

Lecture Notes in Computer Science 5752
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Thomas Stützle Mauro Birattari
Holger H. Hoos (Eds.)

Engineering Stochastic
Local Search Algorithms

Designing, Implementing and Analyzing
Effective Heuristics

Second International Workshop, SLS 2009
Brussels, Belgium, September 3-4, 2009
Proceedings

13

Volume Editors

Thomas Stützle
Mauro Birattari
Université Libre de Bruxelles
IRIDIA, CoDE
Avenue F. Roosevelt 50, CP 194/6, 1050 Brussels, Belgium
E-mail: {stuetzle,mbiro}@ulb.ac.be

Holger H. Hoos
University of British Columbia
Computer Science Department
2366 Main Mall, Vancouver, BC, V6T 1Z4, Canada
E-mail: hoos@cs.ubc.ca

Library of Congress Control Number: 2009932137

CR Subject Classification (1998): E.5, E.2, F.2, I.1.2, I.2.8, F.2.2, H.3.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-03750-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03750-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12741809 06/3180 5 4 3 2 1 0

Preface

Stochastic local search (SLS) algorithms are established tools for the solution
of computationally hard problems arising in computer science, business admin-
istration, engineering, biology, and various other disciplines. To a large extent,
their success is due to their conceptual simplicity, broad applicability and high
performance for many important problems studied in academia and encoun-
tered in real-world applications. SLS methods include a wide spectrum of tech-
niques, ranging from constructive search procedures and iterative improvement
algorithms to more complex SLS methods, such as ant colony optimization,
evolutionary computation, iterated local search, memetic algorithms, simulated
annealing, tabu search, and variable neighborhood search.

Historically, the development of effective SLS algorithms has been guided to
a large extent by experience and intuition. In recent years, it has become in-
creasingly evident that success with SLS algorithms depends not merely on the
adoption and efficient implementation of the most appropriate SLS technique
for a given problem, but also on the mastery of a more complex algorithm en-
gineering process. Challenges in SLS algorithm development arise partly from
the complexity of the problems being tackled and in part from the many de-
grees of freedom researchers and practitioners encounter when developing SLS
algorithms. Crucial aspects in the SLS algorithm development comprise algo-
rithm design, empirical analysis techniques, problem-specific background, and
background knowledge in several key disciplines and areas, including computer
science, operations research, artificial intelligence, and statistics. Ideally, the
SLS algorithm development process is assisted by a sound methodology that
addresses the issues arising in the various phases of algorithm design, implemen-
tation, tuning, and experimental evaluation.

In 2007, we organized a first workshop intended to provide a forum for re-
searchers interested in the integration of relevant aspects of SLS research into a
more coherent methodology for engineering SLS algorithms. This event attracted
more than 50 participants and was widely considered a resounding success. It
was therefore an easy decision to organize a second event, SLS 2009, Engineering
Stochastic Local Search Algorithms — Designing, Implementing and Analyzing
Effective Heuristics. Like the inaugural SLS 2007, SLS 2009 brought together
researchers working on various aspects of SLS algorithms, ranging from more
theoretical contributions on aspects relevant for SLS algorithms to the devel-
opment of specific SLS algorithms for specific application problems. We believe
that this second event further promoted the awareness and use of principled
approaches and advanced methodology for the development of SLS algorithms
and other complex heuristic procedures.

Of the 27 manuscripts submitted, seven were accepted as full papers for these
workshop proceedings, which corresponds to an acceptance rate of about 25%.

VI Preface

During the workshop, each of these papers was presented in a 30-minute plenary
talk. In addition, ten articles with promising, ongoing research efforts were se-
lected for publication as short papers. The selected papers were chosen based on
the results of a rigorous peer-reviewing process, in which each manuscript was
evaluated by at least three experts. SLS 2009 also included the Doctoral Sympo-
sium on Engineering Stochastic Local Search Algorithms (SLS-DS), which was
organized by Frank Hutter and Marco Montes de Oca. All short papers and
the contributions of SLS-DS were presented in poster sessions. This format was
chosen in order to provide opportunities for extended discussion and interaction
among the participants. The workshop program was completed by three tutori-
als on important topics in SLS engineering given by well-known researchers in
the field.

We gratefully acknowledge the contributions of everyone who helped to make
SLS 2009 a successful and lively workshop. We thank Frank Hutter and Marco
Montes de Oca for the organization of the doctoral symposium, SLS-DS; every-
one at IRIDIA who helped in organizing the event; the researchers who submitted
their work; the Program Committee members and additional referees who pro-
vided valuable feedback during the paper selection process; the Université Libre
de Bruxelles (ULB) for providing the rooms for the event. Finally, we would
like to thank the Belgian National Funds for Scientific Research, and the French
community of Belgium for supporting this workshop.

June 2009 Thomas Stützle
Mauro Birattari
Holger H. Hoos

Organization

SLS 2009 was organized by IRIDIA, CoDE, Université Libre de Bruxelles,
Belgium.

Workshop Chairs

Thomas Stützle Université Libre de Bruxelles, Belgium
Mauro Birattari Université Libre de Bruxelles, Belgium
Holger H. Hoos University of British Columbia, Canada

Program Committee

Thomas Bartz-Beielstein Cologne University of Applied Sciences,
Germany

Roberto Battiti Università di Trento, Italy
Christian Blum Universitat Politècnica de Catalunya, Spain
Marco Chiarandini University of Southern Denmark, Denmark
Carlos Cotta University of Málaga, Spain
Patrick de Causmaecker Katholieke Universiteit Leuven, Kortrijk,

Belgium
Camil Demetrescu Università La Sapienza, Italy
Yves Deville Université Catholique de Louvain, Belgium
Luca Di Gaspero Università degli Studi di Udine, Italy
Karl Doerner Universität Wien, Austria
Marco Dorigo Université Libre de Bruxelles, Belgium
Carlos M. Fonseca University of Algarve, Portugal
Michel Gendreau Université de Montréal, Canada
Bruce Golden University of Maryland, USA
Walter J. Gutjahr Universität Wien, Austria
Jin-Kao Hao University of Angers, France
Richard F. Hartl Universität Wien, Austria
Geir Hasle SINTEF Applied Mathematics, Norway
Adele Howe Colorado State University, USA
David Johnson AT&T Labs Research, USA
Joshua Knowles University of Manchester, UK
Chu Min Li Université de Picardie Jules Verne, France
Arne Løkketangen Molde University College, Norway
Vittorio Maniezzo Università di Bologna, Italy
Catherine C. McGeoch Amherst College, USA
Daniel Merkle University of Southern Denmark, Denmark

VIII Organization

Frank Neumann Max-Planck-Institut für Informatik, Germany
Luis Paquete University of Coimbra, Portugal
Paola Pellegrini Università degli Studi di Trieste, Italy
Steven Prestwich University College Cork, Ireland
Günther Raidl Vienna University of Technology, Austria
Celso Ribeiro Universidade Federal Fluminense, Brazil
Andrea Roli Università di Bologna, Italy
Ruben Ruiz Valencia University of Technology, Spain
Michael Sampels Université Libre de Bruxelles, Belgium
Andrea Schaerf Università degli Studi di Udine, Italy
Marc Schoenauer Université Paris Sud, France
El-Ghazali Talbi University of Lille, France
Dirk Thierens Universiteit Utrecht, The Netherlands
Jean-Paul Watson Sandia National Labs, USA
David Woodruff University of California, Davis, USA
Mutsunori Yagiura Nagoya University, Japan

Local Arrangements

Saifullah bin Hussin, Renaud Lenne
Manuel López-Ibáñez Sabrina Oliveira
Zhi Yuan

Additional Referees

Marco A. Montes de Oca Lin Xu

Sponsoring Institutions

National Funds for Scientific Research, Belgium
http://www.fnrs.be

French Community of Belgium (through the research project META-X)
http://www.cfwb.be

Table of Contents

High-Performance Local Search for Task Scheduling with Human
Resource Allocation . 1

Bertrand Estellon, Frédéric Gardi, and Karim Nouioua

On the Use of Run Time Distributions to Evaluate and Compare
Stochastic Local Search Algorithms . 16

Celso C. Ribeiro, Isabel Rosseti, and Reinaldo Vallejos

Estimating Bounds on Expected Plateau Size in MAXSAT Problems . . . 31
Andrew M. Sutton, Adele E. Howe, and L. Darrell Whitley

A Theoretical Analysis of the k-Satisfiability Search Space 46
Andrew M. Sutton, Adele E. Howe, and L. Darrell Whitley

Loopy Substructural Local Search for the Bayesian Optimization
Algorithm . 61

Claudio F. Lima, Martin Pelikan, Fernando G. Lobo, and
David E. Goldberg

Running Time Analysis of ACO Systems for Shortest Path Problems . . . 76
Christian Horoba and Dirk Sudholt

Techniques and Tools for Local Search Landscape Visualization and
Analysis . 92

Franco Mascia and Mauro Brunato

Short Papers

High-Performance Local Search for Solving Real-Life Inventory Routing
Problems . 105

Thierry Benoist, Bertrand Estellon, Frédéric Gardi, and
Antoine Jeanjean

A Detailed Analysis of Two Metaheuristics for the Team Orienteering
Problem . 110

Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden

On the Explorative Behavior of MAX–MIN Ant System 115
Daniela Favaretto, Elena Moretti, and Paola Pellegrini

A Study on Dominance-Based Local Search Approaches for
Multiobjective Combinatorial Optimization . 120

Arnaud Liefooghe, Salma Mesmoudi, Jérémie Humeau,
Laetitia Jourdan, and El-Ghazali Talbi

X Table of Contents

A Memetic Algorithm for the Multidimensional Assignment Problem . . . 125
Gregory Gutin and Daniel Karapetyan

Autonomous Control Approach for Local Search . 130
Julien Robet, Frédéric Lardeux, and Frédéric Saubion

EasyGenetic: A Template Metaprogramming Framework for Genetic
Master-Slave Algorithms . 135

Stefano Benedettini, Andrea Roli, and Luca Di Gaspero

Adaptive Operator Selection for Iterated Local Search 140
Dirk Thierens

Improved Robustness through Population Variance in Ant Colony
Optimization . 145

David C. Matthews, Andrew M. Sutton, Doug Hains, and
L. Darrell Whitley

Mixed-Effects Modeling of Optimisation Algorithm Performance 150
Matteo Gagliolo, Catherine Legrand, and Mauro Birattari

Author Index . 155

High-Performance Local Search for Task
Scheduling with Human Resource Allocation

Bertrand Estellon1, Frédéric Gardi2, and Karim Nouioua1

1 Laboratoire d’Informatique Fondamentale – CNRS UMR 6166, Faculté des Sciences
de Luminy, Université Aix-Marseille II, Marseille, France

2 Bouygues e-lab, Paris, France
bertrand.estellon@lif.univ-mrs.fr, fgardi@bouygues.com,

karim.nouioua@lif.univ-mrs.fr

Abstract. In this paper, a real-life problem of task scheduling with hu-
man resource allocation is addressed. This problem was approached by
the authors in the context of the ROADEF 2007 Challenge, which is an
international competition organized by the French Operations Research
Society. The subject of the contest, proposed by the telecommunica-
tions company France Télécom, consists in planning maintenance in-
terventions and teams of technicians needed for their achievements. The
addressed combinatorial optimization problem is very hard: it contains
several NP-hard subproblems and its scale (hundreds of interventions
and technicians) induces a huge combinatorics. An effective and efficient
local-search heuristic is described to solve this problem. This algorithm
was ranked 2nd of the competition (over the 35 teams who have sub-
mitted a solution). Moreover, a methodology is revealed to design and
engineer high-performance local-search heuristics for solving practically
discrete optimization problems.

1 Presentation of the Problem

The problem proposed by the telecommunications company France Télécom as
subject of ROADEF 2007 Challenge [1] (an international competition organized
every two years by the French Operations Research Society) can be viewed as
a task scheduling problem with resource allocation. Here the tasks to plan are
maintenance interventions and their achievement requires human resources, some
technicians, each one having a skill level in different domains. The interventions
are more or less priority; on the whole, 4 levels of priority are defined. Then,
the objective is to minimize a linear function which depends on ending times of
latest interventions for each priority.

Formally, the input of the problem is composed of n interventions Ii and of
m technicians Tt. To each technician Tt is associated its skill level C(t, d) in the
domain d and its availability P (t, j) on day j (1 for available, 0 otherwise). Each
intervention has several characteristics too: D(i) its execution time, R(i, d, l) the
number of technicians of level l in domain d required for its completion, Z(i) its
priority level.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 B. Estellon, F. Gardi, and K. Nouioua

Concerning skills, we precise that the different domains of skill are disjoint, but
that the levels of each domain are hierarchically organized. Then, a technician
of level l in domain d is able to perform any intervention requiring a smaller
skill level (l′ < l) in the same domain. Consequently, the constants R(i, d, l) are
cumulative, in the sense that they specify the number of technicians needed at
level at least l in domain d. For example, for an intervention Ii which requires
two technicians of level 1 and one technician of level 3 in domain d, we have
R(i, d, 0) = 3, R(i, d, 1) = 3, R(i, d, 2) = 1, R(i, d, 3) = 1 and R(i, d, l) = 0 for all
l ≥ 4. Such a definition implies that the R(i, d, l) are non-increasing according
to the index l: R(i, d, l) ≥ R(i, d, l′) for all l ≤ l′.

Then, the notion of team arises. Daily, the (available) technicians must be
grouped into teams (even if a team may be composed of only one technician). We
insist on the fact that a team is formed for the entire day (for practical reasons).
Then, the problem is to partition daily the technicians into teams and to assign
them a set of interventions, in order to minimize an objective function depending
on the ending dates of the interventions. Two constraints lie on this assignment:
the sum of the lengths of interventions (which are completed sequentially) can
not exceed the length of a working day fixed to H = 120 and the skills of the
team must cover the skills required by the set of tasks in each domain. Finally,
a solution of the problem is given as follows: for each day j, the team Ej,e to
which belongs the technician Tt (the team Ej,0 contains all the technicians not
available on this day); for each intervention Ii, the day ji and the starting time
hi of its execution as well as the team Ej,e in charge of its execution.

The objective of the planning is to minimize the following cost function: 28t1+
14t2 + 4t3 + f , where tk denotes the ending date among those of the latest
interventions of priority k and f denotes the ending date of all interventions.
The starting date di (resp. ending date fi) of an intervention Ii is obtained as
ji · H + hi (resp. ji · H + hi + D(i)), the days being numbered from 0. Initially,
this objective function was supposed to imply the minimization of the tk’s in
lexicographic order (t1 � t2 � t3 � f). However, compensations between the four
terms of the objective function were allowed during the competition (impacting
gravely our approach as it will be seen later).

Finally, the scope of the problem may be extended in two ways. The first
is to introduce precedence relations between interventions: for all intervention
Ii, one can define a set P (i) of interventions which must be completed before
starting Ii (that is to say, any intervention Ii′ ∈ P (i) must satisfy the inequality
fi′ ≤ di). Note that the natural lapses of time between interventions (travel,
breaks, etc.) are here considered as null. The second extension is to define a
budget B allowing to subcontract a number of interventions. Then, a cost S(i)
is given for any intervention Ii and the sum of the cost S(i) of all abandoned
interventions must not exceed the budget B. In order to ensure the respect
of precedences in this case, any abandoned intervention Ii leads to recursively
abandon any intervention Ii′ such that Ii ∈ P (i′).

High-Performance Local Search for Task Scheduling 3

2 Contributions

To the best of our knowledge, this problem was never addressed in these terms
in the literature, both from fundamental and experimental points of view. Be-
cause of its large definition, the problem contains several NP-hard subproblems.
For any partition of technicians into teams a given day, determining if a set of
interventions is assignable to these teams while respecting the working duration
H , the precedence constraints and the skill constraints is NP-complete, even if
the execution time of all interventions is unit (all interventions have equal exe-
cution time), the number of teams is fixed to two and the precedence graph is
isomorphic to a set of vertex-disjoint paths [2]. In the case of arbitrary prece-
dence constraints, the problem remains NP-complete, even if the execution time
of all interventions is unit and the skill constraints are omitted (any intervention
can be performed by any team) [3]. Minimizing the number of days to plan all
interventions is NP-hard in the strong sense, even if the interventions are per-
formed by one sole team each day (containing all available technicians), without
precedence and skill constraints. Indeed, this subproblem corresponds to a bin-
packing problem [3] when the length H is given as an input of the problem.
Finally, maximizing the sum of lengths of the set of abandoned interventions is
equivalent to a knapsack problem (with precedence constraints) [3].

Because of its hardness and large scale (hundreds of interventions and tech-
nicians), such a problem is typical of real-life discrete optimisation problems
encountered in business and industry. In this paper, an effective and efficient
local-search heuristic is described to solve this problem. Our algorithm was
ranked 2nd of the ROADEF 2007 Challenge (over the 35 teams who have sub-
mitted a solution). The victorious algorithm, due to Hurkens [4], can be viewed
as a local-search heuristic where large neighborhoods [5] are explored by integer
linear programming (using ilog cplex 10.0 solver); the team Cordeau-Laporte-
Pasin-Ropke [6], ranked 2nd ex æquo, have also developed a large neighborhood
search approach, but based on destroy and repair moves. Before describing our
algorithm, we outline the methodology followed to design and implement it. This
methodology, already used at our winning participation to the ROADEF 2005
Challenge [7,8,9], is a simple and clear recipe to engineer high-performance local-
search heuristics for solving practically discrete optimization problems. Another
successful application of this methodology for solving real-life inventory routing
problems is presented in a companion paper [10].

For more details on high-performance algorithm engineering, the reader is re-
ferred to the papers by Moret et al. [11,12] and, as an example, to the outstanding
works of Helsgaun [13,14,15] on the traveling salesman problem.

3 Methodology: Three-Layers Design

Several papers have been published describing methodologies for engineering
local-search heuristics (see for example the survey edited by Aarts and Lenstra
[16]). But many of these methodological papers are essentially concentrating on

4 B. Estellon, F. Gardi, and K. Nouioua

search strategy

definition of
the search graph

exploration of
the search graph

moves

effectiveness

robustness

efficiency

reliability

algorithmics &
implementation

Fig. 1. The three layers of the methodology

search strategies and more particularly metaheuristics (see for example
[17,18,19]). In this paper, we suggest to approach the engineering of local-search
heuristics according to the following abc framework: a) search strategy, b) moves,
c) algorithmics & implementation. We claim that the performance of local-search
heuristics depends equally on the good treatment of each of these three layers.
In fact, each one covers a fondamental point of the local-search paradigm: the
definition of the search graph and the exploration of this graph. Figure 1 sum-
marizes the key points of the methodology; note that only a few simple concepts
are introduced for describing this one.

The search space S = (S, f), with S the set of solutions of the problem
and f : S �→ R the objective function to minimize over this set, is defined as
the discrete space into which local search walks. The search strategy, dedicated
to the problem (or even to instances of the problem), allows to redefine the
search space S if necessary. Indeed, the design of the search strategy may lead
to redefine the original couple (S, f) into a surrogate one, denoted by (Sg, fg),
which supports the convergence of local search towards high-quality local optima.
The idea is to increase the density of the search space S (more solutions in Sg).
A way to do that is to relax some constraints of the problem by switching them
into the objective function (similarly to Lagrangian relaxations in mathematical
programming [20, pp. 349–368]). The idea is to relax only business constraints,
and not physical constraints inducing the intrinsic combinatorial structure of the
problem (matching, partial ordering, etc.). Indeed, relaxing constraints which
strongly structure the solutions of the problem enables a wider diversification,
but makes more difficult the convergence toward a new admissible solution.

Then, the search graph G = (Sg, fg, A), associated to a local-search algorithm,
is defined as the directed graph obtained by adding an arc a ∈ A from s ∈ Sg

to s′ ∈ Sg if a move allows to reach the solution s′ from s. Vertices of S ⊆ Sg

are green, whereas vertices in Sg \ S are red. In the same way, the set A of arcs
is partitioned such that (s, s′) ∈ A is green if fg(s′) ≤ fg(s), or red otherwise.
Then, the iterations of a local-search algorithm (that is, all the solutions visited
during its walk) draw a subgraph in its associated search graph G, inducing a
green-arc path. Thus, the red points of the space serve as bridging points to
reach better admissible solutions, that is, green points having a better cost in
the sense of f .

High-Performance Local Search for Task Scheduling 5

The moves (also called transformations) play a central role because they
induce the connectivity of the search graph, which is decisive for convergence.
Then the idea is to increase the density of the search graph G (more arcs in A)
by defining a lot of moves, more or less orthogonal, more or less large, more or
less specialized. This latter notion consists in increasing the success probability
of a move (the number of red arcs visited before finding a green one) by using
structural properties specific to the problem or even to the instances (see for
example the work of Helsgaun [13,14,15] on travelling salesman problems or the
works of the authors [8,9] on car sequencing problems). Note that the idea which
consists in using systematically a large pool of moves (i.e., of neighborhoods)
appears at the root of well-known metaheuristics like Iterated Local Search or
Variable Neighborhood Search (see [21] for more details).

This is at these levels – search strategy and moves – that some fragments of
metaheuristics can be incorporated (thresholds, tabu lists). However, from our
point of view, the diversification of the search must be firstly attained through
the (re)definition of the search space (density) and the definition of moves (con-
nectivity), and not only through a meta-strategy. The main reason is that such
a diversification is guided and controlled via the surrogate objective function,
unlike traditional metaheuristics. This is why we prefer, at least for starting,
implementing a basic first-improvement descent strategy [16] with stochastic
choice of moves. In this case, the diversification is realized by accepting to move
to solutions with equal cost. Note that the introduction of stochastic elements
in every choice made during the search is shown to improve the diversification,
in particular by naturally avoiding cycling phenomena (nevertheless, stochastic
does not mean uniform).

Finally, algorithmics, in particular those related to the evaluation of moves
(that is, the exploration of neighborhoods), is crucial for efficiency. Since local
search is an incomplete search technique, its effectiveness is closely linked to
the number of solutions visited before the time limit. In this way, algorithmics
forms the engine of the search. Incremental algorithms, exploiting invariants in
discrete structures, help to speed up the convergence of local search by several
orders of magnitude (see for example the works of Katriel et al. [22] in the
context of the Comet software [23]). Then, careful implementations, aware of
the locality principle ruling the cache memory allocation and optimized by code
profiling, still helps to accelerate local search (see for example the works done
on SAT solvers [24]). From experience, it is not surprising to observe an order of
10 between the times of convergence of two local-search heuristics, apparently
based on the same principles.

Linked to algorithmics, software and implementation aspects like reliability
are no less crucial than efficiency. Because relying on complex incremental algo-
rithmics and data structures, engineering local search requires larger efforts for
verifying and testing than in traditional (business) software engineering. Hence,
the verification process of local-search softwares must be systematic. The first
step is to program with assertions [25] (by verifying preconditions, postcondi-
tions, invariants all along the program); in particular, one must check at each

6 B. Estellon, F. Gardi, and K. Nouioua

iteration of the local search (in debugging mode) that the current solution satis-
fies the constraints of the problem and that its objective value is correct. But one
step beyond, the consistency of all dynamic data structures must be checked (in
debugging mode) after each iteration of the local search by recomputing them
from scratch (with naive algorithms independent from the local-search code).
Consequently, a large part of the source code (and of the time spent to imple-
ment) in local-search engineering projects must be dedicated to verification and
testing: from experience, code checkers represent from 10 to 20 % of the whole
source code. Reliability aspects (as well as maintainability and portability is-
sues) must be imperatively taken into account for costing tightly local-search
engineering projects.

Once these three levels have been completed, the resulting algorithm can be
evaluated by computing statistics on target instances: success rate (number of
acceptations over the number of attempts) and improvement rate (number of
improvements in the sense of f over the number of attempts) for each move,
number of iterations and time to reach best solutions. From experience, the
quest for high performance requires many stepwise refinements, following the
80-20 rule (the last 20 % of improvement takes 80 % of the engineering time).

4 Description of the Algorithm

4.1 The Overall Heuristic

The general heuristic is divided into four successive phases, each phase k con-
sisting in planning interventions of priority k. The objective of one phase k is to
minimize the ending date tk of interventions with priority k, without degrading
ending dates of interventions with priority k′ < k. For this, a greedy algorithm
completes the feasible solution inherited from the previous phase with interven-
tions of priority k. Then, this solution is modified by local search in order to
decrease tk while maintaining ending dates tk′ for each priority k′ < k. Local
search, which is used to pack a set of interventions of a given priority, is the
critical routine of the overall heuristic.

More precisely, the local-search step for minimizing the ending date tk is
done as follows. Given one feasible solution with ending dates t1, t2, . . . , tk, a
new feasible solution with ending dates t1, t2, . . . , tk − 1 is searched. During
the search, an intervention is called infeasible if it is not completed before the
ending date tk − 1 or if the team of technicians to which this one is assigned
does not own enough skills to complete it. In this way, the surrogate objective
of local search is to minimize the number of infeasible interventions. When all
are feasible, a new feasible solution is obtained and the process is iterated. This
is an example of search strategy increasing density of the search space through
constraint relaxation, as described in the methodology section.

A preprocessing phase was added (during the last days of the competition) to
the overall heuristic in order to deal with compensations between the four terms
of the original objective function (originally assumed to be unlikely according
to France Télécom organizers). Indeed, scheduling interventions of priority k

High-Performance Local Search for Task Scheduling 7

before interventions of priority k′ < k may be advantageous according to the
global objective function, due to the weakly discriminating coefficients (28, 14,
4, 1). This paradox induces an additional difficulty for which our heuristic was
not prepared: to determine in which order the four priorities must be scheduled.
Thus, a preprocessing phase was designed to “guess” this order. For this, inter-
ventions of each priority k are scheduled separately to determine an upper bound
of their completion time ck; concretely, this is done by the local-search routine
in a short execution time (15 seconds for each priority, 1 minute on the whole).
Then, the order kept to schedule priorities is the one which minimizes the origi-
nal objective function, with ending dates tk obtained by summing durations ck.
For example, assume that one have c1 = 1200, c2 = 120, c3 = 600. The natural
ordering of priorities induces the ending dates t1 = 1200, t2 = 1320, t3 = 1920,
which implies a cost of 59760. But, by inverting priorities 1 and 2, we obtain
t1 = 1320, t2 = 120, t3 = 1920, which implies a cost of 46320. Consequently,
the order kept for the application of the overall heuristic will be: 2, 1, 3, 4. The
experimental study presented at the end of the paper shows that the optimal
ordering of priorities differs from the natural ordering 1, 2, 3, 4 for more than
the half of all instances. However, we do not linger more on this aspect of the
problem, since our work was focused on the local-search routine.

4.2 The Transformations

The local-search routine, employed to pack interventions of each priority, consists
in applying stochastically some transformations to modify the current solution.
We have defined two kinds of transformations, namely moves and swaps, applied
on two kinds of objects, namely technicians or interventions. A transformation
is accepted if the new solution respects the precedence constraints between in-
terventions, the maximal working duration H in a day, and if the number of
infeasible interventions is not increased.

Eight core transformations have been defined, which forms the engine of the
local search:

- MoveTechnician, SwapTechnicians
- MoveInterventionInterDays, SwapInterventionsInterDays
- MoveInterventionIntraDay, SwapInterventionsIntraDay
- MoveInterventionIntraTeam, SwapInterventionsIntraTeam

The transformations applied to technicians consist in moving or swapping some
technicians into a given day of the planning. The transformations applied to
interventions consist in moving or swapping interventions of the planning; the
suffixes InterDays (resp. IntraDay, IntraTeam) mean that interventions are
moved or swapped between different days (resp. into a same day, into a same
team). Then, these 8 transformations have been specialized in order to increase
their probability of success (it can be viewed as a refinement of neighborhoods
which are explored). For each transformation, the three following declinations
are defined:

8 B. Estellon, F. Gardi, and K. Nouioua

- Generic: choose technicians (resp. interventions) randomly;
- InfeasibleDay: choose randomly a day among the ones containing an infea-

sible intervention and pick technicians working this day (resp. interventions
performed this day) randomly;

- InfeasibleTeam: choose randomly a team among the ones containing an
infeasible intervention and pick technicians working in this team (resp. in-
terventions performed by this team) randomly.

Finally, additional transformations have been introduced to tackle the two possi-
ble extensions of the problem; namely, adding precedences between interventions,
and allowing to abandon interventions within the limit of a budget.

- AbandonInterventionBudget: abandon an intervention of the planning (de-
clined into Generic and InfeasibleDay);

- SwapInterventionsBudget: swap an abandoned intervention with a planned
one (declined into Generic and InfeasibleDay);

- ReinsertInterventionBudget: reinsert an abandoned intervention into the
planning;

- SwapInterventionsPrecedences: swap two interventions Ii, Ii′ such that
di ≤ di′ and the number of descendants of Ii′ in the precedence graph
is greater than or equal to the one of Ii (declined into InterDays and
IntraDay).

On the whole, a pool of 31 transformations is used. At each iteration of the heuris-
tic, a transformation is picked randomly following a certain distribution. Here the
convergence speed of the local search depends strongly of the utilization rate of
each transformation. These rates have been fixed by hand after experimentations
done with the first 20 benchmarks provided by France Télécom. Here is the out-
line of the distribution: (i) 25 % of MoveInterventionInterDays declined into
InfeasibleDay, (ii) 25 % of MoveTechnician declined into InfeasibleTeam,
(iii) 15 % of SwapTechnicians declined into InfeasibleTeam, and from 5 % to
1 % for the 28 other moves (if no budget is available, no budget-specific trans-
formation is used; idem for precedences). The prominence of transformations (i),
(ii), (iii) in the distribution is sensible: (i) is in charge of reinserting interventions
making a day infeasible into another ones, whereas (ii) and (iii) are supposed
to solve the infeasibility generated by lack of skills in teams. Note that, despite
their low utilization rate, the 28 other moves participate to the diversification of
the search.

4.3 Algorithmics and Implementation

Applying a transformation follows this scheme: if the evaluation of the move
is positive (evaluate), then the move is performed and all the incremental data
structures are updated (commit), else the incremental data structures are initial-
ized (rollback). Since the number of attempted moves is generally much higher
than the number of accepted moves, evaluate and rollback procedures are critical
for the efficiency of the local search. The evaluation procedure is staged in order

High-Performance Local Search for Task Scheduling 9

to stop early in case of rejection of the move; the different tests which are part of
it are ordered according to their time complexity and their propensity to fail. For
example, since the precedence constraints are considered as inviolable, all tests
related to precedences in the evaluation process of moves MoveIntervention
and SwapInterventions are done first. Since the evaluation process cannot be
detailed for each of the 8 core transformations, we will only insist on two main
points: the evaluation related to skills and the evaluation related to precedences.

Evaluation of Skills. Any move which impacts the technicians or the interven-
tions of a team calls for an evaluation of the adequation between skills provided
by the technicians and skills required by the interventions of this team. To realize
this evaluation, to each team of technicians is associated a matrix Ce of skills
giving for each domain d and level l, the number of technicians of level at least
l in the domain d. Then, an intervention Ii assigned to the team Ee is infeasible
(according to skills) if a pair (d, l) exists such that Ci(d, l) > Ce(d, l). Since the
number of domains and levels is not bounded (for example, the instance B4 of
benchmarks provided by France Télécom includes 40 domains), it is difficult to
design a data structure more efficient than this matrix domain/level to evaluate
skills. Consequently, evaluating the impact of a move on skills becomes time
expensive in the worst case, because in O(dl) time.

Fortunately, the number of cells of this matrix which are necessary to scan
can be drastically reduced in practice. For example, the scan can be restricted
to the useful domains of the matrix of skills required by the intervention, that is,
the domains for which at least one technician is required. Then, for each useful
domain d, the scan can be reduced to an interval of levels. Remind that our skill
matrices are built cumulatively: for each domain, the number of technicians is
non-increasing according to levels. Thus, the evaluation can start at the higher
level linf such that Ci(d, linf) = Ci(d, l) for all l ≤ linf and stop at the lower level
lsup such that Ci(d, lsup) = 0.

Finally, a heuristic test with a lower time-complexity can be done before the
scan of the matrix, in order to stop earlier in case of negative evaluation. For each
domain d, define Ce(d) =

∑
l Ce(d, l) and symmetrically Ci(d) =

∑
l Ci(d, l).

Then, the following necessary condition holds: if one domain d exists such that
Ci(d) > Ce(d), then Ii is infeasible (note that the reciprocal is trivially false).
Such a test located upstream enables to determine in only O(d) time the in-
feasible status of the intervention. In the same way, it is appropriate to place
even before another test verifying if Ci =

∑
d Ci(d) is strictly greater than

Ce =
∑

d Ce(d). Finally, the evaluation of skills is composed of three successive
tests, respectively in O(1) time, in O(d) time, and in O(dl) time, each one allow-
ing to conclude in case of failure. Of course, all the structures involved in these
tests must be maintained incrementally during the search.

Maintaining Precedences. The second point concerns the evaluation of the
ending dates t1, t2, . . . , tk−1, and more generally the evaluation of the completion
dates of the set of interventions assigned to each team. The computation of these
values are complicated by precedences between interventions, because requiring

10 B. Estellon, F. Gardi, and K. Nouioua

to compute longest paths in a directed acyclic graph (DAG). For this, a DAG
is attached to each day of the planning. Each DAG contains a source node
representing the start of the day and a destination node representing its end.
Then, to each intervention planned into the day is associated one node in the
DAG. These nodes are linked by two kinds of precedences: blue arcs which induce
the order of the interventions assigned to each team of technicians into the day,
and red arcs which represent the precedences given in input. The length l(i, i′)
of the arc connecting the nodes corresponding two interventions Ii ≺ Ii′ is given
by the duration D(i) of the intervention Ii. In this way, the earliest starting date
of one intervention is determined by the length of a longest path from the source
node to its node into the DAG. This date, stored at each node, allows to verify
if the maximal working duration H is respected for all teams, and to compute
the ending dates t1, t2, . . . , tk − 1.

Thus, any transformation MoveIntervention or SwapIntervention implies a
cascade of insertion/suppression of arcs into the DAG of impacted days, needing
a (temporary) update of the longest paths in order to evaluate the impact of the
transformation. Since the interventions of each team are completed sequentially,
each node has only one blue predecessor and only one blue successor. The red
predecessors and successors are stored as unordered lists into the data structure
of the node. These lists, implemented as arrays, are designed to support basic
routines (find, insert, delete, clear) in O(1) time. Such a representation was
motivated by the sparsity of the precedence graph on benchmarks A and B
(where the number of red arcs is lower than the number n of interventions).

The temporary update of longest paths is done by a recursive bread-first
propagation from the inserted/suppressed node. The new longest path at a node
is computed by scanning its predecessors: if the new longest path is different from
the old one, then the successors of the node are placed into a queue in order to
be examined recursively. This propagation also enables to detect the creation
of cycles, which makes the transformation rejected. When the maximum degree
of the DAG remains in O(1), which is the case here, our incremental algorithm
(evaluate, commit and rollback procedures) runs in optimal time and space O(a)
with a the number of affected nodes (that is, having a modified longest path).
The interested reader can consult the works of Katriel et al. [22] on the subject,
which give an incremental algorithm whose complexity becomes advantageous
when the maximum in-degree of a node is large.

An Implementation Detail. As claimed in introduction, every choice made
during the search follows stochastic rules, in order to avoid bias and to enforce
diversification. Then, a number of choices are made before applying each single
move. On average, the function MyRand(n), which returns a pseudo-random inte-
ger value between 0 and n−1, is called 5 times per attempted move. For example,
the transformation MoveInterventionInterDays declined into InfeasibleDay
(which represents 25 % of attempted moves) uses it 6 times. MyRand is in fact
the portion of code which is the most called into our program (more than 10
billion of calls over 20 minutes of running time).

High-Performance Local Search for Task Scheduling 11

A direct implementation (in ISO C programming language) of MyRand(n)
is n * rand() / (RAND MAX + 1.0) [26, p. 277], where rand() is a function
of the stdlib library returning a pseudo-random integer between 0 and the
largest positive int-type number. Although providing pseudo-random integer
sequences of sufficient quality for our application, a profiling of our program
with gprof [27] pointed MyRand as the main bottleneck for running time. Inspired
by the Knuth-Lewis generator [26, pp. 283–286], we have engineered a quick
MyRand(n) function dedicated to our needs: (n * ((seed = 1664525 * seed +
1013904223)
 16))
 16, which is correct if n is between 0 and 216 − 1 =
65535 and if the int type is encoded on 32 bits (the traditional seed of the
generator is initialized at the beginning of the program).

Experimentations on different computing platforms have shown that this con-
cise implementation is at least 3 times faster than the direct implementation.
The period of the generator is of length 232 > 4 × 109, which is comparable to
the one of rand() and remains sufficient in this context (from experience, the
quality of the pseudo-random number generation is not highly critical for simu-
lating randomness in local search). This enables us to reduce the part of running
time spent in MyRand from 17 % to 7 %, lowering it to the levels of the other
time-consuming functions of the program (the 3 functions appearing just after
MyRand, which are parts of the evaluation process, consume each one nearly 5 %
of the total running time).

5 Experimental Results

The whole algorithm was implemented in C programming language (ISO C99).
The resulting program, which includes nearly 12000 lines of code, was compiled
and tested on several computing platforms with comparable performance (Red
Hat Linux/AMD Athlon 64, Windows XP/Intel Pentium 4, Windows XP/Intel
Xeon, Windows Vista/Intel Xeon 64) using the free compiler GCC 3.4.4 with
options -O3 -pedantic -Wall -W -std=c99}. Note that nearly 10 % of the
source code is dedicated to the verification of the program.

The benchmarks A, B, X provided by France Télécom and used for tests
can be downloaded on the web page of the Challenge [1] (the set X, used to rank
the competitors, was unveiled once the final results proclaimed). On each tested
platform, our local-search algorithm attempts more than 1 million moves per
second, even for large-scale instances (for example instance B8: 800 interventions,
150 technicians, 10 domains and 4 levels for skills, 440 precedences. Over 20
minutes of running time (which is the maximum allowed for the competition),
the heuristic visits more than 1 billion solutions into the surrogate search space.
The average success rate of transformations (that is, the number of accepted
transformations divided by the number of attempted ones) varies between 10
and 60 % according to the instances. The memory allocated by the program
does not exceed 10 Mo for any instance of the benchmarks (for example, 8 Mo of
memory are allocated for B8 instance), allowing a full exploitation of the cache
memory. Table 1 reports the results obtained on a computer equipped with a

12 B. Estellon, F. Gardi, and K. Nouioua

Table 1. Benchmarks A, B, X: characteristics and results (M = million)

data n m d l P B FT EGN BEST gap priority attempt accept improve
A1 5 5 3 2 0 0 2490 2340 2340 0.0 % 1234 8696 M 1260 M 2
A2 5 5 3 2 2 0 4755 4755 4755 0.0 % 1234 4626 M 1530 M 2
A3 20 7 3 2 0 0 15840 11880 11880 0.0 % 2134 4262 M 1178 M 3
A4 20 7 4 3 7 0 14880 14040 13452 4.4 % 1234 4558 M 1047 M 80
A5 50 10 3 2 13 0 41220 29400 28845 2.0 % 2134 5203 M 951 M 273
A6 50 10 5 4 11 0 30090 18795 18795 0.0 % 2134 4861 M 1163 M 225
A7 100 20 5 4 31 0 38580 30540 29690 2.9 % 1234 4968 M 892 M 669
A8 100 20 5 4 21 0 26820 20100 16920 18.8 % 1234 4958 M 1176 M 1014
A9 100 20 5 4 22 0 35600 27440 27440 0.0 % 2134 5081 M 877 M 1166
A10 100 15 5 4 31 0 51720 38460 38296 0.5 % 1234 5689 M 707 M 577
B1 200 20 4 4 47 300 69960 33900 33675 0.7 % 1234 4453 M 1012 M 833
B2 300 30 5 3 143 300 34065 16260 15510 4.9 % 1234 4259 M 945 M 1195
B3 400 40 4 4 57 500 34095 16005 15870 0.9 % 1234 3722 M 825 M 1830
B4 400 30 40 3 112 300 50340 24330 23700 2.7 % 2134 2485 M 604 M 604
B5 500 50 7 4 427 900 150360 88680 87300 1.6 % 1234 3344 M 1520 M 612
B6 500 30 8 3 457 300 47595 27675 27210 1.8 % 2134 4437 M 616 M 1534
B7 500 100 10 5 387 500 56940 36900 33060 11.7 % 1234 2867 M 1544 M 643
B8 800 150 10 4 440 500 51720 36840 32160 14.6 % 1234 2927 M 1513 M 1036
B9 120 60 5 5 55 100 44640 32700 28080 16.5 % 1234 3853 M 1470 M 697
B10 120 40 5 5 55 500 61560 41280 34440 19.9 % 1234 3704 M 1499 M 565
X1 600 60 15 4 195 50 n/a 180240 151140 19.3 % 1234 2622 M 1136 M 546
X2 800 100 6 6 536 500 n/a 8370 7260 15.3 % 1234 2764 M 962 M 2712
X3 300 50 20 3 224 1000 n/a 50760 50040 1.5 % 1234 2458 M 1464 M 888
X4 800 70 15 7 321 150 n/a 68960 65400 5.5 % 2134 3383 M 623 M 2015
X5 600 60 15 4 201 50 n/a 178560 147000 21.5 % 1234 2551 M 1222 M 599
X6 200 20 6 6 128 500 n/a 10440 9480 10.2 % 1234 3573 M 1051 M 487
X7 300 50 20 3 235 1000 n/a 38400 33240 15.6 % 1234 2533 M 1405 M 527
X8 100 30 15 7 40 150 n/a 23800 23640 0.7 % 1234 2712 M 1330 M 327
X9 500 50 15 4 184 50 n/a 154920 134760 15.0 % 1234 2541 M 1156 M 522
X10 500 40 15 4 184 500 n/a 152280 137040 11.2 % 1234 2739 M 1183 M 546

average 7.3 % 3894 M 1129 M 790

Windows XP operating system and a chipset Intel Xeon 3075 (CPU 2.67 GHz, L1
cache 64 Kio, L2 cache 4 Mio, RAM 2 Go). An executable binary file (compiled
for the desired computing architecture) is available on request from the authors.

The characteristics of each instance are given on the left part of the table: the
number n of interventions, the number m of technicians, the number d of skill
domains, the number l of skill levels, the number P of (non transitive) prece-
dences between interventions, the budget B available. For each instance, 5 runs
were performed, each one limited to 1200 seconds (20 minutes). In the middle
part of the table, the columns “FT”, “EGN”, “BEST”, “% gap”, “priority” con-
tain respectively the result obtained by France Télécom’s algorithm, the worst
result obtained by our algorithm (over the 5 runs), the best result obtained
among all the competitors (including the 5 runs of our algorithm), the relative
gap (in %) between the values of the two previous columns, and the ordering of
priorities used by the EGN algorithm (for example, the value 3214 means that
the priorities were scheduled according to the ordering 3, 2, 1, 4). In the right

High-Performance Local Search for Task Scheduling 13

Table 2. Results with optimal priority ordering (left) or extended time limits (right)

data EGN EGN∗ BEST % gap priority
A5 29700 28845 28845 0.0 3214
A8 20100 16979 16979 0.0 2134
B7 36900 35700 33300 7.3 2134
B9 32700 28080 28080 0.0 2134
B10 41280 34440 34440 0.0 2314
X2 8370 7440 7260 2.5 2134
X6 10440 10140 9480 7.0 2134
X7 38400 32280 32280 0.0 2134
X8 23800 23220 23220 0.0 2134

data 20 min 1 hr 3 hrs 9 hrs
X1 180240 170460 168240 158280
X5 178560 167280 165120 164760
X9 154920 146520 146040 141720
X10 152280 144360 140340 140160

part of the table, the column “attempt” (resp. “accept”, “improve”) reports the
average number of attempted transformations (resp. accepted transformations,
strictly improving transformations).

A weak gap is observed between the results of the 5 runs of our algorithm
(that is why only the worst result is given here). Note that this gap increases
with the number of planned days. Thus, gaps greater than 1 % between runs are
observed for the following instances: X1 (57 days), X5 (52 days), X9 (50 days),
X10 (49 days). Then, the relative gap between the results of our algorithm and
the best results of the Challenge shows that this one is very competitive. On
average, EGN algorithm reduces by 30 % the cost of the solutions proposed
by France Télécom (and by 41 % for the sole benchmark B). On the other
hand, the gap between our solutions and the best solutions obtained among all
competitors is of 7.3 % on average (with a standard deviation of 7.5 %). On the
30 instances, our algorithm obtains the best solution for 13 ones (7 for A, 6 for
B, 3 for X) and obtains a solution having a cost lower than 6 % of the cost of
the best solution for 18 instances (9 for A, 6 for B, 3 for X).

Besides, we are able to explain why EGN algorithm fails to find the best
solution for the 17 remaining instances. The main reason is that the ordering
of priorities computed in the preprocessing stage is not the most appropriate.
The table on the left part of Table 2 shows the cost obtained by our algorithm
assuming that the optimal ordering is known. This cost appears in the column
named “EGN∗” and the optimal ordering appears in the column named “prior-
ity”. In this case, one can observe that for 6 more instances we obtain the best
solution. The second reason is still due to the multi-objective nature of the cost
function. For example, for instance A4, EGN algorithm obtains the following
solution: t1 = 315, t2 = 540 and t3 = 660 with global cost 14040. Now, relaxing
slightly the ending date of interventions with priority 1 allows to improve the
global cost thanks to the compensation of the two first terms of the objective
function: t1 = 324, t2 = 480 and t3 = 660 with global cost 13452 (best known
solution).

However, our local-search approach is overcome on instances X1, X5, X9, X10
by large neighborhood search approaches of Hurkens [4], winner of the Chal-
lenge, and to a lesser extend, of Cordeau et al. [6] ranked second ex æquo.
In fact, these instances contain in majority long interventions (of length 60 or

14 B. Estellon, F. Gardi, and K. Nouioua

120) requiring many technicians, which reduces considerably the combinatorics
induced by the assignment of interventions to teams and then allows integer pro-
gramming approaches for tackling subproblems. To make up for this weakness,
it seems therefore appropriate to add some moves with larger neighborhoods to
our pool of transformations (as done in [8] for car sequencing problems). A first
simple idea is to implement (k, l)-swap transformations, consisting in exchanging
k interventions with l other ones (here only (1, 1)-swaps are done). The table
on the right part of Table 2 gives results obtained for these 4 instances with
extended time limits, showing that our algorithm converges toward a solution of
quality near from the ones of Hurkens and Cordeau et al. [1].

References

1. ROADEF Challenge (2007): http://www.g-scop.fr/ChallengeROADEF2007/
2. Jansen, K., Woeginger, G., Yu, Z.: UET-scheduling with chain-type precedence

constraints. Computers and Operations Research 22(9), 915–920 (1995)
3. Garey, M., Johnson, D.: Computer and Intractability: a Guide to the Theory of

NP-Completeness. W.H. Freeman & Co., New York (1979)
4. Hurkens, C.: Incorporating the strength of MIP modeling in schedule construc-

tion. In: ROADEF 2007, le 8ème Congrès de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision, Grenoble, France (2007) (in French)

5. Ahuja, R., Ergun, Ö., Orlin, J., Punnen, A.: A survey of very large-scale neighbor-
hood search techniques. Discrete Applied Mathematics 123, 75–102 (2002)

6. Cordeau, J.F., Laporte, G., Pasin, F., Ropke, S.: ROADEF 2007 challenge:
scheduling of technicians and interventions in a telecommunications company.
In: ROADEF 2007, le 8ème Congrès de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision, Grenoble, France (2007) (in French)

7. ROADEF Challenge 2005:
http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/

8. Estellon, B., Gardi, F., Nouioua, K.: A survey of very large-scale neighborhood
search techniques. RAIRO Operations Research 40(4), 355–379 (2006)

9. Estellon, B., Gardi, F., Nouioua, K.: Two local search approaches for solving real-
life car sequencing problems. European Journal of Operational Research 191(3),
928–944 (2008)

10. Benoist, T., Estellon, B., Gardi, F., Jeanjean, A.: High-performance local search
for solving inventory routing problems. In: Stützle, T., Birattari, M., Hoos, H.H.
(eds.) SLS 2009. LNCS, vol. 5752, pp. 105–109. Springer, Heidelberg (2009)

11. Moret, B.: Towards a discipline of experimental algorithmics. In: Goldwasser, M.,
Johnson, D., McGeoch, C. (eds.) Data Structures, Near Neighbor Searches, and
Methodology: 5th and 6th DIMACS Implementation Challenges. DIMACS Mono-
graphs, vol. 59, pp. 197–213. American Mathematical Society, Providence (2002)

12. Moret, B., Bader, D., Warnow, T.: High-performance algorithm engineering for
computational phylogenetics. Journal of Supercomputing 22(1), 99–111 (2002)

13. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling sales-
man heuristic. Datalogiske Skrifter (Writings on Computer Science) 81, Roskilde
University, Denmark (1998)

14. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research 126(1), 106–130 (2000)

http://www.g-scop.fr/ChallengeROADEF2007/
http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/

High-Performance Local Search for Task Scheduling 15

15. Helsgaun, K.: An effective implementation of k-opt moves for the Lin-Kernighan
tsp heuristic. Datalogiske Skrifter (Writings on Computer Science) 109, Roskilde
University, Denmark (2006)

16. Aarts, E., Lenstra, J. (eds.): Local Search in Combinatorial Optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons,
Chichester (1997)

17. Hansen, P., Mladenović, N., Pérez, J.M.: Variable neighborhood search: methods
and applications. 4OR 6(4), 319–360 (2008)

18. Løkketangen, A.: The importance of being careful. In: Stützle, T., Birattari, M.,
Hoos, H.H. (eds.) SLS 2007. LNCS, vol. 4638, pp. 1–15. Springer, Heidelberg (2007)

19. Pellegrini, P., Birattari, M.: Implementation effort and performance. In: Stützle, T.,
Birattari, M., Hoos, H.H. (eds.) SLS 2007. LNCS, vol. 4638, pp. 31–45. Springer,
Heidelberg (2007)

20. Minoux, M.: Programmation Mathématique: Théorie et Algorithmes. Éditions Tec
& Doc, Lavoisier, 2nd edn. (2008) (in French)

21. Glover, F., Kochenberger, G. (eds.): Handbook of Metaheuristics. International
Series in Operations Research and Management Science, vol. 57. Kluwer Academic
Publishers, Dordrecht (2002)

22. Katriel, I., Michel, L., Hentenryck, P.V.: Maintaining longest paths incrementally.
Constraints 10(2), 159–183 (2005)

23. Michel, L., Hentenryck, P.V.: A constraint-based architecture for local search. In:
Proceedings of OOPSLA 2002, the 2002 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications. SIGPLAN Notices,
vol. 37, pp. 83–100. ACM Press, New York (2002)

24. Zhang, L., Malik, S.: Cache performance of SAT solvers: a case study for efficient
implementation of algorithms. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003.
LNCS, vol. 2919, pp. 287–298. Springer, Heidelberg (2004)

25. Rosenblum, D.: Towards a method of programming with assertions. In: Proceedings
of ICSE 1992, the 14th International Conference on Software Engineering, pp. 92–
104. ACM Press, New York (1992)

26. Press, W., Tenkolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C:
the Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge
(1995)

27. Fenlason, J., Stallman, R.: GNU gprof: the GNU profiler (1998),
http://www.gnu.org/software/binutils/

http://www.gnu.org/software/binutils/

On the Use of Run Time Distributions
to Evaluate and Compare Stochastic

Local Search Algorithms

Celso C. Ribeiro1, Isabel Rosseti2, and Reinaldo Vallejos3

1 Department of Computer Science, Universidade Federal Fluminense, Niterói, Brazil
2 Department of Science and Technology, Universidade Federal Fluminense,

Rio das Ostras, Brazil
3 Telematics Group, Department of Electronic Engineering, Universidad Técnica

Federico Santa Maŕıa, Valparáıso, Chile
{celso,rosseti}@ic.uff.br, reinaldo.vallejos@usm.cl

Abstract. Run time distributions or time-to-target plots are very use-
ful tools to characterize the running times of stochastic algorithms for
combinatorial optimization. We further explore run time distributions
and describe a new tool to compare two algorithms based on stochastic
local search. For the case where the running times of both algorithms fit
exponential distributions, we derive a closed form index that gives the
probability that one of them finds a solution at least as good as a given
target value in a smaller computation time than the other. This result is
extended to the case of general run time distributions and a numerical
iterative procedure is described for the computation of the above prob-
ability value. Numerical examples illustrate the application of this tool
in the comparison of different algorithms for three different problems.

1 Motivation

Run time distributions or time-to-target plots display on the ordinate axis the
probability that an algorithm will find a solution at least as good as a given
target value within a given running time, shown on the abscissa axis. Time-to-
target plots were first used by Feo et al. [1]. Run time distributions have been
advocated also by Hoos and Stützle [2,3] as a way to characterize the running
times of stochastic algorithms for combinatorial optimization.

It has been observed that in many implementations of local search heuristics
for combinatorial optimization problems, such as simulated annealing, genetic
algorithms, iterated local search, tabu search, and GRASP [4,5,6,7,8,9,10,11,12],
the random variable time to target value fits an exponential (or a shifted expo-
nential) distribution. Hoos and Stützle [13,8] conjecture that this is true for all
local search methods for combinatorial optimization.

Aiex et al. [14] describe a perl program to create time-to-target plots for mea-
sured times that are assumed to fit a shifted exponential distribution, following
[4]. Such plots are very useful in the comparison of different algorithms for solv-
ing a given problem and have been widely used as a tool for algorithm design
and comparison.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 16–30, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Use of Run Time Distributions 17

In this work, we further explore run time distributions to evaluate stochastic
local search algorithms. We describe a new tool to compare any pair of different
stochastic local search algorithms and we use it in the investigation of different
applications. Under the assumption that the running times of the two algo-
rithms follow exponential (or shifted exponential) distributions, we develop in
Section 2 a closed form index that gives the probability that one of the algorithms
finds a target solution value in a smaller computation time than the other. In
Section 3, this result is extended to the case of general run time distributions
and a numerical iterative procedure is described for the computation of such
probability. Applications illustrating the comparison of different algorithms for
the same problem appear in Section 4. Concluding remarks are made in the last
section.

2 Comparing Exponential-Time Algorithms

We assume the existence of two stochastic local search algorithms A1 and A2 for
some combinatorial optimization problem. Furthermore, we assume that their
running times fit exponential (or shifted exponential) distributions. We denote
by X1 (resp. X2) the continuous random variable representing the time needed
by algorithm A1 (resp. A2) to find a solution as good as a given target value:

X1 �→
{

0, τ < T1

λ1e
−λ1(τ−T1), τ ≥ T1

and

X2 �→
{

0, τ < T2

λ2e
−λ2(τ−T2), τ ≥ T2

where T1, λ1, T2, and λ2 are parameters. The cumulative probability distribution
and the probability density function of X1 are depicted in Figure 1.

Since both algorithms stop when they find a solution at least as good as the
target, we may say that algorithm A1 performs better than A2 if the former stops
before the latter. Therefore, we must evaluate the probability that X1 takes a
value smaller than or equal to X2, i.e. we compute Pr(X1 ≤ X2). Conditioning
on the value of X2 and applying the total probability theorem, we obtain:

Pr(X1 ≤ X2) =
∫ ∞

−∞
Pr(X1 ≤ X2|X2 = τ)fX2(τ)dτ =

=
∫ ∞

T2

Pr(X1 ≤ X2|X2 = τ)λ2e
−λ2(τ−T2)dτ =

∫ ∞

T2

Pr(X1 ≤ τ)λ2e
−λ2(τ−T2)dτ.

Let ν = τ − T2. Then, dν = dτ and

Pr(X1 ≤ X2) =
∫ ∞

0
Pr[X1 ≤ (ν + T2)]λ2e

−λ2νdν. (1)

18 C.C. Ribeiro, I. Rosseti, and R. Vallejos

1

)(
1

11 Te

1

)(111
Te

)(
1Xf

1T

1T

0

0

)(
1XF

Fig. 1. Probability density function and cumulative probability distribution of X1

To solve the above integral, one first has to compute

Pr[X1 ≤ (ν + T2)] =
∫ ν+T2

−∞
fX1(τ)dτ.

Assuming that T2 ≥ T1, without loss of generality, we have that:

Pr[X1 ≤ (ν + T2)] =
∫ ν+T2

T1

λ1e
−λ1(τ−T1)dτ.

Now, let w = τ − T1. Then, dw = dτ and

Pr[X1 ≤ (ν + T2)] =
∫ ν+T2−T1

0
λ1e

−λ1wdw = 1 − e−λ1(ν+T2−T1). (2)

Replacing (2) in equation (1), we obtain

Pr(X1 ≤ X2) =
∫ ∞

0
[1 − e−λ1(ν+T2−T1)]λ2e

−λ2νdν =

= 1 − e−λ1(T2−T1)
∫ ∞

0
e−ν(λ1+λ2)dν = 1 + e−λ1(T2−T1)λ2

e−ν(λ1+λ2)

λ1 + λ2

∣∣∣∣ν = ∞
ν = 0 .

Finally,

Pr(X1 ≤ X2) = 1 − e−λ1(T2−T1) λ2

λ1 + λ2
. (3)

On the Use of Run Time Distributions 19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

(a) GRASP with bidirectional path-relinking (b) Pure GRASP

Fig. 2. Run time distributions on an instance of the 2-path network design problem
with 80 nodes and 800 origin-destination pairs, with target value set at 588

This result can be better interpreted by rewriting expression (3) as:

Pr(X1 ≤ X2) = (1 − e−λ1(T2−T1)) + e−λ1(T2−T1) λ1

λ1 + λ2
. (4)

The first term of the right-hand side of equation (4) is the probability that
0 ≤ X1 ≤ T2, in which case X1 is clearly less than or equal to X2. The second
term of (4) is the probability that X1 be greater than T2 and less than or equal
to X2, given that X1 ≥ T2, which completes the interpretation.

To illustrate the above result, we consider two algorithms described in [15]
for solving the 2-path network design problem. Algorithm A1 is an implementa-
tion of GRASP with bidirectional path-relinking, while algorithm A2 is a pure
GRASP heuristic. Figure 2 depicts the run time distributions obtained after 500
runs with different seeds on an instance with 80 nodes and 800 origin-destination
pairs, with the target value set at 588. The plots have been obtained with the
perl tool provided in [14], which also computed the parameters of the two dis-
tributions: λ1 = 0.218988, T1 = 0.01, λ2 = 17.829236, and T2 = 0.01. Applying
expression (3), we get Pr(X1 ≤ X2) = 0.943516. This probability is consistent
with Figure 3, in which the run time distribution of GRASP with bidirectional
path-relinking is much to the left of that of pure GRASP for the same instance.

Aiex et al. [4] have shown experimentally that the time taken by a GRASP
heuristic to find a solution at least as good as a given target value fits an expo-
nential distribution. If the setup times are not negligible, it fits a two-parameter
shifted exponential distribution. The experiments involved 2,400 runs of five
problems: maximum stable set [1], quadratic assignment [16], graph planariza-
tion [17], maximum weighted satisfiability [18], and maximum covering [19].

However, if path-relinking is applied as an intensification step at the end of
each iteration [20,21,15], then the iterations are no longer independent and the

20 C.C. Ribeiro, I. Rosseti, and R. Vallejos

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.001 0.01 0.1 1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

GRASP
GRASP+biPR

Fig. 3. Superimposed run time distributions of GRASP with bidirectional path-
relinking and pure GRASP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 4. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on an instance of the 2-path network design problem with 80 nodes and
800 origin-destination pairs, with target set to 588

memoryless characteristic of GRASP is destroyed. Consequently, the time-to-
target random variable may not fit an exponential distribution.

This claim is illustrated by two implementations of GRASP with path-
relinking. The first is an application to the 2-path network design problem [15].
The run time distribution and the quantile-quantile plot for an instance with 80
nodes and 800 origin-destination pairs are depicted in Figure 4. The second is
an application to the three-index assignment problem [22]. Run time distribu-
tions and quantile-quantile plots for Balas and Saltzman problems 22.1 (target
set to 8) and 24.1 (target set to 7) are shown in Figures 5 and 6, respectively.
We observe that points steadily deviate by more than one standard deviation
from the estimate for the upper quantiles in the quantile-quantile plots (i.e.,
many points associated with large computation times fall outside the plus or
minus one standard deviation bounds). Therefore, we may say that these run
time distributions are not exponential.

On the Use of Run Time Distributions 21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 5. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on Balas and Saltzman problem 22.1, with target set to 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 6. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on Balas and Saltzman problem 24.1, with target value to 7

If the running times do not fit exponential distributions, then the result
established by expression (3) does not hold. Therefore, this approach is extended
to general run time distributions in the next section.

3 General Run Time Distributions

Let X1 and X2 be continuous random variables, with cumulative probability
distributions FX1 (τ) and FX2 (τ) and probability density functions fX1(τ) and
fX2(τ). Then,

Pr(X1 ≤ X2) =
∫ ∞

−∞
Pr(X1 ≤ τ)fX2 (τ)dτ =

∫ ∞

0
Pr(X1 ≤ τ)fX2(τ)dτ,

22 C.C. Ribeiro, I. Rosseti, and R. Vallejos

since fX1(τ) = fX2(τ) = 0 for any τ < 0. For an arbitrary small real number ε,
the above expression can be rewritten as

Pr(X1 ≤ X2) =
∞∑

i=0

∫ (i+1)ε

iε

Pr(X1 ≤ τ)fX2 (τ)dτ. (5)

Since Pr(X1 ≤ iε) ≤ Pr(X1 ≤ τ) ≤ Pr(X1 ≤ (i + 1)ε) for iε ≤ τ ≤ (i + 1)ε,
replacing Pr(X1 ≤ τ) by Pr(X1 ≤ iε) and by Pr(X1 ≤ (i + 1)ε) in (5) leads to

∞∑
i=0

FX1(iε)
∫ (i+1)ε

iε

fX2(τ)dτ ≤ Pr(X1 ≤ X2) ≤
∞∑

i=0

FX1((i + 1)ε)
∫ (i+1)ε

iε

fX2(τ)dτ.

Let L(ε) and R(ε) be the value of the left and right hand sides of the above
expression, respectively, with Δ(ε) = R(ε) − L(ε) being the difference between
the upper and lower bounds of Pr(X1 ≤ X2). Then,

Δ(ε) =
∞∑

i=0

[FX1((i + 1)ε) − FX1 (iε)]
∫ (i+1)ε

iε

fX2(τ)dτ.

Let δ = maxτ≥0{fX1(τ)}. Since |FX1((i + 1)ε) − FX1 (iε)| ≤ δε for i ≥ 0,

Δ(ε) ≤
∞∑

i=0

δε

∫ (i+1)ε

iε

fX2(τ)dτ = δε

∫ ∞

0
fX2(τ)dτ = δε.

In order to evaluate a good approximation to Pr(X1 ≤ X2), we select the appro-
priate value of ε such that the resulting approximation error Δ(ε) is sufficiently
small. Next, we compute L(ε) and R(ε) to obtain the approximation

Pr(X1 ≤ X2) ≈ L(ε) + R(ε)
2

. (6)

In practice, the probability distributions are unknown. Instead of them, all the
information available is a large number N of observations of the random variables
X1 and X2. Since δ = maxτ≥0{fX1(τ)} is unknown, the value of ε cannot be
estimated. Then, we proceed iteratively as follows.

Let t1(j) (resp. t2(j)) be the value of the j-th smallest observation of X1
(resp. X2), for j = 1, . . . , N . We set the bounds a = min{t1(1), t2(1)} and
b = max{t1(N), t2(N)} and choose an arbitrary number h of integration intervals
to compute an initial value for the integration interval ε = (b − a)/h. For small
values of ε, the probability density function fX1(τ) in the interval [iε, (i + 1)ε]
can be approximated by f̂X1(τ) = (F̂X1 ((i + 1)ε) − F̂X1(iε))/ε, where

F̂X1(iε) = |{t1(j), j = 1, . . . , N : t1(j) ≤ iε}|.
The same approximations hold for random variable X2.

Finally, the value of Pr(X1 ≤ X2) can be computed as in (6), using the
estimates f̂X1(τ) and f̂X2(τ) in the computation of L(ε) and R(ε). If the ap-
proximation error Δ(ε) = R(ε) − L(ε) is sufficiently small, then the procedure
stops. Otherwise, the value of ε is halved and the above steps are repeated.

On the Use of Run Time Distributions 23

4 Numerical Applications

We apply the tool described in the previous section to compare pairs of stochas-
tic local search algorithms running on the same instance of three different test
problems: server replication for reliable multicast, routing and wavelength as-
signment, and 2-path network design.

4.1 DM-D5 and GRASP Algorithms for Server Replication

Current multicast services use a delivery tree, whose root represents the sender,
leaves represent the receivers, and internal nodes represent relaying servers.
Transmission is performed by creating copies of the data at split points of the
tree. A successful technique to provide a reliable multicast service is the server
replication approach, in which data is replicated at some multicast-capable re-
laying servers and each of them is responsible for the retransmission of packets
to receivers in its group. The problem consists of selecting the best multicast-
capable relaying hosts to act as replicated servers in a multicast scenario.

DM-GRASP is a hybrid version of the GRASP metaheuristic that incorpo-
rates a data-mining process [23]. Its basic principle consists of mining for patterns
found in good-quality solutions to guide the construction of new solutions. We
compare two different heuristics for the server replication problem: algorithm A1
is an implementation of the DM-D5 version [24] of DM-GRASP, in which the
mining algorithm is periodically applied, while A2 is a pure GRASP heuristic.
We present illustrative results for two instances using the same network scenario,
with m = 25 and m = 50 replication servers.

Each algorithm was run 200 times with different seeds. The target was set at
2,818.925 for the instance with m = 25 and at 2,299.07 for that with m = 50.
Figures 7 and 8 depict run time distributions and quantile-quantile plots for
DM-D5. Running times of the latter did not fit exponential distributions for

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 7. Run time distribution and quantile-quantile plot for DM-D5 algorithm on the
instance with m = 25 and target value set at 2,818.925

24 C.C. Ribeiro, I. Rosseti, and R. Vallejos

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 8. Run time distribution and quantile-quantile plot for DM-D5 algorithm on the
instance with m = 50 and target value set at 2,299.07

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

DM-D5
GRASP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

DM-D5
GRASP

(a) m = 25 with target 2,818.925 (b) m = 50 with target 2,299.07

Fig. 9. Superimposed run time distributions of DM-D5 and GRASP: (a) Pr(X1 ≤
X2) = 0.614775, and (b) Pr(X1 ≤ X2) = 0.849163

any of the instances. GRASP running times were exponential for both. The
run time distributions of DM-D5 and GRASP are superimposed in Figure 9.
Algorithm DM-D5 outperformed GRASP, since the run-time distribution of the
first is slightly to the left of that of the second for the instance with m = 25,
and much more clearly for m = 50. Consistently, the computations show that
Pr(X1 ≤ X2) = 0.614775 and Pr(X1 ≤ X2) = 0.849163 for the instances with
m = 25 and m = 50, respectively.

4.2 Multistart and Tabu Search Algorithms for Routing and
Wavelength Assignment

A point-to-point connection between two endnodes of an optical network is called
a lightpath. Two lightpaths may use the same wavelength, provided they do

On the Use of Run Time Distributions 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 10. Run time distribution and quantile-quantile plot for tabu search on Brazil
instance with target value set at 24

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 11. Run time distribution and quantile-quantile plot for tabu search on Finland
instance with target value set at 50

not share any common link. The routing and wavelength assignment problem
is that of routing a set of lightpaths and assigning a wavelength to each of
them, minimizing the number of wavelengths needed. Noronha and Ribeiro [25]
proposed a decomposition heuristic for this problem. First, a set of routes is
precomputed for each lightpath. Next, one of them and a wavelength are assigned
to each lightpath by a tabu search heuristic solving a partition coloring problem.

We compare this decomposition strategy with the multistart greedy heuristic
of Manohar et al. [26]. Two networks are used for benchmarking. The first has
27 nodes representing the capital cities in Brazil, with 70 links connecting them.
There are 702 lightpaths to be routed. Instance [27] Finland is formed by 31
nodes and 51 links, with 930 lightpaths to be routed.

Each algorithm was run 200 times with different seeds. The target was set
at 24 for instance Brazil and at 50 for instance Finland. Algorithm A1 is the

26 C.C. Ribeiro, I. Rosseti, and R. Vallejos

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

Multistart
Tabu search

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

Multistart
Tabu search

(a) Brazil instance with target 24 (b) Finland instance with target 50

Fig. 12. Superimposed run time distributions of multistart and tabu search: (a)
Pr(X1 ≤ X2) = 0.106766, and (b) Pr(X1 ≤ X2) = 0.545619

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 13. Run time distribution and quantile-quantile plot for GRASP with forward
path-relinking on 90-node instance with target 673

multistart heuristic, while A2 is the tabu search decomposition scheme. The mul-
tistart running times fit exponential distributions for both instances. Figures 10
and 11 display run time distributions and quantile-quantile plots for instances
Brazil and Finland, respectively. The run time distributions of the decomposition
and multistart strategies are superimposed in Figure 12. The direct comparison
of the two approaches shows that decomposition clearly outperformed the mul-
tistart strategy for instance Brazil, since Pr(X1 ≤ X2) = 0.106766 in this case.
However, the situation changes for instance Finland. Although both algorithms
have similar performances, multistart is slightly better with respect to the mea-
sure proposed in this work, since Pr(X1 ≤ X2) = 0.545619.

4.3 GRASP Algorithms for 2-Path Network Design

Given a connected undirected graph with non-negative weights associated with
its edges, together with a set of origin-destination nodes, the 2-path network

On the Use of Run Time Distributions 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 14. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on 90-node instance with target 673

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 15. Run time distribution and quantile-quantile plot for GRASP with backward
path-relinking on 90-node instance with target 673

design problem consists of finding a minimum weighted subset of edges contain-
ing a path formed by at most two edges between every origin-destination pair.
Applications can be found in the design of communication networks, in which
paths with few edges are sought to enforce high reliability and small delays. Its
decision version was proved to be NP-complete by Dahl and Johannessen [28].

We compare different heuristics [15] for approximately solving this problem.
The first is a pure GRASP algorithm (algorithm A1). The others integrate differ-
ent path-relinking strategies for search intensification at the end of each GRASP
iteration: forward (algorithm A2), bidirectional (algorithm A3), and backward
(algorithm A4) [29,21].

Each algorithm was run 500 independent times. The experiments are sum-
marized by the results obtained on a benchmarking instance with 90 nodes and

28 C.C. Ribeiro, I. Rosseti, and R. Vallejos

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.001 0.01 0.1 1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

GRASP
GRASP+forPR
GRASP+biPR

GRASP+backPR

Fig. 16. Superimposed run time distributions of pure GRASP and three versions of
GRASP with path-relinking

900 origin-destination pairs, with the target value set at 673. Run time distribu-
tions and quantile-quantile plots for the different versions of GRASP with path-
relinking are illustrated in Figures 13 to 15. The run time distributions of the
four algorithms are superimposed in Figure 16. Algorithm A2 (as well as A3 and
A4) performs much better than A1, since Pr(X2 ≤ X1) = 0.984470. Algorithm
A3 outperforms A2, as illustrated by the fact that Pr(X3 ≤ X2) = 0.634002. Fi-
nally, we observe that algorithms A3 and A4 behave very similarly, although A4
performs slightly better for this instance with respect to the measure proposed
in this work, since Pr(X4 ≤ X3) = 0.536016.

5 Concluding Remarks

Run time distributions are very useful tools to characterize the running times of
stochastic algorithms for combinatorial optimization. In this work, we extended
previous tools for plotting and evaluating run time distributions.

Under the assumption that running times of two stochastic local search algo-
rithms follow exponential distributions, we derived a closed form index to com-
pute the probability that one of them finds a target solution value in a smaller
computation time than the other. A numerical iterative procedure was described
for the computation of such index in the case of general run time distributions.

This new tool and the resulting probability index revealed themselves as very
promising and provide a new, additional measure for comparing the performance
of stochastic local search algorithms or different versions of the same algorithm.
They can also be used for setting the best parameters of a given algorithm.
Numerical applications to different algorithm paradigms, problem types, and
test instances illustrated the applicability of the tool.

In another context, they can also be used in the evaluation of parallel imple-
mentations of local search algorithms, providing a numerical indicator to evaluate
the trade-offs between computation times and the number of processors.

On the Use of Run Time Distributions 29

References

1. Feo, T., Resende, M., Smith, S.: A greedy randomized adaptive search procedure
for maximum independent set. Operations Research 42, 860–878 (1994)

2. Hoos, H., Stützle, T.: On the empirical evaluation of Las Vegas algorithms - Posi-
tion paper. Technical report, Computer Science Department, University of British
Columbia (1998)

3. Hoos, H., Stützle, T.: Evaluation of Las Vegas algorithms - Pitfalls and remedies.
In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,
pp. 238–245 (1998)

4. Aiex, R., Resende, M., Ribeiro, C.: Probability distribution of solution time in
GRASP: An experimental investigation. Journal of Heuristics 8, 343–373 (2002)

5. Dodd, N.: Slow annealing versus multiple fast annealing runs: An empirical inves-
tigation. Parallel Computing 16, 269–272 (1990)

6. Eikelder, H.T., Verhoeven, M., Vossen, T., Aarts, E.: A probabilistic analysis of lo-
cal search. In: Osman, I., Kelly, J. (eds.) Metaheuristics: Theory and Applications,
pp. 605–618. Kluwer, Dordrecht (1996)

7. Hoos, H.: On the run-time behaviour of stochastic local search algorithms for SAT.
In: Proc. AAAI 1999, pp. 661–666. MIT Press, Cambridge (1999)

8. Hoos, H., Stützle, T.: Towards a characterisation of the behaviour of stochastic
local search algorithms for SAT. Artificial Intelligence 112, 213–232 (1999)

9. Osborne, L., Gillett, B.: A comparison of two simulated annealing algorithms ap-
plied to the directed Steiner problem on networks. ORSA Journal on Computing 3,
213–225 (1991)

10. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In:
Proceedings of the AAAI 1994, pp. 337–343. MIT Press, Cambridge (1994)

11. Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17, 443–455 (1991)

12. Verhoeven, M., Aarts, E.: Parallel local search. Journal of Heuristics 1, 43–66 (1995)
13. Hoos, H., Stützle, T.: Some surprising regularities in the behaviour of stochastic

local search. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 470.
Springer, Heidelberg (1998)

14. Aiex, R., Resende, M., Ribeiro, C.: TTTPLOTS: A perl program to create time-
to-target plots. Optimization Letters 1, 355–366 (2007)

15. Ribeiro, C., Rosseti, I.: Efficient parallel cooperative implementations of GRASP
heuristics. Parallel Computing 33, 21–35 (2007)

16. Li, Y., Pardalos, P., Resende, M.: A greedy randomized adaptive search proce-
dure for the quadratic assignment problem. In: Pardalos, P., Wolkowicz, H. (eds.)
Quadratic Assignment and Related Problems. DIMACS Series on Discrete Math-
ematics and Theoretical Computer Science, vol. 16, pp. 237–261. American Math-
ematical Society, Providence (1994)

17. Resende, M., Ribeiro, C.: A GRASP for graph planarization. Networks 29, 173–189
(1997)

18. Resende, M., Pitsoulis, L., Pardalos, P.: Fortran subroutines for computing approx-
imate solutions of MAX-SAT problems using GRASP. Discrete Applied Mathemat-
ics 100, 95–113 (2000)

19. Resende, M.: Computing approximate solutions of the maximum covering problem
using GRASP. Journal of Heuristics 4, 161–171 (1998)

20. Canuto, S., Resende, M., Ribeiro, C.: Local search with perturbations for the prize-
collecting Steiner tree problem in graphs. Networks 38, 50–58 (2001)

30 C.C. Ribeiro, I. Rosseti, and R. Vallejos

21. Resende, M., Ribeiro, C.: GRASP with path-relinking: Recent advances and ap-
plications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress
as Real Problem Solvers, pp. 29–63. Springer, Heidelberg (2005)

22. Aiex, R., Pardalos, P., Resende, M., Toraldo, G.: GRASP with path relinking for
three-index assignment. INFORMS Journal on Computing 17, 224–247 (2005)

23. Santos, L., Martins, S., Plastino, A.: Applications of the DM-GRASP heuristic: A
survey. International Transactions in Operational Research 15, 387–416 (2008)

24. Fonseca, E., Fuchsuber, R., Santos, L., Plastino, A., Martins, S.: Exploring the hy-
brid metaheuristic DM-GRASP for efficient server replication for reliable multicast.
In: International Conference on Metaheuristics and Nature Inspired Computing,
Hammamet (2008)

25. Noronha, T., Ribeiro, C.: Routing and wavelength assignment by partition coloring.
European Journal of Operational Research 171, 797–810 (2006)

26. Manohar, P., Manjunath, D., Shevgaonkar, R.: Routing and wavelength assignment
in optical networks from edge disjoint path algorithms. IEEE Communications
Letters 5, 211–213 (2002)

27. Hyytiã, E., Virtamo, J.: Wavelength assignment and routing in WDM networks.
In: Nordic Teletraffic Seminar 14, pp. 31–40 (1998)

28. Dahl, G., Johannessen, B.: The 2-path network problem. Networks 43, 190–199
(2004)

29. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In:
Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 219–249.
Kluwer, Dordrecht (2003)

Estimating Bounds on Expected Plateau Size in
MAXSAT Problems�

Andrew M. Sutton, Adele E. Howe, and L. Darrell Whitley

Department of Computer Science, Colorado State University,
Fort Collins CO, USA

{sutton,howe,whitley}@cs.colostate.edu

Abstract. Stochastic local search algorithms can now successfully solve
MAXSAT problems with thousands of variables or more. A key to this
success is how effectively the search can navigate and escape plateau re-
gions. Furthermore, the solubility of a problem depends on the size and
exit density of plateaus, especially those closest to the optimal solution.
In this paper we model the plateau phenomenon as a percolation process
on hypercube graphs. We develop two models for estimating bounds on
the size of plateaus and prove that one is a lower bound and the other
an upper bound on the expected size of plateaus at a given level. The
models’ accuracy is demonstrated on controlled random hypercube land-
scapes. We apply the models to MAXSAT through analogy to hypercube
graphs and by introducing an approach to estimating, through sampling,
a key parameter of the models. Using this approach, we assess the accu-
racy of our bound estimations on uniform random and structured bench-
marks. Surprisingly, we find similar trends in accuracy across random
and structured problem instances. Less surprisingly, we find a high accu-
racy on smaller plateaus with systematic divergence as plateaus increase
in size.

1 Introduction

The success of stochastic local search algorithms on satisfiability problems is at-
tributed in part to their exploitation of equal or “sideways” moves in the search
neighborhood [1]. In many cases, this strategy results in an empirical improve-
ment in generated solutions [2] and a theoretical improvement in the approxi-
mation ratio on special cases [3]. Accepting equal moves can result in “plateau
behavior” of search [4]: potentially long epochs during which any discrete “gradi-
ent” information is absent, and search algorithms must either perform a random
walk on the plateau or attempt to search it systematically until an improving
move is found.

� This research was sponsored by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF, under grant number FA9550-08-1-0422. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 31–45, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

32 A.M. Sutton, A.E. Howe, and L.D. Whitley

The two characteristics that determine the hardness of escaping a plateau
are its exit density: the number of strictly improving moves incident to plateau
solutions, and its size: the number of solutions belonging to the plateau. Since
the progress of a stochastic local search algorithm is ultimately connected to
how well it can escape plateaus, plateau characteristics are intimately related to
problem difficulty for local search [4,5,6].

Not all plateaus contain exits. In the worst case, the entire plateau must be
expanded before determining whether it is escapable or not. On a MAXSAT
problem with n variables and m clauses there must exist a set of equal value so-
lutions (not necessarily connected) that has cardinality Ω

(2n

m

)
. This means that

plateaus tend to be intractable to enumerate on average. Methods to determine
plateau size need to be extremely efficient and not rely on enumeration.

In this paper we take a first step in predicting plateau characteristics for prob-
lem instances by focusing on plateau size. We develop methods for estimating
upper and lower bounds on the expected plateau size in MAXSAT problems.
Such bounds can benefit search algorithms in two ways: first by providing an es-
timate of how hard a problem instance is likely to be for stochastic local search,
and second by predicting when the expected size of a plateau is likely to be too
large to systematically search.

Under some simplifying assumptions on the distribution of equal valued so-
lutions in the search space, we construct a correspondence between plateaus in
MAXSAT problems and percolation clusters in hypercube graphs. We present
models for bounding the expected size of plateaus from above and below. Fur-
thermore, we introduce a method for estimating the probability that nearby
points belong to the same level set by locally sampling the region of a point.

We find that the trends in accuracy for prediction are surprisingly uniform
across random and structured problem sets. As we expected, the lower bound
diverges in a consistent manner with respect to plateau size due to an approxi-
mation term in the prediction expression.

1.1 Related Work

Hampson and Kibler [5] empirically investigated the plateau behavior of local
search on satisfiability problems. They discovered that many plateaus at high
evaluation levels were intractably large and restarting was more beneficial than
extensive plateau search in some cases. They found the exit density of plateaus
is inversely proportional to the number of variables, and conjectured that the ex-
pected time to search these plateaus would increase linearly in the problem size.
Most importantly, they found that the size of plateaus increased exponentially
in the number of variables.

Frank et al. [4] studied the properties of plateau regions across several classes
of MAXSAT problem. They used GSAT to locate solutions at the top evalua-
tion levels and performed breadth-first search to exhaustively expand the plateaus
to which each solution belonged. They collected statistics on the distribution of
plateaus with and without exits. They found that different problem classes may be
harder for local search because plateau characteristics differ across such classes.

Estimating Bounds on Expected Plateau Size in MAXSAT Problems 33

In a more general setting, Hoos and Stützle [7] extended the plateau concept
to general combinatorial search spaces and defined metrics for plateau character-
istics (e.g., width). They developed plateau connection graphs: directed acyclic
graphs that capture connectivity between plateau regions and associated tran-
sition probabilities.

Smyth [8] examined plateau characteristics for uniform random 3-SAT in-
stances. He found that solutions on lower level sets tended to cluster together
in one common large plateau where solutions on better level sets belonged to
many smaller plateaus. He also studied the internal structure of plateau regions,
finding that the graphs had very low branching factors and diameter greater
than or equal to the number of variables.

Plateaus emerge in the presence of neutrality: the existence of neighboring
states with equal evaluation. Reidys and Stadler [9] studied the nature of neu-
trality and developed an additive random model on which neutrality can be
expressed as a random variable. They derived a probability mass function for
the length of neutral walks : monotonic random paths of equal valued states
which we will employ in this paper. Reidys and Stadler extended work originally
done on RNA landscapes [10] where neutral networks, induced subgraphs of a
landscape, are studied using the theory of random graphs.

2 Size Prediction

A combinatorial search problem is defined as a set X of candidate solutions and
an objective function f : X → R that assigns some value to each element of
X . The solution set X for satisfiability problems is the set of true/false assign-
ments to n variables which can be characterized as the set of strings {0, 1}n. For
MAXSAT, the objective function f counts the number of satisfied clauses given
by a particular solution x.

A local search algorithm defines some computationally tractable neighborhood
function N : X → 2X and, starting from an independently generated initial
candidate solution, walks along the graph induced by the neighborhood function.
That is, if x ∈ X is the current candidate solution, in each iteration a new
element y ∈ N(x) is selected to become the new candidate solution according to
a pivot rule. The behavior of local search can be characterized as a biased walk
on the neighborhood graph G(X, E) induced by N , that is, (x, y) ∈ E ⇐⇒ y ∈
N(x).

For MAXSAT problems, the seemingly most natural neighborhood N maps
solutions to their set of Hamming neighbors: solutions that differ in exactly one
variable. Thus G(X, E) is isomorphic to a hypercube graph of order n. Since we
are concerned only with the MAXSAT domain in this paper, we hereafter work
only with this graph. The Hamming distance between two solutions x and y is
denoted as d(x, y) and represents the minimal distance between x and y on the
hypercube.

Let L ⊆ X be a maximal set of solutions such that ∀x ∈ L, f(x) = �. We
refer to L as the level set at level �. A neutral path N (x, y) in G is a sequence

34 A.M. Sutton, A.E. Howe, and L.D. Whitley

of distinct solutions (x = x1, x2, . . . , xk = y) such that, for all i ∈ {1, . . . , k− 1},
the following conditions hold.

1. xi+1 ∈ N(xi)
2. f(xi) = f(xi+1)

A plateau is a maximal set P such that for all x, y ∈ P , ∃ N (x, y). Thus a
plateau is simply a connected component of the subgraph of the neighborhood
graph G induced by a level set, and the set of all plateaus form a partition of G.
The size of a plateau P is defined as its cardinality |P |. Note that our definition
allows for |P | = 1. In other words, the set of all plateaus partition the search
space X , and a vertex with no equal neighbors is a degenerate plateau. This
definition is analogous to that in other studies, e.g., [4,7,8].

2.1 Estimating a Lower Bound: Hamming Path Set

We define a neutral Hamming path NH(x, y) in G between two solutions x
and y is a particular case of a neutral path N (x, y) = (x = x1, . . . , xk = y)
with the added monotonicity constraint that d(x, xi+1) = d(x, xi) + 1 for all
i ∈ {1, . . . , k − 1}.

Let x be an arbitrary solution in a plateau P . We define the Hamming path
set Hx associated with x as

Hx = {y ∈ P : ∃ NH(x, y)}
Clearly, Hx ⊆ P and thus |Hx| ≤ |P |.

On a particular problem instance, we can consider Hx taken over all randomly
selected x ∈ X . We can thus characterize |Hx| as a random variable. Denote as
E[|Hx|] its expected value. By linearity of expectation we have

E[|Hx ∪ (P \ Hx)|] = E[|P |]
E[|Hx|] ≤ E[|P |]

In practice, the magnitude of the difference between the left hand and right hand
side of the above relation will ultimately depend on our choice of x ∈ P .

Under a simplifying assumption which we will make in the following section,
we will find that the probability that a solution belongs to Hx depends only on
its distance from x. Denote as

hx(r) = Pr{y ∈ Hx} for any y : d(x, y) = r

the probability that a solution y at distance r from x belongs to Hx. On the
hypercube of order n, there are

(
n
r

)
solutions at distance r from an arbitrary

vertex. Thus we derive the expected size of the Hamming path set (and therefore
our lower bound on plateau size) as

E[|Hx|] =
n∑

r=0

(
n

r

)
hx(r) (1)

Estimating Bounds on Expected Plateau Size in MAXSAT Problems 35

S 0

S 1

100 010 001

110 101 011

111 y

x000

z

w

Fig. 1. Partitioning of a hypercube into S0 and S1

We develop an estimate of hx(r) (and so E[|Hx|]) using a percolation approach.
Let Cn be a hypercube graph of order n. Each vertex in Cn corresponds to
a string {0, 1}n. Let x = (000 . . .0) and y = (111 . . .1). We refer to x and y
as the corner vertices. A vertex is active if it belongs to the same level set
as x. We define the concentration as the probability p that a vertex is on the
same level set as x, and thus active. We assume this probability is constant and
independent across all vertices. In other words, p depends only on the level set
under consideration. Note that x is a fixed active vertex since it trivially belongs
to its own level set. We say the cube percolates from y to x if there is a monotonic
path (y = x1, x2, . . . , xk = x) such that all xi are active.

Let c(n, p) denote the probability that Cn percolates with concentration p
from y to the fixed active vertex x.

Proposition 1. For some real number 0 ≤ g(n) ≤ 1

c(n, p) = p · (2 · c(n − 1, p) − c(n − 1, p)2
)

+ g(n)

Proof. We partition the vertices Cn into two disjoint sets S0 and S1. S0 consists
of the vertices represented by the strings (0 ∗ ∗ . . . ∗). S1 consists of the vertices
represented by the strings (1 ∗ ∗ . . . ∗).

Note that S0 and S1 form hypercubes (see Figure 1). Each subcube shares
one of its corner vertices with Cn. In the case of S0, one of its corner vertices is
x, while the opposite corner is a vertex w = (0, 1, 1, . . . , 1). In the case of S1, one
of its corner vertices is y and the opposite corner is a vertex z = (1, 0, 0, . . . , 0).

All percolating paths from y to x must pass from S1 to S0 exactly once and
cannot pass back from S0 to S1 (since at each step of the path, the number of
ones in the bitstring must decrease by exactly one).

We refer to paths that pass from S1 to S0 through edges (y, w) or (z, x) as
external crossing paths. We refer to the remaining paths as internal crossing
paths. Let Eex be the event that at least one external crossing path perco-
lates from y to x. Let Ein be the event that at least one internal crossing path
percolates.

36 A.M. Sutton, A.E. Howe, and L.D. Whitley

If y is inactive, then Cn does not percolate from y to x. Now suppose y is
active. The probability that S0 percolates from w to the fixed active vertex x is
c(n − 1, p). Now we consider S1. Note that x /∈ S1, but y takes the role of the
fixed active vertex (since we have assumed it is active). The probability of S1
percolating from z to y is c(n − 1, p).

Percolation is direction invariant. Thus if S1 percolates from z to y, there is a
percolating external crossing path from y to x through the edge (z, x), and thus
Cn percolates. Similarly, if S0 percolates from w to x, since we have assumed y
is active there is a percolating external crossing path from y to x through the
edge (y, w). Thus if either S0 or S1 percolate, then Cn must percolate. These
events are not mutually exclusive, so the probability that there is a percolating
external crossing path through either subcube is 2 · c(n − 1, p) − c(n − 1, p)2.
We multiply this expression by p, the probability that y is active, to obtain the
probability that Cn percolates via an external crossing path.

Pr(Eex) = p · (2 · c(n − 1, p) − c(n − 1, p)2
)

(2)

Now consider the internal crossing paths. Clearly we have,

Pr(Ein) − Pr(Eex ∩ Ein) = g(n) (3)

where 0 ≤ g(n) ≤ 1 is a real number that depends on n. The probability that Cn

percolates can be expressed as Pr(Eex) + Pr(Ein)−Pr(Eex ∩Ein). Substituting
Equations (2) and (3) gives the result. �

We thus ignore the internal crossing paths and bound the percolation probability.

Corollary 1. Since 0 ≤ g(n) ≤ 1, c(n, p) ≥ p · (2 · c(n − 1, p) − c(n − 1, p)2)

We define ĉ(n, p) as the lower bound on c(n, p):

ĉ(1, p) = p

ĉ(n, p) = p · (2 · ĉ(n − 1, p) − ĉ(n − 1, p)2
)

(4)

The above result allows us to place a lower bound on E[Hx].

Proposition 2. Let x be an arbitrary solution in X. Suppose that for each
element y ∈ X, Pr{f(y) = f(x)} = p. Then hx(d(x, y)) = c(d(x, y), p).

Proof. This follows directly from the definition of c(n, p). Note that a vertex in
a Hamming path from y to x must lie in the subcube of order d(x, y) between
x and y. If a vertex in the subcube is on the same level set as x, it is considered
active. Since each vertex is active with probability p, a neutral Hamming path
is simply a percolating path in the subcube of order d(x, y). �

Thus, we have

E[|Hx|] ≥
n∑

r=0

(
n

r

)
ĉ(r, p) (5)

Estimating Bounds on Expected Plateau Size in MAXSAT Problems 37

If we know p for a particular level set, then we can bound the expected plateau
size. Note that our premise that the concentration parameter p is independent
across a given level set is a rather heavy simplifying assumption. In fact, we
would expect in practice that solutions have distinct correlations among them.
However, this assumption makes the analysis easier.

Finally, the elimination of the g(n) term in the approximation expression
will cause the lower bound to diverge as n → ∞ since the approximation loses
accuracy for each value of n. Thus, we expect the error to have superlinear
growth with n since g(n) is proportional to subcube size.

2.2 Estimating an Upper Bound: Bethe Lattice Approximation

We have characterized plateaus as connected clusters of active sites in the hyper-
cube graph. In this section we will use an exact result from percolation theory
to derive an upper limit on the expectation of plateau size for certain values
of p. The Bethe lattice (or Cayley tree) of coordination number n is defined as
a connected acyclic graph in which each vertex is connected to n neighboring
vertices.

For a given concentration p, the expected size of connected clusters of active
sites in the Bethe lattice will always be greater than or equal to the expected
size of clusters of active sites in the hypercube graph. This can be shown by a
simple counting argument. Since the Bethe lattice is acyclic, every site in the
cluster rooted at a site b has exactly one path of active vertices to b. Thus the
expected number of neighbors of a cluster site that extend the cluster a step
further from b is p · (n− 1). On the other hand, a vertex in the hypercube graph
that belongs to a cluster rooted at some vertex x will have at least one path of
active vertices to x since cycles are possible. The expected number of neighbors
that extend the cluster further is therefore less than or equal to p · (n− 1). Thus
the expected size of connected active clusters in the Bethe lattice for a particular
p is an upper bound on the expected plateau size in the hypercube graph.

The expected cluster size on the Bethe lattice has an exact solution. Let b be
an arbitrary active site in the lattice. Let T be the expected size of the clusters
rooted at each neighbor of b. By the symmetries of the lattice we have

T = p (1 + (n − 1)T)

Solving for T we have T = p
1−(n−1)p and the expected cluster size at arbitrary b

is 1 + nT :
1 + p

1 − (n − 1)p
(6)

Since the Bethe lattice is an infinite system, its value as an approximation of the
finite hypercube becomes poorer as p gets larger. In fact, there is a singularity
in Equation (6) when p = 1

n−1 . This corresponds to the critical point at which
an infinite cluster appears in the lattice and expected cluster size is no longer
well-defined. Thus the Bethe lattice approximation is only valid in the subcritical

38 A.M. Sutton, A.E. Howe, and L.D. Whitley

region: values of p strictly less than 1
n−1 . A useful introduction to percolation

theory can be found in [11].

2.3 Estimating Concentration: Neutral Walk Method

Except in synthetic cases, the concentration parameter p will not be known a
priori. Thus we must determine a method to estimate p. One approach might be
to simply sample points on the landscape until the proportion of solutions that
belong to a particular level set is accurately represented. However, this approach
is insufficient for the following reasons.

1. It may take exponential time to obtain an accurate estimate of the true
proportion for smaller level sets.

2. The actual concentration p is likely to be correlated with distance. For ex-
ample, in MAXSAT, solutions at Hamming distance one are more likely to
be on the same level set than solutions an arbitrary distance away.

To address these points, we develop a method that uses a neutral walk : a poly-
nomial time algorithm that locally samples around a solution. The concept of
a neutral walk was introduced by Schuster et al. [12] to measure the extent of
plateaus (which they refer to as components of a neutral network) for RNA land-
scapes. A neutral walk is defined as a random walk of monotonically increasing
distance from a reference vertex such that all walk vertices have the same eval-
uation. On the hypercube, there can be at most n increasing steps, each with a
neighborhood size that is O(n) in the worst case. Thus the time to perform a
neutral walk is bounded above by n

∑n
i=1 i = O(n3).

The probability mass function of neutral walk length L was derived by Rei-
dys and Stadler [9]. We adopt a specialization for the hypercube. Let p be the
probability that a solution belongs to the same level set as the origin of the
walk. A vertex at distance r from the walk’s origin has n − r neighbors at dis-
tance r + 1. Thus the probability that a walk can be extended to distance r is∏r

i=1

[
1 − (1 − p)n−(i−1)

]
. The probability that the vertex at distance r termi-

nates the walk is (1 − p)n−r. Hence, given concentration p, the probability that
a neutral walk is of length r can be written as

Pr{L = r} = (1 − p)n−r
r∏

i=1

[
1 − (1 − p)n−(i−1)

]

We use this result to compute the expected neutral walk length as follows.

Ep[L] =
n∑

r=1

r Pr{L = r} (7)

To estimate p for a level set L, we compute the empirical mean neutral walk
length Lμ by performing a number of neutral walks from sampled points on L. If
we assume Lμ accurately estimates Ep[L], then an estimate of the concentration
is simply the root of the monotonic function

Ep[L] − Lμ

Estimating Bounds on Expected Plateau Size in MAXSAT Problems 39

using Equation (7) parameterized by p. We use a numerical root finding algo-
rithm to solve for p, giving us the estimate.

3 Computational Experiments

We have proved that, given our assumptions, our models provide upper and
lower bounds. However, we do not know how well the models perform on actual
problems where the concentration is not known. We evaluate the accuracy of our
prediction bounds by exhaustively enumerating plateaus on a number of different
search landscapes and comparing the actual value with the predictions given by
Equations (5) and (6). To assess the accuracy and trends of the prediction we first
use synthetic landscapes on which concentration is known, and then both random
and structured MAXSAT landscapes on which we predict the concentration
using the neutral walk method. Because we need to fully enumerate the plateaus
for accuracy, we are limited to small problems in this analysis.

3.1 Concentration-Controlled Random Landscapes

To test the size prediction bounds given known concentrations, we evaluate pre-
dictions for random hypercube landscapes on which we explicitly control concen-
tration. In particular, given a hypercube landscape X , we assign each solution
an objective function value of 1 with probability p and a value of 0 with prob-
ability 1 − p. We sample solutions at random on the landscape. If the solution
is of value 1, we expand its plateau using breadth-first search. We also compute
its Hamming path set. We compare the actual cardinalities with the prediction
equation and the Bethe lattice approximation for concentrations that lie in the
subcritical region.

We generate 100 random landscapes controlling for concentration from
p = 0.01 to p = 0.4. On each landscape we calculate the Hamming path set
lower bound and the Bethe upper bound using the known value of p. We sample
100 random points from the level set at value 1 and perform breadth-first search
to exhaustively enumerate the plateaus. We also perform a depth-first search
from each plateau vertex back to the root to enumerate the Hamming path set.
We compare the average plateau and Hamming path set sizes with the prediction
bounds.

We report our prediction data in the form of correlation plots. There are three
types of data points. “Plateau/HP” is actual plateau size vs. Hamming path
prediction. “HP/HP” denotes actual Hamming path set size vs. Hamming path
prediction. “Plateau/Bethe” denotes actual plateau size vs. Bethe prediction. A
perfect prediction would lie on the diagonal line included in the plots. Data for
a 20 dimensional random landscape are plotted in Figure 2. The low number of
“plateau/Bethe” points are because the higher concentrations exceed the critical
value for the Bethe lattice.

To determine the accuracy of our concentration estimate, we run the above
experiments again and estimate p using the neutral walk method. Instead of using

40 A.M. Sutton, A.E. Howe, and L.D. Whitley

1 10 100 1000 10000

1
10

0
10

00
0

predicted

ac
tu

al

plateau/HP
plateau/Bethe
HP/HP

Fig. 2. Log-log plot of predictions on 20 dimensional random landscape

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

samples/level

M
S

E

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

sampled

ac
tu

al

Fig. 3. Actual p vs. estimated p (left). Mean squared error between actual and esti-
mated p vs samples/level set (right).

the known p value for the prediction bounds, we take 10 neutral walks from each
of the 100 sampled points and predict the concentration with the resulting walk
lengths. We compare the actual p values used to generate the landscape with
the values estimated by the neutral walk method. These data are plotted on the
left in Figure 3. We find a tight correlation between the predicted and actual
concentrations. To determine how much effort needs to be expended to estimate
p, we plot the mean squared error between known concentration and estimated
concentration with respect to samples per level set on the right in Figure 3. Both
plots were generated using data from the 20 dimensional random hypercube.

Estimating Bounds on Expected Plateau Size in MAXSAT Problems 41

The high accuracy of the p estimation with low sample size is encouraging be-
cause the time to predict the size of the plateau for a single solution (including
neutral walk sampling) is on the order of 200-5000 microseconds whereas mea-
suring the actual plateau can take several minutes or longer on the relatively
small problems we investigated.

3.2 MAXSAT Landscapes

To test how well the bounds transfer to actual problems, we perform experiments
on random and structured MAXSAT problems. On MAXSAT the objective func-
tion is the number of formula clauses satisfied. On uniform random problems,
most solutions belong to a small number of objective function values. This typ-
ically results in solutions of average value belonging to vast plateaus. Hampson
and Kibler [5] found that, due to their relatively high exit density, plateaus of
average value are easy for local search to escape, and thus local search is most
affected by plateaus of higher value. Therefore we follow the technique used by
Frank et al. [4] and Smyth [8] employing a stochastic local search algorithm
(WalkSat [13]) to sample the highest value plateaus in the search space.

Plateau measurement time depends on the number of vertices on the plateau.
Thus large plateaus quickly become intractable to enumerate as they grow with
depth and problem size. Some level sets can have a small number of extremely
large plateaus which cannot be enumerated in a reasonable amount of time.
Rather than omitting these data points (which would bias the results to make
a lower bound appear tighter than it actually is) we only report the top three
level sets for two benchmark sets.

86 87 88 89 90 91

0.
00

0.
05

0.
10

0.
15

level

co
nc

en
tr

at
io

n

Fig. 4. Estimated concentration with respect to level set on uf20-91 problems

42 A.M. Sutton, A.E. Howe, and L.D. Whitley

1 10 100 1000 10000 10 20 50 100

1e
+

00

200

1e
+

02
1e

+
04

1e
+

06

predicted

ac
tu

al

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

predicted

ac
tu

al

plateau/HP
plateau/Bethe
HP/HP

plateau/HP
plateau/Bethe
HP/HP

1 2 5 10 20 50 100 200 500

1e
+

00

1e
+

00

1e
+

02

1e
+

01
1e

+
02

1e
+

03

1e
+

04

1e
+

04 1e
+

06

predicted

ac
tu

al

uf50−218

spinglass

uf20−91

ramsey−number

plateau/HP
plateau/Bethe
HP/HP

1 2 5 10 20 50 100 200
predicted

ac
tu

al

plateau/HP
plateau/Bethe
HP/HP

Fig. 5. Predictions for MAXSAT problems. Results on random uniform sets: 20 vari-
ables and 91 clauses uf20-91, and 50 variables and 218 clauses uf50-218 appear on
the top; results on structured problem instances are plotted on the bottom.

We use two uniform random benchmark distributions from SATLIB: uf20-91,
a 20 variable 91 clause set, and uf50-218, a 50 variable 218 clause set. We
select 100 random instances from each set and perform WalkSat to generate 100
solutions each on the top six levels (for uf20-91) and the top three levels (for
uf50-218). Note that all instances in these sets are satisfiable.

We estimate p for each level set by using the neutral walk method, taking 10
walks from each sampled solution. From each solution we exhaustively enumerate
its plateau and its Hamming path set and compare the actual sizes to the bounds
in Equations (5) and (6). The results from uf20-91 are plotted in the top left
of Figure 5. The results from uf50-218 are plotted in the top right of Figure 5.
Note the trends in accuracy when compared to each other and to the random
landscape (see Figure 2).

We report the estimated p values found by the neutral walk method on the 20
variable uniform random SAT problem in Figure 4. The estimated concentration
on each problem set of a particular size appears to decrease as a function of
evaluation. This reflects the empirical decrease in plateau size with respect to
level found originally by Hampson and Kibler [5] and later by Frank et al. [4]

Estimating Bounds on Expected Plateau Size in MAXSAT Problems 43

and Smyth [8]. We also see a marked increase in variance as level increases which
suggests plateau size becomes less uniform in better regions of the search space.

The random uniform problem instances show similar trends in accuracy. This
could be an artifact of the inherent statistical regularity of random problems.
To address this, we tested our predictions on structured problem instances. We
performed the above experiments on the top three levels of a set of six Ramsey
number problems from the MAXSAT 2007 problem competition. This problem
set is comprised of several different instances with differing numbers of variables
and clauses. The results are shown in Figure 5 on the bottom left. We also
performed the above experiments on the top 10 levels of a 27 variable spin glass
problem. This problem is unsatisfiable and the best solution by WalkSat was
found on level set 145 (out of 162). These results are shown on the bottom right
in Figure 5. The sparsity of the bottom plots is due to the smaller cardinality
of the structured problem sets. The Ramsey numbers problems tended to have
the largest concentration values: their nonzero concentration ranged from 0.09
to 0.68. The other instances had nonzero concentration values ranging from 0.01
to 0.2 or less. The concentrations were also higher relative to the critical value
of 1

n−1 on the structured instances, hence the paucity of data points from the
Bethe model on the corresponding plots.

We see similar trends in accuracy with size across the random and structured
problems. Furthermore, the trend is again similar to what we found on the
hypercube graph model reported in Figure 2.

4 Impact on Algorithm Design

Accepting equal search moves can be beneficial or detrimental to a search algo-
rithm depending on the immediate properties of a plateau region. Small, easy
to escape plateaus offer little impediment to search while large, hard to escape
plateaus are vast regions that lack “gradient” information and may result in
search stagnation. A stochastic local search algorithm exhibits plateau behavior
when a significant number of consecutive steps all have the same evaluation. This
behavior signals that a plateau has been reached by the algorithm and certain
measures may need to be taken to either exploit or react to the encountered
plateau region.

Plateau moves can be beneficial to stochastic local search [1,3] because they
provide neutral moves that may eventually lead to improving states. Plateau be-
havior is thus not always problematic. Frank et al. [4] point out that stochastic
local search algorithms typically respond to plateau behavior by one or more of
the following strategies 1) doing nothing, 2) detecting plateaus, 3) performing
a short random walk, or 4) randomly restarting. The viability of each of these
tactics depends on the size of the plateau in question, along with its exit den-
sity. Hence, knowledge of the expectation of plateau size can be beneficial in
determining how an algorithm should react to plateau behavior.

For example, plateaus that are relatively small might easily be enumerated
with breadth-first search whereas moderately sized plateaus (depending on exit

44 A.M. Sutton, A.E. Howe, and L.D. Whitley

density) might be escaped by taking a small “jump,” e.g., flipping a number of
variables at random [14]. On the other hand, a search that has reached a vast
plateau region may obtain better results, depending on the evaluation level, by
simply restarting. Even roughly identifying the size of moderate to large plateau
regions can be difficult.

On large plateaus, several researchers [4,5] have discussed the inherent trade-
off between continuing plateau search and changing the search strategy. In these
studies, empirical measurements of plateau size are gathered off-line for a rep-
resentative sample of a particular problem class and plateau characteristics are
generalized to the entire class. The bound estimates presented in this paper
allow rough plateau size approximations to be performed without much compu-
tational effort on-line. These estimates could be used in stochastic local search
algorithms for strategic adaptation during execution: potentially providing in-
formation that allows search to quickly determine which of the above options
(or other strategies) may be the best way to respond to plateau behavior.

We might also generalize their use to the prediction of algorithm performance.
According to the well-known no free lunch theorem [15], no single algorithm per-
forms consistently well across a set of problem instances. Indeed, specific algo-
rithm performance often depends strongly on salient problem instance features.
Portfolio-based approaches use different features to select among a set of algo-
rithms to be applied [16]. For instance, Xu et al. [17] have recently introduced
the SATzilla portfolio for satisfiability problems. The approach requires learning
the relationship between a problem feature set and the likelihood of a particular
algorithm’s success in solving an instance with a given set of measurements. We
conjecture that plateau size can provide additional problem space information.
Hence the concentration and percolation estimates for MAXSAT presented in
this paper may be beneficial as a computationally cheap, if rough estimate of a
problem instance feature that may aid algorithm selection.

5 Conclusion

We have introduced methods for estimating bounds on plateau size for MAXSAT
problems. These bounds may support portfolio approaches to MAXSAT by in-
dicating problem difficulty for local search or principled adaptation for handling
large plateaus.

We found that the accuracy in our estimates showed surprisingly similar
trends across both random and structured problem instances. However, one in-
herent weakness with the approach is the large divergence in accuracy with
plateau size. In the case of Bethe approximation, this is an artifact of the insta-
bility as the critical concentration is approached, thus the bound is not useful
for larger values of p. For the Hamming path set, the bounds diverge as the
cumulative effect from ignoring the internal path term increases.

We are continuing to refine the bounds on hypercube percolation, which would
address divergence in accuracy. Furthermore, we would like to assess the influence
of the phase transition on concentration.

Estimating Bounds on Expected Plateau Size in MAXSAT Problems 45

The second important plateau characteristic is exit density, which we have not
addressed in this paper. Future work also includes estimating plateau exit density
and relating exit density and plateau size to problem difficulty and stochastic
local search behavior.

References

1. Gent, I.P., Walsh, T.: An empirical analysis of search in GSAT. Journal of Artificial
Intelligence Research 1, 47–59 (1993)

2. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: Proceedings of AAAI 1992, San Jose, CA (1992)

3. Mastrolilli, M., Gambardella, L.M.: How good are tabu search and plateau moves
in the worst case? European Journal of Operations Research 166, 63–76 (2005)

4. Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: Local search topology.
Journal of Artificial Intelligence Research 7, 249–281 (1997)

5. Hampson, S., Kibler, D.: Plateaus and plateau search in boolean satisfiability prob-
lems: When to give up searching and start again. DIMACS Series in Discrete Math
and Theoretical Computer Science 26, 437–453 (1993)

6. Yokoo, M.: Why adding more constraints makes a problem easier for hill-climbing
algorithms: Analyzing landscapes of CSPs. In: Smolka, G. (ed.) CP 1997. LNCS,
vol. 1330, pp. 356–370. Springer, Heidelberg (1997)

7. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2004)

8. Smyth, K.R.G.: Understanding stochastic local search algorithms: An empirical
analysis of the relationship between search space structure and algorithm be-
haviour. Master’s thesis, University of British Columbia (2004)

9. Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Applied Mathematics
and Computation 117, 321–350 (2001)

10. Reidys, C., Stadler, P., Schuster, P.: Generic properties of combinatory maps and
neutral networks of RNA secondary structures. Bull. Math. Biol. 59, 339–397 (1997)

11. Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Routledge, New
York (1991)

12. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes
and back: a case study in RNA secondary structures. In: Proceedings of the Royal
Society London B, vol. 255, pp. 279–284 (1994)

13. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: Johnson, D.S., Trick, M.A. (eds.) DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 26. AMS, Providence (1996)

14. Gent, I., Walsh, T.: Unsatisfied variables in local search. In: Hallam, J. (ed.) Hybrid
Problems, Hybrid Solutions, pp. 73–85. IOS Press, Amsterdam (1995)

15. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

16. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A port-
folio approach to algorithm selection. In: Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI 2003 (2003)

17. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. Journal of Artificial Intelligence Research 32, 565–606
(2008)

A Theoretical Analysis of the k-Satisfiability
Search Space�

Andrew M. Sutton, Adele E. Howe, and L. Darrell Whitley

Department of Computer Science, Colorado State University,
Fort Collins CO, USA

{sutton,howe,whitley}@cs.colostate.edu

Abstract. Local search algorithms perform surprisingly well on the k-
satisfiability (k-SAT) problem. However, few theoretical analyses of the
k-SAT search space exist. In this paper we study the search space of the
k-SAT problem and show that it can be analyzed by a decomposition.
In particular, we prove that the objective function can be represented
as a superposition of exactly k elementary landscapes. We show that
this decomposition allows us to immediately compute the expectation of
the objective function evaluated across neighboring points. We use this
result to prove previously unknown bounds for local maxima and plateau
width in the 3-SAT search space. We compute these bounds numerically
for a number of instances and show that they are non-trivial across a
large set of benchmarks.

1 Introduction

Local search methods for k-satisfiability (k-SAT) problems have received consid-
erable attention in the AI search community. Though these methods are incom-
plete, they are usually able to quickly solve difficult problems that lie beyond
the grasp of conventional complete solvers [1] and have been found to exhibit
superior scaling behavior on soluble problems at the phase transition [2].

The behavior of local search algorithms closely depends on the underlying
structure of the search space. A number of researchers have conducted empir-
ical investigations on certain structural features of the k-SAT problem. Hoos
and Stützle [3] introduced several metrics for measuring structure and presented
an empirical examination of the characteristics of plateaus and their influence
on the performance of local search. Clark et al. [4] studied the the relationship
between problem hardness and the expected number of solutions on random
problems. Frank et al. [5] analyzed the topology of the search space and experi-
mentally probed the nature of local optima and plateaus. Yokoo [6] investigated
the dependency of search cost on search space characteristics by studying how
cost for local algorithms is related to the size of certain plateaus.
� This research was sponsored by the Air Force Office of Scientific Research, Air

Force Materiel Command, USAF, under grant number FA9550-08-1-0422. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 46–60, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Theoretical Analysis of the k-Satisfiability Search Space 47

In this paper, we take an analytical view of the k-SAT search space by formal-
izing it as a landscape [7] which captures the relationship between the objective
function associated with the problem and a neighborhood operator. We use the
landscape formalism to analyze the search space of the k-SAT problem. We show
that the search landscape can be decomposed into k elementary components. We
prove that this decomposition provides an equation that gives the expectation of
a random variable that models the objective function value of states in a given
neighborhood. This quantity is equal to the average objective function value of
the neighbors of a given state.

Furthermore, we use the decomposition to prove bounds for two prominent
search space features: local maxima and plateaus. We show local maxima do not
exist below a certain objective function value. Plateaus are regions of the search
space consisting of states that are interconnected by a neighborhood operator
and share an objective function value. Hoos and Stützle [3] define the width of
a plateau P : the minimal length path between any state in P and one not in
P . For many SAT instances, empirical results suggest that plateaus of width
greater than one do not exist, or are at least very rare [3]. We prove there are
regions of the search space that cannot contain plateaus of width greater than 1
and show empirically that these regions encompass the majority of the range of
the objective function value. To our knowledge, there are no analytical results
on the existence (or non-existence) of plateaus of particular width. Our results
apply to local search on k-SAT and MAX-k-SAT where the count of unsatisfied
clauses is the state evaluation function.

1.1 The Landscape Formalism

Before we specialize the discussion to k-SAT problems, we begin by introducing
the landscape formalism. A combinatorial search problem is characterized as
a finite but very large set X of states (complete candidate solutions) and an
objective function f : X → R that assigns a measure of value f(x) to each state
x. The objective of a search algorithm is to quickly locate a state x∗ ∈ X that
extremizes f . Since f is a function over a discrete domain, we can characterize
it as a vector f ∈ R

|X|.
Local search algorithms perform local perturbations on states to move through

the search space toward more promising regions. The space explored by such
local methods thus requires additional structure by imposing a connectivity on
X that consists of pairs of states that are separated by a move. We can define a
second function on X denoted N : X → 2X where N(x) represents the set of all
possible states that can be derived from x by applying the move operator exactly
once. We refer to this set as the neighborhood of x. The tuple (X, N, f) is called
the landscape of the combinatorial search problem and encompasses both the
objective function values and the connectivity of states via the neighborhood.

We define the |X | × |X | Markov transition matrix T

Txy =

{
1

|N(x)| if y ∈ N(x)

0 otherwise

48 A.M. Sutton, A.E. Howe, and L.D. Whitley

This matrix quantifies the transition probabilities between states on a random
walk of the graph of the state space induced by the neighborhood operator. We
can also view T as a linear operator that acts on an arbitrary vector g ∈ R

|X|:

(Tg) =

⎡
⎢⎢⎣

1
|N(x1)|

∑
z∈N(x1) g(z)
...

1
|N(x|X|)|

∑
z∈N(x|X|) g(z)

⎤
⎥⎥⎦ (1)

where xi is the ith element of X . Intuitively, Tg is a discrete function where
Tg(x) gives the average value of g evaluated across the neighbors of the state x.

A landscape (X, N, f) is called elementary if the following equation is satisfied

Tf = λf + γ (2)

where both λ and γ are constants [8,7]. In other words, the objective function is
an eigenfunction of the Markov transition matrix (up to an additive constant)
corresponding to eigenvalue λ.

Several well-studied combinatorial problems along with natural neighborhood
operators have been shown to satisfy the above equation (e.g., traveling sales-
man, graph coloring, not-all-equal satisfiability). Elementary landscapes possess
a number of interesting properties. For example, Grover [8] has shown that no
arbitrarily poor local optima can exist on an elementary landscape and that a
solution with evaluation superior to the mean objective function value can be
computed in polynomial time.

Landscapes that obey Equation (2) are called elementary because they behave
as building blocks of more general combinatorial search landscapes. Provided
that the neighborhood operator satisfies symmetry and regularity conditions,
any arbitrary landscape can be represented as a linear combination of elementary
landscapes [7]. We impose in this paper the following constraints.

1. y ∈ N(x) ⇐⇒ x ∈ N(y)
2. |N(x)| = |N(y)| = d; ∀x, y ∈ X

Most “natural” operators typically satisfy these constraints. The first constraint
states all neighborhood relationships are symmetric, and the second asserts that
all states have exactly d neighbors. Under these conditions T is a real symmetric
|X | × |X | matrix and thus its |X | eigenvectors {φi} with corresponding real
eigenvalues λi form an orthonormal basis.

Thus we can represent an arbitrary function f in the eigenbasis {φi} as a
linear combination.

f =
|X|−1∑
i=0

aiφi (3)

Each φi is an eigenvector of T. Note that each aiφi can be considered again as
a function aiφi : X → R. Each of these component functions satisfy Equation
(2) and are thus elementary with respect to the neighborhood operator N .

A Theoretical Analysis of the k-Satisfiability Search Space 49

In the general case, an arbitrary landscape f is represented by |X | elementary
constituents. Clearly, |X | is exponential in the problem input size for landscapes
of interest in this context. Thus this property is not obviously useful. However,
in some interesting cases, it has been shown that the superposition is composed
of a small number of elementary components. Examples are the asymmetric
traveling salesman problem [9] and the quadratic assignment problem [10], both
under traditional move operators.

1.2 The Neighborhood Expectation Value

We introduce a random variable that measures the objective function value of
a neighbor selected uniformly at random. Later, we will use the expectation of
this random variable in a simple probabilistic argument to prove the main results
of the paper. Whitley et al. [11] studied elementary landscapes in the context
of this random variable by connecting Equation (2) to the first moment of its
distribution. In this section, we show this analysis can be easily extended to
landscapes that are superpositions of elementary components.

Let x ∈ X be an arbitrary state. Let y ∼ N(x) be an element drawn uniformly
at random from the neighborhood of x, i.e., y is a random move using the
operator defined by N . We define the random variable Y = f(y) as the objective
value of the neighboring state y.

Since y is selected uniformly at random, the expectation of Y is equivalent to
the average of f evaluated over all of the neighbors of x.

E[Y] =
1
d

∑
z∈N(x)

f(z)

If the objective function can be decomposed into a small number of components,
the decomposition is useful in finding the expectation of Y . For example, suppose
there are only c+1 nonzero coefficients a0, a1, . . . , ac in the decomposition shown
in Equation (3).

E[Y] =
1
d

∑
z∈N(x)

f(z)

= Tf(x) by Eq. (1)

= T

(
c∑

i=0

aiφi(x)

)

=
c∑

i=0

λiaiφi(x) (4)

Therefore, given the c + 1 elementary components aiφi and the correspond-
ing eigenvalues λi we can immediately compute E[Y] without computing any
elements of N(x).

50 A.M. Sutton, A.E. Howe, and L.D. Whitley

2 Decomposition of k-SAT

We now show that the k-SAT problem (and its optimization variant MAX-k-
SAT) is decomposable into k elementary components. An instance of the k-SAT
problem consists of a set of n Boolean variables {v1, . . . , vn} and a set of m
clauses {c1, . . . , cm}. Each clause is composed of exactly k literals in disjunction.
The objective is to find a variable assignment that maximizes the number of
satisfied clauses.

In this case, a state is a complete assignment to the n variables and can be
characterized as a sequence of n bits x = (x[1], x[2], . . . x[n]) where

x[b] =

{
1 if and only if vb is true
0 if and only if vb is false

The state space X is isomorphic to the set of all sequences x ∈ {0, 1}n.
The objective function f : X → {0, . . . , m} simply counts the number of

clauses satisfied under the assignment given by x. The most natural neighbor-
hood is the Hamming neighborhood N where N(x) is the set of n states y that
differ from x in exactly one bit.

Since f can be taken as a function over bit strings of length n, a natural
decomposition is given by the Walsh transform. In the general case, an arbitrary
pseudo-Boolean function f : {0, 1}n → R can be represented as a linear combina-
tion of 2n Walsh functions which we will define shortly. Rana et al. [12] showed
that the k-SAT objective function can be tractably decomposed into a polyno-
mial number of such functions. We will use this result to obtain a decomposition
of the k-SAT objective function into elementary components.

Given two bit strings x and y of length n, we denote the inner product 〈x, y〉
as
∑n

b=1 x[b]y[b]. We define the ith Walsh function i ∈ {0, . . . , 2n − 1} as

ψi(x) = (−1)〈i,x〉

Here, the i that appears in the inner product of the exponent is taken to be the
bit string representation of the index i, that is, the binary sequence of length n
that corresponds to the integer i.

The objective function f can now be written as

f(x) =
∑

i

wiψi(x) (5)

where each Walsh coefficient wi is the sum of contributions from each clause.

wi =
m∑

j=1

wi,cj

where wi,cj is the contribution to wi from clause cj . This is defined as follows.
Let v(cj) denote a bitstring of length n where

v(cj)[b] =

{
1 if variable vb appears in clause cj

0 otherwise

A Theoretical Analysis of the k-Satisfiability Search Space 51

Similarly, let u(cj) be a bitstring of length n where

u(cj)[b] =

{
1 if variable vb appears negated in clause cj

0 otherwise

If x and y are bitstrings of length n, we say

x ⊆ y ⇐⇒ (x[b] = 1 =⇒ y[b] = 1)

for b = {1, . . . , n}. The contribution of clause cj to Walsh coefficient wi is

wi,cj =

⎧⎪⎨
⎪⎩

0 if i �⊆ v(cj)
2k−1
2k if i = 0

− 1
2k ψi(u(cj)) otherwise

(6)

The order of a Walsh coefficient wi is the number of ones in the bitstring rep-
resentation of i. This can be denoted following our notation as 〈i, i〉. Note that
the order of any nonzero Walsh coefficient is bounded by k: the number of vari-
ables that appear together in a clause. Rana et al. showed it is enough to specify
f(x) by computing the O(2km) non-zero Walsh coefficients and computing the
superposition in Equation (5). Since k is typically taken to be O(1), all nonzero
Walsh coefficients can be found in polynomial time.

Lemma 1. The Walsh function ψi of order 〈i, i〉 = p is an eigenvector of the
Markov transition matrix T with eigenvalue

(
1 − 2p

n

)
Proof. Let x be an arbitrary state.

Tψi(x) =
1
n

∑
z∈N(x)

ψi(z) by Eq. (1)

A Hamming neighbor z ∈ N(x) differs from x in exactly one bit position b. By
definition, ψi(z) = (−1)〈i,z〉. Consider i[b], that is, the bit located at position b in
the bitstring representation of i. If i[b] = 0 then 〈i, z〉 = 〈i, x〉 and ψi(z) = ψi(x).
On the other hand, if i[b] = 1 then |〈i, z〉 − 〈i, x〉| = 1 and ψi(z) = −ψi(x).

Since each Hamming neighbor differs from x in each of the n possible bit
positions, there are p elements z of N(x) that satisfy the second condition and
n − p that satisfy the first. Thus we have

1
n

∑
z∈N(x)

ψi(z) =
1
n

((n − p)ψi(x) − pψi(x))

=
(

1 − 2p

n

)
ψi(x)

Since we chose x arbitrarily,

Tψi =
(

1 − 2p

n

)
ψi

and ψi is an eigenfunction of T. �

52 A.M. Sutton, A.E. Howe, and L.D. Whitley

We define ϕ(p) as the Walsh span of order p.

ϕ(p)(x) =
∑

i:〈i,i〉=p

wiψi(x)

Intuitively, ϕ(p) is an element of the linear space spanned by the Walsh functions
of order p. Now we can write the objective function as a sum over Walsh spans
of each order p (recall p is bounded by k).

f(x) =
k∑

p=0

ϕ(p)(x) (7)

We now show that this is a superposition of elementary components.

Proposition 1. The pth Walsh span is an elementary landscape.

Proof. We show that ϕ(p) is an eigenfunction of T. Consider

Tϕ(p) = T

⎡
⎣ ∑

i:〈i,i〉=p

wiψi

⎤
⎦

=
∑

i:〈i,i〉=p

wi

(
1 − 2p

n

)
ψi by Lemma 1

=
(

1 − 2p

n

)⎡⎣ ∑
i:〈i,i〉=p

wiψi

⎤
⎦

=
(

1 − 2p

n

)
ϕ(p)

thus ϕ(p) is an eigenfunction of T corresponding to eigenvalue
(
1 − 2p

n

)
. �

We can use the decomposition from the previous section to compute the
expectation of Y .

Corollary 1. On any k-SAT instance, the expectation of the random variable
Y is a linear combination of the k + 1 Walsh spans evaluated at x.

E[Y] =
k∑

p=0

(
1 − 2p

n

)
ϕ(p)(x)

This follows directly from the proposition along with Equations (4) and (7).
The following two lemmas will be useful in the next section. First, we show

that the Walsh span of order zero is always a constant that is equal to the mean
objective function value over X .

A Theoretical Analysis of the k-Satisfiability Search Space 53

Lemma 2. Let f̄ be the mean objective value over X,

f̄ =
1
|X |

∑
x∈X

f(x)

For all x ∈ X, the zeroth Walsh span is the constant function

ϕ(0)(x) = f̄

Proof. Let x ∈ X . There is only one Walsh function of order zero: ψ0(x) = 1.
We have ϕ(0)(x) = w0ψ0(x) = w0. Note that for p �= 0 we have

1
|X |

∑
x∈X

ϕ(p)(x) = 0 (8)

because of the parity of bitstrings of order p. By some algebraic manipulation,

w0 =

(
1
|X |

∑
x∈X

w0

)

=
1
|X |

∑
x∈X

ϕ(0)(x)

=
1
|X |

∑
x∈X

ϕ(0) +
1
|X |

∑
x∈X

k∑
p=1

ϕ(p)(x) by Eq. (8)

=
1
|X |

∑
x∈X

k∑
p=0

ϕ(p)(x)

=
1
|X |

∑
x∈X

f(x) by Eq. (7)

�

Corollary 2. The objective function f for any k-SAT or MAX-k-SAT instance
is a superposition of k elementary landscapes

f(x) = f̄ +
k∑

p=1

ϕ(p)(x)

In the next section, we will need to bound the value of ϕ(p) over all states x ∈ X .
We use the absolute values of the Walsh coefficients wi to do so.

Lemma 3. For all x ∈ X,∑
〈i,i〉=p

−|wi| ≤ ϕ(p)(x) ≤
∑

〈i,i〉=p

|wi|

54 A.M. Sutton, A.E. Howe, and L.D. Whitley

Proof. Let x be an arbitrary state in X . By definition we have

ϕ(p)(x) =
∑

〈i,i〉=p

wiψi(x) =
∑

〈i,i〉=p

±|wi|

since ψi(x) = ±1 and wi = ±|wi|. Clearly, the smallest that each term could be
is −|wi| and the largest is |wi|. �

3 Some Bounds for 3-SAT

Two structural search space characteristics that directly affect the performance
of local heuristic search algorithms are local maxima and plateaus. In this section
we will use the results from the previous section to prove some bounds on the
evaluation of states that are local maxima or belong to plateaus of width greater
than 1.

Before we continue we prove the following lemma that provides an identity
for a series expansion that will allow for some algebraic manipulation in the
theorems below.

Lemma 4. On 3-SAT we have the following identity.

3∑
p=0

pϕ(p)(x) = 2f(x) − 2f̄ − ϕ(1)(x) + ϕ(3)(x)

Proof. The series is equal to

3∑
p=0

pϕ(p)(x) = ϕ(1)(x) + 2ϕ(2)(x) + 3ϕ(3)(x)

We can group the terms on the right hand side as follows[
ϕ(1)(x) + ϕ(2)(x) + ϕ(3)(x)

]
+
[
ϕ(2)(x) + 2ϕ(3)(x)

]
By the decomposition in Equation (7),[

f(x) − ϕ(0)(x)
]

+
[
f(x) − ϕ(0)(x) − ϕ(1)(x) + ϕ(3)(x)

]
By Lemma 2,

[
f(x) − f̄

]
+
[
f(x) − f̄ − ϕ(1)(x) + ϕ(3)(x)

]
and simplifying gives the result. �

A state x is said to be a local maximum if, for all y ∈ N(x), f(y) ≤ f(x).
We point out that this definition is distinct from studies that allow for multi-
state local maxima (e.g., [5]). Our single-state definition coincides with Hoos and
Stützle [3]. Furthermore, every global maximum is also a local maximum.

A Theoretical Analysis of the k-Satisfiability Search Space 55

Grover [8] showed on elementary landscapes no local maxima (minima) lie
below (above) the mean value of the objective function over X . This will not
necessarily hold for arbitrary functions. However, we show here that the knowl-
edge of the elementary components and their properties also allow us to bound
the evaluation of local maxima on 3-SAT.

Theorem 1. On any 3-SAT instance with n variables and m clauses, there
exists a positive real number τ such that for any state x, if f(x) < f̄ − τ , then x
cannot be a local maximum.

Proof. We begin by showing if f(x) < E[Y], it cannot be a local maximum. We
will then use the previous results to bound the inequality. Let x be a state such
that f(x) < E[Y]. There exists some point y in the neighborhood of x that has
an evaluation f(y) > f(x). Thus x cannot be a local maximum. By Corollary 1
we thus have

f(x) < E[Y]

f(x) <

3∑
p=0

(
1 − 2p

n

)
ϕ(p)(x)

f(x) <

3∑
p=0

ϕ(p)(x) − 2
n

3∑
p=0

pϕ(p)(x)

The first term on the right hand side is simply the decomposition of f(x) given
by Equation (7). Thus we can make the following substitution.

f(x) < f(x) − 2
n

3∑
p=0

pϕ(p)(x)

By Lemma 4,

f(x) < f(x) − 2
n

(
2f(x) − 2f̄ − ϕ(1)(x) + ϕ(3)(x)

)
Simplifying, we have

f(x) < f̄ +
1
2

(
ϕ(1)(x) − ϕ(3)(x)

)
(9)

Inequality (9) describes a threshold that depends on ϕ(1)(x) and ϕ(3)(x) such
that if f(x) is less than this threshold, x cannot be locally maximum. We now
give a threshold that holds over the entire search space.

By Lemma 3, we have for any x ∈ X ,

(
ϕ(1)(x) − ϕ(3)(x)

)
≥
⎛
⎝ ∑

〈i,i〉=1

−|wi| −
∑

〈i,i〉=3

|wi|
⎞
⎠

56 A.M. Sutton, A.E. Howe, and L.D. Whitley

and letting

τ =
1
2

⎛
⎝ ∑

〈i,i〉=1

|wi| +
∑

〈i,i〉=3

|wi|
⎞
⎠ (10)

we now have the following bound on the r.h.s. of Inequality (9).

f̄ − τ ≤ f̄ +
1
2

(
ϕ(1)(x) − ϕ(3)(x)

)
and thus, for all x ∈ X , if f(x) < f̄ − τ , then x cannot be a local maximum.
The threshold f̄ − τ is simply computed (in polynomial time) by summing the
absolute Walsh coefficients of order 1 and 3 and holds over the entire search
space. �

In a similar manner, we can bound the function value at which plateaus of width
greater than one can appear. A plateau is a maximal set P of states such that
for all x, y ∈ P there is a path (x = x1, x2, . . . , xt = y) of length t ≥ 1 with
f(x) = f(xi) for i = 1, 2, . . . , t and, if t > 1, xi+1 ∈ N(xi). The level of a plateau
P is the evaluation f(xp), ∀xp ∈ P .

We say the neighborhood of a state x is flat if, for all y ∈ N(x), f(y) = f(x),
that is, x has the same value as all the states in its neighborhood. We show that
flat neighborhoods cannot exist at certain levels of the objective function.

Theorem 2. On any 3-SAT instance with n variables and m clauses, there
exists a positive real number τ such that for any state x, if f(x) < f̄ − τ or
f(x) > f̄ + τ , then x cannot have a flat neighborhood.

Proof. We prove the equivalent contrapositive. Let x be a state with a flat neigh-
borhood. We have

f(x) = E[Y]

=
3∑

p=0

(
1 − 2p

n

)
ϕ(p)(x)

=
3∑

p=0

ϕ(p)(x) − 2
n

3∑
p=0

pϕ(p)(x)

= f(x) − 2
n

3∑
p=0

pϕ(p)(x) by Eq. (7)

Therefore, at such a point x we must have

3∑
p=0

pϕ(p)(x) = 0

2f(x) − 2f̄ − ϕ(1)(x) + ϕ(3)(x) = 0 by Lemma 4

A Theoretical Analysis of the k-Satisfiability Search Space 57

thus if x has a flat neighborhood, the following must hold.

f(x) = f̄ +
1
2

(
ϕ(1)(x) − ϕ(3)(x)

)
(11)

Using Lemma 3 we can bound the terms ϕ(1)(x) and ϕ(3)(x) giving the following

f̄ − τ ≤ f(x) ≤ f̄ + τ

where τ is given by Equation (10) in Theorem 1. �

Recall the width of a plateau P is the minimal length path between any state
in P and one not in P . We have the following corollary.

Corollary 3. A plateau P with level less than f̄−τ or greater than f̄ +τ cannot
have width greater than 1.

Proof. This follows directly from the fact that no flat neighborhoods exist outside
of the range f̄ − τ to f̄ + τ . Thus, for these points, every state on a plateau P
must have at least one neighbor outside P and the width of P is at most 1. �

4 Derived Values in Practice

We have shown how the average value of the neighborhood can be obtained
analytically for any particular state and that a region (τ from f̄) can be defined
outside of which plateaus of width greater than one cannot exist and certain
local optima cannot be found. We illustrate the proved properties in Figure 1.
In this section, we show empirically that the expectation value computation is
informative and that the region is non-trivial in benchmark problem instances.

no plateaus of width > 1

no plateaus of width > 1
no local maxima

f
(x

)

f̄

f̄ − τ

f̄ + τ

Fig. 1. An illustration of the proved properties. No plateaus of width strictly greater
than one can lie outside the interval. No local maxima can lie below the interval.

58 A.M. Sutton, A.E. Howe, and L.D. Whitley

4.1 Empirical Values of Neighborhood Expectation Value

The neighborhood expectation value computed in Equation (4) is useful because
it can potentially provide algorithms with higher resolution information about
states than the objective function. For example, given two states x and y with
f(x) = f(y), it is not necessarily the case that the neighborhood expectation
values are equal for both x and y.

Stochastic local search algorithms applied to k-SAT problems often must se-
lect a neighboring state from a large set of moves with equal evaluation. This
presents a problem for such algorithms due to the lack of gradient information
in the neighborhood [3]. A collection of states at the same evaluation level are
indistinguishable in terms of objective function value. However, we conjecture
the expectation value can serve as a predictor of the number of improving moves
that exit a particular state.

To illustrate this concept, we sampled 100 states at a particular objective
function level (f(x) = 390) on each of 1000 instances that make up the uf100-430
benchmark set in SATLIB (100 vars, 430 clauses). For each point we calculated
the correspondence between the expectation value given by Equation (4) and the
actual number of improving moves in the neighborhood of the state. These data
are plotted in Figure 2. A correlation test gives a strong positive correlation
value of 0.51 with p < 2.2 × 10−16 indicating that better expectation leads
to more potential for improvement. These data are preliminary indicators that
the neighborhood expectation value can provide useful information about the
neighborhoods of points even if they are equal in objective function value.

389.0 389.2 389.4 389.6 389.8

15
20

25
30

35
40

E[Y]

n
u
m

im
p
ro

v
in

g
m

ov
es

Fig. 2. Number of improving moves vs E[Y] at f(x) = 390 for 100 points each on 1000
instances of SATLIB benchmark set uf100-430. Line indicates linear best fit.

A Theoretical Analysis of the k-Satisfiability Search Space 59

4.2 Empirical Values of τ

To demonstrate the region outside the interval is not trivial, we computed the
values for τ as a percentage of the objective function range m across 18 bench-
mark distributions from SATLIB and the 2008 SAT competition. In Table 1 we
report the mean (μ), standard deviation (σ), minimum, and maximum of the
value τ/m over all N problems in each distribution.

The mean value of τ is consistently about 10% of the range m with a relatively
low standard deviation. The maximum value of τ does not exceed 13% of the
total objective function range over all the problem distributions we tested.

Table 1. Computed statistics for τ/m across several benchmark distributions from
SATLIB and 2008 SAT competition

set setsize μ σ min max
SATLIB

uf20-91 1000 0.10252 0.00707 0.08104 0.12775
uf50-218 1000 0.10467 0.00421 0.08945 0.11984
uf75-325 100 0.10487 0.00358 0.09538 0.11231
uf100-430 1000 0.10483 0.00307 0.0968 0.11483
uf125-538 100 0.10477 0.00241 0.09898 0.11245
uf150-645 100 0.10514 0.00221 0.10039 0.11027
uf175-753 100 0.10533 0.00239 0.0991 0.11155
uf200-860 100 0.10469 0.00203 0.09942 0.11047
uf225-960 100 0.10484 0.00194 0.0987 0.10898
uf250-1065 100 0.10478 0.00167 0.10082 0.10986
uuf50-218 1000 0.10131 0.00406 0.08888 0.1164

2008 SAT competition

v360 10 0.10382 0.00146 0.10046 0.10535
v400 10 0.1037 0.00198 0.10072 0.10651
v450 10 0.10369 0.00162 0.10016 0.10571
v500 10 0.10384 0.00177 0.09947 0.10616
v550 10 0.10366 0.00113 0.10137 0.10494
v600 10 0.10404 0.00107 0.1027 0.10603
v650 10 0.104 0.00108 0.10293 0.10627

5 Conclusion

Studying the structural characteristics of combinatorial search spaces is impor-
tant to understanding the behavior of stochastic search algorithms. These char-
acteristics, along with how algorithms respond to them, define how poorly or
how well the algorithm performs, in some cases determining whether a problem
or problem class is easily solved or not. We have presented analytical tools for
analyzing the search space of k-SAT and MAX-k-SAT.

We have shown that the landscape formalism provides insight into certain
structural relationships. We have shown that the decomposition of the objective

60 A.M. Sutton, A.E. Howe, and L.D. Whitley

function into elementary components supplies us with the expectation value
of the objective function of neighboring states. We have also proved that the
objective function of k-SAT can be decomposed into k computationally efficient
elementary landscape functions. We have applied this result to obtain previously
unknown bounds on the objective function levels for local maxima and plateau
width in the 3-SAT search space.

We have shown empirically on a large number of cases that the region for
which our results hold cover the majority of the objective function range. We also
have demonstrated that neighborhood expectation varies across a set of states of
equal evaluation and that this expectation correlates with improvement. Clearly
the relationship between expectation and improvement needs to be carefully
explored as does the implications of the theoretical results to algorithm design.

References

1. Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for
sat. In: Proc. of AAAI 1993, pp. 28–33. MIT Press, Cambridge (1993)

2. Parkes, A.J., Walser, J.P.: Tuning local search for satisfiability testing. In: Proc.
of AAAI 1996, pp. 356–362. MIT Press, Cambridge (1996)

3. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2004)

4. Clark, D.A., Frank, J., Gent, I.P., MacIntyre, E., Tomov, N., Walsh, T.: Local
search and the number of solutions. In: Freuder, E.C. (ed.) CP 1996. LNCS,
vol. 1118, pp. 119–133. Springer, Heidelberg (1996)

5. Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: Local search topology. J.
of Artificial Intelligence Research 7, 249–281 (1997)

6. Yokoo, M.: Why adding more constraints makes a problem easier for hill-climbing
algorithms: Analyzing landscapes of CSPs. In: Smolka, G. (ed.) CP 1997. LNCS,
vol. 1330, pp. 356–370. Springer, Heidelberg (1997)

7. Stadler, P.F.: Toward a theory of landscapes. In: Lopéz-Peña, R., Capovilla, R.,
Garćıa-Pelayo, R., Waelbroeck, H., Zertruche, F. (eds.) Complex Systems and Bi-
nary Networks, pp. 77–163. Springer, Heidelberg (1995)

8. Grover, L.K.: Local search and the local structure of NP-complete problems.
Operations Research Letters 12, 235–243 (1992)

9. Stadler, P.F.: Landscapes and their correlation functions. J. of Mathematical
Chemistry 20, 1–45 (1996)

10. Rockmore, D., Kostelec, P., Hordijk, W., Stadler, P.F.: Fast Fourier transform
for fitness landscapes. Applied and Computational Harmonic Analysis 12, 57–76
(2002)

11. Whitley, L.D., Sutton, A.M., Howe, A.E.: Understanding elementary landscapes.
In: Proc. of GECCO, Atlanta, GA (July 2008)

12. Rana, S., Heckendorn, R.B., Whitley, L.D.: A tractable Walsh analysis of SAT and
its implications for genetic algorithms. In: Proc. of AAAI 1998, pp. 392–397 (1998)

Loopy Substructural Local Search for the
Bayesian Optimization Algorithm

Claudio F. Lima1, Martin Pelikan2,
Fernando G. Lobo1, and David E. Goldberg3

1 University of Algarve, Portugal
2 University of Missouri at St. Louis, USA

3 University of Illinois at Urbana-Champaign, USA
clima.research@gmail.com, pelikan@cs.umsl.edu,

fernando.lobo@gmail.com, deg@illinois.edu

Abstract. This paper presents a local search method for the Bayesian
optimization algorithm (BOA) based on the concepts of substructural
neighborhoods and loopy belief propagation. The probabilistic model of
BOA, which automatically identifies important problem substructures, is
used to define the topology of the neighborhoods explored in local search.
On the other hand, belief propagation in graphical models is employed
to find the most suitable configuration of conflicting substructures. The
results show that performing loopy substructural local search (SLS) in
BOA can dramatically reduce the number of generations necessary to
converge to optimal solutions and thus provides substantial speedups.

1 Introduction

The Bayesian optimization algorithm (BOA) [1,2] replaces the standard
crossover and mutation operators of evolutionary algorithms (EAs) by building a
probabilistic model of promising solutions and sampling from the corresponding
probability distribution. This feature allows BOA and other estimation of distri-
bution algorithms (EDAs) [3,4] to automatically identify the problem decompo-
sition and important problem substructures, leading to superior performance for
many problems when compared to EAs with fixed, problem-independent varia-
tion operators.

Although EDAs are effective at exploring the search space to find promising
regions, they inherit a common drawback from traditional EAs: slower conver-
gence to optimal solutions when compared with appropriate local searchers that
start the search within the basin of attraction of the optima. This observation
has led to the combination of EAs with local search methods known as hybrid
EAs or memetic algorithms [5,6]. In this context EDAs are no exception and
many applications in real-world optimization have been accomplished with the
help of some sort of local search. However, systematic methods for hybridizing
and designing competent global and local-search methods that automatically
identify the problem decomposition and important problem substructures are

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 61–75, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

62 C.F. Lima et al.

still scarce. For instance, the probabilistic models of EDAs contain useful infor-
mation about the underlying problem structure that can be exploited to speedup
the convergence of EDAs to optimal solutions.

This paper makes use of the concept of substructural neighborhoods [7,8]—
where the structure of the neighborhoods is defined by learned probabilistic
models—to perform local search in BOA. The local search method proposed
is inspired on loopy belief propagation, that is often used for obtaining the
most probable state of a Bayesian network. To guide the propagation of beliefs,
we use a surrogate fitness model that also relies on substructural information.
Experiments are performed for a boundedly difficult problem with both non-
overlapping and overlapping subproblems. The results show that incorporating
loopy substructural local search (SLS) in BOA leads to a significant reduction
in the number of generations, providing relevant speedups in terms of number
of evaluations.

The next section briefly reviews the Bayesian optimization algorithm, while
Section 3 details the notion of substructural local search in EDAs. Section 4
introduces belief propagation in graphical models and its potential for function
optimization. A new substructural local search method based on loopy belief
propagation is then presented in Section 5. Section 6 presents and discusses
empirical results. The paper ends with a brief summary and conclusions.

2 Bayesian Optimization Algorithm

Estimation of distribution algorithms [3,2] replace traditional variation operators
of EAs by building a probabilistic model of promising solutions and sampling the
corresponding probability distribution to generate the offspring population. The
Bayesian optimization algorithm [1,2] uses Bayesian networks as the probabilistic
model to capture important problem regularities.

BOA starts with an initial population of candidate solutions that is usually
randomly generated. In each iteration, selection is performed to obtain a popula-
tion of promising solutions. This population is then used to build the probabilistic
model for the current generation. After the model structure is learned and its
parameters estimated, the offspring population is generated by sampling from
the distribution of modeled individuals. The new solutions are then evaluated
and incorporated into the original population by using any standard replacement
method. The next iteration proceeds again from the selection phase until some
stopping criterion is satisfied. Here, we use a simple replacement scheme where
new solutions fully replace the original population.

2.1 Modeling Variable Interactions in BOA

Bayesian networks [9] are powerful graphical models that combine probability
theory with graph theory to encode probabilistic relationships between variables
of interest. A Bayesian network is defined by a structure and corresponding
parameters. The structure is represented by a directed acyclic graph where the

Loopy Substructural Local Search for the BOA 63

nodes correspond to the variables of the data to be modeled and the edges
correspond to conditional dependencies. The parameters are represented by the
conditional probabilities for each variable given any instance of the variables
that this variable depends on. More formally, a Bayesian network encodes the
following joint probability distribution,

p(X) =
�∏

i=1

p(Xi|Πi), (1)

where X = (X1, X2, . . . , X�) is a vector of all the variables of the problem, Πi

is the set of parents of Xi (nodes from which there exists an edge to Xi), and
p(Xi|Πi) is the conditional probability of Xi given its parents Πi.

In BOA, both the structure and the parameters of the probabilistic model
are searched and optimized to best fit the data (set of promising solutions). To
learn the most adequate structure for the Bayesian network a greedy algorithm is
usually used for a good compromise between search efficiency and model quality.

The parameters of a Bayesian network are represented by a set of conditional
probability tables (CPTs) specifying the conditional probabilities for each vari-
able given all possible instances of the parent variables Πi. Alternatively, these
conditional probabilities can be stored in the form of local structures such as
decision trees or decision graphs, allowing a more efficient and flexible represen-
tation of local conditional distributions. In this work, decision trees are used to
encode the parameters of the Bayesian network.

2.2 Modeling Fitness in BOA

Pelikan and Sastry [10] extended the Bayesian networks used in BOA to encode
a surrogate fitness model that is used to estimate the fitness of a proportion of
the population, thereby reducing the total number of function evaluations. For
each possible value xi of every variable Xi, an estimate of the marginal fitness
contribution of a subsolution with Xi = xi is stored for each instance πi of Xi’s
parents Πi. Therefore, in the binary case, each row in the CPT is extended by
two additional entries. The fitness of an individual can then be estimated as

fest(X1, X2, . . . , X�) = f̄ +
�∑

i=1

(
f̄(Xi|Πi) − f̄(Πi)

)
, (2)

where f̄ is the average fitness of all solutions used to learn the surrogate,
f̄(Xi|Πi) is the average fitness of solutions with Xi and Πi, and f̄(Πi) is the
average fitness of all solutions with Πi.

Fitness information can also be incorporated in Bayesian networks with de-
cision trees or graphs in a similar way. In this case, the average fitness of each
instance for every variable must be stored in every leaf of the decision tree or
graph. The fitness averages in each leaf are now restricted to solutions that
satisfy the condition specified by the path from the root of the tree to the leaf.

64 C.F. Lima et al.

3 Substructural Local Search

One of the key requirements for designing an efficient mutation operator is to
ensure that it searches in the correct neighborhood. This is often accomplished
by exploiting and incorporating domain- or problem-specific knowledge in the
design of neighborhood operators. While these neighborhood operators are de-
signed for a particular search problem, oftentimes on an ad-hoc basis, they do not
generalize their efficiency beyond a small number of applications. On the other
hand, simple bitwise hillclimbers are frequently used as local search methods with
more general applicability, providing inferior but still competitive results, espe-
cially when combined with population-based search procedures. Clearly, there is
a tradeoff between generalization and efficiency for neighborhood operators with
fixed structure. Therefore, it is important to study systematic methods for de-
signing neighborhood operators that can solve a broad class of search problems.

The exploration of neighborhoods defined by the probabilistic models of EDAs
is an approach that exploits both the underlying problem structure while not
loosing the generality of application. The resulting mutation operators explore
a more global, problem-dependent neighborhood than traditional local, purely
representation-dependent search procedures. Sastry and Goldberg [7] showed
that a selectomutative algorithm that performs hillclimbing in the substructural
space can successfully solve problems of bounded difficulty with subquadratic
scalability.

Lima et al. [8] introduced the concept of substructural neighborhoods to the
Bayesian optimization algorithm. The parental neighborhood, which considers
all possible values for a given variable Xi and its corresponding parents Πi, was
adopted to perform local search in the subsolution space [8]. The substructural
local search is performed for a proportion of the population in BOA to speedup
convergence to good solutions, as in traditional hybrid EAs or memetic algo-
rithms [5,6]. The SLS procedure essentially explores all substructural neighbor-
hoods in a random order, choosing the best subsolution for each neighborhood
according to f̄(Xi, Πi).

Although this type of SLS succeeds in reducing the number of generations
necessary to converge to optimal solutions for problems of bounded difficulty, the
results do not carry over for problems with highly conflicting subsolutions [11].
This will become clear from the results presented in Section 6.

4 Loopy Belief Propagation

Belief propagation (BP) [9] is a method for performing exact and approximate in-
ference in graphical models, which has enjoyed increasing popularity over the last
years. Although BP has been reinvented several times in different fields [12,13],
it is mainly applied to two tasks: (1) obtaining marginal probabilities for some
of the variables, or (2) finding the most probable explanation or instance for
the graphical model. These two versions are known as the sum-product and
max-product algorithms.

Loopy Substructural Local Search for the BOA 65

X

X X

X

X

(a) Bayesian network

XXX XX

fffff

(b) Factor graph

Fig. 1. Example of a (a) Bayesian network and its equivalent representation as a (b) fac-
tor graph. Note that each factor corresponds to a conditional probability table, there-
fore the number of variable and factor nodes is the same.

BP algorithms are typically applied to factor graphs [12], which can be seen as
a unifying representation for both Bayesian networks and Markov networks [14].
Factor graphs explicitly express the factorization structure of the correspond-
ing probability distribution. Consider a function g(X) whose joint probability
distribution can be factorized in several local functions, such that

g(x1, x2, . . . , x�) =
1
Z

∏
I∈F

fI(xNI), (3)

where Z =
∑

x

∏
I∈F fI(xNI) is a normalization constant, I is the factor index,

NI is the subset of variable indices associated with factor I, and factor fI is a
nonnegative function. Note that for a Bayesian network each factor corresponds
to a conditional probability table.

A factor graph is a bipartite graph consisting of variable nodes i ∈ V , factor
nodes I ∈ F , and an undirected edge {i, I} between i and I if and only if i ∈ NI ,
meaning that factor fI depends on xi. Factor nodes are typically represented as
squares and variable nodes as circles.

An example of a Bayesian network, along with the corresponding representa-
tion as a factor graph, is presented in Figure 1. The factor graph represents the
following factorization

g(x1, x2, x3, x4, x5) =
1
Z

f1(x1)f2(x1, x2)f3(x1, x2, x3)f4(x4, x5)f5(x5). (4)

If one substitutes the factor functions by the corresponding conditional proba-
bilities, the joint probability distribution of a Bayesian network is obtained.

When BP is applied to cyclic graphs it is often referred as loopy belief
propagation (LBP). In this situation, the convergence to exact beliefs can not
be guaranteed as it is for acyclic graphs (without loops). However, empirical
studies have shown that good approximate beliefs can be obtained for several
domains (see [13] for an extensive list).

The inference performed by BP is done by message-passing between the nodes
of the graphical model. Each node sends and receives messages from its neighbors

66 C.F. Lima et al.

until a stable state is reached. The outgoing messages are functions of incoming
messages at each node. This iterative process is repeated according to some
schedule that describes the sequence of message updates in time [13].

When performing BP in factor graphs, there are two types of messages: mes-
sages mI→i, sent from factors I ∈ F to neighboring variables i ∈ NI , and
messages mi→I , sent from variables i ∈ V to neighboring factors I ∈ Ni. The
new messages m′ are given in terms of the incoming messages by the following
update rules:

m′
i→I(xi) =

∏
J∈Ni\I

mJ→i(xi) ∀i ∈ V , ∀I ∈ Ni, (5)

m′
I→i(xi) =

∑
xNI\i

fI(xNI)
∏

j∈NI\i

mj→I(xj) ∀I ∈ F , ∀i ∈ NI , (6)

m′
I→i(xi) = max

xNI\i

⎛
⎝fI(xNI)

∏
j∈NI\i

mj→I(xj)

⎞
⎠ ∀I ∈ F , ∀i ∈ NI , (7)

where Ni \ I represents the set of neighboring factor nodes of variable node i
excluding node I, NI \i represents the set of neighboring variable nodes of factor
node I excluding node i, and xNI\i stands for a possible combination of values
that all variables but Xi in XNI can take while variable Xi remains instantiated
with value xi.

For the sum-product algorithm, equations 5 and 6 are used, while for the
max-product algorithm equations 5 and 7 should be used instead. When mes-
sages stop changing over time, the BP algorithm has converged and marginal
functions (sum-product) or max-marginals (max-product) can be obtained as
the normalized product of all messages received for Xi:

gi(xi) ∝
∏

I∈Ni

mI→i(xi). (8)

For the max-product algorithm, the most probable configuration (MPC) for
each variable Xi is obtained by assigning the value associated with the highest
probability at each max-marginal.

When applying BP algorithms, three types of parameters need to be de-
fined [15]: message scheduling, stopping criteria, and initial settings. For more
details about parameter setting in BP algorithms the reader is referred else-
where [15,13,9,12].

4.1 Message-Passing Techniques for Optimization

Several message-passing algorithms have been developed and applied to different
optimization problems. The idea is to associate a probability distribution to the
function to be optimized in such a way that the most probable value of the
distribution is reached for the solution(s) that optimize the function [15]. Recent

Loopy Substructural Local Search for the BOA 67

applications have been used to solve satisfiability problems [16,17] and for finding
the maximum weight matching in a bipartite graph [18].

Recognizing the potential of BP for Bayesian EDAs, Mendiburu et al. [19]
introduced belief propagation to the estimation of Bayesian networks algo-
rithm (EBNA) [20], which is very similar to BOA. The idea is to combine prob-
abilistic logic sampling (PLS) [21] with loopy belief propagation to sample the
offspring population. Specifically, n − 1 individuals are sampled through PLS
and the remaining individual is instantiated with the most probable configura-
tion for the current Bayesian network. The Bayesian network is mapped into an
equivalent factor graph so that the max-product algorithm can be applied to ob-
tain the new individual. Although the authors concluded that this modification
allowed an improvement in the optimization capabilities of EBNA, the results
fail to demonstrate great improvements both in solution quality and number of
function evaluations required [19].

While the calculation of the most probable configuration of the Bayesian net-
work at each generation is expected to generate a good solution, its relative
quality is strongly dependent upon the current stage of the search. It seems clear
that high-quality solutions can only be generated by LBP when BOA starts fo-
cusing on more concrete regions of the search space. On the other hand, instead
of performing loopy belief propagation based on the conditional probabilities,
substructural fitness information can be used for the factor nodes. Although
probabilities represent likely substructures, using the associated fitness provides
more direct information when looking for solutions with high quality. That is
what is proposed in the next section.

5 BOA with Loopy Substructural Local Search

This section describes a substructural local searcher based on loopy belief prop-
agation that can be incorporated in BOA. The resulting method which is named
as loopy substructural local search (loopy SLS) uses substructural fitness infor-
mation f̄(Xi, Πi) to guide the max-product algorithm in finding the MPC, which
is the solution that is expected to maximize fitness based on the contribution of
its substructures.

Regarding the parameterization of BP, the maximum number of iterations
that the algorithm is allowed to run is set to 2�, while the allowed difference
when comparing two messages is of at least 10−6 (otherwise messages are con-
sidered to be similar). These are typical parameter values from the literature. The
update schedule used is the maximum residual updating [22], which calculates
all residuals (difference between updated and current messages) and updates
only the message with the largest residual. Consequently, only the residuals that
depend on the updated message need to be recalculated.

If the factor graph is acyclic, BP will converge towards a unique fixed point
within a finite number of iterations, while the beliefs can be shown to be exact.
However, if the factor graph contains loops, which is the typical situation when
translating a Bayesian network from BOA, the result can be only interpreted

68 C.F. Lima et al.

as an approximate solution. Therefore, two different situations can arise when
performing loopy SLS: (1) the max-product algorithm might not converge to a
stable point and (2) even in case of convergence, the solution can present ties
for certain positions.

If the LBP algorithm does not converge to a stable state, the configuration
found after the maximum number of iterations (2�) is still used as the result
of loopy SLS. While this solution is not guaranteed to be the MPC, it is likely
a local optimum and therefore should be inserted in the population. Another
situation that can happen is the presence of ties for certain variables, where
the MPC can not be decided between 0 and 1. Typically, for problems tested
with BOA, this occasionally occurs but for very few variables. Therefore, when
the MPC presents ties, the loopy SLS enumerates all possible configurations and
insert them in the population as the result of local search. To account for the rare
case where the number of ties nt is beyond reasonable, the maximum number of
possible configurations/individuals returned by local search is set to �, in which
case the configurations chosen are randomly selected from all possible 2nt .

The loopy SLS method presents several differences from the proposal by
Mendirubu et al. [19]. The most significative difference is that the factor nodes
use fitness information instead of the traditional approach in BP which is to use
the conditional probabilities stored in CPTs. The motivation for doing so is dis-
cussed later with a detailed example. By using fitness information, the algorithm
becomes a local search method based on loopy message-passing principles—
therefore the name of loopy substructural local search. Another important inno-
vation is the selection of relevant factor nodes to perform loopy SLS. Essentially,
factor nodes (and corresponding edges) whose variable set is a subset of another
factor are removed. Consider the previous example of a factor graph in Figure 1.
The relevant factor nodes are f3 and f4 because the variable domain of the re-
maining factors is already included in these factors. Note that this simplification
of the BN is possible because f̄(X1, X2, X3) (stored in factor f3) is more infor-
mative than both f̄(X1, X2) and f̄(X1) (stored in factors f2 and f1). In the same
way, f̄(X4, X5) already contains information from f̄(X5). This straightforward
procedure simplifies and improves the information exchange between nodes in
the factor graph. In addition, the method for dealing with ties is also a novel
contribution.

Figure 2 presents the pseudocode for the loopy substructural local searcher in
BOA. The algorithm starts by mapping the current Bayesian network to a factor
graph which stores fitness information in the factor nodes. The method proceeds
by removing all factor nodes that are not relevant to local search, simplifying
the search complexity for the MPC. The max-product algorithm is then applied
to the resulting graph and the result is inserted in the population. Depending
upon the number of possible ties for certain variable positions, up to � different
individuals can be inserted in the population. This is a reasonable number in
terms of population-sizing which is known to scale as Θ(� log �) [23]. Finally, it is
important to mention that the loopy local search takes place after the offspring
population is generated.

Loopy Substructural Local Search for the BOA 69

Loopy Substructural Local Search (Loopy SLS)

(1) Map the current Bayesian network B into a factor graph F, where factor
nodes store substructural fitness information f̄(Xi, Πi).

(2) Remove factor nodes (and corresponding edges) whose variable set is a
subset of another factor in F.

(3) Perform loopy belief propagation in F. Return the most probable configu-
ration MPC and possible number of tied positions nt.

(4) If nt = 0, instantiate an individual with the values from MPC;
Else If 2nt ≤ �, enumerate all possible 2nt configurations and instantiate
them in 2nt different individuals;
Else enumerate � randomly chosen configurations out of 2nt and instan-
tiate them in � different individuals.

(5) Evaluate the resulting individuals.

Fig. 2. Pseudocode of the loopy substructural local search in BOA

6 Results and Discussion

This section presents and discusses the results obtained for the standard
BOA, BOA with loopy SLS, BOA with standard LBP (as proposed by
Mendiburu et al. [19]), and BOA with the simpler SLS [8].

6.1 Experimental Setup

The test problem considered is the m − k trap function, where m stands for
the number of concatenated k-bit trap functions. Trap functions [24,25] are rel-
evant to test problem design because they bound an important class of nearly
decomposable problems [25]. The trap function used is defined as follows

ftrap(u) =
{

k, if u = k
k − 1 − u, otherwise (9)

where u is the number of ones in the string, k is the size of the trap function. Note
that for k ≥ 3 the trap function is fully deceptive [24] which means that any lower
than k-order statistics will mislead the search away from the optimum. In this
problem the accurate identification and exchange of the building-blocks (BBs) is
critical to achieve success, because processing substructures of lower order leads
to exponential scalability [26]. Note that no information about the problem is
given to the algorithm; therefore, it is equally difficult for BOA if the variables
correlated are closely or randomly distributed along the chromosome string. A
trap function with size k = 5 is used in our experiments.

Overlapping difficulty is an important problem feature because many
problems can have different interactions that share common components.
The difficulty of overlap is addressed by considering an overlapping ver-
sion of m-k trap problem, where each variable index set corresponding to

70 C.F. Lima et al.

a subfunction shares o variables with two other neighboring subproblems.
More precisely, a trap-k subfunction fj(xi, xi+1, . . . , xi+k−1) will overlap with
fj−1(xi−k+o, xi−k+o+1, . . . , xi+o−1) and fj+1(xi+k−o, xi+k−o+1, . . . , xi+2k−o−1).

For all experiments, we use the population size that minimizes the total num-
ber of function evaluations required to solve the problem in 10 out of 10 inde-
pendent runs. The population size adjustment is performed for 10 independent
runs using a modified bisection method [11,2]. Therefore, the total number of
function evaluations is averaged over 100 (10 × 10) runs.

6.2 Loopy SLS versus Standard LBP

This section compares the proposed loopy SLS with the proposal by
Mendiburu et al. [19]. It should be clear that the only difference between the
two alternatives is that loopy SLS uses (1) substructural fitness information
instead of conditional probabilities for the factor nodes and (2) removes non-
relevant factors. Other aspects such as message-scheduling, ties management,
and parameters are set similarly (as described for loopy SLS), to focus the ex-
perimental comparison on the capability for generating high-quality solutions,
rather than comparing different configurations of the max-product algorithm.
The results for BOA with both standard loopy BP (as proposed for EBNA) and
loopy SLS are presented in Figure 3.

The two alternatives present a very different behavior. While the LBP algo-
rithm behaves similarly to the original BOA, preferring smaller population sizes
but taking more iterations and consequently evaluations, the loopy SLS seems to
take advantage from using larger population sizes. Note that both alternatives
use the same method to tune the population size. Nevertheless, increasing the
population size for standard LBP does not reduce the number of generations
necessary to solve the problem. Although minor gains are obtained with LBP
for some problem instances, the corresponding speedup is very close to one.

Loopy SLS can effectively take advantage from larger populations to gather
more accurate information to speedup the solution of the problem. More accurate
fitness information allows the loopy local searcher to converge faster to optimal
solutions. If conditional probabilities are used instead (as in standard LBP), the
algorithm requires a certain number of generations for selecting and propagat-
ing the best substructures until their sampling probability becomes significant
enough. For example, consider the trap-5 function with the local optimum at
00000 and the global optimum at 11111. Initially, the local optimum will dom-
inate the population because it’s much easier to climb. Later on, when both
optima are the most frequent alternatives, the selection process starts propagat-
ing 11111 over 00000. Only at this stage, the max-product algorithm based of
conditional probabilities is expected to return 11111 as the most probable config-
uration. On the other hand, when using substructural fitness information, once
the fitness surrogate is accurate enough to identify 11111 as a better alternative
than 00000, the MPC is expected to return the optimal solution. Consequently,
BOA with loopy SLS takes advantage from using larger populations by building
a more accurate fitness surrogate model.

Loopy Substructural Local Search for the BOA 71

20 40 80 120

10
5

Problem Size, l

P
op

ul
at

io
n

si
ze

, n

BOA
BOA w/ loopy SLS
BOA w/ LBP (EBNA)

(a) Population size

20 40 80 120
10

0

10
1

Problem Size, l

N
um

be
r

of
 g

en
er

at
io

ns
, t

c

BOA
BOA w/ loopy SLS
BOA w/ LBP (EBNA)

(b) Num. of generations

20 40 80 120

10
5

10
6

Problem Size, l

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

, n
fe

BOA
BOA w/ loopy SLS
BOA w/ LBP (EBNA)

(c) Num. of function evaluations

20 40 80 120

1

1.5

2

2.5

3

3.5

4

Problem Size, l

S
pe

ed
up

,η
BOA w/ loopy SLS
BOA w/ LBP (EBNA)

(d) Speedup

Fig. 3. Results for BOA with both standard LBP and loopy SLS when solving the
trap-5 problem with two overlapping variables (o = 2)

Another important difference between the two approaches is the removal of
factors which are not relevant to the MPC search. This is directly related to
the dependency structure used by Bayesian networks to represent interactions
among several variables. While this structure is required to be able to sample new
instances with PLS, it is not necessary or even desirable when using BP methods.
Given that

∏k
i=1 p(Xi|Xi+1, Xi+2, . . . , Xk) = p(X1, X2, . . . , Xk), if a factor node

relating k interacting variables stores the joint probability p(X1, X2, . . . , Xk),
there is no need of having k factors, one for each conditional probability in the
product above. In this case, the presence of k factors can be even prejudicial if the
lower-order statistics are misleading, which is the case for deceptive problems.
The factors corresponding to lower-order statistics will make judgments based
on local/deceptive information, somehow discrediting the information sent by
the factor nodes with k−order statistics. Only when lower-order statistics start
guiding the search towards 11111 (as mentioned above), this configuration will
get enough recommendations to set the MPC with the optimal substructure.

72 C.F. Lima et al.

6.3 Loopy SLS versus Simple SLS for Increasing Overlap

Figure 4 details the performance of BOA with both substructural local searchers
for the trap-5 problem without overlap. Clearly, both SLS versions succeed in
reducing the number of generations required to solve the problem. Consequently,
the total number of function evaluations required is significantly reduced, pro-
viding speedups superior to 10. This translates into an order of magnitude less
evaluations to solve the same problem. More importantly, the speedup consis-
tently increases with problem size approximately as Θ(

√
�).

Figure 5 presents the results for the trap-5 problem with several degrees of
overlapping (o = {1, 2, 3}). By using loopy substructural local search the savings
in function evaluations are much greater than those obtained by the previous
local searcher. For the simpler SLS, when the degree of overlapping between
different subfunctions increases, the efficiency of performing local search reduces
drastically. These results are not surprising given the nature of the local searcher.
When searching for the best substructure at a given subproblem, the decision-
making does not take into account the corresponding context. Because different
subproblems are solved in a particular sequence, the best subsolution for a sub-
problem considered in isolation might not be the best choice when considering
other subproblems that overlap with the first. While this is not the case for
the overlapping trap-5 problem, because all subproblems have the same global
optimum at 11111, the local searcher can still be deceived.

Consider the following example, where two different trap-5 subproblems over-
lap in two variables (X4 and X5), being the total problem size � = 8. When
performing local search, the initial solution 00000000 has fitness f = 4 + 4 = 8,
but when considering the best substructure for the first partition 11111000 the
corresponding total fitness decreases to f = 5 + 2 = 7. While locally the best
substructure is identified, the decrease in the overall fitness will not accept the

20 40 80 160 200
10

0

10
1

Problem Size, l

N
um

. g
en

er
at

io
ns

BOA
BOA w/ SLS
BOA w/ loopy SLS

(a) Num. of generations

20 40 80 160 200

2

4

6

8

10

12

Problem Size, l

S
pe

ed
up

,η

BOA w/ SLS
BOA w/ loopy SLS

(b) Speedup

Fig. 4. Results for BOA with both simple SLS and loopy SLS when solving the
non-overlapping trap-5 problem. The corresponding speedup scales approximately
as Θ(

√
�).

Loopy Substructural Local Search for the BOA 73

20 40 80 120
1

2

3

4

5

6

Problem Size, l

S
pe

ed
up

,η

o = 1
o = 2
o = 3

(a) Simple SLS

20 40 80 120
1

2

3

4

5

6

Problem Size, l

S
pe

ed
up

,η

o = 1
o = 2
o = 3

(b) Loopy SLS

Fig. 5. Speedup obtained for BOA with the simple SLS [8] and the loopy SLS when
solving the trap-5 problem with overlap of o = {1, 2, 3}

move (see [8] for further details). Even if the order of visit for the neighborhoods
is randomly shuffled each time local search is performed, there is no guarantee
that all possibilities are covered for highly overlapping problems.

With loopy SLS the context for each variable is now taken into account. For
1-variable overlap (o = 1), the speedup grows up to 6, behaving very similarly
to the non-overlapping case. For 2-variable overlap (o = 2), the speedup also
increases with the problem size but with a more moderate slope. Finally, for 3-
variable overlap, the speedup grows with even a more moderate slope, while for
larger problem instances the speedup seems to stagnate. Notice that for a trap
subfunction with k = 5 and o = 3, three out of five variables (60%) are shared
with each of the two neighboring subfunctions, and each subfunction overlaps
with another four on at least one variable. This translates into a considerable
amount of noise at the decision-making for each subproblem, when looking for
the best subsolution. Although the effect of overlapping variable interactions is
similar to that of exogenous noise [25], which is known to be extremely hard
for local search [7], the speedups obtained with loopy SLS for problems with
overlap are still substantial for considerable proportions of overlap. Speedups of
6, 3.75, and 2.5 were obtained for proportions of overlap of 20%, 40%, and 60%,
respectively.

7 Summary and Conclusions

This paper presents a substructural local searcher for the Bayesian optimization
algorithm based on the principles of loopy belief propagation in graphical mod-
els. The concept of substructural neighborhoods is used to perform local search
in BOA. The local search method proposed makes use of a message-passing al-
gorithm to find the optimal assignment of variable values, adequate for solving
problems with highly conflicting subsolutions. Experiments are performed for
different instances of the trap problem.

74 C.F. Lima et al.

For the non-overlapping trap problem, substructural local search is shown
to substantially reduce the number of function evaluations, providing speedups
superior to 10 for a problem size of � = 200. This translates into one order of
magnitude less evaluations to solve the same problem. More importantly, the
speedup consistently increases with problem size approximately as Θ(

√
�).

For the overlapping trap problem, BOA with loopy SLS maintains the sub-
stantial speedups from the non-overlapping case, but as the dimension of over-
lapping increases (making the problem more noisy), its efficiency is reduced.
Nevertheless, local search still succeeds in saving a significant number of func-
tion evaluations when compared to standard BOA. Speedups of 6, 3.75, and 2.5
were obtained for proportions of overlap of 20%, 40%, and 60%, respectively.

Acknowledgements. This work was sponsored by the Portuguese Foundation
for Science and Technology under grants SFRH-BD-16980-2004 and PTDC-
EIA-67776-2006, by the National Science Foundation under CAREER grant
ECS-0547013, by the Air Force Office of Scientific Research, Air Force Ma-
teriel Command, USAF, under grant FA9550-06-1-0096, and by the University
of Missouri in St. Louis through the High Performance Computing Collabora-
tory sponsored by Information Technology Services, and the Research Award
and Research Board programs.

References

1. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian Optimization
Algorithm. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolu-
tionary Computation Conference GECCO 1999, pp. 525–532. Morgan Kaufmann,
San Francisco (1999)

2. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Gen-
eration of Evolutionary Algorithms. Springer, Heidelberg (2005)

3. Larrañaga, P., Lozano, J.A. (eds.): Estimation of distribution algorithms: a new
tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2002)

4. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications 21(1),
5–20 (2002)

5. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent
Computation Program, California Institute of Technology, Pasadena, CA (1989)

6. Hart, W.E.: Adaptive global optimization with local search. PhD thesis, University
of California, San Diego, CA (1994)

7. Sastry, K., Goldberg, D.E.: Let’s get ready to rumble: Crossover versus mutation
head to head. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 126–137.
Springer, Heidelberg (2004)

8. Lima, C.F., Pelikan, M., Sastry, K., Butz, M., Goldberg, D.E., Lobo, F.G.: Sub-
structural neighborhoods for local search in the bayesian optimization algorithm.
In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whit-
ley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 232–241. Springer,
Heidelberg (2006)

Loopy Substructural Local Search for the BOA 75

9. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible in-
ference. Morgan Kaufmann, San Mateo (1988)

10. Pelikan, M., Sastry, K.: Fitness inheritance in the bayesian optimization algorithm.
In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 48–59. Springer,
Heidelberg (2004)

11. Lima, C.F.: Substructural Local Search in Discrete Estimation of Distribution
Algorithms. PhD thesis, University of Algarve, Faro, Portugal (2009)

12. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product al-
gorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

13. Mooij, J.M.: Understanding and Improving Belief Propagation. PhD thesis, Rad-
boud University Nijmegen, Nijmegen, Netherlands (2008)

14. Kindermann, R., Snell, J.L.: Markov Random Fields and Their Applications. Amer-
ican Mathematics Society, Providence (1980)

15. Mendiburu, A., Santana, R., Lozano, J.A., Bengoetxea, E.: A parallel framework
for loopy belief propagation. In: GECCO 2007: Proceedings of the 2007 GECCO
conference companion on Genetic and evolutionary computation, pp. 2843–2850.
ACM, New York (2007)

16. Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: An algorithm for
satisfiability. Random Structures and Algorithms 27(2), 201–226 (2005)

17. Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message pass-
ing algorithms for some satisfiability problems. In: Dı́az, J., Jansen, K., Rolim,
J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110,
pp. 339–350. Springer, Heidelberg (2006)

18. Bayati, M., Shah, D., Sharma, M.: Max-product for maximum weight matching:
Convergence, correctness, and LP duality. IEEE Transactions on Information The-
ory 54(3), 1241–1251 (2008)

19. Mendiburu, A., Santana, R., Lozano, J.A.: Introducing belief propagation in
estimation of distribution algorithms: A parallel approach. Technical Report
EHU-KAT-IK-11-07, Department of Computer Science and Artificial Intelligence,
University of the Basque Country (2007)

20. Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In:
Rodriguez, A.A.O., et al. (eds.) Second Symposium on Artificial Intelligence
(CIMAF 1999), Habana, Cuba, pp. 332–339 (1999)

21. Henrion, M.: Propagation of uncertainty in Bayesian networks by logic sam-
pling. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence,
pp. 149–163. Elsevier, Amsterdam (1988)

22. Elidan, G., Mcgraw, I., Koller, D.: Residual belief propagation: Informed scheduling
for asynchronous message passing. In: Proceedings of the Twenty-second Confer-
ence on Uncertainty in AI, UAI (2006)

23. Yu, T.L., Sastry, K., Goldberg, D.E., Pelikan, M.: Population sizing for entropy-
based model building in genetic algorithms. In: Thierens, D., et al. (eds.) Pro-
ceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference
(GECCO 2007), pp. 601–608. ACM Press, New York (2007)

24. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. Foundations of
Genetic Algorithms 2, 93–108 (1993)

25. Goldberg, D.E.: The Design of Innovation - Lessons from and for Competent Ge-
netic Algorithms. Kluwer Academic Publishers, Norwell (2002)

26. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Forrest, S. (ed.)
Proceedings of the Fifth International Conference on Genetic Algorithms, San Ma-
teo, CA, pp. 38–45. Morgan Kaufmann, San Francisco (1993)

Running Time Analysis of ACO Systems
for Shortest Path Problems

Christian Horoba1 and Dirk Sudholt1,2,�

1 LS 2, Fakultät für Informatik, Technische Universität Dortmund,
Dortmund, Germany

2 International Computer Science Institute, Berkeley, USA
{horoba,sudholt}@ls2.cs.tu-dortmund.de

Abstract. Ant Colony Optimization (ACO) is inspired by the ability of
ant colonies to find shortest paths between their nest and a food source.
We analyze the running time of different ACO systems for shortest path
problems. First, we improve running time bounds by Attiratanasunthron
and Fakcharoenphol [Information Processing Letters, 105(3):88–92, 2008]
for single-destination shortest paths and extend their results for acyclic
graphs to arbitrary graphs. Our upper bound is asymptotically tight
for large evaporation factors, holds with high probability, and transfers
to the all-pairs shortest paths problem. There, a simple mechanism for
exchanging information between ants with different destinations yields
a significant improvement. Our results indicate that ACO is the best
known metaheuristic for the all-pairs shortest paths problem.

1 Introduction

Ant Colony Optimization (ACO) is a rapidly growing field. It is inspired by the
foraging behavior of real ants, which enables an ant colony to find shortest paths
between its nest and a food source. Ants communicate by placing pheromone on
the ground while searching the environment for food. Other ants are attracted
by pheromone trails and therefore tend to follow previous ants. In case foraging
ants discover different paths between a nest and a food source, a short path
typically gets invested with pheromone more quickly than a longer path. The
more ants take the short path, the more pheromone is deposited, until almost
all ants follow the short path.

The communication mechanism of real ants has been transferred to many
optimization problems such as the TSP [1], routing problems [2,3], and many
other combinatorial problems, see the book by Dorigo and Stützle [4]. Despite a
plethora of applications, the theoretical knowledge on ACO is still very limited.
First theoretical investigations concerned convergence proofs [5] and simplified
models of ACO algorithms [6]. In 2006 the first rigorous investigations of the
running time of ACO algorithms were presented independently by Gutjahr [7]

� Dirk Sudholt acknowledges financial support by a postdoctoral fellowship from the
German Academic Exchange Service.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 76–91, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Running Time Analysis of ACO Systems for Shortest Path Problems 77

and Neumann and Witt [8] for the optimization of simple pseudo-Boolean func-
tions. The latter authors presented an algorithm called 1-ANT. This algorithm
memorizes the best solution found so far. In each iteration a new solution is
constructed and the pheromones are updated in case another solution with at
least the same quality is found. In other words, every new best-so-far solution
is rewarded only once. Investigations of the 1-ANT [8,9] have shown that if the
evaporation strength ρ is set too small the algorithm stagnates on even very sim-
ple problems and the expected time until an optimum is found is exponential.
Other algorithms, variants of the MAX-MIN Ant System (MMAS) [10], reinforce
the best-so-far solution in every iteration. This avoids the problem of stagnation
and leads to efficient running times on various test problems [11,12].

Neumann, Sudholt, and Witt [13] investigated the effect of hybridizing ACO
with local search. Regarding combinatorial problems, Neumann and Witt [14]
presented an analysis for minimum spanning trees. Attiratanasunthron and Fak-
charoenphol [15] presented a running time analysis of ACO algorithms on a
shortest path problem, the single-destination shortest path problem (SDSP) on
directed acyclic graphs (DAGs). Their algorithm n-ANT is inspired both by the
1-ANT [8] and the AntNet algorithm [3]. To our knowledge, this is the first and
only rigorous running time analysis for ACO on a shortest path problem. This is
surprising as shortest path problems crucially inspired the development of ACO.

The aim of this work is to bring forward the theory of ACO for shortest path
problems. Shortest paths have already been investigated in the context of other
metaheuristics. Scharnow, Tinnefeld, and Wegener [16] presented an analysis of a
simple evolutionary algorithm, the (1+1) EA, for the single-source shortest path
problem (SSSP). The problems SDSP and SSSP are in essence identical. Their
results were later refined by Doerr, Happ, and Klein [17]. In [18] the latter authors
investigated a genetic algorithm, simply called GA, for the all-pairs shortest path
problem (APSP) and proved that the use of crossover leads to a speed-up com-
pared to mutation-based evolutionary algorithms. Finally, Horoba [19] proved
that an evolutionary multiobjective algorithm represents a fully polynomial-time
approximation scheme for an NP-hard multiobjective shortest path problem.
Table 1 gives an overview on the best known bounds in the single-objective case,
including bounds that will be proven in this paper. We remark that problem-
specific algorithms solve SDSP for graphs with n vertices and m edges in time
O(m + n log n) and APSP in time O(nm + n2 log n) [20].

In Section 2 we define an ACO algorithm MMASSDSP for the SDSP that differs
from the n-ANT [15] in two essential ways. Using our modified algorithm we are
able to obtain significantly improved running time bounds (see Table 1 and
Section 3) and to generalize previous results for DAGs to graphs with cycles. A
corresponding lower bound shows that our upper bounds are asymptotically tight
if the evaporation factor ρ is not too small. In Section 4 we transfer these results
to a generalized ant system MMASAPSP for the APSP where ants with different
destinations move independently. The main result concerns a modification of
MMASAPSP where ants temporarily follow foreign pheromone traces. We prove
that, surprisingly, this simple mechanism leads to a significant speed-up.

78 C. Horoba and D. Sudholt

Table 1. Overview on the best known running time bounds on graphs with n vertices,
m edges, maximum degree Δ, maximum number of edges � on any shortest path,
and �∗ := max{�, ln n}. The rightmost column contains the number of path length
evaluations in one iteration. The bound for MMASAPSP with interaction holds for
ρ ≤ 1/(23Δ log n); it simplifies to O(n log3 n) for optimal ρ.

Algorithm Problem Iterations Eval.

n-ANT [15] SDSP on DAGs O
(

mΔ� log(Δ�)
ρ

)
n

MMASSDSP SDSP O
(
Δ��∗ + � log(Δ�)

ρ

)
n

MMASSDSP SDSP on Glb Ω
(
n2 + n

ρ log(1/ρ)

)
n

MMASSDSP+adaptive τmin SDSP O
(
�m + n log n

ρ

)
n

(1+1) EA [17] SSSP Θ
(
n2�∗

)
1

MMASAPSP APSP O
(
Δ��∗ + � log(Δ�)

ρ

)
n2

MMASAPSP+interaction APSP O
(
n log n + log(�) log(Δ�)

ρ

)
n2

GA [18] APSP O
(
n3.5√log n

)
1

2 Algorithms

We consider shortest path problems on weighted directed graphs G = (V, E, w)
where w(e) denotes the weight of edge e. The number of vertices is always de-
noted by n. We define a path of length � from u to v as a sequence of vertices
(v0, . . . , v�) where v0 = u, v� = v, and (vi−1, vi) ∈ E for all i with 1 ≤ i ≤ �.
For convenience, we also refer to the corresponding sequence of edges as path.
Let deg(u) denote the out-degree of a vertex u and Δ(G) denote the max-
imum out-degree of any vertex u ∈ V . Let �(G, v) := maxu{#edges on p |
p is a shortest path from u to v} and �(G) := maxv �(G, v). For undirected non-
weighted graphs �(G, v) is called eccentricity of v and �(G) diameter of G.

For the single-destination shortest path problem (SDSP) we are looking for
shortest paths from every vertex to a specified destination vertex. The length
w(p) of a path p is defined as the sum of weights for all edges in p if the path
ends with the destination vertex. If the path does not reach the destination, we
define w(p) := ∞. In the following, we only consider positive weights as with
negative-length cycles one can find arbitrarily short paths and the problem of
computing a shortest simple path is NP-hard [15].

Attiratanasunthron and Fakcharoenphol [15] present the ACO algorithm
n-ANT for the SDSP. Their algorithm is inspired by the 1-ANT [8] and the
AntNet routing algorithm [3]. From every vertex u ∈ V an ant au starts heading
for the destination. The path is chosen by performing a random walk through
the graph according to pheromones on the edges. Ant au memorizes the best
path it has found from u to the destination so far. If it has found a path that

Running Time Analysis of ACO Systems for Shortest Path Problems 79

Algorithm 1. Path Construction from u to v for MMASSDSP

1: i ← 0
2: pi ← u
3: V1 ← {p ∈ V \ {p0} | (p0, p) ∈ E}
4: while pi �= v and Vi+1 �= ∅ do
5: i ← i + 1
6: choose pi ∈ Vi with probability τ((pi−1, pi))/

∑
p∈Vi

τ((pi−1, p))
7: Vi+1 ← {p ∈ V \ {p0, . . . , pi} | (pi, p) ∈ E}
8: end while
9: return (p0, . . . , pi)

is at least as good as the previous best-so-far path, a pheromone update takes
place and the new path is reinforced. The authors use a purely local update rule:
each ant au is responsible for updating the edges leaving its start vertex u. If the
new path is worse, the pheromones on the edges leaving u remain unchanged.

As the authors only consider acyclic graphs, the n-ANT is not supposed to
deal with cycles. In particular, in [15] the authors state that in graphs with cycles
their path construction procedure might take exponential time. Therefore, here
we only allow ants to construct simple paths, i. e., an ant cannot visit a vertex
more than once. The choice which edge to take next is made among all edges
leading to unvisited vertices. This restriction bears the risk that the ant does
not reach the destination. Recall that in this case the length of the path found
is defined as w(p) = ∞. Due to the local pheromone update it is guaranteed
that still one outgoing edge is rewarded for every vertex u with deg(u) ≥ 1 and
u �= n. The construction procedure is described in Algorithm 1.

We call our algorithm MMASSDSP as we use the best-so-far update rule from
the algorithm MMAS in [12] instead of the update rule used by the 1-ANT.
The difference is that we always perform a pheromone update with the current
best-so-far path, either with a new path or with the previous best-so-far path in
case the new path is worse.

The update scheme is essentially taken over from [15]. We initialize the pher-
omones τ : E → �

+
0 such that all edges leaving some vertex u receive the same

amount of pheromone: if e = (u, ·) then τ(e) = 1/ deg(u). If e is the only edge
leaving u, we keep τ(e) = 1 fixed. This means that vertices with a single out-
going edge are traversed in the only possible way; these vertices may therefore
be disregarded when proving upper bounds on the running time. In case u has
more than one outgoing edge, the pheromone for e = (u, v) is computed as fol-
lows. Let p∗u denote the best path from u found so far. Initially, we set p∗u to
an empty path, which has infinite length by definition of w. As in [10,15] we
use pheromone borders to keep pheromones within an interval [τmin, τmax]. In a
pheromone update then

τ(e) ←
{

min {(1 − ρ) · τ(e) + ρ, τmax} if e = (u, v) ∈ p∗u,
max {(1 − ρ) · τ(e), τmin} if e = (u, v) /∈ p∗u.

(1)

80 C. Horoba and D. Sudholt

Algorithm 2. MMASSDSP

1: initialize pheromones τ and best-so-far paths p∗1, . . . , p∗n
2: loop
3: for u = 1 to n do
4: construct a simple path pu = (pu,0, . . . , pu,�u) from u to n w. r. t. τ
5: if w(pu) ≤ w(p∗u) then p∗u ← pu end if
6: end for
7: update pheromones τ w. r. t. p∗1, . . . , p

∗
n

8: end loop

Fig. 1. Example graph for n = 7

The complete algorithm is shown in Algorithm 2. We are interested in the
optimization time or running time of MMASSDSP, i. e., the number of itera-
tions until shortest paths from 1, . . . , n to n have been found. Another common
performance measure for metaheuristics is the number of function evaluations.
Note that in one iteration of MMASSDSP we have n ants constructing n solutions
and performing n function evaluations in parallel. Hence, the number of function
evaluations is by a factor n larger than the number of iterations.

Before analyzing MMASSDSP we motivate why it is essential to have ants
starting from every vertex, even when we are only interested in the shortest path
from a single source to a single destination and even when considering simple
DAGs. Imagine a variant MMASSPSP (SPSP for single-pair shortest paths) where
one or multiple ants start from a single vertex, searching for the destination.
Consider the following graph G = (V, E, w) sketched in Figure 1. It contains
a single heavy edge (n − 1, n) with weight n − 2 and light edges (u, n − 1) for
u ≤ n − 2, (u, u + 1) for u ≤ n − 3 and (n − 2, n) of weight 1, each.

On each vertex u ≤ n − 2 an ant has to decide whether to move to n − 1 or
to proceed on the shortest path. As all edges initially have equal pheromone,
the probability that an ant follows the shortest path to vertex n/2 is 2−n/2+1.
Assume the ant leaves the shortest path before reaching n/2. As the length of a
path containing � edges and traversing n− 1 is � + n− 3, no further path with a
larger number of edges will be accepted in the following, except for the optimal
path traversing 1, 2, . . . , n − 2, n. This implies that the pheromones for edges
leaving the vertices n/2, . . . , n − 2 will always remain equal, unless an ant finds
the optimum. The probability of finding the optimum is 2−n/2+1, hence taking
the union bound over 2cn steps for some small constant c > 0, the optimization

Running Time Analysis of ACO Systems for Shortest Path Problems 81

time is at least 2cn with probability 1 − 2−Ω(n). Note that this also holds in case
polynomially many ants search for the destination in parallel in one iteration.

Also using edge weights as heuristic information does not help. Many ACO
algorithms use both pheromones and a heuristic function to guide the solution
construction [4]. However, from a vertex n/2 ≤ u ≤ n − 2 both outgoing edges
have the same weight and the same pheromone, with high probability, hence they
look the same for every ant. This example also shows that heuristic information
may be useless or even misleading for some problem instances.

3 Single-Destination Shortest Path Problem

When ants start from different vertices, ants starting close to the destination
have a good chance of finding a shortest path. The pheromones deposited on the
outgoing edges of a vertex v can then be used to guide different ants traversing v.
This way, the shortest path for v can be extended towards a longer shortest path
that contains v. This is the basic idea of the analysis by Attiratanasunthron and
Fakcharoenphol [15], which is improved and generalized in this section. Their
results are limited to directed acyclic graphs. We start with these graphs and
extend the results to directed graphs with cycles.

Lemma 1. If τmin + τmax = 1 then for every vertex u with deg(u) > 1 always

1 ≤
∑

e=(u,·)∈E

τ(e) ≤ 1 + deg(u)τmin.

Proof. The first inequality has already been proven in [15]. Initially the sum of
pheromones equals 1. Assume for an induction that

∑
τ(e) ≥ 1. If the phero-

mones are not capped by pheromone borders, we have (1 − ρ)
∑

τ(e) + ρ ≥ 1 as
new sum. In case a pheromone drops below τmin, setting the pheromone to τmin
can only increase the sum. If at least one pheromone is capped at the upper bor-
der τmax then the sum of pheromones is at least τmin + τmax = 1 as deg(u) > 1.

For the second inequality observe that the sum of pheromones can only in-
crease due to the lower pheromone border as (1−ρ)

∑
τ(e)+ρ ≤∑ τ(e) follows

from
∑

τ(e) ≥ 1. Consider an edge e with (1− ρ)τ(e) < τmin. Compared to this
value, the pheromone increases by at most τmin · ρ when setting the pheromone
to τmin. If currently

∑
τ(e) ≤ 1+deg(u)τmin then the sum of the next pheromone

values is at most (1− ρ)(1 + deg(u)τmin) + ρ + deg(u)τmin · ρ = 1 + deg(u)τmin.
Hence, the second inequality follows by induction. �

As an immediate consequence, we obtain the following direct relation between
pheromones and probabilities for the ant au, i. e., the ant starting at u, of choos-
ing an edge (u, ·) in case τmin ≤ 1/deg(u). The last condition makes sense as
τmin should be chosen below the initial pheromone value of 1/deg(u).

Corollary 1. If τmin ≤ 1/deg(u) and τmin + τmax = 1 for every edge e = (u, ·)
τ(e)/2 ≤ Prob(ant au chooses edge e) ≤ τ(e).

82 C. Horoba and D. Sudholt

The lower bound also holds for every other ant leaving vertex u and every edge
e = (u, v) unless v has already been traversed by the ant. The upper bound also
holds for every other ant and every edge e = (u, ·) if it has not traversed a
successor of u before arriving at u.

The penultimate statement holds as the probability of choosing an edge e = (u, v)
to an unvisited successor v increases if other successors of u have been visited
before. In particular, we always have τmin/2 as lower bound on the probability of
choosing any specific outgoing edge. This is an improvement to Lemma 1 in [15].
We remark that using the improved lemma in [15], the running time bounds for
the algorithm n-ANT can be divided by m/n, where m is the number of edges.

The following theorem gives upper bounds for MMASSDSP, each consisting
of two additive terms. Intuitively, the first terms cover waiting times until im-
provements of best-so-far paths are found. The second terms grow with 1/ρ.
They reflect the time to adapt the pheromones after a change of the best-so-far
path. This time is called freezing time by Neumann, Sudholt, and Witt [12].

Theorem 1. Consider a directed acyclic graph G with n vertices and positive
weights. The expected optimization time of MMASSDSP on G with τmin := 1/n2

and τmax = 1 − τmin is O(n3 + (n log n)/ρ). Let Δ := Δ(G) and � := �(G, n).
The expected optimization time of MMASSDSP with τmin = 1/(Δ�) and τmax =
1 − τmin is O(nΔ� + n log(Δ�)/ρ).

Proof. We follow the analysis by Attiratanasunthron and Fakcharoenphol [15].
Call an edge (u, v) incorrect if it does not belong to any shortest path from u
to n. We say that a vertex u is processed if a shortest path from u to n has been
found and if all incorrect edges leaving u have pheromone τmin.

We estimate the expected time until a vertex u has been processed, given
that all vertices reachable from u on shortest paths from u to n have already
been processed. We first consider the expected time until a shortest path from u
to n has been found for the first time. We also say that then vertex u has been
optimized. By Corollary 1 the probability of choosing an edge that belongs to
a shortest path from u to n is at least τmin/2. Such a shortest path is found
if the ant does not choose an incorrect edge until n is reached. As all vertices
on all shortest paths are processed, all incorrect edges at some vertex v have
pheromone τmin and the probability of choosing some incorrect edge is at most
deg(v)τmin. Hence, the probability of choosing an edge on a shortest path is
at least 1 − deg(v)τmin ≥ 1 − 1/� if τmin ≤ 1/(deg(v)�). As all shortest paths
have at most � edges, the probability that no incorrect edge is chosen is at
least (1 − 1/�)�−1 ≥ 1/e with e = exp(1). Together, the probability of finding a
shortest path from u to n is at least τmin/(2e).

The expected time until u is optimized is thus at most 2e/τmin. Afterwards,
due to the best-so-far rule, a shortest path from u to n is reinforced automati-
cally in each iteration. The precise path may change, but it is guaranteed that
only shortest paths are rewarded and hence the pheromone on incorrect edges
decreases in every step. Lemma 2 in [15] states that ln(τmax/τmin)/ρ iterations

Running Time Analysis of ACO Systems for Shortest Path Problems 83

are enough for the vertex to become processed, hence the expected time until u
is processed is bounded by 2e/τmin + ln(τmax/τmin)/ρ.

Let v1, . . . , vn−1 be an enumeration of the vertices in V \ {n} ordered with
respect to increasing length of the shortest path to n. As all weights are positive,
all shortest paths from vi+1 to n only use vertices from {n, v1, . . . , vi}. If v1, . . . , vi

have been processed then we can wait for vi+1 to become processed using the
above argumentation. The expected time until all vertices v1, . . . , vn−1 have been
processed is bounded by n2e/τmin + n ln(τmax/τmin)/ρ. Choosing τmin := 1/n2

and τmax = 1− τmin, we obtain the bound O(n3 +(n logn)/ρ). Choosing τmin :=
1/(Δ�) and τmax = 1 − τmin yields the bound O(nΔ� + n log(Δ�)/ρ). �

Observe that for MMASSDSP, once a shortest path from u has been found,
the pheromones are continuously “frozen” towards shortest paths from u in the
following F = ln(τmax/τmin)/ρ iterations. The algorithm n-ANT from [15], how-
ever, only updates pheromones in case a new best-so-far path is found. This
implies that a shortest path from u has to be found several times, in the worst
case in F different iterations, in order to freeze the pheromones in the same
way. Hence, using the best-so-far rule of MMAS algorithms leads to better per-
formance results. This adds to the comparison of the 1-ANT and MMAS on
pseudo-Boolean problems in [12].

We proceed by improving Theorem 1 in several respects. First, the bound
on the expected optimization time is improved at least by a factor of �∗/n.
Second, the result not only holds for directed acyclic graphs but for all directed
graphs with positive weights and unique shortest paths. Finally, we show that
the running time bounds hold with high probability (i. e. with probability at
least 1 − n−c for some c > 0). In the proof we follow ideas from [17] showing
that the random time until a short path of length � = Ω(log n) is found is highly
concentrated around the expectation1.

Theorem 2. Consider a directed graph G with n vertices and positive weights
where all shortest paths are unique. Let Δ := Δ(G), � := �(G, n), and �∗ :=
max{�, lnn}. The optimization time of MMASSDSP on G with τmin = 1/(Δ�)
and τmax = 1− τmin is O(Δ��∗ + � log(Δ�)/ρ) with probability at least 1− 1/n2.
The optimization time bound also holds in expectation.

Proof. When estimating the probability that an ant chooses an edge on a short-
est path the lower bound from Corollary 1 always holds. In the proof of Theo-
rem 1 we have shown that for ant au the probability of finding a shortest path
from u to n, given that all successors of u on shortest paths have been processed,
is bounded below by τmin/(2e) if τmin ≤ 1/(Δ�). This result also holds in the
case of arbitrary directed graphs.

1 There is a subtle difference to [17]: in their definition of � the authors only consider
shortest paths with a minimum number of edges (if there are several shortest paths
between two vertices). Both definitions for � are, however, equal if all shortest paths
are unique or have the same number of edges.

84 C. Horoba and D. Sudholt

Fix a vertex u and the unique shortest path u = v�′ , v�′−1, . . . , v0 = n with
�′ ≤ �. We pessimistically estimate the expected time until u is processed. Let Ti

be the random time until vi is optimized. Consider random variables X1, . . . , XT

that are independently set to 1 with probability τmin/(2e) and to 0 otherwise.
The random first point of time T ∗

1 where Xt = 1 stochastically dominates the
random time until v1 is optimized. As v1 becomes processed after an additional
waiting time of F := ln(τmax/τmin)/ρ steps, T ∗

1 +F stochastically dominates T1.
Inductively, we have that T ∗

�′ + �′F stochastically dominates T�′ and hence the
time until u is processed.

Let T := 16e�∗/τmin and X :=
∑T

i=1 Xi. We have E(X) = T ·τmin/(2e) = 8�∗.
By Chernoff bounds [21]

Prob(X < �∗) ≤ Prob(X ≤ (1 − 7/8) · E(X)) ≤ e−8�∗(7/8)2/2 < e−3�∗ ≤ n−3.

Hence, the probability that u is not processed after T + � ln(τmax/τmin)/ρ steps
is 1/n3. By the union bound, the probability that there is an unprocessed vertex
remaining after this time is at most 1/n2. The result on the expectation follows
from the first result, which holds for arbitrary initial pheromones. If the algo-
rithm does not find all shortest paths within the first T +� ln(τmax/τmin)/ρ steps,
we repeat the argumentation with another phase of this length. The expected
number of phases needed is clearly O(1). �

3.1 Lower Bounds for MMASSDSP

We now turn to lower bounds on the expected optimization time of MMASSDSP.
We begin with a general lower bound, which holds for a wide range of graphs,
including most acyclic graphs. The main idea is that the pheromones need some
time to adapt, such that a shortest path with � edges can be found with good
probability. On the one hand, the bound grows with 1/ρ if ρ is not too small.
On the other hand, it also applies to pure random search, i. e., ρ = 0.

Theorem 3. Consider a directed acyclic graph G with n vertices and positive
weights. Assume that G contains a unique shortest path p0, . . . , p� = n such
that for 0 ≤ i < � we have deg(pi) ≥ 2 and no edges leading back from pi

to {p0, . . . , pi−1}. Let Δ := Δ(G) and � := �(G, n). If ρ ≤ 1 − Ω(1) then the
expected optimization time of MMASSDSP on G with τmin ≤ 1/(Δ�) and τmax =
1 − τmin is Ω(min{(log �)/ρ, e

√
�/4}).

Proof. Initially all pheromones on edges (u, ·) equal 1/ deg(u). During the first
t := min{(1/ρ−1) · ln(�) ·1/2, e

√
�/4/2} = Ω(min{(log �)/ρ, e

√
�/4}) steps (using

1/ρ − 1 = Ω(1) by assumption on ρ) the pheromone on every such edge is at
least

1
deg(u)

· (1 − ρ)t ≥ 1
deg(u)

· e− ln(�)·1/2 =
1

deg(u)
· 1√

�
.

Running Time Analysis of ACO Systems for Shortest Path Problems 85

Fig. 2. Example graph Glb from Definition 1 for n = 7

Note that this even holds in case the lower pheromone border is hit. Consider
the ant starting at p0 trying to create p0, . . . , p�. As the probability of taking a
specific incorrect edge is at least p := 1/(2 deg(u)

√
�), the probability that the ant

takes a correct edge on the path is at most 1 − (deg(u) − 1) · p = 1−(deg(u) − 1)·
1/(2 deg(u)

√
�) ≤ 1−1/(4

√
�). The probability that the path p0, . . . , p� is created

in a specific iteration t′ ≤ t is hence bounded by (1 − 1/(4
√

�))� ≤ e−
√

�/4.
The probability that this happens during the first t iterations is bounded by
t · e−

√
�/4 ≤ 1/2 due to the definition of t. Hence with probability at least 1/2

we have not found all shortest paths after t steps and the lower bound t/2 =
Ω(min{(log �)/ρ, e

√
�/4}) follows. �

In order to assess whether the upper bound from Theorem 2 is asymptotically
tight, we consider the following input instance (see Figure 2). The basic idea
is that the algorithm is forced to optimize the vertices one after another, from
right to left.

Definition 1. Let Glb = (V, E, w) with V = {1, . . . , n}, E = {(i, i + 1) | 1 ≤
i ≤ n − 1} ∪ {(i, n) | 1 ≤ i ≤ n − 2}, and weights w((u, v)) = 1 if v = u + 1 and
w((u, v)) = n if v �= u + 1.

Theorem 2 yields an upper bound O(n2 + (n log n)/ρ) for Glb. The following
lower bound is tight with the upper bound if ρ = Ω((log n)/n). For smaller ρ
there is a gap of O(log2 n).

Theorem 4. If 1/poly(n) ≤ ρ ≤ 1/2 then the expected optimization time of
MMASSDSP on Glb with τmin = 1/(2n) and τmax = 1−τmin is Ω

(
n2 + n

ρ log(1/ρ)

)
.

Proof. Consider all paths from u to n with u ≤ n − 2. The path (u, n) has
length n. All other paths start with the edge (u, u + 1). The length of the path
only traversing edges with weight 1 is n − u. However, if the path ends with an
edge (v, n) for u < v ≤ n− 2, the path has length v−u+n > n. Hence the path
(u, n) is the unique second best path from u to n.

Call a vertex u ≤ n − 2 wrong if the best-so-far path found by ant au is
(u, n). After initialization both edges have an equal probability of being chosen
by the first ant. By Chernoff bounds at least n/3 ants au with u ≤ n− 2 choose
incorrect edges with probability 1− e−Ω(n) and then the edges remain incorrect

86 C. Horoba and D. Sudholt

until a shortest path has been found. We assume that we initially have n/3 wrong
vertices. First, we show that with high probability after F := ln(τmax/τmin)/ρ
iterations we still have n/3 − O(log2 n) wrong vertices. For these vertices u the
pheromones then are frozen towards the incorrect edge.

As long as a vertex u remains wrong, the pheromone on its correct edge is at
most 1/2. (It even decreases continuously towards τmin unless a shortest path
is found.) Fix the set of r := 8 log(1/ρ) wrong vertices with largest index and
let u be the vertex with the smallest index in this set. During a phase comprising
the following t := 1/ρ− 1 steps the probability of choosing the correct outgoing
edge is for each vertex bounded from above by 1 − 1

4 (1 − ρ)t ≤ 1 − 1
4e using

Corollary 1. The probability that a shortest path for u is found throughout the
phase is at most t(1 − 1

4e)r ≤ 2log(1/ρ)(1 − 1
4e)8 log(1/ρ) ≤ 1/2.

We conclude that the time until all r vertices have found shortest paths is
at least t with probability at least 1/2 and the expectation is Ω(t). We may
repeat these arguments with a new phase and another set of r vertices which
are still wrong at that time and have maximal index. Consider 3F/t = Θ(log n)
subsequent phases. Applying Chernoff bounds to random variables indicating
whether a phase has found shortest paths for the considered r vertices within t
iterations, with high probability F/t phases each need at least t iterations. Hence,
with high probability after F steps at most O(log n)·r = O(log2 n) wrong vertices
have found shortest paths. It may happen that during a phase some vertices
preceding the r considered vertices find shortest paths by chance. However, the
probability that a vertex v finds a shortest path if the path still contains 3 logn+
log(1/ρ) wrong vertices is at most 2−3 log n−log(1/ρ) ≤ ρ/n3. Taking the union
bound for at most n vertices and F iterations, this does not happen within F
iterations, with high probability. Hence, we correct at most 3 log n + log(1/ρ) =
O(log n) wrong vertices per phase and O(log2 n) wrong vertices in total this way.

With high probability we obtain a situation where for n/3−O(log2 n) wrong
vertices pheromones are frozen towards the incorrect edge. We separately prove
lower bounds Ω(n/(ρ log(1/ρ))) and Ω(n2) for the expected remaining optimiza-
tion time.

The first bound follows from applying the above arguments on phases to the
remaining Ω(n) wrong vertices, along with the fact that the probability of finding
a shortest path containing i wrong vertices has decreased to (τmin)i ≤ 1/ni.
Hence, with high probability at most a constant number of wrong vertices is
corrected unexpectedly per phase and the expected time to complete Ω(n/r) =
Ω(n/log(1/ρ)) phases yields the first bound.

For the second bound Ω(n2) we observe that the expected time to find
a shortest path for u if the path contains at least four wrong vertices is at
most (τmin)4 ≤ 1/n4. Hence, with high probability during Ω(n2) iterations it
does not happen that more than 4 wrong vertices are corrected in the same iter-
ation. The expected time until the wrong vertex with largest index is corrected
is 1/τmin ≥ n. If the number of wrong vertices always decreases by at most 4,
the expected time to correct Ω(n) wrong vertices is Ω(n2). �

Running Time Analysis of ACO Systems for Shortest Path Problems 87

3.2 An Adaptive Choice of Pheromone Borders

The probability of constructing a shortest path from u, given that all successors
of u on shortest paths have been processed, is bounded below by τmin/(2e) if
τmin ≤ 1/(deg(u)�). This suggests to choose τmin as large as possible. However,
if the same pheromone borders apply to all edges, the best feasible choice is
τmin = 1/(Δ�).

It thus makes sense to consider an ACO system where pheromone borders
can be adapted to single vertices. The pheromone on an edge e = (u, ·) is
then bounded by the pheromone borders τmin(u) and τmax(u). If τmin(u) =
1/(deg(u)�) and τmax(u) = 1− τmin(u) then the expected waiting time until u is
optimized, given that all successors on shortest paths are processed, is bounded
by 2e/τmin(u) = 2e deg(u)�. The adaptation leads to the following bound.

Theorem 5. Consider a directed graph G with n vertices, m edges, and positive
weights. Let � := �(G, n). The expected optimization time of MMASSDSP using
adaptive pheromone borders with τmin(u) = 1/(deg(u)�) and τmax(u) = 1 −
τmin(u) for all vertices u is O(�m + (n log n)/ρ).

4 All-Pairs Shortest Path Problem

We now extend MMASSDSP towards an algorithm MMASAPSP for the APSP. For
each destination v ∈ V we introduce a distinct pheromone function τv : E → �

+
0 .

In each iteration, on each vertex u, and for each destination v we have an ant au,v

starting at u and heading for v. An ant heading for v uses the pheromone func-
tion τv for orientation and it updates τv as described in Section 2. MMASAPSP
remembers the best-so-far path p∗u,v from u to v for all u, v ∈ V .

The following result is an immediate implication from Theorem 2.

Theorem 6. Consider a directed graph G with n vertices and positive weights
where all shortest paths are unique. Let Δ := Δ(G) and � := �(G). The opti-
mization time of MMASAPSP on G with τmin = 1/(Δ�) and τmax = 1 − τmin is
O(Δ��∗ + � log(Δ�)/ρ) with probability at least 1 − 1/n. The optimization time
bound also holds in expectation.

We see that ants heading for different destinations do not collaborate in our ant
system since ants heading for a destination v concern for the pheromone function
τv exclusively. Therefore we could also run n instances of MMASSDSP in parallel
to achieve the same result. An obvious question is whether the ants can interact
in some clever way to achieve a better result.

Interestingly, the following very simple mechanism proves useful. Consider the
ant au,v heading for vertex v. Instead of always using the pheromone function τv

to travel to v, with probability, say, 1/2 the ant decides to follow foreign phero-
mones. It first chooses an intermediate destination w uniformly at random, then
uses the pheromone function τw to travel to w, and afterwards uses the pher-
omone function τv to travel to the final destination v (see Algorithm 3). The
pheromone update for ant au,v always applies to the pheromones τv.

88 C. Horoba and D. Sudholt

Algorithm 3. Path construction from u to v for MMASAPSP with interaction
1: if getRandomBit() = 0 then
2: construct a simple path p from u to v w. r. t. τv

3: else
4: choose w ∈ V uniformly at random
5: construct a simple path p′ = (p′0, . . . , p′�′) from u to w w. r. t. τw

6: construct a simple path p′′ = (p′′0 , . . . , p′′�′′) from w to v w. r. t. τv

7: if p′�′ = w then p ← (p′0, . . . , p
′
�′ , p

′′
1 , . . . , p′′�′′) else p ← p′ end if

8: end if
9: return p

With this mechanism the ant au,v can profit from useful information laid
down by other ants that headed towards w, in particular if w happens to be a
vertex on a shortest path from u to v. The following theorem gives a significantly
improved bound, without restriction to graphs with unique shortest paths.

Theorem 7. Consider a directed graph G with n vertices and positive weights.
Let Δ := Δ(G), � := �(G), and �∗ := max{�, lnn}. If ρ ≤ 1/(23Δ logn) then the
optimization time of MMASAPSP using interaction on G with τmin = 1/(Δ�) and
τmax = 1−τmin is O(n log n+log(�) log(Δ�)/ρ) with probability at least 1−1/n2.
The optimization time bound also holds in expectation.

Proof. We introduce similar notions as before. Consider a pair (u, v) of vertices.
Let �u,v denote the maximum number of edges of a shortest path from u to v.
We call an edge incorrect with respect to v if it does not belong to a shortest
path to v. We call (u, v) optimized if a shortest path from u to v has been found.
We call (u, v) processed if it has been optimized and if the pheromone τv(·) on
all incorrect edges (u, ·) is τmin.

Consider the first t = (ln 2)/ρ = O(1/ρ) iterations. Consider a pair (u, v)
with �u,v = 1. The probability of optimizing (u, v) in iteration i is at least
(1 − ρ)i−1/(4Δ) since the ant au,v decides with probability 1/2 to head for v
and chooses (u, v) with probability at least (1 − ρ)i−1/(2Δ) due to Corollary 1.
Hence, the probability of not optimizing (u, v) within the considered phase is at
most

t∏
i=1

(
1 − (1 − ρ)i−1

4Δ

)
≤ exp

(
− 1

4Δ

t−1∑
i=0

(1 − ρ)i

)
= exp

(
−1 − (1 − ρ)t

4Δρ

)
.

Since ρ ≤ 1/(23Δ logn) ≤ 1/(8Δ ln(2n4)), the above probability is at most
1/(2n4). Because of the union bound, all pairs (u, v) with �u,v = 1 are optimized
within the considered phase with probability at least 1−f1 where f1 := 1/(2n2).
We know that an optimized pair (u, v) is processed within ln(τmax/τmin)/ρ
iterations.

Consider a pair (u, v) and fix a shortest path pu,v from u to v with �u,v edges.
Let i with (3/2)i < �u,v ≤ (3/2)i+1. If all pairs (u′, v′) with �u′,v′ ≤ (3/2)i are

Running Time Analysis of ACO Systems for Shortest Path Problems 89

processed, the probability of optimizing (u, v) is at least 1/2 · �u,v/(3n) · 1/e >
(3/2)i/(6en) since the ant decides with probability 1/2 · �u,v/(3n) to choose an
intermediate destination w on the middle third of p. Hence, the number of edges
of all shortest paths pu,w (pw,v) from u (w) to w (v) is at most (3/2)i. Since
(x, w) ((x, v)) is processed for all vertices x on a shortest path from u (w) to
w (v), the ant follows a shortest path from u to v with probability at least
(1 − 1/�)�−1 ≥ 1/e.

We divide a run of the ant system into phases. The ith phase finishes with
all pairs (u, v) with (3/2)i−1 < �u,v ≤ (3/2)i being processed. Since �u,v ≤ �, we
have to consider α := �log(�)/ log(3/2)� phases.

Consider Phase i of length t = 6en/(3/2)i ln(2αn4). The probability of not
optimizing a pair (u, v) with (3/2)i−1 < �u,v ≤ (3/2)i within the phase is at
most (1 − (3/2)i/(6en))t ≤ 1/(2αn4). Due to the union bound, all such pairs
(u, v) are optimized within t iterations with probability at least 1−1/(2αn2). We
know that an optimized pair (u, v) is processed within ln(τmax/τmin)/ρ iterations.
Using the union bound, all phases are finished within

α∑
i=1

(
6en ln(2αn4)

(3/2)i
+

ln(Δ�)
ρ

)
≤ 6en ln(2αn4)

α∑
i=1

(
2
3

)i

+
α ln(Δ�)

ρ

= O(n log n + log(�) log(Δ�)/ρ)

iterations with probability at least 1 − f2 where f2 := 1/(2n2). The first part
of the theorem follows since both failure probabilities f1 and f2 sum up to
1/n2. The second part can be derived using the bound O(n3 + (n log n)/ρ) on
the expected optimization time. This bound can be easily shown for all graphs
(without restriction to unique shortest paths) using ideas from the proofs of
Theorems 1 and 2. �

We remark that the choice of the probability 1/2 for choosing an intermediate
vertex is not essential; using any other constant value 0 < p < 1 would only affect
the constants in Theorem 7. If Δ, � = Ω(n) and ρ = 1/(23Δ logn) the upper
bounds given in Theorem 6 and Theorem 7 simplify to O(n3) and O(n log3 n),
respectively. Hence, the ant system clearly profits from our simple interaction
mechanism and more collaboration between the ants.

5 Conclusions

ACO is motivated by the ability of real ant colonies to find shortest paths to a
food source. Building on an initial study by Attiratanasunthron and Fakchar-
oenphol [15], we have conducted a rigorous analysis of the running time of ACO
algorithms for shortest path problems. Our results (see Table 1) significantly
improve and generalize the previous results for single-destination shortest paths.
Taking the number of function evaluations as performance measure, the bound
for MMASSDSP is better than the bound for the (1+1) EA [17] if Δ� = o(n) and
ρ is not too small.

90 C. Horoba and D. Sudholt

For all-pairs shortest paths first results have been obtained using MMASAPSP
as a direct generalization of MMASSDSP. We have proved that, surprisingly,
letting ants temporarily follow foreign pheromone traces to random destinations
yields drastically improved results. This is also the first result for combinatorial
optimization where a slow adaptation for pheromones is crucial, i. e., low values
for the evaporation factor ρ yield the best upper bounds. For an optimal choice
of ρ the bound of O(n3 log3 n) function evaluations improves upon the best
known bound O(n3.5√log n) for genetic algorithms [18]. This makes ACO the
currently best known metaheuristic for the all-pairs shortest path problem from
a theoretical perspective.

References

1. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

2. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: An autocatalytic optimizing
process. Technical Report 91-016 Revised, Politecnico di Milano (1991)

3. Di Caro, G., Dorigo, M.: AntNet: Distributed stigmergetic control for communica-
tions networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
5. Gutjahr, W.J.: A generalized convergence result for the graph-based ant sys-

tem metaheuristic. Probability in the Engineering and Informational Sciences 17,
545–569 (2003)

6. Merkle, D., Middendorf, M.: Modelling the dynamics of Ant Colony Optimization
algorithms. Evolutionary Computation 10(3), 235–262 (2002)

7. Gutjahr, W.J.: First steps to the runtime complexity analysis of ant colony opti-
mization. Computers and Operations Research 35(9), 2711–2727 (2008)

8. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization
algorithm. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618–627. Springer,
Heidelberg (2006)

9. Doerr, B., Neumann, F., Sudholt, D., Witt, C.: On the runtime analysis of
the 1-ANT ACO algorithm. In: Proc. of GECCO 2007, pp. 33–40. ACM Press,
New York (2007)

10. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Journal of Future Generation Com-
puter Systems 16, 889–914 (2000)

11. Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization with
best-so-far reinforcement. Methodology and Computing in Applied Probability 10,
409–433 (2008)

12. Neumann, F., Sudholt, D., Witt, C.: Analysis of different MMAS ACO algorithms
on unimodal functions and plateaus. Swarm Intelligence 3(1), 35–68 (2009)

13. Neumann, F., Sudholt, D., Witt, C.: Rigorous analyses for the combination of
ant colony optimization and local search. In: Dorigo, M., Birattari, M., Blum,
C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217,
pp. 132–143. Springer, Heidelberg (2008)

14. Neumann, F., Witt, C.: Ant colony optimization and the minimum spanning tree
problem. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007 II. LNCS,
vol. 5313, pp. 153–166. Springer, Heidelberg (2008)

Running Time Analysis of ACO Systems for Shortest Path Problems 91

15. Attiratanasunthron, N., Fakcharoenphol, J.: A running time analysis of an ant
colony optimization algorithm for shortest paths in directed acyclic graphs. Infor-
mation Processing Letters 105(3), 88–92 (2008)

16. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms
on sorting and shortest paths problems. Journal of Mathematical Modelling and
Algorithms 3(4), 349–366 (2004)

17. Doerr, B., Happ, E., Klein, C.: A tight analysis of the (1+1)-EA for the single
source shortest path problem. In: Proc. of CEC 2007, pp. 1890–1895. IEEE Press,
Los Alamitos (2007)

18. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary
computation. In: Proc. of GECCO 2008, pp. 539–546. ACM Press, New York (2008)

19. Horoba, C.: Analysis of a simple evolutionary algorithm for the multiobjec-
tive shortest path problem. In: Proc. of FOGA 2009, pp. 113–120. ACM Press,
New York (2009)

20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, Cambridge (2001)

21. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University
Press, Cambridge (2005)

Techniques and Tools for Local Search
Landscape Visualization and Analysis�

Franco Mascia and Mauro Brunato

DISI, Università di Trento, Trento, Italy
{mascia,brunato}@disi.unitn.it

Abstract. Because of their high dimensionality, combinatorial optimiz-
ation problems are often difficult to analyze, and the researcher’s in-
tuition is insufficient to grasp the relevant features. In this paper we
present and discuss a set of techniques for the visualization of search
landscapes aimed at supporting the researcher’s intuition on the behav-
ior of a Stochastic Local Search algorithm applied to a combinatorial
optimization problem.

We discuss scalability issues posed by the size of the problems and by
the number of potential solutions, and propose approximate techniques
to overcome them. Examples generated with an application (available for
academic use) are presented to highlight the advantages of the proposed
approach.

1 Introduction

Optimization problems arise from virtually all areas of science and engineering,
and are often characterized by a large number of variables. The set of admissible
values for such variables is called search space, and can usually be provided with
a rich topological structure, which is determined both by the problem’s intrinsic
structure and by the solving algorithm’s characteristics.

A search space complemented with the topological structure induced by the
local search algorithm (evaluation function and neighborhood relation) is called a
search landscape, and its structure determines, by definition, the behavior of the
solving technique. Search landscape analysis is a research field aimed at providing
tools for the prediction of the search algorithm’s performance and its consequent
improvement. Relevant features in this kind of analysis are, of course, the search
space size and the number of degrees of freedom (i.e., the dimensionality).

In this work, we will focus on Stochastic Local Search (SLS) techniques [1],
where a neighborhood operator is defined in order to map a configuration into
a set of neighboring ones; the relevant topological structure is defined by the
chosen neighborhood operator. An important feature influencing the behavior
of SLS algorithms is the relative position and reachability of local optima with
respect to the neighborhood topology, and some problem instances are known
� Work supported by project BIONETS (FP6-027748) funded by the FET program

of the European Commission.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 92–104, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Techniques and Tools for Local Search Landscape Visualization and Analysis 93

to be hard with respect to SLS algorithms precisely because of “misleading”
sets of good configurations. Researchers often resort to landscape metaphors
such as peaks, valleys, plateaux and canyons to describe the possible pitfalls of
the techniques, but the sheer dimensionality of the search space often defeats
intuition.

We propose a tool for visual analysis of search landscapes for supporting the
researcher’s intuition via a careful selection of features to be maintained while
the space dimensionality is reduced to a convenient size (2 or 3) for displaying.
Visualization techniques for complex spaces usually suffer from a number of
problems. In particular, the size of the search space requires the display technique
to be highly scalable; moreover, the reduction method must be consistent in
time, so that subsequent optimization steps correspond to small variations in the
visualized landscape: such continuity is necessary to help the researcher consider
the optimization process as a whole, rather than focus on single snapshots.

The Maximum Clique problem will be used as a paradigmatic example, to-
gether with two state of the art SLS algorithms for its optimization. By means of
such examples, the scalability and continuity issues presented above will be dis-
cussed and tested, and the behavior of the solving techniques on hard instances
will be analyzed.

The remainder of the paper is structured as follows. In Section 2 a brief
overview of previous relevant work on visualization for optimization algorithms
is presented. In Section 3 a representation of the search landscape in three di-
mension is proposed. In Section 4 an approximated representation is proposed,
which scales better with the dimensions of the search landscapes, because it does
not require the enumeration of the exponential number of sub-optimal solutions.
In Section 5 a case study is presented, which shows how the behavior of a penalty
based algorithm can be analyzed from the changes in the landscape after the pe-
nalization phases. Finally, in Section 6 conclusions are drawn and some ideas for
further developing and leveraging this new type of analysis are presented.

2 Previous and Related Work

The area of stochastic local search algorithms has a long record of successes and
improvements; applications are available on virtually all combinatorial problems.
In this work, we will build upon two efficient techniques, namely Reactive Lo-
cal Search (RLS) and Dynamic Local Search (DLS). The two techniques are
paradigmatic examples of two approaches for ensuring diversification in com-
binatorial problem solving: RLS [2,3] is based on the temporary prohibition of
selected moves in the neighborhood (and a history-dependent scheme is respon-
sible of deciding the prohibition time), while DLS [4] is based on a diversifi-
cation scheme that assigns penalties to solution components. Both algorithms
have been applied to the Maximum Clique (MC) problem, the specialized ver-
sion being known as RLS-MC and DLS-MC. The MC problem requires finding
the largest clique (i.e., complete subgraph) in a given undirected graph, and is

94 F. Mascia and M. Brunato

considered to be particularly hard among NP-complete problems due to classical
non-approximability results.

The last years have witnessed a boost in the research on complex systems
visualization, due to the general availability of inexpensive hardware for the fast
computation of linear transformations involved in 3D polygon display. Graph-
ics Processing Units (GPUs) are available in all display cards, and specialized
expansions with hundreds to thousands of GPUs are available for common bus
architectures for co-processing purposes. Therefore, the main scalability issues
connected to large set visualization can be overcome by brute force. Work on
dimensionality reduction via sampling with preservation of relevant graph prop-
erties has been presented in [5]. Online drawing of graphs is studied, for instance,
in [6], where the effort is focused at preserving the presentation layout while the
graph is changing.

Work that combines visualization and optimization dates back to [7], where
multidimensional scaling and other techniques are applied to the visualization of
evolutionary algorithms, while other contributions are aimed at human-guided
search [8] where the computer finds local optima by hill-climbing while the user
identifies promising regions of the search space. Visualization of Pareto-Sets in
EvolutionaryMulti-Objective Optimization is investigated in [9] by finding a map-
ping which maintains most of the dominance relationships. In [10] the authors pro-
pose a visualization suite for designing and tuning SLS algorithms. Starting from
a selection of candidate solutions, the visualization tool uses a spring-based lay-
out scheme to represent the solutions in two dimensions. The algorithm execution
traces are then represented as trajectories around the laid out solutions, and the
resulting analysis used by the researchers to tune the algorithm studied. While
in [10] the authors focus on the behavior of the optimization algorithm and on the
human interaction for the tuning of the algorithm parameters, we are interested
in analyzing the intrinsic properties of the problem instance.

3 Complete Three-Dimensional Landscapes

The number of dimensions in the search space of a combinatorial optimization
problem is equal to the number of variables in the instance. We propose a new
way to represent it in a lower-dimensional space, describing the landscape as
the variation of the solution quality (i.e., objective function) or the variation
of a heuristic guidance function for the specific SLS algorithm (i.e., evaluation
function).

For example, in order to reduce the problem landscape from the n dimensions
to just 2, one could represent the feasible solutions as points plotted against
their quality. In such two-dimensional plot, however, the ordering of the points
representing the solutions is arbitrary, as it happens for example with plateau
connection graphs and barrier-level basin graphs (see [1] for a thorough review
of analysis methods).

A good layout for the solutions tries to preserve the distance (similarity)
among the solutions in the original n-dimensional space. Our aim is to find a

Techniques and Tools for Local Search Landscape Visualization and Analysis 95

representation which can be easily visualized, therefore we will concentrate on
reductions of the search space to a three-dimensional landscape, which also allows
for some intuitive representation of the possible basic steps of a SLS algorithm.

In the following, we map the objective function value to the z axis, so that the
z quota of a solution will always be fixed. The aim of the proposed techniques is
to find convenient x and y coordinates of each solution. Since in our experience
natural landscapes are in three dimensions, also the metaphor of landscape and
of evaluation function can be easily represented and understood in three dimen-
sions. It allows for a natural visualization of valleys, plateaus, and peaks, and
fits perfectly with the basic operations of SLS algorithms.

3.1 The Technique

The first possible approach consists of computing a 3D layout of the search
landscape of the problem instance. Figure 1 shows the landscape of an instance
of the MC problem represented as a neighborhood graph in three dimensions,
where nodes correspond to feasible solutions (cliques) and edges correspond to
the neighborhood structure (i.e., cliques of Hamming distance 1 or 2). Node

Fig. 1. Search Landscape corresponding to a Brockington-Culberson graph with 20
nodes, edge density 0.5, and maximum clique of size 7. The four subfigures are four
different perspectives on the same 3D model. Brockington-Culberson graphs are de-
signed with the aim of hiding the maximum clique [11].

96 F. Mascia and M. Brunato

heights represent the size of the corresponding clique, and the horizontal layout
tries to retain the topology of the neighborhood graph.

The lowest vertices represent cliques with the smallest size (2). In all levels
the number of vertices depends on the connectivity in the instance graph, and
in the instance depicted in Figure 1 are bounded from above by

(20
k

)
where k is

the size of the cliques in the level, and 20 the number of nodes in the specific
instance.

The landscape depicted in Figure 1 is generated starting from 43 maximal
cliques enumerated empirically with two state of the art heuristic algorithms for
the MC problem: RLS-MC and DLS-MC. It has to be noted that a complete
enumeration should always be used when possible, because using SLS algorithms
for the empirical enumeration could lead to a bias in the representation. From
every maximal clique, a tree containing all possible solutions within the maximal
one is generated by means of a backtracking algorithm. Solution trees originated
from different maximal cliques can overlap and share consistent parts of the
search space. Therefore, during the enumeration all the solutions are added to a
hash table, and when a solution is encountered twice the corresponding sub-tree
is pruned. Once all the solution are enumerated, they are connected with arcs if
a local search algorithm could move from one to the other by means of one of the
neighborhood operations (add, drop, or swap). Once the graph is constructed a
spring-based method is used to lay out the graph (with the further constraint
that all vertices lay on the plane corresponding to their objective value). The
nodes are treated as pointwise unit masses subject to pairwise forces of two types.
The first is an attractive spring force based on a smoother version of Hooke’s
law [12]; it accounts for the node adjacency. The force acting on node a due to
node b is

F H
ab =

⎧⎨
⎩kab

b − a
‖b − a‖2

log ‖b − a‖2
rab

if a and b are adjacent

0 otherwise,
(1)

where a and b are the coordinate vectors of a and b in the low dimensional
representation, rab is the ideal distance and kab is the spring stiffness, which
depends on the desired layout. The second force is of Coulombian type and acts
between every pair of nodes:

F C
ab =

qaqb

‖b − a‖Dab
2

a − b

‖b − a‖2
, (2)

where qa = qb and the exponent Dab depends on a threshold distance rth:

Dab =

{
2 if ‖b − a‖2 ≤ rth

4 otherwise.

The snapshots in Figure 1 show the landscape from the side, the front, the top,
and in perspective. The almost flat area corresponding to a plateau bumped
with several local optima is quite evident, as well as the clique of size 7 and the

Techniques and Tools for Local Search Landscape Visualization and Analysis 97

barrier between the points on the plateau and the maximum clique. This pro-
vides immediate information about the instance properties: because of the low
number of nodes shared by the optimum and the flat area, algorithms with long
plateau phases could be worse than algorithms with shorter plateau phases and
more frequent restart policies. The layout can also embed extra information. For
example, the vertices can be rendered with different colors depending on how
frequently they are visited by the SLS algorithm, in order to analyze the attrac-
tion basins and how they are distributed with respect to the global optimum.
Another example of information that could be easily embedded by means of a
vertex coloring is the average degree distribution of the nodes in the solutions,
which can give an immediate summary of the degree distribution and give some
hints on the performance of greedy local search algorithms.

3.2 The Tool

The described technique works with all combinatorial optimization problems.
Due to the way the application currently enumerates the possible solutions, the
visualization is limited to the problems whose solutions can be encoded with
binary strings and all sub-strings are also feasible solutions. Figure 1, as well
as all the following figures are produced with Graph Visualizer, an application
for Mac OS X that has been developed with the specific purpose of helping
the researchers’ intuition when studying the landscapes of combinatorial opti-
mization problems1. Graph Visualizer is a general purpose tool for laying out
graph structured data. Custom-designed tools for specific analysis purposes can
be plugged into the main program; in particular, the Search Landscape Visu-
alization (SLV) plugin produces three dimensional landscapes starting from a
set of maximal solutions. The landscape generation is completely automated,
the only input required is the list of local optima for the given instance, which
we assume is automatically generated by the optimization program. Both the
main multi-threaded application and the SLV plugin have been developed in
Objective-C using the OpenGL libraries for the 3D visualization and Cocoa li-
braries for the native Mac OS X user interface. The whole application including
the layout algorithm has been written from scratch by the authors.

3.3 NURBS Covers

For easier visualization, the search landscape can be covered with Non-uniform
rational B-spline (NURBS) surfaces. These surfaces are superimposed over the
three-dimensional landscapes by setting the height of the surface control points
to the same heights of the corresponding vertices of the three dimensional neigh-
borhood graph.

The NURBS surface has degree 3 and is controlled by a user-defined number
of evenly spaced control points. The more the control points the more precise the

1 The software is available for research purposes at http://graphvisualizer.org/

http://graphvisualizer.org/

98 F. Mascia and M. Brunato

representation, but too many control points can lead to artificial local optima
between the solutions where control point heights are not set by any solution.

The coloring of the NURBS surfaces as well as the clusters in the approximate
landscapes varies from blue to red showing the quality of the solutions.2

4 Approximated Landscapes

While the search space analysis of small instances is interesting per se, every
solution of size m contains

(
m
k

)
solutions of size k, and the enumeration of all

possible solutions at the lower levels (avoiding repetitions) does not scale with
solution size. In order to handle larger instances, a number of approximated
layouts can be introduced. The first solution considers clusters of subcliques as
a unique object, the second operates by subsampling the solutions obtained by
the SLS algorithm.

4.1 Clusters of Solutions

The following technique for generating an approximate landscape does not re-
quire the enumeration of all sub-optimal solutions, but just clusters of solutions
having mutual Hamming distance 2.

Starting from local optimum solutions of size m, the cluster of solutions of
size m − k will contain

(
m

m−k

)
solutions having mutual Hamming distance 2.

The clusters can be scaled properly depending on the number of solutions they
contain and the whole tree structure rooted in the local optimum is reduced to a
stack of clusters with different sizes. Of course clusters belonging to stacks below
different optimal solutions overlap for a volume which is proportional with the
number of common solutions.

Let C1 and C2 be two maximal solutions; let m = |C1| be the size of the first,
and s = |C1 ∩ C2| be the number of common components. The fraction of the
cluster of solutions of size k below C1 overlapping with the corresponding cluster
of solutions of the same quality below C2 is the following:

(
m

k

)(
s

k

)−1

=
m!(s − k)!
s!(m − k)!

. (3)

With this technique, there is no need to enumerate the exponentially large num-
ber of sub-optimal solutions: knowing the size of the clusters and the fraction of
their volume that overlaps is enough to render an approximated landscape like
the one shown in Figure 2.

The multidimensional scaling is done with the spring based layout technique
used in Section 3, but this time the vertices to be laid out are the clusters, their
size is reflected in the charges qa and qb that determine their repulsive force
in (2), and their overlapping volumes are encoded in the spring elastic constants
Kab and their zero-energy spring lengths rab of (1).

2 Examples of colored surfaces are available at http://graphvisualizer.org/slv

http://graphvisualizer.org/slv

Techniques and Tools for Local Search Landscape Visualization and Analysis 99

Fig. 2. On the left an approximated Search Landscape corresponding to a Brockington-
Culberson graph with 20 nodes, edge density 0.5, and maximum clique of size 7. The
approximated landscape retains the same shape as the complete landscape in Figure 1.
On the right the approximated landscape is covered with a NURBS surface with 30×30
evenly spaced control points.

Fig. 3. Same Landscape of Figure 2 but subsampling the search space removing solu-
tions with quality less than 3. This highlights the barrier between the plateau and the
optimum.

The computation of large binomial coefficients is performed by the Stirling
approximation of the factorials:

ln n! ≈ (n + 0.5) lnn − n +
ln(2π)

2

100 F. Mascia and M. Brunato

therefore (3) can be approximated by
(

m

k

)(
s

k

)−1

≈ e(m+0.5) ln m+(s−k+0.5) ln(s−k)−(s+0.5) ln s−(m−k+0.5) ln(m−k) (4)

and it can be computed for large values of m and s.

4.2 Search Space Sampling

We can consider a reduction in the number of solutions around the global op-
timum, by filtering out the solutions which share fewer components with the
global optimum. Another possible sampling strategy is to reduce the depth of
the trees rooted in the local optima. The SLV plugin supports the combination of
the two strategies. The sampled portion of the search landscape can improve the
visualization by enhancing some of its features, but it can also drastically change
the properties of the landscape. For example, Figure 3 shows the same landscape
of Figure 2, obtained by applying the approximation technique in Section 4.1
and restricting the solutions to be considered to the ones having a quality (size)
of at least 3. The restriction on the quality of the solutions to be considered
makes the barrier more evident, but it also makes the landscape disconnected.

5 Dynamic Landscapes

In the following section, we will show through an example how the proposed
analysis of the Search Landscape sheds some light on the dynamics of penalty-
based SLS algorithms, and on the changes of the evaluation function g during
the search.

When DLS-MC reaches a local optimum, all the components belonging to
such solution are penalized. The aim of the penalization is to drop the quality of
the local optimum and render it less attractive in the subsequent steps of local
search. Nevertheless, the penalization effect is not limited to the local optimum,
but impacts all the areas of the landscape having solutions overlapping with the
penalized one. Therefore, it is of particular interest to study the behavior of the
penalization and its impact on the landscape.

The adopted technique is composed of two steps. First, the three dimensional
landscape corresponding to the objective function f is laid out by means of the
force based multidimensional scaling technique described in Section 3. Then a
landscape corresponding to the evaluation function g for each penalization step
is produced. For the continuity reasons stated in Section 1, the horizontal layout
of the objective function search landscape is retained throughout all penalization
steps, the only thing that varies is the quality of the solutions whose components
are penalized.

Figure 4 shows the penalization effect which transforms the landscape of the
Brockington-Culberson instance of Figure 1. In Figure 4 the first NURBS surface
is produced from the complete representation of the objective function. The
second landscape in figure retains the same horizontal layout, and the plateau is

Techniques and Tools for Local Search Landscape Visualization and Analysis 101

Fig. 4. Four penalization steps of DLS-MC on the Brockington-Culberson instance
of Figure 1. The steps are shown chronologically from left to right and from top to
bottom.

partly flattened by the penalization effect, which is then partially reverted after
the penalties expiration in the third landscape. The fourth landscape shows the
last penalization before DLS-MC is able to find the optimum solution. The effect
is more clear in Figure 5, in which the plateau size reduction is quite evident.
The increased number of levels in the graph after the penalization is due to
the fact that the landscape corresponds to an evaluation function g and not
an objective function. The algorithm whose steps are shown in figure associates
integer penalties to the solution components belonging to local optima. The
evaluation function g is computed as the cardinality of the solution minus the
penalties associated to its components, therefore the landscape is on discrete
levels, some of which have a negative quality.

The penalization strategy was effective in finding the well hidden global opti-
mum, which does not share solution components with the penalized local optima.

On the contrary, in the instance of the MC problem depicted in Figure 6 the
maximum clique has size 5, and the 30 smaller cliques of size 4 share a node with
the maximum one. Therefore a penalization of a local maximum always impacts
the global one.

Figure 7 represents the results of a DLS-MC run on the instance described
above. The NURBS landscape on the top-left represents the unmodified objective
function, and it shows in the middle the global optimum slightly above the other
optima. The other three landscapes in figure show the evaluation function after

102 F. Mascia and M. Brunato

Fig. 5. Four penalization steps of DLS-MC on the Brockington-Culberson instance
of Figure 1. The steps are shown chronologically from left to right and from top to
bottom.

Fig. 6. A MC instance with 155 nodes. The maximum clique has size 5, and the 30
smaller cliques of size 4 share a node with the maximum one.

Techniques and Tools for Local Search Landscape Visualization and Analysis 103

Fig. 7. Four penalization steps of DLS-MC on the instance depicted in Figure 6. The
first landscape on the top-left shows the objective function with the global optimum
in the middle.

subsequent penalization steps. The penalization always impacts on the global
optimum.

In order to highlight the effect without using colors, the quality of the solutions
in Figure 7 has been emphasized.

6 Conclusions and Future Work

We have presented a set of techniques for the visualization of search landscapes
which can support the researcher’s intuition on the behavior of a SLS algorithm
applied to combinatorial optimization problems. The visualization also renders
explicitly the geographic metaphors used by researchers to describe areas of
interest of the landscape.

The examples presented in this paper are small instances useful to show how
some features of the landscapes are rendered with the proposed techniques. The
approximation techniques presented in Section 4 allow for the representation of
instances otherwise intractable for the complete representation, while maintain-
ing the features of the complete enumeration.

Current research is aimed towards more scalable layout algorithms with no
exogenous parameters that can lay out landscapes with more than few thousand
solutions and tens of thousands of relations among them. The convergence of
a non-hierarchical spring-based layout algorithm depends strongly on the user

104 F. Mascia and M. Brunato

provided parameters like the repulsion force, damping factor, zero energy spring
lengths, spring elastic constants, which have to be appropriate for the graph
structure.

The proposed techniques have been implemented in a Mac OS X application
that allows for real-time manipulation and animation. The program is free for
academic use and can be downloaded from

http://graphvisualizer.org/

Acknowledgments. We would like to thank the reviewers for their detailed
feedback.

References

1. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, San Francisco (2005)

2. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem.
Technical Report TR-95-052, ICSI, 1947 Center St.- Suite 600 - Berkeley, California
(September 1995)

3. Battiti, R., Mascia, F.: Reactive and Dynamic Local Search for the Max-Clique
Problem: Engineering effective building blocks. Computers and Operations Re-
search (2009) (in press)

4. Pullan, W., Hoos, H.H.: Dynamic Local Search for the Maximum Clique Problem.
Journal of Artificial Intelligence Research 25, 159–185 (2006)

5. Rafiei, D., Curial, S.: Effectively visualizing large networks through sampling. In:
WWW 2005 Proceedings (2005)

6. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Transactions on Vi-
sualization and Computer Graphics 14(4), 727–740 (2008)

7. Pohlheim, H.: Visualization of evolutionary algorithms-set of standard techniques
and multidimensional visualization. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, vol. 1, pp. 533–540. Morgan Kaufmann, San Fran-
cisco (1999)

8. Anderson, D., Anderson, E., Lesh, N., Marks, J., Perlin, K., Ratajczak, D., Ryall,
K.: Human-guided simple search: combining information visualization and heuristic
search. In: Proceedings of the 1999 workshop on new paradigms in information
visualization and manipulation in conjunction with the eighth ACM international
conference on information and knowledge management, pp. 21–25. ACM, New York
(1999)

9. Koppen, M., Yoshida, K.: Visualization of Pareto-sets in evolutionary multi-
objective optimization. In: 7th International Conference on Hybrid Intelligent Sys-
tems. HIS 2007, pp. 156–161 (September 2007)

10. Halim, S., Yap, R.: Designing and Tuning SLS Through Animation and Graphics:
An Extended Walk-Through. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS
2007. LNCS, vol. 4638, pp. 16–30. Springer, Heidelberg (2007)

11. Brockington, M., Culberson, J.C.: Camouflaging independent sets in quasi-random
graphs. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge, vol. 26, pp. 75–88. American Mathe-
matical Society, Providence (1996)

12. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160
(1984)

High-Performance Local Search for Solving
Real-Life Inventory Routing Problems

Thierry Benoist1, Bertrand Estellon2, Frédéric Gardi1, and Antoine Jeanjean1

1 Bouygues e-lab, Paris, France
2 Laboratoire d’Informatique Fondamentale–CNRS UMR 6166, Faculté des Sciences

de Luminy, Université Aix-Marseille II, Marseille, France
{tbenoist,fgardi,ajeanjean}@bouygues.com,

bertrand.estellon@lif.univ-mrs.fr

Abstract. In this paper, a real-life routing and scheduling problem en-
countered is addressed. The problem, which consists in optimizing the
delivery of fluids by tank trucks on a long-term horizon, is a general-
ization of the vehicle routing problem with vendor managed inventory
replenishment. The particularity of this problem is that the vendor moni-
tors the customers’ inventories, deciding when and how much each inven-
tory should be replenished by routing tank trucks. Thus, the objective
of the vendor is to minimize the logistic cost of the inventory replenish-
ment for all customers over the long run. Then, an original local-search
heuristic is presented for solving the short-term planning problem. The
engineering of this algorithm follows the three-layers methodology for
“high-performance local search” recently introduced by some of the au-
thors. A computational study demonstrates that our solution is both ef-
fective, efficient and robust, providing long-term savings exceeding 20 %
on average, compared to solutions computed by expert planners or even
a classical greedy algorithm. The resulting software is now exploited in
North America by one of the French industry leaders.

1 Presentation of the Problem

The problem addressed in this paper is a real-life inventory routing problem
(IRP) occurring in one of the world’s leading companies in its field. For the sake
of concision, the problem is not completely and formally described here, but its
main characteristics are outlined.

Spread over a geographical area, some customers consume fluid products and
plants produce it. Each customer is equipped with a storage; similarly, each
plant has a storage from which product can be pumped. Reliable forecasts of
production at plants are known over a short-term horizon. On the customer
side, two kinds of resupply are managed by the vendor. The first one, called
“forecasting-based resupply”, corresponds to clients for which reliable forecasts
of consumption are available over a short-term horizon. The inventory of each
customer must be replenished by tank trucks so as to never fall under its safety
level. The second one, called “order-based resupply”, corresponds to customers

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 105–109, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

106 T. Benoist et al.

which send orders to the vendor, specifying the desired quantity and the time
window in which the delivery must be done. Some customers can ask for the
both types of resupply management: their inventory is replenished by the vendor
using monitoring and forecasting, but they keep the possibility of ordering (to
deal with an unexpected increase of their consumption, for example). Constraints
consisting in maintaining inventory levels above safety levels (no stock out) and
in satisfying orders (no missed orders) are defined as soft, since the existence of
an admissible solution is not ensured in real-life conditions.

The transportation is performed by vehicles composed of three kinds of het-
erogenous resources: drivers, tractors, trailers. Each resource is assigned to a
base. A vehicle corresponds to the association of one driver, one tractor and one
trailer. Some triplets of resources are not admissible (due to driving licences, for
example). The availability of each resource is defined through a set of time win-
dows. Each site (plant or customer) is accessible to a subset of resources (special
skills or certifications are required to work on certain sites). Thus, scheduling a
shift consists in defining: a base, a triplet of resources (driver, tractor, trailer),
and a set of operations each one defined by a triplet (site, date, quantity) cor-
responding to the pickups or deliveries performed along the tour. A shift must
start from the base to which are assigned the resources composing the vehi-
cle and must end by returning to this base. The working and driving times of
drivers are limited; as soon as a maximum duration is reached, the driver must
take a rest with a minimum duration (Department of Transportation rules). In
addition, the duration of a shift cannot exceed a maximal value depending on
the driver. The sites visited along the tour must be accessible to the resources
composing the vehicle. A resource can be used only during one of its availabil-
ity time windows. The date of pickup/delivery must be contained in one of the
opening time windows of the visited site. Finally, the inventory dynamics, which
can be modeled by flow equations, must be respected at each time step, for each
site inventory and each trailer. In particular, the sum of quantities delivered to
a customer (resp. loaded at a plant) minus (resp. plus) the sum of quantities
consumed by this customer (resp. produced by this plant) over a time step must
be lower (resp. greater) than the capacity of its storage (resp. zero). Note that
here the duration of an operation does not depend on the delivered or loaded
quantity; this duration is fixed in function of the site where the operation is
performed, the resulting approximation being covered by the uncertainties lying
on the traveled times.

In our case, reliable forecasts (for both plants and customers) are known
over a 15-days horizon. Thus, shifts are planned deterministically day after day
with a rolling horizon of 15 days. It means that each day, a distribution plan is
built for the next 15 days, but only shifts starting at the current day are fixed.
The objective of the planning is to respect the soft constraints described above
over the long run (satisfying orders, maintaining safety levels). In practice, the
situations where these constraints cannot be met are extremely rare, because
missed orders and stockouts are unacceptable for customers (on the other hand,
safety levels must be finely tuned according to customer consumptions). Then,

High-Performance Local Search for Solving Real-Life IRP 107

the second objective is to minimize over the long term a logistic ratio defined as
the sum of the costs of shifts (which is composed of different terms related to the
usage of resources) divided by the sum of the quantities delivered to customers.
In other words, this logistic ratio corresponds to the cost per unit of delivered
quantity.

Large-scale instances have to be tackled. A geographic area can contain up
to 1500 customers, 50 sources, 50 bases, 100 drivers, 100 tractors, 100 trail-
ers. All dates and durations are expressed in minutes (on the whole, the short-
term planning horizon counts 21600 minutes); the inventory dynamics for plants
and customers are computed with time steps of one hour (because forecasts are
computed with this accuracy). The execution time for computing a short-term
planning is limited to 5 minutes on standard computers.

2 Related Works

Since the seminal work of Bell et al. [1] on a real-life inventory routing problem
encountered at Air Products (a producer and distributor of industrial gases), a
vast literature has emerged on the subject. In particular, a long series of papers
was published by Savelsbergh et al. [2,3,4,5,6], motivated by a real-life problem-
atic encountered at Praxair (another supplier of industrial gases). However, in
many companies, inventory routing is still done by hand or supported by basic
softwares, with rules like: serve “emergency” customers (that is, customers whose
inventory is near to run out) using as many “full deliveries” as possible (that is,
deliveries with quantity equal to the trailer capacity or, if not possible, to the
customer tank capacity). For more references, the interested reader is referred
to the recent papers by Savelsbergh and Song [5,6], which give a good survey of
the research done on the IRP over the past 25 years.

To our knowledge, the sole papers describing practical solutions for problems
similar to the one addressed here are the ones by Savelsbergh et al. [3,4,5,6]. The
solution approaches described in these papers are the same in essence: the short-
term planning problem is decomposed to be solved in two phases. In the first
phase, it is decided which customers are visited in the next few days, and a target
amount of product to be delivered to these customers is set. In the second phase,
vehicle routes are determined taking into account vehicle capacities, customer
delivery windows, drivers restrictions, etc. The first phase is solved heuristically
by integer programming techniques, whereas the second phase is solved with
specific insertion heuristics [7]. The experiments reported in the different works
on the subject [1,3,4,5,6] show savings up to 10 % over the long run (with
computation times of several minutes), compared to solutions obtained by a
greedy algorithm based on the rules of thumb commonly used in practice (like
the one cited above).

3 Contribution

To our acquaintance, no pure and direct local-search algorithm has been pro-
posed for solving the IRP. A local-search approach is described by Lau et al. [8]

108 T. Benoist et al.

for solving an inventory routing problem with time windows, but their approach
is based on a decomposition scheme (distribution and then routing). In this
paper, an original local-search heuristic is described for solving the short-term
planning problem. We insist on the fact that no decomposition is done in our
approach: the short-term planning is optimized directly over the 15-days hori-
zon. This algorithm has been designed and engineered following the methodology
described by Estellon et al. [9] in a companion paper. A computational study
demonstrates that our solution is both effective, efficient and robust, providing
long-term savings exceeding 20 % on average, compared to solutions computed
by expert planners or even a classical greedy algorithm.

Following the methodology exposed in [9], our local-search heuristic is designed
according to three layers. The first layer corresponds to the search strategy; here a
first-improvement descent heuristic with stochastic selection of transformations is
employed (an initial solution is computed using an urgency-based insertion heuris-
tic). The second layer corresponds to the pool of transformations which defines
the neighborhood; here more than one hundred transformations are defined on
the whole, which can be grouped into a dozen of types (for operations: insertion,
deletion, ejection, move, swap; for shifts: insertion, deletion, rolling, move, swap).
Finally, the third layer, corresponding to the “engine” of the local search, consists
of three main procedures common to all transformations: evaluate (which eval-
uates the gain provided by the transformation applied to the current solution),
commit (which validates the transformation by updating the current solution and
the associated data structures), rollback (which clears all the data structures used
to evaluate the transformation). Since the duration of an operation does not de-
pend on the quantity loaded or delivered, the evaluation procedure is separated
into two routines: first the scheduling of shifts and then the assignment of vol-
umes. These routines, whose running time is critical for performance, relies on
incremental algorithms supported by special data structures for exploiting invari-
ants of transformations.

The whole algorithm was implemented in C# 2.0 programming language (for
running on Microsoft .NET 2.0 framework). The resulting program includes
nearly 30000 lines of code, whose 6000 lines (20 %) are dedicated to check the
validity of all incremental data structures at each iteration (only active in de-
bug mode). The whole project (specifications, research, implementation, tests),
realized during the year 2008, required nearly 300 man-days. All statistics and
results presented here have been obtained on a computer equipped with a Win-
dows Vista operating system and a chipset Intel Xeon X5365 64 bits (CPU
3 GHz, L1 cache 64 Kio, L2 cache 4 Mio, RAM 8 Go). The local-search algo-
rithm attempts more than 10000 transformations per second, even for large-scale
instances (thousand sites and hundred resources). Then, our algorithm visits
nearly 10 million solutions in the search space during 5 minutes of running time
(which is the desired time limit in operational conditions). When planning over a
15-days horizon, the memory allocated by the program does not exceed 30 Mo for
medium-size instances (hundred sites, ten resources), and 300 Mo for large-scale
instances (thousand sites, hundred resources). Note that the running time of the

High-Performance Local Search for Solving Real-Life IRP 109

urgency-based insertion heuristic is of few seconds for large-scale instances. The
acceptance rate, which corresponds to the number of accepted transformations
(that is, not strictly improving current solution) over the number of attempted
ones, varies essentially between 1 and 10 % according to instances and optimiza-
tion phases. Note that this rate is quasi constant all along the search (that is,
during the 5 minutes of running time), allowing a large diversification of the
search without the use of metaheuristics. On the other hand, the number of
(strictly) improving transformations is of several hundreds.

The local-search algorithm has been extensively tested on several dozens of
benchmarks with different characteristics: realistic (that is, matching the op-
erational conditions), pathological (for example, with plants whose production
is stopped several days), large-scale (for example, with 1500 sites and 300 re-
sources). On 5 long-term real-life benchmarks (105 days), the gain obtained by
the local-search algorithm with 5 minutes of running time per planning iteration
reaches 21.8 % (resp. 25.3 %) on average compared to solutions obtained by the
urgency-based insertion heuristic (resp. solutions built by the logistic experts of
the company for which this R&D project was conducted).

References

1. Bell, W., Dalberto, L., Fisher, M., Greenfield, A., Jaikumar, R., Kedia, P., Mack,
R., Prutzman, P.: Improving the distribution of industrial gases with an on-line
computerized routing and scheduling optimizer. Interfaces 13(6), 4–23 (1983)

2. Campbell, A., Clarke, L., Kleywegt, A., Savelsbergh, M.: The inventory routing
problem. In: Crainic, T., Laporte, G. (eds.) Fleet Management and Logistics, pp.
95–113. Kluwer Academic Publishers, Norwell (1998)

3. Campbell, A., Clarke, L., Savelsbergh, M.: Inventory routing in practice. In: Toth,
P., Viego, D. (eds.) The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications, vol. 9, pp. 309–330. Kluwer Academic Publishers,
Philadelphia (2002)

4. Campbell, A., Savelsbergh, M.: A decomposition approach for the inventory-routing
problem. Transportation Science 38(4), 488–502 (2004)

5. Savelsbergh, M., Song, J.-H.: Inventory routing with continuous moves. Computers
and Operations Research 34(6), 1744–1763 (2007)

6. Savelsbergh, M., Song, J.-H.: An optimization algorithm for the inventory rout-
ing with continuous moves. Computers and Operations Research 35(7), 2266–2282
(2008)

7. Campbell, A., Savelsbergh, M.: Efficient insertion heuristics for vehicle routing and
scheduling problems. Transportation Science 38(3), 369–378 (2004)

8. Lau, H., Liu, Q., Ono, H.: Integrating local search and network flow to solve the
inventory routing problem. In: Proceedings of AAAI 2002, the 18th National Con-
ference on Artificial Intelligence, pp. 9–14. AAAI Press, Menlo Park (2002)

9. Estellon, B., Gardi, F., Nouioua, K.: High-performance local search for task schedul-
ing with human resource allocation. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.)
SLS 2009. LNCS, vol. 5752, pp. 1–15. Springer, Heidelberg (2009)

A Detailed Analysis of Two Metaheuristics for
the Team Orienteering Problem

Pieter Vansteenwegen1,∗, Wouter Souffriau1,2, and Dirk Van Oudheusden1

1 Centre for Industrial Management, Katholieke Universiteit, Leuven, Belgium
2 Information Technology, KaHo St.-Lieven, Ghent, Belgium

{pieter.vansteenwegen,dirk.vanoudheusden}@cib.kuleuven.be
wouter.souffriau@kahosl.be

Abstract. This paper presents different techniques that can be used to
improve the metaheuristic design and insight in the problem at hand. The
presented techniques are applied to analyse the performance of two differ-
ent metaheuristics for the team orienteering problem. Furthermore, the
parameter setting problem is discussed and the parameter “sensitivity” is
analysed.

1 Introduction

In the Orienteering Problem (OP) a set of n locations i is given, each with a
score Si and a service or visiting time Ti. The starting location (1) and the
end location (n) are fixed. The time tij needed to travel from location i to j is
known for all locations. Not all locations can be visited since the available time
is limited to a given time budget Tmax. The OP goal is to determine a single
route, limited by Tmax, that visits some of the locations and that maximises
the total collected score. Each location can be visited at most once. The Team
Orienteering Problem (TOP) is an OP where the goal is to determine m routes,
each limited to Tmax, that maximise the total collected score.

More details about the TOP and its applications can be found in the
literature [1,2,3,4,5,6,7]. Many different algorithms have been designed for the
TOP [1,3,4,5,6,7], but until now, they were only compared based on the qual-
ity of the results and the required computational effort. A thorough analysis of
why certain algorithms perform well (or not) is missing. Little or no attention
is given to gather real insight in the problem in order to ”optimise” the design
of (new) algorithms. This paper introduces techniques to analyse the perfor-
mance of (certain components of) metaheuristics. The techniques are applied
to the SVNS algorithm of Vansteenwegen et al. [5] and the PR algorithm of
Souffriau et al. [7].

2 Importance of Local Search Moves

Souffriau et al. [7] compare the quality of the results and the required compu-
tational time of the PR algorithm with the best performing algorithms for the

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 110–114, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Detailed Analysis of Two Metaheuristics for the TOP 111

Table 1. Performance of SVNS moves

Insert Replace TwoInsert TwoReplace Change TwoOpt Swap

CPA (%) 2.1 1.5 0.9 1.2 1.6 1.1 1.0
IC (%) 26.5 44.2 56.4 43.6 2.5 - -
CPU (%) 6.2 4.9 8.8 9.4 242.2 - -
AC (%) 0.6 0.5 0.0 0.3 0.8 0.4 0.2
CPU (%) 297.8 140.0 105.9 108.3 63.3 114.1 108.4

TOP [1,3,4,5,6]. We will only focus on the PR and SVNS algorithm described
above and analyse their performance in detail. Seven local search moves are used
by these algorithms. Five moves increase the total score of the solution: Insert,
TwoInsert, Replace, TwoReplace and Change; and two moves reduce the travel
time between the selected locations: TwoOpt and Swap. All moves are described
in detail in [5] and [7]. 158 relevant instances, described in [7] are used for this
analysis.

The importance of a move is illustrated by its ”contribution per application”,
its ”isolated contribution” and its ”additional contribution”. The ”contribution
per application” (CPA) is defined as the average score increase (or travel time
decrease) over all the times the move is applied. CPA is given as a percentage of
the total score (or travel time) of the final solution. The ”isolated contribution”
(IC) is defined as the decrease in score (in percentage) when only this move is
implemented and no other moves. The ”additional contribution” (AC) is defined
as the decrease in score (in percentage) when this move is not implemented.
The AC can be considered as the ”added value” of adding this move to the
implemented set of moves. All percentages mentioned in this section are average
percentages over all 158 instances. An important move will have a high CPA
and a low IC and AC. For each instance, the best result obtained by SVNS or
PR will be used as a benchmark.

Skewed Variable Neighbourhood Search: Table 1 summarises the importance of
all local search moves in the SVNS algorithm. The first row presents the contri-
bution per application. The second and third row give the isolated contribution
and the required computation time when only this move is implemented. The
computation time is given as a percentage of the computation time of the orig-
inal SVNS algorithm. Row four and five indicate the additional contribution of
each move and the computation time (as a percentage) when only this move is
left out.

The results for CPA should be interpreted with care, since the sequence
wherein the moves are considered influences these results. Nevertheless, based
on the CPA results, Insert appears to be the most contributing score increasing
move and TwoOpt is the most contributing travel time decreasing move. When
considering the IC, the result for Change stands out. If only Change is imple-
mented, and no other local search moves, the average gap with the SVNS results
is only 2.5%. However, the computational time would double at least. This im-
plies that Change is very effective, but not really efficient. The fact that Insert

112 P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden

Table 2. Performance of PR moves

Insert Replace TwoOpt Swap

CPA (%) 2.2 1.2 1.5 1.1
IC (%) 1.9 0.3 1.1 1.6
CPU (%) 78.7 87.2 84.2 75.5
AC (%) - 0.9 0.2 0.0
CPU (%) - 82.6 120.7 93.6

is the next best move, based on IC, is not a surprise. Insert adds locations to
all routes and the diversification procedures remove locations from the routes or
move locations from one route to another. This combination allows an intensive
exploration of the whole solution space. An important aspect that is still miss-
ing, resulting in a gap of 26.5%, is the lack of a travel time reduction move. No
IC results are presented for TwoOpt or Swap since implementing these moves
without any score increasing move, is irrelevant.

The percentages in the AC row are much smaller, but nevertheless very mean-
ingful. These results confirm the previous results about the effectiveness of dif-
ferent moves. A rather surprising conclusion is that Insert and Replace are more
important to reduce the computational effort than to increase the final quality of
the results. This statement is only correct when enough alternative local search
moves are implemented that increase the score and decrease the travel time.

Other interesting analysis results for SVNS (not in the table) are that without
diversification procedures, the results are 7.3% worse on average.

GRASP with Path Relinking: Table 2 summarises the importance of each local
search move in the PR algorithm, in the same way as Table 1. Insert is always
applied during the initialisation and during the path relinking. This implies that
the ”Isolated Contribution” of the other moves is not really isolated, but always
in combination with Insert.

Based on the CPA, the same conclusions as with SVNS can be made: Insert is
the most important score increasing move and TwoOpt is the most contributing
travel time decreasing move. The IC results for Replace (including Insert) illus-
trate that the travel time decreasing moves together increase the results with
(only) 0.3%. The fact that PR considers many alternative initial solutions (diver-
sification strategy), probably reduces the need for travel time decreasing moves,
compared to the SVNS algorithm. The most significant result in this analysis,
however, is that it would be better to leave out Swap. The quality would remain
the same, and the computational effort would be reduced to 93.6%.

For both SVNS and PR Insert and TwoOpt are required to obtain high quality
results with small computational times. Furthermore, Replace appears to be an
efficient move and both algorithms require a good diversification strategy.

It would be interesting to know the contribution of the local search moves
in the ant colony algorithm [4] and the tabu search and VNS algorithms [3],
in order to draw more general conclusions about useful local search moves for

A Detailed Analysis of Two Metaheuristics for the TOP 113

the orienteering problem, independent from the metaheuristic framework that is
implemented.

3 Parameter Settings

Next to selecting appropriate moves and the best sequence to apply them, an-
other important design decision is the parameter setting. In almost all papers,
not only about TOP algorithms, parameter settings are based on experimen-
tal results or preliminary testing. The parameters of the best performing TOP
algorithms [1,3,4,5,6,7] are all determined in this way. Almost never, the ”sensi-
tivity” of the algorithm to a particular parameter setting is discussed. Sensitivity
can be defined as to what extend small or larger changes in parameter settings
will influence the quality and the computational effort of the algorithm.

SVNS: For SVNS, the only important parameters are the maximum number
of iterations without improvement (NoImproveMax = 40) and the maximal
number of locations to remove in each route (KMax = 25). In order to verify
the influence of these parameters, the test instances are also solved with differ-
ent combinations of higher and lower values: NoImproveMax = 20 and 80 and
KMax = 12 and 50. Increasing NoImproveMax increases the quality of the
results, but the calculation time also increases significantly. This clearly illus-
trates the trade-off between the required calculation time and the quality of the
results. Furthermore, the algorithm is not at all sensitive to changes in KMax;
the influence on the result quality and the computational time is insignificant.

PR: The most important parameter in the PR algorithm is the maximum num-
ber of iterations. Based on this parameter slow and fast variants of the algorithm
can be constructed (more details about this parameter can be found in [7]). In
this paper only a slow variant is considered, with a maximum of 100 iterations
without improvement. Other important PR parameters are the size of the elite
pool (EliteMax = 5), the Greediness (0.5) of the initialisation method and the
SimilarityThreshold (0.9) [7]. In order to verify the influence of these
parameters, the test instances are also solved for other values of these parameters:
EliteMax = 3 and 10, Greediness = 0.3 and 0.8 and SimilarityThreshold = 0.5.

Changing the number of elite solutions has a small influence on the quality of
the results, but a significant influence on the computational efforts. The greedi-
ness value does not influence the result quality, however, a significant increase in
computational effort is required when the greediness is increased or decreased.
Further analysis should indicate if 0.5 can be considered as an optimal value and
an ”ideal” mix of greediness and randomness. Decreasing the similarity thresh-
old decreases significantly the quality of the results on the one hand, but also
the computational effort on the other hand. Again a trade-off should be made.

4 Conclusions

By analysing the ”contribution” of individual local search moves and differ-
ent variants of the solution algorithm, insight is gained in the implemented

114 P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden

metaheuristics. These insights can help to optimise the design of the algorithm
under study, other algorithms or future algorithms. Furthermore, in many pa-
pers, parameter setting are (only) based on experimental results or preliminary
testing. Almost never, the ”sensitivity” of the algorithm to a particular parame-
ter setting is discussed. Nevertheless, this can give important information about
the performance of an algorithm and the appropriateness of the trade-offs that
were made during the implementation of the algorithm. In this paper, the pa-
rameter sensitivity and the importance of different moves are analysed for two
different metaheuristics implemented to solve the team orienteering problem. In
this way, important insights in these algorithms are gained.

In order to increase the statistical significance of the observed results, stan-
dard deviations should be taken into account and appropriate statistical tests
should be used. ”Multiple linear regression” analysis would allow a more thor-
ough analysis of the test results in this paper. Multiple linear regression is a
statistical technique to determine the contribution or significance of different
parameters (local search moves or parameter settings) in obtaining certain re-
sults (high quality results or low computational times).

Acknowledgements. Pieter Vansteenwegen is a post doctoral research fellow
of the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO).

References

1. Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering prob-
lem. Computer & Operations Research 32, 1379–1407 (2005)

2. Vansteenwegen, P., Van Oudheusden, D.: The mobile tourist guide: an OR oppor-
tunity. OR Insight 20(3), 21–27 (2007)

3. Archetti, C., Hertz, A., Speranza, M.: Metaheuristics for the team orienteering prob-
lem. Journal of Heuristics 13, 49–76 (2007)

4. Ke, L., Archetti, C., Feng, Z.: Ants can solve the team orienteering problem. Com-
puters & Industrial Engineering 54, 648–665 (2008)

5. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Meta-
heuristics for tourist trip planning. In: Geiger, M., Habenicht, W., Sevaux, M.,
Sörensen, K. (eds.) Metaheuristics in the Service Industry. Lecture Notes in Eco-
nomics and Mathematical Systems, vol. 624, pp. 15–31. Springer, Berlin (2009)

6. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: A
guided local search metaheuristic for the team orienteering problem. European Jour-
nal of Operational Research 196(1), 118–127 (2009)

7. Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.: A path
relinking approach for the team orienteering problem. Computers & Operations
Research (2009), doi:10.1016/j.cor.2009.05.002

On the Explorative Behavior of
MAX–MIN Ant System

Daniela Favaretto2, Elena Moretti2, and Paola Pellegrini1,2,�

1 Dipartimento di Elettrotecnica, Elettronica ed Informatica,
Università di Trieste, Trieste, Italy

2 Dipartimento di Matematica Applicata,
Università Ca’ Foscari di Venezia, Venezia, Italy

{paolap,favaret,emoretti}@unive.it

Abstract. Analyzing the behavior of stochastic procedures is generally
recognized to be relevant. A possible way for doing so consists in observ-
ing the exploration performed. A formalization in this sense is proposed
here: A method for studying this aspect regardless the type of approach
used is defined and tested. The consequent measure of exploration is
applied to MAX–MIN Ant System: The impact of the values of the pa-
rameters on the exploration is assessed. The conclusions drawn are put in
relation with the indications provided by the average λ-branching factor.

1 Introduction

In combinatorial optimization, selecting the best algorithm for a given problem
is a critical task. For doing it, it is crucial to understand what the characteristics
of the various approaches are. In this sense, a fundamental element that must
be investigated is the explorative behavior of the different procedures. Although
the interest on this topic is quite intuitive, in the literature it has not been con-
sidered in general terms [1,7,2,8]. A widely applicable definition of exploration is
proposed in Section 2, together with some details on how to measure exploration.
Then, an application of this methodology is provided: the object of this study
is MAX–MIN Ant System [3], an ant colony optimization (ACO) algorithm. In
Section 3 the experimental analysis is reported and we conclude in Section 4.

2 Exploration: A Definition

Let a combinatorial optimization problem be mapped on a graph G = (N, A),
where N is the set of nodes and A the set of edges, and |N | = n and |A| = a. A
solution is a vector of a components. In particular, solution S is given by S =
(x1, x2, ..., xa). xi = 0 if the i-th edge is not included in it, and xi = Pi otherwise:
Let Pi be the probability that the algorithm assigns to edge i when constructing

� The authors acknowledge the contribution of CINECA, Bologna, Italy, which pro-
vided computation resources for the experimental analysis presented in this paper.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 115–119, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

116 D. Favaretto, E. Moretti, and P. Pellegrini

solution S. Since stochastic algorithms are considered, this probability is always
computable, in a different way for each different approach. In this sense, solutions
are observed from the point of view of the algorithm. Such a representation of
solutions has been chosen for reflecting as much as possible the characteristics
of stochastic algorithms.

Solutions represented in this way can be grouped in clusters [4,5]. To the aim
of this analysis, all the solutions belonging to a cluster are close enough for being
considered as a unique solution from the point of view of the algorithm. In this
framework, it is possible to define the exploration: The exploration performed by
a stochastic algorithm is given by the number of clusters of solutions visited. In
order to compute this value, one only needs to know how the stochastic algorithm
associates probabilities to edges. As an application of this concept, from here on,
an ACO algorithm is studied.

For using such definition, a clustering procedure needs to be defined. In par-
ticular, an agglomerative hierarchical procedure [6] appears suitable. For what
the stopping criterion is concerned, the aggregative procedure is concluded when
the distance between the two closest clusters is greater than a predefined thresh-
old. Let the threshold εx be such that solutions that differ for more than x% of
their edges must not be included in the same cluster.

3 Experimental Analysis

In this section the impact of the values of the parameters on the exploration
performed by MAX–MIN Ant System is analyzed. The stopping criterion con-
sidered in this analysis consists in the fulfillment of 20000 objective function
evaluations. At this early stage, no local search procedure is applied. One hun-
dred TSP instances with 50 nodes are used. The set of experiments described
below have been performed also on one instance with 100 and 200 nodes. The re-
sults can be downloaded from the web page http://www.paola.pellegrini.it and
they appear qualitatively equivalent. On the same web site the code used for
computing the exploration and the instances used are available. The distance
measure considered is the Euclidean distance. A very short experimental anal-
ysis with two different distances. The results appear substantially analogous to
the ones reported in this Section. Following the computation described above
and setting x = 10, the value of the parameter ε10 is 3.16.

MAX–MIN Ant System is run varying the values of the parameters. According
to the literature [9] these values have an impact on the exploration. The follow-
ing analysis aims at observing this difference of exploration during the evolution
of a run. The solutions are considered iteration by iteration, i.e. in groups of 50
elements. In the literature, the problem of measuring the exploration performed
by ACO algorithms has been shortly tackled [3]. The measure that is generally
accepted as a measure of stagnation is the average λ-branching factor. The con-
clusions drawn with the cluster analysis are considered in the light of the results
obtained by studying the trend of the average λ-branching factor computed in
the same horizon.

On the Explorative Behavior of MAX–MIN Ant System 117

The parameters analyzed are α, β, ρ. The values α = 1, β = 1, ρ = 0.02
are considered as reference. A colony of 50 ants is used. Then, one param-
eter at a time is varied. The values used for parameters are the following:
α ∈ {1, 2, 3, 4}, β ∈ {1, 2, 3, 4}, ρ ∈ {0.02, 0.05, 0.2, 0.7}.

In figure 1 (left column), the exploration is reported for the different values of
the parameters. It can be observed that an increase of the value of α has three
main effects: First of all a significant level of exploration is achieved earlier in
the run, as well as its peak. Moreover, the higher the value of α, the higher this
maximum level. It has to be remarked that an exploration equal to 1 charac-
terizes the beginning of the run whatever value is set for α. In this phase the
algorithm is moving in the search space in a quite random fashion. Any explo-
ration performed in this moment is then neither intentional not controlled. It is
reasonable, then, to interpret it as non-exploration. This phase will be referred
to as random–like. Until the probability of some edges passes a certain threshold
the behavior remains substantially the same and the exploration is equal to 1.

For what β is concerned a very similar trend can be noted. The main differ-
ence consists in the fact that the random–like phase is completely absent when
β = 3 and β = 4. In general, moreover, the peaks of exploration are much less
pronounced, and they are reached after a smoother ascent.

Finally, ρ implies the same trend: When it increases, the duration of the
random–like phase is shorter. Peaks are much less stressed than in the case of
α. An actual decrease of exploration after the maximum is reached is not even
evident. An explanation of this effect can be found in the pheromone update
rule. In MAX–MIN Ant System pheromone evaporates on all the edges, and is
deposited only on those belonging to the best so far (or iteration best) solution. It
implies that if the evaporation rate is large, even after few updates the differences
in the pheromone trails may be very strong.

In figure 1 (right column) the average λ-branching factor is reported. For all
the values of the parameters, it increases for a while and then starts descending,
more or less steeply. This reflects the observations made on the exploration: The
period in which the average λ-branching factor is high, and the pheromone is
almost uniformly distributed on the edges, corresponds to the random–like phase:
The algorithm has not yet defined any real difference among the solutions.

A point that deserves a deeper analysis is the fact that when the average λ-
branching factor reaches a very low value, the corresponding exploration appears
to be quite high. In this framework the nature of the two measures needs to be
taken into account: The former concerns only the pheromone distribution. The
latter considers both the probability distribution (which is indeed connected
to the pheromone trails) and the solutions actually visited. Figure 2 aims at
underlying this difference. The last 50 solutions generated in the run with α = 1,
β = 1 and ρ = 0.7 are considered. In figure 2(a) the probability associated
to each node to node edge is presented. It is evident that the distribution is
coherent with a very low average λ-branching factor: not more that a couple of
edges incident on each node have high probability. On the other hand, figure
2(b) investigates the difference among the solutions found. In particular, they

118 D. Favaretto, E. Moretti, and P. Pellegrini

0
10

20
30

40
50

objective function evaluations

ex
pl

or
at

io
n

5000 10000 15000

alpha=1
alpha=2
alpha=3
alpha=4

10
20

30
40

50

objective function evaluations

av
er

ag
e

la
m

bd
a−

br
an

ch
in

g
fa

ct
or

5000 10000 15000

alpha=1
alpha=2
alpha=3
alpha=4

0
10

20
30

40
50

objective function evaluations

ex
pl

or
at

io
n

5000 10000 15000

beta=1
beta=2
beta=3
beta=4

10
20

30
40

50

objective function evaluations

av
er

ag
e

la
m

bd
a−

br
an

ch
in

g
fa

ct
or

5000 10000 15000

beta=1
beta=2
beta=3
beta=4

0
10

20
30

40
50

objective function evaluations

ex
pl

or
at

io
n

5000 10000 15000

rho=0.02
rho=0.05
rho=0.2
rho=0.7

10
20

30
40

50

objective function evaluations

av
er

ag
e

la
m

bd
a−

br
an

ch
in

g
fa

ct
or

5000 10000 15000

rho=0.02
rho=0.05
rho=0.2
rho=0.7

Fig. 1. Number of clusters (left) and average λ-branching factor (right)

nodes

no
de

s

probability

(a) Probability on each node to
node edge

0
10

20
30

40
50

solutions

nu
m

be
r

of
 d

iff
er

en
t e

dg
es

(b) Number of different edges be-
tween one solution and each other

Fig. 2. Observations on the last 50 solutions visited (α = 1, β = 1, ρ = 0.7)

are considered here in a TSP-wise sense: only the permutations matter, while
probabilities are completely neglected. The number of different edges between
one solution and each other is reported. For each pair (x̂, ŷ), the size of the bullet
used is proportional to the number of solutions differing from solution x̂ for ŷ
edges. It is evident that, despite the very concentrated pheromone trails, the
solutions visited are far from being always the same. In this sense, despite that
the average λ-branching factor is a fundamental measure for the effectiveness
of MAX–MIN Ant System, the assessment of the number of clusters represents
much more accurately the actual behavior of the procedure.

On the Explorative Behavior of MAX–MIN Ant System 119

If the objective function value is considered for the different configurations,
it is interesting that the ACO algorithm behaves significantly differently from
random search only when exploration passes the random–like phase. This is true
for any value of the parameters. The results obtained for all the 100 instances
allow to draw the same conclusions.

4 Conclusions

This paper deals with the observation of the behavior of stochastic procedures,
intended in terms of explorative attitude of the algorithms. A definition of explo-
ration independent on the algorithm is presented, and a consequent measurement
method is provided. It is applied to MAX–MIN Ant System: The impact of the
values of the parameters on the exploration is assessed. The conclusions drawn
in this sense are put in relations with the indications provided by the average
λ-branching factor. In these first experiments, only one parameter at a time
is varied, and no local search is applied. Both these points will be overcome
in future research. In particular, it is expectable that the interaction between
parameters has an impact on the exploration performed.

References

1. Bhattacharya, M.: A synergistic approach for evolutionary optimization. In:
GECCO 2008: Proceedings of the 2008 GECCO conference companion on Genetic
and evolutionary computation, pp. 2105–2110. ACM, New York (2008)

2. Devarenne, I., Mabed, H., Caminada, A.: Intelligent neighborhood exploration in
local search heuristics. In: ICTAI 2006: Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence, pp. 144–150. IEEE Computer So-
ciety, Los Alamitos (2006)

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
4. Everitt, B., Landau, S., Leese, M.: Cluster Analysis. Arnold, London (2001)
5. Kaufman, L., Rousseeuw, P.J.: Finding groups in data. An introduction to cluster

analysis. Wiley Series in Probability and Mathematical Statistics. Applied Proba-
bility and Statistics. Wiley, New York (1990)

6. Jardine, N., Sibson, R.: The construction of hierarchic and non-hierarchic classifi-
cations. The Computer Journal 11(2), 177–184 (1968)

7. Orosz, J.E., Jacobson, S.H.: Finite-time performance analysis of static simulated
annealing algorithms. Computational Optimization and Applications 21(1), 21–53
(2002)

8. Pellegrini, P., Ellero, A.: The small world of pheromone trails. In: Dorigo, M.,
Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008.
LNCS, vol. 5217, pp. 387–394. Springer, Heidelberg (2008)

9. Pellegrini, P., Favaretto, D., Moretti, E.: On MAX–MIN ant system’s parameters.
In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T.
(eds.) ANTS 2006. LNCS, vol. 4150, pp. 203–214. Springer, Heidelberg (2006)

A Study on Dominance-Based Local Search
Approaches for Multiobjective Combinatorial

Optimization

Arnaud Liefooghe, Salma Mesmoudi, Jérémie Humeau,
Laetitia Jourdan, and El-Ghazali Talbi

Laboratoire d’Informatique Fondamentale de Lille, UMR CNRS 8022,
INRIA Lille-Nord Europe, Université Lille 1, Villeneuve d’Ascq, France

{Arnaud.Liefooghe,Laetitia.Jourdan,talbi}@lifl.fr,
{Salma.Mesmoudi,Jeremie.Humeau}@inria.fr

Abstract. The purpose of the current paper is twofold. First, a unified
view of dominance-based multiobjective local search algorithms is pro-
posed. We focus on methods based on the iterative improvement of the
nondominated set by means of a neighborhood operator. Next, the effect
of current solutions selection and of neighborhood exploration techniques
for such purpose is studied. Experiments are conducted on a permutation
flowshop scheduling problem in a two- and a three-objective variant.

1 Introduction

The aim of this study is to provide a unified view of dominance-based local
search for multiobjective optimization. Contrary to the single-objective case, a
Multiobjective Combinatorial Optimization Problem (MCOP) does not yield
a unique optimal solution. Instead, a set of compromise solutions, known as
efficient solutions must generally be identified. Since they are naturally well-
suited to find multiple efficient solutions in a single simulation run, a tremendous
number of multiobjective evolutionary algorithms have been proposed over the
last two decades [1]. However, local search methods are known to be efficient
metaheuristics for single-objective optimization. Local search, also referred to
as hill-climbing, descent, iterative improvement, etc., is likely the oldest and
simplest metaheuristic [2]. But multiobjective local search principles based on
a dominance relation appeared quite recently [1,3]. Hence, some dominance-
based multiobjective local search methods have been proposed in the literature,
including the Pareto Archived Evolution Strategy (PAES) [4], the Pareto Local
Search (PLS) [5] or the Bicriteria Local Search (BLS) [6]. Such methods generally
combine the definition of a neighborhood structure with the use of a population
of solutions. They maintain a set of potentially efficient solutions, and iteratively
improves this set by exploring part of its neighborhood. Our first purpose is to
give a unified view of dominance-based multiobjective local search. We describe
the basic components shared by all these algorithms and we introduce a general-
purpose model for their design. Afterwards, we concentrate on a subpart of

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 120–124, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dominance-Based Local Search for MCO 121

components involved into the unified model in order to study their respective
behavior on a multiobjective permutation flowshop scheduling problem.

2 Dominance-Based Multiobjective Local Search

Until now, each DMLS algorithm was designed independently of the others, and
was implemented as a self-contained method with its own specific components.
In the following, we identify the common components shared by all DMLS al-
gorithms and propose a unifying model that takes them into account. Hence,
whatever the MCOP to be solved, the common concepts for the design of a
DMLS algorithm can be stated as follows: (1) design a representation, (2) de-
sign a initialization strategy, (3) design a way of evaluating a solution, (4) design
a suitable neighborhood structure, (5) design a way of evaluating a neighboring
solution incrementally (if possible), (6) decide a current set selection strategy,
(7) decide a neighborhood exploration strategy, (8) decide an archive manage-
ment strategy, (9) decide a stopping condition. When dealing with any kind of
metaheuristics, one may distinguish problem-related and problem-independent
components. Hence, the first five issues presented above strongly depend of the
MCOP under consideration, whereas the last four ones can be seen as generic
components. In addition, three data structures are used to store (i) the archive
contents, (ii) the current set of solutions whose neighborhood is to be explored,
and (iii) the candidate set of neighbor solutions that will potentially enter the
archive. Problem-related components are assumed to be designed for the MCOP
at hand, so that they are not discussed in the paper due to space limitation.

2.1 Problem-Independent Issues

Current set selection. The first phase of a local search step deals with the
selection of a set of solutions from which the neighborhood will be explored.
Generally speaking, in the frame of the DMLS model presented in the paper,
two strategies can be applied. Firstly, an exhaustive selection, where all solutions
from the archive are selected. Second, a partial selection, where only a subset of
solutions is selected. Such a set may be selected at random, or also with respect
to a diversity measure. Of course, if some archive members are marked as visited,
they must be discarded of the current set selection for obvious efficiency reasons.

Neighborhood exploration. From the current set, a number of candidate so-
lutions must be generated by means of a neighborhood structure. Such a set is
obtained by a repeated local transformation of every solution contained in the
current set. For a given current solution, two classes can be clearly distinguished.
Firstly, an exhaustive neighborhood exploration, where the neighborhood is eval-
uated in a full and deterministic way. Every possible move of the current solution
is applied and the neighboring solutions are all added to the candidate set. The
solutions of the current set can then all be marked as visited. Second, a partial
neighborhood exploration, where only a subset of moves are applied. The number
of moves to be applied is generally defined by a user-given parameter.

122 A. Liefooghe et al.

Archiving. The archive allows to store either all or a subset of nondominated
solutions found during the search process. Its main aim is to prevent the loss
of interesting solutions. But archive members are also integrated into the search
process by providing solutions to exploit in the DMLS model presented in this
paper. Different archiving techniques can be distinguished depending on the
problem properties, the designed algorithm and the number of desired solutions:
(i) an unbounded archive or (ii) a bounded archive. Firstly, when an archive
is maintained, it usually comprises the current nondominated set approxima-
tion, as dominated solutions are discarded. Then, an unbounded archive can
be used in order to save the whole set of nondominated solutions. However, as
some MCOPs may contain an exponential number of nondominated solutions,
additional operations must be used to bound the archive size.

Stopping condition. Since an iterative method computes successive approx-
imations, a practical test is generally required to determine when the process
must stop. Popular examples are a given number of iterations or a given run-
time. However, when it is possible to mark archive members as visited, a natural
stopping criterion arises when all archive solutions are marked as visited.

3 Computational Experiments

The goal of this section is to experiment the efficiency of some state-of-the-art
strategies for both current set selection and neighborhood exploration. For each
component, a set of 2 different schemes are investigated. This gives rise to a
combination of 4 DMLS algorithms. Hence, with regards to the current set se-
lection, either (i) each or (ii) a random single unvisited solution is selected from
the archive. Next, with regards to the neighborhood exploration, either (i) all
or (ii) a single random neighbor per solution is proposed as a candidate for in-
tegrating the archive. The corresponding algorithms are denoted by DMLS(1·1),
DMLS(1·�), DMLS(�·1) and DMLS(�·�). Note that the algorithm denoted by and
DMLS(1·1) is closely related to PAES [4], DMLS(1·�) to PLS [5], and DMLS(�·�)

to BLS [6]. For each problem instance to be solved, different maximum run-
time values, from 2 to 20 minutes, have been investigated in order to study the
evolution of the search efficiency over time. However, as some algorithms stop
in a natural way, a simple random restart has been performed to continue the
search process until the maximum runtime is reached. For all the experiments,
the initial population size is set to 1, and an unbounded archive is maintained.

3.1 A Permutation Flowshop Scheduling Problem

The Flowshop Scheduling Problem (FSP) consists of scheduling N jobs on
M machines. We here focus on a permutation FSP, where the operating se-
quences of the jobs are identical and unidirectional on every machine. We will
consider a two-objective FSP (denoted by FSP-2), where both the makespan
and the total tardiness are to be minimized. Additionally, we will also consider
a three-objective variant (denoted by FSP-3), where the maximum tardiness is

Dominance-Based Local Search for MCO 123

the additional objective to be minimized. The reader is referred to [7] for more
information on multiobjective scheduling.

The problem-related components used for the specific case of the FSP pre-
sented above are the following ones. Firstly, the representation is based on a
permutation of size N . Next, the initialization strategy consists of generating
solutions randomly. At last, the neighborhood is based on the insertion opera-
tor, i.e. a job at position i is inserted at position j �= i, and the jobs located
between positions i and j are shifted.

3.2 Results and Discussion

To evaluate the performance of the algorithms experimented in this paper, we
consider various benchmark test instances1. Six problem instances involving from
20 jobs and 5 machines to 50 jobs and 20 machines are experimented. A set of
10 runs per instance has been performed for each search method. For a given
instance, let Zall denote the union of the outputs we obtained during all our ex-
periments. We first compute a reference set Z�

N containing all the nondominated
points of Zall. Now, to measure the quality of an output set A in comparison
to Z�

N , we compute the difference between these two sets by using the unary
hypervolume metric and the additive ε-indicator [8].

DMLS(1·1) and DMLS(�·1) can generally not compete with other algorithms
on small size problem instances. This can be explained by the fact that they
do not handle any kind of natural stopping condition, so that they are never
able to restart. On the contrary, DMLS(1·�) and DMLS(�·�) quickly reach a state
where each archive member is marked as visited, and can then restart with
a different initial solution. However, DMLS(1·1) and DMLS(�·1) perform better
on bigger instances. In particular, these two algorithms appear very efficient in
comparison to the others on the 50 10 01 and 50 20 01 instances when a short
amount of runtime is available. Moreover, on the 50 20 01 instance of FSP-3,
they perform better than all the other algorithms, even when a large runtime is
allowed. Now, with regards to DMLS(�·�), this approach performs very well on
20-job instances. For larger ones, the convergence is really slow in the biobjective
case, but finally reaches competitive results after a long runtime. However, in
the three-objective case, this method appears inefficient for problem instances of
50 jobs. Finally, the DMLS(1·�) algorithm, that embeds similar techniques than
PLS [5], seems to reach the best overall performances. Indeed, it appears to be
as good as DMLS(�·�) on 20-job instances for both FSP-2 and FSP-3. For the
50 05 01 instance, it clearly outperforms the other algorithms all time long. For
bigger instances, even if it is slightly dominated at the beginning of the search,
it finally reaches the better results in the two-objective case. For FSP-3, same
conclusions can be drawn on the 50 10 01 instance. But the last instance is the
single one where DMLS(1·�) is always dominated by DMLS(1·1) and DMLS(�·1).

1 These instances are available at http://www.lifl.fr/~liefooga/benchmarks/

http://www.lifl.fr/~liefooga/benchmarks/

124 A. Liefooghe et al.

4 Conclusion

In this paper, a unification of dominance-based local search approaches for mul-
tiobjective combinatorial optimization has been attempted. Such methods can
be seen as a generalization of the classical single-objective hill climbing, com-
bined with the use of a population of solutions. They are based on the iterative
improvement of the set of nondominated solutions by means of a neighborhood
operator. A unified model has been proposed and its main issues have been iden-
tified. The problem-independent components of current set selection, neighbor-
hood exploration as well as archiving strategies have been especially discussed.
This model has been used as a starting point for the design and the implementa-
tion of an open-source software framework for dominance-based multiobjective
local search. This contribution has been conceived as a plug-in to be integrated
into the ParadisEO-MOEO software framework2. At last, the issues of current
set selection and neighborhood exploration have been experimentally compared
on a multiobjective flowshop scheduling problem. We showed the benefit of per-
forming a full neighborhood exploration in order to avoid the revaluation of some
neighboring solutions and to reach a natural stopping criterion. Furthermore, we
concluded that selecting a single solution from the current population to explore
its neighborhood in an exhaustive manner was especially efficient for the problem
under consideration. As a next step, we will investigate larger instances for the
flowshop scheduling problem as well as other kinds of multiobjective problems.

References

1. Ehrgott, M., Gandibleux, X.: Approximative solution methods for multiobjective
combinatorial optimization. TOP 12(1), 1–89 (2004)

2. Talbi, E.G.: Metaheuristics: from design to implementation. Wiley, Chichester
(2009)

3. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective com-
binatorial optimization: A review. In: Handbook of Approximation Algorithms and
Metaheuristics. Chapman & Hall / CRC (2007)

4. Knowles, J.D., Corne, D.: Approximating the nondominated front using the Pareto
archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

5. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjec-
tive traveling salesman problem: An experimental study. In: [9], pp. 177–199

6. Angel, E., Bampis, E., Gourvés., L.: A dynasearch neighbohood for the bicriteria
traveling salesman problem. In: [9], pp. 153–176

7. T’Kindt, V., Billaut, J.C.: Multicriteria Scheduling: Theory, Models and Algorithms.
Springer, Berlin (2002)

8. Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

9. Gandibleux, X., Sevaux, M., Sörensen, K., T’Kindt, V. (eds.): Metaheuristics for
Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Sys-
tems, vol. 535. Springer, Berlin (2004)

2 The plug-in is available at http://paradiseo.gforge.inria.fr/DMLS/

http://paradiseo.gforge.inria.fr/DMLS/

A Memetic Algorithm for the Multidimensional
Assignment Problem

Gregory Gutin and Daniel Karapetyan

Royal Holloway, University of London, London, UK
gutin@cs.rhul.ac.uk, daniel.karapetyan@gmail.com

Abstract. The Multidimensional Assignment Problem (MAP or s-AP
in the case of s dimensions) is an extension of the well-known assignment
problem. The most studied case of MAP is 3-AP, though the problems
with larger values of s have also a number of applications. In this paper
we propose a memetic algorithm for MAP that is a combination of a
genetic algorithm with a local search procedure. The main contribution
of the paper is an idea of dynamically adjusted generation size, that yields
an outstanding flexibility of the algorithm to perform well for both small
and large fixed running times.

1 Introduction

The Multidimensional Assignment Problem (MAP or s-AP in the case of s di-
mensions) is an extension of the well-known Assignment Problem (AP, linear
AP) which is exactly two dimensional case of MAP. MAP has a host of appli-
cations, for details see [1].

For a fixed s ≥ 2, s-AP is stated as follows. Let X1 = X2 = . . . = Xs =
{1, 2, . . . , n} and let X = X1×X2× . . .×Xs. For a vector e ∈ X , the component
ej denotes its jth coordinate, i.e., ej ∈ Xj . Each vector e ∈ X is assigned a non-
negative weight w(e). A collection A of t ≤ n vectors e1, e2, . . . , et is a (feasible)
partial assignment if ei

j �= ek
j holds for each i �= k and j ∈ {1, 2, . . . , s}. The

weight of a partial assignment A is w(A) =
∑t

i=1 w(ei). An assignment (or full
assignment) is a partial assignment with n vectors. The objective of s-AP is to
find an assignment of minimum weight.

While AP can be solved in a polynomial time [2], s-AP for every s ≥ 3 is
NP-hard [3]. MAP is a very hard problem in the following sense. The weight
matrix of MAP contains ns values, there exist n!s−1 possible assignments and
the fastest known algorithm to find the optimal assignment takes O(n!s−2n3)
time. Indeed, without loss of generality set ei

1 = i for i = 1, 2, . . . , n and for
each feasible combination of ei

j (i = 1, 2, . . . , n and j = 2, 3, . . . , s − 1) find the
optimal values for the last dimension ei

s by solving corresponding linear AP in
O(n3).

Compare it with, e.g., the Travelling Salesman Problem which has only n2

weights, (n − 1)! possible tours and that can be solved in O(n22n) time.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 125–129, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

126 G. Gutin and D. Karapetyan

2 The Algorithm

A memetic algorithm is a combination of genetic algorithm with local search. A
typical scheme of a memetic algorithm is as follows.

1. Produce the first generation, i.e., a set of solutions.
2. Apply the local search procedure to every solution in the first generation.
3. Repeat the following while a termination criterion is not met:

(a) Produce a set of new solutions by applying so-called genetic operators
to solutions from the previous generation.

(b) Improve every solution in this set with the local search procedure.
(c) Select several best solutions from this set to the next generation.

While the general scheme of the algorithm is quite common for all memetic
algorithms, the set of genetic operators and the way they are applied can vary
significantly. In our algorithm, we use the following procedure to obtain the next
generation:

gi+1 = selection({gi
1} ∪ mutation(gi \ {gi

1}, pm, μm) ∪ C) ,

where gk is the kth generation and gk
j is the jth assignment of the kth generation;

gk
1 is the best assignment in the kth generation. Constants pm = 0.5 and μm =

0.1 define the probability and the strength of mutation operator respectively.
The function selection simply returns mi+1 best distinct assignments among
the given ones, where mk is the size of the kth generation (if the number of
distinct assignments in the given set is less than mi+1, selection returns all the
distinct assignments and updates the value of mi+1 accordingly). To obtain the
set of assignments C (crossover part) we repeat LocalSearch(crossover(gi

u, gi
v))

operation (p·mi+1−mi)/2 times, where u, v ∈ {1, 2, . . . , mi} are chosen randomly
for every crossover run and p = 3 defines how many times more assignments
should be produced for the selection operator. The mutation function for a set
of solutions is defined as follows:

mutation(G, p, μ) =
⋃

g∈G

{
LocalSearch(perturb(g, μ)) if r < p
g otherwise

where r ∈ [0, 1] is chosen randomly every time. The functions crossover(x, y),
perturb(x, μ) and LocalSearch(x) are discussed later.

Coding. In genetic algorithms, coding is a way to represent a solution as a
sequence of atom values such as boolean values or numbers; genetic operators
are applied to such sequences.

Huang and Lim [4] use a local search procedure that, having first two dimen-
sions of an assignment, determines the third dimension (note that the algorithm
from [4] is designed only for 3-AP). Since the first dimension can always be fixed
with no loss of generality, one needs to store only the second dimension of an as-
signment. Unfortunately, this coding requires a specific local search and is robust

A Memetic Algorithm for the Multidimensional Assignment Problem 127

for 3-AP only. We use a different coding: a vector of an assignment is considered
as an atom in our algorithm and, thus, a coded assignment is just a list of its
vectors. The vectors are always stored in the first coordinate ascending order,
e.g., an assignment {(2, 4, 1), (4, 3, 4), (3, 1, 3), (1, 2, 2)} would be represented as
(1, 2, 2), (2, 4, 1), (3, 1, 3), (4, 3, 4). Two assignments are considered equal is they
have equal codings.

Termination Condition. Usually, a termination condition in a memetic al-
gorithm tries to predict the point after which any further effort is useless or,
at least, not efficient. A typical approach is to count the number of subsequent
generations which did not improve the best result and to stop the algorithm
when this number reaches some predefined value.

We use a different approach. To be able to compare different algorithms cor-
rectly and to satisfy real world requirements, we bound our algorithm within
some fixed running time. Apart from the mentioned advantages of this termina-
tion condition, it is worth to note that it gives flexibility to produce either fast
or high quality solutions depending on one’s needs.

Generation Size. The most natural way to fit the running time of a memetic
algorithm into the given bound is to produce generations of some fixed size until
the time is elapsed. However, it is clear that one memetic algorithm cannot
work efficiently in both cases if there are just a few generations and if there are
hundreds of generations. Thus, instead, we fix the number of generations and
vary the generation size.

Our computational experiments show that, with a fixed running time, the
most appropriate number I of generations for our algorithm is always around
50; this number does not depend on the local search procedure or the given time.
Since the running time of the local search procedure can vary significantly (e.g.,
last generations usually contain better solutions than the first ones and, thus,
are processed faster) and also to make our algorithm easily portable, we decided
to adjust the generation size dynamically according to the remained time such
that the total number of generations would always be close to I.

In particular, the size of the next generation is calculated as follows:

m′
i+1 =

{
m′

i · max
{

min
{

T−t
Δ·(I−i) , k

}
, 1

k

}
if i < I

m′
i · k otherwise

,

where T is the given time, t is the elapsed time, Δ is the time spent to produce
the previous generation, I is the prescribed number of generations and k = 1.25
is a constant that limits the generation size change. Note that the values m′

i are
real numbers, and the actual size mi of the ith generation is defined as follows:

mi = max

{
4,

{�m′
i� if (p · �m′

i� − mi−1) is even
�m′

i� + 1 otherwise

}
,

which guarantees that the value p · mi+1 − mi, i.e., the number of assignments
produced by crossover, is even and that the generation size is never too small.

128 G. Gutin and D. Karapetyan

The size of the first generation is obtained in a different way (see below).

First Generation. As it was shown in [5] (and we also confirmed it by experi-
mentation with our memetic algorithm and the construction heuristics from [6]),
it is good to start any MAP local search or metaheuristic from a Greedy con-
struction heuristic. Thus, we start from running the Greedy algorithm [5] and
then perturb it using our perturb procedure to obtain every item of the first
generation as follows:

g1
j = LocalSearch(perturb(greedy, μf)) ,

where greedy is an assignment obtained by the Greedy heuristic and μf =
0.2 is the perturbation strength coefficient. Since perturb performs a random
modification, it guarantees some diversity in the first generation.

The algorithm produces assignments for the first generation until T/I time
elapses but at least 4 assignments (recall that T is the time given for the whole
memetic algorithm and I is the prescribed number of generations).

Crossover. A typical crossover operator combines two solutions, parents, to
produce two new solutions, children. Crossover is the main genetic operator, i.e.,
it is the source of a genetic algorithm power. Due to the selection operator, it is
assumed that good fragments of solutions are spread wider than others and that
is why, if both parents have some similar fragments, these fragments are probably
good and should be copied without any change to the children solutions. Other
parts of the solution may be randomly mixed and modified though they should
not be totally destroyed.

Most standard crossovers, like one-point and some others, do not preserve
feasibility of MAP assignments since not every sequence of vectors can be de-
coded into a feasible assignment. We propose a special crossover operator. Let x
and y be the parent assignments and x′ and y′ be the child assignments. First,
we retrieve equal vectors in the parent assignments and initialize both children
with this set of vectors: x′ = y′ = x ∩ y. Let k = |x ∩ y|, i.e., the number of
equal vectors in the parent assignments, p = x \ x′ and q = y \ y′, where p and q
are ordered sets. Let π and ω be random permutations of size n − k. For every
j = 1, 2, . . . , n − k the crossover sets either x′ = x′ ∪ pπ(j) and y′ = y′ ∪ qω(j)
(with probability 80%), or x′ = x′ ∪ qω(j) and y′ = y′ ∪ pπ(j) (with probability
20%).

Since this procedure can yield infeasible assignments, it requires additional
correction of the child solutions. For this purpose, the following is performed for
every dimension d = 1, 2, . . . , s for every child assignment c. For every i such
that ∃j < i : cj

d = ci
d set ci

d = r where r ∈ {1, 2, . . . , n}\{c1
d, c

2
d, . . . , c

n
d} is chosen

randomly. Finally, the vectors in the assignment are sorted in the ascending
order of the first coordinate as it is required by the coding.

In other words, our crossover copies all equal vectors from the parent assign-
ments to the child ones, then copies the rest of the vectors randomly choosing
every time a pair of vectors, one from the first parent and one from the second

A Memetic Algorithm for the Multidimensional Assignment Problem 129

one, and then adding them either to the first and to the second child respec-
tively (with probability 80%) or to the second and to the first child respectively
(with probability 20%). Since the obtained child assignments can be infeasible,
the crossover corrects each of them; for every dimension of every child it re-
places all duplicate coordinates with randomly chosen correct ones, i.e., with
the coordinates which are not currently used for that dimension.

Perturbation Algorithm. The perturbation procedure perturb(x, μ) is in-
tended to modify randomly the assignment x with the given strength μ. In
our memetic algorithm, perturbation is used to produce the first generation and
to mutate existing assignments when producing the next generation.

Our perturbation procedure perturb(x, μ) performs �nμ/2� random swaps.
Each swap randomly selects two vectors and some dimension and then swaps
the corresponding coordinates: swap xd

u and xd
v, where u, v ∈ {1, 2, . . . , n} and

d ∈ {1, 2, . . . , s} are chosen randomly; repeat the procedure �nμ/2� times. For
example, perturb(x, 1) modifies up to n vectors in the assignment x.

Computational Experience. An extensive computation experiments were
conducted for a number of instance families [1] and for several local search pro-
cedures described in [5]. As a result MDV2, which is a combination of MDV

with 2-opt [5], was selected as the best local search procedure for our memetic
algorithm. It was shown [1] that, given the same running time, the proposed
algorithm clearly outperforms all high quality MAP algorithms known from the
literature.

It is worth to note that we experimented with different values of the GK

algorithm parameters such as I, μf , μm etc. and concluded that small variations
of these values do not significantly influence the algorithm performance.

References

1. Gutin, G., Karapetyan, D.: A memetic algorithm for the multidimensional assign-
ment problem. Preprint in arXiv (2009), http://arxiv.org/abs/0906.0862

2. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistic Quarterly 2, 83–97 (1955)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

4. Huang, G., Lim, A.: A hybrid genetic algorithm for the three-index assignment
problem. European Journal of Operational Research 172(1), 249–257 (2006)

5. Gutin, G., Karapetyan, D.: Local search heuristics for the multidimensional as-
signment problem. In: Proc. Golumbic Festschrift. LNCS, vol. 5420, pp. 100–115.
Springer, Heidelberg (2009)

6. Karapetyan, D., Gutin, G., Goldengorin, B.: Empirical evaluation of construction
heuristics for the multidimensional assignment problem. In: Chan, J., Daykin, J.W.,
Rahman, M.S. (eds.) London Algorithmics 2008: Theory and Practice. Texts in
Algorithmics, pp. 107–122. College Publications (2009)

http://arxiv.org/abs/0906.0862

Autonomous Control Approach for Local Search

Julien Robet, Frédéric Lardeux, and Frédéric Saubion

LERIA, University of Angers, France
{robet,frederic.lardeux,frederic.saubion}@info.univ-angers.fr

Abstract. We propose here an approach for the autonomous control
of a local search algorithm, which has several moves operators, whose
efficiency can be diverse and whose application is adjusted according to
the observation of the current status of search, in order to adapt to the
balance between exploitation and exploration of search space.

1 Introduction

Local search algorithms are metaheuristics which have been widely used for
solving complex combinatorial problems. Their efficiency relies on their ability
to suitably explore various areas of the search space but also on its propensity
to converge to a local optimum (the locality is defined here with respect to the
notion of neighborhood). The concept of balance between intensification and
diversification, especially well-known in evolutionary computation, is a crucial
point when designing and using a local search algorithm. Indeed, one of the
classic pitfalls encountered by these algorithms is the excessive attraction of local
optima, which may trap the search process when all the potential neighbors
are not as good as the current configuration and when the move strategy is
mainly based on improvement. To cope with this excessive exploitation of the
search space (i.e., intensification), alternative mechanisms must be used to insure
enough diversification.

Inspired by the recent book of R. Battiti et al.[1] and our previous work on
the autonomous management of multiple operators in genetic algorithms [2], we
propose an original approach in order to design a local search algorithm that
will include several move operators, corresponding to different neighborhoods
and different strategies for choosing the neighbors. The control of these operators
will then be achieved automatically. We have tested our algorithm on the famous
quadratic assignment problem (QAP), which has been widely studied and for
which an extensive library of instances and results is available [3].

2 Toward a More Integrated View of Neighborhood

In this paper, our idea is to combine parameters and components in the notion of
move operators and to automatically control their application along the search
process. We therefore introduce, within the local search algorithm, an adaptive
operator selection method, as we have already proposed for genetic algorithms

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 130–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Autonomous Control Approach for Local Search 131

A li ti

AOS LS

Reward

Application
Parameters

Reward
Computation

Evaluation

Operator
Selection

Current
Search State

Operator
Application

Fig. 1. Autonomous control in local
search

Fig. 2. Balance between intensification
and diversification

[2]. This selection mainly consists in evaluating the effect of the operator on the
current state of the search in order to reward them and to be able to choose the
most suitable one for the next computation step. Therefore, our objective is to
evaluate the impact of the operators and to adjust their use according to the
current the search. This approach is summarized in Figure 1.

This figure allows us to highlight the main issues that we have to address in
an autonomous local search algorithm: How to evaluate the current search state ?
How to rewardoperatorswith regards to this evaluation ? How to use these rewards
to select the operator for the next move ?

If the notion of quality helps to guide and evaluate the ongoing search process,
the concept of diversity should also deserves more attention. It has appeared in-
deed in previous works [2] that this notion can be used jointly with the quality
in order to efficiently manage the balance between diversification and intensifi-
cation. In the next section, we will therefore propose a definition of a diversity
measure according to local search specificities.

3 A Diversity Measure for Local Search

To quantify the diversity of a local search path, our measure consists in analyzing,
for each variable of the problem , the distribution of its successive assigned values
with regards to its domain. Our approach relies indeed on a simple observation: if
a search path is very diversified, successive assigned values to variables will tend
to ”cover” their domains. Otherwise, a non diversified path will be characterized
by assigning a small number of different values to each variable (with regards
to the cardinal of its domain), especially for the variable whose value remains
unchanged along the considered path. The evaluation consists in observing, for
each decision variable, the standard deviation of the number of occurrences of
each possible value for this variable (i.e., for each element of its domain). The
average of these deviations assesses the intrinsic similarity of the path. Indeed,
the calculated standard deviations will be even lower as the path will be diverse.
In order to normalize the measure, this average value is then divided by the

132 J. Robet, F. Lardeux, and F. Saubion

theoretically maximum possible similarity. We obtain then a value between 0
and 1 that we subtract from 1 to reflect the diversity of the path.

4 The ALS Algorithm

The aim of our algorithm, called ALS (Autonomous Local Search), is to manage
a set of local search operators. The challenge is thus to make three main modules
work together: current solving state evaluation, internal components rewarding,
and selection of the next operator using these rewards.

4.1 Operator Evaluation

The process used to analyze internal components is inspired by our previous
works on evolutionary algorithms [2]. Its principle is to maintain along the search
a history of recent performances for each operator. The originality of the method
relies in the fact that the evaluation is not limited to one criterion (quality
variations), but also takes into account diversity gaps. Quality and diversity
variations between two iterations are thus computed as:

ΔQ =
eval(op(c)) − eval(c)

eval(c) + 1
and ΔD = div(Pi,j) − div(Pi−1,j−1)

where op(c) is the configuration produced by the application of op on the current
configuration c and Pi,j the path from iteration i to iteration j. Given an oper-
ator op we then define ΔQop,t (resp. ΔDop,t) the mean quality (resp. diversity)
variation over the t last applications of op where t corresponds to the size of the
sliding window that stores information about each operator.

4.2 Control Issues

Applying the same memorization principles to the variations of the search state,
we may collect important information about how the search process evolves
among the search space. Indeed, a diversity loss reflects a focus on a particular
search space areas, whereas a diversity gain appears when moving away from
the current area. During the solving process, the choice of next operator to
apply is achieved according to probabilities defined in the following section, 4.3.
These probabilities are widely influenced by a parameter α, which models the
desired balance between intensification and diversification. We thus introduce
three values (see figure 2):

– α: desired balance between intensification and diversification (0 ≤ α ≤ π/2)
– β: the angle formed by the current search trajectory (actual current angle)
– γ: the resulting commanded angle for next search step, in order to counteract

the search in the right direction

Autonomous Control Approach for Local Search 133

The application strategy can thus been seen as the way to compute γ’s value
according to collected information. For example, if one gets trapped into a local
optima, it will be beneficial to increase γ in order to promote search diversifi-
cation. Furthermore, the closest to α the search trajectory is, the more efficient
the solving process is. We designed then a formula to compute γ according to α
and β, reducing the gaps between them as much as possible:

γ =
{

α − gap(α, β)/2 if gap(α, β) ≤ π/2
α − gap(α, β + π)/2 otherwise

where gap corresponds to the difference between two angles values.

4.3 Operator Rewarding

Relying on operator evaluation (cf. section 4.1) and current execution state (cf.
section 4.2), we defined the following rewarding system: first of all, measures
introduced in section 4.1 have to be normalized. We thus divide them by the
highest absolute values found among all operators.

Then, for each operator op, we have to compute its corresponding angle(op)
(between 0 and 2π) and its norm ||op|| (between 0 and

√
2, as measures are

normalized) in (ΔQ, ΔD). Operator rewards are then defined as follows:

score(op) =

{
(||op||.(1 − 4.gap(γ,angle(op))

π))2 if gap(γ, angle(op)) ≤ π/4
(||op||.π−4.gap(γ,angle(op))

3π)2 otherwise

Those rewards are finally used to define operators’ application probabilities:

p(opk) =

⎧⎪⎨
⎪⎩

max(0, score(opk)
Σo∈Opscore(o)) if ∃o ∈ Op, score(o) > 0

[Σo∈Opscore(o)]−score(opk)
Σo∈Opscore(o) otherwise

where Op is the set of all possible operators.
In order to insure fairness for less used operators, a simulation step is achieved

every 20 iterations. It consists in applying every operator on the current con-
figuration, only keeping the best resulting combination. This method, although
computationally expensive, allows relatively up-to-date evaluations.

5 Application to the Quadratic Assignment Problem

We have experimented ALS on instances from QAPLIB [3]. We consider ALS
with 10 operators, and tried several values for α. As a baseline, we have imple-
mented an uniform choice version. ALS is also compared against the optimized
robust taboo search [4] with the same experimental conditions. Table 1 summa-
rizes the results. For each instance, we compute the average percentage devia-
tions of the tested algorithms over 20 runs, each executed for 40 000 iterations.
The best value is indicated in bold-face.

134 J. Robet, F. Lardeux, and F. Saubion

Table 1. Mean deviation of ALS, uniform choice, and robust taboo search from BKV

Instance BKV UC ALS RTS
α = 0.25π α = 0.15π α = 0.1π α = 0

bur26a 5426670 0,1177 0,0196 0,0020 0,0000 0,0020 0,0000
bur26c 5426795 0,0359 0,0029 0,0000 0,0000 0,0217 0,0000
bur26f 3782044 0,0153 0,0019 0,0000 0,0000 0,0679 0,0000
chr25a 3796 42,4341 10,2160 6,6228 8,3298 8,6828 7,6765
els19 1,7E+07 4,8532 0,0003 0,0000 0,0000 0,0000 0,0000
kra30a 88900 3,8774 0,8931 0,7627 0,4027 1,1755 0,0000
kra30b 91420 2,4251 0,3227 0,0131 0,0459 0,1181 0,0230
tai30b 6,4E+08 1,5794 0,1882 0,2319 0,0372 0,8525 0,0326
tai50b 4,6E+08 1,4307 0,2330 0,3693 0,2566 0,5376 0,1078
nug20 2570 1,9767 0,0156 0,0000 0,0000 0,0000 0,0000
nug30 6124 2,0901 0,2449 0,0000 0,0000 0,0131 0,0065
sko42 15812 2,0529 0,5237 0,0443 0,0202 0,0620 0,0342
sko49 23386 2,0174 0,6431 0,2279 0,2407 0,2382 0,1403
sko56 34458 2,1139 0,5305 0,1843 0,1660 0,2783 0,1051
tai30a 1818146 3,6971 1,7781 0,4163 0,6008 0,3973 0,3933
tai35a 2422002 3,9348 2,1099 0,8157 0,6868 0,9082 0,7705
tai50a 4941410 4,4437 2,4926 1,1522 1,1269 1,3648 1,3733
wil50 48816 1,0005 0,2176 0,0520 0,0385 0,0713 0,0361

Average 4,4498 1,1352 0,6053 0,6640 0,8217 0,5944

Basically, results from table 1 clearly highlights the controller’s advantages,
since among 18 tested instances, ALS is systematically better than UC. When
compared to RTS, we may remark that with α set to 0.15π or 0.1π, we obtain
very similar results since about half of the instances are better solved with ALS.
Nevertheless, we should insist here on the fact that the 10 operators are not really
optimized and could be seen as general purpose operator for permutation based
coded problems. The average values, mentioned at the bottom of the table and
which are not so different for α between 0 and 0.15π, highlights that the tuning
of α, although having a noticeable impact, seems to bear a greater tolerance than
the tuning of all the operators’ parameters. Let us also mention that according
to other tests, not reported here, enlarging the set of handled operators improves
solving efficiency. Indeed, ALS-10 (10 operators set) was better than ALS-2 (2
operators set) for all the instances. Therefore, using our controller, the user may
expect benefits from a multi-operators algorithm whose parameters would be
actually difficult to tune with regards to their combinatorial interactions.

References

1. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimiza-
tion. Operations Research/Computer Science Interfaces, vol. 45. Springer, Heidel-
berg (2008)

2. Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Sebag, M.: Compass and
dynamic multi-armed bandits for adaptive operator selection. In: Proceedings of
IEEE Congress on Evolutionary Computation (2009)

3. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB-a quadratic assignment problem
library. European Journal of Operational Research 55(1), 115–119 (1991)

4. Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17(4-5), 443–455 (1991)

EasyGenetic: A Template Metaprogramming
Framework for Genetic Master-Slave Algorithms

Stefano Benedettini1, Andrea Roli1, and Luca Di Gaspero2

1 DEIS, Alma Mater Studiorum Università di Bologna, Cesena, Italy
2 DIEGM, Università di Udine, Udine, Italy

{s.benedettini,andrea.roli}@unibo.it, l.digaspero@uniud.it

Abstract. We present EasyGenetic, a genetic solver based on template
metaprogramming, that enables the user to configure the solver by in-
stantiating template parameters. The framework allows to combine flex-
ibility with efficiency. The framework is mainly designed to be applied
to problems for which a master-slave solution strategy can be defined.

1 Introduction

Genetic algorithms (GAs) are applied since several decades to problem solving
and a plethora of successful cases demonstrates the effectiveness of this paradigm
as a tool for building “automatic problem solvers”.

Among other domains, GAs are particularly suitable for design problems, in
which the construction of an artifact depends on a set of design choices and
parameter values. From an abstract point of view, these problem can be seen as
a composite master-slave task: a low-level (slave) task consists of building the
artifact on the basis of a parametrized constructive procedure that is instructed
by the parameter setting determined by a high-level (master) task.

In this work we adopt this very perspective and present EasyGenetic, a tool
that enables the algorithms designer to implement a genetic solver by combining
basic components and to tackle combinatorial optimization problems for which
a parametric constructive procedure is available. EasyGenetic is a framework
for implementing genetic solvers based on the master-slave decomposition of the
problem which is developed employing template metaprogramming, a technique
that allows to combine flexibility with efficiency.

The remainder of this paper is structured as follows. In Section 2 we pro-
vide the bird’s-eye view of the genetic master-slave solver, whose architecture
and implementation is detailed in Section 3. A more detailed description of
EasyGenetic is provided in [1].

2 The Prototypical Genetic Master-Slave Algorithm

The general idea of the genetic master-slave algorithm we propose is based on
the hypothesis that it is possible to split solution construction in two phases: in

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 135–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

136 S. Benedettini, A. Roli, and L. Di Gaspero

the first phase, the parameters of a constructive procedure are set by a master
solver whereas in the second phase the solution is actually built by a slave solver
(see Algorithm 1). For instance, the constructive procedure can be based on a
sequence of decisions whose order is defined by the master solver. Many problems
allows such a decomposition, for example planning or assignment problems.

Algorithm 1. Master-slave high-level framework
Procedure master
1: P ← buildInitialPopulation(n)
2: evaluate(P)
3: while terminating conditions not met

do
4: P ′ ← applyGeneticOperators(P)
5: evaluate(P ′, slave)
6: P ← bestOf(n, P , P ′)
7: end while
8: return min(P)

Procedure slave
1: Input: population P
2: Output: evaluation of individuals

of P
3: for all p ∈ P do
4: s ← buildSolution(p)
5: fitness[p] ← eval(s)
6: end for

In EasyGenetic, the master is a GA, while the slave algorithm can be, in
general, any deterministic constructive procedure that accepts an initial set of
parameters that completely define solution construction. For example, for com-
binatorial problems there exist constructive procedures based on the following
parameters: the sequence of objects to be included in the solution and/or the de-
cisions to be taken, the set of preassigned variables or the set of hard constraints
to be satisfied. In a sense, the master explores the search space of “parameter
settings”, employing the solution returned by the slave as the evaluation of those
search space points.

3 The EasyGenetic Framework

As already mentioned, EasyGenetic is based on template metaprogramming and
generic programming techniques. Template metaprogramming is a programming
technique used to generate source code at compile time. The main applications
of this technique include compile time generation of classes, compile time op-
timizations (such as implementation selection and loop unrolling), and generic
programming. In this sense, templates can be regarded as a Turing-complete
purely functional sub-language embedded in the C++ language, which allows
compile time computation on the space of types. Prominent examples of appli-
cations of these techniques are the C++ Standard Template Library [2] and the
Boost Libraries [3].

Generic programming is a programming style that focuses on building algo-
rithms applicable to the widest possible variety of types. To do so, the program-
mer has to identify the minimal set of requirements on the types involved in an
algorithm and to ensure that any type conforming to those constraints could
be used with the algorithm. Moreover, Concepts play a central role in generic

EasyGenetic 137

Solver

+solve(): Individual

Populat ion

Indiv idual

+value: fitness_value_type

Chromosome <<Concept>>

Prob lemModel

+fitness_value_type

+solution_type

+chromosome

+chromosome_generator

+slave_procedure

<<Concept>>

Sequence

<<Concept>>

SlaveProcedure

+evaluate(Individual): fitness_value_type

<<Concept>>

SelectionPolicy

+select(population:Sequence): Individual

<<Concept>>

UpdatePol icy

+update(population:Sequence,offspring:Sequence)

+best(population:Sequence,currentBest:Individual)

<<Concept>>

CrossoverOperator

+crossover(p:SequenceOfParents): Offspring

<<Concept>>

Muta t ionOpera to r

+mutate(c:Chromosome)

these attributes

are C++ type names

<<Concept>>

ValueSemant ics

The arity of this operator

is unspecified

Fig. 1. Architecture of EasyGenetic

programming because they enable a programmer to express the required oper-
ations on a type in a concise and effective way. Specifically, in C++ a concept
embodies a set of requirements on a template type parameter coded in terms
of valid expressions that involve that type. More precisely, a concept is a struc-
tural interface in the sense that any type that syntactically matches the required
expressions is a model of that concept.

An overview of the architecture of EasyGenetic is depicted in Figure 1 in
form of a UML class diagram. Each component in the diagram represents either
a concrete class or a concept.

The main component in the architecture is the Solver class that contains
the actual skeleton of the generic master-slave genetic algorithm (Figure 2). The
Solver is a class template whose type parameters are actual types conforming
to the relative concepts. One of the advantages of this approach is that we obtain
a solver that is configurable in every aspect at compile time by providing the
desired type parameters.

Other significant components are the following ones:

– An Individual is an actual class that models a population individual and
encapsulates its genetic material, i.e. the representation of a chromosome,
and its fitness function value, which is computed by the slave procedure.

– The SlaveProcedure concept defines the interface to which the slave compo-
nent must comply. A model of this concept must provide a static function
which accepts an Individual as its argument and returns the related fitness
function value.

– The ChromosomeGenerator concept specifies how to generate a new chro-
mosome. The chromosomes generated by means of the procedure related to
this concept are used in the initialization step of the algorithm.

138 S. Benedettini, A. Roli, and L. Di Gaspero

class Solver {
Individual solve() {
std::vector<Individual> pop(pop_size);
for (uint i = 0; i < pop_size; ++i) {

Chromosome c = ChromosomeGenerator::generate(model);
fitness_value_type v = SlaveProcedure::evaluate(model, c);
pop[i] = Individual(c, v); // Individual is-a Chromosome

}
std::sort(pop.begin(), pop.end());
Individual best = pop.back();
for (/* termination conditions not met */) {

std::vector<Individual> offspring(offspring_size);
while(/* offspring is not full */){
//select chromosome with SelectionPolicy::select(pop)
//apply crossover and mutation operators
for (uint i = 0; i < offspring_size; ++i)

offspring[i].value = SlaveProcedure::evaluate(model, offspring
[i]);

UpdatePolicy::update(pop, offspring);
UpdatePolicy::best(pop, offspring, best);

}
return best;

}
}

Fig. 2. Solver simplified main method

– The UpdatePolicy concept specifies the interface for updating the population
for the next generation of the genetic algorithm.

– The SelectionPolicy concept provides the interface for components that im-
plement a selection procedure.

– CrossoverOperator and MutationOperator specify the interfaces required by
those components that implement genetic operators. EasyGenetic seam-
lessly supports crossover operators with arbitrary number of parents and
offspring (up to a reasonable amount).

ProblemModel. The central entity of the architecture is the ProblemModel
concept, whose specification is given below.

T::fitness_value_type
T::solution_type
T::chromosome
T::chromosome_generator
T::slave_procedure

The purpose of ProblemModel is to provide the Solver with the actual problem-
specific type information about various key entities of the system. Each member

EasyGenetic 139

of the ProblemModel concept represents an actual type (such as a scalar C++
type like int or double, or user-defined classes), and some of them must conform
to specific concepts.

Starting from the top, we have the following requirements: fitness_value_type
is a scalar C++ type of the fitness value, while solution_type is the actual
type of a solution to the problem. chromosome is the type of the Chromosome
that brings the genetic information of a single Individual. Chromosome type is
obviously problem-specific, therefore it has to be defined by the user. It represents
the actual input to the slave procedure and must be model of the ValueSemantics
concept. chromosome_generator and slave_procedure are the actual types that
model the ChromosomeGenerator and SlaveProcedure concepts.

4 Applications

EasyGenetic can be used in a variety of problems, thanks to the generality of the
master-slave approach and the flexibility offered by generic programming. As an
example, a master-slave solver implemented with EasyGenetic has been devel-
oped to tackle two hard combinatorial problems, namely the Haplotype Inference
Problem and the Capacitated Vehicle Routing Problem. For both problems, an
effective constructive procedure was already available and it was employed as s
slave solver. Details and results on these applications can be found in [1].

References

1. Benedettini, S., Roli, A., Di Gaspero, L.: Easygenetic: A template metaprogramming
framework for genetic master-slave algorithms. Technical Report DEIS-LIA-09-005,
University of Bologna (Italy), LIA Series no. 95 (May 2009)

2. Standard Template Library, http://www.sgi.com/tech/stl/ (viewed: April 2009)
3. Boost C++ libraries, http://www.boost.org/ (viewed: April 2009)

http://www.sgi.com/tech/stl/
http://www.boost.org/

Adaptive Operator Selection
for Iterated Local Search

Dirk Thierens

Institute of Information and Computing Sciences,
Universiteit Utrecht, Utrecht, The Netherlands

dirk.thierens@cs.uu.nl

Abstract. Iterated local search is a simple yet powerful metaheuristic.
It is only drawback is that it is quite sensitive to its only parameter: the
perturbation step size. Adaptive operator selection methods are on-line
adaptive algorithms that adjust the probability of applying the search
operators to the current solutions. In this short note, we show the use of
the adaptive pursuit algorithm to automatically select the perturbation
step size for ILS when optimizing a blind, single-constraint knapsack
problem. The resulting adaptive ILS achieves almost the same perfor-
mance as the ILS with the best perturbation step size but without the
need to determine the optimal parameter setting.

1 Introduction

Metaheuristics are search methods that aim to enhance the performance of multi-
start local search by applying a problem independent strategy. For many combi-
natorial optimization problems, metaheuristic search algorithms are among the
best performing techniques. Iterated local search (ILS) is a simple yet powerful
metaheuristic. The search strategy of ILS consists of applying small perturba-
tions on local optima and restarting local search from the perturbed solution.
Ideally, the ILS perturbation step should move the search just outside the basin
of attraction of the current local optimum [1]. If the new local optimum is better
than the old one, ILS will continue searching from the new solution, otherwise
it will return to the previous local optimum. ILS actually performs a stochastic
greedy search in the space of local optima. It will be most successful in search
space structures where the neighboring local optima have highly correlated fit-
ness values. The only drawback of ILS is that it is rather sensitive to the size of
the perturbation step.

Adaptive operator selection (AOS) methods are on-line adaptive algorithms
that adjust the probability of applying the search operators to the current solu-
tions. In the literature, AOS algorithms have been tested on artificial or trivial
problems [2] [3]. Here, we show that the adaptive pursuit algorithm [3] can be
successfully applied to design an adaptive ILS algorithm for a knapsack problem.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 140–144, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Adaptive Operator Selection for Iterated Local Search 141

2 Iterated Local Search

2.1 Knapsack Problem

The knapsack problem consists of m knapsacks Ki with fixed capacity ci, and
n items that have a weight and profit for each knapsack. The weights wij are
specified in a i× j matrix W , the profits pij are stored in a i× j matrix P . The
binary vector Xs ∈ {0, 1}n indicates whether item xk is present or absent in
solution s. Items are either present or absent in all m knapsacks. The goal is to
maximize the profits in all knapsacks Ki under the constraint that the sum of
the weights of the selected items does not exceed the capacity of any knapsack:

maximize ∀i : Fi(X) =
n∑

j=1

pij with ∀i :
n∑

j=1

wij ≤ ci.

Most algorithms for solving the multi-constraint knapsack problem first reduce
the multiple constraints to a single surrogate constraint. Here, we are only in-
terested to see the effect of adaptive operator selection on iterated local search
for a non-trivial problem. Therefore, we only consider the blind version of the
single-constraint knapsack problem, meaning that the search algorithm has no
knowledge of the specific profit and weight of the individual items. The bench-
mark problem used here has � = 500 profits and weights that are uniformly
distributed random integers from the interval [10 . . . 50]. The capacity of the
knapsack is half the sum of all the weights.

2.2 Local Search

Our local search algorithm runs in O(�2) and consists of 3 steps:

1. Solutions of the problem are represented by a binary vector, where a 1 de-
notes the presence of the corresponding item in the knapsack, and a 0 its
absence. Random solutions start from a uniformly random binary string.
When the capacity constraint is violated, items are randomly selected and
removed from the solution until the knapsack is filled below its capacity.

2. All items are considered in a random order. The feasible solution from step 1
is enlarged by adding items that do not make the solution become unfeasible.

3. The feasible solution is further improved by considering all possible swaps
between items that are in the current solution and those that are not. When-
ever an item can be replaced by another item such that the fitness increases
but the capacity constraint does not become violated the swap is performed.
The last 2 steps are repeated until a local optimum is reached.

Recall that the local search as outline above is optimizing the blind knapsack
problem. The non-blind knapsack has a well-known fast and efficient heuristic.
This heuristic first sorts all items in descending order of their profit/weight
ratio’s. Subsequently, items are added to the solution in this order when their
addition does not make the solution unfeasible. Table 1 shows the fitness values

142 D. Thierens

Table 1. Profit values for the knapsack problem found with the greedy heuristic and
the greedy heuristic + local search, and the median profit of 30 runs for the blind
version of the same knapsack problem with multi-start local search

Knapsack Greedy Greedy + Multi-start
problem solution local search local search
[10:50] 10544 10545 10170

found by this greedy heuristic on our test problem. We also show the results of
applying the local search operator to the greedy solution. This way we obtain
a solution of very high quality which serves as a benchmark to the ILS and
adaptive ILS that are solving the blind version of the problem.

Table 1 also shows the median profit values for multi-start local search with
1000 independent restarts of the local search algorithm. Clearly, the solutions
obtained by multi-start local search are substantially inferior to the solutions
obtained by the greedy heuristic (+ local search). Of course the former solves
the blind knapsack problem while the latter uses the knowledge of the profits
and weights of each individual item. The results indicate however that there is
a lot of room for improvement left for the ILS and adaptive ILS metaheuristics.

2.3 Iterated Local Search

Iterated local search has only one parameter that needs to be chosen, unfor-
tunately it is a very sensitive and important one. The size of the perturbation
determines the success or failure of ILS. Too large perturbations reduce ILS to
MLS, too small perturbations make ILS inefficient as most of the time the search
will return to the local optimum it started from. Choosing a good value is ba-
sically guess work since one usually has no idea about the size of the basins of
attractions of the local optima.

Our local search algorithm ensures that solutions to the knapsack problem
are as close as possible to the capacity boundary. Therefore, it only makes
sense to perturb the solutions by randomly removing some of the selected items
with probability Pmut. The perturbation probabilities applied here are Pmut =
0.01, 0.02, 0.03, 0.04 and 0.05. As in the previous experiments with MLS the
ILS calls the local search algorithm 1000 times. Figure 1 and Table 2 show the
experimental results averaged over 30 independent runs. Clearly, the smallest
perturbation probability Pmut = 0.01 has the best performance. It is interesting
to note that the highly fit solutions of our 500 items knapsack have about 300
items selected. Perturbing only 1% of them means that the perturbed solution
has - in expectation - only 3 items less than the local optimum. This is surpris-
ing as with such a small perturbation step one would expect that most of the
time the local search would not leave the basin of attraction of the current local
optimum. Apparently the basins of attractions for the 2-step local search oper-
ator are very small, highly correlated in fitness, and extremely connected: it is
possible to move to the final best solution with small incremental perturbations
by following a greedy path of increasingly better local optima.

Adaptive Operator Selection for Iterated Local Search 143

ILS01 ILS02 ILS03 ILS04 ILS05 ILSrand AdaPILS

10
50

0
10

51
0

10
52

0
10

53
0

10
54

0

Fig. 1. The box and whisker plots show the median, 25th and 75th percentile, minimum
and maximum values. Small circles represent outliers.

Table 2. Data summary over 30 runs

ILS0.01 ILS0.02 ILS0.03 ILS0.04 ILS0.05 ILSrand AdaPILS MLS
Min. 10541 10535 10523 10508 10495 10534 10536 10120
1st Q. 10542 10538 10530 10518 10507 10538 10540 10160
Median 10543 10540 10534 10522 10512 10539 10541 10170
Mean 10543 10540 10532 10522 10511 10539 10541 10170
3rd Q. 10544 10542 10535 10526 10516 10541 10542 10180
Max. 10546 10545 10539 10534 10521 10544 10545 10220

The result of ILS with Pmut = 0.01 exceed or match the results of the greedy
heuristic followed by local search on the non-blind knapsack version. For larger
values of Pmut the performance of ILS deteriorates but it is still a lot better than
the performance of MLS.

3 Adaptive Iterated Local Search

As shown above, ILS is very sensitive to the choice of the perturbation step
size, and in general it is impossible to know the optimal value beforehand. Here,
we investigate whether the adaptive pursuit allocation strategy can be used
to design an adaptive ILS algorithm which is not dependent on knowing the
optimal perturbation step size. Adaptive pursuit is an adaptive operator selection
algorithm [3]. The allocation strategy applies each of the K operators with a
minimum probability Pmin. After an operator has been applied the environment
returns a reward R - possibly zero. An exponential weighted recency vector
Q estimates the current rewards for each operator. The probability vector P
keeps track of the probability with which each operator will be selected. When a
reward is received the adaptive pursuit allocation strategy increases the selection
probability of the operator with the current highest Q-value and decreases the
selection probabilities of the other operators.

144 D. Thierens

In the experiment here we have K = 5 ILS operators with perturbation sizes
Pmut = 0.01, 0.02, 0.03, 0.04, and 0.05. The reward equals 1 whenever the off-
spring local optimum has a better fitness than the parent local optimum. Oth-
erwise, the reward equals 0. The learning rate parameters α and β are set equal
to 0.05, the minimum probability of selecting an operator is Pmin = 0.1.

Figure 1 and Table 2 show the experimental results for adaptive pursuit calling
the local search operator 1000 times (AdaPILS). We also show the results of
random selecting one of the 5 perturbation step sizes (ILSrand). The Wilcoxon
rank sum test gave only in 3 cases a p-value different from 0: ILS02 vs. ILSrand
(p-value = 0.44), ILS02 vs. AdaPILS (p-value = 0.03), and ILSrand vs. AdaPILS
(p-value = 0.003). The adaptive pursuit ILS outperforms the ILS with Pmut =
0.02, 003, 004 and 0.05, while it is only a little worse than the best ILS with
perturbation value Pmut = 0.01. The adaptive ILS however achieves these results
without the need to experiment with different values of the perturbation step
size, and is therefore computationally much more efficient. It is interesting to
see how well a random selection of perturbation step sizes performs. ILSrand
performs similar to ILS with perturbation step size Pmut = 0.02.

4 Conclusion

Iterated local search is a simple yet powerful metaheuristic, unfortunately it is
very sensitive to the size of the perturbation step. Adaptive operator selection
methods are on-line adaptive algorithms that adjust the probability of apply-
ing the search operators to the current solutions. We have demonstrated that
the adaptive pursuit algorithm can be applied to automatically select the per-
turbation step size for ILS when optimizing a blind, single-constraint knapsack
problem. The resulting adaptive ILS achieves almost the same performance as
the ILS with the best perturbation step size but without the need to determine
the optimal parameter setting, thus it is computationally more efficient.

References

1. Lourenço, H., Martin, O., Stützle, T.: A beginner’s introduction to iterated local
search. In: Proceedings of the 4th Metaheuristics International Conference (2001)

2. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandit. In: Proceedings of the 10th Genetic and Evolu-
tionary Computation Conference, pp. 913–920 (2008)

3. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of the 7th Genetic and Evolutionary Computation Conference, pp.
1539–1546 (2005)

Improved Robustness through Population
Variance in Ant Colony Optimization

David C. Matthews, Andrew M. Sutton,
Doug Hains, and L. Darrell Whitley

Colorado State University, Department of Computer Science,
Fort Collins, Colorado

{dvmtthws,sutton,dhains,whitley}@cs.colostate.edu

Abstract. Ant Colony Optimization algorithms are population-based
Stochastic Local Search algorithms that mimic the behavior of ants,
simulating pheromone trails to search for solutions to combinatorial op-
timization problems. This paper introduces Population Variance, a novel
approach to ACO algorithms that allows parameters to vary across the
population over time, leading to solution construction differences that
are not strictly stochastic. The increased exploration appears to help the
search escape from local optima, significantly improving the robustness
of the algorithm with respect to suboptimal parameter settings.

1 Introduction

Stochastic Local Search (SLS) [1] algorithms are an effective means to solve com-
binatorial optimization problems [2]. The Traveling Salesman Problem (TSP) is
a well known combinatorial optimization problem where the goal is to construct
the shortest possible tour visiting each city only once. As the number of cities in-
creases, the combinatorial size prevents a complete search of the entire solution
space. SLS algorithms employ diversification methods to find promising areas
in the solution space and intensification methods to focus the search in these
promising areas.

Ant Colony Optimization (ACO) [3] algorithms are population-based SLS
algorithms where a colony of ants communicates indirectly through pheromone
trails over a series of iterations. Each ant in the colony randomly constructs a
solution to the problem using the pheromone trails and problem heuristics as
aids. After each iteration, pheromone trail updates based on the best solutions
found help narrow the search.

The performance of SLS algorithms depends on proper parameter selection.
While parameter recommendations exist for these algorithms, the optimal pa-
rameters are often problem specific. This paper focuses on a new method to
improve ACO algorithm robustness, the ability to perform well for suboptimal
parameter selections [1].

Existing ACO algorithms employ a homogeneous colony of ants. The ants
in these colonies use identical parameters throughout a run. The Population

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 145–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

146 D.C. Matthews et al.

Variance (PV) approach introduced in this paper employs a heterogeneous colony
of ants where key solution construction parameters vary across the colony during
the run. This approach improves exploration of the solution space by the ACO
algorithm, resulting in more robust performance with respect to suboptimal
parameter settings.

The remainder of this paper uses the Max-Min Ant System [4] and Traveling
Salesman Problem [2] to perform an empirical study of the Population Variance
approach. Section 2 introduces the Population Variance approach. Section 3
studies the robustness of algorithm parameters when using Population Variance.
Section 4 summarizes our findings and suggests future work.

2 Population Variance

Population Variance introduces the functions αk(t) and βk(t) to the computation
of proportional probabilities (1) used in solution construction. These functions
allow us to change the values of α and β by ant k or iteration t, varying the
relative contribution of the pheromones τ and the heuristics η.

pk
ij(t) =

[τijα(t)]αk(t) · [ηij]
βk(t)∑

l∈Nk
i

[τilα(t)]αk(t) · [ηil]
βk(t) . (1)

In this paper, we incorporate Population Variance into the Max-Min Ant System
(MMAS) [4]. We previously proposed an improved lower limit for pheromone
trails (2) in MMAS that avoids stagnation when computing the proportional
probabilities and significantly improved results when α �= 1 [5]. We used this
improved lower limit with both the MMAS and Population Variance algorithms
studied in this paper.

τmin = τmax ·
[

1 − n
√

pbest

avg · n
√

pbest

] 1
α

. (2)

The improved lower limit for pheromone trails in (2) implies that pheromone
tables are now α specific, hence the use of τijα in (1). Pheromone scaling defined
in (3) allows us to maintain a single pheromone table for α = 1 and scale the
pheromones proportionally for other values of α. This increases the computation
of each proportional probability a small amount.

τijα(t) = τmin,α + (τij1(t) − τmin,1) ·
[
τmax − τmin,α

τmax − τmin,1

]
. (3)

There are many possible methods to select αk(t) and βk(t). In this paper we
use a simple diversification method to increase exploration, varying these values
independently by iteration with a uniform distribution of d discrete values over
a defined range for each. All ants share the same values for a given iteration,
allowing construction of a single proportional probability table pk

ij(t). The αk(t)

Improved Robustness through Population Variance in ACO 147

function in (4) selects d discrete values between αmin and αmax. The βk(t)
function in (5) selects d discrete values between βlim(t) and βmax.

αk(t) = αmin +
⌊

αmax − αmin

d − 1

⌋
· �random(0, 1) · d�. (4)

βk(t) = βmax −
⌊

βmax − βlim(t)
d − 1

⌋
· �random(0, 1) · d�. (5)

Early prototypes showed an inverse relationship between the value of β and
the quality of the initial solution. To intensify the search, we use βlim(t) to
restrict the initial range of β values to produce better starting tours so that
early pheromone updates guide us to productive areas of the solution space. The
lower limit βlim(t) in (6) uses an exponential moving average from with decay
rate σ and βlim(0) = βmax.

βlim(t + 1) = (1 − σ)βmin + σβlim(t). (6)

These simple mechanisms for diversification and intensification will demonstrate
the robustness of the Population Variance method. We plan to study more so-
phisticated mechanisms in the future.

3 Robustness

We modified ACOTSP [6] to incorporate the Population Variance equations
and accept αmin, βmin, αmax, βmax, d, and σ parameters. A series of tests
using TSPLIB [7] problems compared the performance of MMAS and PV across
a range of parameters intended to provide optimal and suboptimal paremters
combinations.

For MMAS, tests were run for all combinations of α = 1, 2, 3, 4, 5, 6, 7 and
β = 1, 2, 3, 4, 5, 6, 7. For PV, tests were run for αmin = 1, βmin = 1, αmax =
2, 3, 4, 5, 6, 7, βmax = 7, σ = 0.01, and d = 7. For both algorithms, tests were run
for all combinations of evaporation rates ρ = 0.025, 0.05, 0.1, 0.3, 0.5 and maxi-
mum pheromone selection probability pbest = 0.00005, 0.0005, 0.005, 0.05, 0.5 in
addition to the α and β settings. All runs were limited to 10 tries of 2500 it-
erations. Local search was not employed so we could evaluate the effectiveness
of the pheromone trail mechanism. All other parameters used their ACOTSP
defaults.

PV exhibits more robust performance compared to MMAS across a range of
parameter values for αmax, ρ, and pbests as shown in Fig. 1 for problem pcb442
from TSPLIB. Similar results were obtained for other problems in TSPLIB. The
MMAS tests for αmax include all tests with α ≤ αmax while the PV tests include
a similar number of repeated tests for the given αmax value. The figure shows
the same results for two ranges of percent deviation from optimal, 0 − 50 and
0 − 10. The range of PV results is much narrower and the PV medians are
lower than the corresponding MMAS medians with a significance level less than
0.01 using the Mann-Whitney rank sum test. Tests varying other parameters

148 D.C. Matthews et al.

●●●●●●●●●

●

●●●●

●

●●●
●●
●
●

●

●

●

●●●
●●●●●●
●

●
●

●●●●●●●●
●●
●●●●●●●●●
●
●

●
●

●

●●●●

●

●●●●
●●

●

●
●
●●

●

●

●

●

●

●

●●●
●●●●●
●
●
●

●
●

●●●●●●●● ●
●●●
●
●●
●
●
●●●●●●
●

●

●

●

●
●

●
●

●●●●●

●

●●

●

●
●●

●●

●●●

●

●

●

●

●
●

●

●●●●
●●●●●●●
●
●
●

●●
●

●●●●●●●● ●●
●●●●●
●
●

●

●●●●●●

●

●●

●●
●●

●

●
●

●

●

●●●●

●

●●

●
●●●

●●

●●●

●

●

●

●●

●
●

●

●●●●
●●●●●

●

●

●

●●
●
●
●

●●

●●

●

●●●●

●

●●●●●●● ●●
●

●

●●●●
●
●

●

●●
●

●

●

●

●

●●

●●
●●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●●

●●

●●●

●

●

●

●●
●

●
●

●
●●●●●
●
●●
●

●

●

●

●●
●
●●

●

●

●

●

●●

●

●●●

●

●

●●●●●●●
●

●

●●●●
●
●

●

●

●●
●

●

●

●

●

●

●

●
●●
●●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●●
●●

●

●

●●
●

●
●

●
●

●

●●●●

●

●●●

●

●

●

●●●
●
●
●

●

●

●

●

●●
●
●

●●●

●

●

●●●●●●

●

2 4 6
ααmax

pcb442
MMAS

0
%

 d
ev

ia
tio

n
50

●● ●● ●● ●●● ●●

2 4 6
ααmax

pcb442
PV

0
%

 d
ev

ia
tio

n
50

●

●●
●

●

●●
●
●
●
●●
●

●

●

●

●●

●

●●●●●

●

●●
●

●
●●
●
●
●
●
●●●

●

●

●

●●
●

●

●

●

●●

●

●
●
●
●●
●

●

●

●

●

●
●
●

●

●●●●

●

●●

●

●●
●

●
●●
●
●
●
●
●●●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●●
●●
●

●●
●

●
●
●
●●●●

●●

●●

●

●

●

●
●

●●
●●
●
●
●
●
●●●

●
●

●●

●●
●

●

●

●●

●●

●

●

●

●
●●
●●
●

●●

●
●
●●
●●●●

●

●●

●●

●

●

●

●

●
●

●●
●●
●
●

●
●
●
●
●
●●●

●●

●●

●●
●

●

●

●●

●

●
●●●●●
●●
●
●
●
●
●●
●●●●

●●

●●

●

●

●

●

●

●●

●●
●

●

●●
●●
●
●
●
●
●●●

●●

●●
●

●

●

●●

●

●●●●
●●●
●●●●
●●●●

●●

●●

●

●

●

●

●●

●●●
●●●
●●
●
●
●
●●●

2 4 6
ααmax

pcb442
MMAS

0
%

 d
ev

ia
tio

n
10

●● ●● ●
● ●●

● ●●

2 4 6
ααmax

pcb442
PV

0
%

 d
ev

ia
tio

n
10

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●●

●
●

●

●●

●

●●●
●

●

●

●

●

●
●
●

●
●●

●

●

●
●
●●●●●
●
●
●●
●
●
●
●
●

●

●●
●

●
●

●
●●
●

●

●

●
●●
●●●
●
●●
●●●
●●●
●●●
●
●
●●●●●
●
●●

●

●●

●

●
●

●
●

●

●● ●●●●●●●●●●●●●●●●●●●●●
●●●

●

●
●

●

●

●

●

●●
●
●

0.025 0.1 0.5
ρρ

pcb442
MMAS

0
%

 d
ev

ia
tio

n
50

●●● ●●● ●●● ● ●●

0.025 0.1 0.5
ρρ

pcb442
PV

0
%

 d
ev

ia
tio

n
50

●

●
●●●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●●
●●

●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●
●

●●●
●

●
●
●
●●
●●
●●
●●

●
●
●
●●

●

●

●

0.025 0.1 0.5
ρρ

pcb442
MMAS

0
%

 d
ev

ia
tio

n
10

●●●
●●
●

●●●
● ●●

0.025 0.1 0.5
ρρ

pcb442
PV

0
%

 d
ev

ia
tio

n
10

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●
●

●
●
●●

●

●●
●●
●●

●

●
●

●

●

●●
●●●

●

●●●●
●●●●
●●●
●
●●
●●
●●

●

●

●

●●
●●●●●
●
●●

●

●●●
●

●

●●●●●●●●

5e−05 0.05
pbest

pcb442
MMAS

0
%

 d
ev

ia
tio

n
50

5e−05 0.05
pbest

pcb442
PV

0
%

 d
ev

ia
tio

n
50

●

●●

●●

●
●
●●
●●

●

●●

●●

●●

●

●●

●

●

●

●

●
●●
●

●

●

●
●●
●
●

●

●
●

●●●

●

●

●

●●
●

●
●●

5e−05 0.05
pbest

pcb442
MMAS

0
%

 d
ev

ia
tio

n
10

5e−05 0.05
pbest

pcb442
PV

0
%

 d
ev

ia
tio

n
10

Fig. 1. Comparison of percent deviation from optimum of the Max-Min Ant System
(MMAS) and Population Variance (PV) for ranges of α, ρ, and pbest

(pseudo random proportional selection, candidate list size, and number of ants)
yielded similar improvements in robustness.

Some types of problems have no heuristics available to guide the search so
we compared the performance of MMAS and PV using only pheromones in
the random proportional selection, βmin = βmax = 0. The results in Fig. 2
shows four TSPLIB problems solved without the use of heuristics or local search,
relying solely on the pheromone trails. These results suggest the PV methods
for diversification and intensification are much more robust than MMAS.

Improved Robustness through Population Variance in ACO 149

●

●

●

●

●
●
●
●

●
●●

●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

MMAS PV

lin318
0

%
 d

ev
ia

tio
n

14
0

●
●●
●
●●●
●●●●
●
●●●
●●●●
●●

●

●
●
●●●

●●●
●●●●●●●●●●
●●

MMAS PV

pcb442

●●●
●●●●●●●

MMAS PV

att532

MMAS PV

rat783

Fig. 2. Robustness for pheromone trails alone (β = 0)

4 Summary

This paper introduced a new method called Population Variance to increase
robustness in ACO algorithms with respect to suboptimal parameter settings.
This method varies the α and β parameters used during solution construction to
improve exploration and escape local optima. The results of tests with problems
from TSPLIB show significant improvements in robustness, particularly when
heuristics are not available to aid the search.

Future work includes more sophisticated Population Variance functions αk(t)
and βk(t), interaction with local search, generalization to other ACO algorithms,
and use with other types of combinatorial optimization problems.

References

1. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Mor-
gan Kaufmann, San Francisco (2005)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
4. Stützle, T., Hoos, H.H.: MAX–MIN Ant System. Future Generation Computer Sys-

tems 16(8), 889–914 (2000)
5. Matthews, D.C.: Improved Lower Limits for Pheromone Trails in Ant Colony Opti-

mization. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN
2008. LNCS, vol. 5199, pp. 508–517. Springer, Heidelberg (2008)

6. Stützle, T.: ACOTSP, http://www.aco-metaheuristic.org/aco-code
7. Reinelt, G.: TSPLIB,

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

index.html

http://www.aco-metaheuristic.org/aco-code
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html

Mixed-Effects Modeling of Optimisation
Algorithm Performance

Matteo Gagliolo1,2, Catherine Legrand3, and Mauro Birattari1

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
2 Faculty of Informatics, University of Lugano, Lugano, Switzerland

3 Institut de Statistique, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium

{mgagliolo,mbiro}@iridia.ulb.ac.be, catherine.legrand@uclouvain.be

Abstract. The learning curves of optimisation algorithms, plotting the
evolution of the objective vs. runtime spent. can be viewed as a sample
of longitudinal data. In this paper we describe mixed-effects modeling,
a standard technique in longitudinal data analysis, and give an example
of its application to algorithm performance modeling.

1 Introduction

Models of algorithm performance can be useful for analysis purposes, but also
for automating algorithm selection, or parameter tuning. The correct analysis
technique depends on the kind of problem to be solved. For algorithms solving
optimisation problems, in which each solution is characterized by a measure of
its quality, the most general performance model is a bivariate distribution, relat-
ing runtime to solution quality. In order to gather performance data for a given
algorithm, one can solve a benchmark of instances, storing a time, quality pair
each time the best solution is improved. The resulting sample will be a set of
observations of solution quality vs. time, grouped based on the individual runs
of the algorithm. In statistical terminology, this is an example of longitudinal
data [1], i.e. measurements of the same quantity repeated over time on each of
a set of subjects. In the following, we describe parametric mixed-effects models,
a standard technique in longitudinal data analysis (Sec. 2), and present prelim-
inary experiments on performance data from a TSP solver (Sec. 3). Section 4
gives references for further reading, while Section 5 concludes the paper with a
perspective on ongoing research.

2 Longitudinal Data Analysis

Consider a sample of measurements of a scalar y: for the i-th of a set of M
subjects, or individuals, ni values yij are collected at distinct times tij , with
j = 1, . . . , ni. A pair (y, t) is termed an observation. The object of modeling is
the distribution of y given t.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2009, LNCS 5752, pp. 150–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Mixed-Effects Modeling of Optimisation Algorithm Performance 151

In our case, y is the objective being optimized, and each yij records the value
of the best solution found by a randomized algorithm within a time tij ; the M
subjects correspond to M distinct runs of the algorithm, which may be solving
different problem instances, or differ only in the random seed used.

The main issue posed by longitudinal data is within-subject correlation: mea-
surements taken on a same subject cannot be considered independent. To address
this, in parametric mixed-effects models [1] the evolution of y for each subject
is modeled by a separate curve, whose parameters are a random perturbation of
those of a baseline curve, describing the overall behavior of the set of subjects.
In a nonlinear mixed-effects model (NLME) [2],

yij = f(αi, tij) + εij

αi = β + bi (1)
bi ∼ N (0, Σ), εi ∼ N (0, σ2Λi),

the evolution of y is modeled by a parametric function f(α, t), whose parame-
ter vector α is the sum of a subject-specific vector of random effects bi and a
common vector of fixed effects β. The M vectors bi are assumed to be gener-
ated independently, once for each subject i, from the same zero mean Gaussian
distribution, whose covariance Σ is estimated along with the M bi and β. The
arbitrary subject-specific covariance structure Λi can capture within-subject cor-
relations that are not modeled by the random effects: in the simplest case, the
εij are homoscedastic, (i.e., their variance does not change with j), independent,
and identically distributed, so Λi = σ2Ini for all subjects i. Both stationary and
time-varying covariates, as well as nested factors, can be easily included [3].

3 Experiments

One important issue in optimisation is that, while bounds may be easy to com-
pute, the actual value of the global optimum is usually not available beforehand.
Consider an algorithm solving a problem instance: in general, there is no way of
telling whether the current best solution will be further improved, or the algo-
rithm has already found the global optimum. Our interest in nonlinear models is
motivated by the hope that they may allow to extrapolate the performance on a
new instance, based on previous runs on similar instances. In order to test this
idea, we collected performance data on a benchmark of small instances of the
traveling salesman problem (TSP) [4], for which the global optima were avail-
able. The benchmark was composed of four groups of 100 symmetric Euclidean
instances each, randomly generated, with 200, 300, 400, and 500 cities respec-
tively. The solver used was ILS-FDD [5], an iterated version of the local search
algorithm 3-opt, with fitness-distance diversification. Each instance was solved
25 times, with different random seeds. In the TSP, the objective is represented
by the cost l of a path visiting all cities once, which has to be minimized. A
lower bound lb on l, and the global optimum lo, were evaluated using Concorde.
The value of the objective was collected, along with the runtime, each time an

152 M. Gagliolo, C. Legrand, and M. Birattari

improvement was found, resulting in a sequence of (l, t) values for each instance
and each random seed. In order to perform the modeling across different in-
stances, the objective was scaled relative to the lower bound as y = (l − lb)/lb,
and the corresponding sample of (y, t) values was used as longitudinal data.
Modeling was performed using nlme [3], a software package for linear and non-
linear mixed effects, in its version for the R language [6]. As the data presented
an exponential decay towards the optimum, which is typical of optimisation al-
gorithms in general, we fit a model of the form y = a + be−ct, implemented in
nlme by the function SSasymp. A fundamental issue of the use of such model is
that the NLME algorithm is based on a zero mean Gaussian noise model (1).
In our case, this assumption is violated as the algorithm converges towards the
optimum, as it cannot further decrease. As a solution, we used an heteroscedas-
tic variance structure (varPower), expressing the variance as a function of time,
Var(εij) = σ2t2ρ

ij , with one parameter ρ being estimated, in order to be able to
model a decreasing variance. For the correlation structure, we used the function
corCAR1 (continuous time AR(1)), Cor(εij , εik) = φ|tij−tik|, 0 < φ < 1, as we
expected the correlation among y values to decrease with distance in time.

The aim of the following experiments was to find out if the estimated value
of a could be used to approximate the global optimum lo. Figure 1 reports
results in terms of the relative deviation from the optimum, d = (la − lo)/lo,
where la = lb(1 + a) is the asymptote of SSasymp scaled back. We first fit a
separate model for each of the 400 instances, using data from all the 25 runs
available. In this case the factor which identifies the subjects is the random
seed. Random effects were negligible, and the model seemed to account for the
variations among runs only with the variance-covariance structure. Here and in
all other experiments, the value of ρ in varPower was estimated to be negative,
giving a decreasing variance structure, and the correlation parameter φ was also
significant. On some of the instances, nlme failed for numerical issues, namely
the singularity of a matrix: this was observed mostly on the group of smaller
instances, on which the algorithm was often too fast in converging, producing
only a few (y, t) points for each run. The parameters estimated were found to
be significant (p-value < 0.05), with the exception of c on some of the instances.
Figure 1(a) plots statistics of the deviation from the optimum d, evaluated using
the fixed effect of the asymptote a.

The next experiment was performed grouping the data based on the instance:
25 models were fit, one for each random seed, on the four separate groups of
100 instances each. This time the random effects were more remarkable, as each
individual corresponded to a different instance, with a different optimum. In this
case d was evaluated based on the mixed effect (a + ai), ai being the random
effect on the asymptote for instance i. Aggregated statistics of d are reported in
Figure 1(b): the performance decreased visibly, but the estimates are still close
to the real global optima.

The third experiment was a feasibility study for a model based stopping crite-
rion, aimed at investigating the predictive power of our model. In a first phase,
the model was trained based on data for a single random seed, grouped based

Mixed-Effects Modeling of Optimisation Algorithm Performance 153

200 300 400 500

−
0.

00
4

0.
00

2
All seeds

(a) Problem size

d

200 300 400 500

−
0.

00
4

0.
00

2

All data

(c) Problem size

d

200 300 400 500

−
0.

00
4

0.
00

2

One seed per inst, 25 runs

(b) Problem size

d

200 300 400 500

−
0.

00
4

0.
00

2

Half time

(d) Problem size

d

Fig. 1. All plots display statistics of d = (la − lo)/lo, the deviation of the estimate la
from the actual optimum lo. See text for details.

on the instance. In a second phase, a fresh model was trained on a subset of the
same sample, obtained dropping the data from the second half of the time axis,
for a half of the instances, randomly picked. The idea was to simulate a situation
in which 50 “training” instances have been already solved to convergence, and
the relative data recorded; while another 50 “test” instances are being solved,
the algorithm is paused some time before convergence, and the model is used to
predict the value of the optima, based on the previously solved instances, and on
the learning curves observed so far. This scheme was repeated for each random
seed, each time with a different random pick of the 50 test instances. Also in
this case (a+ai) was used to evaluate la. Figures 1(c,d) report statistics of d for
the two models, measured only on the test instances. The performance of the
model from the first phase, which serves as an “oracle” for comparison, is clearly
superior, but the one for the second phase is still reasonable.

4 Related Work

An up-to-date review of longitudinal data analysis, including nonparametric
methods, can be found in [1]. We mainly followed [3] which is also rich in usage
examples of nlme, from the same authors. The literature on algorithm perfor-
mance modeling is mostly focused on decision problems, and the related concept
of runtime distribution. Extreme value statistics was proposed in [7] to estimate
the value of the global optimum for large problem instances, based on a sequence
of suboptimal solutions; this method is integrated into local search in [8]. The

154 M. Gagliolo, C. Legrand, and M. Birattari

learning curve of local search solvers is fit in [9] using a separate model for each
run. Solution quality distributions are used in [10] to rank the performance of
heuristic solvers. We refer the reader to [4] for further references.

5 Conclusions

We reviewed a class of models for longitudinal data, and showed how they can be
used to model the performance of optimisation algorithms, investigating their
predictive power with a preliminary experiment on data from a TSP solver.
The results were quite promising, and we are currently analyzing other algo-
rithm/problem combinations, as well as the impact of covariates. The models
are quite general in this sense, as they allow time-varying covariates to be eas-
ily included: besides runtime, the distribution of solution quality could also be
related to memory usage, bandwidth, or other resources, as well as dynamic vari-
ables of the algorithms. Adding algorithm parameters as stationary covariates
could allow to tune them based on derivatives of the objective. Longitudinal
data analysis could be useful to implement stopping criteria, or dynamic restart
strategies, which take into account past experience in detecting the convergence
of an algorithm; and to perform algorithm selection, or some more general form
of resource allocation.

Acknowledgement. The first author was supported by the Swiss National
Science Foundation with a grant for prospective researchers (n. PBTI2–118573).

References

1. Fitzmaurice, G., Davidian, M., Verbeke, G., Molenberghs, G.: Longitudinal Data
Analysis. Chapman & Hall/CRC Press (2008)

2. Lindstrom, M.J., Bates, D.M.: Nonlinear mixed effects models for repeated mea-
sures data. Biometrics 46(3), 673–687 (1990)

3. Pinheiro, J.C., Bates, D.M.: Mixed Effects Models in S and S-Plus. Springer, Hei-
delberg (2002)

4. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications.
Morgan Kaufmann, San Francisco (2004)

5. Stützle, T., Hoos, H.H.: Analysing the run-time behaviour of iterated local search
for the travelling salesman problem. In: Hansen, P., et al. (eds.) Essays and Surveys
on Metaheuristics, pp. 589–611. Kluwer Academic Publishers, Dordrecht (2001)

6. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2009)

7. Dannenbring, D.G.: Procedures for estimating optimal solution values for large
combinatorial problems. Management Science 23(12), 1273–1283 (1977)

8. Ovacik, I.M., Rajagopalan, S., Uzsoy, R.: Integrating interval estimates of global
optima and local search methods for combinatorial optimization problems. Journal
of Heuristics 6(4), 481–500 (2000)

9. Oppen, J., Woodruff, D.: Parametric models of local search progression. Technical
Report 06-08, UC Davis Graduate School of Management Research (2008)

10. Schreiber, G.R., Martin, O.C.: Cut size statistics of graph bisection heuristics.
SIAM J. on Optimization 10(1), 231–251 (1999)

Author Index

Benedettini, Stefano 135
Benoist, Thierry 105
Birattari, Mauro 150
Brunato, Mauro 92

Di Gaspero, Luca 135

Estellon, Bertrand 1, 105

Favaretto, Daniela 115

Gagliolo, Matteo 150
Gardi, Frédéric 1, 105
Goldberg, David E. 61
Gutin, Gregory 125

Hains, Doug 145
Horoba, Christian 76
Howe, Adele E. 31, 46
Humeau, Jérémie 120

Jeanjean, Antoine 105
Jourdan, Laetitia 120

Karapetyan, Daniel 125

Lardeux, Frédéric 130
Legrand, Catherine 150
Liefooghe, Arnaud 120

Lima, Claudio F. 61
Lobo, Fernando G. 61

Mascia, Franco 92
Matthews, David C. 145
Mesmoudi, Salma 120
Moretti, Elena 115

Nouioua, Karim 1

Pelikan, Martin 61
Pellegrini, Paola 115

Ribeiro, Celso C. 16
Robet, Julien 130
Roli, Andrea 135
Rosseti, Isabel 16

Saubion, Frédéric 130
Souffriau, Wouter 110
Sudholt, Dirk 76
Sutton, Andrew M. 31, 46, 145

Talbi, El-Ghazali 120
Thierens, Dirk 140

Vallejos, Reinaldo 16
Van Oudheusden, Dirk 110
Vansteenwegen, Pieter 110

Whitley, L. Darrell 31, 46, 145

	Title Page
	Preface
	Organization
	Table of Contents
	High-Performance Local Search for Task Scheduling with Human Resource Allocation
	Presentation of the Problem
	Contributions
	Methodology: Three-Layers Design
	Description of the Algorithm
	The Overall Heuristic
	The Transformations
	Algorithmics and Implementation

	Experimental Results
	References

	On the Use of Run Time Distributions to Evaluate and Compare Stochastic Local Search Algorithms
	Motivation
	Comparing Exponential-Time Algorithms
	General Run Time Distributions
	Numerical Applications
	DM-D5 and GRASP Algorithms for Server Replication
	Multistart and Tabu Search Algorithms for Routing and Wavelength Assignment
	GRASP Algorithms for 2-Path Network Design

	Concluding Remarks
	References

	Estimating Bounds on Expected Plateau Size in MAXSAT Problems
	Introduction
	Related Work

	Size Prediction
	Estimating a Lower Bound: Hamming Path Set
	Estimating an Upper Bound: Bethe Lattice Approximation
	Estimating Concentration: Neutral Walk Method

	Computational Experiments
	Concentration-Controlled Random Landscapes
	MAXSAT Landscapes

	Impact on Algorithm Design
	Conclusion
	References

	A Theoretical Analysis of the k-Satisfiability Search Space
	Introduction
	The Landscape Formalism
	The Neighborhood Expectation Value

	Decomposition of k-SAT
	Some Bounds for 3-SAT
	Derived Values in Practice
	Empirical Values of Neighborhood Expectation Value
	Empirical Values of τ

	Conclusion
	References

	Loopy Substructural Local Search for the Bayesian Optimization Algorithm
	Introduction
	Bayesian Optimization Algorithm
	Modeling Variable Interactions in BOA
	Modeling Fitness in BOA

	Substructural Local Search
	Loopy Belief Propagation
	Message-Passing Techniques for Optimization

	BOA with Loopy Substructural Local Search
	Results and Discussion
	Experimental Setup
	Loopy SLS $versus$ Standard LBP
	Loopy SLS $versus$ Simple SLS for Increasing Overlap

	Summary and Conclusions
	References

	Running Time Analysis of ACO Systems for Shortest Path Problems
	Introduction
	Algorithms
	Single-Destination Shortest Path Problem
	Lower Bounds for MMAS_{SDSP}
	An Adaptive Choice of Pheromone Borders

	All-Pairs Shortest Path Problem
	Conclusions
	References

	Techniques and Tools for Local SearchLandscape Visualization and Analysis
	Introduction
	Previous and Related Work
	Complete Three-Dimensional Landscapes
	The Technique
	The Tool
	NURBS Covers

	Approximated Landscapes
	Clusters of Solutions
	Search Space Sampling

	Dynamic Landscapes
	Conclusions and Future Work
	References

	Short Papers
	High-Performance Local Search for Solving Real-Life Inventory Routing Problems
	Presentation of the Problem
	Related Works
	Contribution
	References

	A Detailed Analysis of Two Metaheuristics for the Team Orienteering Problem
	Introduction
	Importance of Local Search Moves
	Parameter Settings
	Conclusions
	References

	On the Explorative Behavior of MAX–MIN Ant System
	Introduction
	Exploration: A Definition
	Experimental Analysis
	Conclusions
	References

	A Study on Dominance-Based Local Search Approaches for Multiobjective Combinatorial Optimization
	Introduction
	Dominance-Based Multiobjective Local Search
	Problem-Independent Issues

	Computational Experiments
	A Permutation Flowshop Scheduling Problem
	Results and Discussion

	Conclusion
	References

	A Memetic Algorithm for the Multidimensional Assignment Problem
	Introduction
	The Algorithm
	References

	Autonomous Control Approach for Local Search
	Introduction
	Toward a More Integrated View of Neighborhood
	A Diversity Measure for Local Search
	The ALS Algorithm
	Operator Evaluation
	Control Issues
	Operator Rewarding

	Application to the Quadratic Assignment Problem
	References

	EasyGenetic: A Template Metaprogramming Framework for Genetic Master-Slave Algorithms
	Introduction
	The Prototypical Genetic Master-Slave Algorithm
	The {\tt EasyGenetic} Framework
	Applications
	References

	Adaptive Operator Selection for Iterated Local Search
	Introduction
	Iterated Local Search
	Knapsack Problem
	Local Search
	Iterated Local Search

	Adaptive Iterated Local Search
	Conclusion
	References

	Improved Robustness through Population Variance in Ant Colony Optimization
	Introduction
	Population Variance
	Robustness
	Summary
	References

	Mixed-Effects Modeling of Optimisation Algorithm Performance
	Introduction
	Longitudinal Data Analysis
	Experiments
	Related Work
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

