
Chapter 4
Induced Discounting and Risk Management

T. Ermolieva, Y. Ermoliev, G. Fischer, and M. Makowski

Abstract The goal of this paper is to specify and summarize new approaches to
discounting proposed in our catastrophic risk management studies. The main issue is
concerned with justification of investments, which may turn into benefits over long
and uncertain time horizon. For example, how can we justify mitigation efforts for
expected 300-year flood that can occur also next year. The discounting is supposed
to impose time preferences to resolve this issue, but this view may be dramatically
misleading. We show that any discounted infinite horizon sum of values can be
equivalently replaced by undiscounted sum of the same values with random finite
time horizon. The expected duration of this stopping time horizon for standard
discount rates obtained from capital markets does not exceed a few decades and
therefore such rates may significantly underestimate the net benefits of long-term
decisions. The alternative undiscounted random stopping time criterion allows to
induce social discounting focusing on arrival times of the main concern (stopping
time) events rather than horizons of market interests.
In general, induced discount rates are conditional on the degree of social com-
mitment to mitigate risk. Random stopping time events affect these rates, which
alter the optimal mitigation efforts that, in turn, change events. This endogeneity
of the induced discounting restricts exact evaluations necessary for using tradi-
tional deterministic methods and it calls for stochastic optimisation methods. The
paper provides insights in the nature of discounting that are critically important for
developing robust long-term risk management strategies.

4.1 Introduction

The implication of uncertainties and risks for justifying long-term investments is a
controversial issue. How can we justify investments, which may possibly turn into
benefits over long and uncertain time horizons in the future? This is a key issue
for catastrophic risk management. For example, how can we justify investments in
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climate change mitigations, say, in flood defense systems to cope with foreseen
extreme 1,000-, 500-, 250-, and 100-floods? The lack of proper evaluations for
dealing with extreme events dramatically contributes to increasing losses from
human-made and natural disasters [20]. The analysis of floods that occurred in
the summer of 2002 across central Europe [14] shows that the potential areas of
vulnerability to extreme floods have multiplied as a consequence of failed develop-
ment planning. Underestimation and ignorance of low probability/high consequence
events have led to the growth of buildings and industrial land and sizable value
accumulation in flood prone areas without proper attention being paid to flood mit-
igations. A challenge is that an endogenously created catastrophe,1 say a 300-year
flood, has never occurred before in a given region. Therefore, purely adaptive poli-
cies relying on historical observations provide no awareness of the “unknown” risk
although, a 300-year flood may occur next year. For example, the 2002 floods in
Austria, Germany and the Czech Republic were classified (in different regions) as
1,000-, 500-, 250-, and 100-year events [14].

A key issue is development of policies with proper long-term perspectives. The
traditional discounting is supposed to impose necessary time preferences, but this
view may be dramatically misleading. There are several possibilities for choosing
discount rates (see, for example, the discussion in [2, 19, 24, 29]). The traditional
approach is to use the rates obtained in capital markets. The geometric or exponen-
tial discount factor dt D .1 C r/�t D e�1n.1Cr/t 
 e�rt (for small r) is usually
connected with a constant rate r of returns from capital markets. Since returns in
capital markets are linked to assets with a lifespan of a few decades, this choice
may completely reduce the impacts that investments have beyond these intervals
(Sect. 4.2). Another serious problem [21, 31] arises from the use of the expected
value r D E� and the discount factor .1 C r/�t . It implies additional significant
reduction of future values in contrast to the expected discount factor E.1 C �/�t ,
because E.1 C �/�t >> .1 C r/�t . These issues are discussed in Sects. 4.2
and 4.3.

An appropriate interest rate is especially difficult to define when decisions
involve time horizons beyond the interests of the current generation. If future gener-
ations are not present in the market, e.g., long-term environmental damages are not
included in production costs, the market interest rates do not reflect the preferences
of future generations. According to Arrow et al. [2] “the observed market rates of
interest refer to how individuals are willing to trade off consumption over their own
life. These may or may not bear close correspondence to how a society is willing to
trade off consumption across generations”.

Debates on proper discount rates for long-term problems have a long-standing
history [2, 29]. Ramsey [26] argued that applying a positive discount rate r to dis-
count values across generations is unethical. Koopmans [17], contrary to Ramsey,
argued that zero discount rate r would imply an unacceptably low level of current
consumption. The use of so-called social discount rates produces two effects [2].

1 As a consequence of inappropriate policies.
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The “prescriptive” approach tends to generate relatively low discount rates and thus
favors mitigation measures and the wellbeing of future generations. The “descrip-
tive” approach tends to generate higher discount rates and thus favors less spending
on mitigation and the wellbeing of the current generation.

The constant discount rate has only limited justification [3,12,24,29]. As a com-
promise between “prescriptive” and “descriptive” approaches, Cline [4] argues for
a declining discount rate: 5% for the first 30 years, and 1.5% later. There have been
proposals for other schedules and attempts to justify the shape of proper decline.
Papers [21, 31] show that uncertainty about r produces a certainty-equivalent dis-
count rate, which will generally be declining with time. Weitzman [31] proposed
to model discount rates by a number of exogenous time dependent scenarios. He
argued for rates of 3–4% for the first 25 years, 2% for the next 50 years, 1% for
the period 75–300 years and 0 beyond 300 years. Newel and Pizer [21] analyzed the
uncertainty of historical interest rates by using data on the US market rate for long-
term government bonds. They proposed a different declining discount rate justified
by a random walk model. Chichilinsky [3] proposed a new concept for long-term
discounting with a declining discount rate by attaching some weight on the present
and the future consumption. All these papers aim to derive an appropriate exogenous
social discount rate.

Sections 4.2 and 4.3 develop a different approach for social discounting. It
is shown that any discounted sum, so-called net present value (NPV) criterion,P1

tD0 dtVt of expected values Vt D Evt for random variables (r.v.) vt ; t D
0; 1; : : : ; dt D .1 C rt /

�t under constant and declining discount rates rt equals
the average undiscounted (in the agreement with Ramsey’s concerns) random sum
E
P�

tD0 vt with a random stopping time � defined by the given discounting dt .
Therefore, discount rates can be associated with the occurrences of “stopping time”
random events determining a finite “internal” discount-related horizon Œ0; �	. The
expected duration of � and its standard deviation � under modest market inter-
est rates of 3.5% is approximately 30 years, which may have no correspondence
with expected, say, 300-year extreme events and � 
 300. Conversely, it is shown
that any stopping time random event induces a discounting. A set of mutually
exclusive stopping time random events, e.g., 1,000-, 500-, 250-, and 100-year
floods, induces discounting with time-declining discount rates. This case corre-
sponds also to the discounting with uncertain discount rates r . In particular, a
single stopping time random event with the standard geometric probability distri-
bution induces the standard discounting with constant discount rate r and dt D
.1C r/�t .

The effects of catastrophes on the stream of values vt ; t D 0; 1; : : : , differ from
the effects of market uncertainties. Section 4.4 indicates that catastrophic events
pose new challenges. They often create so-called endogenous, unknown (with the
lack and even absence of adequate observations) and interdependent risks, which
may potentially affect large territories and communities and, on the other hand,
are dramatically affected by risk management decisions. As a consequence, catas-
trophic risks generally make it impossible to use traditional economic and insurance
models [1,3,5,8,9,16]. The concept of undiscounted random stopping time criteria
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allows to induce social discounting that focuses on arrivals of catastrophic events
rather then the lifetime of market products. Since risk management decisions affect
the occurrence of disasters in time and space, the induced discounting may depend
on spatio-temporal distributions of extreme events and feasible sets of decisions,
i.e., it can be viewed as a spatio-temporal discounting. The implicit dependence
of the stopping time discounting on random events and decisions calls for the
use of stochastic optimization methods, which allows also to address the vari-
ability (Remark 4.2) of discounted criteria by using random value

P�
tD0 vt even

for deterministic vt ; t D 0; 1; : : : . Section 4.5 establishes connections of stopping
time discounting with dynamic versions of CVaR (Conditional Value-at-Risk) risk
measures. Section 4.6 illustrates how misperception of induced discounting may
provoke catastrophes. Section 4.7 provides concluding remarks.

4.2 Standard and Stopping Time Induced Discounting

This section illustrated the main idea by using the standard geometric discounting.
The choice of discount rate as a prevailing interest rate within a time horizon of
existing financial markets is well established [18]. Uncertainties, especially related
to extreme events, challenge the possibility of markets to offer proper rates for
longer time horizons. The following simple Proposition 4.1 and Remark 4.2 clarify
the main concerns.

The traditional financial approaches [18] often use the so-called net present value
(NPV) criteria to justify investments. An investment is defined as an expected cash
flow stream V0; V1; : : : ; VT ; Vt D Evt , over a time horizon T � 1. Assume that
r is a constant prevailing market interest rate, then alternative investments are com-
pared by V D V0 C d1V1 C : : : C dTVT , where dt D d t ; d D .1 C r/�1; t D
0; 1; : : : ; T , is the discount factor and V denotes NPV.

It is usually assumed that a long-term investment activity has an infinitely long
time horizon, i.e.,

V D
1X

tD0

dtVt : (4.1)

The stream of values Vt ; t D 0; 1; : : : , can represent an expected cash flow stream of
a long-term investment activity. In economic growth models and integrated assess-
ment models [19, 22, 29] the value Vt represents utility U.xt / of an infinitely living
representative agent, or welfare Vt D Pn

iD1 ai ui .x
t
i / of a society with representa-

tive agents i D N1; n, utilities ui , consumptions xt
i and welfare weights ˛i . Natural

selection theory treats (4.1) as Darwinian fitness [28], where discount factors dt are
associated with hazard rates of an environment (Example 4.2).

The infinite time horizon in (4.1) creates an illusion of truly long-term analysis.
Proposition 4.1 shows that in fact deterministic evaluation (4.1) accounts only for
values Vt from a finite random horizon Œ0; �	 defined by a random stopping time �
with the discount-related geometric probability distribution P Œ� � t 	 D dt .



4 Discounting and Risk Management 63

Proposition 4.1. Consider a discounted sum (4.1) with dt D d t ; d D .1 C r/�1;

r > 0. Let q D d; p D 1 � q, and � be a random variable with the geometric
probability distribution P Œ� D t 	 D pqt ; t D 0; 1; : : : . Then dt D P Œ� � t 	 and

1X
tD0

d tVt D
1X

tD0

P Œ� � t 	Vt D E

�X
tD0

Vt : (4.2)

Conversely, for any stopping time � with a geometric probability distribution

E

�X
tD0

Vt D
1X

tD0

dtVt ; dt D P Œ� � t 	:

Proof. We have P Œ� � t 	 D P1
kDt pq

k D pqt .1 � q/�1 D qt D dt . Conversely,

E

�X
tD0

Vt D
1X

tD0

P Œ� D t 	

tX
kD0

D Vk D
1X

tD0

pqt

tX
kD0

Vk

D
1X

tD0

 1X
kDt

pqk

!
Vt D

1X
tD0

dtVt :

That is, any discounted deterministic sum (4.1) equals to the average undis-
counted random sum

P�
tD0 Vt of the same values Vt . In other words, the discount

factor dt D d t induces an “internal” discount-relate time horizon Œ0; �	 with the
geometrically distributed � . Conversely, any geometrically distributed � and the
criterion E

P�
tD0 Vt induces the geometric discounting in the sum

P1
tD0 dtVt .

Remark 4.1. (Random stopping time horizon). We can considerŒ0; �	 being a ran-
dom stopping time horizon associated with the first occurrence of a “killing”,
i.e., a catastrophic stopping time event. The probability that this event occurs at
t D 0; 1; : : : is p and pqt is the probability that this event occurs first time at t ,
i.e., � has a geometric probability distribution. Since p D 1 � d , d D .1C r/�1,
then the expected duration of � , E� D 1=p D 1C 1=r . Therefore, for the interest
rate of 3.5%, r D 0:035, the expected duration is E� 
 30 years, i.e., this rate
orients the policy analysis on an expected 30-year time horizon. The standard devi-
ation � D p

q=p, i.e., it equals approximately 30 years The bias in favor of the
present in discounting with the rate of 3.5% is easily illustrated [24]. For a project
with long-run benefits or costs, 1 Euro of benefits or costs in years 50, 100, and 200,
has a present value respectively of 0.18, 0.003, and practically 0 Euros. Definitely,
this rate may have no correspondence to how society has to deal with a 300-year
flood, i.e., a flood with the expected arrival time equal to 300 years. Therefore, in
the risk management � can be associated with the arrival of potential catastrophic
events rather than with horizons of market interests. The induced social discounting
dt D P Œ� � t 	 in this case would have proper long-term perspectives dependent
on spatio-temporal patterns of catastrophes and risk management decisions (see
Proposition 4.3 and Sect. 4.4). The discount rate r can be viewed also as a killing
(hazard) rate [15] which makes the life expectancy of an otherwise infinitely living
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representative agent or society equal to 1C 1=r years. Yet, depending on a concrete
situation, stopping time � can be also associated with the arrival time of a reward.

Remark 4.2. (Variability of NPV). Disadvantages of this standard criterion (4.1) are
well known [18]. In particular, the NPV critically depends on the prevailing interest
rate which may not be easily defined in practice. In addition, the NPV does not
reveal the temporal variability of cash flow streams. Two alternative streams may
easily have the same NPV despite the fact that in one of them all the cash is clustered
within a few periods, but in another it is spread out evenly over time. This type of
temporal heterogeneity is critically important for dealing with catastrophic losses
which occur suddenly as a “spike” in time and space [9].

The criterion E
P�

tD0 Vt ; Vt D Evt has visible advantages. In particular, it
allows to address distributional aspects and robust strategies [6] by analyzing the
random variable

P�
tD0 Vt (even for deterministic vt D Vt ), e.g., its quantiles defined

as maximal y D yı satisfying safety constraint

P

"
�X

tD0

vt � y

#
� ı:

Equivalently, yı maximizes the concave function (see discussion in [6], p. 16)

y C ı�1Emin

(
0;

�X
tD0

vt � y

)
:

The optimal value of this function defines the so-called CVaR (Conditional
Value-at-Risk) risk measure [27].

Therefore, if variables vt depend on some decisions x (as in Sect. 4.4), then the
maximization of function

F.x/ D
"
y C ı�lEmin

(
0;

�X
tD0

vt � y

)#
:

allows easy control of highly nonlinear (even for linear in x function vt ) the safety
constraints (quantiles of

P�
tD0 vt ) in an optimal manner defined by a function F.x/

that is adjusted to CVaR risk measure (see also Sect. 4.5).

Remark 4.3. (Shock testing). The sensitivity of models w.r.t. “shocks” (extreme
scenarios, events, stresses) is often assessed by introducing them into discounted
criteria [22, 29]. From Proposition 4.1 it follows that this may lead to serious mis-
calculations. Let us consider criterion (4.1) with discount factors, dt D d t ; d D
.1Cr/�1 and assume that a “shock” arrives at a random time moment � 2 f0; 1; : : :g
with probability P Œ� D t 	 D �� t , � D 1 � � D .1 C �/�1. Then the expected
value, E

P�
tD0 dtVt D P1

tD0 d
t� tVt D E

P�
tD0 �

tVt D E
Pmin.�;�/

tD0 Vt ; where
P Œ� D t 	 D pqt with q D d , p D 1 � q. Therefore, the stopping time of the
“shocked” evaluation E

P�
tD0 d

tVt is defined by min.�; �/. The discount rate of
this evaluation is .1 C r/�1:.1C p/�1 D .1C r C �C r�/�1, i.e., the shocked
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evaluation increases the rate of the original discounting and, hence, the bias in favor
of the present.

Example 4.1. (Catastrophic Risk Management). The implications of Proposition 4.1
for long-term policy analysis are rather straightforward. Let us consider some
important cases. It is realistic to assume [24] that the cash flow stream, typical
for investment in a new nuclear plant, has the following average time horizons.
Without a disaster the first six years of the stream reflect the costs of construc-
tion and commissioning followed by 40-years of operating life when the plant
is producing positive cash flows and, finally, a 70-year period of expenditure on
decommissioning. The flat discount rate of 5%, as Remark 4.1 shows, orients the
analysis on a 20-year time horizon. It is clear that a lower discount rate places more
weight on distant costs and benefits. For example, the explicit treatment of a poten-
tial 200-year disaster would require at least the discount rate of 0.5% instead of
5%. A related example is investments in climate change mitigations to cope with
potential climate change related extreme events. Definitely, a rate of 3.5%, as often
used in integrated assessment models [29], can easily illustrate that climate change
does not matter. A shock testing of these models reduces even further their internal
stopping time horizon.

Example 4.2. (Darwinian fitness). Ramsey [26] had introduced discounting, first of
all, as a mathematical device ensuring the convergence of infinite horizon cumula-
tive values. Its various explanations supported by empirical studies were proposed
afterwards suggesting that humans and animals place less weights on the future
then on the present [28]. A reason is that future rewards run more risk of disap-
pearing. Hence, they should be discounted, where the discount rate is the hazard
rate. For example, evidence from selection experiments indicates the existence of
a trade-off between short-term and long-term fertility, i.e., the existence of life-
history strategy that discounts the future. In other words, natural selection puts a
premium on immediate reproductivity. Accordingly, an animal can be treated as a
rational optimizer maximizing its Darwinian fitness, that can be taken to be equiv-
alent to maximizing the expected number of offsprings. In a simple case, fitness is
defined [28] then as integral F D R1

0 m.t/s.t/dt , where m.t/ is the expected rate
of reproductive output at age t if the animal survives to that age, and s.t/dt is the
probability of surviving to age t . It is highly unlikely that an animal is able to learn
discount factors (probability density s.t/) in order to maximize the Darwinian fit-
ness. The equivalent distribution free stopping time criterion requires observations
of only lifetime intervals � , which can be easily used for adaptive adjustments of
life-history strategies.

4.3 Time Declining Discount Rates

This section extends Proposition 4.1 to general time declining discount rates. It
also shows that a time declining discount rate can be associated even with a set of
mutually exclusive geometrically distributed extreme (stopping time) events. This
rate is determined in a sense by the least probable event.
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Let us consider now a stream of random variables (r.v.) v0; v1; : : : affected by a
set of random events including potential catastrophic events. Formally, we can think
of vt as a function vt .!/ defined on a probability space f�;P g with the set � of
related random events and the probability measure P on�. We assume that vt does
not depend on the “future”, i.e., we assume that f�;P g is adapted to a sequence
of increasing � -algebras A0 � A1 � : : : (subsets of events from �, which occur
before t D 0; 1; : : :), such that vt is measurable (defined on) w.r.t. At . In what
follows, all random variables are assumed to be defined on f�;P g.

Let �k;t D �.vk ; : : : ; vt / be the �-algebra generated by vk; : : : ; vt . Consider
a stopping time � , which we define as a r. v. � 2 f0; 1; : : :g, such that event,
f� � tg ; t D 0; 1; : : : does not depend on values vtC1; vtC2; : : :, i.e., �tC1;1.

Proposition 4.2. Consider a discounted sum
P1

tD0 dtVt ; dt D .1C rt /
�t , where rt

is an increasing positive sequence, Vt D Evt . Then there is a stopping time � such
that P Œ� � t 	 D dt and

1X
tD0

dtVt D
1X

tD0

P Œ� � t 	 Evt D E

�X
tD0

vt : (4.3)

Conversely, let E j vt j is uniformly bounded. Then, for any stopping time �

E

�X
tD0

vt D
1X

tD0

dtVt ; dt D P Œ� � t 	 ;

where Vt is conditional expectation:

Vt D EŒvt j � � t 	

Proof. Consider such any r.v. � ,� 2 f0; 1; : : :g that f� � tg does not dependent on
values v0; : : : ; vt�1 and P Œ� D t 	 D dt � dtC1, t D 0; 1; 2; : : : . Clearly, P Œ� � 0	

D d0 � d1 C d1 � d2 C : : : D d0 D 1, P Œ� � t 	 D dt and

1X
tD0

dtVt D
1X

tD0

P Œ� � t 	Vt :

Let now ft WD Pt
kD0 vk . From the rearrangement known as the Kolmogorov–

Prohorov’s theorem it follows that

Ef� D
1X

tD0

EŒft I � D t 	 D
1X

tD0

tX
kD0

EŒvkI � D t 	 D
1X

kD0

EŒvk I � � k	

D
1X

kD0

P Œ� � k	Vk :
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where Vk DEŒvk j � � k	 and EŒvt IA	, denotes unconditional expectation
EŒvtIA	, IA is the indicator function of event A. The last assertion follows from
the identity f� � tg D f� > t � 1g, i.e., from the independence of f� � tg on �t;1.
The change in the order of sums is possible due to the uniform boundness ofE j vt j.
Corollary 4.1. If v0; v1; : : : are independent r.v. or f� � tg ; t D 0; 1; 2; : : : ; does
not depend on v0; v1; : : : ; vt�1,then Vt in both cases of Proposition 4.2 is uncon-
ditional expectation Vt DEvt . If v0; v1; : : : are independent identically distributed
r.v., then the Wald’s identity follows from Proposition 4.1:

E

�X
tD0

vt D Ev0E� :

Proof. It follows from the following rearrangements:

1X
tD0

P Œ� � t 	 D
1X

kD0

1X
tDk

P Œ� D t 	 D
1X

tD0

tP Œ� D t 	 D E�:

Example 4.3. (Expected catastrophic losses). Assume that a catastrophic event may
occur at t D 0; 1; 2; : : : with probability p. It is usually defined as (1=p)-year event,
say a 100-year flood. Define � as the arrival time of the first catastrophe and let
vt D 0,0 � t � � � 1, v� DL� , where L� is conditional expected losses given that
the event occurs at � . Since lt ¤ 0 only for, t D � , then the expected (unconditional)
losses at � are:

Ev� D pL0 C qpL1 C q2pL2 C : : : D
1X

tD0

qtVt D
1X

tD0

P Œ� � t 	Vt ;

where Vt DpLt .

The next proposition shows that a set of even geometrically distributed events
can induce discounting with time declining discount rates. Let us assume that
there is a set of mutually exclusive events (see also Sect. 4.4) of “magnitude”
i D 1; : : : ; n. The probability of scenario i is �i ;

Pn
i D 1 �i D 1 and, conditional

on this scenario, the event i occurs for the first time at �i with the probabil-
ity P Œ�i D t 	Dpiq

t
i ; qi D 1 � pi ; t D 0; 1; : : : . Thus, the occurrence of events at

t is characterized by a mixed geometric distribution
Pn

i D 1 �ipiq
t
i . Let � be the

arrival time of a first event. Then dt DP Œ� � t 	D Pn
i D 1 �iP Œ�i � t 	. Since

P.�i � t/Dpiq
t
i C piq

tC1
i C : : : D qt

i , then evaluation (4.1) takes the form

V D
1X

tD0

dtVt ; dt D
nX

iD1

�iq
t
i : (4.4)

This equation essentially modifies the standard geometric discounting. Neverthe-
less, the induced discount factors dt for large t tend to be defined by the smallest
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discount rate of the least probable event. The following proposition is similar to the
conclusion in [31].

Proposition 4.3. Discount factor dt D Pn
i D 1 �iq

t
i in (4.4) is determined for t!1

by the standard geometric discount factor qt
i 	 associated with the least probable

event i�,
pi� D mini pi W dt=q

t
i�!�i� for t!1:

Proof. dt D qt
i�
Pn

i D 1 �i
i .t/, where 
i .t/D .qi=qi	/t . From pi� < pi ; pi D 1�
qi , it follows that 
i .t/ ! 0; t ! 1, for i ¤ i� and 
i�.t/D 1. Hence, dt=q

t
i� !

�i� for t ! 1.

Remark 4.4. (Finite time horizon T). Propositions 4.1, 4.2, 4.3 hold true also for a
finite time horizon T < 1 after substituting probabilities P Œ� D t 	, P Œ� � t 	 by
conditional probabilities P Œ� D t j � � T 	 and P Œ� � t j � � T 	.

Remark 4.5. (Distribution free approach). Propositions 4.1, 4.2 provide two alter-
native approaches for discounting: standard discounted criterion of the left-hand
side of (4.1), (4.2) with an exogenous discounting, or undiscounted criterion of
the right hand side with � defined by random arrival time of stopping time events.
Proposition 4.3 shows that the corresponding induced discounting dt DP Œ� � t 	

can be a complex implicit function of spatio-temporal patterns of events. The next
section illustrates, that � may depend also on various decisions. All these make
it rather difficult to evaluate exact risk profiles P Œ� � t 	 and exogenous discount
factors dt . Therefore, this would require the use of the distribution-free random
stopping time criterion and STO methods rather then the standard distribution-based
discounted criterion and deterministic optimization methods.

4.4 Endogenous Discounting

This section summarizes typical motivations for developing spatio-temporal catas-
trophic risk management models with rather natural versions of the stopping time
concepts. A typical model may include often the following loop and the potential
for positive feedbacks, branching and disequilibrium:

1. Stopping time induces discounting in the form of dynamic risk profiles
dt DP Œ� � t 	.

2. The discounting affects optimal mitigation efforts.
3. Mitigation efforts affect the stopping time � , risk profiles P Œ� � t 	 and the

discounting dt (return to point 1).

This means that the stopping time criterion induces endogenous spatio-temporal
endogenous discounting.

Example 4.4. (Evaluation of a Flood Management Program). Consider a simple
version of the catastrophic flood management model developed for the Upper Tisza
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river region [9]. The spatio-temporal structure of this model was motivated by the
following reasons.

Throughout the world, the losses from floods and other natural disasters are
mainly absorbed by the immediate victims and their governments [13]. The insur-
ance industry and its premium payers also absorb a portion of catastrophic losses,
but even in the wealthy countries this share is relatively small. With increasing losses
from floods, governments are concerned with escalating costs for flood prevention,
flood response, compensation to victims, and public infrastructure repair. As a new
policy, many officials would like to increase the responsibility of individuals and
local governments for flood risks and losses [25], but this is possible only through
location-specific analysis of risk exposures and potential losses, the mutual interde-
pendencies of these losses, and the sensitivities of the losses to new risk management
strategies.

This is a methodologically challenging task requiring at least the development of
spatio-temporal catastrophe models [5, 8, 9, 30]. Although rich data usually exist
on aggregate levels, the sufficient location specific data are not available, espe-
cially data relevant to new policies. Moreover, catastrophes affect large territories
and communities producing mutually dependent losses with analytically intractable
multidimensional probability distributions dependent also on various decisions. This
critically distinguishes the arising problems from a standard risk management sit-
uations, e.g., the well-known asset-liability management. The standard methods, in
particular, the existing extreme event theory, are not applicable to rational manage-
ment of catastrophic risks. The new GIS-based catastrophe models [9,30] are needed
to simulate the occurrence of potential extreme events and the samples of mutually
dependent catastrophic losses for which no or very few historic observations exist.

In general, a catastrophe model represents the study region by grids, e.g., a rel-
atively small pilot Upper Tisza region is represented by 1,500 � 1,500 grids [9].
Depending on the purpose of the study, these grids are aggregated into a much
smaller number of cells (locations, compartments) j D 1; 2; : : : ; m. These cells may
correspond to a collection of households at a certain site, a collection of grids with
similar land-use characteristics, or an administrative district or grid with a segment
of gas pipeline. The choice of cells provides a desirable representation of losses.
Accordingly, cells are characterized by their content, in general, not necessarily in
monetary units. Values can be measured in real terms, without using an aggregate
dollar value. The content of cells is characterized by the vulnerability curves cal-
culating random damages to crops, buildings, infrastructure, etc., under a simulated
catastrophic scenario.

Catastrophic floods which are simulated by the catastrophe model, affect at ran-
dom different cells and produce mutually dependent random losses Lt

j ; j D 1; : : : ;

m, from a catastrophic event at time t . These losses can be modified by various
decisions. Some of the decisions reduce losses, say a dike, whereas others spread
them on a regional, national, and international level, e.g., insurance contracts. If
xD .x1; x2; : : : ; xn/ is the vector of the decision variables, then Lt

j is a random
function Lt

j .x/.
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Flood occurrences in the region are modeled according to specified probabilistic
scenarios of catastrophic rainfalls and the reliability of dikes. There are three dikes
allocated along the region’s river branch. Each of them may break after the occur-
rence at a random time of a 100-, 150-, 500-, and 1,000-year rainfall characterized
by the so-called up-stream discharge curves calculating the amount of discharged
water to the river branch per unit of time. In fact, the discharge curves upscale the
information about complex rainfall and run-off processes affected by land-use and
land-transformation policies. This brings considerable uncertainty in the definition
of a 1=p-year flood, pD 1=100, 1/150, 1/500,1/1,000. Therefore, a 100-year dis-
charge curve may represent, in fact, a set of floods with different frequencies p, say,
1=150 � p � 1=100. In addition to the interval, the uncertainty about p can be
given by a prior distribution. Therefore, a single discharge curve, in general, corre-
sponds to a set of 1=p-year floods, where p is characterized by a prior probability
distribution. For example, it can be characterized by a finite number of probabilistic
scenarios p1; : : : ; pn with prior probabilities �1; : : : ; �n as in Proposition 4.3.

The stopping time can be defined differently, depending on the purpose of the
policy analysis. A catastrophic flood in our example occurs due to the break of one
of the three dikes. These events are considered as mutually exclusive events, since
the break of a dike in the pilot region releases the “pressure” on other dikes. There-
fore, the stopping time � can be defined as the first time moment of a dike break.
In this case, the probability or induced discount factor dt DP Œ� � t 	 is an implicit
function of t , probabilities �i ; pi ; i D 1; : : : ; n, and the probability of a dike break.
The situation is complicated further by the deterioration of dikes in time and/or by
inappropriate maintenance of the flood protection system (see also Sect. 4.6), e.g.,
modifications to the dikes, the removal of some of them, and building new reten-
tion areas and reservoirs. Besides these structural decisions, the stopping time �
can be affected by other decisions, e.g., land use policies. Accordingly, depending
on goals, the definition of stopping time � can be further modified. For example,
let us assume that the region [10] participates in the flood management program
through payments to a mutual catastrophe fund, which has to support a flood pro-
tection system and compensates losses to victims. To enforce the participation in
the program, the government provides only partial coverages of losses. The stability
of this program critically depends on the insolvency of the fund that may require a
new definition of � . Let ˇ be a fixed investment rate enabling the support of the sys-
tem of dikes on a certain safety level and � be a random time of a first catastrophic
flood. Denote by L�

j random losses at location j; j D 1;m, at time t D � and by �j

the premium rate paid by location j to the mutual catastrophe fund. Then, its accu-
mulated risk reserve at time � together with a fixed partial compensation of losses


P

j L
�
j by the government isR� D �

P
j �j C


P
j L

�
j �Pj 'jL

�
j �ˇ�, where

0 � 'j � 1, is the portion of losses compensated by the fund at location j . Let
us also assume that the functioning of the flood management program is considered
as a long-term activity assuming that growth and aging processes compensate each
other. Then, the insolvency of the fund is associated with the event:

�
X

j

�j C 

X

j

L
�
j �

X
j

'jL
�
j � ˇ� < 0: (4.5)
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Inequality (4.5) defines extreme random events affected by various feasible
decisions x including components .�j ; 'j ; 
; bj ; ˇ; j D 1;m. The likelihood of
event (4.5) determines the vulnerability of the program. It is more natural now to
define the stopping time � as the first time when event (4.5) occurs. In this case �
would depend on all components of vector x and the induced discounting would
focus on time horizons associated with the occurrence of the event (4.5).

4.5 Dynamic Risk Profiles and CVaR Risk Measure

Example 4.5 illustrates that the probability distributions P Œ� � t 	, t D 0; 1; : : : ,
itself represent key safety characteristics of catastrophic risk management pro-
grams. Induced discounting dt DP Œ� � t 	 then “controls” these risk profiles
implicitly through their contributions to discounted goals of programs. Another pos-
sibility as this section shows is to impose explicitly safety constraints of the type
P Œ� � t 	 � �t , for some safety levels �t ; t D 0; 1; : : : . In this case resulting robust
strategies would directly control the safety constraints.

Example 4.5. (Safety constraints). The occurrence of disasters is often associated
with the likelihood of some processes abruptly passing “vital” thresholds. This is a
typical situation for insurance, where the risk process is defined similar to (4.5)
by flows of premiums and claims whereas thresholds are defined by insolvency
constraints. A similar situation arises in the control of environmental targets and in
the design of disaster management programs [5,8,9]. Assume that there is a random
process Rt and the threshold is defined by a random �t . In spatial modeling, Rt

and �t can be large-dimensional vectors reflecting the overall situation in different
locations of a region. Let us define the stopping time � as the first time moment t
when Rt is below �t . By introducing appropriate risk management decisions x it is
often possible to affect Rt and �t in order to ensure the safety constraints P ŒRt �
�t 	 � � , for some safety level � , or �t ; t D 0; 1; 2; : : : .

The use of this type safety constraints is a rather standard approach for coping
with risks in the insurance, finance, and nuclear industries. For example, the safety
regulations of nuclear plants assume that the violation of safety constraints may
occur only once in 107 years, i.e., � D 1�10�7. It is remarkable that the use of stop-
ping time criterion as in the right-hand side of (4.2) has strong connections with the
dynamic safety constraints and dynamic versions of static CVaR risk measures [27].
Let us illustrate this by using the simplest version of climate change stabilization
models discussed in [23].

Assume that Rt D Pt
k D 0 xk , where decision variables

xk � 0; k D 0; 1; : : : ; t; t � T < 1:

We can consider xk to be a CO2 emission reduction at the beginning of period k.
At time t the target value on total emission reduction Rt in period t is given as a
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random variable �t . It is assumed that the exact value of �t may be revealed at a
random period �; P Œ� � t 	D dt . The decision path xD .x0; x1; : : : ; xT / has to be
chosen ex-ante in period t D 0 to mitigate climate change impacts associated with
the case R� < �� . Consider the loss function associated with emission mitigation
strategy x and given � :

V.x/ D E

�X
tD0

Œctxt C btmax f0; �t �Rt g ItD� 	; (4.6)

where deterministic coefficients ct can be viewed as marginal costs, and bt as risk
factors.

This can be written (Example 4.3) as

V.x/D
TX

t D 0

dt

"
ctxt C btEmax

(
0; �t �

tX
k D 0

xk

)#
:

Assume that V.x/ is a continuously differentiable function, e.g., a component of
random vector �D .�0; �1; : : : ; �T / has a continuous density function. Also, assume
for now that there exists a positive optimal solution x� D .x�

0 ; x
�
1 ; : : : ; x

�
T /; x

�
t >0,

minimizing V.x/ subject to xt � 0; t D 0; 1; : : : ; T . Then, from the optimality con-
dition for stochastic minimax problems (see discussions in [6], p. 16) it follows that
for xDx�,

Vxt
D ct �

TX
kDt

bkP

"
kX

sD0

xs � �k

#
D 0; t D 0; 1; : : : ; T:

From this it follows sequentially for t DT; T � 1; : : : ; 0,

P

"
TX

kD0

xk � �T

#
D cT =bT ; P

"
tX

kD0

xk � �t

#
D .ct �ctC1/=bt ; t D 0; 1; : : : ; T�1:

(4.7)
SinceEmax f0; �t �Rt g DE�tI	t �Rt

�RtP Œ�t � Rt 	, then from (4.7) it follows
that V.x�/DEpb�I	� �Rt

, which can be viewed as a dynamic CVaR (Conditional-
Value-at-Risk) risk measure. Equations (4.7) can be used to control dynamic risk
profiles, say, profiles with a given safety level � as in Example 4.5:

1 � � D cT =bT D .ct � ctC1/=bt t D 0; 1; : : : ; T � 1;

by appropriate choice of risk factors bt similar to stationary CVaR risk measures. In
this case the minimization of (4.6) controls safety constraints (4.7) with given safety
level � , i.e.,

P

"
tX

kD0

xk � �k

#
D 1 � �; t D 0; 1; : : : ; T: (4.8)
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This is a remarkable result, since the safety constraints, as a rule, are non-convex
and even discontinuous, whereas the minimization of function (4.6) is often a convex
problem for important practical cases.

Equations (4.7) are derived so far from the existence of the positive optimal
solution x�. The following proposition clarifies this assumption.

Proposition 4.4. The existence of positive optimal solution follows from cT =dT <

1; .ct �ctC1/=dt < 1; t D 0; 1; : : : ; T�1, and the monotonicity of quantilesˇt ; ˇ0 <

ˇ1 < : : : < ˇT defined by equations

P ŒˇT � �T 	 D cT =dT ; P Œˇt � �t 	 D .ct � ctC1/=dt ; t D 0; 1; : : : ; T � 1

Proof. Indeed, the first requirement guarantees that x�
0 >0;

Pt
k D 0 x

�
0 >0;

t D 1; 2; : : : ; T . From the second requirement it follows that x�
0 C x�

1 >x
�
0 ;

i:e:; x�
1 >0, and so on.

Let us note that in general cases outlined in Example 4.5, process Rt is given
by stochastic equations RtC1 � Rt Dg.t; xt /; t D 0; 1; : : : ; T � 1, where g.t; xt /

is a random function. In this case (4.7), (4.8) would have a form of conditional
expectation rather then quantiles. It is even easy to see for g.t; xt /D atxt , where
at are random variables. In rather general cases a minimization problem (4.6) can
be solved by distribution-free stochastic optimization methods proposed in [5,7–9],
i.e., methods which don’t use (in general) exact probability distributions.

Remark 4.6. (Robust decision). The stopping time � in model (4.6) is not associ-
ated with the violation of safety constraint (4.8). In catastrophic risk management
the model (4.6) is usually considered as an auxiliary submodel. For example, if
random �t are affected by a set of decisions y with a cost function F.y/, then
the minimization of function V.x/ C F.y/ yields robust decision minimizing
total costs under safety constraints (4.8) and a dynamic version of the CVaR risk
measure.

4.6 Intertemporal Inconsistency

The time consistency of discounting means that the evaluation of an investment
project today .t D 0/, will have the same discount factor as the evaluation of the
same project after any time interval Œ0; T 	 in the future. In other words, despite
delayed implementation of the project we always found ourselves in the same
environment. Only geometric or exponential discounting, dt Dd t D eln.d/t D e�
t ;

where 
D � ln.d/, defines a homogeneous time consistent preference:

1X
tD0

d tVt D V0 C dV1 C : : :C dT �1VT �1 C dT ŒVT C dVT C1 C : : :	
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This is also connected with the geometric probability distribution of the discount-
related stopping time � in (4.2): if P Œ� � t 	D d t ; 0 < d < 1, then

P Œ� D t 	 D d t � d tC1 D .1� d/d t ; t D 0; 1; : : : :

In other words, the consistency is the direct consequence of the well-known “mem-
oryless” feature of geometric and exponential probability distributions: for any
t � 0; s � 0,

P Œ� D t C s j � � t 	 D d tCs.1 � d/=d t D d s.1 � d/

Hence, independently of waiting time t , the probability of the stopping time occur-
rence at t C s is the same as at the initial time moment t D 0.

For other discount factors with time-dependent rates, their time inconsistency
requires appropriate adjustments of discount factors for projects undertaken later
rather than earlier. The misperception of this inconsistency may provoke increas-
ing vulnerability and catastrophic losses. Let us consider typical scenarios of such
developments. Section 4.4 shows that the adequate perception of proper discounting
is a challenging task requiring models that allow the explicit evaluation of related
risk profiles. This section, in fact, illustrates that the design of such models has to
be considered as a key mitigation measure to cope with increasing vulnerability.

A number of authors distinguish between various types of so-called “imperfect
altruism” resulting in the lack of social commitment to mitigate risks. For example,
there were alluded definitions of a naive, a sophisticated and a committed (ideal)
society. The main differences between these three societies and how they provoke
catastrophes are summarized in [11] by using a simplified flood management model
outlined in Sect. 4.4. This model has the fixed 100-year horizon T in which three
societies, the naive, the sophisticated, and the committed, live and plan for coping
with the catastrophic losses that may occur due to break of a dyke from 150-year
flood with time consistent geometric probability distribution. They are able to mit-
igate the reliability of dikes and losses by paying fair premiums to the catastrophe
fund. But, depending on their perception of risk profiles or induced discounting, the
results are dramatically different.

The current generation of The Naive Society is aware of a possible catastrophe. It
maximizes the (identical for all generations) value function taking into account the
potential need to save for paying premiums. Unfortunately, it has a misleading view
on the catastrophe, namely, if the catastrophe has not occurred in the later generation
the society believes that it will not occur within the current generation with the same
probability. Thus, it relies on geometric probability distribution and fails to take
into account the time inconsistency induced by increasing the probability of a dike
break due to aging processes. Therefore, the first generation of the society postpones
the implementation of decisions, i.e., the naive society puts also its preferences on
consumption as the first priority consuming at a higher rate than it actually plans.

For the next generation the time is shifted forward by 20 years, and the second
generation, similar to the first, plans but does not implement saving actions essential
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for the catastrophe fund to function. The risk profiles, time preferences, premiums,
and the actions are not adjusted towards the real escalating risks. In a similar way,
behave the next generations. The plans are never implemented and the view on a
catastrophe remains time invariant despite dramatic increase of risk.

The Sophisticated Society implies a correct understanding of the time-inconsistent
discounting induced by the deteriorating system of dikes. But this society, similar
to the naive planners, also evaluates present consumption to be much higher than
the future one. This leads to postponing the decisions. Due to these delays, the risk
burden is increasingly shifted to the next generation, calculated premiums become
higher and higher. If a catastrophe occurs, this society will also be not prepared to
cope with losses as catastrophe management is not functioning.

The “pathologies” of these societies can be explained by their misperception of
risks, and, the lack of committed actions.

The Committed Society is similar to that of the sophisticated society. In contrast
though, this society is able to implement decisions because its calculations demon-
strate that the delays in actions may dramatically affect individuals and the growth
of societies as a whole. Individuals could be better off if their consumption options
were limited and their choices constrained by anticipating risks. As a direct con-
sequence of the committed actions, the premiums that the society pays for coping
with catastrophes in 100 years time are much lower than those of the sophisticated
society.

4.7 Concluding Remarks

The proposed new approach to discounting is based on undiscounted stopping-
time criterion which is equivalent to the standard discounted criterion in the case
of market-related discount factors. In general, the stopping time criterion induces
the discounting that depends on spatio-temporal patterns of catastrophes and vari-
ous relevant decisions. More formally, this paper demonstrates that discount factors
dt ; t D 0; 1; : : : can be associated with the occurrence of an extreme (“killing”)
“stopping time” event at random time � with probability P Œ� � t 	D dt . Con-
sequently, the infinite discounted sum

P1
t D 0 dtVt ; Vt DEvt , is replaced by the

undiscounted expectation E
P�

t D 0 vt within the finite interval Œ0; �	. The use of
the stopping time criterion E

P�
t D 0 Vt induces the standard discounting in the case

when � is associated with the lifetime of market products. In dealing with catas-
trophic risks, the stopping time � can be associated with the arrival time of potential
catastrophic events. The use of random criterion

P�
t D 0 vt allows to address the vari-

ability of valuations even in the case of deterministic flows V0; V1; : : :. In this case,
it is often important to substitute the expected value of random sum

P�
t D 0 vt by its

quantiles. Mitigation efforts affect the occurrence of extreme events and, thus, they
affect discounting, which in turn affects mitigations. This endogeneity of discount-
ing restricts exact evaluations of dt and the consequent use of deterministic methods
and it calls for specific stochastic optimization methods.
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