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Abstract   In this paper we consider the (state) reachability and controllability 
problems of special two-level quantum systems, the so-called quantum bits via 
externally applied electro-magnetic field. The system is described by special a bi-
linear right-invariant model whose state varies on the Lie group of 2 2×  special 
unitary matrices. We show that if two or more independent controls are used, then 
every state can be achieved in arbitrary time using finite energy. The mathematical 
construction is motivated by the demand of manipulating (or logically operating on) 
the state of quantum bits, and the results provide some insight into the feasibility of 
realizing given operations in quantum computers. 

1 Introduction 

John von Neumann (born December 28, 1903 in Budapest, Austria-Hungary; died 
February 8, 1957 in Washington D.C., United States) was a Hungarian-born 
mathematician and polymath who made contributions to many mathematics-related 
fields as one of history's outstanding mathematicians. Most notably, von Neumann 
was a pioneer of the application of operator theory to quantum mechanics, and the 
commonly known von Neumann architecture is the de facto standard of nowadays 
computers. 

In the paper we first outline von Neumann's contributions to both fields, then we 
show that the ever-increasing need for computer speed inevitably leads to the 
formulation of a new scientific and technological field, the so-called quantum in-
formation technology. However, operating on information physically associated to 
quantum mechanical phenomena is fundamentally different to “classical” computer 
technology, and several theoretical and pragmatical questions have to be answered. 
Out of them we aim at the (state) reachability and controllability problems of 
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quantum bits using the ideas of another famous Hungarian Rudolph E. Kalman. We 
will show that if two or more independent controls (externally applied elec-
tro-magnetic fields) are used, then every state of the quantum bit can be achieved in 
arbitrary time using finite energy. 

 

 

Fig. 1. The “heritage” of John von Neumann – quantum information technology 

2 Quantum Mechanics 

At the International Congress of Mathematicians of 1900, David Hilbert presented 
his famous list of twenty-three problems considered central for the development of 
the mathematics of the new century. The sixth of these was the axiomatization of 
physical theories. Among the new physical theories of the century the only one 
which had yet to receive such a treatment by the end of the 1930's was quantum 
mechanics. QM found itself in a condition of foundational crisis similar to that of 
set theory at the beginning of the century, facing problems of both philosophical 
and technical natures. On the one hand, its apparent non-determinism had not been 
reduced to an explanation of a deterministic form. On the other, there still existed 
two independent but equivalent heuristic formulations, the so-called matrix me-
chanical formulation due to Werner Heisenberg and the wave mechanical formu-
lation due to Erwin Schrödinger, but there was not yet a single, unified satisfactory 
theoretical formulation. 

After having completed the axiomatization of set theory, von Neumann began to 
confront the axiomatization of QM. He immediately realized, in 1926, that a 
quantum system could be considered as a point in a so-called Hilbert-space, 
analogous to the 6N  dimension ( N  is the number of particles, 3  general coor-

dinate and 3  canonical momentum for each) phase space of classical mechanics 
but with infinitely many dimensions (corresponding to the infinitely many possible 
states of the system) instead: the traditional physical quantities (e.g. position and 
momentum) could therefore be represented as particular linear operators operating 
in these spaces. The physics of quantum mechanics was thereby reduced to the 
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mathematics of the linear Hermitian operators on Hilbert spaces. For example, the 
famous indeterminacy principle of Heisenberg, according to which the determina-
tion of the position of a particle prevents the determination of its momentum and 
vice versa, is translated into the non-commutativity of the two corresponding op-
erators. 

This new mathematical formulation included as special cases the formulations of 
both Heisenberg and Schrdinger, and culminated in the 1932 classic The Mathe-
matical Foundations of Quantum Mechanics [Grundlagen]. However, physicists 
generally ended up preferring another approach to that of von Neumann (which was 
considered elegant and satisfactory by mathematicians). This approach was for-
mulated in 1930 by Paul Dirac and was based upon a strange type of function (the 
so-called Dirac delta function) which was harshly criticized by von Neumann. 

In any case, von Neumann's abstract treatment permitted him also to confront the 
foundational issue of determinism vs. non-determinism and in the book he dem-
onstrated a theorem according to which quantum mechanics could not possibly be 
derived by statistical approximation from a deterministic theory of the type used in 
classical mechanics. This demonstration contained a conceptual error, but it helped 
to inaugurate a line of research which, through the work of John Stuart Bell in 1964 
on Bell's Theorem [3] and the experiments of Alain Aspect in 1982 [2], demon-
strated that quantum physics requires a notion of reality substantially different from 
that of classical physics. 

3 Computer Science 

The earliest computing machines had fixed programs. Some very simple computers 
still use this design, either for simplicity or training purposes. To change the pro-
gram of such a machine, one have to re-wire, re-structure, or even re-design the 
machine. Indeed, the earliest computers were not so much “programmed” as they 
were “designed”. “Reprogramming”, when it was possible at all, was a very manual 
process, starting with flow charts and paper notes, followed by detailed engineering 
designs, and then the often-arduous process of implementing the physical changes. 

The idea of the stored-program computer changed all that. In 1945 John von 
Neumann published a now-famous paper, the First Draft of a Report on the EDVAC 
[4], describing a computer architecture in which data and program memory are 
mapped into the same address space. The von Neumann architecture became the de 
facto standard and can be contrasted with the so-called Harvard architecture, which 
has separate program and data memories on a separate bus. By creating an instruc-
tion set architecture and detailing the computation as a series of instructions (the 
program), the machine becomes much more flexible. By treating those instructions 
in the same way as data, a stored-program machine can easily change the program, 
and can do so under program control. The majority of home computers, micro-
computers, minicomputers and mainframe computers use the single-memory (a.k.a. 
Von Neumann) computer architecture. 
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However, the ever-increasing need for computer speed drives the design of in-
tegrated circuits into the direction of using smaller and smaller units of physical 
state-space to represent units of information. This technological process in the near 
future will lead to reach atomic (or sub-atomic) dimensions, therefore there is a 
need for a new paradigm in computer design: the so-called quantum information 
technology. 

Von Neumann worked together with other immigrant Hungarian scientists, who 
also participated in the development of computer science. 
• János Kemény (1926-92) as the Rector of Dartmouth Collage obligated stu-

dents of arts and laws to use personal computers, and for helping them for-
mulated the BASIC language. Kemény is also known for the time-shared 
computer network that was honored by the first Robinson Prize of IBM. 

• Von Neumann was also collaborating with Leó Szilárd who introduced the 
term bit as the elementary unit of information (yes/no). 

• This list would not be complete without Andy Grove (Gróf András), who was 
nominated as ''The Man of the Year'' in 1997 by the journal Time. He was the 
CEO of INTEL, and almost yearly doubled the speed of its microprocessors. 

The ever-increasing need for computer speed implies using smaller and smaller 
units of physical state-space to represent units of information. This technological 
process in the near future will lead to reach atomic (or sub-atomic) dimensions. 
There is a need for a new paradigm: quantum information technology. 

4 Quantum Information Technology 

A quantum bit, or qubit (sometimes qbit) is a unit of quantum information. That 
information is described by a state vector in a two-level quantum mechanical sys-
tem which is formally equivalent to a two-dimensional vector space over the com-
plex numbers. 

Benjamin Schumacher discovered a way of interpreting quantum states as in-
formation. He came up with a way of compressing the information in a state, and 
storing the information on a smaller number of states. This is now known as 
Schumacher compression. In the acknowledgments of his paper [Schumacher], 
Schumacher states that the term qubit was invented in jest, during his conversations 
with Bill Wootters. 

A bit is the base of computer information. Regardless of its physical represen-
tation, it is always read as either a ‘0’ or a ‘1’. An analogy to this is a light switch – 
the down position can represent ‘0’ (normally equated to off) and the up position 
can represent ‘1’ (normally equated to on). 

A qubit has some similarities to a classical bit, but is overall very different. Like 
a bit, a qubit can have only two possible values – normally a ‘0’ or a ‘1’. The dif-
ference is that whereas a bit must be either ‘0’ or ‘1’, a qubit can be ‘0’, ‘1’, or a 
superposition of both. 
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4.1 Physical Representation 

Any two-level system can be used as a qubit. Multilevel systems can be used as 
well, if they possess two states can be effectively decoupled from the rest (e.g., 
ground state and first excited state of a nonlinear oscillator). There are various 
proposals. Several physical implementations which approximate two-level systems 
to various degrees were successfully realized. Similarly to a classical bit where the 
state of a transistor in a processor, the magnetization of a surface in a hard disk and 
the presence of current in a cable can all be used to represent bits in the same 
computer, an eventual quantum computer is likely to use various combinations of 
qubits in its design. Table tab:qubit contains an incomplete list of possible physical 
implementation of qubits. 

Table 1  Possible physical implementation of qubits 

 

4.2 Mathematical Representation 

Each physical system is associated with a (topologically) separable complex Hil-
bert-space H  with inner product |ψ φ〈 〉 . Physical observables are represented 

by densely-defined self-adjoint operators on H . The expected value (in the sense 
of probability theory) of the observable A  for the system in state represented by 
the unit vector | Hψ 〉∈  is | |Aψ ψ〈 〉 . 

The states a qubit may be measured in are known as basis states (or vectors). As 
is the tradition with any sort of quantum states, Dirac (or bra-ket) notation is used to 

.
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represent them. This means that the two computational basis states are conven-
tionally written as | 0〉  and |1〉 . 

The state at any time t  is given by: 

 ( ) ( ) (0),t X tψ ψ=  (1) 

where X  is the so-called evolution operator (matrix), solution of the 
Schrdinger-equation  

 .i X HX=�=  (2) 

with initial condition equal to the identity operator. 
A pure qubit state is a linear superposition of those two states. This means that 

the qubit can be represented as a linear combination of | 0〉  and |1〉 : 

| | 0 |1ψ α β〉 = 〉 + 〉  

where α  and β  are probability amplitudes and can in general both be complex 

numbers. 
When we measure this qubit in the standard basis, the probability of outcome 

| 0〉  is 2| |α  and the probability that the outcome is |1〉  is 2| |β . Because the 

absolute squares of the amplitudes equate to probabilities, it follows that α  and β  

must be constrained by the equation 
2 2| | | | 1,α β+ =  

simply because this ensures you must measure either one state or the other. 
In implementations of quantum computers, the operation given by the evolu-

tionary operator X  represents a (logic) operation to be performed on a quantum 
bit, i.e. the reachability question can be seen as the feasibility of logic operations on 
a quantum bit. In practical terms: can all operations be achieved on a quantum bit by 
opportunely shaping an input electro/magnetic field? (Using finite energy.) 

5 Reachability of Quantum States 

Consider the Schrdinger equation for the evolution operator (2) in the common 
situation where the Hamiltonian operator H  can be written as 

10
m
i i iH H H u== + ∑ , 

 0
1

( ) .
m

i i
i

i X H H u t X
=

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

∑�=  (3) 
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The operators iH  ( 0, ,i m= … ) are Hermitian operators on a finite dimen-

sional vector space and the overall phase of the solution of (3) does not have 
physical meaning. Considering the above, Eq. (3) can be transformed into a dif-
ferential system [6] of the form 

 
1

( ) ( ) ( ) ( ),
m

i i
i

X t AX t B X t u t
=

= +∑�  (4) 

where A , iB  are elements of the Lie algebra of 2 2×  skew-Hermitian matri-

ces with zero trace, which is denoted by su(2). 

Definition 1.  Lie group is a group G  that is also a differentiable manifold such 

that for any ,a b G∈  the multiplication ( , )a b ab6  and the inverse 'a a6  

are smooth maps. 

Proposition 1.  All compact finite dimensional Lie groups can be represented as 
matrix Lie groups. 

The solution of (4) with initial condition equal to identity varies in the Lie group 
associated to su(2), namely in the Lie group of 2 2×  unitary matrices with deter-
minant 1. This group is called the group of special unitary matrices and is denoted 
by SU(2). 

Definition 2. The set of reachable states ( )R T  consists of all the possible values 

for ( )X T  (solution of (4) at time T  with initial condition equal to identity) ob-

tained varying the controls 1, , mu u…  in the set of all the piecewise continuous 

functions defined in [0, ]T . 

Theorem 1 [7].  Consider system (4) with 3 2m≥ ≥  and assume that 1, , mB B…  

are linearly independent. Then, for any time 0T >  and for any desired final state 

fX  there exist a set of piecewise continuous control functions 1, , mu u…  driving 

the state of the system X  to ( ) fX T X=  at time T . This means that in this case 

( ) (2)R T SU=  for every 0T >  . 

We present a general approach to derive reachability/controllability results like 
was given in Theorem 1. 
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6 Open-Loop Unconstrained Controllability 

First we cite the Kalman controllability results for LTI systems. The fundamental 
matrix for zero initial time is 



1

1

( ) ( ) ,
n

At i
i

i

t e t Aψ −

=

Φ = =∑  

and the reachability subspace is 

R ∑
k0

n−1

ImAkB.
 

Proposition 2 It is possible to generate linearly independent functions 

, 1, ,i i nψ = …  if the Kalman-rank condition 

1, ,..., nrank B AB A B n−⎡ ⎤ =⎣ ⎦  

is satisfied. 
We show a general method for systems over Lie groups using Lie algebraic 

approach. Write the fundamental matrix (locally) as exponential function of the 
''coordinates of second kind'' associated with the equation 

0

( ) .
N

i i
i

x t A xρ
=

=∑�  

Using the Wei--Norman equation: 

1 11 1

1

1

( ) ( ), (0) 0,i i

K
gg

ii
i

g t e e E t gρ− −

−
ΓΓ

=

⎛ ⎞
= =⎜ ⎟
⎝ ⎠
∑� "  

where 1
ˆ ˆ{ , , }KA A…  is a basis of the Lie-algebra LA1 ,… ,AN,  

, , , 1
1

ˆ ˆ ˆ[ , ] , [ ] .
K

l l K
i j i j l i i j j l

l

A A A =
=

= Γ Γ = Γ∑  

Proposition 3 (Generalized Kalman-rank condition). For systems ( ), ( )A Bρ ρ  

the points attainable from the origin are those from the subspace spanned by the 
vectors 

 
where  0, , {0, , }, {0, , 1},j jK l k N i n≥ ∈ ∈ −" "  i.e.,  

Denote by LA0 ,… ,AN  the finitely generated Lie-algebra containing the 

matrices 0 , , ,NA A…  and let 1
ˆ ˆ, , KA A…  be a basis of this algebra, then the points 

attainable from the origin are in the subspace 

.  
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R A,B ∑
l0

N

∑
n 10

n−1

…∑
n K0

n−1

Im Â1
n 1ÂK

n KBl.
 

The question is that under what condition is R  RA,B ? 



The fundamental matrix can be written in exponential form: 

1

1

1

1

1 1

1 , ,
0 0

1

ˆ ˆ( ) ( ).

ˆ ˆ ˆ ˆ( ) ( ), : .

K

K

K

K

n n
n n

K n n
n n

j j
K

t A A t

t A t A A A

ψ

ϕ

− −

= =

∈

Φ =

Φ = =

∑ ∑

∑ j j j
j J

"… …

…
 

The subspace RA,B  is the image space of the matrix RA,B : Â jBj∈J .  
The controllability Grammian is given as 

W,  RA,B 



 js j∈J js j∈J

∗ ds RA,B
∗ .

 
Theorem 2 [8]. The quantum system is controllable, iff 

(i) The generalized Kalman-rank condition is satisfied: 

 
(ii) The set of functions { ( )| }jϕ σ ∈j J  contains n  linearly independent func-

tions. 

7 Switching System's Controllability 

Hybrid models characterize systems governed by continuous differential and dif-
ference equations and discrete variables. Such systems are described by several 
operating regimes (modes) and the transition from one mode to another is governed 
by the evolution of internal or external variables or events. 

Depending on the nature of the events there are two big classes of hybrid systems 
that are considered in the control literature: switching systems and impulsive sys-
tems. 

A switching system is composed of a family of different (smooth) dynamic 
modes such that the switching pattern gives continuous, piecewise smooth trajec-
tories. Moreover, it is assumed that one and only one mode is active at each time 
instant. 

In a broader sense every time-varying system with measurable variations in time 
can be cast as a switching system, therefore it is usually assumed that the number of 
switching modes is finite and for practical reasons the possible switching functions 
(sequences) are restricted to be piecewise constant, i.e. only a finite number of 
transition is allowed on a finite interval. Moreover, sometimes the frequency of the 
transitions is also bounded – dwell time. 
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Formally, these systems can be described as: 

( )

( )

( ) ( ( ), ( )),

( ) ( ( ), ( )), ( ) ( ( ), ( ), ),
t

t

x t f x t u t

y t h x t u t x x u
σ

σ τ ι τ τ τ+ −

=

= =

�
 

where nx∈\  is the state variable, mu∈Ω⊂ \  is the input variable and 
py∈\  is the output variable. 



The  : R → S  is a measurable switching function mapping the positive real 
line into {1, , }S s= " . The impulsive effect can be described by the relation 

,x− ∈ I  A  with I  a set of time instances and A ∈ Rn
 a certain 

region of the state space. 
Consider a bimodal system 

( ) , (0) , ( ) : {1, 2}tX A X X I tσ σ += =� \ 6  

and A1 ,A2 ∈ Un  that is SU(n). 

A set of gates is called universal if – by switching 1 2{ , }A A  – it is possible to 

generate all (special) unitary evolutions. 

Proposition 4 [8]. Since 1 2,A A  generate the whole Lie-algebra ( )u n  or ( )su n , 

therefore almost every couple of skew-Hermitian matrices generate ( )u n , i.e. 

almost every quantum gate is universal. 

8 Outlook 

We certainly know that the above results are only the first steps into the direction of 
physically realizing quantum computers. There are several theoretical problems to 
be solved, among them we outline state-estimation, state-observation, and Kalman 
filtering, that are all necessary to relax the inconsistency between the fundamental 
indeterministic (or statistical) character of quantum mechanics, and the natural need 
against computers to execute exact calculations. 

Besides the above, there are practical considerations that should be taken into 
account in order to build functionally adequate quantum computers: the control of 
multi-level quantum systems, minimal-time control, minimal-energy control. 
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