cannot as well be authors

Author � PCchair � ⊥.



10 F. Baader

Lecturer(FRANZ), teaches(FRANZ, Tut03),

Tutorial(Tut03), topic(Tut03, ReasoningInDL), DL(ReasoningInDL)

Fig. 2. An ABox for the conference domain

In some applications, it also makes sense to consider a generalization of TBoxes
where one only allows the use of unambiguous definitions, but dispenses with
the acyclicity requirement. Such cyclic TBoxes T are thus finite sets of concept
definitions such that every concept name occurs at most once on the left-hand
side of a concept definition in T (see, e.g., [4,21] for details).

2.3 Assertional Knowledge

Assertions can be used to state facts about named individuals. Thus, we assume
that there is a third set NI of names, called individual names, which is disjoint
with the sets of concept and role names. An interpretation additional assigns an
element aI ∈ ΔI to every individual name a ∈ NI .

Definition 4. Let C be a concept description, r be a role description, and
a, b ∈ NI . An assertion is of the form C(a) (concept assertion) or r(a, b) (role
assertion). An ABox is a finite set of assertions.

An interpretation I is a model of the ABox A if it satisfies all its assertions,
i.e., aI ∈ CI holds for all concept assertions C(a) ∈ A and (aI , bI) ∈ rI holds
for all role assertions r(a, b) ∈ A.

Fig. 2 shows a small ABox with assertions describing a specific DL tutorial.

2.4 Inference Problems

DL systems provide their users with inference capabilities that allow them to
derive implicit knowledge from the one explicitly represented. The following are
the most important “classical” inference problems supported by DL systems.

Definition 5. Let T be a generalized TBox, A an ABox, C, D concept descrip-
tions, and a an individual name.

– C is subsumed by D w.r.t. T (C �T D) iff CI ⊆ DI for all models I of T .
– C is equivalent to D w.r.t. T (C ≡T D) iff CI = DI for all models I of T .
– C is satisfiable w.r.t. T iff CI �= ∅ for some model I of T .
– A is consistent w.r.t. T iff it has a model that is also a model of T .
– a is an instance of C w.r.t. A and T (A |=T C(a)) iff aI ∈ CI for all models
I of T and A.

One might think that, in order to realize the inference component of a DL
system, on needs to design and implement five algorithms, each solving one of
the above inference problems. Fortunately, this is not the case since there exist
the following polynomial time reductions, which only require the availability
of the concept constructors conjunction and negation in the description language:



Description Logics 11

– Subsumption can be be reduced in polynomial time to equivalence:

C �T D iff C �D ≡T C

– Equivalence can be be reduced in polynomial time to subsumption:

C ≡T D iff C �T D and D �T C

– Subsumption can be be reduced in polynomial time to (un)satisfiability:

C �T D iff C � ¬D is unsatisfiable w.r.t. T

– Satisfiability can be be reduced in polynomial time to (non-)subsumption:

C is satisfiable w.r.t. T iff not C �T ⊥

– Satisfiability can be be reduced in polynomial time to consistency:

C is satisfiable w.r.t. T iff {C(a)} is consistent w.r.t. T

– The instance problem can be reduced in polynomial time to (in)consistency:

A |=T C(a) iff A ∪ {¬C(a)} is inconsistent w.r.t. T

– Consistency can be reduced in polynomial time to the (non-)instance
problem:

A is consistent w.r.t. T iff A �|=T ⊥(a)

Thus, if one is only interested in terminological reasoning (i.e., satisfiability,
equivalence, and subsumption), it is enough to have a satisfiability algorithm.
If one is additionally interested in assertional reasoning (i.e., consistency and
instance), then it is enough to have a consistency algorithm.

Another important observation is that reasoning w.r.t. a normal (i.e., not
general) TBox can be reduced to reasoning w.r.t. the empty TBox.8 Intuitively,
TBoxes merely state that defined concepts are abbreviations for certain com-
plex concept descriptions. These complex descriptions can be made explicit by
expanding the definitions from T : given a concept description C, its expan-
sion exp(C, T ) w.r.t. T is obtained by exhaustively replacing all defined concept
names A occurring on the left-hand side of concept definitions A ≡ C by their
defining concept descriptions C. For example, w.r.t. the TBox of Fig. 1, the
concept description Woman � BusySpeaker is expanded to

Person � Female � Person � ∃gives.Talk � (≥ 3 gives.Talk),

which is equivalent to Person � Female � (≥ 3 gives.Talk).

8 Instead of saying “w.r.t. ∅” one usually says “without a TBox,” and omits the index
T for subsumption, equivalence, and instance, i.e., writes ≡, 
, |= instead of ≡T ,

T , and |=T .



12 F. Baader

A0 ≡ ∀r.A1 � ∀s.A1

A1 ≡ ∀r.A2 � ∀s.A2

...
An−1 ≡ ∀r.An � ∀s.An

Fig. 3. A TBox T that causes exponential blow-up during expansion

It is easy to show that C �T D iff exp(C, T ) � exp(D, T ). Similar reduc-
tion are possible for the other inference problems. It should be noted, however,
that these reductions are in general exponential. For example, expanding the
concept description A0 w.r.t. the TBox of Fig. 3 yields an expanded description
exp(A0, T ) that contains the concept name An 2n times. This exponential blow-
up can sometimes be avoided by devising satisfiability algorithms that explicitly
take acyclic TBoxes into account. For example, satisfiability of ALC concept de-
scriptions w.r.t. TBoxes is PSpace-complete, and without TBoxes this problem
is of exactly the same complexity [107,83]. However this is not always the case:
in Section 4, we will introduce the DL FL0, for which reasoning w.r.t. TBoxes
is considerably more difficult than reasoning without them [94].

For some expressive DLs it is possible to reduce reasoning w.r.t. a general
TBox to reasoning without a TBox [10,70], but for ALC this is not possible, i.e.,
one really needs to design algorithms that take GCIs into account.

Compound inferences. Some of the most important inference problems in
DLs are of a compound nature in the sense that, in principle, they can be reduced
to multiple invocations of the more basic inference problems mentioned above.
However, when the goal is to achieve an efficient implementation, it is vital to
consider compound inferences as first-class citizens since a näıve reduction to
the basic inference problems may be too inefficient [12]. Here, we define two of
these compound inference problems, but do not deal with the efficiency issue.

Classification. Given a (general) TBox T , compute the restriction of the sub-
sumption relation “�T ” to the set of concept names used in T .

Realization. Given an ABox A, a (general) TBox T , and an individual name
a, compute the set RA,T (a) of those concept names A that are used in T ,
satisfy A |=T A(a), and are minimal with this property w.r.t. the subsumption
relation “�T ”.

Complexity of reasoning. In the 1980ies, it was a commonly held belief that
reasoning in knowledge representation systems should be tractable, i.e., of poly-
nomial time complexity. The precursor of all DL systems, Klone [33], as well
as its early successor systems, like K-Rep [88], Back [100], and Loom [87],
indeed employed polynomial-time subsumption algorithms. Later on, however,
it turned out that subsumption in rather inexpressive DLs may be intractable
[82], that subsumption in Klone is even undecidable [106], and that subsump-
tion w.r.t. a TBox in a description language with conjunction (�) and value



Description Logics 13

restriction (∀r.C)9 is intractable [94]. The reason for the discrepancy between
the complexity of the subsumption algorithms employed in the above mention
early DL systems and the worst-case complexity of the subsumption problems
these algorithms were supposed to solve was, as mentioned in the introduction,
due to the fact that these systems employed sound, but incomplete subsumption
algorithms, i.e., algorithms whose positive answers to subsumption queries are
correct, but whose negative answers may be incorrect.

The use of incomplete algorithms has since then largely been abandoned in
the DL community, mainly because of the problem that the behavior of the
systems is no longer determined by the semantics of the description language: an
incomplete algorithm may claim that a subsumption relationship does not hold,
although it should hold according to the semantics. This left the DL community
with two ways out of the complexity dilemma:

– Employ expressive DLs with sound and complete, but intractable inference
procedures.

– Employ inexpressive DLs that allow the use of sound, complete, and tractable
inference procedures.

In the next two sections, we treat these two approaches in more detail.
It should be noted that here we have barely scratched the surface of the

research on the complexity of reasoning in DLs. Indeed, DL researchers have
investigated the complexity of reasoning in a great variety of DLs in detail.
Giving an overview of the results obtained in this direction in the last 20 years
is beyond the scope of this article. We refer the reader to overview articles such
as [47,18] and the Description Logic Complexity Navigator10 for more details.

3 Reasoning in Expressive DLs

As mentioned in the introduction, a variety of of reasoning techniques have been
introduced for expressive DLs. Here, we describe tableau-based and automata-
based approaches in some detail, but do not treat approaches based on transla-
tions to first-order or modal logic.

Before looking at specific inference procedures in detail, let us first state some
general requirements on the behavior of such procedures:

– The procedure should be a decision procedure for the problem, which means
that it should be:
• sound, i.e., the positive answers should be correct;
• complete, i.e., the negative answers should be correct;
• terminating, i.e., it should always give an answer in finite time

– The procedure should be as efficient as possible. Preferably, it should be
optimal w.r.t. the (worst-case) complexity of the problem.

9 All the systems mentioned above supported these two concept constructors, which
were at that time viewed as being indispensable for a DL.

10 http://www.cs.man.ac.uk/∼ezolin/dl/



14 F. Baader

– The procedure should be practical, i.e., easy to implement and optimize, and
behave well in applications.

Both tableau-based and automata-based approaches to reasoning in DLs yield
decision procedures. Tableau-based approaches often yield practical procedures:
optimized implementations of such procedures have turned out to behave quite
well in applications even for expressive DLs with a high worst-case complexity.
However, these practical procedures are often not optimal w.r.t. the worst-case
complexity of the problem: in particular, satisfiability in ALC w.r.t. general
TBoxes is ExpTime-complete, but it is very hard to design a tableau-based
procedure for it that runs in deterministic exponential time. In contrast, it is
quite easy to design an ExpTime automata-based procedure for this problem,
but there are no practical implementations for this procedure.

3.1 Tableau-Based Approaches

The most widely used reasoning technique for DLs is the tableau-based approach,
which was first introduced in the context of DLs by Schmidt-Schauß and Smolka
[108], though it had already been used for modal logics long before that [53].
In this section, we first describe this technique for the case of consistency of
an ABox (without a TBox11) in our basic DL ALC. Then we show how the
approach can be extended to deal with qualified number restrictions and with
general TBoxes.

Given an ALC ABox A0, the tableau algorithm for consistency tries to con-
struct a finite interpretation I that is a model of A0. Before we can describe
the algorithm more formally, we need to introduce an appropriate data struc-
ture in which to represent the (partial descriptions of) finite interpretations that
are generated during the run of the algorithm. The original paper by Schmidt-
Schauß and Smolka [108], and also many other papers on tableau algorithms for
DLs, introduce the new notion of a constraint system for this purpose. How-
ever, if we look at the information that must be expressed (namely, the elements
of the interpretation, the concept descriptions they belong to, and their role
relationships), we see that ABox assertions are sufficient for this purpose.

It will be convenient to assume that all concept descriptions are in negation
normal form (NNF), i.e., that negation occurs only directly in front of concept
names. Using de Morgan’s rules and the usual rules for quantifiers, any ALC
concept description can be transformed (in linear time) into an equivalent de-
scription in NNF. An ABox is in NNF if all the concept descriptions occurring
in it are in NNF.

Let A0 be an ALC ABox in NNF. In order to test consistency of A0, the al-
gorithm starts with A0, and applies consistency preserving transformation rules
(see Fig. 4) to this ABox. The transformation rule that handles disjunction is
nondeterministic in the sense that a given ABox is transformed into two new
ABoxes such that the original ABox is consistent iff one of the new ABoxes is so.
11 As mentioned above, inference problems w.r.t. a TBox can be reduced to the corre-

sponding ones without TBoxes by expanding the concept definitions from T .



Description Logics 15

The →�-rule
Condition: A contains (C1 � C2)(x), but not both C1(x) and C2(x).
Action: A′ := A∪ {C1(x), C2(x)}.

The →�-rule
Condition: A contains (C1 � C2)(x), but neither C1(x) nor C2(x).
Action: A′ := A∪ {C1(x)}, A′′ := A ∪ {C2(x)}.

The →∃-rule
Condition: A contains (∃r.C)(x), but there is no individual name z such that

C(z) and r(x, z) are in A.
Action: A′ := A∪{C(y), r(x, y)} where y is an individual name not occurring in

A.

The →∀-rule
Condition: A contains (∀r.C)(x) and r(x, y), but it does not contain C(y).
Action: A′ := A∪ {C(y)}.

Fig. 4. Tableau rules of the consistency algorithm for ALC

For this reason we will consider finite sets of ABoxes S = {A1, . . . ,Ak} instead
of single ABoxes. Such a set is consistent iff there is some i, 1 ≤ i ≤ k, such that
Ai is consistent. A rule of Fig. 4 is applied to a given finite set of ABoxes S as
follows: it takes an element A of S, and replaces it by one ABox A′ or by two
ABoxes A′ and A′′.

Definition 6. An ABox A is called complete iff none of the transformation
rules of Fig. 4 applies to it. The ABox A contains a clash iff {A(x), ¬A(x)} ⊆ A
for some individual name x and some concept name A. An ABox is called closed
if it contains a clash, and open otherwise.

The consistency algorithm for ALC works as follows. It starts with the singleton
set of ABoxes {A0}, and applies the rules of Fig. 4 (in arbitrary order) until
no more rules apply. It answers “consistent” if the set Ŝ of ABoxes obtained
this way contains an open ABox, and “inconsistent” otherwise. The fact that
this algorithm is a decision procedure for consistency of ALC ABoxes is an easy
consequence of the following lemma.

Lemma 1. Let A0 be an ALC ABox in negation normal form.

1. Local correctness: the rules preserve consistency, i.e., if S′ is obtained from
the finite set of ABoxes S by application of a transformation rule, then S is
consistent iff S′ is consistent.

2. Termination: there cannot be an infinite sequence of rule applications

{A0} → S1 → S2 → · · · .



16 F. Baader

3. Soundness:12 any complete and open ABox A is consistent.
4. Completeness:13 any closed ABox A is inconsistent.

Proof 1. Local correctness: We treat the→∃-rule and the→�-rule in detail. The
other rules can be handled similarly.

First, assume that S′ is obtained from S by an application of the →∃-rule.
Then there is an ABox A ∈ S containing an assertion of the form (∃r.C)(x),
and S′ is obtained from S by replacing A by A′ := A ∪ {C(y), r(x, y)} where y
is an individual name not occurring in A.

Obviously, it is enough to show that A has a model iff A′ has a model. The
if-direction is trivial since A ⊆ A′. To show the only-if direction, assume that I
is a model of A. Since (∃r.C)(x) ∈ A, there is a d ∈ ΔI such that

(xI , d) ∈ rI and d ∈ CI .

Let I ′ be the interpretation that coincides with I, with the exception that yI′
=

d. Since y does not occur in A, I′ is a model of A. By the definition of yI′
, it is

also a model of {r(x, y), C(y)}, and thus of A′.
Second, assume that S′ is obtained from S by an application of the →�-rule.

Then there is an ABox A ∈ S containing an assertion of the form (C1 �C2)(x),
and S′ is obtained from S by replacing A by A′ := A ∪ {C1(x)} and A′′ :=
A ∪ {C2(x)}.

It is enough to show that A has a model iff A′ has a model or A′′ has a model.
The if-direction is again trivial since A ⊆ A′ and A ⊆ A′′. To show the only-if
direction, assume that I is a model of A. Since (C1 �C2)(x) ∈ A, we have

xI ∈ (C1 � C2)I = CI
1 ∪ CI

2 .

If xI ∈ CI
1 , then I is a model of A′. If xI ∈ CI

2 , then I is a model of A′′.

2. Termination: Define the label LA(x) of an individual name x in an ABox A
to consist of the concept descriptions in concept assertions for x, i.e.,

LA(x) := {C | C(x) ∈ A}.

Let S be a set of ABoxes reached by a finite number of rule applications, starting
with {A0}, and let A ∈ S. The following are easy consequences of the definition
of the tableau rules.

1. rule application is monotonic, i.e., every application of a rule to A extends
the label of an individual, by adding a new concept assertion, and does not
remove any element from a label;

12 Recall that soundness means that the positive answers of the algorithm are correct,
i.e., if the algorithm says “consistent,” then the input ABox A0 is indeed consistent.
This follows from the part 3. of the lemma together with part 1. (local correctness).

13 Recall that completeness means that the negative answers of the algorithm are cor-
rect, i.e., if the algorithm says “inconsistent,” then the input ABox A0 is indeed
inconsistent. This follows from the part 4. of the lemma together with part 1. (local
correctness).



Description Logics 17

2. concept descriptions occurring in labels in A are subdescriptions of concept
descriptions occurring in the initial ABox A0.

Clearly, these two facts imply that there can only be a finite number of rule
applications per individual. Thus, it remains to show that the number of newly
introduced individuals in a chain of rule applications is bounded as well. Let
us call an individual name occurring in A a new individual if it is not one of
the individuals already present in A0. We say that y is an r-successor of x if
r(x, y) ∈ A.

3. for a given individual x, an existential restriction in the label of x can trigger
at most one introduction of a new individual, and thus the number of new
individuals that are r-successors of an individual in A is bounded by the
number of existential restrictions in A0;

4. the length of successor chains of new individuals in A is bounded by the max-
imal size of the concept descriptions occurring in A0. This is an immediate
consequence of the following two facts:
– if x is a new individual in A, then it has a unique predecessor y
– the maximal size of concept descriptions in LA(x) is strictly smaller than

the maximal size of concept descriptions in LA(y).

Facts 3. and 4. yield an overall bound on the number of new individuals in A.
Since only a finite number of individuals can be introduced during rule appli-
cation, and only finitely many rules can be applied to a fixed individual, this
shows that overall we can have only a finite number of rule applications, which
completes the proof of termination.

3. Soundness: LetA be a complete and open ABox. To prove thatA is consistent,
we define the canonical interpretation IA, and show that it is a model of A:

1. The domain ΔIA of IA consists of the individual names occurring in A.
2. For all individual names x we define xIA := x.
3. For all concept names A we define AIA := {x | A(x) ∈ A}.
4. For all role names r we define rIA := {(x, y) | r(x, y) ∈ A}.

By definition, IA satisfies all the role assertions in A. To prove that IA satisfies
the concept assertions as well, we consider C(x) ∈ A and show xIA = x ∈ CIA

by induction on the size of C:

– C = A for A ∈ NC : x ∈ AIA is an immediate consequence of the definition
of AIA .

– C = ¬A for A ∈ NC : since A is open, A(x) �∈ A, and thus x �∈ AIA by the
definition of AIA .

– C = C1 �C2: since A is complete, (C1 �C2)(x) ∈ A implies that C1(x) ∈ A
and C2(x) ∈ A; by induction, this yields x ∈ CIA

1 and x ∈ CIA
2 , and thus

x ∈ (C1 � C2)IA .
– the other constructors can be treated similarly.

4. Completeness: the fact that a closed ABox cannot have a model is an imme-
diate consequence of the definition of a clash. ��



18 F. Baader

Theorem 1. The tableau algorithm introduced above is a decision procedure for
consistency of ALC ABoxes.

Proof. Started with a finite ALC ABox A0 in NNF, the algorithm always termi-
nates with a finite set of complete ABoxes A1, . . . ,An. Local correctness implies
that A0 is consistent iff one of A1, . . . ,An is consistent.

If the algorithm answers “inconsistent,” then all the ABoxes A1, . . . ,An are
closed. Completeness then yields that all the ABoxesA1, . . . ,An are inconsistent,
and thus A0 is inconsistent, by local correctness.

If the algorithm answers “consistent,” then one of the complete ABoxes
A1, . . . ,An, say Ai, is open. Soundness then yields that Ai is consistent, and
thus A0 is consistent, by local correctness.

To sum up, we have shown that the algorithm always terminates, and that
both the positive answers (“consistent”) and the negative answers (“inconsis-
tent”) are correct. ��

Adding qualified number restrictions. The description language obtained
from ALC by adding qualified number restrictions is called ALCQ. In order to
transform also ALCQ ABoxes into negation normal form, we additionally use
the following equivalence preserving rules:

¬(≥n + 1 r.C)� (≤n r.C)

¬(≥ 0 r.C)� ⊥
¬(≤n r.C)� (≥n + 1 r.C)

In the following, we assume that all ALCQ ABoxes are in NNF.
The main idea underlying the extension of the tableau algorithm for ALC

to ALCQ is quite simple. At-least restrictions are treated by generating the re-
quired role successors as new individuals. At-most restrictions that are currently
violated are treated by (non-deterministically) identifying some of the role suc-
cessors. To avoid running into a generate-identify cycle, we introduce explicit
inequality assertions that prohibit the identification of individuals that were in-
troduced to satisfy the same at-least restriction. This use of inequality assertions
also creates new types of clashes, which occur when an at-most restriction re-
quires some identification, but all identifications are prohibited by inequality
assertions.

To be more precise, the tableau algorithm for consistency of ALC ABoxes is
extended to ALCQ as follows:

– For each of the new concept constructors, we add a new tableau rule: the
→≥-rule and the →≤-rule are shown in Fig. 5.

– In the formulation of these rules, we have used inequality assertions, which
are of the form x � .= y for individual names x, y, and have the obvious
semantics that an interpretation I satisfies such an assertion iff xI �= yI .

– Finally, there are new types of clashes :



Description Logics 19

The →≥-rule
Condition: A contains (≥n r.C)(x), and there are no individual names z1, . . . , zn

such that r(x, zi), C(zi) (1 ≤ i ≤ n) and zi � .= zj (1 ≤ i < j ≤ n) are in A.
Action: A′ := A∪ {r(x, yi), C(yi) | 1 ≤ i ≤ n} ∪ {yi � .= yj | 1 ≤ i < j ≤ n}, where

y1, . . . , yn are distinct individual names not occurring in A.

The →≤-rule
Condition: A contains distinct individual names y1, . . . , yn+1 such that

(≤n r.C)(x) and r(x, y1), C(y1) . . . , r(x, yn+1), C(yn+1) are in A, and yi � .= yj

is not in A for some i, j, 1 ≤ i < j ≤ n + 1.
Action: For each pair yi, yj such that 1 ≤ i < j ≤ n + 1 and yi � .= yj is not in A,

the ABox Ai,j := [yi/yj ]A is obtained from A by replacing each occurrence
of yi by yj .

Fig. 5. Tableau rules for qualified number restrictions

• x � .= x ∈ A for an individual name x.
• {(≤n r.C)(x)} ∪ {r(x, yi), C(yi) | 1 ≤ i ≤ n + 1} ∪ {yi � .= yj | 1 ≤ i <

j ≤ n + 1} ⊆ A for individual names x, y1, . . . , yn+1, an ALCQ concept
description C, a role name r, and a non-negative integer n.

The main question is then, of course, whether this extended algorithm really
yields a decision procedure for consistency of ALCQ ABoxes. To prove this, it
would be enough to show that the four properties stated in Lemma 1 also hold
for the extended algorithm. Local correctness and completeness are easy to show.
Unfortunately, neither soundness nor termination hold.

To see that the algorithm is not sound, consider the ABox

A0 := {(≥ 3 child.)(x), (≤ 1 child.Female)(x), (≤ 1 child.¬Female)(x)}.

Obviously, this ABox is inconsistent, but the algorithm does not find this out.
In fact, it would introduce three new individuals y1, y2, y3 as r-successors of x,
each belonging to . In an interpretation, the element yI

i (i = 1, 2, 3) belongs to
either FemaleI or to (¬Female)I , but in the ABox A1 obtained by applying the
→≥-rule to A0, the only concept assertion for yi (i = 1, 2, 3) is (yi). Thus, the
→≤-rule does not apply to A1, and A1 also does not contain a clash. The ABox
A1 is thus complete and open, but it is not consistent.

The soundness problem illustrated by this example can be avoided by adding
as a third rule the →choose-rule shown in Fig. 6, where ∼C denotes the negation
normal form of C. It is easy to show that this rule preserves local correctness,
and that its addition allows us to regain soundness.

However, we still need to deal with the termination problem. This problem is
illustrated in the following example. Consider the ABox

A0 := {A(a), r(a, a), (∃r.A)(a), (≤ 1 r.)(a), (∀r.∃r.A)(a), r(a, x), A(x)}.



20 F. Baader

The →choose-rule
Condition: A contains (≤n r.C)(x) and r(x, y), but neither C(y) nor ¬C(y).
Action: A′ := A∪ {C(y)}, A′′ := A ∪ {∼C(y)}.

Fig. 6. The →choose-rule for qualified number restrictions

The →∀-rule can be used to add the assertion (∃r.A)(x), which yields the new
ABox

A1 := A0 ∪ {(∃r.A)(x)}.

This triggers an application of the →∃-rule to x. Thus, we obtain the new ABox

A2 := A1 ∪ {r(x, y), A(y)}.

Since a has two r-successors in A2, the →≤-rule is applicable to a. By replacing
every occurrence of x by a, we obtain the ABox

A3 := {A(a), r(a, a), (∃r.A)(a), (≤ 1 r.)(a), (∀r.∃r.A)(a), r(a, y), A(y)},

Except for the individual names (i.e., y instead of x), A3 is identical to A1.
For this reason, we can continue as above to obtain an infinite chain of rule
applications.

We can easily regain termination by requiring that generating rules (i.e., the
rules →∃ and→≥, which generate new individuals) may only be applied if none
of the other rules is applicable. In the above example, this strategy would prevent
the application of the →∃-rule to x in the ABox A1 since the →≤-rule is also
applicable. After applying the →≤-rule (which replaces x by a), the →∃-rule is
no longer applicable since a already has an r-successor that belongs to A.

Consistency w.r.t. general TBoxes. Let T = {C1 � D1, . . . , Cn � Dn} be
a general TBox. It is easy to see that the general TBox consisting of the single
GCI

 � (¬C1 �D1) � . . . � (¬Cn �Dn)

is equivalent to T in the sense that it has the same models. Thus, it is sufficient
to deal with the case where the general TBox consists of a single GCI of the form
 � C for a concept description C. Obviously, this GCI says that every element
of the model belongs to C. Thus, to reason w.r.t. a general TBox consisting of
this GCI, it makes sense to add a new rule, the →	
C -rule, which adds the
concept assertion C(x) in case the individual name x occurs in the ABox, and
this assertion is not yet present.

Does the addition of the→	
C -rule yield a decision procedure for ABox con-
sistency w.r.t. the general TBox { � C}? Local correctness, soundness, and
completeness can indeed easily be shown, but the procedure does not terminate,
as illustrated by the following example. Consider the ABox A0 := {(∃r.A)(x0)},



Description Logics 21

and assume that we want to test its consistency w.r.t. the general TBox { �
∃r.A}. The procedure generates an infinite sequence of ABoxesA1,A2, . . . and in-
dividuals x1, x2, . . . such that Ai+1 := Ai∪{r(xi, xi+1), A(xi+1), (∃r.A)(xi+1)}.
Since all individuals xi (i ≥ 1) receive the same concept assertions as x1, we
may say that the procedure has run into a cycle.

Termination can be regained by using a mechanism that detects cyclic com-
putations, and then blocking the application of generating rules: the application
of the →∃- and the →≥-rule to an individual x is blocked by an individual y in
an ABox A iff LA(x) ⊆ LA(y).14 The main idea underlying blocking is that the
blocked individual x can use the role successors of y instead of generating new
ones. For example, instead of generating a new r-successor for x2 in the above
example, one can simply use the r-successor of x1. This yields an interpretation I
with ΔI := {x0, x1, x2}, AI := {x1, x2}, and rI := {(x0, x1), (x1, x2), (x2, x2)}.
Obviously, I is a model of both A0 and the general TBox { � ∃r.A}.

To avoid cyclic blocking (of x by y and vice versa), we consider an enumeration
of all individual names, and require that an individual x may only be blocked
by individuals y that occur before x in this enumeration. This, together with
some other technical assumptions, makes sure that a tableau algorithm using
this notion of blocking is sound and complete as well as terminating both for
ALC and ALCQ (see, e.g., [37,9] for details).

Complexity of reasoning. For ALC, the satisfiability and the consistency
problem (without TBox) are PSpace-complete [107,64]. The tableau algorithm
as described above needs exponential space, but it can be modified such that it
needs only polynomial space [107]. Both TBoxes [83] and qualified number re-
strictions [65,113] can be added without increasing the complexity. W.r.t. general
TBoxes, the satisfiability and the consistency problem are ExpTime-complete
[103]. However, it is not easy to show the ExpTime-upper bound using tableau
algorithms, though it is in principle possible [48,56]. As we will see in the next
section, automata-based algorithms are well-suited to show such ExpTime-upper
bounds. The tableau algorithms implemented in systems like FaCT, Racer, and
Pellet are not worst-case optimal, but they are nevertheless highly optimized
and behave quite well on large knowledge bases from applications.

3.2 Automata-Based Approaches

Although the tableau-based approach is currently the most widely used tech-
nique for reasoning in DLs, other approaches have been developed as well. In
general, a reasoning algorithm may be developed with different intentions in
mind, such as using it for an optimized implementation or using it to prove a
decidability or computational complexity result. Certain approaches may (for a
given logic) be better suited for the former task, whereas others may be better
suited for the latter—and it is sometimes hard to find one that is well-suited
for both. As mentioned above, the tableau-based approach often yields practical
algorithms, whereas it is not well-suited for proving ExpTime-upper bounds. In
14 Recall that LA(z) = {C | C(z) ∈ A} for any individual z occurring in A.



22 F. Baader

contrast, such upper bounds can often be shown in a very elegant way using
automata-based approach [41,86,84,114].15

In this subsection, we restrict our attention to concept satisfiability, possibly
w.r.t. (general) TBoxes. This is not a severe restriction since most of the other in-
teresting inference problems can be reduced to satisfiability.16 There are various
instances of the automata-based approach, which differ not only w.r.t. the DL
under consideration, but also w.r.t. the employed automaton model. However,
in principle all these instances have the following general ideas in common:

– First, one shows that the DL in question has the tree model property.
– Second, one devises a translation from pairs C, T , where C is a concept

description and T is a TBox, into an appropriate tree automata AC,T such
that AC,T accepts exactly the tree models of C w.r.t. T .

– Third, one applies the emptiness test for the employed automaton model to
AC,T to test whether C has a (tree) model w.r.t. T .

The complexity of the satisfiability algorithm obtained this way depends on the
complexity of the translation and the complexity of the emptiness tests. The
latter complexity in turn depends on which automaton model is employed.

Below, we will use a simple form of non-deterministic automata working on
infinite trees of fixed arity, so-called looping automata [116]. In this case, the
translation is exponential, but the emptiness test is polynomial (in the size of
the already exponentially large automaton obtained through the translation).
Thus, the whole algorithm runs in deterministic exponential time. Alternatively,
one could use alternating tree automata [92], where a polynomial translation is
possible, but the emptiness test is exponential.

Instead of considering automata working on trees of fixed arity, one could
also consider so-called amorphous tree automata [26,76], which can deal with
arbitrary branching. This simplifies defining the translation, but uses a slightly
more complicated automaton model. For some very expressive description logics
(e.g., ones that allow for transitive closure of roles [3]), the simple looping au-
tomata introduced below are not sufficient since one needs additional acceptance
conditions such as the Büchi condition [112] (which requires the occurrence of
infinitely many final states in every path).

The Tree Model Property. The first step towards showing that satisfiability
in ALC w.r.t. general TBoxes can be decided with the automata-based approach
is to establish the tree model property, i.e., to show that any ALC concept
description C satisfiable w.r.t. a general ALC TBox T has a tree-shaped model.
Note that this model may, in general, be infinite. One way of seeing this is to
consider the tableau algorithm introduced above, applied to the ABox {C(x)}
w.r.t. the representation of the general TBox T as a single GCI, and just dispose

15 The cited papers actually use automata-based approaches to show ExpTime results
for extensions of ALC.

16 Using the so-called pre-completion technique [64], this is also the case for inference
problems involving ABoxes.



Description Logics 23

I

r
r s

s
b c

a

{A}

{B} ∅

{B}
b

a1

b1

c ∅

c1 ∅

c2 ∅

s

a

{A}
bI

r

r

r

{A}

{B}

r s

s

s

Fig. 7. Unraveling of a model into a tree-shaped model

of blocking. Possibly infinite runs of the algorithm then generate tree-shaped
models. However, one can also show the tree model property of ALC by using
the well-known unraveling technique of modal logic [27], in which an arbitrary
model of C w.r.t. T is unraveled into a bisimilar tree-shaped interpretation.
Invariance of ALC under bisimulation [80] (which it inherits from its syntactic
variant multimodal K) then implies that the tree shaped interpretation obtained
by unraveling is also a model of C w.r.t. T .

Instead of defining unraveling in detail, we just give an example in Fig. 7,
and refer the reader to [27] for formal definitions and proofs. The graph on the
left-hand side of Fig. 7 describes an interpretation I: the nodes of the graph
are the elements of ΔI , the node labels express to which concept names the
corresponding element belongs, and the labelled edges of the graph express the
role relationships. For example, a ∈ ΔI belongs to AI , but not to BI , and it
has r-successor b and s-successor c. It is easy to check that I is a model of the
concept A w.r.t. the TBox

T := {A � ∃r.B, B � ∃r.A, A �B � ∃s.}.

The graph on the right-hand side of Fig. 7 describes (a finite part of) the corre-
sponding unraveled model, where a was used as the start node for the unraveling.
Basically, one considers all paths starting with a in the original model, but when-
ever one would re-enter a node one makes a copy of it. Like I, the corresponding
unraveled interpretation Î is a model of T and it satisfies a ∈ AÎ .

Looping Tree Automata. As mentioned above, we consider automata working
on infinite trees of some fixed arity k. To be more precise, the nodes of the trees
are labelled by elements from some finite alphabet Σ, whereas the edges are



24 F. Baader

a

b b
a a

a

b

q1

q0

q1
q2

q2 q2q1

Fig. 8. A tree and a run on it

unlabeled, but ordered, i.e., there is a first, second, to kth successor for each
node. Such trees, which we call k-ary Σ-trees, can formally be represented as
mappings T : {0, . . . , k − 1}∗ → Σ. Thus, nodes are represented as words over
{0, . . . , k−1}, the root is the word ε, and a node u has exactly k successor nodes
u0, . . . , u(k−1), and its label is T (u). For example, the binary tree that has root
label a, whose left subtree contains only nodes labelled by b, and whose right
subtree has only nodes labelled by a (see the left-hand side of Fig. 8) is formally
represented as the mapping

T : {0, 1}∗ → {a, b} with T (u) =
{

b if u starts with 0
a otherwise

A looping automaton working on k-ary Σ-trees is of the form A = (Q, Σ, I, Δ),
where

– Q is a finite set of states and I ⊆ Q is the set of initial states;
– Σ is a finite alphabet;
– Δ ⊆ Q×Σ ×Qk is the transition relation.

We will usually write tuples (q, a, q1, . . . , qk) ∈ Δ in the form (q, a)→(q1, . . . , qk).
A run ofA = (Q, Σ, I, Δ) on the tree T : {0, . . . , k−1}∗ → Σ is a k-ary Q-tree

R : {0, . . . , k− 1}∗ → Q such that (R(u), T (u))→ (R(u0), . . . , R(u(k− 1))) ∈ Δ
for all u ∈ {0, . . . , k − 1}∗. This run is called accepting if R(ε) ∈ I.

For example, consider the automaton A = (Q, Σ, I, Δ), where

– Q = {q0, q1, q2} and I = {q0};
– Σ = {a, b};
– Δ consists of the transitions

(q0, a)→ (q1, q2), (q0, a)→ (q2, q1), (q1, b)→ (q1, q1), (q2, a)→ (q2, q2).

The k-ary Q-tree R from the right-hand side of Fig. 8 maps ε to q0, nodes starting
with 0 to q1, and nodes starting with 1 to q2. This tree R is an accepting run of
A on the tree T on the left hand side of Figure 8.



Description Logics 25

The tree language accepted by a given looping automaton A = (Q, Σ, I, Δ) is

L(A) := {T : {0, . . . , k − 1}∗ → Σ | there is an accepting run of A on T}.

In our example, the language accepted by the automaton consists of two trees,
the tree T defined above and the symmetric tree where the left subtree contains
only nodes labelled with a and the right subtree contains only nodes labelled
with b.

The Emptiness Test. Given a looping tree automaton A, the emptiness test
decides whether L(A) = ∅ or not. Based on the definition of the accepted lan-
guage, one might be tempted to try to solve the problem in a top-down manner,
by first choosing an initial state to label the root, then choosing a transition
starting with this state to label its successors, etc. However, the algorithm ob-
tained this way is non-deterministic since one may have several initial states,
and also several possible transitions for each state.

To obtain a deterministic polynomial time emptiness test, it helps to work
bottom-up. The main idea is that one wants to compute the set of bad states,
i.e., states that do not occur in any run of the automaton. Obviously, any state
q that does not occur on the left-hand side of a transition (q, ·) → (· · · ) is bad.
Starting with this set, one can then extend the set of states known to be bad
using the fact that a state q is bad if all transitions (q, ·)→ (q1, . . . , qk) starting
with q contain a bad state qj in their right-hand side. Obviously, this process
of extending the set of known bad states terminates after a linear number of
additions of states to the set of known bad states, and it is easy to show that
the final set obtained this way is indeed the set of all bad states. The accepted
language is then empty iff all initial states are bad. By using appropriate data
structures, one can ensure that the overall complexity of the algorithm is linear
in the size of the automaton. A more detailed description of this emptiness test
for looping tree automata can be found in [25].

The Reduction. Recall that we want to reduce the satisfiability problem for
ALC concepts w.r.t. general TBoxes to the emptiness problem for looping tree
automata by constructing, for a given input C, T , an automaton AC,T that
accepts exactly the tree-shaped models of C w.r.t. T .

Before this is possible, however, we need to overcome the mismatch between
the underlying kinds of trees. The tree-shaped models of C w.r.t. T are trees
with labelled edges, but without a fixed arity. In order to express such trees
as k-ary Σ-trees for an appropriate k, where Σ consists of all sets of concept
names, we consider all the existential restrictions occurring in C and T . The
number of these restrictions determines k. Using the bisimulation invariance of
ALC [80], it is easy to show that the existence of a tree-shaped model of C w.r.t.
T also implies the existence of a tree-shaped model where every node has at
most k successor nodes. To get exactly k successors, we can do some padding
with dummy nodes if needed. The edge label is simply pushed into the label of
the successor node, i.e., each node label contains, in addition to concept names,



26 F. Baader

exactly one role name, which expresses with which role the node is reached from
its unique predecessor. For the root, an arbitrary role can be chosen.

The states of AC,T are sets of subexpressions of the concepts occurring in C
and T . Intuitively, a run of the automaton on a tree-shaped model of C w.r.t.
T labels a node not only with the concept names to which this element of the
model belongs, but also with all the subexpressions to which it belongs. For
technical reasons, we need to normalize the input concept description and TBox
before we build these subexpressions. First, we ensure that all GCIs in T are of
the form  � D by using the fact that the GCIs C1 � C2 and  � ¬C1 � C2

are equivalent. Second, we transform the input concept description C and every
concept D in a GCI  � D into negation normal form as described in Section 3.1.
In our example, the normalized TBox consists of the GCIs

 � ¬A � ∃r.B,  � ¬B � ∃r.A,  � (¬A � ¬B) � ∃s.,

whose subexpressions are ,¬A � ∃r.B,¬A, A, ∃r.B, B,¬B � ∃r.A,¬B, ∃r.A,
(¬A�¬B)�∃s.,¬A�¬B, ∃s.. Of these, the node a in the tree-shaped model
depicted on the right-hand side of Fig. 7 belongs to ,¬A�∃r.B, A, ∃r.B,¬B �
∃r.A,¬B, (¬A � ¬B) � ∃s., ∃s..

We are now ready to give a formal definition of the automaton AC,T =
(Q, Σ, I, Δ). Let SC,T denote the set of all subexpressions of C and T , RC,T
denote the set of all role names occurring in C and T , and k the number of
existential restrictions contained in SC,T . The alphabet Σ basically consists of
all subsets of the set of concept names occurring in C and T . As mentioned
above, in order to encode the edge labels (i.e., express for which role r the node
is a successor node), each “letter” contains, additionally, exactly one role name.
Finally, the alphabet contains the empty set (not even containing a role name),
which is used to label nodes that are introduced for padding purposes.

The set of states Q of AC,T consists of the Hintikka sets for C, T , i.e., subsets
q of SC,T ∪RC,T such that q = ∅ or

– q contains exactly one role name;
– if  � D ∈ T then D ∈ q;
– if C1 � C2 ∈ q then {C1, C2} ⊆ q;
– if C1 � C2 ∈ q then {C1, C2} ∩ q �= ∅; and
– {A,¬A} �⊆ q for all concept names A.

The set of initial states I consists of those states containing C, and the transi-
tion relation Δ consists of those transitions (q, σ) → (q1, . . . , qk) satisfying the
following properties:

– q and σ coincide w.r.t. the concept and role names contained in them;
– if q = ∅, then q1 = . . . = qk = ∅;
– if ∃r.D ∈ q, then there is an i such that {D, r} ⊆ qi; and
– if ∀r.D ∈ q and r ∈ qi, then D ∈ qi.

It is not hard to show that the construction of AC,T indeed yields a reduction of
satisfiability w.r.t. general TBoxes in ALC to the emptiness problem for looping
tree automata.



Description Logics 27

Proposition 1. The ALC concept description C is satisfiable w.r.t. the general
ALC TBox T iff L(AC,T ) �= ∅.

Obviously, the number of states of AC,T is exponential in the size of C and
T . Since the emptiness problem for looping tree automata can be decided in
polynomial time, we obtain an deterministic exponential upper-bound for the
time complexity of the satisfiability problem. ExpTime-hardness of this problem
can be shown by adapting the proof of ExpTime-hardness of satisfiability in
propositional dynamic logic (PDL) in [52].

Theorem 2. Satisfiability in ALC w.r.t. general TBoxes is ExpTime-complete.

4 Reasoning in the Light-Weight DLs EL and FL0

As mentioned in the introduction, early DL systems were based on so-called
structural subsumption algorithms, which first normalize the concepts to be
tested for subsumption, and then compare the syntactic structure of the nor-
malized concepts. The claim was that these algorithms can decide subsumption
in polynomial time. However, the first complexity results for DLs, also men-
tioned in the introduction, showed that these algorithms were neither polyno-
mial nor decision procedures for subsumption. For example, all early systems
used expansion of concept definitions, which can cause an exponential blow-up
of the size of concepts. Nebel’s coNP-hardness result [94] for subsumption w.r.t.
TBoxes showed that this blow-up cannot be avoided whenever the constructors
conjunction and value restriction are available. In addition, the early structural
subsumption algorithms were not complete, i.e., they were not able to detect
all valid subsumption relationships. These negative results for structural sub-
sumption algorithms together with the advent of tableau-based algorithms for
expressive DLs, which behaved well in practice, was probably the main reason
why structural approaches—and with them the quest for DLs with a polyno-
mial subsumption problem—were largely abandoned during the 1990s. More
recent results [6,34,7,8] on the complexity of reasoning in DLs with existential
restrictions, rather than value restrictions, have led to a partial rehabilitation of
structural approaches and light-weight DLs with polynomial reasoning problems
(see the description of Phase 5 in the introduction).

When trying to find a DL with a polynomial subsumption problem, it is clear
that one cannot allow for all Boolean operations, since then one would inherit
NP-hardness from propositional logic. It should also be clear that conjunction
cannot be dispensed with since one must be able to state that more than one
property should hold when defining a concept. Finally, if one wants to call the
logic a DL, one needs a constructor using roles. This leads to the following two
minimal candidate DLs:

– the DL FL0 [4], which offers the concept constructors conjunction, value
restriction (∀r.C), and the top concept;

– the DL EL [7], which offers the concept constructors conjunction, existential
restriction (∃r.C), and the top concept.



28 F. Baader

In the following, we will look at the subsumption problem17 in these two DLs in
some detail. Whereas subsumption without a TBox turns out to be polynomial
in both cases, we will also see that EL exhibits a more robust behavior w.r.t.
the complexity of the subsumption problem in the presence of TBoxes.

Subsumption in FL0. First, we consider the case of subsumption of FL0-
concept descriptions without a TBox. There are basically two approaches for
obtaining a structural subsumption algorithm in this case, which are based on
two different normal forms. One can either use the equivalence ∀r.(C � D) ≡
∀r.C � ∀r.D as a rewrite rule from left-to-right or from right-to-left. Here we
will consider the approach based on the left-to-right direction, whereas all of the
early structural subsumption algorithms were based on a normal form obtained
by rewriting in the other direction.18

By using the rewrite rule ∀r.(C�D)→ ∀r.C�∀r.D together with associativity,
commutativity and idempotence19 of �, any FL0-concept can be transformed
into an equivalent one that is a conjunction of concepts of the form ∀r1. · · · ∀rm.A
for m ≥ 0 (not necessarily distinct) role names r1, . . . , rm and a concept name A.
We abbreviate ∀r1. · · · ∀rm.A by ∀r1 . . . rm.A, where r1 . . . rm is viewed as a word
over the alphabet of all role names. In addition, instead of ∀w1.A � . . . � ∀w�.A
we write ∀L.A where L := {w1, . . . , w�} is a finite set of words over Σ. The term
∀∅.A is considered to be equivalent to the top concept , which means that it
can be added to a conjunction without changing the meaning of the concept.
Using these abbreviations, any pair of FL0-concept descriptions C, D containing
the concept names A1, . . . , Ak can be rewritten as

C ≡ ∀U1.A1 � . . . � ∀Uk.Ak and D ≡ ∀V1.A1 � . . . � ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role names. This
normal form provides us with the following characterization of subsumption of
FL0-concept descriptions [20]:

C � D iff Ui ⊇ Vi for all i, 1 ≤ i ≤ k.

Since the size of the normal forms is polynomial in the size of the original concept
descriptions, and since the inclusion tests Ui ⊇ Vi can also be realized in poly-
nomial time, this yields a polynomial-time decision procedure for subsumption
in FL0.

This characterization of subsumption via inclusion of finite sets of words can
be extended to TBoxes as follows. A given TBox T can be translated into a
finite (word) automaton20 AT , whose states are the concept names occurring in
17 Note that the satisfiability problem is trivial in FL0 and EL, since any concept

expressed in these languages is satisfiable. The reduction of subsumption to satisfi-
ability is not possible due to the absence of negation.

18 A comparison between the two approaches can be found in [17].
19 I.e., (A � B) � C ≡ A � (B � C), A � B ≡ B � A, and A � A ≡ A.
20 Strictly speaking, we obtain a finite automaton with word transitions, i.e., transitions

that may be labelled with a word over Σ rather than a letter of Σ.



Description Logics 29

A ≡ C � ∀r.B � ∀s.∀r.P

B ≡ ∀s.C

C ≡ ∀r.P

r

A P

CB s

sr

r ε

Fig. 9. An FL0 TBox and the corresponding acyclic automaton

T , and whose transitions are induced by the value restrictions occurring in T
(see Fig. 9 for an example). A formal definition of this translation can be found
in [4], where the more general case of cyclic TBoxes is treated. In the case of
TBoxes, which are by definition acyclic, the resulting automata are also acyclic.

For a defined concept A and a primitive concept P in T , the language
LAT (A, P ) is the set of all words labeling paths in AT from A to P . The lan-
guages LAT (A, P ) represent all the value restrictions that must be satisfied by
instances of the concept A. With this intuition in mind, it should not be sur-
prising that subsumption w.r.t. FL0 TBoxes can be characterized in terms of
inclusion of languages accepted by acyclic automata. Indeed, the following is a
characterization of subsumption in FL0 w.r.t. TBoxes:

A �T B iff LAT (A, P ) ⊇ LT (B, P ) for all primitive concepts P .

In the example of Fig. 9, we have LAT (A, P ) = {r, sr, rsr} ⊃ {sr} = LAT (B, P ),
and thus A �T B, but B ��T A.

Since the inclusion problem for languages accepted by acyclic finite automata
is coNP-complete [54], this reduction shows that the subsumption problem in
FL0 w.r.t. TBoxes is in coNP. As shown by Nebel [94], the reduction also works
in the opposite direction, which yields the matching lower bound. For cyclic
TBoxes, the subsumption problem corresponds to the inclusion problem for lan-
guages accepted by arbitrary finite automata, which is PSpace-complete, and
thus the subsumption problem is also PSpace-complete [4,77]. In the presence of
general TBoxes, the subsumption problem in FL0 actually becomes as hard as
for ALC, namely ExpTime-hard [7,63].

Theorem 3. Subsumption in FL0 is polynomial without TBox, coNP-complete
w.r.t. TBoxes, PSpace-complete w.r.t. cyclic TBoxes, and ExpTime-complete
w.r.t. general TBoxes.

Subsumption in EL. In contrast to the negative complexity results for sub-
sumption w.r.t. TBoxes in FL0, subsumption in EL remains polynomial even in
the presence of general TBoxes [34].21 The polynomial-time subsumption algo-
rithm for EL that will be sketched below actually classifies a given TBox T , i.e.,
21 The special case of cyclic TBoxes was already treated in [6].



30 F. Baader

it simultaneously computes all subsumption relationships between the concept
names occurring in T . This algorithm proceeds in four steps:

1. Normalize the TBox.
2. Translate the normalized TBox into a graph.
3. Complete the graph using completion rules.
4. Read off the subsumption relationships from the normalized graph.

A general EL-TBox is normalized if it only contains GCIs of the following form:

A1 �A2 � B, A � ∃r.B, or ∃r.A � B,

where A, A1, A2, B are concept names or the top-concept . One can transform
a given TBox into a normalized one by applying normalization rules. Instead of
describing these rules in the general case, we just illustrate them by an example,
where we underline GCIs on the right-hand side that need further rewriting:

∃r.A � ∃r.∃s.A � A �B � ∃r.A � B1, B1 � ∃r.∃s.A � A �B
B1 � ∃r.∃s.A � A �B � ∃r.∃s.A � B2, B1 �B2 � A �B

∃r.∃s.A � B2 � ∃s.A � B3, ∃r.B3 � B2,
B1 �B2 � A �B � B1 �B2 � A, B1 �B2 � B

For example, in the first normalization step we introduce the abbreviation B1 for
the description ∃r.A. One might think that one must make B1 equivalent to ∃r.A,
i.e., also add the GCI B1 � ∃r.A. However, it can be shown that adding just
∃r.A � B1 is sufficient to obtain a subsumption-equivalent TBox, i.e., a TBox
that induces the same subsumption relationships between the concept names
occurring in the original TBox. All normalization rules preserve equivalence in
this sense, and if one uses an appropriate strategy (which basically defers the
applications of the rule applied in the last step of our example to the end), then
the normal form can be computed by a linear number of rule applications.

In the next step, we build the classification graph GT = (V, V ×V, S, R) where

– V is the set of concept names (including ) occurring in the normalized
TBox T ;

– S labels nodes with sets of concept names (again including );
– R labels edges with sets of role names.

It can be shown that the label sets satisfy the following invariants :

– B ∈ S(A) implies A �T B, i.e., S(A) contains only subsumers of A w.r.t.
T .

– r ∈ R(A, B) implies A �T ∃r.B, i.e., R(A, B) contains only roles r such that
∃r.B subsumes A w.r.t. T .

Initially, we set S(A) := {A,} for all nodes A ∈ V , and R(A, B) := ∅ for all
edges (A, B) ∈ V × V . Obviously, the above invariants are satisfied by these
initial label sets.



Description Logics 31

(R1) A1 � A2 
 B ∈ T and A1, A2 ∈ S(A) then add B to S(A)
(R2) A1 
 ∃r.B ∈ T and A1 ∈ S(A) then add r to R(A,B)
(R3) ∃r.B1 
 A1 ∈ T and B1 ∈ S(B), r ∈ R(A,B) then add A1 to S(A)

Fig. 10. The completion rules for subsumption in EL w.r.t. general TBoxes

The labels of nodes and edges are then extended by applying the rules of
Fig. 10, where we assume that a rule is only applied if it really extends a label
set. It is easy to see that these rules preserve the above invariants. For example,
consider the (most complicated) rule (R3). Obviously, ∃r.B1 � A1 ∈ T implies
∃r.B1 �T A1, and the assumption that the invariants are satisfied before ap-
plying the rule yields B �T B1 and A �T ∃r.B. The subsumption relationship
B �T B1 obviously implies ∃r.B �T ∃r.B1. By applying transitivity of the
subsumption relation �T , we thus obtain A �T A1.

The fact that subsumption in EL w.r.t. general TBoxes can be decided in
polynomial time is an immediate consequence of the following statements:

1. Rule application terminates after a polynomial number of steps.
2. If no more rules are applicable, then A �T B iff B ∈ S(A).

Regarding the first statement, note that the number of nodes is linear and the
number of edges is quadratic in the size of T . In addition, the size of the label
sets is bounded by the number of concept names and role names, and each rule
application extends at least one label. Regarding the equivalence in the second
statement, the “if” direction follows from the fact that the above invariants are
preserved under rule application. To show the “only-if” direction, assume that
B �∈ S(A). Then the following interpretation I is a model of T in which A ∈ AI ,
but A �∈ BI :

– ΔI := V ;
– rI := {(A′, B′) | r ∈ R(A′, B′)} for all role names r;
– B′I := {A′ | B′ ∈ S(A′)} for all concept names A′.

More details can be found in [34,7].

Theorem 4. Subsumption in EL is polynomial w.r.t. general TBoxes.

In [7] this result is extended to the DL EL++, which extends EL with the bottom
concept, nominals, a restricted form of concrete domains, and a restricted form of
so-called role-value maps. In addition, it is shown in [7] that almost all additions
of other typical DL constructors to EL make subsumption w.r.t. general TBoxes
ExpTime-complete.

It should be noted that these results are not only of theoretical interest. In
fact, both the large medical ontology Snomed ct22 and the Gene Ontology23

22 http://www.ihtsdo.org/snomed-ct/
23 http://www.geneontology.org/



32 F. Baader

can be expressed in EL, and the same is true for large parts of the medical
ontology Galen [102]. First implementations of the subsumption algorithm for
EL sketched above behave well on these very large knowledge bases [19,81,111].

In [8], the DL EL++ is extended with reflexive roles and range restrictions
since these means of expressivity have turned out to be important in medical
ontologies. It is shown that subsumption remains tractable if a certain syntactic
restriction is adopted. The DL obtained this way corresponds closely to the
OWL 2 profile OWL 2EL.24

Acknowledgement

This article is, on the one hand, based on the Description Logic tutorial by the
author, which he first taught at the 2005 Logic Summer School organized by the
Research School of Information Sciences and Engineering, Australian National
University, Canberra, Australia. This tutorial in turn took some inspirations
from the Description Logic tutorial taught by Carsten Lutz and Ulrike Sattler
at the 2005 ICCL Summer School on Logic-Based Knowledge Representation
organized by the International Center for Computational Logic, TU Dresden,
Germany. On the other hand, this article reuses some of the material from the
overview articles [23,18,16], written by the author in collaboration with Ian Hor-
rocks, Carsten Lutz, and Ulrike Sattler.

References

1. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: Quonto: Querying ontologies. In: Veloso, M.M., Kambhampati,
S. (eds.) Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005),
pp. 1670–1671. AAAI Press/The MIT Press (2005)

2. Areces, C., de Rijke, M., de Nivelle, H.: Resolution in modal, description and
hybrid logic. J. of Logic and Computation 11(5), 717–736 (2001)

3. Baader., F.: Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In: Proc. of the 12th Int. Joint Conf. on
Artificial Intelligence, IJCAI 1991 (1991)

4. Baader, F.: Using automata theory for characterizing the semantics of termino-
logical cycles. Ann. of Mathematics and Artificial Intelligence 18, 175–219 (1996)

5. Baader, F.: Description logic terminology. In: [11], pp. 485–495 (2003)
6. Baader, F.: Terminological cycles in a description logic with existential restric-

tions. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 325–330. Morgan
Kaufmann, Los Altos (2003)

7. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), Edinburgh, UK, pp. 364–369. Morgan Kaufmann, Los Altos (2005)

8. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark, K.,
Patel-Schneider, P.F. (eds.) Proceedings of the Fifth International Workshop on
OWL: Experiences and Directions (OWLED 2008), Karlsruhe, Germany (2008)

24 http://www.w3.org/TR/owl2-profiles/



Description Logics 33

9. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts.
Artificial Intelligence 88(1–2), 195–213 (1996)

10. Baader, F., Bürckert, H.-J., Nebel, B., Nutt, W., Smolka, G.: On the expressivity
of feature logics with negation, functional uncertainty, and sort equations. J. of
Logic, Language and Information 2, 1–18 (1993)

11. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

12. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.-J.: An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management 4, 109–132 (1994)

13. Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for de-
scription logics. Fundamenta Informaticae 57(2–4), 247–279 (2003)

14. Baader, F., Hollunder, B.: A terminological knowledge representation system with
complete inference algorithm. In: Boley, H., Richter, M.M. (eds.) PDK 1991.
LNCS (LNAI), vol. 567, pp. 67–86. Springer, Heidelberg (1991)

15. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. International Handbooks in Information Systems,
pp. 3–28. Springer, Berlin (2003)

16. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen,
F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation,
pp. 135–179. Elsevier, Amsterdam (2007)

17. Baader, F., Küsters, R., Molitor, R.: Structural subsumption considered from
an automata theoretic point of view. In: Proc. of the 1998 Description
Logic Workshop (DL 1998). CEUR Electronic Workshop Proceedings (1998),
http://ceur-ws.org/Vol-11/

18. Baader, F., Lutz, C.: Description logic. In: Blackburn, P., van Benthem, J., Wolter,
F. (eds.) The Handbook of Modal Logic, pp. 757–820. Elsevier, Amsterdam (2006)

19. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS,
vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

20. Baader, F., Narendran, P.: Unification of concepts terms in description logics. J.
of Symbolic Computation 31(3), 277–305 (2001)

21. Baader, F., Nutt, W.: Basic description logics. In: [11], pp. 43–95 (2003)
22. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic

EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667,
pp. 52–67. Springer, Heidelberg (2007)

23. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69, 5–40 (2001)

24. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Proceedings of the International Confer-
ence on Representing and Sharing Knowledge Using SNOMED (KR-MED 2008),
Phoenix, Arizona (2008)

25. Baader, F., Tobies, S.: The inverse method implements the automata approach
for modal satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS, vol. 2083, pp. 92–106. Springer, Heidelberg (2001)

26. Bernholtz, O., Grumberg, O.: Branching time temporal logic and amorphous
tree automata. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 262–277.
Springer, Heidelberg (1993)

http://ceur-ws.org/Vol-11/


34 F. Baader

27. Blackburn, P., de Rijke, M., de Venema, Y.: Modal Logic. Cambridge Tracts in
Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge
(2001)

28. Borgida, A.: On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence 82(1–2), 353–367 (1996)

29. Brachman, R.J.: “Reducing” CLASSIC to practice: Knowledge representation
meets reality. In: Proc. of the 3rd Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 1992), pp. 247–258. Morgan Kaufmann, Los
Altos (1992)

30. Brachman, R.J., Levesque, H.J.: The tractability of subsumption in frame-based
description languages. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence
(AAAI 1984), pp. 34–37 (1984)

31. Brachman, R.J., Levesque, H.J.: Readings in Knowledge Representation. Morgan
Kaufmann, Los Altos (1985)

32. Brachman, R.J., Nardi, D.: An introduction to description logics. In: [11], pp.
1–40 (2003)

33. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science 9(2), 171–216 (1985)

34. Brandt., S.: Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.)
Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004), pp. 298–302
(2004)

35. Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive de-
scription logics: Preliminary report. In: Proc. of the 1995 Description Logic Work-
shop (DL 1995), pp. 131–139 (1995)

36. Buchheit, M., Donini, F.M., Nutt, W., Schaerf, A.: A refined architecture for ter-
minological systems: Terminology = schema + views. Artificial Intelligence 99(2),
209–260 (1998)

37. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminologi-
cal knowledge representation systems. J. of Artificial Intelligence Research 1,
109–138 (1993)

38. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Veloso, M.M., Kambhampati, S.
(eds.) Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp.
602–607. AAAI Press/The MIT Press (2005)

39. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3), 385–429 (2007)

40. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query
containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS 1998), pp. 149–158
(1998)

41. Calvanese, D., De Giacomo, G., Lenzerini, M.: Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In: Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 84–89 (1999)

42. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Descrip-
tion logic framework for information integration. In: Proc. of the 6th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 2–13
(1998)



Description Logics 35

43. De Giacomo, G.: Decidability of Class-Based Knowledge Representation For-
malisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienza” (1995)

44. De Giacomo, G., Lenzerini, M.: Boosting the correspondence between descrip-
tion logics and propositional dynamic logics. In: Proc. of the 12th Nat. Conf.
on Artificial Intelligence (AAAI 1994), pp. 205–212. AAAI Press/The MIT Press
(1994)

45. De Giacomo, G., Lenzerini, M.: Concept language with number restrictions and
fixpoints, and its relationship with μ-calculus. In: Proc. of the 11th Eur. Conf. on
Artificial Intelligence (ECAI 1994), pp. 411–415 (1994)

46. De Giacomo, G., Lenzerini, M.: TBox and ABox reasoning in expressive de-
scription logics. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) ECAI-WS 1992,
pp. 316–327. Morgan Kaufmann, Los Altos (1996)

47. Donini, F.: Complexity of reasoning. In: [11], pp. 96–136 (2003)
48. Donini, F., Massacci, F.: EXPTIME tableaux for ALC. Acta Informatica 124(1),

87–138 (2000)
49. Donini, F.M., Hollunder, B., Lenzerini, M., Spaccamela, A.M., Nardi, D., Nutt,

W.: The complexity of existential quantification in concept languages. Artificial
Intelligence 2–3, 309–327 (1992)

50. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept
languages. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proc. of the 2nd Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR 1991),
pp. 151–162. Morgan Kaufmann, Los Altos (1991)

51. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: Tractable concept languages. In:
Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), Sydney,
Australia, pp. 458–463 (1991)

52. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
of Computer and System Sciences 18, 194–211 (1979)

53. Fitting, M.: Tableau methods of proof for modal logics. Notre Dame J. of Formal
Logic 13(2), 237–247 (1972)

54. Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-
completeness. W. H. Freeman and Company, San Francisco (1979)

55. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. In: Veloso, M.M. (ed.) Proc. of the 20th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 399–404 (2007)

56. Goré, R., Nguyen, L.A.: Exptime tableaux for ALC using sound global caching.
In: Proc. of the 2007 Description Logic Workshop (DL 2007), Brixen-Bressanone,
Italy (2007)

57. Grädel, E.: Guarded fragments of first-order logic: A perspective for new descrip-
tion logics? In: Proc. of the 1998 Description Logic Workshop (DL 1998). CEUR
Electronic Workshop Proceedings (1998), http://ceur-ws.org/Vol-11/

58. Grädel, E.: On the restraining power of guards. J. of Symbolic Logic 64, 1719–1742
(1999)

59. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable
first-order logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)

60. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for mod-
ularity of ontologies. In: Veloso, M.M. (ed.) Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 298–303 (2007)

61. Haarslev, V., Möller, R.: RACE system description. In: Proc. of the 1999 De-
scription Logic Workshop (DL 1999). CEUR Electronic Workshop Proceedings,
pp. 130–132 (1999), http://ceur-ws.org/Vol-22/

http://ceur-ws.org/Vol-11/
http://ceur-ws.org/Vol-22/


36 F. Baader

62. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–706. Springer,
Heidelberg (2001)

63. Hofmann, M.: Proof-theoretic approach to description-logic. In: Panangaden, P.
(ed.) Proc. of the 20th IEEE Symp. on Logic in Computer Science (LICS 2005),
pp. 229–237. IEEE Computer Society Press, Los Alamitos (2005)

64. Hollunder, B.: Consistency checking reduced to satisfiability of concepts in ter-
minological systems. Ann. of Mathematics and Artificial Intelligence 18(2–4),
133–157 (1996)

65. Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages.
In: Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 1991), pp. 335–346 (1991)

66. Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption algorithms for con-
cept description languages. In: Proc. of the 9th Eur. Conf. on Artificial Intelligence
(ECAI 1990), London, United Kingdom, Pitman, pp. 348–353 (1990)

67. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 1998), pp. 636–647 (1998)

68. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In:
Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. of the 10th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR 2006), Lake District,
UK, pp. 57–67. AAAI Press/The MIT Press (2006)

69. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

70. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. J. of Logic and Computation 9(3), 385–410 (1999)

71. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS
(LNAI), vol. 1705, pp. 161–180. Springer, Heidelberg (1999)

72. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive
datalog programs. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Proc. of
the 9th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2004), pp. 152–162. Morgan Kaufmann, Los Altos (2004)

73. Hustadt, U., Schmidt., R.A.: On the relation of resolution and tableaux proof
systems for description logics. In: Proc. of the 16th Int. Joint Conf. on Artificial
Intelligence (IJCAI 1999), pp. 110–117 (1999)

74. Hustadt, U., Schmidt, R.A.: Issues of decidability for description logics in the
framework of resolution. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS
(LNAI), vol. 1761, pp. 191–205. Springer, Heidelberg (2000)

75. Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order frag-
ments and description logics. Journal of Relational Methods in Computer Sci-
ence 1, 251–276 (2004)

76. Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related
results. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969,
pp. 552–562. Springer, Heidelberg (1995)

77. Kazakov, Y., de Nivelle, H.: Subsumption of concepts in FL0 for (cyclic) ter-
minologies with respect to descriptive semantics is PSPACE-complete. In: Proc.
of the 2003 Description Logic Workshop (DL 2003). CEUR Electronic Workshop
Proceedings (2003), http://CEUR-WS.org/Vol-81/

http://CEUR-WS.org/Vol-81/


Description Logics 37

78. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. In:
Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 662–677.
Springer, Heidelberg (2006)

79. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and mod-
ule extraction in description logics. In: Ghallab, M., Spyropoulos, C.D., Fako-
takis, N., Avouris, N. (eds.) Proc. of the 18th Eur. Conf. on Artificial Intelligence
(ECAI 2008), pp. 55–59. IOS Press, Amsterdam (2008)

80. Kurtonina, N., de Rijke, M.: Expressiveness of concept expressions in first-order
description logics. Artificial Intelligence 107(2), 303–333 (1999)

81. Lawley., M.: Exploiting fast classification of SNOMED CT for query and integra-
tion of health data. In: Cornet, R., Spackman, K. (eds.) Proc. of the 3rd Int. Conf.
on Knowledge Representation in Medicine (KR-MED 2008), Phoenix, Arizona,
USA (2008)

82. Levesque, H.J., Brachman, R.J.: Expressiveness and tractability in knowledge
representation and reasoning. Computational Intelligence 3, 78–93 (1987)

83. Lutz., C.: Complexity of terminological reasoning revisited. In: Ganzinger, H.,
McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705,
pp. 181–200. Springer, Heidelberg (1999)

84. Lutz, C.: Interval-based temporal reasoning with general TBoxes. In: Proc. of the
17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 89–94 (2001)

85. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS,
vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

86. Lutz, C., Sattler, U.: Mary likes all cats. In: Proc. of the 2000 Description Logic
Workshop (DL 2000). CEUR Electronic Workshop Proceedings, pp. 213–226
(2000), http://ceur-ws.org/Vol-33/

87. MacGregor, R.: The evolving technology of classification-based knowledge rep-
resentation systems. In: Sowa, J.F. (ed.) Principles of Semantic Networks,
pp. 385–400. Morgan Kaufmann, Los Altos (1991)

88. Mays, E., Dionne, R., Weida, R.: K-REP system overview. SIGART Bull. 2(3)
(1991)

89. Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: Proc. of the 21st Nat. Conf. on Artificial
Intelligence (AAAI 2006), AAAI Press/The MIT Press (2006)

90. Minsky, M.: A framework for representing knowledge. In: Haugeland, J. (ed.)
Mind Design. The MIT Press, Cambridge (1981); A longer version appeared in
The Psychology of Computer Vision (1975), Republished in [31]

91. Mortimer, M.: On languages with two variables. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik 21, 135–140 (1975)

92. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theoretical
Computer Science 54, 267–276 (1987)

93. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS
(LNAI), vol. 422. Springer, Heidelberg (1990)

94. Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelli-
gence 43, 235–249 (1990)

95. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in ex-
pressive description logics via tableaux. J. of Automated Reasoning 41(1), 61–98
(2008)

96. Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with
counting. In: Proc. of the 12th IEEE Symp. on Logic in Computer Science (LICS
1997), pp. 318–327. IEEE Computer Society Press, Los Alamitos (1997)

http://ceur-ws.org/Vol-33/


38 F. Baader

97. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A.,
Hagino, T. (eds.) Proc. of the 14th International Conference on World Wide Web
(WWW 2005), pp. 633–640. ACM, New York (2005)

98. Patel-Schneider, P.F.: DLP. In: Proc. of the 1999 Description Logic Work-
shop (DL 1999). CEUR Electronic Workshop Proceedings, pp. 9–13 (1999),
http://ceur-ws.org/Vol-22/

99. Patel-Schneider, P.F., McGuiness, D.L., Brachman, R.J., Resnick, L.A., Borgida,
A.: The CLASSIC knowledge representation system: Guiding principles and im-
plementation rational. SIGART Bull. 2(3), 108–113 (1991)

100. Peltason, C.: The BACK system — an overview. SIGART Bull. 2(3), 114–119
(1991)

101. Ross Quillian, M.: Semantic memory. In: Minsky, M. (ed.) Semantic Information
Processing, pp. 216–270. The MIT Press, Cambridge (1968)

102. Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In: Proceedings
of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI
1997), Stanford, CA. AAAI Press, Menlo Park (1997)

103. Schild., K.: A correspondence theory for terminological logics: Preliminary report.
In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991),
pp. 466–471 (1991)

104. Schild, K.: Querying Knowledge and Data Bases by a Universal Description Logic
with Recursion. PhD thesis, Universität des Saarlandes, Germany (1995)

105. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the
18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico,
pp. 355–362. Morgan Kaufmann, Los Altos (2003)

106. Schmidt-Schauß, M.: Subsumption in KL-ONE is undecidable. In: Brachman,
R.J., Levesque, H.J., Reiter, R. (eds.) Proc. of the 1st Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR 1989), pp. 421–431. Morgan
Kaufmann, Los Altos (1989)

107. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with unions
and complements. Technical Report SR-88-21, Fachbereich Informatik, Univer-
sität Kaiserslautern, Kaiserslautern, Germany (1988)

108. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

109. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of the 2004 Descrip-
tion Logic Workshop (DL 2004), pp. 212–213 (2004)

110. Suntisrivaraporn, B.: Module extraction and incremental classification: A prag-
matic approach for EL+ ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 230–244. Springer,
Heidelberg (2008)

111. Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. PhD thesis, Fakultät Informatik,
TU Dresden (2009),
http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008

112. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Com-
puter Science, ch. 4, vol. B, pp. 134–189. Elsevier Science Publishers, Amsterdam
(1990)

http://ceur-ws.org/Vol-22/
http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008


Description Logics 39

113. Tobies, S.: A PSPACE algorithm for graded modal logic. In: Ganzinger, H. (ed.)
CADE 1999. LNCS (LNAI), vol. 1632, pp. 52–66. Springer, Heidelberg (1999)

114. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, Germany (2001)

115. Tsarkov, D., Horrocks, I.: faCT++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)

116. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1), 1–37 (1994)



Answer Set Programming: A Primer�

Thomas Eiter1, Giovambattista Ianni2, and Thomas Krennwallner1

1 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,tkren}@kr.tuwien.ac.at

2 Dipartimento di Matematica, Universitá della Calabria, I-87036 Rende (CS), Italy
ianni@mat.unical.it

Abstract. Answer Set Programming (ASP) is a declarative problem solving
paradigm, rooted in Logic Programming and Nonmonotonic Reasoning, which
has been gaining increasing attention during the last years. This article is a gen-
tle introduction to the subject; it starts with motivation and follows the historical
development of the challenge of defining a semantics for logic programs with
negation. It looks into positive programs over stratified programs to arbitrary pro-
grams, and then proceeds to extensions with two kinds of negation (named weak
and strong negation), and disjunction in rule heads. The second part then con-
siders the ASP paradigm itself, and describes the basic idea. It shows some pro-
gramming techniques and briefly overviews Answer Set solvers. The third part is
devoted to ASP in the context of the Semantic Web, presenting some formalisms
and mentioning some applications in this area. The article concludes with issues
of current and future ASP research.

1 Introduction

Over the the last years, Answer Set Programming (ASP) [108,62,82,92,96] has emerged
as a declarative problem solving paradigm that has its roots in Logic Programming and
Nonmonotonic Reasoning. This particular way of programming, in a language which is
sometimes called AnsProlog (or simply A-Prolog) [10,60], is well-suited for modeling
and (automatically) solving problems which involve common sense reasoning: it has
been fruitfully applied to a range of applications (for more details, see Section 6). A
number of extensions of the ASP core language, which goes back to the seminal paper
by Gelfond and Lifschitz [63], have been developed (resulting in an AnsProlog∗ lan-
guage family). These extensions aim at increasing the expressiveness of the formalisms
and/or providing convenient constructs for application-specific problem representation;
see, e.g., [97] for an account of such extensions.

The basic idea of ASP is to describe problem specifications by means of a non-
monotonic logic program: solutions to instances of such a problem will be represented
by the intended models of the program (the so-called answer sets, or stable models)

� This work has been supported by the Austrian Science Fund (FWF) project P20840 &
P20841, the EC ICT Integrated Project Ontorule (FP7 231875), and the Italian National Project
Interlink II04CG8AGG.

S. Tessaris et al. (Eds.): Reasoning Web 2009, LNCS 5689, pp. 40–110, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Answer Set Programming: A Primer 41

6 1 4 5
8 3 5 6

2 1
8 4 7 6

6 3
7 9 1 4
5 2

7 2 6 9
4 5 8 7

9 6 3 1 7 4 2 5 8
1 7 8 3 2 5 6 4 9
2 5 4 6 8 9 7 3 1
8 2 1 4 3 7 5 9 6
4 9 6 8 5 2 3 1 7
7 3 5 9 6 1 8 2 4
5 8 9 7 1 3 4 6 2
3 1 7 2 4 6 9 8 5
6 4 2 5 9 8 1 7 3

Fig. 1. Sudoku puzzle (left) and solution (right)

at hand. Rules and constraints, which describe the problem and its possible solutions
rather than a concrete algorithm, are basic elements of such programs.

Such a problem encoding can be then fed into an answer set (AS) solver, which
computes some or multiple answer set(s) of the program, from which the solutions of
the problem can easily be read off.

As a simple motivating example, consider the popular Sudoku game.1

Example 1 (Sudoku). In its original version, a Sudoku consists of a tableau that has 81
cells arranged in a grid, which is divided into nine sub-tableaux (the blocks or regions)
of equal size having nine fields each. The initial game setup has some of the entries
filled with numbers between 1 and 9 (see Figure 1, left, for an example).

The question is now whether the tableau can be completed in a way such that each
row and each column shows every digits from 1 to 9 exactly once, and moreover that
also each block has this property. An example for a completed Sudoku grid is on the
right in Figure 1, which is the unique solution to the initial puzzle on the left.2

In general, the problem of solving Sudoku tables automatically appears to be non-
trivial: in principle, one can devise a brute force algorithm that considers all possible
assignments and checks whether the solution constraint is satisfied. For a versatile pro-
grammer, it is not difficult to write a program in her favorite programming language,
be it Java, C++, or some other language, to compute and print a solution to instances of
this problem.

In this traditional, time-consuming approach, a human programmer receives an in-
formal specification of the problem at hand, such as the Sudoku above, and manually
converts it into imperative code that is able to solve instances of the problem. However,
one might conceive to tackle this issue from a completely different perspective.

For instance, one can think of having access to appropriate means for directly de-
scribing the problem at hand in a declarative specification. This specification, if prop-
erly polished from ambiguities of natural language and expressed in a proper syntax,
would be not much different in its meaning from the formulation of Sudoku of our

1 This game has nowadays worldwide popularity, and world and national championships are
held in big tournaments each year across Europe.

2 To date, many variants of Sudoku emerged, like, e.g., color-Sudoku, Samurai-Sudoku, etc.



42 T. Eiter, G. Ianni, and T. Krennwallner

example. Also, such a specification could be automatically executed, in the sense that
some computational engine takes this specification as input, together with a problem
instance, and then produces a solution as output. In such a vision, the human program-
mer would switch her focus from how to solve a problem to how to state a problem,
which is a much easier and faster task.3

The Prolog language, and its extensions conceived for handling constraints, can be
seen at a first glance as tools for such “declarative problem solving.” Prolog is indeed
well-suited for this particular case.

There are however aspects which make the suitability of Prolog (with respect to
AnsProlog) less apparent. Among such aspects, there is the fact that many common
problems require preference handling (that is, the possibility to describe which solu-
tions are preferred to others with respect to some “quality” criterion), and to properly
deal with incomplete information (that is, the ability to properly complete missing in-
formation with default assumptions, or with assumptions of falsity, or with using some
notion of undefinedness). The next example shows the impact of such aspects.

Example 2 (Social Dinner Example). Imagine the organizers of this course planning a
fancy dinner for the course participants. To make the event a great success, the orga-
nizers decide to ask the attendees to declare their personal wine preferences. Soon, the
organizers become aware of the fact that there is no wine, which satisfies all of the par-
ticipant preferences. Thus, they aim at automatically finding the cheapest selection of
bottles such that any attendee can have her preferred wine at the dinner. This solution
should take into account that people usually like wine from their home country, but may
not like to drink it abroad.

The organizers quickly realize that several, different specification tools are needed to
accomplish this task : in this example, it is more difficult to model the scenario appro-
priately, and in particular to adequately represent and handle the emerging preferences,
priorities, and defaults in absence of complete information, along with conflicts that
emerge from them.

This situation motivates a general-purpose approach for modeling and solving also
many other problems, which take among others the following aspects into account:

– Possibility of integrating diverse domains;
– Spatial and temporal reasoning (here, the notorious Frame Problem is challenging);
– Possibility of modeling constraints;
– Reasoning with incomplete information; and
– Possibility of modeling preferences and priority.

The ASP paradigm has been proposed as a possible solution about ten years ago, as the
underlying non-monotonic logic programs are well-positioned to cover these aspects.
In the following, we shall briefly look at the roots of ASP and at the relationship of ASP
to Prolog, before we turn to the technical preliminaries.

3 A specification of the Sudoku problem expressed in AnsProlog is reported in Appendix A.



Answer Set Programming: A Primer 43

1.1 Roots of ASP

ASP is strongly rooted in the area of Knowledge Representation and Reasoning, and
therein in logic programming. However, rather than to foster a general problem solving
paradigm, the roots of ASP are in formalisms that aimed at particular representation
and reasoning tasks, such as

– modeling an agent’s belief sets,
– commonsense reasoning,
– defeasible inferences, and
– preferences and priority.

To this end, many logic-based formalisms for knowledge representation have been de-
veloped. As an inherent feature, these formalisms are nonmonotonic, that is, they have
the property that a growing stock of beliefs may invalidate part of the conclusions that
were previously drawn in lack of complete knowledge.

The formalisms, which address above objectives, were motivated by the vision of
John McCarthy and other pioneers in AI: logic is an ideal tool for representing and
processing knowledge. Oversimplified, the idea can be explained as follows:

– declare knowledge about a “world” of interest by logical sentences;
– more precisely, one should use predicate logic for knowledge representation;
– derive new (implicit) knowledge by an automated inference procedure.

For example, the simple knowledge base

K = {human(socrates), ∀x(human(x) ⇒ mortal(x))}

might informally express the fact that Socrates is human and the rules that all hu-
mans are mortal in predicate logic; from this knowledge base, we can derive the fact
mortal(socrates) using deductive inference procedures, using different methods; log-
ical calculi allow us to derive inferences in a purely syntactic way by manipulating
formulas according to inference rules. In our example, we can infer mortal(socrates)
e.g. from the rules of Modus Ponens: φ, φ⇒ψ

ψ , and Specialisation: ∀x(φ(x)), individual c
φ(c) .

Loosely speaking, with such a calculus the derivation of new knowledge boils down
to simply a search for a proof in terms of inference rule applications from a set of
starting axioms. However, a big problem is that, for predicate logic in general, the ex-
istence of such a proof is undecidable (as shown in the 1930s by Church) and thus the
dream of a “calculus ratiocinator” (or a “thinking machine”) in the sense of Leibniz,
can not be materialized in general. The insight was that knowledge processing needs
control (which inference rule(s) should be applied?) and that often knowledge can be
formulated in terms of rules and facts.

1.2 Prolog

After Robinson’s breakthrough with the Resolution principle in automated theorem
proving, in the early 1970s logic programming has been developed as a new knowl-
edge based problem solving paradigm.

Prolog (“Programming in Logic”) emerged as a general purpose programming lan-
guage, whose guiding principle has been popularized by Kowalski’s [73] slogan:



44 T. Eiter, G. Ianni, and T. Krennwallner

ALGORITHM = LOGIC + CONTROL

where the LOGIC on the right hand side stands for the problem specific knowledge,
and the CONTROL for the “processing” of that knowledge in a suitable inference
procedure.

Computing with Prolog programs is done using a predicate language, featuring the
following:

– Terms are used to access objects, where constants stand for individuals (e.g., joe)
and variables (e.g., X) for unknown individuals, and function symbols (like in
father (joe)) are available.

– Terms are used to model basic data structures, like records, e.g name(joe, doe).
– Instead of iteration, there is extensive use of recursion.
– In connection with this, the list constructor [·|·] can be used, which also allows to

define higher-order objects (like sets).
– Solutions are obtained via queries (goals) that are posed to the program, where

formal proofs provide answers. They build on
• SLD-resolution, a special variant of the resolution calculus, and
• unification, as the basic mechanism to manipulate data structures.

The following is a simple Prolog program, familiar from most beginner courses in Pro-
log, for appending two lists and for reverting a list, respectively.

append([ ], X, X). (1)

append([X |Y ], Z, [X |T ]) ← append(Y, Z, T ). (2)

reverse([ ], [ ]). (3)

reverse([X |Y ], Z) ← append(U, [X ], Z), reverse(Y, U). (4)

The above program recursively defines the predicates append(X, Y, Z) and
reverse(X, Y ), where the latter is defined in terms of the former. By posing a query
against the program, we then can reverse lists. E.g., to reverse the list [a, b, c], we can
pose the query ?− reverse([a, b, c], X). A proof of the query yields a substitution:
X = [c, b, a], which then gives an answer. One can also pose queries that allow to
reason backwards from the output to the input (which is not possible in imperative pro-
gramming). E.g., if we pose ? − reverse([X |a], [b, a]). the answer substitution X = b
tells us that the “input” for the output [b, a] must consist of [a, b].

In principal, above way of programming is a major step forward to our goal of writing
programs in a declarative way, but an important point is that it may make a difference
how and in which order the clauses of a Prolog programs are given. Although logically
equivalent in terms of predicate calculus, if we replace rule (4) above by

reverse([X |Y ], Z) ← reverse(Y, U), append(U, [X ], Z). (5)

and then ask ? − reverse([a|X ], [b, c, d, b]), the evaluation does not terminate (or is
stopped because resources are exhausted, with no result). Similar behavior may be
found if rules in a program are moved around. This is not a bug of Prolog but intrinsic
in its highly efficient inference algorithm (which is sound but incomplete). Operators



Answer Set Programming: A Primer 45

like the cut (which allow to prune the search space further, at the risk of losing solutions
if done improperly), allow the fine control of the evaluation algorithm.

This example raises the legitimate question whether programming in Prolog is truly
declarative. In fact, if one keeps in mind the goal of having specifications in which a
problem is declared, without knowledge on how this declaration will be processed, it is
desirable, as far as termination and finding of a solution is concerned, that

– the order of program rules does not matter, and that
– the order of subgoals in a rule body does not matter.

This calls for “pure” declarative programming, in which we (possibly) trade the effi-
ciency of problem solving for strict declarativity of the formalism. The major exponent
of this “pure” declarative programming paradigm is the stable model semantics of logic
programs, which will be introduced in the sections below.

The stable model semantics is often confused with ASP. Indeed the semantics of the
latter has been specified in terms of the former in the seminal paper [64].

The success of ASP is based on the easy usage of ASP as a modeling language,
and on the variety of sophisticated algorithms and techniques for evaluating A-Prolog
programs, which originated from research on computational complexity of reasoning
tasks for such programs. The complexity of ASP reasoning is well understood, and a
detailed picture of it and its major extensions can be found in [25]. Advanced AS solvers
such as Smodels, DLV, GnT, Cmodels, Clasp, or ASSAT (see [7]), are able to deal with
large problem instances; demonstration efforts of the potential of ASP are made at the
AS solver competition [59] which takes place at the International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR) since 2007.

1.3 Structure of the Article

The rest of this article is divided into three parts as follows. The first part introduces
the stable models semantics of normal logic programs and the answer set semantics of
extended logic programs, as well as of extensions thereof. Concepts and notions are
given following a historical timeline, which incidentally coincides with the develop-
ment of increasingly expressive specification languages based on rules. We first recall
the least model semantics of Horn logic programming (Section 2) and then turn to the
issue of negation in logic programs (Section 3). Then, we consider stratified logic pro-
grams, for which the perfect model semantics is the canonical semantics (Section 3.1).
We then present the stable model semantics of normal logic programs (Section 4) which
coincides with the perfect model semantics on stratified programs (and thus generalizes
it). After that, we proceed with some extensions in Section 5; in particular, with con-
straints, with strong negation—where we arrive at the notion of answer sets—and with
disjunctive rule heads.

The second part then considers the ASP paradigm itself. It describes the general idea
and shows some ASP programming techniques (Section 6). Furthermore, it overviews
AS solvers and their general architecture and implementation principles (Section 7); as
an example, we briefly present the AS solver DLV.

The third part is devoted to ASP in the context of the Semantic Web, presenting
some formalisms and mentioning some applications in this area (Section 8). The article
concludes with issues of current and future ASP research.



46 T. Eiter, G. Ianni, and T. Krennwallner

2 Horn Logic Programming

We will consider logic programs built from simple constituent blocks, which correspond
syntactically to the language of predicate calculus. We will have constants, which rep-
resent individuals of the domain of discourse, like sarah , chicago , and 2. They will
be represented with lowercase starting letter, or with natural numbers. Variables, like
X , City , Name , denote an individual variable, and are written with uppercase starting
letter. Also, one might form functional terms combining constants, functions symbols
and variables such as in next(a, Y ), where next is a binary function symbol.

In some sense, variables and constants can be seen as subjects and objects participat-
ing to the scenario we are modeling, which can be tied together through predicates, like
hasName and link . Predicates relate with variables and constants through atoms, like
link(chicago , paris) or hasName(C, sarah). Note that the former atom has no vari-
ables in it (it is ground), while the latter is nonground. Functional terms are syntactically
equivalent to atoms, yet they have different meaning. A (ground) atom is connected to
its truth value and acts as a propositional variable: for instance, hub(rome) might be
true or false in the sense that rome might be a hub or not; on the other hand, father (gb),
when seen as a functional term, denotes an individual of our domain of discourse (“the
father of gb”), for which truth or falsity makes no sense in general.

On top of these simple notions we use the idea of rules. Rules are grouped in sets
that we will call (logic) programs.

We will start with a class of logic programs featuring the simplest form of a rule.

2.1 Positive Logic Programs

Definition 1 (Positive Logic Program). A positive logic program P is a finite set of
clauses (rules) in the form

a ← b1, . . . , bm , (6)

where a, b1, . . . , bm are atoms of a first-order language L. We call a the head of the
rule, while b1, . . . , bm represents the rule’s body. A fact is a rule with empty body such
as a ←, denoted for short as a.

To give an intuition of the meaning of a rule, a reader familiar with imperative program-
ming languages might interpret this construct as an abstraction of the if . . . then . . .
construct common in traditional programming languages, to which, as it has been illus-
trated, Modus Ponens might apply. For a reader familiar with first order logic, rules can
be seen as material implications restricted to Horn clauses, where A ← B is read as
B ⊃ A or B → A.

For instance, the rule

connected(cagliari ) ← hub(rome), link(rome, cagliari )

might be “procedurally” read as “if Rome is a hub, and there is a link between Rome
and Cagliari, then Cagliari is a connected airport,” or, when seen as a first-order Horn
clause in predicate logic, the same rule can be interpreted as “in any possible scenario
in which Rome is a hub and there is a link between Rome and Cagliari, it is the case
that Cagliari is connected.”



Answer Set Programming: A Primer 47

However, we will observe later that rules in declarative logic programming do not
strictly correspond to the procedural scheme of imperative languages, nor to material
implication. Nevertheless, they are declarative constructs, and we make this more clear
later in this section.

The above example rule is ground, but logic programs might contain nonground
rules like

connected(X) ← hub(Y ), link(Y, X) ,

which can be read as the universally quantified clause ∀X, Y hub(Y ) ∧ link(Y, X) ⊃
connected(X). Importantly, one must distinguish between the imperative and logical
reading of clauses: a variable X in imperative programming associates a single value
to it and stands for a named storage cell, whereas X reads as “any X having a certain
property” in the logical interpretation of clauses.

We can also think of a logic program as a description of a scenario, in which certain
assertions, either specific and related to certain individuals (that is, ground), or general
(that is, nonground, or partially ground), must hold.

The following definitions clarify this intuition.

Definition 2 (Herbrand Universe, Base, Interpretation). Given a logic program P ,
the Herbrand universe of P , HU (P ) , is the set of all terms which can be formed from
constants and functions symbols in P (resp. the vocabulary of L, if explicitly known).

The Herbrand base of P , HB(P ), is the set of all ground atoms which can be formed
from predicates occurring in P and the terms in HU (P ). A (Herbrand) interpretation
is an interpretation I over HU (P ), that is, I as subset of HB(P ).

An interpretation can be seen as a set denoting which ground atoms are true in a given
scenario.

Example 3. Assume the following program P1 is given:

h(0, 0).
t(a, b, r).
p(0, 0, b).

p(f(X), Y, Z) ← p(X, Y, Z ′), h(X, Y ), t(Z, Z ′, r).
h(f(X), f(Y )) ← p(X, Y, Z ′), h(X, Y ), t(Z, Z ′, r).

The unique function symbol appearing in P1 is f , and the constant symbols in P1 are r,
a, b, and 0. Thus, HU(P1) = {0, a, b, r, f(0), f(f(0)), . . . , f(a), f(f(a)), . . . }, which
represents the (infinite) set of individuals possibly involved in P1.

The Herbrand base is HB(P1) = {p(0, 0, 0), p(a, a, a), . . . , h(0, 0), . . . , t(0, 0, 0),
t(a, a, a), . . .}, and represents the set of all possible ground assertions which might
hold.

Some possible Herbrand interpretations are

– I1 = ∅,
– I2 = HB(P1),
– I3 = {h(0, 0), t(a, b, r), p(0, 0, b)},



48 T. Eiter, G. Ianni, and T. Krennwallner

and so on. An interesting question is which scenarios (interpretations) are compatible
with P1. For instance, the interpretation {h(0, 0), t(a, b, r)} is contradicting P1, which
follows from the simple expectation that, in virtue of the last fact in P1, also p(0, 0, b)
should be considered true.

Definition 3. A ground instance of a clause C of the form (6) is any clause C′ obtained
from C by applying a substitution

θ : Var(C) → HU (P )

to the variables in C, denoted as Var(C). For any clause C, we denote by grnd(C)
the set of all possible ground instances of C, and for any program P we let grnd(P ) =⋃

C∈P grnd(C) (called the grounding of P ).

Intuitively, grnd(C) allows for the materialization of the universal quantification of
variables appearing in C. Roughly speaking, C is a shortcut denoting a set of clauses
grnd(C). The range of each variable appearing in C is given by the set of terms ap-
pearing in the Herbrand universe.

Example 4. Consider the following program P2:

p(f(X), Y, Z) ← p(X, Y, Z ′), h(X, Y ), t(Z, Z ′, r).
h(0, 0).

The ground instances of the first rule in P2 are

p(f(0), 0, 0) ← p(0, 0, 0), h(0, 0), t(0, 0, r).
...

p(f(0), r, 0) ← p(0, r, 0), h(0, r), t(0, 0, r).
...

p(f(r), r, r) ← p(r, r, r), h(r, r), t(r, r, r).

Definition 4. Let I be an interpretation. Then I is a model of

– a ground (variable-free) clause C = a ← b1, . . . , bm, denoted I |= C, if either
{b1, . . . , bm} � I or a ∈ I;

– a clause C, denoted I |= C, if I |= C′ for every C′ ∈ grnd(C);
– a program P , denoted I |= P , if I |= C for every clause C ∈ P .

Intuitively, a model of P is an interpretation which is compatible with assertions ap-
pearing in P .

Example 5. Reconsider the program P2 in Example 4. Note that I1 = ∅ is not a model
of P2 (the fact h(0, 0) is not true in I1), while I2 = HB(P2) is a model; indeed,
for every program P it clearly holds that HB(P ) is a model of P . However, I3 =
{h(0, 0), t(0, 0, r), p(0, 0, 0)} is not a model of P2, since the first rule would require
p(f(0), 0, 0) ∈ I3.



Answer Set Programming: A Primer 49

2.2 Minimal Model Semantics

In general, there are multiple “compatible” interpretations of a program P , that is, there
can be multiple interpretations, which are models of P . Some of them are however
trivial, e.g., think of I2 in the previous example w.r.t. P2, or they convey information
which is not encoded in P2. For instance, I4 = I3 ∪ {p(f(0), 0, 0), h(r, r)} is a model
of P2. There is however no evidence that h(r, r) should be true according to P2: indeed
we might remove it from I4, obtaining a smaller model I5 = I3 ∪ {p(f(0), 0, 0)}.

On the other hand, we cannot remove p(f(0), 0, 0) from I5 since the first rule of the
program would not be satisfied. In other words, p(f(0), 0, 0) is an atom which has to be
necessarily true in the scenario described by P2, while this is not the case for h(r, r).

One might ask at this point whether there exists a particular canonical model for a
program which contains only the atoms which are necessarily true according to P . This
notion of “necessity” is commonly called foundedness.

Example 6. Consider the small program P3

a ← b. b ← c. c.

The truth of atom a in the model I = {a, b, c} is “founded.” Intuitively, c must appear
in any model of P3, which implies that also b and then a are necessarily true.

Given the program P4

a ← b. b ← a. c.

we obtain that the truth of atom a in model I = {a, b, c} is not founded. In other words,
there is no necessity of a appearing in a model. Indeed, I ′ = {c} is also a model.

The above intuition can be translated into a formal semantics, which prefers models
having as few true facts as is possible.

Definition 5. A model I of a program P is minimal, if there exists no model J of P
such that J ⊂ I .

Theorem 1. Every positive logic program P has a single minimal model (called the
least model), denoted LM (P ).

This is entailed by the following property:

Proposition 1. If I and J are models of P , then also I ∩ J is a model of P .

Example 7. For P3 = {a ← b. b ← c. c.}, we have LM (P3) = {a, b, c}. For
P4 = {a ← b. b ← a. c.}, we get the least model LM (P4) = {c}

For program P1 above, we have

LM (P1) = {h(0, 0), t(a, b, r), p(0, 0, b), p(f(0), 0, a), h(f(0), f(0))} .



50 T. Eiter, G. Ianni, and T. Krennwallner

Computation of the Least Model. A natural question is, how we can compute the
least model LM (P ) of a program P .

By means of the immediate consequence operator, one can obtain LM (P ) through
an iterative process. Let TP : 2HB(P ) → 2HB(P ) be an operator defined as

TP (I) =
{

a

∣∣∣∣ there exists some a ← b1, . . . , bm

in grnd(P ) such that {b1, . . . , bm} ⊆ I

}
.

We define T 0
P = ∅, and T i+1

P = TP (T i
P ) for i ≥ 0.

Theorem 2. TP has a least fixpoint, lfp(TP ), and the sequence 〈T i
P 〉, i ≥ 0, converges

to it, i.e., lfp(TP ) = LM (P ).

The above result can be proved by means of the fixpoint theorems of Knaster-Tarski
and of Kleene given in Appendix B. The second part of the theorem is easily shown by
observing that lfp(TP ) is a model of P and no smaller model exists.

Example 8. The immediate consequence operator captures the idea that if all the atoms
in a rule r body are founded, then also the head of r must be founded.

For instance, for P3 = {a ← b. b ← c. c.}, we have

T 0
P3

= {}, T 1
P3

= {c}, T 2
P3

= {c, b}, T 3
P3

= {c, b, a}, T 4
P3

= T 3
P3

.

Hence, lfp(TP3) = {c, b, a}. For P4 = {a ← b. b ← a. c.}, we have

T 0
P4

= {}, T 1
P4

= {c}, T 2
P4

= T 1
P4

.

Hence lfp(TP4) = {c}.
For program P1 above, we have

T 0
P1

= ∅,
T 1

P1
= {h(0, 0), t(a, b, r), p(0, 0, b)}

T 2
P1

= {h(0, 0), t(a, b, r), p(0, 0, b), p(f(0), 0, a), h(f(0), f(0))}
T 3

P1
= T 2

P1
.

3 Negation in Logic Programs

Positive logic programs allow for declarative modeling of a variety of problems. How-
ever, it turns out that many situations require a construct which model the intuitive
notion of negation. Negation is a natural linguistic concept and happens to be exten-
sively required when natural problems have to be modeled declaratively. For instance,
given the rule

connected(X) ← hub(Y ), link (Y, X) ,

which defines airports connected to at least one hub airport, one might think of defining
airports which are not connected to any hub. This can be modeled intuitively by put the
not modifier in front of atoms, and considering the rule

badlyConnected(X) ← not connected(X) .



Answer Set Programming: A Primer 51

We will define normal logic programs as a set of clauses having the form

a ← b1, . . . , bm, not c1, . . . , not cn (n, m ≥ 0) (7)

where a and all bi, cj are atoms in a first-order language L. Note that rule bodies now
include expressions which we call (default) negated literals not c1, . . . , not cl, which
consist of atoms ci preceded by the negation modifier not. Accordingly, the atoms
b1, . . . , bk are called positive literals.

Intuitively, a ground literal corresponds to a propositional variable as it was the case
for atoms: a negated literal has a truth value which is opposite to its corresponding
positive literal. For instance, if hub(rome) is true, then not hub(rome) is false.

Once negated literals are syntactically defined, one can think of a proper formal
meaning for rules in which they appear. The Prolog semantics has been pragmatically
and operationally extended from SLD to SLDNF in terms of Negation as failure: here,
one considers as false a negated literal not a(·), if the truth of its corresponding positive
literal cannot be (finitely) proved through SLD resolution.

It is important to observe that negation in classical logic is different from negation in
logic programming (cf. surveys [14,5] and [44,41] for more discussion).

Example 9. Consider the program P5:

man(dilbert).
single(X) ← man(X), not husband(X).

husband(X) ← fail . % fail = ”false” in Prolog

Under Prolog semantics, if we ask the query

? − single(X).

we obtain as an answer
X = dilbert .

Intuitively, the answer is motivated by the fact that husband(dilbert) cannot be proved
from P5. For proving single(dilbert) using forward chaining, one can use the first
rule of the program, in which it must be first shown that man(dilbert) holds, and
then that there is no proof for husband(dilbert); indeed, there is no evidence that
husband(dilbert) is true in P5.

Note however that this operational approach fails to give a satisfactory answer for
programs like P6

man(dilbert).
single(X) ← man(X), not husband(X).
husband(X) ← man(X), not single(X).

where single(dilbert) and husband(dilbert) are mutually dependent using negation.
An SLD resolution algorithm would loop forever when trying to answer the query
single(X).



52 T. Eiter, G. Ianni, and T. Krennwallner

Approaches which give meaning to logic programs via a model theoretic definition
(that is, providing an appropriate notion for a “best” model) are able to treat recursive
definitions for positive programs properly, for which a unique minimal model exists.
However, P6 has two minimal Herbrand models

M1 = {man(dilbert), single(dilbert)}, and

M2 = {man(dilbert), husband(dilbert)} .

Both M1 and M2 satisfy P6 and constitute a minimal set of necessarily true facts which
are compatible with P6. One thus may guess that introducing negation in logic programs
induces a major problem regarding the meaning of normal logic programs.

The debate about the proper semantics for attributing meaning to negation in logic
programs has been long lasting,4 and provoked what we could call the Great Logic
Programming Schism. Indeed, there are two philosophically very different approaches:

1. To keep the idea of defining a single model for a program, possibly including also
problematic classes of programs with negation. This can be achieved by properly
defining which single model should be selected among all classical models of a
program. This line of research produced the notion of perfect model [109] which
has been agreed being satisfactory for the class of so-called “stratified programs.”
For general normal problems, the most popular semantics is perhaps the one based
on the well-founded model [122].

2. To identify a collection of multiple preferred models. This line of research abandons
the “dogmatic” requirement of a single model and accepts the possibility of hav-
ing multiple scenarios compatible with a given program. Note that, in general, for
such multiple models approaches, we have a single model for positive and stratified
programs which corresponds to the least and perfect model, respectively.

Answer Set Programming and its underlying stable model semantics is based on the
latter methodology.

3.1 Stratified Negation

As a first class of programs with negation we will consider stratified programs [4].
Stratified programs have the property that one can find an ordering for the evaluation of
the rules in the program, such that the value of negative literals can be predetermined.

Intuitively, for evaluating the body of a rule containing not r(t), the value of the
negative literal r(t) should be known. This mimics the negation-as-failure approach as
follows:

1. First evaluate r(t);
2. if r(t) is false, then not r(t) is true;
3. if r(t) is true, then not r(t) is false and the rule is not applicable.

Example 10. We can evaluate the single rule program

boring(chess) ← not interesting(chess)
4 The interested reader might refer to [14,31,32] for surveys about the matter.



Answer Set Programming: A Primer 53

husband ��

������������� married

single ��

�

��

man

Fig. 2. dep(P7)

according to this recipe: as interesting(chess) clearly evaluates to false, the negated
literal not interesting(chess) evaluates to true; hence, also boring(chess) evaluates
to true. This results in the Herbrand model H = {boring(chess)} of P , which is the
intuitive meaning of P .

Note however that this implicitly introduces a particular order of evaluation for rules
and make specifications procedural more than declarative.

Dependency Graph. The above method makes only sense if there is no cyclic negation
in programs. Otherwise, it is not possible to find an “evaluation ordering” for a program.
The notion of dependency graph of programs captures this intuition.

Definition 6 (Dependency graph). The dependency graph of a program P , dep(P ) =
〈V, E〉, consists of

– a set of nodes V , which is defined as the set of all predicates p occurring in P , and
– a set of arcs E, which contains arcs of form p → q if and only if an atom with

predicate name p is in the head of a rule r ∈ P and the body of r contains a literal
with predicate name q. If this literal is under negation, the edge will be marked with
� (p →� q).

Example 11. Consider the following program P7

man(dilbert).
husband(X) ← man(X), married(X).

single(X) ← man(X), nothusband(X).

and its dependency graph dep(P7) shown in Figure 2. The order of evaluation for
negated predicates is built according to the following policy: If there is a path in dep(P7)
from a predicate p = p0 → p1 → p2 → · · · → pn−1 → pn to a predicate q = pn,
such that some pi → pi+1 is marked with �, then q must be evaluated prior to p. In
this example we have a path single →� husband → married , thus both husband and
married must be evaluated before single .

Stratification. We formalize the notion of stratification as follows. Let pred(R) denote
the set of predicate names occurring in a set of rules R.

Definition 7 (Stratification). A stratification of a set of rules P is a partitioning Σ =
{Si | i ∈ {1, . . . , n}} of pred(P ) into n nonempty and pairwise disjoint sets of predi-
cate names such that



54 T. Eiter, G. Ianni, and T. Krennwallner

(a) if p ∈ Si, q ∈ Sj , and p → q is in dep(P ) then i ≥ j; and
(b) if p ∈ Si, q ∈ Sj , and p →� q is in dep(P ) then i > j.

The sets S1, . . . , Sn are called the strata of P w.r.t. Σ. A program P is called stratified,
if it has some stratification Σ.

Note that there are programs which are not stratified, such as P6 above. The strati-
fication Σ specifies an evaluation order for the predicates in a logic program. Here
evaluation of a predicate p means to compute the set of true atoms that have p as pred-
icate name. This sequential evaluation can be done by computing a series of iterative
least models.

Definition 8. Let P a logic program with a stratification Σ = {S1, . . . , Sk} of length
k ≥ 1. We define PSi as the subset of the rules of P which have a head atom whose
predicate belongs to Si, and HB�(PSi) =

⋃
j≤i{p(t) ∈ HB(P ) | p ∈ Sj}. We define

the iterative least models Mi ⊆ HB(P ) with i ∈ {1, . . . , k} by:

(i) M1 is the least model of PS1 ;
(ii) if i > 1, then Mi is the least subset M of HB(P ) such that (a) M is a model

of PSi , and (b) M ∩ HB�(PSi−1) = Mi−1 ∩ HB�(PSi−1).

We denote by MP,Σ the iterative least model Mk.

Example 12. Consider again the program P7:

man(dilbert).
husband(X) ← man(X), married(X).

single(X) ← man(X), not husband(X).

According to the dependency graph dep(P7), a stratification Σ for P7 is

S1 = {man,married}, S2 = {husband}, S3 = {single} .

We obtain M1 = LM (PS1) = {man(dilbert)} from the evaluation of PS1 =
{man(dilbert)}. When evaluating M2 we obtain

PS2 = {husband(X) ← man(X),married(X)} .

Note that HB�(PS1) = {man(dilbert),married(dilbert)}. It is easy to see that M2 =
{man(dilbert)} is a model for PS2 , and that M2 ∩ HB�(PS1) = M1 ∩ HB�(PS1);
also, M2 is the least model having these properties.

For the evaluation of M3, note that

PS3 = {single(X) ← man(X), not husband(X)} .

Thus one finds that M3 = {single(dilbert)} ∪ M2 is the least model of PS3 such that
M3 ∩ HB�(PS2) = M2 ∩ HB�(PS2).

It is worth noting that stratifications are not unique. For instance, one can com-
pute the iterative least models using an alternative stratification Σ′, in which S1 =
{man,married , husband} and S2 = {single}.



Answer Set Programming: A Primer 55

mamuk

clote

semel

quincy

olfe

ter

bis

dalte
quater

icsi

Fig. 3. An example railroad network

In both cases the iterative least model obtained at the last iteration is the same. An
important result tells us that, provided a stratification exists, other stratifications produce
the same final model.

Theorem 3 ([4]). Let P be a stratified program. Then for every stratifications Σ and
Σ′ of P , it holds that MP,Σ = MP,Σ′ .

Hence, we can drop the dependency of MP,Σ on a given stratification Σ and define
MP = MP,Σ (for a Σ of choice) as the canonical model for P , which is referred to as
perfect model [109].5

Example 13 (Railroad network). Take, as an example, the railroad network given in
Figure 3. The goal is to determine whether safe connections between locations are pos-
sible. Given two railroad stations a and b, a cutpoint station c for a and b is such that
if connections to c fail, there is no alternative connection between a and b. We will say
that the connection between a and b is safe if there are no cutpoints between a and b. In
Figure 3, ter is a cutpoint for olfe and semel , while quincy is not.

The above problem can be modeled as follows. First, we introduce the set of
predicates:

– station(a): a is a railway station;
– link(a, b): there is a direct connection from station a to b;
– linked(a, b): the symmetric closure of link; that is, linked(a, b) and linked(b, a)

hold whenever link(a, b) holds;
– connected(a, b): there is path linking a to b, either direct or through intermediate

stations;
– cutpoint(x, a, b): each existing path from a to b goes through station x;
– circumvent(x, a, b): when going from a to b one can avoid x; that is, there is a path

between a and b not passing from x;
– has icut point(a, b): there is at least one cutpoint between a and b;
– safely connected(a, b): a and b are connected with no cutpoint.

We will assume that atoms of form link (a, b) are given as set of facts describing the
railroad network at hand. Other predicates are defined according to the program Pr

5 In fact, Przymusinski and Apt et al. developed their semantics independently, but the proposals
coincide on stratified programs, and the name perfect model for MP is customary.



56 T. Eiter, G. Ianni, and T. Krennwallner

linked(A, B) ← link(A, B). (R1)

linked(A, B) ← link(B, A). (R2)

connected(A,B) ← linked(A, B). (R3)

connected(A,B) ← connected(A,C), linked(C, B). (R4)

cutpoint(X, A,B) ← connected(A,B), station(X), (R5)

not circumvent(X, A,B).

circumvent(X, A,B) ← linked(A, B),X �= A, station(X), X �= B. (R6)

circumvent(X, A,B) ← circumvent(X, A,C), circumvent(X, C, B). (R7)

has icut point(A,B) ← cutpoint(X, A,B), X �= A, X �= B. (R8)

safely connected(A,B) ← connected(A,B), (R9)

not has icut point(A,B).

station(X) ← linked(X, Y ). (R10)

Fig. 4. Railroad program Pr

shown in Figure 4.6 Informally, R1 and R2 define linked as the symmetric closure of
link , and connected is defined by means of rules R3 and R4. Roughly speaking, R3

expresses that a and b are connected if there is a direct link among them, while R4

expresses that a and b are connected if there is a node c, which a is connected to, and
c has a link to b. Negation is exploited in R5 for defining cutpoints: x is a cutpoint
for all the paths from a to b if a and b are connected and x is a station for which
circumvent(x, a, b) does not hold.

Now, let us analyze how to define the notion of circumvention. There are two ways
for circumventing a station x when going from a to b: either there exists a direct link
from a to b (rule R6) or one can circumvent x when going from a to c and then
circumvent x when going from c to b (rule R7).

Accordingly, the path from a to b has a cutpoint if there is a nontrivial (i.e., x is
neither equal to a or b) cutpoint from a to b (rule R9). Again, negation is exploited for
defining when a and b are safely connected (rule R9): couples of endpoint stations are
safely connected if they are connected and do not have cutpoints. Eventually, rule R10

defines a station as those nodes which are directly linked to others.
The dependency graph of Pr is shown in Figure 5. A possible stratification of Pr is

Σr = {S1, S2, S3}, where

– S1 = {link , linked , station , circumvent , connected},
– S2 = {cutpoint , has icut point}, and
– S3 = {safely connected}.

We then get the iterative least models

– M1 = { linked(semel , bis), linked(bis , ter), linked(ter , olfe), . . . ,
connected(semel , olfe), . . . , circumvent(quincy, semel , bis), . . . },

6 The predicate �= is a “built-in” predicate, which cannot be user defined. It is thus not shown in
the evaluation and the dependency graph.



Answer Set Programming: A Primer 57

station
��
linked

��
circumvent

��

���� ����
link

has icut point �� cutpoint

�

��

		

�� connected

��

���	��
��

safely connected
�



 ��

Fig. 5. Dependency graph dep(Pr) of the railroad program Pr

– M2 = M1 ∪ { cutpoint(ter , semel , olfe), has icut point(semel , olfe), . . . }, and
– M3 = M2 ∪ { safely connected(semel , bis), safely connected(semel , ter) }.

The iterative least model M3 is then a perfect model for Pr. Note that M3 does not
contain safely connected(semel , olfe).

3.2 Unstratified Negation

The notion of perfect model is however inadequate whenever a program has no strat-
ification. This happens when two or more predicates are mutually defined over “not,”
like in the following program Pu:

man(dilbert).
single(X) ← man(X), not husband(X).
husband(X) ← man(X), not single(X).

Note that Pu has two minimal models (which, as shown next, are stable):

– M = {man(dilbert), single(dilbert)} and
– N = {man(dilbert), husband(dilbert)};

both might be seen as “plausible” scenarios compatible with Pu.
In general, we can associate to a program P a set of preferred (or plausible) models

PM (P ). In the presence of multiple plausible models, each describing a possible sce-
nario specified by a given program, a natural question is how to interpret and how to
reconcile possible discrepancies between models appearing in PM (P ).

One can consider this issue from two complementary points of view:

1. One point is to see P as a knowledge base, in which explicit (facts) and implicit
(rules) information is stored, and wonder if a given query q (or, in general, a for-
mula) holds. Queries can be ground (e.g., q = man(dilbert) holds if q is true w.r.t.
Pu according to some criterion), or nonground (e.g., for evaluating q = man(X)
we have to find the set of values x such that man(x) holds in Pu).



58 T. Eiter, G. Ianni, and T. Krennwallner

In this respect, a ground query q can be answered under Cautious (Skeptical)
Reasoning, that is q evaluates to true if it is true in every model in PM (P ), or
under Brave (Credulous) Reasoning, in which q is true if it is true in some pre-
ferred model. Similarly, answering a non-ground query q amounts to finding the
set of all the ground assignments of q which hold in any preferred model (cautious
reasoning) or in some preferred model (brave reasoning).

2. Cautious and brave reasoning can be seen as a form of quantification/iteration over
preferred models, which however still depict a single scenario. In cautious reason-
ing the single scenario (the set of true facts) is described by the intersection of all
the models, while in brave reasoning one considers their union, this way discarding
the richer information given in PM (P ).

However, each model in PM (P ) brings peculiar information: it can be seen as
the representation of a possible world compatible with P , or, in other words, as
a solution to the problem instance encoded by P . Model generation (that is, the
computation of the set PM (P )) in this respect is—more than query answering—of
valuable importance.

Example 14. The preferred models M and N of Pu represent “possible worlds” com-
patible with Pu. The ground atom man(dilbert) is a cautious and brave consequence
of Pu. But, neither single(dilbert) nor husband(dilbert) are cautious consequences,
whereas both are brave consequences of Pu (the first holds in M while the second
holds in N ).

4 Stable Semantics

Many definitions for PM (P ) have been conceived in the past, cf. [14,94]. We will
concentrate from this point on the—largely considered the most prominent one—notion
of preferred model based on stable models.

4.1 Normal Logic Programs – Syntax

A logic program P based on the stable model semantics has the same syntactic building
blocks as stratified programs: importantly, it is not necessary that P has a stratification,
as we do not rely on the notion of perfect model for computing its semantics. Also,
we keep the the notions of Herbrand universe HU (P ), Herbrand base HB(P ), and
interpretation as for not-free (“positive”) logic programs.

4.2 Stable Model Semantics

First, we will define the stable model semantics for a variable-free (ground) program.
The intuition behind stable model semantics is to treat negated atoms in a special

way. Intuitively, such atoms are a source of “contradiction” or “unstability.”

Example 15. In Pu from above, one can consider M ′ = {man(dilbert)} as possi-
ble, preferred model. Assuming facts in M ′ as true, note however that the two rules
of Pu would enforce to assume that besides man(dilbert) also single(dilbert) and



Answer Set Programming: A Primer 59

husband(dilbert) are true. On the other hand, if one considers M ′′ = {man(dilbert),
single(dilbert), husband(dilbert)} as the set of true facts, it turns out that the two rules
of Pu have now their bodies false, and do not give evidence of truth for single(dilbert)
and husband(dilbert).

“Stability” can thus be seen as follows: if an interpretation M of P is not—in the
sense formalized below—self-contradicting, then it is stable.

Definition 9. The Gelfond-Lifschitz reduct [63] (short GL-reduct or simply reduct) of
a program P w.r.t. an interpretation M , denoted PM , is a program obtained by

1. removing rules with not a in the body for each a ∈ M ; and
2. removing literals not a from all other rules.

Intuitively, given an interpretation M , the conditions 1 and 2 above enforce truth values
for negative literals. If a ∈ M , then a rule’s body with the negative literal not a cannot
become true. On the other hand, if a /∈ M , then not a can be assumed true and removed
from any body where it occurs.

In other words, M can be seen as an assumption about which negated literals are true
and what are false; the program PM incorporates these assumptions. Note that PM is a
positive program, and thus has a least model LM (PM ). If PM does not “contradict” M ,
one should expect that LM (PM ) = M , that is, M can be reconstructed from scratch
applying the rules of PM . If this happens to be the case, then M can be regarded as
being “stable.”

Definition 10. An interpretation M of P is a stable model of P , if

M = LM (PM ).

Note that PM = P for any “not”-free program P . Thus, LM (P ) (which is equal to
LM(PM )) is its single stable model.

Example 16. If we take Pu again in consideration

man(dilbert). (f1)

single(dilbert) ← man(dilbert), not husband(dilbert). (r1)

husband(dilbert) ← man(dilbert), not single(dilbert). (r2)

we may have the following “candidate” interpretations:

– M1 = {man(dilbert), single(dilbert)},
– M2 = {man(dilbert), husband(dilbert)},
– M3 = {man(dilbert), single(dilbert), husband(dilbert)}
– M4 = {man(dilbert)},

One can verify that only M1 and M2 qualify themselves as stable models.

– if we consider M1 we get that the reduct PM1
u is

man(dilbert).
single(dilbert) ← man(dilbert).



60 T. Eiter, G. Ianni, and T. Krennwallner

Note that husband(dilbert) /∈ M1, thus not husband(dilbert) is removed from
r1. On the other hand r2 is deleted from Pu since single(dilbert) ∈ M1: indeed,
under the assumption made in M1, the literal not husband(dilbert is false and will
prevent r2 to trigger and make its head true.

The least model of PM1
u is {man(dilbert), single(dilbert)} which coincides

with M1.
Symmetrically, we can verify that M2 is stable as well.

– On the other hand, M3 and M4 are not stable. If we take M3 = {man(dilbert),
single(dilbert), husband(dilbert)} in consideration, we find that PM3

u consists
only of man(dilbert). Both r1 and r2 are indeed deleted. Thus, LM (PM3

u ) =
{man(dilbert)} �= M3. This means that the assumptions made in M3 are not
“stable” with respect to negated literals in Pu.

If we take M4 = {man(dilbert)}, we observe that PM4
u consists of

man(dilbert).
single(dilbert) ← man(dilbert).

husband(dilbert) ← man(dilbert).

given that both not husband(dilbert) and not single(dilbert) are removed from
r1 and r2 respectively. Therefore, LM (PM4

u ) = {man(dilbert), single(dilbert),
husband(dilbert)} �= M4.

Notably, there are situations in which “stability” is impossible and no meaning can be
assigned to a program.

Example 17. The program Pi

p ← not p. (8)

has no stable models. Consider any interpretation M for Pi such that p /∈ M . Thus,
not p is true and the body of (8) is satisfied, which means that p should be true as well
in order for M being a model for Pi. But this is in direct contradiction to p /∈ M . Now,
if we take an interpretation M ′ such that p ∈ M ′, we get that not p is false and our
rule (8) is satisfied, hence M ′ is a model for Pi. But it is not a stable model, as the
reduct PM ′

i = ∅, and we have that LM (PM ′

i ) = ∅, which is different from M ′.
If we take an arbitrary program P , and add the rule (8) (with p being a new proposi-

tional atom), we get that P has no stable model.

Example 18. Consider the program Ps:

s ← not q. (r1)

q ← not s. (r2)

p ← q, not s. (r3)

f ← s, not f. (r4)

Ps has a single stable model M1 = {p, q}, while M2 = {s} is not stable.



Answer Set Programming: A Primer 61

– Indeed, for M1 = {p, q} we have that in PM1
s the rules r1 and r4 are deleted, while

r2 and r3 are modified, obtaining:

q.

p ← q.

For which LM (PM1
i ) = {p, q} = M1.

– For M2 = {s}, we get PM2
s by deleting r2 and r3 from Ps and updating r1 and r4:

s.

f ← s.

We get LM(PM2
s ) = {s, f} �= M2. Note that M3 = {s, f} is not stable as well.

Indeed, one can observe that rule r4 prevents the existence of a stable model con-
taining s.

Programs with Variables. As for the case of positive and stratified programs, it is
immediate to lift the notion of stable model from propositional programs to non-ground
ones. Intuitively, this step amounts to considering non-ground rules (containing vari-
ables) as shorthands for all their possible ground instances, obtained using a domain of
choice for the terms which can be constructed. This latter domain is usually the Her-
brand universe of the program at hand. The stable semantics of non-ground programs
is thus obtained by means of a reduction to the variable-free case.

Definition 11. Given a program P , an interpretation M of P is a stable model of P , if
M is a stable model of grnd(P ).

Example 19. Consider the following variant of Pu which we will call Pu′ :

man(dilbert). (r1)

woman(alice). (r2)

single(X) ← man(X), not husband(X). (r3)

husband(X) ← man(X), not single(X). (r4)

We have that, for instance,

grnd(r3) = { single(dilbert) ← man(dilbert), not husband(dilbert).
single(alice) ← man(alice), not husband(alice). };

grnd(Pu′ ) = { man(dilbert).
woman(alice).
single(dilbert) ← man(dilbert), not husband(dilbert).
single(alice) ← man(alice), not husband(alice).
husband(dilbert) ← man(dilbert), not single(dilbert).
husband(alice) ← man(alice), not single(alice). }.



62 T. Eiter, G. Ianni, and T. Krennwallner

The program grnd(Pu′ ), and thus Pu′ , has the following stable models:

– M1 = {man(dilbert), woman(alice), single(dilbert)}
– M2 = {man(dilbert), woman(alice), husband(dilbert)}

4.3 Semantic Properties of Stable Models

The success of stable models as semantics for normal logic programs (with arbitrary
usage of negation) relies on two important aspects: first, stable models have a strong
theoretical basis, and enjoy many properties which reflect natural intuitions. Second,
as it will be seen in Section 6 they pave the way to a innovative problem modeling
methodology.

We survey here some important (most of which desirable) theoretical properties of
stable models. The reader can refer to [83,55,61] for other insights, alternative defini-
tions and properties of stable models.

We first consider the relationship between stable models and classical models of a
logic program, i.e., when negation as failure is interpreted as classical negation.

To this end, the notion of (classical) Herbrand model is easily lifted to clauses with
negated literals in their bodies.

Definition 12. Let I be an interpretation. Then I is a model of

– a ground clause C : a ← b1, . . . , bm, not c1, . . . , not cn, denoted I |= C, if either
{b1, . . . , bm} � I or {a, c1, . . . , cn} ∩ I �= ∅.

– a clause C, denoted I |= C, if I |= C′ for every C′ ∈ grnd(C);
– a program P , denoted I |= P , if I |= C for every clause C in P .

Intuitively, the above definition lifts Definition 4 by taking in consideration negated
literals: an interpretation I is, again, “compatible” with a clause C either if it contains
the head of C, or if the body of C is false. A body can be false either if some positive
bi is not in I , or if some ci is in I . One expects that if the body of C is true, then also
its head must be true: indeed, if b1, . . . , bm ∈ I and c1, . . . , cn /∈ I , I can be model of
C only if it contains a.

The above definition complies with the notion of Herbrand model satisfying the
clause a ∨ b1 ∨ . . . ∨ bm ∨ not c1 ∨ . . . ∨ not cn, where not is interpreted as classi-
cal negation. Now the following property holds:

Theorem 4

1. Every stable model M of P is a model of P .
2. A stable model M does not contain any model M ′ of P properly (M ′ �⊂ M ), i.e.,

is a minimal model of P (w.r.t. ⊆).

The above properties guarantee that stable models of a program with negation enjoy
two of the desirable properties holding for least models of positive programs: first, a
stable model M of P is “compatible” with all the rules of P , that is, it does not contra-
dict P . Also, M contains a minimal amount of facts which one must admit to be true
for gaining the “compatibility” with the scenario described by P , and no unnecessary
and/or redundant information.



Answer Set Programming: A Primer 63

Corollary 1. Stable models are incomparable w.r.t. ⊆, i.e., if M1 and M2 are different
stable models of P , then M1 � M2 and M2 � M1.

Also, stable models gracefully generalize the semantics for positive programs (the least
model of a positive program P is clearly the unique stable model of P ), and for stratified
semantics: indeed, the perfect model of a stratified program is also its unique stable
model.

Theorem 5. If a program P is stratified, then P has a single stable model, which coin-
cides with the perfect model.

Note, for instance, that the railroad program Pr is stratified. Its single stable model
coincides with the perfect model. It is indeed worth noting that there is only one stable
configuration for a stratified program although it can have multiple minimal models.

Example 20. If one considers the program Pm

p(a).
r(X) ← p(X), not q(X).

we get two minimal models M1 = {p(a), r(a)} and M2 = {p(a), q(a)} for Pm. Note
that while M1 is stable, M2 is not stable, as the reduct grnd(Pm)M2 = {p(a)}, and
LM (grnd(Pm)M2) = {p(a)} �= M2.

What makes M2 different from M1 is the fact that there is neither rule nor fact in Pm

justifying the presence of q(a) in a model.
Indeed one can see stable models as models in which all atoms a ∈ M are somehow

“supported” by evidence: in a sense, a stable model “supports”, or “gives evidence” of
the truth of each a ∈ M .

Theorem 6. Given a program P and an interpretation I , let

TP (I) =
{

a

∣∣∣∣ there is some r = a ← b1, . . . , bm, c1, . . . , not cn ∈ grnd(P )
such that {b1, . . . , bm} ⊆ I, {c1, . . . cm} ∩ I = ∅

}
.

If I is a stable model of P , then TP (I) = I .

Example 21. Note that q(a) in example 20 is unsupported in M2, indeed q(a)
�∈ TP (M2).

Nonetheless, it must be noted that there are models which are minimal fixed points of
TP , but are however not stable:

Example 22. Consider the short program Ps:

a ← not b.

b ← c.

c ← b.



64 T. Eiter, G. Ianni, and T. Krennwallner

Note that M1 = {a} and M2 = {b, c} are both minimal and such that TPs(M1) =
M1 and TPs(M2) = M2, respectively. In particular, b and c are—in a sense—self-
supported. Consider the reducts PM1

s = {a ←; b ← c; c ← b} and PM2
s = {b ←

c; c ← b}. We have that LM (PM1
s ) = {a} = M1 and LM (PM2

s ) = ∅ �= M2, thus M1

is a stable model, whereas M2 is just a minimal model, but not a stable one.

Self-supported atoms are in general not desirable, since they can lead to paradoxical
scenarios in which true facts are not supported by evidence; a and b from the previous
example are indeed unfounded w.r.t M2 in the sense specified below.

Definition 13 ([122]). Given a program P , a set U ⊆ HBP is an unfounded set of
P relative to an interpretation I , if for every a ∈ U and every r ∈ ground(P ) with
H(r) = a, either

1. There is some atom b appearing as positive literal in the body of r which is such
that either b �∈ I or b ∈ U , or

2. There is some atom b appearing as negative literal in the body of r such that b ∈ I .

For normal programs there exists the greatest unfounded set of P relative to I , denoted
by UP (I).

Intuitively, if I is compatible with P , then all atoms in UP (I) can be safely switched to
false and the resulting interpretation is still compatible with P . Assuming I as a set of
true facts, there is no rule in P that can justify an atom a ∈ U becoming true.

An interpretation I is called unfounded-free, if UP (I) = {}.7

The notion of unfounded set extends the notion of “non-supportedness” by implicitly
forbidding support of an atom by an atom which is unfounded. For gaining “founded-
ness” by M an atom a ∈ M necessitates support by a rule whose body is made true by
founded atoms only (not belonging to the unfounded set at hand).

Theorem 7 (implicit in [79]). Given a program P , a model M of P is stable iff M is
unfounded-free.

Example 23. If we take Pu again in consideration

man(dilbert). (f1)

single(dilbert) ← man(dilbert), not husband(dilbert). (r1)

husband(dilbert) ← man(dilbert), not single(dilbert). (r2)

And the four following “candidate” interpretations:

– M1 = {man(dilbert), single(dilbert)},
– M2 = {man(dilbert), husband(dilbert)},
– M3 = {man(dilbert), single(dilbert), husband(dilbert)}
– M4 = {man(dilbert)},

7 Note that, for more general classes of programs than normal programs (e.g., disjunctive pro-
gram as later defined in Section 5.3), UP (I) is undefined. More generally, we can then say that
I is unfounded-free, if there is no (non-empty) subset of I which is an unfounded set.



Answer Set Programming: A Primer 65

One can observe that M3 has the greatest unfounded set UPu(M3) = {single(dilbert),
husband(dilbert)}: assuming M3 as a set of “true” facts, there is indeed no rule which
could make atoms in UPu(M3) true. M3 is thus not unfounded-free. Note that M4 is
not a model at all, since r1 and r2 are not satisfied.

Example 24. Note that the minimal model M2 = {b, c} of Ps is not unfounded free:
indeed UPs(M2) = {b, c}.

Reasoning from stable models. Since a logic program P might have no, one, or mul-
tiple stable models, the question is how inference from P should be defined. With re-
spect to a particular stable model M , a ground atom a is considered to be true (denoted
M |= a), if a ∈ M , and false, if a /∈ M . This is usually extended to inference from all
stable models of P in two dual modes, as mentioned already in Section 3.2:

Brave Reasoning. An atom a is a brave (or credulous) consequence of P , denoted
P |=b a, if M |= a for some stable model of P ;

Cautious Reasoning. An atom a is a cautious (or skeptical) consequence of P , de-
noted P |=c a, if M |= a for every stable model of P .

These notions can be extended to propositional combinations of ground atoms in the
natural way (where M |= ¬a iff a /∈ M ), and similarly to (combinations of) closed
formulas.

Both |=b and |=c are nonmonotonic, as adding further rules to P might invalidate a
conclusion.

Example 25. If we reconsider the program Pm in Example 20, then both Pm |=b r(a)
and Pm |=c r(a), as r(a) is true in the unique stable model of Pm. However, for
P ′

m = Pm ∪ {q(a)}, neither P ′
m |=b r(a) nor P ′

m |=c r(a) holds, as r(a) is false in the
single stable model {p(a), q(a)} of P ′

m.

From this example, one might believe that the nonmonotonic behavior of inference is
due to the fact that we added some fact (q(a)) that was missing before, but that this
would not happen if the fact were already a consequence; that is, that inference satisfies
cautious monotonicity:

– If P |=x a and P |=x b, then P ∪ {a} |=x b.

where x ∈ {b, c}. This property is obviously fulfilled for classical inference |= in place
of |=x. However, it does not hold for cautious reasoning under stable semantics.

Proposition 2. In general, P |=c a and P |=c b does not imply that P ∪ {a} |=c b.

In fact, the property fails even if P has a single stable model. For example, consider
the program P = {b ← not c; c ← not b; a ← not a; a ← b}. This program has
the single stable model M = {a, b}, and thus P |=c a and P |=c b. However, the
program P ∪ {a} has another stable model, viz. N = {a, c}, and thus P ∪ {a} �|=c b.
The property is, however, true for brave reasoning.



66 T. Eiter, G. Ianni, and T. Krennwallner

Similarly then, also the stronger property of cumulativity fails:

– If P |=x a, then P |=x b iff P ∪ {a} |=x b.

That is, by adding consequences as “lemmas,” we might change the set of conclusions
that can be drawn (which is not the case for classical inference |=). In fact, this property
also fails for brave reasoning, as shown by the above examples (e.g., P ∪ {a} |=b c
while P �|=b c).

In conclusion, care is needed when arguing about how rules in a program compute
truth values for atoms under stable semantics. As long as atoms do not depend on nega-
tion through cycles, i.e., in the stratified part of a program, adding atoms that are com-
puted true as facts does not change the semantics. Fortunately, this can be generalized
to settings where a program can be split into an “lower’ and an “upper” part where the
former informally provides input to the latter in a modular way [86]. In other cases, one
has to carefully examine the effects of adding atoms—in an unfounded way—as facts.
More about properties of consequences from stable models can be found e.g. in [61].

4.4 Computational Properties

There are many computational tasks related to logic programs under stable model
semantics: one might want to check if a given program P is consistent (that is, it admits
at least one stable model), or to compute one, or all, of its models. Also it can be of
interest to determine truth of a given query Q under brave or cautious reasoning. We
briefly focus here on the problem CONS of deciding whether a given input program
P has some stable model, that is, deciding the consistency of P under stable model
semantics. The computational complexity of CONS has direct impact on other related
problems, thus giving an indication of the complexity of other related problems. For
instance, evidence of consistency can be given by computing one stable model.

It turns out that assessing consistency of a ground program P is in general
NP-complete.

Theorem 8 ([91]). The problem CONS of deciding whether a given ground program P
has some stable model is NP-complete.8

Intuitively, this result can be justified by thinking of a simple nondeterministic algorithm
for checking the existence of a stable model for P . For showing that CONS is in NP one
can: (i) guess a candidate stable model M ; (ii) check in polynomial time if M is stable
(e.g. by verifying UP (M) = {}). Also, one can show that it is possible to build a
program Pφ, having a stable model iff a given propositional formula φ in CNF is true
(where Pφ is of size at most polynomially higher than the size of φ).

However, computational complexity might change depending on allowed extensions
(disjunction, presence of function symbols, etc.):

– For “not”-free programs and stratified programs, CONS can be solved in polyno-
mial time (in fact, solvable in linear time);

8 Recall that NP is the class of problems solvable in polynomial time on a non-deterministic
Turing machine [102].



Answer Set Programming: A Primer 67

– For programs with variables but not function symbols, CONS has exponentially
higher complexity (NEXP-complete);

– For non-ground, arbitrary programs (allowing functional terms), CONS is unde-
cidable. There are however known syntactic conditions on the usage of function
symbols which retain complexity in 2-EXP [116,51] resp. 2-NEXP [119,20].9

It is important to note the dramatic change in complexity when P is non-ground. This
should not be surprising if one considers that, usually, grnd(P ) is exponentially bigger
than P .

Example 26. Given the rule rg

r(X1, . . . , Xk) ← h(a, b), c1(X1), . . . , ck(Xk)

one can easily observe that |grnd(rg)| = O(2k).

In particular one can observe that the size of a grounded program can be exponentially
bigger than its original non-ground counterpart if k is allowed to vary, that is, if pro-
grams can have arbitrarily long rules, and arbitrarily large arities. This might not be the
case if a bound on such parameters is given (see e.g. [35]). Also, one might wonder why
the introduction of function symbols makes CONS undecidable. One can easily see that,
in this setting, it is possible to have stable models of infinite size:

Example 27. Consider the program Pf :

p(a).
p(f(X)) ← p(X).

We can observe that grnd(Pf ) = {p(a), p(f(a)) ← p(a), p(f(f(a))) ← p(f(a)), . . . }
is infinite, as well as its unique stable model Minf = {p(a), p(f(a)), p(f(f(a)), . . .}.

It is thus not surprising that for non-ground programs, admitting functions symbols,
CONS and other related reasoning problems become as difficult as deciding the termi-
nation of a Turing machine on a given input.10

5 Extensions

In the above sections, we have dealt with the motivation and history of answer set
programming, and described syntax and semantics of gradually increasing expressive
program classes. In particular, we looked into the class of normal logic programs under
stable models semantics and showed their alluring semantic properties. But, so far, we
did not touch upon the full area of answer set programming. In this section, we will
approach the main topic of this chapter and show more syntactic extensions of normal

9 A decision problem is in 2EXP (2NEXP) time, if it can be solved by a (non-)deterministic

Turing Machine in time O(22p(n)
), where p(·) is a polynomial and n is the size of the input

instance.
10 The reader can find in [25] a thorough collection of results regarding computational complexity

of logic programming under various semantics including the stable models semantics.



68 T. Eiter, G. Ianni, and T. Krennwallner

logic programs and define their semantics, which, eventually, brings us to the answer
set semantics.

We now turn our attention to three particular extensions of normal logic programs
that lead to the notion of Answer Set Programming: (i) (integrity) constraints (rules
with empty head) like

← edge(X, Y ), red(X), red(Y ) , (9)

which forces that adjacent nodes in a graph are not allowed to have the colour red;
(ii) strong (or “classical”) negation in atoms, e.g., −single(dilbert) (Dilbert is known
not to be a single); and (iii) disjunctive rules, i.e., allowing for disjunctions in rule heads
like in

female(X) ∨ male(X) ← person(X) ,

which intuitively means that persons are either female or male. For many crucial knowl-
edge representation tasks, these extensions are not only desirable, but also necessary for
succinct encodings of problems. Programs that permit strong negation are also called
Extended Logic Programs (ELP). If ELPs additionally allow for disjunctive rules, we
obtain the class of disjunctive ELPs, which are also called Disjunctive Logic Pro-
grams (DLP).

Next, we will look into these important extensions in more detail and then provide
syntax and semantics of ELPs and DLPs.

5.1 Constraints

Integrity constraints check admissibility of models, possibly using auxiliary predicates
defined by normal stratified rules. For instance, the constraint rule (9) can be equally
well expressed as the “killing clause”

falsity ← not falsity , edge(X, Y ), red(X), red(Y ) , (10)

where falsity is a fresh propositional atom. Now, if there is an interpretation I for a
program with the constraint (9) such that I contains edge(a, b), red(a), and red(b), but
falsity /∈ I , then (10) is applicable and forces falsity to be true. But then, I cannot
be a model for our program, as falsity is false in I . This means that (10) “kills” all
models that do not satisfy the constraint (9).

5.2 Strong Negation

In Section 3, we have defined normal logic programs, i.e., logic programs that allow
for weak negation in rule bodies. The intuitive meaning of not a is that “a cannot be
proved (derived) using rules,” and that a is false by default (or believed to be false). But
this is different from (provably) knowing that a is false, which is expressed by ¬a; in
ASP, one also writes −a for this.

Example 28 (by John McCarthy). Consider an agent A with the following task: “At a
railroad crossing, cross the rails if no train approaches.” We may encode this scenario
using one of the following two rules:



Answer Set Programming: A Primer 69

walk ← at(A, L), crossing(L), not train approaches(L). (11)

walk ← at(A, L), crossing(L),−train approaches(L). (12)

In the following, let us assume that A is at some crossing L.
If we take (11) as encoding for the railroad-crossing task, and A cannot infer from

her beliefs that train approaches (L) is true, then A will conclude to walk even though
A cannot be sure that there is no approaching train: her beliefs might not represent the
state of the world completely. Now, if we take (12) as the encoding, A will only walk if
she can prove that there is no approaching train.

In (11), an update to A’s knowledge can lead to revised conclusions; if we add
train approaches(L), then A will refuse to walk. This is the typical behavior of non-
monotonic rules like (11), but may not be desired in critical situations like crossing a
railroad, as an approaching train, which has not been perceived by A yet, might cause
devastating effects on the agent. From this point of view, the rule (12) employing strong
negation is preferable.

There are several ways to express negative knowledge using strongly negated atoms.
One way is to explicitly state them as facts in a knowledge base. For instance, the fact
−broken(battery) expresses that a battery is definitely not broken. If this knowledge
base concludes in a different rule that broken(battery) holds, then we face inconsis-
tency, and this causes to vanish all models of that particular knowledge base.

Another useful application for strong negation (in combination with weak negation)
is to express default rules. For example, we can express that “a bird flies by default”
with the rule flies(X) ← bird(X), not −flies(X).

Extended Logic Programs. Adding strong negation to normal logic programs leads
to the so called extended logic programs.

Definition 14. An extended logic program (ELP) is a finite set of rules

a ← b1, . . . , bm, not c1, . . . , not cn (n, m ≥ 0) (13)

where a and all bi, cj are atoms or strongly negated atoms in a first-order language L.

The semantics of ELPs can be defined in different ways, either genuinely by considering
sets of ground literals rather than sets of atoms as basis, as done in [64], or by a simple
reduction to normal logic programs that compiles strong negation away; we follow here
for simplicity the latter. To this end, we

– view negative literals “−p(X)” as atoms with fresh predicate symbols −p, for each
atom p(X);

– add the clause
falsity ← not falsity , p(X),−p(X) (14)

to P (this prevents that p(X) and −p(X) are true at the same time); and
– select the stable models of the resulting program P ′. These are called answer sets

of P .



70 T. Eiter, G. Ianni, and T. Krennwallner

Note that extended logic programs have similar properties as normal logic programs
under stable models semantics. For a ground atom a, constraint (14) prevents that both
a and −a are contained in answer sets. One takes a three-valued view on this: an atom
may be true, false, or undefined (i.e., we don’t know if the atom is true or false). This
contrasts with the two-valued view of stable models of a normal logic program, in which
an atom a is either true (if a is in the model) or false (if a is not on the model, in the
spirit of Reiter’s Closed World Assumption [111]).11

The use of strong negation may cause inconsistency, even if a program does not have
weak negation. For example, take the program P

true.

trivial ← true.

a ← true.

−a ← true.

which derives both a and −a. The constraint (14) prevents that P has answer sets, thus
P is inconsistent. However, this inconsistency is of a different quality than the one cause
by default negation (cf. Example 17).

Example 29. The next program is a knowledge base for determining if one should query
the science citation index (sci) or the citeseer database:

up(S) ← website(S), not −up(S). (r1)

−query(S) ← −up(S). (r2)

query(sci) ← not −query(sci), up(sci). (r3)

query(citeseer) ← not −query(citeseer),−up(sci), up(citeseer). (r4)

flag error ← −up(sci), −up(citeseer). (r5)

website(sci). website(citeseer).

In rule (r1), we define that websites are up by default, and (r2) encodes that a website
known to be not up should not be queried. The rules (r3) and (r4) give a preference on
the websites: whenever we cannot prove that sci is not usable and sci is available, then
we should query the science citation index, but we should only query citeseer if it is
available for querying and sci is down. In (r5), we simply raise an error-flag whenever
both websites are down.

The single answer set of this program is

M = {website(sci), website(citeseer), up(sci), up(citeseer), query(sci)} ,

whose intuitive meaning is that we should query the science citation index, even though
citeseer is up and running.

11 The answer sets of an ELP P without strong negation coincide with the stable models of P ,
and thus the terms are often used interchangeably (confusing two- vs three-valuedness).



Answer Set Programming: A Primer 71

If we add to our knowledge base the rule

−query(S) ← not query(S),−reliable(S) (r6)

and the facts that sci is down and citeseer is unreliable,

−up(sci) and − reliable(citeseer) ,

we can witness a different behavior. Intuitively, (r6) creates a nondeterminism in our
program, as for websites S that are known to be unreliable we can infer −query(S),
provided that we cannot prove query(S). But rules (r3) and (r4) gives us similar knowl-
edge, except with unlike signs: we can infer a positive fact query(S) given that we can-
not prove −query(S). To resolve this conflicting views, we obtain for our knowledge
base under answer set semantics exactly two answer sets, with each intuitively describe
the corresponding alternative view on our site selection problem:

– M1 = {website(sci), website(citeseer), −up(sci),
up(citeseer),−reliable(citeseer),−query(sci), query(citeseer)}, and

– M2 = {website(sci), website(citeseer), −up(sci),
up(citeseer), −reliable(citeseer), −query(sci), −query(citeseer)},

i.e., in M1 we have chosen to query citeseer and in M2 we conclude that we should
not query citeseer, thus querying no website at all.

Relationship to Reiter’s Default Logic. It has been noted already in [64] that ELPs
are closely related to Reiter’s famous Default Logic [112]. For an ELP clause C of
form (13), consider the corresponding default

d(C) =
b1 ∧ · · · ∧ bm : ¬.c1, . . . , ¬.cn

a
,

where ¬.ci is the opposite of ci (i.e., ¬.a = ¬a and ¬.¬a = a).

Theorem 9. Let P be an extended logic program and let T = (∅, {d(C) | C ∈ P})
be the corresponding default theory. Then, M is an answer set of P if and only if
E = Cn(M) is a consistent default extension of T .

Thus, extended logic programs under answer set semantics can be regarded as a frag-
ment of default logic.

5.3 Disjunction

The next extension to normal logic programs is disjunctions in rule heads. The use of
disjunction is natural to express indefinite knowledge. For instance, the rule

female(X) ∨ male(X) ← person(X)

expresses that all persons are either female or male. Another example is the
disjunctive fact

broken(left hand , tom) ∨ broken(right hand , tom) ← ,



72 T. Eiter, G. Ianni, and T. Krennwallner

which expresses that tom has a broken arm, but it is unknown whether the left or the
right hand is broken.

Disjunctive information is a natural extension for expressing a “guess” and to create
non-determinism in logic programs, like in the rule

ok(C) ∨ −ok(C) ← component(C) ,

which states that a component may be in a working condition or not working at all,
and in each of the alternative states of the component, we might have to take different
actions for solving our problem.

The semantics of disjunctive rules is such that we conclude one of the alternatives to
be true (the minimality principle).

In the next example, we look at different disjunctive programs, and the models they
admit.

Example 30. Disjunction is minimal, i.e., from a rule, we usually infer only a single
atom “at a time.” The single rule program

a ∨ b ∨ c ← (15)

has three minimal models: {a}, {b}, and {c}. There exist no smaller models for (15),
since ∅ is not a model. The interpretation I = {a, b} for instance is a model of this
program, but both {a} and {b} are smaller than I and satisfy (15), hence I is not a
minimal model.

If we take a closer look into the minimal models of disjunctive programs, we observe
that they are actually subset minimal. Take, for instance, the program

a ∨ b ← (16)

a ∨ c ← (17)

This program has two minimal models: {a} and {b, c}. The interpretation J = {a, b, c}
is a model for both (16) and (17), hence it is a model of the program. But J is a proper
superset of {b, c}, thus J is not a minimal model. Note that {a} is the only singleton
minimal model, as both {b} and {c} do not satisfy the program.

In a similar vein, the program
a ∨ b ← (18)

a ← b (19)

has the single minimal model {a}, as the model {a, b} is not minimal with respect to
set inclusion. The interpretation {b} is not a model; it satisfies rule (18), but it is not a
model for (19).

Note that disjunction should not be understood as exclusive. Take program

a ∨ b ← (20)

b ∨ c ← (21)

a ∨ c ← (22)

which has three minimal models {a, b}, {a, c}, and {b, c}. Each of the three minimal
models are not contained in the other, but the intersection of any two of the minimal
models is nonempty.



Answer Set Programming: A Primer 73

Let us next consider the use for disjunctive rules vs. unstratified negation. Going back
to our Dilbert scenario, the program

man(dilbert). (23)

single(X) ← man(X), not husband(X). (24)

husband(X) ← man(X), not single(X). (25)

which expresses that a man is either a single or a husband, is equivalent to the disjunc-
tive program

man(dilbert). (26)

single(X)∨ husband(X) ← man(X). (27)

Here, the use of disjunction is more intuitive. In fact, one can see the rule (27) re-
sulting from (24) resp. (25) by “shifting” the negated literal not husband(X) (resp.
not single(X)) to the head (classically, the clauses are equivalent). While such shift-
ing works in this example, as well as under certain syntactic conditions (like headcycle-
freeness) [13], we note that in general, disjunctive rule heads are not syntactic sugar for
unstratified negation; this is also evidenced by complexity results provided in
Section 5.3.

Extended Logic Programs with Disjunctions. The extension of ELPs with disjunc-
tive rule heads leads to the class of extended disjunctive logic programs in [64].

Definition 15. A extended disjunctive logic program (EDLP) is a finite set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn (k, m, n ≥ 0)

where all ai, bj , and cl are atoms or strongly negated atoms.

The semantics for an EDLP can be defined similarly as for an extended logic program,
with the only difference being that instead of choosing a stable model M of P (i.e., M
is the least model of the reduct PM ), we define an answer set M of an EDLP P as
a minimal model M of the reduct PM , since multiple minimal models of PM might
exist.

Example 31. Consider the program P :
man(dilbert).

single(X)∨ husband(X) ← man(X).

There are two answer sets for P :

– M1 = {man(dilbert), single(dilbert)}, and
– M2 = {man(dilbert), husband(dilbert)}.

Please note that P is “not”-free (positive), hence the reduct grnd(P )M = grnd(P ) for
every interpretation M .

It is worth mentioning here that answer sets of EDLPs can also be nicely defined in
equilibrium logic [103,104], which is a non-monotonic version of the logic of here and
there, an intermediate logic between classical logic and intuitionistic logic. This logic
is well-suited to capture not only EDLPs, but also other extensions of normal logic
programs.



74 T. Eiter, G. Ianni, and T. Krennwallner

Semantic Properties of Disjunctive ELPs. The extensions of normal logic programs
to ELPs and DLPs considered in this section inherit most of the alluring properties of
stable models, which have been shown in Section 4.3.

We now define Herbrand interpretations to EDLPs. Since an extended logic program
may contain atoms under classical negation, an interpretation for EDLPs may also con-
tain strongly negated ground atoms, i.e., literals of form a or −a. But this means that
an interpretation can be inconsistent if it contains both a and −a. In [64], the inconsis-
tent answer set has been defined as the interpretation which contains all possible atoms
and their strongly negated counterparts. For our purposes, we deal only with consis-
tent interpretations and thus disregard the inconsistent answer set. We define models as
follows.

Definition 16. A interpretation I is a model of

– a ground clause C : a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn, denoted
I |= C, if either {b1, . . . , bm} � I or {a1, . . . , ak, c1, . . . , cn} ∩ I �= ∅;

– a clause C, denoted I |= C, if I |= C′ for every C′ ∈ grnd(C);
– a program P , denoted I |= P , if I |= C for every clause C in P .

The above definition takes all of our extensions into account: (i) constraints do not have
head literals, hence k = 0 and only the body part (the bi, cj) is taken into account;
(ii) rules with strong negation are considered by viewing all ai, bj , cl in I as classical
literals; as well as (iii) disjunctive rules (where n > 1), with the meaning that if the
rule body is satisfied, at least some literal ai, 1 ≤ i ≤ n, must be true. In a sense, such
interpretations represent three-valued states: a ground atom a is regarded true in I , if
a ∈ I , while a is regarded false in I , if −a ∈ I; of neither a nor −a is contained in I ,
then a is unknown in I .

Similar to stable models of normal logic programs, a (disjunctive) ELP P may have
no, one, or multiple answer sets, which are models of P , and, in fact, minimal models
of P .

Theorem 10. Let P be a (disjunctive) ELP and M be an answer set of P .

1. M is a model of P .
2. M is a minimal model of P .

Hence, just like least models of positive programs and stable models of normal pro-
grams, an answer set satisfies all rules of an EDLP. Moreover, an answer set is a mini-
mal model of the program, which intuitively means that it contains only the absolutely
necessary bare minimum of facts in order to satisfy a program.

Corollary 2. If M1 and M2 are two different answer sets of P then M1 � M2 and
M2 � M1.

Similarly to stable models for normal logic programs, one can define unfounded sets
for answer sets of of EDLPs to address the problem of self-supported literals. Leone et
al. [79] did this for programs without strong negation.

Definition 17 ([79]). Given an EDLP P without strong negation and an interpretation
I , a set U ⊆ HBP is an unfounded set of P relative to an interpretation I , if for every
a ∈ U and every r ∈ ground(P ) such that a appears in the head of r, at least one of
the conditions hold:



Answer Set Programming: A Primer 75

1. There is a literal b appearing in the positive body of r such that either b �∈ I or
b ∈ U ;

2. There is a literal b appearing in the negative body of r such that b ∈ I; or
3. There is a literal b appearing in the head of r such that b /∈ U and b ∈ I .

Unlike for normal logic programs, we cannot guarantee the existence of a greatest
unfounded set for disjunctive programs relative to an interpretation. But there exist
interpretations for an EDLP, where the existence of a greatest unfounded set is guar-
anteed: the unfounded-free interpretations. We call an interpretation I for an EDLP P
unfounded-free, if I ∩ U = ∅ for each unfounded set U for P w.r.t I .

Theorem 11 ([79]). Given an EDLP program P without strong negation, an interpre-
tation M of P is an answer set iff M is unfounded-free.

The DLV system heavily relies on unfounded sets as its underlying principle to build
the answer sets of EDLPs (see Section 7.2 for more details).

Note that the notion of unfounded set is easily extended to answer sets of EDLPs
with strong negation, by adding the respective constraints; [48] defines unfounded sets
directly in Equilibrium Logic.

A recent development in the ASP area is a syntactic counterpart of unfounded sets:
loop formulas [87,75,74]. These formulas have been conceived as a way to transform
logic programs under stable and answer set semantics to propositional theories, and let
standard SAT solvers perform the task of computing the stable models of these extended
theories. In a nutshell, this translation uses Clark’s completion [23] for logic programs
to create a propositional theory and augment this theory by additional loop formulas,
which guarantee that this theory admits only stable models. Note that in general there
can be exponentially many loop formulas for a given EDLP [85].

We end this section by looking into reasoning with answer sets, which is defined
just as reasoning with stable models: a classical literal a is a (i) brave (credulous) con-
sequence of program P , P |=b a, iff M |=b a for some answer set M of P ; and
(ii) cautious (skeptical) consequence of a program P , P |=c a, iff M |=c a for all an-
swer sets M of P . The behaviour with respect to properties like cautious monotonicity
and cumulativity is then similar as in the disjunction-free case.

Computational Properties of Disjunctive ELPs. Similar to normal logic programs
under stable model semantics, EDLPs under answer set semantics have many interesting
computational tasks, and a particular one is testing whether a program P is consistent,
i.e., whether P has some answer set. Here, we restrict our attention to the consistency
problem, give complexity results for various classes of EDLPs, and briefly sketch proofs
or give ideas how such a proof can look like. Let us start with the general case.

Theorem 12 ([39]). Deciding whether a given ground disjunctive program P has some
answer set is Σp

2 -complete in general.

Recall that Σp
2 = NPNP is the class of problems decidable in polynomial time on a

nondeterministic Turing machine with an oracle for solving problems in NP [117].
The membership of consistency of disjunctive ELPs can be shown by the following

argument: we first guess an answer set M for a program P , and verifying whether M



76 T. Eiter, G. Ianni, and T. Krennwallner

is a minimal model of PM is in co-NP (note that PM can be computed in polynomial
time), thus decidable with one call to an NP-oracle.

The intuition for the hardness part is as follows: we have to create a reduction from
validity of a quantified Boolean formula of the form ∃X∀Y E(X, Y ) to an EDLP P ,
where E(X, Y ) is in disjunctive normal form and X and Y are the (lists of) variables
occurring in E. For a detailed proof, we refer the reader to [39].

But there exist subclasses of EDLPs with lower computational complexity. For in-
stance, testing whether a strictly positive disjunctive ELPs has an answer set is easy,
since each positive program has a model and the Gelfond-Lifschitz reduct does not
change the given program.

For a ground DLP P with constraints, but without “not” in the rule bodies, deciding
whether P has some answer set is NP-complete. Hardness can be shown by a reduction
from SAT: given a propositional CNF-formula φ, we transform φ into a positive dis-
junctive program P with constraints by adding rules a ∨ ā ← for each atom a in φ and
adding the “negation” C′ of each clause C in φ as a rule of form u ← C′ to P , where u
is a fresh symbol (e.g., for a clause a ∨ b ∨ ¬c we add the rule u ← ā, b̄, c), and finally
add the constraint ← u; then, φ is satisfiable iff P has an answer set. Membership can
be shown by guessing an interpretation for the positive part of the program, and check-
ing if the interpretation is a minimal model of the positive part and is compliant with
the constraints in polynomial time.

Other classes of EDLPs exist which obtain lower complexity, for instance, deciding
consistency of headcycle-free EDLPs [13] is also NP-complete.

Similarly to normal logic program, we obtain an exponential blowup for nonground
EDLPs compared to the propositional case. In particular, verifying whether a nonground
EDLP has some answer set is NEXPNP-complete, i.e., complete for the class of prob-
lems that run in exponential time on a nondeterministic Turing machine and have access
to an NP-oracle (see also [25]). If function symbols are allowed, the complexity does
not increase through disjunction in general (cf. [25]); syntactic restrictions are known
under which the complexity of deciding consistency stays is 2-EXP-complete [116] and
3-EXP-complete [51], respectively.

6 Answer Set Programming Paradigm

In this section, we now turn to the Answer Set Programming (ASP) paradigm, which
emerged from the nonmonotonic Logic Programming area at the end of the 1990s.
There were, as already mentioned, several texts in which this paradigm was proposed,
[81,82,92,96]; after the LPNMR 1999 conference, a special issue of the AI Journal was
edited [62] covering the subject, a dedicated ASP workshop series started in 2001 [108].
The textbook by Baral [10] was then a further step to disseminate this approach.

Problem 

Instance I Program P
Encoding: Model(s)

Solution(s)
ASP Solver

Theory

Fig. 6. Encoding of problems in ASP



Answer Set Programming: A Primer 77

Let us first start with more motivation by outlining the general idea behind answer
set programming: given an instance of a (search) problem I and its corresponding rep-
resentation in form of a logic program P , we may perceive the models of P as solutions
for I . That is, in ASP, we view problem solving tasks as computing the models of their
matching encoded programs. This view gives rise to a general strategy for implementing
any kind of problem solving task, shown graphically in Figure 6:

1. we encode our problem instance I as a (nonmonotonic) logic program P , such that
solutions of I are represented by models of P ; and then

2. compute some model M of P , by using an AS solver of our choice; and finally
3. extract a solution for I from M .

We may vary this strategy by allowing to compute more than one solution, which in-
tuitively corresponds to obtaining multiple or even all solutions for our problem in-
stance I .

This method has been successfully applied to numerous problems in a range of areas;
an incomplete list is

– diagnosis
– information integration
– constraint satisfaction
– reasoning about actions (including planning)
– routing, and scheduling
– phylogeny construction
– security analysis
– configuration
– computer-aided verification
– health care
– biomedicine and biology
– Semantic Web
– knowledge management
– text mining and classification
– question answering

The survey [124] is a source for specific applications, some of which can be viewed in
an online showcase collection.12

We illustrate the ASP approach on the problem of computing legal 3-colorings of a
graph.

Example 32. Let G = (V, E) be a graph with nodes V = {a, b, c, d} and edges E =
{(a, b), (b, c), (c, a), (a, d)}, which constitutes our problem instance I . We can encode
the legal three colorings of G into answer sets of a logic program P as follows. For each
node n, we have atoms bn, rn, and gn which informally mean that node n is colored
blue, red, and green, respectively. Then we set up the following rules. For each node
n ∈ V ,

12 http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html

http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html


78 T. Eiter, G. Ianni, and T. Krennwallner

Program PPS

Encoding:

Program PD

Encoding:

ASP Solver
Model(s)

Solution(s)

PSSpec.

Problem 

DData

Theory

Fig. 7. Uniform problem encoding in ASP

bn ← not rn, not gn.
rn ← not bn, not gn.
gn ← not rn, not bn.

and for each edge (n, n′) in E, the constraints

← bn, bn′ .
← rn, rn′ .
← gn, gn′ .

Then, the answer sets of P encode 1-1 the legal 3-colorings of G. Informally, the rules
for n ∈ V assign one of the three colors to n, and the constraints for (n, n′) check that
adjacent nodes do not have the same color. Equally well, we can replace the three rules
for n ∈ V by the single (and perhaps more intuitive) rule

bn ∨ rn ∨ gn ← .

This problem solving strategy is closely related to similar approaches like SAT-
solving, where the problem instance is encoded onto the (classical) models of a propo-
sitional formula of clause set. It is because of this that some authors refer to Answer
Set Programming as the more general paradigm in which a problem is encoded into
the models of a logical theory, and consider the usage of nonmonotonic logic programs
as theory as a particular instance of this paradigm. We prefer here, however, to reserve
the term ASP for the setting with nonmonotonic logic programs under the answer set
semantics itself.

Compared to SAT solving, ASP provides features that are not available there. For
example, the transitive closure of a given graph G (and its complement) is express-
ible within an answer set, which is cumbersome in classical propositional logic. Here,
one can exploit negation as failure fruitfully. Furthermore, ASP offers many constructs
besides negation as failure, and, importantly, allows also problem descriptions with
predicates and variables. This can be utilized for generic problem solving where the
specification of solutions (the “logic” PS ) is separated from the concrete instance of
the problem at hand (the “data” D, usually given as facts); see Figure 7.

Example 33. In the graph 3-coloring problem, assuming that G = (V, E) is stored
using facts node(n) for each n ∈ V and edge(n, n′) for each (n, n′) ∈ E, which gives
the data D, the generic specification of solutions PS can be given by the following
rules:



Answer Set Programming: A Primer 79

b(X) ← node(X), not r(X), not g(X).
r(X) ← node(X), not b(X), not g(X).
g(X) ← node(X), not r(X), not b(X).

and the constraints

← b(X), b(Y ), edge(X, Y ).
← r(X), r(Y ), edge(X, Y ).
← g(X), g(Y ), edge(X, Y ).

Similarly as above, we can use the single disjunctive rule

b(X) ∨ r(X) ∨ g(X) ← node(X).

instead of the three unstratified rules defining b(X), r(X), and g(X). Then, the answer
sets of PS ∪ D correspond to the legal 3-colorings of G.

The efficient evaluation of ASP programs requires the integration of techniques from
the areas of Knowledge Representation, Database, and Search, as language constructs
and features need to be handled (possibly by compiling them away), (larger) input vol-
umes of data need to be processed, and nondeterminism as it occurs with unstratified
negation has to handled with search.

In the rest of this section, we will briefly discuss some declarative programming
techniques that are used in ASP. There is a variety of “design patterns” which depend
on the type of problem to be solved and the language elements that are used or needed.
We discuss here the use of four techniques: (i) double negation as a technique to com-
pute maximal elements in a set, which can done using stratified negation; (ii) a general
guess and check methodology which uses unstratified negation or disjunction to gener-
ate and prune solutions candidates; (iii) an advanced technique called saturation, which
can be used in disjunctive logic programming to test properties of various subsets of a
set within an answer set, and is essential to solve “hard” problems there (cf. [39,36]);
(iv) in combination with this, iteration over a set to test whether a property holds for all
elements without the use of negation.

6.1 Use of Double Negation

The first technique which we look at is the use of double negation. In classical logic
¬¬A ≡ A, i.e., double negation can be canceled. This can be similarly exploited in
ASP to define a predicate p(X) in terms of its complement −p(x), and is particularly
attractive if −p(x) can be defined easily. For example, one can avoid counting and
arithmetic for determining the maximum in a (finite) set of numbers.

Example 34. Suppose the data about employees of a company and their salaries are
stored as facts empl(N, S) in the data D, where N is the name and S the salary of an
employee. Then the maximum salary, s∗ = max{s | empl(e, s) ∈ D}, is determined
by the following simple ASP program:

% salary S is *not* maximal
−max(S) ← empl(N, S), empl(N1, S1), S < S1.

% double negation
max(S) ← empl(N, S), not −max(S).



80 T. Eiter, G. Ianni, and T. Krennwallner

Example 35. For a little more involved example where this technique can be used suc-
cessfully, consider the problem of computing the greatest common divisor (gcd) of two
natural numbers n, m > 0; recall that the gcd of n and m is the largest integer d∗ such
that d∗ divides both n and m. This problem is a standard example in logic program-
ming and elegant solutions for it can be found in textbooks, which basically implement
Euclid’s recursive algorithm for it by rules:

% base case
gcd(X, X, X) ← int(X), X > 1.
% subtract smaller from larger number
gcd(D, X, Y ) ← X < Y, gcd(D, X, Y1), Y = Y1 + X.
gcd(D, X, Y ) ← X > Y, gcd(D, X1, Y ), X = X1 + Y.

Here, int(X) is a (built in) predicate for natural numbers≥ 0. While Euclid’s algorithm
is ingenious, the average programmer will approach the problem by trying to cast the
definition into rules. Here, double negation can be used again to single out the maximal
common divisor d∗ in the predicate gcd(X, Y, Z) given that the common divisors are
computed in a predicate cd(X, Y, Z), which in turn can be done easily using a predicate
divisor(X, Y ) that is defined using simple (built-in) arithmetic. A respective program
is the following:

% Declare when D divides a number N .
divisor(D, N) ← int(D), int(N), int(M), N = D ∗ M.
% Declare common divisors
cd(T, N1, N2) ← divisor(T, N1), divisor(T, N2).
% Single out non-maximal common divisors T
−gcd(T, N1, N2) ← cd(T, N1, N2), cd(T1, N1, N2), T < T1.
% Apply double negation: take non non-maximal divisor
gcd(T, N1, N2) ← cd(T, N1, N2), not − gcd(T, N1, N2).

For a similar encoding in Prolog, one has to be careful to define and use int(X) properly
in the rules, otherwise the program might not terminate.

Note that the above programs are both stratified and thus have a single answer set
over any input data (provided that some answer set exists). We will next consider pro-
grams that are geared toward multiple answer sets for capturing problems with multiple
solutions.

6.2 The “Guess and Check” Methodology

An important element of ASP is to employ a “Guess and Check” methodology, which
is sometimes also called Generate-and-Test [82]. The idea is here to proceed as follows:

1. use nondeterminism that comes with unstratified negation, or equally well with
disjunction in rule heads, to create candidate solutions to a problem (program part
G), and

2. to check with further rules and/or constraints, whether a solution candidate is proper
(program part C). This part may also involve auxiliary predicates, if needed.



Answer Set Programming: A Primer 81

From another perspective, the part G defines the search space, and the part C prunes
illegal branches. A detailed discussion of this paradigm is given in [78,36], and in [78]
it is extended by a further component to compute optimal solutions (we will deal with
this in Section 7.2 below). We will just briefly illustrate the methodology on a few
examples.

Example 36. As a first example, we revisit the 3-colorability problem in Example 33.

g(X) ∨ r(X) ∨ b(X) ← node(X)
}

Guess

← b(X), b(Y )
← r(X), r(Y )
← g(X), g(Y ).

⎫⎬⎭ Check

The first disjunctive rule constitutes the guessing part G, which generates all pos-
sible assignments of one colors to the nodes of the graph, while the three constraints
constitute the checking part C.

The next example shows a checking part which uses auxiliary predicates.

Example 37. Recall that for a directed graph G = (V, E), a path n0 → n1 → · · · →
nk in G from a start node n0 ∈ V is called a Hamiltonian path, if all nodes ni are
distinct and each node in V occurs in the path, i.e., V = {n0, . . . , nk}. Assume that, as
above, the graph G is stored using the predicates node(X) and edge(X, Y ), and that a
predicate start(X) stores the unique node n0. Consider the following program:

inPath(X, Y ) ∨ outPath(X, Y ) ← edge(X, Y ).
}

Guess

← inPath(X, Y ), inPath(X, Y1), Y �= Y1.
← inPath(X, Y ), inPath(X1, Y ), X �= X1.
← node(X), not reached(X).

⎫⎬⎭ Check

reached(X) ← start(X).
reached(X) ← reached(Y ), inPath(Y, X).

}
Auxiliary Predicate

The guessing part G simple states for each edge of the graph whether it belongs to the
path or not. The checking part C tests whether inPath really constitutes a path in G
in which each node occurs only once (which is ensured if there is at most one edge
from/to each node), and that all nodes are on the path. For this, the auxiliary predicate
reached(X) is used, which expresses that the node X is reached from the starting node.
The latter is expressed with two simple recursive rules.

Note that deciding the existence of a Hamiltonian path is, like 3-colorability, NP-
complete; a similar SAT encoding would be, due to the reachability check, more
cumbersome.

As a final example, we consider a scenario where the checking part is interfering with
the guessing part, which shows that the two parts may not always be cleanly separated.
In fact, this happens for the elementary task of choosing an element from a set.



82 T. Eiter, G. Ianni, and T. Krennwallner

Example 38. Suppose departments of a company are stored in a predicate dept(X), and
the task is to choose a single department; in general, there will be multiple choices (or
none, if dept would be empty). The following program is a simple (yet little elegant)
solution to the problem:

sel(D)∨ −sel(D) ← dept(D).
}

Guess

← sel(D1), sel(D2), D1 �= D2.
some sel ← sel(D)

← dept(D), not some sel

⎫⎬⎭ Check

Here, the checking part tests that not more than one department has been chosen, and
that at least one is chosen if there are departments (hence, exactly one is chosen).

A more elegant solution is to let the checking part interfere with the guessing part,
and to exploit the minimality property of answer sets.

sel(D) ← dept(D), not −sel(D).
}

Guess
−sel(D1) ← dept(D1), sel(D2), D1 �= D2

}
Check

The guessing rules informally states that, by default, a department D is chosen. The
checking rule says that if some department is chosen, then all others can not be chosen;
this is fed back to the guessing part. In combination, since not all departments have to
be excluded from selection, exactly one will be chosen in an answer set (provided some
departments exist, otherwise ∅ is the single answer set). In other words, the only stable
configurations of the above program are those in which one and only one atom of type
sel(v) is present.

Note that we could equally well replace the checking rule with the rule

−sel(D1) ∨−sel(D2) ← dept(D1), dept(D2), D1 �= D2.

Informally, this rule says that if we have two different departments, then at least one of
them can not be selected.

As a final example for choice, we consider a simple course scheduling scenario.

Example 39. Suppose there is a computer science department cs at a university u. We
have information about members and courses of cs , as well as preferred courses of
members, both encoded as facts F :

member(sam , cs). course(java , cs). course(ai , cs).
member(bob, cs). course(c, cs). course(logic, cs).
member(tom , cs).
likes(sam , java). likes(sam , c).
likes(bob, java). likes(bob, ai).
likes(tom, ai). likes(tom, logic).

Our task is now to assign each member of the department some courses, such that
(i) each member should have at least one course, (ii) nobody should have more than



Answer Set Programming: A Primer 83

two courses, and (iii) assign only courses that the course leader likes. We can use the
following program P to encode this problem:

teaches(X, Y ) ← member(X, cs), course(Y, cs), likes(X, Y ),
not−teaches(X, Y ).

−teaches(X, Y ) ← member(X, cs), course(Y, cs), teaches(X1, Y ), X1 �= X.

some course(X) ← member(X, cs), teaches(X, Y ).
← member(X, cs), not some course(X).
← teaches(X, Y1), teaches(X, Y2), teaches(X, Y3),

Y1 �= Y2, Y1 �= Y3, Y2 �= Y3.

Informally, the first rule says that a CS faculty member gets a CS course she likes
assigned by default. The second rule states that a CS faculty member does not get a CS
course assigned if somebody else teaches it. The third and fourth rules make sure that
each CS faculty gets at least one course assigned. The final rule excludes any assignment
where one person is assigned three (or more) courses.

We obtain the following three answer sets of P ∪ F :

– {teaches(sam , c), teaches(bob, java), teaches(bob, ai), teaches(tom, logic), . . .}
– {teaches(sam , java), teaches(sam , c), teaches(bob, ai), teaches(tom , logic), . . .}
– {teaches(sam , c), teaches(bob, java), teaches(tom, ai), teaches(tom , logic), . . .}

6.3 Saturation Technique

A more advanced technique that is used in disjunctive ASP is the so called saturation
technique, which is used to check whether all possible guesses satisfy a certain prop-
erty, like not being a solution to a problem. Testing such a property, like whether all
assignments of three colors to nodes do not legally color a graph G, may be co-NP-
hard, and thus can not be evidently encoded in a normal logic program such that the
program has some answer set precisely if G is not 3-colorable; in fact, the program in
Example 33 has no answer set if G is not 3-colorable.

It is, however, possible to express the property of non-3-colorability by a unique
answer set candidate for a program, such that the candidate is the only answer set if the
graph is not 3-colorable, and is not an answer set otherwise. More abstractly, to test a
property we design a program P and an answer set candidate Msat such that Msat is
the single answer set of P if the property holds, and P has other answer sets (excluding
Msat ) otherwise. The construction is such that any answer set of P is a subset of Msat ,
and whenever the property is found to hold, any candidate answer set is “saturated” to
Msat . Intuitively, the property is tested within the answer set.

Example 40. For testing non-3-colorability, the constraints in the checking part of the
program in Example 33 can be replaced, thus obtaining the program Pnon col:

b(X) ∨ r(X) ∨ g(X) ← node(X).
non col ← r(X), r(Y ), edge(X, Y ).
non col ← g(X), g(Y ), edge(X, Y ).
non col ← b(X), b(Y ), edge(X, Y ).
χ(X) ← non col , node(X).



84 T. Eiter, G. Ianni, and T. Krennwallner

where χ ∈ {r, g, b}. Informally, this change has the following effect: Whenever an
assignment of colors to the nodes is bad, the assignment is rejected by “saturating” the
candidate model at hand, selecting all ground facts r(n), g(n), and b(n) for any node n.
Importantly, the saturation is the same for all bad assignments. Thus, if all assignments
of colors are bad, there will a be single answer set Msat of the program, which contains,
besides the graph description, non col and r(n), g(n), and b(n) for any node n. On
the other hand, any good assignment of colors will lead to an answer set M such that
M ⊂ Msat , which means that Msat is not an answer set of the program, and that
Pnon col has many answer sets, smaller than Msat corresponding to valid 3-colorings.
Thus, Msat is the single answer set of the program just if the graph is not 3-colorable.
Note also that Pnon col |=c non col iff the graph at hand is not 3-colorable.

We can abstract from the previous example a general design rule: if we desire to check
that a property Pr holds for all guesses defining a search space, we can establish a guess
and saturation check paradigm as follows:

– Define the search space of guesses through a subprogram Pguess , using disjunctive
rules.

– Define a subprogram Pcheck , which checks Pr for a guess Mg.
– If Pr holds for Mg , an appropriate set of saturation rules Psat generates the special

candidate answer set Msat.
– If Pr does not hold for Mg, an answer set results which is a strict subset of Msat

(thus preventing that Msat is an answer set).

It is thus crucial that the program Pcheck , which formalizes Pr , and Psat do not gen-
erate incomparable candidate answer sets. Incomparability might be easily introduced,
besides subprograms with negation as failure, by improper use of disjunction, or by
ill-designed (positive) saturation rules; we will see an example in the next subsection.

In combination with further guessing rules, which assign values to atoms that are not
involved in saturation, it is possible to express problems that have complexity beyond
NP, like the strategic companies problem [78,36], or quantified Boolean formulas of
the form ∃X∀Y E(X, Y ), which are Σp

2 -complete.

6.4 Iteration over a Set

As last technique, we consider testing a property for all elements of a set without the
use of negation. This may be needed in some contexts, for instance in combination with
the saturation technique, or when the use of negation could lead to undesired behavior
(e.g., in case of cyclic negation).

Example 41. Suppose we want to test whether in a directed graph G = (V, E), all
nodes are reachable from a designated start node n0 ∈ V . Using the representation of
G and n0 as in Example 37, we could use the following rules and double negation:

all reached ← not −all reached.
−all reached ← node(X), not reached(X).
reached(X) ← start(X).
reached(X) ← reached(Y ), edge(Y, X).



Answer Set Programming: A Primer 85

Here, all reached is true in the resulting answer set, exactly if all nodes are reachable
from n0.

Now suppose that we want to test in an answer set whether reachability holds for
each graph G′ that results from G by removing between all nodes n and n′, that are
mutually connected, one of the edges n → n′, n′ → n at random. The edges of G′ can
be generated using the rules

edge1(X, Y ) ∨ edge1(Y, X) ← edge(X, Y ), edge(Y, X).
edge1(X, Y ) ← edge(X, Y ), not edge(Y, X).

Let us replace edge in the rules for reached with edge1 and add the saturation rule

edge1(X, Y ) ← all reached, edge(X, Y ).

We thus obtain the program Pg:

all reached ← not −all reached.
−all reached ← node(X), not reached(X).
reached(X) ← start(X).
reached(X) ← reached(Y ), edge(Y, X).
edge1(X, Y ) ∨ edge1(Y, X) ← edge(X, Y ), edge(Y, X).
edge1(X, Y ) ← edge(X, Y ), not edge(Y, X).
edge1(X, Y ) ← all reached, edge(X, Y ).

However Pg does not work as expected, as evidenced, e.g., by the simple graph
G = ({a, b}, {a → b, b → a}), where for n0 = a we get that the candidate

Msat = { all reached, edge1(a, b), edge1(b, a), reached(a), reached(b),
edge(a, b), edge(b, a), node(a), node(b), start(a)}

is a “saturated” answer set, while the property fails for G (for a witnessing G′, remove
a → b; we refer to this graph as G−(a→b)). Indeed, P has also an answer set M2 =
{−all reached, edge1(b, a), reached(a), edge(a, b), . . .}, which is not a subset of the
saturation candidate, corresponding to the graph G−(a→b).

This apparently non-obvious behaviour can be explained from several perspectives:
Msat is a proper answer set due to the fact that G−(b→a) reaches all possible nodes from
a, thus making all reached true. Consequently, the saturation rule makes the extension
of edge1 equal to edge, which results in Msat. On the other hand, one might expect
that M2, which corresponds to the deletion of the edge a → b, should invalidate Msat,
and thus obtain M2 as (the single) answer set. But M2 is not contained in Msat. Indeed,
although M2 is not a saturated answer set, and although the extension of edge1 in M2

is a strict subset of edge, it contains the “spare” atom −all reached, which does not
appear in Msat, making the two answer sets incomparable.

We are thus in a situation in which Msat is an answer set, resulting from some of the
guessed subgraphs G′ of G in which reachability is retained, while we expected Msat

as an answer set if and only if reachability holds for all guessed subgraphs G′ of G.
The problems of program Pg can be remedied by using recursive positive rules—

which check whether each node is reachable—instead of double negation. This will help
in establishing a “proper” containment between candidate answer sets and Msat. To this



86 T. Eiter, G. Ianni, and T. Krennwallner

% Guess a subgraph for testing
edge1(X, Y ) ∨ edge1(Y, X) ← edge(X,Y ), edge(Y,X).
edge1(X, Y ) ← edge(X,Y ), not edge(Y,X).
% Compute all reachable nodes
reached(X) ← start(X).
reached(X) ← reached(Y ), edge1(Y, X).
% iterate to check if all nodes are reached
all reached ← last(X), all reached upto(X).
all reached upto(X) ← all reached upto(Y ), succ(Y, X), reached(X).
all reached upto(X) ← first(X), reached(X).
% Saturation rule
edge1(X, Y ) ← all reached, edge(X,Y ).

Fig. 8. Program with reachability test for subgraphs in an answer set

end, an ordering of the nodes is taken, and associated successor predicates first(X),
succ(Y, X), and last(X) which express that X is the first node, the successor of Y , and
the last node in this ordering, respectively. The rules for all reached and −all reached
in P are replaced by the following rules:

all reached ← last(X), all reached upto(X).
all reached upto(X) ← all reached upto(Y ), succ(Y, X), reached(X).
all reached upto(X) ← first(X), reached(X).

if we add then the respective facts for the ordering, the resulting program (see
Figure 8) works as desired. Informally, these rules access the (positive) reachability
that is computed by the rules for reached with respect to varying subgraphs G′ of G.

The use of an ordering and a rule scheme as above can be easily applied in other con-
texts. In case the set over which the iteration is made is susceptible to change itself
(e.g., if in the previous example only all nodes that have no outgoing edges need to be
reached), then special rules can be added that skip elements, indicated by out(X):

all reached upto(X) ← all reached upto(Y ), succ(Y, X), out(X).
all reached upto(X) ← first(X), out(X).

where out is computed using positive rules; the formulation for the continued example
is left as a (simple) exercise.

7 Answer Set Solvers

In this section, we mention some AS solvers and briefly present the DLV system.
Given that deciding whether a given extended logic program has some answer set

is NP-complete, it is clear that efficient computation of answer sets is not easy, and
that we can not expect to have a polynomial time algorithm for this task (even under
polynomial total-time, i.e., if the combined size of the input P and the output in terms
of all answer sets of P is measured). In fact, the problem is yet harder if disjunction in
rule heads is allowed.



Answer Set Programming: A Primer 87

Table 1. Some Answer Set Solvers

DLV http://www.dbai.tuwien.ac.at/proj/dlv/ a

Smodels http://www.tcs.hut.fi/Software/smodels/ b

GnT http://www.tcs.hut.fi/Software/gnt/
Cmodels http://www.cs.utexas.edu/users/tag/cmodels/

ASSAT http://assat.cs.ust.hk/
NoMore(++) http://www.cs.uni-potsdam.de/˜linke/nomore/

Platypus http://www.cs.uni-potsdam.de/platypus/
clasp http://www.cs.uni-potsdam.de/clasp/

XASP http://xsb.sourceforge.net, distributed with XSB v2.6
aspps http://www.cs.engr.uky.edu/ai/aspps/
ccalc http://www.cs.utexas.edu/users/tag/cc/

a + several extensions, e.g. dlvhex, dlv-db, dlt, OntoDLV
b + Smodels cc

A number of different, sophisticated algorithms have been developed over the past
15 years (similar as in the area of SAT solving), and to date a number of AS solvers are
available; a partial list is shown in Table 1. Some of these solvers provide a number of
extensions to the language described here, and have been further developed into families
of solvers (e.g. the DLV system).

A collection of benchmark problems for AS solvers is maintained at the ASPARA-
GUS platform,13 where also information about language formats and the ASP System
Competition (whose first edition was at the LPNMR 2007 conference) can be found.
In the next subsection, we briefly address implementation strategies of AS solvers; an
excellent source on this topic is Ilkka Niemelä’s ICLP’04 tutorial.14

7.1 Architecture of ASP Solvers

Traditional answer set solvers typically have a two level architecture:

1. Grounding Step: Given a program P with variables, a (subset) P ′ of its grounding
is generated which has the same answer sets as P .

2. Model Search: The answer sets of the grounded (propositional) program P ′ are
computed.

Thus, in analogy with the definition of the semantics, also the computation proceeds
by a reduction to the propositional case. To facilitate finite computations (and answer
sets), many systems do not support function symbols (that is, they handle the so called
Datalog fragment of logic programming), or only in a very limited form; this is because
as already mentioned, function symbols are a well-known source of undecidability, even
in rather plain settings (see [25]); see Section 9 for further discussion.

The efficient realization of both steps requires the use of sophisticated algorithms
and methods; some have been developed from scratch, while others have been borrowed
from related areas, e.g., from SAT Solving. We next look at the two steps.
13 http://asparagus.cs.uni-potsdam.de/
14 http://www.tcs.hut.fi/˜ini/papers/niemela-iclp04-tutorial.ps.gz.

http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/gnt/
http://www.cs.utexas.edu/users/tag/cmodels/
http://assat.cs.ust.hk/
http://www.cs.uni-potsdam.de/~linke/nomore/
http://www.cs.uni-potsdam.de/platypus/
http://www.cs.uni-potsdam.de/clasp/
http://xsb.sourceforge.net
http://www.cs.engr.uky.edu/ai/aspps/
http://www.cs.utexas.edu/users/tag/cc/
http://asparagus.cs.uni-potsdam.de/
http://www.tcs.hut.fi/~ini/papers/niemela-iclp04-tutorial.ps.gz


88 T. Eiter, G. Ianni, and T. Krennwallner

Grounding Step. Efficient grounding is at the heart of current state-of-the art systems,
and different grounding procedures have been realized, including

– DLV’s grounder (integrated),
– lparse (for Smodels), gringo (for clasp), which can be used separately, and
– XASP, aspps.

In order to make the ground program P ′ small and easy to evaluate, sophisticated tech-
niques for “intelligent grounding” have been developed, and restrictions are imposed
on the rule syntax, like

– rule safety (DLV): every variable in a rule must occur in some positive body literal
(i.e., not prefixed with not) whose predicate is not ‘=” or any another built-in com-
parison predicate. This is a standard condition in the area of deductive databases.

– domain-restriction (Smodels): every variable in a rule must occur in a positive do-
main predicate, which are predicates not defined via negative recursion or using
“choice rules” [120].

A problem with even highly efficient grounding procedures is that in the end a ground-
ing bottleneck may show up: even if a given program P can be evaluated in polyno-
mial space in principle, the (small) grounding P ′ produced might contain exponentially
many rules; this is discussed in detail in [35]. Efficient nonground evaluation of ASP
programs intensified only more recently. Techniques for partial and lazy grounding (as
used e.g. in [20,58,101,76]) are proving to be helpful and thus naturally constitute an
important issue for the next generation of AS solvers.

Model search. The second step is model (answer set) search for a propositional pro-
gram. This is more complicated than the analog problem in SAT Solving or CSP, as it
informally comprises two subtasks:

– generation of a candidate model (e.g., a classical model), and
– model checking (testing the stability condition); this problem is easily shown to

be P-complete for normal programs and to be co-NP-complete for disjunctive pro-
grams, respectively.

The two tasks can be solved using different approaches:

1. One approach, which is historically the first, employs special model search algo-
rithms. Such algorithms have been developed, e.g., for Smodels, DLV, NoMore,
aspps, and clasp. They take inspiration from the DPLL algorithm for SAT and
its variants and improvements, in which truth values are assigned to atoms, con-
sequences that emerge propagated and, if conflicts are found, backtracking takes
place. However, while a SAT solver may find any classical model, an AS solver
has to find a specific such model which satisfies stability; this makes the task
much harder. E.g., only atoms can be true that are supported by rules. The result
of the model search is an answer set candidate, whose stability may still need to
be checked, as it is the case for disjunctive programs in DLV, for instance. To this



Answer Set Programming: A Primer 89

b:− not a.
a:− not b.

c:− not c, a.

not aa

c not c

not bbnot b

c not c

b

Fig. 9. Model search for a simple program (solid lines = deterministic propagation)

end, the characterization of stable models in terms of unfounded sets according to
Theorem 11 is exploited (which can be compiled into an instance of UNSAT).

The search for a specific model led in the DLV system, e.g. to four truth val-
ues for an atom in the search: t(rue), f(alse), u(ndefined), and m(ust-be-true). Here
must-be-true means that the atoms has to be true, but its truth still remains to be
supported. Starting with all atoms undefined, possibly true literals are identified,
whose truth value is subsequently determined with trial and error. For a simple
example, consider the program in Figure 9. Initially, all atoms are undefined and
not a and not b would be possibly true literals. Assume that first a is assigned
false; then the right branch is explored. For b, we then can conclude from the first
rule must-be-true (as its body must be false) and true from the second rule (as its
body is false); hence, b is assigned true. For c, we can conclude false (as a is false).
Now all atoms are either true or false; the candidate M = {b} is indeed an answer
set and output. Coming back to the root, a is alternatively assigned must-be-true.
From the first rule, we would then conclude that b is false, which in turn makes a
true; further, one would conclude that not c is possibly true. However, setting c to
false leads to a conflict (by the third rule c then would have to be true), and also
setting c to must-be-true, as then c has no support and must be false.

Important for these approaches are heuristics (which atom/rule to consider next);
for more details concerning DLV, see [52,90].

2. Later, another approach was to translate the logic program to SAT Solving, which
has been realized e.g. in ASSAT and Cmodels. To this end, as already mentioned in
Section 5.3 the so called Clark completion of a logic program [23] (which translates
an acyclic program into an equivalent SAT instance) is extended with loop formulas
[87,75].

Note that for SAT, model checking is easy in terms of complexity, and can be
done in LOGSPACE (in fact, the problem is solvable in ALOGTIME, which is far
down in LOGSPACE).15 An attractive advantage of this approach is that it can ben-
efit from improvements to SAT solving technology; drawbacks are that to generate
all answer sets, one needs a SAT solver that can compute all models of a clause set
(or one has to tune the transformation for incremental enumeration of answer sets)
and that in general, the SAT instance that is constructed can have exponential size.

15 This also intuitively is a clue why there are so many loop formulas, made more precise in [85]:
if there were few and they could be easily constructed, we could solve a P-complete (resp.
co-NP-complete) problem in LOGSPACE (resp., in polynomial time).



90 T. Eiter, G. Ianni, and T. Krennwallner

7.2 The DLV System

As an example of an AS solver, we briefly consider here the DLV system. 16 DLV is a
state-of-the-art answer set solver which has been developed at the Vienna University of
Technology and the University of Calabria over more than a decade, starting out with
a research project on non-monotonic deductive databases in 1996; it is freely available
for download.

The system has a language that is richer than the extended disjunctive logic pro-
grams considered above, and supports additional constructs (e.g., aggregates, weak
constraints) some of which increase the expressivity (e.g., weak constraints allow to ex-
press optimization problems with complexity beyond Σp

2 ). DLV supports certain built-
in predicates (e.g. bounded integer arithmetic and comparisons), and offers a range of
front-ends for specific KR tasks (e.g., planning or diagnosis), as well an interface to
databases. The principle reasoning tasks supported by DLV are 1. answer set generation
(all or a given number) and 2. brave and cautious query answering, which is supported
for both ground and non-ground queries.

The DLV system has been described in many publications, of which [78] is the most
comprehensive; the article [77] is recent. As mentioned above, its reasoning engine
implements the two-level architecture outlined in Section 7, using a highly optimized
grounding module for the first level; the model search is by a DPLL style algorithm
that uses the characterization of stable models by unfounded sets in Theorem 11. DLV
also incorporates a lot of deductive database technology in order to handle larger data
volumes (including magic sets, which have been generalized to programs with negation
and disjunction). The DLV engine has been extended in many directions leading to a
family of systems that support different purposes, including dlv-ex, dlvhex, OntoDLV,
dlv-db, and dlt.

DLV syntax. Briefly, the core language of DLV consists of rules of the form

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm.

where n + m > 1, and all ai, bj are atoms or strongly negated atoms (e.g. −a); no
function symbols are allowed; the syntax of terms is like in Prolog. Certain built-in
predicates are supported (cf. Table 2). Note that DLV allows constraints (n = 0); as
mentioned in Section 7.1, DLV requires rule safety. The extended language also allows
that the bj are aggregate atoms, in which the values of aggregate functions over a con-
junction of literals (including # max, # min, #sum, #count, and #times), can be
compared to given bounds; we refer to [53] for details.

Furthermore, the DLV language has weak constraints, which are of the form

:∼ b1, · · · , bk, not bk+1, · · · , not bm. [w : l] (28)

where all bj are as in rules and w (the weight) and l (the level, or layer) are positive
integer constants or variables. For convenience, w and/or l can be omitted and are set to
1 in this case. Informally, the expression (28) is a constraint that can be violated, which
incurs cost w; for an answer set, the costs of all violated (instances of) weak constraints

16 http://www.dbai.tuwien.ac.at/proj/dlv/

http://www.dbai.tuwien.ac.at/proj/dlv/


Answer Set Programming: A Primer 91

Table 2. DLV built-ins (Oct-11-2007 release)

Comparison Predicates (for constants and integers):

<, >, <=, >=, ==, ! =

Arithmetic Predicates (require an upper bound #maxint for integers; see below):

#int(X): X is known integer (1 ≤ X ≤ N).
#succ(X, Y): Y is successor of X, i.e., Y = X + 1.
+(X, Y, Z): Z = X + Y.
∗(X, Y, Z): Z = X ∗ Y.

Facts over a fixed integer range

pred(c1..c2). where c1, c2 ≥ 0 are numeric integer constants,
is short for pred(c1). pred(c1+1). · · · pred(c2 − 1). pred(c2).

Built-in constants

#maxint upper integer limit, set with -N switch, or with
#maxint = i. for integer i ≥ 0 in the program

are added up, grouped by levels of priorities l. Among all answer sets, those whose
cost vector is lexicographically (ordered by priority) smallest are chosen as optimal
answer sets; see [78] for formal details. With the help of weak constraints, the Guess
and Check methodology in Section 6.2 can be extended to a Guess, Check and Optimize
Methodology (an example follows shortly).

Queries are specified in DLV by expressions

b1, · · · , bk, not bk+1, · · · , not bm?

where all bj are atoms or strongly negated atoms; the query mode (brave or cautious)
is selected using a switch (–brave resp. –cautious). Variables in queries are allowed; all
bindings of variables to constants will be shown such that the resulting ground query
evaluates to true; if the query is ground, in case of brave reasoning a witnessing answer
set is shown.17

Example 42. To illustrate the use of weak constraints, we consider the well-known
Traveling Salesperson problem (TSP), where cities are stored as facts city(X) and di-
rect connections as facts conn(X, Y, C), where C is the cost of traveling from X to Y .
Furthermore, the tour is required to start in a city designated with a fact start(X).

The following DLV program computes optimal tours in its optimal answer sets:

inTour(X, Y, C) v outTour(X, Y, C) :- start(X), conn(X, Y, C).
inTour(X, Y, C) v outTour(X, Y, C) :- reached(X), conn(X, Y, C).
reached(X) :- inTour(Y, X, C). (aux.)

⎫⎬⎭ Guess

17 Unless magic sets are enabled, which will be the default in future DLV releases.



92 T. Eiter, G. Ianni, and T. Krennwallner

:- inTour(X, Y, ), inTour(X, Y1, ), Y <> Y1.
:- inTour(X, Y, ), inTour(X1, Y, ), X <> X1.
:- city(X), not reached(X).

⎫⎬⎭ Check

:∼ inTour(X, Y, C). [C : 1]
}

Optimize

Here, the first three rules guess a tour, which is done in an incremental manner begin-
ning at the start city for all cities reached. Note that different from Example 37, we
want a complete tour (a cycle) rather than a path and thus the start city must be reached
from some other city. The weak constraint in the optimize part states that including the
connection from X to Y costs C; the total cost of an answer set is the cost of a tour (all
weak constraints have the same priority).

If we add the query

start(X), inTour(X, Y, C)?

to the program, then we obtain under brave reasoning all possible first legs for an opti-
mal tour, and under cautious reasoning a mandatory first leg (if one exists).

Front-ends. Besides the answer set semantics core, DLV offers various front-ends for
particular KR tasks, including

– diagnosis
– knowledge-based planning (K language)
– front-end to SQL3
– inheritance reasoning

The first three front-ends can be invoked using command-line switches, while the in-
heritance front-end is automatically enabled if the input is an inheritance program [17].
Many other front-ends, created by various authors, are available as separate packages.

Using DLV. The DLV system is primarily command-line oriented, but there is also a
plain GUI and there are web interfaces available.18

The system reads input from files whose names are passed on the command-line. If
the command-line option “--” has been specified, input is also read from standard input
(stdin). Output is printed to standard output (stdout), one line per answer set. Detailed
documentation and an online manual are available at the DLV homepage. 16

8 ASP for the Semantic Web

As mentioned in Section 6, ASP has been deployed to many application areas. We focus
here on the Semantic Web, where different ways to exploit ASP and ASP techniques
have been considered (see [44,41,34] for more discussion):

– As a host language for Web/Semantic Web formalisms. For example, mappings
respectively encodings of ontologies in description logics into ASP have been con-
ceived (see [43] for references), and encoding of web query languages, e.g.
SPARQL [105].

18 E.g. http://asptut.gibbi.com/

http://asptut.gibbi.com/


Answer Set Programming: A Primer 93

– For diverse problem solving, like Web service composition (e.g. [110,107]), Web
Service repair [57], or ontology merging [47,69].

– For combining rules and ontologies into a unifying framework (cf. [43,27,33] for
discussion and references).

In the context of the Semantic Web, special needs arise that have to be
accommodated:

– dealing with open worlds and domains (cf. [106,24]),
– access to (semi-)structured and poorly structured data,
– external sources and distributed computation (cf. [2]),
– heterogeneity of sources, and
– web dynamics (cf. [1]).

In the rest of this section, we review some research and development efforts which
have been moving ASP languages in the direction of the Semantic Web. Among them
are extensions of ASP to access ontologies in OWL, the Web Ontology Language, and
extensions which allow to access heterogeneous knowledge sources on the Web. For
more information on ASP for the Semantic Web, we refer to previous Reasoning Web
schools [41,44] and the tutorial [34].

8.1 DL-Programs

Description logic programs (dl-programs), which had been introduced in [49], are a
form of hybrid knowledge bases combining description logics19 and logic programs
under answer set semantics. They form another contribution to the attempt in finding an
appropriate formalisms for combined rules and ontologies for the Semantic Web.

Roughly speaking, dl-programs consist of a normal logic program P and a descrip-
tion logic knowledge base (DL-KB) L. In addition to traditional atoms, the logic pro-
gram P might contain special devices, called dl-atoms. Those dl-atoms may occur in
the body of a rule and involve queries to L. Moreover, dl-atoms can specify an input to
L before querying it, thus in dl-programs a bidirectional data flow is possible between
the description logic component and the logic program.

The way dl-programs interface DL-KBs enables the possibility of acting as a loosely
coupled formalism between a knowledge base formulated in terms of a logic program
and a knowledge base formulated in terms of description logic axioms. This feature
brings the advantage of reusing existing logic programming and DL systems in order to
build an implementation of dl-programs.

In the following, we provide the syntax of dl-programs and an overview of the
semantics. An in-detail treatise is given in [43].

We will illustrate the main ideas behind the notion of dl-program with the following
example:

Example 43. An existing network must be extended by new nodes (Fig. 10). The
knowledge base LN contains information about existing nodes (n1, . . . , n5) and their

19 The reader is referred to [8] of this volume for a general background on description logics.



94 T. Eiter, G. Ianni, and T. Krennwallner

n1

x1?

x2?

n2

n3

n4

n5

Fig. 10. Hightraffic network

interconnections as well as a definition of “overloaded” nodes (concept
HighTrafficNode), which are nodes with more than three connections:

≥ 1 wired � Node; � � ∀wired .Node; wired = wired−;
≥ 4 wired � HighTrafficNode ; n1 �= n2 �= n3 �= n4 �= n5;
Node(n1); Node(n2); Node(n3); Node(n4); Node(n5);

wired(n1, n2); wired(n2, n3); wired(n2, n4);
wired(n2, n5); wired(n3, n4); wired(n3, n5).

In LN , only n2 is an overloaded node, and is highlighted in Fig. 10 with a criss-cross
pattern.

To evaluate possible combinations of connecting the new nodes, the following pro-
gram PN is specified:

newnode(x1 ). (29)

newnode(x2 ). (30)

overloaded (X) ← DL[wired � connect ;HighTrafficNode ](X). (31)

connect(X, Y ) ← newnode(X), DL[Node](Y ), (32)

not overloaded (Y ), not excl(X, Y ).
excl(X, Y ) ← connect(X, Z), DL[Node](Y ), Y �= Z. (33)

excl(X, Y ) ← connect(Z, Y ),newnode(Z),newnode(X), Z �= X. (34)

excl(x1 , n4). (35)

Rules (29)–(30) define the new nodes to be added. Rule (31) imports knowledge about
overloaded nodes in the existing network, taking new connections already into account.
Rule (32) connects a new node to an existing one, provided the latter is not overloaded
and the connection is not to be disallowed, which is specified by Rule (33) (there must
not be more than one connection for each new node) and Rule (34) (two new nodes
cannot be connected to the same existing one). Rule (35) states a specific condition:
Node x1 must not be connected with n4.



Answer Set Programming: A Primer 95

Two different semantics have been defined for dl-programs, the (strong) answer-set
semantics [49] and the well-founded semantics [50,42]. The former extends the notion
of Gelfond-Lifschitz reduct (see Section 4) incorporating the presence of dl-atoms: dl-
programs can have, in general, multiple answer sets. The latter extends the well-founded
semantics of [122] to dl-programs.

Example 44. As specified by the strong answer set semantics of dl-programs, the pro-
gram (LN , PN ) in Example 43 has four strong answer sets (we show only atoms with
predicate connect): M1 = {connect(x1, n1), connect(x2, n4), . . . }, M2 =
{connect(x1, n1), connect(x2, n5), . . . }, M3 = {connect(x1, n5), connect(x2, n1),
. . . }, and M4 = {connect(x1, n5), connect(x2, n4), . . . }. Note that the ground dl-
atom

DL[wired � connect ;HighTrafficNode ](n2)

from rule (31) is true in any partial interpretation of PN . According to the proposed
well-founded semantics for dl-programs in [50], the unique well-founded model of
(LN , PN ) contains thus overloaded(n2 ).

Features and Properties of DL-Programs. The strong answer set semantics of dl-
programs is nonmonotonic, and generalizes the stable semantics of ordinary logic
programs. In particular, satisfiable positive dl-programs (programs without default nega-
tion and −∩ operator) have a least model semantics, and satisfiable stratified dl-programs
have a unique minimal model which is iteratively described by a finite sequence of least
models.

Applications. The bidirectional flow of knowledge between a description logic base
and a logic program component enables a variety of possibilities. A major application
for dl-programs is nonmonotonic reasoning on top of monotonic systems. It is for in-
stance possible to take a dl-knowledge base L and coupling it with a properly designed
logic program in order to extend L with defaults [112] and closed world assumption
(CWA) [111]. Both reasoning applications can be implemented in dl-programs to sup-
port nonmonotonic reasoning for description logics, as detailed in [43].

8.2 HEX-Programs

HEX-programs [46] are declarative nonmonotonic logic programs with support for ex-
ternal knowledge and higher-order disjunctive rules, under answer set semantics. In
spirit of dl-programs, they allow for a loose coupling between general external knowl-
edge sources and declarative logic programs through the notion of external atoms,
which take input from the logic program and exchange inferences with the external
source. In addition, meta-reasoning tasks may be accomplished by means of higher-
order atoms. HEX-programs are evaluated under a generalized answer-set semantics,
thus are in principle capable of capturing many proposed extensions in answer-set
programming.



96 T. Eiter, G. Ianni, and T. Krennwallner

Syntax of HEX-Programs. Let C, X , and G be mutually disjoint sets whose elements
are called constant names, variable names, and external predicate names, respectively.
Unless explicitly specified, elements from X (resp., C) are denoted with first letter in
upper case (resp., lower case), while elements from G are prefixed with the “&” symbol.
We note that constant names serve both as individual and predicate names.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is the arity of the atom. In-
tuitively, Y0 is the predicate name, and we thus also use the more familiar notation
Y0(Y1, . . . , Yn). The atom is ordinary, if Y0 is a constant.

For example, (x, rdf :type, c), node(X), and D(a, b), are atoms; the first two are
ordinary atoms.

An external atom is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm) , (36)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output lists,
respectively), and &g ∈ G is an external predicate name. We assume that &g has
fixed lengths in(&g) = n and out(&g) = m for input and output lists, respectively.
Intuitively, an external atom provides a way for deciding the truth value of an output
tuple depending on the extension of a set of input predicates: in this respect, an external
predicate &g is equipped with a function f&g evaluating to true for proper input values.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm, notβm+1, . . . , notβn , (37)

where m, k ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βn are either atoms or exter-
nal atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where
B+(r) = {β1, . . . , βm} and B−(r) = {βm+1, . . . , βn}. If H(r) = ∅ and B(r) �= ∅,
then r is a constraint, and if B(r) = ∅ and H(r) �= ∅, then r is a fact; r is ordinary, if
it contains only ordinary atoms. A HEX-program is a finite set P of rules. It is ordinary,
if all rules are ordinary.

We next give an illustrative example.

Example 45 ([45]). Consider the HEX-program P in Figure 11. Informally, this pro-
gram randomly selects a certain number of John’s relatives for invitation. The first line
states that brotherOf is a subrelation of relativeOf , and the next three lines give con-
crete facts. The disjunctive rule (42) chooses relatives, employing the external predi-
cate &reach . This latter predicate takes in input a binary relation e and a node name
n, returning the nodes reachable from n when traversing the graph described by e
(see the following Example 47). Rule (43) axiomatizes subrelation inclusion exploit-
ing higher-order atoms; that is, for those couples of binary predicates p, r for which it
holds subRelation(p, r), it must be that r(x, y) holds whenever p(x, y) is true.

The constraints (45) and (46) ensure that the number of invitees is between 1 and 2,
using (for illustration) an external predicate &degs from a graph library. Such a predi-
cate has a valuation function f&degs where f&degs(I, e,min,max ) is true iff min and
max are, respectively, the minimum and maximum vertex degree of the graph induced
by the edges contained in the extension of predicate e in interpretation I .



Answer Set Programming: A Primer 97

subRelation(brotherOf , relativeOf ). (38)

brotherOf (john, al). (39)

relativeOf (john, joe). (40)

brotherOf (al ,mick). (41)

invites(john, X) ∨ skip(X) ← X �= john, &reach [relativeOf , john](X). (42)

R(X, Y ) ← subRelation(P, R), P (X,Y ). (43)

someInvited ← invites(john, X). (44)

← not someInvited . (45)

← &degs [invites ](Min,Max ),Max > 2. (46)

Fig. 11. Example HEX program

Semantics of HEX-Programs. In the sequel, let P be a HEX-program. The Herbrand
base of P , denoted HBP , is the set of all possible ground versions of atoms and exter-
nal atoms occurring in P obtained by replacing variables with constants from C. The
grounding of a rule r, grnd(r), is defined accordingly, and the grounding of program
P is given by grnd(P ) =

⋃
r∈P grnd(r). Unless specified otherwise, C, X , and G are

implicitly given by P .

Example 46 ([45]). Given C = {edge, arc, a, b}, ground instances of E(X, b) are
for instance edge(a, b), arc(a, b), a(edge, b), and arc(arc, b). Ground instances of
&reach[edge, N ](X) are all possible combinations where N and X are replaced by
elements from C; some examples are &reach[edge, edge](a), &reach[edge, arc](b),
and &reach [edge, edge](edge).

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We say
that I is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I .

With every external predicate name &g ∈ G, we associate an (n+m+1)-ary
Boolean function f&g assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1,
where n = in(&g), m = out(&g), I ⊆ HBP , and xi, yj ∈ C. We say that I ⊆ HBP

is a model of a ground external atom a = &g[y1, . . . , yn](x1, . . . , xm), denoted I |= a,
if and only if f&g(I, y1, . . . , yn, x1, . . . , xm) = 1.

Example 47 ([45]). Let us associate with the external atom &reach a function f&reach

such that f&reach(I, E, A, B) = 1 iff B is reachable in the graph E from A. Let I =
{e(b, c), e(c, d)}. Then, I is a model of &reach[e, b](d) since f&reach(I, e, b, d) = 1.

Note that in contrast to the semantics of higher-order atoms, which in essence reduces
to first-order logic as customary (cf. [115]), the semantics of external atoms is in spirit
of second order logic since it involves predicate extensions.

Considering example 45, as John’s relatives are determined to be Al, Joe, and Mick,
P has six answer sets, each of which contains one or two of the facts invites(john , al),
invites(john , joe), and invites(john ,mick ).

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such that
I |= a, (ii) I |=B(r) iff I |= a for all a ∈ B+(r) and I �|= a for all a ∈ B−(r), and



98 T. Eiter, G. Ianni, and T. Krennwallner

(iii) I |= r iff I |=H(r) whenever I |= B(r). We say that I is a model of a HEX-program
P , denoted I |= P , iff I |= r for all r ∈ grnd(P ). We call P satisfiable, if it has some
model.

Given a HEX-program P , the FLP-reduct of P with respect to I ⊆ HBP , de-
noted fP I , is the set of all r ∈ grnd(P ) such that I |= B(r). I ⊆ HBP is an answer
set of P iff I is a minimal model of fPI .

In principle, the truth value of an external atom depends on its input and output
lists and on the entire model of the program. In practice, however, we can identify
certain types of input terms that allow to restrict the input interpretation to specific
relations. The Boolean function associated with the external atom &reach[edge, a](X)
for instance will only consider the extension of the predicate edge and the constant
value a for computing its result, and simply ignore everything else of the given input
interpretation.

Features and Properties of HEX-Programs. As mentioned above, HEX-programs
are a generalization of dl-programs, consisting indeed in a form of coupling of rules
with arbitrary external computation sources, within a declarative logic-based setting.
The higher-order features are similar to those of HiLog [22], i.e., the semantics of this
high-order extension is still within first-order logic.

The semantics of HEX-programs conservatively extends ordinary answer-set pro-
grams, and it is easily extendable to support weak constraints [18]. External predicates
can define other ASP features like aggregate functions [53]. Computational complexity
of the language depends on external functions. The former is however not affected if
external functions evaluate in polynomial time.

The dlvhex prototype,20 an implementation of HEX-programs, is based on a flexible
and modular architecture. The evaluation of the external atoms is realized by plugins,
which are loaded at run-time. The pool of available external predicates can be easily
customized by third-party developers.

Applications. HEX-programs have been put to use in many applications in different
contexts. Hoehndorf et al. [69] showed how to combine multiple biomedical upper
ontologies by extending the first-order semantics of terminological knowledge with
default logic. The corresponding prototype implementation of such kind of system is
given by mapping the default rules to HEX-program. Fuzzy extensions of answer-set
programs and their relationship to HEX-programs are given in [98,68]. The former maps
fuzzy answer set programs to HEX-programs, whereas the latter defines a fuzzy seman-
tics for HEX-programs and gives a translation to standard HEX-programs. In [99], the
planning language Kc has been introduced which features external function calls in
spirit of HEX-programs.

8.3 Other Linguistic Extension of ASP in the Direction of Semantic Web

We briefly survey here other notable works aiming at integrating the stable model
semantics with Semantic Web related formalisms, and remind the reader to other dis-
cussions of related work such as [41,27].

20 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/


Answer Set Programming: A Primer 99

Research efforts can be categorized in the two main groups of translational ap-
proaches and integration approaches. The latter can be further classified in loose, tight
or full integration.

As for integration approaches, DL+log [114] is the latest in a chain of extensions of
the DL ALC with rules such as AL-log , r- and r+-hybrid knowledge bases. As a tight
semantics approach, DL+log gives meaning to combined knowledge bases in terms
of unique model structures, which aim at satisfying both the description logic base at
hand and the logic program. Hybrid MKNF knowledge bases [95] build on Lifschitz’s
bimodal Logic of Minimal Knowledge and Negation as Failure (MKNF) [80], and aim
at a seamless (which is sometimes referred as full integration) integration of classic and
nonmonotonic semantics beyond tight integration approaches. Besides dl-programs and
hex-programs, it is worth mentioning other loose coupling languages in the direction of
probabilistic [88] and fuzzy hybrid systems [89] under stable semantics; see [33] for an
overview. An extension of RDF(S) with stable models has been proposed in [3].

One might also consider the idea of translating Semantic Web ontologies to semanti-
cally equivalent ASP logic programs. This task is quite challenging, given the profound
semantic differences between the two formalisms. Nonetheless, some success has been
reached, and translation from several flavors of description logics to ASP are known,
cf. [10,118,70,116]. Notably, the availability of function symbols (or, in any case, of
infinite domains), solves some of the semantic difficulties [116,67].

8.4 Other Semantic Web Enabled Systems Based on ASP

OntoDLV [113] is a system for ontologies specification and reasoning under answer
set semantics. OntoDLV implements a logic-based ontology representation language,
called OntoDLP (where DLP stands for Disjunctive Logic Programs), which is an ex-
tension of (disjunctive) ASP with all the main ontology constructs including classes, in-
heritance, relations, and axioms. OntoDLP is strongly typed, and includes also complex
type constructors, like lists and sets. OntoDLV supports some interoperability mecha-
nism with OWL, allowing the user to retrieve information from external OWL Ontolo-
gies and to exploit this data in OntoDLP ontologies and queries. OntoDLV facilitates
the development of complex applications in a user-friendly visual environment; it is en-
dowed with a robust persistency-layer for saving information transparently on a DBMS,
and it seamlessly integrates the DLV system [78] exploiting the power of a stable and
efficient AS solver. Indeed, OntoDLV is already used for the development of real-world
applications including agent-based systems, information extraction and text classifica-
tion frameworks.

GiaBATA [71] is a system for storing, aggregating, and querying Semantic Web data,
based on declarative logic programming technology, namely on the dlvhex system,
which allows to implement a fully SPARQL compliant semantics, and on dlv-db,
which extends the DLV system with persistent storage capabilities. Compared with off-
the-shelf RDF stores and SPARQL engines21, GiaBATA offers more flexible support for
rule-based RDFS and other higher entailment regimes by enabling custom reasoning via

21 For details of RDF and its query language SPARQL, the reader may refer to [6] in this volume.



100 T. Eiter, G. Ianni, and T. Krennwallner

rules, and the possibility to choose the reference ontology on a per query basis. Due to
the declarative approach, GiaBATA gains the possibility of applying well-known logic-
level optimization features of logic programming (LP) and deductive database systems.
The architecture of GiaBATA allows for extensions of SPARQL by non-standard fea-
tures such as aggregates, custom built-ins, or arbitrary rulesets. The resulting system
provides a flexible toolbox that embeds Semantic Web data and ontologies in a fully
declarative LP environment.

9 Conclusion

Answer Set Programming is a booming paradigm for declarative problem solving,
which emerged from Logic Programming and Nonmonotonic Reasoning and has been
deployed to a range of application areas. A number of answer set solvers are available
which provide a variety of constructs and the features for problem modeling, helping
the user to find formalizations of problems in a more natural and understandable man-
ner. As for the Semantic Web, extensions of the basic ASP languages and formalisms
have been developed, aiming at different goals. For example, to provide a formalism for
combining rules and ontologies (e.g., dl-programs, DL+log[114] and MKNF knowl-
edge bases [95], conceptual logic programs [66], hybrid and guarded hybrid knowl-
edge bases [28,65], and open answer set programming [67]; see [43,41] and references
therein), or more general formalisms for accessing and interfacing data on the (Seman-
tic) Web like HEX-programs, and systems like dlvhex, OntoDLV, and GiaBATA.

The interest in Answer Set Programming and significance of the underlying stable
model semantics could be experienced at last year’s edition of the International Logic
Programming conference, which dedicated a (well-attended) special session to discuss
the influence of stable model semantics on the field of logic programming. It witnessed
ASP to be a vibrant area of research in which despite the advances and developments
in the last years still a number of research challenges exist.

While the theory of ASP is well-developed and applications are expanding, the de-
ployment of ASP to an industrial scale needs further efforts (cf. Nicola Leone’s talk at
LPNMR 2007).22 Next generation answer set solvers must be developed which provide
better support for the needs in practice.

Among these needs are complex data structures including lists, sets, records etc.;
underneath, this calls for function symbols (recall that in Prolog, lists are special syntax
function symbols) and a move beyond the Datalog fragment of logic programming. As
mentioned in Section 7, function symbols have been largely banned because the quickly
lead to undecidability. Only more recently, work on decidable classes of and prototype
implementations of stable models semantics with function symbols has been carried
out, including [119,16,12,15,20,116,51], and function symbols also increasingly attract
attention as a modeling construct.

The class of ω-restricted programs [119] has been implemented on top of Smod-
els, and the recently presented class of finitely-ground programs in the DLV-Complex
system on top of DLV [19,20], which aims at providing functions symbols in a decid-
able setting, giving support to lists and sets along with libraries for their manipulations.

22 http://lpnmr2007.googlepages.com/nicola-lpnmr07.pdf

http://lpnmr2007.googlepages.com/nicola-lpnmr07.pdf


Answer Set Programming: A Primer 101

However, both system, models are always finite, which hinders modeling infinite pro-
cesses and objects; classes like finitary programs [16], finitely recursive programs [12],
FDNC-programs [116], and BD-programs [51] do not have this restriction, but lack
implementations to date.

Related to this issue is incremental model building, which is of particular interest
for applications in reasoning about actions and change: a model may describe the evo-
lution of the world, which happens from one epoch to the next. Here, it is desired to
build the model according to the evolution, step by step; this is, for instance, relevant
for planning. Recent work [58] aims in this direction, giving a formal framework for
incremental model building.

Another issue of relevance for practice is modularity in ASP, and to provide means
for code reuse. While modularity has been recognized as an important aspect more than
a decade ago [40], it has only found more recently increasing attention, cf.
[26,72,100,121,9]; the use of macros [11] and templates [21] aims in this direction.
Specifically for the Semantic Web context, a modular formalism with multiple non-
monotonic logic programs [106] and the MWeb framework [2] have been conceived.
The formalism in [106] allows to interlink web-accessible logic programs, i.e., logic
programs may refer to logic programs that may refer to remote knowledge bases dis-
tributed on the Web. MWeb attempts to enhance the Semantic Web with the notions of
scope and context for modular web rule bases, and pays attention to support knowledge
hiding and the safe use of strong and weak negation, as well as to different reasoning
modes.

However, most of these approaches reduce a system of modules (polynomially) into
a single global program, or impose constraints regarding the use of recursion, resulting
in limited expressiveness. The recent approach in [26], which improves [40], has no
such constraints but the high expressiveness comes with high worst case complexity in
general. Efficient algorithms and implementations of yet expressive, natural modular
ASP frameworks are an interesting topic of research.

Concerning efficiency, of course also improvements to solvers for ordinary ASP are
desirable. In the recent years, there has been a lot of work on optimizations based on
program equivalence, triggered by the seminal paper [84], which introduced a notion of
strong equivalence between non-monotonic logic programs that takes nonmonotonicity
into account and led to a whole family of notions of equivalence, which may be utilized
to rewrite a program into an equivalent one that can be see e.g. [61,38,37,123] for more
on this issue. Another issue is non-ground ASP processing, in order to overcome the
intrinsic grounding bottleneck in the two step architecture of most answer set solvers.
Work on this is underway, and techniques for partial and lazy grounding (as used e.g. in
[20,58,101,76]) are helpful; however, the grounding techniques of advanced AS solvers
are highly sophisticated and in most case very effective. Interesting in this regard is
also the work of [54], which defines answer sets for first-order theories that can be
non-Herbrand models, in terms of a formula in second-order logic. While this avoids
grounding, it remains to be seen whether this approach can be effectively implemented
(by reducing, e.g., fragments of the formalisms to standard theorem provers).

Finally, for deployment on a larger scale, more software engineering tools and
methodologies are needed. Compared to other programming languages, there is



102 T. Eiter, G. Ianni, and T. Krennwallner

currently little support for programmers available, and rich ASP programming envi-
ronments are lacking, which include debuggers, visualization, libraries etc. The Inter-
national Workshop on Software Engineering for Answer Set Programming (SEA) [30]
was initiated as a forum for researchers interested in these issues.23 Given the work in
progress, we may expect significant advances and improvements here in the near future.

In conclusion, though ASP has developed vigorously, there is still much ado in an
exciting area of research for theory and applications.

Acknowledgments. We thank Minh Dao-Tran, Wolfgang Faber and Gerald Pfeifer for
their valuable comments and corrections.

References

1. Alferes, J.J., Amador, R., May, W.: A general language for evolution and reactivity in
the semantic web. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703,
pp. 101–115. Springer, Heidelberg (2005)

2. Analyti, A., Antoniou, G., Damásio, C.V.: A principled framework for modular web rule
bases and its semantics. In: Proceedings of the 11th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2008), AAAI Press, Menlo Park (2008)

3. Analyti, A., Antoniou, G., Damásio, C.V., Wagner, G.: Stable Model Theory for Extended
RDF Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 21–36. Springer, Heidelberg (2005)

4. Apt, K., Blair, H., Walker, A.: Towards a Theory of Declarative Knowledge. In: Minker
[93], pp. 89–148

5. Apt, K., Bol, N.: Logic programming and negation: A survey. Journal of Logic Program-
ming 19/20, 9–71 (1994)

6. Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Franconi and Tes-
saris [56]

7. Asparagus homepage (2005), http://asparagus.cs.uni-potsdam.de/
8. Baader, F.: Description logics. In: Franconi and Tessaris [56]
9. Balduccini, M.: Modules and Signature Declarations for A-Prolog: Progress Report. In: de

Vos and Schaub [30],
http://sea07.cs.bath.ac.uk/downloads/sea07-proceedings.pdf

10. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

11. Baral, C., Dzifcak, J., Takahashi, H.: Macros, Macro Calls and Use of Ensembles in Mod-
ular Answer Set Programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS,
vol. 4079, pp. 376–390. Springer, Heidelberg (2006)

12. Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs. In: Dahl, V.,
Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 89–103. Springer, Heidelberg (2007)

13. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. An-
nals of Mathematics and Artificial Intelligence 12, 53–87 (1994)

14. Bidoit, N.: Negation in rule-based database languages: A survey. Theor. Comput. Sci. 78(1),
3–83 (1991)

15. Baselice, S., Bonatti, P.A.: Composing normal programs with function symbols. In: Garcia
de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 425–439. Springer,
Heidelberg (2008)

23 http://sea07.cs.bath.ac.uk/

http://asparagus.cs.uni-potsdam.de/
http://sea07.cs.bath.ac.uk/downloads/sea07-proceedings.pdf
http://sea07.cs.bath.ac.uk/


Answer Set Programming: A Primer 103

16. Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1), 75–111
(2004)

17. Buccafurri, F., Faber, W., Leone, N.: Disjunctive logic programs with inheritance. Theory
and Practice of Logic Programming 2(3) (2002)

18. Buccafurri, F., Leone, N., Rullo, P.: Strong and Weak Constraints in Disjunctive Data-
log. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS (LNAI), vol. 1265,
pp. 2–17. Springer, Heidelberg (1997)

19. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in
logic programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 333–361
(2007)

20. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory and Im-
plementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366,
pp. 407–424. Springer, Heidelberg (2008)

21. Calimeri, F., Ianni, G.: Template programs for Disjunctive Logic Programming: An opera-
tional semantics. AI Communications 19(3), 193–206 (2006)

22. Chen, W., Kifer, M., Warren, D.S.: Hilog: A foundation for higher-order logic program-
ming. Journal of Logic Programming 15(3), 187–230 (1993)

23. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases,
pp. 293–322. Plenum Press, New York (1978)

24. Viegas Damásio, C., Analyti, A., Antoniou, G., Wagner, G.: Supporting open and
closed world reasoning on the web. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U.
(eds.) PPSWR 2006. LNCS, vol. 4187, pp. 149–163. Springer, Heidelberg (2006)

25. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33(3), 374–425 (2001)

26. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic program-
ming revisited. In: Hill, P., Warren, D. (eds.) Proceedings 25th International Conference
on Logic Programming (ICLP 2009). LNCS, vol. 5649, pp. 145–159. Springer, Heidelberg
(2009)

27. de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: On representational issues about combi-
nations of classical theories with nonmonotonic rules. In: Lang, J., Lin, F., Wang, J. (eds.)
KSEM 2006. LNCS, vol. 4092, pp. 1–22. Springer, Heidelberg (2006)

28. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic and hy-
brid rules. In: Marchiori, M., Pan, J.Z., de Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524,
pp. 58–72. Springer, Heidelberg (2007)

29. de la Banda, M.G., Pontelli, E. (eds.): ICLP 2008. LNCS, vol. 5366. Springer, Heidelberg
(2008)

30. de Vos, M., Schaub, T. (eds.): Informal Proceedings of the 1st International Workshop
on Software Engineering for Answer Set Programming, Tempe, AZ, USA (May 2007),
http://sea07.cs.bath.ac.uk/downloads/sea07-proceedings.pdf

31. Dix, J.: A Classification Theory of Semantics of Normal Logic Programs: I. Strong Proper-
ties. Fundam. Inform. 22(3), 227–255 (1995)

32. Dix, J.: A Classification Theory of Semantics of Normal Logic Programs: II. Weak Proper-
ties. Fundam. Inform. 22(3), 257–288 (1995)

33. Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hy-
brid reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Tech-
niques for the Web: The REWERSE perspective, ch. 1. LNCS, vol. 5500, p. 50. Springer,
Heidelberg (to appear, 2009)

34. Eiter, T.: Answer set programming for the Semantic Web (tutorial). In: Dahl, V., Niemelä,
I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 23–26. Springer, Heidelberg (2007); Slides,
http://www.dcc.fc.up.pt/iclp07/eiter.pdf

http://sea07.cs.bath.ac.uk/downloads/sea07-proceedings.pdf
http://www.dcc.fc.up.pt/iclp07/eiter.pdf


104 T. Eiter, G. Ianni, and T. Krennwallner

35. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set programming
with bounded predicate arities and implications. Annals of Mathematics and Artificial In-
telligence 51(2-4), 123–165 (2007)

36. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative problem-solving using the DLV sys-
tem. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 79–103. Kluwer Academic
Publishers, Dordrecht (2000)

37. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and
strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923,
pp. 87–99. Springer, Heidelberg (2003)

38. Eiter, T., Fink, M., Woltran, S.: Semantical Characterizations and Complexity of Equiva-
lences in Answer Set Programming. ACM Trans. Comput. Log. 8(3), Article 17 (53 + 11)
(2007)

39. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming:
Propositional Case. Annals of Mathematics and Artificial Intelligence 15(3/4), 289–323
(1995)

40. Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers.
In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 290–309.
Springer, Heidelberg (1997)

41. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and Ontologies for the Semantic
Web. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert,
S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008); Slides,
http://rease.semanticweb.org/

42. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for descrip-
tion logic programs in the Semantic Web. Technical Report INFSYS RR-1843-09-01, Insti-
tut für Informationssysteme, Technische Universität Wien, A-1040 Vienna, Austria (March
2009)

43. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer
Set Programming with Description Logics for the Semantic Web. Artificial Intelligence
172(12-13), 1495–1539 (2008)

44. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with rules and
ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning
Web 2006. LNCS, vol. 4126, pp. 93–127. Springer, Heidelberg (2006)

45. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-
Order Reasoning and External Evaluations in Answer Set Programming. In: International
Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, UK, August 2005,
pp. 90–96 (2005)

46. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules
with external evaluations for semantic web reasoning. In: Sure, Y., Domingue, J. (eds.)
ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)

47. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H., Wang, K.: Forgetting in managing rules
and ontologies. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI
2006), Hongkong, pp. 411–419. IEEE Computer Society, Los Alamitos (2006); preliminary
version at ALPSWS 2006

48. Eiter, T., Leone, N., Pearce, D.: Assumption Sets for Extended Logic Programs. In: Ger-
brandy, J., Marx, M., de Rijke, M., Venema, Y. (eds.) JFAK. Essays Dedicated to Johan
van Benthem on the Occasion of his 50th Birthday. Amsterdam University Press (1999),
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/jfak.pdf

http://rease.semanticweb.org/
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/jfak.pdf


Answer Set Programming: A Primer 105

49. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set program-
ming with description logics for the Semantic Web. In: Dubois, D., Welty, C., Williams,
M.-A. (eds.) Proceedings Ninth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2004), Whistler, British Columbia, Canada, pp. 141–151.
Morgan Kaufmann, San Francisco (2004)

50. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for de-
scription logic programs in the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML
2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)

51. Eiter, T., Šimkus, M.: Bidirectional answer set programs with function symbols. In:
Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intel-
ligence (IJCAI 2009). AAAI Press, Menlo Park (2009)

52. Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems.
PhD thesis, Institut für Informationssysteme, Technische Universität Wien (2002)

53. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of
aggregate functions in the DLV system. Theory and Practice of Logic Programming 8(5-6),
545–580 (2008)

54. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Veloso, M.M.
(ed.) IJCAI, pp. 372–379 (2007)

55. Ferraris, P., Lifschitz, V.: Mathematical foundations of answer set programming. In:
We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 615–664. College
Publications (2005)

56. Franconi, E., Tessaris, S. (eds.): Reasoning Web 2009. LNCS. Springer, Heidelberg (2009)
57. Friedrich, G., et al.: Model-based repair of web service processes. Technical Report

2008/001, ISBI research group, University of Klagenfurt (2008),
http://test-informations.info/

58. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineer-
ing an Incremental ASP Solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

59. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczynski, M.: The
First Answer Set Programming System Competition. In: Baral, C., Brewka, G., Schlipf, J.
(eds.) LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

60. Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Com-
putational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451.
Springer, Heidelberg (2002)

61. Gelfond, M.: Answer sets. In: van Harmelen, B.P.F., Lifschitz, V. (eds.) Handbook of
Knowledge Representation, ch. 7, pp. 285–316. Elsevier, Amsterdam (2008)

62. Gelfond, M., Leone, N.: Logic programming and knowledge representation - the a-prolog
perspective. Artificial Intelligence 138(1-2), 3–38 (2002)

63. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Pro-
ceedings Fifth Intl. Conference and Symposium Logic Programming, pp. 1070–1080.
MIT Press, Cambridge (1988)

64. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

65. Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Nieuwenborgh, D.V.: Guarded hybrid
knowledge bases. Theory and Practice of Logic Programming 8(3), 411–429 (2008)

66. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Conceptual logic programs. Annals of
Mathematics and Artificial Intelligence 47(1-2), 103–137 (2006)

67. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming for the
Semantic Web. J. Applied Logic 5(1), 144–169 (2007)

68. Heymans, S., Toma, I.: Ranking Services Using Fuzzy HEX-Programs. In: Calvanese, D.,
Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 181–196. Springer, Heidelberg (2008)

http://test-informations.info/


106 T. Eiter, G. Ianni, and T. Krennwallner

69. Hoehndorf, R., Loebe, F., Kelso, J., Herre, H.: Representing default knowledge in biomed-
ical ontologies: Application to the integration of anatomy and phenotype ontologies. BMC
Bioinformatics 8(1), 377 (2007)

70. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive datalog
programs. In: Proceedings of the Ninth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2004), Whistler, Canada, pp. 152–162 (2004)

71. Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A Rule System for Querying Per-
sistent RDFS Data. In: Arroyo, L., Traverso, P. (eds.) The Semantic Web: Research and
Applications, 6th European Semantic Web Conference, ESWC 2009, Heraklion, Greece.
LNCS, vol. 5554, pp. 857–862. Springer, Heidelberg (2009)

72. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity Aspects of Disjunctive
Stable Models. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483,
pp. 175–187. Springer, Heidelberg (2007)

73. Kowalski, R.: Algorithm = Logic + Control. Commun. ACM 22(7), 424–436 (1979)
74. Lee, J.: A model-theoretic counterpart of loop formulas. In: Kaelbling, L.P., Saffiotti, A.

(eds.) IJCAI, pp. 503–508. Professional Book Center (2005)
75. Lee, J., Lifschitz, V.: Loop Formulas for Disjunctive Logic Programs. In: Palamidessi, C.

(ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)
76. Lef‘evre, C., Nicolas, P.: Integrating grounding in the search process for answer set comput-

ing. In: ASPOCP: Answer Set Programming and Other Constraint Paradigms, pp. 89–103
(2008)

77. Leone, N., Faber, W.: The DLV project: A tour from theory and research to applications and
market. In: de la Banda and Pontelli [29], pp. 53–68

78. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV Sys-
tem for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

79. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Information and Computation 135(2), 69–112 (1997)

80. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings IJCAI 1991,
pp. 381–386 (1991)

81. Lifschitz, V.: Answer set planning. In: ICLP, pp. 23–37 (1999)
82. Lifschitz, V.: Answer Set Programming and Plan Generation. Artificial Intelligence 138,

39–54 (2002)
83. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E.

(eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)
84. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans.

Comput. Log. 2(4), 526–541 (2001)
85. Lifschitz, V., Razborov, A.A.: Why are there so many loop formulas? ACM Trans. Comput.

Log. 7(2), 261–268 (2006)
86. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: Van Hentenryck, P. (ed.)

Proceedings of the 11th International Conference on Logic Programming (ICLP 1994),
Santa Margherita Ligure, Italy, pp. 23–37. MIT Press, Cambridge (1994)

87. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In:
AAAI/IAAI, p. 112 (2002)

88. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reasoning 45(2),
288–307 (2007)

89. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncer-
tainty and fuzzy vagueness. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724,
pp. 187–198. Springer, Heidelberg (2007)



Answer Set Programming: A Primer 107

90. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in dlv:
Implementation, evaluation, and comparison to qbf solvers. J. Algorithms 63(1-3), 70–89
(2008)

91. Marek, V.W., Truszczyński, M.: Autoepistemic Logic. Journal of the ACM 38(3), 588–619
(1991)

92. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming
Paradigm. In: Apt, K., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic Pro-
gramming Paradigm – A 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

93. Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann, Washington (1988)

94. Minker, J.: Logic and Databases: A 20 Year Retrospective. In: Pedreschi, D., Zaniolo, C.
(eds.) LID 1996. LNCS, vol. 1154, pp. 3–57. Springer, Heidelberg (1996)

95. Motik, B., Rosati, R.: A faithful integration of description logics with logic programming.
In: Proceedings of the 20th International Joint Conference on Artificial Intelligence IJCAI
2007, pp. 477–482 (2007)

96. Niemelä, I.: Logic Programming with Stable Model Semantics as Constraint Programming
Paradigm. Annals of Mathematics and Artificial Intelligence 25(3–4), 241–273 (1999)

97. Niemelä, I. (ed.): Language Extensions and Software Engineering for ASP. Technical Re-
port WP3, Working Group on Answer Set Programming (WASP), IST-FET-2001-37004
(September 2005),
http://www.tcs.hut.fi/Research/Logic/wasp/wp3/wasp-wp3-web/

98. Nieuwenborgh, D.V., Cock, M.D., Vermeir, D.: Computing Fuzzy Answer Sets Using
dlvhex. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 449–450. Springer,
Heidelberg (2007)

99. Nieuwenborgh, D.V., Eiter, T., Vermeir, D.: Conditional Planning with External Functions.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 214–227.
Springer, Heidelberg (2007)

100. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for
Smodels programs. Theory and Practice of Logic Programming 8(5–6), 717–761 (2008)

101. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: Gasp: Answer set programming with lazy
grounding. In: LaSh 2008: Logic And Search - Computation of structures from declarative
descriptions (2008)

102. Papadimitriou, C.H.: Computational Complexity. Addison Wesley Longman, Amsterdam
(1994)

103. Pearce, D.: Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47(1-2),
3–41 (2006)

104. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set pro-
grams. In: de la Banda and Pontelli [29], pp. 546–560

105. Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the 16th International
Conference on World Wide Web (WWW), pp. 787–796. ACM, New York (2007)

106. Polleres, A., Feier, C., Harth, A.: Rules with Contextually Scoped Negation. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer, Heidelberg
(2006)

107. Pontelli, E., Son, T.C., Baral, C.: A framework for composition and inter-operation of rules
in the semantic web. In: Eiter, T., Franconi, E., Hodgson, R., Stephens, S. (eds.) RuleML,
pp. 39–50. IEEE Computer Society, Los Alamitos (2006)

108. Provetti, A., Son, T.C. (eds.): Answer Set Programming, Towards Efficient and Scalable
Knowledge Representation and Reasoning, Proceedings of the 1st Intl. ASP 2001 Work-
shop, Stanford (March 26-28, 2001)

109. Przymusinski, T.C.: On the Declarative Semantics of Deductive Databases and Logic Pro-
grams. In: Minker [93], pp. 193–216

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/wasp-wp3-web/


108 T. Eiter, G. Ianni, and T. Krennwallner

110. Rainer, A.: Web Service Composition under Answer Set Programming. In: Proc. KI 2005
Workshop ”Planen, Scheduling und Konfigurieren, Entwerfen”, PuK 2005 (2005)

111. Reiter, R.: On Closed-World Databases. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 55–76. Plenum Press, New York (1978)

112. Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13(1–2), 81–132 (1980)
113. Ricca, F., Gallucci, L., Schindlauer, R., Dell’armi, T., Grasso, G., Leone, N.: OntoDLV: An

ASP-based System for Enterprise Ontologies. Journal of Logic and Computation (2008),
doi:10.1093/logcom/exn042

114. Rosati, R.: DL+log: Tight Integration of Description Logics and Disjunctive Datalog. In:
Proceedings of the Tenth International Conference on Principles of Knowledge Represen-
tation and Reasoning KR 2006, pp. 68–78. AAAI Press, Menlo Park (2006)

115. Ross, K.A.: Modular stratification and magic sets for datalog programs with negation. Jour-
nal of the ACM 41(6), 1216–1266 (1994)

116. Šimkus, M., Eiter, T.: FDNC: Decidable non-monotonic disjunctive logic programs with
function symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790,
pp. 514–530. Springer, Heidelberg (2007); Extended Paper to appear in ACM Trans. Com-
putational Logic

117. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)
118. Swift, T.: Deduction in Ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR

2004. LNCS (LNAI), vol. 2923, pp. 275–288. Springer, Heidelberg (2003)
119. Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W., Truszczyński, M.

(eds.) LPNMR 2001. LNCS, vol. 2173, pp. 267–279. Springer, Heidelberg (2001)
120. Syrjänen, T., Niemelä, I.: The smodels system. In: Eiter, T., Faber, W., Truszczyński, M.

(eds.) LPNMR 2001. LNCS, vol. 2173, pp. 434–438. Springer, Heidelberg (2001)
121. Tari, L., Baral, C., Anwar, S.: A Language for Modular Answer Set Programming: Appli-

cation to ACC Tournament Scheduling. In: Proceedings of the 3rd International ASP 2005
Workshop, Bath, UK, July 2005. CEUR Workshop Proceedings, vol. 142, pp. 277–293.
CEUR WS (2005)

122. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic
Programs. Journal of the ACM 38(3), 620–650 (1991)

123. Woltran, S.: A common view on strong, uniform, and other notions of equivalence in
answer-set programming. Theory and Practice of Logic Programming 8(2), 217–234 (2008)

124. Woltran, S. (ed.): Answer Set Programming: Model Applications and Proofs-of-Concept.
Technical Report WP5, Working Group on Answer Set Programming (WASP), IST-FET-
2001-37004 (July 2005),
http://www.kr.tuwien.ac.at/projects/WASP/report.html

A Appendix: A DLV Specification for the Sudoku Problem

#maxint=9.

tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9)

:- #int(X), 0 <= X, X <= 8, #int(Y), 0 <= Y, Y <= 8.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<>Y2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

http://www.kr.tuwien.ac.at/projects/WASP/report.html


Answer Set Programming: A Primer 109

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,

div(X1,3,W1), div(X2,3,W1),
div(Y1,3,W2), div(Y2,3,W2).

:- tab(X1,Y1,Z), tab(X2,Y2,Z), X1 <> X2,
div(X1,3,W1), div(X2,3,W1),
div(Y1,3,W2), div(Y2,3,W2).

%Auxiliary: X divided by Y is Z
div(X,Y,Z) :- XminusDelta = Y*Z,
X = XminusDelta + Delta, Delta < Y.

% Table positions X=0..8, Y=0..8
tab(0,1,6). tab(0,3,1). tab(0,5,4). tab(0,7,5).
tab(1,2,8). tab(1,3,3). tab(1,5,5). tab(1,6,6).
tab(2,0,2). tab(2,8,1). tab(3,0,8). tab(3,3,4).
tab(3,5,7). tab(3,8,6).
tab(4,2,6). tab(4,6,3).
tab(5,0,7). tab(5,3,9). tab(5,5,1). tab(5,8,4).
tab(6,0,5). tab(6,8,2).
tab(7,2,7). tab(7,3,2). tab(7,5,6). tab(7,6,9).
tab(8,1,4). tab(8,3,5). tab(8,5,8). tab(8,7,7).

B Appendix: Fixpoint Theorems of Knaster-Tarski and Kleene

Definition 18. A complete lattice is a partially ordered set (V,≤) such that each subset
W ⊆ V has a least upper bound sup(W ) and a greatest lower bound inf(W ).

Example 48. The partially ordered set (V,≤), where V is the set of all Herbrand inter-
pretations of a program P and ≤ is set inclusion (⊆), is a complete lattice.

Definition 19. An operator on a complete lattice (V,≤) is a mapping T : V → V .

Example 49. The TP operator for a program P is an operator on Herbrand
interpretations.

Definition 20. An operator T : V → V on (V,≤) is monotone, if

x ≤ y implies T (x) ≤ T (y) ∀x, y ∈ V .

Monotone operators have nice fixpoint properties.

Theorem 13 (Knaster-Tarski). Any monotone operator T on a complete lattice
(V,≤) has a least fixpoint lfp(T ), and

lfp(T ) = inf({x ∈ V | T (x) ≤ x}) .

Example 50. The TP operator for a (positive) program P is monotone.



110 T. Eiter, G. Ianni, and T. Krennwallner

A stronger theorem holds for continuous operators.

Definition 21. A set W ⊆ V is directed, if for each x, y ∈ W there exists some z ∈ W
such that x ≤ z and y ≤ z, where (V,≤) is a partial order.

Definition 22. An operator T : V → V on a complete lattice (V,≤) is continuous, if

T (sup(W )) = sup({T (x) | x ∈ W})

for every directed set W ⊆ V .

Intuitively, directedness models convergence (one can build a chain x0 < x1 < · · · ). It
is not difficult to see that continuous operators are also monotone.

Example 51. The TP operator is also continuous.

Theorem 14 (Kleene). Any continuous operator T on a complete lattice (V,≤) has a
least fixpoint, and

lfp(T ) = sup({T i | i ≥ 0}) ,

where T 0 = inf(V ) and T i+1 = T (T i), for all integers i ≥ 0.

Let T∞ = sup({T i | i ≥ 0}). Note that if T i = T i−1 for some i, then T∞ = T i

holds; in particular, this is the case for TP if the program P has no function symbols
(given P is finite).

Remark. A weaker form of Kleene’s Theorem holds for all monotone operators (lfp(T )
is constructible by a transfinite sequence T α, for ordinals α ≥ 0).



Logical Foundations of XML and XQuery

Maarten Marx

ISLA, Universiteit van Amsterdam
The Netherlands

Abstract. XML is the underlying representation formalism of much web-data.
Thus to reason about web-data essentially boils down to reasoning about data
in XML format. In this course the students learn about the main languages for
querying XML data: XPath and XQuery. The course contains both theoretical
work and practical examples.

1 Introduction

These lecture notes are based on four articles about querying XML with XPath and
XQuery. The first paper shows how XPath is rooted in modal and temporal logic. It also
contains an introduction to real query writing for logicians. We formulate the binary
until connective from temporal logic in a number of ways and show the effect of the
particular formulation on performance.

The second paper is purely theoretical It gives mathematical-logical results about
the family of XPath languages: on expressivity, axiomatizability and complexity. It also
investigates suitable algebraic counterparts of different XPath languages. There is quite
some overlap between these two papers. We left that to preserve the original structure
of the two separate papers. Readers can conveniently skip repeating parts.

The last two papers are practically oriented. The third is on the process of turning tex-
tual documents with implicit structure into XML. We call this process exemelification.
It shows how Extract-Transform-Load [52] techniques can be formulated declaratively
in XSLT. Exemelification is often a preprocessing step in creating true Semantic Web
content, and often taken for granted in that community. We discuss several information
retrieval aspects of XML documents.

The last paper shows how beneficial XML can be for the social sciences and the
humanities. It is an example of the emerging field of Computational Social Science [42].
Step by step we show the operationalization written in XQuery of a research question
from political science.

2 Modal Logical Roots of XPath

This section is based on joint work with Loredana Afanasiev and Balder ten Cate [4].

2.1 Introduction

It has been proclaimed that logic is the calculus of computer science [32], but most
applied computer scientists do not use logical formulas in a shape recognizable by lo-
gicians — at least not beyond propositional logic. In particular, this holds for modal

S. Tessaris et al. (Eds.): Reasoning Web 2009, LNCS 5689, pp. 111–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



112 M. Marx

logic. Even though theoretical computer scientists have created many different modal
logics, few of them are used in practice. Until recently, it was fair to say that the tempo-
ral logics LTL and CTL were the best-known and most applied modal logics [14]. With
the advent of XML and its associated querying and processing languages, it seems this
position has been taken over by the XML document navigation language XPath.

XPath is a core fragment of the XML query language XQuery and transformation
language XSLT. All modern web browsers (e.g., Internet Explorer and Firefox) are
able to process XPath expressions, and most serious web programmers write XPath
expressions on a regular basis (whether they are conscious of it or not). Even though
the current XPath manual contains 530 pages [38], the logical core of the language is
small and closely resembles modal logic. Thus, XPath is arguably the best known and
most applied modal logic today.

In this paper we give a gentle introduction to the XPath language from a logician’s
point of view. We discuss how its connections to modal logic have led to a series of re-
sults characterizing the expressive power of this language and the complexity of various
computational tasks, such as query evaluation and query containment testing.

2.2 Modal Logic, Temporal Logic, and PDL

Nowadays, modal logic is mostly viewed as a language for describing graph-like struc-
tures. This ‘semantic’ view of modal logic stands in contrast to the more traditional
‘syntactic’ view, according to which modal logic is just a propositional language en-
riched with two non truth-functional operators ♦ and �.

As Hans Kamp recently described it1, one of the most important steps in the his-
torical development of modal logic was to break out of the rigid box/diamond format.
Kamp himself made the first step in 1968 by introducing until [36]. This “binary modal-
ities” makes it possible, in the context of temporal logic, to express things like “A will
be true at some point in the future and, until then, B is true” (until(A, B) for short).
Until make temporal logic very expressive. In fact, on time flows isomorphic to the
natural numbers, temporal logic with until and its mirror image since is as expressive
as first-order logic, a result that has become known as Kamp’s Theorem [36]. However,
what Kamp described as a real watershed in modal logic was the invention of Propo-
sitional Dynamic Logic (PDL) in the 1970s [24]. PDL is a modal logic with infinitely
many modalities (or, ‘programs’), that form an algebra generated by atomic programs
and formula tests using the operations of composition, union and reflexive transitive
closure, familiar from regular expressions.

Since PDL turns out to be closely related to the XML language XPath, let us explain
its syntax and semantics in a bit more detail. PDL expressions are interpreted over node
labelled directed multi-graphs, i.e., directed graphs with several relations, whose nodes
are labelled.2 There are two types of expressions in PDL: state formulas (φ, ψ, . . . ) de-
scribing properties of points (or, ‘states’) in the graph, and program formulas (α, β, . . . )

1 A 15 minute presentation about the history of modal logic, on the occasion of the launch of
the Handbook of Modal Logic, on December 18, 2006, in the Oost Indisch Huis, Amsterdam.

2 Usually, it is assumed that nodes can satisfy more than one label, but this is not important
for us.



Logical Foundations of XML and XQuery 113

describe ways of traversing it (more formally, they define binary relations over the do-
main of the graph). They are defined by mutual recursion:

φ ::= p | ¬φ | φ ∧ ψ | 〈α〉φ
α ::= a | φ? | α/β | α ∪ β | α∗

where p is a node label and a is any of the relations of the multi-graph. State formulas
of the form 〈α〉φ are interpreted as “some point reachable from the current point by α
satisfies φ”, and state formulas of the form [α]φ, dually, are interpreted as “every point
reachable from the current point by α satisfies φ”. The atomic program formula a is
interpreted as “move to a node that is a successor of the current point with respect to
the relation a”, and φ? is interpreted as “stay at the current node but check that φ is true
there”. The program operations /, ∪ and ∗ are interpreted as composition, union and
reflexive-transitive closure.

To illustrate the expressive power of PDL, observe that, on the natural numbers with
the successor relation next, until(A, B) can be expressed in PDL as

〈(next/B?)∗/next〉A,

that is, “it is possible to reach a node satisfying A by the following program: do a finite
number of successor steps followed by tests on B, and end with one more successor
step”.

PDL is quite well understood as a logical language. For instance, we know the com-
putational complexity of various tasks involving PDL formulas such as model checking
and entailment.

Fact 1 (Complexity of PDL model checking). Given a finite node labelled directed
multi-graph G with a designated state s, and given a PDL formula φ, it can be tested in
time O(|G|·|ψ|) whether φ is true at s in G. Moreover, this problem is PTIME-complete.

Fact 2 (Complexity of PDL entailment). Given PDL formulas φ, ψ, it can be tested in
time 2O(|φ|+|ψ|) whether φ implies ψ (i.e., whether in every model, every state satisfy-
ing φ also satisfies ψ.) Moreover, this problem is EXPTIME-complete.

For more information, see e.g. [9,15].

2.3 XML and Sibling Ordered Trees

XML is a standard format for representation and exchange of semi-structured data on
the internet. Semi-structured data is, roughly, data that is not structured enough to fit
nicely in tables. While in the relational database model, the fundamental datastructure
is that of a table, the fundamental datastructure in XML is that of (finite) node labelled
sibling ordered trees: node labelled finite trees in which the children of each node are
linearly ordered. This is a very natural datastructure, and it appears in many settings.
For instance, the parse tree of a natural language sentence, or of an algebraic term, is a
finite node labelled sibling ordered tree. An example of an XML document is given in
Figure 1.

The two most important languages for manipulating XML data are the query lan-
guage XQuery and the transformation language XSLT. Here is an example of an XQuery
query:



114 M. Marx

<note date=’10-Nov-2006’>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don’t forget about <i>me</i>

this weekend!</body>
</note>

note

to from heading body

i

Fig. 1. Example XML document with skeleton

for $x in doc("notes.xml")//note
where $x/@date=’10-Nov-2006’
return <recipient>$x/to</recipient>

This query could be run on a document containing a collection of notes, where each
note is of the form described in Figure 1. The query then returns all recipients of notes
sent on 10 November 2006, structured as XML using the <recipient> tag. The italic
sub expressions are called path expressions. They select elements from the document.
XPath is the language of these path expressions. It is a common fragment of XQuery
and XSLT, and it is the topic of this paper.

In what follows, we will make one important simplifying assumption: when consid-
ering XML documents, we will abstract away from the actual data in the XML doc-
ument (i.e., the text in-between the tags, and the attribute-value information). What is
left is the ‘skeleton’ of the XML document: the hierarchical structure and the XML tag
labels of the nodes. This allows us to view XML documents as nothing more than node
labelled sibling ordered trees, where the node labels are the XML tags. In the case of
Figure 1, the skeleton is precisely the picture on the right (including the information of
the sibling order).

2.4 XPath 1.0 and Its Navigational Core

XPath 1.0 was introduced as a language for addressing parts of an XML document.
Inspired by Unix paths, its expressions describe ways to travel through an XML docu-
ment. XPath 1.0 is a very rich language, in fact its technical specifications are about 30
pages long [13]. Since, in this paper, we abstract away from the data content of XML
documents and consider only the ‘skeleton’, we can disregard much of the functionality
of XPath 1.0. What is left is the navigational core, Core XPath 1.0, which was formally
defined in [27]. Surprisingly, it turns out that Core XPath 1.0 is almost identical to PDL.
The only real differences are the following:

– While PDL in general is interpreted over arbitrary directed multi-graphs, in the
case of Core XPath 1.0 they are finite sibling ordered trees, i.e., XML documents.
Correspondingly, there are four atomic programs, corresponding to the four basic
moves in the tree: child, parent, previous-sibling and next-sibling. The node labels
are simply the XML tags.

– The use of the reflexive transitive closure operator ∗ is restricted to atomic
programs.



Logical Foundations of XML and XQuery 115

Besides these, there are some minor differences concerning notation and terminology.
For instance, the ‘program formulas’ of PDL are called ‘path expressions’ in XPath,
and ‘state formulas’ are called ‘node tests’ or ’filter expressions’.

In presenting the syntax of Core XPath 1.0 below, we will cheat a bit: we use a
slightly different notation, to emphasize the connection with PDL. It should be noted,
though, that there are linear translations between the two. The syntax of Core XPath 1.0
is as follows:

Path expressions (defining binary relations over the domain of the tree):

α ::= child | parent | previous-sibling | next-sibling |
child∗ | parent∗ | previous-sibling∗ | next-sibling∗ |
self | α/β | α ∪ β | α[φ]

Node expressions (defining sets of nodes):

φ ::= p | ¬φ | φ ∧ ψ | 〈α〉 (for p an XML tag)

Two constructs require explanation, namely α[φ] and 〈α〉. The first is interpreted as
a ‘filter’: α[φ] defines the subrelation of α containing all pairs (x, y) of which y sat-
isfies φ. The node expression 〈α〉 simply expresses that the node under evaluation is
in the domain of the relation α. Thus, for example, the path expression child[〈child〉]
— in the official XPath notation child::*[child::*] — says “go to a child
that is not a leaf”. Likewise, the path expression child[note ∧ ¬〈child[body]〉] — in
the official XPath notation child::note[not(child::body)], abbreviated as
note[not(body)] — says “go to a child with tag note that has no child with tag
body”. Incidentally, note that, while PDL supports expressions of the form 〈α〉φ, these
can be expressed in Core XPath 1.0 as 〈α[φ]〉.

In practice, an XPath path expression α is used as follows: it is evaluated at a spec-
ified context node x of a document D (typically the root), and yield a set of nodes
RESULTD,x(α), consisting of those nodes of D that can be reached from x by execut-
ing α. The XQuery query given in Section 2.3 is a good example of this use of path
expressions.

Complexity. The close relation between Core XPath 1.0 and PDL has been exploited to
obtain complexity results for various tasks involving XPath expressions. For instance,
the following results can be obtained in this way:

Fact 3 (Query evaluation complexity). Given a Core XPath 1.0 path expression α, an
XML document D and a context node x, RESULTD,x(α) can be computed in linear
time.

Fact 4 (Query containment complexity). The following problem is EXPTIME-
complete: given Core XPath 1.0 path expressions α and β, does RESULTD,x(α) ⊆
RESULTD,x(β) hold for all D and x?

Fact 3 follows directly from Fact 1. For Fact 4 this is not the case. It does not follow
directly from Fact 2 because the class of structures is different (an implication between
two formulas may hold on trees but not on arbitrary structures). Nevertheless, essen-
tially the same (automata-theoretic) techniques apply.



116 M. Marx

Expressive power. One way to measure the expressive power of a query language is
by relating it to the expressive power of the logical language we know best: first-order
logic. Edgar Codd proved for instance, within the framework of the relational database
model, that relational algebra has the same expressive power as first-order logic. Since
our XML documents are node labelled sibling ordered trees, we consider a first-order
language that has binary predicates <V and <H for the descendant and following sib-
ling relations, and a unary predicate for each XML tag. Call this language FOtree.

The path expressions of Core XPath 1.0 can be naturally compared to FOtree-
formulas with two free variables: a variable x standing for the context node and another
variable y standing for the retrieved node. We say that a path expression α is equivalent
to an FOtree-formula φ(x, y) if for all XML documents D and nodes d, e, it is the case
that e ∈ RESULTD,d(α) if and only if D |= φ(d, e). Likewise, the node expressions of
Core XPath 1.0 can be naturally compared to FOtree-formulas with one free variable.

Fact 5. Core XPath 1.0 is a proper fragment of FOtree.

The easy half of this results says that Core XPath 1.0 is a fragment of FOtree. This
can be shown by means of a linear translation from Core XPath 1.0 path expressions
to FOtree-formulas in two free variables and from Core XPath 1.0 node expressions
to FOtree-formulas in one free variable. The more difficult half of the result says that
there are FOtree-formulas that are not equivalent to any Core XPath 1.0 node or path
expression. The until operator from Section 2.2 can be used here. In the case of XML
documents, there are four natural versions of until: upward, downward, leftward and
rightward. For instance, the downward version of until talks about descendants of a
node: until↓(A, B) holds at a node x iff ∃y.(x <V y∧A(y)∧∀z(x <V z∧z <V y →
B(z))). Notice how this immediately shows that until↓ is FOtree-definable. Likewise
for the other versions of until. On the other hand, none of them can be expressed in
Core XPath 1.0. A proof is given in [48], along the following lines: there is a (linear)
translation from Core XPath 1.0 node expressions to first-order formulas containing
only two3 variables. On the other hand, until↓(A, B) and the other versions cannot
be expressed with less than three variables (the latter can be shown using a variant of
Ehrenfeucht-Fraı̈ssé games [17]).

Incidentally, recall from Section 2.2 that until queries can be expressed in PDL. How-
ever, this requires the use of ∗ on non-atomic expressions (in particular, on expressions
of the form α[φ] with α ∈ {child, parent, previous-sibling, next-sibling}.

A precise characterization of the expressive power of Core XPath 1.0 in terms of a
two-variable fragment of FOtree was given in [48], based on similar results for tempo-
ral logics without until [19].

2.5 Two Extensions of Core XPath 1.0

Soon after XPath 1.0 was introduced, users found that they needed more expressive
power. We will discuss two directions in which one can expand XPath. On the one
hand, the connection between XPath and PDL naturally suggests extending XPath with

3 The translation goes to the expansion of FOtree with predicates for the child and the next-
sibling relation. These are definable in FOtree, but the definition needs three variables.



Logical Foundations of XML and XQuery 117

Fig. 2. Hierarchy of extensions of Core XPath 1.0

an unrestricted transitive closure operator. On the other hand, the W3C has introduced
the 2.0 version of XPath, which extends XPath 1.0 in a different direction, namely with
intersection, complementation, and quantified variables.

A summary of most of the results described in this section (and more) can be found
in Figure 2. For a more detailed explanation of this diagram, cf. [62].

Regular XPath: Adding the full transitive closure operator. The connection be-
tween XPath and PDL described above naturally suggests extending XPath 1.0 with a
reflexive transitive closure operator that operates on arbitrary (not only atomic) path ex-
pressions. Indeed, there are various reasons for extending the language in this way [1].
The extension of Core XPath 1.0 in which ∗ can be applied to arbitrary path expressions
is called Regular XPath.

Regular XPath is much more expressive than Core XPath. For instance, the until
queries discussed in Section 2.4 can be expressed in it. As a matter of fact,

Fact 6. Regular XPath strictly extends FOtree in expressive power.

There are two sides to this result. Firstly, it says that Regular XPath can express all
FOtree-definable properties of nodes and binary relation. This was proved in [47] by
an adaptation of a proof of Kamp’s Theorem in temporal logic (cf. Section 2.2). The
second side of the Fact 6 is that there are node expressions and path expressions of
Regular XPath that have no FOtree equivalent. A simple example is the path expression



118 M. Marx

(child/child)∗, which says “make an even number of child steps”. It is well known that
such properties cannot be expressed in first-order logic, and it can be proved formally
using Ehrenfeucht-Fraı̈ssé games [17].

Even though Regular XPath is more expressive than FOtree there are FOtree-
formulas for which the smallest equivalent Regular XPath expression is much longer.
In fact, non-elementarily longer. (a function f : N → N is said to be non-elementary if

it grows faster than any tower of exponentials of fixed height, as in 2(2(...n))).
No precise characterization is known of the expressive power of Regular XPath.

There is, however, a characterization of the extension of Regular XPath with loop. The
loop construct allows us to test whether a node is related to itself by a path expression.
Formally, a node d satisfies loop(α), for α any path expression, iff (d, d) belongs to
the relation α. The extension Regular XPath with loop is called Regular XPath≈. The
following example illustrates the convenience of having loop in the language.

Example 1. Consider the following properties of nodes in a tree: “having an even num-
ber of descendants”. This property can be expressed by a Regular XPath≈ node expres-
sion. To see this, first, let next be shorthand for

child[¬〈previous-sibling〉] ∪ self[¬〈child〉]/(parent[¬〈next-sibling〉])∗/next-sibling

which defines the successor relation in the depth-first left-to-right ordering of the tree.
A node satisfies loop

(
(next/next)∗[¬〈child〉]/(parent[¬〈next-sibling〉])∗

)
iff it has an

even number of descendants.

As a matter of fact, it is possible to express the same property in Regular XPath without
the use of loop. However, the solution is much less straightforward. The reader may
consider it an exercise to find the right expression.

The expressive power of Regular XPath≈ can be characterized in terms of a natural
extension of FOtree. Let FO∗

tree be the extension of FOtree in which, for each formula
φ(x, y) with exactly two free variables, φ∗(x, y) is also allowed as a formula, and it
defines the transitive closure of the relation defined by φ(x, y).

Fact 7. Regular XPath≈ has the same expressive power as FO∗
tree.

Again, there is a non-elementary succinctness gap: there are queries that can be ex-
pressed exponentially more succinctly in FO∗

tree than in Regular XPath≈ [61].
Finally, let us say something about complexity. Given that Regular XPath≈ is much

more expressive than Core XPath 1.0, it is natural to ask whether the complexity goes
up as well. Surprisingly, this is not the case (up to a polynomial):

Fact 8. Query evaluation (in the sense of Fact 3) for Regular XPath≈ can still be per-
formed in PTIME.

Fact 9. Query containment (in the sense of Fact 4) for Regular XPath≈ is still EXP-
TIME-complete.

Fact 8 follows again from known results about PDL [41] while Fact 9 is proved in [62].



Logical Foundations of XML and XQuery 119

Core XPath 2.0: Adding intersection, complementation and quantified variables
When the W3C committee designed XPath 2.0, rather than adding the unrestricted re-
flexive transitive closure operator, they decided to extend XPath 1.0 in another direction.
We concentrate again on the navigational core, Core XPath 2.0. It extends Core XPath
1.0 with the following new operations:

– An intersection operator on path expressions.
This allows us to write path expressions of the form α ∩ β, with the semantics
“select all nodes that can be reached from the current node both by α and by β”.

– A complementation operator on path expressions.
This allows us to write path expressions of the form α − β, with the semantics
“select all nodes that can be reached from the current node by α and not by β”.

– Variables and quantifiers.
This allows us to write path expressions of the form for $i in Path1 return Path2,
interpreted as “assign to the variable $i some node reachable from the current node
by Path1, and perform Path2 under this variable assignment”.

With these additional operators, one can express for instance until queries. For instance,
until↓(A, B) can be expressed as follows (with child+ shorthand for child/child∗):

(child+[A]) − (child+[¬B]/child+). (1)

or, using quantified variables, for instance as follows:

for $i in self return child+[A ∧ ¬(parent+[B]/parent+[self is $i])] (2)

The XPath operator is tests for node-equality. Thus the test self is $i is true if and only
if the current node (indicated by the path self) equals the node stored in the variable $i.

As a matter of fact, Core XPath 2.0 has full first-order expressive power [47]:

Fact 10. Core XPath 2.0 has the same expressive power as FOtree.

This time, there is no difference in succinctness between the two languages. Indeed,
there are linear translations between the two languages. This is because, basically, the
quantified variables make Core XPath 2.0 a notational variant of FOtree. This might
seem like a good result (after all, being able to express something succinctly is a good
thing). However, it also has negative consequences. In particular, Core XPath 2.0 inher-
its bad complexity results from FOtree:

Fact 11 (Query evaluation complexity). Query evaluation (in the sense of Fact 3) for
Core XPath 2.0 is PSPACE-complete.

Fact 12 (Query containment complexity). Query containment (in the sense of Fact 4)
for Core XPath 2.0 is non-elementary hard. Even Core XPath 1.0 extended with the
complementation operator or with a single quantified variable already has a non-
elementary hard query containment problem, and for the extension of Core XPath 1.0
with the intersection operator alone it is 2EXPTIME-complete.



120 M. Marx

See [62] for more information. Note that Fact 11 is concerned with the combined com-
plexity of the query evaluation problem, where the document and the path expression
are both part of the input. Following Vardi’s taxonomy [68], one could also consider
the data complexity for Core XPath 2.0 query containment, where only the document
is counted as part of the input and the path expression is assumed to be fixed. The data
complexity of Core XPath 2.0 query evaluation is PTIME.

Putting things together, we see that Core XPath 2.0 is less expressive than Regu-
lar XPath≈, but has a higher computational complexity, due to the fact that it is more
succinct.

Needless to say, the full XPath 2.0’s syntax is much richer than this navigational
fragment. In fact, its underlying data-model differs from that of XPath 1.0 in some
respects, but that is beyond the scope of this paper. An excellent introduction is [38].

2.6 An Experiment in Formulation

Throughout this section, until queries have been our running example. We saw that they
cannot be expressed in XPath 1.0, but they can be expressed in Regular XPath using the
reflexive transitive closure operator, or in XPath 2.0 using either the complementation
operator or quantified variables. In this section, we look how these ways of expressing
queries compare when executed on real XQuery systems (recall that XPath expressions
are mostly used inside XQuery queries or XSLT transformations).

We created a simple experiment in which we express the vertical until query un-
til(A,B) (i.e, over the child relation) on XML-trees in a number of different styles. We
ran these equivalent queries on a large XML document (46MB) and recorded the times.
The outcomes show a large variation in processing times, varying from less than 10 to
over a 1000 seconds and engine crashes.

It is difficult to draw conclusions from the experiment which can be translated into
practical advice to engine developers, besides the fact that query optimization can be
useful. But the results hint at a practical advice to the developers of XPath/XQuery: add
the Kleene star to XPath. The Kleene style of writing the until query outperforms all
others; on talks we gave the majority of the audience predicted it to be the winner of the
three styles; it is a natural, procedural way of specifying the until query. But it is very
difficult to express in XQuery, in particular when compared to the simple formulation
(3) in Regular XPath.

The problem. Given a context node x, we want to compute the set of nodes that can be
reached from x along vertical until(A,B) paths. In Section 2.4 and 2.5 we have already
seen different styles of expressing this query.

The first style uses the Kleene star of Regular XPath (i.e., the reflexive transitive
closure operator), thus we call it the Kleene style: return all nodes reachable from the
context node along the path

(child[B])∗/child[A]. (3)

The second style uses the path complementation operation of XPath 2.0. We call it the
Tarski style, because it uses the operations of Tarski’s relation algebra: return all nodes



Logical Foundations of XML and XQuery 121

reachable from the context node along the relation (here we use descendant as an
abbreviation of child/child∗)

(descendant[A]) − (descendant[¬B]/descendant). (4)

The third way of expressing the query, and probably the simplest one for a logician, is
by using first-order logic and the universal quantifier: for x the context node, return all
y satisfying

x <V y ∧ A(y) ∧ ∀z(x <V z ∧ z <V y → B(z)). (5)

Recall that <V is the descendant relation. In honour of Frege’s role in the historical
development of first-order logic, we call this the Frege style of writing the query. There
are various ways of writing this first-order formula in XPath 2.0. We will come back to
this in a moment.

All three formulations describe the same binary relation.

From problem to query. Our aim is to compare the three styles of expressing until
queries, by running them on a number of XQuery engines for a concrete XML docu-
ment, and recording the processing times to find differences in performance.

We use an XML document from the Michigan XQuery benchmark [55] of 46MB
and 728000 nodes. All elements in the document have the same label and attributes.
We use one numeric attribute that has randomly generated values from 0 to 3 to express
the node conditions A and B. A is the predicate condition [@aFour=3] and B is the
predicate condition [@aFour=0].

In the queries below, we use the notation //∗. This just means “go to any node below
the current node”.

The outcome of the query should describe the range of the binary relation. We set up
the query so that there are 16 “start-nodes”, each with many descendants. These nodes
are all the nodes at depth five in the XML tree and all queries start with the following
piece of XQuery code

let $start := doc("mbench.xml")//*[@aLevel=5] return,

or for $start in doc("mbench.xml")//*[@aLevel=5] return

The query outcomes are sequences of elements that stand in the specified relation to the
start-nodes. The results are ordered in the document order.

In this way, we came up with 7 equivalent queries U1–U7, specified in the Appendix
on page 155. U1 and U2 are in the Kleene style and in the Tarski style, respectively.
Since there are many natural ways of expressing the Frege style in XPath 2.0 and we did
not know any good criterion of picking a single one, the last 5 queries are all different
variants of the Frege style.

As an example, we give the Tarski-style query, U2, copying (4):

let $start := doc("mbench.xml")//*[@aLevel=5]
return
$start//*[@aFour=3] except $start//*[not(.[@aFour=0])]//*



122 M. Marx

Note that //* is an XPath abbreviation for the descendant relation and except is
the XPath way of writing complementation. Knowing this, the similarity with (4) is
clear.

As another example, we show U4, one way of encoding the Frege style in XPath:

for $start in doc("mbench.xml")//*[@aLevel=5]
for $end in $start//*[@aFour=3]
return

$end[every $inbetween in $start//*[.//*[. is $end]]
satisfies $inbetween[@aFour=0]]

This variant uses the for-return construct and the universal quantification every
available in XPath 2.0.

The Kleene style query U1 cannot be expressed in XPath 2.0. Luckily, XQuery sup-
ports user-defined recursive functions, and thus we could express the query by replacing
the Kleene star by a reference to a user-defined function. In this way, we could still com-
pare it to the other styles.

Results. We ran the queries U1–U7 on the following four XQuery engines:

– SaxonB version 8.6.1 [40]
– Qizx/Open version 1.0 [5]
– MonetDB/XQuery version 0.10 [49], 32 bit compilation.
– Galax version 0.5.0 [22]

MonetDB/XQuery is an full-fledged database management system with an
XML/XQuery front-end, while the other engines are stand-alone query processors.

The experiment is run with the help of XCheck4 [2], a testing platform for XQuery
engines. We used an Intel(R) Pentium(R) 4 CPU 3.00GHz, with 2026MB of RAM, run-
ning Linux version 2.6.12. For the Java applications (SaxonB and Qizx/Open) 1024MB
memory size was allocated. We run each query 2 times and we output the results for
the last “warmed-up” run. The times reported are CPU times measuring the complete
execution of a query including loading and processing the document and outputting the
result.

The results are given in Figure 3. We remark that query execution was stopped when
an engine took more than 1000 seconds to output the results. An empty engine bar
indicates an engine crash.

The Kleene style query U1 performs best on all of the four engines. The Tarski
variant, query U2, does reasonably well on 3 out of 4 engines, with Galax having some
troubles, but at least finishing before the timeout limit. The Frege style queries U3,
U4, and U5 are really problematic for all the engines. Only SaxonB finishes before the
1000 seconds limit time, Qizx/Open and Galax pass the limit, while MonetDB/XQuery
crashes on all three queries. We believe the reason for this bad performance is the large
amount of intermediate results generated during the execution. This intermediate results
are avoided in the queries U6 and U7, which use the ancestor axis for navigating
upwards in the tree and checking the until condition B on the paths that start with a
starting-node and end on a node satisfying the until condition A.

4 http://ilps.science.uva.nl/Resources/XCheck/

http://ilps.science.uva.nl/Resources/XCheck/


Logical Foundations of XML and XQuery 123

Fig. 3. Processing times of 7 equivalent formulations of the until query for SaxonB, Qizx/Open,
MonetDB/XQuery and Galax, on the Michigan benchmark document of 46MB, with a timeout
of 1000 seconds

2.7 In Conclusion

The developments around XPath are a nice example of interaction between formal the-
ory and applied computer science. Core XPath 1.0 turned out to be (by accident?) a
modal logic, and equivalent to a well defined fragment of first order logic. One of the
design goals of XPath 2.0 was to make it as expressive as first-order logic. Regular
XPath is an extension of XPath in which Propositional Dynamic Logic and formalisms
coming from SGML (caterpillar expressions [11]) and semi-structured data (regular
path expressions [1]) nicely blend together.

Hierarchies of formalisms for describing and querying XML-trees form an ac-
tive topic of research at the moment. Typical questions concern relative expressive
power, succinctness, complexity, and various types of translations between different
formalisms. There are still many hard nuts to crack (for instance, the question marks in
Figure 2).

One potential issue of concern is that we have abstracted away too much from the
XML reality by considering XML documents as node-labeled sibling ordered trees.
Nodes in XML documents can have attributes with typed values (strings, integers, etc),
and atomic data values, and these are neglected in the work we have discussed. One
of the reasons is that static analysis problems (like satisfiability) for languages that can
speak about these data values quickly become undecidable. Some work has been done



124 M. Marx

in finding well-behaved fragments of XPath with limited access to data values [10], but
this is not yet of applicational value. Here input from another field of modal logic is
likely to be helpful, namely the work on description logics with concrete domains [45].

3 Logical Foundations of XPath

This section is based on joint work with Balder ten Cate [64].

3.1 Introduction

XPath is a common fragment of the XML querying and processing languages XQuery
and XSLT, used for navigation through XML documents. We address two foundational
issues concerning XPath: (1) its expressivity in comparison to the first-order logic, and
(2) algebras for XPath.

We focus on the navigational part of XPath: the part that is concerned purely with
document navigation, not considering operations involving strings, numbers, or any
other types of atomic content. Several navigational fragments of XPath 1.0 and 2.0 have
been proposed [27,63]. All in all, we consider four navigational XPath dialects: Core
XPath 1.0, variable-free Core XPath 2.0, Core XPath 2.0 with variables, and Regular
XPath≈.

XML tree navigation using path expressions. Path expressions describe ways of
navigating through XML documents, i.e., travelling from one node to another in the
tree. This means we can model the meaning of a path expressions by a binary relation
on the nodes of the tree. For example, the XPath 1.0 path expressiondescendant::p
(abbreviated as .//p) denotes in any XML tree T , the set of all pairs (m, n) with
n a descendant node of m that has tag name p. Of course, binary relations can be
defined using many other formalisms, e.g., by means of a first-order formula in two
free variables. In the case of this example, the binary relation is equivalently expressed
by the conjunctive query

φ(x, y) = descendant(x, y) ∧ p(y) .

Next we consider a conjunctive query expressing the existence of a path in the tree
ending in a q node and having along the way at least z many pi-nodes (for 1 ≤ i ≤ z).
Note that the pi nodes may occur in any order along the path.

φ(x, y) = ∃z1 . . . zn

n∧
i=1

descendant(x, zi) ∧ pi(zi)
∧ descendant(zi, y) ∧ q(y)

(6)

This binary relation can be defined in XPath 1.0 by the union of the path expressions

descendant :: pρ(1)/ · · · /descendant :: pρ(n)/
descendant :: q



Logical Foundations of XML and XQuery 125

for all, exponentially many, permutations ρ of 1 . . . n.
Next, consider the following first-order binary relation (familiar from temporal logic,

and raising children):

φ(x, y) = descendant(x, y) ∧ q(y) ∧
∀z(descendant(x, z) ∧ descendant(z, y) → p(z)) (7)

A pair (m, n) stands in this relation if n is a descendant of m with tag name q and
all nodes in-between m and n in the tree have tag name p. Can we express this in
XPath 1.0?5

Questions such as these are hard to answer for languages as rich as full XPath 1.0
(whose technical specification is about 30 pages long). In order to be able to give a
mathematically precise answer, in [48] the same question was studied in the context
of Core XPath 1.0 [27]. This is a compact, well defined fragment of XPath 1.0 with a
clean logical semantics. It captures the navigational core of XPath 1.0, abstracting away
from operations involving strings, numbers, or any other types of atomic content. It was
shown in [48] that (7) cannot be defined in Core XPath.

Ways of extending Core XPath 1.0. Various extensions of XPath 1.0 have been pro-
posed, including the official W3C standard of XPath 2.0. With more expressive power,
new binary relations can be defined and sometimes older ones can be defined more
succinctly. We give examples of both, starting with the latter.

XPath 2.0 has an intersect operator:Path1 intersect Path2 denotes the
intersection of the binary relations defined by Path1 and Path2. Using intersection,
(6) can be expressed without exponential blow-up:

descendant :: p1/descendant :: q intersect
descendant :: p2/descendant :: q intersect

. . .
descendant :: pn/descendant :: q

Similarly, the previously undefinable “until” relation (7) can be defined in various ways
using additional operators that have been proposed. A first possibility is to use the
Kleene star, inspired by [1]:

(child :: p)∗/child :: q.

Here (Path)∗ denotes the reflexive transitive closure of the binary relation denoted by
Path. The Kleene star does not belong to XPath 1.0 or 2.0, but extensions of XPath
with this operator have been proposed and implemented [61,21,20]. A second solution
is to use the path complementation operator except that was introduced in XPath 2.0:

descendant :: q except
descendant :: ∗[not(self :: p)]/descendant :: q

5 Note that .//q[not(ancestor :: ∗[not(self :: p)])] does not define the intended relation: it
is only correct for pairs (m,n) where m is the root.



126 M. Marx

Finally, a third option is to use quantified variables, which is possible in XPath 2.0 using
the for-construct. Using for, we can write (7) as follows:

for $s in . return
descendant :: q

[
not(ancestor :: ∗[not(self :: p)]/

ancestor :: ∗[. is $s])
]

Notice how the variable $s stores the initial node.

Two main questions. We consider Core XPath 1.0 and three extensions of it, roughly
corresponding to XPath 2.0, the variable free fragment of XPath 2.0, and an extension
of XPath with transitive closure and path equalities. For each of these, we study two
main questions: what is the expressive power and what are suitable algebras.

Expressivity and Codd completeness. When a new query language is introduced, it is
always useful to compare its expressive power to existing languages. E.F. Codd did
this for SQL and relational algebra by showing that they are equally expressive as first-
order logic [16]. With the navigational languages for XML we can do the same: given a
dialect of XPath, we can ask how it compares to (fragments or extensions of) first-order
logic. We explore this in Section 3.3.

Algebras for navigational XPath. An important step towards efficient query evaluation
is to identify a suitable algebra in which query plans can be formulated. Which algebra
are suitable for our XPath dialects? In answering this question, we guide ourselves by
the following criteria:

1. expressions in the XPath dialect should be efficiently translatable to algebraic
expressions,

2. the algebra should not be much more expressive than the XPath dialect requires,
3. the algebra should not have much harder query evaluation or equivalence problem

than the XPath dialect itself, and
4. there should be a nice set of algebraic equivalence rules for the algebra.

In Section 3.4, we will consider several candidates, such as Codd’s relational algebra
(CRA) and Tarski’s algebra of binary relations (TRA). For each dialect of navigational
XPath, a different algebra turns out to fit best.

3.2 Preliminaries: Four Dialects of Navigational XPath

In this section, we review the syntax and semantics of Core XPath 1.0 —the naviga-
tional fragment of XPath 1.0 introduced in [27]— as well as three extensions.

Core XPath 1.0. Core XPath 1.0 was introduced in [27] to capture the navigational core
of XPath 1.0. The definition we will give here is from [47], which differs from the one
of [27] as (1) it include the “one-step sibling axes” left, right (which are definable in
XPath 1.0 using numerical predicates), (2) filters can be applied to any expression, and
(3) we include the union operator on path expressions.



Logical Foundations of XML and XQuery 127

Table 1 gives the syntax of Core XPath 1.0. Here QName stands for any XML tag
name. The primary type of expression is a path expression (PathExpr).

Table 2 gives the semantics. Expressions are evaluated on finite sibling-ordered
unranked trees whose nodes are labeled by XML tag names. Given such a tree, the
meaning [[R]]PExpr of a PathExpr R is always a binary relation. This is just another,
equivalent, way of specifying a function from nodes to sets of nodes (the answer-set
semantics). The meaning [[T ]]NExpr of a node expression T is always a set of nodes.

We will study the complexity of two tasks: query evaluation and query containment.
For query evaluation, we will consider the combined complexity of the following prob-
lem: given a path expression, an XML-tree (suitably encoded) and a pair of nodes,
determine whether the pair belongs to the relation denoted by the path expression. In
the case of the query containment problem, the task is to determine, given two path
expressions R, S, whether in every tree model, [[R]]PExpr ⊆ [[S]]PExpr . For Core XPath
1.0, the query evaluation problem for Core XPath 1.0 is in PTIME (in fact, it can be per-
formed in linear time) [27], and the query containment problem is EXPTIME-complete
[46,50].

Core XPath 2.0 without variables. In [63], Core XPath 2.0 was introduced as a navi-
gational core of XPath 2.0 with a clean, logical semantics. One important simplifying
assumption underlies Core XPath 2.0, namely that path expressions still denote binary
relations between nodes, as they did in Core XPath 1.0. This is not the case in the
full XPath 2.0, where they denote functions from nodes to sequences of nodes (not

Table 1. Syntax of Core XPath 1.0

Axis := self | child | parent | right | left
| descendant

| ancestor

| following

| preceding

| following sibling

| preceding sibling

NameTest := QName | ∗
Step := Axis::NameTest .

PathExpr := Step
| PathExpr/PathExpr
| PathExpr union PathExpr
| PathExpr[NodeExpr]

NodeExpr := PathExpr
| not NodeExpr
| NodeExpr and NodeExpr
| NodeExpr or NodeExpr.



128 M. Marx

Table 2. Semantics of Core XPath 1.0

[[Axis :: N ]]PExpr = {(x, y) | xAxisy holds in the tree,
and y has tag N}

[[Axis :: ∗]]PExpr = {(x, y) | xAxisy holds in the tree}
[[R/S]]PExpr = [[R]]PExpr ◦ [[S]]PExpr

[[R union S]]PExpr= [[R]]PExpr ∪ [[S]]PExpr

[[R[T ]]]PExpr = {(x, y) | (x, y) ∈ [[R]]PExpr

and y ∈ [[T]]NExpr}

[[PathExpr]]NExpr = {x | ∃y.(x, y) ∈ [[PathExpr]]PExpr}
[[not T ]]NExpr = {x | x �∈ [[T ]]NExpr}
[[T1 and T2]]NExpr = [[T1]]NExpr ∩ [[T2]]NExpr

[[T1 or T2]]NExpr = [[T1]]NExpr ∪ [[T2]]NExpr

necessarily in document order and possibly containing duplicates). We follow the defi-
nition of Core XPath 2.0 from [63].

First, we consider the variable-free fragment of Core XPath 2.0. This is a very simple
extension of Core XPath 1.0: it differs from Core XPath 1.0 only in that one can take
intersections and complements of path expressions:

[[R intersect S]]PExpr = [[R]]PExpr ∩ [[S]]PExpr

[[R except S]]PExpr = [[R]]PExpr \ [[S]]PExpr.

These operators do not only increase the expressive power of the language (as we will
see in the next section), they also greatly increase its complexity. The query evaluation
problem for variable free Core XPath 2.0 is still in PTIME (in fact, it can be performed
in quadratic time), but the query containment problem is non-elementary (2-EXPTIME-
complete for expressions without the complementation operator) [62].

Core XPath 2.0. Besides the addition of the intersect and except operators, an
important difference between XPath 1.0 and 2.0 is the use of quantified variables by
means of the for construct. Formally, let a NodeRef expression be an expression of
the form $i or . (where $i is a variable ranging over nodes in the tree). Then the syntax
of full Core XPath 2.0 is obtained by extending the syntax of Core XPath 1.0 with
the intersect and except operators from above, with path expressions of the form
$i and for $i inPathExpr returnPathExpr, and with node expressions of the form
NodeRef is NodeRef. The latter tests whether the two expressions refer to the same
node.

Since the expressions of Core XPath 2.0 can contain variables, the semantic inter-
pretation is relative to an assignment, i.e., a function mapping variables to nodes. For
g an assignment, $i a variable, and x a node, g[$i �→ x] denotes the assignment g′

which is identical to g except that g′(i) = x. Also, for any assignment g, node x, and
NodeRef expression a, let [[a]]g,x be g(a) in case a is a variable, or x in case a is ‘.’.
The semantics of the new constructs is as follows:



Logical Foundations of XML and XQuery 129

[[$i]]gPExpr = {(x, y) | g(i) = y}

[[for $i inR returnS]]gPExpr =
{(x, y) | ∃z((x, z) ∈ [[R]]gPExpr and (x, y) ∈ [[S]]g[$i�→z]

PExpr )}

[[a is b]]NExpr = {x | [[a]]g,x = [[b]]g,x}.

The query evaluation problem for Core XPath 2.0 is PSPACE-complete, and the query
containment problem is non-elementary [62].

Regular XPath≈. Regular XPath≈ extends Core XPath 1.0 with two operators that are
not part of XPath 1.0 or 2.0, and that, as we will see, make it more expressive. The most
important of these is the Kleene star, which allows us to take the reflexive transitive
closure of arbitrary path expressions. The other is path equalities (not to be confused
with data value equalities). Formally, the semantics of these operators is as follows [61]:

[[R∗]]PExpr =reflexive transitive closure of [[R]]PExpr

[[R ≈ S]]NExpr={x | ∃y.(x, y) ∈ [[R]]PExpr ∩ [[S]]PExpr}

Regular XPath≈ can be viewed as a mix between Core XPath 1.0 and regular path
expressions [1]: it has the filter expressions of the former and the Kleene star of the
latter. It is still mainly studied in the theoretical community [21,26,61].

The query evaluation problem for Regular XPath≈ is in PTIME (in fact, in quadratic
time), and the query containment problem is EXPTIME-complete [62].

3.3 Expressivity of XPath Dialects

We have defined four XPath fragments. How do they compare in terms of expressivity
and succinctness? We will answer this question by mapping each XPath dialect to an
equally expressive variant of first-order logic.

Since the data model of an XML document is a finite sibling ordered tree, it is
natural to consider first-order logic in the signature with eight atomic binary rela-
tions corresponding to the basic axes (child, parent, left and right, and their
transitive closures descendant, ancestor, following-sibling and prece-
ding-sibling) plus a unary predicate for each tag name. We will call the first or-
der language in this signature FOtree. With FOtree(x) and FOtree(x, y) we denote the
FOtree formulas in one and two free variables, respectively.

Besides looking at expressive power, we will also compare different languages in
terms of succinctness. As usual, if two languages, L and L′, are equally expressive, we
say that L is (at least) exponentially more succinct than L′ if there is a infinite sequence
of L-expressions R1, R2, . . . where the length of Rk is polynomial in k, such that for
every sequence of equivalent L′-expressions R′

1, R
′
2, . . . , the length of R′

k is exponen-
tial in k. Similarly, one can say that a language is non-elementarily more succinct than
another language.

The results from this section are summarized in Table 3. These results hold both for
path expressions and for node expressions.



130 M. Marx

Table 3. Expressivity and succinctness of XPath dialects

XPath dialect Core XPath 1.0 �
Variable-free

Core XPath 2.0
≡ Core XPath 2.0 � Regular XPath≈

Equivalent
FO-dialect

∃FOtreemon¬
FOtree FOtree FOtree∗

(exponential
succinctness gap)

(at least exponential
succinctness gap)

(no succinctness gap:
linear translations)

(non-elementary
succinctness gap)

The results discussed in this section naturally build on a existing line of research
in temporal logic, which originates in the work of H. Kamp [36] and which studies
expressive completeness for various temporal logics on trees. A survey of this area may
be found in [34].

Core XPath 1.0. As we have already seen in Section 3.1, not every FOtree-definable
binary relation is definable in Core XPath 1.0. However, we can define a natural frag-
ment of FOtree with respect to which Core XPath 1.0 is complete.

Let ∃FOtree(mon¬)
be the fragment of FOtree where negation can only be applied to

subformulas with exactly one free variable, and universal quantification is disallowed
altogether (thus, the connectives are conjunction, disjunction, and existential quantifi-
cation, plus negation of formulas with at most one free variable). It can be seen from
Table 2 that Core XPath 1.0 path expressions can be translated into this fragment of
FOtree (indeed, the only form of negation present in Core XPath 1.0 is negation in filter
expressions, which corresponds to negation of a formula in one free variable). A con-
verse translation is possible as well, although it involves an exponential blow-up (recall
the example we gave in the introduction):

Theorem 1. (Core XPath 1.0 ≡ ∃FOtree(mon¬)(x, y))

1. There is a linear translation from Core XPath 1.0 path expressions to

∃FOtree(mon¬)(x, y) formulas, and an exponential translation backwards.

2. Indeed, ∃FOtree(mon¬)(x, y) formulas are exponentially more succinct than Core
XPath 1.0 path expressions.

Proof. The difficult direction of (1) can be proved by induction on the nesting depth of
negation, using the fact that positive existential fist-order formulas can be translated to
Core XPath 1.0 path expressions at the cost of an exponential blowup [7,28]. For the
exponential difference in succinctness, see [62, Thm. 26].

An alternative characterization of Core XPath 1.0, in terms of conjunctive queries and
the two-variable fragment of FOtree, is given in [48].

Core XPath 2.0. In the case of Core XPath 2.0, there is a precise match with FOtree,
in terms of expressive power. In fact, this Codd-completeness has been one of the de-
sign considerations for XPath 2.0 [38]. Moreover, it turns out to hold already for the



Logical Foundations of XML and XQuery 131

variable free fragment. Still, the presence of variables matters for the succinctness of
the language.

For simplicity, we consider only path expressions that have no free variables. For a
discussion of expressive completeness in the presence of free variables, see [23].

Theorem 2. (Core XPath 2.0 ≡ FOtree(x, y))
1. There are linear translations between Core XPath 2.0 path expressions and

FOtree(x, y) formulas.
2. There is a linear translation from variable free Core XPath 2.0 path expressions to

FOtree(x, y) formulas and a non-elementary translation backwards.
3. FOtree(x, y) formulas are at least exponentially more succinct than variable free

Core XPath 2.0 path expressions.

Proof. The linear translations are straightforward. A non-elementary translation from
FOtree to variable free Core XPath 2.0 is given in [47]. The exponential difference in
succinctness between FOtree and variable free Core XPath 2.0 holds already on linear
orders (i.e., documents in which each node has at most one child) [29].

In fact, it was shown in [47] that a more modest extension of Core XPath 1.0
called Conditional XPath is already expressively complete for FOtree. It extends
Core XPath 1.0 with “conditional axes” of the form (Axis while NodeExpr), with
Axis ∈ {child,parent,left,right}. Without going into further details, we only
mention that (Axis while T ) :: N can be written in Core XPath 2.0 as

Axis+ :: N except (Axis+ :: ∗[not(T)]/Axis+ :: ∗)
where Axis+ is the transitive version of Axis.

Regular XPath≈. Since the conditional axes of [47] are definable in Regular
XPath≈ using the Kleene star — (Axis while T)::N is equivalent to (Axis::∗
[not(T)])∗/Axis::N — we already know by [47] that Regular XPath≈ extends
FOtree in expressive power. In order to give a precise characterization of the expressive
power of Regular XPath≈, we must consider an extension of FOtree.

The simplest option is to simply extend FOtree with a Kleene star (i.e., a transitive
closure operator for binary relations). Thus, let FOtree∗(x, y) be the extension of FOtree

(x, y) with a transitive closure operator that applies to formulas with exactly two free
variables. Then the following is proved in [61] and [62, Thm. 27]:

Theorem 3. (Regular XPath≈ ≡ FOtree∗)

1. There is a linear translation from Regular XPath≈ path expressions to
FOtree∗(x, y) formulas, and a non-elementary translation backwards.

2. In fact, FOtree∗(x, y) formulas are non-elementarily more succinct than Regular
XPath≈ path expressions.

Incidentally, FOtree∗ is not the same as FOtree + TC1: the standard unary transitive
closure operator TC1 can be applied to formulas containing more than two free vari-
ables, as long as two of the variables are designated; the others are treated as parameters
(cf. for instance [18]). We do not know at present whether FOtree∗ and FOtree + TC1

have the same expressive power on trees. The following question is also open at the
time of writing: is Regular XPath without ≈ equally expressive as FOtree∗(x, y)?



132 M. Marx

3.4 Algebras for XPath Dialects

The previous section discussed that Core XPath 2.0 corresponds in expressive power to
exactly first-order logic. The next question is which algebras are appropriate for repre-
senting query plans for Core XPath 2.0 expressions. The same question holds for the
other dialects we discussed. Codd’s relational algebra seems a natural choice because
it is again equally expressive as first-order logic. Indeed, we will see that it is a good
choice when considering Core XPath 2.0. For other XPath dialects however (including
the variable free fragment of Core XPath 2.0), there are better options.

In Section 3.1 we gave criteria for determining whether an algebra is suitable for an
XPath dialect. In this section, we discuss four different algebras, and determine which
ones match best with each XPath dialect. The results are summarized in Table 5.

To simplify the presentation, we will first consider Core XPath 1.0 and 2.0, and
only afterwards Regular XPath≈, as the latter requires (a mild form of) recursion in the
algebra.

Four candidate algebras

Codd’s relational algebra (CRA) and its fragment CRA(mon¬). We briefly re-
call Codd’s relational algebra. A characteristic feature of this algebra is that it is many
sorted: each expression has an associated arity corresponding to the number of columns
of the table it computes. The atomic expressions are simply the names of the relations
in the database, and the operations are selection (σ), projection (π), cross-product (×),
union (∪) and complementation (−).

The fact that there is no bound on the arity of the expressions has some negative
consequences on the complexity of query evaluation: it is PSPACE-complete, whereas
it becomes polynomial if there is a bound on the allowed arity of (sub)expressions
[12,67].

Inspired by the results in the previous section, it makes sense to distinguish another
restricted fragment of CRA, namely CRA(mon¬). This fragment is obtained by re-
stricting the use of complementation to unary tables. Note that all SPCU -expressions
still belong to this fragment.

Tarski’s relation algebra (TRA). Tarski’s relation algebra [59,60] is an algebra of
binary relations: each expression denotes a table with precisely two columns. The op-
erations on binary relations considered by Tarski are the Boolean operations (union,
intersection and complementation), as well as composition ◦ and converse (·)−1. There
are also two constants (or, 0-ary operations) � and ε, which stand for the total relation
and the identity relation (over the given domain). A typical example of an equivalence
in this algebra is α ◦ (β ∪ γ) ≡ α ◦ β ∪ α ◦ γ.

It was shown in [60] that TRA has the same expressive power as the three-variable
fragment of first-order logic in two free variables, over vocabularies consisting of binary
relations only.

Although in TRA all expressions denote binary relations, unary relations can be
easily dealt with as well, for instance by treating them as subrelations of the identity
relation (e.g., {a, b, c} can be treated as {(a, a), (b, b), (c, c)}).



Logical Foundations of XML and XQuery 133

Table 4. Complexity of evaluation and containment for the algebras on trees

Evaluation Containment

CRA PSPACE-compl. Non-elementary
CRA(mon¬)NP-hard, in PNP 2-EXPTIME-compl.
TRA PTIME (quadratic)Non-elementary
DRA PTIME (linear) EXPTIME-compl.

Dynamic relation algebra (DRA). In [35,66], a reduct of Tarski’s relation algebra
is studied containing only the operations ∪, ◦ and ∼. The latter of these is called the
counterdomain operation. It takes a binary relation R and produces a subrelation of the
identity relation: ∼R denotes {(x, y) | x = y and ¬∃z.(x, z) ∈ R}. In TRA, it can
be expressed as ε − (R ◦ �). This operator is quite handy: e.g., ∼child expresses “I
am a leaf node”, and ∼∼child expresses “I am not a leaf node”. We call this algebra
dynamic relation algebra (DRA).

The signature of DRA might seem poor, but it is rich enough to capture all of Core
XPath 1.0. If we encode properties of nodes as subrelations of the identity relation (as
we already suggested above), then we have the following translation:

TRPExpr(Axis :: ∗) = Axis
TRPExpr(Axis :: N) = Axis ◦ N
TRPExpr(R/S) = TRPExpr(R) ◦ TRPExpr(S)
TRPExpr(R union S) = TRPExpr(R) ∪ TRPExpr(S)
TRPExpr(R[T ]) = TRPExpr(R) ◦ TRNExpr(T )

TRNExpr(PathExpr) = ∼∼ TRPExpr(PathExpr)
TRNExpr(not T ) = ∼ TRNExpr(T )
TRNExpr(T1 and T2) = TRNExpr(T1) ◦ TRNExpr(T2)
TRNExpr(T1 or T2) = TRNExpr(T1) ∪ TRNExpr(T2)

In [66], an elegant model theoretic characterization of DRA is given in terms of safety
for bisimulations.

DRA is a fragment of both TRA and CRA(mon¬). More precisely, the relationships
between the four algebras on arbitrary models are as follows:

TRA
� �

DRA CRA
� �

CRA(mon¬)

When we restrict attention to XML documents (i.e., where the atomic relations are the
8 binary relations corresponding to the different axes, as well a “unary” relation for
each of the different tag names), the situation is a bit different: on this restricted class of
models TRA and CRA have the same expressive power, as do DRA and CRA(mon¬).



134 M. Marx

Complexity of these algebras on trees. We will now discuss the complexity of query
evaluation and query containment for the four algebras interpreted on XML-trees (i.e.,
where the atomic relations are the 8 binary relations corresponding to the different axes,
as well a “unary” relation for each of the different tag names). As before, in the case of
query evaluation we consider the combined complexity of testing whether a given pair
belongs to the relation defined by a given path expression on a given XML document.
Table 4 provides a summary of the results.

Containment. By Rabin’s theorem, query containment is decidable for all four algebras.
For TRA and CRA, containment is non-elementary, as follows from Stockmeyer’s non-
elementary lower bound for the non-emptiness problem of star-free expressions [58,62].
The results for CRA(mon¬) and DRA follow from known results about XPath. In par-
ticular, the 2-EXPTIME-hardness of CRA(mon¬) query containment follows from the
same lower bound for Core XPath 1.0 extended with path intersection, as the latter can
be linearly translated into CRA(mon¬). The upper bound follows from the existence
of a singly exponential translation from CRA(mon¬)-expressions of arity 2 to Core
XPath 1.0, and the fact that Core XPath 1.0 has an EXPTIME-complete query contain-
ment problem (the restriction to expressions of arity 2 is not essential: containment of
CRA(mon¬)-expressions of arity greater than 2 can be linearly reduced to contain-
ment of ones of arity 2, in fact to Boolean CRA(mon¬)-expressions) [62]. The result
for DRA follows from linear translations to Core XPath 1.0.

Evaluation. The combined complexity of query evaluation for CRA is PSPACE-
complete, also when restricted to XML-trees [12]. As TRA corresponds to a fixed vari-
able fragment of first-order logic the complexity drops to PTIME. Using the bottom-up
algorithm sketched in [67] it can be shown to be in O(n2). In [27], it is shown that
query evaluation for Core XPath 1.0 can be performed in linear time. Because Core
XPath 1.0 and DRA linearly translate to each other, the result transfers to DRA. Re-
call that we are not talking about the complexity of computing the relation denoted by
a path expression (which could be quadratic in the size of the tree), but of the com-
plexity of checking whether a given pair of nodes belongs to the denotation of a given
expression in a given tree. Query evaluation for CRA(mon¬) is NP-hard: this holds
even for positive conjunctive queries with only downward axis relations [28]. For the
PNP-upper-bound, we use an algorithm that runs in polynomial time and that uses an or-
acle for testing whether a tuple belongs to the answer set of an SPCU-expression. The
algorithm proceeds roughly as follows: given an expression α, it starts by listing all
subexpressions whose main connective is a (unary) complementation operator, in order
of growing length. One by one, it computes for each such subexpression α the (poly-
nomially large) answer set, by asking the oracle for each element whether it belongs to
the answer set. The occurrences of α within larger expressions are then replaced by the
computed answer set. Finally, we are left with a single SPCU-expression, to which the
oracle is once more applied.

Axiomatizations. One of our criteria for being a good algebra was the availability of
an axiomatization of the valid equations on XML-trees (finite sibling ordered node-
labeled trees). Only a few results are known here. In [7], an axiomatization is given



Logical Foundations of XML and XQuery 135

for the ∼-free reduct of Dynamic Relation Algebras DRA with only the two downward
axis plus atomic label tests. An axiomatization of the full DRA on XML-trees is not
known (a complete axiomatization on arbitrary models is given in [35]). In [63], an
axiomatization of first-order logic on XML-trees is given, from which an axiomatization
for TRA on XML-trees is derived. We believe that in a similar way an axiomatization of
CRA on XML-trees can be found. The TRA axiomatization consists of general axioms
for the TRA similarity type like R ◦ (S ◦ T ) = (R ◦ S) ◦ T plus special axioms which
are only valid on trees. Two examples are Tr5 and Tr11:

Tr5. ↓+ ◦ ↑+ ≡ ↓+ [↓] ∪ ε[↓] ∪ (ε[↓] ◦ ↑+)

Tr11. ε ∪ ↑+ ∪ ↓+ ∪
(↑∗ ◦ →+ ◦ ↓∗) ∪ (↑∗ ◦ ←+ ◦ ↓∗) ≡ �

Here we abbreviate the steps in the trees by arrows, e.g., ↓ is the child axis,
↑ is parent, etc. E.g., in XPath notation, the left-hand side of Tr5 would be
descendant/ancestor. Also, we use R[S] as a shorthand for R◦ ∼∼ S. Tr5
is a natural complexity reducing equivalence when read from left to right. Tr11 states
the well known fact that the self, ancestor, descendant, following and preceding axis
relations partition each XML-tree from every given node.

Which algebra for which XPath? We now have three XPath dialects (Regular XPath≈

will be dealt with in the next subsection) and four candidate algebras. We determine
which algebra fits best to which fragment by answering the following questions, corre-
sponding to the first three requirements from Section 3.1:

1. Is there a linear translation from the expressions in XPath dialect to expressions in
the algebra?

2. Are the XPath dialect and the algebra equally expressive?
3. Do the XPath dialect and the algebra have the same query containment and evalua-

tion complexities?

(as for the fourth requirement, concerning the existence of nice sets of algebraic equiv-
alence rules for the algebra, we have too little information at present to say much about
it).

The answers, based on the results discussed in the previous sections, are given in
Table 5. The combinations with only affirmative answers are marked by a gray
background.

Regular XPath≈. For Regular XPath≈, the algebras need to be extended with a tran-
sitive closure operator. In the case of TRA and DRA, the semantics of such an operator
is clear: the denotation of R∗ is the reflexive, transitive closure of the binary relation
denoted by R. In the case of CRA and CRA(mon¬) a similar proviso needs to be
made as for FOtree∗ (cf. Section 3.3): the transitive closure operator may only be ap-
plied to expressions that denote tables with precisely two columns. We use CRA(∗),
CRA(mon¬, ∗), TRA(∗) and DRA(∗) to denote the extensions of the respective alge-
bras with the transitive closure operator, which conform to this restriction.



136 M. Marx

Ta
bl

e
5.

W
hi

ch
al

ge
br

a
fo

r
w

hi
ch

X
Pa

th
di

al
ec

t?

C
R

A
C

R
A

(m
on

¬)
T

R
A

D
R

A

C
or

e
X

Pa
th

1.
0

Y
(l

in
ea

r
tr

an
sl

at
io

n)
Y

(l
in

ea
r

tr
an

sl
at

io
n)

Y
(l

in
ea

r
tr

an
sl

at
io

n)
Y

(l
in

ea
r

tr
an

sl
at

io
n)

N
(t

oo
ex

pr
es

si
ve

)
Y

(s
am

e
ex

pr
es

si
vi

ty
)

N
(t

oo
ex

pr
es

si
ve

)
Y

(s
am

e
ex

pr
es

si
vi

ty
)

N
(c

om
pl

ex
it

y
to

o
hi

gh
)

N
(c

om
pl

ex
it

y
to

o
hi

gh
)

N
(c

om
pl

ex
it

y
to

o
hi

gh
)

Y
(s

am
e

co
m

pl
ex

it
y)

C
or

e
X

Pa
th

2.
0

Y
(l

in
ea

r
tr

an
sl

at
io

n)
N

(n
o

tr
an

sl
at

io
n

po
ss

ib
le

)
Y

(l
in

ea
r

tr
an

sl
at

io
n)

N
(n

o
tr

an
sl

at
io

n
po

ss
ib

le
)

w
/o

va
ri

ab
le

s
Y

(s
am

e
ex

pr
es

si
vi

ty
)

N
(t

oo
li

tt
le

ex
pr

es
si

vi
ty

)
Y

(s
am

e
ex

pr
es

si
vi

ty
)

N
(t

oo
li

tt
le

ex
pr

es
si

vi
ty

)
N

(c
om

pl
ex

it
y

to
o

hi
gh

)
N

(c
om

pl
ex

it
y

to
o

hi
gh

)
Y

(s
am

e
co

m
pl

ex
it

y)
Y

(l
ow

er
co

m
pl

ex
it

y)

C
or

e
X

Pa
th

2.
0

Y
(l

in
ea

r
tr

an
sl

at
io

n)
N

(n
o

tr
an

sl
at

io
n

po
ss

ib
le

)
N

(n
o

el
em

.t
ra

ns
la

ti
on

)
N

(n
o

tr
an

sl
at

io
n

po
ss

ib
le

)
w

it
h

va
ri

ab
le

s
Y

(s
am

e
ex

pr
es

si
vi

ty
)

N
(t

oo
li

tt
le

ex
pr

es
si

vi
ty

)
Y

(s
am

e
ex

pr
es

si
vi

ty
)

N
(t

oo
li

tt
le

ex
pr

es
si

vi
ty

)
Y

(s
am

e
co

m
pl

ex
it

y)
Y

(l
ow

er
co

m
pl

ex
it

y)
Y

(s
am

e
co

m
pl

ex
it

y)
Y

(l
ow

er
co

m
pl

ex
it

y)

C
R

A
(∗

)
C

R
A

(m
on

¬,
∗)

T
R

A
(∗

)
D

R
A

(∗
,l

oo
p)

R
eg

ul
ar

X
Pa

th
≈

Y
(l

in
ea

r
tr

an
sl

at
io

n)
Y

(l
in

ea
r

tr
an

sl
at

io
n)

Y
(l

in
ea

r
tr

an
sl

at
io

n)
Y

(l
in

ea
r

tr
an

sl
at

io
n)

Y
(s

am
e

ex
pr

es
si

vi
ty

)
Y

(s
am

e
ex

pr
es

si
vi

ty
)

Y
(s

am
e

ex
pr

es
si

vi
ty

)
Y

(s
am

e
ex

pr
es

si
vi

ty
)

N
(c

om
pl

ex
it

y
to

o
hi

gh
)

N
(c

om
pl

ex
it

y
to

o
hi

gh
)

N
(c

om
pl

ex
it

y
to

o
hi

gh
)

Y
(s

am
e

co
m

pl
ex

it
y)



Logical Foundations of XML and XQuery 137

The path equalities of Regular XPath≈ can be expressed in CRA(∗) and
CRA(mon¬, ∗) using intersection and projection, and in TRA(∗) using intersection
and ∼: R ≈ S can be expressed as ∼∼ (R ∩ S). On the other hand, in DRA(∗) it is
not clear whether path equalities can be expressed. Let DRA(∗,loop) denote the exten-
sion of DRA with both the Kleene star and the (·)loop operator, that has the following
semantics [26]: Rloop = R ∩ ε. Using loop, and given the fact that Regular XPath≈ is
closed under taking inverses of path expressions, we can express path equalities: R ≈ S
translates to (R ◦ S−1)loop.

It follows from Theorem 3 that Regular XPath≈, DRA(∗,loop), TRA(∗), CRA(∗) and
CRA(mon¬, ∗) all have the same expressive power. Of these four, DRA(*,loop) is
the most suitable algebra for Regular XPath≈, since its query containment problem is
EXPTIME-complete (as follows from the fact that there are linear translations from and
to Regular XPath≈ [62]). See also Table 5.

4 Case Study in Making Structure Explicit: Parliamentary
Proceedings

This section is based on joint work with Tim Gielissen [25].

4.1 Introduction

Parliamentary proceedings are an interesting set of data to apply state-of-the-art infor-
mation retrieval technology. Parliamentary proceedings are written records of parlia-
mentary activities containing a wide range of document types. Parliamentary debates
are highly structured transcripts of meetings of politicians in parliament. These debates
are an important part of the cultural heritage of countries; they are often free of copy-
right; citizens often have a legal right to inspect them; and several countries make great
effort to digitize their entire historical collection and open that up to the general public.
This provides many opportunities for the IR (Information Retrieval) community.

We analyze the structure of the parliamentary proceedings and sketch a widely appli-
cable DTD (Document Type Definition, see http://www.w3schools.com/DTD).
We show how proceedings in PDF format can be transformed into deeply nested XML.
We call this process “exemelification”. Having the proceedings in XML makes a wide
range of applications possible. We elaborate on four of these: entry point retrieval, ad-
vanced content and structure search; automatic creation of tables of contents and hy-
perlinked navigation menus; large savings on storage space and bandwidth for scanned
documents.

We only discuss notes of meetings of parliament. As with all meeting notes, these
records have the purpose to store the content of the meeting. They have varying degrees
of detail. Currently in most Western democracies it is common to transcribe everything
that is being said, keeping the content, but making it grammatically correct and pleasant
to read.

We list a number of characteristics which make these documents of special interest
to the IR community:

http://www.w3schools.com/DTD


138 M. Marx

– large historical corpora; For example, in Holland all data from 1814 will be avail-
able in 2010, at the time of writing it is available since 1974; for the Flemish par-
liament all data since 1971 is available in PDF; the British Hansard archives have
all parliamentary minutes since 1803 available in XML.

– documents contain a lot of consistently applied structure which is rather easy to
extract and make explicit;

– transcripts of meetings might be accompanied by audio and video recordings, cre-
ating interconnected multimedia data [56];

– data integration issues and opportunities [31,43,44] both within one country (col-
lections from different periods, in different formats, styles, language, . . . ), and
across countries (cross-lingual IR);

– natural corpus for content and structure queries, combining keyword search with
XPath navigation and selection [37,51];

– natural corpus for search tasks in which the answers do not consist of documents:
expert or people search [6], video search6 and entry point retrieval [57].

From this list, we treat the information extraction, data integration and entry-point re-
trieval aspects. The section is organized as follows: Section 4.2 describes the structure
of parliamentary meetings and formalizes it in a DTD. Section 4.3 describes the tech-
niques used in the exemelification process. We discuss four benefits of exemelified data
in Section 4.4 and conclude in Section 4.5.

A search engine containing all Dutch parliamentary data from 1984 till May 2008
is built and can be used at http://www.polidocs.nl. The corpus of over 80.000
XML files is available for research on request.

4.2 Structure of Parliamentary Proceedings

Notes of a formal meeting with an agenda (e.g., business meeting, council meeting,
meeting of the members of a club, etc) are full of implicit structure and contain many
common elements. The notes of meetings with a large historical tradition, like parlia-
mentary debates, are in a uniform format which fluctuates little over time. This makes
these notes well suited for text-mining.

To our knowledge there is at the time of writing no DTD or markup language for
meeting notes available7.

Transcripts of a meeting contain three main structural elements:

the topics discussed in the meeting (the agenda);
the speeches made at the meeting: every word that is being said is recorded together

with 1) the name of the speaker, 2) her affiliation and 3) in which role or function
the person was speaking;

non verbal content or actions These can be:
– list of present and absent members;

6 As done in the TRECVID workshop: http://www-nlpir.nist.gov/projects/
trecvid/

7 The DTD of the XML versions of the British Hansard is effectively just a container to store
the text, and not suitable as a genuine model of meeting notes.

http://www.polidocs.nl
http://www-nlpir.nist.gov/projects/trecvid/
http://www-nlpir.nist.gov/projects/trecvid/


Logical Foundations of XML and XQuery 139

– description of actions like applause by members of the Green Party;
– description of the outcome of a vote;
– the attribution of reference numbers to actions or topics;
– and much more.

The analogy with the structural elements in theatrical drama is striking: scenes,
speeches and stage-directions are the theatrical counterparts of the three elements just
listed. These are prominent elements in the XML version of Shakespeare’s work8. The
close relation between politics and drama is an emerging theme in political science, see
e.g., [30,33].

These elements are structured as follows9:

meeting −→ (topic)+
topic −→ (speech | stage-direction)+
speech −→ (p | stage-direction)+
p −→ (#PCDATA | stage-direction)*
stage-direction −→ (#PCDATA).

All elements contain metadata stored in attributes. The British digitized debates from
1803 till 2004 are available in XML10 and basically have this structure11.

Within the Dutch proceedings however there is an intermediate structural element —
the block— which distinguishes the theatre drama from the political debate. In Dutch
parliament, the debate on each topic is organized as follows: each party may hold a
speech by a member standing at the central lectern; other members may interrupt this
speech; the chairman can always interrupt everyone. Most often, when all parties had
their say at the central lectern, a member of government answers all raised concerns
while speaking from the government table and again he or she can be interrupted. In
most cases this concludes a topic, but variations are possible and occur (e.g., several
members of government speaking or a second round of the whole process).

The block is an important debate-structural element because it indicates who is being
attacked by the interrupters. Thus for the Dutch situation the DTD becomes

topic −→ (block)+
block −→ (speech | stage-direction)+

8 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip One of the referees
pointed out the well-documented DTD for drama which is part of the TEI guidelines for
text markup (http://www.tei-c.org/release/doc/tei-p5-doc/en/html/
DR.html). This DTD is a good starting point for modelling, but for our purposes both too
general and too specific.

9 PCDATA means Parsed Character Data. PCDATA is text that will be parsed by a parser. The
text will be examined by the parser for entities and markup.

10 http://www.hansard-archive.parliament.uk/
11 The structure though is flat instead of nested as it is here, which makes retrieval quite cumber-

some. For instance, to retrieve all text spoken by MP X we must collect all following siblings
of the member element which contains the name X which come before the next member el-
ement. We note that this is an example of an until-like query which is not expressible in Core
XPath 1.0 [48].

http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ DR.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ DR.html
http://www.hansard-archive.parliament.uk/


140 M. Marx

If this block structure is not present in meeting notes, then each topic will have exactly
one block child. Thus both types of meeting fit this DTD.

Note. For presentation purposes, the DTD presented here is the core of the model. The
DTD actually used contains additional elements and attributes for storing all kinds
of metadata. Untill now, DTD is expressive enough for the structure that we want to
capture. But we need the possibility of XML Schema to constrain data-types like dates.

Figure 4 contains a visualization of a one-topic debate which uses the block structure
and which is created with an XSL-stylesheet from the XML. Each row stands for one
block and each vertically positioned mouth stands for one speech. The size of the mouth
is proportional to the length of the speech measured in number of words. The speaker on
the central lectern has the red mouth, the interrupters have a blue mouth. Interruptions
by the chairman are not shown.

We end this section with two more observations on interesting structure in debates,
also visible in Figure 4:

1. Blocks consist either of one uninterrupted speech or they have the form
(red,blue)+,red, that is a sequence of pairs of speeches by the central speaker
and an interrupter ended by the central speaker.

Fig. 4. High-level visualization of the first part of the debate on the protection of Hirsi-Ali.
Original available at http://www.geencommentaar.nl/parlando/index.php?
action=doc&filename=HAN8183A16. The first speaker on the lectern is Halsema who
is interrupted by Van Haersma Buma, Verdonk, Griffith, Van der Staai and Wilders, in that order.
Only the first time a speaker interrupts, her name is shown.

http://www.geencommentaar.nl/parlando/index.php?action=doc&filename=HAN8183A16
http://www.geencommentaar.nl/parlando/index.php?action=doc&filename=HAN8183A16


Logical Foundations of XML and XQuery 141

2. Zooming in on a block, if A is the speaker at the lectern and B,C,D are the ones
interrupting A, then blocks very often look like (AB)+(AC)+(AD)+A, i.e., a se-
quence of small conversations with different members with A having the last word.

Debates in the Dutch parliament are governed by a set of written regulations and a
set of unwritten codes. Both observations above are instantiations of unwritten codes.
The first observation restates the rule that the speaker at the lectern always has the
last word. The second observation corresponds to the rule that a member of parliament
can only have one block of interruptions of a member at the central lectern. See [65]
for these rules. Another rule is that someone may only interrupt another 3 times in a
row. So according to these unwritten codes the second regular expression should be
(AB){1,3}(AC){1,3}(AD){1,3}A and none of B,C,D should be equal.

Formalizations of these written and unwritten rules in terms of regular expressions,
and using these to find violations is an interesting open direction of research.12

This internal structure of blocks can be used to create high-level overviews of debates
which show who attacks who and which can be used for navigation. We present an
example in Section 4.3. The regular expression which best fits or describes a block can
be obtained by the algorithm which induces DTD’s from a set of example XML-files
described in [8].

4.3 Exemelification: From Flat PDF to Deep XML

Figure 5 gives a good indication of the mappings created in the exemelification process.
The following technique is used. First we extract the text from the PDF using the open
source program pdftohtml13 with the -xml option. This yields an XML file with for
each line of text four coordinates which indicate the bounding box of that text. Multiple
columns are detected and preserved. Some font and layout information is preserved but
not all. The XML structure is simple and flat:

root −→ (page)*
page −→ (text)*
text −→ (#PCDATA,b,i)*

On these XML files we use patterns written as regular expressions to add special empty
XML elements on places where in the final file an XML element needs to be opened.
For instance, the � is replaced by <blockstart/>. A phrase like

Mevrouw Swenker (VVD):

is replaced by

<speechstart speaker=’Swenker’ party=’VVD’ . . . />,

with the . . . containing additional information.

12 We have found such violations with Dutch members of parliament who have a new debating
style like Wilders and Verdonk.

13 http://pdftohtml.sourceforge.net/

http://pdftohtml.sourceforge.net/


142 M. Marx

Fig. 5. Example of the mapping from the description of a debate in PDF to the version in XML.
Note how the start of a new block is indicated by a � (mapping indicated in yellow.)

The result of this search and replace process is again a well formed XML file with
a similar flat structure as before. In the last step we perform a cascade of group-
ings starting with the elements which need to be most deeply nested: the paragraphs
(the XML elements with tag p). XSLT 2.0 has a very useful command for this task:
xsl:for-each-group. This command, new in XSLT 2.0, replaces the so-called
Muenchian method which was needed in version 1.0 of XSLT [39].

4.4 Applications of the XML Structure

We describe four applications of the XML structure. None of these is possible when
working with the PDF data. They are entry point retrieval and the use of permalinks,
complex content and structure queries, automatic creation of tables of contents and
navigation menus and finally savings on bandwidth.

Entry point retrieval and permalinks. The most natural answer unit in a retrieval
system for parliamentary debates is the speech. The result page after a keyword query
then will be a ranked list of items consisting of

– the name of the speaker,
– her party,



Logical Foundations of XML and XQuery 143

Fig. 6. Answer snippet from result list: photograph of the speaker linking to his bio, logo of his
party, a link to the official PDF source, the first 100 characters of his speech and a link to the
speech

– a photo of the speaker,
– the date of the speech
– a relevant text snippet of the speech,
– a hyperlink which points to the anchor attached to the speech within a debate, and
– a hyperlink to the original PDF source.

This is how it works in the UK on the site http://www.theyworkforyou.com,
on the site of the European Parliament, and also in the retrieval engine that we built for
the Dutch data http://www.polidocs.nl, see Figure 6.

Though natural, this notion of answer is by no means standard for parliamentary
retrieval systems. The search systems of the German and Flemish parliaments return
the proceedings of one day. These can be PDF files with two columns of up to a 100
pages. In the Netherlands, the situation is even more complex:

– proceedings before 1995 are available at
http://www.statengeneraaldigitaal.nl/. The answer unit is the
proceedings of a complete meeting;

– proceedings after 1995 are available at
http://parlando.sdu.nl/cgi/login/anonymous. The answer unit
roughly corresponds to one topic. It is indeed roughly as topics almost never start
at the top of a page nor finish at the bottom of a page, and the PDF documents at
Parlando are divided into overlapping sets of pages;

– preliminary proceedings are available at http://www.tweedekamer.nl/.
Search is not really possible on this site. Preliminary proceedings are available in
HTML which is shown together with a navigation menu which contains the same
topic–block–speech hierarchy as described in Section 2.

During the transformation from PDF to XML we add a unique anchor ID to every
speech. This anchor together with the number of the document given by the parliament
constitutes a unique permanent reference to each speech.

The permanent hyperlinks (permalinks) for each speech made in parliament have
many applications besides making entry point retrieval possible. Examples are easy
referencing in emails, weblogs and even scientific papers. Permalinks also stimulate
third party development of websites (like mashups) based on this data.

http://www.theyworkforyou.com
http://www.polidocs.nl
http://www.statengeneraaldigitaal.nl/
http://parlando.sdu.nl/cgi/login/anonymous
http://www.tweedekamer.nl/


144 M. Marx

Fig. 7. Who attacks who in the debate Algemene Beschouwingen on September 17 2008. Speak-
ers at the lectern are listed in the first column; their attackers on the top row. The numbers in
the cell indicate how often the person on the x-axis interrupted the speech by the person on
the y-axis. The numbers on the diagonal (in gray) are the number of answers to interruptions
given by the speaker on the lectern. Source: http://staff.science.uva.nl/˜marx/
politicalmashup/AB2008/DebatstructuurAB2008.html.

Complex content and structure queries. The explicit XML structure allows one to
formulate information needs using natural XPath, XQuery, XSLT or NEXI [37,51] ex-
pressions. We illustrate this by some examples:

– give speeches about Islam from debates about immigration can be formulated as
the NEXI query
//topic[about(.,immigration’)]//
speech[about(.,’islam’)].

– give all speakers who interrupted Geert Wilders during the Islam debate can be
formulated in XPath 1.0 as
//topic[@title=’islam’]//block[@speaker=’Wilders’]
//speech[@speaker != ’Wilders’]/@speaker.

– give a list of these speakers together with their number of interruptions ordered
by that number is expressed in XQuery or XSLT using the structure of the XPath
expression from the last bullet and the fn:count() function.

– Create a cross table of speakers at the lectern and their interrupters and list the
number of interruptions in each data cell is a typical task for XSLT. The result for
the Algemene Beschouwingen on September 17 2008, containing 624 speeches in
one debate, is reproduced in Figure 7.

Based on experience with bachelor information science students we claim that it is
easier to formulate such complex queries in XSLT directly on the original XML files
than to state them in SQL on a relational representation of a debate.

Automatic creation of tables of contents and navigation menus. The notes
of a one day meeting of Parliament tend to be quite long, typically between
50 and 100 pages two column PDF. Within the current search engine at www.
statengeneraaldigitaal.nl these are the documents returned to users. Unfor-
tunately these documents do not contain a table of contents listing the topics discussed in

http://staff.science.uva.nl/~marx/politicalmashup/AB2008/DebatstructuurAB2008.html
http://staff.science.uva.nl/~marx/politicalmashup/AB2008/DebatstructuurAB2008.html
www.statengeneraaldigitaal.nl
www.statengeneraaldigitaal.nl


Logical Foundations of XML and XQuery 145

a meeting. But even if such tables would be available in PDF they would be of little help
when browsing these documents on a computer because they do not contain hyperlinks.

Since the topics are explicit elements in the XML version of the data it is straightfor-
ward to automatically generate a hyperlinked table of contents for each document. This
can be done with XSLT.

Even one topic can be quite long. For instance, the meeting of September 18, 2008
took the whole day, consisted of 624 speeches with a total of 74068 words, all within
one topic. Fortunately the block structure can be used to break up this large chunk of
text. In fact the debate timelines in Figure 4 are navigation menus: each mouth contains
a hyperlink to exactly that part of the proceedings which record the speech represented
by the mouth. Again this is possible due to the added anchors.

Savings on bandwidth. The Dutch parliamentary data from before 1995 was only
available in printed form. Within the StatenGeneraalDigitaal project of the Dutch Royal
Library this data is scanned and OCR-ed (Optical Character Recognition), resulting in
complex PDF documents consisting of facsimile images of every page, the OCR-ed text
and a mapping from each word to its position on every page14.

Such files can be enormous in size. For instance, the proceedings on http://
resolver.kb.nl/resolve?urn=sgd:mpeg21:19851986:0000761 are
72 pages PDF. The size of this file is 24 Megabyte. The same proceedings in XML is less
than .5Mb. We experimented with reducing the size with gzip: the PDF became 23Mb
and the XML was reduced to 156Kb. This is 0.65% of the size of the original PDF.

Preliminary experiments show that using XSLT and LaTeX the original format of the
proceedings can be produced with very good layout accuracy and very fast. The result-
ing PDF is again less than .5Mb. Producing this PDF from the gzipped XML can even
be done at query time: on a standard Linux box this process took less than 1.5 seconds
real time. For detailed information on this experiment see http://ilps.science.
uva.nl/PoliticalMashup/2008/10/trading-space-for-time.

Thus large savings in bandwidth and storage space become possible. We must note
that the XML version is based on OCR-ed data and contains quite a few OCR errors.
Of course these come back in the PDF created from the XML source. Repairing such
mistakes automatically has been done with promising accuracy by Martin Reyneart
using his TICL technique [53].

We believe that the facsimiles need to be available as the ultimate source but that in a
search and browse interaction process with the data the alternative, much smaller, ver-
sion based on the XML is preferable. Users get results faster, they get clean hyperlinked
files, and they use much less bandwidth. Once a user knows exactly which document
she wants to consult, the large facsimile PDF can be downloaded.

4.5 To Conclude

We have shown that text extraction from Parliamentary proceedings based on regular
expressions and XSLT is feasible, scalable, possible on both digital and scanned data,
and leads to numerous benefits.

14 See http://www.statengeneraaldigitaal.nl/backgrounds.html for ex-
tensive information on the digitization process (in Dutch).

http://resolver.kb.nl/resolve?urn=sgd:mpeg21:19851986:0000761
http://resolver.kb.nl/resolve?urn=sgd:mpeg21:19851986:0000761
http://ilps.science.uva.nl/PoliticalMashup/2008/10/trading-space-for-time
http://ilps.science.uva.nl/PoliticalMashup/2008/10/trading-space-for-time
http://www.statengeneraaldigitaal.nl/backgrounds.html


146 M. Marx

We stress that this extraction process is transparent, repeatable and independent of
any software or hardware because we only use declarative programming languages with
a well described semantics. This means that when the extraction scripts (which are
themselves XML files, since it is XSLT) together with a copy of the XSLT reference
[39] are stored together with the original digitized data in a safe place, it is in principle
always possible to recreate the XML versions we have described here.

Several parliaments are digitizing their complete historical data. We are aware of
efforts in the UK, Ireland, Australia, and the Flemish Parliament. Our DTD is general
enough to fit all these proceedings. This opens the possibility of creating a huge inte-
grated multi-lingual XML repository of parliamentary proceedings. Such a repository
will facilitate comparative parliamentary (historical) research.

5 Operationalization of Policy Framing Questions on
Parliamentary Data with XQuery

This section is based on joint work with Loredana Afanasiev [3].
Even though it is often much easier to express a user’s information need in XPath and

XQuery than in SQL, the whole process may still be quite complex. Here we present an
elaborate example which involved a lot of data preprocessing. Having done that, writing
the actual query was rather simple.

The Information Need

An important field of study in political science is concerned with agenda-setting: Who
puts an issue on the political agenda, using which media? And then, how does an issue
evolve over time? Who takes the lead: do the media follow debate in parliament or is it
the other way around? This question is being researched in [54] for a period of around
20 years for a number of hot issues like “islamic threat and terrorism”. The authors
of [54] compiled their data “by hand” from PDF sources using Google style keyword
queries. The proceedings of the Dutch parliament are now available in XML [25], so
we could restate the information need in XPath and XQuery.

Here we copy how an information need can be operationalized in XQuery and
visualized using Google charts. Figure 8 contains part of one of the XML doc-
uments in the collection that was asked. The data is in Dutch but we trans-
late the most important parts. An elaborate description of the operationalization
process in given on http://ilps.science.uva.nl/PoliticalMashup/
framing-questions-on-polidocs-data. Here we summarize part of it.

The researcher gave us the following description of the query for his “anti-islam”
frame:

(islam* AND (bedreiging* OR terrorisme)).

He wanted to have for each year, all speeches made in parliament which matched his
query. From those speeches he wanted to know the date, the speaker, his/her party, and

http://ilps.science.uva.nl/PoliticalMashup/framing-questions-on-polidocs-data
http://ilps.science.uva.nl/PoliticalMashup/framing-questions-on-polidocs-data


Logical Foundations of XML and XQuery 147

of course the text of the speech. In addition we provided a URL which links exactly to
this speech. Here is how the output then looked like:

<frame name="anti-islam">
<collection name="HAN">
<result>

<date>14-03-1995</date>
<politicus party="VVD" name="Talsma"/>
<polidocslink>

http://www.polidocs.nl/XML/HAN/HAN2346.xml#665
</polidocslink>
<content>

Mevrouw de voorzitter! Ik zal over drie punten
opmerkingen maken, er daarbij
...

</content>
</result>

...
</collection>

</frame>

The XQuery to create this output is given in Figure 9. It is now easy to write XQueries
generating useful statistics, like the number of hits per year. One can even generate the
code for the plot using XQuery. Here this is done in two steps: the first query contains
the logical expression and stores it in an XML format. The second query reformats the
output into the specific format required by Google charts. The queries are in Figure 10
and 11. The intermediate XML looks as follows

<res>
<frame name="anti-islam">

<year name="1986">1</year>
<year name="1988">1</year>
<year name="1989">4</year>

...
</res>

The final plot and the code to produce it is in Figure 12.

Acknowledgements. Thanks are due to my coauthors of the presented material:
Loredana Afanasiev, Balder ten Cate and Tim Gielissen [3,4,25,64].



148 M. Marx

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="showHAN.xsl" type="text/xsl"?>

<handeling>
<metadata>

.....

<item attribuut="Vindplaats">
Handelingen 2006-2007, nr. 93, Tweede Kamer, pag. 5260-5319
</item>
<item attribuut="Afkomstig_van">Staten Generaal (SG)</item>
<item attribuut="Datum_vergadering">06-09-2007</item>
<item attribuut="Document-id">HAN8168A06</item>

....

</metadata>

<text>

<onderwerp pagina="93-5260">

Aan de orde is het debat over het kabinetsstandpunt
ten aanzien van het rapport Dynamiek in
islamitisch activisme van de Wetenschappelijke
Raad voor het Regeringsbeleid (WRR) (30800-VI,
nr. 115).

<blok pagina="93-5260">

<spreker pagina="93-5260" anker="2" partij="PVV" naam="Wilders">
Mevrouw de voorzitter. Om te

beginnen mijn oprechte dank aan u persoonlijk omdat u
op mijn verjaardag vandaag een debat over de islam
heeft gepland. Een mooier cadeau had ik mij niet kunnen

.....

Fig. 8. Part of the Dutch parliamentary proceedings in XML



Logical Foundations of XML and XQuery 149

(: Frame Anti-Islam
(islam* AND (bedreiging* or terrorisme))

Model: expressed via the contains() function of XQuery
:)

<frame name="anti-islam">
{

(: Collection HAN :)
<collection name="HAN">
{
for $d in collection(’HAN’)

for $spreker in $d//spreker[contains(string(.), "islam") and
( contains(string(.), "bedreiging") or

contains(string(.), "terrorisme")) ]
return

<result>
{
<date>{$d//metadata/item[@attribuut="Datum_vergadering"]/text()}
</date>,
<politicus name="{data($spreker/@naam)}"

party="{data($spreker/@partij)}"/>,
<polidocslink>{

concat(
"http://www.polidocs.nl/XML/HAN/",
$d//metadata/item[@attribuut="Document-id"]/text(),
".xml#",
$spreker/@anker
)

}</polidocslink>,
<content>{string($spreker)}</content>
}
</result>

}
</collection>

}
</frame>

Fig. 9. XQuery to generate the anti-islam frame



150 M. Marx

(:
Per frame per year return the count hits

:)

declare function local:get-year($d as element()) as xs:string* {
substring-before(string($d),’-’)

[string-length(.)=4 and not(contains(.,’-’))],
substring-before(string($d),’.’)

[string-length(.)=4 and not(contains(.,’.’))],
substring-after(string($d),’-’)

[string-length(.)=4 and not(contains(.,’-’))],
substring-after(string($d),’.’)

[string-length(.)=4 and not(contains(.,’.’))]
};

<res>
{
for $f in doc(’Frames.xml’)//frame
let $years :=

for $d in $f//date return local:get-year($d)
return
<frame>
{

$f/@name,
for $y in distinct-values($years)
order by $y
return
<year name="{$y}">{
count($years[. eq $y])

}
</year>

}
</frame>
}
</res>

Fig. 10. XQueries to produce the yearly aggregates



Logical Foundations of XML and XQuery 151

(:
Per frame per year return the count hits

:)

let $frames := doc(’agg2.xml’)//frame
let $allyears :=

for $y in distinct-values($frames/year/@name) order by $y return $y
let $minyear := min($allyears)
let $maxyear := max($allyears)
let $maxhit := max($frames/year)
let $data := string-join(

for $f in $frames
return concat(string-join($allyears,’,’),’|’,string-join(

for $y in $allyears
return if($f/year[@name = $y])

then ($f/year[@name = $y])
else(’0’),’,’)

),
’|’)

let $ds := string-join(
for $f in $frames
return

concat(string($minyear),’,’,string($maxyear),’,’,’0,’,
string($maxhit)),",")

return
concat(
’http://chart.apis.google.com/chart?’,
’chs=900x200&amp;’,
’cht=lxy&amp;’,
’chxt=x,y&amp;’,
’chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&amp;’,
’chds=’,$ds,’&amp;’,
’chd=t:’,$data,’&amp;’,
’chxr=0,’,string($minyear),’,’,string($maxyear),’,1|1,0,’,

string($maxhit),’,5&amp;’,
’chdl=’,string-join($frames/@name,’|’),’&amp;’,
’chco=FF0000,00FF00,0000FF,000000&amp;’,
’chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&amp;’
)

Fig. 11. XQuery to produce the Google Chart plot



152 M. Marx

F
ig

.1
2.

F
ra

m
e

hi
ts

pe
r

ye
ar

,
fo

r
fo

r
fr

am
es

.
S

ou
rc

e:
h
t
t
p
:
/
/
c
h
a
r
t
.
a
p
i
s
.
g
o
o
g
l
e
.
c
o
m
/
c
h
a
r
t
?
c
h
s
=
9
0
0
x
2
0
0
&
c
h
t
=
l
x
y
&
c
h
x
t
=
x
,

y
&
c
h
t
t
=
F
r
a
m
e
+
h
i
t
s
+
p
e
r
+
y
e
a
r
+
(
H
A
N
,
+
K
V
R
,
+
M
O
T
)
&
c
h
d
s
=
1
9
8
4
,
2
0
0
8
,
0
,
2
1
,
1
9
8
4
,
2
0
0
8
,
0
,
2
1
,
1
9
8
4
,
2
0
0
8
,
0
,
2
1
,
1
9
8
4
,

2
0
0
8
,
0
,
2
1
&
c
h
d
=
t
:
1
9
8
4
,
1
9
8
5
,
1
9
8
6
,
1
9
8
7
,
1
9
8
8
,
1
9
8
9
,
1
9
9
0
,
1
9
9
1
,
1
9
9
2
,
1
9
9
3
,
1
9
9
4
,
1
9
9
5
,
1
9
9
6
,
1
9
9
7
,
1
9
9
8
,
1
9
9
9
,

2
0
0
0
,
2
0
0
1
,
2
0
0
2
,
2
0
0
3
,
2
0
0
4
,
2
0
0
5
,
2
0
0
6
,
2
0
0
7
,
2
0
0
8
|
0
,
0
,
1
,
0
,
1
,
4
,
0
,
1
,
5
,
2
,
3
,
2
,
1
,
0
,
2
,
0
,
2
,
8
,
7
,
1
1
,
1
7
,
1
2
,
1
0
,

1
9
,
9
|
1
9
8
4
,
1
9
8
5
,
1
9
8
6
,
1
9
8
7
,
1
9
8
8
,
1
9
8
9
,
1
9
9
0
,
1
9
9
1
,
1
9
9
2
,
1
9
9
3
,
1
9
9
4
,
1
9
9
5
,
1
9
9
6
,
1
9
9
7
,
1
9
9
8
,
1
9
9
9
,
2
0
0
0
,
2
0
0
1
,

2
0
0
2
,
2
0
0
3
,
2
0
0
4
,
2
0
0
5
,
2
0
0
6
,
2
0
0
7
,
2
0
0
8
|
8
,
4
,
5
,
8
,
8
,
6
,
6
,
5
,
1
6
,
1
0
,
9
,
2
,
1
,
1
,
1
,
3
,
0
,
0
,
0
,
8
,
2
,
3
,
2
,
5
,
2
|
1
9
8
4
,

1
9
8
5
,
1
9
8
6
,
1
9
8
7
,
1
9
8
8
,
1
9
8
9
,
1
9
9
0
,
1
9
9
1
,
1
9
9
2
,
1
9
9
3
,
1
9
9
4
,
1
9
9
5
,
1
9
9
6
,
1
9
9
7
,
1
9
9
8
,
1
9
9
9
,
2
0
0
0
,
2
0
0
1
,
2
0
0
2
,
2
0
0
3
,

2
0
0
4
,
2
0
0
5
,
2
0
0
6
,
2
0
0
7
,
2
0
0
8
|
5
,
1
0
,
1
5
,
6
,
1
1
,
1
0
,
1
7
,
9
,
2
1
,
6
,
9
,
0
,
0
,
0
,
0
,
0
,
1
,
1
,
6
,
3
,
6
,
5
,
6
,
3
,
2
|
1
9
8
4
,
1
9
8
5
,
1
9
8
6
,

1
9
8
7
,
1
9
8
8
,
1
9
8
9
,
1
9
9
0
,
1
9
9
1
,
1
9
9
2
,
1
9
9
3
,
1
9
9
4
,
1
9
9
5
,
1
9
9
6
,
1
9
9
7
,
1
9
9
8
,
1
9
9
9
,
2
0
0
0
,
2
0
0
1
,
2
0
0
2
,
2
0
0
3
,
2
0
0
4
,
2
0
0
5
,

2
0
0
6
,
2
0
0
7
,
2
0
0
8
|
2
,
3
,
3
,
1
,
1
5
,
9
,
4
,
4
,
1
3
,
1
1
,
1
4
,
2
,
1
,
2
,
2
,
2
,
2
,
6
,
4
,
7
,
1
,
5
,
8
,
3
,
6
&
c
h
x
r
=
0
,
1
9
8
4
,
2
0
0
8
,
1
|
1
,
0
,
2
1
,

5
&
c
h
d
l
=
a
n
t
i
-
i
s
l
a
m
|
v
i
c
t
i
m
i
z
a
t
i
o
n
|
e
m
a
n
c
i
p
a
t
i
o
n
|
m
u
l
t
i
c
u
l
t
u
r
a
l
&
c
h
c
o
=
F
F
0
0
0
0
,
0
0
F
F
0
0
,
0
0
0
0
F
F
,
0
0
0
0
0
0
&
c
h
m
=
s
,

F
F
0
0
0
0
,
0
,
-
1
,
5
|
s
,
0
0
F
F
0
0
,
1
,
-
1
,
5
|
s
,
0
0
0
0
F
F
,
2
,
-
1
,
5
|
s
,
0
0
0
0
0
0
,
3
,
-
1
,
5
&

http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&
http://chart.apis.google.com/chart?chs=900x200&cht=lxy&chxt=x,y&chtt=Frame+hits+per+year+(HAN,+KVR,+MOT)&chds=1984,2008,0,21,1984,2008,0,21,1984,2008,0,21,1984,2008,0,21&chd=t:1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|0,0,1,0,1,4,0,1,5,2,3,2,1,0,2,0,2,8,7,11,17,12,10,19,9|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|8,4,5,8,8,6,6,5,16,10,9,2,1,1,1,3,0,0,0,8,2,3,2,5,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|5,10,15,6,11,10,17,9,21,6,9,0,0,0,0,0,1,1,6,3,6,5,6,3,2|1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008|2,3,3,1,15,9,4,4,13,11,14,2,1,2,2,2,2,6,4,7,1,5,8,3,6&chxr=0,1984,2008,1|1,0,21,5&chdl=anti-islam|victimization|emancipation|multicultural&chco=FF0000,00FF00,0000FF,000000&chm=s,FF0000,0,-1,5|s,00FF00,1,-1,5|s,0000FF,2,-1,5|s,000000,3,-1,5&


Logical Foundations of XML and XQuery 153

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the web. Morgan Kaufman, San Francisco
(2000)

2. Afanasiev, L., Franceschet, M., Marx, M., Zimuel, E.: XCheck: a Platform for Benchmarking
XQuery Engines. In: Proceedings of VLDB, Demo, Seoul, Korea. ACM Press, New York
(2006)

3. Afanasiev, L., Marx, M.: Operationalization of policy framing questions on parliamentary
data with XQuery (2009), http://ilps.science.uva.nl/PoliticalMashup/
framing-questions-on-polidocs-data/

4. Afanasiev, L., ten Cate, B., Marx, M.: Lekker bomen. Nieuwsbrief van de NVTI 11, 38–52
(2007)

5. Axyana software. Qizx/open. An open-source Java implementation of XQuery (2006),
http://www.axyana.com/qizxopen

6. Balog, K.: People Search in the Enterprise. PhD thesis, University of Amsterdam (June 2008)
7. Benedikt, M., Fan, W., Kuper, G.M.: Structural properties of XPath fragments. In: Calvanese,

D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 79–95. Springer,
Heidelberg (2002)

8. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular expres-
sions for the inference of schemas from xml data. In: WWW 2008: Proceeding of the 17th
international conference on World Wide Web, pp. 825–834. ACM, New York (2008)

9. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cam-
bridge (2001)

10. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. In: PODS, pp. 10–19 (2006)

11. Brüggemann-Klein, A., Wood, D.: Caterpillars, context, tree automata and tree pattern
matching. In: Rozenberg, G., Thomas, W. (eds.) Proceedings of DLT 1999: Foundations,
Applications and Perspectives, pp. 270–285. World Scientific Publishing, Singapore (2000)

12. Chandra, A., Harel, D.: Structure and complexity of relational queries. J. Comput. Syst.
Sci. 25(1), 99–128 (1982)

13. Clark, J., DeRose, S.: XML Path Language (XPath), http://www.w3.org/TR/xpath
14. Clarke, E.M., Schlingloff, B.-H.: Model checking. In: Robinson, A., Voronkov, A. (eds.)

Handbook of Automated Reasoning, pp. 1367–1522. Elsevier Science Publishers, Amster-
dam (2000)

15. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the alternation-free
modal mu-calculus. Form. Methods Syst. Des. 2(2), 121–147 (1993)

16. Codd, E.: Relational completeness of data base sublanguages. In: Rustin, R. (ed.) Database
Systems, pp. 33–64. Prentice-Hall, Englewood Cliffs (1972)

17. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)
18. Engelfriet, J., Hoogeboom, H.J.: Nested pebbles and transitive closure. In: Durand, B.,

Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 477–488. Springer, Heidelberg (2006)
19. Etessami, K., Vardi, M.: First-order logic with two variables and unary temporal logic. In:

Proc. LICS 1997, pp. 228–235 (1997)
20. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: SMOQE: a system for providing secure

access to XML. In: Proceedings VLDB 2006, pp. 1227–1230 (2006)
21. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Rewriting regular XPath queries on XML

views. In: Proceedings ICDE 2007 (2007)
22. Fernández, M., Siméon, J., Chen, C., Choi, B., Gapeyev, V., Marian, A., Michiels, P., Onose,

N., Petkanics, D., Ré, C., Stark, M., Sur, G., Vyas, A., Wadler, P.: Galax. The XQuery im-
plementation (2006), http://www.galaxquery.org

http://ilps.science.uva.nl/PoliticalMashup/framing-questions-on-polidocs-data/
http://ilps.science.uva.nl/PoliticalMashup/framing-questions-on-polidocs-data/
http://www.axyana.com/qizxopen
http://www.w3.org/TR/xpath
http://www.galaxquery.org


154 M. Marx

23. Filiot, E., Niehren, J., Talbot, J.-M., Tison, S.: Polynomial time fragments of xpath with
variables. In: Proceedings of PODS 2007 (2007)

24. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences 18, 194–211 (1979)

25. Gielissen, T., Marx, M.: Exemelification of parliamentary debates. In: Proceedings of the 9th
Dutch-Belgian Information Retrieval Workshop (DIR 2009), Twente, The Netherlands, pp.
19–25 (2009)

26. Goris, E., Marx, M.: Looping caterpillars. In: Proceedings LICS 2005. IEEE Computer So-
ciety, Los Alamitos (2005)

27. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries. In:
VLDB 2002 (2002)

28. Gottlob, G., Koch, C., Schulz, K.: Conjunctive queries over trees. In: Proceedings PODS
2004, pp. 189–200 (2004)

29. Grohe, M., Schweikardt, N.: The succinctness of first-order logic on linear orders 1(1) (2005)
30. Hajer, M.: Setting the stage, a dramaturgy of policy deliberation. Administration & Soci-

ety 36(6), 624–647 (2005)
31. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years. In: Dayal,

U., Whang, K.-Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha, S.K., Kim,
Y.-K. (eds.) VLDB, pp. 9–16. ACM, New York (2006)

32. Halpern, J.Y., Harper, R., Immerman, N., Kolaitis, P.G., Vardi, M.Y., Vianu, V.: On the
unusual effectiveness of logic in computer science. The Bulletin of Symbolic Logic 7(2),
213–236 (2001)

33. Hariman, R.: Political style. The artistry of power. University of Chicago Press, Chicago (1995)
34. Hodkinson, I., Reynolds, M.: Separation - past, present, and future. In: Artemov, S., et

al. (eds.) We will show them! (Essays in honour of Dov Gabbay on his 60th birthday),
pp. 117–142. College Publications (2005)

35. Hollenberg, M.: An equational axiomatization of dynamic negation and relational composi-
tion. Journal of Logic, Language and Information 6(4), 381–401 (1997)

36. Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of
California, Los Angeles (1968)

37. Kamps, J., Marx, M., de Rijke, M., Sigurbjörnsson, B.: Articulating information needs in
XML query languages. ACM Trans. Inf. Syst. 24(4), 407–436 (2006)

38. Kay, M.: XPath 2.0 Programmer’s Reference. Wrox (2004)
39. Kay, M.: XSLT 2.0 3rd edn. Programmer’s Reference. Wrox (2004)
40. Kay, M.H.: SaxonB. An XSLT and XQuery processor (2006),

http://saxon.sourceforge.net
41. Lange, M.: Model checking propositional dynamic logic with all extras. Journal of Applied

Logic 4(1), 39–49 (2005)
42. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis,

N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D.,
Van Alstyne, M.: Computational social science. Science 323(5915), 721–723 (2009)

43. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. PODS, pp. 233–246 (2002)
44. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information sources using

source descriptions. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.)
VLDB, pp. 251–262. Morgan Kaufmann, San Francisco (1996)

45. Lutz, C.: The Complexity of Reasoning with Concrete Domains. PhD thesis, Teaching and
Research Area for Theoretical Computer Science, RWTH Aachen (2002)

46. Marx, M.: XPath with conditional axis relations. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 477–494. Springer, Heidelberg (2004)

http://saxon.sourceforge.net


Logical Foundations of XML and XQuery 155

47. Marx.,M.:ConditionalXPath.ACMTransactionsonDatabaseSystems 30(4), 929–959 (2005)
48. Marx, M., de Rijke, M.: Semantic Characterizations of Navigational XPath. ACM SIGMOD

Record 34(2), 41–46 (2005)
49. MonetDB/XQuery. An XQuery Implementation (2006),

http://monetdb.cwi.nl/XQuery
50. Neven, F., Schwentick, T.: XPath containment in the presence of disjunction, DTDs, and

variables. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572,
pp. 312–326. Springer, Heidelberg (2002)

51. O’Keefe, R.A., Trotman, A.: The Simplest Query Language That Could Possibly Work. In:
Proceedings of the 2nd INEX Workshop (2004)

52. Rahm, E., Do, H.-H.: Data cleaning: Problems and current approaches. IEEE Techn. Bulletin
on Data Engineering 23(4) (2000)

53. Reynaert, M.: Non-interactive OCR post-correction for giga-scale digitization projects. In:
Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 617–630. Springer, Heidelberg (2008)

54. Roggeband, C., Vliegenthart, R.: Divergent framing: The public debate on migration in the
Dutch parliament and media, 1995-2004. West European Politics 30(3), 524–548 (2007)

55. Runapongsa, K., Patel, J.M., Jagadish, H.V., Al-Khalifa, S.: The michigan benchmark: A
microbenchmark for XML query processing systems. In: Bressan, S., Chaudhri, A.B., Li
Lee, M., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, pp.
160–161. Springer, Heidelberg (2003)

56. Seaton, J.: The Scottish Parliament and e-democracy. Aslib Proceedings: New Information
Perspectives 57(4), 333–337 (2005)

57. Sigurbjörnsson, B.: Focused information access using XML element retrieval. PhD thesis,
University of Amsterdam (2006)

58. Stockmeyer, L.: The Complexity of Decision Problems in Automata Theory. PhD thesis,
Dept. Electrical Engineering. MIT, Cambridge (1974)

59. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)
60. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables, vol. 41. AMS Col-

loquium publications, Providence (1987)
61. ten Cate, B.: The expressivity of XPath with transitive closure. In: Proceedings of PODS

2006, pp. 328–337 (2006)
62. ten Cate, B., Lutz, C.: The complexity of query containment in expressive fragments of XPath

2.0. In: Proceedings PODS 2007 (2007)
63. ten Cate, B.D., Marx, M.: Axiomatizing the logical core of xPath 2.0. In: Schwentick, T.,

Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 134–148. Springer, Heidelberg (2006)
64. ten Cate, B., Marx, M.: Navigational xpath: calculus and algebra. SIGMOD Record 36(2),

19–26 (2007)
65. van Baalen, C., Bos, A.: In vergadering bijeen. Rituelen, symbolen, tradties en gebruiken in

de Tweede Kamer. In: Jaarboek Parlementaire Geschiedenis 2008, Boom (2008)
66. van Benthem, J.: Program constructions that are safe for bisimulation. Studia Logica 60(2),

330–331 (1998)
67. Vardi, M.: On the complexity of bounded–variable queries. In: Proceedings PODS 1995, pp.

266–276 (1995)
68. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proceed-

ings of STOC 1982, pp. 137–146. ACM Press, New York (1982)

Appendix: Until Queries

The following equivalent queries were used in the experiment reported in Figure 3. The
id attribute of the query element gives the query name used in the histogram; the

http://monetdb.cwi.nl/XQuery


156 M. Marx

description element gives a short query description; and the syntax element contains
the actual query in XQuery.

<queries>

<query id="U1">
<description>Use recursive function</description>
<syntax engine="all"><![CDATA[

declare namespace my=’my-functions’;
declare function my:until($input as node()*)
{
for $i in $input return
($i/child::*[@aFour=3],my:until($i/child::*[@aFour=0]))

};
let $start := doc("mbench.xml")//*[@aLevel=5]
return
my:until($start)

]]></syntax>
</query>
<query id="U2">
<description>Use except</description>
<syntax engine="all"><![CDATA[

let $start := doc("mbench.xml")//*[@aLevel=5]
return
$start//*[@aFour=3] except $start//*[not(.[@aFour=0])]//*

]]></syntax>
</query>
<query id="U3">
<description>Forward every with if </description>
<syntax engine="all"><![CDATA[

for $start in doc("mbench.xml")//*[@aLevel=5],
$end in $start//*[@aFour=3]

return
if (every $inbetween in $start//*[.//*[. is $end]] satisfies

$inbetween/@aFour=0)
then $end
else ()

]]></syntax>
</query>
<query id="U4">
<description>Forward as in the usual FO writing of until

but now with a predicate
</description>



Logical Foundations of XML and XQuery 157

<syntax engine="all"><![CDATA[

for $start in doc("mbench.xml")//*[@aLevel=5],
$end in $start//*[@aFour=3]

return
$end[every $inbetween in $start//*[.//*[. is $end]] satisfies
$inbetween/@aFour=0]

]]></syntax>
</query>
<query id="U5">
<description>Forward empty with if </description>
<syntax engine="all"><![CDATA[

for $start in doc("mbench.xml")//*[@aLevel=5],
$end in $start//*[@aFour=3]

return
if (empty($start//*[not(.[@aFour=0])]//*[. is $end]))
then $end
else ()

]]></syntax>
</query>
<query id="U6">
<description>Backward with every</description>
<syntax engine="all"><![CDATA[

for $start in doc("mbench.xml")//*[@aLevel=5]
return
$start//*[@aFour=3]
[every $inbetween in ancestor::*[ancestor::*[. is $start]]

satisfies $inbetween/@aFour=0]

]]></syntax>
</query>
<query id="U7">
<description>Backward with predicate</description>
<syntax engine="all"><![CDATA[

for $start in doc("mbench.xml")//*[@aLevel=5]
return
$start//*[@aFour=3]
[not(ancestor::*[not(.[@aFour=0])]/ancestor::*[. is $start])]

]]></syntax>
</query>

</queries>



Foundations of RDF Databases

Marcelo Arenas1, Claudio Gutierrez2, and Jorge Pérez1

1 Department of Computer Science, Pontificia Universidad Católica de Chile
2 Department of Computer Science, Universidad de Chile

Abstract. The goal of this paper is to give an overview of the basics
of the theory of RDF databases. We provide a formal definition of RDF
that includes the features that distinguish this model from other graph
data models. We then move into the fundamental issue of querying RDF
data. We start by considering the RDF query language SPARQL, which
is a W3C Recommendation since January 2008. We provide an algebraic
syntax and a compositional semantics for this language, study the com-
plexity of the evaluation problem for different fragments of SPARQL, and
consider the problem of optimizing the evaluation of SPARQL queries,
showing that a natural fragment of this language has some good prop-
erties in this respect. We furthermore study the expressive power of
SPARQL, by comparing it with some well-known query languages such
as relational algebra. We conclude by considering the issue of querying
RDF data in the presence of RDFS vocabulary. In particular, we present
a recently proposed extension of SPARQL with navigational capabilities.

1 Introduction

The Resource Description Framework (RDF) [34] is a data model for representing
information about World Wide Web resources. Jointly with its release in 1998 as
Recommendation of the W3C, the natural problem of querying RDF data was
raised. Since then, several designs and implementations of RDF query languages
have been proposed. In 2004, the RDF Data Access Working Group, part of the
W3C Semantic Web Activity, released a first public working draft of a query
language for RDF, called SPARQL [45]. Since then, SPARQL has been rapidly
adopted as the standard for querying Semantic Web data. In January 2008,
SPARQL became a W3C Recommendation.

RDF and SPARQL are two of the core technologies in the data and query lay-
ers of the Semantic Web stack. In this paper, we give an overview of the current
state of the theory of RDF and SPARQL from a database perspective. We first
provide a formal definition of RDF that includes the features that distinguish
this model from other database models. We then move into the fundamental
issue of querying RDF data with SPARQL. We provide an algebraic syntax and
a compositional semantics for this language, study the complexity of the eval-
uation problem for different fragments of SPARQL, and consider the problem
of optimizing the evaluation of SPARQL queries, showing that a natural frag-
ment of this language has some good properties in this respect. We furthermore

S. Tessaris et al. (Eds.): Reasoning Web 2009, LNCS 5689, pp. 158–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Foundations of RDF Databases 159

study the expressive power of SPARQL, by comparing it with some well-known
query languages such as relational algebra. We conclude by considering the is-
sue of querying RDF data in the presence of RDFS vocabulary. In particular, we
present a recently proposed extension of SPARQL with navigational capabilities,
and show that this language is expressive enough to deal with the semantics of
the RDFS vocabulary.

The paper is organized as follows. In Section 2, we introduce RDF as a data
model. In Section 3, we provide a formalization of the syntax and semantics of
SPARQL. In Section 4, we study the complexity of the evaluation problem for
SPARQL and some optimization results for this language. In Section 5, we study
the expressiveness of SPARQL. Finally, we present in Section 6 an extension of
SPARQL that gives navigational capabilities to the language and allows to deal
with the RDFS vocabulary.

2 The RDF Data Model

The Semantic Web is a proposal to build an infrastructure of machine-readable
semantics for the data on the Web. In 1998, the W3C issued a recommendation
of a metadata model and language to serve as the basis for such infrastructure,
the Resource Description Framework (RDF) [32]. As RDF evolves, it is increas-
ingly gaining attraction from both researchers and practitioners, and is being
implemented in world-wide initiatives such as the Open Directory Project [39],
Dublin Core [48], FOAF [49], and RSS [46].

RDF follows the W3C design principles of interoperability, extensibility, evo-
lution and decentralization. Particularly, the RDF model was designed to have
a simple data model, with a formal semantics and provable inference, with
an extensible URI-based vocabulary, and which allows anyone to make state-
ments about any resource. In the RDF model, the universe to be modeled is a
set of resources, essentially anything that can have a universal resource identi-
fier, URI [50]. The language to describe them is a set of properties, technically
binary predicates. Descriptions are statements very much in the subject-predicate-
object structure, where predicate and object are resources or strings. Both sub-
ject and object can be anonymous objects, known as blank nodes. In addition,
the RDF specification includes a built-in vocabulary with a normative seman-
tics (RDFS). This vocabulary deals with inheritance of classes and properties,
as well as typing, among other features [11].

The RDF model is specified in a series of W3C documents [11,27,32,34]. In
this section, we introduce an abstract version of the RDF data model, which
is both a fragment following faithfully the original specification, and also an
abstract version suitable to do formal analysis. What is left out are features of
RDF dealing with some implementation issues, such as detailed typing issues,
some distinguish vocabulary which has no particular semantics, and all topics
involved with the XML-based syntax and serialization. The original formulation
of this fragment was introduced in [23], and enriched and corrected in [37]. The
main goal of isolating such a fragment is to have a simple and stable core over



160 M. Arenas, C. Gutierrez, and J. Pérez

which to discuss theoretical issues, dealing with RDF from a database point of
view.

2.1 RDF Graphs

Assume there are pairwise disjoint infinite sets U (RDF URI references) and B
(Blank nodes)1. Through the paper we assume U and B fixed, and for simplic-
ity we denote unions of these sets simply concatenating their names. A tuple
(s, p, o) ∈ UB × U × UB is called an RDF triple. In this tuple, s is the subject,
p the predicate, and o the object.

Definition 1. An RDF graph (or simply a graph) is a set of RDF triples. A
graph is ground if it has no blank nodes.

Graphically, we represent RDF graphs as follows: each triple (s, p, o) is repre-
sented by a labeled edge s

p−→ o. Notice that the set of arc labels can have a
non-empty intersection with the set of node labels. Thus, technically speaking,
and “RDF graph” is not a graph in the classical sense (for further discussion on
this issue see [26]).

In what follows, we need the fundamental notion of homomorphism. Given
two RDF graphs G1 and G2, a homomorphism h : G1 → G2 is a mapping from
UB to UB such that h(u) = u for every element u ∈ U , and for every triple
(s, p, o) in G1, it holds that (h(s), h(p), h(o)) ∈ G2. We denote by h(G1) the
RDF graph {(h(s), h(p), h(o)) | (s, p, o) ∈ G1}. Thus, a homomorphism h from
G1 to G2 is such that h(G1) ⊆ G2.

2.2 RDFS

The RDF specification includes a set of reserved words, the RDFS vocabulary
(RDF Schema [11]), which is designed to describe relationships between resources
and properties like attributes of resources (traditional attribute-value pairs).
Roughly speaking, this vocabulary can be conceptually divided into the following
groups:

(a) A set of properties, which are binary relations between subject resources
and object resources: rdfs:subPropertyOf (denoted by sp in this paper),
rdfs:subClassOf (sc), rdfs:domain (dom), rdfs:range (range) and rdf:type
(type).

(b) A set of classes, that denote set of resources. Elements of a class are known
as instances of that class. To state that a resource is an instance of a class,
the reserved word type may be used.

1 For the sake of simplicity, here we do not make a special distinction between URIs
and Literals, and we assume that RDF graphs are constructed by using only URIs
and Blank nodes. The inclusion of literals does not change any of the results of this
paper.



Foundations of RDF Databases 161

(c) Other functionalities, like a system of classes and properties to describe lists,
and a system for doing reification.

(d) Utility vocabulary used to document, comment, etc. (the complete vocabu-
lary can be found in [11]).

The groups in (b), (c) and (d) have a light semantics, essentially describing their
internal relationships in the ontological design of the system of classes of RDFS.
Their semantics is defined by a set of “axiomatic triples” [27], which express
the relationships among these reserved words. All axiomatic triples are “struc-
tural”, in the sense that do not refer to external data. Much of this semantics
corresponds to what in standard languages is captured via typing.

On the contrary, the group (a) is formed by predicates whose intended mean-
ing is non-trivial, and is designed to relate individual pieces of data external to
the vocabulary of the language. Their semantics is defined by rules which involve
variables (to be instantiated by actual data). For example, rdfs:subClassOf (sc)
is a reflexive and transitive binary property; and when combined with rdf:type
(type) specify that the type of an individual (a class) can be lifted to that of a
superclass.

The group (a) forms the core of the RDF language and, from a theoretical
point of view, it has been shown to be a very stable core to work with (the
detailed arguments supporting this claim are given in [37]). Thus, throughout
the paper we focused on the fragment of RDFS given by the set of keywords
{sp, sc, type, dom, range}.

2.3 Semantics of RDF Graphs

In this section, we present the formalization of the semantics of RDF given in
[27,37]. The normative semantics for RDF graphs given in [27] follows a stan-
dard logical treatment, including classical notions such as model, interpretation,
entailment, and so on. We present the simplification of the normative semantics
proposed in [37]. It is important to notice that these two approaches were shown
to be equivalent for the fragment of the RDFS vocabulary considered in this
paper [37].

An RDF interpretation is a tuple I = (Res ,Prop,Class ,PExt ,CExt , Int),
where (1) Res is a nonempty set of resources, called the domain or universe of
I; (2) Prop is a set of property names (not necessarily disjoint from Res); (3)
Class ⊆ Res is a distinguished subset of Res identifying if a resource denotes
a class of resources; (4) PExt : Prop → 2Res×Res, a mapping that assigns an
extension to each property name; (5) CExt : Class → 2Res a mapping that
assigns a set of resources to every resource denoting a class; (6) Int : U →
Res ∪Prop, the interpretation mapping, is a mapping that assigns a resource or
a property name to each element of U .

Intuitively, a ground triple (s, p, o) in a graph G is true under the interpreta-
tion I, if p is interpreted as a property name, s and o are interpreted as resources,
and the interpretation of the pair (s, o) belongs to the extension of the prop-
erty assigned to p. Formally, we say that I satisfies the ground triple (s, p, o) if



162 M. Arenas, C. Gutierrez, and J. Pérez

Int(p) ∈ Prop and (Int(s), Int(o)) ∈ PExt(Int(p)). An interpretation must also
satisfy additional conditions induced by the usage of the RDFS vocabulary. For
example, an interpretation satisfying the triple (c1, sc, c2) must interpret c1 and
c2 as classes of resources, and must assign to c1 a subset of the set assigned to
c2. More formally, we say that I satisfies (c1, sc, c2) if Int(c1), Int(c2) ∈ Class
and CExt(c1) ⊆ CExt(c2).

Blank nodes work as existential variables. Intuitively, a triple (x, p, o) would
be true under I, where x is a blank node, if there exists a resource s such that
(s, p, o) is true under I. An arbitrary element can be chosen when interpreting a
blank node, with the restriction that all the occurrences of the same blank node in
an RDF graph must be replaced by the same value. To formally deal with blank
nodes, an extension of the interpretation mapping Int is used. Let A : B → Res
be a function between blank nodes and resources. Then IntA : UB → Res
is defined as the extension of function Int : IntA(x) = A(x) for x ∈ B, and
IntA(x) = Int(x) for x ∈ U .

We next formalize the notion of model for an RDF graph [27,37]. We say that
the RDF interpretation I = (Res ,Prop,Class ,PExt ,CExt , Int) is a model of
(is an interpretation for) an RDF graph G, denoted by I |= G, if the following
conditions hold:

Simple Interpretation:
– there exists a function A : B → Res such that for each (s, p, o) ∈ G, it

holds that Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ PExt(Int(p)).
Properties and Classes :

– Int(sp), Int(sc), Int(type), Int(dom), Int(range) ∈ Prop,
– if (x, y) ∈ PExt(Int(dom)) ∪ PExt(Int(range)), then x ∈ Prop and y ∈

Class .
Sub-property:

– PExt(Int(sp)) is transitive and reflexive over Prop,
– if (x, y) ∈ PExt(Int(sp)), then x, y ∈ Prop and PExt(x) ⊆ PExt(y).

Sub-class :
– PExt(Int(sc)) is transitive and reflexive over Class ,
– if (x, y) ∈ PExt(Int(sc)), then x, y ∈ Class and CExt(x) ⊆ CExt(y).

Typing:
– (x, y) ∈ PExt(Int(type)) if and only if y ∈ Class and x ∈ CExt(y),
– if (x, y) ∈ PExt(Int(dom)) and (u, v) ∈ PExt(x), then u ∈ CExt(y),
– if (x, y) ∈ PExt(Int(range)) and (u, v) ∈ PExt(x), then v ∈ CExt(y).

Example 1. Figure 1 shows an RDF graph storing information about painters.
All the triples in the graph are composed by elements in U , except for the triples
containing the blank node X . Consider now the interpretation I = (Res, Prop,
Class , PExt , CExt , Int) defined as follows:

– Res = {Painter, Guayasamin, Cubist, creates, paints, Guernica, Bilbao}.
– Prop = {paints, creates, exhibited in, type, sp, sc, dom, range}.
– Class = {Cubist, Painter}.
– PExt is such that:



Foundations of RDF Databases 163

sp

X Guernica

paints

Cubist

Guayasamin

sc

type type

Bilbao
exhibited in

type

creates

Painter

Fig. 1. Example of an RDF graph

• PExt(paints) = PExt(creates) = {(Guayasamin, Guernica)},
• PExt(exhibited in) = {(Guernica, Bilbao)},
• PExt(type) = {(Guayasamin, Cubist), (Guayasamin, Painter)},
• PExt(sp) = {(paints, create)} ∪ {(x, x) | x ∈ Prop},
• PExt(sc) = {(Cubist, Painter), (Cubist, Cubist), (Painter, Painter)},
• PExt(dom) = PExt(range) = ∅.

– CExt is such that CExt(Cubist) = CExt(Painter) = {Guayasamin}.
– Int is the identity mapping over Res ∪ Prop.

Notice that in our interpretation the sets Res and Prop are subsets of U , but in
general, Res and Prop can be arbitrary sets. Let G be the RDF graph of Fig. 1.
By considering the function A : B → Res such that A(X) = Guayasamin, it can
be shown that I |= G, that is, I satisfies all the conditions to be a model of G.

In the interpretation I, we use Guayasamin as a witness for the blank node
X . Another model of G can use a different witness. For example consider the
interpretation I ′ = (Res ′,Prop,Class ,PExt ′,CExt ′, Int ′) where:

– Res ′ = Res ∪ {Picasso}.
– PExt ′ is such that:

• PExt ′(paints) = PExt ′(creates) = {(Picasso, Guernica)},
• PExt ′(type) = { (Picasso, Cubist), (Picasso, Painter), (Guayasamin,

Painter) },
• PExt ′ is equal to PExt in every other case.

– CExt ′ is such that CExt ′(Cubist) = {Picasso} and CExt ′(Painter) = {Picasso,
Guayasamin}

– Int ′ is the identity mapping over Res ′ ∪ Prop.

It can be shown that interpretation I ′ is also a model for G, but this time using
Picasso as witness for the blank node X in G. �!

2.4 A Deductive System for RDFS

The notion of entailment has shown to be of fundamental importance for many
tasks in the database context, and as such it also plays a fundamental role in
the context of RDF. Indeed, this notion has been present since the beginning of
the Semantic Web initiative. In this section, we study this concept in detail.



164 M. Arenas, C. Gutierrez, and J. Pérez

Given RDF graphs G1 and G2, we say that G1 entails G2, denoted by G1 |=
G2, if for every interpretation I such that I |= G1, it holds that I |= G2. In
[37], the authors showed that this entailment notion between RDF graphs is
equivalent to the W3C normative notion of entailment [27], for the fragment of
the RDFS vocabulary considered in this paper. In Table 1, we present a deductive
system for this notion. This system was given in [37], and is based on a set of
rules for |= introduced in [27].

The first rule in Tab. 1 captures the semantics of blank nodes. In every rule
(2)-(7), letters A, B, C, X , and Y, stand for variables to be replaced by actual
terms. More formally, an instantiation of a rule (2)-(7) is a replacement of the
variables occurring in the triples of the rule by elements of UB , such that all the

Table 1. RDFS inference rules

1. Existential:

G

G′ for a homomorphism h : G′ → G

2. Subproperty:

(a) (A,sp,B) (B,sp,C)
(A,sp,C)

(b) (A,sp,B) (X ,A,Y)
(X ,B,Y)

3. Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C)

(b) (A,sc,B) (X ,type,A)
(X ,type,B)

4. Typing:

(a) (A,dom,B) (X ,A,Y)
(X ,type,B)

(b) (A,range,B) (X ,A,Y)
(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B) (C,sp,A) (X ,C,Y)
(X ,type,B)

(b) (A,range,B) (C,sp,A) (X ,C,Y)
(Y,type,B)

6. Subproperty Reflexivity:

(a) (X ,A,Y)
(A,sp,A)

(b) (A,sp,B)
(A,sp,A) (B,sp,B)

(c)
(p,sp,p)

for p ∈ {sp, sc, dom,
range, type}

(d) (A,p,X)
(A,sp,A)

for p ∈ {dom, range}

7. Subclass Reflexivity:

(a) (A,sc,B)
(A,sc,A) (B,sc,B)

(b) (X ,p,A)
(A,sc,A)

for p ∈ {dom, range, type}



Foundations of RDF Databases 165

Dryad

sp

Guernica

paints

Cubist

Guayasamin

sc

type type

Bilbao
exhibited in

Picasso

creates

Painter

Fig. 2. RDF graph from which we can deduce the graph in Fig. 1

triples obtained after the replacement are well formed RDF triples, that is, not
assigning blank nodes to variables in predicate positions.

An application of a rule to a graph G is defined as follows. For rule (1), if
h is a homomorphism from G′ to G, then G′ is the result of an application of
rule (1) to G. If r is any of the rules (2)-(7), and there is an instantiation R

R′ of
r such that R ⊆ G, then the graph G′ = G ∪ R′ is the result of an application
of r to G. We say that a graph G′ is deduced from G, if G′ is obtained from G
by successively applying the rules in Tab. 1.

In [37], the authors proved that the set of rules in Tab. 1 is sound and complete
for the inference problem for the fragment of RDFS consisting of the reserved
words sc, sp, range, dom and type. That is, it captures the semantics of the
normative RDF specification when one focuses on the fragment of the RDFS
vocabulary considered in this paper.

Theorem 1 (Soundness and completeness [37]). Let G and H be RDF
graphs, then G |= H iff H is deduced from G by applying rules in Tab. 1.

It is worth mentioning that the set of rules presented in [27] is not complete for |=
(this was pointed out by Marin in [35]). The problem with the system proposed
in [27] is that a blank node X can be implicitly used as a property in triples
like (a, sp, X), (X, dom, b), and (X, range, c). This problem was solved in [37] by
following the approach proposed by Marin [35]. In fact, the rules (5a)-(5b) were
added to the system given in [27] to deal with this problem.

Example 2. Let G be the graph in Fig. 1 and G′ the graph in Fig. 2. Notice that
the triples (Picasso, type, Cubist) and (Cubist, sc, Painter) belong to G′. Thus,
by using rule (3b) we obtain that G′′ = G′∪{(Picasso, type, Painter)} is deduced
from G′. Moreover, if we consider a homomorphism h such that h(X) = Picasso,
then we have that h(G) ⊆ h(G′′), and, thus, applying rule (1) we conclude that
G can be deduced from G′′. Therefore, the graph G can be deduced from G′ by
successively applying rules (3b) and (1). Hence, from Theorem 1 we have that
every model of G′ is also a model of G, i.e. G′ |= G. �!

In [37], the authors showed that the deductive system of Tab. 1 can be simplified
by imposing some syntactic restrictions on RDF graphs. The most simple case



166 M. Arenas, C. Gutierrez, and J. Pérez

is obtained when G and H are graphs that do not have blank nodes, and do
not mention RDFS vocabulary. In that case, the entailment relation G |= H is
reduced to just testing whether H ⊆ G. On the other hand, if G and H are
RDF graphs that do not mention RDFS vocabulary (but possibly blank nodes),
then G |= H if and only if H can be obtained from G by using rule (1), that
is, if and only if there exists a homomorphism h : H → G2. Another important
simplification is obtained if one forbids the presence of reflexive triples. A triple
t is reflexive if t is of the form (x, sp, x) or (x, sc, x) for x ∈ UB . We formalize
two of these special cases in the following proposition.

Proposition 1 ([37])

1. If G and H are RDF graphs that do not mention RDFS vocabulary, then
G |= H iff there exists a homomorphism h : H → G.

2. If G and H are RDF graphs that have neither blank nodes nor reflexive
triples, then G |= H iff H can be deduced from G by using rules (2)-(4).

In the following sections, we study the fundamental problem of querying RDF
data. There is no yet consensus in the Semantic Web community on how to
define a query language for RDF that includes all the features of the RDF data
model, in particular blank nodes and the RDFS vocabulary. The specification of
SPARQL, the standard language for RDF, currently considers RDF data without
RDFS vocabulary and with no special semantics for blank nodes. Thus, we study
SPARQL in the next sections focusing on ground RDF graphs with no RDFS
vocabulary. In Section 6.3, we explore the possibility of having an RDF query
language capable of dealing with the special semantics of the RDFS vocabulary.

3 The RDF Query Language SPARQL

In 2004, the RDF Data Access Working Group, part of the W3C Semantic Web
Activity, released a first public working draft of a query language for RDF, called
SPARQL [45]3. Since then, SPARQL has been rapidly adopted as the standard
for querying Semantic Web data. In January 2008, SPARQL became a W3C
Recommendation.

RDF is a directed labeled graph data format and, thus, SPARQL is essentially
a graph-matching query language. SPARQL queries are composed by three parts.
The pattern matching part, which includes several interesting features of pattern
matching of graphs, like optional parts, union of patterns, nesting, filtering values
of possible matchings, and the possibility of choosing the data source to be
matched by a pattern. The solution modifiers, which once the output of the
pattern has been computed (in the form of a table of values of variables), allow
to modify these values applying classical operators like projection, distinct, order
and limit. Finally, the output of a SPARQL query can be of different types:
2 Notice that this result is also a corollary of [16].
3 The name SPARQL is a recursive acronym that stands for SPARQL Protocol and

RDF Query Language.



Foundations of RDF Databases 167

yes/no queries, selections of values of the variables which match the patterns,
construction of new RDF data from these values, and descriptions of resources.

The definition of a formal semantics for SPARQL has played a key role in
the standardization process of this query language. Although taken one by one
the features of SPARQL are intuitive and simple to describe and understand, it
turns out that the combination of them makes SPARQL into a complex language.
Reaching a consensus in the W3C standardization process about a formal se-
mantics for SPARQL was not an easy task. The initial efforts to define SPARQL
were driven by use cases, mostly by specifying the expected output for par-
ticular example queries. In fact, the interpretations of examples and the exact
outcomes of cases not covered in the initial drafts of the SPARQL specification,
were a matter of long discussions in the W3C mailing lists. In [40], the authors
presented one of the first formalizations of a semantics for a fragment of the
language. Currently, the official specification of SPARQL [45], endorsed by the
W3C, formalizes a semantics based on [40].

A formalization of a semantics for SPARQL is beneficial for several reasons,
including to serve as a tool to identify and derive relations among the con-
structors that stay hidden in the use cases, identify redundant and contradicting
notions, to drive and help the implementation of query engines, and to study the
complexity, expressiveness, and further natural database questions like rewriting
and optimization. In this section, we present a streamlined version of the core
fragment of SPARQL with precise algebraic syntax and a formal compositional
semantics based on [40].

One of the delicate issues in the definition of a semantics for SPARQL is
the treatment of optional matching and incomplete answers. The idea behind
optional matching is to allow information to be added if the information is avail-
able in the data source, instead of just failing to give an answer whenever some
part of the pattern does not match. This feature of optional matching is crucial
in Semantic Web applications, and more specifically in RDF data management,
where it is assumed that every application have only partial knowledge about
the resources being managed. The semantics of SPARQL is formalized by using
partial mappings between variables in the patterns and actual values in the RDF
graph being queried. This formalization allows one to deal with partial answers
in a clean way, and is based on the extension of some classical relational algebra
operators to work over sets of partial mappings.

A SPARQL query is of the form head ← body , where the body of the query is a
complex RDF graph pattern expression that may include RDF triples with vari-
ables, conjunctions, disjunctions, optional parts and constraints over the values
of the variables, and the head of the query is an expression that indicates how to
construct the answer to the query. The evaluation of a query Q against an RDF
graph G is done in two steps: the body of Q is matched against G to obtain a set
of bindings for the variables in the body, and then using the information on the
head of Q, these bindings are processed applying classical relational operators
(projection, distinct, etc.) to produce the answer to the query.



168 M. Arenas, C. Gutierrez, and J. Pérez

It should be noticed that the normative specification of SPARQL [45] is de-
fined over RDF graphs without RDFS vocabulary, and not considering the spe-
cial semantics of blank nodes. In this section, we work over the same setting.

3.1 Syntax and Semantics of SPARQL Graph Patterns

We first concentrate on the body of SPARQL queries, i.e. in the graph pattern
matching facility.

The official syntax of SPARQL [45] considers operators OPTIONAL, UNION,
FILTER, and concatenation via a point symbol (.), to construct graph pattern
expressions. The syntax also considers { } to group patterns, and some im-
plicit rules of precedence and association. For example, the point symbol (.) has
precedence over OPTIONAL, and OPTIONAL is left associative. In order to avoid
ambiguities in the parsing of expressions, we present the syntax of SPARQL
graph patterns in a more traditional algebraic formalism, using binary opera-
tors AND (.), UNION (UNION), OPT (OPTIONAL), and FILTER (FILTER). We
fully parenthesize expressions making explicit the precedence and association of
operators.

Assume the existence of a set of variables V disjoint from U . A SPARQL
graph pattern expression is defined recursively as follows:

1. A tuple from (U∪V )×(U∪V )×(U∪V ) is a graph pattern (a triple pattern).
2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),

and (P1 UNION P2) are graph patterns (conjunction graph pattern, optional
graph pattern, and union graph pattern, respectively).

3. If P is a graph pattern and R is a SPARQL built-in condition, then the
expression (P FILTER R) is a graph pattern (a filter graph pattern).

A SPARQL built-in condition is constructed using elements of the set U ∪V and
constants, logical connectives (¬, ∧, ∨), inequality symbols (<, ≤, ≥, >), the
equality symbol (=), unary predicates like bound, isBlank, and isIRI, plus other
features (see [45] for a complete list). In this paper, we restrict to the fragment
where the built-in condition is a Boolean combination of terms constructed by
using = and bound, that is:

1. If ?X, ?Y ∈ V and c ∈ U , then bound(?X), ?X = c and ?X =?Y are built-in
conditions.

2. If R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2)
are built-in conditions.

Let P be a SPARQL graph pattern. In the rest of the paper, we use var(P ) to
denote the set of variables occurring in P . In particular, if t is a triple pattern,
then var(t) denotes the set of variables occurring in the components of t. Sim-
ilarly, for a built-in condition R, we use var(R) to denote the set of variables
occurring in R.

To define the semantics of SPARQL graph pattern expressions, we need to
introduce some terminology. A mapping μ from V to U is a partial function



Foundations of RDF Databases 169

μ : V → U . Abusing notation, for a triple pattern t we denote by μ(t) the
triple obtained by replacing the variables in t according to μ. The domain of μ,
denoted by dom(μ), is the subset of V where μ is defined. Two mappings μ1

and μ2 are compatible when for all ?X ∈ dom(μ1) ∩ dom(μ2), it is the case that
μ1(?X) = μ2(?X), i.e. when μ1∪μ2 is also a mapping. Intuitively, μ1 and μ2 are
compatibles if μ1 can be extended with μ2 to obtain a new mapping, and vice
versa. Note that two mappings with disjoint domains are always compatible, and
that the empty mapping μ∅ (i.e. the mapping with empty domain) is compatible
with any other mapping.

Let Ω1 and Ω2 be sets of mappings. We define the join of, the union of and
the difference between Ω1 and Ω2 as [40]:

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 and μ1, μ2 are compatible mappings},
Ω1 ∪ Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2},
Ω1 � Ω2 = {μ ∈ Ω1 | for all μ′ ∈ Ω2, μ and μ′ are not compatible}.

Based on the previous operators, we define the left outer-join as:

Ω1 Ω2 = (Ω1 �� Ω2) ∪ (Ω1 � Ω2).

Intuitively, Ω1 �� Ω2 is the set of mappings that result from extending mappings
in Ω1 with their compatible mappings in Ω2, and Ω1 �Ω2 is the set of mappings
in Ω1 that cannot be extended with any mapping in Ω2. The operation Ω1∪Ω2 is
the usual set theoretical union. A mapping μ is in Ω1 Ω2 if it is the extension
of a mapping of Ω1 with a compatible mapping of Ω2, or if it belongs to Ω1

and cannot be extended with any mapping of Ω2. These operations resemble
relational algebra operations over sets of mappings (partial functions) [52].

We are ready to define the semantics of graph pattern expressions as a function
� · �G which takes a pattern expression and returns a set of mappings. We follow
the approach in [23] defining the semantics as the set of mappings that matches
the graph G. For the sake of readability, the semantics of filter expressions is
presented in a separate definition.

Definition 2. The evaluation of a graph pattern P over an RDF graph G, de-
noted by �P �G, is defined recursively as follows:

1. if P is a triple pattern t, then �P �G = {μ | dom(μ) = var(t) and μ(t) ∈ G}.
2. if P is (P1 AND P2), then �P �G = �P1�G �� �P2�G.
3. if P is (P1 OPT P2), then �P �G = �P1�G �P2�G.
4. if P is (P1 UNION P2), then �P �G = �P1�G ∪ �P2�G.

The idea behind the OPT operator is to allow for optional matching of patterns.
Consider pattern expression (P1 OPT P2) and let μ1 be a mapping in �P1�G.
If there exists a mapping μ2 ∈ �P2�G such that μ1 and μ2 are compatible, then
μ1 ∪ μ2 belongs to �(P1 OPT P2)�G. But if no such a mapping μ2 exists, then
μ1 belongs to �(P1 OPT P2)�G. Thus, operator OPT allows information to be
added to a mapping μ if the information is available, instead of just rejecting μ
whenever some part of the pattern does not match.



170 M. Arenas, C. Gutierrez, and J. Pérez

The semantics of filter expressions goes as follows. Given a mapping μ and a
built-in condition R, we say that μ satisfies R, denoted by μ |= R, if:

1. R is bound(?X) and ?X ∈ dom(μ);
2. R is ?X = c, ?X ∈ dom(μ) and μ(?X) = c;
3. R is ?X =?Y , ?X ∈ dom(μ), ?Y ∈ dom(μ) and μ(?X) = μ(?Y );
4. R is (¬R1), R1 is a built-in condition, and it is not the case that μ |= R1;
5. R is (R1 ∨ R2), R1 and R2 are built-in conditions, and μ |= R1 or μ |= R2;
6. R is (R1 ∧ R2), R1 and R2 are built-in conditions, μ |= R1 and μ |= R2.

Definition 3. Given an RDF graph G and a filter expression (P FILTER R),

�(P FILTER R)�G = {μ ∈ �P �G | μ |= R}.

In the normative semantics of SPARQL [45], there is an additional feature of
graph patterns that allows to query several different RDF graphs with a single
pattern. This is accomplished with the GRAPH operator that allows to dynam-
ically change the graph being used in the evaluation of a pattern. For the sake
of readability, we do not include here the GRAPH operator. We refer the reader
to [42] for a formalization of SPARQL graph patterns including GRAPH, and
to [9] for some tutorial material.

In the rest of the paper, we usually represent sets of mappings as tables where
each row represents a mapping in the set. We label every row with the name
of a mapping, and every column with the name of a variable. If a mapping is
not defined for some variable, then we simply leave empty the corresponding
position. For instance, the table

?X ?Y ?Z ?V ?W
μ1 : a b
μ2 : c d
μ3 : e

represents the set Ω = {μ1, μ2, μ3} where

- dom(μ1) = {?X, ?Y }, μ1(?X) = a, and μ1(?Y ) = b,
- dom(μ2) = {?Y, ?W}, μ2(?Y ) = c, and μ2(?W ) = d,
- dom(μ3) = {?Z}, and μ3(?Z) = e.

Sometimes we use notation {{?X → a, ?Y → b}, {?Y → c, ?W → d}, {?Z → e}}
for a set of mappings as the one above.

Example 3. Consider an RDF graph G storing information about professors in
a university:

G = { (B1, name, paul), (B1, phone, 777-3426),
(B2, name, john), (B2, email, john@acd.edu),
(B3, name, george), (B3, webPage, www.george.edu),
(B4, name, ringo), (B4, email, ringo@acd.edu),
(B4, webPage, www.starr.edu), (B4, phone, 888-4537) }



Foundations of RDF Databases 171

The following are graph pattern expressions and their evaluations over G:

- P1 = ((?A, email, ?E) AND (?A, webPage, ?W )). Then

�P1�G =
?A ?E ?W

μ1 : B4 ringo@acd.edu www.starr.edu

- P2 = ((?A, email, ?E) OPT (?A, webPage, ?W )). Then

�P2�G =
?A ?E ?W

μ1 : B2 john@acd.edu
μ2 : B4 ringo@acd.edu www.starr.edu

- P3 = (((?A, name, ?N) OPT (?A, email, ?E)) OPT (?A, webPage, ?W )).
Then

�P3�G =

?A ?N ?E ?W
μ1 : B1 paul
μ2 : B2 john john@acd.edu
μ3 : B3 george www.george.edu
μ4 : B4 ringo ringo@acd.edu www.starr.edu

- P4 = ((?A, name, ?N) OPT ((?A, email, ?E) OPT (?A, webPage, ?W ))).
Then

�P4�G =

?A ?N ?E ?W
μ1 : B1 paul
μ2 : B2 john john@acd.edu
μ3 : B3 george
μ4 : B4 ringo ringo@acd.edu www.starr.edu

Notice the difference between �P2�G and �P3�G. These two examples show
that �((A OPT B) OPT C)�G �= �(A OPT (B OPT C))�G in general.

- P5 = ((?A, name, ?N) AND ((?A, email, ?E) UNION (?A, webPage, ?W ))).
Then

�P5�G =

?A ?N ?E ?W
μ1 : B2 john john@acd.edu
μ2 : B3 george www.george.edu
μ3 : B4 ringo ringo@acd.edu
μ4 : B4 ringo www.starr.edu

- P6 = (((?A, name, ?N) OPT (?A, phone, ?P )) FILTER ?N = paul). Then

�P6�G = ?A ?N ?P
μ1 : B1 paul 777-3426

�!



172 M. Arenas, C. Gutierrez, and J. Pérez

Simple algebraic properties. We say that two graph patterns P1 and P2

are equivalent, denoted by P1 ≡ P2, if �P1�G = �P2�G for every RDF graph G.
The following simple lemma states some simple algebraic properties of AND and
UNION operators. These properties are direct consequence of the semantics of
AND and UNION, both based on set-theoretical union.

Lemma 1 ([40]). The operators AND and UNION are associative and com-
mutative and the operator AND distribute over UNION. That is, if P1, P2 and
P3 are graph patterns, then it holds that:

– (P1 AND P2) ≡ (P2 AND P1)
– (P1 UNION P2) ≡ (P2 UNION P1)
– (P1 AND (P2 AND P3)) ≡ ((P1 AND P2) AND P3)
– (P1 UNION (P2 UNION P3)) ≡ ((P1 UNION P2) UNION P3)
– (P1 AND (P2 UNION P3)) ≡ ((P1 AND P2) UNION (P1 AND P3))

The above lemma permits us to avoid parenthesis when writing sequences of ei-
ther AND operators or UNION operators. This is consistent with the definitions
of Group Graph Pattern and Union Graph Pattern in [45]. We use Lemma 1 to
simplify the notation in the following sections.

3.2 Query Result Forms

The normative specification of SPARQL [45] considers four query forms. These
query forms use the mappings obtained after the evaluation of a graph pattern
to construct result sets or RDF graphs. The query forms are: (1) SELECT, that
performs a projection over a set of variables in the evaluation of a graph pat-
tern, (2) CONSTRUCT, that returns an RDF graph constructed by substituting
variables in a template, (3) ASK, that returns a truth value indicating whether
the evaluation of a graph pattern produces at least one mapping, and (4) DE-
SCRIBE, that returns an RDF graph that describes the resources found. In this
paper, we only consider the SELECT query form. We refer the reader to [42] for
a formalization of the remaining query forms.

Given a mapping μ : V → U and a set of variables W ⊆ V , the restriction of
μ to W , denoted by μ|W , is a mapping such that dom(μ|W ) = dom(μ) ∩ W and
μ|W (?X) = μ(?X) for every ?X ∈ dom(μ) ∩ W .

Definition 4. A SPARQL SELECT query is a tuple (W, P ), where P is a graph
pattern and W is a set of variables such that W ⊆ var(P ). The answer of (W, P )
over an RDF graph G, denoted by �(W, P )�G, is the set of mappings:

�(W, P )�G = {μ|W | μ ∈ �P �G}.

Example 4. Consider the RDF graph G and the graph pattern P3 in Example 3.
Then we have that:



Foundations of RDF Databases 173

�({?N, ?E}, P3)�G =

?N ?E
μ1 : paul
μ2 : john john@acd.edu
μ3 : george
μ4 : ringo ringo@acd.edu

�!
In the following sections, we study some fundamental issues regarding the query
language SPARQL. The first of that issues is the complexity of the evaluation
problem for SPARQL. In Section 4, we focus on studying the complexity of the
evaluation problem for SPARQL graph patterns. Then in Section 5, we consider
SPARQL SELECT queries to compare the expressive powers of SPARQL and
the Relational Algebra.

4 Complexity and Optimization of SPARQL

A fundamental issue in every query language is the complexity of query evalua-
tion and, in particular, what is the influence of each component of the language
in this complexity.

In this section, we present a thorough study of the complexity of the evaluation
of SPARQL graph patterns based on [40]. In this study, we consider several frag-
ments of SPARQL built incrementally, and present complexity results for each
such fragment. Among other results, we show that the complexity of the eval-
uation problem for general SPARQL graph patterns is PSPACE-complete [40],
and that this high complexity is obtained as a consequence of unlimited use of
nested optional parts.

Given the high complexity of the evaluation problem for general SPARQL
graph patterns, an important question is whether one can find interesting classes
of patterns where the query evaluation problem can be solved more efficiently.
In [40,41], the authors identified a large class of patterns with the previous
characteristic that is defined by a simple and natural syntactic restriction. This
class is obtained by forbidding a special form of interaction between variables
appearing in optional parts. Patterns satisfying this condition are called well-
designed [40,41]. Well-designed patterns form a natural fragment of SPARQL
that is very common in practice, and has several interesting features. On the
one hand, the complexity of the evaluation problem for well-designed patterns is
considerably lower, namely coNP-complete. On the other hand, the property of
being well designed has important consequences for the optimization of SPARQL
queries. We present some rewriting rules for well-designed patterns whose appli-
cation may have a considerable impact in the cost of evaluating SPARQL queries,
and prove the existence of a normal form for well-designed patterns based on
the application of these rewriting rules.

4.1 Complexity of Evaluating Graph Pattern Expressions

In this section, we review some the results in the literature regarding the com-
plexity of evaluating SPARQL graph pattern expressions. The first study about



174 M. Arenas, C. Gutierrez, and J. Pérez

this problem was published in [40], and some refinements of the complexity re-
sults of [40] were presented in [47]. This section focuses on the complexity results
proved in these two papers.

As is customary when studying the complexity of the evaluation problem for
a query language [51], we consider its associated decision problem. We denote
this problem by Evaluation and we define it as follows:

INPUT : An RDF graph G, a graph pattern P and a mapping μ.
QUESTION : Is μ ∈ �P �G?

It is important to notice that the evaluation problem that we study considers
the mapping as part of the input. That is, we study the complexity by measuring
how difficult it is to verify whether a given mapping is a solution for a pattern
evaluated over an RDF graph. This is the standard decision problem considered
when studying the complexity of a query language [51], as opposed to the compu-
tation problem of actually listing the set of solutions (finding all the mappings).
To focus on the associated decision problem allows us to obtain a fine grained
analysis of the complexity of the evaluation problem, classifying the complexity
for different fragments of SPARQL in terms of standard complexity classes. Also
notice that the pattern and the graph are both input for Evaluation. Thus,
we study the combined complexity of the query language [51].

We start this study by considering the fragment consisting of graph pattern
expressions constructed by using only AND and FILTER operators. This simple
fragment is interesting as it does not use the two most complicated operators in
SPARQL, namely UNION and OPT. Given an RDF graph G, a graph pattern
P in this fragment and a mapping μ, it is possible to efficiently check whether
μ ∈ �P �G by using the following simple algorithm [40]. First, for each triple t in
P , verify whether μ(t) ∈ G. If this is not the case, then return false. Otherwise,
by using a bottom-up approach, verify whether the expression generated by
instantiating the variables in P according to μ satisfies the FILTER conditions
in P . If this is the case, then return true, else return false.

Theorem 2. Evaluation can be solved in time O(|P | · |D|) for graph pattern
expressions constructed by using only AND and FILTER operators.

We continue this study by adding the UNION operator to the AND-FILTER
fragment. It is important to notice that the inclusion of UNION in SPARQL
is one of the most controversial issues in the definition of this language. The
following theorem proved in [40], shows that the inclusion of the UNION operator
makes the evaluation problem for SPARQL considerably harder.

Theorem 3 ([40]). Evaluation is NP-complete for graph pattern expressions
constructed by using only AND, FILTER and UNION operators.

In [47], the authors strengthen the above result by showing that the complexity
of evaluating graph pattern expressions constructed by using only AND and
UNION operators is already NP-hard. Thus, we have the following result.



Foundations of RDF Databases 175

Theorem 4 ([47]). Evaluation is NP-complete for graph pattern expressions
constructed by using only AND and UNION operators.

We now consider the OPT operator, which is the most involved operator in graph
pattern expressions and, definitively, the most difficult to define. The following
theorem proved in [40] shows that when considering all the operators in SPARQL
graph patterns, the evaluation problem becomes considerably harder.

Theorem 5 ([40]). Evaluation is PSPACE-complete.

To prove the PSPACE-hardness of Evaluation, the authors show in [40] how
to reduce in polynomial time the quantified boolean formula problem (QBF) to
Evaluation. An instance of QBF is a quantified propositional formula ϕ of the
form:

∀x1∃y1∀x2∃y2 · · · ∀xm∃ym ψ,

where ψ is a quantifier-free formula of the form C1 ∧ · · · ∧Cn, with each Ci (i ∈
{1, . . . , n}) being a disjunction of literals, that is, a disjunction of propositional
variables xi and yj, and negations of propositional variables. Then the problem
is to verify whether ϕ is valid. It is known that QBF is PSPACE-complete [22].
In the encoding presented in [40], the authors use a fixed RDF graph G and a
fixed mapping μ. Then they encode formula ϕ with a pattern Pϕ that uses nested
OPT operators to encode the quantifier alternation of ϕ, and a graph pattern
without OPT to encode the satisfiability of formula ψ. By using a similar idea,
it is shown in [47] how to encode formulas ϕ and ψ by using only the OPT
operator, thus strengthening Theorem 5.

Theorem 6 ([47]). Evaluation is PSPACE-complete for graph pattern
expressions constructed by using only the OPT operator.

When verifying whether μ ∈ �P �G, it is natural to assume that the size of P
is considerably smaller than the size of G. This assumption is very common
when studying the complexity of a query language. In fact, it is named data
complexity in the database literature [51], and it is defined as the complexity of
the evaluation problem for a fixed query. More precisely, for the case of SPARQL,
given a graph pattern expression P , the evaluation problem for P , denoted by
Evaluation(P ), has as input an RDF graph G and a mapping μ, and the
problem is to verify whether μ ∈ �P �G.

Theorem 7 ([40]). Evaluation(P ) is in LOGSPACE for every graph pattern
expression P .

An important question is whether one can find interesting classes of graph pat-
terns, constructed by imposing simple and natural syntactic restrictions, such
that one can obtain lower complexity bounds for the evaluation problem on that
classes. In the following section, we introduce a first such restriction.



176 M. Arenas, C. Gutierrez, and J. Pérez

4.2 A Simple Normal Form for Graph Patterns

We say that a pattern P is UNION-free if P is constructed by using only opera-
tors AND, OPT and FILTER. In [40], the authors proved the following normal-
form result.

Proposition 2 ([40]). Every graph pattern P is equivalent to a pattern of the
form:

(P1 UNION P2 UNION P3 UNION · · · UNION Pn), (1)

where each Pi (1 ≤ i ≤ n) is UNION-free.

Notice that we omit the parenthesis in the expression (1) given the associativity
of UNION. We say that a graph pattern is in UNION normal form if the pattern
is in the form (1).4

The following result shows that for graph patterns in UNION normal form that
do not use the OPT operator, the evaluation problem can be solved efficiently.
It is a direct consequence of Theorem 2.

Corollary 1. Evaluation can be solved in time O(|P | · |G|) for graph patterns
in UNION normal form constructed by using only AND, FILTER, and UNION
operators.

We have managed to lower the complexity of the AND-FILTER-UNION frag-
ment by imposing a simple normal form. However, Theorem 6 implies that when
the OPT operator is allowed in graph patterns, the complexity of the evaluation
problem is PSPACE-hard even if we restrict to patterns in UNION normal form.
In the following section, we introduce a simple and natural syntactic condition
that patterns usually satisfy in practice. Under this condition, the complexity
of the evaluation of graph patterns in UNION normal form is lower even if the
OPT operator is allowed.

4.3 Well-Designed Graph Patterns

The exact semantics of graph pattern expressions has been extensively discussed
on the mailing list of the W3C. One of the most delicate issues in the definition of
a semantics for graph pattern expressions is the semantics of the OPT operator.
As we have mentioned before, the idea behind the OPT operator is to allow for
optional matching of patterns, that is, to allow information to be added if it
is available, instead of just rejecting whenever some part of a pattern does not

4 In the conference version of [40], the proof of the existence of a
UNION normal form used the equivalence (P1 OPT (P2 UNION P3)) ≡
((P1 OPT P2) UNION (P1 OPT P3)) (see Proposition 1 in [40]). Unfortunately,
this rule does not hold in general [47]. In the errata of [40] (that can be downloaded
from http://www.ing.puc.cl/~ marenas/publications/errata-iswc06.pdf), the
authors provide a proof of Proposition 2 without using this rule.



Foundations of RDF Databases 177

match. However, this intuition fails in some simple, but unnatural, examples.
For instance, consider the graph pattern:

P = ((?X, name, john) OPT ((?Y, name, mick) OPT (?X, email, ?Z))). (2)

What is unnatural about graph pattern P is the fact that (?X, email, ?Z) is
giving optional information for (?X, name, john), but in P appears as giving
optional information for (?Y, name, mick). For example, (B2, name, john) and
(B2, email, john@ac.edu) are triples in the graph G of Example 3, but the eval-
uation of P results in the set {{?X → B2}} (since �(?Y, name, mick)�G = ∅)
without giving information about the email of john.

A careful examination of the examples that produce conflicts reveals a com-
mon pattern: A graph pattern P mentions an expression P ′ = (P1 OPT P2) and
a variable ?X occurring both inside P2 and outside P ′ but not occurring in P1.
In general, graph pattern expressions satisfying this condition are not natural.

In [40], the authors considered a special class of patterns that they called
well-designed patterns, obtained by forbidding the form of interaction between
variables appearing in optional parts discussed above. To present the formal
definition of well-designed patterns, we need to introduce some terminology. We
say that a graph pattern Q is safe if for every sub-pattern (P FILTER R) of
Q, it holds that var(R) ⊆ var(P ). This safety condition is a usual restriction in
many database query languages.

Definition 5 ([40]). A UNION-free graph pattern P is well designed if P is
safe and, for every sub-pattern P ′ = (P1 OPT P2) of P and for every variable
?X occurring in P , the following condition holds:

if ?X occurs both inside P2 and outside P ′, then it also occurs in P1.

For instance, pattern (2) above is not well designed. One can extend Definition 5
to patterns in UNION normal form; a pattern (P1 UNION P2 UNION · · ·
UNION Pn) is well designed if every Pi (1 ≤ i ≤ n) is a UNION-free well-
designed graph pattern.

It should be noticed that to prove the PSPACE lower bound of Theorem 5,
it is used in [40] a graph pattern that is not well designed. Thus, an immediate
question is whether the complexity of evaluating well-designed graph pattern ex-
pressions is lower than in the general case. In [41] (the extended version of [40]),
the authors showed that this is indeed the case, in fact, they proved a coNP upper
bound for the case of well-designed graph patterns. In [40,41], the authors also
considered the problem of optimizing well-designed graph patterns. Since the be-
ginning of the relational model, several techniques for optimizing the evaluation
of relational algebra expressions have been developed. In fact, one of the reasons
why relational algebra is so extensively used to implement SQL is the existence
of simple reordering and optimization rules for this language. Unfortunately, the
development of this type of rules for SPARQL is limited by the presence of the
OPT operator. However, it was shown in [40,41] that well-designed patterns are
suitable for reordering and optimization, demonstrating the significance of this



178 M. Arenas, C. Gutierrez, and J. Pérez

class of queries from the practical point of view. In the rest of this section, we
review some of the results in [40,41] regarding well-designed patterns.

We note first that the property of being well-designed can be checked ef-
ficiently by a straightforward procedure. Let P be a pattern. Then for every
sub-pattern P ′ of P of the form (P1 OPT P2), we construct three sets: sets VP1

and VP2 , containing the variables occurring in P1 and P2, respectively, and set
OP ′ containing the variables that occur outside P ′. To construct VP1 , we collect
variables by making a bottom-up traversal of the sub-patterns of P1. We repeat
this procedure in P2 to construct VP2 . To construct OP ′ , we make a bottom-up
traversal of the entire pattern P , but not taking into consideration P ′. Having
these three sets, we check whether VP2 ∩ OP ′ ⊆ VP1 , that is, we check whether
every variable that occurs inside P2 and outside P ′ also occurs inside P1, which
is exactly the well-designed condition. We must repeat this test for every OPT
sub-pattern of P . Notice that the test for every OPT sub-pattern takes linear
time in the size of P , and then, the entire process takes time proportional to the
size of P times the number of OPT sub-patterns of P . We can then state the
following proposition:

Proposition 3 ([41]). Testing if a pattern P is well designed can be done in
time O(|P |2).

4.4 Complexity of Evaluating Well-Designed Patterns

Intuitively, if we delete some optional parts of a pattern P to obtain a new
pattern P ′, the mappings in the evaluation of P ′ over a graph G could not be
more informative than the mappings in the evaluation of P over G. That is,
the optional matchings of a pattern must only serve to extend solutions with
new information, but not to reject solutions if some information is not provided.
In [41], the authors showed that the intuition is indeed correct for the case of
well-designed graph patterns. In this section, we present the formalization of this
intuition given in [41], and use it to develop a characterization of the evaluation
of well-designed graph patterns.

We say that a mapping μ is subsumed by a mapping μ′, denoted by μ � μ′, if
μ and μ′ are compatible and dom(μ) ⊆ dom(μ′). That is, μ is subsumed by μ′

if μ agrees with μ′ in every variable for which μ is defined. For sets of mappings
Ω and Ω′, we write Ω � Ω′ if for every mapping μ ∈ Ω, there exists a mapping
μ′ ∈ Ω′ such that μ � μ′.

We say that a pattern P ′ is a reduction of a pattern P , if P ′ can be obtained
from P by replacing a sub-formula (P1 OPT P2) of P by P1, that is, if P ′ is
obtained by deleting some optional part of P . For example,

P ′ = (t1 AND (t2 OPT (t3 AND t4)))

is a reduction of

P = ((t1 OPT t2) AND (t2 OPT (t3 AND t4)))



Foundations of RDF Databases 179

since P ′ can be obtained from P by replacing (t1 OPT t2) by t1. The reflexive and
transitive closure of the reduction relation is denoted by �. Thus, for example,
if P ′′ = (t1 AND t2), then P ′′ � P since P ′′ is a reduction of P ′ and P ′ is a
reduction of P . We note that if P ′ � P and P is well designed, then P ′ is well
designed.

We can now state the result that formalizes the intuition mentioned at the
beginning of this section.

Lemma 2 ([41]). Let P be a UNION-free well-designed graph pattern, and P ′

a pattern such that P ′ � P . Then �P ′�G � �P �G for every graph G.

It should be noticed that the property stated in Lemma 2 does not hold for
patterns that are not well designed. For example, consider a graph G = {(1, a, 1),
(2, a, 2), (3, a, 3)} and non well-designed pattern:

P = ((?X, a, 1) OPT ((?Y, a, 2) OPT (?X, a, 3))).

The evaluation of P results in the set {{?X → 1}}. By deleting the optional
part (?X, a, 3) of P , we obtain the reduction P ′ = ((?X, a, 1) AND (?Y, a, 2)) of
P . The evaluation of P ′ results in the set {{?X → 1, ?Y → 2}}. Thus, we have
that �P ′�G �� �P �G.

We have mentioned that, when evaluating an optional part of a pattern, one is
trying to extend mappings with optional information. Another intuition behind
the OPT operator is that, when a pattern has several optional parts, one wants
to extend the solutions as much as possible, that is, one does not want to lose
information when the information is present. We formalize this intuition with
the notion of partial solution for a pattern. Informally, a partial solution for a
pattern P is a mapping that is an exact match for some P ′ such that P ′ � P .
We show then, in Proposition 4, that the evaluation of a well-designed graph
pattern P is exactly the set of maximal partial solutions for P w.r.t. �, that
is, the solutions that retrieve as much information as possible. This proposition
gives an alternative characterization of the evaluation of well-designed graph
patterns.

Given a pattern P , define and(P ) to be the pattern obtained from P by
replacing every OPT operator in P by an AND operator. For example, if P is
the pattern:

P = ((t1 OPT t2) AND (t2 OPT (t3 AND t4))),

then we have that:

and(P ) = ((t1 AND t2) AND (t2 AND (t3 AND t4))).

Notice that, by the semantics of the OPT operator, for every (not necessarily
well designed) pattern P and every graph G, we have that �and(P )�G ⊆ �P �G.

A mapping μ is a partial solution for a pattern P over a graph G if μ ∈
�and(P ′)�G, for some P ′ � P . Partial solutions and the notion of subsumption
of mappings give the following characterization of the evaluation of well-designed
graph patterns.



180 M. Arenas, C. Gutierrez, and J. Pérez

Proposition 4 ([41]). Given a UNION-free well-designed graph pattern P , a
graph G, and a mapping μ, we have that μ ∈ �P �G if and only if μ is a maximal
(w.r.t. �) partial solution for P over G.

In [41], the authors use this characterization to prove that the complexity of the
evaluation problem for well-designed patterns is lower than for general patterns.

Theorem 8 ([41]). Evaluation is coNP-complete for the case of UNION-free
well-designed graph pattern expressions.

The characterization of the evaluation of well-designed graph patterns in Propo-
sition 4 can be extended to patterns in UNION normal form. For a well-designed
pattern P = (P1 UNION P2 UNION · · · UNION Pn) in UNION normal form, a
mapping μ, and a graph G, it holds that μ ∈ �P �G if and only if μ is a maximal
partial solution (w.r.t. �) for some Pi (1 ≤ i ≤ n). Then the evaluation problem
for well-designed patterns in UNION normal form is still in coNP.

Corollary 2 ([41]). Evaluation is coNP-complete for well-designed graph
pattern expressions in UNION normal form.

4.5 Optimization of Well-Designed Patterns

Due to the evident similarity between certain operators of SPARQL and rela-
tional algebra, a natural question is whether the classical results of normal forms
and optimization for relational algebra are applicable in the SPARQL context.
The answer is not straightforward, at least for the case of optional patterns and
its relational counterpart, the left outer join. The classical results about outer-
join query reordering and optimization by Galindo-Legaria and Rosenthal [21]
are not directly applicable in the SPARQL context, as they assume constraints
on the relational queries that are rarely satisfied in SPARQL. The first, and most
problematic issue, is the assumption on predicates used for joining/outer-joining
relations to be null-rejecting [21]. A predicate p is null-rejecting if it evaluates to
false (or undefined) whenever a null value is used in p. In SPARQL, those predi-
cates are implicit in the variables that graph patterns share and, by the definition
of compatible mappings, they are never null-rejecting. In fact, people who have
developed algorithms for translating SPARQL queries into relational algebra and
SQL queries (e.g. [20]) have used NULL to represent unbound variables, IS NULL
in predicates for joining/outer-joining, and COALESCE for merging the values of
different columns into a single column. These features are explicitly prohibited
in [21] since they may imply a violation of the null-rejecting requirement.

Since the application of classical results in relational query optimization is
not straightforward, it would be desirable to develop specific techniques in the
SPARQL context. In [40], the authors proved that the property of being well de-
signed has important consequences for the study of normalization and
optimization for SPARQL.



Foundations of RDF Databases 181

Proposition 5 ([40]). Let P1, P2 and P3 be graph pattern expressions and R
a built-in condition. Consider the rewriting rules:

((P1 OPT P2) FILTER R) −→ ((P1 FILTER R) OPT P2), (3)
(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3), (4)
((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2). (5)

Let P be a UNION-free well-designed pattern, and assume that P ′ is a pattern
obtained from P by applying either Rule (3), or Rule (4), or Rule (5). Then P ′

is a UNION-free well-designed pattern equivalent to P .

It is worth mentioning that the previous rules are not applicable to non well-
designed graph patterns. For example, consider the graph G = {(1, a, 1), (2, a, 2),
(3, a, 3)} and non well-designed pattern:

P = ((?X, a, 1) AND ((?Y, a, 2) OPT (?X, a, 3))).

The evaluation of P results in the empty set of mappings. If we apply rule (4)
to P , we obtain pattern P ′ = (((?X, a, 1) AND (?Y, a, 2)) OPT (?X, a, 3)). The
evaluation of P ′ results in the set {{?X → 1, ?Y → 2}} and, thus, we have that
�P �G �= �P ′�G.

We say that a UNION-free graph pattern P is in OPT normal form if either:
(1) P is constructed by using only the AND and FILTER operators, or (2)
P = (O1 OPT O2), with O1 and O2 patterns in OPT normal form. For example,
consider a pattern P :[(

((t1 AND t2) FILTER R1)

OPT (t3 OPT ((t4 FILTER R2) AND t5))
)

OPT
(

t6 FILTER R3

)]
,

where every ti is a triple pattern, and every Rj is a built-in condition. Then P is
in OPT normal form. The following theorem shows that for every well-designed
graph pattern, an equivalent pattern in OPT normal form can be efficiently
obtained.

Theorem 9 ([41]). For every UNION-free well-designed pattern P , an equiva-
lent pattern in OPT normal form can be obtained after O(|P |2) applications of
Rules (3)-(5).

The application of Rules (3)-(5) may have a considerable impact in the cost
of evaluating graph patterns. One can measure this impact by analyzing the
intermediate sizes of the sets of mappings produced when evaluating a pattern.
By the semantics of the OPT operator, when evaluating an expression of the
form (P1 OPT P2) over a graph G, the number of mappings obtained is at
least the number of mappings obtained when evaluating P1 over D. That is,
the application of the OPT operator never implies a reduction in the size of the



182 M. Arenas, C. Gutierrez, and J. Pérez

intermediate results in the evaluation of a graph pattern expression. In contrast,
it is clear that operators AND and FILTER may imply a reduction in the size of
intermediate results. Thus, for optimization purposes, it would be convenient to
perform all the AND and FILTER operations first, delaying the OPT operations
to the last step of the evaluation. A pattern in OPT normal form has its operators
ordered in a way that, the bottom-up evaluation of the pattern follows exactly
this strategy: AND and FILTER operations are executed prior to the execution
of the OPT operations.

5 On the Expressiveness of SPARQL

Determining the expressive power of a query language is crucial for understand-
ing its capabilities, that is, what types of queries a user can pose in this language,
and how complex the evaluation of such queries is. In this section, we study the
expressive power of SPARQL. The main goal is to show that SPARQL is equiv-
alent, from an expressive-power point of view, to Relational Algebra.

In order to determine the expressive power of a query language L, one usually
chooses a well-studied query language L′, and then compares the expressiveness
of L and L′. In particular, one says that two query languages have the same
expressive power if they express exactly the same set of queries. In this section,
we present an overview of the results in [7], that show that the query language
SPARQL SELECT has the same expressiveness as non-recursive Datalog with
negation (nr-Datalog¬) and Relational Algebra.

We start with an overview of Datalog (for further details see [1,33]). A term is
either a variable or a constant. An atom is either a predicate formula p(x1, ..., xn),
where p is a predicate name and each xi is a term, or an equality formula t1 = t2,
where t1 and t2 are terms. A literal is either an atom (a positive literal), or the
negation of an atom (a negative literal). A fact is a predicate formula containing
only constants. A substitution θ for variables x1, . . . , xk is a set of assignments
{x1 → t1, . . . , xk → tk} where each ti is a term. Given a literal L, we denote by
θ(L) the literal that results by replacing in L each variable xi by the term ti.

A Datalog rule is an expression H ← L1, . . . , Ln, where H is a predicate
formula containing only variables and each Li is a literal. H is called the head
of the rule, and the sequence L1, . . . , Ln is called its body. A Datalog program
Π is a finite set of Datalog rules. A predicate is extensional in Π if it does not
occur in the head of any rule of Π , otherwise it is called intensional. A Datalog
program is non-recursive if there is some ordering r1, . . . , rm of its rules so that,
the predicate name in the head of ri does not occur in the body of a rule rj

for every j ≤ i. We further impose the following safety condition to rules: every
variable occurring in a rule r must occur in at least one (positive) predicate
formula in the body of r. In what follows, we only consider non-recursive and
safe programs. Moreover, we may assume that all heads of rules in a program
have distinct variables, since repeated variables can always be replaced by adding
equalities. For example, the rule p(X, X) ← t(X) can be replaced by p(X, Y ) ←
t(X), t(Y ), X = Y .



Foundations of RDF Databases 183

Let D be a set of facts over the extensional predicates of a Datalog program
Π . We define the meaning of Π given D, denoted by facts∗(Π, D), as the set of
facts that results from the following process. Fix an order r1, . . . , rm of the rules
that satisfies the aforementioned non-recursive property. The set facts∗(Π, D)
is obtained evaluating the rules by following that order. Formally, we denote
by factsi(Π, D) the total set of facts obtained after evaluating rule ri. Initially,
facts0(Π, D) = D. In order to compute factsi+1(Π, D), assume that rule ri+1 is
H ← L1, . . . Ln. Then factsi+1(Π, D) is obtained by adding to factsi(Π, D) all
the facts of the form θ(H), where θ is a substitution such that θ(L1), . . . , θ(Ln)
hold in factsi(Π, D). The process stops when all rules have been considered.

A Datalog query Q is a pair (Π, L) where Π is a Datalog program and L
is a predicate formula (the goal of the program). The answer to a Datalog
query Q = (Π, L) over a database D, denoted by answer(Q, D), is the set of all
substitutions θ for the variables occurring in L, such that θ(L) ∈ facts∗(Π, D).

5.1 From SPARQL to nr-Datalog¬

In this section, we show that nr-Datalog¬ is at least as expressive as SPARQL
SELECT, that is, we show that every SPARQL SELECT query can be expressed
as an nr-Datalog¬ program. More specifically, we first define a one-to-one trans-
formation T1 that assigns to every RDF graph G a set of Datalog facts T1(G).
We then define a one-to-one transformation T2 that assigns to every SPARQL
SELECT query Q, a Datalog query T2(Q), and show that for every SPARQL
SELECT query Q and RDF graph G, the evaluation of Q over G corresponds
to the evaluation of the Datalog query T2(Q) over the set of facts T1(G).

The transformation T1 from RDF graphs into Datalog facts essentially trans-
form triples into facts, but taking special care of encoding unbounded values
as nulls. Formally, given an RDF graph G, the transformation T1(G) works as
follows: every element a occurring in G is encoded by a fact term(a); each triple
(s, p, o) is encoded by a fact triple(s, p, o); additionally, we include a special fact
N(null), where null is a constant value used to represent unbounded variables.

We now have to show how graph patterns are transformed into Datalog rules.
We show here some examples of this transformation to highlight the intuition
of the process. We refer the reader to [44,7] for the details on the general trans-
formation. Consider first the graph pattern P1 = ((?X, a, 1) OPT (?X, b, ?Z)).
Then the transformation T2 generates the following Datalog program with goal
predicate p to express P1:

p(?X, ?Z) ← triple(?X, a, 1), triple(?X, b, ?Z) (6)
p(?X, ?Z) ← triple(?X, a, 1),N(?Z),¬q(?X) (7)

q(?X) ← triple(?X, b, ?V ) (8)

The first rule is encoding the join operation between sets of mappings, while
the second and third rules are encoding the difference. The left outer-join, which
defines the semantics of the OPT operator, is then obtained by considering rules
(6), (7) and (8), that is, considering the union between the results of the join



184 M. Arenas, C. Gutierrez, and J. Pérez

and the difference. Notice that predicate N is used in the second rule to encode
unbounded variables.

Second, consider SPARQL SELECT query ({?Z}, P1), where P1 is the pattern
defined above. To express the SELECT operator, one only needs to perform a
projection in Datalog, that is, one can express query ({?Z}, P1) by using rules
(6), (7), (8) and the following projection rule:

r(?Z) ← p(?X, ?Z).

Notice that in this case r is the new goal predicate.
Finally, consider SPARQL pattern:

P2 =
(

(?X, a, 1) AND
(

(?X, b, 1) UNION (?Y, c, 1)
))

.

The main difficulty in translating P2 into an nr-Datalog¬ program is the encoding
of the notion of compatible mapping. To see why this is the case, first notice
that one can easily express pattern P ′

2 = ((?X, b, 1) UNION (?Y, c, 1)) as an
nr-Datalog¬ program:

p′(?X, ?Y ) ← triple(?X, b, 1),N(?Y ),
p′(?X, ?Y ) ← triple(?Y, c, 1),N(?X).

But if we now want to translate pattern P2 = ((?X, a, 1) AND P ′
2), one cannot

directly use the previous two rules together with a rule like the following:

p(?X, ?Y ) ← triple(?X, a, 1), p′(?X, ?Y ),

as this rule does not take into consideration the fact that the occurrence of ?X
in p′ could be instantiated with value null . In fact, if this is the case, then the
rule does not generate any facts as either there is no value d ∈ U such that
triple(d, a, 1) holds, or there is such a value d but then d is different from null .
Notice that this failure is due to the fact that the previous rule does not correctly
encode the notion of compatible mapping. To solve this problem, one needs to
replace the previous rule by:

p(?X, ?Y ) ← triple(?X, a, 1), p′(?U, ?Y ), compatible(?X, ?U),

where compatible(·, ·) is defined as:

compatible(?X, ?Y ) ← term(?X), term(?Y ), ?X =?Y
compatible(?X, ?Y ) ← term(?X),N(?Y )
compatible(?X, ?Y ) ← N(?X), term(?Y )
compatible(?X, ?Y ) ← N(?X),N(?Y )

To conclude this section, it only remains to show how SPARQL mappings are
represented as Datalog substitutions. Notice that a mapping μ is a partial func-
tion. To represent the fact that a mapping is not defined for some variables, we



Foundations of RDF Databases 185

use the special value null . Given a mapping μ and a set of variables W such that
dom(μ) ⊆ W , we define θ(μ,W ) as a substitution for variables in W such that (1)
θ(μ,W )(?X) = μ(?X) for every variable ?X ∈ dom(μ), and (2) θ(μ,W )(?X) = null
for every variable ?X such that ?X ∈ W and ?X �∈ dom(μ).

With the above transformations, we can show that nr-Datalog¬ is at least as
expressive as the language SPARQL SELECT. More precisely, let G be an RDF
graph and Q = (W, P ) a SPARQL SELECT query, with W a set of variables
and P a SPARQL graph pattern. Then a mapping μ is in �Q�G if and only if
the substitution θ(μ,W ) is in answer(T1(Q), T2(G)). Thus, we have that:

Theorem 10 ([44,7]). nr-Datalog¬ is at least as expressive as the language
SPARQL SELECT.

5.2 From Datalog to SPARQL

In this section, we show that SPARQL is at least as expressive as nr-Datalog¬,
that is, we provide transformations from Datalog facts into RDF graphs, Datalog
substitutions into SPARQL mappings, and nr-Datalog¬ programs into SPARQL
graph patterns. But before presenting these transformations, we give a technical
result that is used to encode negated literals of Datalog rules. Let MINUS be
a binary operator defined as follows. Given SPARQL graph patterns P1, P2 and
an RDF graph G:

�(P1 MINUS P2)�G = �P1�G � �P2�G,

where � denotes the difference between sets of mappings defined in Section 3.
Then the following proposition shows that the MINUS operator can be expressed
in SPARQL:

Proposition 6. Let P1 and P2 be graph patterns. Then pattern (P1 MINUS P2)
is equivalent to:((

P1 OPT (P2 AND (?X1, ?X2, ?X3))
)

FILTER ¬bound(?X1)
)

, (9)

where ?X1, ?X2, ?X3 are fresh variables mentioned neither in P1 nor in P2.

Thus, from now on we use SPARQL patterns including the operator MINUS, as
they can be translated into usual SPARQL patterns.

We now describe the transformations used to show that nr-Datalog¬ is con-
tained in SPARQL. Given a fact f = p(c1, ..., cn), let desc(f) be the set of
triples {(b, predicate, p), (b, 1, c1), . . . , (b, n, cn)}, where b is a fresh value in
U . Moreover, given a set of facts D, define a one-to-one transformation T ′

1 as
T ′

1 (D) = {desc(f) | f ∈ D}.
Transformation T ′

1 allows one to represent a set of facts as an RDF graph.
Thus, to show that SPARQL SELECT is at least as expressive as nr-Datalog¬,
it remains to provide a one-to-one mapping T ′

2 that transforms nr-Datalog¬

programs into SPARQL SELECT queries. As we did for the other direction, we



186 M. Arenas, C. Gutierrez, and J. Pérez

show the intuition of the transformation with an example, and refer the reader
to [7] for a detailed description of this transformation. Let Π be an nr-Datalog¬

program, and L a predicate formula p(x1, . . . , xn). For the sake of readability,
we assume that all the variables in Π are in V (that is, they can be used as
variables in SPARQL graph patterns). We define gp(Π, L) as a function which
returns a graph pattern that encodes the program (Π, L). The function gp(Π, L)
works as follows:

(a) If predicate p is extensional in Π , then gp(Π, L) returns the graph pattern
((?Y, predicate, p) AND (?Y, 1, x1) AND · · · AND (?Y, 1, xn)), where ?Y is
a fresh variable.

(b) If predicate p is intensional in Π , then for each rule L ← L1, · · · , Ls,¬K1, · · · ,
¬Kt, L

eq
1 , · · · , Leq

u in Π having p in its head, where each Li is a positive lit-
eral and each Leq

j is a literal of the form t1 = t2 or ¬(t1 = t2), the following
SPARQL pattern is generated:[((

· · ·
((

gp(Π, L1) AND · · · AND gp(Π, Ls)
)

MINUS gp(Π, K1)
)
· · ·

)
MINUS gp(Π, Kt)

)
FILTER

(
Leq

1 ∧ · · · ∧ Leq
u

)]
.

Assume that there are k rules in Π having p in their heads, and that P1,
. . ., Pk are the SPARQL patterns generated from these rules as above. Then
gp(Π, L) is defined as (P1 UNION · · · UNION Pk).

Function gp(·, ·) is used to define transformation T ′
2 . More precisely, if the set of

variables mentioned in L is W , then T ′
2 ((Π, L)) is the SPARQL SELECT query

(W, gp(Π, L)).

Example 5. Consider the following Datalog program Π :

p(?X, ?Y ) ← r(?X, ?Y, ?Z),¬s(?X, ?X)
p(?X, ?Y ) ← t(?X, ?Y )

In order to translate this program into a SPARQL SELECT query, the first rule
is transformed into the pattern:

P1 =
[(

(?U, predicate, r) AND (?U, 1, ?X) AND (?U, 2, ?Y ) AND (?U, 3, ?Z)
)

MINUS
(

(?V, predicate, s) AND (?V, 1, ?X) AND (?V, 2, ?X)
)]

,

and the second rule is transformed into the pattern:

P2 =
(

(?W, predicate, t) AND (?W, 1, ?X) AND (?W, 2, ?Y )
)

.



Foundations of RDF Databases 187

Thus, we have that gp(Π, p(?X, ?Y )) is the pattern (P1 UNION P2), from
which we conclude that T ′

2 ((Π, p(?X, ?Y ))) is the SPARQL SELECT query
({?X, ?Y }, (P1 UNION P2)). �!

To conclude this section, it only remains to show how Datalog substitutions
are represented as SPARQL mappings. Given a substitution θ over a set W of
variables, define μθ as a mapping such that: (1) ?X ∈ dom(μθ) if and only if
?X → t is in θ and t �= null , and (2) for every ?X ∈ dom(μθ), mapping μθ assigns
to ?X the value assigned by θ to this variable. This transformation together with
T ′

1 and T ′
2 can be used to show that the language SPARQL SELECT is at least as

expressive as nr-Datalog¬. More precisely, given a set D of Datalog facts and an
nr-Datalog¬ query Q = (Π, L), we have that a substitution θ is in answer(Q, D)
if and only if the mapping μθ is in �T ′

2 (Q)�T ′
1 (D). Thus, we have that:

Theorem 11 ([7]). The language SPARQL SELECT is at least as expressive
as nr-Datalog¬.

From Theorems 10 and 11, and using the well-known fact that Relational Algebra
has the same expressive power as nr-Datalog¬ [1], we obtain that SPARQL
SELECT and Relational Algebra have the same expressive power.

Corollary 3 ([7]). The language SPARQL SELECT has the same expressive
power as Relational Algebra.

6 A Query Language for RDFS Data

The RDF specification includes a set of reserved keywords with its own se-
mantics, the RDFS vocabulary. This vocabulary is designed to describe special
relationships between resources like typing and inheritance of classes and prop-
erties [11]. As with any data structure designed to model information, a natural
question that arises is what the desiderata are for an RDFS query language.
Among the multiple design issues to be considered, it has been largely rec-
ognized that navigational capabilities are of fundamental importance for data
models with explicit tree or graph structure (like XML and RDF [6,12]).

SPARQL has been designed much in the spirit of classical relational languages
such as SQL. In particular, it has been noted that, although RDF is a directed
labeled graph data format, SPARQL only provides limited navigational function-
alities. This is more notorious when one considers the RDFS vocabulary (which
current SPARQL specification does not cover [45]), where testing conditions like
being a subclass of or a subproperty of naturally requires navigating the RDF
data. A good illustration of this is shown by the following query, which can-
not be expressed in SPARQL without some navigational capabilities. Consider
the RDF graph shown in Fig. 3. This graph stores information about cities,
transportation services between cities, and further relationships among those
transportation services (in the form of RDFS annotations). For instance, in the
graph we have that a “Seafrance” service is a subproperty of a “ferry” service,
which in turn is a subproperty of a general “transport” service. Assume that we



188 M. Arenas, C. Gutierrez, and J. Pérez

dom

CalaisParis Dover

sp sp sp

sp

TGV Seafrance NExpress

Dijon

train ferry bus

transport

sp

Hastings

London

sp

Fig. 3. An RDF graph storing information about transportation services between cities

want to test whether a pair of cities A and B are connected by a sequence of
transportation services, but without knowing in advance what services provide
those connections. We can answer such a query by testing whether there is a path
connecting A and B in the graph, such that every edge in that path is connected
with “transport” by following a sequence of subproperty relationships. For in-
stance, for “Paris” and “Calais” the condition holds, since “Paris” is connected
with “Calais” by an edge with label “TGV”, and “TGV” is a subproperty of
“train”, which in turn is a subproperty of “transport”. Notice that the condition
also holds for “Paris” and “Dover”.

In this section, we present a language for navigating RDF data grounded
on paths expressed with regular expressions, which was proposed in [43]. This
language takes advantage of the special features of RDF, and besides regular
expressions, it borrows the notion of branching from XPath [17], to obtain what
is called nested regular expressions. We also show how these navigational capa-
bilities can be incorporated into SPARQL, which gives rise to the query language
nSPARQL [43].

Furthermore, in this section we consider two fundamental questions about
these new navigational capabilities and the language nSPARQL. First, we deal
with the problem of whether these new navigational capabilities can be im-
plemented efficiently. In this section, we present the evaluation algorithm for
nested regular expressions that was proposed in [43], and which works in time
O(|G| · |E|) for an RDF graph G and a nested regular expression E. Second,
we consider the issue of whether nSPARQL is a good query language from an
expressiveness point of view. In this section, we provide evidence that the capa-
bilities of nSPARQL can be used to pose many interesting and natural queries
over RDF data. For the sake of presentation, in this section we consider RDF
graphs constructed by using only elements from U , that is, we do not consider
blank nodes.



Foundations of RDF Databases 189

r2

p1

p5

a3 a4

p4

a1 a2

a5 a6

p2 p3

r1

Fig. 4. Nodes a1 and a6 are connected by a path that follows the sequence of naviga-
tional axes next/next/edge/next/next-1/node

6.1 Nested Regular Expressions for RDF Data

As usual for graph query languages [36,14,6], the language presented in this
section uses regular expressions to define paths on graph structures, but taking
advantage of the special features of RDF graphs.

The navigation of a graph is usually done by using an operator next, which
allows one to move from one node to an adjacent one. In our setting, we have RDF
“graphs”, which are sets of triples, not classical graphs. In particular, instead of
classical edges (pair of nodes), we have directed triples of nodes (hyperedges).
Hence, a language for navigating RDF graphs should be able to deal with this
type of objects. In this section, we present the notion of nested regular expression
to navigate through an RDF graph, which was introduced in [43]. This notion
takes into account the special features of the RDF data model. In particular,
nested regular expressions use three different navigation axes next, edge and
node, and their inverses next-1, edge-1 and node-1, to move through an RDF
triple. These axes are shown in the following figure:

edge-1

b aa

p p

b

edge node

next next-1

node-1

A navigation axis allows one to move one step forward (or backward) in an RDF
graph. Thus, a sequence of these axes defines a path in an RDF graph. For
instance, in the graph of Fig. 4, the sequence of axes:

next/next/edge/next/next-1/node

defines a path between nodes a1 and a6 (the path is shown with dashed lines in
the figure). Moreover, one can use classical regular expressions over these axes
to define a set of paths that can be used in a query. The language proposed in
[43] considers an additional axis self that is used not to actually navigate, but
instead to test the label of a specific node in a path. The language also allows
nested expressions that can be used to test for the existence of certain paths



190 M. Arenas, C. Gutierrez, and J. Pérez

starting at any axis. The following grammar defines the syntax of nested regular
expressions:

exp := axis | axis::a (a ∈ U) | axis::[exp] |
exp/exp | exp|exp | exp∗ (10)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. Before introduc-
ing the formal semantics of nested regular expressions, we give some intuition
about how these expressions are evaluated in an RDF graph. The most natu-
ral navigation axis is next::a, with a an arbitrary element from U . Given an
RDF graph G, the expression next::a is interpreted as the a-neighbor relation
in G, that is, the pairs of nodes (x, y) such that (x, a, y) ∈ G. Given that in the
RDF data model, a node can also be the label of an edge, the language allows
one to navigate from a node to one of its leaving edges by using the edge axis.
More formally, the interpretation of edge::a is the pairs of nodes (x, y) such that
(x, y, a) ∈ G. The nesting construction [exp] is used to check for the existence
of a path defined by expression exp. For instance, when evaluating nested ex-
pression next::[exp] in a graph G, we retrieve the pairs of nodes (x, y) such that
there exists z with (x, z, y) ∈ G, and such that there is a path in G that follows
expression exp starting in z.

The evaluation of a nested regular expression exp in a graph G is formally
defined as a binary relation �exp�G, denoting the pairs of nodes (x, y) such that
y is reachable from x in G by following a path that conforms to exp [43]. The
formal semantics of the language is shown in Tab. 2. In this table, G is an RDF
graph, a ∈ U , voc(G) is the set of all the elements from U that are mentioned
in G, and exp, exp1, exp2 are nested regular expressions.

Example 6. Let G be the graph in Fig. 3, and consider expression

exp1 = next::[next::sp/self::train].

The expression next::sp/self::train defines the pairs of nodes (z, w) such that
from z one can reach w by following an edge labeled sp, and furthermore the
label of w is train (expression self::train is used to perform this test). Thus,
the nested expression [next::sp/self::train] performs an existential test; it is
satisfied by the nodes in G from which there exists a path that follows an edge
labeled sp and reaches a node labeled train. TGV is the only such node in G
and, thus, we have that �exp1�G = {(Paris, Calais), (Paris, Dijon)}. �!

6.2 An Efficient Algorithm for Evaluating Nested Regular
Expressions

In [43], it was introduced the language nSPARQL that combines the operators
of SPARQL with the navigational capabilities of nested regular expressions. As
pointed out in that paper, an essential requirement to use nSPARQL in large
applications is that nested regular expressions could be evaluated efficiently.



Foundations of RDF Databases 191

Table 2. Formal semantics of nested regular expressions

�self�G = {(x, x) | x ∈ voc(G)}
�self::a�G = {(a, a)}

�next�G = {(x, y) | there exists z s.t. (x, z, y) ∈ G}
�next::a�G = {(x, y) | (x, a, y) ∈ G}

�edge�G = {(x, y) | there exists z s.t. (x, y, z) ∈ G}
�edge::a�G = {(x, y) | (x, y, a) ∈ G}

�node�G = {(x, y) | there exists z s.t. (z, x, y) ∈ G}
�node::a�G = {(x, y) | (a, x, y) ∈ G}

�axis-1�G = {(x, y) | (y, x) ∈ �axis�G} with axis ∈ {next, node, edge}
�axis-1::a�G = {(x, y) | (y, x) ∈ �axis::a�G} with axis ∈ {next, node, edge}

�exp1/exp2�G = {(x, y) | there exists z s.t. (x, z) ∈ �exp1�G and (z, y) ∈ �exp2�G}
�exp1|exp2�G = �exp1�G ∪ �exp2�G

�exp∗�G = �self�G ∪ �exp�G ∪ �exp/exp�G ∪ �exp/exp/exp�G ∪ · · ·
�self::[exp]�G = {(x, x) | x ∈ voc(G) and there exists z s.t. (x, z) ∈ �exp�G}
�next::[exp]�G = {(x, y) | there exist z, w s.t. (x, z, y) ∈ G and (z, w) ∈ �exp�G}
�edge::[exp]�G = {(x, y) | there exist z, w s.t. (x, y, z) ∈ G and (z, w) ∈ �exp�G}
�node::[exp]�G = {(x, y) | there exist z, w s.t. (z, x, y) ∈ G and (z, w) ∈ �exp�G}

�axis-1::[exp]�G = {(x, y) | (y, x) ∈ �axis::[exp]�G} with axis ∈ {next, node, edge}

In this section, we present an efficient algorithm for this task, which works in
time proportional to the size of the input graph times the size of the expression
being evaluated. As is customary when studying the complexity of the evaluation
problem for a query language [51], we consider its associated decision problem.
For nested regular expressions, this problem is defined as:

Problem : Evaluation problem for nested regular expressions.
Input : An RDF graph G, a nested regular expression exp, and a pair

(a, b).
Question : Is (a, b) ∈ �exp�G?

It is important to note that the evaluation problem that we study considers
the pair of nodes (a, b) as part of the input. That is, similar to the complexity
study presented in Section 4, we study the complexity by measuring how difficult
it is to verify whether a given pair of nodes is in the evaluation of a nested regular
expression over an RDF graph.

Following the terminology introduced in [43], we assume that an RDF graph
G is stored as an adjacency list that makes explicit the navigation axes (and their
inverses). Thus, every u ∈ voc(G) is associated with a list of pairs α(u), where
every pair contains a navigation axis and the destination node. For instance,
if (s, p, o) is a triple in G, then (next::p, o) ∈ α(s) and (edge-1::o, s) ∈ α(p).
Moreover, we assume that (self::u, u) ∈ α(u) for every u ∈ voc(G). Notice
that if the number of triples in G is N , then the adjacency list representation
uses space O(N). Thus, when measuring the size of G, we use |G| to denote
the size of its adjacency list representation. We further assume that given an



192 M. Arenas, C. Gutierrez, and J. Pérez

element u ∈ voc(G), we can access its associated list α(u) in time O(1). This is
a standard assumption for graph data-structures in a RAM model [19].

Example 7. The following figure shows an example of an adjacency-list repre-
sentation of an RDF graph.

b

c

ed

a

e

next-1::c, aself::b, b node-1::a, c

next::c, b edge::b, c

next::d, eself::c, c edge::e, d edge-1::b, a node::a, b

edge-1::e, cself::d, d node::c, e

next-1::d, cself::e, e node-1::c, d

self::a, aa

b

c

d

�!

The algorithm in [43] for the evaluation of nested regular expressions was inspired
by some of the algorithms for the evaluation of temporal logics [18] and propo-
sitional dynamic logic [2,24]. To present this algorithm, we need to introduce
some terminology. An expression exp′ is a nested subexpression of an expression
exp if axis::[exp′ ] occurs in exp, with axis ∈ {self, next, next-1, edge, edge-1,
node, node-1}. Given an RDF graph G and a nested regular expression exp, the
algorithm proceeds by recursively considering the nested subexpressions of exp,
labeling every node u of G with a set label(u) of nested expressions. Initially,
label(u) is the empty set. Then at the end of the execution of the algorithm, it
holds that exp ∈ label(u) if and only if there exists z such that (u, z) ∈ �exp�G.
Before giving any technical details, let us show the general idea of this process
with an example. Figure 5 exemplifies the process for a graph G and the nested
expression:

β = next::a/(next::[next::b/self::c ])∗/(edge::[next::d ] | next::a)+. (11)

The process first considers the nested subexpressions γ = next::b/self::c and
λ = next::d, and marks the nodes in G according to which ones of these subex-
pressions they satisfy. Thus, after this stage we have that γ ∈ label(r3) since
(r3, c) ∈ �γ�G, and λ ∈ label(r6) since (r6, r7) ∈ �λ�G (see Fig. 5). Using
this information, the nodes are marked according to whether they satisfy β,
but considering the previously computed labels (γ and λ) and the expression
β′ = next::a/(next::γ)∗/(edge::λ | next::a)+. In the example of Fig. 5, we have
that (r1, r5) ∈ �β�G and, thus, β ∈ label(r1).

We now explain how to efficiently carry out the labeling process by using
some tools from automata theory (here we assume some familiarity with this
theory). A key idea in the algorithm presented in [43] is to associate to each
nested regular expression a nondeterministic finite automaton with ε-transitions



Foundations of RDF Databases 193

a d

b

r4 r6r1 r7

c

r2

self::c

next::d

next::b

next::a next::γ

edge::λβ
γ

λ

G :

r3 r5

Fig. 5. Example of the labeling process of the RDF graph G according to expres-
sion β = next::a/(next::[next::b/self::c ])∗/(edge::[next::d ] | next::a)+. First, node
r3 is marked with label γ = next::b/self::c (since (r3, c) ∈ �γ�G), and node r6

with label λ = next::d (since (r6, r7) ∈ �λ�G). Finally, node r1 is labeled with β
(since (r1, r5) ∈ �β�G). This last label is obtained by considering the expression
β′ = next::a/(next::γ)∗/(edge::λ | next::a)+.

(ε-NFA). Given a nested regular expression exp, the set of depth-0 terms of exp,
denoted by D0(exp), is recursively defined as follows:

D0(exp) = {exp} if exp is either axis, or axis::a, or axis::[exp′ ],
D0(exp1/exp2) = D0(exp1|exp2) = D0(exp1) ∪D0(exp2),
D0(exp∗) = D0(exp),

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. For instance, for
the nested expression β in (11), we have that:

D0(β) = { next::a, next::[next::b/self::c ], edge::[next::d ] }.

Notice that a nested regular expression exp can be viewed as a classical regular
expression over the alphabet D0(exp). We denote by Aexp the ε-NFA that accepts
the language generated by the regular expression exp over the alphabet D0(exp).
For example, Fig. 6 shows an ε-NFA Aβ that accepts the language generated by
expression β in (11) over the alphabet D0(β). As for the case of RDF graphs,
ε-NFAs are stored using an adjacency-list representation.

An essential ingredient in the algorithm presented in [43] is the use of the
product automaton G ×Aexp , which is constructed as follows. Assume that we
have the graph G labeled with respect to the nested subexpressions of exp, that
is, for every node u of G and nested subexpression exp′ of exp, we have that
exp′ ∈ label(u) if and only if there exists a node v such that (u, v) ∈ �exp′�G.
Let Q be the set of states of Aexp , and δ : Q × (D0(exp) ∪ {ε}) → 2Q the
transition function of Aexp . Then the set of states of G × Aexp is voc(G) × Q,
and its transition function δ′ : (voc(G) × Q) × (D0(exp) ∪ {ε}) → 2voc(G)×Q is
defined as follows. For every (u, p) ∈ voc(G)×Q and s ∈ D0(exp), we have that
(v, q) ∈ δ′((u, p), s) if and only if q ∈ δ(p, s) and one of the following cases hold:



194 M. Arenas, C. Gutierrez, and J. Pérez

next::a

q1 q2

q3 qf

edge::[next::d ]ε

next::[next::b/self::c ]

q0

Aβ :

ε

ε

next::a ε

ε

r1, q0 r2, q1 r4, q1 r4, q2

r5, qf

r5, q3 r5, q2

r4, q3r2, q2 r2, q3

next::a next::[next::b/self::c ]

G ×Aβ :
ε

ε

εε

ε edge::[next::d ]

Fig. 6. Automaton Aβ for the nested regular expression β in (11), and product au-
tomaton G ×Aβ

– s = axis and there exists a such that (axis::a, v) ∈ α(u),
– s = axis::a and (axis::a, v) ∈ α(u),
– s = axis::[exp ] and there exists b such that (axis::b, v) ∈ α(u) and exp ∈

label(b),

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. Additionally,
if q ∈ δ(p, ε) we have that (u, q) ∈ δ′((u, p), ε) for every u ∈ voc(G). That is,
G×Aexp is the standard product automaton of G and Aexp if G is viewed as an
ε-NFA over the alphabet D0(exp). Figure 6 shows the product automaton G×Aβ

for the nested expression β in (11) and the graph G of Fig. 5 (labeled with respect
to the nested subexpressions of β). In this figure, we have only depicted the states
of G ×Aβ that are reachable from the initial state. For instance, we have that
there is a transition from (r2, q1) to (r4, q1) with symbol next::[next::b/self::c ]
since: (i) there is a transition from q1 to q1 with next::[next::b/self::c ] in Aβ ,
and (ii) (next::r3, r4) ∈ α(r2) and γ = next::b/self::c ∈ label(r3).

Two key observations about the product automaton defined above should be
made. Let G be a graph labeled with respect to the nested subexpressions of exp,
and Aexp an ε-NFA for exp. Assume that q0 is the initial state of Aexp and qf is
one of its final states. The first observation is that if there exists two elements
u, v ∈ voc(G) such that from (u, q0) one can reach state (v, qf ) in G×Aexp , then
(u, v) ∈ �exp�G. In the example of Fig. 6, we have that (r1, r5) ∈ �β�G since we
can reach state (r5, qf ) from state (r1, q0) in G×Aβ . The second observation is



Foundations of RDF Databases 195

that given a nested regular expression exp, one can construct in linear time an
ε-NFA for exp by using standard techniques [28]. Thus, given a nested regular
expression exp and an RDF graph G that has been labeled with respect to the
nested subexpressions of exp, it is easy to see that automaton G ×Aexp can be
constructed in time O(|G| · |Aexp |).

Now we have all the necessary ingredients to present the algorithm for the
evaluation problem for nested regular expressions given in [43]. This algorithm is
split in two procedures: Label labels G according to the nested subexpressions
of exp as explained above, and Eval returns Yes if (a, b) ∈ �exp�G and No
otherwise.

Label(G, exp):
1. for each axis::[exp ′ ] ∈ D0(exp) do
2. call Label(G, exp ′)
3. construct Aexp , and assume that q0 is its initial state and F is its set of final states
4. construct G ×Aexp

5. for each (u, q0) that is connected to a state (v, qf ) in G ×Aexp , with qf ∈ F do
6. label(u) := label(u) ∪ {exp}

Eval(G, exp, (a, b)):
1. for each u ∈ voc(G) do
2. label(u) := ∅
3. call Label(G, exp)
4. construct Aexp , and assume that q0 is its initial state and F is its set of final states
5. construct G ×Aexp

6. if a state (b, qf ), with qf ∈ F , is reachable from (a, q0) in G ×Aexp

7. then return Yes
8. else return No

In [43], it is formally proved that procedure Eval can be implemented efficiently.
More precisely, assuming that |exp| denotes the size of a nested regular expression
exp, it is shown in [43] that:

Theorem 12 ([43]). Procedure Eval solves the evaluation problem for nested
regular expressions in time O(|G| · |exp|).

6.3 The Navigational Language nSPARQL

We conclude this section by presenting the query language nSPARQL introduced
in [43], and showing that the navigational capabilities of nSPARQL can be used
to pose many interesting and natural queries over RDF data. In particular, we
formally show that these capabilities can be used to evaluate queries according
to the semantics of the RDFS vocabulary.

The language nSPARQL (nested SPARQL) is obtained by using triple patterns
with nested regular expressions in the predicate position, plus SPARQL opera-
tors AND, OPT, UNION, and FILTER. Formally, a nested-regular-expression
triple (or just nre-triple) is a tuple t of the form (x, exp, y), where x, y ∈
U ∪V and exp is a nested regular expression. nSPARQL patterns are recursively
defined from nre-triples:



196 M. Arenas, C. Gutierrez, and J. Pérez

– An nre-triple is an nSPARQL pattern.
– If P1 and P2 are nSPARQL patterns and R is a built-in condition, then

(P1 AND P2), (P1 OPT P2), (P1 UNION P2), and (P1 FILTER R) are
nSPARQL patterns.

To define the semantics of nSPARQL, we just need to define the semantics of
nre-triples. The evaluation of an nre-triple t = (?X, exp, ?Y ) over an RDF graph
G is defined as the following set of mappings:

�t�G = {μ | dom(μ) = {?X, ?Y } and (μ(?X), μ(?Y )) ∈ �exp�G}.

Similarly, the evaluation of an nre-triple t = (?X, exp, a) over an RDF graph G,
where a ∈ U , is defined as {μ | dom(μ) = {?X} and (μ(?X), a) ∈ �exp�G}, and
likewise for (a, exp, ?X) and (a, exp, b) with b ∈ U .

Notice that every SPARQL triple (?X, p, ?Y ) with p ∈ U is equivalent to
nSPARQL triple (?X, next::p, ?Y ). Also notice that, since variables are not al-
lowed in nested regular expressions, the occurrence of variables in the predi-
cate position of triple patterns is forbidden in nSPARQL. Nevertheless, every
SPARQL triple of the form (?X, ?Y, a), with a ∈ U , is equivalent to nSPARQL
pattern (?X, edge::a, ?Y ), and every triple of the form (a, ?X, ?Y ) is equivalent
to (?X, node::a, ?Y ). Thus, what one loses in nSPARQL is only the possibility
of using variables in the three positions of a triple pattern [43].

In the following examples, we show that the navigational capabilities of
nSPARQL can be used to pose queries that are likely to occur in the Semantic
Web, and which cannot be expressed in SPARQL without using nested regular
expressions.

Example 8. Assume that we want to obtain the pairs of cities (?X, ?Y ) such that
there is a way to travel from ?X to ?Y by using either Seafrance or NExpress,
with an intermediate stop in a city that has a direct NExpress trip to London.
Consider nested expression:

exp1 = (next::Seafrance | next::NExpress)+/

self::[next::NExpress/self::London]/

(next::Seafrance | next::NExpress)+

Then pattern P = (?X, exp1, ?Y ) answers our initial query. Notice that expres-
sion self::[next::NExpress/self::London] is used to perform the intermediate
existential test of having a direct NExpress trip to London. �!

Example 9. Let G be the graph in Fig. 3 and P1 the following pattern:

P1 = (?X, next::[(next::sp)∗/self::transport], ?Y ). (12)

Pattern P1 defines the pairs of cities (?X, ?Y ) such that, there exists a triple
(?X, p, ?Y ) in the graph and a path from p to transport where every edge has la-
bel sp. Thus, nested expression [(next::sp)∗/self::transport] is used to emulate



Foundations of RDF Databases 197

lives in

works in

Everton

company

ChileSorace

plays in

sp

range

Barcelona

soccer team

type

soccer player

Ronaldinho

person

sc

sc

type

dom

dom range

sportsman

Fig. 7. An RDF graph storing information about soccer players

the process of inference in RDFS; it retrieves all the nodes that are sub-properties
of transport. Hence, pattern P1 retrieves the pairs of cities that are connected by
a direct transportation service, which could be a train, ferry, bus, etc. In general,
if we want to obtain the pairs of cities such that there is a way to travel from
one city to the other, we can use the following nSPARQL pattern:

P2 = (?X, (next::[(next::sp)∗/self::transport])+, ?Y ). (13)

�!

The previous example shows that nSPARQL can be used to emulate some of
the inference rules of RDFS. In [43], it is shown that this is not a particular
phenomenon, that is, it is formally proved that if one wants to answer a SPARQL
query P according to the semantics of RDFS, then one can rewrite P into an
nSPARQL query Q such that Q retrieves the answer to P by directly traversing
the input graph. In the remaining of this section, we show how this is done.

SPARQL follows a subgraph-matching approach, and thus, a SPARQL query
treats RDFS vocabulary without considering its predefined semantics. For exam-
ple, consider the RDF graph G in Fig. 7, which stores information about soccer
players, and consider the graph pattern P = (?X , works in, ?C). Note that,
although the triples (Ronaldinho, works in, Barcelona) and (Sorace, works in,
Everton) can be deduced from G, one obtains the empty set as the result of
evaluating P over G as there is no triple in G with “works in” in the predicate
position.

We are interested in defining the semantics of SPARQL over RDFS, that is,
taking into account not only the explicit RDF triples of a graph G, but also



198 M. Arenas, C. Gutierrez, and J. Pérez

sc works in

Chile Everton

company

Sorace

plays in

sp

range

Barcelona

soccer team

type

type

type

type

sportsman

soccer player

Ronaldinho

person

sc

sc

type

type

type

type

type

type

dom

dom

lives in

range

Fig. 8. The closure of the RDF graph of Fig. 7

the triples that can be derived from G according to the semantics of RDFS.
We make an initial restriction. In the rest of the paper we assume that RDFS
vocabulary cannot occur in subject or object position in RDF triples. Supported
on Proposition 1 (2), we only consider rules (2)-(4) for the semantics of RDFS.
Let the closure of an RDF graph G, denoted by cl(G), be the graph obtained
from G by successively applying rules (2)-(4) in Tab. 1 until the graph does not
change. For instance, Fig. 8 shows the closure of the RDF graph of Fig. 7. The
solid lines in Fig. 8 represent the triples in the original graph, and the dashed
lines the additional triples in the closure.

The most direct way to define the semantics of the RDFS evaluation of
SPARQL patterns is by considering not the original graph but its closure. Thus,
if we now evaluate pattern P = (?X , works in, ?C) over the RDF graph in
Fig. 8, we obtain the mappings {?X → Ronaldinho, ?C → Barcelona} and
{?X → Sorace, ?C → Everton}. The theoretical formalization of such an ap-
proach was studied in [23]. The following definition formalizes this notion.

Definition 6 ([43]). Given a SPARQL graph pattern P , the RDFS evaluation
of P over G, denoted by �P �rdfs

G , is defined as the set of mappings �P �cl(G), that
is, as the evaluation of P over the closure of G.

Let us show with an example how nSPARQL can be used to obtain the RDFS
evaluation of some patterns by directly traversing the input graph.

Example 10. Let G be the RDF graph in Fig. 7, and assume that we want to
obtain the type information of Ronaldinho. This information can be obtained
by computing the RDFS evaluation of the pattern (Ronaldinho, type, ?C). By



Foundations of RDF Databases 199

simply inspecting the closure of G in Fig. 8, we obtain that the RDFS evaluation
of (Ronaldinho, type, ?C) is the set of mappings:

{{?C → soccer player}, {?C → sportsman}, {?C → person}}.

However, if we directly evaluate this pattern over G, we obtain a single mapping
{?C → soccer player}. Consider now the nSPARQL pattern:

P = (Ronaldinho, next::type/(next::sc)∗, ?C).

The expression next::type/(next::sc)∗ is intended to obtain the pairs of nodes
such that there is a path between them that starts with label type followed
by zero or more labels sc. When evaluating this expression in G, we obtain the
set of pairs {(Ronaldinho, soccer player), (Ronaldinho, sportsman), (Ronaldinho,
person), (Barcelona, soccer team)}. Thus, the evaluation of P results in the set
of mappings:

{{?C → soccer player}, {?C → sportsman}, {?C → person}}.

In this case, pattern P is enough to obtain the type information of Ronaldinho
in G according to the RDFS semantics, that is,

�(Ronaldinho, type, ?C)�rdfs
G = �(Ronaldinho, next::type/(next::sc)∗, ?C)�G.

Although the expression next::type/(next::sc)∗ is enough to obtain the type
information for Ronaldinho in G, it cannot be used in general to obtain the
type information of a resource. For instance, in the same graph, assume that we
want to obtain the type information of Everton. In this case, if we evaluate the
pattern (Everton, next::type/(next::sc)∗, ?C) over G, we obtain the empty set.
Consider now the nSPARQL pattern:

Q = (Everton, node-1/(next::sp)∗/next::range, ?C).

With the expression node-1/(next::sp)∗/next::range, we follow a path that first
navigates from a node to one of its incoming edges by using node-1, and then
continues with zero or more sp edges and a final range edge. The evaluation of
this expression over G results in the set {(Everton, soccer team), (Everton, com-
pany ), (Barcelona, soccer team), (Barcelona, company)}. Thus, the evaluation
of Q in G is the set of mappings:

{{?C → soccer team}, {?C → company}}.

By looking at the closure of G in Fig. 8, we see that pattern Q obtains exactly
the type information of Everton in G, that is, �(Everton, type, ?C)�rdfs

G = �Q�G.
�!

Next we show how the ideas in Examples 9 and 10 were generalized in [43] to
obtain a way to evaluate a SPARQL query according to the RDFS semantics.
More precisely, we show that if a SPARQL pattern P is constructed by using



200 M. Arenas, C. Gutierrez, and J. Pérez

triple patterns having at least one position with a non-variable element, then the
RDFS evaluation of P can be obtained by directly traversing the input graph
with an nSPARQL pattern.

Consider the following translation function from elements in U to nested reg-
ular expressions:

trans(sc) = (next::sc)+

trans(sp) = (next::sp)+

trans(dom) = next::dom
trans(range) = next::range
trans(type) = ( next::type/(next::sc)∗ |

edge/(next::sp)∗/next::dom/(next::sc)∗ |
node-1/(next::sp)∗/next::range/(next::sc)∗ )

trans(p) = next::[(next::sp)∗/self::p ] for p /∈ {sc, sp, range, dom, type}.
Notice that this translation function has been implicitly used in Examples 9
and 10. In the following lemma, it is shown that given an RDF graph G and
a triple pattern t not containing a variable in the predicate position, the above
translation function can be used to obtain the RDFS evaluation of t over G by
navigating G through a nested regular expression.

Lemma 3 ([43]). Let (x, p, y) be a SPARQL triple pattern with x, y ∈ U ∪ V
and p ∈ U . Then �(x, p, y)�rdfs

G = �(x, trans(p), y)�G for every RDF graph G.

Suppose now that we have a SPARQL triple pattern t with a variable in the
predicate position, but such that the subject and object of t are not both vari-
ables. Next it is shown how to construct an nSPARQL pattern Pt such that
�t�rdfs

G = �Pt�G [43]. Assume that t = (x, ?Y, a) with x ∈ U ∪ V , ?Y ∈ V , and
a ∈ U , that is, t does not contain a variable in the object position. Consider for
every p ∈ {sc, sp, dom, range, type}, the pattern Pt,p defined as:

((x, trans(p), a) AND (?Y, self::p, ?Y )).

Then define pattern Pt as follows:

Pt = ((x, edge::a/(next::sp)∗, ?Y ) UNION Pt,sc UNION Pt,sp UNION
Pt,dom UNION Pt,range UNION Pt,type).

In a similar way, it is possible to define pattern Pt for a triple pattern t =
(a, ?Y, x), where a ∈ U , ?Y ∈ V and x ∈ U ∪ V . By using this construction, it is
shown in [43] that:

Lemma 4 ([43]). Let t = (x, ?Y, z) be a triple pattern such that ?Y ∈ V and
x /∈ V or z /∈ V . Then �t�rdfs

G = �Pt�G for every RDF graph G.

Let T be the set of triple patterns of the form (x, y, z) such that x /∈ V or
y /∈ V or z /∈ V . We have shown how to translate every triple pattern t ∈ T into
an nSPARQL pattern Pt such that �t�rdfs

G = �Pt�G. Moreover, for every triple
pattern t, its translation is of size linear in the size of t. Given that the semantics
of SPARQL is defined from the evaluation of triple patterns, the following results
follows:



Foundations of RDF Databases 201

sp

CalaisParis Dover

sp sp sp

sp

TGV Seafrance NExpress

Dijon

train ferry bus

transport

sp

Hastings

London

sp

dom
Z

sp

Fig. 9. An RDF graph with RDFS vocabulary and blank nodes

Theorem 13 ([43]). Let P be a SPARQL pattern constructed from triple pat-
terns in T . Then there exists an nSPARQL pattern Q such that �P �rdfs

G = �Q�G

for every RDF graph G. Moreover, the size of Q is linear in the size of P .

7 Future Work: Dealing with Blank Nodes

Blank nodes, that is, existential objects, are not new in the area of databases
[29,52]. And not only that, they have also been present in the RDF data model
since the beginning of the Semantic Web initiative [34]. However, the design of
SPARQL was made to keep the efficiency of the language and, in this direction,
the current definition of this language does not consider the semantics of blank
nodes recommended by the W3C [27]. To see why this is the case, let G1 and
G2 be the RDF graphs in Figures 3 and 9, respectively, and assume that node
Z in G2 is a blank node. Consider the following SPARQL query:

P =
((

(?X, sp, ?V ) AND (?V, sp, ?Y ) AND

(?X, sp, ?W ) AND (?W, sp, ?Y )
)

FILTER¬(?V =?W )
)

.

Query P evaluated over an RDF graph G retrieves mappings {?X → a, ?Y →
b, ?V → c, ?W → d} such that (a, sp, c), (c, sp, b), (a, sp, d) and (d, sp, b)
are all triples in G and c, d are distinct elements. Notice that the clause
FILTER¬(?V =?W ) is used to indicate that ?V and ?W must take distinct
values. Under the W3C semantics for blank nodes [27], G1 and G2 are equiv-
alent as blank node Z in G2 can be identified with node train. Therefore,
one would expect that the answer to P over G1 is the same as over G2.
However, this is not the case; Z and train are considered to be distinct val-
ues under the semantics for SPARQL proposed in [45] and, thus, mapping



202 M. Arenas, C. Gutierrez, and J. Pérez

{?X → TGV, ?Y → transport, ?V → train, ?W → Z} is in the answer of P
over G2 but not in the answer of P over G1.

Evaluating queries which involve blank nodes is challenging, and there is not
yet consensus in the Semantic Web community on how to define a query language
for this type of data. As an important problem for future work, we identify the
issue of extending SPARQL to consider RDF data with blank nodes. In practice,
a considerable number of RDF databases include this type of nodes and, thus,
this project is driven by the need to extend SPARQL to cope with this data. We
hope that a project like this will help in bridging the gap between the current
specification of SPARQL [45] and both the definition of the semantics of RDF
data [27] and the way RDF data is used in real life.

We conclude this section by pointing out that blank nodes are used not only
on RDF graphs but also in SPARQL patterns. They were introduced to make
SPARQL compatible with future logical extensions. Nevertheless, they play no
major role in the current semantics. In fact, it can be shown that each SPARQL
query Q can be simulated by a SPARQL query Q′ not mentioning any blank
nodes. More precisely, it follows from the definitions of RDF instance mapping,
solution mapping, and the order of evaluation of solution modifiers (see [45]),
that if Q′ is obtained from Q by replacing each blank node B by a fresh variable
?XB, then Q and Q′ give the same results.

Acknowledgments

This paper is a survey of well-known results on the theory of RDF, which com-
piles and summarizes results of papers of the authors and their colleagues Renzo
Angles, Carlos Hurtado, Alberto Mendelzon and Sergio Muñoz. The authors
were supported by: Arenas - Fondecyt grant 1090565; Gutierrez - Fondecyt grant
1070348; Pérez - Conicyt Ph.D. Scholarship; Arenas, Gutierrez and Pérez - grant
P04-067-F from the Millennium Nucleus Center for Web Research.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Alechina, N., Immerman, N.: Reachability Logic: An Efficient Fragment of Tran-
sitive Closure Logic. Logic Journal of the IGPL 8(3), 325–338 (2000)

3. Alkhateeb, F.: Querying RDF(S) with Regular Expressions. PhD Thesis, Université
Joseph Fourier, Grenoble, FR (2008)

4. Alkhateeb, F., Baget, J., Euzenat, J.: RDF with regular expressions. Research
Report 6191, INRIA (2007)

5. Alkhateeb, F., Baget, J., Euzenat, J.: Constrained regular expressions in SPARQL.
In: SWWS 2008, pp. 91–99 (2008)

6. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput.
Surv. 40(1), 1–39 (2008)

7. Angles, R., Gutierrez, C.: The Expressive Power of SPARQL. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)
ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)



Foundations of RDF Databases 203

8. Anyanwu, K., Maduko, A., Sheth, A.: SPARQ2L: Towards Support for Subgraph
Extraction Queries in RDF Databases. In: WWW 2007, pp. 797–806 (2007)

9. Arenas, M., Gutierrez, C., Parsia, B., Pérez, J., Polleres, A., Seaborne, A.: SPARQL
- Where are we? Current state, theory and practice. Unit-2: SPARQL Formaliza-
tion. In: Tutorial given at ESWC 2007, Innsbruck, Austria (2007),
http://axel.deri.ie/~axepol/sparqltutorial/

10. Arenas, M., Gutierrez, C., Pérez, J.: An Extension of SPARQL for RDFS. In:
Christophides, V., Collard, M., Gutierrez, C. (eds.) SWDB-ODBIS 2007. LNCS,
vol. 5005, pp. 1–20. Springer, Heidelberg (2008)

11. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation (February 2004),
http://www.w3.org/TR/rdf-schema/

12. Benedikt, M., Koch, C.: XPath leashed. ACM Computing Surveys 41(1) (2008)
13. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for

storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

14. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Rewriting of Regular
Expressions and Regular Path Queries. J. Comput. Syst. Sci (JCSS) 64(3), 443–465
(2002)

15. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Journal of Web
Semantics 3, 247–267 (2005)

16. Chandra, A.K., Merlin, P.M.: Optimal Implementation of Conjunctive Queries in
Relational Data Bases. In: STOC 1977, pp. 77–90 (1977)

17. Clark, J., DeRose, S.: XML Path Language (XPath). W3C Recommendation
(November 1999), http://www.w3.org/TR/xpath

18. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge
(2000)

19. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms.
McGraw-Hill, New York (2003)

20. Cyganiak, R.: A relational algebra for SPARQL. Tech. Rep. HPL-2005-170, HP-
Labs (2005), http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html

21. Galindo-Legaria, C.A., Rosenthal, A.: Outerjoin simplification and reordering for
query optimization. TODS 22(1), 43–73 (1997)

22. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

23. Gutierrez, C., Hurtado, C., Mendelzon, A.: Foundations of Semantic Web
Databases. In: PODS 2004, pp. 95–106 (2004)

24. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
25. Harris, S., Gibbins, N.: 3store: Efficient bulk RDF storage. In: PSSS 2003, pp. 1–15

(2003)
26. Hayes, J., Gutierrez, C.: Bipartite Graphs as Intermediate Model for RDF. In: McIl-

raith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 47–61. Springer, Heidelberg (2004)

27. Hayes, P.: RDF Semantics. W3C Recommendation (February 2004),
http://www.w3.org/TR/rdf-mt/

28. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, Reading (2006)

29. Imielinski, T., Lipski Jr., W.: Incomplete Information in Relational Databases. J.
ACM 31(4), 761–791 (1984)

30. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: a declarative query language for RDF. In: WWW 2002, pp. 592–603 (2002)

http://axel.deri.ie/~axepol/sparqltutorial/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/xpath
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html
http://www.w3.org/TR/rdf-mt/


204 M. Arenas, C. Gutierrez, and J. Pérez

31. Kochut, K.J., Janik, M.: SPARQLeR: Extended Sparql for Semantic Association
Discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 145–159. Springer, Heidelberg (2007)

32. Lassila, O., Swick, R.: Resource description framework (RDF) model and syntax
specification W3C Recommendation (February 1999),
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

33. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond.
Springer, Heidelberg (1999)

34. Manola, F., Miller, E., McBride, B.: RDF Primer, W3C Recommendation
(February 10 , 2004), http://www.w3.org/TR/REC-rdf-syntax/

35. Marin, D.: RDF Formalization, Santiago de Chile, Technical Report Universidad
de Chile, TR/DCC-2006-8 (2004),
http://www.dcc.uchile.cl/~cgutierr/ftp/draltan.pdf

36. Mendelzon, A., Wood, P.: Finding Regular Simple Paths in Graph Databases.
SIAM J. Comput. 24(6), 1235–1258 (1995)

37. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal Deductive Systems for RDF.
In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 53–67. Springer, Heidelberg (2007)

38. Olson, M., Ogbuji, U.: The Versa Specification,
http://uche.ogbuji.net/tech/rdf/versa/etc/versa-1.0.xml

39. ODP - Open Directory Project, http://www.dmoz.org/
40. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In:

Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006)

41. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL (sub-
mitted for publication)

42. Pérez, J., Arenas, M., Gutierrez, C.: Semantics of SPARQL. Tech. Report Univer-
sidad de Chile, TR/DCC-2006-17 (2006)

43. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A Navigational Language for
RDF. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 66–81. Springer,
Heidelberg (2008)

44. Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the 16th In-
ternational World Wide Web Conference (WWW), pp. 787–796. ACM, New York
(2007)

45. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (January 2008), http://www.w3.org/TR/rdf-sparql-query/

46. RDF Site Summary (RSS) 1.0, http://web.resource.org/rss/1.0/
47. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL Query Optimization.

arXiv.org paper arXiv:0812.3788v1 (December 19, 2008)
48. The Dublin Core Metadata Initiative, http://dublincore.org/
49. The Friend of a Friend (FOAF) project, http://www.foaf-project.org/
50. Uniform Resource Identifier (URI): Generic Syntax, http://tools.ietf.org/

html/rfc3986

51. Vardi, M.Y.: The Complexity of Relational Query Languages (Extended Abstract).
In: STOC 1982, pp. 137–146 (1982)

52. Zaniolo, C.: Database Relations with Null Values. J. Comput. Syst. Sci. 28(1),
142–166 (1984)

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.dcc.uchile.cl/~cgutierr/ftp/draltan.pdf
http://uche.ogbuji.net/tech/rdf/versa/etc/versa-1.0.xml
http://www.dmoz.org/
http://www.w3.org/TR/rdf-sparql-query/
http://web.resource.org/rss/1.0/
http://dublincore.org/
http://www.foaf-project.org/
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986


S. Tessaris et al. (Eds.): Reasoning Web 2009, LNCS 5689, pp. 205–221, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Database Technologies for RDF 

Souripriya Das and Jagannathan Srinivasan 

Oracle, 
1 Oracle Dr, Nashua, NH, USA 

{Souripriya.Das,Jagannathan.Srinivasan}@Oracle.com  

Abstract. Efficient and scalable support for RDF/OWL data storage, loading, 
inferencing and querying, in conjunction with already available support for 
enterprise level data and operations reliability requirements, can make 
databases suitable to act as enterprise-level RDF/OWL repository and hence 
become a viable platform for building semantic applications for the enterprise 
environments. 

This tutorial outlines the requirements for supporting semantic technologies 
in databases including bulk load and data manipulation operations, inference 
based on RDFS, OWL and user-defined rules, and support for SPARQL 
queries. It also discusses the design choices for handling issues that arise in 
implementing support for storage and operations on large scale RDF/OWL data, 
and in general, touches upon the practical aspects related to RDF/OWL support 
that become important in enterprise environments. Semantic technologies 
support in Oracle Database is used as a case study to illustrate with concrete 
examples the key requirements and design issues.  

Keywords: data characteristics, storage architecture, bulk load, inference, 
semantic query, ontology-assisted query, programming interface, performance, 
query hints, indexing. 

1   Introduction 

Resource Description Framework (RDF) [1], the W3C standard for representing 
metadata about resources, is being adopted widely especially for building semantic 
applications. Also, the related W3C standards RDFS [2] and OWL [3], which provide 
richer constructs to represent thesaurus, ontology, and knowledge, in general, are also 
gaining popularity. For querying, W3C has recommended SPARQL [10], which 
allows graph pattern based querying over RDF(S)/OWL datasets. 

The creation of these standards and their adoption is setting the stage for utilizing 
semantic technologies in enterprises. For enterprise level use of semantic technologies 
the key requirements are performance, scalability, reliability, and robustness for 
loading data, inferencing, and queries. There are some obstacles as well such as 
demonstrating the benefits of semantic technologies and also showing that the efforts 
need to build semantic applications is reasonable. Furthermore, creating or obtaining 
custom RDF data and well-designed RDFS/OWL ontologies, techniques for 
integrating data from multiple sources and still be able to use inference and query in a 



206 S. Das and J. Srinivasan 

meaningful way is challenging. Another challenge in building semantic applications is 
that businesses typically need to stay ahead of its competition in terms of increased 
productivity and fastest way to get to the market with products that closely match the 
requirements of the customers. Thus, there is need for tools to facilitate development 
of semantic applications. 

However, in this tutorial paper we focus on use of DBMS as a platform for 
building semantic applications in enterprises. The choice of DBMS is driven by its 
proven record over decades with respect to performance, scalability, security, and 
transactional support. Using DBMS to manage RDF (semantic repository) entails 
database schema design, examining and adopting traditional bulk loading, incremental 
loading, and querying capabilities to suite RDF needs. In addition, graph pattern 
based querying over RDF data needs to be supported. Another novel aspect is the 
need to support inferencing (derivation of new triples) from asserted RDF facts based 
on semantics of RDF(S) and OWL constructs. All these aspects are discussed in the 
remainder of the paper. Also, to provide reader with concrete examples, we present a 
case study of design and implementation of semantic store using Oracle Database. 

The rest of the paper is organized as follows: Section 2 discusses the key aspects of 
a semantic store implemented in a database. Section 3 presents the case study of 
semantic store implemented using Oracle Database. Section 4 summarizes the paper. 

2   Key Concepts 

The key aspects of a semantic store implemented in a database are its: 1) storage 
architecture, and capabilities for 2) Loading, 3) Inference, and 4) Query. 

2.1   Storage Architecture  

Schema-oblivious vs. Schema-aware. The classification of storage schemes 
described here is based mainly on [23]. The storage for RDF triples could consist of a 
single three-column triple table, where the columns correspond to the subject, 
predicate, and object components of RDF triples. This is sometimes classified as a 
schema-oblivious approach because the storage table does not change even if the 
schema of the RDF data to be stored changes.  

Unlike a schema-oblivious approach, a schema-aware approach (such as the one 
described in [21]) involves choosing a set of tables based upon the schema of the RDF 
data to be stored. For example, a storage scheme could have a separate two-column 
property table for each different predicate used in the dataset for storing the <subject, 
object> pairs that are related by the property, and a separate single-column class table 
for each of the classes in the RDF schema to store the instances belonging to a class. 
There are several benefits of using schema-aware approach, such as compact storage 
of data by avoiding repetition of common values (such as predicate component by 
using a property table and rdf:type <className> portion of RDF triples by using 
class tables) and more importantly, processing queries by accessing multiple smaller 
tables instead of a single large table. A major drawback, however, is the fact that the 
set of tables may need to change as the data evolves especially with insertion of 
triples containing new predicates, or deletion of all triples containing a particular 



 Database Technologies for RDF 207 

predicate. Furthermore, processing of SPARQL queries with variables in predicate 
position (e.g., ?x ?p ?y) or class positions (e.g., ?x rdf:type ?y) would require making 
provision for querying all the property tables or class tables. 

There is another possible approach that could be classified as schema-oblivious. 
This is slightly different from the hybrid scheme described in [23]. Here, instead of a 
single three-column table, one may create a predetermined number of tables or a 
single table with a predetermined number of columns based upon the possible data 
types of values of object components of triples – one for each recognized built-in data 
types in XML Schema [24], such as xsd:string, xsd:decimal, xsd:dateTime (possibly 
with a flag to distinguish xsd:date, xsd:time, and xsd:dateTime with or without time 
zone) and one for IRIs and blank nodes, and one for all other types. The triples are 
stored in the appropriate table or if a single table is used, the object component’s 
value is stored in the appropriate column, based upon the data type of its object 
component.  

Id-based vs. Value-based. Typically, RDF datasets contain repeated occurrences of 
long IRIs. This can be seen in the data characteristics of the RDF datasets in the 
existing benchmarks such as LUBM [5] and also in various well-known publicly 
available RDF datasets [6, 7]. This leads to a choice between a value-based approach 
where the lexical values are stored directly in the storage tables versus an id-based 
approach where each of the lexical values are mapped to a unique identifier and those 
identifiers are stored in the storage tables. The id-based approach requires an 
additional table for storing the 1-to-1 mapping between lexical values and 
corresponding identifiers. There are additional benefits of the id-based approach, 
besides the obvious space benefits. Query and inferencing performance benefits are 
seen because 1) use of shorter identifiers results in smaller size of the indexes or other 
auxiliary structures and 2) id-based equality evaluation used for equality-based joins 
is usually more efficient than lexical value based equality evaluation. A variant of this 
storage scheme is employed by Jena2 [28], which uses a denormalized schema in 
which resource URIs and simple literal values are stored directly in the statement 
(triple) table. 

Generation of identifiers in an id-based approach may be done using sequence or 
using hash functions. Use of powerful but efficient hash functions provides several 
benefits: 1) there is virtually no dependence on history of insertions or deletions of 
triples, 2) hash identifiers can be obtained simply by applying the hash function on 
lexical values and consulting a rarely non-empty collisions table. It may be noted that 
this choice is relevant irrespective of whether schema-oblivious or schema-aware 
approach is used. 

Prefix compression. Many distinct IRIs used in RDF datasets often have the same 
prefix. A storage scheme could optionally try to factor out the common prefixes to 
reduce the space overhead, which also contributes to performance benefits by 
reducing the size of the table and indexes. There are at least two ways for doing this. 
One could associate unique identifiers with each distinct prefix and store the mapping 
in a separate table and then use the combination of the prefix-id and the suffix lexical 
value to represent a full lexical value. Another possible way is to store the prefix and 
suffix portions of lexical values in two distinct columns of a table and use table 
compression. The latter approach avoids having to create a separate table and hence 



208 S. Das and J. Srinivasan 

the need to do a join with an extra table, but the extent of compression is limited by 
the extent to which values sharing the same prefix are co-located in a database block. 
It may be noted that when id-based triples are used, this prefix compression may be 
used in the value↔id mapping table. 

Ancillary values. Often it becomes necessary to store additional <predicate, object> 
pairs for an RDF triple, not just for IRIs (or blank nodes). RDF allows storing of such 
ancillary information via reification by using reification quad to represent a reified 
RDF triple and then creating triples to associate ancillary <predicate, object> pairs to 
the subject used in the reification quad. While this approach is very powerful in that it 
allows unlimited levels of reification (e.g., even the association of <predicate, object> 
to an RDF triple may be expressed as a reification quad, so that additional <predicate, 
object> pairs may be associated with the association, and so on), it can potentially 
increase the number of triples by a factor of four (due to use of quads) and can 
increase the number of joins needed for query processing. A storage scheme could 
allow a simpler way of storing ancillary values associated with a triple by extending 
the set of columns for an RDF triple by adding additional columns to the set {subject, 
predicate, object}. A common addition is a graph name or context column.  Although 
not as powerful as the reification quad, this approach may be used for adding ancillary 
information such as security, uncertainty, and so on at the triple level granularity. 

Subject   Predicate  Object    Anc. Property1    Anc. Property 2   …

 

Fig. 1. Storage scheme allowing ancillary values for RDF triples 

Unit of storage, ownership, and access control. Since a database may store many 
RDF graphs, each RDF graph can be considered a unit of storage, ownership, and 
access control. Thus, when a user creates an RDF graph, possibly empty to start with, 
a name is associated with the graph and the creator is listed as the owner of the graph. 
Furthermore, in order to allow the owner to control who can access the graph, owner 
may be given appropriate privileges with option to grant some of those privileges to 
other users. 

Indexes. Since RDF has a set semantics, duplicate triples are not allowed within a 
single RDF graph. A uniqueness constraint is defined on the RDF dataset to enforce 
the set semantics in each graph. For efficient query processing and DML integrity, 
typically a uniqueness constraint is maintained by use of a unique key index. Besides 
enforcing the uniqueness constraint, indexes are also used as access path for 
performance reasons. A storage scheme may create predefined indexes and optionally 
may provide the flexibility of allowing privileged users to create additional indexes or 
remove some of the indexes (while maintaining at least one index that enforces the 
uniqueness constraint). In general, for RDF triple data, six ways of indexing are 
possible, performance aspects of which is presented in [19]. To keep the space needed 



 Database Technologies for RDF 209 

for indexes down, a storage scheme may use compression of key prefixes. It may be 
noted that the retrieval performance benefits of indexes need to be weighed against 
the performance overhead of maintaining indexes during data loading or other 
modification operations.  

Other Auxiliary Structures. One could also build additional auxiliary structures to 
speed up query processing such as subject property matrix materialized join views 
[8]. However, like indexes one needs to account for maintenance cost when RDF data 
is incrementally added. For read-only or read-mostly data, these structures could be 
beneficial. 

RDF view of relational data. In order to allow access to the huge amount of 
relational data stored in databases, some of the platforms for semantic technologies 
[25, 26] allow viewing relational data as virtual RDF graphs that can be queries using 
the W3C SPARQL query language. Typically it includes a mapping language to 
specify mapping of the tables to classes and columns and constraints to properties and 
ability to translate a SPARQL query specified against the RDF view of the relational 
data to SQL queries against the underlying relational tables. [27] surveys the support 
for RDF views over relational data in existing platforms. 

2.2   Loading RDF Data 

Incremental load and Bulk load. Usually at least two types of data loading are 
supported: 1) loading via SQL INSERT statements, typically used for small amount 
of data, and 2) highly optimized bulk loading APIs to allow efficient loading of large 
amount of data. Loading data also involves parsing to ensure that values used for 
subject, predicate, and object components of the triples are indeed valid RDF terms 
and appropriate for that component. Another important and time-consuming task is 
elimination of duplicates to maintain the set semantics of each RDF graph. Loading 
may sometimes include inferencing as well.  

Input format. The input for bulk load is usually file-based and formatted in one of 
the many standard RDF data formats (e.g., N-Triple, RDF/XML, N3, or Turtle). Bulk-
load APIs may sometimes also accept input data from a staging table defined as a 
three-column table with the columns storing the lexical values of the subject, 
predicate, and object components of the RDF triples. 

Effect of storage architecture. A loading scheme used for bulk load is usually 
closely tied with the storage architecture of the semantic store and also the data 
characteristics. For example, data loading is straightforward if value-based storage 
scheme is used, but performance suffers due to the need to write a large number of 
long lexical values and building corresponding big indexes. Loading scheme for 
efficient and scalable bulk loading of RDF data into a semantic store that uses the id-
based scheme, however, is much more complicated due to the need to load the 
value↔id mapping table and also the id-based triples table. Use of hash-based 
identifiers can make bulk loading much more efficient due to the ease of generation of 
the identifiers corresponding to the lexical values. Similarly, if a semantic store 
allows storing ancillary values for triples using special structures (instead of using 



210 S. Das and J. Srinivasan 

reification quads), then loading gets more complex, and it incurs the overhead of 
populating those special structures. 

Bulk append. Appending (that is, loading into a non-empty RDF graph) requires 
checking for duplicates within the new batch of triples to be appended and between 
the new batch and the existing set of triples. Additionally, it may require incremental 
maintenance of the indexes. Some of these operations make the bulk append operation 
less efficient than the bulk load operation (loading into empty RDF graph). 

Reuse of blank nodes. Appending new triples raises a question about the reuse of 
blank node names across different batches of triples being loaded. Specifically, if a 
blank node with a specified label is already present in an RDF graph, and the same 
blank node label is used in the batch of triples to be appended to the graph, then the 
question that arises is “do they refer to the same resource”? Reuse of blank node 
labels has the advantage that even if the dataset is loaded in a single batch or in 
multiple batches, the net effect is same. 

2.3   Inferencing 

Inferencing, or computing entailment, is a major attribute of semantic technologies 
that differentiates it from other relevant technologies. Thus the richness, performance, 
and scalability of the inference capability are often used as important metrics in 
evaluating the quality of a semantic store for use with semantic applications. 

Standard entailment regimes. There are several standard entailment regimes: 
semantics of RDF, RDFS, and OWL. Within OWL, there are three dialects – OWL-
Lite, OWL-DL, and OWL-Full. Support for RDF and RDFS is simplified by the 
availability of axioms and rules that represent their semantics. An obstacle to 
providing support for entailment based on OWL vocabularies has been the lack of 
ready availability of the axioms and rules for the semantics of OWL dialects. The 
high computational complexity of supporting entailment with the OWL-Full 
semantics discourages provision of this capability. Support for major subsets of 
OWL-Lite and OWL-DL vocabularies have been provided in current semantic stores. 
It may be noted, however, that in the context of forward chaining based inference 
engines, any rule that infers triples with new blank nodes (i.e., blank nodes not 
already present in the data) may lead to explosion in the size of inferred triple set or 
may even lead to non-termination of inference. To avoid such problems, forward 
chaining inference engines may often allow users to skip inference rules that may 
cause data explosion. This aspect also plays a role in arriving at an OWL Lite or 
OWL-DL subset. For example, instead of supporting an iff semantics for rules, 
inference is sometimes supported only in one direction (as in pD* [30]) which makes 
inference sound but incomplete. 

Interfacing with third-party reasoners. The ability to interface with third-party 
reasoners can allow users of a semantic store to avail (more) complete support for 
inferencing, possibly for subsets of data. For example, complete support for OWL-DL 
in the Pellet inference engine [4] can be leveraged if a semantic store provides the 
capability to interface with Pellet. To avoid any scalability issues related to the huge 



 Database Technologies for RDF 211 

number of instance triples, only the schema triples, which usually are small in 
numbers compared to instance triples, could be sent to third-party reasoners for 
inferencing. The resulting fully-entailed schema can then be used in combination with 
the asserted instance triples for creating entailment locally at the semantic store. 

User-defined rules. Since the standard vocabularies cannot handle the full repertoire 
of custom entailment regime a semantic application may require, it becomes 
important to provide support for entailment based on arbitrary user-defined rules. 

Backward-chaining vs. Forward-chaining. An attribute that differentiates inference 
capabilities of one semantic store from another is when the inferencing is done. The 
forward-chaining option pre-computes and materializes the inferred triples. The 
backward-chaining option determines the inferred triples at query processing time and 
does not materialize the inferred triples for later use.    

The pre-computing and materialization used in forward-chaining cause storage 
space overhead, but can make queries efficient by avoiding inferencing logic at query 
processing time. However, under certain circumstances, space overhead may become 
huge. For example, use of transitive, symmetric, and reflexive properties such as 
owl:sameAs, or use of owl:disjointWith which results in inference of triples with 
owl:differentFrom for each ordered pair of the instances of the disjoint classes and 
their respective (disjoint) subclasses, may lead to inferring a large number of triples. 
Thus, special care needs to be taken in the support for forward-chaining to prevent 
such situations and provide appropriate alternatives. 

Maintenance of pre-computed and materialized triples in a forward-chaining 
system is another important aspect. Any change in the set of triples or axioms or rules 
may induce changes in the set of inferred triples. The extent of the induced changes 
may vary from no changes at all to a huge amount of changes. The quality of a 
semantic store from a user’s perspective may depend on how promptly and efficiently 
the set of inferred triples can be checked and updated if necessary. 

Although a majority of the current semantic stores support forward chaining, 
recently there have been proposals to restrict the expressivity of OWL to enable 
answering the queries by simple rewrite mechanisms, as in OWL 2 QL [31].  

Explanation and Validation. Since new triples obtained via inferencing may 
sometimes be completely unexpected, it is important to provide support for creating 
an explanation consisting of the triples and rules along the paths that leads to the 
inference of the new triples. Support for validation allows users to check if a set of 
triples is consistent. 

2.4   Querying RDF and Relational Data 

The ability to efficiently and easily query RDF graphs in a semantic store is probably 
the most important aspect from a user’s point of view. In particular, when a semantic 
store is implemented in a database, the question arises whether to use SQL or a 
standard RDF query language such as SPARQL. 

Query Language. Since SQL is a feature-rich declarative query language that has 
been used in databases for decades and has been optimized for efficient execution, it 



212 S. Das and J. Srinivasan 

becomes an obvious candidate for use as the language for querying RDF data. The 
drawback of asking users to express their query for retrieving information from RDF 
graphs using SQL is that SQL is not very well suited for specifying graph queries.  

An alternative is to support querying in the SPARQL query language [10], which is 
the W3C recommendation for querying RDF data. The benefit of using SPARQL is 
that it has been designed to be suitable for querying RDF data. Thus, it is easier to 
specify a query in SPARQL than in SQL. The drawback of SPARQL, however, is that 
it is a standalone language that lacks important features that are essential for 
processing retrieved RDF results. For example, neither aggregate functions nor 
subqueries are yet allowed in SPARQL specification. 

A hybrid of the above two approaches is to allow SPARQL queries to be 
embedded in SQL where results from a SPARQL query is treated like a table and 
used as a table data source that can be processed by SQL constructs [8]. This allows 
the ease of querying RDF data using SPARQL, because the portion of the query that 
goes against RDF data is expressed in SPARQL. At the same time, it allows further 
processing the result of the SPARQL portion of the query, possibly even combining 
the result with relational tables, using the rich constructs of SQL.  Other approach is 
to extend SPARQL with such constructs as in query languages supported in Virtuoso 
[15], Jena [13], and Sesame [16]. 

Query performance features. The hybrid approach above could further benefit from 
a performance point of view if the SPARQL portion of the query can be rewritten as a 
SQL subquery and optimized together with the rest of the query [8]. 

A performance related feature would be to include the ability to specify hints, 
similar to hints used in the SQL implemented by database vendors, for the SPARQL 
subquery to tune the execution plans for queries, for example, by specifying the order 
of the join operations. Similarly, for an id-based storage architecture, extensions to 
SPARQL could allow retrieving only the identifiers whenever possible instead of 
always retrieving the lexical values thereby avoiding additional costly joins. 

Cost-based Query Optimization. The query execution can still leverage the cost-
based optimizer typically available as part of database system. However, the graph-
pattern based query language requires re-examining the selectivity estimation 
techniques (e.g. [22]). 

Querying relational data in the context of RDF. There are two ways one could 
query relational and RDF data together. A simple way is to use, in the hybrid query, 
one or more relational tables to join with the SPARQL subqueries. 

Another way would be to treat the values used in a relational table column, 
possibly augmented to make them like IRIs, as terms used in an RDF graph. A new 
operator may be defined for use in the WHERE clause of SQL queries to check 
whether the value of that column in a row (in the relational table) satisfies a SPARQL 
query (usually making use of that column and) specified as an argument to the 
operator, and select the row accordingly. The operator acts like a filter. An ancillary 
operator may be defined to retrieve the mapping(s) for the variables used in the 
SPARQL query for each row that qualifies [8]. Optionally, the association between a 
relational table column and RDF graph(s) may be characterized by specifying an 
integrity constraint [9]. 



 Database Technologies for RDF 213 

2.5   Miscellanous Aspects 

Distributed and/or Federated RDF Stores. The traditional database technique for 
distribution and replication can also be used to support distributed or federated RDF 
stores. In fact, the canonical triple model of RDF makes it amenable for doing queries 
over multiple RDF stores. However, the internal transformation to id-based triples 
makes it somewhat challenging as the same lexical value may get assigned different 
id in two stores. Here use of hash-based identifiers such as in Oracle [11] could be 
beneficial. However, the problem of collision detection and resolution needs to be 
addressed. 

3   Case Study: Oracle Database Semantic Technologies 

Many semantic stores (including Jena [13], Oracle [14],  Vituoso RDF Triple Store [15], 
and Sesame [16], C-Store [20]) use database to store and manage RDF data. In this 
section, we present case study of a semantic store implemented in the Oracle Database.  

Support for semantic technologies in Oracle Database enables 1) storage, loading, 
and manipulation of RDF graphs in Oracle; 2) native inferencing based on RDF 
graphs and built-in entailment regimes such as RDF/S and major subsets of OWL, 
and user-defined rules; 3) querying RDF data via a hybrid approach where SQL 
queries would contain SPARQL graph patterns for looking up the RDF graphs and 
optionally any inferred triples; 4) querying relational data in the context of RDF data 
(typically, RDFS or OWL ontologies) via use of SQL operators defined using the 
Oracle extensibility framework [29].  
 

 

Fig. 2. A top-level view of the Oracle Database Semantic Technologies 



214 S. Das and J. Srinivasan 

3.1   Storage Architecture  

This section gives an overview of the storage architecture and describes the entities 
used in an Oracle Database semantic store. 

 

  

Fig. 3. A top-level view of the entities in an Oracle Database Semantic Network 

Overview. Storage architecture of Oracle database semantic store can be 
characterized as follows: 

• Schema-oblivious storage for RDF data: Each RDF model is represented by 
a database view object. All the view objects for the RDF models have the 
same definition (i.e., identical set of columns). Access control for the RDF 
models is provided by leveraging access control support for view objects in 
Oracle database.  

• Id-based: Uses a value↔id mapping table to store one-to-one mapping 
between lexical values and corresponding identifiers obtained via use of a 
(native) hash function with complete handling of any rare collisions. 

• Prefix compression: Prefix compression is used in the value↔id mapping 
table. Each IRI into a prefix and suffix, storing the two parts as separate 
columns. Table compression is used to ensure within a database block, each 
distinct prefix is stored only once. 

• Ancillary values: An additional table, referred to as application table, is used 
for each RDF model to allow storing ancillary values. An application table 
must have one column of a new object type, SDO_RDF_TRIPLE_S, to store 
references to id-based RDF triples stored in the corresponding RDF model. 
Additional columns may be defined in the application table to store ancillary 
information. 



 Database Technologies for RDF 215 

• Unit of storage, ownership, and access control: An RDF model. 
• Indexes: Comes with default indexes, including a unique index to enforce the 

RDF set constraint in each RDF model. Supports adding new indexes and 
eliminating default indexes (except the unique index used for enforcing the 
uniqueness constraint). Uses index key-prefix compression for space as well 
as query performance considerations. 

Besides RDF models (described above), the other entities in an Oracle Database 
semantic network are the following. 

• Vocabularies and Rulebases: Semantics for RDF/S and subsets of OWL are 
built-in in the native inference engine. Users may also create custom rules 
and store them in rulebases. Each of the rulebases, built-in or user-defined, is 
represented by a database view object. Access control to rulebases is 
provided via database view access control, as in the case of RDF models. 

• Inferred Triple Sets: New triples generated via entailment on RDF model(s) 
and using one or more rulebases are stored in units, called rules indexes, and 
modeled as database view objects. Access control to rules indexes is 
provided via database view access control. 

3.2   Loading RDF Data  

Loading RDF data into Oracle database semantic store effects the following: 1) any 
new lexical values to be stored in the value↔id mapping table, 2) each triple is 
converted to the corresponding id-based form and stored in the table underlying the 
database view for the target RDF model, and 3) the ancillary values and a key to the 
row for the triple is stored in the application table.  

Overview. Loading RDF data in Oracle database semantic store can be characterized 
as follows: 

• Supports three forms of loading 
o Bulk loading: This method is highly optimized for loading medium to 

large number (e.g., billions) of triples [17]. The underlying scheme [11] 
is fairly complex due to the need to map the incoming triples into the id-
based storage architecture.  

o Batch loading: This method has been optimized to handle loading a 
medium number (e.g., a few millions) of triples. An advantage of this 
method is that, unlike bulk loading, this method does not require object 
values to stay within 4000 bytes.  

o Loading via SQL INSERT into the application table: This method is 
recommended for use with small number (e.g., up to a few thousands) of 
triples.  

• Input format: For bulk loading and batch loading, only the N-Triple format 
file-based input is supported. Bulk loading API also accepts input triples (in 
prefix-expanded lexical form) from a database table or view (referred to as 
staging table). SQL INSERT requires use of an object type constructor, 
SDO_RDF_TRIPLE_S, with target RDF model name, and lexical values for 
subject, predicate, and object components of the triple used as arguments. 



216 S. Das and J. Srinivasan 

• Duplicate elimination during bulk append: When appending a large number 
of triples into a large RDF model, elimination of duplicates between the new 
batch of triples and the pre-existing set of triples can be very slow due to use 
of anti-join. Oracle database semantic store allows use of an optimistic 
method that can often eliminate the need for anti-join or minimize the anti-
join overhead. 

• Blank node reuse: All forms of loading assume reuse of blank node labels 
within an RDF model and no reuse across models. 

3.3   Inferencing  

Overview. Inferencing capabilities in Oracle database semantic store can be 
characterized as follows: 

• Native support for standard entailment regimes: A native inference engine 
supports entailment for RDF, RDFS, and OWLPRIME that is a major subset 
of OWL-DL. 

• Interfacing with third-party reasoners: Through the use of Oracle Jena 
Adaptor [18], users can optionally make use of the Pellet [4] inference 
engine for complete OWL-DL inferencing. 

• User-defined rules: Supports specification of user-defined rules consisting of 
an antecedent part, a filter, and a consequent part and entailment using user-
defined rules. 

• Forward-chaining: The inference engine uses forward-chaining to pre-
compute and materialize the inferred triples. The implementation of the 
inference engine in the database makes heavy use of SQL queries and has 
been highly optimized to achieve performance and scalability [12] [17]. 

• Control over choosing components: An entailment regime is presented as 
consisting of components. Users may choose to include or exclude some of 
the components when they request creation of entailment. For example, 
when creating entailment using OWLPRIME, specifying ‘SAM-‘ in the 
options would cause the inference engine to skip generating new 
owl:sameAs triples from existing owl:sameAs triples.  

• Avoiding explosion in number of inferred triples: To avoid huge increase in 
number of inferred triples associated sometimes with use of owl:sameAs, 
owl:disjointWith, etc., the entailment regimes in Oracle have been 
customized to exclude some of the components by default (but users are 
allowed to request inclusion of such components, if they choose to, when 
requesting creation of entailment). If additional component exclusions are 
needed, users can always specify that option when requesting creation of 
entailment. New enhancements are currently planned that will avoid such 
explosion without requiring exclusion of components. 

• Maintenance of entailment: When the data or rules used for creating an 
entailment changes, the set of inferred triples is marked as not ‘VALID’ and 
the entailment has to be done again to get it back to a ‘VALID’ status. 
Support for limited form of incremental maintenance is currently planned. 

• Explanation and Validation: Both are supported. 



 Database Technologies for RDF 217 

3.3   Querying RDF and Relational Data  

Overview. Querying capabilities in Oracle database semantic store can be 
characterized as follows: 

• Standalone SPARQL support: Oracle supports querying using standalone 
SPARQL queries via the Jena Interface with underlying Oracle Jena Adaptor 
implementing the translation to the querying capabilities of Oracle database 
semantic store. 

• SQL-based SPARQL support: This hybrid query language support allows 
users to specify SPARQL graph-pattern as an argument to a table function, 
SEM_MATCH, which returns a table of the mappings, each of which is a 
solution for the specified graph pattern.  

 

 

Fig. 4. RDF query for finding pairs of siblings in ‘family’ RDF model: left side 
shows the SPARQL query and right side shows the SQL-based RDF query in Oracle 

The target dataset could include RDF model(s) and optionally, inferred 
triples of an entailment (pre-computed for the RDF model(s) and one or more 
rulebases). The SQL query allows combining the table of mappings returned 
by SEM_MATCH invocation(s) with relational tables (via joins, for 
example). 

The example in Fig. 4 shows how a SPARQL query for finding siblings in 
a ‘family’ RDF model can be expressed as a SQL-based RDF query in 
Oracle. The SPARQL graph pattern is passed in as the first argument to the 
SEM_MATCH table function that returns a table of results, each row 
representing a pair of siblings. As shown in the example, the resulting table 
can then be further processed by SQL constructs applicable to tables.  

• Query rewrite for better performance: The SPARQL query specified in 
SEM_MATCH is automatically translated to an SQL query and the user-
specified SQL query is rewritten using the translation as a substitution for the 
SEM_MATCH invocation [8]. This allows the resulting single SQL query to 
be seen as a whole by the optimizer and results in generation of better 
execution plan. Also, this eliminates the need for communication at run time 
between table function implementation and the SQL engine. 



218 S. Das and J. Srinivasan 

• Hints for query performance tuning: Users may optionally specify SQL-like 
hints for suggesting join orders, access methods, etc. to the database 
optimizer. 

• Use of identifiers to avoid joins: In SQL-based querying, users may retrieve 
the identifiers for the matches for some of the variables instead of the lexical 
values. This avoids joins with the value↔id mapping table and hence can 
improve query performance. 

• Ontology-assisted querying of relational data: To allow querying of 
relational tables with filters based on how column values are related to the 
terms used in an ontology, an operator, SEM_RELATED, is supported in 
Oracle database semantic store.  

 

Fig. 5. Ontology-assisted querying in Oracle: Querying “Patients” table using the 
ontology “Medical Ontology” to find patients with “upper extremity fracture” 

The SEM_RELATED operator, used in the WHERE clause of a SQL 
query, takes as input a graph pattern involving use of the column (currently 
limited to a single triple pattern, specified as a sequence of three arguments, 
first one being the column, second one an RDF term representing a predicate 
or its inverse, and the third one an RDF term) and names of the RDF 
model(s) and optionally any rulebase(s), and returns 0 or 1 depending upon 
whether a solution is present that matches the graph pattern. In case of a 



 Database Technologies for RDF 219 

match, ancillary operator SEM_DISTANCE represents the distance between 
the subject and object in the graph pattern. 

Fig. 5 shows one such example. Querying the diagnosis column, in a 
Patient table, for ‘upper extremity fracture’ using the traditional ‘=’ relational 
operator would yield no results, whereas use of the SEM_RELATED 
operator in the context of the “Medical Ontology” (entailed with RDFS) 
would return patient id 1 because the value of the diagnosis column, 
Hand_Fracture, is a subclass of Upper_Extremity_Fracture due to transitivity 
of the rdfs:subClassOf property in the RDFS entailment regime. 

4   Summary 

The mature and time tested DBMS technologies can be adopted to store and manage 
RDF data.  RDF does bring interesting requirements in terms of irregular data, lack of 
schema, or continuously evolving schema. However, with careful database schema 
design and use of indexes, a scalable and high performance RDF store can be 
supported in a database. The capability of inferencing, which is an integral part of a 
RDF store, can also be supported natively in the database.  

The case study of implementing RDF store in Oracle Database further validates 
these aspects. Also, it illustrates the ability to combine semantic (SPARQL graph 
pattern based) queries over RDF data with traditional SQL queries over enterprise 
data.  

However, there are areas that need further work including support for graph-
oriented querying (example, neighborhood of nodes, path between nodes, etc.) over 
large RDF data sets that do not fit in main memory, inferencing over more expressive 
OWL profiles, incremental inference, and adoption of traditional report generation 
tools for RDF to allow rapid development of semantic applications. 
 
Acknowledgments. We acknowledge the contributions of several other people who 
have contributed extensively in the design and implementation of the Oracle Database 
semantic technologies namely Nicole Alexander, Melliyal Annamalai, Nipun Bhatia, 
Eugene Inseok Chong, George Eadon, Vladimir Kolovski, Matthew Perry, Siva 
Ravada, Seema Sundara, Aravind Yalamanchi, and Zhe Wu. We thank our manager 
Jay Banerjee, and product managers Xavier Lopez and Bill Beauregard, for their 
encouragement and support. We also appreciate the feedback from the reviewer. 

References 

1. Resource Description Framework (RDF), http://www.w3.org/RDF 
2. RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recommendation 

(February 2004), http://www.w3.org/TR/rdf-schema 
3. OWL Web Ontology Language Reference, http://www.w3.org/TR/owl-ref 
4. Pellet: The Open Source OWL DL Reasoner, http://clarkparsia.com/pellet/ 
5. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems.  

J. Web Sem. 3(2-3), 158–182 (2005) 
6. UniProt, http://www.uniprot.org/ 



220 S. Das and J. Srinivasan 

7. WordNet, http://wordnet.princeton.edu/ 
8. Chong, E.I., Souripriya Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF 

Querying Scheme. In: VLDB 2005, pp. 1216–1227 (2005) 
9. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: Supporting Keyword Columns with 

Ontology-based Referential Constraints in DBMS. In: ICDE 2006, p. 95 (2006) 
10. SPARQL query language for RDF, http://www.w3.org/TR/rdf-sparql-query 
11. Das, S., Chong, E.I., Wu, Z., Annamalai, M., Srinivasan, J.: A Scalable Scheme for Bulk 

Loading Large RDF Graphs into Oracle. In: ICDE 2008, pp. 1297–1306 (2008) 
12. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J.: 

Implementing an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in 
Oracle. In: ICDE 2008, pp. 1239–1248 (2008) 

13. Jena – A Semantic Web Framework for Java, http://jena.sourceforge.net 
14. Oracle Database Semantic Technologies, 

http://www.oracle.com/technology/tech/semantic_technologies/ 
15. Advances in Virtuoso RDF Triple Storage (Bitmap Indexing), 

http://virtuoso.openlinksw.com/wiki/main/Main/ 
VOSBitmapIndexing 

16. Sesame: RDF Schema Querying and Storage, http://www.openrdf.org/ 
17. Semantic Technologies Product Performance, 

http://www.oracle.com/technology/tech/semantic_technologies/
htdocs/performance.html 

18. Jena Adaptor Release 2.0 for Oracle Database, 
http://www.oracle.com/technology/software/tech/ 
semantic_technologies/index.html 

19. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data 
management. In: VLDB, pp. 1008–1019 (2008) 

20. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data 
Management Using Vertical Partitioning. In: VLDB 2007, pp. 411–422 (2007) 

21. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Karsten Tolle, K.: The 
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In: SemWeb 
2001 (2001) 

22. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph 
pattern optimization using selectivity estimation. In: WWW 2008, pp. 595–604 (2008) 

23. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking Database 
Representations of RDF/S Stores. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. 
(eds.) ISWC 2005. LNCS, vol. 3729, pp. 685–701. Springer, Heidelberg (2005) 

24. Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes Second Edition W3C 
Recommendation. W3C (October 2004) 

25. Virtuoso RDF Views – Getting Started Guide, 
http://virtuoso.openlinksw.com/Whitepapers/pdf/ 
Virtuoso_SQL_to_RDF_Mapping.pdf  

26. Bizer, C.: The D2RQ Platform - Treating Non-RDF Relational Databases as Virtual RDF 
Graphs, http://www4.wiwiss.fu-berlin.de/bizer/d2rq/ 

27. Sahoo, S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Sequeda, J.:  
A Survey of Current Approaches for Mapping of Relational Databases to RDF, 
http://esw.w3.org/topic/Rdb2RdfXG/StateOfTheArt 
 
 



 Database Technologies for RDF 221 

28. Wilkinson, K., Craig Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF Storage and 
Retrieval in Jena2. In: SWDB 2003, pp. 131–150 (2003) 

29. Srinivasan, J., Murthy, R., Sundara, S., Agarwal, N., DeFazio, S.: Extensible Indexing: A 
Framework for Integrating Domain-Specific Indexing into Oracle8i. In: Proceedings of the 
16th International Conference on Data Engineering (ICDE), pp. 91–100 (2000) 

30. Horst, H.J.: Completeness, Decidability and Complexity of Entailment for RDF Schema 
and A Semantic Extension Involving the OWL Vocabulary. J. Web Sem. 3(2-3), 79–115 
(2005) 

31. OWL 2 Web Ontology Language Profiles: W3C Working Draft (April 21, 2009), 
http://www.w3.org/TR/2009/WD-owl2-profiles-20090421/ 



Technologies for the
Social Semantic Desktop

Michael Sintek1, Siegfried Handschuh2, Simon Scerri2, and Ludger van Elst1

1 Knowledge Management Department
German Research Center for Artificial Intelligence (DFKI) GmbH,

Kaiserslautern, Germany
{firstname.surname}@dfki.de

2 DERI, National University of Ireland, Galway
{firstname.surname}@deri.org

Abstract. The vision of the Social Semantic Desktop defines a user’s
personal information environment as a source and end-point of the Se-
mantic Web: Knowledge workers comprehensively express their informa-
tion and data with respect to their own conceptualizations. Semantic
Web languages and protocols are used to formalize these conceptualiza-
tions and for coordinating local and global information access.

A core challenge is to integrate existing legacy Desktop data into the
Social Semantic Desktop. Semantic lifting is the process of capturing the
semantics of various types of (semi-)structured data and/or non-semantic
metadataand translating suchdata intoSemanticWeb conceptualizations.

From the way the vision of the Social Semantic Desktop is being pur-
sued in the NEPOMUK project, we identified several requirements and
research questions with respect to knowledge representation. In addition
to the general question of the expressivity needed in such a scenario, two
main challenges come into focus: i) How can we cope with the heterogene-
ity of knowledge models and ontologies, esp. multiple knowledge mod-
ules with potentially different interpretations? ii) How can we support
the tailoring of ontologies towards different needs in various exploiting
applications?

In this paper, we present semantic lifting as a means to create semantic
metadata and the Nepomuk Representation Language (NRL) as a means
to represent these metadata. NRL is an approach to these two aforemen-
tioned questions that is based on named graphs for the modularization
aspect and a view concept for the tailoring of ontologies. This view con-
cept turned out to be of additional value, as it also provides a mechanism
to impose different semantics on the same syntactical structure.

We furthermore present some of the ontologies that have been de-
veloped with the help of NRL in the NEPOMUK project to build the
semantic foundations for the Social Semantic Desktop.

1 Overview

This paper constitutes the material for the lecture on the (Social)
Semantic Desktop given at the Reasoning Web Summer School 2009
(http://reasoningweb.org/2009/).

S. Tessaris et al. (Eds.): Reasoning Web 2009, LNCS 5689, pp. 222–254, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://reasoningweb.org/2009/


Technologies for the Social Semantic Desktop 223

In Sect. 2, we present the basic ideas of the Social Semantic Desktop. The
remaining sections describe technologies developed and used in NEPOMUK and
other projects to build the Social Semantic Desktop. Lifting (Sect. 3) is the pro-
cess of capturing the semantics of various types of (semi-)structured data and/or
non-semantic metadata and translating such data into relations, attributes and
concepts within an ontology. NRL (Sect. 4) is the NEPOMUK Representa-
tional (ontology) Language, developed as an extension to RDF/S with additional
support for named graphs and views, in order to fulfill some of the require-
ments of a representational language for the Social Semantic Desktop. Finally,
in Sect. 5, we present some of the resulting ontologies that have been developed in
NEPOMUK.

2 The Social Semantic Desktop

2.1 Motivation

The very core idea of the Social Semantic Desktop is to enable data interoper-
ability on the personal desktop based on Semantic Web standards and technolo-
gies, e. g., Ontologies and semantic metadata. The vision [13] aims at integrated
personal information management as well as at information distribution and col-
laboration, envisioning two expansion states: i) the Personal Semantic Desktop
for personal information management and later ii) the Social Semantic Desktop
for distributed information management and social community aspects.

In traditional desktop architectures, applications are isolated islands of data—
each application has its own data, unaware of related and relevant data in other
applications. Individual vendors may decide to allow their applications to inter-
operate, so that, e. g., the email client knows about the address book. However,
today there is no consistent approach for allowing interoperation and a system-
wide exchange of data between applications. Similarly, the desktops of different
users are also isolated islands—there is no standardized architecture for inter-
operation and data exchange between desktops. Users may exchange data by
sending emails or uploading it to a server, but so far there is no means for a
seamless communication between an application used by one person on their
desktop and an application used by another person on another desktop. The
knowledge exchange and integration problem on the desktop is thus similar to
that which exists on the Web.

The Social Semantic Desktop paradigm adopts ideas from the Semantic Web
(SW) paradigm [4], which offers a solution for the web. Formal Ontologies
capture both a shared conceptualization of desktop data and personal mental
models. RDF (Resource Description Format) serves as a common data repre-
sentation format. Together, these technologies provide a means to build the
semantic bridges necessary for data exchange and application integration. The
Social Semantic Desktop will transform the conventional desktop into a seam-
less, networked working environment, by loosening the borders between individ-
ual applications and the physical workspace of different users. By aligning the



224 M. Sintek et al.

Social Semantic Desktop paradigm with the Semantic Web paradigm, a Seman-
tic Desktop can be seen as both the source and the end-point of the Semantic
Web.

2.2 State of the Art

In the following we present a brief review of relevant research and development
approaches for the Social Semantic Desktop.

Gnowsis [23] was among the first research projects targeting a Semantic Desk-
top system. Its goal was to complement, rather than replace, established desktop
applications and the desktop operating system with Semantic Web features. The
primary focus of Gnowsis was on Personal Information Management (PIM). It
also addressed the issues of identification and representation of desktop resources
in a unified RDF graph.

The Haystack [20] project presents a good example for an integrated approach
to the Social Semantic Desktop field. Inter-application barriers are avoided by
simply replacing these applications with Haystack’s own word processor, email
client, image manipulation, instant messaging, etc.Haystack allows users to de-
fine their own arrangements and connections between views of information, thus
making it easier to find information located in the personal space.

The IRIS Semantic Desktop [8] (Integrate. Relate. Infer. Share) provided an
application framework that enables users to create a personal map across their
office-related information objects.

DeepaMehta [22] is an open source Semantic Desktop application based on the
Topic Maps standard. The DeepaMehta UI, which runs through a Web browser,
renders Topic Maps as a graph, similar to concept maps. Information of any
kind as well as relations between information items can be displayed and edited
in the same space. The user is no longer confronted with files and programs.

Although the systems we have looked at focused on isolated and complemen-
tary aspects, they clearly influenced the vision of the Social Semantic Desktop
presented in this paper. However our vision is more general and comprehensive.

2.3 Networked Collaborative Knowledge

We all face the problem of having increasingly more information on our desktops.
The average workspace covers hundreds of thousands of different files (including
emails), some of which we vaguely remember the place in which they were stored.
To make matters worse for the desktop user, the web has not only enabled further
information creation and dissemination, but has also opened wide the informa-
tion floodgates. Furthermore, this information is highly confined. The computer
desktop is our universal workspace, where we have all kinds of information in
different formats, and use it for various purposes in different applications. Some
of this data has little explicit representation, is not always suitably structured
and is trapped and imprisoned in applications, i. e., Data Silos. We have multi-
ple isolated information spaces on the desktop, e. g., email clients, file systems,
music managers, web browsers. The same is true for the collaborative web infor-
mation system we use, e. g., wikis, sharepoint, BSCW. These data silos prevent



Technologies for the Social Semantic Desktop 225

us from joint problem solving and collaboration, as well as answering questions
whose result is spread across multiple workspaces. In short, they hinder us from
exchanging personal content from one workspace to another.

The central idea of the Social Semantic Desktop focuses on how social and
collaborative activities and their coordination can be improved through semantic
technologies. Semantics hold the promise of automatic understanding and better
information organization and selective access, and providing standard means for
formulating and distributing metadata and Ontologies. Hence, semantic collab-
orative information management facilitates the integration of information be-
tween desktop applications and the Web, i. e., focused and integrated personal
information management along with information distribution and collaboration.

Classical collaborative information management takes place in controlled,
closed and comparatively small environments. In parallel, the WWW emerged
as a phenomenon that is unstructured, social, open, and which distributes infor-
mation on a large scale. Thus information is often disconnected on the Web. To
solve this we require computers to make sense of this information, hence mean-
ing, and thus semantics; to achieve computer-understandable data by exploiting
existing resources. These existing resources can be lifted by using formal lan-
guages, such as RDF/S or NRL (cf. Sect. 4). This enables us to network the
data and thus to achieve a higher level of new information.

Although knowledge is inherently strongly interconnected and related to peo-
ple, this interconnectedness is not reflected or supported by current information
infrastructures. The lack of interconnectedness hampers basic information man-
agement and problem-solving and collaboration capabilities, like finding, creating
and deploying the right knowledge at the right time.

Besides the creation of knowledge through observation, networking of knowl-
edge is the basic process to generate further knowledge. Networking knowledge,
can produce a piece of knowledge whose information value is far beyond the
mere sum of the individual pieces, i. e., it creates new knowledge. With the Web
we now have a foundational infrastructure in place that enables the linking of
information on a global scale. Furthermore, with the desktop we have an infras-
tructure that stores all our personal information models. Adding meaning moves
the interlinked information to the knowledge level: Web + Semantics + Desktop
= Social Semantic Desktop.

Now is the time to tackle the next step: exploiting semantics to create an
overall knowledge network that bridges the information islands in order to enable
people, organizations and systems to collaborate and interoperate on a global
scale.

In the following we will show how a Social Semantic Desktop can provide
answers to the following questions:

Q1: How do you structure your personal information on your desktop? How do
you structure your file system, your email and your bookmarks? Do you use
other means to manage your information?

Q2: How do you share and exchange the data with your colleagues? With
email—like most people, or with a Wiki, a share point system, etc.?



226 M. Sintek et al.

Q3: How do you find an expert in your organization, given it employs many
people as to make it hard for you to keep an overview?

2.4 User Mental Models

Representation of the users mental models take the form of a personal informa-
tion model (cf. Sect. 5.3). Lets envision an average desktop user called Claudia
(cf. Fig. 1), who is organizing her information in folders and emails. A close
look at it will reveal common topics in both structures, such as projects, orga-
nization, people, topics, etc.These mental models are currently isolated in her
applications, and the goal of the Semantic Desktop is to free this information
and represent it explicitly.

Therefore we propose to apply Semantic Web technologies to represent these
mental models, by utilizing existing and/or extended standards and RDF/S
vocabularies such as VCard for an optimal information representation and then
to lift (cf. Sect.3) the existing structured data up to a NRL representation (cf.
Sect. 4); thereby allowing the structuring of the mental model only once and not
several times.

2.5 Interconnected Desktops

The explicit classification scheme, encapsulated within the Personal Information
Model PIMO (cf. Sect. 5.3), helps individuals manage their desktop informa-
tion. The semantics of NRL allows for the automatic processing of this model
and the deduction of new knowledge. It creates a kind of a personal semantic
web: a semantically-extended supplement to the user’s view of their personal
information.

This research contributes to the so-called vocabulary “onion” by providing
PIMO, NIE (cf. Sect. 5.2) and other required vocabularies. An instance of the
PIMO represents a single user’s concepts, such as projects, tasks, organizations,
etc.The NIE set of ontologies provides vocabularies for describing information
elements (such as files, contact, calendar data, emails-s) which are commonly
present on the desktop and in collaborative systems.

By interconnecting such personal semantic desktops (cf. Fig. 1), e. g., via
a client server model or the use of P2P technology; we can easily exchange
information. Not only can we exchange data in the form of documents, but
also structured information about project, people, events, etc.; as well as the
personal models themselves. For example, Claudia might have developed a very
good structure for a project in which Dirk is also working, so she shares this
structure with Dirk, hence allowing him to re-use this information. Note that
this is not possible with current desktop systems—one cannot easily transfer
their project file folder structure to a colleague.

On top of the P2P networking (which allows content-based routing) we have
social protocols and algorithms that enable an explicit representation of rela-
tionships which is similar to social systems (e. g., LinkedIn1 and others), yet is

1 http://www.linkedin.com/

http://www.linkedin.com/


Technologies for the Social Semantic Desktop 227

Fig. 1. Interconnected Social Semantic Desktops

open in the sense that it allows for the creation of new connections and the
establishment of new relationships. This accelerates collaboration and allows for
the maintenance of shared views.

2.6 Achievements

We can conclude that via the Social Semantic Desktop we achieve a universal
platform for:

– Personal Information Management
– Distributed Information Management
– Social Expansion and Community Creation

The impact results in dramatic time savings, by i) filtering out marginal infor-
mation, ii) discovering vital information and building, as well as participating,
in communities of practice.

We manage personal information by mapping native structures onto our own
mental models and representing data in a unified way. The social aspect of shar-
ing and community building in an organization is done by connecting individual
semantic desktops.

The answers to the previous questions, with the Social Semantic Desktop now
in the picture, are thus:

A1: The user can manage and structure their personal information (mental
model) via PIMO.



228 M. Sintek et al.

A2: The user can share and exchange their personal information via the Social
Semantic Desktop network, which allows for a content-based routing and a
“link routing” based on social connections.

A3: The user can find experts within their social circle by using intelligent ser-
vices on top of the Social Semantic Desktop infrastructure. These utilize
the interest profile of the users’ PIMOs to detect and classify experts and
communities.

In the following chapters we will learn about the foundational technology which
enables the realization of the here presented general issues, i. e., methodologies
for the lifting of existing data onto personal information models, and the seman-
tic backbone of the Social Semantic Desktop—consisting of NRL and the rest of
the NEPOMUK Ontologies.

3 Semantic Lifting and Human Language Technologies
for the Semantic Desktop

3.1 Background

The Social Semantic Desktop requires metadata represented in RDF/NRL (cf.
Sect. 4) to operate. The RDF metadata can be the result of the following
processes:

– i) Lifting of existing structured data onto RDF
– ii) Usage of Human Language Technology (HLT) to capture knowledge from

text and transform that into RDF
– ii) Manual creation of metadata by linking, annotation or tagging

In this chapter we will focus on lifting and HLT. Semantic lifting is the process
of capturing the semantics of various types of (semi-)structured data and/or
non-semantic metadata and translating such data into relations, attributes and
concepts within an ontology. Candidate data for lifting includes non-semantic
metadata (e. g., in XML), emails, directory structures, files on disk, IMAP mail-
boxes, address books and schemas such as iCalendar2. The core challenges are
to integrate existing legacy Desktop data into the Social Semantic Desktop (cf.
Fig. 2); to expose or make explicit such data to both the Social Semantic Desk-
top and the Semantic Web; to reuse, rather than replace, existing data; and to
enhance, rather then replace, existing applications.

Human language technology (HLT), in its broadest sense, can be described as
computational methods for processing and manipulating language, for instance
text analysis, information extraction or controlled language. This technology has
materialized on the Semantic Desktop in the form of integration into the user’s
email client, personal meeting note-taker as well an automated textual analysis
of documents on their desktop.

2 http://en.wikipedia.org/wiki/ICalendar

http://en.wikipedia.org/wiki/ICalendar


Technologies for the Social Semantic Desktop 229

Fig. 2. Lifting unstructured data onto standard semantic representations

3.2 Lifting on the Semantic Desktop

In most cases, the process of lifting structured information onto an RDF layer in-
dexes data that exists in desktop applications. The data is converted to standard
vocabularies and stored in an RDF repository which serves as a local storage.
Existing systems have implemented a lifting service for a Semantic Desktop up
to varying degrees, e. g., Aperture, which is a Java application; Beagle++, a
Linux-Gnome desktop crawler; and Strigi, which is part of KDE 4. We will now
have a closer look at these systems.

Aperture: Aperture3 is a cross-platform java project. Aperture extracts data
from various information sources by crawling each source. It transforms the data
from the existing formats to RDF, using a set of purposely-developed Ontologies.
Aperture only does the crawling and extraction, since storage is usually handled
by a Sesame4 RDF data store.

Beagle++: Beagle++5 is based on Gnome Beagle. Beagle is a desktop and
search application. Gnome Beagle consists of sets of Backends and Filters. Every
backend is in charge of extracting metadata from various data sources.

Semantic extensions for extractors of Gnome Beagle towards Beagle++ are:
i) Path Annotation with WordNet, ii) Web Cache Metadata Generation, and iii)
Publication Metadata Generation from PDF files.

3 http://aperture.sourceforge.net/
4 http://www.openrdf.org/
5 http://beagle2.kbs.uni-hannover.de/

http://aperture.sourceforge.net/
http://www.openrdf.org/
http://beagle2.kbs.uni-hannover.de/


230 M. Sintek et al.

Strigi/Soprano: Nepomuk-KDE6 uses Strigi7 and Soprano8 as core component
for data lifting. Strigi, in a similar fashion to Aperture and Beagle++, crawls
the data available on the hard disk and extracts the file metadata as well as the
content of the files (where it makes sense to do so). As an example, audio files
often carry information about the artist in their metadata. On the other hand
while PDF files can contain metadata about the author, the author can also be
referred to in the content of the PDF file itself. Soprano runs in the Nepomuk
storage process. Strigi reads the data out of the files and passes the information
into Nepomuk/Soprano. Sesame9 or Redland10 are RDF repository backends for
Soprano. Soprano fully supports both PIMO and NIE as valid data formats.

3.3 Human Language Technology on the Semantic Desktop

In this section we brief the application of Human Language Technology (HLT)
to extract information from textual documents, and how techniques like con-
trolled language and natural language generation can be utilized to generate
user-friendly interfaces to the Semantic Desktop.

HLT applied on Textual Content. We first have a look at the application
of HLT for information extraction from textual content in order to create NRL-
based metadata from documents.

Keyphrase Extraction On the Semantic Desktop keyphrases are an important
instrument for cataloging and information retrieval purposes, e. g., Keyphrases
can be used for Semantic Tagging. In literature research, they provide a high-level
and concise summary of the content of textual documents or the topics covered
therein, allowing humans to quickly decide whether a given text is relevant. As
the amount of textual content on desktops grows fast, keyphrases can contribute
to manage large amounts of textual information, for instance by marking up
important sections in documents, i. e., to provide increased user experience in
document exploration.

As keyphrases are a description of textual data, the consideration of HLT tools
in order to automate the extraction process is obvious. While shallow techniques
are a long way from language understanding, in combination with statistical
processing they can be helpful in many ways, providing a first stop in auto-
matic content-metadata extraction, which then can be used as input for more
sophisticated technologies.

The main idea here is to use the keyphrases as a first step to propose a Se-
mantic Tag in order to annotate a document (cf. Sect. 5.1). The reduced set
of keyphrase candidates will provide a less noisy summary of the topics men-
tioned in a document. This reduced set, in fact, does enable querying ontology

6 http://nepomuk.kde.org/
7 http://strigi.sourceforge.net/
8 http://soprano.sourceforge.net/
9 http://www.openrdf.org/

10 http://librdf.org/

http://nepomuk.kde.org/
http://strigi.sourceforge.net/
http://soprano.sourceforge.net/
http://www.openrdf.org/
http://librdf.org/


Technologies for the Social Semantic Desktop 231

libraries (e. g., OntoSelect11 or Watson12) for good-fitting schemes, which then
can be retrieved for further semantic annotation in addition to the Semantic
Tags provided by the keyphrases.

Speech Act Detection One of the applied HLT on text technology of the Se-
mantic Desktop is based on speech act detection in email and instant messaging
conversations. The notion of a speech act pursued here is based on that defined
by John Searle [31]. At its most basic definition a speech act is an utterance,
understood more specifically as a performative utterance or an illocutionary act
(a term introduced by John L. Austin [1]), where it is assumed that by saying
something one actually is doing something. In our case, the utterances take the
form of typed text. For instance, a sentence from Claudia’s subordinate ask-
ing her politely to attend an important meeting, expresses the speaker’s (or the
sender of the sentence) wish for Claudia to attend, and sets a new requirement for
Claudia—to reply to the meeting suggestion. On the contrary, the same sentence
from Claudia’s manager will also express the wish of the sender for Claudia to
attend, but the expected requirement for Claudia will be to attend the meeting
without further ado.

Semanta13 is a fully-implemented system supporting Semantic Email, whereby
we have lifted email processes to a semantic level via speech act theory and a
formally-defined ad-hoc email workflow model. In our approach we considered
the fact that an email has one or more purposes, or Action Items. The content of
an email message can be summarized into a number of such items (e. g., Meeting
Request, Task Assignment, File Request, etc.). Once exchanged, every single
action item can be seen as the start, or continuation of a separate workflow.

The sMail Conceptual Framework [28] applies Speech Act Theory [31] to
the email communication process, in order to provide a formal structure and
semantics for these action items and their workflows. Email action items like the
ones above can be represented by a number of speech act instances provided in
the sMail ontology14. The Email Speech Act Workflow model [27] is then used
to support the user with handling email workflows, e. g., providing them with a
set of options when reacting to action items in email.

Computational linguistics technologies, namely Ontology-Based Information
Extraction (OBIE) techniques, are employed to provide semiautomatic annota-
tion of action items (speech acts) in email content. The information extraction
is based on a declarative model which classifies text into speech acts based on
a number of linguistic features like sentence form, tense, modality and the se-
mantic roles of verbs. The system deploys a GATE [9] corpus pipeline consisting
of a tokenizer, modified sentence splitter, POS tagger, keyphrase lookup via Fi-
nite State gazetteers and several JAPE [10] grammars. Email annotations are
represented in RDF, using a number of Ontologies (sMail, NMO, NCO, etc.)
and embedded within email messages. This enables semantic email to be used

11 olp.dfki.de/ontoselect/
12 http://watson.kmi.open.ac.uk/WatsonWUI/
13 http://smile.deri.ie/projects/semanta
14 http://ontologies.smile.deri.ie/smail

olp.dfki.de/ontoselect/
http://watson.kmi.open.ac.uk/WatsonWUI/
http://smile.deri.ie/projects/semanta
http://ontologies.smile.deri.ie/smail


232 M. Sintek et al.

as a vessel for the transportation and also the sharing of semantics across social
semantic desktops.

HLT to generate Interfaces. HLT can be applied to Controlled Language,
Natural Language Generation and Document Analysis in order to provide a user-
friendly interface to the Semantic Desktop. Below we provide examples of how
these techniques were utilised.

Controlled Language Interfaces Our research investigates how HL) Interfaces,
specifically Controlled Natural Languages (CNL) and applied Natural Language
Generation(NLG) can provide a user-friendly means for the non-expert users
or small organizations to exploit Semantic Web technologies specifically on the
Social Semantic Desktop.

Roundtrip Ontology Authoring[12] (ROA) is a process that allows non-expert
users to author or amend an ontology by using simple, easy-to-learn, controlled
natural language. The process is a combination of Controlled Language for In-
formation Extraction (CLIE) and Text Generation which is developed on top of
GATE.

Furthermore Controlled Language (CNL) [11] offers an incentive to the novice
user to annotate, while simultaneously authoring his/her respective documents
in a user-friendly manner, but simultaneously shielding him/her from the un-
derlying complex knowledge representation formalisms. A natural overlap exists
between tools, used for both ontology creation and semantic annotation. How-
ever, there is a subtle difference between both processes. Semantic annotation
has been described as both a process, as well as the outcome of the process.
Hence it describes i) the process of addition of semantic data or metadata to the
content given an agreed ontology and ii) the semantic data or metadata itself
as a result of this process. Of particular importance here is the notion of the
addition or association of semantic data or metadata to content.

Personalized Visual Document Collection Analysis The PIMO ontology can
also be used to aid scientists and analysts alike in exploring a text collection in
a personalized manner in addition to being a formal representation of parts of
knowledge workers’ spheres of interest.

Apart from the need to retrieve information from documents that are rele-
vant to certain topics of interest, knowledge workers often also need to explore
and analyze a collection of documents as a whole, to gain further understand-
ing. Unlike the information retrieval activity, the information analysis activity
aims to provide the users with an overall picture of a text collection as a whole,
on various dimensions instead of presenting them with the most relevant docu-
ments satisfying some search criteria. Given the amount and the unstructured
or weakly-structured nature of textual documents that analysts have to deal
with, developments in visualization research are beneficial in helping them to
gain needed insights in a timely manner.

In this context, we utilized an innovative visualization approach, called IVEA
[35,36], which leverages upon the PIMO ontology and the Coordinated Multiple
Views technique to support the personalized exploration and analysis of docu-
ment collections. IVEA allows for an interactive and user-controlled exploration



Technologies for the Social Semantic Desktop 233

process in which the knowledge workers can gain meaningful, rapid understand-
ing about a text collection via intuitive visual displays. Not only does it allow
the users to integrate their interests into the visual exploration and analysis ac-
tivity, but it also enables them to incrementally enrich their PIMO Ontologies
with entities matching their evolving interests in the process. With the newly
added entities, the PIMO ontology becomes a richer and better representation
of the users’ interests and hence can lead to better and more personalized explo-
ration and analysis experiences in the future. Furthermore, not only can IVEA
be beneficial to its targeted task, but it also provides an easy and incremental
way that requires minimal effort from the users to keep their PIMO Ontolo-
gies in line with their continuously changing interests. This, indirectly, can also
benefit other PIMO-based applications. The work leverages upon research in in-
formation visualization, information retrieval, and human language technology
for semantic annotation. These technologies are used in support of the larger
HCI goal of enabling effective personalized interactions between users and text
collections.

In the next chapters, we will learn about the underlying representation for-
malism for the lifted knowledge—NRL and the other Nepomuk Ontologies.

4 NRL—The NEPOMUK Representational Language

4.1 Motivation

The viewpoint of the user comprehensively generating, manipulating and ex-
ploiting private as well as shared and public data has to be adequately reflected
in the representational basis of a Social Semantic Desktop. While we think in
general the assumptions of knowledge representation in the Semantic Web are
a good starting point, the Semantic Desktop scenario generates special require-
ments. We identified two core questions which we try to tackle in the knowledge
representation approach presented in this paper:

1. How can we cope with the heterogeneity of knowledge models and ontologies,
esp. multiple knowledge modules with potentially different interpretation
schemes?

2. How can we support the tailoring of ontologies towards different needs in
various exploiting applications?

The first question is rooted in the fact that with heterogeneous generation and
exploitation of knowledge there is no “master instance” which defines and en-
sures the “interpretation sovereignty.” The second question turned out to be an
important prerequisite for a clean ontology design on the semantic desktop, as
many applications shall use a knowledge worker’s “personal ontology.”

From these general questions, we outlined the following five main requirements
for knowledge representation on the Social Semantic Desktop:

Epistemological adequacy of modeling primitives: In the Social Semantic
Desktop scenario, knowledge modeling is not only performed offline (e. g., by a



234 M. Sintek et al.

distinguished knowledge engineer), but also by the end user, much like in the
tagging systems of the Web 2.0 where a user can continuously invent new vo-
cabulary for describing his information items. Even if much of the complexity
of the underlying representation formalism can be hidden by adequate user in-
terfaces, it is desirable that there is no big epistemological gap between the way
an end-user would like to express his knowledge and the way it is represented in
the system.

Integration of open-world and closed-world assumptions: The main prin-
ciple of the SW is that it is an open world in which documents can add new
information about existing resources. Since the Web is a huge place in which
everything can link to anything else, it is impossible to rule out that a statement
could be true, or could become true in the future. Hence, the global semantic
web relies on a open-world semantic, with no unique-name assumption—the of-
ficial OWL and RDF/S semantics. On the other hand, the main principle on
the personal Semantic Desktop is that it is a closed-world as it mainly focuses
on personal data. While most people find it difficult to understand the logi-
cal meaning and potential inferences statements of the open-world assumption,
the closed-world assumption is easier to understand for the user. Hence, the
Personal Semantic Desktop requires the closed-world semantics with a unique-
name assumption or good smushing techniques to achieve the same effects. The
next stage of expansion of the personal semantic desktop is the Social Semantic
Desktop, which connects the individual desktops. This will require open-world
semantics (in between desktops) with local closed-world semantics (on the per-
sonal desktop). Thus the desktop needs to be able to handle external data with
open-world semantics. Therefore we require a scenario where we can always dis-
tinguish between data per se and the semantics or assumptions on that data. If
these are handled analogously, the semantic desktop, a closed-world in theory,
will also be able to handle data with open-world semantics.

Handling of multiple models: In order to adequately represent the social
dimension of distributed knowledge generation and usage [37], a module concept
is desirable which supports encapsulation of statements and the possibility to
refer to such modules. The social aspect requires a support for provenance and
trust information, when it comes to importing and exporting data. With the
present RDF model, importing external RDF data from another desktop presents
some difficulties, mainly revolving around the fact that there are no standard
means of retaining provenance information of imported data. This means that
data is propagated over multiple desktops, with no information regarding the
original provider and other crucial information like the context under which that
data is valid. This can result in various situations like ending up with outdated
RDF data with no means to update it, as well as redundant RDF data which
cannot be entirely and safely removed.

Multiple semantics: As stated before, the aspect of distributed (and indepen-
dently created) information requires the support of the open-world assumption
(as we have it in OWL and RDF/S), whereas local information created on a



Technologies for the Social Semantic Desktop 235

single desktop will have closed-world semantics. Therefore, applications will be
forced to deal with different kinds of semantics.

Multiple views: Also required by the social aspect is the support for multiple
views, since different individuals on different desktops might be interested in dif-
ferent aspects of the data. A view is dynamic, virtual data computed or collated
from the original data. The best view for a particular purpose depends on the
information the user needs.

In the next section, we will briefly discuss the state of the art which served as
input for the NEPOMUK Representation Language (NRL, [33,34])15. Sec. 4.3
gives an overview of our approach. The following sections elaborate on two
important aspects of NRL, the Named Graphs for handling multiple mod-
els (Sec. 4.4) and the Graph Views for imposing different semantics on and
application-oriented tailoring of models (Sec. 4.5). In Sec. 4.6, we present an
example which shows how the concepts presented in this paper can be applied.
Sec. 6 summarizes the NRL approach and discusses next steps.

4.2 State of the Art

The Resource Description Framework [17] and the associated schema language
RDFS [5] set a standard for the Semantic Web, providing a representational
language whereby resources on the web can be mapped to designated classes
of objects in some shared knowledge domain, and subsequently described and
related through applicable object properties. With the gradual acceptance of the
Semantic Web as an achievable rather than just an ideal World Wide Web sce-
nario, and adoption of RDF/S as the standard for describing and manipulating
semantic web data, there have been many attempts to improve some RDF/S
shortcomings to handling such data. Most where in the form of representational
languages that extend RDF/S, the most notable of which is OWL [2]. Other work
attempted to provide further functionalities on top of semantic data to that pro-
vided by RDF/S by revising the RDF model itself. The most successful idea
perhaps is the named graph paradigm, where identifying multiple RDF graphs
and naming them with distinct URIs is believed to provide useful additional
functionality on top of the RDF model. Given that named graphs are manage-
able sets of data in an otherwise structureless RDF triple space composed of all
existent RDF data, most of the practical problems arising from dealing with RDF
data, like dealing with invalid or outdated data as well as issues of provenance
and trust, could be addressed more easily if the RDF model supports named
graphs. The RDF recommendation itself does not provide suitable mechanisms
for talking about graphs or define relations between graphs [3,17,5,14]. Although
the extension of the RDF model with named graph support has been proposed
[7,32,19], and the motivation and ideas are clearly stated, a concrete extension
to the RDF model supporting named graph has not yet materialized. So far, a
basic syntax and semantics that models minimal manipulation of named graphs

15 Full specifications available at http://www.semanticdesktop.org/ontologies/nrl/

http://www.semanticdesktop.org/ontologies/nrl/


236 M. Sintek et al.

has been presented by participants of the Semantic Web Interest Group.16 Their
intent is to introduce the technology to the W3C process once initial versions
are finalized. The SPARQL query language [19], currently undergoing standard-
ization by the W3C, is the most successful attempt to provide a standard query
language for RDF data. SPARQL’s full support for named graphs has encour-
aged further research in the area. The concept of modularized RDF knowledge
bases (in the spirit of named graphs) plus views that can be used to realize the
semantics of a module (with the help of rules), amongst other things, has been
introduced in the Semantic Web rule language TRIPLE [32]. Recently, [30] in-
troduced the concept of Networked Graphs, which are a declarative mechanism
to define views over distributed RDF graphs with the help of SPARQL rules.

Since the existing approaches are incomplete wrt. the needs of NEPOMUK
and most Semantic Web scenarios in general, we propose a combination of named
graphs and TRIPLE’s view concept as the basis for NRL, the representational
language we are presenting. In contrast to TRIPLE, we will add the ability to
define views as an extension of RDF and named graphs at the ontological level,
thus we are not dependent on a specific rule formalism as in the case of TRIPLE.

In the rest of the NRL section, we will give a detailed description of the named
graphs and views features of NRL. Other features of NRL (which consist of some
RDFS extensions mainly inspired by Protégé and OWL) will not be discussed.

4.3 Knowledge Representation on the Social Semantic Desktop:
The NRL Approach

NRL was inspired by the need for a robust representational language for the
Social Semantic Desktop, that targets the shortcomings of RDF/S. NRL was
designed to fulfill requirements for the NEPOMUK Social Semantic Desktop
project,17 hence the particular naming, but it is otherwise domain-independent.

As discussed in the previous section, the most notable shortcoming of the
RDF model is the lack of support for handling multiple models. In theory Named
Graphs solve this problem since they are identifiable, modularized sets of data.
Through this intermediate layer handling RDF data, e. g., exchanging data and
keeping track of data provenance information, is much more manageable. This
has a great influence in the social aspect of the Social Semantic Desktop project,
since the success of this particular aspect depends largely on how to successfully
deal with these issues. All data handling on the semantic desktop including stor-
age, retrieval and exchange, will therefore be carried out through RDF graphs.
Alongside provenance data, more useful information can be attached to named
graphs. In particular we feel that named graphs should be distinguished by their
roles, e. g., Ontology or Instance Base.

Desktop users may be interested in different aspects of data in a named graph
at different times. Looking at the contents of an image folder for instance, the
user might wish to see related concepts for an image, or any other files related to

16 http://www.w3.org/2004/03/trix/
17 http://nepomuk.semanticdesktop.org/

http://www.w3.org/2004/03/trix/
http://nepomuk.semanticdesktop.org/


Technologies for the Social Semantic Desktop 237

it, but not necessarily both concurrently even if the information is stored in the
same graph. Additionally, advanced users might require to see data that is not
usually visible to regular users, like additional indirect concepts related to the
file. This would require the viewing application to realize the RDF/S semantics
over the data to yield more results. The desktop system is therefore required
to work with extended or restricted versions of named graphs in different situ-
ations. However, we believe that such manipulations over named graphs should
not have a permanent impact on the data in question. Conversely, we believe
that the original named graph should be independent of any kind of workable
interpretation executed by an application, which can be discarded if and when
they are no longer needed.

For this reason, we present the concept of Graph Views as one of the core
concepts in NRL. By allowing for arbitrary tailored interpretations for any es-
tablished named graph, graph views fulfill our idea that named graphs should not
innately carry any realized semantics or assumptions, unless they are themselves
views on other graphs for exactly that purpose, and that they should remain un-
changed and independent of any view applied on them. This means that different
semantics can be realized for different graphs if required. In practice, different
application on the semantic desktop will require to apply different semantics, or
assumptions on semantics, to named graphs. In this way, although the semantic
desktop operates in a closed-world, it is also possible to work with open-world
semantic views over a graph. Importing a named graph with predefined open-
world semantics on the semantic desktop is therefore possible. If required (and

Fig. 3. Overview of NRL—Abstract Syntax, Concepts and Semantics



238 M. Sintek et al.

meaningful), closed-world applications can then work with a closed-world se-
mantics view over the imported graph.

Fig. 3 gives an overview of the components of NRL, depicting both the syn-
tactical and the semantic blocks of NRL. The syntax box contains, in the upper
part, the NRL Schema language, which is mainly an extension of (a large subset
of) RDFS. The lower part shows how named graphs, graph roles, and views are
related, which will be explained in detail in the rest of this paper.

The left half of the figure sheds some light on the semantics of NRL, which
has a declarative and a procedural part. Declarative semantics is linked with
graph roles, i. e., roles are used to assign meaning to named graphs (note that
not all named graphs or views must be assigned some declarative semantics,
e. g., in cases when the semantics is (not) yet known or simply not relevant).
Views are also linked to view specifications, which function as a mechanism
to express procedural semantics, e. g., by using a rule system. The procedural
semantics has, of course, to realize the declarative semantics that is assigned to
a semantic view.

4.4 Handling Multiple Models: NRL Named Graphs

Named graphs (NGs) are an extension on top of RDF, where every distinct
RDF graph is identified by a unique name. NGs provide additional functionality
on top of RDF particularly with respect to metametadata (metadata about
metadata), provenance, and data (in)equivalence issues, besides making data
handling more manageable. Our approach is based on the work described in [7]
excluding however, the open-world assumption stated there. As stated earlier (cf.
Sec. 4.3) we believe that named graphs should not innately carry any realized
semantics or assumptions on the semantics. Therefore, despite being designed as
a requirement for the Semantic Desktop, which operates under a closed-world
scenario, NRL itself does not impose closed-world semantics on data. This and
other semantics can instead be realized through designated views on graphs.

A named graph is a pair (n, g), where n is a unique URI reference denoting the
assigned name for the graph g. Such a mapping fixes the graph g corresponding
to n in a rigid, non-extensible way. The URI representing n can then be used
from any location to refer to the corresponding set of triples belonging to the
graph g. A graph g′ consistent18 with a distinct graph g named n cannot be
assigned the same name n.

An RDF triple can exist in a named graph or outside any named graph. How-
ever, for consistency reasons, all triples must be assigned to some named graph.
For this reason NRL provides a special named graph, nrl:DefaultGraph. Triples
existing outside any named graph are considered part of this default graph. This
ensures backward compatibility with triples that are not based on named graphs.
This approach gives rise to the term RDF Dataset as defined in [19]. An RDF
dataset is composed of a default graph and a finite number of distinct named

18 Two different datasets asserting two unique graphs but having the same URI for a
name contradict one another.



Technologies for the Social Semantic Desktop 239

Fig. 4. NRL Named Graph Class Hierarchy

graph, formally defined as the set {g, (n1, g1), (n2, g2), ..., (nn, gn)} comprising of
the default graph g and zero or more named graphs (ni, gi).

NRL distinguishes between graphs and graph roles, in order to have orthog-
onal modeling primitives for defining graphs and for specifying their role. A
graph role refers to the characteristics and content of a named graph (e. g., sim-
ple data, an ontology, a knowledge base, etc.) and how the data is intended
to be handled. NRL provides basic Graph Metadata Vocabulary for annotating
graph roles, which vocabulary is extended in the Nepomuk Annotation Ontology
(NAO)19. Graph metadata is attached to roles rather than to the graphs them-
selves, because its more intuitive to annotate an ontology, for example, rather
than the underlying graph. Roles are more stable than the graphs they represent,
and while the graph for a particular role might change constantly, evolution of
the role itself is less frequent. An instantiation of a role represents specific type
of graph and the corresponding triple set data.

Fig. 4 depicts the class hierarchy supporting NGs in NRL. Graph roles are
defined as specialization of the general graph representation nrl:Data. A special
graph, nrl:DocumentGraph, is used as a marker class for graphs that are rep-
resented within and identified by a document URL. We now present the NRL
vocabulary supporting named graphs. General graph vocabulary is defined in
Sec. 4.4 while Sec. 4.4 is dedicated entirely to graph roles.

Graph Core Vocabulary

nrl:Graph and nrl:DocumentGraph. Instances of these classes represent
named graphs. The name of the instance coincides with the name of the
graph. The graph content for a nrl:DocumentGraph is located at the URL
that is the URIref for the nrl:DocumentGraph instance. This allows existing

19 http://www.semanticdesktop.org/ontologies/2007/08/15/nao

http://www.semanticdesktop.org/ontologies/2007/08/15/nao


240 M. Sintek et al.

RDF files to be re-used as named graphs, avoiding the need of a syntax like
TriG20 to define named graphs.

nrl:subGraphOf, nrl:superGraphOf, and nrl:equivalentGraph. These
relations between named graphs have the obvious semantics: they are
defined as ⊆, ⊇, and = on the bare triple sets in these graphs.

nrl:imports is a subproperty of nrl:superGraphOf and models graph imports.
Apart from implying the ⊇ relation between the triple sets, it also requires
that the semantics of the two graphs is compatible if used on, e. g., graphs
that are ontologies.

nrl:DefaultGraph. This instance of nrl:Graph represents the graph contain-
ing all triples existing outside any user-defined named graph. Since we do
not apply any semantics to triples automatically, this allows views to be
defined on top of triples defined outside of all named graphs analogously to
the named-graph case.

Graph Roles Vocabulary

nrl:Data. This subclass of nrl:Graph is an abstract class to make graph roles
easy-to-use marker classes. It represents the most generic role that a graph
can have, namely that it contains data.

nrl:Schema and nrl:Ontology are roles for graphs that represent data in
some kind of conceptualization model. nrl:Ontology is a subclass of
nrl:Schema.

nrl:InstanceBase marks a named graph to contain instances from schemas or
ontologies. The properties nrl:hasSchema and nrl:hasOntology relate an
instance base to the corresponding schema or ontology.

nrl:KnowledgeBase marks a named graph as containing a conceptual model
plus instances from schemas or ontologies.

nrl:GraphMetadata is used to mark graphs whose sole purpose is to
store metadata about other graphs. Data about a graph (Graph
Metadata) is thus stored in a corresponding graph having this role.
The property nrl:graphMetadataFor binds a metadata graph to the
graph being annotated. Although a graph can have multiple metadata
graphs describing it, there can only be one unique metadata graph
which defines the graph’s important core properties, e.g. whether it
is updatable (through nrl:updatable) or otherwise. NRL provides the
nrl:coreGraphMetadataFor property for this purpose, as a subproperty of
nrl:graphMetadataFor, to identify the core metadata graph for a graph.

nrl:Configuration is used to represent technical configuration data that is ir-
relevant to general semantic web data within a graph. Other additional roles
serving different purposes might be added in the future.

nrl:Semantics. Declarative semantics for a graph role can be specified by refer-
ring to instances of this class via nrl:hasSemantics. These will usually link
(via nrl:semanticsDefinedBy) to a document specifying the semantics in
a human readable or formal way (e. g., the RDF Semantics document [14]).

20 http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/

http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/


Technologies for the Social Semantic Desktop 241

4.5 Imposing Semantics on Graphs: NRL Graph Views

A named graph consists only of the enumerated triples in the triple set as-
sociated with the name, and does not inherently carry any form of semantics
(apart from the basic RDF semantics). However in many situations it is desir-
able to work with an extended or restricted interpretation of simple syntax-only
named graphs. These can be realized by applying some algorithm (e. g., specified
through rules) which enhances named graphs with entailment triples, returns a
restricted form of the triple set, or an entirely new triple set. To preserve the
integrity of a named graph, interpretations of one named graph should never re-
place the original. To model this functionality and retain the separation between
original named graph and any number of their interpretations, we introduce the
concept of Graph Views.

Views are different interpretations for a particular named graph. Formally, a
view is an executable specification of an input graph into a corresponding output
graph. Informally, they can be seen as arbitrary wrappings for a named graph.
Fig. 5 depicts graph view support in NRL. Views are themselves named graphs.
Therefore one can have a named graph that is a different interpretation, or view,
of another named graph. This modeling can be applied recurrently, yielding a
view of a view and so on.

View specifications can execute the view realization for a view, via a set of
queries/rules in a query/rule language (e. g., a SPARQL query over a named
graph21), or via an external application (e. g., an application that returns the
transitive closure of rdfs:subClassOf). As in the latter example, view real-
izations can also realize the implicit semantics of a graph according to some
language or schema (e. g., RDFS, OWL, NRL etc.). We refer to these as Se-
mantic Views, represented in Fig. 5 by the intersection of nrl:GraphView and
graph roles. One can draw a parallel between this figure and Fig. 3. In con-
trast to graph roles, which have only declarative semantics defined through the
nrl:hasSemantics property, semantic views also carry procedural semantics,
since the semantics of these graphs are always realized, (through nrl:realizes)
and not simply implied.

Views Vocabulary. In this section we briefly present the NRL vocabulary
supporting graph view specifications.

nrl:GraphView represents a view, modeled as a subclass of named graph.
A view is realized through a view specification, defined by an instance of
nrl:ViewSpecification via nrl:hasSpecification. The named graph on

21 A way for using SPARQL to realize view definitions (called Networked Graphs)
has been described in [30]. While Networked Graphs allow views to be defined in a
declarative way (in contrast to NRL’s somewhat procedural way), they lack many
of the features we think are important for a view language, e. g., they do do not
allow access to the underlying RDF graphs without any interpretation, and they
only allow views to be defined via SPARQL which excludes languages with more
advanced semantics like OWL and also languages that do not have a declarative
semantics.



242 M. Sintek et al.

Fig. 5. Graph Views in NRL

which the view is being generated is linked by nrl:viewOn. The separation
between different interpretations of a named graph and the original named
graph itself is thus retained.

nrl:ViewSpecification. This class represents a general view specification,
which can currently take one of two forms, modeled as the two subclasses
nrl:RuleViewSpecification and nrl:ExternalViewSpecification. As
discussed earlier, semantic views realize procedural semantics and are linked
to some semantics via nrl:realizes. This is however to be differentiated
from nrl:hasSemantics, which states that a named graph carries (through
a role) declarative semantics which is not necessarily (explicitly) realized via
a view specification.

nrl:RuleViewSpecification. Views can be specified by referring to a rule lan-
guage (via nrl:ruleLanguage) and a corresponding set of given rules (via
nrl:rule). These views are realized by executing the rules, generating the
required output named graph.

nrl:ExternalViewSpecification. Instances of this class map to the location
of (via nrl:externalRealizer) an external application, service, or program
that is executed to create the view.

4.6 Example: NRL in Use

In this section, we demonstrate the utilization of the various NRL concepts in
a more complex scenario: Ella is a biologist and works as a senior researcher at
Institute Pasteur in central Paris. She would like to compile an online knowledge
base describing animal species for her students to access. She knows that a rather
generic ontology describing the animal species domain, O1, is already available
(which, technically speaking, means it exists as a named graph). Someone else
had also supplied data consisting of a vast amount of instances for the animals
ontology as a named graph with the role of instance base, I1. However this
combined data does not provide extensive coverage of the animal kingdom as



Technologies for the Social Semantic Desktop 243

required by Ella. Therefore Ella hires a SW knowledge engineer to model another
ontology that defines further species not captured in O1, and this is stored as
another named graph, O2. Since Ella requires concepts from both ontologies,
the engineer merges O1 and O2 in the required conceptualization by creating
a named graph O as an ontology and defining it as supergraph of O1 and O2.
Furthermore, a number of real instances of the new animal species defined in O2

is compiled in an instance base, I2.
Ella now requires to use all the acquired and generated data to power a use-

ful service for the students to use. Schematic data from the graph O, and the
instances from I1 and I2 are all imported to a new graph, KB , acting as a knowl-
edge base. Ella would like the students to be able to query the knowledge base
with questions like ‘Are flatworms Deuterostomes or Platyzoa?’. Although by
traversing the animals hierarchy it is clear that they are Platyzoa, the statement
is not innately part of the graph KB . This can be discovered by realizing the
semantics of rdfs:subClassOf as defined in the RDFS semantics. However KB
might be required as is, with no assumed semantics, for other purposes. Directly
enriching KB with entailment triples permanently would make this impossible.

Therefore the knowledge engineer creates a view over KB for Ella, consisting of
the required extended graph, without modifying the original KB in any way. This
is done by defining a view specification that computes the procedural semantics
for KB . The specification uses a rule language of choice that provides a number
of rules, one of which computes the transitive closure of rdfs:subClassOf for
a set of RDF triples. Executing that rule over the triples in KB results in the
semantic view V1(KB), which consists of the RDF triples in KB plus the gener-
ated entailment triples. The separation between the underlying model and the
model with the required semantics is thus retained and through simple queries
over V1(KB), students can instantly get answers to their questions.

Ella later on decides to provide another service for younger students by us-
ing ‘Graph Taxonomy Extractor’, a graph visualization API that generates an
interactive graph depicting the animal hierarchy within V1(KB). However this
graph contains other information in addition to that required (e. g., properties
attributed to classes). Of course, Ella does not want to discard all this useful
information from V1(KB) permanently just to generate the visualization. The
knowledge engineer is aware of a Semantic Web application that does exactly
what Ella requires. The application acts as an external view specification and
generates a view, consisting of only triples defining the class hierarchy, over an in-
put named graph. The view generated by this application, V2(V1(KB)), is fed to
the API to effectively generate the interactive graph for the students to explore.

It is worth to note that all seven named graphs on which this last view is
generated upon are still intact and have not been affected by any of the opera-
tions along the way. If the knowledge engineer requires to apply some different
semantics over KB , it may still be done since generating V1(KB) did not have an
impact on KB . However, the content of KB needs to be validated, or generated,
each time it is used since one of its subgraphs (O1, O2, I1 and I2) can change.
Although from a practical point of view this might sound laborious, from a



244 M. Sintek et al.

conceptual point of view it solves problems regarding data consistency and avoids
other problems like working with outdated data that can’t be updated because
links to underlying models have been lost.

Fig. 6 presents the “dataflow” in our example scenario, demonstrating how
the theoretical basis of NRL can be applied in practice to effectively model data
for use in different scenarios in a clear and consistent way.

Fig. 6. NRL Dataflow Diagram

We now model the dataflow in Fig. 6 in TriG syntax.22 TriG is a straight-
forward extension of Turtle.23 Turtle itself is an extension of N-Triples24 which
carefully takes the most useful and appropriate things added from Notation325

while keeping it in the RDF model. TriG is a plain text format created for
serializing NGs and RDF Datasets. Fig. 7 demonstrates how one can make use
of the named graph paradigm and the syntax for named graphs:

[1] namespace declarations
[2-5] ontology graphs (ex:o1 and ex:o2 are defined and then imported into

ex:o)
[6-8] instance/knowledge base definitions
[9] contents of ontology ex:o2, defining extended animal domain

22 http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/
23 http://www.dajobe.org/2004/01/turtle/
24 http://www.w3.org/TR/rdf-testcases/#ntriples
25 http://www.w3.org/DesignIssues/Notation3

http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/
http://www.dajobe.org/2004/01/turtle/
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/DesignIssues/Notation3


Technologies for the Social Semantic Desktop 245

[1] @prefix nrl: <http://semanticdesktop.org/ontology/nrl-yyyymmdd#> .
@prefix ex: <http://www.example.org/vocabulary#> .

[2] ex:o2 rdf:type nrl:Ontology .
[3] <http://www.domain.com/o1.rdfs> rdf:type nrl:Ontology ,

nrl:DocumentGraph .
[4] ex:o1 rdf:type nrl:Ontology ;

nrl:equivalentGraph <http://www.domain.com/o1.rdfs> .
[5] ex:o rdf:type nrl:Ontology ;

nrl:imports ex:o1, ex:o2 .
[6] ex:i2 rdf:type nrl:InstanceBase ;

nrl:hasOntology ex:o2 .
[7] http://www.anotherdomain.com/i1.rdf> rdf:type nrl:InstanceBase,

nrl:DocumentGraph .
[8] ex:kb rdf:type nrl:KnowledgeBase ;

nrl:imports ex:o, ex:i2, <http://www.anotherdomain.com/i1.rdf> .
[9] ex:o2 {

ex:Animal rdf:type rdfs:Class .
## further Animal Ontology definitions here ## }

[10]ex:i2 {
ex:CandyCaneWorm rdf:type ex:Flatworm ;

## further Animal Instance definitions here ## }
[11] ex:v1kb rdf:type nrl:KnowledgeBase, nrl:GraphView ;

nrl:viewOn ex:kb ; nrl:superGraphOf ex:kb ;
nrl:hasSpecification ex:rvs .

[12] ex:rvs rdf:type nrl:RuleViewSpecification ;
nrl:realizes ex:RDFSSemantics ; nrl:ruleLanguage "SPARQL" ;
nrl:rule "CONSTRUCT {?s rdfs:subClassOf ?v} WHERE ..." ;
nrl:rule "CONSTRUCT {?s rdf:type ?v} WHERE ..." .

[13] ex:RDFSSemantics rdf:type nrl:Semantics ; rdfs:label "RDFS" ;
nrl:semanticsDefinedBy "http://www.w3.org/TR/rdf-mt/" .

[14] ex:v2v1kb rdf:type nrl:GraphView, nrl:KnowledgeBase ;
nrl:viewOn ex:v1kb ; nrl:hasSpecification ex:evs .

[15] ex:evs rdf:type nrl:ExternalViewSpecification ;
nrl:externalRealizer "GraphTaxonomyExtractor" .

Fig. 7. NRL Example—TriG Serialization

[10] contents of instance base ex:i2, defining instances of animals in (ex:o2
[11-13] ex:v1kb is defined as a view on ex:kb via the view specification

ex:rvs; furthermore, ex:v1kb is a super graph of ex:kb as it real-
izes the RDFS semantics and thus contains the original graph plus the
inferred triples; the view specification is realized (as an example) with
some SPARQL-inspired CONSTRUCT queries (for this to work, a real
rule language is required)

[14-15] similar to [11-13], but here we define ex:v2v1kb with the help of an
external tool, the “GraphTaxonomyExtractor”



246 M. Sintek et al.

5 NEPOMUK Ontologies

Being the representational language, NRL (see Sect. 4) serves as the language
required to define the vocabulary with which other lower-level Nepomuk ontolo-
gies are represented. All these ontologies can be understood as being instances of
NRL, which conceptually is to be found at the representational layer of the Nepo-
muk ontologies. As such we differentiated between three main ontology layers,
as depicted in the Ontologies Pyramid Fig. 8, in order of decreasing generality,
abstraction and stability:

1. Representational Layer
2. Upper Level Layer
3. Lower Level Ontologies

Other examples of vocabularies/schemas in the uppermost layer are RDF/S and
OWL. Whereas the representational ontologies include abstract high-level classes
and properties, constraints, etc.; upper-level ontologies provide a framework by
which disparate systems may utilize a common knowledge base and from which
more domain-specific ontologies may be derived. They are high-level, domain-
independent ontologies, characterized by their representation of common sense
concepts, i. e., those that are basic for human understanding of the world. Con-
cepts expressed in upper-level ontologies are intended to be basic and universal
to ensure generality and expressivity for a wide area of domains. In turn, lower
level ontologies (which are further layered into group and personal ontologies) are
domain-specific and provide more concrete representations of abstract concepts
found in the upper ontologies.

After discussing NRL in detail, we now provide an overview of the engineered
ontologies in the upper-level ontology layer. Lower-level ontologies have not been
designed by the Nepomuk ontologies task force, but by groups or individuals de-
veloping domain-specific applications for the Social Semantic Desktop. NRL, to-
gether with the upper-level ontologies discussed hereunder, form a central pillar
in the Social Semantic Desktop system, as they are used to model the environ-
ment and domain of the applications. All the described ontologies have been
published26 and although a few of them are open for future adjustments, they
are considered to be stable. The modularization of these ontologies in itself was
a challenge, especially given the layered approach described earlier. Even though
they are all upper-level ontologies, some of them require concepts and/or rela-
tionships from others, and therefore dependency relationships exist also within
the same level. The design of the upper-level ontologies sought to:

– Represent common desktop entities (objects, people, etc.)
– Represent trivial relationships between these entities, as perceived by the

desktop user
– Represent a user’s mental model, consisting of entities and their relationships

on their desktop
26 http://www.semanticdesktop.org/ontologies/

http://www.semanticdesktop.org/ontologies/


Technologies for the Social Semantic Desktop 247

Fig. 8. The Layered Nepomuk Ontologies Pyramid

Whereas the representation of high-level concepts like ‘user’, ‘contact’, ‘desktop’,
‘file’ was fairly straightforward, we also needed to leverage existing information
sources in order to make them accessible to semantic applications on the Social
Semantic Desktop. This information is contained within various structures main-
tained by the operating system and a multitude of existing ‘legacy’ applications.
These structures include specific kinds of entities like messages, documents, pic-
tures, calendar entries and contacts in address books. van Elst coined the term
‘native structures’ to describe them and ‘native resources’ for the pieces of in-
formation they contain [25].

A multitude of relationships exist between entities on the desktop. Although
in the user’s mind the majority of these relationships is considered trivial (files
belonging to the same folder, objects related to the same topic, file copies,
professional and social contacts), they remain implicit and undefined. Expos-
ing these relationships to semantic applications is the key to making the desk-
top truly semantic. The majority of the most basic relationships can be mined
through the user’s actions—organizing files in folders, rating desktop objects,
saving files from a contact into specific folders, etc.Applications on the desktop
will also provide means for enabling the user to define less trivial relationships



248 M. Sintek et al.

(e. g., through semantic annotation, tagging). During the design of the upper-
level ontologies; all kinds of relationships—from the most trivial to ones that
are more specific, were taken into account. The user’s mental models of how
information is stored and organized on their desktop are based on these entities
and their relationships—their desktop, files on their desktop, folder structures,
contacts who share data, etc.The design of a conceptual representation of per-
sonal information models was based on the way the users are used to express
their knowledge, such that the concepts and relationships in the ontologies re-
flect the world as seen by the desktop users. This eases the process of knowledge
acquisition from the user’s desktop structures and activities to their machine-
processable representation.

After providing our motivation, in the remaining subsections we will provide
an overview of each of the ontologies in the upper-level ontology pyramid layer.
The uppermost ontology in the upper-level layer (Fig. 8) is the Nepomuk Anno-
tation Ontology (NAO) [29] which defines trivial relationships between desktop
entities as conceived by the user. The Personal Information Model Ontology
(PIMO) [26] can be used to express personal information models of individuals,
whereas the Task Management Ontology (TMO) [6] is used to describe personal
tasks of individuals. The Nepomuk Information Element set of ontologies (NIE)
[18] defines common information elements that are to be found on the desktop,
together with a number of more specific ontologies whose aim is to represent
legacy data in its various forms.

5.1 Nepomuk Annotation Ontology (NAO)

The meaning of the term annotation is highly contextual. Depending on the con-
text, anything can be considered as annotation within a data set (or a named
graph). On the SSD, the average user is frequently seen creating representations
of objects on their desktop, while the more experienced user is also frequently
creating representations of concepts and their relationships. Within this context,
we consider annotation to be anything that goes further than creating resources
and defining their elementary relationships. A user can create an instance of a
‘Person’, and provide values for all the elementary properties that an instance
of ‘Person’ can have. The user can then go one step ahead and annotate the
resources with more information, of a textual (e. g., custom human-readable de-
scriptions) or non-textual (e. g., links to related resources) nature. In a typical
scenario there may be a number of domain-centric properties for the classes
‘Person’ (e. g., name, address, knows etc.) and ‘Document’ (e. g., author, title,
etc.). Via vocabulary in the annotation ontology the user can provide person-
alized, user-friendly labels and descriptions for a resource, as well as additional
information like tags and ratings. Generic relationships exist between resources
across multiple domains, and making these relationships explicit would be of
great benefit for the user. For example, a user may want to state that a ‘Docu-
ment’ is about some instance of ‘Person’. However this shallow kind of relation-
ship exists between other concepts in other domains. Vocabulary that is able
to express these generic relationships are provided by the annotation ontology.



Technologies for the Social Semantic Desktop 249

Although this information is optional and does not reflect the elementary nature
of a ‘Document’, it contributes to improved data unification and information
retrieval via user search.

Graph Metadata is a particular form of annotation, where instead of annotat-
ing general resources, one annotates instances of named graphs, e. g., to define
the type of graph role. The major difference is that while generic annotation can
be stored within any graph the user is working with (e. g., the graph where the
annotated resource is defined), metadata about a graph should always be stored
outside that graph, in a separate special named graph that is aptly represented
in NRL by the nrl:GraphMetadata role. Detailed specifications for this ontology
are available in full online [29].

5.2 Nepomuk Information Element (NIE)

The abbreviation NIE may refer to the NIE Ontology Framework as a whole or
to the NIE Core Ontology. The motivation for NIE lies in representing the multi-
tude of applications and data formats. Previous semantic desktop projects (e. g.,
Haystack Haystack [20] or Gnowsis [23]) had to develop their solutions. Some at-
tempts at standardization have been made (e. g., Adobe XMP27, Freedesktop.org
XESAM28) but a definite standard had not emerged before NIE’s conception.
Apart from large metadata description frameworks there exists a considerable
number of smaller single-purpose ontologies aimed at specific types of resources
(e. g., ICAL29 or VCARD30). A broad array of utilities has been developed for
extracting RDF metadata from desktop sources31.

Various problems have been identified with the pre-existing vocabularies.
They are expressed in many languages and the level of detail often leaves much
to be desired. The NIE Framework is an attempt to build upon that experience,
to provide unified vocabulary to describe typical native resources that may be of
interest to the user. These resources are intended to serve as raw data for other
semantic applications. They can be browsed, searched, annotated and linked with
each other. Data represented in NIE has three roles. First, NIE data is intended
to be generated by an extraction process. Second, RDF-based systems can cre-
ate NIE structures natively, without building on existing applications. Third,
data expressed in NIE can be imported back to native applications. Thus, the
resulting ontologies serve as a mediator between semantic and native applica-
tions. The full specifications for this ontology can be accessed online [18].

5.3 Personal Information Model Ontology (PIMO)

The scope of PIMO is to model data that is within the attention of the user and
needed for knowledge work or private use. The focus is on data that is accessed
27 http://www.adobe.com/products/xmp/
28 http://xesam.org/main/XesamAbout
29 http://www.ietf.org/rfc/rfc2445.txt
30 http://www.ietf.org/rfc/rfc2426.txt
31 http://simile.mit.edu/wiki/RDFizers

http://www.adobe.com/products/xmp/
http://xesam.org/main/XesamAbout
http://www.ietf.org/rfc/rfc2445.txt
http://www.ietf.org/rfc/rfc2426.txt
http://simile.mit.edu/wiki/RDFizers


250 M. Sintek et al.

through a Semantic Desktop or other personalized Semantic Web applications.
We call this the Personal Knowledge Workspace [15] or Personal Space of Infor-
mation [16], embracing all data needed by an individual to perform knowledge
work. Today, such data is typically stored in files, in Personal Information Man-
agement or in groupware systems. A user has to cope with different formats of
data, such as text documents, contact information, e-mails, appointments, task
lists, project plans, or an Enterprise Resource Planning system. Existing infor-
mation that is already stored in information systems is in the scope of PIMO,
but abstract concepts can also be represented, if needed. PIMO is based on the
idea that users have a mental model to categorize their environment. Each con-
cept in the environment of the user is represented as a Thing in the model, and
mapped to documents and other entities that mention the concept. Things can
be described via their relations to other Things or by literal RDF properties.

In PIMO, Things are connected to their equivalent resources using directed
relations. The design rationale was to keep the PIMO ontology itself, as well
as the data needed to create a PIMO for a user as minimal as possible. Inside
a user’s PIMO, duplication is avoided. PIMO builds on NRL, NIE and NAO.
By addressing all key issues: precise representation, easy adoption, easy to un-
derstand by users, extensibility, interoperability, reuse of existing ontologies and
data integration; PIMO provides a framework for creating personal information
management applications and ontologies. The detailed specifications for this on-
tology are available online [26].

5.4 Task Model Ontology (TMO)

The TMO is a conceptual representation of tasks for use in personal task man-
agement applications for the knowledge worker (KWer). It represents an agreed,
domain-specific information model for tasks and covers personal task manage-
ment use cases. As a domain model the TMO models the tasks a KWer deals
with in the context of the KWer’s other personal information. It thereby repre-
sents an activity-centric view on the KWer’s personal information, as it models
underlying tasks as well the relations to other personal information that is rele-
vant to that task. The KWer regards all personal information as a single body of
information [21], a personal information cloud including tasks. Information-wise,
the use cases focus on an individual KWer’s personal tasks and further related
personal information. The full specifications for this ontology are available on-
line [6] and they presents the state-of-the art in task models and the semi-formal
description of the ontology with links to the supported use cases.

6 Summary and Outlook

The Social Semantic Desktop as presented in this material provides a universal
platform for:

– Personal Information Management
– Distributed Information Management
– Social Expansion and Community Creation



Technologies for the Social Semantic Desktop 251

In order to operate, the Social Semantic Desktop requires metadata, which can
be extracted by:

– i) Lifting of existing structured data onto RDF
– ii) Usage of Human Language Technology (HLT) to capture knowledge from

text and transform that into RDF
– ii) Manual creation of metadata by linking, annotation or tagging

In order to soften the border between the Semantic Web and the Social Se-
mantic Desktop, we have applied Semantic Web knowledge representation for
the desktop. Aligning knowledge representation on a Social Semantic Desktop
with the general Semantic Web approaches (RDF, RDFS, OWL, etc.) promises
a comprehensive use of data and schemas and an active, personalized access
point to the Semantic Web [24]. In such a scenario, ontologies play an important
role, from very general ontologies stating which entities can be modeled on a
Semantic Desktop (e. g., people, documents, etc.) to rather personal vocabulary
structuring information items. One of the most important design decisions is the
question of the representational ontology, constraining the general expressivity
of such a system. In this paper, we concentrated on those parts of the NEPO-
MUK Representational Language (NRL) which are rooted in the requirements
which arose by the distributed knowledge representation and heterogeneity aspects
of the Semantic Desktop scenario, and which we think cannot satisfactorily be
dealt with by the current state of the art. In a nutshell, the basic arguments and
design principles of NRL are as follows:

– Due to the heterogeneity of the data-creating and data-consuming entities in
the social semantic desktop scenario, a single interpretation schema cannot
be assumed. Therefore, NRL aims at a strict separation between data (sets
of triples, graphs) and their interpretation/semantics.

– Imposing specific semantics to a graph is realized by generating views on
that graph. Such a generation is directed by an (executable) view specifica-
tion which may realize a declarative semantics (e. g., the RDF/S or OWL
semantics specified in a standardization document).

– Graph views cannot only be used for semantic interpretations of graphs, but
also for application-driven tailoring of a graph.32

– Handling of multiple graphs (with different provenance, ownership, level of
trust, etc.) is essential. Named graphs are the basic means targeting this
problem.

– Graphs can play different roles in different contexts. While for one applica-
tion a graph may be an ontology, another one may see it as plain data. These
roles can explicitly be specified.

While originally designed as a NEPOMUK internal standard for the Social Se-
mantic Desktop, we believe that the arguments also hold for the general Semantic
Web. This is especially true when we review the current trends which increasingly
32 This corresponds to a database-like view concept.



252 M. Sintek et al.

show a shift from the view of “the Semantic Web as one big, global knowledge
base” to “a Web of (machine and human) actors” with local perspectives and
social needs like trust, ownership, etc.

Within NEPOMUK, we have developed the approach technically, by comple-
menting the NRL standard with tools that facilitate its use by the application
programmer, as well as conceptually, by the development and integration of a
number of accompanying ontology standards 33; e. g., the annotation vocabulary
referenced earlier, an information element ontology, and an upper-ontology for
Personal Information Models.

Acknowledgements. This work was supported by the European Union IST
fund (Grant FP6-027705, Project NEPOMUK); by the German Federal Ministry
of Education, Science, Research and Technology (bmb+f), (Grant 01 IW F01,
Project Mymory: Situated Documents in Personal Information Spaces) and by
Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). The
authors would especially like to thank all contributors to NEPOMUK’s ontology
taskforce.

References

1. Austin, J.L.: How to do things with words. Harvard U.P., Cambridge (1962)
2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinnes, D., Patel-

Schneider, P., Stein, L.: OWL web ontology language reference (2004)
3. Beckett, D.: RDF/XML syntax specification (revised). W3C recommendation,

W3C (February 2004), http://www.w3.org/TR/rdf-syntax-grammar/
4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 89

(May 2001)
5. Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF Schema.

Technical report, W3C (February 2004), http://www.w3.org/TR/rdf-schema/
6. Brunzel, M., Grebner, O.: Nepomuk task model ontology specification. Technical

report, NEPOMUK Consortium (2008)
7. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust.

In: WWW 2005: Proceedings of the 14th international conference on World Wide
Web, pp. 613–622. ACM Press, New York (2005)

8. Cheyer, A., Park, J., Giuli, R.: Iris: Integrate. relate. infer. share. In: Decker, S.,
Park, J., Quan, D., Sauermann, L. (eds.) Proc. of Semantic Desktop Workshop at
the ISWC, Galway, Ireland, November 6, vol. 175 (2005)

9. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework
and graphical development environment for robust NLP tools and applications. In:
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (2002)

10. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns
Engine (2nd edn.). Research Memorandum CS–00–10, Department of Computer
Science, University of Sheffield (November 2000)

33 http://www.semanticdesktop.org/ontologies/

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-schema/
http://www.semanticdesktop.org/ontologies/


Technologies for the Social Semantic Desktop 253

11. Davis, B., Handschuh, S., Cunningham, H., Tablan, V.: Further Use of Controlled
Natural Language for Semantic Annotation. In: Proceedings of the 1st Seman-
tic Authoring and Annotation Workshop (SAAW 2006) at ISWC 2006, Athens,
Georgia, USA (2006)

12. Davis, B., Iqbal, A., Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Hand-
schuh, S.: RoundTrip Ontology Authoring. In: Sheth, A.P., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, pp. 50–65. Springer, Heidelberg (2008)

13. Decker, S., Frank, M.: The social semantic desktop. In: Proc. of the WWW 2004
Workshop Application Design, Development and Implementation Issues in the Se-
mantic Web (2004)

14. Hayes, P.: RDF semantics. W3C recommendation, W3C (February 2004),
http://www.w3.org/TR/rdf-mt/

15. Holz, H., Maus, H., Bernardi, A., Rostanin, O.: From lightweight, proactive infor-
mation delivery to business process-oriented knowledge management. Journal of
Universal Knowledge Management 0(2), 101–127 (2005)

16. Jones, W.P., Teevan, J.: Personal Information Management. University of Wash-
ington Press (October 2007)

17. Manola, F., Miller, E.: RDF primer. W3C recommendation, W3C (February 2004),
http://www.w3.org/TR/rdf-primer/

18. Mylka, A., Sauermann, L., Sintek, M., van Elst, L.: Nepomuk information element
framework specification. Technical report, NEPOMUK Consortium (2007)

19. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C work-
ing draft, W3C (2005), http://www.w3.org/TR/rdf-sparql-query/

20. Quan, D., Huynh, D., Karger, D.R.: Haystack: A platform for authoring end user
semantic web applications. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 738–753. Springer, Heidelberg (2003)

21. Ravasio, P., Tscherter, V.: Users’ theories of the desktop metaphor, or why we
should seek metaphor-free interfaces. In: Kaptelinin, V., Czerwinski, M. (eds.) Be-
yond the desktop metaphor: designing integrated digital work environments, pp.
265–294. MIT Press, Cambridge (2007)

22. Richter, J., Völkel, M., Haller, H.: DeepaMehta – A Semantic Desktop. In: Decker,
S., Park, J., Quan, D., Sauermann, L. (eds.) Proc. of Semantic Desktop Workshop
at the ISWC, Galway, Ireland, November 6, vol. 175 (2005)

23. Sauermann, L.: The gnowsis—using semantic web technologies to build a semantic
desktop. Diploma thesis, Technical University of Vienna (2003)

24. Sauermann, L., Dengel, A., Elst, L., Lauer, A., Maus, H., Schwarz, S.: Personal-
ization in the EPOS project. In: Bouzid, M., Henze, N. (eds.) Proceedings of the
International Workshop on Semantic Web Personalization, Budva, Montenegro,
June 12, pp. 42–52 (2006)

25. Sauermann, L., van Elst, L., Dengel, A.: PIMO—a framework for represent-
ing personal information models. In: Tochtermann, K., Haas, W., Kappe, F.,
Scharl, A., Pellegrini, T., Schaffert, S. (eds.) Proceedings of I-MEDIA 2007 and
I-SEMANTICS 2007 (2007)

26. Sauermann, L., van Elst, L., Moeller, K.: Nepomuk personal information model
ontology specification. Technical report, NEPOMUK Consortium (2007)

27. Scerri, S., Handschuh, S., Decker, S.: Semantic Email as a Communication Medium
for the Social Semantic Desktop. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 124–138. Springer, Hei-
delberg (2008)

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/


254 M. Sintek et al.

28. Scerri, S., Mencke, M., Davis, B., Handschuh, S.: Evaluating the Ontology un-
derlying sMail - the Conceptual Framework for Semantic Email Communication.
In: Proceedings of the 6th International conference of Language Resources and
Evaluation (LREC), Marrakech, Morocco (2008)

29. Scerri, S., Sintek, M., van Elst, L., Handschuh, S.: Nepomuk annotation ontology
specification. Technical report, NEPOMUK Consortium (2007)

30. Schenk, S., Staab, S.: Networked graphs: A declarative mechanism for SPARQL
rules, SPARQL views and RDF data integration on the web. In: Proceedings of
the 17th International World Wide Web Conference, Bejing, China (2008)

31. Searle, J.R.: Speech Acts. Cambridge University Press, Cambridge (1969)
32. Sintek, M., Decker, S.: TRIPLE–A query, inference, and transformation language

for the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, p. 364. Springer, Heidelberg (2002)

33. Sintek, M., van Elst, L., Scerri, S., Handschuh, S.: Distributed knowledge represen-
tation on the social semantic desktop: Named graphs, views and roles in NRL. In:
Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 594–608.
Springer, Heidelberg (2007)

34. Sintek, M., van Elst, L., Grimnes, G., Scerri, S., Handschuh, S.: Knowledge rep-
resentation for the distributed, social semantic web: Named graphs, graph roles
and views in nrl. In: Cuenca-Grau, B., Honavar, V., Schlicht, A., Wolter, F. (eds.)
Second International Workshop on Modular Ontologies, WoMO 2007 (2007)

35. Thai, V., Handschuh, S., Decker, S.: IVEA: An information visualization tool
for personalized exploratory document collection analysis. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 139–153. Springer, Heidelberg (2008)

36. Thai, V., Handschuh, S., Decker, S.: Tight coupling of personal interests with
multi-dimensional visualization for exploration and analysis of text collections. In:
IV 2008: Proceedings of the 12th International Conference on Information Visual-
isation, pp. 221–226. IEEE Computer Society, Los Alamitos (2008)

37. van Elst, L., Dignum, V., Abecker, A.: Towards agent-mediated knowledge man-
agement. In: van Elst, L., Dignum, V., Abecker, A. (eds.) AMKM 2003. LNCS
(LNAI), vol. 2926, pp. 1–31. Springer, Heidelberg (2004)



Ontologies and Databases:
The DL-Lite Approach

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2, Maurizio Lenzerini2,
Antonella Poggi2, Mariano Rodriguez-Muro1, and Riccardo Rosati2

1 KRDB Research Centre
Free University of Bozen-Bolzano, Italy

{calvanese,rodriguez}@inf.unibz.it
2 Dipartimento di Informatica e Sistemistica

SAPIENZA Università di Roma, Italy
lastname@dis.uniroma1.it

Abstract. Ontologies provide a conceptualization of a domain of interest. Nowa-
days, they are typically represented in terms of Description Logics (DLs), and
are seen as the key technology used to describe the semantics of information at
various sites. The idea of using ontologies as a conceptual view over data repos-
itories is becoming more and more popular, but for it to become widespread in
standard applications, it is fundamental that the conceptual layer through which
the underlying data layer is accessed does not introduce a significant overhead
in dealing with the data. Based on these observations, in recent years a family of
DLs, called DL-Lite, has been proposed, which is specifically tailored to capture
basic ontology and conceptual data modeling languages, while keeping low com-
plexity of reasoning and of answering complex queries, in particular when the
complexity is measured w.r.t. the size of the data. In this article, we present a de-
tailed account of the major results that have been achieved for the DL-Lite family.
Specifically, we concentrate on DL-LiteA,id, an expressive member of this family,
present algorithms for reasoning and query answering over DL-LiteA,id ontolo-
gies, and analyze their computational complexity. Such algorithms exploit the
distinguishing feature of the logics in the DL-Lite family, namely that ontology
reasoning and answering unions of conjunctive queries is first-order rewritable,
i.e., it can be delegated to a relational database management system. We analyze
also the effect of extending the logic with typical DL constructs, and show that for
most such extensions, the nice computational properties of the DL-Lite family are
lost. We address then the problem of accessing relational data sources through an
ontology, and present a solution to the notorious impedance mismatch between
the abstract objects in the ontology and the values appearing in data sources.
The solution exploits suitable mappings that create the objects in the ontology
from the appropriate values extracted from the data sources. Finally, we discuss
the QUONTO system that implements all the above mentioned solutions and is
wrapped by the DIG-QUONTO server, thus providing a standard DL reasoner for
DL-LiteA,id with extended functionality to access external data sources.

1 Introduction

An ontology is a formalism whose purpose is to support humans or machines to share
some common knowledge in a structured way. Guarino [44] distinguishes Ontology,

S. Tessaris et al. (Eds.): Reasoning Web 2009, LNCS 5689, pp. 255–356, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



256 D. Calvanese et al.

the discipline that studies the nature of being, from ontologies (written with lower-
case initial) that are systems of categories that account for a certain view or aspect
of the world. Such ontologies act as standardized reference models to support knowl-
edge sharing and integration, and with respect to this their role is twofold: (i) they
support human understanding and communication, and (ii) they facilitate content-based
access, communication, and integration across different information systems; to this
aim, it is important that the language used to express ontologies is formal and machine-
processable. To accomplish such tasks, an ontology must focus on the explication and
formalization of the semantics of enterprise application information resources and of
the relationships among them. According to Gruber [43,42], an ontology is a formal,
explicit specification of a shared conceptualization. A conceptualization is an abstract
representation of some aspect of the world (or of a fictitious environment) which is of
interest to the users of the ontology. The term explicit in the definition refers to the fact
that constructs used in the specification must be explicitly defined and the users of the
ontology, who share the information of interest and the ontology itself, must agree on
them. Formal means that the specification is encoded in a precisely defined language
whose properties are well known and understood; usally this means that the languages
used for the specification of an ontology is logic-based, such as the languages used in
the Knowledge Representation and Artificial Intelligence communities. Shared means
that the ontology is meant to be shared across several people, applications, communi-
ties, and organizations. According to the W3C Ontology Working Group1, an ontology
defines a set of representational terms used to describe and represent an area of knowl-
edge. The ontology can be described by giving the semantics to such terms [43]. More
specifically, such terms, also called lexical references, are associated with (i.e., mapped
to) entities in the domain of interest; formal axioms are introduced to precisely state
such mappings, which are in fact the statements of a logical theory. In other words, an
ontology is an explicit representation of the semantics of the domain data [65]. To sum
up, though there is no precise common agreement on what an ontology is, there is a
common core that underlies nearly all approaches [88]:

– a vocabulary of terms that refer to the things in the domain of interest;
– a specification of the meaning (semantics) of the terms, given (ideally) in some sort

of formal logics.

Some simple ontologies consist only of a mere taxonomy of terms; however, usually on-
tologies are based on rigorous logical theories, equipped with reasoning algorithms and
services. According to Gruber [43,42], knowledge in ontologies is mainly formalized
using five kinds of components:

1. concepts (or classes), which represent sets of objects with common properties
within the domain of interest;

2. relations, which represent relationships among concepts by means of the notion of
mathematical relation;

3. functions, which are functional relations;

1 http://www.w3c.org/2001/sw/WebOnt/

http://www.w3c.org/2001/sw/WebOnt/


Ontologies and Databases: The DL-Lite Approach 257

4. axioms (or assertions), which are sentences that are always true and are used in
general to enforce suitable properties of classes, relations, and individuals;

5. individuals (or instances), which are individual objects in the domain of interest.

Ontologies allow the key concepts and terms relevant to a given domain to be identi-
fied and defined in an unambiguous way. Moreover, ontologies facilitate the integration
of different perspectives, while capturing key distinctions in a given perspective; this
improves the cooperations of people or services both within a single organization and
across several organizations.

1.1 Ontologies vs. Description Logics

An ontology, as a conceptualization of a domain of interest, provides the mechanisms
for modeling the domain and reasoning upon it, and has to be represented in terms of a
well-defined language. Description Logics (DLs) [7] are logics specifically designed to
represent structured knowledge and to reason upon it, and as such are perfectly suited as
languages for representing ontologies. Given a representation of the domain of interest,
an ontology-based system should provide well-founded methods for reasoning upon it,
i.e., for analyzing the representation, and drawing interesting conclusions about it. DLs,
being logics, are equipped with reasoning methods, and DL-based systems provide rea-
soning algorithms and working implementations for them. This explains why variants
of DLs are providing now the underpinning for the ontology languages promoted by the
W3C, namely the standard Web Ontology Language OWL2 and its variants (called pro-
files), which are now in the process of being standardized by the W3C in their second
edition, OWL 2.

DLs stem from the effort started in the mid 80s to provide a formal basis, grounded
in logic, to formalisms for the structured representation of knowledge that were popu-
lar at that time, notably Semantic Networks and Frames [67,14], that typically relied on
graphical or network-like representation mechanisms. The fundamental work by Brach-
man and Levesque [12], initiated this effort, by showing on the one hand that the full
power of First-Order Logic is not required to capture the most common representation
elements, and on the other hand that the computational complexity of inference is highly
sensitive to the expressive power of the KR language. Research in DLs up to our days
can be seen as the systematic and exhaustive exploration of the corresponding tradeoff
between expressiveness and efficiency of the various inference tasks associated to KR.

DLs are based on the idea that the knowledge in the domain to represent should be
structured by grouping into classes objects of interest that have properties in common,
and explicitly representing those properties through the relevant relationships holding
among such classes. Concepts denote classes of objects, and roles denote (typically
binary) relations between objects. Both are constructed, starting from atomic concepts
and roles, by making use of various constructs, and it is precisely the set of allowed
constructs that characterizes the (concept) language underlying a DL.

The domain of interest is then represented by means of a DL knowledge base (KB),
where a separation is made between general intensional knowledge and specific knowl-
edge about individual objects in the modeled domain. The first kind of knowledge is

2 http://www.w3.org/2007/OWL/

http://www.w3.org/2007/OWL/


258 D. Calvanese et al.

maintained in what has been traditionally called a TBox (for “Terminological Box”),
storing a set of universally quantified assertions that state general properties of con-
cepts and roles. The latter kind of knowledge is represented in an ABox (for “Asser-
tional Box”), constituted by assertions on individual objects, e.g., the one stating that
an individual is an instance of a certain concept.

Several reasoning tasks can be carried out on a DL KB, where the basic form of rea-
soning involves computing the subsumption relation between two concept expressions,
i.e., verifying whether one expression always denotes a subset of the objects denoted by
another expression. More in general, one is interested in understanding how the various
elements of a KB interact with each other in an often complex way, possibly leading
to inconsistencies that need to be detected, or implying new knowledge that should be
made explicit.

The above observations emphasize that a DL system is characterized by three as-
pects: (i) the set of constructs constituting the language for building the concepts and
the roles used in a KB; (ii) the kind of assertions that may appear in the KB; (iii) the
inference mechanisms provided for reasoning on the knowledge bases expressible in
the system. The expressive power and the deductive capabilities of a DL system depend
on the various choices and assumptions that the system adopts with regard to the above
aspects. In the following, we present .

1.2 Expressive Power vs. Efficiency of Reasoning in Description Logics

The first aspect above, i.e., the language for concepts and roles, has been the subject of
an intensive research work started in the late 80s. Indeed, the initial results on the com-
putational properties of DLs have been devised in a simplified setting where both the
TBox and the ABox are empty [69,84,38]. The aim was to gain a clear understanding of
the properties of the language constructs and their interaction, with the goal of singling
out their impact on the complexity of reasoning. Gaining this insight by understanding
the combinations of language constructs that are difficult to deal with, and devising gen-
eral methods to cope with them, is essential for the design of inference procedures. It
is important to understand that in this context, the notion of “difficult” has to be under-
stood in a precise technical sense, and the declared aim of research in this area has been
to study and understand the frontier between tractability (i.e., solvable by a polynomial
time algorithm) and intractability of reasoning over concept expressions. The maximal
combinations of constructs (among those most commonly used) that still allowed for
polynomial time inference procedures were identified, which allowed to exactly charac-
terize the tractability frontier [38]. It should be noted that the techniques and technical
tools that were used to prove such results, namely tableaux-based algorithms, are still
at the basis of the modern state of the art DL reasoning systems [68], such as Fact [49],
Racer [45], and Pellet [86,85].

The research on the tractability frontier for reasoning over concept expressions
proved invaluable from a theoretical point of view, to precisely understand the prop-
erties and interactions of the various DL constructs, and identify practically meaning-
ful combinations that are computationally tractable. However, from the point of view
of knowledge representation, where knowledge about a domain needs to be encoded,
maintained, and reasoned upon, the assumption of dealing with concept expressions



Ontologies and Databases: The DL-Lite Approach 259

only, without considering a KB (i.e., a TBox and possibly an ABox) to which the con-
cepts refer, is clearly unrealistic. Early successful DL KR systems, such as Classic [74],
relied on a KB, but did not renounce to tractability by imposing syntactic restrictions on
the use of concepts in definitions, essentially to ensure acyclicity (i.e., lack of mutual
recursion). Under such an assumption, the concept definitions in a KB can be folded
away, and hence reasoning over a KB can be reduced to reasoning over concept expres-
sions only.

However, the assumption of acyclicity is strongly limiting the ability to represent
real-world knowledge. These limitations became quite clear also in light of the tight
connection between DLs and formalisms for the structured representation of informa-
tion used in other contexts, such as databases and software engineering [31]. In the pres-
ence of cyclic KBs, reasoning becomes provably exponential (i.e, EXPTIME-complete)
already when the concept language contains rather simple constructs. As a consequence
of such a result, research in DLs shifted from the exploration of the tractability bor-
der to an exploration of the decidability border. The aim has been to investigate how
much the expressive power of language and knowledge base constructs could be fur-
ther increased while maintaining decidability of reasoning, possibly with the same,
already rather high, computational complexity of inference. The techniques used to
prove decidability and complexity results for expressive variants of DLs range from ex-
ploiting the correspondence with modal and dynamic logics [83,30], to automata-based
techniques [92,91,26,28,18,8], to tableaux-based techniques [6,15,52,9,53]. It is worth
noticing that the latter techniques, though not computationally optimal, are amenable to
easier implementations, and are at the basis of the current state-of-the-art reasoners for
expressive DLs [68].

1.3 Accessing Data through Ontologies

Current reasoners for expressive DLs perform indeed well in practice, and show that
even procedures that are exponential in the size of the KB might be acceptable under
suitable conditions. However, such reasoners have not specifically been tailored to deal
with large amounts of data (e.g., a large ABox). This is especially critical in those set-
tings where ontologies are used as a high-level, conceptual view over data repositories,
allowing users to access data item without the need to know how the data is actually
organized and where it is stored. Typical scenarios for this that are becoming more and
more popular are those of Information and Data Integration Systems [63,70,29,41], the
Semantic Web [47,51], and ontology-based data access [37,75,20,48]. Since the com-
mon denominator to all these scenarios, as far as this article is concerned, is the access
to data through an ontology, we will refer to them together as Ontology-Based Data
Access (OBDA).

In OBDA, data are typically very large and dominate the intentional level of the
ontologies. Hence, while one could still accept reasoning that is exponential on the in-
tentional part, it is mandatory that reasoning is polynomial (actually less – see later) in
the data. If follows that, when measuring the computational complexity of reasoning,
the most important parameter is the size of the data, i.e., one is interested in so-called
data complexity [90]. Traditionally, research carried out in DLs has not paid much at-
tention to the data complexity of reasoning, and only recently efficient management of



260 D. Calvanese et al.

large amounts of data [50,33] has become a primary concern in ontology reasoning sys-
tems, and data-complexity has been studied explicitly [55,22,71,62,3,4]. Unfortunately,
research on the trade-off between expressive power and computational complexity of
reasoning has shown that many DLs with efficient reasoning algorithms lack the model-
ing power required for capturing conceptual models and basic ontology languages. On
the other hand, whenever the complexity of reasoning is exponential in the size of the
instances (as for example for the expressive fragments of OWL and OW2, or in [27]),
there is little hope for effective instance management.

A second fundamental requirement in OBDA is the possibility to answer queries
over an ontology that are more complex than the simple queries (i.e., concepts and
roles) usually considered in DLs research. It turns out, however, that one cannot take
the other extreme and adopt as a query language full SQL (corresponding to First-Order
Logic queries), since due to the inherent incompleteness introduced by the presence of
an ontology, query answering amounts to logical inference, which is undecidable for
First-Order Logic. Hence, a good trade-off regarding the query language to use can be
found by considering those query languages that have been advocated in databases in
those settings where incompleteness of information is present [89], such as data integra-
tion [63] and data exchange [57,64]. There, the query language of choice are conjunctive
queries, corresponding to the select-project-join fragment of SQL, and unions thereof,
which are also the kinds of queries that are best supported by commercial database
management systems.

In this paper we advocate that for OBDA, i.e., all for those contexts where ontologies
are used to access large amounts of data, a suitable DL should be used, specifically
tailored to capture all those constructs that are used typically in conceptual modeling,
while keeping query answering efficient. Specifically, efficiency should be achieved by
delegating data storage and query answering to a relational data management systems
(RDBMS), which is the only technology that is currently available to deal with complex
queries over large amounts of data. The chosen DL should include the main modeling
features of conceptual models, which are also at the basis of most ontology languages.
These features include cyclic assertions, ISA and disjointness of concepts and roles,
inverses on roles, role typing, mandatory participation to roles, functional restrictions of
roles, and a mechanisms for identifying instances of concepts. Also, the query language
should go beyond the expressive capabilities of concept expressions in DLs, and allow
for expressing conjunctive queries and unions thereof.

1.4 Preliminaries on Computational Complexity

In the following, we will assume that the reader is familiar with basic notions about
computational complexity, as defined in standard textbooks [40,73,61]. In particular,
we will refer to the following complexity classes:

AC0 � LOGSPACE ⊆ NLOGSPACE ⊆ PTIME ⊆ NP ⊆ EXPTIME.

We have depicted the known relationships between these complexity classes. In particu-
lar, it is known that AC0 is strictly contained in LOGSPACE, while it is open whether any
of the other depicted inclusions is strict. However, it is known that PTIME � EXPTIME.



Ontologies and Databases: The DL-Lite Approach 261

Also, we will refer to the complexity class coNP, which is the class of problems that
are the complement of a problem in NP.

We only comment briefly on the complexity classes AC0, LOGSPACE, and
NLOGSPACE, since readers might be less familiar with them.

A (decision) problem belongs to LOGSPACE if it can be decided by a two-tape (de-
terministic) Turing machine that receives its input on the read-only input tape and uses
a number of cells of the read/write work tape that is at most logarithmic in the length of
the input. The complexity class NLOGSPACE is defined analogously, except that a non-
deterministic Turing machine is used instead of a deterministic one. A typical problem
that is in LOGSPACE (but not in AC0) is undirected graph reachability [78]. A typical
problem that is in NLOGSPACE is directed graph reachability.

A LOGSPACE reduction is a reduction computable by a three-tape Turing machine
that receives its input on the read-only input tape, leaves its output on the write-only
output tape, and uses a number of cells of the read/write work tape that is at most
logarithmic in the length of the input. We observe that most reductions among decision
problems presented in the computer science literature, including all reductions that we
present here, are actually LOGSPACE reductions.

For the complexity class AC0, we provide here only the basic intuitions, and re-
fer to [93] for the formal definition, which is based on the circuit model. Intuitively, a
problem belongs to AC0 if it can be decided in constant time using a number of pro-
cessors that is polynomial in the size of the input. A typical example of a problem that
belongs to AC0 is the evaluation of First-Order Logic (i.e., SQL) queries over rela-
tional databases, where only the database is considered to be the input, and the query is
considered to be fixed [1]. This fact is of importance in the context of what discussed
in this paper, since the low complexity in the size of the data of the query evaluation
problem provides an intuitive justification for the ability of relational database engines
to deal efficiently with very large amounts of data. Also, whenever a problem is shown
to be hard for a complexity class that strictly contains AC0 (such as LOGSPACE and
all classes above it), then it cannot be reduced to the evaluation of First-Order Logic
queries (cf. Section 2.6).

1.5 Overview of This Article

We start by presenting a family of DLs, called DL-Lite, that has been proposed re-
cently [21,22,24] with the aim of addressing the above issues. Specifically, in Section 2,
we present DL-LiteA,id, a significant member of the DL-Lite family. One distinguishing
feature of DL-LiteA,id is that it is tightly related to conceptual modeling formalisms and
is actually able to capture their most important features, as illustrated for UML class
diagrams in Section 3.

A further distinguishing feature of DL-LiteA,id is that query answering over an on-
tology can be performed as a two step process: in the first step, a query posed over
the ontology is reformulated, taking into account the intensional component (the TBox)
only, obtaining a union of conjunctive queries; in the second step such a union is di-
rectly evaluated over the extensional component of the ontology (the ABox). Under the
assumption that the ABox is maintained by an RDBMS in secondary storage, the eval-
uation can be carried out by an SQL engine, taking advantage of well established query



262 D. Calvanese et al.

optimization strategies. Since the first step does not depend on the data, and the second
step is the evaluation of a relational query over a databases, the whole query answering
process is in AC0 in the size of the data [1], i.e., it has the same complexity as the plain
evaluation of a conjunctive query over a relational database. In Section 4, we discuss
the traditional DL reasoning services for DL-LiteA,id and show that they are polynomial
in the size of the TBox, and in AC0 in the size of the ABox (i.e., the data). Then, in
Section 5 we discuss query answering and its complexity.

We show also, in Section 6, that DL-LiteA,id is essentially the maximal fragment ex-
hibiting such desirable computational properties, and allowing one to ultimately dele-
gate query answering to a relational engine [22,20,25]. Indeed, even slight extensions of
DL-LiteA,id make query answering (actually already instance checking, i.e., answering
atomic queries) at least NLOGSPACE-hard in data complexity, ruling out the possibility
that query evaluation could be performed by a relational engine.

Finally, we address the issue that the TBox of the ontology provides an abstract
view of the intensional level of the application domain, whereas the information about
the extensional level (the instances of the ontology) reside in the data sources, which
are developed independently of the conceptual layer, and are managed by traditional
technologies (e.g., a relational database). Therefore, the problem arises of establishing
sound mechanisms for linking existing data to the instances of the concepts and the
roles in the ontology. We present, in Section 7, a recently proposed solution for this
problem [75], based on a mapping mechanism to link existing data sources to an on-
tology expressed in DL-LiteA,id. Such mappings allow one also to bridge the notorious
impedance mismatch problem between values (data) stored in the sources and abstract
objects that are instances of concepts and roles in the ontology [66]. Intuitively, the ob-
jects in the ontology are generated by the mappings from the data values retrieved from
the data sources, by making use of suitable (designer defined) skolem functions.

All the reasoning and query answering techniques presented in the paper have been
implemented in the QUONTO system [2,76], and have been wrapped in the DIG-
QUONTO tool to provide a standard interface for DL reasoners according to the DIG
protocol. This is discussed in Section 8, together with a Plugin for the ontology ed-
itor Protégé that provides functionalities for ontology-based data access. Finally, in
Section 9, we conclude the paper.

We point out that most of the work presented in this article has been carried out within
the 3-year EU FET STREP project “Thinking ONtologiES” (TONES)3. We also remark
that large portions of the material in Sections 2, 4, and 5 are inspired or taken from [24,25],
of the material in Section 6 from [22,20], and of the material in Section 7 from [75].
However, the notation and formalisms have been unified, and proofs have been revised
and extended to take into account the proper features of the formalism considered here,
which in part differs from the ones considered in the above mentioned works.

2 The Description Logic DL-LiteA,id

In this section, we introduce formally syntax and semantics of DLs, and we do so for
DL-LiteA,id, a specific DL of the DL-Lite family [24,22], that is also equipped with

3 http://www.tonesproject.org/

http://www.tonesproject.org/


Ontologies and Databases: The DL-Lite Approach 263

identification constraints [24]. We will show in the subsequent chapters that in DL-
LiteA,id the trade-off between expressive power and computational complexity of rea-
soning is optimized towards the needs that arise in ontology-based data access. In other
words, DL-LiteA,id is able to capture the most significant features of popular concep-
tual modeling formalisms, nevertheless query answering can be managed efficiently by
relying on relational database technology.

2.1 DL-LiteA,id Expressions

As mentioned, in Description Logics [7] (DLs) the domain of interest is modeled by
means of concepts, which denote classes of objects, and roles (i.e., binary relation-
ships), which denote binary relations between objects. In addition, DL-LiteA,id distin-
guishes concepts from value-domains, which denote sets of (data) values, and roles
from attributes, which denote binary relations between objects and values. We now
define formally syntax and semantics of expressions in our logic.

Like in any other logic, DL-LiteA,id expressions are built over an alphabet. In our
case, the alphabet comprises symbols for atomic concepts, value-domains, atomic roles,
atomic attributes, and constants.

Syntax. The value-domains that we consider in DL-LiteA,id are those correspond-
ing to the data types adopted by the Resource Description Framework (RDF)4, such
as xsd:string, xsd:integer, etc. Intuitively, these types represent sets of val-
ues that are pairwise disjoint. In the following, we denote such value-domains by
T1, . . . , Tn. Furthermore, we denote with Γ the alphabet for constants, which we as-
sume partitioned into two sets, namely, ΓO (the set of constant symbols for objects),
and ΓV (the set of constant symbols for values). In turn, ΓV is partitioned into n
sets ΓV1 , . . . , ΓVn , where each ΓVi is the set of constants for the values in the value-
domain Ti.

In providing the specification of our logic, we use the following notation:

1. A denotes an atomic concept, B a basic concept, C a general concept, and �c the
universal concept. An atomic concept is a concept denoted by a name. Basic and
general concepts are concept expressions whose syntax is given at point 1 below.

2. E denotes a basic value-domain, i.e., the range of an attribute, F a value-domain
expression, and �d the universal value-domain. The syntax of value-domain ex-
pressions is given at point 2 below.

3. P denotes an atomic role, Q a basic role, and R a general role. An atomic role
is simply a role denoted by a name. Basic and general roles are role expressions
whose syntax is given at point 3 below.

4. U denotes an atomic attribute (or simply attribute), and V a general attribute. An
atomic attribute is an attribute denoted by a name, whereas a general attribute is an
attribute expression whose syntax is given at point 4 below.

4 http://www.w3.org/RDF/

http://www.w3.org/RDF/


264 D. Calvanese et al.

We are now ready to define DL-LiteA,id expressions5.

1. Concept expressions are built according to the following syntax:

B −→ A | ∃Q | δ(U)
C −→ �c | B | ¬B | ∃Q.C | δF (U)

Here, ¬B denotes the negation of a basic concept B. The concept ∃Q, also called
unqualified existential restriction, denotes the domain of a role Q, i.e., the set of
objects that Q relates to some object. Similarly, δ(U) denotes the domain of an
attribute U , i.e., the set of objects that U relates to some value. The concept ∃Q.C,
also called qualified existential restriction, denotes the qualified domain of Q w.r.t.
C, i.e., the set of objects that Q relates to some instance of C. Similarly, δF (U)
denotes the qualified domain of U w.r.t. a value-domain F , i.e., the set of objects
that U relates to some value in F .

2. Value-domain expressions are built according to the following syntax:

E −→ ρ(U)
F −→ �d | T1 | · · · | Tn

Here, ρ(U) denotes the range of an attribute U , i.e., the set of values to which U
relates some object. Note that the range ρ(U) of U is a value-domain, whereas the
domain δ(U) of U is a concept.

3. Role expressions are built according to the following syntax:

Q −→ P | P−

R −→ Q | ¬Q

Here, P− denotes the inverse of an atomic role, and ¬Q denotes the negation of a
basic role. In the following, when Q is a basic role, the expression Q− stands for
P− when Q = P , and for P when Q = P−.

4. Attribute expressions are built according to the following syntax:

V −→ U | ¬U

Here, ¬U denotes the negation of an atomic attribute.

As an example, consider the atomic concepts Man and Woman, and the atomic roles
HAS-HUSBAND, representing the relationship between a woman and the man with
whom she is married, and HAS-CHILD, representing the parent-child relationship.
Then, intuitively, the inverse of HAS-HUSBAND, i.e., HAS-HUSBAND−, represents the
relationship between a man and his wife. Also, ∃HAS-CHILD.Woman represents those
having a daughter.

5 The results mentioned in this paper apply also to DL-LiteA,id extended with role attributes
(cf. [19]), which are not considered here for the sake of simplicity.



Ontologies and Databases: The DL-Lite Approach 265

AI ⊆ ΔI
O

(∃Q)I = { o | ∃o′. (o, o′) ∈ QI }
(δ(U))I = { o | ∃v. (o, v) ∈ UI }
(∃Q.C)I = { o | ∃o′. (o, o′) ∈ QI ∧ o′ ∈ CI }
(δF (U))I = { o | ∃v. (o, v) ∈ UI ∧ v ∈ F I }

�I
c = ΔI

O

(¬B)I = ΔI
O \ BI

(ρ(U))I = { v | ∃o. (o, v) ∈ UI }
�I

d = ΔI
V

T I
i = val(Ti)

P I ⊆ ΔI
O × ΔI

O

(P−)I = { (o, o′) | (o′, o) ∈ P I }
(¬Q)I = (ΔI

O × ΔI
O) \ QI

UI ⊆ ΔI
O × ΔI

V

(¬U)I = (ΔI
O × ΔI

V ) \ UI

Fig. 1. Semantics of DL-LiteA,id expressions

Semantics. The meaning of DL-LiteA,id expressions is sanctioned by the semantics.
Following the classical approach in DLs, the semantics of DL-LiteA,id is given in terms
of First-Order Logic interpretations. All such interpretations agree on the semantics
assigned to each value-domain Ti and to each constant in ΓV . In particular, each valued-
domain Ti is interpreted as the set val(Ti) of values of the corresponding RDF data
type, and each constant ci ∈ ΓV is interpreted as one specific value, denoted val (ci), in
val(Ti). Note that, since the data types Ti are pairwise disjoint, we have that val (Ti) ∩
val(Tj) = ∅, for i �= j.

Based on the above observations, we can now define the notion of interpretation in
DL-LiteA,id. An interpretation is a pair I = (ΔI , ·I), where

– ΔI is the interpretation domain, which is the disjoint union of two non-empty sets:
ΔI

O , called the domain of objects, and ΔI
V , called the domain of values. In turn,

ΔI
V is the union of val(T1), . . . , val(Tn).

– ·I is the interpretation function, i.e., a function that assigns an element of ΔI to
each constant in Γ , a subset of ΔI to each concept and value-domain, and a subset
of ΔI × ΔI to each role and attribute, in such a way that the following holds:
• for each c ∈ ΓV , cI = val (c),
• for each d ∈ ΓO , dI ∈ ΔI

O ,
• for each a1, a2 ∈ Γ , a1 �= a2 implies aI

1 �= aI
2 , and

• the conditions shown in Figure 1 are satisfied.

Note that the above definition implies that different constants are interpreted differently
in the domain, i.e., DL-LiteA,id adopts the so-called unique name assumption (UNA).

2.2 DL-LiteA,id Ontologies

Like in any DL, a DL-LiteA,id ontology, or knowledge base (KB), is constituted by two
components:

– a TBox (where the ‘T’ stands for terminological), which is a finite set of intensional
assertions, and

– an ABox (where the ‘A’ stands for assertional), which is a finite set of extensional
(or, membership) assertions.



266 D. Calvanese et al.

We now specify formally the form of a DL-LiteA,id TBox and ABox, and its semantics.

Syntax. In DL-LiteA,id, the TBox may contain intensional assertions of three types,
namely inclusion assertions, functionality assertions, and local identification assertions.

– An inclusion assertion has one the forms

B � C, E � F, Q � R, U � V,

denoting respectively, from left to right, inclusions between concepts, value-
domains, roles, and attributes. Intuitively, an inclusion assertion states that, in every
model of T , each instance of the left-hand side expression is also an instance of the
right-hand side expression.

An inclusion assertion that on the right-hand side does not contain the symbol
’¬’ is called a positive inclusion (PI), while an inclusion assertion that on the right-
hand side contains the symbol ’¬’ is called a negative inclusion (NI). Hence, a
negative inclusion has one of the forms B1 � ¬B2, B1 � ∃Q1.∃Q2. . . . ∃Qk.¬B2,
P1 � ¬P2, or U1 � ¬U2.

For example, the (positive) inclusion Parent � ∃HAS-CHILD specifies
that parents have a child, the inclusions ∃HAS-HUSBAND � Woman and
∃HAS-HUSBAND− � Man respectively specify that wifes (i.e., those who have
a husband) are women and that husbands are men, and the inclusion Person �
δ(hasSsn), where hasSsn is an attribute, specifies that each person has a social
security number. The negative inclusion Man � ¬Woman specifies that men and
women are disjoint.

– A functionality assertion has one of the forms

(funct Q), (funct U),

denoting functionality of a role and of an attribute, respectively. Intuitively, a func-
tionality assertion states that the binary relation represented by a role (respectively,
an attribute) is a function.

For example, the functionality assertion (funct HAS-HUSBAND−) states that a
person may have at most one wife, and the functionality assertion (funct hasSsn)
states that no individual may have more than one social security number.

– A local identification assertion (or, simply, identification assertion or identification
constraint) makes use of the notion of path. A path is an expression built according
to the following syntax,

π −→ S | D? | π ◦ π (1)

where S denotes a basic role (i.e., an atomic role or the inverse of an atomic role),
an atomic attribute, or the inverse of an atomic attribute, and π1 ◦ π2 denotes the
composition of the paths π1 and π2. Finally, D denotes an basic concept or a (basic
or arbitrary) value domain, and the expression D? is called a test relation, which
represents the identity relation on instances of D. Test relations are used in all
those cases in which one wants to impose that a path involves instances of a certain



Ontologies and Databases: The DL-Lite Approach 267

concept. For example, HAS-CHILD◦Woman? is the path connecting someone with
his/her daughters.

A path π denotes a complex property for the instances of concepts: given an
object o, every object that is reachable from o by means of π is called a π-filler
for o. Note that for a certain o there may be several distinct π-fillers, or no π-fillers
at all.
If π is a path, the length of π, denoted length(π), is 0 if π has the form D?, is 1 if π
has the form S, and is length(π1) + length(π2) if π has the form π1 ◦ π2. With the
notion of path in place, we are ready for the definition of identification assertion,
which is an assertion of the form

(id B π1, . . . , πn),

where B is a basic concept, n ≥ 1, and π1, . . . , πn (called the components of the
identifier) are paths such that length(πi) ≥ 1 for all i ∈ {1, . . . , n}. Intuitively,
such a constraint asserts that for any two different instances o, o′ of B, there is at
least one πi such that o and o′ differ in the set of their πi-fillers. The identification
assertion is called local if length(πi) = 1 for at least one i ∈ {1, . . . , n}. The
term “local” emphasizes that at least one of the paths has length 1 and thus refers
to a local property of B. In the following, we will consider only local identification
assertions, and thus simply omit the ‘local’ qualifier.

For example, the identification assertion (id Woman HAS-HUSBAND) says that
a woman is identified by her husband, i.e., there are not two different women with
the same husband, whereas the identification assertion (id Man HAS-CHILD) says
that a man is identified by his children, i.e., there are not two men with a child in
common. We can also say that there are not two men with the same daughters by
means of the identification (id Man HAS-CHILD ◦ Woman?).

Then, a DL-LiteA,id TBox is a finite sets of intensional assertions of the form above,
where suitable limitations in the combination of such assertions are imposed. To pre-
cisely describe such limitations, we first introduce some preliminary notions. An atomic
role P (resp., an atomic attribute U ) is called an identifying property in a TBox T , if

– T contains a functionality assertion (funct P ) or (funct P−) (resp., (funct U)), or
– P (resp., U ) appears (in either direct or inverse direction) in some path of an iden-

tification assertion in T .

We say that an atomic role P (resp., an atomic attribute U ) appears positively in the
right-hand side of an inclusion assertion α if α has the form Q � P or Q � P−, for
some basic role Q (resp., U ′ � U , for some atomic attribute U ′). An atomic role P
(resp., an atomic attribute U ) is called primitive in a TBox T , if

– it does not appear positively in the right-hand side of an inclusion assertion of T ,
and

– it does not appear in T in an expression of the form ∃P .C or ∃P−.C (resp., δF (U)).

With these notions in place, we are ready to define what constitutes a DL-LiteA,id TBox.



268 D. Calvanese et al.

Definition 2.1. A DL-LiteA,id TBox, T , is a finite set of inclusion assertions, function-
ality assertions, and identification assertions as specified above, and such that the fol-
lowing conditions are satisfied:

(1) Each concept appearing in an identification assertion of T (either as the identified
concept, or in some test relation of some path) is a basic concept, i.e., a concept of
the form A, ∃Q, or δ(U).

(2) Each identifying property in T is primitive in T .

A DL-LiteA TBox is a DL-LiteA,id TBox that does not contain identification assertions.

Intuitively, the condition stated at point (2) says that, in DL-LiteA,id TBoxes, roles and
attributes occurring in functionality assertions or in paths of identification constraints
cannot be specialized. We will see that the above conditions ensure the tractability of
reasoning in our logic.

A DL-LiteA,id (or DL-LiteA) ABox consists of a set of membership assertions, which
are used to state the instances of concepts, roles, and attributes. Such assertions have
the form

A(a), P (a1, a2), U(a, c),

where A is an atomic concept, P is an atomic role, U is an atomic attribute, a, a1, a2

are constants in ΓO , and c is a constant in ΓV .

Definition 2.2. A DL-LiteA,id (resp., DL-LiteA) ontology O is a pair 〈T ,A〉, where T
is a DL-LiteA,id (resp., DL-LiteA) TBox (cf. Definition 2.1), and A is a DL-LiteA,id (or
DL-LiteA) ABox, all of whose atomic concepts, roles, and attributes occur in T .

Notice that, for an ontology O = 〈T ,A〉, the requirement in Definition 2.2 that all
concepts, roles, and attributes that occur in A occur also in T is not a limitation. Indeed,
as will be clear from the semantics, we can deal with the general case by adding to T
inclusion assertions A � �c, ∃P � �c, and δ(U) � �c, for any atomic concepts A,
atomic role P , and atomic attribute U occurring in A but not in T , without altering the
semantics of O.

We also observe that in many DLs, functionality assertions are not explicitly present,
since they can be expressed by means of number restrictions. Number restrictions
(≥ k Q) and (≤ k Q), where k is a positive integer and Q a basic role, denotes the set of
objects that are connected by means of role Q respectively to at least and at most k dis-
tinct objects. Hence, (≥ k Q) generalizes existential quantification ∃Q, while (≤ k Q)
can be used to generalize functionality assertions. Indeed, the assertion (funct Q) is
equivalent to the inclusion assertion ∃Q � (≤ 1 Q), where the used number is 1, and
the number restriction is expressed globally for the whole domain of Q. Instead, by
means of an assertion B � (≤ k Q), one can impose locally, i.e., just for the instances
of concept B, a numeric condition involving a number k that is different from 1.

Semantics. We now specify the semantics of an ontology, again in terms of interpre-
tations, by defining when an interpretation I satisfies and assertion α (either an inten-
sional assertion or a membership assertion), denoted I |= α.



Ontologies and Databases: The DL-Lite Approach 269

– An interpretation I satisfies a concept (resp., value-domain, role, attribute) inclu-
sion assertion

B � C, if BI ⊆ CI ;
E � F, if EI ⊆ F I ;
Q � R, if QI ⊆ RI ;
U � V, if UI ⊆ V I .

– An interpretation I satisfies a role functionality assertion (funct Q), if for each
o1, o2, o3 ∈ ΔI

O

(o1, o2) ∈ QI and (o1, o3) ∈ QI implies o2 = o3.

– An interpretation I satisfies an attribute functionality assertion (funct U), if for
each o ∈ ΔI

O and v1, v2 ∈ ΔI
V

(o, v1) ∈ UI and (o, v2) ∈ UI implies v1 = v2.

– In order to define the semantics of identification assertions, we first define the se-
mantics of paths. The extension πI of a path π in an interpretation I is defined as
follows:
• if π = S, then πI = SI ,
• if π = D?, then πI = {(o, o) | o ∈ DI},
• if π = π1 ◦ π2, then πI = πI

1 ◦ πI
2 , where ◦ denotes the composition operator

on relations.
As a notation, we write πI(o) to denote the set of π-fillers for o in I, i.e., πI(o) =
{o′ | (o, o′) ∈ πI}.

Then, an interpretation I satisfies an identification assertion (id B π1, . . . , πn)
if for all o, o′ ∈ BI , πI

1 (o)∩πI
1 (o′) �= ∅∧· · ·∧πI

n(o)∩πI
n(o′) �= ∅ implies o = o′.

Observe that this definition is coherent with the intuitive reading of identification
assertions discussed above, in particular by sanctioning that two different instances
o, o′ of B differ in the set of their πi-fillers when such sets are disjoint.6

– An interpretation I satisfies a membership assertion

A(a), if aI ∈ AI ;
P (a1, a2), if (aI

1 , aI
2 ) ∈ P I ;

U(a, c), if (aI , cI) ∈ UI .

An interpretation I is a model of a DL-LiteA,id ontology O (resp., TBox T , ABox A),
or, equivalently, I satisfies O (resp., T , A), written I |= O (resp., I |= T , I |= A) if
and only if I satisfies all assertions in O (resp., T , A). The semantics of a DL-LiteA,id

ontology O = 〈T ,A〉 is the set of all models of O.

6 Note that an alternative definition of the semantics of identification assertions is the one where
an interpretation I satisfies (id B π1, . . . , πn) if for all o, o′ ∈ BI , πI

1 (o) = πI
1 (o′) ∧ · · · ∧

πI
n(o) = πI

n(o′) implies o = o′. This alternative semantics coincides with the one we have
adopted in the case where all roles and attributes in all paths πi are functional, but imposes a
stronger condition for identification when this is not the case. Indeed, the alternative semantics
sanctions that two different instances o, o′ of B differ in the set of their πi-fillers when such
sets are different (rather than disjoint).



270 D. Calvanese et al.

With the semantics of an ontology in place, we comment briefly on the various types
of assertions in a DL-LiteA,id TBox and relate them to constraints used in classical
database theory. We remark, however, that TBox assertions have a fundamentally dif-
ferent role from the one of database dependencies: while the latter are typically enforced
on the data in a database, this is not the case for the former, which are instead used to
infer new knowledge from the asserted one.

– Inclusion assertions having a positive element in the right-hand side intuitively cor-
respond to inclusion dependencies in databases [1]. Specifically Concept inclusions
correspond to unary inclusion dependencies [34], while role inclusions correspond
to binary inclusion dependencies. An inclusion assertion of the form ∃Q � A is in
fact a foreign key, since objects that are instances of concept A can be considered
as keys for the (unary) relations denoted by A. Instead, an inclusion of the form
A � ∃Q can be considered as a participation constraint.

– Inclusion assertions having a negative element in the right-hand side intuitively
correspond to exclusion (or disjointness) dependencies in databases [1].

– Functionality assertions correspond to unary key dependencies in databases.
Specifically (funct P ) corresponds to stating that the first component of the bi-
nary relation P is a key for P , while (funct P−) states the same for the second
component of P .

– Identification assertions correspond to more complex forms of key dependencies.
To illustrate this correspondence, consider a concept A and a set of attributes
U1, . . . , Un, where each Ui is functional and has A as domain (i.e., the TBox con-
tains the functionality assertion (funct Ui) and the inclusion assertion δ(Ui) � A).
Together, A and “its attributes” can be considered as representing a single relation
RA of arity n + 1 constituted by one column for the object A and one column for
each of the Ui attributes. Then, an identification assertion (id A Ui1 , . . . , Uik

), in-
volving a subset Ui1 , . . . , Uik

of the attributes of A, resembles a key dependency
on RA, where the key is given by the specified subset of attributes. Indeed, due to
the identification assertion, a given sequence v1, . . . , vk of values for Ui1 , . . . , Uik

determines a unique instance a of A, and since all attributes are functional and have
A as domain, their value is uniquely determined by a, and hence by v1, . . . , vk.

For further intuitions about the meaning of the various kinds of TBox assertions we
refer also to Section 3, where the relationship with conceptual models (specifically,
UML class diagrams) is discussed in detail.

Example 2.3. We conclude this section with an example in which we present a DL-
LiteA,id ontology modeling the annual national football7 championships in Europe,
where the championship for a specific nation is called league (e.g., the Spanish Liga). A
league is structured in terms of a set of rounds. Every round contains a set of matches,
each one characterized by one home team and one host team. We distinguish between
scheduled matches, i.e., matches that have still to be played, and played matches. Ob-
viously, a match falls in exactly one of these two categories.

7 Football is called “soccer” in the United States.



Ontologies and Databases: The DL-Lite Approach 271

League

PlayedMatch

Nation

MatchTeam
HOST

HOME

OF

Round

BELONGS-TO

PLAYED-IN

ScheduledMatch

code

year

homeGoals

date

hostGoals

Fig. 2. Diagrammatic representation of the football championship ontology

INCLUSION ASSERTIONS

League 
 ∃OF
∃OF 
 League

∃OF− 
 Nation
Round 
 ∃BELONGS-TO

∃BELONGS-TO 
 Round
∃BELONGS-TO− 
 League

Match 
 ∃PLAYED-IN
∃PLAYED-IN 
 Match

∃PLAYED-IN− 
 Round
Match 
 ∃HOME

∃HOME 
 Match
∃HOME− 
 Team

Match 
 ∃HOST
∃HOST 
 Match

∃HOST− 
 Team

PlayedMatch 
 Match
ScheduledMatch 
 Match

PlayedMatch 
 ¬ScheduledMatch
Match 
 ¬Round

League 
 δ(year)

Match 
 δ(code)

Round 
 δ(code)

PlayedMatch 
 δ(date)

PlayedMatch 
 δ(homeGoals)

PlayedMatch 
 δ(hostGoals)

ρ(date) 
 xsd:date
ρ(homeGoals) 
 xsd:nonNegativeInteger
ρ(hostGoals) 
 xsd:nonNegativeInteger

ρ(code) 
 xsd:string
ρ(year) 
 xsd:positiveInteger

FUNCTIONALITY ASSERTIONS

(funct OF)

(funct BELONGS-TO)

(funct PLAYED-IN)

(funct HOME)

(funct HOST)

(funct year)

(funct code)

(funct date)

(funct homeGoals)

(funct hostGoals)

IDENTIFICATION ASSERTIONS

1. (id League OF, year)

2. (id Round BELONGS-TO, code)

3. (id Match PLAYED-IN, code)

4. (id Match HOME, PLAYED-IN)

5. (id Match HOST, PLAYED-IN)

6. (id PlayedMatch date, HOST)

7. (id PlayedMatch date, HOME)

8. (id League year, BELONGS-TO− ◦ PLAYED-IN− ◦ HOME)

9. (id League year, BELONGS-TO− ◦ PLAYED-IN− ◦ HOST)

10. (id Match HOME, HOST, PLAYED-IN ◦ BELONGS-TO ◦ year)

Fig. 3. The DL-LiteA,id TBox Tfbc for the football championship example

In Figure 2, we show a schematic representation of (a portion of) the intensional
part of the ontology for the football championship domain. In this figure, the black
arrow represents a partition of one concept into a set of sub-concepts. We have not
represented explicitly in the figure the pairwise disjointness of the concepts Team,
Match, Round, League, and Nation, which intuitively holds in the modeled domain. In
Figure 3, a DL-LiteA,id TBox Tfbc is shown that captures (most of) the above aspects.
In our examples, we use the CapitalizedItalics font to denote atomic concepts, the
ALL-CAPITALS-ITALICS font to denote atomic roles, the typewriter font to de-
note value-domains, and the boldface font to denote atomic attributes. Regarding the



272 D. Calvanese et al.

pairwise disjointness of the various concepts, we have represented by means of negative
inclusion assertions only the disjointness between PlayedMatch and ScheduledMatch
and the one between Match and Round. By virtue of the characteristics of DL-LiteA,id,
we can explicitly consider also attributes of concepts and the fact that they are used
for identification. In particular, we assume that when a scheduled match takes place,
it is played in a specific date, and that for every match that has been played, the
number of goals scored by the home team and by the host team are given. Note that
different matches scheduled for the same round can be played in different dates. Also,
we want to distinguish football championships on the basis of the nation and the year
in which a championship takes place (e.g., the 2009 Italian Liga). We also assume that
both matches and rounds have codes. The identification assertions model the following
aspects:

1. No nation has two leagues in the same year.
2. Within a league, the code associated to a round is unique.
3. Every match is identified by its code within its round.
4. A team is the home team of at most one match per round.
5. As above for the host team.
6. No home team participates in different played matches in the same date.
7. As above for the host team.
8. No home team plays in different leagues in the same year.
9. As above for the host team.

10. No pair (home team, host team) plays different matches in the same year.

Note that the DL-LiteA,id TBox in Figure 3 captures the ontology in Figure 2, except for
the fact that the concept Match covers the concepts ScheduledMatch and PlayedMatch.
In order to express such a condition, we would need to use disjunction in the right-hand-
side of inclusion assertions, i.e.,

Match � ScheduledMatch! PlayedMatch

where ! would be interpreted as set union. As we will see in Section 6, we have to
renounce to the expressive power required to capture covering constraints (i.e., dis-
junction), if we want to preserve nice computational properties for reasoning over DL-
LiteA,id ontologies.

An ABox, Afbc , associated to the TBox in Figure 3 is shown in Figure 4, where we
have used the slanted font for constants in ΓO and the typeface font for constants in
ΓV . For convenience of reading, we have chosen in the example names of the constants
that indicate the properties of the objects that the constants represent.

We observe that the ontology Ofbc = 〈Tfbc ,Afbc〉 is satisfiable. Indeed, the interpre-
tation I = (ΔI , ·I) shown in Figure 5 is a model of the ABox Afbc , where we have
assumed that for each value constant c ∈ ΓV , the corresponding value val(c) is equal
to c itself, hence cI = val (c) = c. Moreover, it is easy to see that every interpretation
I has to satisfy the conditions shown in Figure 5 in order to be a model of Afbc .



Ontologies and Databases: The DL-Lite Approach 273

CONCEPT AND ROLE MEMBERSHIP ASSERTIONS

League(it2009)
Round(r7)
Round(r8)
PlayedMatch(m7RJ)
Match(m8NT)
Match(m8RM)
Team(roma)

BELONGS-TO(r7, it2009)
BELONGS-TO(r8, it2009)
HOME(m7RJ, roma)
HOME(m8NT, napoli)
HOME(m8RM, roma)
Team(napoli)

PLAYED-IN(m7RJ, r7)
PLAYED-IN(m8NT, r8)
PLAYED-IN(m8RM, r8)
HOST(m7RJ, juventus)
HOST(m8NT, torino)
HOST(m8RM, milan)
Team(juventus)

ATTRIBUTE MEMBERSHIP ASSERTIONS

code(r7,"7")
code(r8,"8")

code(m7RJ, "RJ")
code(m8NT,"NT")
code(m8RM,"RM")

date(m7RJ,5/4/09)
homeGoals(m7RJ,3)
hostGoals(m7RJ,1)

Fig. 4. The ABox Afbc for the football championship example

(it2009I) ∈ LeagueI

(r7I) ∈ RoundI

(r8I) ∈ RoundI

(m7RJI) ∈ PlayedMatchI

(m8NTI) ∈ MatchI

(m8RMI) ∈ MatchI

(romaI) ∈ TeamI

(r7I ,"7") ∈ codeI

(r8I ,"8") ∈ codeI

(r7I , it2009I) ∈ BELONGS-TOI

(r8I , it2009I) ∈ BELONGS-TOI

(m7RJI , romaI) ∈ HOMEI

(m8NTI , napoliI) ∈ HOMEI

(m8RMI , romaI) ∈ HOMEI

(napoliI) ∈ TeamI

(m7RJI ,"RJ") ∈ codeI

(m8NTI , "NT") ∈ codeI

(m8RMI ,"RM") ∈ codeI

(m7RJI , r7I) ∈ PLAYED-INI

(m8NTI , r8I) ∈ PLAYED-INI

(m8RMI , r8I) ∈ PLAYED-INI

(m7RJI , juventusI) ∈ HOSTI

(m8NTI , torinoI) ∈ HOSTI

(m8RMI , milanI) ∈ HOSTI

(juventusI) ∈ TeamI

(m7RJI ,5/4/09) ∈ dateI

(m7RJI ,3) ∈ homeGoalsI

(m7RJI ,1) ∈ hostGoalsI

Fig. 5. A model of the ABox Afbc for the football championship example

Furthermore, the following are necessary conditions for I to be also a model of the
TBox Tfbc , and hence of Ofbc:

it2009I ∈ (∃OF)I to satisfy League � ∃OF,

it2009I ∈ (δ(year))I to satisfy League � δ(year),
m7RJI ∈ MatchI to satisfy PlayedMatch � Match,

torinoI ∈ TeamI to satisfy ∃HOST− � Team,

milanI ∈ TeamI to satisfy ∃HOST− � Team.

Notice that, in order for an interpretation I to satisfy the condition specified in the
first row above, there must be an object o ∈ ΔI

O such that (it2009I , o) ∈ OFI . Accord-
ing to the inclusion assertion ∃OF− � Nation, such an object o must also belong to
NationI (indeed, in our ontology, every league is of one nation). Similarly, the second
row above derives from the property that every league must have a year.



274 D. Calvanese et al.

We note that, besides satisfying the conditions discussed above, an interpretation
I ′ may also add other elements to the interpretation of concepts, attributes, or roles
specified by I. For instance, the interpretation I′ that adds to I the object

italyI ∈ NationI

is still a model of the ontology Ofbc .
Note, finally, that there exists no model of Ofbc such that m7RJ is interpreted as

an instance of ScheduledMatch, since m7RJ has to be interpreted as an instance of
PlayedMatch, and according to the inclusion assertion

PlayedMatch � ¬ScheduledMatch,

the sets of played matches and of scheduled matches are disjoint.

The above example clearly shows the difference between a database and an ontology.
From a database point of view the ontology Ofbc discussed in the example might seem
incorrect: for example, while the TBox Tfbc sanctions that every league has a year, there
is no explicit year for it2009 in the ABox Afbc . However, the ontology is not incorrect:
the axiom stating that every league has a year simply specifies that in every model of
Ofbc there will be a year for it2009, even if such a year is not known.

2.3 DL-LiteA,id vs. OWL 2 QL

Having now completed the definition of the syntax and semantics of DL-LiteA,id, we
would like to point out that DL-LiteA,id is at the basis of OWL 2 QL, one of the three
profiles of OWL 2 that are currently being standardized by the World-Wide-Web Con-
sortium (W3C). The OWL 2 profiles8 are fragments of the full OWL 2 language that
have been designed and standardized for specific application requirements. According
to (the current version of) the official W3C profiles document, “OWL 2 QL includes
most of the main features of conceptual models such as UML class diagrams and ER
diagrams. [It] is aimed at applications that use very large volumes of instance data, and
where query answering is the most important reasoning task. In OWL 2 QL, conjunctive
query answering can be implemented using conventional relational database systems.”
We will substantiate all these claims in the next sections.

Here, we briefly point out the most important differences between DL-LiteA,id and
OWL 2 QL (apart from differences in terminology and syntax, which we do not
mention):

(1) The main difference is certainly the fact that OWL 2 QL does not adopt the unique
name assumption, while such assumption holds for DL-LiteA,id (and the whole DL-
Lite family, in fact). The reason for this semantic mismatch is on the one hand that
OWL 2, as most DLs, does not adopt the UNA, and since the profiles are intended
to be syntactic fragments of the full OWL 2 language, it was not desirable for a
profile to change a basic semantic assumption. On the other hand, the UNA is at the
basis of data management in databases, and moreover, by dropping it, DL-LiteA,id

would lose its nice computational properties (cf. Theorem 6.6).

8 http://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl2-profiles/


Ontologies and Databases: The DL-Lite Approach 275

(2) OWL 2 QL does not allow for expressing functionality of roles or attributes, or
identification assertions, while such constructs are present in DL-LiteA,id. This as-
pect is related to Item (1), and motivated by the fact that the OWL 2 QL profile is
intended to have the same nice computational properties as DL-LiteA,id. In order to
preserve such properties even in the absence of the UNA, the proof of Theorem 6.6
tells us that we need to avoid the use of functionality (and of identification asser-
tions, since these can be used to simulate functionality). Indeed, as testified also
by the complexity results in [4], in the absence of these constructs, the UNA has
no impact on complexity of reasoning, and hence OWL 2 QL exhibits the same
computational properties as DL-LiteA,id.

(3) OWL 2 QL includes the possibility to assert additional role properties, such as dis-
jointness, reflexivity, irreflexivity, symmetry, and asymmetry, that are not explicitly
present in DL-LiteA,id. It is immediate to see that disjointness between roles Q1 and
Q2 can be expressed by means of Q1 � ¬Q2, and that reflexivity of a role P can
be expressed by means of P � P−. Moreover, as shown in [4], also the addition of
irreflexivity, symmetry, and asymmetry does not affect the computational complex-
ity of inference (including query answering, see Section 2.4), and such constructs
could be incorporated in the reasoning algorithms for DL-LiteA,id with only minor
changes.

(4) OWL 2 QL inherits its specific datatypes (corresponding to the value domains of
DL-LiteA,id) from OWL 2, while DL-LiteA,id does not provide any details about
datatypes. However, OWL 2 QL imposes restrictions on the allowed datatypes that
ensure that no datatype has an unbounded domain, which is sufficient to guarantee
that datatypes will not interfere unexpectedly in reasoning.

We remark that, due to the correspondence between OWL 2 QL and DL-LiteA,id, all the
results and techniques presented in the next sections have a direct impact on OWL 2,
i.e., on a standard language for the Semantic Web, that builds on a large user base.
Hence, such results are of immediate practical relevance.

2.4 Queries over DL-LiteA,id Ontologies

We are interested in queries over ontologies expressed in DL-LiteA,id. Similarly to the
case of relational databases, the basic query class that we consider is the class of unions
of conjunctive queries, which is a subclass of the class of First-Order Logic queries.

Syntax of Queries. A First-Order Logic (FOL) query q over a DL-LiteA,id ontology O
(resp., TBox T ) is a, possibly open, FOL formula ϕ(x) whose predicate symbols are
atomic concepts, value-domains, roles, or attributes of O (resp., T ). The free variables
of ϕ(x) are those appearing in x, which is a tuple of (pairwise distinct) variables. In
other words, the atoms of ϕ(x) have the form A(x), D(x), P (x, y), U(x, y), or x = y,
where:

– A, F , P , and U are respectively an atomic concept, a value-domain, an atomic role,
and an atomic attribute in O,

– x, y are either variables in x or constants in Γ .



276 D. Calvanese et al.

The arity of q is the arity of x. A query of arity 0 is called a boolean query. When we
want to make the arity of a query q explicit, we denote the query as q(x).

A conjunctive query (CQ) q(x) over a DL-LiteA,id ontology is a FOL query of the
form

∃y. conj (x, y),

where y is a tuple of pairwise distinct variables not occurring among the free variables
x, and where conj (x, y) is a conjunction of atoms. The variables x are also called
distinguished and the (existentially quantified) variables y are called non-distinguished.
We will also make use of conjunctive queries with inequalities, which are CQs in which
also atoms of the form x �= y (called inequalities) may appear.

A union of conjunctive queries (UCQ) is a FOL query that is the disjunction of a set
of CQs of the same arity, i.e., it is a FOL formula of the form:

∃y1. conj 1(x, y1) ∨ · · · ∨ ∃yn. conj n(x, yn).

UCQs with inequalities are obvious extensions of UCQs.
Finally, a positive FOL query is a FOL query ϕ(x) where the formula ϕ is built us-

ing only conjunction, disjunction, and existential quantification (i.e., it contains neither
negation nor universal quantification).

Datalog Notation for CQs and UCQs. In the following, it will sometimes be conve-
nient to consider a UCQ as a set of CQs, rather than as a disjunction of UCQs. We will
also use the Datalog notation for CQs and UCQs. In this notation, a CQ is written as

q(x) ← conj ′(x, y)

and a UCQ is written as a set of CQs

q(x) ← conj ′1(x, y1)
...

q(x) ← conj ′n(x, yn)

where conj ′(x, y) and each conj ′i(x, yi) in a CQ are considered simply as sets of
atoms (written in list notation, using a ‘,’ as a separator). In this case, we say that q(x)
is the head of the query, and that conj ′(x, y) and each conj ′i(x, yi) is the body of the
corresponding CQ.

Semantics of Queries. Given an interpretation I = (ΔI , ·I), the FOL query q =
ϕ(x) is interpreted in I as the set qI of tuples o ∈ ΔI × · · · × ΔI such that the
formula ϕ evaluates to true in I under the assignment that assigns each object in o to
the corresponding variable in x [1]. We call qI the answer to q over I. Notice that the
answer to a boolean query is either the empty tuple, “()”, considered as true, or the
empty set, considered as false .

We remark that a relational database (over the atomic concepts, roles, and attributes)
corresponds to a finite interpretation. Hence the notion of answer to a query introduced
here is the standard notion of answer to a query evaluated over a relational database.



Ontologies and Databases: The DL-Lite Approach 277

In the case where the query is a CQ, the above definition of answer can be rephrased
in terms of homomorphisms. In general, a homomorphisms between two interpretations
(i.e., First-Order structures) is defined as follows.

Definition 2.4. Given two interpretations I = (ΔI , ·I) and J = (ΔJ , ·J ) over
the same set P of predicate symbols, a homomorphism μ from I to J is a map-
ping μ : ΔI → ΔJ such that, for each predicate P ∈ P of arity n and each tuple
(o1, . . . , on) ∈ (ΔI)n, if (o1, . . . , on) ∈ P I , then (μ(o1), . . . , μ(on)) ∈ PJ .

Notice that, in the case of interpretations of a DL-LiteA,id ontology, the set of predicate
symbols in the above definition would be the set of atomic concepts, value domains,
roles, and attributes of the ontology.

We can now extend the definition to consider also homomorphisms from CQs to
interpretations.

Definition 2.5. Given a CQ q(x) = ∃y. conj (x, y) over interpretation I = (ΔI , ·I),
and a tuple o = (o1, . . . , on) of objects of ΔI of the same arity as x = (x1, . . . , xn),
a homomorphism from q(o) to I is a mapping μ from the variables and constants in
q(x) to ΔI such that:

– μ(c) = cI , for each constant c in conj (x, y),
– μ(xi) = oi, for i ∈ {1, . . . , n}, and
– (μ(t1), . . . , μ(tn)) ∈ P I , for each atom P (t1, . . . , tn) that appears in conj (x, y).

The following result established in [32] provides a fundamental characterization of an-
swers to CQs in terms of homomorphism.

Theorem 2.6 ([32]). Given a CQ q(x) = ∃y. conj (x, y) over an interpretation I =
(ΔI , ·I), and a tuple o = (o1, . . . , on) of objects of ΔI of the same arity as x =
(x1, . . . , xn), we have that o ∈ qI if and only if there is a homomorphism from q(o)
to I.

In fact, the notion of homomorphism is crucial in the context of the study of CQs,
and most inference tasks involving CQs (including query containment [58], and tasks
related to view-based query processing [46]) can be rephrased in terms of homomor-
phism [1].

Example 2.7. Consider again the ontology Ofbc = 〈Tfbc ,Afbc〉 introduced in Exam-
ple 2.3, and the following query asking for all matches:

q1(x) ← Match(x).

If I is the interpretation shown in Figure 5, we have that:

qI1 = {(m8NTI), (m8RMI)}.

Notice that I is a model of Afbc , but not of Tfbc . Let instead I ′ be the interpretation
analogous to I, but extended in such a way that it becomes also a model of Tfbc , and
hence of Ofbc , as shown in Example 2.3. Then we have that:

qI
′

1 = {(m8NTI), (m8RMI), (m7RJI)}.



278 D. Calvanese et al.

Suppose now that we ask for teams, together with the code of the match in which they
have played as home team:

q2(t, c) ← Team(t), HOME(m, t), Match(m), code(m, c).

Then we have that

qI2 = {(napoliI ,"NT"), (romaI ,"RM")},
qI

′

2 = {(romaI ,"RJ"), (napoliI ,"NT"), (romaI ,"RM")}.

Certain Answers. The notion of answer to a query introduced above is not sufficient
to capture the situation where a query is posed over an ontology, since in general an
ontology will have many models, and we cannot single out a unique interpretation (or
database) over which to answer the query. Instead, the ontology determines a set of
interpretations, i.e., the set of its models, which intuitively can be considered as the
set of databases that are “compatible” with the information specified in the ontology.
Given a query, we are interested in those answers to this query that depend only on
the information in the ontology, i.e., that are obtained by evaluating the query over a
database compatible with the ontology, but independently of which is the actually cho-
sen database. In other words, we are interested in those answers to the query that are
obtained for all possible databases (including infinite ones) that are models of the ontol-
ogy. This corresponds to the fact that the ontology conveys only incomplete information
about the domain of interest, and we want to guarantee that the answers to a query that
we obtain are certain, independently of how we complete this incomplete information.
This leads us to the following definition of certain answers to a query over an ontology.

Definition 2.8. Let O be a DL-LiteA,id ontology and q a UCQ over O. A tuple c of
constants appearing in O is a certain answer to q over O, written c ∈ cert(q,O), if for
every model I of O, we have that cI ∈ qI .

Answering a query q posed to an ontologyO means exactly to compute the set of certain
answers to q over O.

Example 2.9. Consider again the ontology introduced in Example 2.3, and queries q1

and q2 introduced in Example 2.7. One can easily verify that

cert(q1,O) = {(m8NTI), (m8RMI), (m7RJI)},
cert(q2,O) = {(romaI ,"RJ"), (napoliI ,"NT"), (romaI ,"RM")}.

Notice that, in the case where O is an unsatisfiable ontology, the set of certain answers
to a (U)CQ q is the finite set of all possible tuples of constants whose arity is the one of
q. We denote such a set by AllTup(q,O).



Ontologies and Databases: The DL-Lite Approach 279

2.5 Reasoning Services

In studying DL-LiteA,id, we are interested in several reasoning services, including the
traditional DL reasoning services. Specifically, we consider the following problems for
DL-LiteA,id ontologies:

– Ontology satisfiability, i.e., given an ontology O, verify whether O admits at least
one model.

– Concept and role satisfiability, i.e., given a TBox T and a concept C (resp., a role
R), verify whether T admits a model I such that CI �= ∅ (resp., RI �= ∅).

– We say that an ontology O (resp., a TBox T ) logically implies an assertion α, de-
notedO |= α (resp., T |= α, if every model ofO (resp., T ) satisfies α. The problem
of logical implication of assertions consists of the following sub-problems:
• instance checking, i.e., given an ontology O, a concept C and a constant a

(resp., a role R and a pair of constants a1 and a2), verify whether O |= C(a)
(resp., O |= R(a1, a2));

• subsumption of concepts or roles, i.e., given a TBox T and two general
concepts C1 and C2 (resp., two general roles R1 and R2), verify whether
T |= C1 � C2 (resp., T |= R1 � R2);

• checking functionality, i.e., given a TBox T and a basic role Q, verify whether
T |= (funct Q).

• checking an identification constratins, i.e., given a TBox T and an identifica-
tion constraint (id C π1, . . . , πn), verify whether T |= (id C π1, . . . , πn).

In addition we are interested in:

– Query answering, i.e., given an ontology O and a query q (either a CQ or a UCQ)
over O, compute the set cert(q,O).

The following decision problem, called recognition problem, is associated to the query
answering problem: given an ontology O, a query q (either a CQ or a UCQ), and a
tuple of constants a of O, check whether a ∈ cert(q,O). When we talk about the com-
putational complexity of query answering, in fact we implicitly refer to the associated
recognition problem.

In analyzing the computational complexity of a reasoning problem over a DL on-
tology, we distinguish between data complexity and combined complexity [90]: data
complexity is the complexity measured with respect to the size of the ABox only, while
combined complexity is the complexity measured with respect to the size of all inputs to
the problem, i.e., the TBox, the ABox, and the query. The data complexity measure is
of interest in all those cases where the size of the intensional level of the ontology (i.e.,
the TBox) is negligible w.r.t. the size of the data (i.e., the ABox), as in ontology-based
data access (cf. Section 1.3).

2.6 The Notion of FOL-Rewritability

We now introduce the notion of FOL-rewritability for both satisfiability and query an-
swering, which will be used in the sequel.

First, given an ABox A (of the kind considered above), we denote by DB(A) =
〈ΔDB(A), ·DB(A)〉 the interpretation defined as follows:



280 D. Calvanese et al.

– ΔDB(A) is the non-empty set consisting of the union of the set of all object con-
stants occurring in A and the set {val(c) | c is a value constant that occurs in A},

– aDB(A) = a, for each object constant a,
– ADB(A) = {a | A(a) ∈ A}, for each atomic concept A,
– PDB(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P , and
– UDB(A) = {(a, val(c)) | U(a, c) ∈ A}, for each atomic attribute U .

Observe that the interpretation DB(A) is a minimal model of the ABox A.
Intuitively, FOL-rewritability of satisfiability (resp., query answering) captures the

property that we can reduce satisfiability checking (resp., query answering) to evaluat-
ing a FOL query over the ABox A considered as a relational database, i.e., over DB(A).
The definitions follow.

Definition 2.10. Satisfiability in a DL L is FOL-rewritable, if for every TBox T ex-
pressed in L, there exists a boolean FOL query q, over the alphabet of T , such that for
every non-empty ABox A, the ontology 〈T ,A〉 is satisfiable if and only if q evaluates to
false in DB(A).

Definition 2.11. Answering UCQs in a DL L is FOL-rewritable, if for every UCQ q
and every TBox T expressed over L, there exists a FOL query q1, over the alphabet of
T , such that for every non-empty ABox A and every tuple of constants a occurring in
A, we have that a ∈ cert(q, 〈T ,A〉) if and only if aDB(A) ∈ q

DB(A)
1 .

We remark that FOL-rewritability of a reasoning problem that involves the ABox of an
ontology (such as satisfiability or query answering) is tightly related to the data com-
plexity of the problem. Indeed, since the FOL query considered in the above definitions
depends only on the TBox (and the query), but not on the ABox, and since the eval-
uation of a First-Order Logic query (i.e., an SQL query without aggregation) over an
ABox is in AC0 in data complexity [1], FOL-rewritability of a problem has as an im-
mediate consequence that the problem is in AC0 in data complexity. Hence, one way
of showing that for a certain DL L a problem is not FOL-rewritable, is to show that
the data complexity of the problem for the DL L is above AC0, e.g., LOGSPACE-hard,
NLOGSPACE-hard, PTIME-hard, or even coNP-hard. We will provide some results of
this form in Section 6 (see also [4]).

3 UML Class Diagrams as an Ontology Language

In this section, we discuss how UML class diagrams can be considered as an ontology
language, and we show how such diagrams can be captured in DL-LiteA,id.

Since we concentrate on class diagrams from the conceptual perspective, we do not
deal with those features that are more relevant for the software engineering perspec-
tive, such as operations (methods) associated to classes, or public, protected, and private
qualifiers for methods and attributes. Also, for sake of brevity and to smooth the presen-
tation we make some simplifying assumptions that could all be lifted without changing
the results presented here (we refer to [11] for further details). In particular, we will not
deal explicitly with associations of arity greater than 2, and we will only deal with the
following multiplicities:



Ontologies and Databases: The DL-Lite Approach 281

– unconstrained, i.e., 0..∗,
– functional participation, i.e., 0..1,
– mandatory participation, i.e., 1..∗, and
– one-to-one correspondence, i.e., 1..1.

These multiplicities are particularly important since they convey meaningful semantic
aspects in modeling, and thus are the most commonly used ones.

Our goal is twofold. On the one hand, we aim at showing how class diagrams can be
expressed in DLs. On the other hand, we aim at understanding which is the complexity
of inference over an UML class diagram. We will show that the formalization in DLs
helps us in deriving complexity results both for reasoning and for query answering over
an UML class diagram.

3.1 Classes and Attributes

A class in a UML class diagram denotes a sets of objects with common features. The
specification of a class contains its name and its attributes, each denoted by a name
(possibly followed by the multiplicity, between square brackets) and with an associated
type, which indicates the domain of the attribute values. A UML class is represented
by a DL concept. This follows naturally from the fact that both UML classes and DL
concepts denote sets of objects.

A UML attribute a of type T for a class C associates to each instance of C, zero,
one, or more instances of type T . An optional multiplicity [i..j] for a specifies that
a associates to each instance of C, at least i and most j instances of T . When the
multiplicity for an attribute is missing, [1..1] is assumed, i.e., the attribute is mandatory
and single-valued.

To formalize attributes, we have to think of an attribute a of type T for a class C as
a binary relation between instances of C and instances of T . We capture such a binary
relation by means of a DL attribute aC . To specify the type of the attribute we use the
DL assertions

δ(aC) � C, ρ(aC) � T.

Such assertions specify precisely that, for each instance (c, v) of the attribute aC , the
object c is an instance of C, and the value v is an instance of T . Note that the attribute
name a is not necessarily unique in the whole diagram, and hence two different classes,
say C and C′ could both have attribute a, possibly of different types. This situation is
correctly captured in the DL formalization, where the attribute is contextualized to each
class with a distinguished DL attribute, i.e., aC and aC′ .

To specify that the attribute is mandatory (i.e., multiplicity [1..∗]), we add the
assertion

C � δ(aC),

which specifies that each instance of C participates necessarily at least once to the DL
attribute aC . To specify that the attribute is single-valued (i.e., multiplicity [0..1]), we
add the functionality assertion

(funct aC).



282 D. Calvanese et al.

Finally, if the attribute is both mandatory and single-valued (i.e., multiplicity [1..1]), we
use both assertions together, i.e.,

C � δ(aC), (funct aC).

3.2 Associations

An association in UML is a relation between the instances of two (or more) classes. An
association often has a related association class that describes properties of the associa-
tion, such as attributes, operations, etc. A binary association A between the instances of
two classes C1 and C2 is graphically rendered as in Figure 6(a), where the multiplicity
m�..mu specifies that each instance of class C1 can participate at least m� times and at
most mu times to association A. The multiplicity n�..nu has an analogous meaning for
class C2.

An association A between classes C1 and C2 is formalized in DL by means of a role
A on which we enforce the assertions

∃A � C1, ∃A− � C2.

To express the multiplicity m�..mu on the participation of instances of C2 for each
given instance of C1, we use the assertion C1 � ∃A, if m� = 1, and (funct A), if
mu = 1. We can use similar assertions for the multiplicity n�..nu on the participation
of instances of C1 for each given instance of C2, i.e., C2 � ∃A−, if n� = 1, and
(funct A−), if nu = 1.

Next we focus on associations with a related association class, as shown in
Figure 6(b), where the class A is the association class related to the association, and
RA,1 and RA,2, if present, are the role names of C1 and C2 respectively, i.e., they spec-
ify the role that each class plays within the association A.

We formalize in DL an association A with an association class, by reifying it into a
DL concept A and introducing two DL roles RA,1, RA,2, one for each role of A, which
intuitively connect an object representing an instance of the association respectively to
the instances of C1 and C2 that participate to the association9. Then, we enforce that
each instance of A participates exactly once both to RA,1 and to RA,2, by means of the
assertions

A � ∃RA,1, (funct RA,1), A � ∃RA,2, (funct RA,2).

To represent that the association A is between classes C1 and C2, we use the assertions

∃RA,1 � A, ∃R−
A,1 � C1, ∃RA,2 � A, ∃R−

A,2 � C2.

Finally, we use the assertion
(id A RA,1, RA,2)

to specify that each instance of the concept A represents a distinct tuple in C1 × C2.10

9 If the roles of the association are not available, we may use an arbitrary DL role name.
10 Notice that such an approach can immediately be used to represent an association of any arity:

it suffices to repeat the above for every component.



Ontologies and Databases: The DL-Lite Approach 283

C2C1
m�..mun�..nu A

(a) Without association class.

C2C1
m�..mun�..nu

A

RA,1 RA,2

(b) With association class.

Fig. 6. Associations in UML

We can easily represent in DL multiplicities on an association with association class,
by imposing suitable assertions on the inverses of the DL roles modeling the roles of
the association. For example, to say that there is a one-to-one participation of instances
of C1 in the association (with related association class) A, we assert

C1 � ∃R−
A,1, (funct R−

A,1).

3.3 Generalizations and Class Hierarchies

In UML, one can use generalization between a parent class and a child class to specify
that each instance of the child class is also an instance of the parent class. Hence, the
instances of the child class inherit the properties of the parent class, but typically they
satisfy additional properties that in general do not hold for the parent class.

Generalization is naturally supported in DLs. If a UML class C2 generalizes a class
C1, we can express this by the DL assertion

C1 � C2.

Inheritance between DL concepts works exactly as inheritance between UML classes.
This is an obvious consequence of the semantics of �, which is based on the subset
relation. As a consequence, in the formalization, each attribute of C2 and each associ-
ation involving C2 is correctly inherited by C1. Observe that the formalization in DL
also captures directly multiple inheritance between classes.

In UML, one can group several generalizations into a class hierarchy, as shown
in Figure 7. Such a hierarchy is captured in DL by a set of inclusion assertions, one
between each child class and the parent class, i.e.,

Ci � C, for each i ∈ {1, . . . , n}.

Often, when defining generalizations between classes, we need to add additional asser-
tions among the involved classes. For example, for the class hierarchy in Figure 7, an
assertion may express that C1, . . . , Cn are mutually disjoint. In DL, such a relationship
can be expressed by the assertions

Ci � ¬Cj , for each i, j ∈ {1, . . . , n} with i �= j.



284 D. Calvanese et al.

C2C1

C

Cn

{disjoint, complete}

Fig. 7. A class hierarchy in UML

Moreover, we may want to express that a generalization hierarchy is complete, i.e., that
the subclasses C1, . . . , Cn are a covering of the superclass C. We can represent such a
situation in DL by including the additional assertion

C � C1 ! · · · ! Cn.

Such an assertion models a form of disjunctive information: each instance of C is either
an instance of C1, or an instance of C2, . . . or an instance of Cn. Notice, however,
that the use of concept disjunction, and hence of the inclusion assertion above, is not
allowed in DL-LiteA,id.

3.4 Subset Assertions between Associations

Similarly to generalization between classes, UML allows one to state subset assertions
between associations. A subset assertion between two associations A1 and A2 can be
modeled in DL by means of the role inclusion assertion

A1 � A2,

involving the two DL roles A1 and A2 representing the associations. Notice that this
is allowed in DL-LiteA,id only if none of the maximum multiplicities of the two classes
participating to A2 is equal to 1.

With respect to a generalization between two association classes A1 and A2, we note
that to correctly capture the corresponding subset assertion between the associations
represented by the association classes, we would need to introduce not only inclusion
assertions between the concepts representing the association classes, but also between
the DL roles representing corresponding roles of A1 and A2. Consider, for example,
the generalization between association classes depicted in Figure 8. We can correctly
capture the two associations with association classes A1 and A2 by the following DL
assertions:

A1 � ∃RA1,1, (funct RA1,1),
A1 � ∃RA1,2, (funct RA1,2),
∃RA1,1 � A1, ∃R−

A1,1 � C11,

∃RA1,2 � A1, ∃R−
A1,2 � C12,

(id A1 RA1,1, RA1,2),

A2 � ∃RA2,1, (funct RA2,1),
A2 � ∃RA2,2, (funct RA2,2),
∃RA2,1 � A2, ∃R−

A2,1 � C21,

∃RA2,2 � A2, ∃R−
A2,2 � C22,

(id A2 RA2,1, RA2,2).



Ontologies and Databases: The DL-Lite Approach 285

C22C21

A2

C12C11

A1

RA2,1 RA2,2

RA1,1 RA1,2

Fig. 8. A generalization between association classes in UML

Finally, to capture the generalization, we could use the following inclusion assertions

A1 � A2, RA1,1 � RA2,1, RA1,2 � RA2,2.

However, since RA2,1 and RA2,2 are functional roles (and are also used in an identifi-
cation assertion), we actually cannot specialize them, if we want to stay in DL-LiteA,id.
Hence, generalization of associations with association classes in general cannot be for-
malized in DL-LiteA,id.

Finally, we observe that a formalization in DL-LiteA,id of generalization between
association classes is possible if the sub-association does not specify new classes for
the domain and range of the association with respect to the super-association. In the
example of Figure 8 this would mean that C11 coincides with C21 and C12 coincides
with C22. In this case, the sub-association A1 is represented by simply using the same
DL roles as for A2 to denote its components. Hence, it is not necessary to introduce an
inclusion assertion between functional DL roles to correctly capture the generalization
between association classes.

3.5 Reasoning and Query Answering over UML Class Diagrams

The fact that UML class diagrams can be captured by DLs enables the possibility of
performing sound and complete reasoning to do formal verification at design time and
query answering at runtime, as will be illustrated in the next sections. Hence, one can
exploit such ability to get support during the design phase of an ontology-based data
access system, and to take the information in the UML class diagram fully into account
during query answering.

It was shown in [11] that, unfortunately, reasoning (in particular checking the consis-
tency of the diagram, a task to which other typical reasoning tasks of interest reduce) is
EXPTIME-hard. What this result tells us is that, if the TBox is expressed in UML, then
the support at design time for an ontology-based data access system may be difficult to
obtain if the schema has a reasonable size.

Turning to query answering, the situation is even worse. The results in Section 6 im-
ply that answering conjunctive queries in the presence of a UML class diagram formed
by a single generalization with covering assertion is coNP-hard in the size of the in-
stances of classes and associations. Hence, query answering over even moderately large
data sets is again infeasible in practice. It is not difficult to see that this implies that, in



286 D. Calvanese et al.

an ontology-based data access system where the TBox is expressed as a UML diagram,
answering conjunctive queries is coNP-hard with respect to the size of the data in the
accessed source.

Actually, as we will see in Section 6, one culprit of such a high complexity is the
ability of expressing covering assertions, which induces reasoning by cases. A further
cause of high complexity is the unrestricted interaction between multiplicities (actually,
functionality) and subset constraints between associations [22,4]. Once we disallow
covering and suitably restrict the simultaneous use of subset constraints between asso-
ciations and multiplicities, not only the sources of exponential complexity disappear,
but actually query answering becomes reducible to standard SQL evaluation over a
relational database, as will be demonstrated in the following.

4 Reasoning over Ontologies

In this section, we study traditional DL reasoning services for ontologies. In particular,
we consider the reasoning services described in Section 2.5, and we show that all such
reasoning services are in PTIME w.r.t. combined complexity, and that instance check-
ing and satisfiability (which make use of the ABox) are FOL-rewritable, and hence
in AC0 with respect to data complexity. We concentrate in this section on DL-LiteA
ontologies and address the addition of identification assertions in Section 5.6, after hav-
ing discussed in Section 5 query answering based on reformulation. We deal first with
ontology satisfiability, and then we tackle concept and role satisfiability, and logical
implication. In fact, we will show that the latter reasoning services can be basically re-
duced to ontology satisfiability. Finally, we provide the complexity results mentioned
above.

In the following, to ease the presentation, we make several simplifying assumptions
that however do not affect the generality of the presented results:

1. Since the distinction between objects and values does not have an impact on the
ontology reasoning services, we will deal only with ontologies that contain ob-
ject constants, concepts, and roles only, and do not consider value constants, value
domains, and attributes. Hence, we also rule out concepts of the form δ(U) and
δF (U). With respect to the semantics, since we don’t have to deal with values, we
consider only interpretations I where the domain of values ΔI

V is empty, hence the
interpretation domain ΔI coincides with the domain of objects ΔI

O .
2. We will assume that the ontology does not contain qualified existential restrictions,

i.e., concepts of the form ∃Q.C. Notice that in DL-LiteA,id such concepts may ap-
pear only in the right-hand side of inclusion assertions of the form B � ∃Q.C, and
only if the role Q and its inverse do not appear in a functionality assertion. We can
replace the inclusion assertion B � ∃Q.C by the inclusion assertions

B � ∃Pnew

∃P−
new � C

Pnew � Q

where Pnew is a fresh atomic role. It is easy to see that the resulting ontology
preserves all reasoning services over the original ontology. By repeated application



Ontologies and Databases: The DL-Lite Approach 287

of the above transformation, once for each occurrence of a concept ∃Q.C in the
ontology obtained from the previous application11, we obtain an ontology that does
not contain qualified existential restrictions and that preserves all reasoning services
over the original ontology.

3. Since inclusion assertions of the form B � �c do not have an impact on the se-
mantics, we can simply discard them in reasoning.

Hence, in the following, we will consider the following simplified grammar for DL-
LiteA expressions:

B −→ A | ∃Q
C −→ B | ¬B

Q −→ P | P−

R −→ Q | ¬Q

Our first goal is to show that ontology satisfiability is FOL-rewritable. To this aim,
we resort to two main constructions, namely the canonical interpretation and the closure
of the negative inclusions, which we present below.

We recall that assertions of the form B1 � B2 or Q1 � Q2 are called positive
inclusions (PIs), and assertions of the form B1 � ¬B2 or Q1 � ¬Q2 are called negative
inclusions (NIs). Notice that due to the simplified form of the grammar that we are
adopting here, these are the only kinds of inclusion assertions that we need to consider.

4.1 Canonical Interpretation

The canonical interpretation of a DL-LiteA ontology is an interpretation constructed
according to the notion of chase [1]. In particular, we adapt here the notion of restricted
chase adopted by Johnson and Klug in [56].

We start by defining the notion of applicable positive inclusion assertions (PIs), and
then we exploit applicable PIs to construct the chase for a DL-LiteA ontology. Finally,
with the notion of chase in place, we give the definition of canonical interpretation.

In the following, for easiness of exposition, we make use of the following notation
for a basic role Q and two constants a1 and a2:

Q(a1, a2) denotes

{
P (a1, a2), if Q = P,

P (a2, a1), if Q = P−.

Definition 4.1. Let S be a set of DL-LiteA membership assertions. Then, a PI α is
applicable in S to a membership assertion β ∈ S if

– α = A1 � A2, β = A1(a), and A2(a) /∈ S;
– α = A � ∃Q, β = A(a), and there does not exist any constant a′ such that

Q(a, a′) ∈ S;
– α = ∃Q � A, β = Q(a, a′), and A(a) /∈ S;
– α = ∃Q1 � ∃Q2, β = Q1(a1, a2), and there does not exist any constant a′

2 such
that Q2(a1, a

′
2) ∈ S;

– α = Q1 � Q2, β = Q1(a1, a2), and Q2(a1, a2) /∈ S.

11 Note that an ontology may contain concepts in which qualified existential restrictions are
nested within each other.



288 D. Calvanese et al.

Applicable PIs can be used, i.e., applied, in order to construct the chase of an ontology.
Roughly speaking, the chase of a DL-LiteA ontologyO = 〈T ,A〉 is a (possibly infinite)
set of membership assertions, constructed step-by-step starting from the ABox A. At
each step of the construction, a PI α ∈ T is applied to a membership assertion β
belonging to the current set S of membership assertions. Applying a PI means adding
a new suitable membership assertion to S, thus obtaining a new set S′ in which α is
not applicable to β anymore. For example, if α = A1 � A2 is applicable in S to
β = A1(a), the membership assertion to be added to S is A2(a), i.e., S′ = S ∪ A2(a).
In some cases (i.e., α = A � ∃Q or α = ∃Q1 � ∃Q2), to achieve an analogous aim,
the new membership assertion has to make use of a new constant symbol that does not
occur in S.

Notice that such a construction process strongly depends on the order in which we
select both the PI to be applied at each step and the membership assertion to which such
a PI is applied, as well as on which constants we introduce at each step. Therefore, a
number of syntactically distinct sets of membership assertions might result from this
process. However, it is possible to show that the result is unique up to renaming of con-
stants occurring in each such a set. Since we want our construction process to result in a
unique chase of a certain ontology, along the lines of [56], we assume in the following
to have a fixed infinite set of constants, whose symbols are ordered in lexicographic
way, and we select PIs, membership assertions and constant symbols in lexicographic
order. More precisely, given a ontology O = 〈T ,A〉, we denote with ΓA the set of all
constant symbols occurring in A. Also, we assume to have an infinite set ΓN of con-
stant symbols not occurring in A, such that the set ΓC = ΓA ∪ ΓN is totally ordered in
lexicographic way. Then, our notion of chase is precisely given below.

Definition 4.2. Let O = 〈T ,A〉 be a DL-LiteA ontology, let Tp be the set of positive
inclusion assertions in T , let n be the number of membership assertions in A, and
let ΓN be the set of constants defined above. Assume that the membership assertions
in A are numbered from 1 to n following their lexicographic order, and consider the
following definition of sets Sj of membership assertions:

– S0 = A
– Sj+1 = Sj ∪ {βnew}, where βnew is a membership assertion numbered with n +

j + 1 in Sj+1 and obtained as follows:

let β be the first membership assertion in Sj such that there exists a PI α ∈ Tp

applicable in Sj to β
let α be the lexicographically first PI applicable in Sj to β
let anew be the constant of ΓN that follows lexicographically all constants in Sj

case α, β of
(cr1) α = A1 � A2 and β = A1(a) then βnew = A2(a)
(cr2) α = A � ∃Q and β = A(a) then βnew = Q(a, anew )
(cr3) α = ∃Q � A and β = Q(a, a′) then βnew = A(a)
(cr4) α = ∃Q1 � ∃Q2 and β = Q1(a, a′) then βnew = Q2(a, anew )
(cr5) α = Q1 � Q2 and β = Q1(a, a′) then βnew = Q2(a, a′).



Ontologies and Databases: The DL-Lite Approach 289

Then, we call chase of O, denoted chase(O), the set of membership assertions obtained
as the infinite union of all Sj , i.e.,

chase(O) =
⋃
j∈N

Sj .

In the above definition, cr1, cr2, cr3, cr4, and cr5 indicate the five rules that are used for
constructing the chase, each one corresponding to the application of a PI. Such rules are
called chase rules, and we say that a chase rule is applied to a membership assertion β if
the corresponding PI is applied to β. Observe also that NIs and functionality assertions
in O have no role in constructing chase(O). Indeed chase(O) depends only on the
ABox A and the PIs in T .

In the following, we will denote with chase i(O) the portion of the chase obtained
after i applications of the chase rules, selected according to the ordering established in
Definition 4.2, i.e.,

chasei(O) =
⋃

j∈{0,..,i}
Sj .

The following property shows that the notion of chase of an ontology is fair.

Proposition 4.3. Let O = 〈T ,A〉 be a DL-LiteA ontology, and let α be a PI in T . Then,
if there is an i ∈ N such that α is applicable in chase i(O) to a membership assertion
β ∈ chasei(O), then there is a j ≥ i such that chasej+1(O) = chasej(O)∪β′, where
β′ is the result of applying α to β in chasej(O).

Proof. Assume by contradiction that there is no j ≥ i such that chasej+1(O) =
chasej(O) ∪ β′. This would mean that either there are infinitely many membership
assertions that precede β in the ordering that we choose for membership assertions in
chase(O), or that there are infinitely many chase rules applied to some membership as-
sertion that precedes β. However, none of these cases is possible. Indeed, β is assigned
with an ordering number m such that exactly m − 1 membership assertions precede β.
Furthermore, a PI can be applied at most once to a membership assertion (afterwards,
the precondition is not satisfied and the PI is not applicable anymore), and also there ex-
ists only a finite number � of PIs. Therefore, it is possible to apply a chase rule to some
membership assertion at most � times. We can thus conclude that the claim holds. �!

With the notion of chase in place we can introduce the notion of canonical
interpretation.

Definition 4.4. The canonical interpretation can(O) = 〈Δcan(O), ·can(O)〉 is the inter-
pretation where:

– Δcan(O) = ΓC ,
– acan(O) = a, for each constant a occurring in chase(O),
– Acan(O) = {a | A(a) ∈ chase(O)}, for each atomic concept A, and
– P can(O) = {(a1, a2) | P (a1, a2) ∈ chase(O)}, for each atomic role P .

We also define can i(O) = 〈Δcan(O), ·cani(O)〉, where ·cani(O) is analogous to ·can(O),
except that it refers to chasei(O) instead of chase(O).



290 D. Calvanese et al.

According to the above definition, it is easy to see that can(O) (resp., cani(O)) is
unique. Notice also that can0(O) is tightly related to the interpretation DB(A). Indeed,
while ΔDB(A) ⊆ Δcan(O), we have that ·DB(A) = ·can0(O).

We point out that chase(O) and can(O) (resp., chasei(O)) and cani(O)) are
strongly connected. In particular, we note that, whereas chasei+1(O) is obtained by
adding a membership assertion to chasei(O), cani+1(O) can be seen as obtained from
cani(O) by adding either an object to the extension of an atomic concept of O, or a pair
of objects to the extension of an atomic role of O (notice that the domain of interpreta-
tion is the same in each cani(O), and in particular in can(O)). By virtue of the strong
connection discussed above, in the following we will often prove properties of can(O)
(resp., can i(O)) by reasoning over the structure of chase(O) (resp., chase i(O)).

Now, we are ready to show a notable property that holds for can(O).

Lemma 4.5. Let O = 〈T ,A〉 be a DL-LiteA ontology and let Tp be the set of positive
inclusion assertions in T . Then, can(O) is a model of 〈Tp,A〉.

Proof. Since 〈Tp,A〉 does not contain NIs and functionality assertions, to prove the
claim we only need to show that can(O) satisfies all membership assertions in A and
all PIs in Tp. The fact that can(O) satisfies all membership assertions in A follows
from the fact that A ⊆ chase(O). Then, it remains to prove that can(O) |= Tp. Let us
proceed by contradiction, considering all possible cases:

1. Assume by contradiction that a PI of the form A1 � A2 ∈ Tp, where A1 and A2 are
atomic concepts, is not satisfied by can(O). This means that there exists a constant
a ∈ ΓC such that A1(a) ∈ chase(O) and A2(a) /∈ chase(O). However, such a
situation would trigger the chase rule cr1, since A1 � A2 would be applicable to
A1(a) in chase(O) and Proposition 4.3 ensures that such a PI would be applied at
some step in the construction of the chase, thus causing the insertion of A2(a) in
chase(O). This contradicts the assumption.

2. Assume by contradiction that a PI of the form A � ∃Q ∈ Tp, where A is an atomic
concept and Q is a basic role, is not satisfied by can(O). This means that there
exists a constant a ∈ ΓC such that A(a) ∈ chase(O) and there does not exist a
constant a1 ∈ ΓC such that Q(a, a1) ∈ chase(O). However, such a situation would
trigger the chase rule cr2, since A � ∃Q would be applicable to A(a) in chase(O)
and Proposition 4.3 ensures that such a PI would be applied at some step in the con-
struction of the chase, thus causing the insertion of Q(a, a2) in chase(O), where
a2 ∈ ΓC follows lexicographically all constants occurring in chase(O) before the
execution of cr2. This contradicts the assumption.

3. Assume by contradiction that a PI of the form ∃Q � A ∈ Tp, where Q is a basic
role and A is an atomic concept, is not satisfied by can(O). This means that there
exists a pair of constants a, a1 ∈ ΓC such that Q(a, a1) ∈ chase(O) and A(a) /∈
chase(O). However, such a situation would trigger the chase rule cr3, since ∃Q �
A would be applicable to Q(a, a1) in chase(O) and Proposition 4.3 ensures that
such a PI would be applied at some step in the construction of the chase, thus
causing the insertion of A(a) in chase(O). This contradicts the assumption.

4. Assume by contradiction that a PI of the form ∃Q1 � ∃Q2 ∈ Tp, where Q1 and
Q2 are basic roles, is not satisfied by can(O). This means that there exists a pair



Ontologies and Databases: The DL-Lite Approach 291

of constants a, a1 ∈ ΓC such that Q1(a, a1) ∈ chase(O) and there does not exist
a constant a2 ∈ ΓC such that Q2(a, a2) ∈ chase(O). However, such a situa-
tion would trigger the chase rule cr4 since ∃Q1 � ∃Q2 would be applicable to
Q1(a, a1) in chase(O) and Proposition 4.3 ensures that such a PI would be applied
at some step in the construction of the chase, thus causing the insertion of Q(a, a3)
in chase(O), where a3 ∈ ΓC follows lexicographically all constants occurring in
chase(O) before the execution of cr4. This contradicts the assumption.

5. Assume by contradiction that a PI of the form Q1 � Q2 ∈ Tp, where Q1 and Q2

are basic roles, is not satisfied by can(O). This means that there exists a pair of
constants a, a1 ∈ ΓC such that Q1(a, a1) ∈ chase(O) and Q2(a, a1) /∈ chase(O).
However, such a situation would trigger the chase rule cr5, since Q1 � Q2 would
be applicable to Q1(a, a1) in chase(O) and Proposition 4.3 ensures that such a PI
would be applied at some step in the construction of the chase, thus causing the
insertion of Q2(a, a1) in chase(O). This contradicts the assumption. �!

As a consequence of Lemma 4.5, every DL-LiteA ontology O = 〈T ,A〉 with only
positive inclusions in the TBox, i.e., such that T = Tp, is always satisfiable, since we
can always construct can(O), which is a model for O. Now, one might ask if and how
can(O) can be exploited for checking the satisfiability of an ontology with also negative
inclusions and functionality assertions.

As for functionality assertions, the following lemma shows that, to establish that
they are satisfied by can(O), we have to simply verify that the interpretation DB(A)
satisfies them (and vice-versa).

Lemma 4.6. Let O = 〈T ,A〉 be a DL-LiteA ontology, and let Tf be the set of func-
tionality assertions in T . Then, can(O) is a model of 〈Tf ,A〉 if and only if DB(A) is a
model of 〈Tf ,A〉.

Proof. “⇒” We show that DB(A) |= 〈Tf ,A〉 if can(O) |= 〈Tf ,A〉. This can be easily
seen by observing that A ⊆ chase(O), and therefore if a membership assertion in A
or a functionality assertion in Tf is satisfied by can(O), it is also satisfied by DB(A)
(notice in particular that ΔDB(A) ⊆ Δcan(O)).

“⇐” We show that can(O) |= 〈Tf ,A〉 if DB(A) |= 〈Tf ,A〉. By virtue of the
correspondence between can(O) and chase(O), we proceed by induction on the con-
struction of chase(O).

Base step. We have that chase0(O) = A, and since DB(A) |= 〈Tf ,A〉, it follows
that can0(O) |= 〈Tf ,A〉.

Inductive step. Let us assume by contradiction that for some i ≥ 0, can i(O) is a
model of 〈Tf ,A〉 and cani+1(O) is not. Notice that cr2, cr4, and cr5 are the only
rules that introduce new role instances, and thus may lead to a violation of a functional-
ity assertion in can i+1(O). However, due to the restriction on the interaction between
functionality and role inclusion assertions in DL-LiteA, rule cr5 will never be applied
if T contains a functionality assertion for Q2 or its inverse. Thus, we need to consider
only the rules cr2 and cr4. Let us consider first rule cr2, and assume that chasei+1(O)
is obtained by applying cr2 to chasei(O). This means that a PI of the form A � ∃Q,
where A is an atomic concept and Q is a basic role, is applied in chase i(O) to a mem-
bership assertion of the form A(a), such that there does not exists a1 ∈ ΓC such that



292 D. Calvanese et al.

Q(a, a1) ∈ chase i(O). Therefore, chase i+1(O) = chasei(O) ∪ Q(a, anew ), where
anew ∈ ΓC follows lexicographically all constants occurring in chase i(O). Now, if
cani+1(O) is not a model of 〈Tf ,A〉, there must exist (at least) a functionality asser-
tion α that is not satisfied by cani+1(O).

– In the case where α = (funct Q), for α to be violated, there must exist two pairs
of objects (x, y) and (x, z) in Qcani+1(O) such that y �= z. However, we have that
(a, anew ) ∈ Qcani+1(O) and a /∈ ∃Qcani(O), since by applicability of A � ∃Q
in chase i(O) it follows that there does not exist a constant a′ ∈ ΓC such that
Q(a, a′) ∈ chase i(O). Therefore, there exists no pair (a, a′) ∈ Qcani+1(O) such
that a′ �= anew . Hence, we would conclude that (x, y) and (x, z) are in Qcani(O),
which would lead to a contradiction.

– In the case where α = (funct Q−), for α to be violated, there must exist two pairs
of objects (y, x) and (z, x) in Qcani+1(O) such that y �= z. Since anew is a fresh
constant, not occurring in chase i(O), we can conclude that there exists no pair
(a′, anew ), with a′ �= a, such that Q(a′, anew ) ∈ chasei(O), and therefore, there
exists no pair (a′, anew ) ∈ Qcani+1(O). Hence, we would conclude that (y, x) and
(z, x) are in Qcani(O), which would lead to a contradiction.

– In the case in which α = (funct Q′), with Q′ �= Q and Q′ �= Q−, we would
conclude that α is not satisfied already in cani(O), which would lead to a contra-
diction.

With an almost identical argument we can prove the inductive step also in the case in
which chasei+1(O) is obtained by applying cr4 to chasei(O). �!

4.2 Closure of Negative Inclusion Assertions

Let us now consider negative inclusions. In particular, we look for a property which is
analogous to Lemma 4.6 for the case of NIs. Notice that, in this case, even if DB(A)
satisfies the NIs asserted in the ontology O = 〈T , A〉, we have that can(O) may not
satisfy O. For example, if T contains the inclusion assertions A1 � A2 and A2 �
¬A3, and A contains the membership assertions A1(a) and A3(a), it is easy to see that
DB(A) |= A2 � ¬A3, but can(O) �|= A2 � ¬A3. However, as suggested by the
simple example above, we get that to find the property we are looking for, we need to
properly take into account the interaction between positive and negative inclusions. To
this aim we construct a special TBox by closing the NIs with respect to the PIs.

Definition 4.7. Let T be a DL-LiteA TBox. We call NI-closure of T , denoted by cln(T ),
the TBox defined inductively as follows:

(1) all functionality assertions in T are also in cln(T );
(2) all negative inclusion assertions in T are also in cln(T );
(3) if B1 � B2 is in T and B2 � ¬B3 or B3 � ¬B2 is in cln(T ), then also B1 � ¬B3

is in cln(T );
(4) if Q1 � Q2 is in T and ∃Q2 � ¬B or B � ¬∃Q2 is in cln(T ), then also

∃Q1 � ¬B is in cln(T );



Ontologies and Databases: The DL-Lite Approach 293

(5) if Q1 � Q2 is in T and ∃Q−
2 � ¬B or B � ¬∃Q−

2 is in cln(T ), then also
∃Q−

1 � ¬B is in cln(T );
(6) if Q1 � Q2 is in T and Q2 � ¬Q3 or Q3 � ¬Q2 is in cln(T ), then also Q1 �

¬Q3 is in cln(T ).
(7) if one of the assertions ∃Q � ¬∃Q, ∃Q− � ¬∃Q−, or Q � ¬Q is in cln(T ), then

all three such assertions are in cln(T ).

The following lemma shows that cln(T ) does not imply new negative inclusions or new
functionality assertions not implied by T .

Lemma 4.8. Let T be a DL-LiteA TBox, and α a negative inclusion assertion or a
functionality assertion. We have that, if cln(T ) |= α, then T |= α.

Proof. To prove the claim it is sufficient to observe that all assertions contained in
cln(T ) are logically implied by T . �!

We are now ready to show that, provided we have computed cln(T ), the analogous of
Lemma 4.6 holds also for NIs.

Lemma 4.9. Let O = 〈T ,A〉 be a DL-LiteA ontology. Then, can(O) is a model of O
if and only if DB(A) is a model of 〈cln(T ),A〉.

Proof. “⇒” By construction, DB(A) cannot contradict a membership assertion in
A. Moreover, since can(O) is a model of O and, by Lemma 4.8, each assertion in
cln(T ) is logically implied by O, we have that can(O) is a model of cln(T ). Notice
that ADB(A) = Acan0(O) ⊆ Acan(O) for every atomic concept A in O, and similarly
PDB(A) = P can0(O) ⊆ P can(O) for every atomic role P in O. Now, considering that
the structure of NIs and of functionality assertions is such that they cannot be contra-
dicted by restricting the extension of atomic concepts and roles, we can conclude that
DB(A) is a model of cln(T ).

“⇐” We now prove that if DB(A) is a model of 〈cln(T ),A〉, then can(O) is a
model of O. From Lemma 4.5 it follows that can(O) is a model of 〈Tp,A〉, where Tp

is the set of PIs in T . Moreover, since the set Tf of functionality assertions in O is
contained in cln(T ), from Lemma 4.6 it follows that can(O) is a model of 〈Tf ,A〉.
Hence, it remains to prove that can(O) is a model of 〈T \ (Tp ∪ Tf ),A〉. We show this
by proving that can(O) is a model of 〈cln(T ) \ Tf ,A〉 (notice that T \ Tp is contained
in cln(T )). The proof is by induction on the construction of chase(O).

Base step. By construction, chase0(O) = A, and therefore Acan0(O) = ADB(A) for
every atomic concept A in O, and P can0(O) = PDB(A) for every atomic role P in O.
Hence, by the assumption that DB(A) |= 〈cln(T ),A〉, it follows that can0(O) is a
model of 〈cln(T ),A〉.

Inductive step. Let us assume by contradiction that can i(O) is a model of
〈cln(T ),A〉 and can i+1(O) is not, and that chasei+1(O) is obtained from chasei(O)
by execution of the rule cr1. According to cr1, a PI of the form A1 � A2, where
A1 and A2 are atomic concepts in T , is applied in chasei(O) to a membership as-
sertion of the form A1(a), such that A2(a) /∈ chasei(O). Therefore chasei+1(O) =
chasei(O)∪{A2(a)} (notice that this means that a ∈ A

cani+1(O)
2 ). Now, if cani+1(O)



294 D. Calvanese et al.

is not a model of cln(T ), there must exist a NI in cln(T ) of the form A2 � ¬A3 or
A3 � ¬A2, where A3 is an atomic concept, (or A2 � ¬∃Q or ∃Q � ¬A2, where
Q is a basic role) such that A3(a) ∈ chase i(O) (resp., there exists a constant a′

such that Q(a, a′) ∈ chasei(O)). Notice that this means that a ∈ A
cani(O)
3 (resp.,

a ∈ ∃Qcani(O)). It is easy to see that, if such a NI exists, then also A1 � ¬A3 (resp.,
A1 � ¬∃Q) belongs to cln(T ), according to NI-closure rule 3 in Definition 4.7. Since
chasei+1(O) = chasei(O) ∪ {A2(a)}, then A1 � ¬A3 (resp., A1 � ¬∃Q) is not
satisfied already by cani(O), if A3 �= A2. If A3 = A2, we need to consider again NI-
closure rule 3, according to which, from the fact that A1 � A2 in Tp, and A1 � ¬A2

in cln(T ), it follows that A1 � ¬A1 is in cln(T ), and therefore A1(a) is not satis-
fied already by cani(O). In both cases, we have thus contradicted the assumption that
cani(O) is a model of 〈cln(T ),A〉. With an almost identical argument we can prove the
inductive step also in those cases in which chasei+1(O) is obtained from chasei(O)
by executing rule cr3 or rule cr5 (in this last case, in particular, we need to use in the
proof NI-closure rules 4, 5 and 6). As for the cases in which chase i+1(O) is obtained
from chasei(O) by applying rule cr2, we proceed as follows (for rule cr4 the proof is
analogous). According to cr2, a PI of the form A � ∃Q, where A is an atomic concept
in T , and Q is a basic role in T , is applied in chasei(O) to a membership assertion
A(a) such that there does not exist a1 ∈ ΓC such that Q(a, a1) ∈ chasei(O). There-
fore chasei+1(O) = chasei(O) ∪ {Q(a, a2)}, where a2 follows lexicographically all
constants appearing in chase i(O) (notice that this means that a ∈ ∃Qcani+1(O)). Now,
if can i+1(O) is not a model of cln(T ), there must exist a NI in cln(T ) of the form
∃Q � ¬B, where B is a basic concept, or of the form ∃Q− � ¬∃Q−, or of the form
Q � ¬Q. As for the first form of NI, we can reach a contradiction as done above for
the case of execution of chase rule cr1. As for the last two forms of NIs, according
to NI-closure rule 7, we have that if (at least) one of these NIs is in cln(T ), then also
∃Q � ¬∃Q is in cln(T ), and thus we can again reason on a NI of the first form to reach
a contradiction. �!

The following corollary is an interesting consequence of the lemma above.

Corollary 4.10. Let T be a DL-LiteA TBox and α a negative inclusion assertion or a
functionality assertion. We have that, if T |= α, then cln(T ) |= α.

Proof. We first consider the case in which α is a NI. We prove the claim by contradic-
tion. Let us assume that T |= α and cln(T ) �|= α. We show that from cln(T ) �|= α one
can construct a model of T which does not satisfy α, thus obtaining a contradiction.

Let us assume that α = A1 � ¬A2, where A1 and A2 are atomic concepts in T , and
consider the DL-LiteA ontology O = 〈T ,A〉, where A = {A1(a), A2(a)}. We show
that can(O) is the model we are looking for, i.e., can(O) |= T but can(O) �|= α. The
last property follows trivially by the form of A. Hence, in the following we concentrate
on proving that can(O) |= T .

We recall that DB(A) is such that A
DB(A)
1 = {a}, A

DB(A)
2 = {a}, ADB(A) = ∅ for

each atomic concept A ∈ T such that A �= A1 and A �= A2, and PDB(A) = ∅ for each
atomic role P ∈ T . Therefore, the only NIs that can be violated by DB(A) are A1 �
¬A2, A2 � ¬A1, A1 � ¬A1, and A2 � ¬A2. By assumption, we have that cln(T ) �|=



Ontologies and Databases: The DL-Lite Approach 295

A1 � ¬A2, and therefore also cln(T ) �|= A2 � ¬A1. From this, it follows also that
cln(T ) �|= A1 � ¬A1 and cln(T ) �|= A2 � ¬A2, since either A1 � ¬A1 or A2 � ¬A2

logically implies A1 � ¬A2. Moreover, being A = {A1(a), A2(a)}, DB(A) cannot
violate functionality assertions. Therefore, we can conclude that DB(A) |= cln(T )
and hence DB(A) |= 〈cln(T ),A〉. Then, from Lemma 4.9 it follows that can(O) is a
model of O.

Proceeding analogously as done above, we can easily prove the claim in those cases
in which α is one of A � ¬∃Q, ∃Q � ¬A, ∃Q1 � ¬∃Q2, or Q1 � ¬Q2.

The proof for the case in which α is a functionality assertion of the form (funct Q)
can be obtained in an analogous way, by constructing the canonical interpretation start-
ing from an ABox with the assertions Q(a, a1) and Q(a, a2). �!

4.3 FOL-Rewritability of Ontology Satisfiability

Before providing the main results of this subsection, we need also the following crucial
property, which asserts that to establish satisfiability of an ontology, we can resort to
constructing the canonical interpretation.

Lemma 4.11. Let O = 〈T ,A〉 be a DL-LiteA ontology. Then, can(O) is a model of O
if and only if O is satisfiable.

Proof. “⇒” If can(O) is a model of O, then O is obviously satisfiable.
“⇐” We prove this direction by showing that if can(O) is not a model of O, then

O is unsatisfiable. By Lemma 4.9 (“if” direction), it follows that DB(A) is not a model
of 〈cln(T ),A〉, and since DB(A) |= A by construction, DB(A) �|= cln(T ). This
means that there exists a NI or functionality assertion α such that DB(A) �|= α and
cln(T ) |= α, and hence by Lemma 4.8 T �|= α.

Consider the case where α if of the form B1 � ¬B2, where B1 and B2 are basic
concepts (resp., α is of the form Q1 � ¬Q2, where Q1 and Q2 are basic roles). Then,
there exists a1 ∈ ΔDB(A) such that a1 ∈ B

DB(A)
1 and a1 ∈ B

DB(A)
2 (resp., there

exist a1, a2 ∈ ΔDB(A) such that (a1, a2) ∈ Q
DB(A)
1 and (a1, a2) ∈ Q

DB(A)
2 ). Let us

assume by contradiction that a model M = 〈ΔM, ·M〉 of O exists. For each model
M, we can construct a homomorphism ψ from ΔDB(A) to ΔM such that ψ(a) = aM

for each constant a occurring in A (notice that M assigns a distinct object to each such
constant, since M |= A). From the fact that M satisfies the membership assertions in
A, it easily follows that ψ(a1) ∈ BM

1 and ψ(a1) ∈ BM
2 (resp., (ψ(a1), ψ(a2)) ∈ QM

1

and (ψ(a1), ψ(a2)) ∈ QM
2 ). But this makes the NI B1 � ¬B2 (resp., Q1 � ¬Q2) be

violated also in M, and since a model cannot violate a NI that is logically implied by
T , it contradicts the fact that M is a model of O.

The proof for the case where α is a functionality assertion of the form (funct Q) can
be obtained in an analogous way, considering that there exist a1, a2, a3 ∈ ΔDB(A) such
that (a1, a2) ∈ QDB(A) and (a1, a3) ∈ QDB(A). �!

Notice that, the construction of can(O) is in general neither convenient nor possi-
ble, since can(O) may be infinite. However, by simply combining Lemma 4.9 and
Lemma 4.11, we obtain the notable result that to check satisfiability of an ontology, it



296 D. Calvanese et al.

Algorithm Satisfiable(O)
Input: DL-LiteA ontology O = 〈T ,A〉
Output: true if O is satisfiable, false otherwise
begin

qunsat(T ) := {⊥};
for each α ∈ cln(T ) do qunsat(T ) := qunsat(T ) ∪ {δ(α)};
if q

DB(A)

unsat(T ) = ∅ then return true ; else return false;
end

Fig. 9. The algorithm Satisfiable that checks satisfiability of a DL-LiteA ontology

is sufficient (and necessary) to look at DB(A) (provided we have computed cln(T )).
More precisely, the next theorem shows that a contradiction on a DL-LiteA ontology
may hold only if a membership assertion in the ABox contradicts a functionality asser-
tion or a NI implied by the closure cln(T ).

Theorem 4.12. Let O = 〈T ,A〉 be a DL-LiteA ontology. Then, O is satisfiable if and
only if DB(A) is a model of 〈cln(T ),A〉.

Proof. “⇒” If O is satisfiable, from Lemma 4.11 (“only-if” direction), it follows that
can(O) is a model of O, and therefore, from Lemma 4.9 (“only-if” direction), it follows
that DB(A) is a model of 〈cln(T ),A〉.

“⇐” If DB(A) is a model of 〈cln(T ),A〉, from Lemma 4.9 (“if” direction), it
follows that can(O) is a model of O, and therefore O is satisfiable. �!

At this point, it is not difficult to show that verifying whether DB(A) is a model of
〈cln(T ),A〉 can be done by simply evaluating a suitable boolean FOL query, in fact a
boolean UCQ with inequalities, over DB(A) itself. In particular we define a translation
function δ from assertions in cln(T ) to boolean CQs with inequalities, as follows:

δ((funct P )) = ∃x, y1, y2. P (x, y1) ∧ P (x, y2) ∧ y1 �= y2

δ((funct P−)) = ∃x1, x2, y. P (x1, y) ∧ P (x2, y) ∧ x1 �= x2

δ(B1 � ¬B2) = ∃x. γ1(B1, x) ∧ γ2(B2, x)
δ(Q1 � ¬Q2) = ∃x, y. ρ(Q1, x, y) ∧ ρ(Q2, x, y)

where in the last two equations

γi(B, x) =

⎧⎪⎨⎪⎩
A(x), if B = A,

∃yi. P (x, yi), if B = ∃P ,

∃yi. P (yi, x), if B = ∃P−,

ρ(Q, x, y) =

{
P (x, y), if Q = P,

P (y, x), if Q = P−.

The algorithm Satisfiable, shown in Figure 9, takes as input a DL-LiteA ontology,
computes DB(A) and cln(T ), and evaluates over DB(A) the boolean FOL query
qunsat(T ) obtained by taking the union of all FOL formulas returned by the applica-
tion of the above function δ to every assertion in cln(T ). In the algorithm, the symbol
⊥ indicates a predicate whose evaluation is false in every interpretation. Notice that
in the case in which neither functionality assertions nor negative inclusion assertions
occur in T , qunsat(T ) = ⊥, and therefore q

DB(A)
unsat(T ) = ⊥DB(A) = ∅ and Satisfiable(O)

returns true.



Ontologies and Databases: The DL-Lite Approach 297

TBOX T ′
fbc

League 
 ∃OF
∃OF 
 League

∃OF− 
 Nation
Round 
 ∃BELONGS-TO

∃BELONGS-TO 
 Round
∃BELONGS-TO− 
 League

Match 
 ∃PLAYED-IN
∃PLAYED-IN 
 Match

∃PLAYED-IN− 
 Round
PlayedMatch 
 Match

ScheduledMatch 
 Match
PlayedMatch 
 ¬ScheduledMatch

Match 
 ∃HOME
∃HOME 
 Match

∃HOME− 
 Team
Match 
 ∃HOST

∃HOST 
 Match
∃HOST− 
 Team

Match 
 ¬Round

(funct OF)
(funct BELONGS-TO)
(funct HOME)
(funct HOST)

ABOX A′
fbc

League(it2009)
Round(r7)
Round(r8)
PlayedMatch(m7RJ)
Match(m8NT)
Match(m8RM)
Team(roma)

BELONGS-TO(r7, it2009)
BELONGS-TO(r8, it2009)
HOME(m7RJ, roma)
HOME(m8NT, napoli)
HOME(m8RM, roma)
Team(napoli)

PLAYED-IN(m7RJ, r7)
PLAYED-IN(m8NT, r8)
PLAYED-IN(m8RM, r8)
HOST(m7RJ, juventus)
HOST(m8NT, torino)
HOST(m8RM, milan)
Team(juventus)

Fig. 10. The simplified DL-LiteA ontology O′
fbc = 〈T ′

fbc ,A′
fbc〉 for the football championship

example

Lemma 4.13. Let O be a DL-LiteA ontology. Then, the algorithm Satisfiable(O) ter-
minates, and O is satisfiable if and only if Satisfiable(O) = true.

Proof. Let O = 〈T ,A〉. Since cln(T ) is a finite set of membership and functionality
assertions, the algorithm terminates. By Theorem 4.12, we have that DB(A) is a model
of all assertions in cln(T ) if and only if O is satisfiable. The query qunsat(T ) verifies
whether there exists an assertion α that is violated in DB(A), by expressing its negation
as a FOL formula δ(α) and evaluating it over DB(A). �!

As a direct consequence of Lemma 4.13, we get:

Theorem 4.14. In DL-LiteA, ontology satisfiability is FOL-rewritable.

Example 4.15. We refer again to Example 2.3 about the football championship domain.
Let O′

fbc = 〈T ′
fbc ,A′

fbc〉 be the DL-LiteA ontology shown in Figure 10, which is a sim-
plified version of the ontology Ofbc used in Example 2.3. Specifically, the TBox T ′

fbc is
obtained from the TBox Tfbc shown in Figure 3 by ignoring identification constraints,
all assertions involving value domains or attributes, and the functionality assertion on
PLAYED-IN. The ABox A′

fbc is obtained from the ABox Afbc shown in Figure 4 by
considering only the membership assertions involving concepts and roles (and ignor-
ing those for attributes). To check satisfiability of O′

fbc , we first compute cln(T ′
fbc),

which, besides the functionality assertions shown in Figure 10 contains the NIs shown
in Figure 11.



298 D. Calvanese et al.

PlayedMatch 
 ¬ScheduledMatch
Match 
 ¬Round

PlayedMatch 
 ¬Round
ScheduledMatch 
 ¬Round

Match 
 ¬∃PLAYED-IN−

PlayedMatch 
 ¬∃PLAYED-IN−

ScheduledMatch 
 ¬∃PLAYED-IN−

Match 
 ¬∃BELONGS-TO
PlayedMatch 
 ¬∃BELONGS-TO

ScheduledMatch 
 ¬∃BELONGS-TO

∃PLAYED-IN 
 ¬Round
∃HOME 
 ¬Round
∃HOST 
 ¬Round

∃PLAYED-IN 
 ¬∃PLAYED-IN−

∃HOME 
 ¬∃PLAYED-IN−

∃HOST 
 ¬∃PLAYED-IN−

∃PLAYED-IN 
 ¬∃BELONGS-TO
∃HOME 
 ¬∃BELONGS-TO
∃HOST 
 ¬∃BELONGS-TO

Fig. 11. The negative inclusions in cln(T ′
fbc)

We show some of the boolean queries obtained by applying the translation function
δ to the NIs in Figure 11:

δ(PlayedMatch 
 ¬ScheduledMatch) = ∃x. PlayedMatch(x) ∧ ScheduledMatch(x)
δ(∃PLAYED-IN 
 ¬Round) = ∃x. (∃y. PLAYED-IN(x, y)) ∧ Round(x)

δ(Match 
 ¬∃PLAYED-IN−) = ∃x. Match(x) ∧ (∃y. PLAYED-IN(y, x))
δ(∃HOME 
 ¬∃PLAYED-IN−)=∃x. (∃y1. HOME(x, y1)) ∧ (∃y2. PLAYED-IN(y2, x))

We also show one of the boolean queries obtained by applying the translation function
δ to the functionality assertions in T ′

fbc (the other queries are defined analogously):

δ((funct OF)) = ∃x, y1, y2. OF(x, y1) ∧ OF(x, y2) ∧ y1 �= y2.

The union of the boolean queries for all the NIs and for all the functionality assertions is
qunsat(T ′

fbc)
. Such a query, when evaluated over DB(A′

fbc), returns false , thus showing
that O′

fbc is satisfiable.
As a further example, consider now the TBox T ′′

fbc obtained from T ′
fbc by introducing

a new role NEXT and adding the role inclusion assertion NEXT � PLAYED-IN. In this
case cln(T ′′

fbc) consists of cln(T ′
fbc) plus the following NIs:

∃NEXT 
 ¬Round
∃NEXT 
 ¬∃PLAYED-IN−

∃NEXT 
 ¬∃BELONGS-TO

∃NEXT− 
 ¬Match
∃NEXT− 
 ¬PlayedMatch
∃NEXT− 
 ¬ScheduledMatch

∃NEXT− 
 ¬∃PLAYED-IN
∃NEXT− 
 ¬∃HOME
∃NEXT− 
 ¬∃HOST

So qunsat(T ′′
fbc)

includes the disjuncts of qunsat(T ′
fbc)

plus those obtained from the above
NIs. Since qunsat(T ′′

fbc)
, when evaluated over DB(A′

fbc), returns false , we conclude that
O′′

fbc = 〈T ′′
fbc ,A′

fbc〉 is satisfiable.
If we instead add to T ′

fbc the functionality assertion (funct PLAYED-IN−), we obtain
a TBox T ′′′

fbc whose NI-closure is cln(T ′′′
fbc) = cln(T ′

fbc) ∪ {(funct PLAYED-IN−)}. In
this case, qunsat(T ′′′

fbc ) includes the disjuncts of qunsat(T ′
fbc)

plus the query

δ((funct PLAYED-IN−)) = ∃x1, x2, y. PLAYED-IN(x1, y) ∧ PLAYED-IN(x2, y) ∧ x1 �= x2.

Now, q
DB(A′

fbc)

unsat(T ′′′
fbc ) is true, and hence O′′′

fbc = 〈T ′′′
fbc ,A′

fbc〉 is unsatisfiable.



Ontologies and Databases: The DL-Lite Approach 299

4.4 Concept and Role Satisfiability and Logical Implication

We start by showing that concept and role satisfiability with respect to a TBox (or an
ontology) can be reduced to ontology satisfiability.

Theorem 4.16. Let T be a DL-LiteA TBox, C a general concept, and Q a basic role.
Then the following holds:

(1) C is satisfiable w.r.t. T if and only if the ontology

OT ,C = 〈T ∪ {Anew � C}, {Anew (a)}〉

is satisfiable, where Anew is an atomic concept not appearing in T , and a is a fresh
constant.

(2) Q is satisfiable w.r.t. T if and only if the ontology

OT ,Q = 〈T , {Q(a1, a2)}〉

is satisfiable, where a1 and a2 are two fresh constants.
(3) ¬Q is satisfiable w.r.t. T if and only if the ontology

OT ,¬Q = 〈T ∪ {Pnew � ¬Q}, {Pnew (a1, a2)}〉

is satisfiable, where Pnew is an atomic role not appearing in T , and a1 and a2 are
two fresh constants.

Proof. We observe that for roles we have distinguished Case 2 from Case 3, since we
need to ensure that the ontology that we obtain in the reduction is a valid DL-LiteA
ontology, and hence does not introduce a positive role inclusion assertion on a possibly
functional role. We then give only the proof for Case 1, i.e., for concepts, since Case 2
is immediate, and the proof for Case 3 is analogous to that for Case 1.

“⇐” If OT ,C is satisfiable, there exists a model M of T such that AM
new ⊆ CM and

aM ∈ AM
new . Hence CM �= ∅, and C is satisfiable w.r.t. T .

“⇒” If C is satisfiable w.r.t. T , there exists a model M of T and an object o ∈ ΔM

such that o ∈ CM. We can extend M by defining aI = o and AI
new = {o}, and obtain

a model of OT ,C . �!

Next, we show that both instance checking and subsumption can be reduced to on-
tology satisfiability. We first consider the problem of instance checking for concept
expressions.

Theorem 4.17. Let O = 〈T ,A〉 be a DL-LiteA ontology, C a general concept, and a
a constant appearing in O. Then O |= C(a) if and only if the ontology

OC(a) = 〈T ∪ {Anew � ¬C}, A ∪ {Anew (a)}〉

is unsatisfiable, where Anew is an atomic concept not appearing in O.



300 D. Calvanese et al.

Proof. “⇒” Suppose that O |= C(a), but there exists a model M′ of OC(a). Then
M′ |= Anew (a) and M′ |= Anew � ¬C. But then M′ |= ¬C(a). Observe that M′ is
a model of O, hence we get a contradiction.

“⇐” Suppose that OC(a) is unsatisfiable, but there exists a model M of O such
that M |= ¬C(d). Then we can define an interpretation M′ of OC(a) that interprets
all constants, concepts, and roles in O as before, and assigns to Anew (which does
not appear in O) the extension AM′

new = {aM}. Now, M′ is still a model of O, and
moreover we have that M′ |= Anew (a) and M′ |= Anew � ¬C, hence M′ is a model
of OC(a). Thus we get a contradiction. �!

The analogous of the above theorem holds for the problem of instance checking for role
expressions.

Theorem 4.18. Let O = 〈T ,A〉 be a DL-LiteA ontology, Q a basic role, and a1 and
a2 two constants appearing in O. Then

(1) O |= Q(a1, a2) if and only if the ontology

OQ(a1,a2) = 〈T ∪ {Pnew � ¬Q}, A∪ {Pnew (a1, a2)}〉

is unsatisfiable, where Pnew is an atomic role not appearing in O.
(2) O |= ¬Q(a1, a2) if and only if the ontology

O¬Q(a1,a2) = 〈T , A∪ {Q(a1, a2)}〉

is unsatisfiable.

Proof. We observe that we need again to distinguish the two cases to ensure that the
ontology that we obtain in the reduction is a valid DL-LiteA ontology. Then, the proof
of Case 1 is similar to the proof of Theorem 4.17, while Case 2 is obvious. �!

We now address the subsumption problem and provide different reductions of this prob-
lem to the problem of ontology satisfiability. The case of subsumption between concepts
is dealt with by the following theorem, and the case of subsumption between roles, is
considered in the two subsequent theorems.

Theorem 4.19. Let T be a DL-LiteA TBox, and C1 and C2 two general concepts. Then,
T |= C1 � C2 if and only if the ontology

OC1
C2 = 〈T ∪ {Anew � C1, Anew � ¬C2}, {Anew (a)}〉,

is unsatisfiable, where Anew is an atomic concept not appearing in T , and a is a fresh
constant.

Proof. “⇒” Suppose that T |= C1 � C2, but there exists a model M′ of OC1
C2 .
Then M′ |= Anew (a), M′ |= Anew � C1, and M′ |= Anew � ¬C2. But then
M′ |= C1(a) and M′ |= ¬C2(a). Observe that M′ is a model of T , hence we get a
contradiction.

“⇐” Suppose that OC1
C2 is unsatisfiable, but there exists a model M of T such
that o ∈ CM

1 and o /∈ CM
2 for some object o in the domain of M. Then we can define



Ontologies and Databases: The DL-Lite Approach 301

an interpretation M′ of OC1
C2 that interprets all concepts and roles in T as before,
and assigns to a the extensions aM′

= o, and to Anew (which does not appear in T )
the extension AM′

new = {o}. Now, M′ is still a model of T , and moreover we have that
M′ |= Anew (a), M′ |= Anew � C1, and M′ |= Anew � ¬C2. Hence M′ is a model
of OC1
C2 , and we get a contradiction. �!

Theorem 4.20. Let T be a DL-LiteA TBox, and Q1 and Q2 two basic roles. Then,

(1) T |= Q1 � Q2 if and only if the ontology

OQ1
Q2 = 〈T ∪ {Pnew � ¬Q2}, {Q1(a1, a2), Pnew (a1, a2)}〉

is unsatisfiable, where Pnew is an atomic role not appearing in T , and a1, a2 are
two fresh constants.

(2) T |= ¬Q1 � Q2 if and only if the ontology

O¬Q1
Q2 = 〈T ∪ {Pnew � ¬Q1, Pnew � ¬Q2}, {Pnew (a1, a2)}〉

is unsatisfiable, where Pnew is an atomic role not appearing in T , and a1, a2 are
two fresh constants.

(3) T |= Q1 � ¬Q2 if and only if the ontology

OQ1
¬Q2 = 〈T , {Q1(a1, a2), Q2(a1, a2)}〉

is unsatisfiable, where a1, a2 are two fresh constants.
(4) T |= ¬Q1 � ¬Q2 if and only if the ontology

O¬Q1
¬Q2 = 〈T ∪ {Pnew � ¬Q1}, {Q2(a1, a2), Pnew (a1, a2)}〉

is unsatisfiable, where Pnew is an atomic role not appearing in T , and a1, a2 are
two fresh constants.

Proof. Let Ri, for i ∈ {1, 2}, denote either Qi or ¬Qi, depending on the case we
are considering. First of all, we observe that in all four cases, the ontology OR1
R2

constructed in the reduction is a valid DL-LiteA ontology.
“⇒” Suppose that T |= R1 � R2, but there exists a model M of OR1
R2 . In

Case 1, since M |= Q1(a1, a2) and M |= Pnew (a1, a2), and since PM
new ⊆ (¬Q2)M,

we have that (aM
1 , aM

2 ) ∈ QM
1 and (aM

1 , aM
2 ) /∈ QM

2 . Since M is a model of T , we
get a contradiction. In Case 2, since M |= Pnew (a1, a2), and since PM

new ⊆ (¬Q1)M

and PM
new ⊆ (¬Q2)M, we have that (aM

1 , aM
2 ) /∈ QM

1 and (aM
1 , aM

2 ) /∈ QM
2 . Since

M is a model of T , we get a contradiction. In Case 3, since M |= Q1(a1, a2) and
M |= Q2(a1, a2), and since M is a model of T , we get a contradiction. Case 4 is
analogous to Case 1, since T |= ¬Q1 � ¬Q2 iff T |= Q2 � Q1.

“⇐” Suppose that OR1
R2 is unsatisfiable, but there exists a model M of T
such that (oa, ob) ∈ RM

1 and (oa, ob) �∈ RM
2 for some pair of objects in the do-

main of M. We first show that we can assume w.l.o.g. that oa and ob are distinct
objects. Indeed, if oa = ob, we can construct a new model Md of T as follows:



302 D. Calvanese et al.

ΔMd = ΔM × {1, 2}, AMd = AM × {1, 2} for each atomic concept A, and
PMd = ({((o, 1), (o′, 1)), ((o, 2), (o′, 2)) | (o, o′) ∈ PM} ∪ U) \ V , where

U =

{
∅, if (oa, oa) �∈ PM

{((oa, 1), (oa, 2)), ((oa, 2), (oa, 1))}, if (oa, oa) ∈ PM

V =

{
∅, if (oa, oa) �∈ PM

{((oa, 1), (oa, 1)), ((oa, 2), (oa, 2))}, if (oa, oa) ∈ PM

for each atomic role P . It is immediate to see that Md is still a model of T containing
a pair of distinct objects in RMd

1 and not in RMd
2 .

Now, given that we can assume that oa �= ob, we can define an interpretation M′

of OR1
R2 that interprets all concepts and roles in T as before, and assigns to a1 and
a2 respectively the extensions aM′

1 = oa and aM′

2 = ob, and to Pnew (which does not
appear in T ), if present in OR1
R2 , the extension PM′

new = {(oa, ob)}. We have that M′

is still a model of T , and moreover it is easy to see that in all four cases M′ is a model
of OR1
R2 . Thus we get a contradiction. �!

We remark that in the previous theorem the answer in Case 2 will always be false, since
a DL-LiteA TBox cannot imply an inclusion with a negated role on the left-hand side.
We have nevertheless included this case in the theorem statement to cover explicitly all
possibilities.

The following theorem characterizes logical implication of a functionality assertion
in DL-LiteA, in terms of subsumption between roles.

Theorem 4.21. Let T be a DL-LiteA TBox and Q a basic role. Then, T |= (funct Q)
if and only if either (funct Q) ∈ T or T |= Q � ¬Q.

Proof. “⇐” The case in which (funct Q) ∈ T is trivial. Instead, if T |= Q � ¬Q,
then QI = ∅ and hence I |= (funct Q), for every model I of T .

“⇒” We assume that neither (funct Q) ∈ T nor T |= Q � ¬Q, and we construct
a model of T that is not a model of (funct Q). First of all, notice that, since T does
not imply Q � ¬Q, it also does not imply ∃Q � ¬∃Q and ∃Q− � ¬∃Q−. Now,
consider the ABox A = {Q(a, a1), Q(a, a2)}, where a, a1, and a2 are pairwise distinct
objects, and the ontology O = 〈T ,A〉. According to Theorem 4.12, O is satisfiable
if and only if DB(A) is a model of 〈cln(T ),A〉. Since Q(a, a1) and Q(a, a2) are the
only membership assertions in A, the only assertions that DB(A) can violate are (i) the
NIs Q � ¬Q, ∃Q � ¬∃Q, and ∃Q− � ¬∃Q−, and (ii) the functionality assertion
(funct Q). But, by assumption, T does not imply any of such assertions, and therefore
DB(A) satisfies cln(T ). In particular, by Lemma 4.11, it follows that can(O) is a
model of O, and therefore a model of T . However, by construction of A, (funct Q) is
not satisfied in DB(A), and hence also not in can(O), which means that can(O) is not
a model of (funct Q). �!

Notice that the role inclusion assertion we are using in Theorem 4.21 is of the form
T |= Q � ¬Q, and thus expresses the fact that role Q has an empty extension in every
model of T . Also, by Theorem 4.20, logical implication of role inclusion assertions can
in turn be reduced to ontology satisfiability.



Ontologies and Databases: The DL-Lite Approach 303

Hence, with the above results in place, in the following we can concentrate on
ontology satisfiability only.

4.5 Computational Complexity

From the results in the previous subsections we can establish the computational com-
plexity characterization for the classical DL reasoning problems for DL-LiteA.

Theorem 4.22. In DL-LiteA, ontology satisfiability is in AC0 in the size of the
ABox (data complexity) and in PTIME in the size of the whole ontology (combined
complexity).

Proof. First, AC0 data complexity follows directly from FOL-rewritability, since eval-
uating FOL queries/formulas over a model is in AC0 in the size of the model [90,1]. As
for the combined complexity, we have that cln(T ) is polynomially related to the size of
the TBox T and hence qunsat(T ) defined in algorithm Satisfiable is formed by a num-
ber of disjuncts that is polynomial in T . Each disjunct can be evaluated separately and
contains either 2 or 3 variables. Now, each disjunct can be evaluated by checking the
formula under each of the n3 possible assignments, where n is the size of the domain
of DB(A) [90]. Finally, once an assignment is fixed, the evaluation of the formula can
be done in AC0. As a result, we get the PTIME bound. �!

Taking into account the reductions in Theorems 4.16, 4.17, 4.18, 4.19, 4.20, and 4.21,
as a consequence of Theorem 4.22, we get the following result.

Theorem 4.23. In DL-LiteA, (concept and role) satisfiability and subsumption and log-
ical implication of functionality assertions are in PTIME in the size of the TBox, and
(concept and role) instance checking is in AC0 in the size of the ABox and in PTIME in
the size of the whole ontology.

5 Query Answering over Ontologies

We study now query answering in DL-LiteA,id. In a nutshell, our query answering
method strongly separates the intensional and the extensional level of the DL-LiteA,id

ontology: the query is first processed and reformulated based on the TBox axioms; then,
the TBox is discarded and the reformulated query is evaluated over the ABox, as if the
ABox was a simple relational database (cf. Section 2.6). More precisely, given a query
q over O = 〈T ,A〉, we compile the assertions of T (in fact, the PIs in T ) into the
query itself, thus obtaining a new query q′. Such a new query q′ is then evaluated over
DB(A), thus essentially reducing query answering to query evaluation over a database
instance. Since the size of q′ does not depend on the ABox, the data complexity of the
whole query answering algorithm is the same as the data complexity of evaluating q′.
We show that, in the case where q is a CQ or a UCQ, the query q′ is a UCQ. Hence, the
data complexity of the whole query answering algorithm is AC0.

As done in the previous section for ontology reasoning, we deal first with query
answering over DL-LiteA ontologies. To this end, we establish some preliminary prop-
erties of DL-LiteA. Then we define an algorithm for the reformulation of CQs. Based



304 D. Calvanese et al.

on this algorithm we describe a technique for answering UCQs in DL-LiteA, prove its
correctness, and analyze its computational complexity. Finally, we discuss the addition
of identification assertions, and discuss query answering over DL-LiteA,id ontologies.

5.1 Preliminary Properties

First, we recall that, in the case where O is an unsatisfiable ontology, the answer to a
UCQ q is the finite set of tuples AllTup(q,O). Therefore, we focus for the moment on
the case where O is satisfiable.

We start by showing a central property of the canonical interpretation can(O). In
particular, the following lemma shows that, for every model M of O = 〈T ,A〉, there
is a homomorphism (cf. Definition 2.4) from can(O) to M.

Lemma 5.1. Let O = 〈T ,A〉 be a satisfiable DL-LiteA ontology, and let M =
(ΔM, ·M) be a model of O. Then, there is a homomorphism from can(O) to M.

Proof. We define a function ψ from Δcan(O) to ΔM by induction on the construction
of chase(O), and simultaneously show that the following properties hold:

(i) for each atomic concept A in O and each object o ∈ Δcan(O), if o ∈ Acan(O) then
ψ(o) ∈ AM, and

(ii) for each atomic role P in O and each pair of objects o, o′ ∈ Δcan(O), if (o, o′) ∈
P can(O) then (ψ(o), ψ(o′)) ∈ PM.

Hence, ψ is the desired homomorphism.
Base Step. For each constant d occurring in A, we set ψ(dcan(O)) = dM (notice that

each model M interprets each such constant with an element in ΔM). We remind that
chase0(O) = A, Δcan0(O) = Δcan(O) = ΓC , and that, for each constant d occurring
in A, dcan0(O) = d. Then, it is easy to see that for each object o ∈ Δcan0(O) (resp.,
each pair of objects o1, o2 ∈ Δcan0(O)) such that o ∈ Acan0(O), where A is an atomic
concept in O (resp., (o1, o2) ∈ P can(O), where P is an atomic role in O), we have that
A(o) ∈ chase0(O) (resp., P (o1, o2) ∈ chase0(O)). Since M satisfies all membership
assertions in A, we also have that ψ(o) ∈ AM (resp., (ψ(o1), ψ(o2)) ∈ PM).

Inductive Step. Let us assume that chasei+1(O) is obtained from chasei(O) by
applying rule cr2. This means that a PI of the form A � ∃Q, where A is an atomic
concept in T , and Q is a basic role in T , is applied in chasei(O) to a membership
assertion of the form A(a), such that there does not exist a constant a′′ ∈ ΓC such that
Q(a, a′′) ∈ chase i(O). Therefore chase i+1(O) = chasei(O) ∪ {Q(a, a′)}, where a′

follows lexicographically all constants appearing in chasei(O) (notice that this means
that (a, a′) ∈ Qcani+1(O)). By induction hypothesis, there exists om ∈ ΔM such that
ψ(a) = om and om ∈ AM. Because of the presence of the PI A � ∃Q in T , and
because M is a model of O, there is at least one object o′m ∈ ΔM such that (om, o′m) ∈
QM. Then, we set ψ(a′) = o′m, and we can conclude that (ψ(a), ψ(a′)) ∈ QM.

With a similar argument we can prove the inductive step also in those cases in which
cani+1(O) is obtained from can i(O) by applying one of the rules cr1, cr3, cr4, or cr5.

�!

Based on the above property, we now prove that the canonical interpretation can(O) of
a satisfiable ontology O is able to represent all models of O with respect to UCQs.



Ontologies and Databases: The DL-Lite Approach 305

Theorem 5.2. Let O be a satisfiable DL-LiteA ontology, and let q be a UCQ over O.
Then, cert(q,O) = qcan(O).

Proof. We first recall that Δcan(O) = ΓC and that, for each constant a occurring in
O, we have that acan(O) = a. Therefore, given a tuple t of constants occurring in
O, we have that tcan(O) = t. We can hence rephrase the claim as t ∈ cert(q,O) iff
t ∈ qcan(O).

“⇒” Suppose that t ∈ cert(q,O). Then, since can(O) is a model of O, we have
that tcan(O) ∈ qcan(O).

“⇐” Suppose that tcan(O) ∈ qcan(O). Let q be the UCQ q = {q1, . . . , qk} with qi

defined as qi(xi) ← conj i(xi, yi), for each i ∈ {1, . . . , k}. Then, by Theorem 2.6,
there exists i ∈ {1, . . . , k} such that there is a homomorphism μ from conj i(t, yi) to
can(O) (cf. Definition 2.5).

Now let M be a model of O. By Lemma 5.1, there is a homomorphism ψ from
can(O) to M. Since homomorphisms are closed under composition, the function ob-
tained by composing μ and ψ is a homomorphisms from conj i(t, yi) to M, and by
Theorem 2.6, we have that tM ∈ qM. Since M was an arbitrary model, this implies
that t ∈ cert(q,O). �!
The above property shows that the canonical interpretation can(O) is a correct rep-
resentative of all the models of a DL-LiteA ontology with respect to the problem of
answering UCQs. In other words, for every UCQ q, the answers to q over O correspond
to the evaluation of q in can(O).

In fact, this property holds for all positive FOL queries, but not in general. Consider
for example the DL-LiteA ontology O = 〈∅, {A1(a)}〉, and the FOL boolean query
q = ∃x. A1(x) ∧ ¬A2(x). We have that chase(O) = {A1(a)}, and therefore q is true
in can(O), but the answer to q over O is false , since there exists a model M of O such
that q is false in M. Assume, for instance, that M has the same interpretation domain
as can(O), and that aM = a, AM

1 = {a}, and AM
2 = {a}. It is easy to see that M is

a model of O and that q is false in M.
Theorem 5.2, together with the fact that the canonical interpretation depends only

on the positive inclusions, and not on the negative inclusions or the functionality asser-
tions, has an interesting consequence for satisfiable ontologies, namely that the certain
answers to a UCQ depend only on the set of positive inclusions and the ABox, but are
not affected by the negative inclusions and the functionality assertions.

Corollary 5.3. Let O = 〈T ,A〉 be a satisfiable DL-LiteA ontology, and let q be a UCQ
over O. Then, cert(q,O) = cert(q, 〈Tp,A〉), where Tp is the set of positive inclusions
in T .

We point out that the canonical interpretation is in general infinite, consequently it can-
not be effectively computed in order to solve the query answering problem in DL-LiteA.

Now, given the limited expressive power of DL-LiteA TBoxes, it might seem that, in
order to answer a query over an ontologyO, we could simply build a finite interpretation
IO that allows for reducing answering every UCQ (or even every single CQ) over O to
evaluating the query in IO. The following theorem shows that this is not the case.

Theorem 5.4. There exists a DL-LiteA ontology O for which no finite interpretation
IO exists such that, for every CQ q over O, cert(q,O) = qIO .



306 D. Calvanese et al.

Proof. Let O be the DL-LiteA ontology whose TBox consists of the cyclic concept
inclusion ∃P− � ∃P and whose ABox consists of the assertion P (a, b).

Let IO be a finite interpretation. There are two possible cases:

(1) There is no cycle on the relation P in IO , i.e., the maximum path on the relation
P IO has a finite length n. In this case, consider the boolean conjunctive query
q() ← P (x0, x1), P (x1, x2), . . . , P (xn, xn+1) that represents the existence of a
path of length n + 1 in P . It is immediate to verify that the query q is false in IO ,
i.e., qIO = ∅, while the answer to q over O is true, i.e., cert(q,O) = () �= ∅. This
last property can be seen easily by noticing that qcan(O) is true.

(2) IO satisfies the TBox cycle, so it has a finite cycle. More precisely, let us assume
that IO is such that {(o1, o2), (o2, o3), . . . , (on, o1)} ⊆ P IO . In this case, consider
the boolean CQ q() ← P (x1, x2), . . . , P (xn, x1). It is immediate to verify that
such a query is true in IO , while the answer to q over O is false . This last prop-
erty can be seen easily by noticing that qcan(O) is false , since chase(O) does not
contain a set of facts P (a1, a2), P (a2, a3), . . . , P (an, a1), for any n, and therefore
in can(O) there does not exist any cycle on the relation P .

Consequently, in both cases cert(q, O) �= qIO . �!

Notice that in the proof of the above result we are using neither functionality assertions
nor role inclusion assertions, hence the results holds already for the fragment of DL-
LiteA called DL-Litecore [24]. The above property demonstrates that answering queries
in DL-LiteA (or even in DL-Litecore) goes beyond both propositional logic and relational
databases.

Finally, we prove a property that relates answering UCQs to answering CQs.

Theorem 5.5. Let O be a DL-LiteA ontology, and let q be a UCQ over O. Then,

cert(q,O) =
⋃

qi∈q

cert(qi,O).

Proof. The proof that
⋃

qi∈q cert(qi,O) ⊆ cert(q,O) is immediate. To prove that
cert(q,O) ⊆

⋃
qi∈Q cert(qi,O), we distinguish two possible cases:

(1) O is unsatisfiable. Then, it immediately follows that
⋃

qi∈q cert(qi,O) and
cert(q,O) are equal and coincide with the set AllTup(q,O);

(2) O is satisfiable. Suppose that every qi ∈ q is of the form qi(x) ← conj i(x, yi), and
consider a tuple t ∈ cert(q,O). Then, by Theorem 5.2, tcan(O) ∈ qcan(O), which
implies that there exists i ∈ {1, . . . , k} such that tcan(O) ∈ conj i(t, yi)can(O).
Hence, from Theorem 5.2, it follows that t ∈ cert(qi,O). �!

Informally, the above property states that the set of answers to a UCQ q in DL-LiteA
corresponds to the union of the answers to the various CQs in q.

5.2 Query Reformulation

Based on the properties shown above, we define now an algorithm for answering UCQs
in DL-LiteA, and analyze then its computational complexity. We need some preliminary
definitions.



Ontologies and Databases: The DL-Lite Approach 307

Atom g Positive inclusion α gr(g,α)

A(x) A1 
 A A1(x)
A(x) ∃P 
 A P (x, )
A(x) ∃P− 
 A P ( , x)
P (x, ) A 
 ∃P A(x)
P (x, ) ∃P1 
 ∃P P1(x, )
P (x, ) ∃P−

1 
 ∃P P1( , x)
P ( , x) A 
 ∃P− A(x)
P ( , x) ∃P1 
 ∃P− P1(x, )
P ( , x) ∃P−

1 
 ∃P− P1( , x)
P (x1, x2) P1 
 P or P−

1 
 P− P1(x1, x2)
P (x1, x2) P1 
 P− or P−

1 
 P P1(x2, x1)

Fig. 12. The result gr(g,α) of applying a positive inclusion α to an atom g

We say that an argument of an atom in a query is bound if it corresponds to either
a distinguished variable or a shared variable, i.e., a variable occurring at least twice in
the query body, or a constant. Instead, an argument of an atom in a query is unbound if
it corresponds to a non-distinguished non-shared variable. As usual, we use the symbol
‘ ’ to represent non-distinguished non-shared variables.

We define first when a PI is applicable to an atom:

– A PI α is applicable to an atom A(x), if α has A in its right-hand side.
– A PI α is applicable to an atom P (x1, x2), if one of the following conditions holds:

(i) x2 = and the right-hand side of α is ∃P ; or
(ii) x1 = and the right-hand side of α is ∃P−; or

(iii) α is a role inclusion assertion and its right-hand side is either P or P−.

Roughly speaking, a PI α is applicable to an atom g if the predicate of g is equal to the
predicate in the right-hand side of α and, in the case when α is an inclusion assertion
between concepts, if g has at most one bound argument that corresponds to the object
that is implicitly referred to by the inclusion α.

We indicate with gr(g, α) the atom obtained from the atom g by applying the appli-
cable inclusion α. Formally:

Definition 5.6. Let α be an PI that is applicable to the atom g. Then, gr(g, α) is the
atom obtained from g and α as defined in Figure 12.

In Figure 13, we provide the algorithm PerfectRef, which reformulates a UCQ (con-
sidered as a set of CQs) by taking into account the PIs of a TBox T . In the algorithm,
q′[g/g′] denotes the CQ obtained from a CQ q′ by replacing the atom g with a new atom
g′. Furthermore, anon is a function that takes as input a CQ q′ and returns a new CQ
obtained by replacing each occurrence of an unbound variable in q′ with the symbol

. Finally, reduce is a function that takes as input a CQ q′ and two atoms g1 and g2

occurring in the body of q′, and returns a CQ q′′ obtained by applying to q′ the most
general unifier between g1 and g2. We point out that, in unifying g1 and g2, each oc-
currence of the symbol has to be considered a different unbound variable. The most



308 D. Calvanese et al.

Algorithm PerfectRef(q, T )
Input: UCQ q, DL-LiteA TBox T
Output: UCQ pr
pr := q;
repeat

pr ′ := pr ;
for each CQ q′ ∈ pr ′ do
(a) for each atom g in q′ do

for each PI α in T do
if α is applicable to g
then pr := pr ∪ { q′[g/gr(g, α)] };

(b) for each pair of atoms g1, g2 in q′ do
if g1 and g2 unify
then pr := pr ∪ {anon(reduce(q′, g1, g2))};

until pr ′ = pr ;
return pr ;

Fig. 13. The algorithm PerfectRef that computes the perfect reformulation of a CQ w.r.t. a
DL-LiteA TBox

general unifier substitutes each symbol in g1 with the corresponding argument in g2,
and vice-versa (obviously, if both arguments are , the resulting argument is ).

Informally, the algorithm first reformulates the atoms of each CQ q′ ∈ pr ′, and
produces a new query for each atom reformulation (step (a)). Roughly speaking, PIs
are used as rewriting rules, applied from right to left, which allow one to compile away
in the reformulation the intensional knowledge (represented by T ) that is relevant for
answering q. At step (b), for each pair of atoms g1, g2 that unify and occur in the body
of a query q′, the algorithm computes the CQ q′′ = reduce(q, g1, g2). Thanks to the
unification performed by reduce, variables that are bound in q′ may become unbound
in q′′. Hence, PIs that were not applicable to atoms of q′, may become applicable to
atoms of q′′ (in the next executions of step (a)). Notice that the use of anon is necessary
in order to guarantee that each unbound variable is represented by the symbol .

We observe that the reformulation of a UCQ q w.r.t. a TBox T computed by
PerfectRef depends only on the set of PIs in T , and that NIs and functionality as-
sertions do not play any role in such a process. Indeed, as demonstrated below by the
proof of correctness of answering (U)CQs over DL-LiteA ontologies based on the per-
fect reformulation, NIs and functionality assertions have to be considered only when
verifying the satisfiability of the ontology. Once the satisfiability is established, they
can be ignored in the query reformulation phase.

Example 5.7. Consider the following DL-LiteA TBox Tu

Professor 
 ¬Student
Professor 
 ∃TEACHES-TO

Student 
 ∃HAS-TUTOR

∃HAS-TUTOR− 
 Professor
∃TEACHES-TO− 
 Student

(funct HAS-TUTOR)

making use of the atomic concepts Professor and Student, and of the atomic roles
TEACHES-TO and HAS-TUTOR. Such a TBox states that no student is also a professor



Ontologies and Databases: The DL-Lite Approach 309

(and vice-versa), that professors do teach to students, that students have a tutor, who is
also a professor, and that everyone has at most one tutor.

Consider the CQ over Tu

q(x) ← TEACHES-TO(x, y), TEACHES-TO( , y).

In such a query, the atoms TEACHES-TO(x, y) and TEACHES-TO( , y) unify, and
by executing reduce(q, TEACHES-TO(x, y), TEACHES-TO( , y)), we obtain the atom
TEACHES-TO(x, y). The variable y is unbound, and therefore the function anon
replaces it with . Now, the PI Professor � ∃TEACHES-TO can be applied to
TEACHES-TO(x, ), whereas, before the reduction step, it could not be applied to any
atom of the query.

The following lemma shows that the algorithm PerfectRef terminates, when applied to
a UCQ and a DL-LiteA TBox.

Lemma 5.8. Let T be a DL-LiteA TBox and q a UCQ over T . Then, the algorithm
PerfectRef(q, T ) terminates.

Proof. The termination of PerfectRef, for each q and T given as inputs, immediately
follows from the following facts:

(1) The maximum number of atoms in the body of a CQ generated by the algorithm
is equal to the maximum length of the CQs in the input UCQ q. Indeed, in each
iteration, a query atom is either replaced with another one, or the number of atoms
in the query is reduced; hence, the number of atoms is bounded by the number of
atoms in each input CQ. The length of the query is less than or equal to n, where n
is the input query size, i.e., n is proportional to the number of atoms and the number
of terms occurring in the input UCQ.

(2) The set of terms that occur in the CQs generated by the algorithm is equal to the set
of variables and constants occurring in q plus the symbol , hence such a set has
cardinality less than or equal to n + 1, where n is the query size.

(3) As a consequence of the above point, the number of different atoms that may occur
in a CQ generated by the algorithm is less than or equal to m · (n + 1)2, where m
is the number of predicate symbols (concept or role names) that occur either in the
TBox or in the query.

(4) The algorithm does not drop queries that it has generated.

The above points 1 and 3 imply that the number of distinct CQs generated by the al-
gorithm is finite, whereas point 4 implies that the algorithm does not generate a query
more than once, and therefore PerfectRef terminates. More precisely, the number of
distinct CQs generated by the algorithm is less than or equal to (m · (n + 1)2)n, which
corresponds to the maximum number of executions of the repeat-until cycle of the
algorithm. �!

Example 5.9. Consider the TBox Tu in Example 5.7 and the CQ

q(x) ← TEACHES-TO(x, y), HAS-TUTOR(y, )

asking for professors that teach to students that have a tutor.



310 D. Calvanese et al.

Let us analyze the execution of the algorithm PerfectRef({q}, Tu). At the first
execution of step (a), the algorithm applies to the atom HAS-TUTOR(y, ) the PI
Student � ∃HAS-TUTOR and inserts in pr the new query

q(x) ← TEACHES-TO(x, y), Student(y).

Then, at a second execution of step (a), the algorithm applies to the atom Student(y) the
PI ∃TEACHES-TO− � Student and inserts in pr the query

q(x) ← TEACHES-TO(x, y), TEACHES-TO( , y).

Since the two atoms of the second query unify, step (b) of the algorithm inserts into pr
the query

q(x) ← TEACHES-TO(x, ).

Notice that the variable y is unbound in the new query, hence it has been replaced
by the symbol . At a next iteration, step (a) applies Professor � ∃TEACHES-TO to
TEACHES-TO(x, ) and inserts into pr the query

q(x) ← Professor(x).

Then, at a further execution of step (a), it applies ∃HAS-TUTOR− � Professor to
Professor(x) and inserts into pr the query

q(x) ← HAS-TUTOR( , x).

The set constituted by the above five queries and the original query q is then returned
by the algorithm PerfectRef({q}, Tu).

Example 5.10. As a further example, consider now the TBox T ′
u obtained from Tu in

Example 5.7 by adding the role inclusion assertion HAS-TUTOR− � TEACHES-TO,
expressing that a tutor also teaches the student s/he is tutoring. Notice that T ′

u is a valid
DL-LiteA TBox. Consider the CQ

q′(x) ← Student(x).

Then, the result of PerfectRef({q′}, T ′
u) is the UCQ

q′(x) ← Student(x)
q′(x) ← TEACHES-TO( , x)
q′(x) ← HAS-TUTOR(x, )

Notice that the insertion of the last CQ in the result of the execution of the algorithm is
due to an application of the role inclusion assertion.

We note that the UCQ produced by PerfectRef is not necessarily minimal, i.e., it may
contain pairs of CQs that are one contained into the other. Though this does not affect
the worst-case computational complexity, for practical purposes this set of queries can
be simplified, using well-known minimization techniques for relational queries. For
example, it is possible to check ordinary containment between each pair of CQs in
the produced UCQs, and remove from the result UCQ those CQs that are contained in
some other CQ in the set. It is easy to see that such an optimization step will not affect
completeness of the algorithm.



Ontologies and Databases: The DL-Lite Approach 311

5.3 Query Evaluation

In order to compute the certain answers to a UCQ q over an ontology O = 〈T ,A〉,
we need to evaluate the set pr of CQs produced by PerfectRef(q,O) over the ABox A
considered as a relational database.

In Figure 14, we define the algorithm Answer that, given a ontology O and a UCQ
q, computes cert(q,O). The following theorem shows that the algorithm Answer ter-
minates, when applied to a UCQ and a DL-LiteA TBox.

Theorem 5.11. Let O = 〈T ,A〉 be a DL-LiteA ontology and q a UCQ over O. Then,
the algorithm Answer(q,O) terminates.

Proof. Termination of Answer(q,O) follows straightforwardly from Lemma 4.13 and
Lemma 5.8, which respectively establish termination of the algorithms Satisfiable(O)
and PerfectRef(q, T ). �!
Example 5.12. Let us consider again the query of Example 5.9

q(x) ← TEACHES-TO(x, y), HAS-TUTOR(y, )

expressed over the ontology Ou = 〈Tu ,Au〉, where Tu is the TBox defined in
Example 5.7, and Au consists of the membership assertions

Student(john), HAS-TUTOR(john, mary), TEACHES-TO(mary, bill).

By executing Answer({q},Ou), since Ou is satisfiable (see Section 4), it executes
PerfectRef({q}, Tu), which returns the UCQ described in Example 5.9. Let q1 be such

a query, then it is easy to see that q
DB(Au)
1 is the set {mary}.

Let us now consider again the query

q′(x) ← Student(x)

expressed over the ontology O′
u = 〈T ′

u ,A′
u〉, where T ′

u is as in Example 5.10, and A′
u

consists of the membership assertions

HAS-TUTOR(john, mary), TEACHES-TO(mary, bill).

Obviously, O′
u is satisfiable, and executing Answer({q′},O′

u) results in the evaluation
of the UCQs returned by PerfectRef({q′}, T ′

u), and which we have described in Ex-
ample 5.10, over A′

u . This produces the answer set {john, bill}. Notice that, without
considering the additional role inclusion assertion, we would have obtained only {bill}
as answer to the query.

Algorithm Answer(q,O)
Input: UCQ q, DL-LiteA ontology O = 〈T ,A〉
Output: cert(q,O)
if not Satisfiable(O)
then return AllTup(q,O);
else return (PerfectRef(q, T ))DB(A);

Fig. 14. The algorithm Answer that computes the certain answers to a UCQ over a DL-LiteA
ontology



312 D. Calvanese et al.

5.4 Correctness

We now prove correctness of the query answering technique described above. As dis-
cussed, from Theorem 5.2 it follows that query answering can in principle be done
by evaluating the query over the model can(O). However, since can(O) is in general
infinite, we obviously need to avoid the construction of can(O). Instead, we compile
the TBox into the query, thus simulating the evaluation of the query over can(O) by
evaluating a finite reformulation of the query over the ABox considered as a database.

Lemma 5.13. Let T be a DL-LiteA TBox, q a UCQ over T , and pr the UCQ re-
turned by PerfectRef(q, T ). For every DL-LiteA ABox A such that 〈T ,A〉 is satisfiable,
cert(q, 〈T ,A〉) = prDB(A).

Proof. We first introduce the notion of witness of a tuple of constants with respect to
a CQ. For a CQ q′(x) = ∃y. conj (x, y), we denote with conj ′(x, y) the set of atoms
corresponding to the conjunction conj (x, y). Given a DL-LiteA knowledge base O =
〈T ,A〉, a CQ q′(x) = ∃y. conj (x, y) overO, and a tuple t of constants occurring in O,
a set of membership assertions G is a witness of t w.r.t. q′ if there exists a substitution
σ from the variables y in conj ′(t, y) to constants in G such that the set of atoms in
σ(conj ′(t, y)) is equal to G. In particular, we are interested in witnesses of a tuple t
w.r.t. a CQ q′ that are contained in chase(O). Intuitively, each such witness corresponds
to a subset of chase(O) that is sufficient in order to have that the formula ∃y. conj (t, y)
evaluates to true in the canonical interpretation can(O), and therefore the tuple t =
tcan(O) belongs to q′can(O). More precisely, we have that t ∈ q′can(O) iff there exists a
witness G of t w.r.t. q′ such that G ⊆ chase(O). The cardinality of a witness G, denoted
by |G|, is the number of membership assertions in G.

Since 〈T ,A〉 is satisfiable, by Theorem 5.2, cert(q, 〈T ,A〉) = qcan(O), and,
by Theorem 5.5, prDB(A) =

⋃
q∈pr qDB(A), where pr is the UCQ returned by

PerfectRef(q, T ). Consequently, to prove the claim it is sufficient to show that⋃
q∈pr qDB(A) = qcan(O). We show both inclusions separately.

“⊆” We have to prove that qDB(A) ⊆ qcan(O), for each CQ q ∈ pr . We show by
induction on the number of steps (a) and (b) executed by the algorithm PerfectRef to
obtain q that qcan(O) ⊆ qcan(O). The claim then follows from the fact that DB(A) is
contained in can(O) and that CQs are monotone.

Base step: trivial, since q ∈ q.
Inductive step: Let the CQ q = qi+1 be obtained from qi by means of step (a) or

step (b) of the algorithm PerfectRef. We show in both cases that q
can(O)
i+1 ⊆ q

can(O)
i . By

the inductive hypothesis we then have that q
can(O)
i ⊆ qcan(O), and the claim follows.

We first consider the case in which qi+1 is obtained from qi by applying step (a) of
the algorithm. Let t be a tuple of constants occurring in O such that tcan(O) ∈ q

can(O)
i+1 .

Then, it follows that there exists G ⊆ can(O) such that G is a witness of t w.r.t. qi+1. Let
us assume that qi+1 is obtained from qi by applying step (a) when the positive inclusion
assertion α of T is of the form A1 � A, i.e., qi+1 = qi[A(x)/A1(x)] (the proof when
α is of the other forms listed in Definition 5.6 is analogous). Then, either G is a witness
of t w.r.t. qi, or there exists a membership assertion in G to which the PI A1 � A
is applicable. In both cases there exists a witness of t w.r.t. qi contained in chase(O).



Ontologies and Databases: The DL-Lite Approach 313

Therefore, tcan(O) ∈ q
can(O)
i . We consider now the case in which qi+1 is obtained from

qi by applying step (b) of the algorithm, i.e., qi+1 = anon(reduce(qi, g1, g2)), where g1

and g2 are two atoms belonging to qi that unify. It is easy to see that in such a case G is
also a witness of t w.r.t. qi, and therefore tcan(O) ∈ q

can(O)
i .

“⊇” We have to show that for each tuple t ∈ qcan(O), there exists q ∈ pr such
that t ∈ qDB(A). First, since t ∈ qcan(O), it follows that there exists a CQ q0 in q and
a finite number k such that there is a witness Gk of t w.r.t. q0 contained in chasek(O).
Moreover, without loss of generality, we can assume that every rule cr1, cr2, cr3, cr4,
and cr5 used in the construction of chase(O) is necessary in order to generate such a
witness Gk: i.e., chasek(O) can be seen as a forest (set of trees) where: (i) the roots cor-
respond to the membership assertions of A; (ii) chasek(O) contains exactly k edges,
where each edge corresponds to an application of a rule; (iii) each leaf is either one of
the roots or a membership assertion in Gk. In the following, we say that a membership
assertion β is an ancestor of a membership assertion β′ in a set of membership asser-
tions S, if there exist β1, . . . , βn in S, such that β1 = β, βn = β′, and each βi can be
generated by applying a chase rule to βi−1, for i ∈ {2, . . . , n}. We also say that β′ is a
successor of β. Furthermore, for each i ∈ {0, . . . , k}, we denote with Gi the pre-witness
of t w.r.t. q in chasei(O), defined as follows:

Gi =
⋃

β′∈Gk

{ β ∈ chase i(O) | β is an ancestor of β′ in chasek(O) and
there exists no successor of β in chasei(O)
that is an ancestor of β′ in chasek(O) }.

Now we prove by induction on i that, starting from Gk , we can “go back” through the
rule applications and find a query q in pr such that the pre-witness Gk−i of t w.r.t. q0

in chasek−i(O) is also a witness of t w.r.t. q. To this aim, we prove that there exists
q ∈ pr such that Gk−i is a witness of t w.r.t. q and |q| = |Gk−i|, where |q| indicates the
number of atoms in the CQ q. The claim then follows for i = k, since chase0(O) = A.

Base step: There exists q ∈ pr such that Gk is a witness of t w.r.t. q and |q| = |Gk|.
This is an immediate consequence of the fact that q0 ∈ pr and that pr is closed with
respect to step (b) of the algorithm PerfectRef. Indeed, if |Gk| < |q0| then there exist
two atoms g1, g2 in q0 and a membership assertion β in Gk such that β and g1 unify
and β and g2 unify, which implies that g1 and g2 unify. Therefore, by step (b) of the
algorithm, it follows that there exists a query q1 ∈ pr (with q1 = reduce(q0, g1, g2))
such that Gk is a witness of t w.r.t. q1 and |q1| = |q| − 1. Now, if |Gk| < |q1|, we can
iterate the above argument, thus we conclude that there exists q ∈ pr such that Gk is a
witness of t w.r.t. q and |q| = |Gk|.

Inductive step: suppose that there exists q ∈ pr such that Gk−i+1 is a witness of t
w.r.t. q and |q| = |Gk−i+1|. Let us assume that chasek−i+1(O) is obtained by apply-
ing cr2 to chasek−i(O) (the proof is analogous for rules cr1, cr3, cr4, and cr5). This
means that a PI of the form A � ∃P 12, where A is an atomic concept and P is an
atomic role, is applied in chasek−i(O) to a membership assertion of the form A(a),
such that there does not exists a′ ∈ ΓC such that P (a, a′) ∈ chasek−i(O). Therefore,

12 The other execution of rule cr2 is for the case where the PI is A 
 ∃P−, which is analogous.



314 D. Calvanese et al.

chasek−i+1(O) = chasek−i(O) ∪ {P (a, a′′)}, where a′′ ∈ ΓC follows lexicographi-
cally all constants occurring in chasei(O).

Since a′′ is a new constant of ΓC , i.e., a constant not occurring elsewhere in Gk−i+1,
and since |q| = |Gk−i+1|, it follows that the atom P (x, ) occurs in q. Therefore,
by step (a) of the algorithm, it follows that there exists a query q1 ∈ pr (with q1 =
q[P (x, )/A(x)]) such that Gk−i is a witness of t w.r.t. q1.

Now, there are two possible cases: either |q1| = |Gk−i|, and in this case the claim
is immediate; or |q1| = |Gk−i| + 1. This last case arises if and only if the membership
assertion A(a) to which the rule cr2 is applied is both in Gk−i and in Gk−i+1. This
implies that there exist two atoms g1 and g2 in q1 such that A(a) and g1 unify and A(a)
and g2 unify, hence g1 and g2 unify. Therefore, by step (b) of the algorithm (applied to
q1), it follows that there exists q2 ∈ pr (with q2 = reduce(q1, g1, g2)) such that Gk−i is
a witness of t w.r.t. q2 and |q2| = |Gk−i+1|, which proves the claim. �!

Based on the above property, we are finally able to establish correctness of the algorithm
Answer.

Theorem 5.14. Let O = 〈T ,A〉 be a DL-LiteA ontology and q a UCQ. Then,
cert(q,O) = Answer(q,O).

Proof. In the case where O is satisfiable, the proof follows immediately from
Lemma 5.13 and Theorem 5.5. In the case where O is not satisfiable, it is immediate
to verify that the set AllTup(q,O) returned by Answer(q,O) corresponds to cert(q,O),
according to the semantics of queries given in Section 2.2. �!

As an immediate corollary of the above properties, it follows that the problem of an-
swering UCQs over satisfiable DL-LiteA ontologies is FOL-rewritable. Moreover, it is
easy to see that FOL-rewritability extends also to the case of arbitrary (both satisfiable
and unsatisfiable) DL-LiteA ontologies. Indeed, the whole query answering task can be
encoded into a single UCQ, obtained by adding to the UCQ PerfectRef(q, T ) a finite
number of CQs encoding the fact that every tuple in AllTup(q,O) is in the answer set
of the query if O is unsatisfiable. (For details on the construction of such a query see
e.g. [17], which defines a similar encoding in the context of relational database integrity
constraints.) We therefore get the following theorem.

Theorem 5.15. Answering UCQs in DL-LiteA is FOL-rewritable.

5.5 Computational Complexity

We first establish the complexity of the algorithm PerfectRef.

Lemma 5.16. Let T be a DL-LiteA TBox, and q a UCQ over T . The algorithm
PerfectRef(q, T ) runs in time polynomial in the size of T .

Proof. Let n be the query size, and let m be the number of predicate symbols (concept
or role names) that occur either in the TBox or in the query. As shown in Lemma 5.8,
the number of distinct CQs generated by the algorithm is less than or equal to (m · (n+
1)2)n, which corresponds to the maximum number of executions of the repeat-until



Ontologies and Databases: The DL-Lite Approach 315

cycle of the algorithm. Since m is linearly bounded by the size of the TBox T , while n
does not depend on the size of T , from the above argument it follows that the algorithm
PerfectRef(q, T ) runs in time polynomial in the size of T . �!

Based on the above property, we are able to establish the complexity of answering
UCQs in DL-LiteA.

Theorem 5.17. Answering UCQs in DL-LiteA is in PTIME in the size of the ontology,
and in AC0 in the size of the ABox (data complexity).

Proof. The proof is an immediate consequence of the correctness of the algorithm
Answer, established in Theorem 5.14, and the following facts: (i) Lemma 5.16, which
implies that the query PerfectRef(q, T ) can be computed in time polynomial in the size
of the TBox and constant in the size of the ABox (data complexity). (ii) Theorem 4.22,
which states the computational complexity of checking satisfiability of DL-LiteA on-
tologies. (iii) The fact that the evaluation of a UCQ over a database can be computed
in AC0 with respect to the size of the database (since UCQs are a subclass of FOL
queries) [1]. �!

We are also able to characterize the combined complexity (i.e., the complexity w.r.t. the
size of O and q) of answering UCQs in DL-LiteR.

Theorem 5.18. Answering UCQs in DL-LiteA is NP-complete in combined complexity.

Proof. To prove membership in NP, observe that a version of the algorithm PerfectRef
that nondeterministically returns only one of the CQs belonging to the reformulation
of the input query, runs in nondeterministic polynomial time in combined complexity,
since every query returned by PerfectRef can be generated after a polynomial number of
transformations of one of the input CQs (i.e., after a polynomial number of executions
of steps (a) and (b) of the algorithm). This allows the corresponding nondeterministic
version of the algorithm Answer to run in nondeterministic polynomial time when the
input is a boolean UCQ. NP-hardness follows directly from NP-hardness of CQ evalu-
ation over relational databases [1]. �!

To summarize, the above results show a very nice computational behavior of queries in
DL-LiteA: answering UCQs over ontologies expressed in such a logic is computation-
ally no worse than standard UCQ answering (and containment) in relational databases.

5.6 Dealing with Identification Assertions

We address now the addition of identification assertions, and present a technique for
satisfiability and query answering in DL-LiteA,id. We start with the following result,
which extends Lemma 4.11 holding for DL-LiteA ontologies to ontologies that contain
also identification assertions.

Lemma 5.19. Let O be a DL-LiteA,id ontology. Then, can(O) is a model of O if and
only if O is satisfiable.



316 D. Calvanese et al.

Proof (sketch). “⇒” If can(O) is a model of O, then O is obviously satisfiable.
“⇐” Let O = 〈T ,A〉 be a satisfiable DL-LiteA,id ontology, and let us show that

can(O) satisfies all assertions in O. By Lemma 4.11, it is sufficient to show that can(O)
satisfies all IdCs. Since roles occurring in IdCs cannot be specialized, it is easy to see
that the following crucial property holds: for each basic role Q and for each constant
a introduced in chase(O) during a chase step, and hence present in can(O), there is
in chase(O) at most one fact of the form Q(a, a′) and at most one fact of the form
Q(a′, a), where a′ is some constant originally present in A or introduced during a pre-
vious chase step. From this property, it immediately follows that an IdC13 can not be
violated by a constant introduced during the chase. On the other hand, if an IdC was
violated in chase(O), and hence in can(O), by some pair of constants of A, then such
an IdC would be violated in every model of A, and hence O would be unsatisfiable,
thus contradicting the hypothesis. Consequently, no IdC of O is violated in can(O),
thus can(O) is a model of all IdCs, and hence a model of O. �!

The above lemma allows us to establish a fundamental “separation” property for IdCs,
similar to the one for functionality assertions and negative inclusions stated in Theo-
rem 4.12. However, instead to resorting to a notion of closure of a set of (identification)
assertions, to check satisfiability of a DL-LiteA,id ontology we rely on the perfect refor-
mulation of the query that expresses the violation of an identification assertion.

As a preliminary step, we associate to each IdC α a boolean CQ with an inequality
δ(α) that encodes the violation of α (similarly to what we have done for negative inclu-
sions and functionality assertions). We make use of the following notation, where B is
a basic concept and x a variable:

γ(B, x) =

⎧⎪⎨⎪⎩
A(x), if B = A,

P (x, ynew ), if B = ∃P , where ynew is a fresh variable,

P (ynew , x), if B = ∃P−, where ynew is a fresh variable.

Then, given an IdC α = (id B π1, . . . , πn), we define the boolean CQ with inequality

δ(α) = ∃x. γ(B, x) ∧ γ(B, x′) ∧ x �= x′ ∧
∧

1≤i≤n

(ρ(πi(x, xi)) ∧ ρ(πi(x′, xi))),

where x are all variables appearing in the atoms of δ(α), and ρ(π(x, y)) is inductively
defined on the structure of path π as follows:

(1) If π = B1? ◦ · · · ◦ Bh? ◦ Q ◦ B′
1? ◦ · · · ◦ B′

k? (with h ≥ 0, k ≥ 0), then

ρ(π(x, y)) = γ(B1, x) ∧ · · · ∧ γ(Bh, x) ∧ Q(x, y) ∧ γ(B′
1, y) ∧ · · · ∧ γ(B′

k, y).

(2) If π = π1 ◦ π2, where length(π1) = 1 and length(π2) ≥ 1, then

ρ(π(x, y)) = ρ(π1(x, z)) ∧ ρ(π2(z, y)),

where z is a fresh variable symbol (i.e., a variable symbol not occurring elsewhere
in the query).

13 Recall that we consider only so-called local IdCs, which have at least one path of length 1.



Ontologies and Databases: The DL-Lite Approach 317

Algorithm SatisfiableIdC(O)
Input: DL-LiteA,id ontology O = 〈T ∪ Tid ,A〉
Output: true if O is satisfiable, false otherwise
begin

if not Satisfiable(〈T ,A〉)
then return false;
else begin

qTid := {⊥};
for each α ∈ Tid do qTid := qTid ∪ {δ(α)};
qunsat(Tid ) := PerfectRefIdC(qTid , T );
if q

DB(A)

unsat(Tid )
= ∅ then return true ; else return false;

end
end

Fig. 15. The algorithm SatisfiableIdC that checks satisfiability of a DL-LiteA,id ontology

Intuitively, δ(α) encodes the violation of α by asking for the existence of two distinct
instances of B identified, according to α, by the same set of objects.

Consider now a DL-LiteA,id ontology O = 〈T ∪ Tid ,A〉, where we have de-
noted the TBox of such an ontology as the union T ∪ Tid of a set T of DL-LiteA
inclusion and functionality assertions and of a set Tid of IdCs. Let us assume that
O′ = 〈T ,A〉 is satisfiable. In order to check the satisfiability of O (i.e., assess the
impact on satisfiability of the IdCs), we can consider the perfect reformulation of
the query qTid

=
⋃

α∈Tid
{δ(α)} encoding the violation of all IdCs in Tid . However,

we need to consider a variation of the reformulation algorithm PerfectRef shown in
Figure 13 that takes into account the presence of inequalities in qTid

. Such an algorithm,
denoted PerfectRefIdC, considers the inequality predicate as a new primitive role, and
never “reduces” variables occurring in inequality atoms, i.e., such variables are never
transformed by unification steps into non-join variables (cf. Section 5.2). Exploiting
Lemma 5.19, we can prove the following result.

Theorem 5.20. Let O = 〈T ,A〉 be a satisfiable DL-LiteA ontology, let Tid be a set of
IdCs, and let qTid

=
⋃

α∈Tid
{δ(α)}. Then the DL-LiteA,id ontology Oid = 〈T ∪Tid ,A〉

is satisfiable if and only if (PerfectRefIdC(qTid
))DB(A) = ∅.

We present in Figure 15 the algorithm SatisfiableIdC that checks the satisfiability of
a DL-LiteA,id ontology O = 〈T ∪ Tid ,A〉. First, the algorithm uses the algorithm
Satisfiable to check satisfiability of the ordinary DL-LiteA ontology 〈T ,A〉 obtained
from O by discarding all IdCs: if 〈T ,A〉 is unsatisfiable, then also O is unsatisfiable.
Otherwise, the algorithm first computes the union qTid

of the queries δ(α), for all IdCs
α ∈ Tid , encoding the violation of all IdCs in O. Then, it uses PerfectRefIdC to com-
pute the query qunsat(Tid ) corresponding to the perfect reformulation of qTid

with respect
to the TBox assertions in T . Finally, the algorithm evaluates qunsat(Tid ) over DB(A),
i.e., the ABox A considered as a relational database, (which can be done in AC0 w.r.t.
the size of A) and checks whether such an evaluation returns the empty set (i.e., whether
the boolean UCQ evaluates to false). If this is the case, then the algorithm returns true



318 D. Calvanese et al.

(i.e., that O is satisfiable), since the ABox does not violate any IdC that is logically
implied by T ∪ Tid (note that considering PerfectRefIdC(q, T ) rather than simply q
is essential for this). Instead, if the evaluation of qunsat(Tid ) over DB(A) returns true,
then the ABox violates some IdC, and the algorithm reports that O is unsatisfiable by
returning false .

The following lemma establishes the correctness of SatisfiableIdC.

Lemma 5.21. Let O be a DL-LiteA,id ontology. Then, the algorithm SatisfiableIdC(O)
terminates, and O is satisfiable if and only if SatisfiableIdC(O) = true.

Proof. Termination follows immediately from termination of PerfectRefIdC and of
evaluation of a FOL query over a database. The correctness is an immediate conse-
quence of Theorem 5.20.

Correctness of the algorithm, together with the fact that the perfect reformulation is
independent of the ABox (see Section 5.2), and, according to Lemma 5.16 can be com-
puted in PTIME in the size of the TBox, allows us to extend the complexity results of
Theorem 4.22 for ontology satisfiability in DL-LiteA also to DL-LiteA,id ontologies.

Theorem 5.22. In DL-LiteA,id, ontology satisfiability is FOL-rewritable, and hence in
AC0 in the size of the ABox (data complexity), and in PTIME in the size of the whole
ontology (combined complexity).

We observe that also for checking the satisfiability of a DL-LiteA ontology, specifically
with respect to negative inclusion assertions, we could have adopted an approach similar
to the one presented in this subsection based on query reformulation, rather than the
one presented in Section 4.2 based on computing the closure cln(T ) of the negative
inclusions. Specifically, one can check that the query qunsat(T ) computed by Algorithm
Satisfiable in Figure 9 starting from cln(T ), actually corresponds to

PerfectRef(
⋃

α∈Tn

δ(α), Tp) ∪
⋃

α∈Tf

δ(α),

where Tp, Tn, and Tf are respectively the sets of positive inclusions, negative inclusions,
and functionality assertions in T .

We now turn our attention to query answering in the presence of identification asser-
tions. To this aim, we observe that Lemma 5.1 and Theorem 5.2 hold also for DL-LiteA,id

ontologies, from which we can derive the analogue of Corollary 5.3, establishing sepa-
rability for query answering in DL-LiteA,id.

Corollary 5.23. Let O = 〈T ∪ Tid ,A〉 be a satisfiable DL-LiteA,id ontology, and let q
be a UCQ over O. Then, cert(q,O) = cert(q, 〈Tp,A〉), where Tp is the set of positive
inclusions in T .

Then, Lemma 5.13 does not depend on the presence of identification assertions, except
for the fact that they may affect satisfiability of an ontology. Hence, for answering
UCQs over a DL-LiteA,id ontology we can resort to the Algorithm AnswerIdC, shown
in Figure 16, which is analogous to the Algorithm Answer shown in Figure 14, with



Ontologies and Databases: The DL-Lite Approach 319

Algorithm AnswerIdC(q,O)
Input: UCQ q, DL-LiteA,id ontology O = 〈T ∪ Tid ,A〉
Output: cert(q,O)
if not SatisfiableIdC(O)
then return AllTup(q,O);
else return (PerfectRef(q, T ))DB(A);

Fig. 16. The algorithm AnswerIdC that computes the certain answers to a UCQ over a DL-LiteA,id

ontology

the only difference that now the satisfiability check is done by taking into account also
identification assertions.

The following theorem establishes termination and correctness of the algorithm
AnswerIdC, when applied to a UCQ and a DL-LiteA,id ontology.

Theorem 5.24. Let O = 〈T ∪ Tid ,A〉 be a DL-LiteA,id ontology and q a UCQ. Then,
AnswerIdC(q,O) terminates and cert(q,O) = AnswerIdC(q,O).

Also, we obtain for query answering over DL-LiteA,id ontologies exactly the same com-
plexity bounds as for DL-LiteA ontologies.

Theorem 5.25. Answering UCQs in DL-LiteA,id is in PTIME in the size of the ontol-
ogy, in AC0 in the size of the ABox (data complexity), and NP-complete in combined
complexity.

Finally, it can be shown that adding identification assertions to DL-LiteA does not in-
crease the (data and combined) complexity of all other reasoning services, including
logical implication of identification assertions.

6 Beyond DL-LiteA,id

We now analyze the impact on the computational complexity of inference of extend-
ing the DL-LiteA,id DL as presented in Section 2. Specifically, we will concentrate on
data complexity, and note that, whenever the data complexity of an inference problem
goes beyond AC0, then the problem is not FOL-rewritable. Hence, if we want to base
inference on evaluating queries over a relational database, the lack of FOL-rewritability
means that a more powerful query answering engine than those available in standard re-
lational database technology is required. An immediate consequence of this fact is that
we cannot take advantage anymore of data management tools and query optimization
techniques of current DBMSs (cf. also Section 7).

There are two possible ways of extending DL-LiteA,id. The first one corresponds
to a proper language extension, i.e., adding new DL constructs to DL-LiteA,id, while
the second one consists of changing/strengthening the semantics of the formalism. We
analyze both types of extensions.



320 D. Calvanese et al.

6.1 Extending the Ontology Language

Concerning the extension of the DL-LiteA,id language, the results in [22], which we re-
port below, and those in [4], show that, apart from number restrictions, it is not possible
to add any of the usual DL constructs to DL-LiteA,id while keeping the data complex-
ity of query answering within AC0. This means that DL-LiteA,id is essentially the most
expressive DL allowing for data integration systems where query answering is FOL-
rewritable.

In addition to the constructs of DL-LiteA,id, we consider here also the following com-
mon construct in DLs [7]:

– concept conjunction, denoted C1 � C2, and interpreted as CI
1 ∩ CI

2 , for an inter-
pretation I;

– concept disjunction, denoted C1 ! C2, and interpreted as CI
1 ∪ CI

2 ;
– universal quantification on a role, denoted ∀P .A, and interpreted as:

(∀P .A)I = { o | ∀o′. (o, o′) ∈ P I → o′ ∈ AI }.

We then consider variations of DL-LiteA TBoxes, consisting of:

– concept inclusion assertions of the form Cl � Cr , where the constructs that may
occur in Cl and Cr will vary according to the language considered;

– possibly role inclusion assertions between atomic roles, i.e., of the form P � P ′;
– possibly functionality assertions of the form (funct P ) and/or (funct P−).

We first consider the case where we use qualified existential quantification in the left-
hand side of inclusion assertions. This alone is sufficient to lose FOL-rewritability of
instance checking. The same effect can be achieved with universal quantification on the
right-hand side of inclusion assertions, or with functionality interacting with qualified
existential on the right-hand side.

Theorem 6.1. Instance checking (and hence ontology satisfiability and query answer-
ing) is NLOGSPACE-hard in data complexity for ontologies O = 〈T ,A〉 where A is an
ABox, and T is a TBox of one of the following forms:

1. Cl −→ A | ∃P .A
Cr −→ A
Assertions in T : Cl � Cr .

2. Cl −→ A
Cr −→ A | ∀P .A
Assertions in T : Cl � Cr .

3. Cl −→ A
Cr −→ A | ∃P .A
Assertions in T : Cl � Cr , (funct P ).

Proof. For Case 1, the proof is by a LOGSPACE reduction of reachability in directed
graphs, which is NLOGSPACE-complete [40], to instance checking. Let G = 〈V, E〉 be
a directed graph, where V is a set of vertexes and E ⊆ V ×V is a set of directed edges,
and let s, t be two vertexes in V . Reachability is the problem of checking whether



Ontologies and Databases: The DL-Lite Approach 321

there are vertexes v0, v1, . . . , vn in V with v0 = s, vn = t, and (vi−1, vi) ∈ E, for
i ∈ {1, . . . , n}, i.e., whether there is an oriented path formed by edges in E that, starting
from s allows one to reach t.

We define an ontology O = 〈Treach ,AG〉, where the TBox Treach is constituted by
a single inclusion assertion

∃P .A � A

and the ABox AG has as constants the nodes of G, and is constituted by the membership
assertion A(t), and by one membership assertion P (v, v′) for each edge (v, v′) ∈ E.
The TBox Treach does not depend on G, and it is easy to see that AG can be constructed
in LOGSPACE from G, s, and t. We show that there is an oriented path in G from s to t
if and only if O |= A(s).

“⇐” Suppose there is no path in G from s to t. We construct a model I of O such
that sI �∈ AI . Consider the interpretation I with ΔI = V , vI = v for each v ∈ V ,
P I = E, and AI = { v | there is a path in G from v to t }. We show that I is a
model of O. By construction, I satisfies all membership assertions P (v, v′) and the
membership assertion A(t). Consider an object v ∈ (∃P .A)I . Then there is an object
v′ ∈ AI such that (v, v′) ∈ P I . Then, by definition of I, there is a path in G from v′ to
t, and (v, v′) ∈ E. Hence, there is also a path in G from v to t and, by definition of I,
we have that v ∈ AI . It follows that also the inclusion assertion ∃P .A � A is satisfied
in I.

“⇒” Suppose there is a path in G from a vertex v to t. We prove by induction on
the length k of such a path that O |= A(v). Base case: k = 0, then v = t, and the
claim follows from A(t) ∈ AG. Inductive case: suppose there is a path in G of length
k − 1 from v′ to t and (v, v′) ∈ E. By the inductive hypothesis, O |= A(v′), and since
by definition P (v, v′) ∈ A, we have that O |= ∃P .A(v). By the inclusion assertion in
Treach it follows that O |= A(v).

For Case 2, the proof follows from Case 1 and the observation that an assertion
∃P .A1 � A2 is logically equivalent to the assertion A1 � ∀P−.A2, and that we can
get rid of inverse roles by inverting the edges of the graph represented in the ABox.

For Case 3, the proof is again by a LOGSPACE reduction of reachability in directed
graphs, and is based on the idea that an assertion ∃P .A1 � A2 can be simulated by the
assertions A1 � ∃P−.A2 and (funct P−). Moreover, the graph can be encoded using
only functional roles (see proof of Theorem 6.5), and we can again get rid of inverse
roles by inverting edges. �!

Note that all the above “negative” results hold already for instance checking, i.e., for
the simplest queries possible. Also, note that in all three cases, we are considering
extensions to a minimal subset of DL-LiteA,id in order to get NLOGSPACE-hardness.

Notably, Case 3 of Theorem 6.1 tells us that instance checking (and therefore query
answering), in the DL obtained from DL-LiteA by removing the restriction on the in-
teraction between functionality assertions and role inclusions (cf. Definition 2.1) is not
in AC0, and hence not FOL-rewritable. This can be seen easily by considering the
encoding of inclusion assertions involving qualified existential restriction on the right-
hand side in terms of inclusion assertions between roles, illustrated at the beginning of
Section 4. Indeed, once we apply such an encoding, the ontology used in the reduction
to prove Case 3 of Theorem 6.1 contains functional roles that are specialized. In fact,



322 D. Calvanese et al.

as shown in [4] with a more involved proof, TBox reasoning in such ontologies is EX-
PTIME-complete (hence as hard as TBox reasoning in much more expressive DLs [7]),
and instance checking and (U)CQ query answering are PTIME-complete in data
complexity.

We now analyze the cases obtained from those considered in Theorem 6.1 by allow-
ing for conjunction of concepts in the left-hand side of inclusion assertions14.

Theorem 6.2. Instance checking (and hence ontology satisfiability and query answer-
ing) is PTIME-hard in data complexity for ontologies O = 〈T ,A〉 where A is an ABox,
and T is a TBox of one of the following forms:

1. Cl −→ A | ∃P .A | A1 � A2

Cr −→ A
Assertions in T : Cl � Cr .

2. Cl −→ A | A1 � A2

Cr −→ A | ∀P .A
Assertions in T : Cl � Cr .

3. Cl −→ A | A1 � A2

Cr −→ A | ∃P .A
Assertions in T : Cl � Cr , (funct P ).

Proof. For Case 1, the proof is by a LOGSPACE reduction of Path System Accessibility,
which is PTIME-complete [40]. An instance of Path System Accessibility is defined as
PS = (V, E, S, t), where V is a set of vertexes, E ⊆ V × V × V is an accessibility
relation (we call its elements edges), S ⊆ V is a set of source vertexes, and t ∈ V is a
terminal vertex. PS consists in verifying whether t is accessible, where accessibility is
defined inductively as follows:

– each vertex v ∈ S is accessible;
– if vertexes v1 and v2 are accessible and (v, v1, v2) ∈ E, then v is accessible;
– nothing else is accessible.

Given PS , we define the ontology O = 〈Tpsa ,APS 〉, where the TBox Tpsa is consti-
tuted by the inclusion assertions

∃P1.A � A1 ∃P2.A � A2 A1 � A2 � A ∃P3.A � A

and the ABox APS makes use of the vertexes in V and the edges in E as constants,
as described below. Consider a vertex v ∈ V , and let e1, . . . , ek be all edges in E that
have v as their first component, taken in some arbitrarily chosen order. Then the ABox
A contains the following membership assertions:

– P3(v, e1), and P3(ei, ei+1) for i ∈ {1, . . . , k − 1},
– P1(ei, v1) and P2(ei, v2), where ei = (v, v1, v2), for i ∈ {1, . . . , k − 1}.

14 Note that allowing for conjunction of concepts in the right-hand side of inclusion assertions
does not have any impact on expressivity or complexity, since an assertion B 
 C1 � C2 is
equivalent to the pair of assertions B 
 C1 and B 
 C2.



Ontologies and Databases: The DL-Lite Approach 323

Additionally, APS contains one membership assertion A(v) for each vertex v ∈ S.
Again, Tpsa does not depend on PS , and it is easy to see that APS can be constructed
in LOGSPACE from PS . We show that t is accessible in PS if and only if O |= A(t).

“⇐” Suppose that t is not accessible in PS . We construct a model I of O such that
tI �∈ AI . Consider the interpretation I with ΔI = V ∪E, and in which each constant of
the ABox is interpreted as itself, P I

1 , P I
2 , and P I

3 consist of all pairs of nodes directly
required by the ABox assertions, AI

1 consists of all edges (v′, v1, v2) such that v1 is
accessible in PS , AI

2 consists of all edges (v′, v1, v2) such that v2 is accessible in PS ,
and AI consists of all vertexes v that are accessible in PS union all edges (v′, v1, v2)
such that both v1 and v2 are accessible in PS . It is easy to see that I is a model of O,
and since t is not accessible in PS , we have that t /∈ AI .

“⇒” Suppose that t is accessible in PS . We prove by induction on the structure
of the derivation of accessibility that if a vertex v is accessible, then O |= A(v). Base
case (direct derivation): v ∈ S, hence, by definition, A contains the assertion A(v) and
O |= A(v). Inductive case (indirect derivation): there exists an edge (v, v1, v2) ∈ E
and both v1 and v2 are accessible. By the inductive hypothesis, we have that O |=
A(v1) and O |= A(v2). Let e1, . . . , eh be the edges in E that have v as their first
component, up to eh = (v, v1, v2) and in the same order used in the construction of the
ABox. Then, by P1(eh, v1) in the ABox and the assertions ∃P1.A � A1 we have that
O |= A1(eh). Similarly, we get O |= A2(eh), and hence O |= A(eh). By exploiting
assertions P3(ei, ei+i) in the ABox, and the TBox assertion ∃P3.A � A, we obtain by
induction on h that O |= A(e1). Finally, by P3(v, e1), we obtain that O |= A(v).

For Cases 2 and 3, the proof follows from Case 1 and observations analogous to the
ones for Theorem 6.1. �!

We also state, without a proof the following result, which shows that qualified existential
restrictions on the left-hand side of inclusion assertions together with inverse roles are
sufficient to obtain PTIME-hardness.

Theorem 6.3. Instance checking (and hence ontology satisfiability and query answer-
ing) is PTIME-hard in data complexity for ontologies O = 〈T ,A〉 where A is an ABox,
and T is a TBox of the form:

Cl −→ A | ∃P .A | ∃P−A
Cr −→ A | ∃P
Assertions in T : Cl � Cr .

We now show three cases where the TBox language becomes so expressive that the data
complexity of answering CQs becomes coNP-hard, i.e., as hard as for very expressive
DLs [71].

Theorem 6.4. Answering CQs is coNP-hard in data complexity for ontologies O =
〈T ,A〉 where A is an ABox, and T is a TBox of one of the following forms:

1. Cl → A
Cr → A | A1 ! A2

R → P
Assertions in T : Cl � Cr .



324 D. Calvanese et al.

2. Cl → A | ¬A
Cr → A
Assertions in T : Cl � Cr .

3. Cl → A | ∀P .A
Cr → A
Assertions in T : Cl � Cr .

Proof. In all three cases, the proof is an adaptation of the proof of coNP-hardness of
instance checking for the DL ALE presented in [39]. The proof is based on a reduction
of 2 + 2-CNF unsatisfiability, shown to be coNP-complete in [39], to CQ answering. A
2+2-CNF formula on an alphabet P = {�1, . . . , �m} is a CNF formula F = C1∧· · ·∧
Cn in which each clause Ci = Li

1+ ∨ Li
2+ ∨ ¬Li

1− ∨ ¬Li
2− has exactly four literals,

two positive ones, Li
1+ and Li

2+, and two negative ones, ¬Li
1− and ¬Li

2−, where the
propositional letters Li

1+, Li
2+, Li

1−, and Li
2− are elements of P ∪ {true, false}.

We first consider Case 1. Given a 2 + 2-CNF formula F as above, we associate with
it an ontology OF = 〈T ,AF 〉 and a boolean CQ q as follows. OF has one constant �
for each letter � ∈ P , one constant ci for each clause Ci, plus two constants true and
false for the corresponding propositional constants. The atomic concepts of OF are O,
At, and Af , and the atomic roles are P1, P2, N1, N2. Then, we set

T = { O � At ! Af },
AF = { At(true), Af (false), O(�1), . . . O(�m),

P1(c1, �
1
1+), P2(c1, �

1
2+), N1(c1, �

1
1−), N2(c1, �

1
2−),

· · ·
P1(cn, �n

1+), P2(cn, �n
2+), N1(cn, �n

1−), N2(cn, �n
2−) }, and

q() = P1(c, f1), Af (f1), P2(c, f2), Af (f2), N1(c, t1), At(t1), N2(c, t2), At(t2).

Notice that only the ABox AF depends on the formula F , and that the TBox contains a
single inclusion assertion involving a concept disjunction.

Intuitively, the membership to the extension of Af or At corresponds to the truth val-
ues true and false respectively and checking whether () ∈ cert(q,OF ) (i.e., the query
evaluates to true in OF ) corresponds to checking whether in every truth assignment for
the formula F there exists a clause whose positive literals are interpreted as false , and
whose negative literals are interpreted as true, i.e., a clause that is not satisfied. Note
that the ABox AF contains the assertions At(true) and Af (false) in order to guarantee
that in each model I of OF the constants true and false are respectively in AI

t and AI
f

(and possibly in both).
Now, it remains to prove that the formula F is unsatisfiable if and only if () ∈

cert(q,OF ).
“⇒” Suppose that F is unsatisfiable. Consider a model I of OF (which always

exists since OF is always satisfiable), and let δI be the truth assignment for F such that
δI(�) = true iff �I ∈ AI

t , for every letter � ∈ P (and corresponding constant in OF ).
Since F is unsatisfiable, there exists a clause Ci that is not satisfied by δI , and therefore
δI(Li

1+) = false , δI(Li
2+) = false , δI(Li

1−) = true and δI(Li
2−) = true. It follows

that in I the interpretation of the constants related in AF to ci through the roles P1

and P2 is not in AI
t and, since I satisfies O � At ! Af , it is in AI

f . Similarly, the



Ontologies and Databases: The DL-Lite Approach 325

interpretation of the constants related to ci through the roles N1 and N2 is in AI
t . Thus,

there exists a substitution σ that assigns the variables in q to elements of ΔI in such
a way that σ(q) evaluates to true in I (notice that this holds even if the propositional
constants true or false occur in F ). Therefore, since this argument holds for each model
I of OF , we can conclude that () ∈ cert(q,OF ).

“⇐” Suppose that F is satisfiable, and let δ be a truth assignment satisfying F . Let
Iδ be the interpretation for OF defined as follows:

OIδ = { �Iδ | � occurs in F },
AIδ

t = { �Iδ | δ(�) = true } ∪ {true},
AIδ

f = { �Iδ | δ(�) = false } ∪ {false},
P Iδ = { (aIδ

1 , aIδ
2 ) | P (a1, a2) ∈ AF }, for P ∈ {P1, P2, N1, N2}.

It is easy to see that Iδ is a model of OF . On the other hand, since δ satisfies F , for
every clause ci in F there exists a positive literal �i

+ such that δ(�i
+) = true, or a

negative literal �i
− such that δ(�i

−) = false . It follows that for every constant ci, there
exists either a role (P1 or P2) that relates ci to a constant whose interpretation is in AIδ

t

or there exists a role (N1 or N2) that relates ci to a constant whose interpretation is in
AIδ

f . Since the query q evaluates to true in Iδ only if there exists a constant ci in OF

such that the interpretations of the constants related to ci by roles P1 and P2 are both in
AIδ

f and the interpretations of the constants related to ci by roles N1 and N2 are both in

AIδ
t , it follows that the query q evaluates to false in Iδ and therefore () /∈ cert(q,OF ).
The proofs for Case 2 and Case 3 are obtained by reductions of 2 + 2-CNF unsatis-

fiability to CQ answering analogous to the one for Case 1. More precisely, for Case 2
the ontology OF = 〈T ,AF 〉 has the same constants and the same atomic roles as for
Case 1, and has only the atomic concepts At and Af . Then, TF = {¬At � Af} and
AF is as for Case 1 but without the assertions involving the concept O. The query q is
as for Case 1.

For Case 3, OF has the same constants as for Cases 1 and 2, the same atomic roles
as for Cases 1 and 2 plus an atomic role Pt, and two atomic concepts A and Af . Then,
T = {∀Pt.A � Af} and AF is as for Case 2 but without the assertion At(true), which
is substituted by the assertion Pt(true, a), where a is a new constant not occurring
elsewhere in OF . The query is

q() = P1(c, f1), Af (f1), P2(c, f2), Af (f2),
N1(c, t1), Pt(t1, x1), N2(c, t2), Pt(t2, x2).

The correctness of the above reductions can be proved as done for Case 1. We finally
point out that the intuition behind the above results is that in all three cases it is possible
to require a reasoning by case analysis, caused by set covering assertions. Indeed, in
Case 2 we have explicitly asserted O � At ! Af , while in Case 1 and Case 3, At and
Af , and ∀Pt.A and ∃Pt cover the entire domain, respectively. �!

The results proved in Theorems 6.1, 6.2, 6.3, and 6.4 are summarized in Table 1. Notice
that, while the NLOGSPACE-hardness and PTIME-hardness results in the table hold al-
ready for instance checking (i.e., answering atomic queries), the coNP-hardness results



326 D. Calvanese et al.

Table 1. Data Complexity of query answering for various extensions of DL-LiteA,id

Cl Cr F R Data complexity
of query answering

Proved in

DL-LiteA,id
√ √∗ in AC0 Theorems 5.17, 5.25

A | ∃P .A A − − NLOGSPACE-hard Theorem 6.1, Case 1
A A | ∀P .A − − NLOGSPACE-hard Theorem 6.1, Case 2
A A | ∃P .A

√ − NLOGSPACE-hard Theorem 6.1, Case 3
A | ∃P .A | A1 � A2 A − − PTIME-hard Theorem 6.2, Case 1

A | A1 � A2 A | ∀P .A − − PTIME-hard Theorem 6.2, Case 2
A | A1 � A2 A | ∃P .A

√ − PTIME-hard Theorem 6.2, Case 3
A | ∃P .A | ∃P−.A A | ∃P − − PTIME-hard Theorem 6.3

A A | A1 � A2 − − coNP-hard Theorem 6.4, Case 1
A | ¬A A − − coNP-hard Theorem 6.4, Case 2

A | ∀P .A A − − coNP-hard Theorem 6.4, Case 3

Legenda: A (possibly with subscript) = atomic concept, P = atomic role,
Cl /Cr = left/right-hand side of inclusion assertions, F = functionality assertions allowed,
R = role/relationship inclusions allowed, where ∗ denotes restricted interaction between
functionality and role inclusion, according to Definition 2.1.
The NLOGSPACE and PTIME hardness results hold already for instance checking.

proved in Theorem 6.4 hold for CQ answering, but do not hold for instance checking.
Indeed, as shown in [4], instance checking (and hence ontology satisfiability) stays in
AC0 in data complexity for DL-LiteA extended with arbitrary boolean combinations
(i.e., negation, and disjunction) of concepts, both in the left-hand side and in the right-
hand side of inclusion assertions. [4] shows also that DL-LiteA can be extended with
number restrictions (cf. also Section 2.2) and with the additional role constraints present
in OWL 2 QL that are not already expressible in DL-LiteA, such as reflexivity, irreflex-
ivity, and asymmetry, without losing FOL-rewritability of satisfiability and UCQ query
answering.

Finally, the following result from [25] motivates the locality restriction in identifica-
tion assertions, i.e., that at least one of the paths in an identification assertion must have
length 1. Indeed, if such a restriction is removed, we lose again FOL-rewritability of
reasoning.

Theorem 6.5. Ontology satisfiability (and hence instance checking and query answer-
ing) in DL-LiteA extended with single-path IdCs that are non-local is NLOGSPACE-
hard in data complexity.

Proof. The proof is based again on a reduction of reachability in directed graphs (see
proof of Theorem 6.1) to ontology satisfiability. Let G = 〈V, E〉 be a directed graph,
where V is a set of vertexes and E a set of directed edges, and let s and t be two vertexes
of G. We consider the graph represented through functional relations F (to connect a
vertex to the first element of the chain of its children), N (to connect an element of
the chain to the next), and S (to connect the elements forming the chain to the actual



Ontologies and Databases: The DL-Lite Approach 327

v0

v1 v2 vn

v0

v1 v2 vn

...

...

E E E

F

S S SN N N

Fig. 17. Representation of a graph through the functional relations F , N , S

child vertexes of the graph), and denote with V + the set of vertexes augmented by the
vertexes used in such a representation (cf. Figure 17).

From G and the two vertexes s and t, we define the ontology Oidcs = 〈Tidcs ,AG〉
as follows:

– The alphabet of Tidcs consists of an atomic concept A, that intuitively denotes the
vertexes of two copies of G, of an atomic concept At, and of atomic roles PF , PN ,
PS , and P0. Then

Tidcs = {A � ∃P0, (id At P0)} ∪ {(id ∃P−
0 P−

0 ◦ P−
R ◦ P0) | R ∈ {F, N, S}}.

Notice that Tidcs does not depend on G.
– The ABox AG is defined from the graph G and the two vertexes s and t as follows:

AG = {PR(a1, a2), PR(a′
1, a

′
2) | (a1, a2) ∈ R, for R ∈ {F, N, S}} ∪

{A(a), A(a′) | a ∈ V +} ∪ {P0(s, ainit ), P0(s′, ainit ), At(t), At(t′)}.

In other words, we introduce for each node a of the graph G two constants a and
a′ in O, and we encode in AG two copies of (the representation of) G. In addition,
we include in AG the assertions P0(s, ainit ) and P0(s′, ainit ) connecting the two
copies of the start vertex s to an additional constant ainit that does not correspond
to any vertex of (the representation of) G. We also include the assertions At(t) and
At(t′), which are exploited to encode the reachability test (cf. Figure 18).

It can be shown by induction on the length of paths from s, that t is reachable from
s in G iff Oidcs is unsatisfiable. Intuitively, the TBox enforces that each individual
contributing to the encoding of the two copies of G has an outgoing P0 edge. Moreover,
the path-identification assertions enforce that each object that is in the range of such a
P0 edge is identified by a suitable path. Hence, starting from ainit , corresponding pairs
of objects (in the range of P0) in the two copies of the graph that are reachable from s
and s′, respectively, will be unified with each other. If t is reachable from s, also the two
objects connected to t and t′ via P0 will be unified. Hence by the identification assertion
(id At P0), we have that t and t′ are forced to be equal, which makes the ontology
unsatisfiable (due to the unique name assumption). Notice that, for the reduction to
work, we needed to make sure that each vertex has at most one outgoing edge, hence
we have preliminarily encoded the edge relation E using the functional relations F , N ,
and S. �!



328 D. Calvanese et al.

s

G

... ...

G'
v1

v2

vk

v1'

v2'

vk'

=

P0P0
ainit

P0P0

P0P0

P0P0

P0P0

R

R

R

R

R

R

R

R

At At

s'

t t'?

Fig. 18. Structure of a potential model of the ontology Oidcs used in the proof of Theorem 6.5

6.2 Changing the DL-Lite Semantics

Concerning the possibility of strengthening the semantics, we analyze the consequences
of removing the unique name assumption (UNA), i.e., the assumption that, in every
interpretation of an ontology, two distinct constants denote two different domain ele-
ments. Unfortunately, this leads instance checking (and satisfiability) out of AC0, and
therefore instance checking and query answering are not FOL-rewritable anymore.

Theorem 6.6. Let O = 〈T ,A〉 be a DL-LiteA,id ontology interpreted without the
unique name assumption. Then instance checking with respect to O is NLOGSPACE-
hard in the size of A.

Proof. The proof is based again on a LOGSPACE reduction of reachability in directed
graphs to instance checking. Let G = 〈V, E〉 be a directed graph and s and t two
vertexes of G. As in the proof of Theorem 6.5, we consider G represented through
first-child and next-sibling functional relations F , N , S (cf. Figure 17).

From G and the two vertexes s and t, we define an ontology Ouna = 〈Tuna ,AG〉 as
follows:

– The alphabet of Tuna consists of an atomic concept A and of atomic roles PF , PN ,
PS , and P0. The TBox itself imposes only that all roles are functional, i.e.,

Tuna = {(funct P0)} ∪ {(funct PR) | R ∈ {F, N, S}}.

Notice that Tuna does not depend on G.
– The ABox AG is defined from the graph G and the two vertexes s and t as follows:

AG = {PR(a1, a2), PR(a′
1, a

′
2) | (a1, a2) ∈ R, for R ∈ {F, N, S}} ∪

{A(t), P0(ainit , s), P0(ainit , s
′)}

In other words, we introduce for each node a of the graph G two constants a and
a′ in O, and we encode in AG two copies of (the representation of) G. In addition,
we include in AG the facts P0(ainit , s), P0(ainit , s

′), and A(t), where ainit is an
additional constant that does not correspond to any vertex of (the representation of)
G (cf. Figure 19).



Ontologies and Databases: The DL-Lite Approach 329

t
s G

t'
s' G'

P0

P0

ainit

A

Fig. 19. Structure of the ABox AG used in the proof of Theorem 6.6

It is now possible to prove that t is reachable from s in G if and only if Ouna |=
A(t′). Indeed, it is easy to verify that the latter holds if and only if for every model I
of Ouna , the constants t and t′ are interpreted as the same object, i.e., tI = t′I . This is
the case if and only if tI and t′I are forced to be equal by the functionality of the roles
P0, PF , PN , and PS . By exploiting the structure of the ABox AG, one can prove by
induction on the length of paths from s, that such an equality is enforced if and only if
t is reachable from s in G. �!

7 Accessing Data through DL-LiteA,id Ontologies

The discussion presented in the previous sections on DL-LiteA,id ontologies assumed a
relational representation for the ABox assertions. This is a reasonable assumption only
in those cases where the ontology is managed by an ad hoc system, and is built from
scratch for the specific application.

We argue that this is not a typical scenario in current applications (e.g., in Enter-
prise Application Integration). Indeed, we believe that one of the most interesting real-
world usages of ontologies is what we have called ontology-based data access (OBDA).
OBDA is the problem of accessing a set of existing data sources by means of a concep-
tual representation expressed in terms of an ontology. In such a scenario, the TBox of
the ontology provides a shared, uniform, abstract view of the intensional level of the ap-
plication domain, whereas the information about the extensional level (the instances of
the ontology) resides in the data sources, which are developed independently of the con-
ceptual layer, and are managed by traditional technologies (such as relational database
technology). In other words, the ABox of the ontology does not exist as an independent
syntactic object. Rather, the instances of concepts and roles in the ontology are simply
an abstract and virtual representation of some real data stored in existing data sources.
Therefore, the problem arises of establishing sound mechanisms for linking existing
data to the instances of the concepts and the roles in the ontology.

In this section, we present a solution that has been proposed recently for this prob-
lem [75], based on a mapping mechanism that enables a designer to link existing data
sources to an ontology expressed in DL-LiteA,id, and by illustrating a formal framework
capturing the notion of DL-LiteA,id ontology with mappings. In the following, we as-
sume that the data sources are expressed in terms of the relational data model. In other



330 D. Calvanese et al.

words, all the technical development presented in the rest of this section assumes that
the set of sources to be linked to the ontology constitutes a single relational database.
Note that this is a realistic assumption, since many data federation tools are now avail-
able that are able to wrap a set of heterogeneous sources and present them as a single
relational database.

Before delving into the details of the method, a preliminary discussion on the notori-
ous impedance mismatch problem between values (data) and objects is in order [66].
When mapping relational data sources to ontologies, one should take into account
that sources store values, whereas instances of concepts are objects, where each object
should be denoted by an ad hoc identifier (e.g., a constant in logic), not to be confused
with any data item. For example, if a data source stores data about persons, it is likely
that values for social security numbers, names, etc. will appear in the sources. However,
at the conceptual level, the ontology will represent persons in terms of a concept, and
instances of such concepts will be denoted by object constants.

One could argue that data sources might, in some cases, store directly object identi-
fiers. However, in order to use such object identifiers at the conceptual level, one should
make sure that such identifiers have been chosen on the basis of an “agreement” among
the sources on the form used to represent objects. This is something occurring very
rarely in practice. For all the above reasons, in DL-LiteA,id, we take a radical approach.
To face the impedance mismatch problem, and to tackle the possible lack of an a-priori
agreement on identification mechanisms at the sources, we keep data values appear-
ing in the sources separate from object identifiers at the conceptual level. In particular,
we consider object identifiers formed by (logic) terms built out of data values stored
at the sources. The way by which these terms will be defined starting from the data
at the sources will be specified through suitable mapping assertions, to be described
below. Note that this idea traces back to the work done in deductive object-oriented
databases [54].

7.1 Linking Relational Data to Ontologies

To realize the above described idea from a technical point of view, we specialize the
alphabets of object constants in a particular way, which we now describe in detail.

We remind the reader that ΓV is the alphabet of value constants in DL-LiteA,id. We
assume that data appearing at the sources are denoted by constants in ΓV

15, and we
introduce a new alphabet Λ of function symbols, where each function symbol has an
associated arity, specifying the number of arguments it accepts. On the basis of ΓV and
Λ, we inductively define the set τ(Λ, ΓV ) of all object terms (or simply, terms) of the
form f(d1, . . . , dn) such that

– f ∈ Λ,
– the arity of f is n > 0, and
– d1, . . . , dn ∈ ΓV .

15 We could also introduce suitable conversion functions in order to translate values stored at the
sources into value constants in ΓV , but, for the sake of simplicity, we do not deal with this
aspect here.



Ontologies and Databases: The DL-Lite Approach 331

We finally sanction that the set ΓO of symbols used in DL-LiteA,id for denoting ob-
jects actually coincides with τ(Λ, ΓV ). In other words, we use the terms built from ΓV

using the function symbols in Λ for denoting the instances of concepts in ontologies.
All the notions defined for our logics remain unchanged. In particular, an interpreta-

tion I = (ΔI , ·I) still assigns a different element of ΔI to every element of Γ , and,
given that ΓO coincides with τ(Λ, ΓV ), this implies that different terms in τ(Λ, ΓV ) are
interpreted as different objects in ΔI

O , i.e., we enforce the unique name assumption on
terms. Formally, this means that I is such that

– for each a ∈ ΓV , aI ∈ ΔI
V ,

– for each a ∈ ΓO, i.e., for each a ∈ τ(Λ, ΓV ), aI ∈ ΔI
O ,

– for each a1, a2 ∈ Γ , a1 �= a2 implies aI
1 �= aI

2 .

The syntax and the semantics of a DL-LiteA TBox, ABox, and UCQ, introduced in Sec-
tion 2, do not need to be modified. In particular, from the point of view of the semantics
of queries, the notion of certain answers is exactly the same as the one presented in
Section 2.4.

We can now turn our attention to the problem of specifying mapping assertions link-
ing the data at the sources to the objects in the ontology. As mentioned, we assume that
the data sources are wrapped into a relational database D (constituted by the relational
schema, and the extensions of the relations), so that we can query such data by using
SQL, and that all value constants stored in D belong to ΓV Also, the database D is
independent from the ontology; in other words, our aim is to link to the ontology a col-
lection of data that exist autonomously, and have not been necessarily structured with
the purpose of storing the ontology instances.

In the following, we denote with ans(ϕ,D) the set of tuples (of the arity of ϕ) of
value constants returned as the result of the evaluation of the SQL query ϕ over the
database D.

With these assumptions in place, to actually realize the link between the data and the
ontology, we adapt principles and techniques from the literature on data integration [63].
In particular, we resort to mappings as described in the following definition. We make
use of the notion of variable term, which is a term of the same form as the object
terms introduced above, with the difference that variables may appear as arguments of
the function. In other words, a variable term has the form f(z), where f is a function
symbol in Λ of arity m, and z denotes an m-tuple of variables or value constants.

Definition 7.1. A DL-LiteA,id ontology with mappings is a triple OM = 〈T ,M,D〉,
where:

– T is a DL-LiteA,id TBox;
– D is a relational database;
– M is a set of mapping assertions, partitioned into two sets, Mt and Ma, where:

• Mt is a set of so-called typing mapping assertions, each one of the form

Φ � Ti,

where Φ is a query of arity 1 over D, denoting the projection of one relation
over one of its columns, and Ti is one of the DL-LiteA,id data types;



332 D. Calvanese et al.

• Ma is a set of data-to-object mapping assertions (or simply mapping asser-
tions), each one of the form

Φ(x) � Ψ(y, t),

where
∗ x is a non-empty set of variables,
∗ y ⊆ x,
∗ t is a set of variable terms of the form f(z), with f ∈ Λ and z ⊆ x,
∗ Φ(x) is an arbitrary SQL query over D, with x as output variables, and
∗ Ψ(y, t) is a CQ over T of arity n > 0 without non-distinguished variables,

whose atoms are over the variables y and the variable terms t.

We briefly comment on the assertions in M as defined above. Typing mapping asser-
tions are used to assign appropriate types to constants in the relations of D. Basically,
these assertions are used for interpreting the values stored in the database in terms of the
types used in the ontology, and their usefulness is evident in all cases where the types
in the data sources do not directly correspond to the types used in the ontology. Data-
to-object mapping assertions, on the other hand, are used to map data in the database to
instances of concepts, roles, and attributes in the ontology.

We next give an example of DL-LiteA,id ontology with mappings.

Example 7.2. Let Dpr be the database constituted by a set of relations with the follow-
ing signature:

D1[SSN:STRING, PROJ:STRING, D:DATE],
D2[SSN:STRING, NAME:STRING],
D3[CODE:STRING, NAME:STRING],
D4[CODE:STRING, SSN:STRING]

We assume that, from the analysis of the above data sources, the following meaning of
the above relations has been derived.

– Relation D1 stores tuples (s, p, d), where s and p are strings and d is a date, such
that s is the social security number of a temporary employee, p is the name of the
project she works for (different projects have different names), and d is the ending
date of the employment.

– Relation D2 stores tuples (s, n) of strings consisting of the social security number
s of an employee and her name n.

– Relation D3 stores tuples (c, n) of strings consisting of the code c of a manager and
her name n.

– Finally, relation D4 relates managers’ code with their social security number.
A possible extension for the above relations is given by the following sets of tuples:

D1 = {(20903, ”Tones”,25/03/09)}
D2 = {(20903, ”Rossi”), (55577, ”White”)}
D3 = {(”X11”, ”White”), (”X12”, ”Black”)}
D4 = {(”X11”,29767)}



Ontologies and Databases: The DL-Lite Approach 333

Manager 
 Employee
TempEmp 
 Employee
Employee 
 Person
Employee 
 ∃WORKS-FOR

∃WORKS-FOR− 
 Project
Person 
 δ(persName)

ρ(persName) 
 xsd:string
(funct persName)

Project 
 δ(projName)
ρ(projName) 
 xsd:string

(funct projName)
TempEmp 
 δ(until)
δ(until) 
 ∃WORKS-FOR
ρ(until) 
 xsd:date

(funct until)
Manager 
 ¬δ(until)

Fig. 20. The DL-LiteA,id TBox Tpr for the projects example

mt
1 : SELECT SSN FROM D1 � xsd:string

mt
2 : SELECT SSN FROM D2 � xsd:string

mt
3 : SELECT CODE FROM D3 � xsd:string

mt
4 : SELECT CODE FROM D4 � xsd:string

mt
5 : SELECT PROJ FROM D1 � xsd:string

mt
6 : SELECT NAME FROM D2 � xsd:string

mt
7 : SELECT NAME FROM D3 � xsd:string

mt
8 : SELECT SSN FROM D4 � xsd:string

mt
9 : SELECT D FROM D1 � xsd:date

Fig. 21. The typing mapping assertions Mt
pr for the projects example

Consider now the TBox Tpr shown in Figure 20, which models information about
employees and projects they work for. Specifically, the assertions in Tpr state the fol-
lowing. Managers and temporary employees are two kinds of employees, and employ-
ees are persons. Each employee works for at least one project, whereas each person
and each project has a unique name. Both person names and project names are strings,
whereas the attribute until associates objects with a unique date. In particular, any
temporary employee has an associated date (which indicates the expiration date of her
contract), and everyone having a value for the attribute until participates in the role
WORKS-FOR. Finally, Tpr specifies that a manager does not have any value for the at-
tribute until, meaning that a manager has a permanent position. Note that this implies
that no employee is simultaneously a temporary employee and a manager.

Now, let Λ = {pers, proj, mgr} be a set of function symbols, all of arity 1. Consider
the DL-LiteA,id ontology with mappings OMpr = 〈Tpr ,Mpr ,Dpr 〉, where Mpr =
Mt

pr ∪Ma
pr , with Mt

pr shown in Figure 21, and Ma
pr shown in Figure 22. We briefly

comment on the data-to-ontology mapping assertions in Ma
pr :

– ma
1 maps every tuple (s, p, d) in D1 to a temporary employee pers(s), working

until d for project proj(p) with name p.
– ma

2 maps every tuple (s, n) in D2 to an employee pers(s) with name n.
– ma

3 and ma
4 tell us how to map data in D3 and D4 to managers and their name in the

ontology. Note that, if D4 provides the social security number s of a manager whose



334 D. Calvanese et al.

code is in D3, then we use the social security number to form the corresponding
object term, i.e., the object term has the form pers(s). Instead, if D4 does not
provide this information, then we use an object term of the form mgr(c), where c
is a code, to denote the corresponding instance of the concept Manager.

7.2 Semantics of Ontologies with Mappings

In order to define the semantics of a DL-LiteA,id ontology with mappings, we need to
define when an interpretation satisfies an assertion in M w.r.t. a database D. To this
end, we make use of the notion of ground instance of a formula. Let Ψ(x) be a formula
over a DL-LiteA,id TBox with n distinguished variables x, and let v be a tuple of value
constants of arity n. Then the ground instance Ψ [x/v] of Ψ(x) is the formula obtained
from Ψ(x) by substituting every occurrence of xi with vi, for i ∈ {1, . . . , n}. We are
now ready to define when an interpretation satisfies a mapping assertion.

In the following, we denote with ans(ϕ,D) the set of tuples (of the arity of ϕ) of
value constants returned as the result of the evaluation of the SQL query ϕ over the
database D.

Definition 7.3. Let OM = 〈T ,M,D〉, with M = Mt ∪Ma, be a DL-LiteA,id ontol-
ogy with mappings and I an interpretation of OM.

– Let mt be an assertion in Mt of the form Φ � Ti. We say that I satisfies mt w.r.t.
D, if for every v ∈ ans(Φ,D), we have that v ∈ val(Ti).

– Let ma be an assertion in Ma of the form Φ(x) � Ψ(y, t), where x, y, and t are
as in Definition 7.1. We say that I satisfies ma w.r.t. D, if for every tuple of values
v such that v ∈ ans(Φ,D), and for every ground atom X in Ψ [x/v], we have that:
• if X has the form A(s), then sI ∈ AI ;
• if X has the form F (s), then sI ∈ F I ;
• if X has the form P (s1, s2), then (sI1 , sI2 ) ∈ P I;
• if X has the form U(s1, s2), then (sI1 , sI2 ) ∈ UI .

ma
1 : SELECT SSN, PROJ, D

FROM D1

� TempEmp(pers(SSN)),
WORKS-FOR(pers(SSN), proj(PROJ)),
projName(proj(PROJ), PROJ),
until(pers(SSN), D)

ma
2 : SELECT SSN, NAME

FROM D2

� Employee(pers(SSN)),
persName(pers(SSN), NAME)

ma
3 : SELECT SSN, NAME

FROM D3, D4
WHERE D3.CODE = D4.CODE

� Manager(pers(SSN)),
persName(pers(SSN), NAME)

ma
4 : SELECT CODE, NAME

FROM D3
WHERE CODE NOT IN
(SELECT CODE FROM D4)

� Manager(mgr(CODE)),
persName(mgr(CODE), NAME)

Fig. 22. The object-to-data mapping assertions Ma
pr for the projects example



Ontologies and Databases: The DL-Lite Approach 335

We say that I satisfies M w.r.t. D, if it satisfies every assertion in M w.r.t. D. We say
that I is a model of OM if I is a model of T and satisfies M w.r.t. D. Finally, we
denote with Mod(OM) the set of models of OM, and we say that OM is satisfiable if
Mod(OM) �= ∅.

Example 7.4. One can easily verify that the ontology with mappings OMpr of Exam-
ple 7.2 is satisfiable.

Note that the mapping mechanism described above nicely deals with the fact that the
database D and the ontology OM are based on different semantic assumptions. Indeed,
the semantics of D follows the so-called “closed world assumption” [79], which intu-
itively sanctions that every fact that is not explicitly stored in the database is false. On
the contrary, the semantics of OM is open, in the sense that nothing is assumed about
the facts that do not appear explicitly in the ABox. In a mapping assertion of the form
Φ � Ψ , the closed semantics of D is taken into account by the fact that Φ is evaluated
as a standard relational query over the database D, while the open semantics of OM
is reflected by the fact that mappings assertions are interpreted as “material implica-
tion” in logic. It is well known that a material implication of the form Φ � Ψ imposes
that every tuple of Φ contributes to the answers to Ψ , leaving open the possibility of
additional tuples satisfying Ψ .

Let q denote a UCQ expressed over the TBox T of OM. We call certain answers to
q over OM, denoted cert(q,OM), the set of n-tuples of terms in Γ , defined as

cert(q,OM) = {t | tI ∈ qI , for all I ∈ Mod(OM)}.

Given an ontology with mappings and a query q over its TBox, query answering is the
problem of computing the certain answers to q.

7.3 Satisfiability and Query Answering for Ontologies with Mappings

Our goal is to illustrate a method for checking satisfiability and for query answering
for DL-LiteA,id ontologies with mappings. We will give here just an overview of the
method, concentrating on query answering, and refer to [75] for more details.

The simplest way to tackle reasoning over a DL-LiteA,id ontology with mappings
is to use the mappings to produce an actual ABox, and then reason on the ontology
constituted by the ABox and the original TBox by applying the techniques described
in Sections 4 and 5. We call such an approach “bottom-up”. However, the bottom-up
approach requires to actually build the ABox starting from the data at the sources, thus
somehow duplicating the information already present in the data sources. To avoid this
redundancy, we propose an alternative approach, called “top-down”, which essentially
keeps the ABox virtual.

We sketch the main ideas of both approaches below. As said, we refer in particular to
query answering, but similar considerations hold for satisfiability checking too. Before
delving into the discussion, we define the notions of split version of an ontology and of
virtual ABox, which will be useful in the sequel.

We first show how to compute the split version of an ontology with mappings
OM = 〈T ,M,D〉, which has a particularly “friendly form”. Specifically, we denote
with split(M) a new set of mapping assertions, obtained from M as follows:



336 D. Calvanese et al.

ma
11 : SELECT SSN, PROJ, D

FROM D1

� TempEmp(pers(SSN))

ma
12 : SELECT SSN, PROJ, D

FROM D1

� WORKS-FOR(pers(SSN), proj(PROJ))

ma
13 : SELECT SSN, PROJ, D

FROM D1

� projName(proj(PROJ), PROJ)

ma
14 : SELECT SSN, PROJ, D

FROM D1

� until(pers(SSN), D)

ma
21 : SELECT SSN, NAME

FROM D2

� Employee(pers(SSN))

ma
22 : SELECT SSN, NAME

FROM D2

� persName(pers(SSN), NAME)

ma
31 : SELECT SSN, NAME

FROM D3, D4
WHERE D3.CODE = D4.CODE

� Manager(pers(SSN))

ma
32 : SELECT SSN, NAME

FROM D3, D4
WHERE D3.CODE = D4.CODE

� persName(pers(SSN), NAME)

ma
41 : SELECT CODE, NAME

FROM D3
WHERE CODE NOT IN
(SELECT CODE FROM D4)

� Manager(mgr(CODE))

ma
42 : SELECT CODE, NAME

FROM D3
WHERE CODE NOT IN
(SELECT CODE FROM D4)

� persName(mgr(CODE), NAME)

Fig. 23. The split version of the object-to-data mapping assertions Ma
pr for the projects example

(1) split(M) contains all typing assertions in M.
(2) split(M) contains one mapping assertion Φ′ � X , for each mapping assertion

Φ � Ψ ∈ M and for each atom X ∈ Ψ , where Φ′ is the projection of Φ over the
variables occurring in X .

We denote with split(OM) the ontology 〈T , split(M),D〉.

Example 7.5. Consider the ontology with mappings OMpr = 〈Tpr ,Mpr ,Dpr 〉 of
Example 7.2. By splitting the mappings as described above, we obtain the ontology
split(OMpr ) = 〈Tpr , split(Mpr ),Dpr 〉, where split(Mpr ) contains all typing asser-
tions in Mpr and the split mapping assertions shown in Figure 23.

The relationship between an ontology with mappings and its split version is character-
ized by the following theorem.

Proposition 7.6. Let OM = 〈T ,M,D〉 be a DL-LiteA,id ontology with mappings.
Then, we have that

Mod(split(OM)) = Mod(OM).

Proof. The result follows straightforwardly from the syntax and the semantics of the
mappings. �!

This result essentially tells us that every ontology with mappings is logically equivalent
to the corresponding split version. Therefore, given an arbitrary DL-LiteA,id ontology



Ontologies and Databases: The DL-Lite Approach 337

with mappings, we can always reduce it to its split version. Moreover, such a reduction
can be computed in LOGSPACE in the size of the mappings and does not depend on the
size of the data. Therefore, in the following, we will to deal only with split versions of
DL-LiteA,id ontologies with mappings.

In order to express the semantics of ontologies with mappings in terms of the se-
mantics of conventional ontologies, we introduce now the notion of virtual ABox. In-
tuitively, given a DL-LiteA,id ontology with mappings OM = 〈T ,M,D〉, the virtual
ABox corresponding to OM is the ABox whose assertions are computed by “applying”
the mapping assertions in M starting from the data in D. Note that in our method this
ABox is “virtual”, in the sense that it is not explicitly built.

Definition 7.7. Let OM = 〈T ,M,D〉 be a DL-LiteA,id ontology with mappings, and
let m = Φ(x) � X(y, t) be a (split) mapping assertion in M. The virtual ABox
generated by m from D is the set of membership assertions

A(m,D) = {X [x/v] | v ∈ ans(Φ,D)}.

Moreover, the virtual ABox for OM, denoted A(M,D), is the set of membership as-
sertions

A(M,D) =
⋃

m∈M
A(m,D).

Notice that, in the above definition, v is an n-tuple of constants of ΓV , where n is the
arity of Φ, and X [x/v] denotes the ground atom obtained from X(x) by substituting
the n-tuple of variables x with v. Also, A(M,D) is an ABox over the constants Γ =
ΓV ∪ τ(Λ, Γ ).

Example 7.8. Let split(OMpr ) be the DL-LiteA,id ontology with split mappings of Ex-
ample 7.5. Consider in particular the mappings ma

21 and ma
22 and suppose we have

D2 = {(20903, ”Rossi”), (55577, ”White”)} in the database D. Then, the sets of
assertions A(ma

21,D) and A(ma
22,D) are as follows:

A(ma
21,D) = { Employee(pers(20903)), Employee(pers(55577)) }

A(ma
22,D) = { persName(pers(20903), ”Rossi”),

persName(pers(55577), ”White”) }

By proceeding in the same way for each mapping assertion in split(Mpr ), we easily
obtain the whole virtual ABox A(Mpr ,Dpr ) for split(OMpr ), and hence for OMpr .

The following result, which follows easily from the definitions, establishes the relation-
ship between the semantics of DL-LiteA,id ontologies with mappings and the semantics
of DL-LiteA,id ontologies by resorting to virtual ABoxes:

Proposition 7.9. Let OM = 〈T ,M,D〉 be a DL-LiteA,id ontology with mappings.
Then we have that

Mod(OM) = Mod(〈T ,A(M,D)〉).



338 D. Calvanese et al.

Notice that, for convenience, we have defined A(M,D) for the case where the map-
pings in M are split. However, from Proposition 7.6, we also obtain that, for an ontol-
ogy OM = 〈T ,M,D〉 with non-split mapping assertions, we have that

Mod(〈T ,M,D〉) = Mod(〈T , split(M),D〉) = Mod(〈T ,A(split(M),D)〉).

7.4 Approaches for Query Answering over Ontologies with Mappings

We discuss now in more detail both the bottom-up and the top-down approach for query
answering. Proposition 7.9 above suggests an obvious, and “naive”, bottom-up algo-
rithm to answer queries over a satisfiable DL-LiteA,id ontology OM = 〈T ,M,D〉 with
mappings:

1. Materialize the virtual ABox for OM, i.e., compute A(M,D).
2. Apply to the DL-LiteA,id ontology O = 〈T ,A(M,D)〉, the query answering algo-

rithm described in Section 5.

Unfortunately, this approach has the drawback that the resulting algorithm is not any-
more AC0 (or even LOGSPACE) in the size of the database, since it requires the gen-
eration and storage of the whole virtual ABox, which in general is polynomial in the
size of the database. Moreover, since the database is independent of the ontology, it
may happen that, during the lifetime of the ontology with mappings, the data it con-
tains are modified. This would clearly require to set up a mechanism for keeping the
virtual ABox up-to-date with respect to the database evolution, similarly to what hap-
pens in data warehousing. This is the reason why such a bottom-up approach is only of
theoretical interest, but not efficiently realizable in practice.

Hence, we propose a different approach, called “top-down”, which uses an algorithm
that avoids materializing the virtual ABox, but, rather, takes into account the mapping
specification on-the-fly, during reasoning. In this way, we can both keep the computa-
tional complexity of the algorithm low, which turns out to be as the one of the query
answering algorithm for ontologies without mappings (i.e., in AC0), and avoid any fur-
ther procedure for data refreshment. We present an overview of our top-down approach
to query answering.

Let OM = 〈T ,M,D〉 be a DL-LiteA,id ontology with split mappings, and let q be a
UCQ 16 over OM. According to the top-down approach, the certain answers to q over
OM are computed by performing the following steps:

1. Reformulation. In this step, we compute the perfect reformulation q1 =
PerfectRefIdC(q, T ) of q, according to the technique presented in Section 5. The
query q1 is a UCQ satisfying the following property: the certain answers to q with

16 Notice that, although we do not consider query answering for UCQs with inequalities, in gen-
eral we would need to consider also the case where q may contain inequalities. Indeed, such
inequalities may result from the queries that encode the violation of a functionality or an
identification assertion, and whose evaluation is required to check the satisfiability of OM,
cf. Section 5.6. For simplicity we do not consider inequalities here, but they can be dealt with
by replacing them with a suitable predicate, which in the end gets translated into an SQL
inequality check, see [75] for more details.



Ontologies and Databases: The DL-Lite Approach 339

respect to OM coincide with the set of tuples computed by evaluating q1 over
DB(A(M,D))17, i.e., the database representing A(M,D).

2. Filtering. In this step we take care of a particular problem that the CQs in q1 might
have. Specifically, such a CQ is called ill-typed if it has at least one join variable x
appearing in two incompatible positions in the query, i.e., such that the TBox T of
the ontology logically implies that x is both of type Ti, and of type Tj , with i �= j
(we remind that in DL-LiteA,id, data types are pairwise disjoint). The purpose of the
filtering step is to remove from the query q1 all the ill-typed CQs. Intuitively, such a
step is needed because the query q1 has to be unfolded and then evaluated over the
source database D (cf. the next two steps of the algorithm). These last two steps,
performed for an ill-typed CQ might produce incorrect results. Let q2 be the UCQ
produced as result of this step.

3. Unfolding. Instead of materializing A(M,D) and evaluating q2 over
DB(A(M,D)) (as in the bottom-up approach), we “unfold” q2 according to
M, i.e., we compute a new query q3, which is an SQL query over the source
relations. As shown in detail in [75], and illustrated briefly below, this computation
is done by using logic programming techniques. It allows us to get rid of M, in
the sense that the set of tuples computed by evaluating the SQL query q3 over
the database D coincides with the set of tuples computed by evaluating q2 over
DB(A(M,D)).

4. Evaluation. The evaluation step consists simply in delegating the evaluation of the
SQL query q3, produced by the unfolding step, over the database D to the DBMS
managing such a database. Formally, such an evaluation returns ans(q3 ,D), i.e.,
the set of tuples obtained from the evaluation of q3 over D.

The unfolding step for q2 can be carried out as follows:

(3a) We introduce for each non-split mapping assertion mi = Φi(x) � Ψi(y, t) in M
an auxiliary predicate Aux i of the same arity as Φi. Intuitively, Aux i denotes the
result of the evaluation over D of the SQL query Φi in the left-hand side of the
mapping.

(3b) We introduce for each atom X(y, t) in Ψi(y, t), a logic programming clause

X(y, t) ← Aux i(x).

Notice that, in general, the atom X(y, t) in the mapping will contain not only
variables but also variable terms, and hence such a clause will contain function
symbols in its head.

(3c) From each CQ q′ in q2, we obtain a set of CQs expressed over the Aux i predicates
by (i) finding, in all possible ways, the most general unifier ϑ between all atoms
in q′ and the heads X(y, t) of the clauses introduced in the previous step, (ii) re-
placing in q′ each head of a clause with the corresponding body, and (iii) applying
to the resulting CQ the most general unifier ϑ.

17 The function DB(·) is defined in Section 2.6.



340 D. Calvanese et al.

(3d) From the resulting UCQ over the Aux i predicates, we obtain an SQL query that
is a union of select-project-join queries, by substituting each Aux i predicate with
the corresponding SQL query Φi.

We refer to [75] for more details, and illustrate the steps above by means of an example.

Example 7.10. Consider the ontology OMpr of Example 7.2, and assume it is satisfi-
able. The mapping assertions in Mpr of OMpr can be encoded in the following portion
of a logic program, where for each mapping assertion ma

i in Figure 22, we have intro-
duced an auxiliary predicate Aux i:

TempEmp(pers(s)) ← Aux1(s, p, d)
WORKS-FOR(pers(s), proj(p)) ← Aux1(s, p, d)

projName(proj(p), p) ← Aux1(s, p, d)
until(pers(s), d) ← Aux1(s, p, d)

Employee(pers(s)) ← Aux2(s, n)
persName(pers(s), n) ← Aux2(s, n)

Manager(pers(s)) ← Aux3(s, n)
persName(pers(s), n) ← Aux3(s, n)

Manager(mgr(c)) ← Aux4(c, n)
persName(mgr(c), n) ← Aux4(c, n)

Now, consider the query over OM

q(x, n) ← WORKS-FOR(x, y), persName(x, n).

Its reformulation q1 = PerfectRef(q, T ), computed according to the technique pre-
sented in Section 5.2, is the UCQ

q1(x, n) ← WORKS-FOR(x, y), persName(x, n)
q1(x, n) ← until(x, y), persName(x, n)
q1(x, n) ← TempEmp(x), persName(x, n)
q1(x, n) ← Employee(x), persName(x, n)
q1(x, n) ← Manager(x), persName(x, n)

One can verify that in this case none of the CQs of q1 will be removed by the filtering
step, hence q2 = q1. In order to compute the unfolding of q2, we unify each of its atoms
in all possible ways with the left-hand side of the mapping assertions in split(Mpr ),
i.e., with the heads of the clauses introduced in Step (3b) above, and we obtain the
following UCQ q′2:

q′2(pers(s), n) ← Aux1(s, p, d), Aux2(s, n)
q′2(pers(s), n) ← Aux1(s, p, d), Aux3(s, n)
q′2(pers(s), n) ← Aux2(s, n), Aux2(s, n)
q′2(pers(s), n) ← Aux2(s, n), Aux3(s, n)
q′2(pers(s), n) ← Aux3(s, n), Aux2(s, n)
q′2(pers(s), n) ← Aux3(s, n), Aux3(s, n)
q′2(mgr(c), n) ← Aux4(c, n), Aux4(c, n)



Ontologies and Databases: The DL-Lite Approach 341

SELECT CONCAT(CONCAT(’pers (’,D1.SSN),’)’), D2.NAME
FROM D1, D2
WHERE D1.SSN = D2.SSN
UNION

SELECT CONCAT(CONCAT(’pers (’,D1.SSN),’)’), D3.NAME
FROM D1, D3, D4
WHERE D1.SSN = D4.SSN AND D3.CODE = D4.CODE
UNION

SELECT CONCAT(CONCAT(’pers (’,D2.SSN),’)’), D2.NAME
FROM D2
UNION

SELECT CONCAT(CONCAT(’pers (’,D2.SSN),’)’), D3.NAME
FROM D2, D3, D4
WHERE D2.SSN = D4.SSN AND D3.CODE = D4.CODE
UNION

SELECT CONCAT(CONCAT(’pers (’,D2.SSN),’)’), D3.NAME
FROM D2, D3, D4
WHERE D2.SSN = D4.SSN AND D3.CODE = D4.CODE
UNION

SELECT CONCAT(CONCAT(’pers (’,D3.SSN),’)’), D3.NAME
FROM D3, D4
WHERE D3.CODE = D4.CODE
UNION

SELECT CONCAT(CONCAT(’mgr (’,D3.CODE),’)’), D3.NAME
FROM D3
WHERE D3.CODE NOT IN (SELECT D4.CODE FROM D4)

Fig. 24. The SQL query for the projects example produced by the query answering algorithm

Notice that each of the clauses in q′2 is actually generated in many different ways from
q1 and the clauses above.

From q′2, it is now possible to derive the SQL query q3 shown in Figure 24, where
in the derivation we have assumed that duplicate atoms in a clause are eliminated. The
SQL query q3 can be directly issued over the database D to produce the requested
certain answers. �!

It is also possible to show that the above procedure can also be used to check satisfi-
ability of an ontology with mappings, by computing the answer to the boolean query
that encodes the violation of the constraints in the TBox, and checking whether such an
answer is empty.

Let the algorithms for satisfiability and query answering over a DL-LiteA,id

ontology with mappings resulting from the above described method be called
SatisfiableDB(OM) and AnswerDB(q,OM), respectively. A complexity analysis of
the various steps of these algorithms, allows us to establish the following result, for
whose proof we refer to [75].

Theorem 7.11. Given a DL-LiteA,id ontology with mappings OM = 〈T ,M,D〉, and
a UCQ q over OM, both SatisfiableDB(OM) and AnswerDB(q,OM) run in AC0 in
the size of D (data complexity), in polynomial time in the size of M, and in polynomial
time in the size of T . Moreover, AnswerDB(q,OM) runs in exponential time in the size
of Q.



342 D. Calvanese et al.

7.5 Extending the Mapping Formalism

We investigate now the impact of extending the language used to express the mapping
on the computational complexity of query answering. In particular, we consider so-
called GLAV mappings [63], i.e., assertions that relate CQs over the database to CQs
over the ontology. Such assertions are therefore an extension of both the GAV map-
pings considered above, and of LAV mappings typical of the data integration setting.
Unfortunately, even with LAV mappings only, i.e., mappings where the query over the
database simply returns the instances of a single relation, instance checking and query
answering are no more in AC0 with respect to data complexity [20].

Theorem 7.12. Let OM = 〈T ,M,D〉 be an ontology with mappings, where the map-
pingM is constituted by a set of LAV mapping assertions. Instance checking (and hence
CQ and UCQ query answering) over OM is NLOGSPACE-hard in the size of D.

Proof. The proof is again by a LOGSPACE reduction from reachability in directed
graphs. Let G = 〈V, E〉 be a directed graph, where V is a set of vertexes and E a set of
directed edges, and let s and t be two vertexes of G. As in the proof of Theorem 6.6, we
consider the graph represented through first-child and next-sibling functional relations
F , N , S (cf. Figure 17).

We define the ontology with LAV mappings OMlav = 〈Tlav ,Mlav ,Dlav 〉 as
follows:

– The alphabet of Tlav consists of the atomic concepts A and A′ and of the atomic
roles PF , PN , PS , P0, and Pcopy . The TBox itself imposes only that all roles are
functional, i.e.,

Tlav = {(funct P0), (funct Pcopy)} ∪ {(funct PR) | R ∈ {F, N, S}}.

– The schema of D contains a unary relational table Ad and three binary relational
tables Fd, Nd, and Sd.

– The LAV mapping Mlav is defined as follows:18

Ad(x) � qA(x) ← A(x), Pcopy(x, x′), P0(z, x), P0(z, x′)
Rd(x, y) � qR(x, y) ← PR(x, y), Pcopy(x, x′),

PR(x′, y′), Pcopy(y, y′), A′(y′), for R ∈ {F, N, S}.

Figure 25 provides a graphical representation of the kinds of interpretations generated
by the LAV mapping above. Notice that the TBox Tlav and the mapping Mlav do not
depend on the graph G.

Then, from the graph G and the two vertexes s, t, we define the instance DG of the
database Dlav as follows:

DG = {Rd(a, b) | (a, b) ∈ R, for R ∈ {F, N, S}} ∪ {Ad(s)}
18 For simplicity, we do not include function symbols in the mapping since they would play no

role in the reduction. Also, instead of using SQL code, we denote the query over the database
D simply by the relation that is returned.



Ontologies and Databases: The DL-Lite Approach 343

t
s

G

t's' G'

PcopyPcopy Pcopy

P0

P0

A

A′

Fig. 25. Interpretation generated by the LAV mapping used in the proof of Theorem 7.12

Intuitively, DG is simply constituted by the binary relations Fd, Nd, and Sd, used to
represent the graph G, and a unary relation Ad containing only s.

Now consider the concept A′. It is possible to show by induction on the length of a
path from s to t in G that t is reachable from s in G if and only if OMlav |= A′(t),
i.e., t is an instance of A′ in every model of OMlav . Intuitively, this is due to the fact
that the functionality of the roles of Tlav forces the objects corresponding to the nodes
of G and retrieved through the mapping to be unified with their “copies” generated by
the existentially quantified variables in the mapping. Hence, the node t will be forced
to become an instance of A′ if it is connected to s, but not otherwise. �!

The above result shows that, if we allowed more general forms of mappings than the
ones considered here for ontologies with mappings, such as LAV mappings, we would
lose FOL-rewritability of inference.

Notice that for the above proof to go through, the presence of functionality assertions
is crucial. Indeed, it is possible to show that, without functionality assertions (and with-
out identification assertions), query answering even in the presence of GLAV mappings
can be done in AC0 in data complexity, essentially by transforming the GLAV mapping
into GAV mappings and introducing additional constraints (and relations of arbitrary
arity) in the TBox [16].

8 Ontology-Based Data Access Software Tools

In this section we introduce two tools specifically designed for OBDA as described in
the previous sections, namely DIG-QUONTO and the OBDA Plugin for Protégé 3.3.1.
The first, presented in Section 8.1, is a server for the QUONTO reasoner [2,76] that ex-
poses it’s reasoning services and OBDA functionality through an extended version of
the DIG Interface [10], a standard communication protocol for DL reasoners. The sec-
ond, presented in Section 8.2, is a plugin for the ontology editor Protégé19 that provides
facilities to model ontologies with mappings (see Section 7), to synchronize these mod-
els with an OBDA enabled reasoner through an extended DIG protocol, and to access
CQ services offered by DIG 1.2 compatible reasoners [76].

19 http://protege.stanford.edu/

http://protege.stanford.edu/


344 D. Calvanese et al.

Both tools can be used together in order to design, deploy and use a fully functional
OBDA layer on top of existing relational databases.

8.1 DIG-QUONTO, the OBDA-DIG Server for QUONTO

DIG-QUONTO [76] is a module for the QUONTO system that exposes the function-
ality of the QUONTO reasoner and its RDBMS-ontology mapping module through an
extended version of the DIG 1.1 Interface [10], the HTTP/XML based communication
protocol for DL reasoners. Using DIG-QUONTO, it is possible to extend an existing
relational database with an OBDA layer, which can be used to cope with incomplete
information or function as a data integration layer.

The QUONTO reasoner is a DL reasoner that implements the reasoning and query
answering algorithms for DL-LiteA,id presented in Sections 4 and 5. Built on top of the
QUONTO reasoner is its RDBMS-ontology mapping module, a module that implements
the mapping techniques described in Section 7. DIG-QUONTO wraps both components,
thus combining their functionalities in a common interface accessible to clients and
providing several features that we will now describe.

Ontology Representation. QUONTO and DIG-QUONTO work with ontologies with
mappings of the form OM = 〈T ,M,D〉 as presented in Section 7, where T is a DL-
LiteA,id TBox, D is a relational database (constituted by the relational schema, and the
extensions of the relations), and M is a set of mapping assertions. As mentioned, D
and M together define an ABox A(M,D), which however is never materialized by
QUONTO. Instead, using the RDBMS-ontology mapping module, QUONTO is able to
rewrite an UCQ q over T into an SQL query that is executed by the RDBMS man-
aging D and that retrieves the answers to q. Hence, QUONTO is able to exploit many
optimizations available in modern RDBMS engines in all operations related to the ex-
tensional level of the ontology, and as a consequence, it is able to handle large amounts
of data. A further consequence is that data has never to be imported into the ontology,
as is done, e.g., with OWL ontologies. Instead, in DIG-QUONTO it is possible to let
the data reside in the original relational source. Note that this has the consequence that
if the data source is not a traditional database, but in fact a virtual schema created by
a data federation tool, DIG-QUONTO would act as a highly efficient data integration
system.

For a detailed description of the reasoning process used in DIG-QUONTO see
Sections 4, 5 and 7.

Reasoning Services. QUONTO provides the following reasoning services over a DL-
LiteA,id ontology with mappings OM = 〈T ,M,D〉:

Answering UCQs. Given OM and a UCQ q, compute the certain answers for q over
OM. This is the central reasoning service of the QUONTO system, to which all
other reasoning services are reduced. This service is unique in QUONTO in that, at
the moment of writing, QUONTO is the only DL reasoner that offers UCQ query
answering under the standard certain answer semantics (as opposed to weaker se-
mantics, such as the grounded semantics, implemented in other reasoners). This is
especially important in settings of incomplete information (e.g., the data integration



Ontologies and Databases: The DL-Lite Approach 345

setting), as it allows QUONTO to bind variables in the body of queries to unknown
individuals which are only deduced to exist due to T but which are not produced
by the data in D (considering the mappings M).

The implementation of this service is based on the algorithms described in
Sections 4, 5, and 7.

Checking ontology satisfiability. Given OM, check if OM has a model. This is a clas-
sical reasoning service available in most DL reasoners, which mixes intensional
and extensional reasoning. In QUONTO, this service is reduced to query answering.
Specifically, to check satisfiability of OM, QUONTO checks whether the answer
to the query that checks for a violation of one of the negative inclusion, function-
ality, or identification assertions in the TBox is empty, as illustrated in Section 5.6.
Hence, it can be done efficiently in the size of the data, which is maintained in the
database and managed through a DBMS.

Checking atomic satisfiability. Given OM and an atomic entity X (i.e., a concept, a
role, or an attribute) in the alphabet of OM, check whether there exists a model I
of OM such that XI �= ∅. This is a purely intensional reasoning service, i.e., it ac-
tually depends only on the TBox T of OM. In QUONTO, this service is reduced to
checking ontology satisfiability, as illustrated in Section 4.4, and hence ultimately
to query answering. In fact, since satisfiability of the entity X depends only on the
TBox of OM (and not on the database and mappings), QUONTO constructs for the
purpose an ad-hoc database and mappings, that are distinct from the ones of OM,
and answers the appropriate queries over such a database.

Checking subsumption. Given OM and two atomic entities X1 and X2 in the alphabet
of OM, check whether XI

1 ⊆ XI
2 for all models I of OM. In QUONTO, also

subsumption is reduced to ontology satisfiability, as illustrated in Section 4.4.

Queries regarding the concept/role hierarchy. Given OM, QUONTO provides the fol-
lowing intensional reasoning services regarding the structure of the concept and
role hierarchy in T :

• Ancestors. Given an atomic entity X in the alphabet of OM, retrieve the set of
atomic entities X ′ such that T |= X � X ′.

• Parents. Given an atomic entity X in the alphabet of OM, retrieve the set of
atomic entities X ′ such that T |= X � X ′ and there is no X ′′ such that
T |= X � X ′′ and T |= X ′′ � X ′. This corresponds to the immediate
subsumption relation.

• Descendants. Given an atomic entity X in the alphabet of OM, retrieve the set
of atomic entities X ′ such that T |= X ′ � X .

• Children. Given an atomic entity X in the alphabet of OM, retrieve the set
of atomic entities X ′ such that T |= X ′ � X and there is no X ′′ such that
T |= X ′ � X ′′ and T |= X ′′ � X .

• Equivalents. Given an atomic entity X in the alphabet of OM, retrieve the set
of atomic entities X such that T |= X � X ′ and T |= X ′ � X .



346 D. Calvanese et al.

In QUONTO, such services are also ultimately reduced to query answering, al-
though for efficiency reasons this is done in an ad-hoc manner.

Checking implication of assertions. Given OM and a functionality or identification as-
sertion α, check whether T |= α. We point out that implication of identification
assertions is unique to QUONTO, given the fact that these kinds of constraints are
not available in most DL reasoners.

The OBDA-DIG Communication Layer. All functionalities of DIG-QUONTO are
accessible through an extended version of the DIG 1.1 Interface [10], which is an ef-
fort carried out by the DL Implementation Group (DIG) to standardize interaction with
DL reasoners in a networked environment. The original specification defines the com-
munication mechanism to which DL reasoners (i.e., DIG servers) and clients comply.
The interface has been widely accepted and most well known ontology design tools
and DL reasoners implement it. XML messages, divided in tells and asks, allow
the client to: (i) query for the server’s reasoning capabilities, (ii) transfer the assertions
of an ontology to the server, (iii) perform certain ontology manipulations, and (iv) ask
standard DL queries about the given ontology, e.g., concept subsumption, satisfiability,
equivalence, etc. The concept language used to describe DIG ontologies is based on the
SHOIQ(D) description logic [53].

As mentioned above, DIG-QUONTO offers ontology constructs and services not
available in traditional DL reasoners and therefore not considered in DIG 1.1. Hence,
it has been necessary to implement not only the original DIG 1.1 interface, but also
extensions that enable the use of the functionality available in DIG-QUONTO.

Being QUONTO’s main reasoning task answering UCQs, the DIG-QUONTO server
implements the so called DIG 1.2 specification [77], an extension to the original
DIG 1.1 interface that provides an ABox query language for DIG clients and server.
Concretely, it provides the ability to pose UCQs. It doesn’t restrict the semantics for the
expressed queries, hence in DIG-QUONTO we use traditional certain answer seman-
tics, as described in Section 2.4. At the moment of writing, DIG 1.2 is implemented in
the DIG modules for the RacerPro20 and QUONTO reasoners.

The core component of the protocol implemented in the DIG-QUONTO server are the
OBDA extensions to DIG 1.1 [80,81]. These extensions have as main objective to aug-
ment DIG 1.1 with the concepts of Data Source and Mapping, which are at the core of
the OBDA setting and fundamental to the functionality offered by the rdbms-ontology
mapping module for QUONTO. Moreover, the extension aims at the standardization of
the interaction with reasoners offering OBDA functionality, not only with QUONTO.
For more information about the OBDA extension to DIG 1.1 we refer to the extension’s
website21.

DIG-QUONTO can be executed as a user service or as a system wide service. Once
initiated, DIG-QUONTO listens for DIG-OBDA requests issued by clients. A num-
ber of parameters are available at initialization time. These allow the user to indicate
whether DIG-QUONTO should perform automatic consistency checking at query time,
and whether it should use view based unfolding procedures, among other things.

20 http://www.racer-systems.com/
21 http://obda.inf.unibz.it/dig-11-obda/

http://www.racer-systems.com/
http://obda.inf.unibz.it/dig-11-obda/


Ontologies and Databases: The DL-Lite Approach 347

The status and operation of DIG-QUONTO can be monitored with its web interface,
which is available at:

http://[QUONTOHOST]:[QUONTOPORT]/index.jsp

Through the interface, users can obtain information such as the ontologies currently
loaded into the system, review system logs, or visualize system parameters.

Regarding implementation details, we note that DIG-QUONTO is written in Java and
requires Sun’s Java Runtime Environment (JRE)22. Moreover, DIG-QUONTO uses Java
JDBC connectors to establish communication with a DBMS. The following DBMSs
are supported by DIG-QUONTO at the moment of writing: MySQL 5.0.4523, Post-
greSQL 8.3, Oracle 10g and 11g , DB2 8.2 and 9.1, SQLite 3.5.9, H2 1.0.74, and
Derby 10.3.2.1. We refer to QUONTO’s main website24 for detailed information about
the software and for download links.

8.2 The OBDA Plugin for Protégé

The OBDA Plugin [81,82] is an open source add-on for the ontology editor
Protégé 3.3.1 (see Footnote 19) whose main objectives are, on the one hand, to ex-
tend Protégé so as to allow its use in the design of ontologies with mappings and, on the
other hand, to extend the way in which Protégé interacts with DL reasoners so as to sup-
port the interaction with reasoners that are designed for the OBDA architecture and that
can make use of the OBDA information introduced using the plugin’s facilities. These
objectives are accomplished by extending the GUI, back-end mechanisms, and com-
munication protocols of Protégé. In the following paragraphs, we will briefly describe
these extensions, referring to the plugin’s website25 for a comprehensive overview of
all the features of the OBDA Plugin.

Database and Mapping Definition. The main GUI component of the OBDA Plugin is
the Datasource Manager tab (see Figure 26). Using this tab, users are able to associate
JDBC data sources to the currently open ontology. Moreover, for each data source, users
are able to define a set of mappings that relate the data returned by an arbitrary SQL
query over the source to the entities (i.e., classes and properties) of the ontology.

The plugin offers several features to facilitate these tasks. Among them we can find
simple ones, such as syntax coloring for the mapping editor or database connection
validation, and more complex ones, such as SQL query validation, direct DBMS query
facilities (see Figure 27), and database schema inspection facilities (see Figure 28).

All data introduced with the plugin’s GUI components is made persistent in so called
.obda files. These are XML files that can be read and edited easily by users or appli-
cations and which are independent from Protégé’s .owl and .ppjr files. This feature
enables users to easily extend existing OWL ontologies with OBDA features without
compromising the original model.
22 http://java.sun.com/javase/
23 The use of MySQL is highly discouraged due to performance limitations of this engine.
24 http://www.dis.uniroma1.it/˜quonto/
25 http://obda.inf.unibz.it/protege-plugin/

http://[QUONTOHOST]:[QUONTOPORT]/index.jsp
http://java.sun.com/javase/
http://www.dis.uniroma1.it/~quonto/
http://obda.inf.unibz.it/protege-plugin/


348 D. Calvanese et al.

Fig. 26. OBDA Plugin’s Datasource Manager tab

OBDA-DIG Synchronization for DL Reasoners. The mechanism used in
Protégé 3.3.1 for interaction with DL reasoners is the DIG 1.1 Interface [10]. In or-
der to allow for the interaction with reasoners designed for the OBDA setting, the
OBDA Plugin extends Protégé’s DIG implementation with the OBDA Extensions for
DIG [80,81]. Using these extensions, the plugin is able to transmit the OBDA model
created by the user to any reasoner implementing both specifications (see Section 8.1
for a short overview of these protocols).

Moreover, the plugin offers several possibilities to tweak the way in which synchro-
nization takes place. For example, to interact with a traditional DL reasoner while the
OBDA Plugin is installed, it is possible to configure the OBDA Plugin so as to use the
original DIG 1.1 synchronization mechanism instead of the extended one.

UCQs with the OBDA Plugin. Another key feature of the OBDA Plugin is its ability
to interact with reasoners that offer the service of answering (U)CQs. Using the ABox
Queries tab of the OBDA Plugin (see Figure 29), users are able to express UCQs writ-
ten in a SPARQL-like syntax. To provide the answers to the query, the OBDA Plugin
translates the UCQ to a DIG 1.2 [77] request, which is sent to the reasoner. Clearly, the
target reasoner must provide a UCQ answering service through a DIG 1.2 interface. At
the moment of writing there exist two such systems, namely the DIG-QUONTO server
and the Racer++ system.

In addition to the basic query handling facilities, the ABox Queries tab offers extra
functionality such as persistent support for query collections, batch mode result retrieval
and result set export facilities.



Ontologies and Databases: The DL-Lite Approach 349

Fig. 27. OBDA Plugin’s direct SQL Query tab

DIG-QUONTO Specific Features. Since the OBDA Plugin is being developed in par-
allel with DIG-QUONTO, the plugin incorporates several DIG-QUONTO specific facil-
ities. These include the ability to enable and disable reasoning during query answering,
to retrieve the expansion/rewriting and unfolding of a UCQ, to visualize the QUONTO

TBoxes, and to request ontology satisfiability checking.

Extensible OBDA API. An important feature of the OBDA Plugin is its modular ar-
chitecture. The OBDA Plugin for Protégé 3.3.1 has been built on top of a Java API for
OBDA. The API is independent from the final GUI (e.g., Protégé) and, more impor-
tantly, independent from particular characterizations of the OBDA architecture. This
enables the API to accommodate for different mapping techniques or data source types,
having as only requirement that the mapping technique regards a mappings as a pair
composed by a query Φ over a data source and a query Ψ over the ontology. Note that
here, the term query is used in the most general sense of the word, as a query can stand
for any arbitrary computation.

We observe that the GUI independence aspect of the core API has been used to
provide a port of the OBDA Plugin for the NeOn Toolkit platform26 and to build the
initial prototypes of the Protégé 4 and Protégé 3.4 versions of the plugin. The core API
of the OBDA Plugin will soon be released with an open source license.

26 http://obda.inf.unibz.it/neon-plugin/

http://obda.inf.unibz.it/neon-plugin/


350 D. Calvanese et al.

Fig. 28. OBDA Plugin’s RDBMS Schema Inspector

Fig. 29. OBDA Plugin’s ABox Queries Tab



Ontologies and Databases: The DL-Lite Approach 351

9 Conclusions

In this article, we have summarized the main technical results concerning the DL-Lite
family of description logics, which has been developed, studied, and implemented in re-
cent years as a solution to the problem of ontology-based data access (OBDA). The DL-
Lite family, and in particular DL-LiteA,id, an expressive member of this family that we
have used as the basis for our technical development, provides a solution to the trade-off
between expressiveness of the language and complexity of inference that is optimized
towards the requirements arising in OBDA, namely (i) the ability to capture the main
modeling constructs of conceptual modeling languages, such as UML class diagrams
and the Entity-Relationship model, and (ii) efficient reasoning over large amounts of
data and the ability to compute the certain answers to conjunctive queries and unions
thereof w.r.t. an ontology by rewriting a query into a new query and directly evaluating
such a rewritten query over the available data using a relational DBMS.

The results we have presented here are based mainly on work that has been carried
out in the last years and published in the following articles: [22,24,25,20,75]. However,
the DL-Lite family has spurred a lot of interest in the research community, and recently
various follow-up activities have emerged and research is still very active and ongoing.
We summarize here the major research efforts:

– Extensions of the ontology language with further constructs, such as number re-
strictions (which are a generalization of functionality), full booleans, and additional
role constructs present in OWL 2, and a systematic analysis of the computational
complexity of inference for all meaningful combinations of constructs and under
various assumptions [3,4].

– Extension of the query language to support full first-order queries (or equivalently,
SQL queries) under a weakened epistemic semantics, overcoming the undecidabil-
ity of full first-order inference over ontologies [23].

– Updating DL-Lite ontologies [35,36].
– Fuzzy extensions to the DLs of the DL-Lite family [87,72].
– Extensions of DL-Lite with temporal operators, which has applications to temporal

conceptual data modeling [5].
– Computation and extraction of modules from an ontology [60,59].

Acknowledgements. This research has been partially supported by the FET project
TONES (Thinking ONtologiES), funded within the EU 6th Framework Programme un-
der contract FP6-7603, and by the large-scale integrating project (IP) OntoRule (ON-
TOlogies meet Business RULEs), funded by the EC under ICT Call 3 FP7-ICT-2008-3,
contract number FP7-231875.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co.,
Reading (1995)

2. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., Rosati,
R.: QuOnto: Querying ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI 2005), pp. 1670–1671 (2005)



352 D. Calvanese et al.

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light of first-
order logic. In: Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pp.
361–366 (2007)

4. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and re-
lations. Technical Report BBKCS-09-03, School of Computer Science and Information Sys-
tems, Birbeck College, London (2009), http://www.dcs.bbk.ac.uk/research/
techreps/2009/bbkcs-09-03.pdf

5. Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tractable
description logics. In: Proc. of the 14th Int. Symp. on Temporal Representation and Reason-
ing (TIME 2007), pp. 11–22 (2007)

6. Baader, F.: Augmenting concept languages by transitive closure of roles: An alternative to
terminological cycles. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence, IJCAI
1991 (1991)

7. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2003)

8. Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for description logics.
Fundamenta Informaticae 57, 1–33 (2003)

9. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Log-
ica 69(1), 5–40 (2001)

10. Bechhofer, S., Möller, R., Crowther, P.: The DIG description logic interface. In: Proc. of
the 2003 Description Logic Workshop (DL 2003). CEUR Electronic Workshop Proceedings,
vol. 81, pp. 196–203 (2003), http://ceur-ws.org/

11. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial
Intelligence 168(1–2), 70–118 (2005)

12. Brachman, R.J., Levesque, H.J.: The tractability of subsumption in frame-based description
languages. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence (AAAI 1984), pp. 34–37
(1984)

13. Brachman, R.J., Levesque, H.J. (eds.): Readings in Knowledge Representation. Morgan
Kaufmann, San Francisco (1985)

14. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation
system. Cognitive Science 9(2), 171–216 (1985)

15. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge
representation systems. J. of Artificial Intelligence Research 1, 109–138 (1993)

16. Calı̀, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: On the expressive power of data in-
tegration systems. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 338–350. Springer, Heidelberg (2002)

17. Calı̀, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data inte-
gration systems. In: Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003),
pp. 16–21 (2003)

18. Calvanese, D., De Giacomo, G.: Expressive description logics. In: Baader, et al. (eds.) [7],
ch. 5, pp. 178–218 (2003)

19. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Linking
data to ontologies: The description logic DL-LiteA. In: Proc. of the 2nd Int. Workshop on
OWL: Experiences and Directions (OWLED 2006). CEUR Electronic Workshop Proceed-
ings, vol. 216 (2006), http://ceur-ws.org/

20. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R., Ruzzi, M.:
Data integration through DL-liteA ontologies. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB
2008. LNCS, vol. 4925, pp. 26–47. Springer, Heidelberg (2008)

http://www.dcs.bbk.ac.uk/research/techreps/2009/bbkcs-09-03.pdf
http://www.dcs.bbk.ac.uk/research/techreps/2009/bbkcs-09-03.pdf
http://ceur-ws.org/
http://ceur-ws.org/


Ontologies and Databases: The DL-Lite Approach 353

21. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable
description logics for ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI 2005), pp. 602–607 (2005)

22. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2006), pp. 260–270 (2006)

23. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective
first-order query processing in description logics. In: Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2007), pp. 274–279 (2007)

24. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

25. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Path-based identifi-
cation constraints in description logics. In: Proc. of the 11th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2008), pp. 231–241 (2008)

26. Calvanese, D., De Giacomo, G., Lenzerini, M.: Reasoning in expressive description logics
with fixpoints based on automata on infinite trees. In: Proc. of the 16th Int. Joint Conf. on
Artificial Intelligence (IJCAI 1999), pp. 84–89 (1999)

27. Calvanese, D., De Giacomo, G., Lenzerini, M.: Answering queries using views over de-
scription logics knowledge bases. In: Proc. of the 17th Nat. Conf. on Artificial Intelligence
(AAAI 2000), pp. 386–391 (2000)

28. Calvanese, D., De Giacomo, G., Lenzerini, M.: 2ATAs make DLs easy. In: Proc. of the 2002
Description Logic Workshop (DL 2002). CEUR Electronic Workshop Proceedings, vol. 53,
pp. 107–118 (2002), http://ceur-ws.org/

29. Calvanese, D., De Giacomo, G., Lenzerini, M.: Description logics for information integra-
tion. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond.
LNCS, vol. 2408, pp. 41–60. Springer, Heidelberg (2002)

30. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D.: Reasoning in expressive descrip-
tion logics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 23,
vol. II, pp. 1581–1634. Elsevier Science Publishers, Amsterdam (2001)

31. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. J.
of Artificial Intelligence Research 11, 199–240 (1999)

32. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational
data bases. In: Proc. of the 9th ACM Symp. on Theory of Computing (STOC 1977), pp.
77–90 (1977)

33. Chen, C., Haarslev, V., Wang, J.: LAS: Extending Racer by a Large ABox Store. In: Proc. of
the 2005 Description Logic Workshop (DL 2005). CEUR Electronic Workshop Proceedings,
vol. 147 (2005), http://ceur-ws.org/

34. Cosmadakis, S.S., Kanellakis, P.C., Vardi, M.: Polynomial-time implication problems for
unary inclusion dependencies. J. of the ACM 37(1), 15–46 (1990)

35. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description logic
ontologies at the instance level. In: Proc. of the 21st Nat. Conf. on Artificial Intelligence
(AAAI 2006), pp. 1271–1276 (2006)

36. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the approximation of instance
level update and erasure in description logics. In: Proc. of the 22nd Nat. Conf. on Artificial
Intelligence (AAAI 2007), pp. 403–408 (2007)

37. Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based access to
distributed and semi-structured information. In: Meersman, R., Tari, Z., Stevens, S. (eds.)
Database Semantic: Semantic Issues in Multimedia Systems, ch. 20, pp. 351–370. Kluwer
Academic Publishers, Dordrecht (1999)

http://ceur-ws.org/
http://ceur-ws.org/


354 D. Calvanese et al.

38. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. In-
formation and Computation 134, 1–58 (1997)

39. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept languages: From
subsumption to instance checking. J. of Logic and Computation 4(4), 423–452 (1994)

40. Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-completeness.
W. H. Freeman and Company, San Francisco (1979)

41. Goasdoue, F., Lattes, V., Rousset, M.-C.: The use of CARIN language and algorithms for
information integration: The Picsel system. Int. J. of Cooperative Information Systems 9(4),
383–401 (2000)

42. Gruber, T.: Towards principles for the design of ontologies used for knowledge sharing. Int.
J. of Human and Computer Studies 43(5/6), 907–928 (1995)

43. Gruber, T.R.: A translation approach to portable ontology specification. Knowledge Acqui-
sition 5(2), 199–220 (1993)

44. Guarino, N.: Formal ontology in information systems. In: Proc. of the Int. Conf. on Formal
Ontology in Information Systems (FOIS 1998). Frontiers in Artificial Intelligence, pp. 3–15.
IOS Press, Amsterdam (1998)

45. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T.
(eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–705. Springer, Heidelberg (2001)

46. Halevy, A.Y.: Answering queries using views: A survey. J. of Very Large Database 10(4),
270–294 (2001)

47. Heflin, J., Hendler, J.: A portrait of the Semantic Web in action. IEEE Intelligent Sys-
tems 16(2), 54–59 (2001)

48. Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue, A., Kalyan-
pur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench, G., Wetzstein, B.,
Keller, U.: Ontology reasoning with large data repositories. In: Hepp, M., De Leenheer, P.,
de Moor, A., Sure, Y. (eds.) Ontology Management, Semantic Web, Semantic Web Services,
and Business Applications. Semantic Web And Beyond Computing for Human Experience,
vol. 7, pp. 89–128. Springer, Heidelberg (2008)

49. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. of the 6th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1998), pp.
636–647 (1998)

50. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL reasoning with large
numbers of individuals. In: Proc. of the 2004 Description Logic Workshop (DL 2004). CEUR
Electronic Workshop Proceedings, vol. 104 (2004), http://ceur-ws.org/

51. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The
making of a web ontology language. J. of Web Semantics 1(1), 7–26 (2003)

52. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierar-
chies. J. of Logic and Computation 9(3), 385–410 (1999)

53. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. of Automated Rea-
soning 39(3), 249–276 (2007)

54. Hull, R.: A survey of theoretical research on typed complex database objects. In: Paredaens,
J. (ed.) Databases, pp. 193–256. Academic Press, London (1988)

55. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive descrip-
tion logics. In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp.
466–471 (2005)

56. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and
inclusion dependencies. J. of Computer and System Sciences 28(1), 167–189 (1984)

57. Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In: Proc. of
the 24rd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2005), pp. 61–75 (2005)

http://ceur-ws.org/


Ontologies and Databases: The DL-Lite Approach 355

58. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. In:
Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Sys-
tems (PODS 1998), pp. 205–213 (1998)

59. Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., Zakharyaschev,
M.: Minimal module extraction from DL-Lite ontologies using QBF solvers. In: Proc. of the
21st Int. Joint Conf. on Artificial Intelligence, IJCAI 2009 (2009)

60. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between DL-Lite
ontologies? In: Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2008), pp. 285–295 (2008)

61. Kozen, D.: Theory of Computation. Springer, Heidelberg (2006)
62. Krisnadhi, A., Lutz, C.: Data complexity in the EL family of description logics. In: Der-

showitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 333–347. Springer,
Heidelberg (2007)

63. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pp.
233–246 (2002)

64. Libkin, L.: Data exchange and incomplete information. In: Proc. of the 25th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2006), pp. 60–69
(2006)

65. Maedche, A.: Ontology learning for the Semantic Web. Kluwer Academic Publishers, Dor-
drecht (2003)

66. Meseguer, J., Qian, X.: A logical semantics for object-oriented databases. In: Proc. of the
ACM SIGMOD Int. Conf. on Management of Data, pp. 89–98 (1993)

67. Minsky, M.: A framework for representing knowledge. In: Haugeland, J. (ed.) Mind Design.
The MIT Press, Cambridge (1981); A longer version appeared in The Psychology of Com-
puter Vision (1975), Republished in [13]

68. Möller, R., Haarslev, V.: Description logic systems. In: Baader, et al. (eds.) [7], ch. 8, pp.
282–305

69. Nebel, B.: Computational complexity of terminological reasoning in BACK. Artificial Intel-
ligence 34(3), 371–383 (1988)

70. Noy, N.F.: Semantic integration: A survey of ontology-based approaches. SIGMOD
Record 33(4), 65–70 (2004)

71. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive de-
scription logics via tableaux. J. of Automated Reasoning 41(1), 61–98 (2008)

72. Pan, J.Z., Stamou, G.B., Stoilos, G., Thomas, E.: Expressive querying over fuzzy DL-Lite
ontologies. In: Proc. of the 2007 Description Logic Workshop (DL 2007). CEUR Electronic
Workshop Proceedings, vol. 250 (2007), http://ceur-ws.org/

73. Papadimitriou, C.H.: Computational Complexity. Addison Wesley Publ. Co., Reading (1994)
74. Patel-Schneider, P.F., McGuinness, D.L., Brachman, R.J., Resnick, L.A., Borgida, A.: The

CLASSIC knowledge representation system: Guiding principles and implementation ratio-
nal. SIGART Bull. 2(3), 108–113 (1991)

75. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. J. on Data Semantics X, 133–173 (2008)

76. Poggi, A., Rodriguez, M., Ruzzi, M.: Ontology-based database access with DIG-Mastro and
the OBDA Plugin for Protégé. In: Clark, K., Patel-Schneider, P.F. (eds.) Proc. of the 4th Int.
Workshop on OWL: Experiences and Directions, OWLED 2008 DC (2008)

77. Racer Systems GmbH & Co. KG. Release notes for RacerPro 1.9.2 beta,
http://www.sts.tu-harburg.de/˜r.f.moeller/racer/
Racer-1-9-2-beta-Release-Notes/release-notes-1-9-2se8.html
(last access, July 2008)

http://ceur-ws.org/
http://www.sts.tu-harburg.de/~r.f.moeller/racer/Racer-1-9-2-beta-Release-Notes/release-notes-1-9-2se8.html
http://www.sts.tu-harburg.de/~r.f.moeller/racer/Racer-1-9-2-beta-Release-Notes/release-notes-1-9-2se8.html


356 D. Calvanese et al.

78. Reingold, O.: Undirected connectivity in log-space. J. of the ACM 55(4) (2008)
79. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Databases,

pp. 119–140. Plenum Publ. Co., New York (1978)
80. Rodrı́guez-Muro, M., Calvanese, D.: An OBDA extension to the DIG 1.1 Interface (July

2008), http://www.inf.unibz.it/˜rodriguez/OBDA/dig-11-obda/
81. Rodriguez-Muro, M., Calvanese, D.: Towards an open framework for ontology based data

access with Protégé and DIG 1.1. In: Proc. of the 5th Int. Workshop on OWL: Experiences
and Directions, OWLED 2008 (2008)

82. Rodriguez-Muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data access: A
plug-in for Protégé. In: Proc. of the ICDE Workshop on Information Integration Methods,
Architectures, and Systems (IIMAS 2008), pp. 286–289. IEEE Computer Society Press, Los
Alamitos (2008)

83. Schild, K.: A correspondence theory for terminological logics: Preliminary report. In: Proc.
of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), pp. 466–471 (1991)

84. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Arti-
ficial Intelligence 48(1), 1–26 (1991)

85. Sirin, E., Parsia, B.: Pellet system description. In: Proc. of the 2006 Description Logic Work-
shop (DL 2006). CEUR Electronic Workshop Proceedings, vol. 189 (2006),
http://ceur-ws.org/

86. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL
reasoner. Technical report, University of Maryland Institute for Advanced Computer Studies,
UMIACS (2005)

87. Straccia, U.: Towards top-k query answering in description logics: The case of DL-lite. In:
Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS, vol. 4160,
pp. 439–451. Springer, Heidelberg (2006)

88. Uschold, M., Grüninger, M.: Ontologies and semantics for seamless connectivity. SIGMOD
Record 33(4), 58–64 (2004)

89. van der Meyden, R.: Logical approaches to incomplete information. In: Chomicki, J., Saake,
G. (eds.) Logics for Databases and Information Systems, pp. 307–356. Kluwer Academic
Publishers, Dordrecht (1998)

90. Vardi, M.Y.: The complexity of relational query languages. In: Proc. of the 14th ACM
SIGACT Symp. on Theory of Computing (STOC 1982), pp. 137–146 (1982)

91. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S.,
Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)

92. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. of
Computer and System Sciences 32, 183–221 (1986)

93. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Heidelberg
(1999)

http://www.inf.unibz.it/~rodriguez/OBDA/dig-11-obda/
http://ceur-ws.org/


Author Index

Arenas, Marcelo 158

Baader, Franz 1

Calvanese, Diego 255

Das, Souripriya 205
De Giacomo, Giuseppe 255

Eiter, Thomas 40

Gutierrez, Claudio 158

Handschuh, Siegfried 222

Ianni, Giovambattista 40

Krennwallner, Thomas 40

Lembo, Domenico 255
Lenzerini, Maurizio 255

Marx, Maarten 111

Pérez, Jorge 158
Poggi, Antonella 255

Rodriguez-Muro, Mariano 255
Rosati, Riccardo 255

Scerri, Simon 222
Sintek, Michael 222
Srinivasan, Jagannathan 205

van Elst, Ludger 222


	Title Page
	Preface
	Organisation
	Table of Contents
	Description Logics
	Introduction
	Basic Definitions
	The Basic Description Language $\mathcal{ALC}$ and Some Extensions
	Terminological Knowledge
	Assertional Knowledge
	Inference Problems

	Reasoning in Expressive DLs
	Tableau-Based Approaches
	Automata-Based Approaches

	Reasoning in the Light-Weight DLs $\mathcal{EL}$ and $\mathcal{FL_{0}}$
	References

	Answer Set Programming: A Primer
	Introduction
	Roots of ASP
	Prolog
	Structure of the Article

	Horn Logic Programming
	Positive Logic Programs
	Minimal Model Semantics

	Negation in Logic Programs
	Stratified Negation
	Unstratified Negation

	Stable Semantics
	Normal Logic Programs – Syntax
	Stable Model Semantics
	Semantic Properties of Stable Models
	Computational Properties

	Extensions
	Constraints
	Strong Negation
	Disjunction

	Answer Set Programming Paradigm
	Use of Double Negation
	The “Guess and Check” Methodology
	Saturation Technique
	Iteration over a Set

	Answer Set Solvers
	Architecture of ASP Solvers
	The {\tt DLV} System

	ASP for the Semantic Web
	DL-Programs
	HEX-Programs
	Other Linguistic Extension of ASP in the Direction of SemanticWeb
	Other SemanticWeb Enabled Systems Based on ASP

	Conclusion
	References

	Logical Foundations of XML and XQuery
	Introduction
	Modal Logical Roots of XPath
	Introduction
	Modal Logic, Temporal Logic, and PDL
	XML and Sibling Ordered Trees
	XPath 1.0 and Its Navigational Core
	Two Extensions of Core XPath 1.0
	An Experiment in Formulation
	In Conclusion

	Logical Foundations of XPath
	Introduction
	Preliminaries: Four Dialects of Navigational XPath
	Expressivity of XPath Dialects
	Algebras for XPath Dialects

	Case Study in Making Structure Explicit: Parliamentary Proceedings
	Introduction
	Structure of Parliamentary Proceedings
	Exemelification: From Flat PDF to Deep XML
	Applications of the XML Structure
	To Conclude

	Operationalization of Policy Framing Questions on Parliamentary Data with XQuery
	References

	Foundations of RDF Databases
	Introduction
	The RDF Data Model
	RDF Graphs
	RDFS
	Semantics of RDF Graphs
	A Deductive System for RDFS

	The RDF Query Language SPARQL
	Syntax and Semantics of SPARQL Graph Patterns
	Query Result Forms

	Complexity and Optimization of SPARQL
	Complexity of Evaluating Graph Pattern Expressions
	A Simple Normal Form for Graph Patterns
	Well-Designed Graph Patterns
	Complexity of Evaluating Well-Designed Patterns
	Optimization of Well-Designed Patterns

	On the Expressiveness of SPARQL
	From SPARQL to nr-Datalog¬
	From Datalog to SPARQL

	A Query Language for RDFS Data
	Nested Regular Expressions for RDF Data
	An Efficient Algorithm for Evaluating Nested Regular Expressions
	The Navigational Language nSPARQL

	Future Work: Dealing with Blank Nodes
	References

	Database Technologies for RDF
	Introduction
	Key Concepts
	Storage Architecture
	Loading RDF Data
	Inferencing
	Querying RDF and Relational Data
	Miscellanous Aspects

	Case Study: Oracle Database Semantic Technologies
	Storage Architecture
	Loading RDF Data
	Inferencing
	Querying RDF and Relational Data

	Summary
	References

	Technologies for the Social Semantic Desktop
	Overview
	The Social Semantic Desktop
	Motivation
	State of the Art
	Networked Collaborative Knowledge
	User Mental Models
	Interconnected Desktops
	Achievements

	Semantic Lifting and Human Language Technologies for the Semantic Desktop
	Background
	Lifting on the Semantic Desktop
	Human Language Technology on the Semantic Desktop

	NRL—The NEPOMUK Representational Language
	Motivation
	State of the Art
	Knowledge Representation on the Social Semantic Desktop: The NRL Approach
	Handling Multiple Models: NRL Named Graphs
	Imposing Semantics on Graphs: NRL Graph Views
	Example: NRL in Use

	NEPOMUK Ontologies
	Nepomuk Annotation Ontology (NAO)
	Nepomuk Information Element (NIE)
	Personal Information Model Ontology (PIMO)
	Task Model Ontology (TMO)

	Summary and Outlook
	References

	Ontologies and Databases: The $DL-Lite$ Approach
	Introduction
	Ontologies vs. Description Logics
	Expressive Power vs. Efficiency of Reasoning in Description Logics
	Accessing Data through Ontologies
	Preliminaries on Computational Complexity
	Overview of This Article

	The Description Logic $DL-Lite_{\mathcal{A},id}$
	$DL-Lite_{\mathcal{A},id}$ Expressions
	$DL-Lite_{\mathcal{A},id}$ Ontologies
	$DL-Lite_{\mathcal{A},id}$ vs. OWL 2 QL
	Queries over $DL-Lite_{\mathcal{A},id}$ Ontologies
	Reasoning Services
	The Notion of FOL-Rewritability

	UML Class Diagrams as an Ontology Language
	Classes and Attributes
	Associations
	Generalizations and Class Hierarchies
	Subset Assertions between Associations
	Reasoning and Query Answering over UML Class Diagrams

	Reasoning over Ontologies
	Canonical Interpretation
	Closure of Negative Inclusion Assertions
	FOL-Rewritability of Ontology Satisfiability
	Concept and Role Satisfiability and Logical Implication
	Computational Complexity

	Query Answering over Ontologies
	Preliminary Properties
	Query Reformulation
	Query Evaluation
	Correctness
	Computational Complexity
	Dealing with Identification Assertions

	Beyond $DL-Lite_{\mathcal{A},id}$
	Extending the Ontology Language
	Changing the $DL-Lite$ Semantics

	Accessing Data through $DL-Lite_{\mathcal{A},id}$ Ontologies
	Linking Relational Data to Ontologies
	Semantics of Ontologies with Mappings
	Satisfiability and Query Answering for Ontologies with Mappings
	Approaches for Query Answering over Ontologies with Mappings
	Extending the Mapping Formalism

	Ontology-Based Data Access Software Tools
	DIG-QUONTO, the OBDA-DIG Server for QUONTO
	The OBDA Plugin for Protégé

	Conclusions
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




