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Abstract   There is presented probabilistic von Neumann-Morgenstern type ap-
proach to engineering design. Further generalization of the utility theory, using 
pseudo-analysis, first based on possibility theory, and second, as a common gen-
eralization through hybridization of the both preceding approaches are given. In 
modeling uncertainty in engineering design it is very useful the fuzzy system ap-
proach, which involves further real operations as aggregation functions. 

1 Introduction 

Design is a process where the human intellect with creativity produce useful arti-
facts, and which involves pure and applied sciences, but also behavioral and social 
sciences.  Engineering design is recognized as a decision-making process at the core 
[23, 24, 35, 49, 56]. Engineering design conducted with incomplete and imperfect 
information, yet most traditional design approaches treat the design problem are 
deterministic. The proposed research is to develop tools for decision making under 
risk and uncertainty and apply the tools to engineering design. 

The approach with probability has three main elements [24]: identification of the 
options, determination of expectations on each option and the expression of values. 
The main decision rule is: the preferred decision is the option whose expectation has 
the highest value. Classical decision theory [32] separates expectations and values - 
a common mistake is to make them equal. The decision making involve options, 
expectations and values. 

The advantage of the pseudo-analysis [38, 40], as a generalization of the clas-
sical real analysis, based on a semiring structure (see [18, 31]) on a real interval 

a,b ⊂ −, , is the fact that it coveres as one theory and so with unified 
methods equations (usually nonlinear), and models with uncertainty (not only with 
probability) from many different fields (system theory, optimization, control the-
ory, differential equations, difference equations, decision making, etc.). 
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An engineering decision cannot be done in the absence of human values, 
whereas problems in the science are solved in the absence of options and values. 
The purpose of values in decision making is to rank order alternatives. This ranking 
is managed by a preference relation, which is connected by the usual real order 
relation through the utility function. 

In Section 2 we present probabilistic von Neumann-Morgenstern type approach 
to engineering design. Section 3 contains further generalization of the utility theory, 
first based on possibility theory, and second, as a common generalization through 
hybridization of the both preceding approaches. In modeling uncertainty in engi-
neering design is very useful the fuzzy system approach, presented in Section 4, and 
which involves further real operations as aggregation functions, presented in Sec-
tion 5. 

2 Probabilistic Approach Based on von
 Neumann– Morgenstern Theory 

We start with an axiomatic approach to engineering design which guarantees a ra-
tional treatment of all information that the designer uses for the design and enables a 

rational decision making [23, 24, 57]. We shall use the symbol   for the relation ''is 

preferred to'', the symbol   for ''is indifferent to'' and the symbol   for ''is pre-
ferred or indifferent to''. 

Axiom 1: The axiom of deterministic making. Given a defined set of options from 
which to choose, each with a known and deterministic outcome, the decision 
maker's preferred choice is that option whose outcome is most desired. 

Axiom 2: Ordering of alternatives. Preference and indifference orderings hold 
between any two outcomes, and they are transitive. 

Axiom 3: Reduction of compound lotteries. Any compound lottery is indifferent to 
a simple lottery with the same outcomes and associated probabilities. 

Axiom 4: Continuity. Given outcomes of a lottery ordered by preference from 1A  

through ,rA  there exists a number iu  such that each outcome iA  is indifferent to 

a lottery containing only 1A  and .rA  

With mathematical symbols 

Ai  uiA1 , 1 − uiAr  Âi,  

where ˆ
iA  is the lottery. 

Axiom 5: Substitutability. In any lottery ˆ, iL A  is substitutable for .iA  

Axiom 6: Transitivity. Preference and indifference among lotteries are transitive 
relations. 
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Axiom 7: Monotonicity. A lottery 1[ , (1 ) ]rpA p A−  is preferred or indifferent to a 

lottery 1[ , (1 ) ]rp A p A′ ′−  if and only if .p p′≥  

Axiom 8: Reality of engineering design. All engineering designs are selected from 
among the set of potential designs that are explicitly considered. 

Let us mathematically formalize the preceding axioms. Let p  be a simple 

probability measure on 1{ ,..., },nX x x=  thus 1 2( ( ), ( )..., ( )),np p x p x p x=  

where ( )ip x  are probabilities of outcome ix X∈  occurring, i.e., ( ) 0ip x ≥  for 

all 1,2..., ,i n=  and 1 ( ) 1.n
i ip x= =∑  Define ( )XP  as the set of simple prob-

ability measures on .X  A particular lottery p  is a point in ( )XP . A compound 

lottery (mixture) is an operation defined on ( )XP  which combines two probabil-

ity distributions p  and p′  into a new one, denoted ( , ; , ),V p p α β′  with 

[ ], 0,1α β ∈  and 1,α β+ =  and it is defined by 

Vp,p ′;,  p  p ′.
 

Note that ( , ; , ) ( ).V p p Xα β′ ∈P  Let   ƒ be a binary relation over ( ),XP  

where p  ƒq  means that lottery q  is "preferred to or equivalent to" lottery .p  

The preceding system of axioms corresponds to the following utility axioms: 

NM1 ( )XP  is equipped with a complete preordering structure  ƒ.  

NM2 (Continuity): For p q r≺ ≺  there exists α  such that 

( , ; ,1 ).q V p r α α∼ −  

NM3 (Independence): p q∼  implies 

[ ]( , ; ,1 ) ( , ; ,1 ) ( ( ), 0,1 ).V p r V q r r Xα α α α α− ∼ − ∈ ∈P  

NM4 (Convexity): For p q≺  we have 

] [( , ; ,1 ) ( 0,1 .p V p q qα α α− ∈≺ ≺  

The theorem below shows that the preference ordering on set of states which 
satisfies the proposed axioms can always be represented by a utility function. 

Theorem 1 (Representation Theorem ([57], 1944)). A preference ordering rela-

tion   ƒ on ( )XP  satisfies axioms NM1, NM2, NM3 and NM4 if and only if, there 

is a real-valued function U: ( )X →P \  such that 

(i) U  represents  , i.e., for , ( )p q X∈P  holds p  ƒq  if and only if 

U(p) U(q); 

(ii) U  is affine, i.e., for every , ( )p q X∈P  and every ] [0,1α ∈  we have 

U(αp+(1-α)q) = αU(p)+(1-α)U(q). 
Moreover, U  is unique up to a linear transformation. 
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As consequence of these axioms there were deduced the following three im-
portant theorems [23, 24]. 

Theorem 2 (The expected utility theorem.). Given a pair of options, each with a 
range of possible outcomes and associated probabilities of occurrence, that is, two 
lotteries, the preferred choice is the option (or lottery) that has the highest expected 
utility. 

Theorem 3 (The substitution theorem.). A decision maker is indifferent between a 
lottery L  and a certainty outcome whose utility is equal to the expected utility of 
the lottery. 

The person who has a transitive preference relation usually is called rational, in 
the opposite case he is irrational. The famous Arrow's Impossibility Theorem [3, 
23] states that a group consisting only of rational individuals need not exhibit 
transitive preferences. 

Theorem 4 (Arrow's Impossibility Theorem.). Groups consisting of rational 
people are not necessarily rational. 

3 Generalization of the Probabilistic Approach 

Pseudo-analysis is based on the semiring structure on the real interval 
[ , ] [ , ]a b ⊆ −∞ ∞ , see [38, 40]. For some engineering applications see [4, 43]. In 

this paper we restrict ourselves on the special case, operations on the interval [0,1]  

(see [28]) and therefore on special non-additive measures on so called 
pseudo-additive (decomposable) measures (see [28, 38, 40]). 

Definition 1. A triangular conorm (t-conorm for short) is a binary operation on the 

unit interval [0,1] , i.e., a function S : 0,12 → 0,1  such that for all 

, , [0,1]x y z∈  the following four axioms are  satisfied: 

(S1) Commutativity ( , ) ( , ),S x y S y x=  

(S2) Associativity ( , ( , )) ( ( , ), ),S x S y z S S x y z=  

(S3) Monotonicity ( , ) ( , ) whenever ,S x y S x z y z≤ ≤  

(S4) Boundary Condition ( ,0) .S x x=  

If S  is a t-conorm, then its dual t-norm T : 0,12 → 0,1  is given by 

( , ) 1 (1 ,1 ).T x y S x y= − − −  

Definition 2.  A t-norm T  is restricted distributive over a t-conorm S  if for all 

, , [0,1]x y z∈  we have 

(RD)    T(x,S(y,z))=S(T(x,y),T(x,z)), 
whenever ( , ) 1.S y z <  
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The complete characterization of the pair ( , )S T  satisfying condition (RD) is 

given in [28]. 

A mapping m : 2X → 0,1  is called a pseudo-additive measure ( S  

-measure), if ( ) 0, ( ) 1m m X∅ = =  and if for all , 2XA B∈  with A B∩ =∅  

we have ( ) ( ( ), ( )),m A B S m A m B∪ =  see [10, 28, 38]. Important example is 

the maxitive measure, i.e., max-measure, where ( ) sup ( ).x Am A xπ∈=  

We present now the possibilistic approach to the utility theory [13]. The belief 
state about which situation in X  is the actual one is supposed to be represented by 
a possibility distribution .π  A possibility distribution π  defined on X  takes its 

values on a valuation scale ,V  where V  is supposed to be linearly ordered. V  is 

assumed to be bounded and we take sup( ) 1V =  and inf( ) 0.V =  Define 

( )XPi  as set of consistent possibility distributions over ,X  i.e., 

PiX   : X → V ∣ ∃x ∈ Xx  1.
 

The possibilistic mixture is an operation defined on ( )XPi  which combines 

two possibility distributions π  and π ′  into a new one, denoted ( , ; , ),P π π α β′  

with , Vα β ∈  and max( , ) 1,α β =  given by 

P,′;,  maxmin,,min,′.
 

Let ⊑  be a binary relation over ( , ; , ).P π π α β′  Hence, we can write  

 ⊑ ′  to indicate that possibilistic lottery π ′  is "preferred to or equivalent to" 
lottery .π  

The proposed axiom systems for the possibilistic optimistic utility is 

Pos 1 ( )XPi  is equipped with a complete preordering structure ⊑.  

Pos 2 (Continuity) For every ( )Xπ ∈Pi  there exist Vλ ∈  such that 

( , ; ,1),Pπ π π λ∼  where π  and π  are a maximal and a minimal ele-

ment of ( )XPi  w.r.t. ⊑,  respectively. 

Pos 3 (Independence) π π ′∼  implies ( , ; , ) ( , ; , ),P Pπ π λ μ π π λ μ′′ ′ ′′∼  

for every ( )Xπ ′′∈Pi  and every , .Vλ μ∈  

Pos 4 (Uncertainty prone): π π ′≤  implies  ⊑ ′.  
The set of axioms Pos1, Pos2, Pos3 and Pos4 characterize the preference or-

dering induced by an optimistic utility. 

Theorem 5 (Representation Theorem ([13], 1998)). A preference ordering rela-

tion ⊑  ƒ on ( )XPi  satisfies axioms Pos1, Pos2, Pos3 and Pos4 if and only if, 

there exist 
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(i) a linearly ordered utility scale ,U  with inf( ) 0U =  and sup( ) 1U = ; 

(ii) a preference function u : X → U  such that 1 1(1) (0),u u− −≠ ∅ ≠  and 

(iii) an onto ordered preserving function h : V → U  such that 
h(0)=0, h(1)=1, 

in such a way that it holds:  ⊑ ′  if and only if `,uπ π�  where u�  

is the ordering on ( )XPi  induced by the qualitative utility 

QU ( ) ( )( ) ( )( )max min ,
x X

h x u xπ π
∈

= . 

We present now the hybrid probabilistic-possibilistic utility theory [14, 15]. In 
order to generalize stated sets of axioms for utility theory, we denote 

1 2{ , ,..., }nX x x x=  set of outcomes, ( )XΔ  the set of all S -measures defined 

on .X  

Definition 3.  A hybrid mixture operation which combines two S -measures m  

and 'm  into a new one, denoted ( , '; , ),M m m α β  for [ ]0,1a∈  and that 

,  belongs to with ] [{, , , 0,1 , 1S a aα β α β α βΦ = ∈ + = +  or 

min(α,β),≤ a,max((α,β)=1 }  

is given by 
M(m,m';α,β) = S(T(α,m), T(β,m')), 

where ( , )S T  is a pair of continuous t-conorm and t-norm, respectively, which 

satisfy the property of restricted distributivity (RD). 

We propose the following set of axioms for a preference relation h  defined 
over ( )XΔ  to represent optimistic utility 

H1 ( )XΔ  is equipped with a complete preordering structure h  (i.e., h  

is reflexive, transitive and complete). 

H2 (Continuity) If m h m ′ h m ′′
 then we have 

(i) for , ,m m m a′ ′′ >  there exists ] [,1aα ∈  such that 

m ′ h Mm,m ′′;1  a − ,;
 

(ii) there exists ] ]0, aα ∈  such that ( , ;1, ).hm M m m α′ ′′∼  

H3 (Independence) For all , , ( )m m m X′ ′′∈Δ  and for all ,, S aα β ∈Φ  we 

have that m ′ h m ′′
 is equivalent with 

Mm ′,m;, h Mm ′′,m;,.  
H4 (Uncertainty prone) 

8 E. Pap 



(i) if ,m m a′ >  then m h m ′
 implies 

m h Mm,m ′;, 1  a −  h m ′
 for ] [,1 ;aα ∈  

(ii) otherwise m m′<  implies m h m ′.  

Now, we define a function of optimistic utility for all ( )m X∈Δ  in the fol-

lowing way 

( ) ( ( ), ( )),
ix X i iU m S T m x u x∈=  

where u : X → U  is a preference function that assigns to each consequence of 

X  a preference level of ,U  such that 1 1(1) (0).u u− −≠ ∅ ≠  

Remark 1.  It is interesting to note that U  preserves the hybrid mixture in the sense 
that 

U(M(m,m';α,β)) = S(T(α, U(m)), T(β, U(m'))) 
                 = M(U(m),U(m');α,β). 

Theorem 6 (Representation Theorem - Optimistic Utility, [44]).  Let ( )XΔ  be 

the set of all S -measures defined on 2 ,X  and h a binary preference relation on 

( ).XΔ  Then the relation h satisfies the set of axioms H1, H2, H3, H4 if and 

only if there exist 
(i) a linearly ordered utility scale ,U  with inf( ) 0U =  and sup( ) 1;U =  

(ii) a preference function u : X → 0,1,  

such that m h m′  if and only if mƒ ⊑h m′ ,  where ƒ ⊑h  is the ordering in 
( )XΔ  induced by the optimistic utility function given by 

U(m) = S (T(m(x), u(x)), 
where ( , )S T  is a pair of continuous t-conorm and t-norm, respectively, which 

satisfy the condition (RD). 

4 Fuzzy Systems 

A decision is made under the risk if the only available knowledge related the out-
come states is the probability distribution. This can be used in the optimization of 
the utility function. If the knowledge about the probabilities of the outcome is un-
known, then the decision have to be made under uncertainty. In engineering design 
one of the most critical problems is the preliminary design decision when the design 
is imprecise and most costly [2, 37, 59]. In such situations, fuzzy decision making 
can be used to handle this vagueness. This fuzziness can be modeled in different 
ways: fuzzy sets (membership function) [37] (The Method of Imprecision), [62], 
fuzzy measures (Choquet and Sugeno integrals) [21, 38, 58]. There are other design 
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methodologies as optimization tools (linear, nonlinear, integer programming, 
multi-objective optimization - e.g., with weighted sum technique [36]), probability 
methods [54]. 

An overall evaluation of design alternatives have two parts: their partial 
evaluation and the importance of the criteria taken into account. The first step 
consists in the determination of fuzzy sets representing partial evaluation of the 
alternatives. Since there are many different judgments with respect to the expres-
sion of the suitability of variety of alternatives there is need for some methods for 
this purpose. The Analytical Hierarchy Process [48] and some other matrix methods 
as [45, 46] are very convenient tools for that purpose. At the second step all partial 
information is aggregated into a final rating. In engineering design the preliminary 
design decisions are very important although the design description is still impre-
cise. Fuzzy design methods are convenient for representing and manipulating de-
sign imprecision [25, 37, 62]. By the Method of Imprecision [37, 50] constraints can 
be imprecise permitting to choose preferences over a range of values. This method 
was specially developed for engineering design and implies that the trade-off 
combination functions (aggregation operators) have to satisfy the boundary condi-
tions, monotonicity, continuity, annihilation and idempotency. Then it follows by 
[37, 51] that any weigthed quasi-linear mean that satisfies the annihilation property 
is design-appropriate. A weighted aggregation function which continuous, strictly 
monotonic, idempotent and bisymmetrical has the representation ([1, 17]) 

 
M1,…,n

f x 1 ,…,x n  f−1 1 fx 1   n fx n
1   n

,
 

where f  is a strictly monotone continuous function. By this representation it is 

possible to construct special convenient families of aggregation functions ([17, 21, 
30, 37]). Drakopoulos [9] proved that probabilities have a higher representational 
power than fuzzy sets (with respect to max-min) and possibilities (special fuzzy 
measure) for finite domain, but at the cost of higher computational complexity and 
reduced computational efficiency (they have equal representational power when 
their domains are infinite). 

5 Aggregation in Engineering Design 

The aggregation of incoming data plays a key role in applications of several intel-
ligent systems. The aggregation functions (operators) form a fundamental part of 
multi-criteria decision making, engineering design, expert systems, pattern recog-
nition, neural networks, fuzzy controllers, genetic algorithms, etc. ([17, 20, 28, 37, 
61]). 
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We restrict ourselves to the inputs and outputs from the unit interval [0,1].  Note 

that the case of any other closed interval is the question of rescaling only. 

Definition 4.  An aggregation function A  is a non-decreasing mapping 

[ ] [ ]0,1 0,1n

n∈
→A :

`
∪  

fulfilling the following conditions 

(i) 0 ?1, 1, ,i ix y i n≤ ≤ = ≤  imply 1 1( ,..., ) ( ,..., );n nx x y y≤A A  

(ii) ( )x x=A  for all [0,1];x∈  

(iii) (0,...,0) 0=A  and (1,...,1) 1.=A  

Property (i) in Definition 4 is the monotonicity and properties (ii) and (iii) are the 
boundary conditions. Each aggregation function A  can be represented as a system 

( )n n∈A `  of n -ary operators , ,n n∈A `  on the unit interval, where 1A  is the 

identity operator on [0,1]  and each , 2,n n ≥A  is non-decreasing and 

(0,...,0) 0, (1,...,1) 1.n n= =A A  

Depending on the field of application, several additional properties can be re-
quired and/or examined, such as commutativity, associativity, continuity, idempo-
tency, compensation, cancellativity, etc. Note, for example, that the associativity of 

an aggregation function A  means that the binary function 2A  is associative and 

its corresponding n -ary extensions (for 2n > ) are just the relevant n -ary op-

erators .nA  Therefore, an associative aggregation function A  is fully determined 

by 2.A  If A  is an aggregation function, then the operator 

: [0,1] [0,1]n
n∈ →DA `∪  defined by 

1 1( ,..., ) 1 (1 ,...,1 )n nx x x x= − − −DA A  

is called the dual operator of .A  DA  is also an aggregation function. 
Fuzzy design methods are convenient for representing and manipulating design 

imprecision [37, 62]. The Method of Imprecision [37] was specially developed for 
engineering design and implies that the trade-off combination functions (aggrega-
tion operators) have to satisfy the boundary conditions, monotonicity, continuity, 
annihilation, and idempotency, where annihilation means that if one argument 
(when the preference for any one attribute of the design sinks to zero) of the ag-
gregation operator is zero then the value of the aggregation operator (the overall 

preference of the design) is zero. We remark that if the weights { }iω  in a weighted 

aggregation function  are given with respect to a ratio scale, then iω  are not 

uniquely determined, since any other system of weights { }iω
′  with i iCω ω′ =  for 

a positive rational number C  is convenient, e.g., .i

ii
i

ω
ω

ω′ = ∑  Specially important 
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cases are ( ) , ( ) logf x x f x x= =  and ( ) .sf x x=  The last case is interesting 

since it generates a parameterized family of aggregation functions. For 0,s >  the 

annihilation property fails, but it can be handled in the practical engineering design 
by assuming that preferences smaller than some small ε  are not relevant for the 
designer [51]. There are also design-appropriate aggregation functions which are 
not weighted quasi-arithmetical means, that is, they are not strictly monotone. 

Starting from a given t-norm and/or t-conorm, several useful operations on 
[0,1]  can be introduced. The conditions (i) - (iii) required for an aggregation op-

erator A  are the genuine properties of triangular norms and conorms. 
From the practical application point of view, there are suggestions to use the 

special aggregation functions, so-called compensatory operators, in order to model 
intersection and union in many-valued logic. The main goal of compensatory op-
erators is to model an aggregation of incoming values. If two values are aggregate 
by a t-norm, then there is no compensation between low and high values. On the 
other hand, a t-conorm based aggregation provides the full compensation. None of 
the above cases covers the real decision making. To avoid such inaccuracies, in [63] 
suggested two kinds of so-called compensatory operators, see [33]. The first of 

them was γ -operator, Γ : 0,1 → 0,1,  ∈ 0,1, n  2   
1

1
1 1

( ,..., ) 1 (1 ) .
n n

n i i
i i

x x x x
γ γ

γ

−

= =

⎛ ⎞ ⎛ ⎞
Γ = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏  

Here parameter   indicates the degree of compensation. Note that γ -operators 

are a special class of exponential compensatory operators [28]. For a given t-norm 
T  t-conorm S  (not necessarily dual to )T  and parameter γ  indicating the de-

gree of compensation, the exponential compensatory operator 

ET,S, : 0,1n → 0,1, n ≥ 2,
 is defined by 

1
, , 1 1 1( ,..., ) ( ( ,..., )) ( ( ,..., )) .T S n n nE x x T x x S x xγ γ

γ
−=  

It is obvious that γ -operator is based an TP  , ,, T SS Eγ γΓ =
P PP . Further note 

that , ,T SE γ  is a logarithmic convex combination of T  and S  and up to the case 

when {0,1}γ ∈  it is non-associative. Another class of compensatory operators 

proposed by [63, 64] are so-called convex-linear compensatory operators. 
It was proposed an associative class of compensatory operators in [27]. The 

degree of compensation is ruled by two parameters, namely by the neutral element 
e  and the compensation factor k . Let T  be a given strict t-norm with additive 

generator 1
2, ( ) 1,f f =  and let S  be a given strict t-conorm with an additive 

generator 1
2, ( ) 1g g = . For a given ] [ ] [0,1 , 0, ,e k∈ ∈ ∞  we define an asso-

ciative compensatory operator 
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CT,S,e,k  C : 0,12 ∖ 0,1, 1,0 → 0,1
 

by 
1( , ) ( ( ) ( )),C x y h h x h y−= +  

where h : 0,1 → −,  is a strictly increasing bijection such that 

1

( ) if [0, ]
( )

( ) if ] ,1].

x
e

x e
e

kf x e
h x

g x e−
−

∈⎧
= ⎨ ∈⎩

 

Engineering decision making need more general mathematical models, which 
involve also non-additive measures. Previously used additive probability measures 
could not model some situations, e.g., the Ellsberg Paradox, see [21]. For the 

non-additive set function (measure) m  defined on a σ -algebra A  of subsets of a 

set X  (for finite X  it is usually taken A  2X ,  the family of all subsets), the 
difference ( ) ( )m A B m B∪ −  depends on B  and can be interpreted as the effect 

of A  joining B , [21, 38, 52, 53, 58]. A monotone set function m  with 

( ) 0m ∅ =  is usually called fuzzy measure. More than the contribution of the 

extension principle of the fuzzy sets [55], fuzzy connectives [16, 21, 27, 63] and 
fuzzy measures are important in the problem of the modeling of the behavior of 
decision makers. Utility theory [17, 21, 47] deals with preference relations de-
scribing the decision behavior, and as the basis of decision theory, is well axio-
matically based on the fuzzy measures and Choquet integral [17, 20, 22, 38]. The 
Choquet integral approach is generalized in many directions ([28, 34, 38]). As the 

mapping, the fuzzy integral is defined by a set of 2n  (for n  elements basic set X ) 
parameters and a t-conorm system. The word ''identification'' has the origin in the 
system theory and is preferred to the word ''learning'', though the algorithms for 
finding the appropriate fuzzy measure could be the learning samples minimizing 
certain criterion. Unknown measure to be identified can be regarded as the part of 
the parameter identification [19, 20, 21]. 

Conclusion 

We have given a short overview of some basic facts from the theory of 
pseudo-analysis, mostly related to pseudo-operations. As a generalization of von 
Neumann and Morgestern utility theory, using pseudo-analysis, there are presented 
approach based on possibility theory, and as a common generalization through 
hybridization of the both approaches is given. We modeled uncertainty in engi-
neering design with fuzzy systems, which involves more general real operations: 
aggregation functions [20]. We remark that S -measures and corresponding inte-
grals have the advantage that for n  elements of the basic set X  they require only 
n  parameters. 

Pseudo-analysis in Engineering Decision Making 13
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