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Preface

The aim of the series of workshops on “Coping with Uncertainty” (CwU ) organized
at IIASA, Laxenburg, Austria, has been to provide researchers and practitioners
from different areas with an interdisciplinary forum for discussing various ways
of dealing with uncertainties in diverse areas, including environmental and social
sciences, economics, policy-making, management, and engineering. The workshops
proved to be successful, especially in cross-disciplinary sharing methods, ideas, and
open problems.

Science-based support for addressing the on-going global changes needs solu-
tions for fundamentally new scientific problems, which in turn require new concepts
and tools. A key issue concerns a vast variety of practically irreducible uncertainties,
including potential extreme events of high multidimensional consequences, which
challenge traditional models, and thus require new concepts and analytical tools.
This type of uncertainty critically dominates, e.g., the climate change debates. In
short, the dilemma is concerned with enormous costs versus massive uncertainties
of potentially extreme impacts. Traditional scientific approaches usually rely on real
observations and experiments. Yet no sufficient observations exist for new problems,
and “pure” experiments, and learning by doing may be very expensive, dangerous,
or simply impossible. In addition, the available historical observations are often
contaminated by “experimentator”, i.e., past actions, and policies. The complexity
of new problems does not allow us to achieve enough certainty just by increasing the
resolution of models or by bringing in more links. They require explicit treatment
of uncertainties using “synthetic” information composed of available “hard” data
from historical observations, the results of possible experiments, and scientific facts
as well as “soft” data from experts’ opinions, scenarios, stakeholders, and public
opinion. As a result of all these factors, our assessment will always have poor esti-
mates. Therefore, the role of science-based support for addressing the new problems
increasingly changes from the traditional “deterministic predictions” analysis to the
design of strategies that are robust against the involved uncertainties and risks.

This volume contains contributions based on selected presentation at the
CwU2007workshop. The workshop aimed at contributing to a better understanding
between practitioners dealing with the safety of complex systems under uncer-
tainty, and scientists working on either corresponding modeling approaches, or on
methods that can be adapted for improving the understanding and management of
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vi Preface

uncertainty. The focus of the CwU 2007 was on novel approaches to supporting
robust decision-making and design, especially when uncertainty is irreducible, con-
sequences might be enormous, and the decision process involves stakeholders with
diverse interests. Presentations dealt with open problems in this field, limitations
of known approaches, novel methods and techniques, or lessons from applications
of various approaches. In particular, contributions on the following issues were
presented:

� Modeling different types of uncertainty (probabilistic and non-probabilistic)
� The formulation of appropriate deterministic substitute problems for different

types of uncertainty
� Robustness of efficient solutions with respect to inherent uncertainties
� Simulation tools (for optimal decision/design under uncertainty)
� Safety and security of humans, environment, and vital infrastructure facing

catastrophe risks
� Lessons that can be learned from designing and operating highly reliable systems
� Downscaling and discounting methods for handling spatial and temporal scales
� Benefits and costs of (partial) postponing decisions (aimed at reducing uncertain-

ties)
� Open problems in the adequate treatment of uncertainties
� Concrete applications in economics, finance, engineering, energy, population, air

quality, climate change, ecology, forestry, and other environmental problems

The workshop was organized at IIASA in December 2007, jointly by:

* IIASA – International Institute for Applied Systems Analysis, Laxenburg,
Austria

* Federal Armed Forces University Munich, Germany

The scientific Program Committee included: Yuri Ermoliev, IIASA, Laxen-
burg (A); Leen Hordijk, IIASA, Laxenburg (A); Marek Makowski, IIASA, Lax-
enburg (A); Kurt Marti, Federal Armed Forces University Munich (D); Gerhard I.
Schuëller, University of Innsbruck (A).

The organizers gratefully acknowledge the support of:

– GAMM – International Association of Applied Mathematics and Mechanics, and
– IIASA – International Institute for Applied Systems Analysis

Their generous support enabled the participation of many researchers who otherwise
could not have attended the Workshop.

This volume contains chapters based on selected presentations at the CwU2009
and an introductory short summary of the key issues related to the robust solutions.
The chapters are organized into the following four parts:

1. Modeling of uncertainty discusses descriptions of uncertainties of different types
(probabilities, theory of evidence and possibility, imprecise probabilities, fuzzy
sets and variables).
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2. Robust solutions under uncertainty presents new approaches to discounting
applied to evaluation of investments for catastrophic risk management, and to
cost-effective and environmentally-safe emission trading under uncertainties, as
well as modern quantitative modeling methodologies for analysis of network
risks and design of robust networks under uncertainty.

3. Analysis and optimization of technical systems and structures under uncertainty
deals with state estimation of dynamical systems in case of uncertainties of initial
conditions and dynamic parameters described by means of certain ellipsoids, and
with the derivation of stochastic linear programs for the reliability-based opti-
mization of plane frames under stochastic uncertainty with respect to external
loadings and material parameters.

4. Analysis and optimization of economic and engineering systems under uncer-
tainty discusses the variability of the atmospheric deposition of nitrogen in the
sea, the treatment of risks and uncertainties in planning agricultural production
allocation and expansion, the uncertainty in greenhouse gas emission estimates,
consequences of the weather forecasts for the optimal control of agricultural pro-
duction, and the estimation error in retrieving carbon dioxide column abundances
obtained from the GOSAT satellite.

We express our gratitude to all referees, and we thank all authors for the timely
delivery of the final version of their contributions to this volume. Furthermore, we
thank Ms Elisabeth Lößl of the Federal Armed Forces University Munich for her
support in the preparation of this volume. Finally, we thank Springer-Verlag for
including the Proceedings in the Springer Lecture Notes Series “LNEMS”.

Munich, Laxenburg Kurt Marti
June 2009 Yuri Ermoliev

Marek Makowski
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Chapter 1
General Remarks on Robust Solutions

Y. Ermoliev, M. Makowski, and K. Marti

We summarize here the background and key concepts related to robust solutions
in the context of supporting decision-making for problems characterized by deep
uncertainties, which also were in the focus of the previous workshops on Coping
with uncertainty, see, e.g., [3]. Although such problems are fundamentally different
from statistical decision models, yet basic ideas of robust statistics are applicable
to methods supporting robust decision-making under uncertainty. The main new
issues are concerned with a proper representation of uncertainty, and its interac-
tions with decisions. In particular, a key issue is the sensitivity of robust decisions
with respect to low probability catastrophic events, that are of critical importance
for analyzing global change problems. Robust decisions for problems exposed to
extreme catastrophic events are essentially different from over-simplified decisions
that ignore such events. Specifically, a proper treatment of extreme/rare events
requires new paradigms of rational decisions, new performance indicators, and new
spatio-temporal dimensions of heterogeneous interdependencies including network
externalities and risks. This, in particular, needs new approaches to downscaling,
upscaling and discounting.

Global change processes, in particular climate change, involve inherently unpre-
dictable complex interactions between natural and human-created systems therefore
proper modeling of these processes must rely on adequate treatment of uncertain-
ties, and their effects on human’s decisions. Traditional natural science models
are based on relations whose validity is estimated from repetitive experiments and
observations. If experiments do not affect the underlying relations, then repetitive
observations allow to derive them by using the statistical decision theory. Unfor-
tunately, human-created processes do not follow fixed relations. Elements of these
processes change their dimensions and structure. For example, introduction of new

Y. Ermoliev (B) and M. Makowski
International Institute for Applied Systems Analysis, Schlossplatz 1, 2361 Laxenburg, Austria,
e-mail: ermoliev@iiasa.ac.at, marek@iiasa.ac.at

K. Marti
Aero-Space Engineering and Technology, Federal Armed Forces University Munich,
Neubiberg, Munich, Germany,
e-mail: kurt.marti@unibw-muenchen.de

K. Marti et al. (eds.), Coping with Uncertainty, Lecture Notes in Economics
and Mathematical Systems 633, DOI 10.1007/978-3-642-03735-1 1,
c� Springer-Verlag Berlin Heidelberg 2010

1

ermoliev@iiasa.ac.at,
kurt.marti@unibw-muenchen.de
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technologies may increase or reduce uncertainties, risks, critical thresholds and dis-
continuities. Exact identification of global climate change processes is impossible
because such processes are non-stationary, have delayed responses, and human or
natural actions may have catastrophic irreversible consequences.

Under inherent uncertainty of heterogeneous processes the role of integrated
models rests on the ability to guide comparative analysis of rational decisions.
Although exact evaluations are impossible, the preference structure among deci-
sions can be a stable basis for a relative ranking of alternatives in order to design
robust policies, which must be in a sense optimal against all relevant uncertainties.
It is commonly known that finding out (without exact measurement) which of two
parcels is the heavier is much easier than evaluating weight of each parcel.

The term “robust” was introduced into statistics in 1953 by Box [2] and acquired
recognition after the publication of a path-breaking paper by Huber [5]. As Huber
admits, researchers had long been concerned with the sensitivity of standard estima-
tion procedures to “bad” observations (outliers), and the word “robust” was loaded
with many, sometimes inconsistent connotations, frequently for the simple reason of
conferring respectability on it. Appeal for robustness [4] probably dates back to pre-
history of statistics. A distant outlier in observations ruins the least square analysis,
therefore rejection of outliers is a sort of robust statistical procedure. The discussion
about the rejection of outliers is at least as old as the 1777 publications of Daniel
Bernoulli [1]. The mean is not robust to outliers, whereas the median is robust.
Therefore, switching from the mean to the median for long-tailed data increases
robustness. This is also equivalent to switching from quadratic (least square) smooth
optimization to non-smooth optimization principles.

According to Huber [5], “. . . any statistical procedure. . . should be robust in
the sense that small deviations from the model assumptions should impair the
performance only slightly”. This concept of robustness corresponds to standard
mathematical ideas of continuity and stability: when disturbances become small,
the performance of the perturbed model also deviates slightly. In other words, a
robust procedure is in a certain sense optimal with respect to all uncertainties from a
neighborhood of the model. Huber introduced rigorous notions of robustness based
on probabilistic minimax approach and Choquet capacity (imprecise probabilities),
which lead to specific non-smooth stochastic optimization models. By using appro-
priate neighborhoods of probability measures (e.g., with respect to �-contaminated
probabilities, Levy distance, or Kolmogorov distance), he derived robust estima-
tors optimizing the worst that can happen over the neighborhood of the model with
respect to a certain performance indicator. Neighborhoods of probability measures
can also be characterized by Choquet capacities, i.e., functions which define sets
of probability measures by taking all probabilities which lie bellow (or above) a
capacity (point-wise).

These basic ideas of robust statistics as well as the infinitesimal robustness intro-
duced by Hampel [4] are also used for more general decision problems under
uncertainty. In particular, the infinitesimal approach is based on the fact that many
statistics and solutions of general decision models can be considered as functionals
in the space of probability measures. The robustness information is then provided
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by the inference functions, roughly speaking, a derivative (in the space of probabil-
ity measures) of a statistic or a performance indicator at an underlying distribution.
There are also important concepts of Bayesian and non-Bayesian robustness, where
we need not only robustness against deviations from the given parametric model,
but also against uncertainties of the prior distributions.

The word “robust” has become fashionable in statistical decision theory and other
disciplines dealing with data analysis and decisions [4], in particular, for dealing
with questions such as: Which data are of critical importance and should be exam-
ined with a special care? What methods provide the greatest safety? How safe are
results of a model that is known only approximately?

As the concept of statistical robustness is in a sense similar to the problem of
local stability of dynamic systems, the robustness in deterministic control theory
was introduced as an additional requirement on the stability of optimal trajectories.
In other words, additional constraints were introduced in the form of a stability crite-
rion. Optimization theory provides tools for analyzing and solving various decision
making problems. For deterministic models robustness is defined similar to prob-
abilistic minimax robustness in statistics: to optimize the worst that can happen to
performance indicators over solutions x that satisfy feasibility constraints for all
admissible values of uncertainty ! 2 �. The set � is often characterized by a finite
number of scenarios or simple sets such as intervals or ellipsoidal uncertainty which,
in a sense, attempt to substitute for normal probability distributions in a simple but
inconsistent with statistical analysis manner. It is clear that this type of deterministic
worst-case robustness leads to extremely conservative decisions.

After the word robust become fashionable in statistics, it is being used in
many senses, e.g., “quantitative robustness”, “…-robustness”, “B-robustness”, see,
e.g., [4]. The situation becomes more complex for general decision problems under
uncertainty dealing with quite different decision situations which may have a vast
variety of different facets of robustness. Therefore, in order to avoid dangerous con-
fusions, the term “robust” must be precisely defined in every specific context. This is
similar with other notions whose meaning depends on the context, e.g., fairness, effi-
ciency, optimality. For example, a decision is optimal only with respect to precisely
specified conditions.

Statistical decision theory deals with situations in which a model of uncertainty
and corresponding optimal solution are defined by a sampling model character-
ized by a probability measure P with an unknown vector of “true parameters” x�.
Vector x� defines a desirable optimal solution, its performance can be observed
from the sampling model, and the problem is to recover x� from these data. Poten-
tial estimates of x� define feasible solutions x of a statistical decision problem.
It is essential that x does not affect the sampling model P so that the optimality
and robustness of solutions can be evaluated by a distance from x� by using its
observable performance.

The general problems of decision making under uncertainty deal with funda-
mentally different situations. The model of uncertainty, feasible solutions, and
performance of the optimal solution are not given and all of these have to be char-
acterized from the context of the decision making situation, e.g., socio-economic,
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technological, environmental, and risk considerations. As there is no information
on true optimal performance, robustness cannot be also characterized by a dis-
tance from an observable true optimal performance. Therefore, the general decision
problems may have rather different facets of robustness. In particular, probabilis-
tic minimax solutions may seem too pessimistic or too optimistic for coping with
potentially catastrophic events. Therefore, other concepts of robustness are required.
Such concepts may be based on, e.g., expected utility maximization, stochastic
optimization, stochastic minimax models.

In the presence of uncertainty, any related decision x results in multiple outcomes
such as costs, benefits, damages, and risks, as well as indicators of fairness, equity,
and environmental impacts. The outcomes depend not only on decisions x but also
on uncertainty characterized by ! 2 �, where �, denotes a set of admissible
scenarios.

Scenario analysis is often used as a straightforward approach to find a decision
that is “optimal” with respect to all scenarios by attempting to solve the decision
problem for all possible scenarios. Unfortunately, a given decision x for different
scenarios ! may have rather contradictory outcomes which do not really tell us
which decision is reasonably good for all scenarios.

In 1738 mathematician Daniel Bernoulli (see discussion in [7]) introduced the
concept of expected utility maximization as a rule for choosing decisions under
multiple outcomes. It is assumed that all outcomes gi .x; !/, i D 1; : : : ; K can be
summarized in a single measure of preferability, e.g., a monetary payoff denoted by:
q.x; !/ D Q.g1; : : : ; gK/. The standard expected utility model suggests to choose
a decision x that maximizes an expected utility function

U.x/ D Eu.q.x; !// D
Z

u.q.x; !//P.d!/;

i.e., in a sense, for all ! 2 �, where u.�/ is a utility associated with an aggregate
outcome q.x; !/. The shape of u defines attitudes to risks. This model presupposes
that one can rank the alternative scenarios ! according to weights – objective or
subjective probability measure P .

The use of a probability measure as a degree of belief was formalized by
Ramsey [6]. Savage published [7] a thorough treatment of expected utility maxi-
mization based on subjective probability as a degree of belief. As a result of this
work the use of probability measure became a standard approach for modeling
uncertainty by using “hard” observations and “soft” public and expert opinions in a
consistent way within a single model. Although a decision maximizes the expected
utility, in a sense, for all scenarios, still it cannot be considered to be a robust solu-
tion. The shortcomings of the expected utility model are well known. Generally, it is
practically impossible to find a utility function that enables satisfactory aggregation
of various attributes in one preferability measure, including attitudes to different
risks, the distributional aspects of gains and losses, the rights of future generations,
and responsibilities for environmental protection.
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For complex problems it is natural that different performance indicators should
be used to evaluate robustness of the integrated system in the same way as we use
indicators of health (e.g., temperature and blood pressure for humans). An expected
utility model is a specific case of stochastic optimization (STO) models that use
various performance indicators fi .x; !/, i D 1; : : : ; m, one of which can be the
expected utility (disutility). These indicators depend on outcomes gk.x; !/, k D
1; : : : ; K , on x and !, i.e.,

fi .x; !/ WD qi .g1; : : : ; gK ; x; !/:

A rather general STO problem is formulated as optimization (maximization or
minimization) of the expectation function

F0.x/ D Ef0.x; !/ D
Z
f0.x; !/P.d�/

subject to constraints

Fi .x/ D Efi .x; !/ D
Z
fi .x; !/P.d�/ � 0; i D 1; : : : ; m:

The choice of proper indicators fi .x; !/ and outcomes gk.x; !/, k D 1; : : : ; K ,
is essential for the robustness of x. Globally or regionally aggregated outcomes are
less uncertain but they may not reveal potentially dramatic heterogeneities induced
by global changes on individuals, governments, and the environment. For instance,
an aggregate income or growth indicators may not reveal an alarming gap between
poor and rich regions, which may cause future instabilities.

By choosing appropriate outcomes gk.x; !/ and functions fi .x; !/, STO mod-
els allowing a natural and flexible way to represent various risks, abrupt changes,
spatio-temporal heterogeneities, equity constraints and the sequential resolution of
uncertainty in time. Often, under proper robustness requirements, fi .x; !/ are ana-
lytically intractable, non-smooth, and even discontinuous functions, and probability
measure P is chosen from a feasible set, thus is imprecise; moreover, P often
depends on x, which is essential for modeling endogenous extreme events and
catastrophic risks, and non-Bayesian robustness. It is often practically impossible to
identify uniquely subjective (and objective) probability as a degree of beliefs. Most
people cannot clearly distinguish between probability ranging roughly from 0.3 to
0.7. Decision analysis often has to rely on imprecise statements, for example, that
event e1 is more probable than event e2 or that the probability p1, p2 of event e1 or
of event e2 is greater than 50% and less than 90%. Therefore, feasible sets of prob-
abilities may be represented by inequalities such as p1 � p2, 0:5 � p1 Cp2 � 0:9.
As in robust statistics, the robust solutions of general decision models can be derived
by using worst-case (for a given decision) probability distribution from the feasible
sets of distributions satisfying constraints of STO model. The applicability of the
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infinitesimal approaches is facilitated by the fact that solutions of STO models are
functionals of underlying probability measures.

In contrast to the expected utility based approaches, the STO models support inte-
grated solutions composed of anticipative ex-ante and adaptive ex-post decisions,
which in turn allows to model flexible decision processes with adaptive adjustments
of anticipative decisions when new information becomes available. The ability of
STO models to incorporate both anticipative ex-ante and adaptive ex-post decisions
induces non-smooth criteria and risk aversion among ex-ante decisions that implic-
itly depends on input data and practically cannot be characterized by an exogenous
utility function. In particular, even in the simplest linear model (see [3] and chapters
of Part II of this volume) the co-existence of ex-ante and ex-post decisions induces
quantile-type risk measures. Therefore, this approach allows to substitute mean val-
ues by median or/and other quantiles without destroying convexity (concavity) of
models.

A fundamentally new aspect of robustness for general decision problems is the
sensitivity (or discontinuity) of robust solutions with respect to extreme (low prob-
ability and high consequences) events affecting large territories and communities,
see [3]. Although potential extreme events with large-scale catastrophic impacts
dominate the global change policy discussions there is no agreement on the corre-
sponding measures of the changes and the impacts. For example, a commonly used
measure is the projected global mean temperature change, which falls within the dif-
ference between the average temperature of cities and their surrounding rural areas,
and cannot be reliable indicator of climate change. Actually, global climate change
impacts can be properly evaluated only in terms of local temperature variability
and related extreme events, in particular, heat waves, floods, droughts, wind-storms,
diseases, and sea-level rise.

Unfortunately, ignorance of extreme events explicitly or implicitly through inad-
equate treatments of their impacts can be dramatically misleading. The latter is
especially dangerous since it provides an illusion of truly comprehensive analysis. A
500-year disaster, e.g., an extreme flood that occurs on average once in 500-years is
often considered as irrelevant for many future generations, but actually it may occur
next year and destabilize economy for many years. However, existing extremal value
theory deals primarily with independent variables quantifiable by a single num-
ber, e.g., money. Therefore, the use of this theory may also be misleading, because
catastrophes are definitely not quantifiable events in this sense. They have different
patterns, spatial and temporal dimensions and induce heterogeneity of losses and
gains, which exclude the use of aggregate space-less characteristics. Globally, an
average resident may even benefit from some climate change scenarios, while some
regions would be simply wiped out.

Ignorance of spatio-temporal details leads to models and solutions which are
insensitive to large-scale extreme events (outliers), therefore formally can be viewed
as robust solutions demonstrating insignificance of threats related to on-going global
changes, say, climate change. The approaches presented in [3] and in this volume
allow to properly address issues of robustness of solutions for problems exposed
to catastrophic events. In particular, probabilistic maximin (minimax) robustness
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may not be sufficient for this. A more general approach is the combination of the
probabilistic and so-called stochastic maximin approach maximizing

min
p2P

Emin
z2Z

f0.x; y; z; �/

under constraints of STO model, where x are decision variables, and scenario ! is
defined by the vector of variables y, z, and �: ! D .y; z; �/. The components of !
are: y 2 Y , variables representing uncertainty ranked by an objective or subjective
probability measure from P ; z 2 Z, variables representing potential extreme ran-
dom scenarios, as in the extremal value theory; � are variables ranked by a fixed
probability measure as in the basic STO models. The concept of stopping time
allows to focus the analysis on the least-probable and the most destructive extreme
events. As shown in [3], there are strong connections between the stopping time
concept and the stochastic maximin.

In the absence of sufficient information, models play a key role in comparative
analysis of alternative solutions for designing robust policies. Any policy analy-
sis focuses attention on situations where processes can be changed by decisions
that should be selected in the best possible manner. In reality, a proper structure
of models, e.g., sets of proper decision are also uncertain and they can be speci-
fied through a dialogue of users with models. Specification of such models include
use of quantiles, thresholds, and stopping times, which in turn require specific non-
smooth stochastic optimization methods. Effective analysis of such models requires
development of specific fast adaptive Monte Carlo optimization procedures.
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Chapter 2
On Joint Modelling of Random Uncertainty
and Fuzzy Imprecision

Olgierd Hryniewicz

Abstract The paper deals with the problem of the mathematical description of
uncertainties of different type. It has been demonstrated by many authors that the
theory of probability is not always suitable for the description of uncertainty related
to vagueness. We briefly present some of the most promising theories which have
been recently proposed for coping with this problem. Then, we concentrate our
attention on the application of fuzzy random variables which seem to be very useful
for the joint modelling of random uncertainty and fuzzy imprecision, and for the sta-
tistical analysis of imprecise data. The application of the statistical methodology for
fuzzy data, called fuzzy statistics, is illustrated with two practical examples, typical
for the problems of systems analysis. First example is devoted to the problem of the
estimation of greenhouse gases inventories. In the second example, typical for the
problems of making decisions using small amount of available data, we show how
fuzzy approach can be used for the improvement of sequential statistical tests.

2.1 Introduction

Coping with uncertainty is an important problem in many areas of science, but in
systems analysis and decision sciences it becomes a really crucial one. In both these
branches of science uncertainty is always present, as systems analysts and deci-
sion makers have never full information about past, current and future “states of the
world”. Thus, their information about consequences of proposed by them actions,
which is necessary, e.g. for finding optimal decisions, is rarely precise and fully
reliable. Moreover, they usually cannot present descriptions of processes of their
interest with accuracy which is typical, e.g. for physics, chemistry or astronomy.
Therefore, they need to use a formal language that could be used for sufficiently
precise description of uncertain events, actions, etc. For many decades it appeared
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to the majority of scientists that the theory of probability and mathematical statistics
is the only methodology that should be used for the formal description of uncer-
tainty. However, during last few decades many scientists working in such areas like
psychology, economic sciences, quantum physics, artificial intelligence, etc. have
raised questions about possible inadequacy of the classical (Kolmogorov’s) theory
of probability when applied for solving their particular problems.

This situation is far from being unexpected. If we look at any good dictionary
of, e.g. English we can find that the word “probable”, which definitely describes
uncertainty, has many synonyms and other related words. For example, such words
like “possible”, “plausible”, and expressions like “likely to be true”, “hopeful”,
“to be expected” (and their antonyms) are used for the description of a state on
uncertainty. One may expect that they are used for expressing slightly different
types of uncertainty, and are not fully exchangeable with the word “probable”.
The differences between their meanings raised doubts among philosophers and
mathematicians about the role of the classical theory of probability as the sole
mathematical language for the description of uncertainty.

Basic problems with the applicability of the classical theory of probability
inspired mathematicians who proposed other, not necessarily equivalent, theories
of probability. Some of them are described in a classical book of Fine [24]. Other
doubts were raised by the founder of the theory of fuzzy sets L.A. Zadeh who
claimed that the classical theory of probability cannot describe uncertainty related
to innate imprecision of many notions and ideas expressed in a plain human lan-
guage. In his seminal paper [95] Zadeh proposed to use the formalism of fuzzy sets
as the formal language of the theory of possibility. Another criticism of the classi-
cal probability came from economists and psychologists. The Nobel Prize winner in
economics H. Simon in his book [77] noticed that people do not make their decisions
according to the principle of expected utility which is based on the classical theory
of probability. Other doubts were raised by other Nobel Prize winners Tversky and
Kahneman who noticed in their works (see, for example, [83]) that probabilities
evaluated by humans are not necessarily additive, as it is assumed in the classical
theory of probability. An interesting description of theoretical and practical prob-
lems with the applicability of the classical theory of probability can be found in
the paper by Bordley [5] who also noticed that this theory is in a certain sense
incompatible with the quantum physics.

The existence of many extensions and modifications of the classical theory of
probability creates problems for systems analysts and decision makers who are
expected to model systems in presence of uncertainties of different types. In the
second section of this paper we present a very brief description of several general-
izations of classical probability. This has to be done in order to set borders between
those areas where classical probability is still the best (and probably the only) math-
ematical model of uncertainty and the areas where its generalizations are needed.
We claim that in the majority of practical cases the combination of classical proba-
bility and Zadeh’s theory of possibility is sufficient for the description of complex
systems and making decisions. We describe this methodology in the third section of
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the paper. Examples of the application of fuzzy random models and fuzzy statistics
are given in the fourth section of the paper. We show that in case of information that
has both random and imprecise nature some additional indices, like possibility and
necessity measures, are indispensable for a correct description of decision making
problems.

2.2 Generalizations of Classical Probability
and Their Applications in Decision Making

2.2.1 Measures of Uncertainty and Criteria of Their Evaluation

Close analysis of the human perception of uncertainty reveals that this concept does
not have one, unanimously approved, interpretation. Zimmermann [96] notes that
any definition of uncertainty has to be to some extent arbitrary and subjective. He
proposes the following one:

Uncertainty implies that in a certain situation a person does not dispose about informa-
tion which quantitatively and qualitatively is appropriate to describe, prescribe or predict
deterministically and numerically a system, its behavior or other characteristica.

This definition is definitely technology-oriented. One may say that everything
what prevents us to describe reality in a deterministic way may be considered
as a facet of uncertainty. Thus, there exist many different causes of uncertainty.
Zimmermann [96] lists the following: lack of information (quantitative or quali-
tative), abundance of information, conflicting evidence, ambiguity, measurement,
and belief. It is not surprising that he does not believe that the general theory of
uncertainty which is able to describe these completely different sources of uncer-
tainty exists, and appropriate mathematical models should be context-dependent.
They could be formulated either as different generalizations of probability, or may
be formulated in another way, such as Pawlak’s rough set theory (see, e.g. [67]) or
convex modeling proposed by Ben-Haim and Elishakoff [3].

If we look at different theories of uncertainty we can notice that they can be
divided into two general groups: those based on methods of mathematical logics
(such as the rough sets theory) or those based on the theory of probability and its
generalizations. In this paper we restrict our interest only to the second one. This
restriction arises from a fact that in the majority of practical cases the classical the-
ory of probability is sufficient for the mathematical description of uncertainty. This
popularity of classical probabilistic models of uncertainty makes many specialists
to believe that classical probability is the only mathematical theory that is sufficient
for the formal description of uncertainty. Insufficiency of this approach was noticed
only recently, mainly by specialists in decision-making or expert systems. Peter
Walley, who is the one of the most prominent persons representing that group of
scientists, presents the list of pertinent mathematical models, in order of their gener-
ality [88] (in parentheses, there are given the most important, according to Walley,
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references, and indicated by him typical areas of application):

� Possibility measures and necessity measures ([18, 95], vague judgments of
uncertainty in natural language)

� Belief functions and plausibility functions ([12, 76], multivalued mappings and
non-specific information)

� Choquet capacities of order 2 ([8,13,45], some types of statistical neighborhood
in robustness studies, and various economic applications)

� Coherent upper and lower probabilities ([45, 56, 78], personal betting rates, and
upper and lower bounds for probabilities)

� Coherent upper and lower previsions ([86, 87, 92], buying and selling prices
for gambles, upper and lower bounds for expectations, and envelopes of expert
opinions)

� Sets of probability measures ([4, 36, 58], partial information about an unknown
probability measure, and robust statistical models)

� Sets of desirable gambles ([86,91,93], preference judgments in decision making)
� Partial preference orderings ([34, 86], preference judgments in decision making)

Walley [88] also notices:

� Partial comparative probability orderings ([25, 47, 49], qualitative judgements of
uncertainty)

In order to evaluate and compare all competing theories of uncertainty (includ-
ing classical probability) Walley [87] proposes to take into account the following
criteria:

(a) Interpretation
(b) Imprecision
(c) Calculus
(d) Consistency
(e) Assessment
(f) Computation

The proposed measure of uncertainty has to be sufficiently easy to understand
by its users. For example, conclusions inferred from the application of the theory
should be clear enough to be useful for making decisions. It should be able to model
partial or complete ignorance, reflected, for example, in imprecision of statements
of natural language. There should be rules for merging uncertainties, updating, and
using them in inferential processes. There should be methods for the evaluation
of coherence of all assessments formulated using the theory and its assumptions.
A useful theory of uncertainty should provide guidance how to make assessments
about uncertain events and handle imprecise judgments of different types. Finally,
it should be computationally feasible. More comprehensive interpretation of the
criteria presented above and their practical and theoretical importance can be found
in [87].

All these requirements may have different importance in different applications,
and none of the existing theories and measures of uncertainty fulfills them
sufficiently well. For example, the classical theory of probability does not meet
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sufficiently well criteria (b) and (e), and for this reason philosophers, mathe-
maticians, economists, psychologists, and specialists in expert systems have been
making a lot of efforts in order to introduce more general, and more useful in specific
applications, theories of uncertainty. In the following subsections of this section we
present very brief description of some of these theories. This presentation is needed,
in our opinion, for the understanding of limits which still exist if we try to cope with
uncertainty inherent in the analysis of complex systems.

2.2.2 Probability

The theory of probability is the best known, and the most frequently used in practice,
theory of uncertainty. Many specialists claim that it is the only consistent theory that
describes all types of uncertainty, both aleatoric describing randomness observed in
repeated experiments and epistemic describing uncertain information provided by
human beings (e.g. experts). It has a well established mathematical formulation,
and efficient methods for processing information described using probabilistic con-
cepts. However, despite its four hundred years lasting history its fundamentals are
still subject to different interpretations and controversies. In general, there exist two
different interpretations of the classical probability: an objective “frequentist” inter-
pretation, based on the analysis of empirical observations of series of events, and
subjective “Bayesian” approach, based of subjective assessment of probabilities of
events. It is interesting that even in the 1960s the second approach was dismissed as
“non-scientific” by the majority of statisticians, and not present in nearly all popular
textbooks. On the other hand, the supporters of the Bayesian approach presented
in books of Savage [74] and de Finetti [26, 27] pointed out apparent incoherences
inherent for the frequentist approach (see, for example, an excellent monograph by
Lindley [59]).

The basics of the theory of probability are well described in all textbooks on
probability and statistics. Therefore, there is no need to present them in details in
this paper. However, we are going to point out those assumptions of this theory
which are criticized by some authors who see them as main reasons of discrepancies
between theory and practice of coping with uncertainties.

According to Kolmogorov’s theory of probability there exists a sample space
� consisting of disjoint elements, called elementary states, or simply states. These
states need not be necessarily observable. Then, Kolmogorov postulates a Borel-
field set B consisting of some, but not necessarily all, subsets of �. The elements
of B are called events and represent observable outcomes of actual or hypotheti-
cal experiments. Probabilities are assigned only to elements of B , so they are not
assigned to those states of � that do not belong to B . One can argue, however, that
those events which cannot be included in an appropriate �-algebra are irrelevant
and may be treated as Lebesgue null sets. A counter-argument to this point of view
may be the following: in presence of partial information (or partial ignorance) we
may not be entitled to make such claims. The consequence of these assumptions
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is far-reaching, and it does not depend upon the interpretation of probability.
It means that every event can be precisely described using the elements of �.
Another consequence refers to the feature which Walley [87] calls “Bayes dogma
of precision”. According to this feature of the theory of probability, every uncer-
tain entity (physical object, value of a parameter, etc.) can always be described
by a precisely defined probability distribution. Some supporters of this assumption
even question the reality of situations when the only available information about
uncertainty can be presented in form of an interval (see quotations presented in the
paper [23] which summarizes discussions on the problems related to the treatment of
epistemic uncertainty). When probabilities are assessed by frequencies of observed
precisely defined events there are no fundamental problems with the accuracy of
their evaluation. However, when they are assessed subjectively (and we have to
remember that according to the followers of the Bayesian probability and statistics
it is the only coherent way of doing this) it is assumed that they may be interpreted
as precisely defined fair betting rates. The behavioral interpretation of probabilities
in terms of fair betting rates was originally introduced by de Finetti (see [27]) who
has shown that betting in favor of an event A against its complement AC will not
lead to sure loss only if betting odds are P.A/ to 1 � P.A/, where P.A/ is equal
to the probability of event A. Moreover, from the postulate of fair betting rates and
some additional coherence requirements one can derive that probability is nonnega-
tive, normalized, and finitely-additive set function. In addition, Savage [74] proved
that the theory of subjective probabilities constitutes the basis for an axiomatized
and coherent theory of decision-making.

Despite of all these unquestionable advantages, empirical observations show
however, that in the presence of partial or full ignorance about events of inter-
est such precise assessments of probability cannot be made. Moreover, the actual
behaviour of decision-makers differs from that prescribed by the theory based on
classical precise probabilities. Bordley [5] argues that this apparent inconsistency
is due to the fact that real decision-makers take into account incompleteness of
their information. This leads us (and many other researches working in the area
of decision sciences) to the conclusion that in case of imprecisely defined states and
events it is not possible to obtain precise values of their probabilities, and hence to
make precise prescriptions in decision-making processes. A counterargument to this
opinion presented by rather dogmatic followers of the classical Bayesian approach
to probability is the following: their theory shall be considered as the normative
one, and all the differences between the theory and the actual human behaviour
are always due to human weakness and shall be overcome by using more precise
measurements and precise problem formulation. In many practical cases this is def-
initely true. However, even in principle this standpoint can be questioned using the
results from quantum physics. Bordley [5] shows that as the consequence of the
Heisenberg Uncertainty Principle some events cannot be precisely observed, and
in such a case precise probability statements are in principle impossible. There-
fore, generalizations of classical probability are necessary if we want to deal with
imprecisely defined events and with partial information about probabilities of their
occurrence.
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It has to be stressed, however, that once the probability distributions describ-
ing uncertain phenomena have been defined, the mechanisms of the theory of
probability are sufficient for further analysis of uncertain phenomena. For this
reason probabilistic methods, such as Bayesian methods, are generally used in prac-
tice. Basic principles of the application of the Bayesian methods are described in
classical textbooks by Raiffa and Schleifer [69] and De Groot [11]. Examples of par-
ticular applications are presented in numerous publications from virtually all areas
of science. The only point of criticism formulated against this approach stems from
the fact that according to some scientists the existing imprecise or incomplete infor-
mation does not allow us to propose those precisely defined probability distributions
without making some additional assumptions. Other approaches proposed in order
to cope with this problem are presented in the next sections of this paper.

2.2.3 Dempster–Shafer Theory of Evidence
and Possibility Theory

The notion of possibility attracted attention of philosophers, economists, logicians,
etc. Dubois and Prade [20] notice that first attempts to formalize the concept of pos-
sibility were made in the late 1940s by the economist Shackle [75] who proposed a
calculus of “potential surprise” as the base for decision-making. The works of many
authors, who have noticed the deficiency of the theory of probability in dealing with
many practical problems have led to more or less independent formalizations of two
similar theories of uncertainty: Dempster–Shafer theory of evidence and possibility
theory.

The concept of possibility can be interpreted in different ways. For example, it
can be understood as an objective notion or as an epistemic and subjective one.
Zadeh [95] understands possibility as objective feasibility; an objective measure of
physical easiness to achieve a certain goal. By his famous example of a possibilistic
statement, “it is possible for Hans to eat six eggs for breakfast”, he shows an exem-
plary information which is difficult, or even hardly possible, to be formalized using
theory of probability. This type of interpretation of possibility is closely related to
the idea of preference. Alternatives that are more easily achieved (more feasible)
are usually more preferred. This relation has been described in details in the paper
by Dubois, Fargier, and Prade [14]. Second interpretation of possibility is an epis-
temic one, and is given in terms of plausibility. An event is fully plausible when its
occurrence does not create any surprise. This type of interpretation has subjectivistic
nature and means that possibility may represent consistency of the observed event
with available knowledge. Possibility, understood as plausibility of an event, may
also have an objectivistic interpretation, and can be evaluated from the observations
of upper bounds of frequency of its occurrence [17]. There also exists a deonto-
logic interpretation of possibility (something is possible when it is allowed by law),
but satisfactory formal description of this type of possibility has not been proposed
yet. All those interpretations, which in the majority of practical cases are hardly
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exclusive, lead to the same mathematical description based on fuzzy sets and fuzzy
logic (see the book by Dubois and Prade [18] for more information).

The basic notion of the possibility theory is a possibility distribution function
�.!/, defined on the possibility space � (a frame of discernment) which may not
be the same as the sample space defined in the theory of probability. The value of
0 � �.!/ � 1 represents the measure of possibility of an element ! from the set
�. It is usually assumed that supf�.!/ W ! 2 �g D 1. A possibility measure
of a subset A of � is defined as �.A/D supf�.!/ W ! 2Ag. There exist many
versions (extensions) of the possibility theory, but in all of them the axiom of finite
additivity, characteristic for the probability theory, has been replaced by the axiom
of maxitivity. LetA andB be two events, and….A/ and….B/ be, respectively, their
possibilities. Then,

….A [ B/ D max.….A/;….B//: (2.1)

In his seminal paper [95] Lotfi A. Zadeh proposed to use the formalism of the fuzzy
sets theory as the mathematical formalism of the possibility theory. According to
this proposal the possibility distribution function that assigns measures of possibil-
ity (understood according to the assumed interpretation of this notion) to elements of
a certain set (or equivalently, to values of a certain numerical variable) may be inter-
preted as the membership function assigned to that set. This interpretation allows to
use a well developed formal mechanism of the fuzzy sets theory in many different
applications. The book by Dubois and Prade [18] describes the links between these
two theories, and presents methods for the calculation of numerical values of pos-
sibility and necessity measures, both typical for the possibility theory. Moreover,
Dubois and Prade [18] pointed out possible links between possibility and prob-
ability. According to this interpretation possibility distributions may be regarded
as upper envelopes for families of probability distributions. The mutual relation
between these two major theories of uncertainty have been later explained and clar-
ified using the Dempster–Shafer theory of evidence. The recent results published
in papers of Walley and de Cooman [89], and de Cooman [9] show that measures
of possibility are the special case of imprecise probabilities, and thus have a well
defined behavioural interpretation.

The original motivation for the development of the possibility theory was to
describe imprecise notions or imprecise pieces of information given as statements of
a natural language such as, e.g. “costs are high”, “time to failure is about 5 hours”,
etc. As a matter of fact, the founders of the possibility theory saw this theory as
fundamentally different from the probability theory. They considered the possibility
theory as the formalism for the description of uncertain events or uncertain (par-
tial) information in cases where the probability theory failed to provide satisfactory
description. On the other hand, the theory of evidence (also known as the theory
of belief functions) proposed originally by Dempster [12] and further developed by
Shafer [76] aimed at the generalization of the probability theory for dealing with
such problems. The basic assumptions of the Dempster–Shafer theory of evidence
look similar to the basic assumptions of the theory of probability. It is assumed
that there exists a certain possibility space �, but probability measures, called in
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this theory “probability mass assignments”, in contrast to the probability theory, are
defined on its whole power set 2�. This allows to assign probability to an event
formed by a set algebra of the elements of the possibility space � which in the
case of this particular event are indistinguishable, as this is typical for imprecisely
described notions.

In the Dempster–Shafer theory of evidence uncertainty is measured using belief
functions. A belief function Bel, defined on all subsets of the possibility space �, is
written in the form

Bel.A/ D
X
B�A

m.B/; (2.2)

where m is a probability mass assignment function on all subsets of �, such that
m.;/ D 0, m.B/ � 0 for all B � � and

P
B��m.B/ D 1. In the Dempster–

Shafer theory of evidence there exists also a notion of plausibility which is conjugate
to the notion of belief. The conjugate function to the belief function is called the
plausibility function Pl, and is defined by

P l.A/ D 1 � Bel.AC / D
X

B\A¤;
m.B/; (2.3)

whereAC is the complement of the set A. It has been shown that there exists a close
relationship between the Dempster–Shafer theory of evidence and the possibility
theory. When all elements, say A1; A2; : : : ; An, of the set � form a nested set (such
that A1 � A2 � : : : � An) then there exists a direct relationship between the mass
probability assignments of the Dempster–Shafer theory and the possibility distri-
bution defined as a membership function of a certain fuzzy set (see [19] for more
general results). Thus, the possibility theory (for one of its possible interpretations)
may be regarded as a special case of the more general Dempster–Shafer theory of
evidence. This relationship was used by several authors, who proposed methods for
making probability – possibility transformations. Unfortunately, a unique one-to-
one transformation between probability and possibility does not exist. Thus, any
transformation of this type can lead to loss of information (especially from less pre-
cise, but containing more information about the event of interest, possibility to more
precise probability), and transformation methods proposed by some authors differ
in the methodology used to decrease that loss. One of these methods, proposed by
Klir [29,48] is based on the principle of information invariance. The other approach,
based on the optimization of information content, has been proposed by Dubois et al.
[21]. More information on the problem of probability – possibility transformation
can be also found in [20].

Despite their very close relations, the possibility theory and the Dempster–Shafer
theory of evidence are used in different areas of application. The Dempster–Shafer
theory is mainly used in building computer expert systems or, in a more gen-
eral setting, in computerized decision support systems. It is not used, however, in
data analysis and in those instances of decision-making processes where statistical
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data (precise or imprecise) have to be merged with subjective information. In this
particular domain of application the possibility theory is used in practice much more
frequently. We will discuss those applications of the possibility theory in the next
section of this paper.

2.2.4 Imprecise Probabilities and Their Generalizations

Possibility theory and its main tool, the possibility distribution, have been found
very useful for the formal description of imprecise information. However, claims –
expressed, for example, by Zadeh – that it is also useful for the formalization
of imprecise descriptions of probabilities (in statements like “event A is much
more probable than event B”) have been questioned by Walley [86]. In one of his
toy examples Walley considers the following information about possible outcomes
(win(W ), draw (D) or loss(L)) of a football game [86, 87]:

(a) Probably not W .
(b) W is more probable than D.
(c) D is more probable than L.

Walley convincingly explains that information of this type cannot be used, without
making some arbitrary assumptions, for the precise evaluation of the probability of,
e.g. the winP.W /. The only consistent evaluation can be done in terms of imprecise
probabilities: lower probability P.W / and upper probability NP.W /.

Different concepts, such as interval probabilities or non-additive probabilities,
introduced independently by many authors, are covered by the framework of impre-
cise probabilities. The most comprehensive theory of imprecise probabilities, defi-
ned as lower and upper probabilities, was proposed by Walley [86] who introduced
the notion of coherent lower (upper) probability. Coherent lower probability may be
interpreted as a lower envelope of a set of probability measures that fulfills certain
coherence requirements. The similar interpretation exists for the upper probabil-
ity. The behavioural interpretation of lower probabilities was proposed by Walley
[86]. This interpretation is based on the generalization of a similar interpretation
of subjective probabilities introduced by de Finetti. According to Walley (see also
[87]) the lower (or upper) probability of an event A can be interpreted by specifying
acceptable betting rates for betting on (or against) A. If the betting odds on A are x
to 1 � x one will bet on A if x � P .A/ and against A if x � NP.A/. The choice is
not determined if x is between P .A/ and NP .A/. The basic properties of lower and
upper probabilities can be summarized as follows:

(a) P .;/ D NP.;/ D 0.
(b) P .�/ D NP .�/ D 1.
(c) NP .A/ D 1 � P.AC /.
(d) 0 � P .A/ � NP .A/ � 1.
(e) P .A/ D P .B/ � P .A[B/ � P .A/C NP.B/ � NP .A[B/ � NP .A/C NP.B/,

for disjoint events A and B .
(f) P .A[ B/C P.A \ B/ � P .A/C P .B/, for all events A and B .
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It is worth to note, that precise probabilities are the special case of lower and
upper probabilities such that P .A/ D NP.A/. Moreover, possibility and neces-
sity measures of the possibility theory and belief and plausibility measures of the
Dempster–Shafer theory of evidence are lower and upper probabilities. On the
other hand, as it was noted by Walley (see, e.g. [87] and [88]) not all lower and
upper probabilities can be interpreted as possibility measures or measures of the
Dempster–Shafer theory.

In certain problems of decision-making lower and upper probabilities are not
sufficient for dealing with imprecise information. Their further generalization was
proposed by Walley (see [86,88]) in his theory of lower and upper previsions. These
measures of uncertainty are introduced in terms of gambles. A gamble X , defined
on a non-empty space � of the outcomes of an experiment represents an uncertain
reward X.!/ if the outcome of the experiment is ! 2 �. Gambles are expressed in
units of some linear utility scale. Below, we present the formal definition of lower
and upper previsions, as it was given in [88].

Definition 2.1 (Walley [88]). A bounded mapping from � to R (the real num-
bers) is called a gamble. Let K be a nonempty set of gambles. A mapping P W
K! R is called a lower prevision or lower expectation. A lower prevision is
said to be coherent when it is the lowest envelope of some set of linear expec-
tations, i.e. when there is a nonempty set of probability measures, M, such that
P .X/DminfEP .X/ W P 2 Mg for all X 2 K, where EP .X/ denotes the
expectation of X with respect to P . The conjugate upper prevision is determined
by NP.X/ D �P .�X/ D maxfEP .X/ W P 2 Mg.

The lower prevision P.X/ can be interpreted as a supremum acceptable buying
price for X . Indicators of events are particular cases of gambles. In such a case,
lower and upper previsions coincide with lower and upper probabilities. More infor-
mation about lower (and upper) previsions can be found in the cited above papers
of Walley or in the survey paper by Miranda [61].

The lower (upper) previsions seem to be general enough for the description of
subjectively perceived uncertainty. Classical (Bayesian) probabilities, measures of
possibility, and Dempster–Shafer measures of evidence can be interpreted as special
cases of lower (upper) previsions. From a theoretical point of view this theory is suf-
ficiently well developed. However, there exist some basic problems which require
further investigations. For example, the problem of updating the values of impre-
cise probabilities when new pieces of information are available (i.e. the problem of
conditioning) still needs some investigations, as a single generalization of the Bayes
updating rule has not been proposed yet. The existing problems with updating pro-
cedures are related, for example, to the problems of dealing with observations whose
prior probabilities are equal to zero. Other problems arise in relation to concepts of
independence or conditional independence. There exist also problems with model-
ing (in terms of uncertainty) the concepts of preference and weak preference (for
example, lower previsions cannot distinguish preference from weak preference).
All these problems (for more information, see [88]) motivate researchers to look
for more general mathematical models of uncertainty. Some of these models have
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been indicated in the first subsection of this section. It is interesting that the need to
develop more general models of uncertainty has been also recognized in the com-
munity of classical Bayesians. The concept of robust Bayesian inference (see, e.g.
the paper by Berger [4]) seems to be closely related to the problems presented in
this paper. Moreover, some concepts of frequency-based robust statistics (the notion
of �-contamination) can be interpreted using the language of the theory of imprecise
probabilities and its generalizations.

2.3 Fuzzy Random Variables and Fuzzy Statistics

The brief description of the existing main theories of uncertainty presented in the
preceding section shows that neither of them is fully sufficient to cope with real
problems where statistical data are both random and imprecise. The attempts to
propose such a theory resulted with the introduction of the notion of a fuzzy random
variable. This notion has been defined by many authors. Historically, the first widely
accepted definition was proposed by Kwakernaak [54, 55]. Kruse [52] proposed an
interpretation of this notion, and according to this interpretation a fuzzy random
variable eZ may be considered as a perception of an unknown usual random variable

Z W � ! R, called an original of eZ. Below, we present another, slightly modified,
version of this definition presented in Grzegorzewski [37].

A fuzzy set eA described by an upper semicontinuous membership function �A W
R ! Œ0; 1	 is a fuzzy number when it is:

(a) Normal, i.e. there exists a t0 2 R such that �.t0/ D 1.
(b) Fuzzy convex, i.e. �.
s C .1 � 
/t/ � minf�.s/; �.t/g for s; t 2 R and


 2 Œ0; 1	.
(c) The set fu0g D clft 2 R W �.t/ > 0g is a compact set.

The operator in (c) denoted by cl is the closure operator (see, e.g. Dubois and Prade
[15] for a more detailed description). A space of all fuzzy numbers will be denoted
by FN .R/. We have FN .R/ � F.R/, where F.R/ denotes a space of all fuzzy
sets on the real line. Fuzzy numbers are completely defined by their ˛-cuts. The
˛-cut, ˛ 2 .0; 1	, of a fuzzy number eA with its membership function �A is a closed
crisp set defined as

X˛ D ft 2 R W �X .t/ � ˛g: (2.4)

In order to describe ˛-cuts let us use the following notation:A˛ D ŒAL
˛ ; A

U
˛ 	, where

AL
˛ D infft 2 R W �A.t/ � ˛g; (2.5)

AU
˛ D supft 2 R W �A.t/ � ˛g: (2.6)

Definition 2.2 (Grzegorzewski [37]). Let .�;A; P / be a probability space, where
� is a set of all possible outcomes of the random experiment, A is a �-algebra of
subsets of �, and P is a probability measure.
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A mapping eX W � ! FN .R/, where FN .R/ is the space of all fuzzy numbers,
is called a fuzzy random variable if it satisfies the following properties:

1. fX˛.!/ W ˛ 2 Œ0; 1	g is a set representation of eX.!/ for all ! 2 �.
2. For each ˛ 2 .0; 1	 both XL

˛ D XL
˛ .!/D infX˛.!/ and XU

˛ DXU
˛ .!/D

supX˛.!/, are usual real-valued random variables on .�;A; P /.
There exists also another popular definition of a fuzzy random variable proposed

by Puri and Ralescu [68] and based on the notion of set-valued mapping and random
sets. Below, we present this definition in a form given in [32].

Definition 2.3 (Gil et al. [32]). Let FN .R/ be the space of all fuzzy numbers.
Given a probability space .�;A; P /, a mapping eX W � ! FN .Rp/ is said to
be a fuzzy random variable (also called fuzzy random set) if for all ˛ 2 .0; 1	 the
set-valued mappings X˛ W � ! K.Rp/, where K is the class of the non-empty
subsets of R

p , defined so that for all ! 2 � X˛.!/ D .X.!//˛, are random sets
(that is, Borel-measurable mapping with the Borel �-field generated by the topology
associated with the Haussdorf metric on K.Rp/).

Fuzzy random variables may be used to model random and imprecise measure-
ments. First statistical methods for the analysis of such imprecise fuzzy data were
developed in the 1980s. Kruse and Meyer [53] proposed a general methodology
for dealing with fuzzy random data. In case of their methodology fuzzy random
data are described by fuzzy random variables defined according to Definition 2.2.
This assumption has very important practical consequences. First of all it means
that there exists an underlying non-fuzzy probability distribution that governs the
origins of the observed imprecise fuzzy data. The parameters of this distribution
have non-fuzzy values, but because of the fuzziness of observed data they can-
not be precisely estimated. Their fuzziness comes directly from the fuzziness of
statistical data and disappears when statistical data are precise. Therefore, fuzzy
statistical methods developed according to the methodology proposed by Kruse and
Meyer shall be regarded as straightforward generalization of classical (non-fuzzy)
statistical methods. Using the aforementioned methodology Kruse and Meyer [53]
proposed methods for the construction of estimators and confidence intervals for the
parameters of the probability distributions of fuzzy random variables. According to
the interpretation of fuzzy randomness proposed in [53] the observed values of esti-
mators of the parameters of the probability distributions of fuzzy random variables
are fuzzy. For this reason these estimators are called fuzzy, despite the fact that their
fuzziness is only the reflection of the fuzziness of data, and not of the fuzziness
of the estimation procedure itself. The same methodology may be applied to the
estimators of the limits of confidence intervals that are also represented by fuzzy
numbers. The most important practical consequence of the adoption of the Kruse
and Meyer’s methodology is that all relevant formulae for fuzzy estimators and other
fuzzy statistics can be obtained by fuzzification of well known formulae of classical
non-fuzzy statistics. Relevant formulae are obtained by straightforward applica-
tion of the Zadeh’s extension principle (for its definition see the book by Dubois
and Prade[15] or any other textbook on fuzzy sets). As this operation is purely
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technical, we are not going to present this problem in details. The appropriate for-
mulae can be found in papers devoted to the estimation of parameters of concrete
probability distribution when available statistical data are fuzzy. Below, we present
only a simple illustrative example.

Let us consider the problem of the estimation of the parameter � of the exponen-
tial distribution defined by the density function f .t/ D .1=�/exp.�t=�/; t > 0.
The maximum likelihood estimator of this parameter is given as a simple arithmetic
average of the observed values in the sample, i.e.

�? D
nX

iD1

ti=n; (2.7)

where ti ; i D 1; : : : ; n are the values observed in the sample. Suppose now, that
instead of crisp values ti ; i D 1; : : : ; n we observe fuzzy values described by
their respective ˛-cuts Œt˛i;L; t

˛
i;U 	; i D 1; : : : ; n; ˛ 2 .0; 1	. Now, we can apply the

Zadeh’s extension principle and fuzzify (2.7) arriving at the fuzzy version of �?

described by the set of respective ˛-cuts:

"
nX

iD1

t˛i;L=n;

nX
iD1

t˛i;R=n

#
(2.8)

The same approach may be applied in all cases when there exist explicit formulae for
computation of point estimators and confidence intervals in the case of crisp data.
When these formulae do not exist (for example, when maximum likelihood esti-
mators are obtained as numerical solutions of nonlinear equations) the application
of the Zadeh’s extension principle requires the solution of complex mathematical
programming problems.

Despite the fact that the generalization of well known statistical methods to the
fuzzy case is relatively straightforward, the construction of fuzzy statistical tests
and making statistical decisions is far from being trivial. Fuzzy statistical tests may
be developed for testing both non-fuzzy (precise) and fuzzy (imprecise) statistical
hypotheses, and for fuzzy (imprecise) and non-fuzzy (precise) statistical data. For
example, statistical methods for testing fuzzy hypotheses have been considered in
the papers by Saade and Schwarzlander [73], Saade [72], Watanabe and Imaizumi
[90], Arnold [1, 2] Taheri and Behboodian [80], and Grzegorzewski and Hryniewicz
[39]. When the data are also fuzzy, interesting solutions have been proposed in the
papers by Arnold [1], Casals et al. [6], Kruse and Meyer [53], Saade [72], Saade
and Schwarzlander [73], Son et al. [79], Watanabe and Imaizumi [90], Römer and
Kandel [70], and Montenegro et al. [62]. Grzegorzewski [37] has proposed a unified
approach for testing statistical hypotheses with vague data which is a direct gen-
eralization of the classical approach. Below, we present his definition of the fuzzy
statistical test.

Let eZ1; : : : ; eZn denote a fuzzy sample, i.e. a sample consisting of fuzzy random
variables representing fuzzy perception of the usual random sample Z1; : : : ; Zn
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from the population described by the probability distribution P‚, and let ı be a
given number from the interval .0; 1/. Grzegorzewski [37] has defined a fuzzy test
as follows:

Definition 2.4 (Grzegorzewski [37]). A function

' W .FN .R//n ! F.f0; 1g/; (2.9)

where F.f0; 1g/ is the set of possible decisions, is called a fuzzy test for the
hypothesisH , on the significance level ı, if

sup
˛2Œ0;1�

P
˚
! 2 � W '˛

�eZ1.!/; : : : ; eZn.!/
� � f0gjH� � ı

where '˛ is the ˛-level set (˛-cut) of '
�eZ1; : : : ; eZn

�
.

When we test statistical hypotheses about the values of the parameters of prob-
ability distributions we utilize a well known equivalence between the set of values
of the considered probability distribution parameter for which the null hypothesis is
accepted and a certain confidence interval for this parameter. The same equivalence
exists in the case of statistical tests with fuzzy data.

When statistical data are precise (crisp), for testing the null hypothesisH W � � �0,
and the alternative hypothesis K W � > �0 we use a one-to-one correspondence
between the acceptance region for this test on the significance level ı and the one-
sided confidence interval Œ� l ;C1/ for the parameter � on the confidence level
1 � ı, where � l D � l .Z1; : : : ; ZnI ı/. This equivalence was utilized by Kruse
and Meyer [53] who introduced the notion of a fuzzy confidence interval for the
unknown parameter � , when the data are fuzzy. In the considered case, a fuzzy
equivalent of Œ� l ;C1/ can be defined by the following ˛-cuts (for all ˛ 2 .0; 1	):

…L
˛ D …L

˛

�eZ1; : : : ; eZnI ı�

D inf
n
t 2 R W 8i 2 f1; : : : ng9zi 2 �eZi

�
˛

such that � l.z1; : : : ; znI ı/ � t
o (2.10)

Similarly, we can define a fuzzy equivalent of the one-sided confidence interval
.�1; �u	; as given in Grzegorzewski [37]:

…
U

˛ D …
U

˛

�eZ1; : : : ; eZnI ı�
D sup

n
t 2 R W 8i 2 f1; : : : ng9zi 2 �eZi

�
˛

such that �u.z1; : : : ; znI ı/ � t
o (2.11)

where �u.z1; : : : ; znI ı/ D � l .z1; : : : ; znI 1 � ı/.



26 O. Hryniewicz

The notion of the one-sided fuzzy interval can be used to define a fuzzy test. In
the considered case of one-sided statistical hypothesis, a function ' W .FN .R//n !
F.f0; 1g/ with the following ˛-cuts:

'˛

�eZ1; : : : ; eZn

� D

8̂
ˆ̂̂<
ˆ̂̂̂
:

f1g if �0 2 .…˛n .:…/˛/ ;
f0g if �0 2 ..:…/˛ n…˛/ ;

f0; 1g if �0 2 .…˛

T
.:…/˛/ ;

; if �0 … .…˛

S
.:…/˛/

(2.12)

is a fuzzy test for H W � � �0, against K W � > �0, on the significance level ı
(Grzegorzewski [37]). In a similar way, we can define fuzzy tests for testing other
one-sided hypotheses such as H W � � �0, against K W � < �0, and for testing
two-sided hypotheses about � .

It is worthy to note that in certain cases the application of the fuzzy test defined
above does not lead to a clearly indicated decision. This feature is far from being
unexpected because, unless we make some additional assumptions, we should not
expect precise answers to questions presented in a form of statistical hypotheses, if
we infer these answers from the analysis of imprecise data. Let us note, however,
that we face the similar situation when we use classical statistical methods. In that
case a decision cannot be made without setting in advance an appropriate signifi-
cance level of test. In case of fuzzy statistical data the knowledge of the significance
level is not enough, so we have to use some additional indicators that would be help-
ful in making decisions. There exist several approaches that are suitable for solving
this problem. One of these approaches which is formulated in the language of the
possibility theory has been proposed by Hryniewicz [43].

In order to present a possibilistic approach to the problem of statistical testing
when both data and statistical hypotheses are imprecise let us consider a fuzzy
equivalent of testing the hypothesisH W # � #H when we observe a random sam-
ple .X1; : : : ; Xn/. In case of precisely formulated hypotheses and precise statistical
data we can use a well known method (for reference, see, e.g. the book of Lehmann
[57]) and calculate a one-sided confidence interval on a confidence level 1� ı from
the formula Œ�L.X1; : : : ; XnI 1 � ı/;1/. We reject the null hypothesis on the sig-
nificance level ı if the observed value of �L .X1; : : : ; XnI 1 � ı/ is larger than #H ,
i.e. when the inequality #H < �L .x1; : : : ; xnI 1 � ı/ holds. Similarly, we reject
the hypothesis H W # � #H on the significance level ı when the inequality #H >

�U .x1; : : : ; xnI 1 � ı/ holds, where �U .x1; : : : ; xnI 1 � ı/ is the observed value of
the upper limit of the one-sided confidence interval .�1; �U .X1; : : : ; XnI 1 � ı/	
on a confidence level 1 � ı. When we test the hypothesis H W # D #H on
the significance level ı we reject it if either #H < �L .x1; : : : ; xnI 1 � ı=2/
or #H > �U .x1; : : : ; xnI 1 � ı=2/ holds, where �L .x1; : : : ; xnI 1 � ı=2/ is the
observed in the sample value of the lower limit of the two-sided confidence interval
�L .X1; : : : ; XnI 1 � ı=2/ on a confidence level 1� ı, and the observed value of its
upper limit �U .X1; : : : ; XnI 1 � ı=2/ is given by �U .x1; : : : ; xnI 1 � ı=2/. Thus,
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when we test a hypothesis about the value of the parameter # we find a respective
confidence interval, and compare it to the hypothetical value.

Dubois et al. [22] proposed to use statistical confidence intervals of parameters
of probability distributions for the construction of possibility distributions of these
parameters in a fully objective way. According to their approach, the family of two-
sided confidence intervals

Œ�L .x1; : : : ; xnI 1 � ı=2/ ; �U .x1; : : : ; xnI 1 � ı=2/	 ; ı 2 .0; 1/ (2.13)

forms the possibility distribution Q# of the estimated value of the unknown parame-
ter # . In a similar way it is possible to construct one-sided possibility distributions
based on one-sided nested confidence intervals. Hryniewicz [43] proposed to com-
pare this possibility distribution with a hypothetical value of the tested parameter.
For this purpose he proposed to use the necessity of strict dominance measure intro-
duced by Dubois and Prade [16] for measuring the necessity of the strict dominance
relation QA � QB , where QA and QB are fuzzy sets. This measure, called the Necessity
of Strict Dominance index (NSD), is defined as

NSD D Ness
� QA � QB� D 1� sup

x;yIx�y
min f�A .x/ ; �B .y/g : (2.14)

Hryniewicz [43] has shown that in the classical case of precise statistical data and
precisely defined statistical hypotheses the value of the NSD index is equal to the
p-value of the test.

In case of fuzzy data the confidence intervals used for the construction of the
possibility distribution of the estimated parameter � can be replaced by their fuzzy
equivalents, calculated according to the methodology proposed by Kruse and Meyer
[53]. In his paper Hryniewicz [43] assumes that the value of the significance level
of the corresponding statistical test ı is equal to the possibility degree ˛ that defines
the respective ˛-cut of the possibility distribution of Q# . He also assumes that in the
possibilistic analysis of statistical tests on the significance level ı we should take
into account only those possible values of the fuzzy sample whose possibility is
not smaller than ı. Thus, the ˛-cuts of the membership function �F .#/ denoted

by
h
�

.˛/
F;L; �

.˛/
F;U

i
are equivalent to the ˛-cuts of the respective fuzzy confidence

intervals on a confidence level 1 � ˛.
In order to consider the most general case let us also assume that the hypothetical

value of the tested parameter may be also imprecisely defined by a fuzzy number Q�H

described by the membership function �H .�/. Possibilistic evaluation of the results
of statistical fuzzy test consists now in the comparison of the possibility distribution
of the estimated parameter � , and the possibility distribution of the hypothetical
value of this parameter. Let us illustrate this procedure by assuming that our fuzzy
hypothesis is given as H W � � e�H . In the case of crisp data we compare the lower
limit of the one-sided confidence interval on a given confidence level 1� ı with the
respective ˛-cut of the membership function that describes e�H . In the possibilistic
framework described in [43] it means that we compare the possibility distribution
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of Q#L based on the left-hand sides of the confidence intervals with the fuzzy value
ofe�H . This distribution is defined by the membership function

�
.˛/
F;L D inf

��˛
…

�
L

� eX1; : : : ; eXnI 1 � ı�; (2.15)

where
…

�
L D …˛

L

� eX1; : : : ; eXnI 1 � ı�
D inf

n
t 2 R W 8i 2 f1; : : : ng9xi 2 � eXi

�
�

such that �L.x1; : : : ; xnI 1 � ı/ � t
o
;

(2.16)

and �L .x1; : : : ; xnI 1 � ı/ is the left-hand side limit of the classical confidence
interval. In a similar way we can define a fuzzy equivalent of the upper limit of
the one-sided confidence interval .�1; �U .X1; : : : ; XnI 1 � ı/	.

In the presence of fuzzy data we have to compare the possibility distribution Q#F;L

of the estimated value of the unknown parameter � represented by its ˛-cuts given
by (2.15) with the fuzzy value ofe�H . In such a case we have to find the intersection
point of the membership function �F;L.#/ and the left-hand side of �H .�/. The
NSD index of the relation Q#F;L � Q#H is equal to one minus the ordinate of this
point, i.e.

Ness
� Q#F;L � e�H

�
D 1 � sup min .�F;L.#/; �H .�// : (2.17)

The NSD index defined by (2.17) can be regarded as the generalization of the
observed test size p (also known as p-value or significance) for the case of impre-
cisely defined statistical hypotheses and vague statistical data. In exactly the same
way we can find the NSD index for other one-sided and two-sided statistical
hypotheses.

Statistical analysis of fuzzy random data can be also done in the Bayesian frame-
work. First results presenting the Bayesian decision analysis for imprecise data were
given in papers by Casals et al. [6, 7], and Gil [30]. In these papers the authors
described fuzzy observations using the notion of the fuzzy information system by
Zadeh [95] and Tanaka et al. [82]. As this approach seems to be not very effec-
tive in practical applications, other approaches have been proposed, for example,
by Viertl [84], Frühwirth-Schnatter [28], and Taheri and Behboodian [81]. Compre-
hensive Bayesian model comprising fuzzy data, fuzzy hypotheses, and fuzzy utility
function has been proposed in the paper by Hryniewicz [42].

When we interpret fuzzy random variables according to the definition proposed
by Puri and Ralescu (see Definition 2.3 above) the statistical analysis of fuzzy
data is unfortunately not so simple. The reasons for this difficulty stem from the
fact that in that case the underlying classical probability distribution does not exist
anymore. For example, it is difficult to formulate fuzzy equivalents of the Cen-
tral Limit Theorem, as the concept of asymptotic normal distribution cannot be
directly applied. Thus, the statistical procedures have to be constructed on a different
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theoretical basis. Some authors, see [32] for an overview of the problem, define
statistical tests in terms of distances, in different metrics, between the observed
fuzzy value of a test statistics and the hypothetical value of a certain characteristic
of the fuzzy random variable, e.g. its fuzzy expected value. Therefore, the resulting
statistics, such as a variance of the fuzzy random quantity, are real-valued in contrast
to fuzzy statistics arriving from the model by Kwakernaak and Kruse. From among
few papers devoted to this problem one can mention the papers by Körner [50],
Körner and Näther [51], and Montenegro et al. [62]. The problem of lacking under-
lying probability distribution can be overcome by using a bootstrap methodology, as
it has been recently proposed, in the papers by Gil et al. [33], González-Rodrı́guez
et al. [35], and Montenegro et al. [63]. In the case of the Bayesian analysis of fuzzy
random variables interesting results have been proposed in the paper by Gil and
López-Dı́az [31].

2.4 Applications of Fuzzy Statistics in Systems Analysis

Systems analysis is oriented on solving complex problems where precise math-
ematical models are used for a simplified (and sometimes even oversimplified)
description of reality. The main problem of every researcher who has to apply the
methods of systems analysis in real applications is related to coping with uncer-
tainties of different kinds. What is important, not all of these uncertainties can be
described by well developed methods like theory of probability and mathematical
statistics. The methodology of fuzzy statistics, presented in the previous section,
gives possibility to describe phenomena where probabilistic randomness is merged
with possibilistic imprecision (fuzziness). In this section we present two applica-
tions of this methodology which seem to be useful in solving real problems. The
character of this paper does not allow us to present too many details that may be
necessary to fully understand these applications. The details will be presented in
forthcoming papers dedicated to particular problems.

2.4.1 Example 1: Verification of the Kyoto Protocol

First, let us consider the problem of the verification of commitments agreed in the
Annex I to Kyoto Protocol. The Parties who accept the Kyoto Protocol agreed to
reduce the national emissions of greenhouse gases by a specified percentage. The
main problem with the verification of these commitments stems from a fact that
these emissions cannot be directly measured. Therefore, according to the IPCC
Guidance document [46], the total emissionX is estimated as a sum of emissions of
every type of activity, evaluated indirectly using certain measures describing those
activities. For example, the emission from electric coal power plants is evaluated
using the knowledge about the amount of burned coal. A simple, but commonly
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used in practice, model has a linear form

xi D
mX

j D1

xij D
mX

j D1

cijaij ; i D 0; 1; : : : ; (2.18)

where aij is the j -th activity measure for the i -th year, and cij is the emission factor
for the i -th year that enables us to calculate greenhouse gas emission knowing the
activity measure for the j -th activity. At a national scale the values of activity mea-
sures aij are definitely uncertain, and the level of associated uncertainty strongly
depends on the type of activity. Similarly, the values of emission factors cij may be
highly uncertain, as in many cases they are evaluated using experts opinions. More
detailed information on this problem can be found in papers by Winiwarter [94],
and by Rypdal and Winiwarter [71].

Suppose now, that for each activity we observe a time series, which consists of
nC1 yearly observations: .a0j ; a1j ; : : : ; anj /; j D 1; : : : ; m. For sake of simplicity
we assume that these are realizations of stochastic processes, and the uncertainty
related to their values are purely random. The nature of uncertainty assigned to
the associated emission factors .c0j ; c1j ; : : : ; cnj /; j D 1; : : : ; m, is hardly easy
for precise evaluation. This uncertainty contains undoubtedly a random factor (for
example, for an electric coal power plant the emission rate varies randomly with ran-
domly varying quality of burned coal), but may also contain another factor, related
to imprecise opinions of experts. For this reason specialists assume that the values of
emission factors, and more generally, the values of emissions from different activi-
ties, should be evaluated in terms of intervals of possible values. We claim, however,
that even in case of very vague information about the values of cij this assumption is
too restrictive. It seems to us that the representation of this information using possi-
bility distributions is much more informative. Therefore, we assume that each value
of the emission factors is given as a fuzzy number represented by a set of its ˛-cuts:h
c˛

ij;L; c
˛
ij;R

i
; ˛ 2 .0; 1	. Therefore, the evaluated yearly emission is a realization of

a fuzzy random variable defined as

QXi D
mX

j D1

QXij D
mX

j D1

QcijAij ; i D 0; 1; : : : ; (2.19)

where Aij is a random value of the j -th activity in the i -th year.
Suppose now, that having the observed realizations of fuzzy random variables

Qxij ; j D 1; : : : ; m; j D 0; 1; : : : ; n we want to predict the total emission for the
commitment year k. Let

�
a

�

kj;L
; a

�

kj;R

�
be the prediction confidence interval on the

confidence level � for the amount of the j -th activity in the commitment year k.
Note, that for � D 0 this interval shrinks to the point-wise forecast for the value
of xkj . From the theory presented in the previous section we know that fuzzy con-
fidence interval for QXkj on the confidence level � is represented by a set of ˛-cuts
(nested ˛-level intervals):

�
a

�

kj;L
	c˛

ij;L; a
�

kj;R
	c˛

ij;R

�
. The construction of the fuzzy
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prediction interval for the total emission Xk in the commitment year k is a difficult
task and, in general, may require the application of Monte Carlo methods. However,
when the forecasts for akj are described by normal distributions this construction is
straightforward.

According to the Annex I to Kyoto Protocol a country fulfills its commitment
if in the commitment year k its emission does not exceed the value yk D �x0,
where x0 is the emission in the base year, and � is a coefficient agreed upon in
the Kyoto Protocol. Our analysis of the verification problem we begin from the
simplest case when the value of yk is given, and the activity measures in the com-
mitment year akj ; j D 1; : : : ; m have been already established. Thus, we have to
verify if Qxk � yk . From the theory of fuzzy sets we know that the unique method
for the verification of this inequality does not exist. However, for this purpose we
can use the NSD index defined by (2.14) for the relation yk � Qxk . By simple cal-
culations we can show that this possibility measure is greater than zero if the ˛-cut
of Qxk at the level ˛ D 1 is located to the left of yk , i.e. if the inequality x1

k;R
� yk

holds. Thus, we have
NSD D 1 � ˛? (2.20)

where
˛? W x˛?

k;R
D yk : (2.21)

From these equations we can also see that NSD D 1 if the whole support of Qxk

is located to the left of yk . In a more general case, when the emission in the base
year is given as a fuzzy number (due to the fuzziness of the emission factors), the
commitment may be verified by the calculation of the NSD index for the relation
Qyk � Qxk . In such a case, for the computation of NSD we use (2.20), but the value
of ˛? is now calculated from the following expression:

˛? W x˛?

k;R
D y

˛?

k;L
: (2.22)

In the most general case we may want to know in advance, after the evaluations
of emissions in years numbered from 0 (base year) to n have been observed, if the
commitment in the year k is likely to be fulfilled. We can solve this problem by
the verification of a statistical hypothesis that the expected value of the predicted
emission (estimated from fuzzy random data) is lower than a given fuzzy valued
limit. Thus, we have the problem described in the previous section. The NSD
index that describes the necessity that this hypothesis is true can be calculated from
(2.15)–(2.17).

2.4.2 Example 2: Sequential Testing of a Hypothesis
About the Mean Value in the Normal Distribution

As a possible application of the fuzzy statistical methodology in the systems analysis
we may consider the problem of testing a hypothesis about the mean value of a
random variable described by a normal distribution when sampling costs are high,
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and we are forced to observe as few sample items as possible. This situation often
happens when we have to control costs of a large project, which consists of many
individually assessed partial costs. If the number of partial costs is relatively large,
we can assume – following the Central Limit Theorem – that the observed total
cost, say X , is distributed according to the normal distribution N.�; �/. Suppose
now that we are interested in keeping the total costs constant for a certain period of
time at a level �0. A simple, and the most effective statistical test for verification
of the statistical hypothesis H0 W � D �0 against the alternative H1 W � D �1 is
the sequential probability ratio test proposed originally by Wald (see the book by
Lehmann [57] for more information) for the case of the known value of the standard
deviation � . The test statistic, based on a sample .x1 : : : xn/ is, in that case, a simple
sum of re-scaled observations

Sn D
nX

iD1

.xi=�/: (2.23)

Let ˛ be the probability of the type-I error (probability of an erroneous rejection
of H0), and ˇ be the probability of the type-II error (probability of an erroneous
acceptance of H1). We accept the null hypothesisH0 if

Sn � A

�1 � �0

C n

2
.�1 C �0/; (2.24)

where A D ˇ=.1� ˛/. We reject H0 in favour ofH1 if

Sn � B

�1 � �0

C n

2
.�1 C �0/; (2.25)

where B D .1 � ˇ/=˛. If neither of these inequality holds, we have to increase the
sample size by one, and repeat the same procedure.

In the sequential test described above we have assumed that the value of � is
known. In practice, we never know this value in advance, but when the amount of
historical data is large enough we can estimate � , and take this estimated value
as the known one. However, when the available amount of data is scarce, as it is
usually the case in the analysis of large systems, we cannot proceed this way. A
possible way out is to use a procedure proposed by Hryniewicz [44] for the analysis
of reliability data.

Having some historical data we can estimate the value of � . When the available
sample size is equal to m, and the estimated value is given by �?

m, we can calculate
the two-sided confidence interval for the unknown value of � :

 
�L.�/ D

s
.m � 1/.�?

m/
2

2
m�1..1C �/=2/

; �R.�/ D
s

.m � 1/.�?
m/

2

2
m�1..1 � �/=2/

!
; (2.26)
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where 2
m�1.�/ is the quantile of order � of the chi-square distribution with m � 1

degrees of freedom. The confidence intervals defined by (2.26) can be used for the
construction of the possibility distribution of � defined by its ı-cuts (we use here
the symbol of ı because the symbol ˛, traditionally used in this context, has been
used for the description of the type-I error of the sequential test). The left-hand side
limits of this possibility distribution are given by

�ı
L.�/ D

�
�L.1 � ı/ if ı � ı0

�L.1 � ı0/ if ı < ı0
; (2.27)

where ı0 is a small number close to 0 (e.g. 0:01). Similarly, the right-hand limits are
given by

�ı
R.�/ D

�
�R.1 � ı/ if ı � ı0

�R.1 � ı0/ if ı < ı0
: (2.28)

If we assume that � is a fuzzy number defined by this possibility distribution
we immediately find that the test statistic Sn becomes also fuzzy. Thus, we can-
not directly verify if inequalities (2.24) and (2.25) are fulfilled. However, we may
assume that they are fulfilled if the NSD index for respective fuzzy relations is
greater than a prescribed value.

In this second example of the application of fuzzy statistics we haven’t used
any subjective imprecise fuzzy information. The fuzziness has been introduced in
a purely objective way using some historical statistical data. We can also general-
ize this problem by allowing imprecise hypotheses about the values of �0 and �1.
The methodology for dealing with such a problem is the same, but the necessary
calculations become much more complicated.

2.5 Conclusions

In the paper we have presented different methods used for mathematical modeling
of uncertainty. We have concentrated on modeling of epistemic uncertainty, i.e.
uncertainty evaluated subjectively by human beings like experts which reflects lack
of full information about phenomena of interest. We have presented basic informa-
tion about the most important (among many others) theories: theory of probability,
which is the basic theory of uncertainty, and alternative theories of uncertainty like
Dempster–Shafer theory of evidence, theory of imprecise probabilities, and theory
of possibility. Considerable space has been devoted to the theory of fuzzy random
variables which links classical probability with fuzzy sets and theory of possibil-
ity. This choice stems from the fact that, as for now, this is the only theory which
provides mathematical foundations for comprehensive analysis of data representing
aleatoric randomness and epistemic imprecision.

It has to be stressed once more that the theory of probability (together with
classical mathematical statistics) seems to be the only reasonable methodology for
dealing with randomness. However, its ability to model other types of uncertainty



34 O. Hryniewicz

has been questioned by many scholars. Alternative theories of uncertainty, like
those mentioned above, have been developed to cope with problems where classical
probability provides questionable solutions. Some of these theories, like theory of
imprecise probabilities, may be regarded as generalizations of the classical probabil-
ity, some others, like theory of possibility, were introduced as completely different
theories. It has to be noted, however, that recently published theoretical results
reveal many links between all these theories making them rather complementary
than competitive.

Alternative theories of uncertainty are relatively very young in comparison to the
theory of probability. Therefore, they are not as matured as the theory of probabil-
ity, and there exist questions for which unequivocal answers have not been proposed
yet. The current situation is well illustrated by an experiment proposed in the paper
by Oberkampf et al. [66]. In this experiment prominent representatives of different
methodologies were asked to provide numerical evaluation of outputs of systems
described by equations with uncertain parameters. Different types of sources of
uncertainty were represented in this experiment, allowing for using different types
of models, and different methods for aggregation of uncertainty. The results of
this experiment, described in [23], show that the usage of different approaches
resulted in different evaluations. It is interesting, however, that prominent repre-
sentatives of the probabilistic approach, who were invited to this experiment, either
refused to provide their evaluation, arguing that the input information was unreal-
istically imprecise, or provided results obtained after the introduction of additional
assumptions which had not been stated in the original description of this experiment.

The results of the experiment mentioned above, and analyses presented in over-
view papers, like the paper by Helton et al. [40] or by Möller and Beer [65], reveal
the most important challenges specialists in dealing with uncertainty are confronted
with. First, in case of the analysis of complex systems and structures the analysts
who apply alternative approaches for coping with uncertainty face very serious
computational problems. They have to use methods, such as interval computations,
which are computationally much more demanding in comparison to methods used
in case of traditional probabilistic models. Second, Monte Carlo methodology for
simulation of systems has to be extended in order to cope with information which
is not random by nature. For example, the existing methodology for simulation of
fuzzy random variables is still under development. Third, for some alternative the-
ories of uncertainty unequivocally accepted methods of propagation of uncertainty
have not been proposed yet. And finally, some very general theories of uncertainty
still need methods for coping with statistical data.

The challenges mentioned above are less visible when we apply classical theory
of probability. The price for this favorable situation is sometimes high. We have to
introduce additional assumptions, which in presence of partial information (or par-
tial ignorance) cannot be verified. Therefore, there is still a need for finding more
appropriate methods for coping with uncertainty. The methodology of fuzzy ran-
dom variables, described in numerous recently published papers, and books like the
books by Viertl [85] or by Möller and Beer [64], in our opinion seems to be, as for
now, the most useful in practice.
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Chapter 3
On the Approximation of a Discrete
Multivariate Probability Distribution Using
the New Concept of t-Cherry Junction Tree

Edith Kovács and Tamás Szántai

Abstract Most everyday reasoning and decision making is based on uncertain
premises. The premises or attributes, which we must take into consideration, are
random variables, so that we often have to deal with a high dimensional dis-
crete multivariate random vector. We are going to construct an approximation of a
high dimensional probability distribution that is based on the dependence structure
between the random variables and on a special clustering of the graph describing this
structure. Our method uses just one-, two- and three-dimensional marginal prob-
ability distributions. We give a formula that expresses how well the constructed
approximation fits to the real probability distribution. We then prove that every time
there exists a probability distribution constructed this way, that fits to reality at least
as well as the approximation constructed from the Chow–Liu dependence tree. In
the last part we give some examples that show how efficient is our approximation in
application areas like pattern recognition and feature selection.

3.1 Introduction

The goal of our paper is to approximate a high dimensional joint probability
distribution using two and three-dimensional marginal distributions, only.

The idea of such kind of approximations was given by Chow and Liu [7]. In
their work they construct a first order tree taking into account the mutual informa-
tion gains of all pairs of random variables. They proved that their approximation is
optimal in the sense of Kullback–Leibler divergence [12, 15].

In order to give an approximation that uses lower dimensional marginal probabil-
ity distributions, there are many algorithms developed. Most of them first construct
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a Bayesian network (directed acyclic graph) see [1] and then they obtain from this
in several steps a junction tree. See [11] for a good overview.

Many algorithms were developed for obtaining a Bayesian Network. These algo-
rithms start with the construction of the Chow–Liu tree and then this graph is trans-
formed, by adding edges and then delete the superfluous edges using conditional
independence tests. The number of conditional independence tests is diminished by
searching the minimal d -separating set [2, 6].

After the graphical structure is determined a number of quantitative operations
have to be performed on it (see [13] and [9]).

In our paper we suppose to be known just the three-dimensional marginals of
the joint probability distribution (indeed that implies that the second and first order
marginals are known, too). From this information we first construct a graphical
model, and then a junction tree, named t-cherry-junction tree.

The construction of our graphical model is inspired by the graphical structure,
named cherry tree, and t-cherry tree introduced by Bukszár and Prékopa in [3].

We emphasize that our method does not use the construction of the Bayesian
network first, we are going to use just the third order marginals and the information
contents related to them, and to certain pairs of random variables involved.

The paper is organized as follows:

� The second section contains the theory, formulas, and connections between them
that are used in the third section.

� The third section contains the introduction of the concept of the t-cherry-junction
tree, the formula that gives the Kullback–Leibler divergence associated to the
approximation introduced, and a proof that the approximation associated to the
t-cherry-junction tree is at least as good as Chow–Liu’s approximation is.

� The last section contains some applications of the approximation introduced in
order to exhibit some advantages of this approach.

3.2 Preliminaries

3.2.1 Notations

Let X D .X1; X2; : : : ; Xn/
T be an n-dimensional random vector with the joint

probability distribution

P
�
X1 D x1

i1
; : : : ; Xn D xn

in

�
; i1 D 1; : : : ; m1; : : : ; in D 1; : : : ; mn:

For this we will use also the abbreviation

P.X/ D P.X1; X2; : : : ; Xn/:

This shorter form will be applied in sums and products, too. So we will write
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X
X

P.X/ D
m1X

i1D1

� � �
mnX

inD1

P.X1 D x1
i1
; : : : ; Xn D xn

in
/ .D 1/ (3.1)

and for example if H D fj; k; lg is a three element subset of the index (vertex) set
f1; 2; : : : ; ng then XH D .Xj ; Xk; Xl/

T and

X
XH

P.XH / D
mjX

ij D1

mkX
ikD1

mlX
il D1

P.Xj D x
j
ij
; Xk D xk

ik
; Xl D xl

il
/ .D 1/ (3.2)

and

Y
XH

P.XH / D
mjY

ij D1

mkY
ikD1

mlY
il D1

P.Xj D x
j
ij
; Xk D xk

ik
; Xl D xl

il
/ (3.3)

Pa.X/ will denote the approximating joint probability distribution of P.X/.

3.2.2 Cherry Tree and t-Cherry Tree

The cherry tree is a graph structure introduced by Bukszár and Prékopa (see [3]).
A generalization of this concept, called hyper cherry tree can be found in [4] by
Bukszár and Szántai. Let be given a nonempty set of vertices V .

Definition 3.1. The graph defined recursively by the following steps is called cherry
tree:

1. Two vertices connected by an edge is the smallest cherry tree.
2. By connecting a new vertex of V , by two new edges to two existing vertices of a

cherry tree, one obtains a new cherry tree.
3. Each cherry tree can be obtained from (1) by the successive application of (2).

Remark 3.1. A cherry tree is an undirected graph. We emphasize that it is not a tree.

Definition 3.2. We call cherry, a triplet of vertices formed from two existing
vertices and a new one connected with them in step (2) of Definition 3.1.

For the cherry we will use the notation introduced in [4] by Bukszár and Szántai:
.fl; mg; k/, where l andm are the existing vertices, k is the newly connected vertex
and fk; lg; fk;mg are the new edges.

Remark 3.2. From a set of n vertices we obtain a cherry tree with n � 2 cherries.

Remark 3.3. We denote by H the set of all cherries of the cherry tree and by � the
set of edges of the cherry tree.
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Remark 3.4. A cherry tree is characterized by a set V of vertices, the set H of
cherries and the set � of edges. We denote a cherry-tree by � D .V;H; �/.

In our paper we need the concept of the t-cherry tree introduced by Bukszár
and Prékopa in [3]. To get the concept of t-cherry tree one has to apply the more
restrictive Step (20) in Definition 3.1 instead of Step (2):

(20) By connecting a new vertex of V by two new edges to two connected vertices
of a cherry tree, one obtains a new cherry tree.

Definition 3.3. The graph defined recursively by (1), (20) and (3) is called t-cherry
tree.

Remark 3.5. A pair of adjacent vertices from the t-cherry tree may be used several
times, for connecting new vertices to them.

3.2.3 Junction Tree

The junction tree is a very prominent and widely used structure for inference in
graphical models (see [5] and [12]).

Let X D fX1; : : : ; Xng be a set of random variables defined over the same
probability field and X D .X1; : : : ; Xn/

T an n-dimensional random vector.

Definition 3.4. A tree with the following properties is called junction tree over X :

1. To each node of the tree, a subset ofX called cluster and the marginal probability
distribution of these variables is associated.

2. To each edge connecting two clusters of the tree, the subset of X given by the
intersection of the connected clusters and the marginal probability distribution of
these variables is associated.

3. If two clusters contain a random variable, than all clusters on the path between
these two clusters contain this random variable (running intersection property).

4. The union of all clusters is X .

Notations:

� C – the set of clusters
� C – a cluster
� XC – the random vector with the random variables of C as components
� P.XC / – the joint probability distribution of XC

� S – the set of separators
� S – a separator
� XS – the random vector with the random variables of S as components
� P.XS / – the joint probability distribution of XS
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The junction tree provides a joint probability distribution of X:

P.X/ D
Q

C 2C
P.XC /

Q
S2S

P.XS /.�S �1/
;

where �S is the number of those clusters which contain all of the variables involved
in S .

3.3 t-Cherry-Junction Tree

3.3.1 Construction of a t-Cherry-Junction Tree

Let X D fX1; : : : ; Xng be a set of random variables defined over the same prob-
ability field and denote by X D .X1; : : : ; Xn/

T the corresponding n-dimensional
random vector. Together with the construction of the t-cherry tree over the set of
vertices V D f1; : : : ; ng we can construct a t-cherry-junction tree in the following
way.

Algorithm 1. Construction of a t-cherry-junction tree.

1. The first cherry of the t-cherry tree identifies the first cluster of the t-cherry junc-
tion tree. The vertices of the first cherry give the indices of the random variables
belonging to the first cluster.

2. Similar way each new cherry of the t-cherry tree identifies a new cluster of the
t-cherry-junction tree. The separators contain pairs of random variables with
indices corresponding to the connected vertices used in Step (20) of Defini-
tion 3.3.

Theorem 3.1. The t-cherry-junction tree constructed by Algorithm 1 is a junction
tree.

Proof. We can check the statements of Definition 3.4:

� The first statement of definition is obvious.
� The separator that connects two clusters contains the intersection of the two

clusters. This follows from the construction of the separator sets.
� Let us suppose that there exists a variable Xm which belongs to two clusters on

a path, so that on this path exist a cluster that does not contain Xm. This implies
that on this past exist two neighboring cluster so that one of them contains Xm

and the other one does not containXm. This means that in the t-cherry tree there
are two cherries connected so that one of them contains the vertexm the other one
does not contain the vertexm. According to the point (2) of Definition 3.1,m is a
new vertex connected, but sinceXm belongs already to another cluster, the vertex
m belongs to another cherry, too. That is a contradiction, because that means that
m is not a new vertex.
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� The union of all sets associated to the clusters is X , because of the union of set
of indices is V .

Remark 3.6. To each cluster fXl ; Xm; Xkg a three-dimensional joint probability
distribution P.Xl ; Xm; Xk/ can be associated. To each separator fXl ; Xmg a two-
dimensional joint probability distribution P.Xl ; Xm/ can be associated.

The joint probability distribution associated to the t-cherry-junction tree is a joint
probability distribution over the variables X1; : : : ; Xn, given by

P.X/ D

Q
fXl ;Xm;Xkg2C

P.Xl ; Xm; Xk/

Q
fXl ;Xmg2S

P.Xl ; Xm/�lm�1
; (3.4)

where �lm D #ffXl ; Xmg � C jC 2 Cg.

3.3.2 The Approximation of the Joint Distribution Over X

by the Distribution Associated to a t-Cherry-Junction Tree

Chow and Liu introduced a method to approximate optimally an n-dimensional,
discrete joint probability distribution by the one- and two-dimensional probabil-
ity distributions using first-order dependence tree. It is shown that the procedure
presented in their paper yields an approximation with minimum difference of
information, in the sense of Kullback–Leibler divergence.

In this part, we first give a formula for the Kullback–Leibler divergence between
the approximated distribution associated to the t-cherry-junction tree and the real
joint probability distribution; we then conclude what we have to take into account
to minimize the divergence. For the proof of this theorem we need a lemma:

Lemma 3.1. In a t-cherry-junction tree for each variable Xm 2 X :

#ffXl ; Xmg j .fXl ; Xmg; Xk/ 2 Cg D #f.fXl ; Xmg; Xk/ j .fXl ; Xmg; Xk/ 2 Cg � 1

Proof. Let denote t D #ffXl ; Xmg j .fXl ; Xmg; Xk/ 2 Cg for a given Xm 2 X .

� Case t D 0.
The statement is a consequence on one hand of Definition 3.4 that is the union
of all sets associated to the nodes (clusters) is X, so every vertex from X, have to
appear at least in one cluster. On the other hand, ifXm would be contained in two
clusters than there must exist one separator set containing this vertex (point 3) in
Definition 3.4), but we supposed t D 0.

� Case t > 0.
If two clusters contain a variable Xm, than all clusters from the path between the
two clusters contain Xm (running intersection property). From this results that
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the clusters containing Xm are the nodes of a connected graph, and this graph is
a first order tree. If this graph contains t C 1 clusters, than it contains t separator
sets (definition of a tree in which we have separators instead of edges and clus-
ters instead of nodes). From the definition of the junction tree (Definition 3.4)
results that every separator set connecting two clusters contains the variables
from the intersection of the clusters. So there are t separator sets that contain the
variable Xm.

The goodness of the approximation of a probability distribution can be quantified
by the Kullback–Leibler divergence between the real and the approximating proba-
bility distributions (see for example [8] or [15]). The Kullback–Leibler divergence
expresses somehow the distance between two probability distributions. As smaller
value it has as better the approximation is.

Theorem 3.2. If we denote by Pa.X/ the approximating joint probability dis-
tribution associated to the t-cherry-junction tree [see formula (3.4)], then the
Kullback–Leibler divergence between the real and the approximating joint prob-
ability distribution is given by:

I.P.X/; Pa.X// D �H.X/ �
X

.Xl ;Xm;Xk/2C
I.Xl ; Xm; Xk/

(3.5)

C
X

fXl ;Xmg2S
.�lm � 1/I.Xl ; Xm/C

nX
kD1

H.Xk/:

Proof.

I.P.X/; Pa.X// D
X

X

P.X/ log2

P.X/
Pa.X/

D
X

X

P.X/ log2 P.X/ �
X

X

P.X/ log2 Pa.X/

D �H.X/�
X

X

P.X/ log2

Q
fXl ;Xm;Xkg2C

P.Xl ; Xm; Xk/

Q
fXl ;Xmg2S

P.Xl ; Xm/�lm�1

D �H.X/�
X

X

P.X/

"
log2

Y
fXl ;Xm;Xkg2C

P.Xl ; Xm; Xk/

� log2

Y
fXl ;Xmg2S

P.Xl ; Xm/
�lm�1

#

D �H.X/�
X

X

P.X/ log2

Y
fXl ;Xm;Xkg2C

P.Xl ; Xm; Xk/

C
X

X

P.X/ log2

Y
fXl ;Xmg2S

P.Xl ; Xm/
�lm�1
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From Definition 3.4 follows that the union of the clusters of the junction tree is
the set X . From the Lemma 3.1 we know that each vertex appears once more in
clusters than in separator sets. So by adding and subtracting the sum

X
X

P.X/ log2

2
4 Y

fXl ;Xm;Xkg2C
P.Xl/P.Xm/P.Xk/

3
5

we obtain the following:

I.P.X/; Pa.X//

D �H.X/ �
X

X

P.X/ log2

Q
fXl ;Xm;Xkg2C

P.Xl ; Xm; Xk/

Q
fXl ;Xm;Xkg2C

P.Xl/P.Xm/P.Xk/

C
X

X

P.X/ log2

Q
fXl ;Xmg2S

P.Xl ; Xm/
�lm�1

Q
fXl ;Xmg2S

ŒP.Xl /P.Xm/	�lm�1
�
X

X

P.X/ log2

Y
Xk2X

P.Xk/

D �H.X/ �
X

X

P.X/
X

fXl ;Xm;Xkg2C
log2

P.Xl ; Xm; Xk/

P.Xl/P.Xm/P.Xk/

C
X

X

P.X/
X

fXl ;Xmg2S
.�lm � 1/ log2

P.Xl ; Xm/

P.Xl/P.Xm/
C

X
Xk2X

H.Xk/:

Since .Xl ; Xm; Xk/ and .Xl ; Xm/ are components of the random vector X, we have
the relations:

P
X
P.X/

P
fXl ;Xm;Xkg2C

log2

P.Xl ; Xm; Xk/

P.Xl/P.Xm/P.Xk/

D P
fXl ;Xm;Xkg2C

P
.Xl ;Xm;Xk/T

P.Xl ; Xm; Xk/ log2

P.Xl ; Xm; Xk/

P.Xl/P.Xm/P.Xk/

and

X
X

P.X/
X

fXl ;Xmg2S
.�lm � 1/ log2

P.Xl ; Xm/

P.Xl/P.Xm/

D
X

fXl ;Xmg2S

X
.Xl ;Xm/T

.�lm � 1/P.Xl ; Xm/ log2

P.Xl ; Xm/

P.Xl/P.Xm/
:

Taking into account these relations and applying the notion of the mutual informa-
tion content for two and three variables:
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I.Xl ; Xm/ D P
.Xl ;Xm/T

P.Xl ; Xm/ log2

P.Xl ; Xm/

P.Xl/P.Xm/
;

I.Xl ; Xm; Xk/ D P
.Xl ;Xm;Xk/T

P.Xl ; Xm; Xk/ log2

P.Xl ; Xm; Xk/

P.Xl/P.Xm/P.Xk/

we obtain (3.5) and the statement of the theorem has been proved.

Observation 1. We can observe that for minimizing the Kullback–Leibler diver-
gence between the real probability distribution and the approximation obtained from
the t-cherry-junction tree we have to maximize the difference between the sum of
the mutual divergence of the clusters and the sum of the mutual divergence of the
separators denoted by S :

S D
X

fXl ;Xm;Xkg2C
I.Xl ; Xm; Xk/�

X
fXl ;Xmg2S

.�lm � 1/I.Xl ; Xm/

Observation 2. If we wish to compare two approximations of a joint probability
distribution associated to two different t-cherry-junction trees, we have just to:

� Sum the information contents of the clusters
� Sum the information contents of the separators
� Make the difference between them
� Claim a t-junction-cherry tree be better than another one, if it produces greater

value of S

3.3.3 The Relation Between the Approximations
Associated to the First-Order Dependence Tree
and t-Cherry-Junction Tree

A natural question is: can the t-cherry-junction tree give better approximation than
the first order tree given by Chow and Liu does? Let us remind that Chow and
Liu introduced a method for finding an optimal first order tree that minimizes the
Kullback–Leibler divergence.

If pa.j / denotes the parent node of j , the joint probability distribution associ-
ated to the Chow–Liu first order dependence tree is given as follows:

PC h�L.X/ D
nY

iD1

P.Xmi
jXpa.mi //;

where fm1; : : : ; mng is a permutation of the numbers 1; 2; : : : ; n and if pa.j / is the
empty set, then by definition P.Xj jXpa.j // D P.Xj /.
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In the following Algorithm 2 we will show how one can construct a t-cherry-
junction tree from a Chow–Liu first order dependence tree. After this in Theorem 3.3
we prove that the t-cherry-junction tree constructed this way gives at least as
good approximation of the real probability distribution as the Chow–Liu first order
dependence tree does.

Algorithm 2. The construction of a t-cherry-junction tree from a Chow–Liu first
order dependence tree.

Let us regard the spanning tree behind the Chow–Liu first order dependence tree.
It is sufficient to give an algorithm for constructing a t-cherry tree from this spanning
tree. Then by Algorithm 1 we can assign a t-cherry-junction tree to this t-cherry tree:

1. The first cherry of the t-cherry tree let be defined by any three vertices of the
spanning tree which are connected by two edges.

2. We add a new cherry to the t-cherry tree by taking a new vertex of the spanning
tree adjacent to the so far constructed t-cherry tree.

3. We repeat step (2) till all vertices from the spanning tree become included in the
t-cherry tree.

Theorem 3.3. If PC h�L.X/ D Qn
iD1 P.Xmi

jXpa.mi // is the approximation asso-
ciated to the Chow–Liu first order dependence tree there always exists a t-cherry-
junction tree with associated probability distribution Pt�ch.X/ that approximates
P.X/ at least as well as PC h�L.X/ does.

Proof. We construct the t-cherry-junction tree from the Chow–Liu first order depen-
dence tree using Algorithm 2.

The Kullback–Leibler divergence formally looks like it is given in (3.5).
In the case of the approximation obtained by the Chow–Liu method, the Kullback–

Leibler divergence is given as follows (see [7]):

I.P.X/; PC h�L.X// D �H.X/ �
nX

iD1

I.Xmi
; Xpa.mi //C

nX
iD1

H.Xi /: (3.6)

Because the first and last terms of the Kullback–Leibler divergences are the same
in the case of the two approximations (3.5) and (3.6), we denote the sums that we
have to compare by SC h�L in the case of Chow–Liu’s approximation and St�ch in
the case of t-cherry-junction tree approximation:

SC h�L D
X

Xmi
2X

I.Xmi
; Xpa.mi // (3.7)

and

St�ch D
X

fXl ;Xm;Xkg2C
I.Xl ; Xm; Xk/�

X
fXl ;Xmg2S

.�lm � 1/I.Xl ; Xm/ (3.8)

In the case of formula (3.7) we can apply the formula
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I.X; Y / D H.X/�H.X jY /

(see [8], Formula (2.43) on p. 16), while in the case of formula (3.8) we can apply

I.X; Y;Z/ D H.Z/C I.X; Y / �H.ZjX; Y /

which easily can be derived from formulae given in book [8].
So from (3.7) we get

SC h�L D P
Xmi

2X

�
H.Xmi

/ �H.Xmi
jXpa.mi //

	

D P
Xmi

2X

H.Xmi
/� P

Xmi
2X

H.Xmi
jXpa.mi //

(3.9)

and from (3.8) we get

St�ch D
X

fXl ;Xm;Xkg2C
ŒH.Xk/C I.Xl ; Xm/�H.XkjXl ; Xm/	

�
X

fXl ;Xmg2S
.�lm � 1/I.Xl ; Xm/ (3.10)

D
X

Xk2X

H.Xk/�
X

fXl ;Xm;Xkg2C
H.XkjXl ; Xm/

From (3.9) and (3.10) we conclude that we have to compare only

X
Xmi

2X

H.Xmi
jXpa.mi //

and X
fXl ;Xm;Xkg2C

H.XkjXl ; Xm/

To each Xk corresponds an Xmi
because these both are the vertices of X and each

of them appears exactly once. The edge connecting Xmi
and Xpa.mi / is contained

in the t-cherry tree as it was constructed according to Step (2) in the proof of
Theorem 3.3. From this we can conclude that for each Xk contained in a cluster
fXl ; Xm; Xkg one of Xl and Xm is Xpa.k/. Now we can apply the inequality (see
book [8], Formula (2.130) on p. 36):

H.XkjXi ; Xj / � H.XkjXi /

with equality just in case Xk is conditionally independent of Xj . From this it is
obvious that St�ch � SC h�L, and indeed the relation between the Kullback–Leibler
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divergences of the two approximations is:

I.P.X/; Pt�ch.X// � I.P.X/; PC h�L.X//:

This proves the statement of the theorem.

Observation 1. If the underlying dependence structure is a first order dependence
tree than we got equality between the two divergences. (Because of the condi-
tional independences that take place between the unlinked vertices of the first order
dependence tree).

3.4 Some Practical Results of Our Approximation
and Discussions

This section consists of three parts. In the first part we consider two different
approximations of a given eight-dimensional discrete joint probability distribution:

� The approximation given by the Chow–Liu method
� The approximation corresponding to the t-cherry tree constructed by the algo-

rithm given in the proof of Theorem 3.3

In the second part of this section we use the approximations to make some predic-
tion, when the values taken by two out of eight random variables are known. From
this information we are going to recognize the most probable values of the remain-
ing six random variables. In the third part we use the influence diagram underlying
the t-cherry-junction tree to make a feature selection.

Two Approximations of an Eight-Dimensional Discrete Probability Distribution

First we construct an eight-dimensional discrete probability distribution in the fol-
lowing way. The one-dimensional marginal distributions are generated randomly.
Then the so called North-West corner algorithm was applied to determine an ini-
tial feasible solution of an eight-dimensional transportation problem, where the
quantities to be transported were the marginal probability values. This way the
“transported probabilities” are concentrated on 44 different directions, i.e. the con-
structed eight-dimensional discrete probability distribution is concentrated on 44
eight-dimensional vector instead of the possible 2,116,800. An other advantage
is that this way we can get as high as possible positive correlations between the
components of the random vector X. For having also high negative correlations, we
combined the North-West corners with South-West corners.

Now we suppose that only the two and three-dimensional marginals of the eight-
dimensional joint probability distribution are known. Using these we are going to
construct a probability distribution associated to the t-cherry-junction tree. First we
construct the Chow–Liu spanning tree and then transform the correspondent Chow–
Liu dependence tree in a t-cherry junction tree using the Algorithm 2.
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Table 3.1 The mutual information gains in decreasing order for the construction of the Chow–Liu
spanning tree

Index pair Information gain

58 1.660755
18 1.644658
28 1.641684
25 1.611500
15 1.605311
56 1.593626
17 1.558543
47 1.556713
16 1.436039
14 1.423012
68 1.421927
26 1.416225
78 1.367303
13 1.334538

Table 3.2 The three variable mutual information contents ordered in decreasing way. The
boldfaced ones are used in the t-cherry-junction tree

Index triplet Information content

158 3.615752
156 3.431799
258 3.414463
168 3.384689
568 3.357803
128 3.322943
125 3.321265
256 3.278311
147 3.276440
178 3.270665
157 3.197210
578 3.167661
268 3.151382
148 3.137220
135 3.120396

The first step is to calculate the mutual information contents of every pair and
triplet of random variables. We then order them in descending way.

The Chow–Liu tree is constructed by a greedy algorithm from the two-
dimensional information gains. In Table 3.1 the ordered mutual information gains
are given. The mutual information gains used by Chow–Liu’s method are in bold-
face. In Fig. 3.1 the Chow–Liu tree can be seen.

The joint probability distribution associated to the constructed Chow–Liu depen-
dence tree is:
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Table 3.3 The two variable
mutual information contents
ordered in decreasing way.
The boldfaced ones are used
in the t-cherry-junction tree

Index pair Information content

58 1.660755
18 1.644658
28 1.641684
25 1.611500
15 1.605311
56 1.593626
17 1.558543

Fig. 3.1 The Chow–Liu
spanning tree 5

3

2

8 6

1

7

4

PCh�L.X/

D P.X5/P.X8jX5/P.X2jX8/P.X6jX5/P.X1jX8/P.X3jX1/P.X7jX1/P.X4jX7/

D P.X5X8/P.X2X8/P.X5X6/P.X1X8/P.X1X3/P.X1X7/P.X4X7/

P.X8/P.X5/P.X8/P.X1/P.X1/P.X7/
:

The Kullback–Leibler divergence corresponding to the divergence between the
real probability distribution and the approximation given by Chow–Liu method can
be calculated as follows:

I.P.X/; PC h�L.X//

D
8X

iD1

H.Xi / �H.X/ � �
I.X5; X8/C I.X2; X8/C I.X5; X6/C I.X1; X8/

C I.X1; X3/C I.X1; X7/C I.X4; X7/
	

D 16:908113� 4:634363� 10:990524D 1:283226:
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X1, X5, X8

X1, X4, X7

X1, X7, X8 X1, X5, X6 X1, X3, X5 X2, X5, X8

X1, X8 X1, X5

X1, X7

X5, X8

Fig. 3.2 The t-cherry-junction tree

The t-cherry-junction tree constructed by Algorithm 2 can be seen in Fig. 3.2. The
three and the two variable mutual information contents corresponding to the clus-
ters and separators of the t-cherry-junction tree are given in bold face in Tables 3.2
and 3.3

The joint probability distribution associated to the constructed t-cherry-junction
tree is:

Pt�ch.X/

D P.X1X5X8/P.X1X7X8/P.X1X5X6/P.X1X3X5/P.X2X5X8/P.X1X4X7/

P.X1X8/P.X1X5/P.X1X5/P.X5X8/P.X1X7/
:

The Kullback–Leibler divergence between the real probability distribution and
the approximation associated to the t-cherry-junction tree is:

I.P.X/; Pt�ch.X//

D
8X

iD1

H.Xi / �H.X/ � �
I.X1; X5; X8/C I.X1; X7; X8/C I.X1; X5; X6/

C I.X1; X3; X5/C I.X2; X5; X8/C I.X1; X4; X7/ � I.X1; X8/

� I.X1; X5/ � I.X1; X5/ � I.X5; X8/� I.X1; X7/
	

D 16:908113� 4:634363� 20:129510C 8:074578 D 0:218818:

The real eight-dimensional distribution has 44 different vectors with probabilities
different from 0. The Chow–Liu approximation has 453 vectors; the t-cherry-
junction tree approximation has 93 vectors with probabilities different from zero.
From the two Kullback–Leibler divergences calculated above we can observe eas-
ily that the approximation associated to the t-cherry-junction tree is much better
(“closer” to the reality) than the approximation constructed from the Chow–Liu
tree.
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Table 3.4 Comparison of the predicted values with the real ones in the case of the two different
approximations

The most probable vectors P.X/ Pa.X/ The most probable vectors P.X/
predicted by Ch–L approx. in the reality

7 5 1 7 1 2 7 1 0.003487 0.003443 7 5 1 7 1 2 7 1 0.003487

6 5 1 7 1 2 7 3 0.006802 0.005149 6 5 1 7 1 2 7 3 0.006802

3 3 3 4 4 5 3 5 0.000000 0.001696 3 3 3 5 4 5 5 5 0.009853

2 2 3 4 5 5 3 7 0.011576 0.003718 2 2 3 4 5 5 3 7 0.011576
4 4 3 6 2 3 6 4 0.000000 0.004076 4 4 3 6 3 4 6 4 0.012450
3 2 3 4 4 5 3 6 0.019070 0.008043 3 2 3 4 4 5 3 6 0.019070

8 5 1 7 1 2 7 1 0.019399 0.019155 8 5 1 7 1 2 7 1 0.019399

3 2 3 4 5 5 3 7 0.010207 0.006777 3 2 3 4 4 5 3 7 0.025312

7 5 1 7 1 2 7 2 0.027852 0.027503 7 5 1 7 1 2 7 2 0.027852
9 5 1 7 1 2 8 1 0.034906 0.037489 9 5 1 7 1 2 8 1 0.034906

4 3 3 6 4 5 6 5 0.000000 0.033668 4 3 3 6 4 4 6 5 0.044913

5 4 3 7 2 3 7 4 0.000000 0.030836 5 4 3 7 3 4 7 4 0.049737

1 2 4 1 5 5 2 7 0.027323 0.033325 1 2 4 2 5 5 3 7 0.054170
6 5 3 7 1 2 7 2 0.000000 0.001522 6 5 1 7 1 2 7 2 0.128273

6 4 2 7 3 3 7 4 0.050302 0.009993 6 4 1 7 2 3 7 4 0.152472

The most probable vectors P.X/ Pa.X/ The most probable vectors P.X/
predicted by t–ch approx. in the reality

7 5 1 7 1 2 7 1 0.003487 0.003487 7 5 1 7 1 2 7 1 0.003487
6 5 1 7 1 2 7 3 0.006802 0.006802 6 5 1 7 1 2 7 3 0.006802

3 3 3 5 4 5 5 5 0.009853 0.009497 3 3 3 5 4 5 5 5 0.009853

2 2 3 4 5 5 3 7 0.011576 0.009733 2 2 3 4 5 5 3 7 0.011576
4 4 3 6 3 4 6 4 0.012450 0.009917 4 4 3 6 3 4 6 4 0.012450
3 2 3 5 4 5 4 6 0.012682 0.018480 3 2 3 4 4 5 3 6 0.019070

8 5 1 7 1 2 7 1 0.019399 0.019399 8 5 1 7 1 2 7 1 0.019399

3 2 3 4 4 5 3 7 0.025312 0.020359 3 2 3 4 4 5 3 7 0.025312

7 5 1 7 1 2 7 2 0.027852 0.027852 7 5 1 7 1 2 7 2 0.027852

9 5 1 7 1 2 8 1 0.034906 0.034906 9 5 1 7 1 2 8 1 0.034906

4 3 3 6 4 4 6 5 0.044913 0.037797 4 3 3 6 4 4 6 5 0.044913

5 4 3 7 3 4 7 4 0.049737 0.058277 5 4 3 7 3 4 7 4 0.049737

1 2 4 2 5 5 3 7 0.054170 0.044752 1 2 4 2 5 5 3 7 0.054170
6 5 1 7 1 2 7 2 0.128273 0.128273 6 5 1 7 1 2 7 2 0.128273

6 4 1 7 2 3 7 4 0.152472 0.154778 6 4 1 7 2 3 7 4 0.152472

Application for Pattern Recognition

In this part we are testing our approximations for the following pattern recognition
problem. We suppose that the values ofX1 andX8 are known. For these given values
we want to predict the most probable values of the other six random variables. In
Table 3.4 one can see these predictions made with the help of the approximation.
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Fig. 3.3 A possible
dependence diagram of four
random variables

2

4

1

3

In the left side of the table the predicted values of the random variables
X2; : : : ; X7 are given for the two different approximations. In the right side of the
table the most probable values of the same random variables are given according
to the real probability distribution (the same in the case of both approximations).
The rows of the table are in ascending order according to the real probabilities. As
the wrong predicted values are typed in boldface one easily can find them for each
approximation. Let us observe that as long as the number of the wrong predicted
values is 13 in the case of the Chow–Liu approximation, the same number equals
only 2 in the case of the new t-cherry-junction tree approximation.

Feature Selection: Forecasting the Values of a Random Variable Which Depends
on Many Others

The main idea of feature selection is to choose a subset of input random variables
by eliminating features with little or no predictive information. In supervised learn-
ing the feature selection is useful when the main goal is to find feature subset that
produces higher classification accuracy.

In practice many times we have a lot of attributes (random variables) that depend
more or less on each other. The problem is how to select a few of them to make a
good forecast of the variable we are interested in. The pairwise mutual information
contents are not sufficient to make such a decision. To highlight this let us consider
the following example. If we have four random variables with the relations between
their pairwise mutual information contents: I.X2; X3/ > I.X1; X3/ > I.X3; X4/,
and want to take into account only two random variables to forecast the values of
X3, we would use X2 andX1. But if we have the dependence diagram (see Fig. 3.3)
we should decide in an other way. As X1 influencesX3 only throughX2 we should
rather useX2 andX4 for the forecast of the values ofX3. To solve such problems we
give a method that uses the t-cherry-junction tree. If we are interested in forecasting
a random variableXi , we have to select from the cherry tree the clusters that contain
Xi . We obtain in this way a sub junction tree. This results immediately from the
properties of the junction tree. We have to take into consideration, just the variables
that belong to this sub junction tree.

If in our earlier numerical example we are interested in the forecast of X8 we
select from the t-cherry-junction tree the clusters that contain X8. From Fig. 3.2
these are .X1; X5; X8/, .X1; X7; X8/ and .X2; X5; X8/. Now we can conclude that
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for our purpose it is important to know the joint probability distribution of the ran-
dom vector .X1; X2; X5; X7; X8/

T . This can be obtained as a marginal distribution
of the distribution associated to the cherry tree, which can be also expressed as:

P.X1; X2; X5; X7; X8/ D P.X1; X5; X8/P.X1; X7; X8/P.X2; X5; X8/

P.X1; X8/P.X5; X8/
:

Now to test our method we calculate the value of the conditional entropy
H.X8 j X1; X2; X5; X7/ D 0:214946 from the real probability distribution. If we
choose another random vector .X1; X2; X5; X7; X8/

T , then we get H.X8 j X1; X2;

X5; X6/ D 0:235572.
It is interesting to see that I.X1; X2; X5; X6; X8/ D 7:210594 is greater than

I.X1; X2; X5; X7; X8/ D 7:087809.
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3. Bukszár, J., Prékopa, A.: Probability bounds with cherry trees. Math. Oper. Res. 26, 174–192
(2001)

4. Bukszár, J., Szántai, T.: Probability bounds given by hypercherry trees. Optim. Methods
Software 17, 409–422 (2002)

5. Castillo, E., Gutierrez, J., Hadi, A.: Expert Systems and Probabilistic Network Models.
Springer, Berlin (1997)

6. Cheng, J., Bell, D.A., Liu, W.: An algorithm for Bayesian belief network construction from
data. In: Proceedings of AI&StAT’97, 83–90 (1997)

7. Chow, C.K., Liu, C.N.: Approximating discrete probability distribution with dependence trees.
IEEE Trans. Inform. Theory 14, 462–467 (1968)

8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
9. Cowell, R.G., Dawid, A.Ph., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Networks and

Expert Systems. Statistics for Engineering and Information Science. Springer, Berlin (1999)
10. Csiszar, I.: I -divergence geometry of probability distributions and minimization problems.

Ann. Probab. 3, 146–158 (1975)
11. Huang, C., Darwiche, A.: Inference in belief networks: A procedural guide. Int. J. Approx.

Reason. 15(3), 225–263 (1996)
12. Hutter, F., Ng, B., Dearden, R.: Incremental thin junction trees for dynamic Bayesian networks.

Technical report, TR-AIDA-04-01, Intellectics Group, Darmstadt University of Technology,
Germany, 2004. Preliminary version at http://www.fhutter.de/itjt.pdf

13. Jensen, F.V., Lauritzen, S.L., Olesen, K.: Bayesian updating in casual probabilistic networks
by local computations. Comput. Stat. Q. 4 269–282 (1990)

14. Jensen, F.V., Nielsen, T.D.: Bayesian networks and decision graphs, 2nd edn. Information
Science and Statistics. Springer, New York (2007)

15. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

http://www.fhutter.de/itjt.pdf


Part II
Robust Solutions Under Uncertainty



Chapter 4
Induced Discounting and Risk Management

T. Ermolieva, Y. Ermoliev, G. Fischer, and M. Makowski

Abstract The goal of this paper is to specify and summarize new approaches to
discounting proposed in our catastrophic risk management studies. The main issue is
concerned with justification of investments, which may turn into benefits over long
and uncertain time horizon. For example, how can we justify mitigation efforts for
expected 300-year flood that can occur also next year. The discounting is supposed
to impose time preferences to resolve this issue, but this view may be dramatically
misleading. We show that any discounted infinite horizon sum of values can be
equivalently replaced by undiscounted sum of the same values with random finite
time horizon. The expected duration of this stopping time horizon for standard
discount rates obtained from capital markets does not exceed a few decades and
therefore such rates may significantly underestimate the net benefits of long-term
decisions. The alternative undiscounted random stopping time criterion allows to
induce social discounting focusing on arrival times of the main concern (stopping
time) events rather than horizons of market interests.
In general, induced discount rates are conditional on the degree of social com-
mitment to mitigate risk. Random stopping time events affect these rates, which
alter the optimal mitigation efforts that, in turn, change events. This endogeneity
of the induced discounting restricts exact evaluations necessary for using tradi-
tional deterministic methods and it calls for stochastic optimisation methods. The
paper provides insights in the nature of discounting that are critically important for
developing robust long-term risk management strategies.

4.1 Introduction

The implication of uncertainties and risks for justifying long-term investments is a
controversial issue. How can we justify investments, which may possibly turn into
benefits over long and uncertain time horizons in the future? This is a key issue
for catastrophic risk management. For example, how can we justify investments in
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International Institute Applied Systems Analysis, Shlossplatz 1, 2361 Laxenburg, Austria,
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climate change mitigations, say, in flood defense systems to cope with foreseen
extreme 1,000-, 500-, 250-, and 100-floods? The lack of proper evaluations for
dealing with extreme events dramatically contributes to increasing losses from
human-made and natural disasters [20]. The analysis of floods that occurred in
the summer of 2002 across central Europe [14] shows that the potential areas of
vulnerability to extreme floods have multiplied as a consequence of failed develop-
ment planning. Underestimation and ignorance of low probability/high consequence
events have led to the growth of buildings and industrial land and sizable value
accumulation in flood prone areas without proper attention being paid to flood mit-
igations. A challenge is that an endogenously created catastrophe,1 say a 300-year
flood, has never occurred before in a given region. Therefore, purely adaptive poli-
cies relying on historical observations provide no awareness of the “unknown” risk
although, a 300-year flood may occur next year. For example, the 2002 floods in
Austria, Germany and the Czech Republic were classified (in different regions) as
1,000-, 500-, 250-, and 100-year events [14].

A key issue is development of policies with proper long-term perspectives. The
traditional discounting is supposed to impose necessary time preferences, but this
view may be dramatically misleading. There are several possibilities for choosing
discount rates (see, for example, the discussion in [2, 19, 24, 29]). The traditional
approach is to use the rates obtained in capital markets. The geometric or exponen-
tial discount factor dt D .1 C r/�t D e�1n.1Cr/t 
 e�rt (for small r) is usually
connected with a constant rate r of returns from capital markets. Since returns in
capital markets are linked to assets with a lifespan of a few decades, this choice
may completely reduce the impacts that investments have beyond these intervals
(Sect. 4.2). Another serious problem [21, 31] arises from the use of the expected
value r D E� and the discount factor .1 C r/�t . It implies additional significant
reduction of future values in contrast to the expected discount factor E.1 C �/�t ,
because E.1 C �/�t >> .1 C r/�t . These issues are discussed in Sects. 4.2
and 4.3.

An appropriate interest rate is especially difficult to define when decisions
involve time horizons beyond the interests of the current generation. If future gener-
ations are not present in the market, e.g., long-term environmental damages are not
included in production costs, the market interest rates do not reflect the preferences
of future generations. According to Arrow et al. [2] “the observed market rates of
interest refer to how individuals are willing to trade off consumption over their own
life. These may or may not bear close correspondence to how a society is willing to
trade off consumption across generations”.

Debates on proper discount rates for long-term problems have a long-standing
history [2, 29]. Ramsey [26] argued that applying a positive discount rate r to dis-
count values across generations is unethical. Koopmans [17], contrary to Ramsey,
argued that zero discount rate r would imply an unacceptably low level of current
consumption. The use of so-called social discount rates produces two effects [2].

1 As a consequence of inappropriate policies.
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The “prescriptive” approach tends to generate relatively low discount rates and thus
favors mitigation measures and the wellbeing of future generations. The “descrip-
tive” approach tends to generate higher discount rates and thus favors less spending
on mitigation and the wellbeing of the current generation.

The constant discount rate has only limited justification [3,12,24,29]. As a com-
promise between “prescriptive” and “descriptive” approaches, Cline [4] argues for
a declining discount rate: 5% for the first 30 years, and 1.5% later. There have been
proposals for other schedules and attempts to justify the shape of proper decline.
Papers [21, 31] show that uncertainty about r produces a certainty-equivalent dis-
count rate, which will generally be declining with time. Weitzman [31] proposed
to model discount rates by a number of exogenous time dependent scenarios. He
argued for rates of 3–4% for the first 25 years, 2% for the next 50 years, 1% for
the period 75–300 years and 0 beyond 300 years. Newel and Pizer [21] analyzed the
uncertainty of historical interest rates by using data on the US market rate for long-
term government bonds. They proposed a different declining discount rate justified
by a random walk model. Chichilinsky [3] proposed a new concept for long-term
discounting with a declining discount rate by attaching some weight on the present
and the future consumption. All these papers aim to derive an appropriate exogenous
social discount rate.

Sections 4.2 and 4.3 develop a different approach for social discounting. It
is shown that any discounted sum, so-called net present value (NPV) criterion,P1

tD0 dtVt of expected values Vt D Evt for random variables (r.v.) vt ; t D
0; 1; : : : ; dt D .1 C rt /

�t under constant and declining discount rates rt equals
the average undiscounted (in the agreement with Ramsey’s concerns) random sum
E
P�

tD0 vt with a random stopping time � defined by the given discounting dt .
Therefore, discount rates can be associated with the occurrences of “stopping time”
random events determining a finite “internal” discount-related horizon Œ0; �	. The
expected duration of � and its standard deviation � under modest market inter-
est rates of 3.5% is approximately 30 years, which may have no correspondence
with expected, say, 300-year extreme events and � 
 300. Conversely, it is shown
that any stopping time random event induces a discounting. A set of mutually
exclusive stopping time random events, e.g., 1,000-, 500-, 250-, and 100-year
floods, induces discounting with time-declining discount rates. This case corre-
sponds also to the discounting with uncertain discount rates r . In particular, a
single stopping time random event with the standard geometric probability distri-
bution induces the standard discounting with constant discount rate r and dt D
.1C r/�t .

The effects of catastrophes on the stream of values vt ; t D 0; 1; : : : , differ from
the effects of market uncertainties. Section 4.4 indicates that catastrophic events
pose new challenges. They often create so-called endogenous, unknown (with the
lack and even absence of adequate observations) and interdependent risks, which
may potentially affect large territories and communities and, on the other hand,
are dramatically affected by risk management decisions. As a consequence, catas-
trophic risks generally make it impossible to use traditional economic and insurance
models [1,3,5,8,9,16]. The concept of undiscounted random stopping time criteria
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allows to induce social discounting that focuses on arrivals of catastrophic events
rather then the lifetime of market products. Since risk management decisions affect
the occurrence of disasters in time and space, the induced discounting may depend
on spatio-temporal distributions of extreme events and feasible sets of decisions,
i.e., it can be viewed as a spatio-temporal discounting. The implicit dependence
of the stopping time discounting on random events and decisions calls for the
use of stochastic optimization methods, which allows also to address the vari-
ability (Remark 4.2) of discounted criteria by using random value

P�
tD0 vt even

for deterministic vt ; t D 0; 1; : : : . Section 4.5 establishes connections of stopping
time discounting with dynamic versions of CVaR (Conditional Value-at-Risk) risk
measures. Section 4.6 illustrates how misperception of induced discounting may
provoke catastrophes. Section 4.7 provides concluding remarks.

4.2 Standard and Stopping Time Induced Discounting

This section illustrated the main idea by using the standard geometric discounting.
The choice of discount rate as a prevailing interest rate within a time horizon of
existing financial markets is well established [18]. Uncertainties, especially related
to extreme events, challenge the possibility of markets to offer proper rates for
longer time horizons. The following simple Proposition 4.1 and Remark 4.2 clarify
the main concerns.

The traditional financial approaches [18] often use the so-called net present value
(NPV) criteria to justify investments. An investment is defined as an expected cash
flow stream V0; V1; : : : ; VT ; Vt D Evt , over a time horizon T � 1. Assume that
r is a constant prevailing market interest rate, then alternative investments are com-
pared by V D V0 C d1V1 C : : : C dTVT , where dt D d t ; d D .1 C r/�1; t D
0; 1; : : : ; T , is the discount factor and V denotes NPV.

It is usually assumed that a long-term investment activity has an infinitely long
time horizon, i.e.,

V D
1X

tD0

dtVt : (4.1)

The stream of values Vt ; t D 0; 1; : : : , can represent an expected cash flow stream of
a long-term investment activity. In economic growth models and integrated assess-
ment models [19, 22, 29] the value Vt represents utility U.xt / of an infinitely living
representative agent, or welfare Vt D Pn

iD1 ai ui .x
t
i / of a society with representa-

tive agents i D N1; n, utilities ui , consumptions xt
i and welfare weights ˛i . Natural

selection theory treats (4.1) as Darwinian fitness [28], where discount factors dt are
associated with hazard rates of an environment (Example 4.2).

The infinite time horizon in (4.1) creates an illusion of truly long-term analysis.
Proposition 4.1 shows that in fact deterministic evaluation (4.1) accounts only for
values Vt from a finite random horizon Œ0; �	 defined by a random stopping time �
with the discount-related geometric probability distribution P Œ� � t 	 D dt .
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Proposition 4.1. Consider a discounted sum (4.1) with dt D d t ; d D .1 C r/�1;

r > 0. Let q D d; p D 1 � q, and � be a random variable with the geometric
probability distribution P Œ� D t 	 D pqt ; t D 0; 1; : : : . Then dt D P Œ� � t 	 and

1X
tD0

d tVt D
1X

tD0

P Œ� � t 	Vt D E

�X
tD0

Vt : (4.2)

Conversely, for any stopping time � with a geometric probability distribution

E

�X
tD0

Vt D
1X

tD0

dtVt ; dt D P Œ� � t 	:

Proof. We have P Œ� � t 	 D P1
kDt pq

k D pqt .1 � q/�1 D qt D dt . Conversely,

E

�X
tD0

Vt D
1X

tD0

P Œ� D t 	

tX
kD0

D Vk D
1X

tD0

pqt

tX
kD0

Vk

D
1X

tD0

 1X
kDt

pqk

!
Vt D

1X
tD0

dtVt :

That is, any discounted deterministic sum (4.1) equals to the average undis-
counted random sum

P�
tD0 Vt of the same values Vt . In other words, the discount

factor dt D d t induces an “internal” discount-relate time horizon Œ0; �	 with the
geometrically distributed � . Conversely, any geometrically distributed � and the
criterion E

P�
tD0 Vt induces the geometric discounting in the sum

P1
tD0 dtVt .

Remark 4.1. (Random stopping time horizon). We can considerŒ0; �	 being a ran-
dom stopping time horizon associated with the first occurrence of a “killing”,
i.e., a catastrophic stopping time event. The probability that this event occurs at
t D 0; 1; : : : is p and pqt is the probability that this event occurs first time at t ,
i.e., � has a geometric probability distribution. Since p D 1 � d , d D .1C r/�1,
then the expected duration of � , E� D 1=p D 1C 1=r . Therefore, for the interest
rate of 3.5%, r D 0:035, the expected duration is E� 
 30 years, i.e., this rate
orients the policy analysis on an expected 30-year time horizon. The standard devi-
ation � D p

q=p, i.e., it equals approximately 30 years The bias in favor of the
present in discounting with the rate of 3.5% is easily illustrated [24]. For a project
with long-run benefits or costs, 1 Euro of benefits or costs in years 50, 100, and 200,
has a present value respectively of 0.18, 0.003, and practically 0 Euros. Definitely,
this rate may have no correspondence to how society has to deal with a 300-year
flood, i.e., a flood with the expected arrival time equal to 300 years. Therefore, in
the risk management � can be associated with the arrival of potential catastrophic
events rather than with horizons of market interests. The induced social discounting
dt D P Œ� � t 	 in this case would have proper long-term perspectives dependent
on spatio-temporal patterns of catastrophes and risk management decisions (see
Proposition 4.3 and Sect. 4.4). The discount rate r can be viewed also as a killing
(hazard) rate [15] which makes the life expectancy of an otherwise infinitely living
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representative agent or society equal to 1C 1=r years. Yet, depending on a concrete
situation, stopping time � can be also associated with the arrival time of a reward.

Remark 4.2. (Variability of NPV). Disadvantages of this standard criterion (4.1) are
well known [18]. In particular, the NPV critically depends on the prevailing interest
rate which may not be easily defined in practice. In addition, the NPV does not
reveal the temporal variability of cash flow streams. Two alternative streams may
easily have the same NPV despite the fact that in one of them all the cash is clustered
within a few periods, but in another it is spread out evenly over time. This type of
temporal heterogeneity is critically important for dealing with catastrophic losses
which occur suddenly as a “spike” in time and space [9].

The criterion E
P�

tD0 Vt ; Vt D Evt has visible advantages. In particular, it
allows to address distributional aspects and robust strategies [6] by analyzing the
random variable

P�
tD0 Vt (even for deterministic vt D Vt ), e.g., its quantiles defined

as maximal y D yı satisfying safety constraint

P

"
�X

tD0

vt � y

#
� ı:

Equivalently, yı maximizes the concave function (see discussion in [6], p. 16)

y C ı�1Emin

(
0;

�X
tD0

vt � y

)
:

The optimal value of this function defines the so-called CVaR (Conditional
Value-at-Risk) risk measure [27].

Therefore, if variables vt depend on some decisions x (as in Sect. 4.4), then the
maximization of function

F.x/ D
"
y C ı�lEmin

(
0;

�X
tD0

vt � y

)#
:

allows easy control of highly nonlinear (even for linear in x function vt ) the safety
constraints (quantiles of

P�
tD0 vt ) in an optimal manner defined by a function F.x/

that is adjusted to CVaR risk measure (see also Sect. 4.5).

Remark 4.3. (Shock testing). The sensitivity of models w.r.t. “shocks” (extreme
scenarios, events, stresses) is often assessed by introducing them into discounted
criteria [22, 29]. From Proposition 4.1 it follows that this may lead to serious mis-
calculations. Let us consider criterion (4.1) with discount factors, dt D d t ; d D
.1Cr/�1 and assume that a “shock” arrives at a random time moment � 2 f0; 1; : : :g
with probability P Œ� D t 	 D �� t , � D 1 � � D .1 C �/�1. Then the expected
value, E

P�
tD0 dtVt D P1

tD0 d
t� tVt D E

P�
tD0 �

tVt D E
Pmin.�;�/

tD0 Vt ; where
P Œ� D t 	 D pqt with q D d , p D 1 � q. Therefore, the stopping time of the
“shocked” evaluation E

P�
tD0 d

tVt is defined by min.�; �/. The discount rate of
this evaluation is .1 C r/�1:.1C p/�1 D .1C r C �C r�/�1, i.e., the shocked
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evaluation increases the rate of the original discounting and, hence, the bias in favor
of the present.

Example 4.1. (Catastrophic Risk Management). The implications of Proposition 4.1
for long-term policy analysis are rather straightforward. Let us consider some
important cases. It is realistic to assume [24] that the cash flow stream, typical
for investment in a new nuclear plant, has the following average time horizons.
Without a disaster the first six years of the stream reflect the costs of construc-
tion and commissioning followed by 40-years of operating life when the plant
is producing positive cash flows and, finally, a 70-year period of expenditure on
decommissioning. The flat discount rate of 5%, as Remark 4.1 shows, orients the
analysis on a 20-year time horizon. It is clear that a lower discount rate places more
weight on distant costs and benefits. For example, the explicit treatment of a poten-
tial 200-year disaster would require at least the discount rate of 0.5% instead of
5%. A related example is investments in climate change mitigations to cope with
potential climate change related extreme events. Definitely, a rate of 3.5%, as often
used in integrated assessment models [29], can easily illustrate that climate change
does not matter. A shock testing of these models reduces even further their internal
stopping time horizon.

Example 4.2. (Darwinian fitness). Ramsey [26] had introduced discounting, first of
all, as a mathematical device ensuring the convergence of infinite horizon cumula-
tive values. Its various explanations supported by empirical studies were proposed
afterwards suggesting that humans and animals place less weights on the future
then on the present [28]. A reason is that future rewards run more risk of disap-
pearing. Hence, they should be discounted, where the discount rate is the hazard
rate. For example, evidence from selection experiments indicates the existence of
a trade-off between short-term and long-term fertility, i.e., the existence of life-
history strategy that discounts the future. In other words, natural selection puts a
premium on immediate reproductivity. Accordingly, an animal can be treated as a
rational optimizer maximizing its Darwinian fitness, that can be taken to be equiv-
alent to maximizing the expected number of offsprings. In a simple case, fitness is
defined [28] then as integral F D R1

0 m.t/s.t/dt , where m.t/ is the expected rate
of reproductive output at age t if the animal survives to that age, and s.t/dt is the
probability of surviving to age t . It is highly unlikely that an animal is able to learn
discount factors (probability density s.t/) in order to maximize the Darwinian fit-
ness. The equivalent distribution free stopping time criterion requires observations
of only lifetime intervals � , which can be easily used for adaptive adjustments of
life-history strategies.

4.3 Time Declining Discount Rates

This section extends Proposition 4.1 to general time declining discount rates. It
also shows that a time declining discount rate can be associated even with a set of
mutually exclusive geometrically distributed extreme (stopping time) events. This
rate is determined in a sense by the least probable event.
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Let us consider now a stream of random variables (r.v.) v0; v1; : : : affected by a
set of random events including potential catastrophic events. Formally, we can think
of vt as a function vt .!/ defined on a probability space f�;P g with the set � of
related random events and the probability measure P on�. We assume that vt does
not depend on the “future”, i.e., we assume that f�;P g is adapted to a sequence
of increasing � -algebras A0 � A1 � : : : (subsets of events from �, which occur
before t D 0; 1; : : :), such that vt is measurable (defined on) w.r.t. At . In what
follows, all random variables are assumed to be defined on f�;P g.

Let �k;t D �.vk ; : : : ; vt / be the �-algebra generated by vk; : : : ; vt . Consider
a stopping time � , which we define as a r. v. � 2 f0; 1; : : :g, such that event,
f� � tg ; t D 0; 1; : : : does not depend on values vtC1; vtC2; : : :, i.e., �tC1;1.

Proposition 4.2. Consider a discounted sum
P1

tD0 dtVt ; dt D .1C rt /
�t , where rt

is an increasing positive sequence, Vt D Evt . Then there is a stopping time � such
that P Œ� � t 	 D dt and

1X
tD0

dtVt D
1X

tD0

P Œ� � t 	 Evt D E

�X
tD0

vt : (4.3)

Conversely, let E j vt j is uniformly bounded. Then, for any stopping time �

E

�X
tD0

vt D
1X

tD0

dtVt ; dt D P Œ� � t 	 ;

where Vt is conditional expectation:

Vt D EŒvt j � � t 	

Proof. Consider such any r.v. � ,� 2 f0; 1; : : :g that f� � tg does not dependent on
values v0; : : : ; vt�1 and P Œ� D t 	 D dt � dtC1, t D 0; 1; 2; : : : . Clearly, P Œ� � 0	

D d0 � d1 C d1 � d2 C : : : D d0 D 1, P Œ� � t 	 D dt and

1X
tD0

dtVt D
1X

tD0

P Œ� � t 	Vt :

Let now ft WD Pt
kD0 vk . From the rearrangement known as the Kolmogorov–

Prohorov’s theorem it follows that

Ef� D
1X

tD0

EŒft I � D t 	 D
1X

tD0

tX
kD0

EŒvkI � D t 	 D
1X

kD0

EŒvk I � � k	

D
1X

kD0

P Œ� � k	Vk :
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where Vk DEŒvk j � � k	 and EŒvt IA	, denotes unconditional expectation
EŒvtIA	, IA is the indicator function of event A. The last assertion follows from
the identity f� � tg D f� > t � 1g, i.e., from the independence of f� � tg on �t;1.
The change in the order of sums is possible due to the uniform boundness ofE j vt j.
Corollary 4.1. If v0; v1; : : : are independent r.v. or f� � tg ; t D 0; 1; 2; : : : ; does
not depend on v0; v1; : : : ; vt�1,then Vt in both cases of Proposition 4.2 is uncon-
ditional expectation Vt DEvt . If v0; v1; : : : are independent identically distributed
r.v., then the Wald’s identity follows from Proposition 4.1:

E

�X
tD0

vt D Ev0E� :

Proof. It follows from the following rearrangements:

1X
tD0

P Œ� � t 	 D
1X

kD0

1X
tDk

P Œ� D t 	 D
1X

tD0

tP Œ� D t 	 D E�:

Example 4.3. (Expected catastrophic losses). Assume that a catastrophic event may
occur at t D 0; 1; 2; : : : with probability p. It is usually defined as (1=p)-year event,
say a 100-year flood. Define � as the arrival time of the first catastrophe and let
vt D 0,0 � t � � � 1, v� DL� , where L� is conditional expected losses given that
the event occurs at � . Since lt ¤ 0 only for, t D � , then the expected (unconditional)
losses at � are:

Ev� D pL0 C qpL1 C q2pL2 C : : : D
1X

tD0

qtVt D
1X

tD0

P Œ� � t 	Vt ;

where Vt DpLt .

The next proposition shows that a set of even geometrically distributed events
can induce discounting with time declining discount rates. Let us assume that
there is a set of mutually exclusive events (see also Sect. 4.4) of “magnitude”
i D 1; : : : ; n. The probability of scenario i is �i ;

Pn
i D 1 �i D 1 and, conditional

on this scenario, the event i occurs for the first time at �i with the probabil-
ity P Œ�i D t 	Dpiq

t
i ; qi D 1 � pi ; t D 0; 1; : : : . Thus, the occurrence of events at

t is characterized by a mixed geometric distribution
Pn

i D 1 �ipiq
t
i . Let � be the

arrival time of a first event. Then dt DP Œ� � t 	D Pn
i D 1 �iP Œ�i � t 	. Since

P.�i � t/Dpiq
t
i C piq

tC1
i C : : : D qt

i , then evaluation (4.1) takes the form

V D
1X

tD0

dtVt ; dt D
nX

iD1

�iq
t
i : (4.4)

This equation essentially modifies the standard geometric discounting. Neverthe-
less, the induced discount factors dt for large t tend to be defined by the smallest
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discount rate of the least probable event. The following proposition is similar to the
conclusion in [31].

Proposition 4.3. Discount factor dt D Pn
i D 1 �iq

t
i in (4.4) is determined for t!1

by the standard geometric discount factor qt
i 	 associated with the least probable

event i�,
pi� D mini pi W dt=q

t
i�!�i� for t!1:

Proof. dt D qt
i�
Pn

i D 1 �ii .t/, where i .t/D .qi=qi	/t . From pi� < pi ; pi D 1�
qi , it follows that i .t/ ! 0; t ! 1, for i ¤ i� and i�.t/D 1. Hence, dt=q

t
i� !

�i� for t ! 1.

Remark 4.4. (Finite time horizon T). Propositions 4.1, 4.2, 4.3 hold true also for a
finite time horizon T < 1 after substituting probabilities P Œ� D t 	, P Œ� � t 	 by
conditional probabilities P Œ� D t j � � T 	 and P Œ� � t j � � T 	.

Remark 4.5. (Distribution free approach). Propositions 4.1, 4.2 provide two alter-
native approaches for discounting: standard discounted criterion of the left-hand
side of (4.1), (4.2) with an exogenous discounting, or undiscounted criterion of
the right hand side with � defined by random arrival time of stopping time events.
Proposition 4.3 shows that the corresponding induced discounting dt DP Œ� � t 	

can be a complex implicit function of spatio-temporal patterns of events. The next
section illustrates, that � may depend also on various decisions. All these make
it rather difficult to evaluate exact risk profiles P Œ� � t 	 and exogenous discount
factors dt . Therefore, this would require the use of the distribution-free random
stopping time criterion and STO methods rather then the standard distribution-based
discounted criterion and deterministic optimization methods.

4.4 Endogenous Discounting

This section summarizes typical motivations for developing spatio-temporal catas-
trophic risk management models with rather natural versions of the stopping time
concepts. A typical model may include often the following loop and the potential
for positive feedbacks, branching and disequilibrium:

1. Stopping time induces discounting in the form of dynamic risk profiles
dt DP Œ� � t 	.

2. The discounting affects optimal mitigation efforts.
3. Mitigation efforts affect the stopping time � , risk profiles P Œ� � t 	 and the

discounting dt (return to point 1).

This means that the stopping time criterion induces endogenous spatio-temporal
endogenous discounting.

Example 4.4. (Evaluation of a Flood Management Program). Consider a simple
version of the catastrophic flood management model developed for the Upper Tisza
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river region [9]. The spatio-temporal structure of this model was motivated by the
following reasons.

Throughout the world, the losses from floods and other natural disasters are
mainly absorbed by the immediate victims and their governments [13]. The insur-
ance industry and its premium payers also absorb a portion of catastrophic losses,
but even in the wealthy countries this share is relatively small. With increasing losses
from floods, governments are concerned with escalating costs for flood prevention,
flood response, compensation to victims, and public infrastructure repair. As a new
policy, many officials would like to increase the responsibility of individuals and
local governments for flood risks and losses [25], but this is possible only through
location-specific analysis of risk exposures and potential losses, the mutual interde-
pendencies of these losses, and the sensitivities of the losses to new risk management
strategies.

This is a methodologically challenging task requiring at least the development of
spatio-temporal catastrophe models [5, 8, 9, 30]. Although rich data usually exist
on aggregate levels, the sufficient location specific data are not available, espe-
cially data relevant to new policies. Moreover, catastrophes affect large territories
and communities producing mutually dependent losses with analytically intractable
multidimensional probability distributions dependent also on various decisions. This
critically distinguishes the arising problems from a standard risk management sit-
uations, e.g., the well-known asset-liability management. The standard methods, in
particular, the existing extreme event theory, are not applicable to rational manage-
ment of catastrophic risks. The new GIS-based catastrophe models [9,30] are needed
to simulate the occurrence of potential extreme events and the samples of mutually
dependent catastrophic losses for which no or very few historic observations exist.

In general, a catastrophe model represents the study region by grids, e.g., a rel-
atively small pilot Upper Tisza region is represented by 1,500 � 1,500 grids [9].
Depending on the purpose of the study, these grids are aggregated into a much
smaller number of cells (locations, compartments) j D 1; 2; : : : ; m. These cells may
correspond to a collection of households at a certain site, a collection of grids with
similar land-use characteristics, or an administrative district or grid with a segment
of gas pipeline. The choice of cells provides a desirable representation of losses.
Accordingly, cells are characterized by their content, in general, not necessarily in
monetary units. Values can be measured in real terms, without using an aggregate
dollar value. The content of cells is characterized by the vulnerability curves cal-
culating random damages to crops, buildings, infrastructure, etc., under a simulated
catastrophic scenario.

Catastrophic floods which are simulated by the catastrophe model, affect at ran-
dom different cells and produce mutually dependent random losses Lt

j ; j D 1; : : : ;

m, from a catastrophic event at time t . These losses can be modified by various
decisions. Some of the decisions reduce losses, say a dike, whereas others spread
them on a regional, national, and international level, e.g., insurance contracts. If
xD .x1; x2; : : : ; xn/ is the vector of the decision variables, then Lt

j is a random
function Lt

j .x/.
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Flood occurrences in the region are modeled according to specified probabilistic
scenarios of catastrophic rainfalls and the reliability of dikes. There are three dikes
allocated along the region’s river branch. Each of them may break after the occur-
rence at a random time of a 100-, 150-, 500-, and 1,000-year rainfall characterized
by the so-called up-stream discharge curves calculating the amount of discharged
water to the river branch per unit of time. In fact, the discharge curves upscale the
information about complex rainfall and run-off processes affected by land-use and
land-transformation policies. This brings considerable uncertainty in the definition
of a 1=p-year flood, pD 1=100, 1/150, 1/500,1/1,000. Therefore, a 100-year dis-
charge curve may represent, in fact, a set of floods with different frequencies p, say,
1=150 � p � 1=100. In addition to the interval, the uncertainty about p can be
given by a prior distribution. Therefore, a single discharge curve, in general, corre-
sponds to a set of 1=p-year floods, where p is characterized by a prior probability
distribution. For example, it can be characterized by a finite number of probabilistic
scenarios p1; : : : ; pn with prior probabilities �1; : : : ; �n as in Proposition 4.3.

The stopping time can be defined differently, depending on the purpose of the
policy analysis. A catastrophic flood in our example occurs due to the break of one
of the three dikes. These events are considered as mutually exclusive events, since
the break of a dike in the pilot region releases the “pressure” on other dikes. There-
fore, the stopping time � can be defined as the first time moment of a dike break.
In this case, the probability or induced discount factor dt DP Œ� � t 	 is an implicit
function of t , probabilities �i ; pi ; i D 1; : : : ; n, and the probability of a dike break.
The situation is complicated further by the deterioration of dikes in time and/or by
inappropriate maintenance of the flood protection system (see also Sect. 4.6), e.g.,
modifications to the dikes, the removal of some of them, and building new reten-
tion areas and reservoirs. Besides these structural decisions, the stopping time �
can be affected by other decisions, e.g., land use policies. Accordingly, depending
on goals, the definition of stopping time � can be further modified. For example,
let us assume that the region [10] participates in the flood management program
through payments to a mutual catastrophe fund, which has to support a flood pro-
tection system and compensates losses to victims. To enforce the participation in
the program, the government provides only partial coverages of losses. The stability
of this program critically depends on the insolvency of the fund that may require a
new definition of � . Let ˇ be a fixed investment rate enabling the support of the sys-
tem of dikes on a certain safety level and � be a random time of a first catastrophic
flood. Denote by L�

j random losses at location j; j D 1;m, at time t D � and by �j

the premium rate paid by location j to the mutual catastrophe fund. Then, its accu-
mulated risk reserve at time � together with a fixed partial compensation of losses

P

j L
�
j by the government isR� D �

P
j �j C

P
j L

�
j �Pj 'jL

�
j �ˇ�, where

0 � 'j � 1, is the portion of losses compensated by the fund at location j . Let
us also assume that the functioning of the flood management program is considered
as a long-term activity assuming that growth and aging processes compensate each
other. Then, the insolvency of the fund is associated with the event:

�
X

j

�j C 
X

j

L
�
j �

X
j

'jL
�
j � ˇ� < 0: (4.5)
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Inequality (4.5) defines extreme random events affected by various feasible
decisions x including components .�j ; 'j ; ; bj ; ˇ; j D 1;m. The likelihood of
event (4.5) determines the vulnerability of the program. It is more natural now to
define the stopping time � as the first time when event (4.5) occurs. In this case �
would depend on all components of vector x and the induced discounting would
focus on time horizons associated with the occurrence of the event (4.5).

4.5 Dynamic Risk Profiles and CVaR Risk Measure

Example 4.5 illustrates that the probability distributions P Œ� � t 	, t D 0; 1; : : : ,
itself represent key safety characteristics of catastrophic risk management pro-
grams. Induced discounting dt DP Œ� � t 	 then “controls” these risk profiles
implicitly through their contributions to discounted goals of programs. Another pos-
sibility as this section shows is to impose explicitly safety constraints of the type
P Œ� � t 	 � �t , for some safety levels �t ; t D 0; 1; : : : . In this case resulting robust
strategies would directly control the safety constraints.

Example 4.5. (Safety constraints). The occurrence of disasters is often associated
with the likelihood of some processes abruptly passing “vital” thresholds. This is a
typical situation for insurance, where the risk process is defined similar to (4.5)
by flows of premiums and claims whereas thresholds are defined by insolvency
constraints. A similar situation arises in the control of environmental targets and in
the design of disaster management programs [5,8,9]. Assume that there is a random
process Rt and the threshold is defined by a random �t . In spatial modeling, Rt

and �t can be large-dimensional vectors reflecting the overall situation in different
locations of a region. Let us define the stopping time � as the first time moment t
when Rt is below �t . By introducing appropriate risk management decisions x it is
often possible to affect Rt and �t in order to ensure the safety constraints P ŒRt �
�t 	 � � , for some safety level � , or �t ; t D 0; 1; 2; : : : .

The use of this type safety constraints is a rather standard approach for coping
with risks in the insurance, finance, and nuclear industries. For example, the safety
regulations of nuclear plants assume that the violation of safety constraints may
occur only once in 107 years, i.e., � D 1�10�7. It is remarkable that the use of stop-
ping time criterion as in the right-hand side of (4.2) has strong connections with the
dynamic safety constraints and dynamic versions of static CVaR risk measures [27].
Let us illustrate this by using the simplest version of climate change stabilization
models discussed in [23].

Assume that Rt D Pt
k D 0 xk , where decision variables

xk � 0; k D 0; 1; : : : ; t; t � T < 1:

We can consider xk to be a CO2 emission reduction at the beginning of period k.
At time t the target value on total emission reduction Rt in period t is given as a
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random variable �t . It is assumed that the exact value of �t may be revealed at a
random period �; P Œ� � t 	D dt . The decision path xD .x0; x1; : : : ; xT / has to be
chosen ex-ante in period t D 0 to mitigate climate change impacts associated with
the case R� < �� . Consider the loss function associated with emission mitigation
strategy x and given � :

V.x/ D E

�X
tD0

Œctxt C btmax f0; �t �Rt g ItD� 	; (4.6)

where deterministic coefficients ct can be viewed as marginal costs, and bt as risk
factors.

This can be written (Example 4.3) as

V.x/D
TX

t D 0

dt

"
ctxt C btEmax

(
0; �t �

tX
k D 0

xk

)#
:

Assume that V.x/ is a continuously differentiable function, e.g., a component of
random vector �D .�0; �1; : : : ; �T / has a continuous density function. Also, assume
for now that there exists a positive optimal solution x� D .x�

0 ; x
�
1 ; : : : ; x

�
T /; x

�
t >0,

minimizing V.x/ subject to xt � 0; t D 0; 1; : : : ; T . Then, from the optimality con-
dition for stochastic minimax problems (see discussions in [6], p. 16) it follows that
for xDx�,

Vxt
D ct �

TX
kDt

bkP

"
kX

sD0

xs � �k

#
D 0; t D 0; 1; : : : ; T:

From this it follows sequentially for t DT; T � 1; : : : ; 0,

P

"
TX

kD0

xk � �T

#
D cT =bT ; P

"
tX

kD0

xk � �t

#
D .ct �ctC1/=bt ; t D 0; 1; : : : ; T�1:

(4.7)
SinceEmax f0; �t �Rt g DE�tI	t �Rt

�RtP Œ�t � Rt 	, then from (4.7) it follows
that V.x�/DEpb�I	� �Rt

, which can be viewed as a dynamic CVaR (Conditional-
Value-at-Risk) risk measure. Equations (4.7) can be used to control dynamic risk
profiles, say, profiles with a given safety level � as in Example 4.5:

1 � � D cT =bT D .ct � ctC1/=bt t D 0; 1; : : : ; T � 1;

by appropriate choice of risk factors bt similar to stationary CVaR risk measures. In
this case the minimization of (4.6) controls safety constraints (4.7) with given safety
level � , i.e.,

P

"
tX

kD0

xk � �k

#
D 1 � �; t D 0; 1; : : : ; T: (4.8)
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This is a remarkable result, since the safety constraints, as a rule, are non-convex
and even discontinuous, whereas the minimization of function (4.6) is often a convex
problem for important practical cases.

Equations (4.7) are derived so far from the existence of the positive optimal
solution x�. The following proposition clarifies this assumption.

Proposition 4.4. The existence of positive optimal solution follows from cT =dT <

1; .ct �ctC1/=dt < 1; t D 0; 1; : : : ; T�1, and the monotonicity of quantilesˇt ; ˇ0 <

ˇ1 < : : : < ˇT defined by equations

P ŒˇT � �T 	 D cT =dT ; P Œˇt � �t 	 D .ct � ctC1/=dt ; t D 0; 1; : : : ; T � 1

Proof. Indeed, the first requirement guarantees that x�
0 >0;

Pt
k D 0 x

�
0 >0;

t D 1; 2; : : : ; T . From the second requirement it follows that x�
0 C x�

1 >x
�
0 ;

i:e:; x�
1 >0, and so on.

Let us note that in general cases outlined in Example 4.5, process Rt is given
by stochastic equations RtC1 � Rt Dg.t; xt /; t D 0; 1; : : : ; T � 1, where g.t; xt /

is a random function. In this case (4.7), (4.8) would have a form of conditional
expectation rather then quantiles. It is even easy to see for g.t; xt /D atxt , where
at are random variables. In rather general cases a minimization problem (4.6) can
be solved by distribution-free stochastic optimization methods proposed in [5,7–9],
i.e., methods which don’t use (in general) exact probability distributions.

Remark 4.6. (Robust decision). The stopping time � in model (4.6) is not associ-
ated with the violation of safety constraint (4.8). In catastrophic risk management
the model (4.6) is usually considered as an auxiliary submodel. For example, if
random �t are affected by a set of decisions y with a cost function F.y/, then
the minimization of function V.x/ C F.y/ yields robust decision minimizing
total costs under safety constraints (4.8) and a dynamic version of the CVaR risk
measure.

4.6 Intertemporal Inconsistency

The time consistency of discounting means that the evaluation of an investment
project today .t D 0/, will have the same discount factor as the evaluation of the
same project after any time interval Œ0; T 	 in the future. In other words, despite
delayed implementation of the project we always found ourselves in the same
environment. Only geometric or exponential discounting, dt Dd t D eln.d/t D e�
t ;

where 
D � ln.d/, defines a homogeneous time consistent preference:

1X
tD0

d tVt D V0 C dV1 C : : :C dT �1VT �1 C dT ŒVT C dVT C1 C : : :	
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This is also connected with the geometric probability distribution of the discount-
related stopping time � in (4.2): if P Œ� � t 	D d t ; 0 < d < 1, then

P Œ� D t 	 D d t � d tC1 D .1� d/d t ; t D 0; 1; : : : :

In other words, the consistency is the direct consequence of the well-known “mem-
oryless” feature of geometric and exponential probability distributions: for any
t � 0; s � 0,

P Œ� D t C s j � � t 	 D d tCs.1 � d/=d t D d s.1 � d/

Hence, independently of waiting time t , the probability of the stopping time occur-
rence at t C s is the same as at the initial time moment t D 0.

For other discount factors with time-dependent rates, their time inconsistency
requires appropriate adjustments of discount factors for projects undertaken later
rather than earlier. The misperception of this inconsistency may provoke increas-
ing vulnerability and catastrophic losses. Let us consider typical scenarios of such
developments. Section 4.4 shows that the adequate perception of proper discounting
is a challenging task requiring models that allow the explicit evaluation of related
risk profiles. This section, in fact, illustrates that the design of such models has to
be considered as a key mitigation measure to cope with increasing vulnerability.

A number of authors distinguish between various types of so-called “imperfect
altruism” resulting in the lack of social commitment to mitigate risks. For example,
there were alluded definitions of a naive, a sophisticated and a committed (ideal)
society. The main differences between these three societies and how they provoke
catastrophes are summarized in [11] by using a simplified flood management model
outlined in Sect. 4.4. This model has the fixed 100-year horizon T in which three
societies, the naive, the sophisticated, and the committed, live and plan for coping
with the catastrophic losses that may occur due to break of a dyke from 150-year
flood with time consistent geometric probability distribution. They are able to mit-
igate the reliability of dikes and losses by paying fair premiums to the catastrophe
fund. But, depending on their perception of risk profiles or induced discounting, the
results are dramatically different.

The current generation of The Naive Society is aware of a possible catastrophe. It
maximizes the (identical for all generations) value function taking into account the
potential need to save for paying premiums. Unfortunately, it has a misleading view
on the catastrophe, namely, if the catastrophe has not occurred in the later generation
the society believes that it will not occur within the current generation with the same
probability. Thus, it relies on geometric probability distribution and fails to take
into account the time inconsistency induced by increasing the probability of a dike
break due to aging processes. Therefore, the first generation of the society postpones
the implementation of decisions, i.e., the naive society puts also its preferences on
consumption as the first priority consuming at a higher rate than it actually plans.

For the next generation the time is shifted forward by 20 years, and the second
generation, similar to the first, plans but does not implement saving actions essential
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for the catastrophe fund to function. The risk profiles, time preferences, premiums,
and the actions are not adjusted towards the real escalating risks. In a similar way,
behave the next generations. The plans are never implemented and the view on a
catastrophe remains time invariant despite dramatic increase of risk.

The Sophisticated Society implies a correct understanding of the time-inconsistent
discounting induced by the deteriorating system of dikes. But this society, similar
to the naive planners, also evaluates present consumption to be much higher than
the future one. This leads to postponing the decisions. Due to these delays, the risk
burden is increasingly shifted to the next generation, calculated premiums become
higher and higher. If a catastrophe occurs, this society will also be not prepared to
cope with losses as catastrophe management is not functioning.

The “pathologies” of these societies can be explained by their misperception of
risks, and, the lack of committed actions.

The Committed Society is similar to that of the sophisticated society. In contrast
though, this society is able to implement decisions because its calculations demon-
strate that the delays in actions may dramatically affect individuals and the growth
of societies as a whole. Individuals could be better off if their consumption options
were limited and their choices constrained by anticipating risks. As a direct con-
sequence of the committed actions, the premiums that the society pays for coping
with catastrophes in 100 years time are much lower than those of the sophisticated
society.

4.7 Concluding Remarks

The proposed new approach to discounting is based on undiscounted stopping-
time criterion which is equivalent to the standard discounted criterion in the case
of market-related discount factors. In general, the stopping time criterion induces
the discounting that depends on spatio-temporal patterns of catastrophes and vari-
ous relevant decisions. More formally, this paper demonstrates that discount factors
dt ; t D 0; 1; : : : can be associated with the occurrence of an extreme (“killing”)
“stopping time” event at random time � with probability P Œ� � t 	D dt . Con-
sequently, the infinite discounted sum

P1
t D 0 dtVt ; Vt DEvt , is replaced by the

undiscounted expectation E
P�

t D 0 vt within the finite interval Œ0; �	. The use of
the stopping time criterion E

P�
t D 0 Vt induces the standard discounting in the case

when � is associated with the lifetime of market products. In dealing with catas-
trophic risks, the stopping time � can be associated with the arrival time of potential
catastrophic events. The use of random criterion

P�
t D 0 vt allows to address the vari-

ability of valuations even in the case of deterministic flows V0; V1; : : :. In this case,
it is often important to substitute the expected value of random sum

P�
t D 0 vt by its

quantiles. Mitigation efforts affect the occurrence of extreme events and, thus, they
affect discounting, which in turn affects mitigations. This endogeneity of discount-
ing restricts exact evaluations of dt and the consequent use of deterministic methods
and it calls for specific stochastic optimization methods.
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Chapter 5
Cost Effective and Environmentally Safe
Emission Trading Under Uncertainty

T. Ermolieva, Y. Ermoliev, G. Fischer, M. Jonas, and M. Makowski

Abstract The aim of this paper is to analyze robust cost-effective and environmen-
tally safe carbon emission trading schemes under uncertainties of emissions and
costs, and asymmetric information of participants. The proposed model allows to
control explicitly the safety of Kyoto (or other) targets by taking long-term perspec-
tives on emission trading. The dynamics of this scheme is driven by bilateral trades
with different endogenous disequilibrium prices between mutually beneficial trades,
but finally the system converges to cost-effective and environmentally safe global
equilibrium. The safety constraints work as a discounting mechanism that discounts
the reported emissions to detectable undershooting levels. This, in turn, provides
incentives for participants to reduce uncertainties. The model shows that uncertain-
ties and short term market perspectives may easily prevent price-based trading to be
environmentally safe and cost-effective scheme. The desirable equilibrium emerges
only under proper price-formation mechanisms. The role of the proposed comput-
erized multi-agent trading system is central for dealing with long-term perspectives,
irreversibility and lock-in equilibriums of trades. This system can be viewed as a
device for decentralized collective regulation of trades based on unified approaches
to modeling of uncertainty, calculation of costs and trading rules.

5.1 Introduction

The public property of large scale pollution makes it impossible to organize com-
plete environmental markets with private demand for and private supply of pol-
lution control [2, 3, 7, 15, 18, 20, 22]. Yet, the idea of carbon trading markets is
becoming increasingly popular for global climate change control. At the same
time, the existence of various exogenous and endogenous inherent uncertainties
raises serious concerns regarding the ability of carbon trading markets to
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K. Marti et al. (eds.), Coping with Uncertainty, Lecture Notes in Economics
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fulfill the main purpose of the climate change control without creating world-wide
irreversible socio-economic and environmental disruptions. Definitely, that inter-
ests of profit oriented markets may contradict the main concerns of the Kyoto
agreements [29].

Considered in this paper is bilateral exchange of emission rights. It is assumed
that parties with high emission reduction costs buy emissions from parties with low
emission reduction costs within prescribed targets. In other words, parties can be
engaged in a mutually beneficial bilateral emission exchange process [8] driven by
cost minimizing and environmentally safe bilateral trades without the need for a
market. This approach is close to important ideas on decentralized non-monetary
exchange [21, 28].

In contrast, carbon trading markets, which become increasingly popular in recent
years, are more similar to stock markets. Parties hold a number of permits to emit a
specific amount of emissions. Parties that cannot to keep their emissions at the given
level (called cap) must buy permits on the market at a prevailing market price.

Thus, in the bilateral emission trading scheme the exchange of emission rights
is driven by the abatement costs and safety constraints, while in the carbon trading
markets the exchange of emissions is driven by prevailing market prices. Such price
signals with potential bubbles created by speculators may have no connections with
minimization of abatement costs and achieving environmental safety constraints.

There are two principle approaches to control pollution: centralized coopera-
tive command-and-control methods and decentralized market simulating schemes.
If there was a social planner (central agency or regulator) fully informed about
emissions and abatement cost functions of all parties, the primal problem of find-
ing emission levels that meet given environmental standards in a cost-effective way
would be a straightforward task. This could be done by dealing with nonconvex cost
functions typically encountered in long-term evaluations involving new technolo-
gies with increasing returns. However, without such a planner, the primal model has
to be solved in a decentralized manner.

The aim of this paper is to develop an integrated approach for designing cost-
effective and environmentally safe decentralized emission trading schemes robust
with respect to uncertainties of emissions, costs and asymmetric information of
parties. The bilateral emission trading scheme of Sect. 5.5 corresponds to a decen-
tralized solution of the primal model, whereas schemes of Sect. 5.7 simulate decen-
tralized price-based market’s solutions. The cost-effectiveness and environmental
safety of latter solutions critically depend on proper price signals, which usually
reflect instantaneous market situations rather than long-term costs and environmen-
tal constraints of the dual model. The complexity of the primal model is a vital issue
for the existence of proper prices.

There is a number of uncertainties, affecting outcomes of examined model. First
of all, emissions of Green-House Gases (GHGs) are not directly observable. A com-
prehensive discussion of related issues can be found in the volume by [1], and in
[12]. In general, emissions can be estimated with information on the GHG-emitting
activities by applying specific conversion factors and from atmospheric measure-
ments using inversion models. The accuracy of the reported emissions depends on
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the quality of the monitoring system in each specific country and on the accuracy
of the conversion factors used [26]. As emissions of GHGs cannot be observed
perfectly, the uncertainty can be misused by concealing unreported emissions. A
central issue becomes a trade-off between reductions of emissions and uncertainties.
For example, carbon prices in the European Union crashed and caused instabilities
in late April 2005 after the Czech Republic, Estonia, France, the Netherlands and
Sweden reported lower than anticipated emissions [4, 27].

Apart from emissions, another essential uncertainties are those related to the
emission amounts and reduction costs. Parties have incentives to keep this informa-
tion private and the specific costs may remain unknown to the other parties. Besides,
they may vary according to unknown market conditions. They are also subject to
both industry wide and firm specific shocks.

The novelty of this paper is in integrated analysis of emission trading schemes
under various types of natural and human related uncertainties. Section 5.2 illus-
trates the need for proper treatment of uncertainties by using available historical
observations of CO2 emissions. It shows that the use of uncertainty intervals as
practiced by International Panel for Climate Change (IPCC) can leave out of con-
sideration an essential mass of potential emissions. Therefore, Sect. 5.3 introduces
a simple and realistic stochastic model allowing to represent both, human related
uncertainties and uncertainties associated with the natural variability of emissions.
The model focuses on proper representation of potentially controversial experts’
judgments and path-dependencies of emissions. As a result, this allows us to intro-
duce safety constraints and undershooting mechanism to control the robustness of
emission targets during trading process.

Section 5.4 introduces a basic model allowing to analyze different trading
schemes. In particular, the model shows that the trade equilibrium under uncer-
tainty is significantly affected by uncertainty. This emphasizes the need for pro-
posed integrated modeling of uncertainties, safety constraints and emission trading
schemes.

The dynamic bilateral trading scheme of Sect. 5.5 can be viewed as a stochastic
decomposition procedure. The trade at each step takes place towards minimization
of safety-adjusted costs of meeting parties. This generates disequilibrium random
prices which are endogenously driven towards the cost-effective and environmen-
tally safe equilibrium price. This section analyses also difficulties involved in setting
up such an equilibrium price in monetary trading schemes. Standard market models
usually imply (e.g., by an arbitrage free type of assumption) that markets oper-
ate under equilibrium prices. Section 5.6 outlines a computerized Multi-Agent
Decentralized Trading System dealing with the irreversibility of emission trades.
Section 5.7 analyses path-dependencies of myopic trading schemes relying on
instantaneous markets situations. It shows that short-term market perspectives pre-
clude achieving desirable long-term emission reduction goals. Section 5.8 concludes
and outlines important numerical results. The Appendix provides a proof of the
convergence. It also discusses stable core solutions of bilateral emission trading
scheme.



82 T. Ermolieva et al.

5.2 Uncertainties and Trends of Carbon Fluxes

This section illustrates a general need for proper representation of emission uncer-
tainties. Next section addresses these issues in a more specific context of emission
trading.

Uncertainties of emissions are often represented by means of intervals. In reality,
emissions may have different likelihoods within these intervals, i.e., rather general
skewed probability distributions. In this case, the use of uncertainty intervals can
leave out of consideration essential patterns of emission changes as in Figs. 5.2
and 5.3.

Figures 5.1, 5.2, and 5.3 illustrate trends and natural variability of net carbon
fluxes on the global scale http://lgmacweb.env.uea.ac.uk/lequere/co2/carbon.budget.
htm. The global carbon budget is composed of the fossil fuel emissions, the emis-
sions stemming from land use, the ocean uptake, and the terrestrial uptake estimated
as a residual of all the sources minus the ocean uptake and atmosphere increase.

Figures 5.2 and 5.3 show the dynamics of changes in emissions and emissions
uncertainties. The histogram in Fig. 5.2 is skewed to the left. In the next study
period, Fig. 5.3, the situation changes: more values are concentrated on the right
hand side. Between these two periods, the system turns from sink to source of
CO2. Definitely, it is impossible to characterize these changes only by uncertainty
intervals.

Fig. 5.1 Emission trends: fossil fuel and cement burning (I); CO2 in the atmosphere (II); mean
ocean uptake (III); net terrestrial flux (IV). Bold lines correspond to smoothed trajectories of
respective fluxes. Regression equations in boxes describe linear trends

http://lgmacweb.env.uea.ac.uk/lequere/co2/carbon.budget.
htm
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Fig. 5.2 Global CO2 net terrestrial uptake, 1960–1970
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5.3 Detectability of Emission Changes

A simple way to introduce the detectability of emission changes can be based on
a straightforward representation of emission trends and uncertainties by equally-
sided intervals as in Fig. 5.4 (see [1, 19]). The main idea is illustrated in Fig. 5.4.
Let us assume that uncertainty of emission e1 in the base year t1 is characterized
by equally sided interval Œe1 � �; e1 C �	. The uncertainty of reported emission e2

in the commitment year t2 (t1 < t2) is characterized by the same type of interval
Œe2 � �; e2 C �	. We assume that e1 > e2, although the case e1 < e2 is also possible,
e.g., as a result of emission trading. The detectability of emission changes requires
that the change in net carbon emissions �e D e1 � e2 at time t2 is greater than the
uncertainty in the reported net carbon emissions at time t2.

Under the non-restrictive assumption that the first-order linear approximations
for emissions (as in Fig. 5.1), e.t/ and uncertainties �.t/ trends are applicable for
t1 � t � t2, the detection time t� is defined as the first time moment when net
emission change �e outstrips the uncertainty interval. In a sense, this is a worst-
case evaluation. As in Figs. 5.2 and 5.3, considerable mass of real emissions can be
concentrated in a much smaller subinterval. For example, the uncertainty interval of
random variable with a normal probability distribution is (�1;1), whereas practi-
cally entire probability mass may be concentrated within Œ�1; 1	 interval. Therefore,
by using stochastic uncertainty models it is possible to derive with high probability a
more optimistic t�. This is the main issue of stochastic models discussed in [16,17].
An overview of different approaches can be found in [1]. The goal of the stochastic
models is to rank the trading parties by a safety indicator showing the percentage of
detectable emission changes within a given time interval.

Let us consider a rather general stochastic model for a representation of a contro-
versial data about uncertainties. We assume that the uncertainty of emissions e1,

time
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Fig. 5.4 Simplified illustration of detection time t�
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e2 is characterized by a set of, in general, disconnected intervals. For example,
Figs. 5.2 and 5.3 may suggest to represent uncertainty by a number of subintervals
characterized by simple, say, uniform (conditional) probability distributions.

The following simple example illustrates the main idea of the model.

Example 5.1 (Controversial experts). Experts judgments are used in situations with
the lack or even absence of real observations. Assume that two experts, Ex.1 and
Ex.2, characterize the uncertainty of e1 by overlapping intervals Œ1; 8	, Œ5; 10	. Then
overall uncertainty of e1 can be characterized by intervals Œ1; 5	, Œ5; 8	, Œ8; 10	 with
likelihoods 1=4, 2=4, 1=4 derived from the “voting” of experts: .1; 0/, .1; 1/, .0; 1/,
i.e., for interval Œ1; 5	 votes only Ex.1, both experts vote for interval Œ5; 8	, and only
Ex.2 votes for Œ8; 10	. In general, experts may characterize uncertainty by discon-
nected intervals. For example, Ex.1 may insist on equally probable intervals Œ1; 3	,
Œ5; 8	 conditional on implementation of different technologies. Uncertainty of e2 can
be characterized in a similar manner.

Consider now a general model. For simplicity of notation we omit the index i
of parties. Assume that (specific for each party i ) uncertain emission e1 is charac-
terized by intervals Œemin

1 ; e1
1 	, Œe

2
1; e

3
1 	, Œe

4
1; e

5
1 	; : : : ; Œe

R
1 ; e

max
1 	 with probabilities pr ,P

r pr D 1. These intervals can be derived from real observations, experts opinions,
and scenarios of future developments. In addition, likelihoods of emissions within
an interval can be characterized by a conditional on r distribution, say, uniform,
normal or the degenerated distribution concentrated in the middle of this inter-
val as in Fig. 5.4. In a similar manner, emissions e2 are characterized by intervals
Œemin

2 ; e1
2	; Œe

2
2 ; e

3
2 	; Œe

4
2 ; e

5
2	; : : : ; Œe

L
2 ; e

max
2 	 with some conditional on r and l distribu-

tions. Path-dependencies between emissions e1 and e2 are induced by the following
stochastic model. An interval r at the base year t1 is selected with the probability
pr , emission level e1 is sampled from the conditional distribution in this interval;
an interval l of a trend from r to l is selected with probability qrl ,

P
l qrl D 1,

and finally, the end point e2 of the random linear path .e1; e2/ is sampled from the
distribution in interval l conditional on r and l . Let us denote the obtained linear
random path by e.t; !/, t1 � t � t2, where ! denotes the pair of points .e1; e2/.

Linear paths e.t; !/ create the uncertainty ranges at t2. For example, if e.t1; !/
belongs to interval r , then the uncertainty of e2 is defined on the basis of only
feasible transitions from interval r to random intervals l with positive qrl , qrl > 0.

The proposed stochastic model allows to introduce path-dependencies of emis-
sions subject to some essential conditions, say, the implementation of new emission
reduction technologies or monitoring equipment. This may simplify the detection
of emission changes. Exact detection is in general a difficult task because the reso-
lution of all involved uncertainties may be prohibitively costly. Yet, it is possible to
define likelihoods of changes. For example, it is possible to find a minimal time t2
such that emission changes are detected during Œt1; t2	 with a specified likelihood.
It is also possible to find the likelihood of the changes within given interval Œt1; t2	
that is used in the next section.

Remark 5.1 (Modifications of model). The proposed stochastic model can be fur-
ther generalized or simplified subject to available data. Straight lines of linear
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emission paths can be theoretically substituted by more general stochastic paths
(processes) or scenario trees, although the proposed linear stochastic trends allow
simple calculations. If path-dependencies of emissions are not essential, then the
model directly deals only with uncertainties of e2. In more general situations,
uncertainties are also characterized by a set of probability distributions, i.e., there
is a set of feasible pr , qrl . There exist different approaches to deal with arising
“uncertainty-of-uncertainty” issues, in particular, the use of non-Bayesian worst-
case distributions [6].

Comparative analysis of deterministic and stochastic simple detection mod-
els can be found at http://www.iiasa.ac.at/Research/FOR/unc-prep.html,FOR/vt-
concept.html, and in [10].

5.4 Trade Equilibrium Under Uncertainty

GHG’s control policy as other environmental policies have to be designed in such
a way that they are environmentally safe and cost-effective. The models proposed
in this section provide a basis for designing rather different decentralized emission
trading schemes.

The models reflect the following key features. The participants (countries, com-
panies or other emitting entities) are given a right to emit a specific amount for
which they obtain an equivalent number of allowances (emission permits). Such
amounts are called the “cap” (Kyoto or other targets). If participants emit more than
the corresponding cap reduced by the amount of uncertainty (undershooting level)
ensuring that the actual emission does not exceed the cap with a given safety (likeli-
hood) level, they are required to reduce uncertainty or/and to buy additional credits
from the parties which emit less than their cap. The transfer of permits is called
“trading”. Standard deterministic models belong to a specific class of the proposed
models. Since they ignore uncertainty, actual emissions may considerably overshoot
allowed targets.

Let us briefly consider a deterministic model with uncertainty intervals proposed
in [13,14], that will be further extended to include stochastic safety constraints. The
decision problem of each party can be separated in two interdependent subproblems.
Firstly, for a given amount of permits, each party solves individual problem deciding
whether to spend resources on abating emissions or investing in uncertainty reduc-
tion to satisfy emission targets. This problem does not require the information from
any other party. Secondly, the party needs to decide whether or not to exchange per-
mits with other parties. This decision problem involves the cost functions of other
parties. In the model this information is private and therefore the methodology of
decentralized optimization [8, 10] is required.

For the individual optimization problem, we define the least costs fi .yi / for party
i to comply with imposed targets for a given amount of permits yi and the target
Ki as the minimum of emission reduction costs ci .xi / and costs of uncertainty

http://www.iiasa.ac.at/Research/FOR/unc-prep.html, FOR/vt-
concept.html
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reduction (e.g., by investments in monitoring) di .ui /:

fi .yi / D min
ui ;xi

Œci .xi /C di .ui /	; (5.1)

xi C ui � Ki C yi ; xi � 0; ui � 0; (5.2)

for all i , where xi is the reported emissions at source i , ui is its uncertainty, and
yi is the amount of emission permits acquired by source i (yi is negative if i is a
net supplier of permits). Therefore, constraint (5.2) requires that the reported emis-
sion xi undershoots the target Ki by the level of uncertainty ui . Similar concept
of undershooting is also used in [24]. There are also suggestions [23] to represent
uncertainty by a fraction of xi . Example 5.2 shows that this case can be reduced
to the case of additive uncertainty as in (5.2). Let us also note, that the model can
be formulated in terms of emission reductions that require only slight changes of
terminology.

The second optimization problem with asymmetric information involves finding
the permit vector y D .y1; : : : ; yn/ or distribution of permits minimizing unknown
total or social cost function

F.y/ D
nX

iD1

fi .yi / (5.3)

subject to
nX

iD1

yi D 0: (5.4)

Suppose that the cost functions ci .xi / and di .ui / are positive, decreasing, con-
vex in xi and ui respectively and continuously differentiable. Therefore, fi .yi /

is also convex, positive, decreasing and differentiable. Then, from the Lagrangian
minimization a trade equilibrium can be defined as the vector y D .y1; : : : ; yn/

satisfying the following equations:

f
0

i .yi / D �
;
nX

iD1

yi D 0: (5.5)

The condition (5.5) states that the marginal value of a permit shall in equilibrium
be equal to a specific unknown level (price) 
 same for all parties. It is clear that at
the equilibrium vector y� the constraints (5.2) will hold with equality, i.e.,

fi .y/ D max
xi

Œci .xi /C di .Ki C yi � xi /	 D max
ui

Œci .Ki C yi � ui /C di .ui /	:

Therefore from (5.1), (5.2) it follows that at the equilibrium yi D y�
i , 
 D 
�,

xi D x�
i , ui D u�

i :

c
0

i .xi / D d
0

i .ui / D �
;
nX

iD1

yi D 0; (5.6)
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where .x�
i ; u

�
i / is the solution of the subproblem (5.1), (5.2) for .y�; 
�/,

y� D .y�
1 ; : : : ; y

�
n / satisfying (5.5). This equation states that in the cost-effective

and environmentally safe equilibrium, the marginal cost of holding emissions down
to x�

i will be equal to the marginal cost of holding uncertainty down to u�
i . It shows

that the explicit introduction of uncertainty ui and the safety constraints (5.2) into
emission trading schemes may significantly affect the equilibrium and, hence, the
design of proper emission trading schemes. In particular, it means that equilibrium
market prices 
� must satisfy (5.5), (5.6). In other words, if 
� is known and fi

are convex functions, then 
� decentralizes joint model (5.3), (5.4) into individual
solutions of (5.5). For non-convex function F.y/, (5.5) are not sufficient to find an
equilibrium solution of the model.

However, there is no social planner that knows the cost functions of all parties.
Therefore, even in the convex case the optimal value of F.y/ and 
� cannot be
resolved by solving (5.5). The scheme of bilateral trade presented in Sect. 5.5 allows
to compute the equilibrium x�

i , u�
i , 
�

i without revealing private information on
functions fi .

Remark 5.2 (Long-term perspectives, detectability and undershooting). The basic
model can be easily extended to a dynamic version. In this article we do not con-
sider it explicitly. Instead, we introduce below long-term perspectives by explicit
treatment of future uncertainties and dynamic trading processes. The environmental
constraint (5.2) assumes that the known emissions plus the uncertainty of emissions
undershoot the emission target. This corresponds exactly to the detectability con-
cept in Fig. 5.4. Constraint (5.2) discounts, in a sense, the reported emissions to
levels undershooting emission targets. As (5.6) show, this provides incentives for
the uncertainty reduction.

In the stochastic model of Sect. 5.3 uncertainty of emissions by party i at the
commitment year t2 is characterized by a random variable e.t2; !i /. A reported
emission xi provides additional information that modifies e.t2; !/. For example, if
it is known for sure that xi belongs to an interval li , then distribution of ei .t2; !i / is
induced only by feasible transitions from initial intervals ri to li with correspond-
ing probability distributions. We can also say that reported emission xi transforms
ei .t2; !i / into a random variable �i .xi ; !/. Therefore, (5.2) of the deterministic
model has to be understood now in a probabilistic sense as the following safety
constraint. Let us define the uncertainty of reported emission xi as �i .xi ; !/ D
�i .t2; xi ; !/ � xi . Then the safety constraint can be written as probabilistic version
of the deterministic constraint (5.2):

P Œxi C �i .xi ; !/ � Ki C yi 	 � Qi ; (5.7)

for all parties i , whereQi is a safety level ensuring that the probability of all poten-
tial emission paths to xi satisfying the emission target Ki exceeds Qi . Thus the
interval uncertainty ui is substituted by a random variable �i .xi ; !/ dependent, in
general, on xi . In reality, the uncertainty characterized by �i can be reduced by
improvements of monitoring systems. Let us introduce the variable ui to control �i
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within the desirable safety levelQi . If zi .xi / is the minimal z such that

P Œ�i .xi ; !i / � z	 � Qi ;

then the safety constraint (5.7) can be substituted by the following equivalent
constraint

xi C ui � Ki C yi ; ui � zi .xi /; (5.8)

Remark 5.3 (Risk-based undershooting). Equation (5.8) shows that the stochas-
tic model induces risk-based upper bounds on uncertainty intervals. Therefore, it
allows, e.g., in cases illustrated by Figs. 5.3 and 5.4 to introduce but risk-based
undershooting of emission targets defined by “critical” quantile zi .xi /, which is
less conservative than standard interval uncertainty.

For the simplicity of notation, let us denote now by ! the vector of all uncer-
tain parameters affecting cost functions and emissions, i.e., some components of !
such as market prices affect only cost functions, whereas other components affect
emissions. In other words, suppose that all uncertain variables are defined on a prob-
ability space with a set of scenarios (events)!. For random cost functions ci .xi ; !/,
di .ui ; !/, we can redefine functions fi .yi / in (5.1) as

fi .yi / D min
xi ui

EŒci .xi ; !/C di .ui ; !/	; (5.9)

where the minimization in (5.9) is subject to constraint (5.8). In this model ex-ante
decisions xi , ui take a long-term perspective: they have to be optimal against all
potential future scenarios ! and threats regulated by safety constraints. Uncertain-
ties of cost functions ci ; di may be due to unknown in advance market performance,
production shocks, and technological uncertainties.

Example 5.2 (Linear equivalent). Often, �i .xi ; !/ is represented as �i .xi ; !/D
�ixi C �i , where 0 � �i � 1, and �i is a random variable. In particular, uncer-
tainty ui in (5.2) can be given as ui D �ixi . The uncertainty in these cases can be
controlled by �i in the following manner. Let �i .Q/ be the minimal z such that
P Œ�i � z	 � Qi , e.g., �i .Q/D 0 for constraints (5.2). Then constraint (5.8) is
reduced to linear constraint

xi C ui � Ki � �i .Qi /C yi ; ui � xi :

After solving individual subproblem subject to this constraint, the optimal �i can be
found as � D ui=xi .

Remark 5.4 (Nonconvexity). Safety constraints (5.7) are well known in financial
applications as the Value-at-Risk indicator. Similar constraints are typical for safety
regulation of insurance companies, nuclear power plants, and catastrophic risk man-
agement [9]. Unfortunately, due to these constraints fi .yi / and F.x/ may not be a
convex function. In order to ensure convexity and/or robustness of decisions xi , ui
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under rare extreme events it is possible to modify slightly cost functions ci , di based
on the “Conditional Value at Risk” [25] indicators as it is used in [9] and in [6] for
general stochastic optimization problems.

Additional nonconvexities of functions fi .yi / may be due to increasing returns
of cost functions ci .�/, di .�/, with respect to new emission abatement technologies
with increasing returns. Nonconvexities generate the so-called duality gap between
solutions of the basic model (5.3), (5.4) and its dual model (see Sect. 5.6) precluding
the price-based dual (market) schemes to achieve cost-effective and environmentally
safe solutions.

5.5 Dynamic Bilateral Trading Processes

The overall goal of the parties participating in the emission trading is to jointly
achieve emission targets by redistributing the emission permits yi , i.e., to find a
vector y that would minimize social costs of all parties (5.3) under safety constraints
(5.8), where cost functions fi .yi / are defined according to (5.9). It is assumed that a
party i knows its expected cost function fi .yi /, but the expected cost function F.y/
is unknown.

The basic feature of the trading scheme is similar to the procedure in [8] for
convex function F.y/: two parties meet (e.g., picked at random) and, if possible,
exchange emission permits in a mutually beneficial way. A new pair is picked and
the procedure is repeated. The Appendix provides the proof that this dynamic pro-
cess will lead the parties to an equilibrium despite the information of each party’s
cost is private and F.y/ is not necessarily a convex function.

The following simple equations illustrate that the bilateral exchange of emis-
sions is beneficial for both parties. Let yk D .yk

1 ; : : : ; y
k
n / be the vector of emission

permits after k trades. Consider two parties i and j at step k with permits yk
i

and yk
j . An exchange of permits between them leads to a new distribution of

permits ykC1 D .ykC1
1 ; : : : ; ykC1

n /, ykC1
l

D yk
l

for l 6D i; j . According to (5.5), if
there exist any two parties i and j having different marginal costs on emission
reduction f

0

i .y
k
i / 6Df

0

j .y
k
j /, then the permit vector yk D .yk

1 ; : : : ; y
k
n / is not cost

efficient. Without loss of generality, assume that f
0

i .y
k
i / � f

0

j .y
k
j / < 0. Con-

straint (5.4) requires that the feasible exchange in permits has to be such that
ykC1

i C ykC1
j Dyk

i C yk
j .

If we take ykC1
i Dyk

i C�k and ykC1
j Dyk

j ��k ,�k > 0, then the new feasible

distribution of permits reduces the total costs of parties fi .y
k
i /C fj .y

k
j / and hence

the total cost F.yk/:

F.ykC1/ � F.yk/ D fi .y
kC1
i /C fj .y

kC1
j /� fi .y

k
i / � fj .y

k
j /

D �k.f
0

i .y
k
i /� f

0

j .y
k
j //C o.�k/ < 0;
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for a small �k . We also have

fi .y
kC1
i /� fi .y

k
i / < fj .y

k
j / � fj .y

kC1
j /: (5.10)

i.e., the new distribution of permits reduces costs of j more than increases cost of
i . Hence j is able to compensate i for the increased costs in a mutually beneficial
way.

Let us summarize the trade scheme more precisely. We assume that after picking
up (say at random) a pair of parties i , j these parties are able to find ykC1

i , ykC1
j

minimizing
fi .yi /C fj .yj / (5.11)

subject to constraints yi C yj Dyk
i C yk

j , yi � 0, yj � 0.
This problem is solved by parties i and j only. For continuously differentiable

functions fi .yi /, fj .yj /, a party j that decreases emission permit by �k > 0

may negotiate with i such a level �k that equalizes marginal costs, i.e., f
0

i .y
k
i �

�k/Df
0

j .y
k
j C�k/D
k , where 
k can be viewed as an equilibrium price (in gen-

eral stochastic) at step k. Let us note that price process 
k is driven endogenously
by cost-minimizing decisions of meeting parties, what is fundamentally different
from standard models of financial markets with exogenously given price processes.

The sequential bilateral trades can go on as long as there are two parties with
different marginal costs. The bilateral exchange of emissions equalizes marginal
costs which define an intermediate “local” equilibrium price 
k . During the process,
marginal costs and prices will differ between the sequential trades, but finally the
trading system converges to an equilibrium with marginal costs of all parties equal
to equilibrium price as in (5.5).

It is important to compare the outlined bilateral trading scheme with a basic price-
based scheme. A cost-effective and environmentally safe price signal is a solution
of the dual model to the basic primal model (5.3)–(5.4). It involves finding the price

 maximizing the following concave and, in general, non-differentiable function

�.
/ D min
y

nX
iD1

.fi .yi /C 
yi /:

A price signal 
 decentralizes the solution of internal minimization problem into
individual subproblems: find solutions yi .
/minimizing functions fi .yi /C
yi . In
general, solutions yi .
/ do not satisfy the balance equation, i.e.,

Pn
i D 1 yi .
/ 6D 0,

therefore the price 
 has to be adjusted towards the desirable balance. The common
idea is to change current 
k at time kD 0; 1; : : : proportionally to the imbalance,
i.e., �

0

.
/ for continuously differentiable �.
/:


kC1 D 
k C �k

nX
iD1

yi .
k/

with a small step-size �k . From the convergence results of quasi-gradient methods
(see, e.g., discussion in [5]) it follows that with �k D const=k, the sequence 
k
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converges to a price 
 maximizing �.
/. If yi .
/ are unique solutions (for any 

and i D 1; n)), then �.
/ is continuously differentiable function and 
 fulfills the
balance equation (

Pn
i D 1 yi .
/D 0) independently of the convexity fi .yi /. Other-

wise, additional coordinated search is required to select yi from the set of solutions
yi .
/ in order to guarantee (achieve) the balance

Pn
i D 1 yi .
/D 0. The coordi-

nation of parties is also required for tracking values of imbalances
Pn

i D 1 yi .
k/

for adjusting prices 
k , kD 0; 1; : : :. Fundamental difficulties arise in the case
of markets uncertainties (see Sect. 5.7) and duality gap, i.e., when max�.
/ <
minyfF.y/;Pn

i D 1 yi D 0g for nonconvex function F.y/.

5.6 Computerized Multi-agent Decentralized Trading System

The proposed perfect market system implies that trades being bilateral, sequential
(dynamic) and random do not impair the cost savings even if parties only have infor-
mation on their own cost. However, there are essential obstacles that can inhibit
real markets from perfect functioning according to proposed procedure. In a perfect
market, a party that has sold permits in an early stage of the trading process would
be able to cancel its earlier transaction. In the real emission trading market, this
type of counter-actions may be impossible due to irreversibility of decisions: invest-
ments may already have been made, and these investment costs are largely sunk
costs. This is the fundamental obstacle involved in the design of cost-minimizing
and environmentally safe emission trading markets.

Price-based trading schemes have additional inherent obstacles. Designing envi-
ronmentally safe and cost-effective price-based emission trading markets is equiv-
alent to solving of the dual model asking for the same full information as the
solution of the primary model. Additional critical limitation is the duality gap which
occurs in nonconvex cases and uncertainty of market prices. The available computer
technology and numerically stable optimization procedures allow to organize com-
puterized (say, web-based) multi-agent decentralized trading system to resolve these
issues.

One can imagine a distributed computer network that connects computers of par-
ties with the computer of a central agency. The party in an anonymous manner stores
information on its specific cost functions, and other characteristics of the underlying
optimization model (5.8), (5.9) including specific probability distributions. The cen-
tral agency stores information on the emission detection model. The computer of the
central agency generates a pair of parties i , j and in an anonymous manner negoti-
ates with computers of these partners a proper�k that solves the subproblem (5.11).
This can be easily organized without revealing private information of the parties.
The process is repeated until equilibrium levels have been reached. This procedure
allows to discover equilibrium solution that can then be implemented in reality.
The information about the equilibrium price 
� allows also to identify so-called
core solution defining stable coalition of parties (see the Appendix). A network of
interconnected computers is essential for a rapid, smooth and robust functioning
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of emission trading market. There would also be a clear separation between a first
stage, in which provisional bids are made between computers of parties and recon-
structing is allowed, and a second stage, when contracts have been concluded and
investments in emission control are implemented.

It is well known [2] that generally the market does not generate desirable out-
comes if market prices fail to reflect socio-economic and environmental impacts.
In this case it is typically necessary to establish negotiation processes between
involved parties to determine desirable collective solutions. From this perspective,
the proposed trading system can be viewed as a device for collective negotiations
and decision-making in the presence of inherent uncertainties and irreversibilities.

5.7 Myopic Market Processes

The basic model (5.3), (5.4), (5.8), (5.9) takes long-term perspectives on emis-
sion permit trading. Parties use expectations and safety constraints in order to
achieve cost-effective and environmentally safe outcomes robust against future
developments. The resulting trading scheme is similar to non-monetary exchange
economy [28] important for environmental control. There are no demand and sup-
ply functions. Instead, the safety constraints enforce parties to invest in emission
and uncertainty reductions and consequently act as supplier of mutually beneficial
emission permits until a global equilibrium emerges.

The situation becomes dramatically different in the case of price-based schemes
under markets uncertainties affecting cost functions ci , di of parties. The short term
market perspectives orient parties on instantaneous information about prices and
costs. At time interval k parties observe market-related components of uncertainty
!k and thus know their instantaneous cost functions ci .xi ; !k/, di .xi ; !k/. Based
on this information, parties calculate cost functions

fi .yi ; !k/ D min
ui ;xi

Œci .xi ; !k/C di .ui ; !k/	; (5.12)

subject to the safety constraints (5.8) conditional on observable uncertainties. They
minimize then

nX
iD1

fi .yi ; !k/ (5.13)

subject to
nX

iD1

yi D 0

by using observed price signals �k , kD 1; 2; : : : , which separates joint model (5.13)
into independent individual minimization of cost functions

fi .yi ; !k/C �kyi
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by parties i D 1; : : : ; n, where�kyi is the cost of buying (yi > 0) or selling (yi < 0)
emission permits yi . If �k coincides with an equilibrium spot price, then solutions
yi .!k/, i D 1; : : : ; n, of these individual models may coincide (Sect. 5.5) with the
solution of joint model (5.13). In particular, they may satisfy the balance equationPn

i D 1 yi D 0. Otherwise, market prices �k may cause disruptions of the balance
and crashes of prices similar to the European carbon prices in April 2005. The
following example illustrates a typical situation.

Example 5.3 (Market’s uncertainty). Suppose that fi .yi / are known deterministic
functions, i.e., only prices are random. At time interval k there is a favorable
situation for the exchange of emission permits for some parties i and j , e.g.,

f
0

i .y
k
i / 6Df

0

j .y
k
j /. Instead, high market price �k , �k >

ˇ̌
ˇf 0

j .y
k
j /
ˇ̌
ˇ >

ˇ̌
ˇf 0

i .y
k
i /
ˇ̌
ˇ,

forces both parties to reduce emissions in the excess of targets in order to sell
surpluses on the market. Disequilibrium price �k creates an oversupply of emis-
sion permits that pushes the market price �kC1 towards 0. This may prevent to sell
reduced emissions which turned to be of higher marginal costs with respect to new
prices.

The myopic model (5.12)–(5.13)yields decisions xi .k; !k/, ui .k; !k/, yi .k; !k/,
kD 1; 2; : : :. Such decisions depend on case-specific realizations of the random vari-
able !k , therefore are not robust. At time interval k C 1 new observation !kC1

may contradict !k requiring significant revisions of these decisions, which may be
impossible due to their irreversibility. In order to achieve a convergence, the par-
ties must adopt a precautionary incremental behavior with respect to arriving new
information. Let us consider first this type of trading scheme for the basic model
(5.3)–(5.4), (5.9).

The bilateral dynamic trading process of Sect. 5.5 has deep roots in the structure
of so-called stochastic gradients in the linear subspace defined by (5.4). Namely, it
is easy to prove that the vector

g.y/ D .f
0

1 .y1/� 1

n

nX
j D1

f
0

j .yj /; : : : ; f
0

n.yn/ � 1

n

nX
j D1

f
0

j .yj /

is the projection of gradF.y/D .f
0

1 .y1/; : : : ; f
0

n.yn// in this subspace. A stochas-
tic gradient then can be defined as the following. Pick up at random a pair (i , j ) and
define stochastic vector

�.y/ D .n � 1/

2
.0; : : : ; 0; f

0

i .yi /� f
0

j .yj /; 0; : : : ; 0; f
0

j .yj /� f
0

i .yi /; 0; : : : ; 0/;

i.e., �.y/D .0; : : : ; 0/ for i D j . This vector is a stochastic gradient of F.y/ [5],
i.e., the conditional expectation EŒ�.y/jy	D g.y/, assuming that pairs (i , j ) of
distinct parties are chosen with equal probability 1=n.n � 1/. Therefore, instead
of complete minimization of function (5.11) at step k, parties can move from yk

in the random direction �.yk/ with a small step size ˛k . This type of stochastic
decentralized optimization processes are important in cases when functions fi .yi /
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are not calculated exactly, e.g., they are affected by unknown random variables ! as
in (5.12). It is easy to check that

F.yk � ˛k�.y
k// D F.yk/ � ˛k Œf

0

ik
.yk

ik
/� f

0

jk
.yk

jk
/	2 C o.˛k/; (5.14)

where .ik; jk/ is picked up at step k random pair .i; j /. Therefore, sequential change
of emissions defined by equations

ykC1 D yk � ˛k�.y
k/ (5.15)

produces monotonically decreasing for small ˛k (contrary to standard stochastic
gradient methods [5] random sequence fykg. The convergence analysis of this
scheme is similar to the proof of the Theorem in the Appendix. It is also possi-
ble to derive from (5.14), that the scheme of Sect. 5.5 is in fact equivalent to the
procedure (5.15) with the full step-size ˛k equalizing marginal costs,

f
0

i .y
kC1
i / D f

0

j .y
kC1
j /:

The basic adjustments in (5.15) are again pair-wise, but random encounters. Other
encounters are also possible assuming that each party meets every other party.

This type procedure is also applicable in the case when parties use only observ-
able random functions ci .x; !/, di .u; !/. Suppose that instead of myopic decisions
yi .k; !k/ parties make precautionary incremental and adaptive adjustments of
vector y. We can define stochastic vector �.y; !/ similar to vector �.y/ as

�.y; !/ D .n � 1/

2
.0; : : : ; 0; f

0

i .yi ; !/ � f
0

j .yj ; !/; : : : ; f
0

j .yj ; !/

�f 0

i .yi ; !/; 0; : : : ; 0/

and proceed with changes of emission permits yk according to procedure (5.15)
with �.yk substituted by �.yk ; !k/. Under standard assumptions the conditional
expectationEŒ�.y; !/jy	D g.y/, where g.y/ is the projection of gradG.y/,

G.y/ D
nX

iD1

Efi .y; !/: (5.16)

The convergence of the trading scheme (5.15) with the vector �.yk ; !k/ to a solu-
tion minimizing G.y/ subject to

Pn
i D 1 yi D 0 can be derived from general results

on the convergence with probability 1 of stochastic quasigradient methods [5]. In
particular, it requires the proper step-size multipliers ˛k , e.g., ˛k D const=k is
applicable. This requirement presumes no knowledge of underlying data. Yet, it
suffices to stabilize exchanges yk .

Remark 5.5 (Short-term market decisions). Method (5.15) with vector �.yk ; !k/

leads to an array of bilateral trading schemes with a variety of trading rules. Yet, it is
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important to note a significant difference between functionsG.y/ and F.y/ defined
by (5.16) and (5.9), respectively; function G.y/ focuses on the variability of short-
term market decisions xi .k; !/, ui .k; !/, whereasF.y/ focuses on forward-looking
decisions xi , ui , yi robust against all future eventualities!. Thus, in contrast to trad-
ing scheme of Sect. 5.6, the minimization of function (5.16) takes short-term market
perspectives on emission and uncertainty reductions driven by random observations
!k of market situations. It also treats the safety constraints conditionally on myopic
decisions xi .k; !/, ui .k; !/, that prevents to achieve robust cost-effective and envi-
ronmentally safe outcomes specified by (5.3), (5.4), (5.7), (5.9). Such outcomes
are guaranteed only through replacement of myopic overacting decisions xi .k; !/,
ui .k; !/ by incremental adjustments of xi , ui similar to adjustments of yk .

5.8 Concluding Remarks

The paper analyzes cost effective and environmentally safe carbon trading schemes
explicitly incorporating different types of exogenous and endogenous uncertainties
on emissions and the abatement costs. The feasibility of decentralized market pol-
lution control mechanisms is usually discussed under strong assumptions that all
actions are made simultaneously at known equilibrium prices, what implies exis-
tence of perfectly informed social planner. The examined dynamic bilateral trading
schemes are not based on price signals, and the emerging emission prices implicitly
depend on the costs functions and the safety constraints on environmental tar-
gets. With the safety constraints, the parties set the level of their exposure toward
uncertainties and risks. The safety constraints discount the reported emissions to
undershooting detectable levels. This type of undershooting concept or discount-
ing should become a key element in a robust regulation of emission trades together
with unified approaches to modeling emission uncertainties and cost functions. The
paper shows that myopic price-based trading schemes are not able to achieve cost-
effective and environmentally safe solutions. The irreversibility of trades calls for
the use of the proposed computerized emission trading system providing, in a sense,
collective decentralized regulation of trades. The procedures provide a constructive
and easy approach for designing robust emission trading schemes. All decisions are
fully decentralized, individual contrary to cost effective and environmentally safe
price mechanisms requiring additional coordination to stabilize leading otherwise to
nowhere trading processes. Our approach is close to important ideas on decentral-
ized non-monetary exchange. Bilateral trading scheme with deterministic interval
uncertainty has been applied [14] for the fossil fuel related carbon emissions of the
major Parties of the Kyoto Protocol. Numerical findings indicate that the compliance
costs increase significantly for USA, Japan and the European Union, if uncertainty
of the emission levels is considered. However, although the Central and Eastern
Europe, Russia, and Ukraine have larger uncertainties in emission levels, their net
costs may decrease as they can sell emission reductions at a higher price. Additional
simple calculations according to Remark 5.3 show that stochastic uncertainty in the
emission levels reduces the compliance costs of parties.
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Appendix

The convergence of trading scheme in Sect. 5.5 was proved in [8] for convex func-
tions fi .yi /, i D 1; n. The following proof covers the case of nonconvex functions.

Proof of Convergence

Theorem (Convergence to an equilibrium). Let fi .yi / � 0 be continuously differ-
entiable functions and let Y � be the set of equilibriums equalizing marginal values
f

0

i as in (5.5), F.Y �/DF.y/; y 2 Y �, yk is defined as in Sect. 5.5. Then either

1. yk 2 Y � after a finite number of steps, or
2. The sequence fF.yk/g converges to its equilibrium value from the set F.y�/ and

all cluster points of fykg belong to Y �, or
3. If Y � contains only a single point y�, then fykg converges to this point.

Proof. The sequence fF.yk/g, kD 1; : : :, is monotonically decreasing, F.yk/ � 0.
Therefore, there exist a limit F D limk F.y

k/. Let us prove that F 2 F.Y �/.
Suppose there exists a convergent subsequence yks , yks ! y, s ! 1 and
y 62 Y �. Therefore, there exist i , j such that f

0

i .yi / 6 Df
0

j .yj /. It means that

limF.yksC1/ < F.y/, what contradicts the convergence of F.yk/, i.e., F 2
F.Y �/, and all cluster points of the bounded sequence yk belong to Y �. Hence,
if Y � is a singleton, then yk converges to y�.

A Core Solution

From (5.10) it follows that at each step k cooperating parties i , j can redis-
tribute joint cost fi .y

kC1
i /C fj .y

kC1
j /D�kC1

i C �kC1
j , �kC1

i < fi .y
k
i /, �

kC1
j <

fj .y
k
j /. Therefore at the equilibrium y� D .y�

1 ; : : : ; y
�
n/ parties will deal actually

with payments ��
i < fi .y

0
i / such that

Pn
i D 1 �

�
i D Pn

i D 1 fi .y
�
i / W DFI where

I D 1; : : : ; n. From this equation follows the Pareto efficiency of �� D .��
i /i D 1;:::;n.

An important question is whether the grand coalition I of parties is stable, i.e.,P
I2C �

�
i � Fc for any other coalition C � I . Accordingly, a distribution of pay-

ments �� is a core solution if it satisfies these two equation. The bilateral trading
procedure allows to find the equilibrium price 
�. If function F.y/ is convex, then
the payment distribution ��

i D fi .y
�
i / C 
�y�

i is a core solution. If the function
F.y/ is globally Lipschitz continuous, then the core solution remains the same (see
discussion in [11]).
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Chapter 6
Robust Design of Networks Under Risks

Y. Ermoliev, A. Gaivoronski, and M. Makowski

Abstract Study of network risks allows to develop insights into the methods of
building robust networks, which are also critical elements of infrastructures that
are of a paramount importance for the modern society. In this paper we show how
the modern quantitative modeling methodologies can be employed for analysis of
network risks and for design of robust networks under uncertainty. The approach is
illustrated by an important problem arising in the process of building the information
infrastructure for the advanced mobile data services.

We show how the portfolio theory developed in the modern finance can be used
for design of robust provision network. Next, the modeling frameworks of Bayesian
nets and Markov fields are used for the study of several problems fundamental for
the process of service adoption such as the sensitivity of networks, the direction of
improvements, and the propagation of participants’ attitudes on social networks.

6.1 Introduction

This paper is dedicated to a study of the network risks which are the key issues
defining the robustness of infrastructures. There are similarities between network
risks and catastrophic risks: both have interdependencies in space and time. An
appropriate analysis of these two classes of risks requires adaptation, integration,
extension and further development of methodologies for quantitative modeling of
uncertainty and risks. Such methodologies have emerged during recent decades in
diverse fields such as economics and finance, optimization, simulation of stochas-
tic and multiagent systems. For a more detailed treatment we have selected two of
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such methodologies: portfolio theory of finance and Bayesian networks, both cou-
pled with optimization approach show how these methodologies can be extended
and applied for the study of network risks with the emphasis on information
infrastructure.

Besides clarifying the methodological issues, we also aim at creation of inte-
grated modeling decision support environment for analysis of network risks. Such
environment enables identification and evaluation of critical bottlenecks inherent
in important infrastructures seen as specialized networks and allow to give advice
to planning and regulating bodies on robust design and improvement of these
infrastructures.

More specifically, we look at the risk adapted performance networks composed
of nodes and links of different levels of complexity. The risk adjusted performance
of each node can be improved by selecting appropriate control parameters. In addi-
tion, performance of each node is affected by uncertainties. These network elements
are designed from the point of view of local tradeoff between local performance and
risk. The risk can be exogenous to the network as well as endogenous, generated by
inappropriate functioning of other network elements. It is important that the overall
performance of the network is also affected by the risk on the global level. This
risk is understood as a possibility that the global performance can differ, sometimes
drastically, from the expected network performance. The key issue in the designing
of robust networks is to assure that a local level of risk/performance tradeoff results
in a desirable risk/performance tradeoff on the global level. This is one of the central
issues which we aim to clarify.

Here we briefly discuss three examples of infrastructure which can be described
as risk/performance networks.

1. Energy infrastructure. Electric power infrastructure can be described as a net-
work with several levels of hierarchy where the nodes correspond to production,
distribution and consumption facilities while the arcs represent transmission lines.
On the local level each node has production and consumption targets subject to
uncertainty and risk manifested as the equipment failures, local demand variations,
local weather patterns important for hydro and wind generation. On the global level
this infrastructure should meet electric power demand of consumers and industries
subject to uncertainties and risk of disruptions, prices for fuel and energy, weather,
societal attitudes towards certain generation technologies and climate change.

Earlier such performance/risk tradeoff was much easier to achieve because the
public utilities managed generation and transport in almost each country. Now the
electric power industry is deregulated or being deregulated in almost all developed
countries. The industry is now composed of many independent actors which decide
their production plans according to the market conditions. Besides, the new types
of actors have entered the field, like energy contract traders and speculators, and
energy exchanges. Yet they have to act in concert if this infrastructure is to fulfill in
a robust manner the energy needs of society at large. This is a critical issue as the
power shortages in California and price surges in Norway have shown.

What are robust risk management methods which will mitigate these new risks
which result from market forces and individual actors’ behavior? What is the robust



6 Robust Design of Networks Under Risks 103

way to assure that the local decisions on risk/performance tradeoff which every
actor takes will transform into optimal or even acceptable tradeoff on the global
level? What lessons developing countries can learn from the experience of devel-
oped countries in this respect? These are the questions which our paper aims to
answer.

2. Gas transport and distribution infrastructure. Similar issues of networked
risk/performance management arise in other types of infrastructure. For exam-
ple, developing the gas transport and consumption infrastructure in Europe largely
follows deregulation patterns of electric power infrastructure according to EU
directives, and the same is true for the railroad transport.

3. Information and communication network infrastructure. It can be described
as a superposition of several layers of hierarchical networks each one consisting of
nodes connected with links. There are also mappings connecting different layers.
The network nodes are represented by heterogeneous devices like routers, switches,
cross-connects, etc. Each of these devices is equipped with control structures that
govern communication flows through the network; the control is composed of
communication protocols, routing tables, call admission rules, etc. The control
parameters are tuned largely independently in order to meet performance targets of
each node. Uncertainty on the node level comes from highly variable communica-
tion flows, but also from actions of adjacent nodes. There are also risks of equipment
failures, congestion, malicious attacks, link failures which threaten the performance
targets.

Each of the nodes is built to achieve admissible tradeoff between performance,
costs and risk on the local level. The entire network, however, should satisfy various
global performance targets, like a satisfaction of communication and information
demand with quality of service guarantees for the user population. Besides, the oper-
ation of this infrastructure should be economically attractive for industrial actors
which own its different parts. Global sources of risks and uncertainty include both
external component (changing usage patterns and global malicious disturbances)
and internal component (connected with conflicting interests of different actors).

How this local tradeoff between performance and risk at the node level affects the
global tradeoff on the infrastructure level and vice versa? What are the economically
sound principles for further robust development and operation of this infrastructure
under inherent risk and uncertainty? Where are the bottlenecks which threaten its
global performance? These are the questions which require the new methodology of
the network risk analysis and robust risk management to which this paper aims to
contribute.

Methods for taking optimal decisions under uncertainty and related issues of risk
management have been at the center of methodological development in the couple
of last decades, and recently they have met also a considerable and rising industrial
interest. One should mention stochastic programming which is a hot topic in oper-
ations research community now and it has become an important modeling tool in
quantitative finance, energy, telecommunications and other industrial fields. Under-
standing importance of risk management in finance resulted in the development of
several risk management paradigms and industrial standards which are now being
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gradually adopted also in other industrial branches. However, these and other meth-
ods mainly consider control of relatively simple systems facing external sources of
risk and uncertainty. The real challenge is to look at the network of such systems
and study the effects of risk and uncertainty on the network overall performance.

In this paper we look how such general considerations of network risks are
adapted to the case of information infrastructure consisting of several components
that are in different stages of development. We consider development and deploy-
ment of such a component characterized by increasing an importance: namely
advanced mobile data services. We show how the related risks can be analyzed
using and further extending for this case the quantitative risk modeling methodolo-
gies. In particular, the portfolio theory developed in finance is extended for analysis
and design of service provision networks (Sects. 6.2–6.6). Next, Bayesian nets and
Markov fields models are used in order to predict and analyze the sensitivity of
networks, the directions of improvements, and the service adoption patterns, all of
which depend on complex interplay of attitudes of different groups of population.
Finally, we discuss development of two components of advanced methodological
toolbox for analysis of network risk.

6.2 Cooperative Provision of Advanced Mobile Data Services

Design of advanced mobile data services to be carried on the 3G networks and
the networks of next generations is the hot topic in telecommunication industry
and research. This is because the business success of such services provision will
define the business success of the mobile operators and other relevant industrial
actors in the near to medium future. In this respect considerable attention is given
to design and development of service provision platforms which support a set of
tools and basic services that facilitate development, deployment and customization
of specialized services by service providers and even non-professional end users.

Deployment and operation of service provision platforms and provision of indi-
vidual services requires collaboration of different industrial actors contributing their
individual capabilities and expertise to the common goal. One can think about fixed
network operators, mobile operators, providers of different information content,
internet providers, software developers and other actors that join forces to provide
a successful service. Provision of a service involves assuming different roles and
industrial actors can combine such roles. All this gives a rich picture of service pro-
vision environment where a multitude of actors cooperate and compete in order to
deliver to customers a wide range of services in a profitable manner.

Understandably, the main research and development effort so far has been con-
centrated on technological and engineering aspects enabling provision of advanced
mobile data services. The history of information technology testifies, however, that
the possession of the best technological solution is not necessarily enough to assure
the business success of an enterprise. A very important and sometimes neglected
aspect is the design and evaluation of appropriate business model to support the
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service provision. Business models for provision of a service requiring a single
actor are pretty well understood, both organizationally and economically. This is
the case, for example, of the provisioning of the traditional voice service over a
fixed network. When an actor evaluates the economic feasibility of entering the pro-
vision of such service, he can employ quantitative tools developed by investment
science, like estimation of the Net Present Value of such project [21]. Usually an
actor should choose between several service provisioning projects, each providing
return on investment and generating the risky cash flows. Then the portfolio the-
ory [24] suggests the way to balance between return and risk and select the best
portfolio of projects taking into account the actor’s risk attitudes. The adequate risk
management is especially important in a highly volatile telecommunication environ-
ment and the industrial standards in this respect are starting to emerge, originating
from the financial industry [3]. Industrial projects in high-tech industries are often
characterized by considerable uncertainty and at the same time carry different flexi-
bilities. The real options approach [29] allows to take these flexibilities into account
while making evaluation of the profitability of the project. Stochastic programming
[2,10,13,20] provide the optimization models for adequate treatment of uncertainty
in the planning of service provision.

Business models for cooperative service provision involving different constel-
lations of actors are studied to a much lesser extent. The understanding of their
importance has lead to some qualitative analysis methods, e.g., [11, 19]; however,
quantitative analysis at a level available for the single actor case remains a challenge.
The methods mentioned above are developed to be used by a single actor engaged
in selection and risk management of his portfolio of industrial projects. The influ-
ence of the other actors is present only implicitly on the stage of estimation of the
future cash flows. This is not enough for an adequate analysis of collaborative ser-
vice provision. Suppose, for example, that a service provider delivers a service to a
population of users and receives a revenue for this delivery. If a service is composed
of modules and enablers provided by different actors then this service provider has
to decide on the revenue division between the actors which will make it attractive
to them to participate in the service provision. The provider should explicitly incor-
porate in the evaluation of profitability of his project such revenue sharing decision
together with a concept of what is attractive to other actors. Here we contribute to
the adaptation and further development of the methods of evaluation and risk man-
agement of business models and industrial projects for the case of the collaborative
service provision. We look at the actors engaging in a service provision as mak-
ing a decision about the composition of their portfolio of services to which they
are going to contribute. They do this independently following the risk management
framework of the portfolio theory. The pricing and revenue sharing schemes induce
each actor to contribute the right amount of provision capacity to its participation
in the service provision. We develop a two tier modeling framework which supports
selection of pricing and revenue sharing in an optimal way. This is done by utilizing
the approach of stochastic optimization with bilevel structure [1] and combining it
with the portfolio theory.
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6.3 Simplified Model of the Service Portfolio

In this section we develop a quantitative description of the service provisioning
model involving several actors having as the background the environment presented
in the previous section.

6.3.1 Description of Services

A composition of a service can be quite complex, especially if we take into account
that various components can be services themselves and subject to further disag-
gregation. For the purposes of clarity we start from a simple description which still
possess the main features of the provision environment important for business mod-
eling. Namely, two levels of the service composition will be considered here as
shown in the example illustrated in Fig. 6.1.

In this case the service environment is composed of two types of services. The
first type is comprised from services with structure and provision we consider in
some detail. They can be provided in the context of a service platform and there-
fore they are referred to as platform services. There will be also 3rd party services
whose structure is of no concern to our modeling purposes. They are present in the
model for the purpose of the adequate modeling of the environment in which the
provisioning of the platform services happens. Let us now consider the model of
provisioning of platform services.

The main building blocks of the platform services are service enablers indexed
by i D 1 W N and services indexed by j D 1 W M: Enablers are measured in
units relevant for their description, like bandwidth, content volume, etc. The relation
between enablers and services is described by coefficients 
ij which measure the
amount of enabler i necessary for provision of the unit amount of service j . Thus,
a service j can be described by vector


j D �

1j ; : : : ; 
Nj

�
(6.1)

Fig. 6.1 Service provision for business persons on the move
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This description is obtained from analysis of the usage scenarios described in the
Sect. 6.2. A service j generates a revenue vj per unit of service. This quantity
depends on the service pricing which in its turn depends on the user behavior and
market structure. For a moment let us assume that vj is a random variable with
a known distribution; in Sect. 6.4.3 we describe this revenue in more detail. The
distribution can be derived from the expert estimates and from simulation models
which would explore the structure of user preferences and market features. The ran-
dom variables vj can be correlated due to the service substitution, macroeconomic
phenomena and other causes.

Services can be provided by different constellations of actors. In this paper we
consider a constellation where the actors are the enterprises having the capability
to provide service enablers assuming different roles, indexed by k D 1 W K: Actors
may choose to join forces to provide a service. Contribution of a given actor con-
sists of taking responsibility for provision of one or more enablers of the service.
Sometimes these actors are referred to as enabler providers. There is also an actor
providing the service aggregation functionality and organizing the overall service
delivery to the end users; this actor is referred to as a service provider; it can pro-
vide the whole bundle of platform services and decides which services are includes
in this bundle. Often it collects the revenue from the end users and distributes it
among the enabler providers.

Example 6.1. Service provision for business persons on the move (see Fig. 6.1). This
is a simplified yet realistic example of service provision which was developed on the
basis of the results of the EU project SPICE and the NFR project ISIS. The terminal
service is a smart mobile phone used by a business person on the move.

We consider the services which run on the service platform and the third party
services which partially compete with them, being accessible from the same ter-
minal. We present a simplified example composed of just six native services, two
third party services, and five enablers (in actual applications there are hundreds of
services and dozens of enablers, distributed in several service platforms) available
in this service platform. However, services in this platform correspond well to the
business offer of a typical service provider. Service bundles have been defined in
accordance with the market segments, corresponding customer classes, user behav-
ior, requirements, and various subscription schemes. More specifically, we consider
the following services.

Native services of the platform:

1. N1 – Messaging
2. N2 – Audio conferencing
3. N3 – Video conferencing
4. N4 – Location based services
5. N5 – News
6. N6 – Point of Interest service
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Third party services:

1. 3P1 – Third party Information service
2. 3P2 – Third party News service

The following business actors collaborate in providing the mobile service bundle
to the users:
1. E1 – Network provider – providing the network access.
2. E2 – Context provider – service context retrieval and management.
3. E3 – Service provider – responsible for service provision.
4. E4 – Content provider – content retrieval and management.
5. E5 – Provider of A4C (authentication, authorization, auditing, accounting and

charging) enabler. This actor often coincides with the service provider, but one
can envisage also the cases when it is a distinct actor.

Besides, there are one or more providers of the third party services which are in
partial competition with the platform services.

The objective of an enabler provider is to select a portfolio of services to which
this actor will make a contribution. This decision is made on the grounds of balance
between projected profit from enabler provision balanced against the risk of vari-
ations in demand and service acceptance among the prospective users of services.
In order to quantify such decision process it is necessary to use a simplified profit
model for an actor.

It is assumed that the revenue vj generated by a unit of service j is dis-
tributed among the actors participating in the service creation. There can be different
schemes for such subdivision. It is assumed here that this distribution is performed
using a vector of revenue shares

�j D �
�1j ; : : : ; �Nj

�
; � D .�11; : : : ; �N1; : : : ; �1M ; : : : ; �NM /

such that an actor which contributes with the enabler i receives the revenue �ij vj .
Determination of these revenue sharing coefficients is one of the objectives of the
design of the business model for service provision.

Besides platform services the actors can supply enablers also to the third party
services. The structure of these services is not specified and it is assumed that they
are fully described by the revenue vij generated by provision of the unit of enabler
i to third party service j; j D M C 1; : : : ; NM .

This example will be treated in more detail in Sect. 6.6.

6.3.2 Profit Model of an Actor

Let us consider the situation when all the actors have already developed the capac-
ities for provision of enablers. Thus, the investment process necessary for creation
and expansion of these capacities is not discussed here; however, it is considered at
the later stages. For this reason at this stage it is enough to consider only the vari-
able costs due to the operation of capacities and provision of enablers. Alternatively,
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one can assume that the cost structure includes both the operational and discounted
portion of the investment costs for enabler development, recalculated down to the
enabler and the service instances.

For further formulation of the actor’s profit model let us introduce the following
notations:

cik – Unit provision costs for enabler i by actor k
Wik – Provision capability of enabler i of actor k
xijk – The portion of provision capability for enabler i of actor k dedicated to
participation in provision of service j

Now the revenue of actor k obtained from contribution to provision of the plat-
form service j can be expressed as follows. The quantity xijkWik is the volume of
provision of enabler i dedicated by actor k to service j . Assuming that the required
quantity of other enablers is available, this results in the volume of service j in
which the actor k participates to be xijkWik=
ij . The total revenue from this ser-
vice is equal to vjxijkWki=
ij and the part of the revenue which goes to actor k is
vjxijkWik�ij =
ij . For the third party service the revenue will be vijxijkWik .

The total costs incurred by actor k for the provision of enabler i to service j is
equal to xijkcikWik:

In order to simplify the following discussion let us assume now that the actor
k participates in the provision of service j by contributing only one enabler i D
i.k; j / or assuming only one role. Taking the profit �k to be the difference between
the revenue and costs, the profit of the actor k can be expressed as follows:

�k D
MX

j D1



vjxijkWik

�ij


ij

� xijkcikWik

�
C

NMX
j DMC1

�
vijxijkWik � xijkcikWik

�

D
MX

j D1

xijkWikcik



vj �ij

cik
ij

� 1

�
C

NMX
j DMC1

xijkWikcik



vij

cik

� 1

�

In the expression above index i depends on the values of indices j and k. Now let
us assume that the actor k assumes only one role which consists in the provision
of enabler i to different services which require this enabler. Thus, we consider a
generic actor whose role is to provide enabler i to different services. Then we can
simplify notations by taking xijk D xij ; Wik D Wi ; cik D ci ; �k D �i . In this case
the profit is defined by:

�i D Wici

0
@ MX

j D1

xij



vj �ij

ci
ij

� 1
�

C
NMX

j DMC1

xij



vij

ci

� 1

�1
A :

Dividing the profit by the total costs Wici we obtain the return ri on investment by
a generic actor which assumes the role of provision of enabler i to services which
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require this enabler:

ri D
MX

j D1

xij



vj �ij

ci
ij

� 1

�
C

NMX
j DMC1

xij



vij

ci

� 1

�
: (6.2)

6.3.3 Service Portfolio: Financial Perspective

The profit representation (6.2) allows us to look at the enabler provision from the
point of view of the financial portfolio theory [24]. The actor with the role to provide
the enabler i has to choose from all possible available services requiring this enabler
the set of services which provide this enabler. In other words, he has to select his
service portfolio. This portfolio is defined by shares xij of his provision capability,

xi D �
xi1; : : : ; xi NM

�

Return coefficients associated with the participation in each platform service are
expressed as

rij D vj �ij

ci
ij

� 1; j D 1 W M (6.3)

and for the third party services these coefficients are

rij D vij

ci

� 1; j D M C 1 W NM: (6.4)

These coefficients depend on the random variables, in particular the revenue per unit
of service vj and the revenue per component provision vij . Randomness here is due
to the uncertainty in demand and the user acceptance of service. Also the enabler
provision costs ci and enabler shares 
ij are random variables due to the uncertainty
inherent in the service usage patterns and the evolution of costs. Besides, the costs
ci are often estimates of the provision costs of enabler provider i made by another
actor. Such estimates are inherently imprecise and therefore described by random
variables similarly to how it was done in [1]. The expected return coefficients are

�ij D �ij E
vj

ci
ij

� 1; j D 1 W M; �ij D E
vij

ci

� 1; j D M C 1 W NM (6.5)

and expected return Nri .xi / of the service portfolio is

Nri .xi / D
NMX

j D1

�ijxij D
MX

j D1

xij



�ij E

vj

ci
ij

� 1
�

C
NMX

j DMC1

xij



E

vij

ci

� 1

�
(6.6)

However, the realized return can differ substantially from the expected return due to
the uncertainty discussed above. This introduces the risk R.xi / for an actor which
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assumes the enabler provision role. The financial theory traditionally measures this
risk as the variance of the portfolio return [24]. Recently several different risk mea-
sures were introduced, in particular Value at Risk (VaR) and its many modifications.
The VaR has attained the level of industrial standard in the financial risk manage-
ment [3]. In this section the variance and the standard deviation of the return are used
as the risk measure. It is not clear yet what is the best risk measure to consider in the
context of portfolio problems related to the collaborative service provision. Besides
the classical choice of standard deviation which we follow here, the promising can-
didates are the VaR mentioned above [14] and the Conditional Value at Risk [15].
The identification of the most relevant risk measure in this context is outside the
scope of this paper; it will be pursued in our subsequent research. What is impor-
tant here is the consideration of the risk measures allow an actor to estimate the
probability and size of his future losses. Thus, we take

R.xi / D StDev.ri .xi // D StDev

0
@

NMX
j D1

rijxij

1
A (6.7)

where the return coefficients rij are taken from (6.3), (6.4).
Portfolio theory looks at the portfolio selection as the trade-off between risk and

return. Its application to our problem of service portfolio consists of the following
steps.

1. Construction of the efficient frontier. An average return target � is given. The
risk of service portfolio is minimized with constraint on this return target. The risk
minimization problem is defined by:

min
x

StDev2

0
@

NMX
j D1

rijxij

1
A (6.8)

NMX
j D1

�ij xij D � (6.9)

NMX
j D1

xij D 1; xij � 0 (6.10)

Solution of this problem for all admissible values of target return � provides the set
of service portfolios which are a reasonable candidates for selection by the actor
provides the enabler j . They constitute the efficient frontier of the set of all possible
service portfolios. This concept is illustrated in Fig. 6.2.

Each service portfolio x can be characterized by the pair (risk, return) defined
by (6.7) and (6.6) respectively. Therefore it can be represented as a point in the
risk-return space depicted in Fig. 6.2. The set of such points for all possible portfo-
lios describes all existing relations between risk and return and is called the feasible
set. Which of possible service portfolios an actor should choose? It depends on the
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Fig. 6.2 Selection of service portfolio

objectives which an actor pursues. Here we assume that an actor’s decision depends
on return and risk only. Namely, an actor seeks the highest possible return among
equally risky alternatives and the lowest possible risk among equally profitable alter-
natives. This is a simplification, because in reality the actors can be driven by other
considerations, like increase of market share, revenue, regulatory constraints, etc.
However, the consideration of only risk and return provides with a reasonable start-
ing point for analysis of business models. More complex cases can be taken into
account in a similar manner by introducing additional constraints on the feasible set
or by modifying the concept of performance. For example, suppose that an actor
has three objectives: the return and the market share to maximize and the risk to
minimize. Then these three criteria will be used for specification of an achievement
function used in the multi-criteria problem analysis, see, e.g., [30]. Such an analysis
supports examination of efficient solutions having different trade-offs between the
criteria values, and help the users in finding such trade-offs the correspond best to
his/her preferences.

The example illustrated in Fig. 6.2 show that some service portfolios should be
preferred to others. For example, let us consider portfolio x0 to which corresponds
the point in risk-return space inside the feasible set shown in Fig. 6.2. It is clear that
the portfolio x2 should be preferred to x0, because x2 has the same risk as portfo-
lio x0 but it has larger return. Similarly, portfolio x1 also should be preferred to x0

because it provides the same return with smaller risk. In other words, portfolio x0

is dominated by both portfolios x1 and x2 and therefore it is not rational to select it
when only these two criteria are considered. The actor whose decisions are guided
by risk and return should consider only nondominated portfolios which constitute
the efficient frontier, depicted by dotted curve in Fig. 6.2. Such an efficient frontier
can be computed by solving the problem (6.8)–(6.10) for different values of �. It can

risk

return

r
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R

x

efficient  frontier
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be considered as a set of efficient solutions of the two objective optimization prob-
lem: minimizing risk and maximizing return under constraints (6.10). The choice
of a solution from the efficient set depends on the preferences the user has between
risk and return, and it is easy for experienced managers.

The above outlined approach to the multicriteria analysis is suitable for prob-
lems with two criteria, i.e., for which it is possible to compute and analyze the
efficient frontier. For more than two criteria one should use a suitable method for
multi-criteria analysis. However, one has to note that the most popular approach to
multi-criteria analysis believed to be reliable and intuitive, namely the aggregation
of criteria through a weighted sum is actually neither reliable nor intuitive. Lim-
itations of the weighted-sum approach are discussed, e.g., in [22, 23]. Therefore,
for analysis of problems with more than two criteria one should consider a truly
multicriteria analysis approach, see, e.g., [30], and a modular tool (such as ISAAP
described in [18]) that supports interactive analysis of trade-offs between conflicting
objectives.

2. Selection of the target service portfolio. The previous step resulted in the
selection of a much smaller set of efficient service portfolios from the set of all
possible service portfolios. These portfolios form the efficient frontier in the risk-
return space. An actor selects its target service portfolio from this efficient set by
choosing the trade-off between risk and return. One way to achieve this trade-off
is to consider the largest risk an actor is willing to take. Suppose that the value of
such risk isR (see Fig. 6.2). Then the actor should choose the portfolio x on efficient
frontier with this value of risk. Suppose that this service portfolio yields return �. No
other portfolio yields better return without increasing the risk. If an actor is not sat-
isfied with return � this means that he should increase his risk tolerance or look for
opportunities to participate in the service provision not yet described in this model.
Or, such actor should seek more advantageous revenue sharing scheme.

From these considerations it is clear that all important opportunities of partici-
pation in service provision should be included in the model. For example, suppose
that an actor assumes the role of the content provision and can contribute a content
to the advanced mobile data service, and at the same time the same content can be
contributed to, say, traditional newspapers. Both opportunities should be included
in the model with the traditional service being modeled as a third party service.

6.4 Modeling of Collaborative Service Provision

In the previous section we highlighted the importance of having an adequate fore-
cast of the cash flows generated by services in order to quantitatively evaluate the
economic future of the service, and business models which support the service
provision. Due to the inherent uncertainty of the user response and technological
development any such forecast should be given in terms of random variables which
assign probabilities to different scenarios of user response and possible evolution of
other uncertain parameters. Forecasts should take into account the mutual influence
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of services which result in correlation between cash flows generated by different
services.

Such a model allows to consider providers of different service enablers as actors
which independently select the service portfolios having their targets described in
terms of return on investment and risk tolerance. However, a service can become a
reality only if the participation in its provision is consistent with these individual
targets. This means that all actors which cover the roles indispensable for provision
of a particular service should have the corresponding services in their efficient ser-
vice portfolio. In other words, the service portfolios of the relevant actors should be
compatible. There are several items which affect the risk/return characteristics of a
service portfolio and decide whether a particular service is offered. One is the cash
flow generated by a service j , another is the revenue sharing scheme �j . Besides,
the enabler provision capacities, industrial risk/return standards, market prices, all
play a role in making service portfolios compatible. In this section we character-
ize the properties which facilitate the service portfolio compatibility and develop a
model for selection of the revenue sharing scheme.

6.4.1 Service Provision Capacities

According to (6.1) a platform service j is described by vector 
j of the service
enablers. Let us denote by Ij the set of enablers which are present in the service
description in nonzero quantities:

Ij D ˚
i W 
ij > 0

�

For each enabler i 2 Ij an actor willing to take the role of provision of this enabler
should be found. This means that the position j in the service portfolio of an actor
that provides enabler i 2 Ij should be positive: xij > 0. The value of this position
allows to estimate the enabler provision capacity which an actor should possess.
Indeed, xij is a fraction of provision capacity which an actor is going to dedicate to
provision of enabler i to service j . Therefore, 
ij =xij is the capacity necessary to
provide a unit of service j . Suppose thatBmin

j is the minimal volume of provision of
service j which makes such provision viable, andBj is the target volume of service
provision for a generic constellation of actors which is going to provide this service.
Then we have the following constraints on the service provision capacities of actors:

Wixij � 
ijB
min
j ; i 2 Ij (6.11)

if the provision of service j will be viable at all, and

Wixij � 
ijBj ; i 2 Ij (6.12)
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if only one actor with provision capability of enabler i is desirable in the constella-
tion which provides service j . These constraints can help to make decisions about
the nature of the actors which should be encouraged to participate in the provision
of different services. For example, some enablers of some services will be provided
by established actors with large provision capacity. In such cases the share xij of
capacity dedicated to service j can be small. In other cases the service enablers will
be provided by startups with relatively small capacity. In such cases the share xij

should be smaller or equal to 1. These shares implicitly depend on the revenue shar-
ing scheme �j through the solution of problem (6.8)–(6.10) and in the latter case it
may be beneficial on the initial stages of service penetration to encourage startups
by appropriate adjustment of the revenue sharing scheme.

The constraints (6.11)–(6.12) can be also looked at as the constraints on the
composition of service portfolio. Suppose thatW max

i is the maximal desirable com-
ponent provision capacity which an actor providing enabler i should possess. Then
the smallest share xij dedicated to service j should be

xij � 
ij

Bmin
j

W max
i

; i 2 Ij (6.13)

6.4.2 Risk/Return Industrial Expectations

Provision of advanced mobile data services involves different actors coming from
different backgrounds and industries. There are many startups, but there are also
established actors from other industrial branches. For example, the content provi-
sion where the same content can be provided to newspapers, internet and mobile
terminals. Such actors have preferences for tradeoffs between admissible and/or
desirable returns on investment and the corresponding risks. Often such preferences
are influenced by industrial standards and expectations inherited from their previous
activities. One way to express such expectations is to include all generic projects, in
which an actor can be involved in its traditional business, as services in the set of
all third party services considered in the model. This is especially useful approach,
if the revenues from the traditional activities influence and are influenced by the
revenues from the mobile services under consideration. Another possibility is to
account for these expectations explicitly. This can be done by introducing the rela-
tion between the expected return Nri .xi / and risk [26] R.xi / from (6.6), (6.7) as
follows:

Nri .xi / � ai C biR.xi / (6.14)

where ai is the return on investment associated with traditional activity while
biR.xi / is the risk premium associated with the participation in provision of the
advanced mobile data services. The coefficients ai and bi will depend also on
individual characteristics of an actor, e.g., its size, market position:
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Additionally an actor has the risk tolerance expressed in terms of the upper bound
on risk which it is willing to take irrespective of return:

R.xi / � NR (6.15)

The upper bound on admissible risk NR also depends on the characteristics of a par-
ticular actor. To put it simply, this is the maximal loss an actor can afford during the
time period under consideration.

6.4.3 Pricing

The revenue per unit of service vj together with the service composition 
j and the
revenue sharing scheme �j defines the unit price pi of enabler iW

pi D vj �ij


ij

This is a random variable since the revenue is random. Therefore the expected price
Npi D Epi is:

Npi D �ij


ij

Evj

An actor providing the enabler i may have the target p�
i for the price of its product,

and the tolerances �C and �� within which it is willing to accept a price. These
targets can result from the market prices in established industries, internal market
studies, or internal cost estimates. This leads to the following constraint

p�
i ��� � �ij


ij

Evj � p�
i C�C (6.16)

This constraint should be taken into account while considering the revenue sharing
schemes.

6.4.4 Revenue Sharing Schemes

Now let us look at the problem of selecting the revenue sharing coefficients �j which
would be compatible with the concerted provision of a platform service. Summariz-
ing the discussion presented in Sects. 6.3, 6.4.1 and 6.4.2 we obtain that the actor
supplying enabler i selects a portfolio of services xi D .xi1; : : : ; xi NM / by solving
the following problem

max
xi

Nri .xi ; �j / (6.17)
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subject to constraints
NMX

j D1

xij D 1; xij � 0 (6.18)

Nri .xi ; �j / � ai C biR.xi ; �j / (6.19)

R.xi ; �j / � NR (6.20)

where Nri .xi ; �j / is the expected return of the actor on his expenditure andR.xi ; �j /

is the risk defined by (6.6) and (6.7), respectively. We emphasize here the depen-
dence of risk and return on the revenue sharing scheme �j . Solution of this problem
provides service portfolios xi .�j / for all generic actors providing enabler i for the
platform services j D 1 W M . These service portfolios depend on the revenue shar-
ing schemes �j . Let us now concentrate on a j -th service. In order that a provision
of this service becomes possible it is necessary that all actors providing the nec-
essary enablers to this service include it in their service portfolios in the desirable
proportions. This is denoted by:

xi .�j / 2 Xj for all i 2 Ij (6.21)

where the set Xj is defined, for example, by constraints (6.13). The feasible set of
the revenue sharing coefficients is defined by the set Xj and if these conditions are
not satisfied then the service is not available.

Suppose now that the enabler number 1 of service j is a service aggregation
enabler which is provided by an actor which bears overall responsibility for the
functioning of service and receives the revenue stream from the end users. Its
responsibility includes also the division of the revenue stream between the par-
ticipating actors and thus also a selection of the revenue sharing coefficients �j .
It selects these coefficients in such a way that the constraints (6.21) are satisfied.
Between all such revenue sharing coefficients selects those which maximize its
return. This can be formulated as the following optimization problem.

max
�j

Nr1.x1.�j /; �j / (6.22)

subject to constraints
xi .�j / 2 Xj for all i 2 Ij (6.23)

�j 2 �j (6.24)

where the set �j is defined, for example, by constraints (6.16). Even simpler, this
actor may wish to maximize its revenue share

max
�j

�1j (6.25)

under constraints (6.23)–(6.24). Observe that the feasible set of this optimiza-
tion problem depends on the solution of the other actor’s optimization problems
(6.17)–(6.20).
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6.5 Properties of the Models and Implementation Issues

In Sect. 6.4.4 we presented two models for strategic assessment of collaborative pro-
vision of mobile data services. These models possess quite complicated structure,
although we made a few simplifying assumptions. They can be considered as a spe-
cial type of stochastic optimization problems with bilevel structure [1], where the
lower level is composed of the problems of individual component providers (6.17)–
(6.20) while the upper level contains the problem of service provider (6.22)–(6.24).
Stochasticity comes from the uncertainty inherent in the characteristics of advanced
data services and the user response to them. So far we have adopted a simple treat-
ment of uncertainty by substituting the random variables by their expected values,
and, when the special structure of the problem allowed, the covariance matrix. This
can be viewed as a special type of the deterministic equivalent of the stochastic
programming problems, a technique widely used in stochastic programming (see
[2] for more discussion on different types of the deterministic equivalents). A more
detailed description of the uncertainty can be introduced in these models following
the approach presented in [1]. Moreover, different bilevel optimization problems
have drawn considerable attention recently, see [5, 6, 25, 28].

Such problems provide quite a challenge to the state-of-the-art numerical opti-
mization procedures. While many theoretical issues are understood reasonably well,
the solution techniques have not yet reached the off-the shelf commercial applicators
available for linear and some nonlinear programming problems. The main challenge
here is that the upper level problems can be highly nonlinear and nonconvex with
multiple local minima. Therefore a substantial work is needed for exploiting the
structure of such problems. Still, our aim here is to describe a set of decision sup-
port tools for evaluation of business models, where the computational complexities
should be hidden from the end user. We have found that this aim can be achieved
by a combination of customized implementation with the use of general purpose
mathematical modeling systems and commercial software. The general architecture
of the system under development is shown in Fig. 6.3.

Mathematical
model

Top level algorithms
Scenario generation

Postprocessing

Problem
solvers

Data and user
interface

Data
User interaction

Results presentation

Excel MATLAB

XPRESS

CPLEX

SQG

results

data

User intervention

Service model
Detailed service

 structure, resources

Service
description 

Fig. 6.3 Architecture of decision support system for evaluation of business models of service
provision
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The system is composed of four components: data and user interface, a set of
service models, a set of mathematical models, and a library of solvers.

Data and user interface is implemented in Excel due to its familiarity to potential
users. Its purpose is to provide an easy tool for storing and changing the data describ-
ing the service and customer properties, for presentation of results of business
modeling and for providing the capability to the system user to ask what-if ques-
tions pertaining to different scenarios. For example, the efficient frontier illustrated
in Fig. 6.2 is presented to the user through this component.

Service model provides the capability to perform detailed modeling of advanced
data services. It is implemented in a specialized modeling language which has the
features necessary for describing communication sequences. This model provides
the aggregated description of services composition 
j from (6.1).

Mathematical model implements the quantitative description of the business
decision process of collaborative service provision from the previous sections. It
imports data from data interface and implements the top level structures and algo-
rithms necessary for representation and solution of models (6.17)–(6.20), (6.22)–
(6.24). The custom algorithms for analysis and solution of these models are also
implemented in MATLAB. This component is also responsible for calling exter-
nal software for solving subproblems where standard approaches and commercial
software are available. For example (6.8)–(6.10) is a quadratic programming prob-
lem which can be solved by many solvers, e.g., by the CPLEX and MATLAB
optimization toolboxes.

Library of solvers contains solvers for linear and nonlinear programming prob-
lems and some a specialized solvers for stochastic programming problems, e.g.,
SQG [12].

The system depicted in Fig. 6.3 is now in advanced stages of development, in
particular the service model component and some mathematical models of service
provisioning were implemented in MATLAB [1]. The next section describes some
of the results of a case study performed using this system.

6.6 Case Study

This case study deals with analysis of the service provider centric business model for
provision of the platform bundle of services to a business person on the move who
uses a smart mobile phone to access the corresponding service offer. The setting of
this case study is described in Example 6.1 introduced in Sect. 6.3. The prototype of
the decision support system implementing models presented in this paper was used
for the analysis of this case study; it includes the models described in Sects. 6.3
and 6.4.

Considerable data preparation effort was made for this case study. First of all, we
have developed the service composition matrix, showing which enabler participates
in which services. This relation between different enablers and services is shown in
Fig. 6.1. We have obtained also an average estimate of the service usage (in service
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instances) in a period of interest, and prices per service instance. We have estimated
these data by averaging various service composition and business scenarios. On the
basis of technical and economic analysis we have obtained the cost estimates and
the correlation matrix showing the correlation between the usage of services and the
variance of service usage.

Suppose that the service provider uses our DSS for performing the feasibility
study for provision of this bundle of business services similarly to the discussion at
the end of Sect. 6.3.3. There are many different what-if questions of interest to the
prospective service provider to which this DSS can provide answers. Let us provide
an example of this analysis. Suppose that a manager of the service provider feels
that the success of the whole enterprise depends critically on the quality and offer
of specialized content which can be obtained for his services by engaging prospec-
tive content providers (enabler E4 from Fig. 6.1). He wants to get an insight into
the properties of the content providers which may be interested in collaboration
with the provider and in the chances that his service offer in this respect will stand
against the competition of the third party services. One way to do this is to look
how the service portfolios and risk/profit preferences of prospective partners depend
on correlation and relative pricing of his offer against the offer of competition.
Figures 6.4 and 6.5 provide examples of answers which our DSS can deliver.

Figures 6.4 and 6.5 show how the characteristics and attitudes of the content
providers towards the service platform depend on the alternatives the competitors
can offer to them. Figure 6.4 shows risk/profit efficient frontiers similar to the fron-
tier presented in Fig. 6.2 while Fig. 6.5 depicts the percentage share of the content
provision capability of the content providers dedicated to the service platform. In
other words, the Fig. 6.5 shows the market share of the service platform in the mar-
ket for this specific type of content provision dependent on the risk tolerance of the
content providers. The competing offer is described by the average price per unit of
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Fig. 6.5 Share of platform services in the service portfolios of content providers

content and by how the actual price can differ from the average price dependent on
the future market conditions, as measured by the price variance.

The figures present three scenarios. In all scenarios the competition tries to under-
cut the service platform by offering about 15% higher average price to content
providers for their services. The three scenarios differ by how strong the compe-
tition is, namely its capability to maintain the price consistently higher under the
changing market conditions. In scenario 1 shown by the thick solid line the com-
petition is strong and has its price variance about two times smaller compared with
the platform offer. In scenario 2 depicted by the thick dashed line the competition is
about as strong as the platform offer and has the similar price variance. In scenario 3
shown with thin solid line the competition is weaker than the platform and has about
twice higher variability of its offer to content providers than the platform.

The results show that in scenario 1 with the strong competition only econom-
ically weak content providers with small tolerance towards losses are interested
in the collaboration with the platform. Often this corresponds to small firms or
even individuals who can not sustain large losses. For such entities participation
in the platform means additional security and insurance against losses in the case
the strong competing offer prove to be deceitful. Even then, the interest of such
firms drops sharply when their risk tolerances grow even by a small amount.

Scenario 3 corresponds to the opposite case when the platform faces aggressive
but economically relatively weak competition. Its weakness manifests itself in a
large variability of the price offer to the content providers despite the 15% higher
average price. In this case the market share of the platform services is much higher
and the platform manages to attract also strong actors with higher capacities to sus-
tain losses. Also the market share drops slower with the increase of the loss tolerance
of the agents. Scenario 2 corresponds to the intermediate case when the competition
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is about as strong as the platform and has about the same capability to maintain its
price offer to the service providers.

Similar patterns arise when the variability of the revenue steam of content pro-
viders is not due to the changes in the unit price of the content but due to the variabil-
ity of the usage frequencies of this content. Having these predictions, the platform
service provider can now realistically weight its strengths and weaknesses, invest
more effort into the market research and decide under which market conditions,
with what kind of partners, and with what kind of competition it can successfully
operate the platform.

6.7 Dynamics of Attitudes

In the previous sections we have analyzed the network risks which arise in the
process of collaborative provision of advanced mobile data services which form
an important part of information infrastructure. In this section we discuss another
aspect of the same situation, namely the process of service adoption by a hetero-
geneous population of users. The process of service adoption is of fundamental
importance to the successful development of information infrastructure because by
its very nature the value of the infrastructure for a given user grows with the amount
of users already covered by its different components. Adopting the language of
microeconomics one can say that the elements of information infrastructure exhibit
strong externalities. Modeling these externalities and related risks requires tools and
approaches for quantitative modeling of attitudes. In this and subsequent sections we
consider a possible methodology based on Bayesian nets.

We formulate a stochastic, dynamic model of attitude formation that takes special
account of individual interactions and networks governing intrinsic dynamics of
attitudes. The model also accounts explicitly for various external factors such as new
information, stimulus, events, actions or some sort of social pressure. If different sets
of external factors are activated at different times, the system may show more or less
complex dynamics, in particular, it may lead to different alternative attractors. We
distinguish two types of influences: (1) interactions among individuals, and (2) the
influence of external factors.

According to our model different individuals may receive different information.
Information with subjective judgments is transformed through chains of communi-
cations to other individuals. Attitudes change in a probabilistic manner depending
on attitude of other individuals and information about the external factors. Individ-
uals are socially linked by relationships mediated through a series of intertwining
interactions and resulting in a highly diverse social network. This complexity can
be modeled by Bayesian networks or more general Markov fields. This notion is a
natural generalization of Markov chains to dynamic and spatial processes, whose
domains are not necessarily linearly ordered.
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6.7.1 Simplified Model: Direct and Indirect Interdependencies

In order to demonstrate the dynamics of attitude change, we begin with representing
the public in groups with similar attitudes. Empirical attitude research structures the
sampled population into cohorts, possibly by age, sex, income, profession, ethnicity,
geographic location, political party affiliation, etc. We assume that population may
be divided into “similar-attitude” groups such that an individual has a higher prob-
ability of sharing the same attitudes with others in the similar-attitude group than
with individuals in other groups. Individuals communicate mainly with individuals
within their group, but also with individuals in other groups. Figure 6.6 shows a sim-
plified illustration of possible interactions between five similar-attitude groups that
individuals of each group have the same attitudes. The groups are represented by
nodes, and interactions are represented by arrows. Thus there is a link from group 3
to group 1, meaning that group 3 has an influence (positive or negative) on group 1.
There are also links from group 1 to group 2 and from group 2 to 3. The example
can be generalized to N groups, where the arrow from node i to node j indicates a
link from i to j .

The direct links between nodes can be represented by the adjacency matrix shown
in Table 6.1. An element of this N � N matrix indicates the position and possibly
the strength of the direct dependency links from i to j .

In addition to the direct dependencies, individuals are also indirectly influenced
by one another by chains of communications. If A is the adjacency matrix, then
an element .i; j / of the matrix A2 D A � A represents the number of sequential
dependency paths of length 2 involving an intermediate group from i to j ; in gen-
eral, Al indicates the number of sequential dependency paths of length l with l � 1
intermediate groups from i to j . Thus, the entries of the matrix

AC A2 C : : :C Al

Fig. 6.6 Graph of direct
relationships

1

34

52

Table 6.1 The incidence
matrix of the graph from
Fig. 6.6

Nodes 1 2 3 4 5
1 0 1 0 0 0
2 0 0 1 0 0
3 1 0 0 0 0
4 1 0 1 0 0
5 0 1 0 0 0
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Fig. 6.7 Acyclic graph
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Fig. 6.8 Limit cycle attractor: waves of opinions

represent the number of all possible direct and indirect paths of length smaller or
equal to l .

The graph on Fig. 6.6 has a cycle between nodes 1; 2; 3. The graph on Fig. 6.7 is
acyclic which represents hierarchical structure of opinion formation.

Consider now a simple situation of how the links between individuals may affect
their attitudes. Suppose that links between five groups of individuals are repre-
sented in Fig. 6.6. Figure 6.8 indicates that groups 1; 2; 3 have two possible (no–yes)
attitudes j D 0; 1. This is represented by subnodes 0 or 1 inside of each node
i D 1; 2; 3. We can consider 0� 1 states of these nodes. In this example we assume
the deterministic nature of interactions. Therefore assume the state j D 1 is settled
down at nodes i D 1; 2; 3 at the initial time interval t D 0. In a general case at
time t D 0 the state j D 1 is accepted only by a fraction of a group with a certain
probability.

Interdependencies between groups may change their attitudes. Arrows in the
graph of Fig. 6.9 indicate that individuals of the group 1 are influenced by group 3 in
the sense that it expresses solidarity with group 1 taking the same opinion. Group 2
is antagonistic (in opposition) to group 1. Group 3 has the solidarity with group 2.

It easy to see a cyclic change of responses in time. When individuals of group 2
learn about the attitude of group 1 (state of node i D 1), the group 2 changes the
attitude to the opposite. Since the initial state of all nodes j D 1, the next state of
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Fig. 6.9 Fixed point attractors

node 2 is j D 0 which triggers changes of states at nodes 3; 1 to j D 1. These
changes lead again to state j D 1 at nodes 1; 2; 3, and so on.

Now suppose that group 3 is antagonistic to the group 2 (see Fig. 6.9), If group 2
learns first the response of group 1 it changes the attitude 1 to 0 and so on until
attitudes reach values .1; 0; 1/ for groups 1; 2; 3, respectively. If group 3 learns first
the attitude of group 2, the attitudes are settled down at states .0; 1; 0/. Hence, the
behavior of the attitudes may display two attractors: .1; 0; 1/ and .0; 1; 0/.

These simple examples suggest that there may be waves of attitudes. Any opinion
survey at a particular time may not represent opinion at a later time. These examples
also demonstrate that delays in the learning of attitudes may change the pattern of
the overall dynamics towards different attractors. In the model of the next section we
take more general point of view on driving forces of attitude changes. It is assumed
that members of a group may react differently at attitudes of other groups. They also
may “hesitate” to react as the opposition or the solidarity.

6.7.2 Model Formulation

In the examples of the previous section individuals of each group have the same atti-
tude. The individuals of a group also react in the same manner at “signals” (attitudes)
from other groups. In this section we undertake a more general view. It is assumed
that only a fraction pi t

j of members, the group i have attitude j at time t . Thus in

the previous examples there may be fractions pi t
0 ; p

i t
1 of each group i D 1; 2; 3with

attitudes 0 and 1 at time t . Of course, pi t
0 C pi t

1 D 1.
Individuals of a group communicate with different individuals of other groups.

Therefore, their attitudes are influenced by random samples of information from
adjacent (neighbor) groups. Individuals may form their attitudes at a particular time
interval t , on the basis of various rules besides just “solidarity” or “opposition”
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principles. For example, they may follow the majority attitude from a sampled opin-
ions. In general, such behavior induces a conditional probability for an individual
of a group i to take an attitude from given set of possible attitudes. This probability
is conditioned on their current attitudes, the attitudes of adjacent groups and some
exogenous variables, or external factors.

Let us now formulate the model precisely. To do so, we must represent the driving
forces of attitude changes or dependencies between groups as well as dependencies
of these relations on external factors. We opted for probabilistic description based
on conditional distributions.

The model distinguishes N groups i D 1; : : : ; N of individuals. The number of
the relevant groups depends on the issue under consideration and on the level of
detail represented in the model.

Individuals display different attitudes to the given issue, ranging from hostile to
very favorable. We assume that there is a finite numberM of possible attitudes. The
attitudes of individuals of group i are described by the random variable �i which
takes values from 1 to M . In other words, we assume that individuals from group i
statistically follow the same pattern of attitude formation given by the distribution
of �i . In this sense, we can say that individuals of group i share approximately
the same view. The attitudes of the population are described by random vector
� D .�1; : : : ; �N /. A fixed value of this vector is denoted by z and the set of all
possible attitudes byZ. Let us denote by pi t

j the probability that a member of group
i assumes the attitude j at time t :

pi t
j D P.�t

i D j /

Naturally,
MX

j D1

pi t
j D 1; pi t

j � 0

Interactions between individuals are represented as a graph similar to that described
in Sect. 6.7.1. Groups i D 1; : : : ; N correspond to nodes of the graph and direct
links between individuals of groups are represented by arrows between nodes. Thus
there are two sets: nodes V D 1; : : : ; N and the set of arrows (directed arcs) U . Let
us denote this as G D .V; U /. If nodes i; j belong to V , i; j 2 V and there is an
arrow from i to j , .i; j / 2 U then i is an adjacent to j node. Define as Vj the set
of all nodes adjacent to the j node. Let zVj

be a subvector of the vector of attitudes
indexed by Vj . For example, in the case of dependencies indicated by graph in
Fig. 6.6 we have V1 D f1; 3; 4g, V2 D f1; 2; 5g, V3 D f2; 3; 4g, V4 D f; g, V5 D f;g
where ; is the symbol of the empty set. Then zV1

D .z1; z3; z4/; zV2
D .z1; z2; z5/:

Individuals change their attitudes depending on current attitudes of their own
and adjacent groups, and on a vector x of exogenous external factors or variables.
The attitude formation is described by a conditional distribution H i .zi jzVi

; x/ for
each individual of group i : the probability for an individual of group i to have an
attitude zi D 1; 2; : : : ;M when attitudes of groups Vi are ZVi

and external factors
have values x.
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We assume that functionH i can be derived on the basis of appropriate question-
naires answered by a representative member of individuals from each group, such
as: “What is your attitude (from 1 to M ) if attitudes of the adjacent groups are zVi

and the environment is x D .x1; : : : ; xn/?”. FunctionsH i may also depend on time
interval t , but we skip it in order to simplify the notation. Functions H i define the
dynamics of the attitude change according to the following relation:

p
i;tC1
j D

X
zVi

2Z

H i .�tC1
i D j j�t

Vi
D zVi

I xt /P.�t
Vi

D zVi
/ (6.26)

The groups i with Vi D i can be identified with “leaders”, which influence
opinions of other individuals but are not influenced themselves.

To define completely the dynamics of the system described by (6.26) it is neces-
sary to fix initial attitudes distributions for t D 0. In case when the corresponding
graph of direct influences is acyclic, it is enough to define these distributions for
nodes i such that Vi D i .

Equation (6.26) together with initial distributions allows us in principle to calcu-
late pi t

j for any t � 0. Of course, for complex graphs it is practically impossible to

derive analytical formulas for pi t
j as functions of external factors x. The existence

of analytical expressions for all pi t
j provides an easy tool to analyze implications

of changes in x. The next section is devoted to the analysis of attitudes changes
in the case when such a possibility does not exist. The approach is based on the
stochastic version of (6.26) dealing directly with random variables �t

i , i D 1; : : : ; N

by using the Monte-Carlo simulation techniques. Instead of H i , i D 1; : : : ; N the
approach allows also to use myopic rules for generating random changes of �t , i.e.,
the approach allows to analyze cases when functions H i are given implicitly. One
such important case arises in the situations when individuals form their attitudes
by asking acquaintances from adjacent groups and use some simple rules based on
majority or minority of sampled attitudes. Let us now formulate some problems that
are important in this context.

Problem 1. Evaluation of attitudes

The objective here is to predict attitudes of various population groups. As we have
seen in the previous section, the attitudes of different groups change in intricate ways
and are subject to changes in external factors, as well as direct and indirect depen-
dencies. Direct dependencies involve relatively few adjacent groups, while indirect
dependencies and external factors may involve all or almost all population groups.
Thus, in Fig. 6.1 group 2 is affected directly only by groups 1; 5. But there exists
a path from 3 to 2, and from 4 to 2. Therefore, indirectly individuals of group 2
are affected by all groups. The direct dependencies are much easier to study experi-
mentally through surveys and questionnaires. Suppose that we managed to study the
direct dependencies between attitudes of different adjacent population groups. The
problem is to predict the public attitudes as the result of complex direct and indirect
interactions by using the information about direct dependencies. As was outlined in
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the previous section, this problem involves the calculation of all possible direct and
indirect paths by using the adjacency matrix (Table 6.1). Formally the problem is
formulated as follows. Given conditional distributions H i .zi jzVi

I x/ for i D 1 W N
and the values of xt for t D 0; 1; : : : ; T � 1 find distributions P.�T

i /, i D 1 W N of
random variables �T

i , i.e., the public attitudes at time T .

Problem 2. Response interpretation

This problem deals with the interpretation (identification) of public response to a
mixture of events and efforts which influence the public. This interpretation is made
on the basis of our knowledge which has two components. The first component is the
a priori information on direct dependencies deduced from responses in the past. The
second component consists of new direct observations of attitudes for some groups
to a given new issue. This type of knowledge can be called a posteriori knowledge.
The response interpretation deals with the following questions:

� Suppose that we have direct observations on the attitudes of only some selected
groups, or we have observations of aggregated response from several groups.
How can we recover attitudes of unobserved groups?

� How to use the newly acquired a posteriori knowledge to update our knowledge
about direct dependencies between groups?

� Often a public response is the result of mixture of different, sometimes conflict-
ing events and efforts. What is the contribution of each single event to the attitude
dynamics?

Formally these problems can be formulated as follows. Let us consider only first
problem. Denote by VE the set of observed groups. Given conditional distributions
H i .zi jzVi

I x/ for i D 1 W N , the values of xt and distributions P.�t
i /, i 2 VE for

t D 0; 1; : : : ; T � 1 find distributions P.�t
i / for i 62 VE .

Problem 3. Sensitivity analysis

Here we want to analyze a sensitivity of attitudes with respect to changes of environ-
mental variable x. Through such an analysis we may find that attitudes are especially
resistant to changes in certain directions or in certain positions. For example, in
siting a waste processing facility, it is necessary to analyze a choice of its size,
decide on a distance between facility and population centers, choose routes of the
waste transportation, etc. Different population groups react differently on different
options. Small changes in critical parameters may considerably affect the public
attitudes, while substantial and possibly costly changes in non-critical parameters
will not change the public response. The objective of the sensitivity analysis is to
identify the critical parameters utilizing the knowledge of the direct dependencies
and how these dependencies are affected by changes in environmental parameters.

In terms of our model the sensitivities of public responses is defined in terms of
changes in response distribution P.�/ with respect to parameters x. This leads to the
following formulation.
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Given conditional distributionsH i .zi jzVi
I x/ for i D 1 W N and the values of xt

for t D 0; 1; : : : ; T � 1 estimate derivatives of distributions P.�T
i /, i D 1 W N with

respect to x0; : : : ; xT .
Note that distributions P.�/ depend on x indirectly through conditional distribu-

tionsH , what leads to a challenging problems analyzed in next sections.

Problem 4. Social learning

As it is emphasized in social psychology people receive information from their
social environment. A lack of connectivity between them develops clusters of peo-
ple sharing similar views in a more heterogeneous population. Traditionally, it is
assumed that a change in thought or behavior is only a reaction to some external fac-
tors or stimulus. The proposed model emphasizes the existence of intrinsic changes
generated by interdependencies between individuals in the absence of any external
factor. This dynamics may be perturbed by external factors activated at different
times leading to more or less complex patterns of alternative dynamics. How can
we learn the variety of alternative attitudinal developments and how we can charac-
terize them? What are optimistic and pessimistic “scenarios” of such developments?
Can attitudes reach critical levels? Answers to such questions depend not only on
existing links between individuals but also on paths of activated external factors.
The main problem is to use a model in order to learn possible alternative scenarios
and their outcomes. For example, in the debates on siting a waste processing facil-
ity, there is a possibility to change sizes of facilities, their locations, premiums and
other compensations in order to change public responses.

The power of a model is its ability to learn patterns of possible responses of the
system without time consuming real observations and trial-and-error experiments.
In our case the proposed model supports identification of paths of external factors
leading to different outcomes, for example either decreasing a social tension, or
achieving the worst case situation. In order to conduct such analysis we need to
introduce a set of “performance” indicators or “score” functions distinguishing one
trajectory of attitudes from another. For example, if cij is relative importance of
attitude j by individuals of group i , then the cumulative score of a trajectory of
attitudes can be expressed by the following score (performance) function:

F.x/ D
TX

tD0

NX
iD1

MX
j D1

cijp
i t
j ; (6.27)

which implicitly depends on external factors x through conditional probabilities in
(6.26).

The sensitivity analysis can indicate changes in x which lead to increasing value
of an indicator F.x/. Using this information, it is possible to identify, for example,
the worst or the best case sets of possible external factors.

The fundamental complexity of such type of problems is due to the probabilistic
nature of F.x/ and implicit dependencies on variables x. Next sections discuss tools
enabling to deal with the involved complexity.
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6.7.3 Bayesian Networks and Markov Fields

The Bayesian net is a powerful tool which was developed primarily to deal with
stochastic problems defined on acyclic graphs (see Fig. 6.8) We show that algo-
rithms developed for the Bayesian nets constitute the building blocks for more
general algorithms which can deal also with general graphs.

Bayesian nets are specifically designed for cases when the vector of random
parameters � can have considerable dimension and/or it is difficult to come up with
traditional parametric model of the joint distribution of random parameters.

The cause–effect structure is associated with the vector of random parame-
ters � D .�1; : : : ; �i ; : : : ; �N /. That is, for any parameter �i the set of indices Vi

is selected such that the elements of subvector f�j gj 2Vi
can be identified with

“causes” of �i . Vector �i is changed in time leading to a random path or trajec-
tory �t ; t D 0; 1; : : :. In the proposed model, the groups of a population, say in
a given region, are represented as nodes of a graph. Direct dependencies between
groups are represented by arrows indicating directions of communications. Node i
of the graph has different random states �t

i at time t reflecting different attitudes of
the group. Thus the stochastic dynamics of attitudes is characterized by a random
vector �t with dependent components. The important feature is that changes in a
component �t

i are triggered only by its “neighbors” �t
j ; j 2 Vi , apart from changes

in external factors.
Such stochastic processes define Markov random fields. They can be regarded as

a generalization of Markov processes to situations when the cause effect structure
is not necessarily linearly ordered. Let us start the formal exposition by gathering
the basic definitions which will be used in next sections. Consider a directed graph
defined as a pair of two sets .V; U /: nodes V and connecting them arrows (directed
arcs) U . An example of such graph is given in Fig. 6.6 with V D f1; 2; : : : ; 9g. For
each node v 2 V let us define the set of parents

c.v/ D fj j.j; v/ 2 Eg; (6.28)

and the set of descendants d.v/ as the set of all nodes Nv from V for which there
exists directed path which originates in vand terminates in Nv.

Consider a set of random variables �V D f�v; v 2 V g indexed by nodes from
V and defined on appropriate probability space .�;B;P/. Suppose that W is an
arbitrary subset of V by vnfv [ d.v/g. A Markov random field � is characterized by
the property

P.�vj�W [c.v// D P.�vj�c.v// (6.29)

If G is a directed acyclic graph, then .�; G/ which satisfies (6.29) is called
Bayesian network.

Suppose now that H.�/ is the joint distribution of �. Then it follows from the
definition of the Bayesian network that
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H.�/ D
Y
v2V

H v.�vj�c.v// (6.30)

where H v.�vj�c.v// is a conditional distribution function of �v given �c.v/.
Coming back to the model of Sect. 6.3 we see that it fits in the framework of

Bayesian networks and Markov fields. The essential new feature is the dependence
of the conditional distribution functions H v on the vector of external variables x
from a feasible set X � Rn:

H v.�/ D H v.�vj�c.v/; x/ (6.31)

The change of x 2 X affects the interactions between groups.

6.7.4 Sensitivity Analysis

The analysis aims at examining attitudes with respect to changes in external fac-
tors x. These changes are characterized by certain indicators or “score” functions
such as (6.27) is a function of � and possibly x, e.g., f .x; �/.

Several questions can now be considered. For example, how can we estimate the
expected outcome

F.x/ D Ef .x; �/ (6.32)

at some point x? How sensitive is this value with respect to changes of parame-
ters x? What are the most critical parameters? What is the value of the performance
indicator at point x C ıx where ıx is a small perturbation of x? These questions
are not the trivial because each estimation of the value of F.x/ can be very time
consuming taking into account indirect interdependencies of the network.

More precisely, in order to evaluate the sensitivity of F.x/ we need to develop
algorithms for estimating the value of the gradient of this indicator. That is, for a
given x we need to compute vector � such that

E� D Fx.x/ D d

dx
Ef .x; �/

One possibility is to use the finite differences:

� D
nX

iD1

OF .x C�ei /� OF .x/
�

ei ;

where OF .x/ is an estimate of the value of function F.x/ at point x. In this case,
however, it is necessary to compute at least n C 1 estimates of the performance
measure which may be too demanding computationally.

Let us introduce simple but useful differentiation formulas for the gradient of
function F.x/, which are used in stochastic optimization.
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Theorem 6.1. Suppose that
1. Random variables �v have conditional densities h.�vj�c.v/; x/

2. Functions h.�vj�c.v/; x/, f .x; �/ are differentiable with respect to x uniformly
with respect to �. Then F.x/ defined in (6.32) is differentiable and

Fx.x/ D E

(
fx.x; �/C f .x; �/

X
v2V

hx.�vj�c.v/; x/

h.�vj�c.v/; x/

)
(6.33)

Proof.
From (6.30) we have the following expression for F.x/:

F.x/ D
Z
f .x; �/

Y
v2V

h.�vj�c.v/; x/
Y
v2V

d�v (6.34)

Under assumptions of the theorem we can change the order of differentiation and
integration, which yields:

Fx.x/ D
Z

d

dx

 
f .x; �/

Y
v2V

h.�vj�c.v/; x/

!Y
v2V

d�v

D
Z
fx.x; �/

Y
v2V

h.�vj�c.v/; x/
Y
v2V

d�v

C
X
w2V

Z
f .x; �/hx.�wj�c.w/; x//

Y
v2V; v¤w

h.�vj�c.v/; x/
Y
v2V

d�v

D
Z  

fx.x; �/C f .x; �/
X
v2V

hx.�vj�c.v/; x/

h.�vj�c.v/; x/

!Y
v2V

h.�vj�c.v/; x/
Y
v2V

d�v

The proof is completed. ut
This theorem can also be proved by taking the logarithm from the expression

under the integral in (6.35) and differentiating it. The theorem is similar to the
Theorem 6.1 from [15].

Similar result holds when each of the random variables �v takes finite number
of values and instead of conditional densities we have conditional probabilities
P.�vj�c.v/; x/. If these probabilities are differentiable with respect to x we obtain
the following expression for Fx.x/:

Fx.x/ D E

(
fx.x; �/C f .x; �/

X
v2V

Px.�vj�c.v/; x/

P.�vj�c.v/; x/

)
(6.35)

Note that the second terms in expressions (6.33) and (6.35) can be interpreted as
sums of likelihood ratios [17, 27]. The calculation of exact values Fx.x/ is possible
only in exceptional cases for simple networks.
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Let us now present estimation algorithms which exploit the structure of Bayesian
network and expressions (6.33) and (6.35) in order to obtain statistical estimates of
F.x/ and Fx.x/. We shall make reference to discrete case and use (6.35); the con-
tinuous case is treated similarly. The simplest estimation scheme is the following:

� D 1

K

KX
kD1

 
fx.x; �

k/C f .x; �k/
X
v2V

Px.�
k
v j�k

c.v/
; x/

P.�k
v j�k

c.v/
; x/

!
(6.36)

where �k; �k
v ; �

k
c.v/
; k D 1 W K; K � 1 are independent observations of random

vectors �; �v; �c.v/ respectively. Stochastic vector � is termed as stochastic gradient.
The estimation scheme (6.36) in the context of Bayesian networks is called also as
Logic Sampling. The estimator (6.36) requiresK � 1 observations (“scenarios”) of
attitudes �. This scenarios can be sequentially generated by using the Monte-Carlo
simulation techniques. An arbitrary scenario generating cycle k D 1 W K have the
following simple steps:

1. Initialization. Select a node v 2 V such that c.v/ is the empty set, c.v/ D ;.
Since the graphG is acyclic such nodes exist and we interpreted them as sources
of opinions or leader nodes. Sample the component �v from unconditional distri-
bution P.�vj�c.v/; x/ and denote the result as �k

v . Perform this step for all nodes
with empty parent set c.v/.

2. Selection. Select a not yet sampled node v 2 V such that all random vari-
ables �j ; j 2 c.v/ have been sampled already during current scenario generating
cycle. Suppose that the observation of �j is �k

j ; j 2 c.v/.
3. Sampling. Sample random variable �v and obtain an observation �k

v . Steps 2 and 3
are repeated until all random components of � are sampled. In other words, until
all groups reveal their opinions.

Note that by using observations �k; k D 1 W K; K � 1 along with the esti-
mates of the gradient Fx we obtain the estimate of F.x/ itself. For example, F.x/
may correspond to the probability for � to belong to a certain desirable domain [for
example, majority of attitudes 1 (yes) to the competing attitudes 0 (no)] we obtain
the estimates of this probability and its sensitivity �.

There may be other sampling schemes known as Evidence Weighting [4] and
Gibbs Sampling [16] which are particularly useful for the solution of the response
interpretation problem (Problem 2 from Sect. 6.7.2). Such schemes use the struc-
ture of the network and a posteriori distributions instead of P.�vj�c.v/; x/. The
estimates of stochastic gradient obtained above can be used for obtaining the optimal
values of parameters using stochastic quasigradient methods like in [7–9].

6.7.5 General Interdependencies

Let us extend the analysis of the previous section to the case of cyclic graphs. The
exposition follows closely the exposition of the previous section and therefore we
concentrate on the new features only. The most important among these features is
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the dynamic aspect of attitudes change which in the case of conventional Bayesian
network was reduced to analysis of their propagation from “leaders” to other groups.

Let us fix the time horizon Œ0; l	 during which we study the attitude dynamics and
sensitivity estimates. Such estimates will be called l-links estimates. Generally, the
variables x may change during this time period: x D .x0; : : : ; xl�1/. For the sake of
simplicity we shall derive our estimates for the case when x0 D x1 D : : : D xl�1

denoting this constant vector by x. The general case does not bring any conceptual
difficulties and is treated similarly.

Consider again the case when conditional distributions have densities. Consider
the following performance measure which is a generalization of the measure (6.34):

F.x/ D
Z
f .x; N�l /h.x; N�l /d N�l (6.37)

where for t D 0; : : : ; l we denoted by h.x; N�t / the joint density of the random vector
N�t D .�0; : : : ; �t / with �t D .�t

1; : : : ; �
t
N / and

d N�l D
lY

tD1

Y
v2V

d�t
v

The density of N�t is connected with the density of N�t�1 for t D 1; : : : ; l with the
following relation:

h.x; N�t / D h.x; N�t�1/
Y
v2V

h.�t
v j�t�1

c.v/ ; x/ (6.38)

with the initial distribution h.x; N�0/ density being simply

h.x; N�0/ D
Y
v2V

h.�0
v / (6.39)

Combining expressions (6.37)–(6.39) we obtain the basic formula for the perfor-
mance measure:

F.x/ D
Z
f .x; N�l /

Y
v2V

h.�0
v /

lY
tD1

Y
v2V

h.�t
v j�t�1

c.v/ ; x/

lY
tD1

Y
v2V

d�t
v (6.40)

Utilizing this expression similarly to the previous section we obtain the following
result:

Theorem 6.2. Suppose that
1. Random variables �t

v have conditional densities h.�t
v j�t

c.v/
; x/ for t D 1; : : : ; l

and densities h.�0/ for t D 0.
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2. Functions h.x; �t
v j�t

c.v/
/, f .x; N�l / are differentiable with respect to x uniformly

with respect to N�l . Then F.x/ defined in (6.37) is differentiable and

Fx.x/ D E

(
fx.x;

N�l /C f .x; N�l /

lX
tD1

X
v2V

hx.�
t
v j�t�1

c.v/
; x/

h.�t
v j�t�1

c.v/
; x/

)
(6.41)

As in the previous section similar result holds when each of the random vari-
ables �t

v takes a finite number of values, and instead of conditional densities we have
conditional probabilities P.x; �t

v j�t
c.v/
; x/. If these probabilities are differentiable

with respect to x, then we obtain the following expression for Fx.x/:

Fx.x/ D E

(
fx.x;

N�l /C f .x; N�l /

lX
tD1

X
v2V

Px.�
t
v j�t�1

c.v/
; x/

P.�t
v j�t�1

c.v/
; x/

)
(6.42)

The l-stage sensitivity estimate based on the logic sampling in the discrete case
takes the form:

� D 1

K

KX
kD1

 
fx.x; N�kl /C f .x; N�kl /

lX
tD1

X
v2V

Px.�
kt
v j�k;t�1

c.v/
; x/

P.x; �kt
v j�k;t�1

c.v/
; x/

!
(6.43)

where N�kt ; �kt
v ; �

kt
c.v/
; t D 0; 1; : : : ; l; k D 1 W K; K � 1 are independent obser-

vations of random vectors N�t ; �t
v ; �

t
c.v/

respectively. The vector � defines a stochastic
gradient of the function F.x/ in (6.37).

Observations �kt , k D 1 W K of random vectors �t , t D 0; 1; : : : ; l can be
simulated similar to acyclic graphs of the previous section. In fact, the study of
l-stage interdependencies between groups (nodes) on general graphs can be reduced
to the study of l-stage sensitivity estimates on acyclic graphs.

This reduction of l-stage sensitivity analysis to acyclic graphs provides a general
approach to the study of the general nets with cyclic graphs. Keeping in mind this
possibility let us describe the Monte-Carlo simulation procedure for the generation
k D 1 W K scenarios �, t D 0; 1; : : : ; l describing l-stage propagation effects of
public attitudes:

1. Initialization. Leader nodes of the equivalent acyclic graph (see Fig. 6.6) cor-
respond to t D 0. Therefore, for all v 2 V sample the values �kt of random
variables �t

v , t D 0.
2. Selection. Select all nodes v 2 V sequentially for t D 1 W K .
3. Sampling. For a sampled node v at step t sample random variables �ktC1

v from
distribution P.�tC1

v j�v
t D �kt

v ; x/. Steps 2, 3 are repeated until all components
�kt of vectors �t , t D 0; 1; : : : ; l are sampled.

Scenarios �kt ; t D 0; 1; : : : ; l , k D 1 W K of public attitudes allow to estimate
vector Fx.x/ according to (6.43). As in the previous section this vector indicates
directions of changes in x towards the increase of indicator F.x/.



136 Y. Ermoliev et al.

6.8 Conclusion

In this paper we set the stage for further development of modeling and decision
support tools for analysis of design and deployment of robust information infras-
tructure using as the case study one component of this infrastructure: advanced
mobile data services. The methodologies utilized here, especially the portfolio
theory and the Bayesian nets combined with the stochastic optimization, have a
potential to be exploited also for solutions of similar problems arising in other types
of infrastructure.
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Chapter 7
Optimal Ellipsoidal Estimates of Uncertain
Systems: An Overview and New Results

F.L. Chernousko

Abstract The method of ellipsoids for the guaranteed state estimation of uncertain
dynamical systems is associated with optimal two-sided ellipsoidal bounds for
reachable sets of the systems. Being based on the set-membership approach to
uncertainties, the method can be regarded as a natural counterpart to well-known
stochastic, or probabilistic, techniques. Basic concepts and results of the method are
outlined, and certain results are presented. Various possible applications to problems
in control, estimation, and observation are considered.

7.1 Introduction

Dynamical systems subjected to unknown but bounded perturbations appear in
numerous applications. The set-membership approach that is a natural counterpart
to the well-known stochastic, or probabilistic, one makes it possible to obtain guar-
anteed estimates on reachable sets and thus to evaluate the family of all possible
trajectories of the perturbed system.

In the framework of the set-membership approach, the ellipsoidal estimation
seems to be the most efficient technique. Among its advantages are the explicit form
of approximations, invariance with respect to linear transformations, possibility of
optimization, etc. The earlier results on the ellipsoidal estimation were presented
in [33]. The concept of optimality for two-sided (inner and outer) approximating
ellipsoids was first introduced in [1] and generalized, extended, and summarized in
books [2, 3, 5].

In this paper, basic concepts and results of the method of optimal ellipsoids are
outlined, and certain recent results are presented.

F.L. Chernousko
Institute for Problems in Mechanics, Russian Academy of Sciences,
pr. Vernadskogo, 101-1, 119526 Moscow, Russia,
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and Mathematical Systems 633, DOI 10.1007/978-3-642-03735-1 7,
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Dynamical systems subjected to bounded controls and/or perturbations are con-
sidered. For these systems, nonlinear differential equations are obtained that describe
the evolution of the optimal ellipsoids representing two-sided (inner and outer) esti-
mates for reachable sets. The approximating ellipsoids depend on the choice of the
optimality criterion (e.g., volume of ellipsoids, sum of their squared axes), and on
the notion of local/global optimality.

Various useful properties of the optimal approximating ellipsoids have been
established. Asymptotic behavior of the ellipsoids near the initial point and at infin-
ity have been studied. As a rule, the nonlinear equations for these ellipsoids are to
be integrated numerically. However, certain explicit analytical solutions have been
obtained.

Outer and inner ellipsoidal approximations can be used for various applications
in control and estimation, including two-sided approximations for optimal control
and differential games, analysis of practical stability and parameter excitation, state
estimation in the presence of observation errors, control in the presence of uncertain
perturbations, etc.

7.2 Reachable Sets

Consider a dynamical system subjected to control or disturbance and described by
a system of ordinary differential equations

Px D f .x; u; t/; t � s (7.1)

Here, x D .x1; : : : ; xn/ is the vector of state, t is time, s is the initial time instant,
u D .n1; : : : ; um/ is the vector of control or disturbance, and f is a given function.
At each time instant, vector u.t/ should belong to the given set U.t/, so that

u.t/ 2 U.t/ � Rm; t � s : (7.2)

The initial state belongs to a given initial set:

x.s/ 2 M � Rn : (7.3)

An alternative description of the system (7.1)–(7.3) is given by the differential
inclusion:

Px 2 f .x; U.t/; t/; x.s/ 2 M :

For systems under consideration, the notion of a reachable set is introduced.
The reachable, or attainable, set D.t; s;M/ of system (7.1) for t � s is defined

as the set of all end points x.t/ at the instant t of all state trajectories x.�/ compatible
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Fig. 7.1 Reachable set

with (7.1)–(7.3). The reachable set has the following evolutionary property

D.t; s;M/ D D.t; �;D.�; s;M// (7.4)

that holds for all � 2 Œs; t 	. Reachable sets are important for systems subjected to
control or disturbance because they give a description of all possible states of the
system at any given time t (Fig. 7.1).

In various applications, it is often required to verify whether a given state x� is
reachable at the given instant of time t�, i.e., if the inclusion

x� 2 D.t�; s;M/ (7.5)

holds. However, the practical determination of reachable sets in the n-dimensional
space presents usually serious computational difficulties. In a number of cases, it is
sufficient to obtain simple and efficient two-sided (inner and outer) bounds D�.t/
and DC.t/ on reachable sets such that the following inclusions

D�.t/ � D.t; s;M/ � DC.t/ (7.6)

are true for t � s. If the boundsD� andDC are known, then the inclusions

x� 2 D�.t�/; x� 2 DC.t�/ (7.7)

can serve, respectively, as a sufficient and necessary conditions for the inclusion
(7.5).

If we deal with a control system and u in (7.1) is a control to be chosen, then the
inner boundD�.t/ is important. The first inclusion (7.7) implies that the state x� is
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reachable at the instant t�, and there exists an admissible control u.t/ bringing the
system to this state.

For an uncertain system, u.t/ is a disturbance, and the outer bound DC.t/ pro-
vides a guaranteed estimate for all possible trajectories: the system cannot reach any
state outside the set DC.t�/ at the instant t�.

In the well-known stochastic (probabilistic) approach to uncertain systems, the
Gaussian distribution plays a specific role and results in the simplest mathemati-
cal description. To some extent, ellipsoidal sets for the set-membership approach to
uncertainties are analogous to the Gaussian distributions. In fact, the sets of con-
stant probability for the n-dimensional Gaussian distribution are the surfaces of
n-dimensional ellipsoids. Moreover, there is a certain similarity between stochastic
systems subjected to the white noise and dynamical systems subjected to uncertain
disturbances bounded by ellipsoids.

Denote by E.a;Q/ the following n-dimensional ellipsoid

E.a;Q/ D ˚
x W .Q�1.x � a/; .x � a// � 1

�
; (7.8)

where a 2 Rn is its center, Q is a symmetric positive definite n � n matrix, and
.: ; :/ denotes the scalar product of vectors.

Ellipsoids have a number of advantages as approximating sets. They provide a
satisfactory approximation for a wide class of convex sets [1–3]. For any
n-dimensional convex set D, there exists an ellipsoid E.a;Q/ such that

E.a;Q/ � D � E.a; n2Q/:

If the convex set is symmetric with respect to some point, then there exists an
ellipsoid E.a;Q/ for which the inclusions.

E.a;Q/ � D � E.a; nQ/

hold. These inclusions provide two-sided estimates for possible approximations of
any convex set by means of ellipsoids.

The class of ellipsoids is invariant with respect to affine transformations. The
class of parallelepipeds has the same invariance property but ellipsoids are defined
by less number of parameters: n C n.n C 1/=2 for ellipsoids, n.n C 1/ for
parallelepipeds. Note that rectangular parallelepipeds are defined by the same num-
ber of parameters as ellipsoids but they are not invariant with respect to affine
transformations.

The last but not the least advantage of ellipsoids is the following one. Simple
explicit formulas were obtained [1–3] for the basic algebraic operations for ellip-
soidal sets, namely, for the multiplication by a constant, the sum, and intersection
of ellipsoids. These operations are, in a certain sense, optimal and provide a basis
for the ellipsoidal estimation of dynamical systems subjected to controls and/or
uncertain disturbances.
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The ellipsoidal state estimation occurs to be the most effective technique in the
framework of the set-membership approach. In what follows, we will remind the
basic concepts and results of this technique.

7.3 Ellipsoidal Bounds

Let us specify the general system (7.1) and consider a linear system of ordinary
differential equations

Px D A.t/x C B.t/u C f .t/; t � s: (7.9)

Here, x 2 Rn is the n-vector of state, u 2 Rm is the m-vector of control or
unknown disturbances, A is an n � n matrix, B is an n � m matrix, and f is an
n-vector. The matrices A.t/ and B.t/ as well as the vector f .t/ are given functions
of time t for t � s.

Suppose the set U.t/ that bounds vector u.t/ in (7.2) is an ellipsoid. We have

u.t/ 2 E.0;G.t//; t � s; (7.10)

where G.t/ is a positive definite m �m matrix specified for t � s.
The initial set M in (7.3) is also supposed to be an ellipsoid. We have the

following bound on the initial state:

x.s/ 2 M D E.a0;Q0/; (7.11)

where a0 is a given n-vector, and Q0 is a given positive definite n � n matrix.
Our goal is to obtain two-sided bounds (7.6) on reachable sets, where the bound-

ing setsD�.t/ andDC.t/ are n-dimensional ellipsoids. In other words, we look for
two families of n-dimensional ellipsoids:

E�.t/ D E.a�.t/;Q�.t//; EC.t/ D E.aC.t/;QC.t// (7.12)

defined, according to notation (7.8), by their centers a�.t/; aC.t/ and positive defi-
nite n � n matrices Q�.t/;QC.t/ for t � s and such that the following inclusions
hold:

E�.t/ � D.t; s;M/ � EC.t/; t � s: (7.13)

In addition, we require that the families of ellipsoids E�.t/ and EC.t/ possess
the properties of subreachability and superreachability, respectively.
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The families of ellipsoids E�.t/ and EC.t/ defined by (7.11) are called sub-
reachable and superreachable, respectively, if

E�.t/ � D.t; �; E�.�//; EC.t/ � D.t; �; EC.�//

for all � 2 Œs; t 	. These properties are similar to the evolutionary property (7.4) of
reachable sets. It occurs that subreachable and superreachable ellipsoids have certain
advantages: they can be determined efficiently in a straightforward way and provide
a sufficiently good approximations of reachable sets.

7.4 Optimality

To make the approximating ellipsoids (7.12) closer to reachable sets, it is quite nat-
ural to impose certain optimality conditions upon these ellipsoids. The optimality
criteria should, to some extent, reflect the “size” of ellipsoids, and the inner ellip-
soid E� should be “larger”, whereas the outer ellipsoid EC“smaller”, in the sense
of the chosen criterion.

Let us characterize an ellipsoid E.a;Q/ by a scalar optimality criterion J which
is a given function L.Q/ of the matrix Q, i.e., J D L.Q/. The function L.Q/
is defined for all symmetric positive definite matrices Q, is smooth and monotone.
The monotonicity means thatL.Q1/ � L.Q2/, ifQ1 �Q2 is a nonnegative definite
matrix.

Consider some important particular cases of the general criterion L.Q/:

1. The volume of an ellipsoid [1–3] is given by

J D cn.detQ/1=2; (7.14)

where cn is a constant depending on n.
2. The sum of the squared semiaxes of an ellipsoid is equal to

J D TrQ:

3. A linear optimality criterion [3, 5]

J D Tr.CQ/; (7.15)

where C is a symmetric nonnegative definite n � n matrix, is a generalization of
the previous case.

4. The following criterion

J D L.Q/ D .Qv; v/; (7.16)
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where v is a given nonzero n-vector, is a particular case of (7.15) with

C D v 	 v; Cij D vi vj ; i; j D 1; : : : ; n: (7.17)

Here, the symbol 	 denotes the dyadic product of vectors.

Criterion (7.16) has a clear geometric interpretation: it is related to the projection
…v.E/ of the ellipsoid onto the direction of the vector v as follows:

…v.E/ D 2.Qv; v/1=2=jvj: (7.18)

To prove (7.18), note that the projection…v.E/ is related to the support function
HE .v/ of the ellipsoid as follows:

…v.E/ D ŒHE .v/CHE .�v/	=jvj: (7.19)

Since the support function of the ellipsoid is given by

HE .v/ D .a; v/C .Qv; v/1=2; (7.20)

equation (7.18) follows immediately from (7.19) and (7.20).
By virtue of (7.18), the minimization of criterion (7.16) is equivalent to the min-

imization of the projection of the ellipsoid onto the direction of vector v. Other
examples of optimality criteria are given in [3].

Below, we consider locally and globally optimal ellipsoids [3, 26].
A smooth family of ellipsoids E�.a.t/;Q.t// is called locally optimal, if it is

superreachable/subreachable and

dL.Q.�//=d� j�Dt ! min=max;

where the minimum/maximum is taken over all smooth families of superreach-
able/subreachable ellipsoids E˙.t/ such that E˙.t/ D E�.t/.

A smooth family of superreachable/subreachable ellipsoids is called globally
optimal for a given t D T , if the minimum/maximum of L.Q.T // over all
superreachable/subreachable ellipsoids is attained on this family.

All definitions and results related to the optimal ellipsoids are true also for the
case, where the criterion depends also on time t , so that J D L.Q; t/. For example,
matrix C in (7.15) and vector v in (7.16) can depend on t : C D C.t/; v D v.t/.

Note that the volume of an ellipsoid as an optimality criterion (7.14) has a prop-
erty that singles it out among all other criteria. The optimality of a given ellipsoid in
the sense of volume remains intact under any affine transformation in Rn. Thus, the
optimality in the sense of volume seems more “basic” property of an approximating
ellipsoid that its optimality in the sense of other criteria.
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7.5 Equations of Ellipsoids

We consider linear system (7.9) where u.t/ is subjected to constraint (7.10) and
initial conditions are specified by (7.11).

The center aC.t/ and the matrix QC.t/ of the outer locally optimal ellipsoid
satisfy the following differential equations and initial conditions [3, 5]:

PaC D A.t/aC C f .t/; aC.s/ D a0; (7.21)
PQC D A.t/QC CQCAT .t/C hQC C h�1K; QC.s/ D Q0: (7.22)

Here, T denotes the transposed matrix, K.t/ is expressed via given matrices by
the formula

K.t/ D B.t/G.t/BT .t/; (7.23)

and the following notation is used

h D
�

Tr



@L

@QCK
�
=Tr



@L

@QCQ
C
�1=2

: (7.24)

Here, Tr is the trace of a matrix, and @L=@QC is a symmetric matrix of partial
derivatives @L.Q/=@QC

ij ; i; j D 1; : : : n.
Note that (7.21) for the vector a.t/ is linear and does not depend on the chosen

optimality criterionL.Q/. By contrast, (7.22) for the matrixQC.t/ is nonlinear and
depends onL.Q/ via (7.24) for h. For ellipsoids optimal in the sense of volume [see
(7.14)], expression (7.24) becomes

h D ˚
n�1Tr

�
.QC/�1K

	�1=2
: (7.25)

For the linear criterion (7.15), we have

h D ŒTr.CK/=Tr.CQC/	1=2: (7.26)

Further simplifications are possible for the criterion (7.16). Substituting C from
(7.17) into (7.26), we obtain

h D Œ.Kv; v/=.QCv; v/	1=2: (7.27)

Equations for inner approximating ellipsoids locally optimal in the sense of
volume [3, 5] are as follows:

Pa� D A.t/a� C f .t/; a�.s/ D a0;

PQ� D A.t/Q� CQ�AT .t/C 2K1=2.K�1=2Q�K�1=2/1=2K1=2; (7.28)

Q�.s/ D Q0:
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Here, matrix K.t/ is again defined by (7.23). Note that equations for the centers
of the inner and outer approximating ellipsoids (7.21) and (7.28) coincide, hence,
a�.t/  aC.t/ for t � s.

It occurs that (7.28) are true for inner approximating ellipsoids optimal in the
sense of all criteria L.Q/ satisfying the conditions imposed in the beginning of
Sect. 7.4. Thus, these equations have a universal nature.

Let us consider now globally optimal outer ellipsoids. The centers of these
ellipsoids coincide with those of locally optimal ones and satisfy the initial value
problem (7.21). The matrix QC.t/ of globally optimal ellipsoids satisfies equation
and initial condition (7.22), where matrixK is defined by (7.23), whereas the scalar
h is, instead of (7.24), given by the expression

h D ŒTr.PK/=Tr.PQC/	1=2: (7.29)

Here, P.t/ is a symmetric positive definite matrix satisfying the following linear
differential equation

PP D �PA.t/ � AT .t/P (7.30)

and initial condition at t D T :

P.T / D Œ@L.QC/=@QC	tDT : (7.31)

Hence, we have a two-point boundary value problem for the pair of matricesQC
and P described by (7.22), (7.23), (7.29)–(7.31). For the linear criterion (7.15), the
initial condition (7.31) is reduced to

P.T / D C.T /: (7.32)

Therefore, for outer ellipsoids globally optimal in the sense of criterion (7.15),
the boundary value problem for matricesQC andP becomes decoupled and reduces
to two initial value problems: a linear one for P.t/ defined by (7.30) and (7.32), and
a nonlinear one for QC.t/ defined by (7.22) and (7.29). First, the problem for P.t/
should be solved (from t D T to t D s), and then the problem for QC.t/ (from
t D s to t D T ).

Further simplifications are possible for criterion (7.16). For globally optimal
outer ellipsoids, we have, on the strength of (7.17) and (7.32):

P.T / D v 	 v;

where v is a given constant n-vector. Let us introduce the adjoint n-vector  .t/
satisfying the initial value problem:

P D �AT .t/ ;  .T / D v: (7.33)
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Then we have [6, 7]

P.t/ D  .t/ 	  .t/:

Thus, in order to find the matrixQC.t/ of a globally optimal ellipsoid in the case
of criterion (7.16), one is to solve first the linear n-dimensional initial value problem
(7.33) for  .t/ (instead of n.n C 1/=2-dimensional problem for P.t/ defined by
(7.30) and (7.32)), then substitute

h D Œ.K ; /=.Q ; /	1=2

into (7.22) and solve the resultant initial value problem for QC.
Thus, linear optimality criterion (7.15) and, especially, its particular case (7.16)

lead to a considerable simplification of equations for optimal outer ellipsoids.

7.6 Transformation of the Equations

In what follows, we restrict ourselves mostly with outer approximating ellipsoids
and omit the superscript C, so that we denote below: aC.t/ D a.t/;QC.t/ D Q.t/.

Equation (7.22) for locally optimal ellipsoids depends on two given matrices:
A.t/ and K.t/, where the symmetric matrix K.t/ is given by (7.23). By the change
of variables

Q D VQ�V T ; (7.34)

where V.t/ is an invertible n � n matrix to be specified below, and Q� is a new
matrix variable, it is possible to simplify (7.22) so that it will contain only one given
matrix instead of two.

1. Let us defineˆ.t/ as the fundamental matrix of system (7.7):

P̂ D A.t/ˆ; ˆ.s/ D I:

Here, I is the n � n identity matrix.
If we set

V.t/ D ˆ.t/; (7.35)

then transformation (7.34) reduces (7.22) to the form

PQ� D h�Q� C h�1� K�.t/; Q�.s/ D Q0; (7.36)

K�.t/ D ˆ�1.t/K.t/Œˆ�1.t/	T :
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Here, h� is given by (7.24) where Q should be replaced by ˆQ�ˆT . Explicit
expressions [3, 5, 7] for h� are presented below for criteria (7.14)–(7.16),
respectively:

h� D Œn�1Tr.Q�1� K�/	1=2;

h� D ŒTr.C�K�/=Tr.C�Q�/	1=2; C� D ˆTCˆ; (7.37)

h� D Œ.K�v�; v�/=.Q�v�; v�/	1=2; v� D ˆT v:

2. Let matrix K.t/ from (7.23) be positive definite. By taking

V.t/ D ŒK.t/	1=2 (7.38)

in (7.34), we convert (7.22) to the form

PQ� D A�Q� CQ�AT� C h�Q� C h�1� I;

Q�.s/ D K�1=2.s/Q0K
�1=2.s/: (7.39)

Here, matrix A�.t/ is given by

A�.t/ D K�1=2.AK1=2 � dK1=2=dt/; (7.40)

and explicit formulas [7] for h� are given below for criteria (7.14)–(7.16),
respectively:

h� D .n�1TrQ�1� /1=2;

h� D ŒTrC�=Tr.C�Q�/	1=2; C� D K1=2CK1=2;

h� D Œ.v�; v�/=Tr.Q�v�; v�/	1=2; v� D K1=2v:

Thus, by choosing matrix V in (7.34) according to (7.35), we reduce (7.22) for
matrixQ to the form (7.36) that corresponds to the case where A D 0. On the other
hand, by taking matrix V in accordance with (7.38), we come to (7.39) where K is
replaced by the unity matrix I . Therefore, we can restrict ourselves with considering
(7.22) only in the cases where either A D 0 or K D I .

Similar simplifications take place also for (7.28) for inner ellipsoids.
Let us consider now equations for globally optimal outer ellipsoids [7] and use

the change of variables (7.34) forQ and

P D .V �1/TP�V �1 (7.41)

for P , where P� is a new variable. Let us restrict ourselves with the case of linear
criteria (7.15) and (7.16). If V is defined by (7.35), we obtain from (7.30) and (7.32)
for criterion (7.15):

P�.t/ D ˆT .T /C.T /ˆ.T / D const:
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As a result, the equation for matrix Q�.t/ coincides with (7.36), where

h� D ŒTr.P�K�/=Tr.P�Q�/	1=2:

For criterion (7.16), h� is determined by (7.37) with v� D ˆT .T /v.
By defining V in (7.34) and (7.41) in accordance with (7.38), we again obtain for

criterion (7.15), equations (7.39) for Q�, equations

PP� D �P�A� �AT� P�; P�.T / D K1=2.T /C.T /K1=2.T /

for P�, and the same expression (7.40) for A�.
For criterion (7.16), (7.39) for Q� and (7.40) for A� still hold. Here, h� is

defined by

h� D Œ. �;  �/=.Q� �;  �/	1=2;

where the adjoint vector  �.t/ satisfies the following initial value problem that
replaces (7.33):

P � D �AT� �;  �.T / D K1=2.T /v:

7.7 Properties of Optimal Ellipsoids

Outer approximating ellipsoids E.a.t/;Q.t// optimal in the sense of criterion
(7.16) have the following properties:

1. Globally optimal ellipsoids touch reachable sets D.t; s;M/ for all t 2 Œs; T 	

at points x.t/, where the normal to the boundary of these sets is parallel to the
vector  .t/ defined by (7.33) [6]. In other words, these ellipsoids are tight in the
sense of [16].

2. Globally optimal ellipsoids are also locally optimal for the vector v.t/ D  .t/.
3. Locally optimal ellipsoids for the vector v.t/ defined by the initial value problem:

v.t/ D  .t/; P D �AT .t/ ;  .s/ D v0; (7.42)

where v0 is an arbitrary vector, are also globally optimal for any terminal time
instant T � s and for the criterion J D .Qv.T /; v.T //.

To construct these locally (and also globally) optimal ellipsoids, one is to solve
the linear initial value problem (7.21) for aC.t/ and also initial value problem con-
sisting of (7.22) forQC and (7.42) for .t/. Here, the initial vector v0 can be chosen
arbitrarily, and different vectors v0 correspond to different approximating ellipsoids
touching reachable sets at different points.
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Various properties of nonlinear equations (7.22) and (7.28) governing the evolu-
tion of locally optimal ellipsoids have been studied [1–3, 5–7, 26–28].

As a rule, the nonlinear differential equations for ellipsoids are to be integrated
numerically. However, a number of explicit analytical solutions have been obtained
both for locally [1–3, 5] and globally [6, 26–28] optimal ellipsoids.

Asymptotic behavior of the solution of (7.22) and (7.28) have been analyzed in
the vicinity of the initial point t D s, if Q0 D 0 [2, 3]. This case corresponds to
the situation, where the initial set M in (7.11) is a given point x.s/ D a0. In this
important case, (7.22) and (7.28) have a singularity [see also (7.24)–(7.27)], and the
obtained asymptotic expansions of the solution are needed to start the numerical
integration of equations near the initial point t D s for the case where Q0 D 0.

Also, asymptotic behavior for solutions of (7.22) and (7.28) at infinity (t ! 1)
have been analyzed [2, 3, 6, 26–28].

7.8 Generalizations

The method of ellipsoids has been extended to the case, where the parameters of
the linear system (7.9) are uncertain and/or subjected to unknown but bounded
perturbations. Consider the following system

Px D ŒA0.t/C A1.t/	x C f .t/; (7.43)

where x 2 Rn is the state, matrix A0.t/ and n-vector f .t/ are given functions of
time, whereas the matrix A1.t/ is unknown, and its elements a1

ij .t/ are bounded:

ja1
ij .t/j � bij ; i; j D 1; : : : ; n; t � s: (7.44)

Here, bij are given nonnegative numbers. The system described by (7.43) and
(7.44) models the situation, where some parameters of the system are uncertain
(fixed but unknown) or changeable, for example, in the case of parametric excitation.

Outer ellipsoidal estimates E.a.t/;Q.t// on the reachable sets of the system
described by (7.43) and (7.44) have been obtained [4].

Suppose the initial data are given by (7.11). The equation for the center a.t/ of
the approximating ellipsoid is still the same as (7.21), where A.t/ is replaced by
A0.t/, so that we have

Pa D A0.t/a C f .t/; a.s/ D a0:

Nonlinear matrix equation for Q.t/ differs from (7.22) and has the form

PQ D A0QCQAT
0 C hQC h�1R.a;Q/; (7.45)

h D Œn�1Tr.Q�1R/	1=2; R D diag.R2
1; : : : ; R

2
n/;

Ri D
nX

j D1

bij jaj j C
�

max
�

X
Qjkbij bik�ij �ik

�1=2

:
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Here, the maximum is taken over all �ij D ˙1; i; j D 1; : : : ; n. Note that, in
contrast to (7.22), the right-hand side of (7.45) forQ depends on vector a.

The method of ellipsoids can be extended also to nonlinear systems [2, 3]. The
main idea is to construct a linear comparison system described by (7.9), (7.10), and
(7.11), so that all possible motions of the original nonlinear system are within the
reachable sets of the linear one. For example, consider a nonlinear system

Px D A.t/x C '.u; t/; j'.u; t/j � '0.t/; t � s; (7.46)

where u is the disturbance, and the absolute value of the nonlinearity '.u; t/ is
bounded by '0.t/ for all admissible u and t � s W j'.u; t/j � '0.t/.

Then, the following linear system

Px D A.t/x C w; w 2 E.0; '2
0.t/I / (7.47)

can serve as a comparison system for (7.46). Here, w is a disturbance bounded by
a ball.

An outer approximating ellipsoid E.a.t/;Q.t// for linear system (7.47) will
provide an outer bound also for reachable sets of the original nonlinear system
(7.46).

Similarly, inner ellipsoidal bounds for reachable sets of nonlinear systems can be
obtained [2, 3].

The class of approximating sets can be extended: besides ellipsoids, also inter-
sections and unions of several ellipsoids can be considered [2,3]. Thus, the approx-
imation of reachable sets can be improved significantly.

7.9 Applications

Two-sided ellipsoidal approximations of reachable sets can be used for the solution
and approximation of various problems in control and state estimation. Here, we
will only briefly mention these applications; see [3, 5] for details.

7.9.1 Two-Sided Estimates in Optimal Control

Consider the following optimal control problem for system (7.9) under the initial
condition x.s/ D x0.

Find the control subject to constraint (7.10) that provides the minimum of the
given terminal functional J D F.x.T // at t D T > s.

Let us obtain two-sided approximating ellipsoids (locally or globally optimal)
and evaluate the following minima of the function F.x/ over the ellipsoids

F˙ D minF.x/; x 2 E.a˙.T /;Q˙.T //:
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Then the two-sided bounds FC � minJ � F� are true for the required mini-
mum of the functional J . To obtain these bounds, one needs, first, to find the inner
and outer ellipsoids, and, second, to solve the problems of nonlinear programming,
namely, to minimize the function F.x/ over the ellipsoidal sets. Note that the first
part of this procedure does not depend on the function F.x/; if we change this
function, we are to change only the second part of the procedure.

7.9.2 Two-Sided Bounds on Time for the Time-Optimal
Problem

Let the time-optimal problem (T ! min) is set up for the system (7.9) under the
initial condition x.s/ D x0. The terminal state is fixed: x.T / D x�. Let us find the
minimal time instants TC and T � when the ellipsoids E.a˙.t/;Q˙.t// contain
the point x�:

T ˙ D min t; x� 2 E.a˙.t/;Q˙.t//; t � s:

Then the two-sided bounds TC � T � T � for T are true.

7.9.3 Suboptimal Control

Consider again a linear system described by (7.9) and (7.10) under the initial con-
dition x.s/ D x0. Suppose that the given terminal state x.T / D x� at some instant
T belongs to the inner ellipsoid E.a�.T /;Q�.T //. Then there exists an admissible
control u.t/ bringing the system to this terminal state at t D T . This control can be
constructed efficiently [12,13] and is defined by the following procedure. First, find
the solution of the initial value problems (7.28) for functions a�.t/ and Q�.t/ that
determine the inner approximating ellipsoid.

Denote

R.t/ D K1=2.K�1=2Q�K�1=2/1=2K1=2

and solve the auxiliary initial value problem

P D �AT � .Q�/�1R t 2 Œs; T 	;
 .T / D ŒQ�.T /	�1Œx� � a�.T /	:

Then the admissible control u.t/ bringing system (7.9) from the initial state x.s/ D
x0 to the prescribed terminal state x.T / D x� is given by the expression

u.t/ D R.t/ .t/; t 2 Œs; T 	:
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This control can be called suboptimal since, if the terminal time T is equal to the
upper bound T � for the time-optimal problem introduced in Sect. 7.9.2, this control
brings our system to the prescribed terminal state at t D T D T �.

7.9.4 Differential Games

Consider now a differential game of two players X and Y described by equations
similar to (7.9) and (7.10):

X W Px D Ax.t/x C Bx.t/u C fx.t/;

u 2 E.0;Gx.t//; x.s/ D x0I
Y W Py D Ay.t/y CBy.t/v C fy.t/;

v 2 E.0;Gy.t//; y.s/ D y0:

Here, x and y are the state vectors of the playersX and Y , respectively, u and v are
their controls, and x0 and y0 are the respective initial states. The cost functional J
is a given scalar function of the terminal states of the players at the prescribed time
instant T :

J D ˆ.x.T /; y.T //; T > s:

Player X seeks to minimize J while player Y , which can be also identified
with uncertain disturbances, opposes Y and tends to maximize J . The following
inequalities

max
y2Dy

min
x2Dx

ˆ.x; y/ � J � � min
x2Dx

max
y2Dy

ˆ.x; y/;

where Dx and Dy are the reachable sets of players X and Y , respectively, at
the instant T , provide evident two-sided bounds on the optimal value J � of the
functional J that corresponds to optimal strategies of both players.

Using ellipsoidal bounds

Eẋ D E.aẋ .t/;Qẋ .t//; Eẏ D E.aẏ .t/;Qẏ .t//

on reachable sets for players X and Y , we obtain the following two-sided estimates
on J �:

ˆ1 � J � � ˆ2; ˆ1 D max
y2E�

y

min
x2E

C

x

ˆ.x; y/; ˆ2 D min
x2E�

x

max
y2E

C

y

ˆ.x; y/: (7.48)

Suppose the pairs of points x�
1 ; y

�
1 and x�

2 ; y
�
2 are found where the maximin ˆ1

and minimax ˆ2 from (7.48) are attained, respectively. Using results of Sect. 7.9.3,
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we can find the control u.t/ bringing player X to the state x�
2 2 E�

x at t D T , and
also the control v.t/ bringing player Y to the state y�

1 2 E�
y at t D T . If player X

applies the open-loop control u.t/, then the value of functional J does not exceed
ˆ2 under any admissible control of player Y . On the other hand, if player Y applies
the open-loop control v.t/, than the value of functional J is not less than ˆ1 under
any admissible control of player X . Thus, using approximating ellipsoids, we can
obtain two-sided bounds on the value of the cost functional and determine open-loop
controls of the players that ensure these bounds.

Approximating ellipsoids can be also used for obtaining two-sided bounds in
games of pursuit-evasion. In this context, the rule of extremal aiming [14, 15] is
used. Numerical example is presented in [11].

7.9.5 Control of Uncertain Systems

Consider a system subjected to both the control u.t/ and disturbance v.t/:

Px D A.t/x C B.t/u C C.t/v C f .t/; t � a: (7.49)

Knowing the bound v.t/ 2 E.0;G.t// on the disturbance, we can obtain the
outer bound x.t/ 2 E.a.t/;Q.t// on all trajectories of system (7.49) subjected to
the given control u.t/. Then, equations (7.21) for a.t/ and (7.22) forQ.t/ become

Pa D AaC Bu C f; PQ D AQ CQAT C hQC h�1K; K D BGBT

and can be considered as a control system for the whole set of possible trajectories.
Various control problems can be set up for this system, and different control methods
can be applied to these problems.

7.9.6 Other Applications

In case where u.t/ is a bounded disturbance in (7.9), the outer approximating ellip-
soid provides an estimate on possible deviations of the trajectory caused by the
disturbance. Such estimates are sometimes associated with the notion of “practical
stability”. For example, possible deviation of the trajectory of a moving body in the
presence of wind disturbances can be evaluated.

Various applications of ellipsoidal bounds to parameter estimation are consid-
ered in [30, 31]. Aerospace applications of approximating ellipsoids are discussed
in [25, 32].
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7.9.7 State Estimation in the Presence of Observation Errors

Consider again the system subjected to uncertain disturbances and described by
(7.9), (7.10), and (7.11). Suppose that, at the given time instants ti , the results of
observations

yi D Hix.ti /C �i ; ti � s; i D 0; 1; : : : ; (7.50)

become available. Here, yi arem-vectors of observation results,Hi are givenm�n
matrices, and �i are m-dimensional observation errors subject to constraints �i 2
E.0;Li /, where Li are given symmetric positive definite m � m matrices. Thus,
at the instants ti , the state x.ti / of the system belongs to the intersection of two
ellipsoidal sets:

x.t/ 2 E.ti /\ QEi ;

QEi D fx W .L�1
i ŒHix.ti /� yi 	; ŒHix.ti / � yi 	/ � 1g: (7.51)

Here, E.ti / is the outer ellipsoidal state estimate of the system based on all infor-
mation available for t < ti , and QEi is the ellipsoid corresponding to the observation
(7.50) at t D ti .

To design the process of the ellipsoidal state estimation, we are to construct the
ellipsoidE.ti C0/ that contains the intersection of ellipsoids (7.51). Then we can use
E.ti C0/ as the initial ellipsoid for the next time interval .ti ; tiC1/, see Fig. 7.2. It is
desirable to findE.ti C0/ that minimizes certain optimality criterion (see Sect. 7.4).
Using optimal and suboptimal outer ellipsoidal bounds for the intersection of two
ellipsoids [2, 3], the recursive procedure for the ellipsoidal state estimation in the
presence of observation errors has been developed. The state estimation procedure

Fig. 7.2 Ellipsoidal state estimation
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has been extended also to the case of continuous observations. Thus, the guaranteed
analogue of the well-known Kalman filtering has been elaborated [2, 3, 5].

Applications of ellipsoidal technique to state estimation are considered in [17,
18, 25, 30, 31].

7.10 Ellipsoidal vs. Interval Analysis

There exists a vast literature on the interval analysis that is widely used in the com-
putational mathematics [8,9,20,22]. In the interval analysis, to obtain the guaranteed
error estimates, one operates with intervals Œx�; xC	, instead of precise value x that
is unknown but bounded, x 2 Œx�; xC	. When this approach is applied to vectors
x D .x1; : : : ; xn/, one is to deal with boxes

B D fx W x�
i � x � xC

i ; i D 1; : : : ; ng; (7.52)

i.e., rectangular parallelepipeds with sides parallel to coordinate axes.
The interval approach and its generalizations, where uncertainty domains are

bounded by various polytopes, are also applied in the control and identification, see
[10, 19, 21, 23, 24, 34].

Let us discuss and compare the method of ellipsoids with the interval methods.
One can consider several levels of generalization of interval methods. The sets of

uncertainty can be bounded by: (a) boxes (7.52); (b) rectangular parallelepipeds;
(c) arbitrary parallelepipeds; (d) polytopes. The class (d) of arbitrary polytopes
seems to be too wide. As already mentioned in Sect. 7.2, the class (c), like the
class of ellipsoids, is invariant with respect to linear transformations, but it requires
almost two times more parameters for its description than the class of ellipsoids.
The classes (a) and (b) are not invariant with respect to linear transformations.

In this context, the class of boxes (7.52) seems to be more attractive among
classes (a)–(d) because it has the simplest description and requires only 2n

parameters.
However, this class can lead to an undesirable but essential error increase.
Consider a simplest vectorial operation y D Ax, where x is defined by a box

(7.52) and A is a given n � n matrix. As a result of this operation, box (7.52) is
transformed to a parallelepipedP . To obtain a boxB 0 for vector y, one needs to take
a box that contains P; B 0 � P , and thus to expand the set of possible vectors y. In
other words, the error estimate will become wider. In [29], the results of operation
y D Ax have been analyzed both for ellipsoidal and interval uncertainty bounds. It
has been shown that the ellipsoidal bounds are frequently superior to interval ones
and lead to tighter error estimates than those given by the interval analysis.

Thus, it seems that the method of ellipsoids can be of use for error estimation in
numerical analysis.
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7.11 Conclusions

The method of ellipsoids seems to be an efficient technique for the analysis of
dynamical systems subjected to uncertain perturbations and observation errors. By
means of this approach, exact and approximate solutions as well as reliable two-
sided bounds for a number of basic problems in control and estimation can be
obtained.
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27. Ovseevich, A.I.: On equations of ellipsoids approximating attainable sets. J. Optim. Theor.
Appl. 95(3), 659–676 (1997)

28. Ovseevich, A.I., Chernousko, F.L. : Methods of ellipsoidal estimation for linear control sys-
tems. In: Proc. 17th World Congress, The International Federation of Automatic Control,
pp. 15345–15348. Seoul, Korea (2008)

29. Ovseevich, A.I., Taraban’ko, Yu.V., Chernousko, F.L.: A comparison of interval and ellipsoidal
error bounds for vector operations. Dokl. Math. 71(1), 127–130 (2005)

30. Polyak, B.T., Nazin, S.A., Durieu, C., Walter, E.: Ellipsoidal parameter or state estimation
under model uncertainty. Automatica 40, 1171–1179 (2004)

31. Pronzato, L., Walter, E.: Minimum-volume ellipsoids containing compact sets: application to
parameter bounding. Automatica 30, 1731–1739 (1994)

32. Rokityanskiy, D.Ya., Veres, S.M.: Application of ellipsoidal estimation to satellite control
design. Math. Comput. Model. Dyn. Syst. 11(2), 239–249 (2005)

33. Schweppe, F.C.: Uncertain Dynamic Systems. Prentice-Hall, Englewood Cliffs, NJ (1973)
34. Walter, E. (ed.): Special issue on parameter identification with error bound. Math. Comput.

Simul. 32 (1990)



Chapter 8
Expected Total Cost Minimum Design of Plane
Frames by Means of Stochastic Linear
Programming Methods

Kurt Marti

Abstract Yield stresses, allowable stresses, moment capacities (plastic moments
with respect to compression, tension and rotation), applied loadings, cost factors,
manufacturing errors, etc., are not given fixed quantities in structural analysis and
optimal design problems, but must be modeled as random variables with a certain
joint probability distribution. Problems from plastic analysis and optimal plastic
design are based on the convex yield (feasibility) criterion and the linear equilib-
rium equation for the stress (state) vector.

After the formulation of the basic mechanical conditions including the relevant
material strength parameters and load components as well as the involved design
variables (as, e.g., sizing variables) for plane frames, several approximations are
considered: (1) approximation of the convex yield (feasible) domain by means of
convex polyhedrons (piecewise linearization of the yield domain); (2) treatment of
symmetric and non symmetric yield stresses with respect to compression and ten-
sion; (3) approximation of the yield condition by using given reference capacities.

As a result, for the survival of plane frames a certain system of necessary and/or
sufficient linear equalities and inequalities is obtained. Evaluating the recourse costs,
i.e., the costs for violations of the survival condition by means of piecewise lin-
ear convex cost functions, a linear program is derived for the minimization of the
total costs including weight-, volume- or more general initial (construction) costs.
Appropriate cost factors are given. Considering then the expected total costs from
construction as well as from possible structural damages or failures, a stochastic lin-
ear optimization problem (SLP) is obtained. Finally, discretization of the probability
distribution of the random parameter vector yields a (large scale) linear program
(LP) having a special structure. For LP’s of this type numerous, very efficient
LP-solvers are available – also for the solution of very large scale problems.
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8.1 Introduction

8.1.1 Plastic Analysis of Structures

Many materials, e.g., most of metals, have distinct, plastic properties, i.e., they are
ductile, see, e.g., [10,23]. Even after the stress intensity attains the yield point stress,
such materials can deform considerably without breaking. This implies that if the
stress intensity at a certain point of a hyperstatic structure reaches the critical (yield)
value, the structure does not necessarily fail or deform excessively. Instead, a certain
amount of stress redistribution takes place and some further load increments can be
supported. Structural failure does not occur before a kinematic mechanism of uncon-
strained plastic flow develops. Thus, the actual load-carrying capacity of a structure
is higher (in some cases quite considerably) than that derived from classical elas-
tic analysis. A crucial question for the engineer designing structures like buildings,
bridges, etc., or structural components is to which extent a plastic deformation is
permissible without leading to a failure of the structure, the component, resp., with
respect to the expected load and material strength conditions. Applying standard
methods, the load carrying capacity is determined using a certain code with general
rules for safety evaluations. The use of such general rules may be very expensive
in the safety evaluation and design of a structure. On the other hand, safety assess-
ment and design based on stochastic optimization techniques, taking into account
the available knowledge about random parameter variations, reduce the expected
total project costs (primary costs, e.g., costs of construction, plus recourse cots, e.g.,
strengthening costs) considerably. Consequently, this way one obtains more robust
(safe) information about the maximum load factors, hence, the carrying capacity, as
well as about robust optimal designs. A further big advantage of stochastic optimiza-
tion methods is the possibility of updates of the maximum load factors and robust
optimal designs based on inspection, sampling and other posterior information about
the probability distribution of the random parameters. For elastic-perfectly plastic
materials, the ultimate load condition corresponding to complete collapse of the
structure can be obtained through application of a pair of dual theorems [14,18,23]:

(ST) Static Theorem (lower bound or safe theorem) If any stress distribution
throughout the structure can be found which is everywhere in equilibrium
internally and balances the external loads, and at the same time does not vio-
late the yield condition, those external loads will be carried safely by the
structure.

(KT) Kinematic Theorem (upper bound or unsafe theorem)
Collapse occurs if a collapse mechanism, fulfilling the compatibility condi-
tion, exists such that the work done by the external loads is larger than the
corresponding internal plastic work.
Limit analysis is concerned [5,8,10,14,16,18,19,22,24,33,34,36,37,40,41]
with establishing the strength of a structure, i.e., its capacity for the sup-
porting of loads. Hence, using the plastic ductility of structural materials in
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improving the design of structures, limit analysis is not concerned with defor-
mation: it can not therefore provide the load carrying capacity for a structure
with elements that have a limited ductility or deformability, nor for a struc-
ture which becomes unstable because of the displacements induced by plastic
deformation, see [10, 13, 18, 24].

8.1.2 Limit (Collapse) Load Analysis of Structures
as a Linear Programming Problem

Assuming that the material behaves as an elastic-perfectly plastic material [17, 23,
32] a conservative estimate of the collapse load factor 
T is based [5–8, 10, 13, 14,
22, 33, 40] on the following linear program:

maximize 
 (8.1a)

s.t.

FL � F � F U (8.1b)

CF D 
R0: (8.1c)

Here, (8.1c) is the equilibrium equation of a statically indeterminate loaded struc-
ture involving an m � n matrix C D .cij /;m < n, of given coefficients cij ; 1 �
i � m; 1 � j � n, depending on the undeformed geometry of the structure hav-
ing n0 members (elements). After taking into account the given support (boundary)
conditions, we may suppose that rank C D m. Furthermore, R0 is an external load
m-vector, and F denotes the n-vector of internal forces and bending-moments in the
relevant points (sections, nodes or elements) of lower and upper bounds FL; F U .

For a plane or spatial truss [25, 38] we have that n D n0, the matrix C contains
the direction cosines of the members, and F involves only the normal (axial) forces
moreover,

FL
j WD �L

yjAj ; F
U
j WD �U

yjAj ; j D 1; : : : ; n.D n0/; (8.2)

where Aj is the (given) cross-sectional area, and �L
yj ; �

U
yj , respectively, denotes the

yield stress in compression (negative values) and tension (positive values) of the
j -th member of the truss. In case of a plane frame, F is composed of subvectors
[38],

F .k/ D

0
B@
F

.k/
1

F
.k/
2

F
.k/
3

1
CA D

0
@ tkmC

k

m�
k

1
A; (8.3a)

where F .k/
1 D tk denotes the normal (axial) force, and F .k/

2 D mC
k
; F

.k/
3 D m�

k

are the bending-moments at the positive (“right”), negative (“left”) end of the k-th
member with respect to a certain chosen orientation of the members. In this case
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FL; F U contain – for each member k – the subvectors

F .k/L D

0
B@
�L

yk
Ak

�Mkpl

�Mkpl

1
CA ; F .k/U D

0
B@
�U

yk
Ak

Mkpl

Mkpl

1
CA ; (8.3b)

resp., whereMkpl ; k D 1; : : : ; n0, denotes the plastic moments (moment capacities)
[17, 32] given by

Mkpl D �U
ykWkpl ; (8.3c)

and Wkpl D Wkpl .Ak/ is the plastic section modulus of the cross-section of the
k-th member (beam) with respect to the local z-axis. In order to omit instabilities,
such as buckling, �L

yk
can be selected by

�L
yk WD ��k�

U
yk (8.3d)

with a certain reduction factor �k .
For a space frame [25,38], corresponding to the k-th member (beam),F contains

the subvector
F .k/ WD .tk; mkT ; m

C
k Ny ; m

C
kNz; m

�
k Ny ; m

�
kNz/

T ; (8.4a)

where tk is the normal (axial) force, mkT the twisting moment, and mC
k Ny ; m

C
kNz,

m�
k Ny ; m

�
kNz denote four bending moments with respect to the local Ny; z-axis at the

positive, negative end of the beam, respectively. Finally, the bounds FL; F U for F
are given by

F .k/L D �
�L

ykAk;�M Np
kpl
;�M Ny

kpl
;�M Nz

kpl
;�M Ny

kpl
;�M z

kpl

�T
(8.4b)

F .k/U D �
�U

ykAk;M
Np

kpl
;M

Ny
kpl
;M Nz

kpl
;M

Ny
kpl
;M Nz

kpl

�T
; (8.4c)

where [17, 32]

M
Np

kpl
WD �ykW

Np
kpl
;M

Ny
kpl

WD �U
ykW

Ny
kpl
;M Nz

kpl
WD �U

ykW
Nz

kpl
; (8.4d)

are the plastic moments of the cross-section of the k-th element with respect to the
local twisting axis, the local Ny�; Nz-axis, respectively. In (8.4d), W Np

kpl
D W

Np
kpl
.x/

and W Ny
kpl

D W
Ny

kpl
.x/;W Nz

kpl
D W Nz

kpl
.x/, resp., denote the polar, axial modu-

lus of the cross-sectional area of the k-th beam and �yk denotes the yield stress
with respect to torsion; we suppose that �yk D ��k�

U
yk

with a reduction factor
��k . Moreover, x denotes the r-vector of design variables, see Sect. 8.1.1 for more
details.

Remark 8.1. Possible plastic hinges [17, 24, 32] are taken into account by inserting
appropriate eccentricities ekl > 0; ekr > 0; k D 1; : : : ; n0, with ekl ; ekr << Lk ,
where Lk is the length of the k-th beam.
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Remark 8.2. Working with more general yield polygons [1, 40, 42], the stress
condition (8.1b) is replaced by the more general system of inequalities

H.F U
d /

�1F � h: (8.5a)

Here, .H; h/ is a given � � .nC 1/ matrix, and F U
d

WD .F U
j ıij / denotes the n � n

diagonal matrix of principal axial and bending plastic capacities

F U
j WD �U

ykj
Akj ; F

U
j WD �U

ykj
W

�j

kj pl
; (8.5b)

where kj; �j are indices as arising in (8.3b)–(8.4d). The more general case (8.5a)
can be treated by similar methods as the case (8.1b) which is considered here.

8.1.3 Plastic and Elastic Design of Structures

In the plastic design of trusses and frames [22,26,27,29,34,36] having n0 members,
the n-vectors FL; F U of lower and upper bounds

FL D FL.�L
y ; �

U
y ; x/; F

U D F U .�L
y ; �

U
y ; x/; (8.6)

for the n-vector F of internal member forces and bending moments Fj ; j D
1; : : : ; n, are determined [13, 22] by the yield stresses, i.e., compressive limit-

ing stresses (negative values) �L
y D �

�L
y1; : : : ; �

L
yn0

�T
, the tensile yield stresses

�U
y D �

�U
y1; : : : ; �

U
yn0

�T
, and the r-vector

x D .x1; x2; : : : ; xr /
T (8.7)

of design variables of the structure. In case of trusses we have that, cf. (8.2),

FL D �L
ydA.x/ D A.x/d�

L
y ;

F U D �U
ydA.x/ D A.x/d�

U
y ; (8.8)

where n D n0, and �L
yd
; �U

yd
denote the n�n diagonal matrices having the diagonal

elements �L
yj ; �

U
yj , respectively, j D 1; : : : ; n, moreover,

A.x/ D
h
A1.x/; : : : ; An.x/

iT

(8.9)

is the n-vector of cross-sectional area Aj D Aj .x/; j D 1; : : : ; n, depending on
the r-vector x of design variables x� ; � D 1; : : : ; r , and A.x/d denotes the n � n

diagonal matrix having the diagonal elements Aj D Aj .x/; 1 < j < n.
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Corresponding to (8.1c), here the equilibrium equation reads

CF D Ru; (8.10)

where Ru describes [22] the ultimate load [representing constant external loads or
self-weight expressed in linear terms of A.x/].

The plastic design of structures can be represented then [1,2] by the optimization
problem

minG.x/; (8.11a)

s.t.

FL.�L
y ; �

U
y ; x/ � F � F U .�L

y ; �
U
y ; x/ (8.11b)

CF D Ru (8.11c)

x 2 D; (8.11d)

where G D G.x/ is a certain objective function, e.g., the volume or weight of the
structure, and C � IRC denotes the convex set of admissible design vecotrs x.

Remark 8.3. As mentioned in Remark 8.2, working with more general yield poly-
gons, (8.11b) is replaced by the condition

HŒF U .�U
y ; x/d 	

�1F � h: (8.11e)

For the elastic design we must replace the yield stresses �L
y ; �

U
y by the allowable

stresses �L
a ; �

U
a and instead of ultimate loads we consider service loads Rs . Hence,

instead of (8.11a–d) we have the related program

minG.x/; (8.12a)

s.t.

F L.�L
a ; �

U
a ; x/ � F � F U .�L

a ; �
U
a ; x/; (8.12b)

CF D Rs ; (8.12c)

xL � x � xU ; (8.12d)

where xL; xU still denote lower and upper bounds for x.

8.2 Plane Frames

For each bar i D 1; : : : ; B of a plane frame with member load vector Fi D
.ti ; m

C
i ; m

�
i /

T we consider [37, 41] the load at the negative, positive end

F �
i WD .ti ; m

�
i /

T ; FC
i WD .ti ; m

C
i /

T ; (8.13)

respectively.
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Furthermore, for each bar/beam with rigid joints we have several plastic
capacities: The plastic capacity NL

ipl
of the bar with respect to axial compression,

hence, the maximum axial force under compression is given by

NL
ipl D j�L

yi j � Ai ; (8.14a)

where �L
yi < 0 denotes the (negative) yield stress with respect to compression

and Ai is the cross sectional area of the i th element. Correspondingly, the plastic
capacity with respect to (axial) tension reads:

NU
ipl D �U

yi � Ai ; (8.14b)

where �U
yi > 0 is the yield stress with respect to tension. Besides the plastic

capacities with respect to the normal force, we have the moment capacity

Mipl D �U
yi �Wipl (8.14c)

with respect to the bending moments at the ends of the bar i .

Remark 8.4. Note that all plastic capacities have nonnegative values.

Using the plastic capacities (8.14a–c), the load vectors FC
i ; F

C
i given by (8.13)

can be replaced by dimensionless quantities

FL�
i WD

 
ti

NL
ipl

;
m�

i

Mipl

!T

; F U �
i WD

 
ti

NU
ipl

;
m�

i

Mipl

!T

(8.15a,b)

FLC
i WD

 
ti

NL
ipl

;
mC

i

Mipl

!T

; F U C
i WD

 
ti

NU
ipl

;
mC

i

Mipl

!T

(8.15c,d)

for the negative, positive end, resp., of the i th bar.

Remark 8.5 (Symmetric yield stresses under compression and tension).
In the important special case that the absolute values of the yield stresses under
compression .<0/ and tension .>0/ are equal, hence,

�L
yi D ��U

yi (8.16a)

NL
ipl D NU

ipl DW Nipl : (8.16b)

The limit between the elastic and plastic state of the elements is described by the
feasibility or yield condition: At the negative end we have the condition

FL�
i 2 Ki ; F

U �
i 2 Ki (8.17a,b)
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and at the positive end the condition reads

FLC
i 2 Ki ; F

U C
i 2 Ki : (8.17c,d)

Here,Ki ,Ki � IR2, denotes the feasible domain of bar “i” having the following
properties:

� Ki is a closed, convex subset of IR2.
� The origin 0 of IR2 is an interior point of Ki .
� The interior K̊i of Ki represents the elastic states.
� At the boundary @Ki yielding of the material starts.

Considering, e.g., bars with rectangular cross sectional areas and symmetric yield
stresses, cf. Remark 8.5,Ki is given by Ki D K0;sym, where [19, 21]

K0;sym D f.x; y/T W x2 C jyj � 1g (8.18)

where x D N
Npl

and y D M
Mpl

, (see Fig. 8.1). Note that the symbols x; y; .x; y/,
resp., denote in this Sect. 8.2 just real variables, a point in the real plane.

In case (8.18) and supposing symmetric yield stresses, the yield condition
(8.17a–d) reads

N/Npl

M/Mpl

1

1

approximation from outside
approximation from inside
K

Fig. 8.1 Domain K0;sym with possible approximations



8 Stochastic Linear Programming Methods 171



ti

Nipl

�2

C
ˇ̌
ˇ̌ m�

i

Mipl

ˇ̌
ˇ̌ � 1; (8.19a)



ti

Nipl

�2

C
ˇ̌
ˇ̌
ˇ
mC

i

Mipl

ˇ̌
ˇ̌
ˇ � 1: (8.19b)

Remark 8.6. Because of the connection between the normal force ti and the bending
moments, (8.19a,b) is also called “M–N -interaction”.

If the M–N -interaction is not taken into account,K0;sym is approximated from
outside, see Fig. 8.1, by

Ku
0;sym WD f.x; y/T W jxj; jyj � 1g: (8.20)

Hence, (8.17a–d) are replaced, cf. (8.19a,b), by the simpler conditions

jti j � Nipl (8.21a)

jm�
i j � Mipl (8.21b)

jmC
i j � Mipl : (8.21c)

Since the symmetry condition (8.16a) does not hold in general, some modifica-
tions of the basic conditions (8.19a,b) are needed. In the non symmetric case K0;xm

must be replaced by the intersection

K0 D KU
0 \KL

0 (8.22)

of two convex sets KU
0 andKL

0 . For a rectangular cross-sectional area we have

KU
0 D

n
.x; y/T W x �

p
1 � jyj; jyj � 1

o
(8.23a)

for tension and

KL
0 D

n
.x; y/T W �x �

p
1 � jyj; jyj � 1

o
(8.23b)

compression, where again x D N
Npl

and y D M
Mpl

(see Fig. 8.2).
In case of tension, see (8.17b,d), from (8.23a) we obtain then the feasibility

condition

ti

NU
ipl

�
s
1 �

ˇ̌
ˇ̌ m�

i

Mipl

ˇ̌
ˇ̌ (8.24a)

ti

NU
ipl

�
vuut1 �

ˇ̌
ˇ̌
ˇ
mC

i

Mipl

ˇ̌
ˇ̌
ˇ (8.24b)



172 K. Marti

N/Npl

M/Mpl

1

1

K0
U

K0
L

Fig. 8.2 Feasible domain as intersection of KU
0 and KL

0

ˇ̌
ˇ̌ m�

i

Mipl

ˇ̌
ˇ̌ � 1 (8.24c)

ˇ̌
ˇ̌
ˇ
mC

i

Mipl

ˇ̌
ˇ̌
ˇ � 1: (8.24d)

For compression, with (8.17a,c) and (8.23b) we get the feasibility condition

� ti

NL
ipl

�
s
1 �

ˇ̌
ˇ̌ m�

i

Mipl

ˇ̌
ˇ̌ (8.24e)

� ti

NL
ipl

�
vuut1 �

ˇ̌
ˇ̌
ˇ
mC

i

Mipl

ˇ̌
ˇ̌
ˇ (8.24f)

ˇ̌
ˇ̌ m�

i

Mipl

ˇ̌
ˇ̌ � 1 (8.24g)

ˇ̌
ˇ̌
ˇ
mC

i

Mipl

ˇ̌
ˇ̌
ˇ � 1: (8.24h)
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From (8.24a), (8.24e) we get

�NL
ipl

s
1 �

ˇ̌
ˇ̌ m�

i

Mipl

ˇ̌
ˇ̌ � ti � NU

ipl

s
1 �

ˇ̌
ˇ̌ m�

i

Mipl

ˇ̌
ˇ̌: (8.25a)

and (8.24b), (8.24f) yield

�NL
ipl

vuut1 �
ˇ̌
ˇ̌
ˇ
mC

i

Mipl

ˇ̌
ˇ̌
ˇ � ti � NU

ipl

vuut1 �
ˇ̌
ˇ̌
ˇ
mC

i

Mipl

ˇ̌
ˇ̌
ˇ: (8.25b)

Furthermore, (8.24c), (8.24g) and (8.24d), (8.24h) yield

jm�
i j � Mipl (8.25c)

jmC
i j � Mipl : (8.25d)

For computational purposes, piecewise linearizations are applied [30] to the nonlin-
ear conditions (8.25a,b), see also [3, 15]. A basic approximation of KL

0 and KU
0 is

given by

KU u
0 WD f.x; y/T W x � 1; jyj � 1g D 	1; 1	 � Œ�1; 1	 (8.26a)

and

KLu
0 WD f.x; y/T W x � �1; jyj � 1g D Œ�1;1	 � Œ�1; 1	 (8.26b)

with x D N
Npl

and y D M
Mpl

(see Fig. 8.3).
Since in this approximation the M–N -interaction is not taken into account,

condition (8.17a–d) is reduced to

�NL
ipl � ti � NU

ipl (8.27a)

jm�
i j � Mipl (8.27b)

jmC
i j � Mipl : (8.27c)

8.2.1 Yield Condition in Case of M � N -Interaction

8.2.1.1 Symmetric Yield Stresses

Consider first the case

�U
yi D ��L

yi DW �yi ; i D 1; : : : ; B: (8.28a)
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N/Npl

M/Mpl

1

1

K0

approximation K 
0
Uu

approximation K 
0
Lu

Fig. 8.3 Approximation of K0 by KLu
0 and KU u

0

Then,
NL

ipl WD j�L
yi jAi D �U

yiAi DW NU
ipl ; (8.28b)

hence,
Nipl WD NL

ipl D NU
ipl D �yiAi : (8.28c)

Moreover,

Mipl D �U
yiWipl D �yiWipl D �yiAi Nyic; i D 1; : : : ; B; (8.28d)

where yic denotes the arithmetic mean of the centroids of the two half areas of the
cross-sectional area Ai of bar i .

Depending on the geometric from of the cross-sectional areal (rectangle, circle,
etc.), for the element load vectors

Fi D
0
@ ti
mC

i

m�
i

1
A ; i D 1; : : : ; B; (8.29)

of the bars we have the yield condition:
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ˇ̌
ˇ̌ ti

Nipl

ˇ̌
ˇ̌˛ C

ˇ̌
ˇ̌ m�

i

Mipl

ˇ̌
ˇ̌ � 1 (negative end) (8.30a)

ˇ̌
ˇ̌ ti

Nipl

ˇ̌
ˇ̌˛ C

ˇ̌
ˇ̌
ˇ
mC

i

Mipl

ˇ̌
ˇ̌
ˇ � 1 (positive end): (8.30b)

Here, ˛ > 1 is a constant depending on the type of the cross-sectional area of the
i th bar. Defining the convex set

K˛
0 WD

( 
x

y

!
2 IR2 W jxj˛ C jyj � 1

)
; (8.31)

for (8.30a,b) we have also the representation

 
ti

Nipl
m�

i

Mipl

!
2 K˛

0 (negative end) (8.32a)

0
@

ti
Nipl

m
C

i

Mipl

1
A 2 K˛

0 (positive end): (8.32b)

Piecewise Linearization of K ˛
0

Due to the symmetry of K˛
0 with respect to the transformation

x ! �x; y ! �y;

K˛
0 is piecewise linearized as follows.
Starting from a boundary point of K˛

0 , hence,



u1

u2

�
2 @K˛

0 with u1 � 0; u2 � 0; (8.33a)

we consider the gradient of the boundary curve

f .x; y/ WD jxj˛ C jyj � 1 D 0

of K˛
0 in the four points



u1

u2

�
;


�u1

u2

�
;


�u1

�u2

�
;



u1

�u2

�
: (8.33b)

We have
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rf



u1

u2

�
D


˛u˛�1

1

1

�
(8.34a)

rf

�u1

u2

�
D

�˛.�.�u1//

˛�1

1

�
D

�˛u˛�1

1

1

�
(8.34b)

rf

�u1

�u2

�
D

�˛.�.�u1//

˛�1

�1
�

D

�˛u˛�1

1

�1
�

(8.34c)

rf



u1

�u2

�
D


˛u˛�1

1

�1
�
; (8.34d)

where

rf

�u1

�u2

�
D �rf



u1

u2

�
(8.35a)

rf



u1

�u2

�
D �rf


�u1

u2

�
: (8.35b)

Furthermore, in the two special points



0

1

�
and



0

�1
�

of @K˛
0 we have, cf. (8.34a), (8.34d), resp., the gradients

rf


0

1

�
D


0

1

�
(8.36a)

rf


0

�1
�

D


0

�1
�
: (8.36b)

Though f .x; y/ D jxj˛ C jyj � 1 is not differentiable at



1

0

�
and


�1
0

�
;

we define

rf


1

0

�
WD


1

0

�
(8.36c)

rf

�1
0

�
WD

�1
0

�
: (8.36d)
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Using a boundary point



u1

u2

�
of K˛

0 with u1; u2 > 0, the feasible domain K˛
0

can be approximated from outside by the convex polyhedron defined as follows.
From the gradients (8.36a–d) we obtain next to the already known conditions

(noM–N -interaction):

rf


0

1

�T 


x

y

�
�


0

1

��
D


0

1

�T 

x

y � 1
�

� 0

rf


0

�1
�T 



x

y

�
�


0

�1
��

D


0

�1
�T 


x

y C 1

�
� 0

rf


1

0

�T 


x

y

�
�


1

0

��
D


1

0

�T 

x � 1

y

�
� 0

rf

�1
0

�T 


x

y

�
�

�1
0

��
D

�1
0

�T 

x C 1

y

�
� 0:

This yields

y � 1 � 0

�1.y C 1/ � 0

x � 1 � 0

�1.x C 1/ � 0

or

jxj � 1 (8.37a)

jyj � 1: (8.37b)

Moreover, with the gradients (8.34a–d), cf. (8.35a,b), we get the additional
conditions

rf



u1

u2

�T 


x

y

�
�



u1

u2

��

D


˛u˛�1

1

1

�T 

x � u1

y � u2

�
� 0 (1st quadrant) (8.38a)

rf

�u1

�u2

�T 


x

y

�
�

�u1

�u2

��

D �


˛u˛�1

1

1

�T 

x C u1

y C u2

�
� 0 (3rd quadrant) (8.38b)
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rf

�u1

u2

�T 


x

y

�
�

�u1

u2

��

D

�˛u˛�1

1

1

�T 

x C u1

y � u2

�
� 0 (2nd quadrant) (8.38c)

rf



u1

�u2

�T 


x

y

�
�



u1

�u2

��

D �

�˛u˛�1

1

1

�T 

x � u1

y C u2

�
� 0 (4th quadrant). (8.38d)

This means

˛u˛�1
1 x � ˛u˛

1 C y � u2 D ˛u˛�1
1 x C y � �

˛u˛
1 C u2

� � 0 (8.39a)

� �˛u˛�1
1 x C ˛u˛

1 C y C u2

� D � �˛u˛�1
1 x C y C �

˛u˛
1 C u2

����0 (8.39b)

�˛u˛�1
1 x � ˛u˛

1 C y � u2 D �˛ � u˛�1
1 x C y � �

˛u˛
1 C u2

� � 0 (8.39c)

�˛u˛�1
1 x � ˛u˛

1 � y � u2 D ˛ � u˛�1
1 x � y � �

˛u˛
1 C u2

� � 0: (8.39d)

With

˛u˛
1 C u2 D rf



u1

u2

�T 

u1

u2

�
DW ˇ.u1; u2/ (8.40)

we get the equivalent constraints

˛u˛�1
1 x C y � ˇ.u1; u2/ � 0

˛u˛�1
1 x C y C ˇ.u1; u2/ � 0

�˛u˛�1
1 x C y � ˇ.u1; u2/ � 0

˛u˛�1
1 x � y � ˇ.u1; u2/ � 0:

This yields the double inequalities

j˛u˛�1
1 x C yj � ˇ.u1; u2/ (8.41a)

j˛u˛�1
1 x � yj � ˇ.u1; u2/: (8.41b)

Thus, a point u D



u1

u2

�
2 @K˛

0 ; u1 > 0; u2 > 0, generates therefore the

inequalities

�1 � x � 1 (8.42a)

�1 � y � 1 (8.42b)

�ˇ.u1; u2/ � ˛u˛�1
1 x C y � ˇ.u1; u2/ (8.42c)

�ˇ.u1; u2/ � ˛u˛�1
1 x � y � ˇ.u1; u2/: (8.42d)
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Obviously, each further point Ou 2 @K˛
0 with Ou1 > 0; Ou2 > 0 yields additional

inequalities of the type (8.42c,d).
Condition (8.42a–d) can be represented in the following vectorial form:

�


1

1

�
� I



x

y

�
�


1

1

�
(8.43a)

�ˇ.u1; u2/



1

1

�
� H.u1; u2/



x

y

�
� ˇ.u1; u2/



1

1

�
; (8.43b)

with the matrices

I D


1 0

0 1

�
; H.u1; u2/ D



˛u˛�1

1 1

˛u˛�1
1 �1

�
: (8.44)

Choosing a further boundary point Ou of K˛
0 with Ou1 > 0; Ou2 > 0, we get additional

conditions of the type (8.43b).
Using (8.42a–d), for the original yield condition (8.32a,b) we get then the

approximative feasibility condition:

1. Negative end of the bar

�Nipl � ti � Nipl (8.45a)

�Mipl � m�
i � Mipl (8.45b)

�ˇ.u1; u2/ � ˛u˛�1
1

ti

Nipl

C m�
i

Mipl

� ˇ.u1; u2/ (8.45c)

�ˇ.u1; u2/ � ˛u˛�1
1

ti

Nipl

� m�
i

Mipl

� ˇ.u1; u2/: (8.45d)

2. Positive end of the bar

�Nipl � ti � Nipl (8.45e)

�Mipl � mC
i � Mipl (8.45f)

�ˇ.u1; u2/ � ˛u˛�1
1

ti

Nipl

C mC
i

Mipl

� ˇ.u1; u2/ (8.45g)

�ˇ.u1; u2/ � ˛u˛�1
1

ti

Nipl

� mC
i

Mipl

� ˇ.u1; u2/: (8.45h)

Defining

�.i/ WD

0
B@

1
Nipl

0 0

0 1
Mipl

0

0 0 1
Mipl

1
CA ; Fi D

0
@ ti
mC

i

m�
i

1
A; (8.46)
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conditions (8.45a–h) can be represented also by

�
0
@11
1

1
A � �.i/Fi �

0
@11
1

1
A (8.47a)

�ˇ.u1; u2/

0
BB@
1

1

1

1

1
CCA �

0
BB@
˛u˛�1

1 1 0

˛u˛�1
1 �1 0

˛u˛�1
1 0 1

˛u˛�1
1 0 �1

1
CCA�iFi � ˇ.u1; u2/

0
BB@
1

1

1

1

1
CCA: (8.47b)

Multiplying (8.45a,c,d,g,h) with Nipl , due to

Nipl

Mipl

D �yiAi

�yiWipl

D �yiAi

�yiAi Nyic

D 1

Nyic

; (8.48)

for (8.45a,c,d,g,h) we also have

� ˇ.u1; u2/Nipl � ˛u˛�1
1 ti C m�

i

Nyic

� ˇ.u1; u2/Nipl (8.49a)

�ˇ.u1; u2/Nipl � ˛u˛�1
1 ti � m�

i

Nyic

� ˇ.u1; u2/Nipl (8.49b)

�ˇ.u1; u2/Nipl � ˛u˛�1
1 ti C mC

i

Nyic

� ˇ.u1; u2/Nipl (8.49c)

�ˇ.u1; u2/Nipl � ˛u˛�1
1 ti � mC

i

Nyic

� ˇ.u1; u2/Nipl : (8.49d)

8.2.2 Approximation of the Yield Condition by Using Reference
Capacities

According to (8.31), (8.32a,b) for each bar i D 1; : : : ; B we have the condition

 
t

Npl
m

Mpl

!
2 K˛

0 D
�


x

y

�
2 IR2 W jxj˛ C jyj � 1

�

with .t;m/ D .ti ; mi̇ /; .Npl ;Mpl/ D .Nipl ;Mipl/.
Selecting fixed reference capacities

Ni0 > 0;Mi0 > 0; i D 1; : : : ; B;

related to the plastic capacities Nipl ;Mipl , we get
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ˇ̌
ˇ̌ ti

Nipl

ˇ̌
ˇ̌˛ C

ˇ̌
ˇ̌
ˇ
mi̇

Mipl

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ̌ tiNi0

� 1
Nipl

Ni0

ˇ̌
ˇ̌
ˇ̌
˛

C
ˇ̌
ˇ̌
ˇ̌ mi̇

Mi0

� 1
Mipl

Mi0

ˇ̌
ˇ̌
ˇ̌:

Putting

�i D �i .a.!/; x/ WD min

�
Nipl

Ni0

;
Mipl

Mi0

�
; (8.50)

we have
�i

Nipl

Ni0

� 1;
�i

Mipl

Mi0

� 1

and therefore

ˇ̌
ˇ̌ ti

Nipl

ˇ̌
ˇ̌˛C

ˇ̌
ˇ̌
ˇ
mi̇

Mipl

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌ ti

�iNi0

ˇ̌
ˇ̌˛ �
ˇ̌
ˇ̌
ˇ̌ �i

Nipl

Ni0

ˇ̌
ˇ̌
ˇ̌
˛

C
ˇ̌
ˇ̌
ˇ
mi̇

�iMi0

ˇ̌
ˇ̌
ˇ�
ˇ̌
ˇ̌
ˇ̌ �i

Mipl

Mi0

ˇ̌
ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ ti

�iNi0

ˇ̌
ˇ̌˛C

ˇ̌
ˇ̌
ˇ
mi̇

�iMi0

ˇ̌
ˇ̌
ˇ :

(8.51)
Thus, the yield condition (8.30a,b) or (8.32a,b) is guaranteed by

ˇ̌
ˇ̌ ti

�iNi0

ˇ̌
ˇ̌˛ C

ˇ̌
ˇ̌
ˇ
mi̇

�iMi0

ˇ̌
ˇ̌
ˇ � 1

or  ti
	i Ni0

m˙

i

	i Mi0

!
2 K˛

0 : (8.52)

Applying the piecewise linearization described in Sect. 8.2.1 to condition (8.52),
we obtain, cf. (8.45a–h), the approximation stated below. Of course, conditions
(8.45a,b,e,f) are not influenced by this procedure. Thus, we find

�Nipl � ti � Nipl (8.53a)

�Mipl � m�
i � Mipl (8.53b)

�Mipl � mC
i � Mipl (8.53c)

�ˇ.u1; u2/ � ˛u˛�1
1

ti

�iNi0

C m�
i

�iMi0

� ˇ.u1; u2/ (8.53d)

�ˇ.u1; u2/ � ˛u˛�1
1

ti

�iNi0

� m�
i

�iMi0

� ˇ.u1; u2/ (8.53e)

�ˇ.u1; u2/ � ˛u˛�1
1

ti

�iNi0

C mC
i

�iMi0

� ˇ.u1; u2/ (8.53f)

�ˇ.u1; u2/ � ˛u˛�1
1

ti

�iNi0

� mC
i

�iMi0

� ˇ.u1; u2/: (8.53g)
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Remark 8.7. Multiplying with �i we get quotients ti
Ni0

;
m˙

i

Mi0
with fixed denomina-

tors.

Hence, multiplying (8.53d–g) with �i , we get the equivalent system

�Nipl � ti � Nipl (8.54a)

�Mipl � m�
i � Mipl (8.54b)

�Mipl � mC
i � Mipl (8.54c)

�ˇ.u1; u2/�i � ˛u˛�1
1

ti

Ni0

C m�
i

Mi0

� ˇ.u1; u2/�i (8.54d)

�ˇ.u1; u2/�i � ˛u˛�1
1

ti

Ni0

� m�
i

Mi0

� ˇ.u1; u2/�i (8.54e)

�ˇ.u1; u2/�i � ˛u˛�1
1

ti

Ni0

C mC
i

Mi0

� ˇ.u1; u2/�i (8.54f)

�ˇ.u1; u2/�i � ˛u˛�1
1

ti

Ni0

� mC
i

Mi0

� ˇ.u1; u2/�i : (8.54g)

Obviously, (8.54a–g) can be represented also in the following form:

jti j � Nipl (8.55a)

jm�
i j � Mipl (8.55b)ˇ̌

mC
i

ˇ̌ � Mipl (8.55c)ˇ̌
ˇ̌˛u˛�1

1

ti

Ni0

C m�
i

Mi0

ˇ̌
ˇ̌ � ˇ.u1; u2/�i (8.55d)

ˇ̌
ˇ̌˛u˛�1

1

ti

Ni0

� m�
i

Mi0

ˇ̌
ˇ̌ � ˇ.u1; u2/�i (8.55e)

ˇ̌
ˇ̌
ˇ˛u˛�1

1

ti

Ni0

C mC
i

Mi0

ˇ̌
ˇ̌
ˇ � ˇ.u1; u2/�i (8.55f)

ˇ̌
ˇ̌
ˇ˛u˛�1

1

ti

Ni0

� mC
i

Mi0

ˇ̌
ˇ̌
ˇ � ˇ.u1; u2/�i : (8.55g)

By means of definition (8.50) of �i , system (8.55a–g) reads

jti j � Nipl (8.56a)

jm�
i j � Mipl (8.56b)ˇ̌

mC
i

ˇ̌ � Mipl (8.56c)ˇ̌
ˇ̌˛u˛�1

1

ti

Ni0

C m�
i

Mi0

ˇ̌
ˇ̌ � ˇ.u1; u2/

Nipl

Ni0

(8.56d)
ˇ̌
ˇ̌˛u˛�1

1

ti

Ni0

C m�
i

Mi0

ˇ̌
ˇ̌ � ˇ.u1; u2/

Mipl

Mi0

(8.56e)
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ˇ̌
ˇ̌˛u˛�1

1

ti

Ni0

� m�
i

Mi0

ˇ̌
ˇ̌ � ˇ.u1; u2/

Nipl

Ni0

(8.56f)
ˇ̌
ˇ̌˛u˛�1

1

ti

Ni0

� m�
i

Mi0

ˇ̌
ˇ̌ � ˇ.u1; u2/

Mipl

Mi0

(8.56g)
ˇ̌
ˇ̌
ˇ˛u˛�1

1

ti

Ni0

C mC
i

Mi0

ˇ̌
ˇ̌
ˇ � ˇ.u1; u2/

Nipl

Ni0

(8.56h)

ˇ̌
ˇ̌
ˇ˛u˛�1

1

ti

Ni0

C mC
i

Mi0

ˇ̌
ˇ̌
ˇ � ˇ.u1; u2/

Mipl

Mi0

(8.56i)

ˇ̌
ˇ̌
ˇ˛u˛�1

1

ti

Ni0

� mC
i

Mi0

ˇ̌
ˇ̌
ˇ � ˇ.u1; u2/

Nipl

Ni0

(8.56j)

ˇ̌
ˇ̌
ˇ˛u˛�1

1

ti

Ni0

� mC
i

Mi0

ˇ̌
ˇ̌
ˇ � ˇ.u1; u2/

Mipl

Mi0

(8.56k)

Corresponding to Remark 8.7, the variables

ti ; m
C
i ; m

�
i ; Ai or x

enters linearly. Increasing the accuracy of approximation by taking a further point
Ou D .Ou1; Ou2/ with the related points .Ou1;�Ou2/; .�Ou1; Ou2/; .�Ou1;�Ou2/, we obtain
further inequalities of the type (8.55d–g), (8.56d–g) respectively.

8.3 Stochastic Optimization

Due to (8.1c), (8.10), (8.11c), (8.12c), the 3B – vector

F D .F T
1 ; : : : ; F

T
B /

T (8.57a)

of all interior loads fulfills the equilibrium condition

CF D R (8.57b)

with the external load vector R and the equilibrium matrix C .
In the following we collect all random model parameters [31, 35, 39], such as

external load factors, material strength parameters, cost factors, etc., into the random
�-vector

a D a.!/; ! 2 .�;A;P/; (8.58a)

on a certain probability space .�;A; P /.
Thus, since in some cases the vector R of external loads depend also on the

design r-vector x, we get
R D R .a.!/; x/ : (8.58b)
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Of course, the plastic capacities depend also on the vectors x and a.!/, hence,

N 
ipl D N 

ipl .a.!/; x/ ; � D L;U (8.58c)

Mipl D Mipl .a.!/; x/ : (8.58d)

We assume that the probability distribution and/or the needed moments of the
random parameter vector a D a.!/ are known [2, 28, 31, 42].

The remaining deterministic constraints for the design vector x are represented by

x 2 D (8.59)

with a certain convex subset D of IRr .

8.3.1 Violation of the Yield Condition

Consider in the following an interior load distribution F fulfilling the equilibrium
condition (8.58b).

According to the analysis given in Sect. 8.2, after piecewise linearization, the
yield condition for the i th bar can be represented by an inequality of the type

H�.i/
�
a.!/; x

�
� h.i/

�
a.!/; x

�
; i D 1; : : : ; B; (8.60)

with matrices H;�.i/ D �.i/
�
a.!/; x

�
and a vector h.i/ D h.i/

�
a.!/; x

�
as

described in Sect. 8.2.
In order to take into account violations of condition (8.60), we consider the

equalities
H�.i/Fi C zi D h.i/; i D 1; : : : ; B: (8.61)

If
zi � 0; for all i D 1; : : : ; B; (8.62a)

then (8.60) holds, and the yield condition is then fulfilled too, or holds with a
prescribed accuracy.

However, in case

zi 6� 0 for some bars i 2 f1; : : : ; Bg; (8.62b)

the survival condition is violated at some points of the structure. Hence, structural
failures may occur. The resulting costs Q of failure, damage and reconstructure of
the frame is a function of the vectors zi , i D 1; : : : ; B , defined by (8.61). Thus, we
have

Q D Q.z/ D Q.z1; : : : ; zB/; (8.63a)
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where

z WD .zT
1 ; z

T
2 ; : : : ; z

T
B/

T ; (8.63b)

zi WD h.i/ �H�.i/Fi ; i D 1; : : : ; B: (8.63c)

8.3.2 Cost Function

Due to the survival condition (8.62a), we may consider cost functionsQ such that

Q.z/ D 0; if z � 0; (8.64)

hence, no (recourse) costs arise if the yield condition (8.60) holds.
In many cases the recourse or failure costs of the structure are defined by the sum

Q.z/ D
BX

iD1

Qi .zi /; (8.65)

of the element failure costs Qi D Qi .zi /; i D 1; : : : ; B .
Using the representation

zi D yC
i � y�

i ; yC
i ; y

�
i � 0; (8.66a)

the member cost functions Qi D Qi .zi / are often defined [20, 31] by considering
the linear function

q�T
i y�

i C qCT
i yC

i (8.66b)

with certain vectors qC
i ; q

�
i of cost coefficients for the evaluation of the condition

zi � 0; zi 6� 0, respectively.
The cost functionQi D Qi .zi / is then defined by the minimization problem

min q�T
i y�

i C qCT
i yC

i (8.67a)

s.t. yC
i � y�

i D zi (8.67b)

y�
i ; y

C
i � 0: (8.67c)

If zi WD .zi1; : : : ; zi�/
T ; yi̇ WD .yi̇1; : : : ; yi̇�/

T ; i D 1; : : : ; B then (8.67a–c) can
also be represented by

min
�X

lD1

.q�
i ly

�
i l C qC

i l
yC

i l
/ (8.68a)

s.t. yC
i l

� y�
i l D zi l ; l D 1; : : : ; � (8.68b)

y�
i l ; y

C
i l

� 0; l D 1; : : : ; �: (8.68c)
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Since the pairs of variables .y�
i l
; yC

i l
/; l D 1; : : : ; �, are not connected with each

other by the constraints, and the objective function is separabel with respect to these
pairs of variables, (8.68a–c) can be decomposed into � separated minimization
problems

min q�
i ly

�
i l C qC

i l
yC

i l
(8.69a)

s.t. yC
i l

� y�
i l D zi l (8.69b)

y�
i l ; y

C
i l

� 0; (8.69c)

for the pairs of variables .y�
i l
; yC

i l
/, l D 1; : : : ; �.

Under the condition

q�
i l C qC

i l
� 0; l D 1; : : : ; �; (8.70)

the following result holds:

Lemma 8.1. Suppose that (8.70) holds. Then the minimum value function Qi l D
Qi l.zi l/ of (8.69a–c) is a piecewise linear, convex function given by

Qi l.zi l/ WD maxfqC
i l

zi l ;�q�
i lzi lg: (8.71)

Hence, the member cost functionsQi D Qi .zi / reads

Qi .zi / D
�X

lD1

Qi l.zi l/ D
�X

lD1

maxfqC
i l

zi l ;�q�
i lzi lg; (8.72a)

and the total cost functionQ D Q.z/ is given by

Q.z/ D
BX

iD1

Qi .zi / D
BX

iD1

�X
lD1

maxfqC
i l

zi l ;�q�
i lzi lg: (8.72b)

8.3.3 Choice of the Cost Factors

Under elastic conditions the change�� of the total stress � and the change �L of
the element length L are related by

�L D L

E
��; (8.73a)

where E denotes the modulus of elasticity.
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Assuming that the neutral axis is equal to the axis of symmetry of the element,
for the total stress�� in the upper (“+”) lower (“�”) fibre of the boundary we have

�� D �t

A
˙ �m

W
; (8.73b)

where W denotes the axial modulus of the cross-sectional area of the element
(beam).

Representing the change�V of volume of an element by

�V D A ��L; (8.74a)

then

�V D A ��L D A � L
E
�� D A � L

E



�t

A
˙ �m

W

�

D L

E
�t ˙ L

E

A

W
�m D L

E
�t ˙ L

E

1
W
A

�m D L

E
�t ˙ L

E
� 1Nyc

�m; (8.74b)

where Nyc is the cross-sectional parameter as defined in (8.28d).
Consequently, due to (8.73a,b), for the evaluation of violations �t of the axial

force constraint we may use a cost factor of the type

�K WD L

E
; (8.75a)

and an appropriate cost factor for the evaluation of violations of moment constraints
reads

�M D L

E
� 1Nyc

: (8.75b)

8.3.4 Total Costs

Denoting by

G0 D G0

�
a.!/; x

�
(8.76a)

the primary costs, such as weighted negative load factors, material costs, costs of
construction, etc., the total costs including failure or recourse costs are given by

G D G0

�
a.!/; x

�CQ
�
z
�
a.!/; x; F.!/

��
: (8.76b)

Hence, the total costs G D G
�
a.!/; x; F.!/

�
depend on the vector x D

.x1; : : : ; xr /
T of design variables, the random vector a.!/ D �

a1.!/; : : : ; a�.!/
�T

of model parameters and the random vector F D F.!/ of all internal loadings.
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Minimizing the expected total costs, we get the following stochastic optimization
problem (SOP) of recourse type [20]

min E
�
G0

�
a.!/; x

�CQ
�
z .a.!/; x; F.!//

��
(8.77a)

s.t. H�.i/
�
a.!/; x

�
Fi .!/C zi .!/ D h.i/

�
a.!/; x

�
a.s.;

i D 1; : : : ; B (8.77b)

CF.!/ D R
�
a.!/; x

�
a.s. (8.77c)

x 2 D: (8.77d)

Using representation (8.65), (8.67a–c) of the recourse or failure cost function
Q D Q.z/, problem (8.77a–d) takes also the following equivalent from

min E

 
G0

�
a.!/; x

�
C

BX
iD1

�
q�

i .!/
T y�

i .!/C qC
i .!/

T yC
i .!/

�!
(8.78a)

s.t. H�.i/
�
a.!/; x

�
Fi .!/C yC

i .!/ � y�
i .!/ D h.i/

�
a.!/; x

�
a.s.;

i D 1; : : : ; B (8.78b)

CF.!/ D R .a.!/; x/ a.s. (8.78c)

x 2 D; yC
i .!/; y

�
i .!/ � 0 a.s.; i D 1; : : : ; B: (8.78d)

Remark 8.8. Stochastic optimization problems of the type (8.78a–d) are called
“two-stage stochastic programs” or “stochastic problems with recourse”.

In many cases the primary cost function G0 D G0

�
a.!/; x

�
represents the

volume or weight of the structural, hence,

G0

�
a.!/; x

�
WD

BX
iD1

�i .!/Vi .x/

D
BX

iD1

�i .!/LiAi .x/; (8.79)

with certain (random) weight factors �i D �i .!/.
In case

Ai .x/ WD uixi (8.80)

with fixed sizing parameters ui ; i D 1; : : : ; B , we get

G0 .a.!/; x/ D
BX

iD1

�i .!/Li ui .x/ D
BX

iD1

�i .!/Lihixi

D c .a.!//T x; (8.81a)
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where
c .a.!// WD .�1.!/L1u1; : : : ; �B .!/LB uB/

T : (8.81b)

Thus, in case (8.80),G0 D G0

�
a.!/; x

�
is a linear function of x.

8.3.5 Discretization Methods

The expectation in the objective function of the stochastic optimization problem
(8.78a–d) must be computed numerically. One of the main methods is based on the
discretization of the probability distribution Pa.	/ of the random parameter �-vector
a D a.!/, hence,

Pa.	/ 
 � WD
sX

kD1

˛k�a.k/ (8.82a)

with

˛k � 0; k D 1; : : : ; s;

sX
kD1

˛k D 1: (8.82b)

Corresponding to the realizations a.k/; k D 1; : : : ; s, of the discrete approximate
(8.82a,b), we have the realizations y�.k/

i ; y
C.k/
i and F .k/; F

.k/
i ; k D 1; : : : ; s, of the

random vectors y�
i .!/; y

C
i .!/; i D 1; : : : ; B , and F.!/. then

E

 
G0

�
a.!/; x

�C
BX

iD1

�
q�T

i y�
i .!/C qCT

i yC
i .!/

�!



sX

kD1

˛k

 
G0.a

.k/; x/C
BX

iD1

.q�T
i y

�.k/
i C qCT

i y
C.k/
i

!
: (8.83a)

Furthermore, the equilibrium equation (8.77c) is approximated by

CF .k/ D R.a.k/; x/; k D 1; : : : ; s; (8.83b)

where F .k/ WD
�
F

.k/
1

T
; : : : ; F

.k/
B

T
�T

, and we have, cf. (8.78d), the nonnegativity

constraints

y
C.k/
i ; y

�.k/
i � 0; k D 1; : : : ; s; i D 1; : : : ; B: (8.83c)

Thus, (SOP) (8.78a–d) is reduced to the parameter optimization problem

min G0.a
.k/; x/C

BX
iD1

˛k

�
q�T

i y
�.k/
i C qCT

i y
C.k/
i

�
(8.84a)
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s.t. H�.i/.a.k/; x/F
.k/
i C y

C.k/
i � y

�.k/
i D h.i/.a.k/; x/;

i D 1; : : : ; B; k D 1; : : : ; s (8.84b)

CF .k/ D R.a.k/; x/; k D 1; : : : ; s (8.84c)

x 2 D; yC.k/
i ; y

�.k/
i � 0; k D 1; : : : ; s; i D 1; : : : ; B: (8.84d)

A further important class of methods for computing expectations and probabilities,
hence, multiple integrals, occurring in stochastic optimization problems, reliabil-
ity analysis and reliability-based optimal design (RBO), cf. [9, 11, 30, 31], are
simulation methods, such as Monte Carlo Simulation (MCS) procedures. Simula-
tion techniques are used especially in cases with only few information about the
analytical properties of the underlying technical device, e.g., in case of analyti-
cally almost unavailable limit state functions. In principle, MSC is a very simple
technique which is widely applicable on the one hand, but may have a very low
efficiency of estimation on the other hand. Hence, several improvements were con-
sidered in the last time, such as Advanced Monte Carlo Simulation techniques:
Variance reduction methods reducing the sampling error, based, e.g., on impor-
tance sampling methods, direction sampling, subset simulation, etc., see, e.g., [4].
Further improvements can be obtained by combining these simulation/estimation
techniques with Response Surface Methods (RSM) for estimating unknown func-
tions using regression techniques and advanced nonlinear programming procedures
(NLP), cf. [12].

8.3.6 Complete Recourse

According to Sect. 8.3.1, the evaluation of the violation of the yield condition (8.60)
is based on (8.61), hence

H�.i/Fi C zi D h.i/; i D 1; : : : ; B:

In generalization of the so-called “simple recourse” case (8.67a–c), in the “com-
plete recourse” case the deviation

zi D h.i/ �H�.i/Fi

is evaluated by means of the minimum value Qi D Qi .zi / of the linear program,
cf. (8.68a–c)

min q.i/Ty.i/ (8.85a)

s.t. M .i/y.i/ D zi (8.85b)

y.i/ � 0: (8.85c)

Here, q.i/ is a given cost vector andM .i/ denotes the so-called recourse matrix [20].
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We assume that the linear equation (8.85b) has a solution y.i/ � 0 for each vector
zi . This property is called “complete recourse”.

In the present case the stochastic optimization problem (8.77a–c) reads

min E

 
G0

�
a.!/; x

�
C

BX
iD1

q.i/Ty.i/.!/

!
(8.86a)

s.t. H�.i/
�
a.!/; x

�
Fi .!/CM .i/y.i/.!/ D h.i/

�
a.!/; x

�
a.s.,

i D 1; : : : ; B (8.86b)

CF.!/ D R .a.!/; x/ a.s. (8.86c)

x 2 D; y.i/.!/ � 0 a.s.; i D 1; : : : ; B: (8.86d)

As described in Sect. 8.3.5, problem (8.86a–d) can be solved numerically by means
of discretization methods and application of linear/nonlinear programming tech-
niques.
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15. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, London
(1973)



192 K. Marti

16. Heitzer, M.: Traglast- und Einspielanalyse zur Bewertung der Sicherheit passiver
Komponenten. Dissertation RWTH Aachen (1999)

17. Hodge, P.G.: Plastic Analysis of Structures. McGraw-Hill, New York (1959)
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and Engineering Systems Under
Uncertainty



Chapter 9
Uncertainty in the Future Nitrogen Load
to the Baltic Sea Due to Uncertain
Meteorological Conditions

Jerzy Bartnicki

Abstract The Norwegian Meteorological Institute has a long-term project with
HELCOM Commission for regular calculation of annual atmospheric deposition of
nitrogen to the Baltic Sea. In 2005, the institute received an additional project from
HELCOM with the aim of estimating atmospheric nitrogen deposition to six sub-
basins and catchments of the Baltic Sea for the year 2010, using nitrogen emission
projections according to agreed emission ceilings under the EU National Emission
Ceilings (NEC) Directive and the Gothenburg Protocol. Since, the meteorology
for 2010 is unknown, model calculations were performed for four selected years
with different meteorology: 1996, 1997, 1998 and 2000, which are available in the
database. Final deposition values for the year 2010 were calculated as an average
over the four selected years. In this way we were able to estimate the uncertainty
restricted to meteorological variability. The ranges between minimum and maxi-
mum of calculated depositions to sub-basins and catchments are large indicating
significant variation of the deposition depending on meteorological conditions.

9.1 Introduction

The Helsinki Commission, or HELCOM is the governing body of the “Convention
on the Protection of the Marine Environment of the Baltic Sea Area” – known as the
Helsinki Convention [7]. The important role of HELCOM is to protect the marine
environment of the Baltic Sea from all sources of pollution through intergovern-
mental co-operation between Denmark, Estonia, the European Community, Finland,
Germany, Latvia, Lithuania, Poland, Russia and Sweden, which are the Contracting
Parties to HELCOM. HELCOM’s vision for the future is a healthy Baltic Sea envi-
ronment with diverse biological components functioning in balance, resulting in a
good ecological status and supporting a wide range of sustainable economic and
social activities (http://www.helcom.fi/).
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Eutrophication is one of the major problems for the Baltic Sea. Since the 1800s,
the Baltic Sea has changed from an oligotrophic clear-water sea into a eutrophic
marine environment. Nitrogen and phosphorus are among the main growth-limiting
nutrients and as such do not pose any direct hazards to marine organisms. Eutroph-
ication, however, is a condition in an aquatic ecosystem where high nutrient con-
centrations stimulate growth of algae which leads to imbalanced functioning of
the system. It is mainly caused by a significant nutrient load to the Baltic Sea
(http://www.helcom.fi/).

The nutrient inputs entering the Baltic Sea are either airborne or waterborne. The
main pathways of nutrient input to the Baltic Sea are:

� Direct atmospheric deposition on the Baltic Sea water surface
� Riverine inputs of nutrients to the sea. Rivers transport nutrients that have been

discharged or lost to inland surface waters within the Baltic Sea catchment area
� Point sources discharging directly to the sea.

Atmospheric deposition of nitrogen accounts for approximately 30% of the total
nitrogen load to the Baltic Sea. Therefore, nitrogen has been regularly monitored
by analysing the results of measurements and model calculations in co-operation
with the Co-operative Programme for Monitoring and Evaluation of the Long-range
Transmission of Air pollutants in Europe (EMEP). The main objective of the EMEP
is to regularly provide Governments and subsidiary bodies under the Convention on
Long-range Transboundary Air Pollution [8] with qualified scientific information
to support the development and further evaluation of the international protocols on
emission reductions negotiated under the Convention (http://www.emep.int/). A co-
operation between EMEP and HELCOM was established already in 1996. Since
then, three EMEP Centres have published joint reports estimating annual supply of
nitrogen heavy metals and persistent organic pollutants to the Baltic Sea. Updated
emissions, as well as results of measurements and their analysis are also included
in the annual EMEP reports for HELCOM. Such an annual report has been recently
prepared for HELCOM in 2007 [1].

In 2004 HELCOM established a project using models to assess the implications
of different policy scenarios on nutrient inputs and the resulting eutrophication sta-
tus in order to indicate the most cost-effective measures for the different sub-regions
of the Baltic Sea. Most of the models considered under HELCOM have been eco-
logical models related to the assessment of effects to the sea. The basis of the effect
models ware the scenarios of activities on land. Therefore, the aim was to link
management scenario models with ecological models in order to assess measures
for reducing nutrient inputs. The aim of the project was to assess for HELCOM
Contracting Parties the impact of different agricultural policy scenarios on nutrient
inputs in the Baltic Sea catchment area and on the eutrophication status of the Baltic
Sea. The final aim was to enable the identification of cost-effective measures in the
different parts of the Baltic Sea catchment area which requires achieving a good
ecological status throughout the Baltic Sea area [2].

In 2005 HELCOM considered airborne nitrogen pollution and decided to include
nitrogen air depositions into the ongoing HELCOM Project. To evaluate the

http://www.helcom.fi/
http://www.emep.int/
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implications of different policy scenarios on nutrient inputs, HELCOM agreed that
EMEP should be charged with the task of assessing the changes in atmospheric
nitrogen deposition under the condition that nitrogen emission targets according to
the Gothenburg protocol to the LRTAP Convention and the EU NEC Directive as
projected for 2010 are fulfilled. Based on the above decision, EMEP has received a
project from HELCOM.

As requested by HELCOM, all nitrogen depositions as well as source allocation
budgets have been calculated for the six sub-basins and catchments of the Baltic
Sea for the year 2010 using the EMEP Unified model [10] (http://www.emep.int/).
Names and acronyms of the sub-basins and catchments used in the model calcula-
tions are given below:

1. Gulf of Bothnia (GUB)
2. Gulf of Finland (GUF)
3. Gulf of Riga (GUR)
4. Baltic Proper (BAP)
5. Belt Sea (BES)
6. The Kattegat (KAT)

Depositions and source allocation budgets have been also calculated for the entire
basin and the entire catchment of the Baltic Sea. Geographical borders of sub-basins
and catchments used in the computations are shown in Fig. 9.1.

Emissions and meteorological fields are the main input into the EMEP Unified
model which calculates transport and deposition of air pollutants over Europe. For
the historical calculations, meteorological fields are available from the Numerical
Weather Prediction model HIRLAM [3] which is run operationally at the Norwe-
gian Meteorological Institute in Oslo. Since the meteorological fields are not known
for 2010, we have used the meteorological fields from the past years, which are

Fig. 9.1 Locations of six
sub-basins and catchments of
the Baltic Sea for which the
nitrogen depositions for 2010
have been calculated

http://www.emep.int/
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available in the EMEP database. Variability between different meteorological years
in the past create significant uncertainty in the model results for 2010. Analysis of
this specific uncertainty is the main subject of the current paper.

9.2 Nitrogen Emissions

Emission input to the EMEP Unified model requires information about annual nitro-
gen oxides and ammonia emissions from all sources located in the EMEP domain.

Projections for 2010 assume nitrogen oxides and ammonia national emissions
as specified in the NEC Directive [9] for selected 15 EU countries. National nitro-
gen oxides and ammonia emissions as specified in the Gothenburg Protocol [4] are
assumed for all countries listed therein except for those already mentioned in the
NEC Directive. Emissions for the Russian Federation and Estonia are taken from
the HELCOM publication [6]. Finally, 2010 projections of nitrogen emissions due
to international ship traffic on the Europeans seas are taken from the EMEP database
following Entec projections [5]. All remaining emission sources of nitrogen are
taken from the EMEP database http://www.emep.int/.

9.2.1 National Emission Ceilings According
to EU NEC Directive

2010 national emission ceilings for nitrogen oxides (units: kt of NO2 per year) and
ammonia (units: kt of NH3 per year) according to the EU NEC Directive [9] are
shown in Table 9.1.

The national emission ceilings presented in Table 9.1 were designed with the
aim of broadly meeting the interim environmental objectives set out in Article 5 of
the Directive. It is supposed that the Community area with depositions of nutrient
nitrogen in excess of the critical loads will be reduced by about 30% compared to
1990.

Table 9.1 2010 national emission ceilings for nitrogen oxides (units: kt of NO2 per year) and for
ammonia (units: kt of NH3 per year) according to the EU NEC Directive [9]

Country NOx NH3 Country NOx NH3

Austria 103 66 Belgium 176 74
Denmark 127 69 Finland 170 31
France 810 780 Germany 1,051 550
Greece 44 73 Ireland 65 116
Italy 90 419 Luxembourg 11 7
Netherlands 260 128 Portugal 250 90
Spain 847 353 Sweden 148 57
United Kingdom 1,167 297 EC15 6,519 3,110

http://www.emep.int/


9 Uncertainty in the Future Nitrogen Load to the Baltic Sea 199

Table 9.2 2010 national emission ceilings of nitrogen oxides (units: kt of NO2 per year) and
ammonia (units: kt of NH3 per year) according to the 1999 Gothenburg Protocol [4]

Country NOx NH3 Country NOx NH3

Armenia 46 25 Austria 107 66
Belarus 255 158 Belgium 181 74
Bulgaria 266 108 Croatia 87 30
Czech Republic 286 101 Denmark 127 69
Finland 170 31 France 860 780
Germany 1,081 550 Greece 344 73
Hungary 198 90 Ireland 65 116
Italy 1,000 419 Latvia 84 44
Liechtenstein 0.37 0.15 Lithuania 110 84
Luxembourg 11 7 Netherlands 266 128
Norway 156 23 Poland 879 468
Portugal 260 108 Republic of Moldova 90 42
Romania 437 210 Russian Federation (PEMA) 265 49
Slovakia 130 39 Slovenia 45 20
Spain 847 353 Sweden 148 57
Switzerland 79 63 Ukraine 1,222 592
United Kingdom 1,181 297 European Community 6,671 3,129

Among the EU-15 countries, United Kingdom (1,167 kt NO2) and Germany
(1,051 kt NO2) are the main NO2 emitters in 2010. France (780 kt NH3) and
Germany (550 kt NH3) are the main NH3 sources.

During the EU accession process national emission ceilings were reduced for
Latvia to 61 kt NO2. This most recent value for Latvia [6] and the nitrogen emissions
shown in Table 9.2 were used for the EMEP model run. The same emission sources
are also considered in the Gothenburg Protocol, however NEC emissions of nitrogen
oxides and ammonia projected for 2010 are lower or the same as those projected by
the Gothenburg Protocol presented in the next section.

9.2.2 National Emission Ceilings According
to Gothenburg Protocol

The national emission ceilings for nitrogen oxides and ammonia specified in the
Protocol to Abate Acidification, Eutrophication and Ground-level Ozone done in
Gothenburg, Sweden on 30 November 1999 [4] are shown in Table 9.2.

For the Russian Federation the Protocol specifies only the emission ceilings for
the so-called Pollutant Emissions Management Area (PEMA). In the EMEP domain,
2010 nitrogen oxide and ammonia emissions for the entire Russian Federation are
2,653 kt NO2 and 1,179 kt NH3, respectively.

Compared to emission levels in 1990, main reductions of nitrogen oxides
emissions should occur in the Czech Republic (61%), Germany (60%), Sweden
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(56%) and United Kingdom (56%). Main reductions of ammonia emissions in 2010
compared to 1990 are expected in Denmark (43%), Netherlands (43%), Slovakia
(37%) and Czech Republic (35%).

9.2.3 Nitrogen Emission Projections Used in the Model Runs

Projected national annual total emissions of nitrogen oxides and ammonia used
in the model runs are shown in Table 9.3 for 2010. All anthropogenic sources in
the EMEP area are taken into account in Table 9.3, including emissions from the
HELCOM parties and from the international ship traffic on the Baltic Sea.

The numbers in Table 9.3 are based on total emission targets for each country,
including areas outside the Baltic Sea Catchment, which explains high values for,
e.g. Russia and Germany. Not all emissions in the Contracting Parties end up in the
Baltic Sea. For 2010, the total nitrogen oxide emissions target in the EMEP area
is approximately 19.7 million tones of NO2, whereas the total ammonia emissions
target in the EMEP area is about 7.3 million tones of NH3.

Table 9.3 2010 national total emissions of nitrogen oxides (units: kt of NO2 per year) and
ammonia (units: kt of NH3 per year) used in the model runs

Source NOx NH3 Source NOx NH3

Albania 27.9 25.9 Armenia 46.0 25.0
Austria 102.9 66.2 Azerbaijan 43.0 25.0
Baltic Sea 457.5 0.0 Belarus 254.9 157.8
Belgium 176.1 74.4 Black Sea 154.8 0.0
Bosnia and Herz. 54.0 17.3 Bulgaria 265.5 107.6
Croatia 97.3 30.1 Cyprus 21.1 6.3
Czech Republic 286.1 101.4 Denmark 126.7 69.3
Estonia 59.0 28.4 Finland 170.3 30.8
France 810.3 780.3 Georgia 30.0 97.0
Germany 1,051.2 549.8 Greece 344.5 72.5
Hungary 198.4 89.5 Iceland 30.0 3.0
Ireland 65.0 115.8 Italy 990.1 418.88
Kazakhstan 50.2 19.0 Latvia 60.8 43.8
Lithuania 110.4 84.4 Luxembourg 11.0 7.1
Macedonia 5.9 1.4 Mediterranean Sea 2,382 80.0
Moldova, Republic of 90.6 41.6 Netherlands 260.3 128.3
North Africa 96.0 235.0 North Sea 862.4 0.0
Norway 156.0 23.0 Norway 156.0 23.0
Poland 878.3 467.9 Remaining Asiatic ar. 9.0 178.0
Remaining NE Atlantic 740.5 0.0 Romania 436.5 209.7
Russian Federation 2,653.0 1,178.8 Serbia and Montenegro 167.8 69.3
Slovakia 130.2 19.9 Spain 148.4 57.3
Switzerland 79.3 62.6 Turkey 851.8 240.6
Ukraine 1,222.2 591.9 United Kingdom 1,167.4 296.6
EMEP 19,686.3 7,345.2
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Fig. 9.2 Spatial distribution
of nitrogen oxide emissions
around the Baltic Sea for
2010, used in the EMEP
model computations. Units:
tonnes of NO2 per year and
per 50 km 
 50 km grid cell
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The total nitrogen oxides emissions and ammonia emissions targets in the HEL-
COM Parties are estimated to be 5.3 million tones of NO2 and 2.5 million tones of
NH3, respectively.

Table 9.3 exhibits that the Russian Federation and ship traffic on the Mediter-
ranean Sea are the largest emitters of nitrogen oxides in 2010, with 2,653 and
2,383 kt NO2, respectively. These two sources are approximately twice as large
than the next on the list: Ukraine (1,222 kt NO2), United Kingdom (1,167 kt NO2),
Germany (1,051 kt NO2) and Italy (990 kt NO2).

The Russian Federation (1,179 kt NH3), France (780 kt NH3), Ukraine (592 kt
NH3) and Germany (550 kt NH3) belong to the four highest emitters of ammonia in
2010. The emission targets for the rest of the countries are much lower with Poland
(550 kt NH3) and Italy (468 kt NH3) taking the fifth and sixth places, respectively.

To run the EMEP model, the emissions should be distributed in the model
grid system. Maps with the 2010 nitrogen oxides and ammonia emissions in 2010
spatially distributed over the Baltic Sea region are shown in Figs. 9.2 and 9.3
respectively.

9.3 Computed Nitrogen Depositions for 2010

Nitrogen emission inventories described in the previous chapter have been used in
order to estimate nitrogen depositions in 2010. Since, the meteorology for 2010 is
unknown, model calculations had to be performed with existing meteorological data
from the past years. Meteorological data for the years 1996, 1997, 1998 and 2000
and emission projections for the year 2010 have been used for the EMEP Unified
model runs. Final deposition values for the year 2010 were calculated as the average
over the four selected years.
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Fig. 9.3 Spatial distribution
of ammonia emissions around
the Baltic Sea for 2010, used
in the EMEP model
computations. Units: tonnes
of NH3 per year and per
50 km 
 50 km grid cell
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9.3.1 Unified EMEP Model

The Unified EMEP model is an Eulerian model that has been developed at the
Meteorological Synthesizing Centre West of EMEP (EMEP/MSC-W) for simulat-
ing atmospheric transport and deposition of acidifying and eutrophying compounds
as well as photo-oxidants in Europe. The model has been documented in the EMEP
Status Report [10]. Here we only give a short description of the basic features of
the model. Model details as well as recent changes and updates can be found on the
EMEP web site http://www.emep.int/.

The model domain covers Europe and the Atlantic Ocean. The model grid (of the
size 170 � 133) has a horizontal resolution of 50 km at 60ıN, which is consistent
with the resolution of emission data reported to EMEP. In the vertical, the model
has 20 sigma layers reaching up to 100 hPa. Approximately 10 of these layers are
placed below 2 km to obtain a high resolution for the boundary layer which is of
special importance for the long range transport of air pollution.

The EMEP unified model uses 3-hourly resolved meteorological data from the
PARLAM-PS model, a dedicated version of the HIRLAM (High Resolution Limited
Area Model) Numerical Weather Prediction model operational at the Norwegian
Meteorological Institute [3].

The emission input consists of gridded national annual emissions of sulphur diox-
ide, nitrogen oxides, ammonia, non-methane volatile organic compounds (VOC)
and carbon monoxide. They are available in each of the 50 km � 50 km model grid
cells. These emissions are distributed temporally according to monthly and daily
factors derived from data provided by the University of Stuttgart (IER).

Concentrations of 71 species are computed in the Unified EMEP model (56 are
advected, 15 are short-lived and not advected). The sulphur and nitrogen chemistry
is coupled to the photo-chemistry, which allows a more sophisticated description of,
e.g. the oxidation of sulphur dioxide to sulphate.

http://www.emep.int/
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Dry deposition is calculated using the resistance analogy and is a function of the
pollutant type, meteorological conditions and surface properties. Parameterization
of wet deposition processes includes both in-cloud and sub-cloud scavenging of
gases and particles using scavenging coefficients.

9.3.2 Calculated Depositions to Sub-basins and Catchments
of the Baltic Sea

Calculated nitrogen depositions to sub-basins and catchments of the Baltic Sea are
given in Tables 9.4 and 9.5, respectively. Calculated depositions are shown for each
sub-basin and catchment, and for four meteorological years used in the computa-
tions. The deposition in 2010 was calculated as an average over four meteorological
years.

Locations of minimum and maximum deposition are slightly different for dif-
ferent sub-basins and catchments and for different deposition types. However, for
most sub-basins and catchments, the lowest deposition values can be observed for
the meteorological year 1997 and the highest for the meteorological year 2000.

For all meteorological years and all sub-basins and catchments, wet nitrogen
deposition is significantly higher, sometimes two times higher than dry deposition
of nitrogen.

Depositions of oxidized and reduced nitrogen to all sub-basins are approximately
on the same level, but deposition of oxidized nitrogen is slightly higher than deposi-
tion of reduced nitrogen in the north and in the middle (GUB, GUF, GUR and BAP
sub-basins). In the south (BES and KAT sub-basins) deposition of reduced nitrogen
is higher. Deposition of oxidized nitrogen is also higher than deposition of reduced
nitrogen to the entire basin of the Baltic Sea. In general, there is more oxidized
nitrogen then reduced nitrogen deposition into sub-basins of the Baltic Sea.

In the case of catchments, oxidized nitrogen deposition is higher than reduced
nitrogen deposition for GUB, GUF and KAT catchments. For GUR, BAP, BES
catchments and the for entire catchment of the Baltic Sea, the relation between oxi-
dized and reduced nitrogen deposition is opposite. In general, there is more reduced
nitrogen then oxidized nitrogen deposition into catchments of the Baltic Sea.

9.4 Uncertainty Due to Meteorological Variability

Inspection of Tables 9.4 and 9.5 gives the first impression of uncertainty restricted
to meteorological variability. To asses the variability of computed depositions due to
varying meteorological conditions the standard deviation (�N �1) was calculated for
each of the deposition type and each of sub-basin and catchment of the Baltic Sea.

The ranges between minimum and maximum can also indicate the uncertainty
of computed depositions due to variable meteorological conditions. This is an
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Table 9.4 2010 nitrogen depositions to sub-basins of the Baltic Sea and to the entire basin of the
Baltic Sea calculated with the help of the meteorology from four different years and as average
over these years. Units: kt N

Sub-basin Meteo Oxidized dry Oxidized wet Reduced dry Reduced wet Total

GUB 1996 6.1 11.8 2.9 8.9 29.7
GUB 1997 5.2 10.2 2.4 6.8 24.6
GUB 1998 6.5 15.0 2.8 11.0 35.3
GUB 2000 6.9 18.7 3.9 15.7 45.1
GUB Mean 6.2 13.9 3.0 10.6 33.7

GUF 1996 2.9 5.2 1.9 5.4 15.3
GUF 1997 2.5 4.1 1.6 3.7 11.9
GUF 1998 3.0 5.5 2.1 4.9 15.4
GUF 2000 3.1 6.4 2.3 5.5 17.3
GUF Mean 2.9 5.3 2.0 4.9 15.0

GUR 1996 2.2 3.3 1.8 3.7 11.0
GUR 1997 1.9 3.3 1.4 3.2 9.8
GUR 1998 2.2 3.5 1.8 3.4 10.9
GUR 2000 2.4 3.9 2.0 3.9 12.2
GUR Mean 2.2 3.5 1.7 3.6 11.0

BAP 1996 23.1 40.1 23.3 39.7 126.2
BAP 1997 19.6 33.3 20.2 31.4 104.4
BAP 1998 22.2 47.1 23.9 43.8 136.9
BAP 2000 22.9 47.1 26.3 44.1 140.4
BAP Mean 21.9 41.9 23.4 39.7 127.0

BES 1996 2.6 4.9 5.1 6.3 18.9
BES 1997 2.4 3.9 5.6 5.4 17.3
BES 1998 2.5 5.8 v5.5 7.8 21.6
BES 2000 2.5 5.8 6.1 7.3 21.7
BES Mean 2.5 5.1 5.6 6.7 19.9

KAT 1996 2.5 4.4 3.5 5.0 15.4
KAT 1997 2.3 4.1 3.4 4.6 14.4
KAT 1998 2.3 5.4 3.5 5.7 16.9
KAT 2000 2.6 6.5 4.0 6.7 19.8
KAT Mean 2.4 5.1 3.6 5.5 16.6

BAS 1996 39.4 69.7 38.5 68.9 216.6
BAS 1997 33.9 58.9 34.6 55.0 182.4
BAS 1998 38.7 82.3 39.5 76.5 237.0
BAS 2000 40.3 88.4 44.5 83.2 256.5
BAS Mean 38.1 74.8 39.3 70.9 223.1

important indicator of uncertainty from the practical point of view in the decision-
making process. The relative ranges and relative standard deviations were expressed
in per cent of the mean value of the calculated deposition. The results are presented
in Tables 9.6 and 9.7 for sub-basins and catchments, respectively.
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Table 9.5 2010 nitrogen depositions to six catchments of the Baltic Sea and to the entire catch-
ment of the Baltic Sea calculated with the help of the meteorology from four different years and as
average over these years. Units: kt N

Catchment Meteo Oxidized dry Oxidized wet Reduced dry Reduced wet Total

GUB 1996 36 48 14 39 137
GUB 1997 31 44 12 31 118
GUB 1998 34 58 13 44 150
GUB 2000 42 74 19 59 193
GUB Mean 36 56 15 43 149

GUF 1996 47 70 22 69 207
GUF 1997 41 66 23 63 194
GUF 1998 51 76 27 72 227
GUF 2000 56 82 31 75 244
GUF Mean 49 74 26 70 218

GUR 1996 23 34 25 46 128
GUR 1997 20 37 23 49 130
GUR 1998 23 37 26 51 136
GUR 2000 25 36 29 46 136
GUR Mean 23 36 26 48 132

BAP 1996 128 187 198 273 786
BAP 1997 118 178 202 264 761
BAP 1998 132 209 206 293 840
BAP 2000 138 205 225 279 848
BAP Mean 129 195 208 277 809

BES 1996 7 11 12 15 46
BES 1997 7 9 13 13 42
BES 1998 7 14 13 19 52
BES 2000 7 14 14 18 53
BES Mean 7 12 13 16 48

KAT 1996 18 19 14 21 72
KAT 1997 16 18 14 20 68
KAT 1998 16 23 14 24 78
KAT 2000 18 30 16 31 96
KAT Mean 17 23 15 24 78

BAS 1996 258 370 286 463 1,376
BAS 1997 233 353 288 441 1,314
BAS 1998 264 417 300 503 1,483
BAS 2000 286 442 334 507 1,569
BAS Mean 260 395 302 478 1,436

The relative ranges are roughly twice as high as the standard deviations and these
two measures of uncertainty are well correlated for all kinds of nitrogen depositions.
The relative ranges can be interpreted as the worst case scenario when the meteo-
rology in the reference year and in the year 2010 gives the most different results in
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Table 9.6 Relative ranges and standard deviations (in brackets) of nitrogen depositions to sub-
basins of the Baltic Sea and to the entire basin of the Baltic Sea, calculated for 2010 with
meteorology from four different years. Units: per cent of mean nitrogen deposition over four years

Sub-basin Oxidized dry Oxidized wet Reduced dry Reduced wet Total

GUB 28 (12) 61 (27) 48 (21) 84 (38) 61 (36)
GUF 22 (10) 42 (17) 35 (15) 38 (17) 36 (15)
GUR 24 (10) 18 (8) 38 (16) 19 (8) 22 (9)
BAP 16 (7) 33 (16) 26 (11) 32 (15) 28 (13)
BES 6 (2) 38 (18) 17 (7) 36 (16) 22 (11)
KAT 10 (5) 47 (21) 15 (7) 38 (17) 32 (14)
BAS 17 (8) 39 (18) 25 (10) 40 (17) 33 (14)

Table 9.7 Relative ranges and standard deviations (in brackets) of nitrogen depositions to the
catchments of the Baltic Sea and to the entire catchment of the Baltic Sea, calculated for 2010 with
meteorology from four different years. Units: per cent of mean nitrogen deposition over four years

Sub-basin Oxidized dry Oxidized wet Reduced dry Reduced wet Total

GUB 30 (13) 53 (24) 46 (20) 64 (27) 50 (21)
GUF 31 (13) 22 (10) 36 (16) 17 (7) 23 (10)
GUR 20 (8) 10 (4) 21 (9) 10 (5) 6 (3)
BAP 16 (7) 16 (8) 13 (6) 10 (4) 11 (5)
BES 3 (1) 39 (18) 16 (6) 35 (16) 22 (11)
KAT 16 (8) 52 (24) 15 (7) 45 (20) 35 (15)
BAS 20 (8) 22 (10) 16 (7) 14 (7) 18 (8)

calculated nitrogen deposition. This is the maximum uncertainty estimated from the
four years meteorological database. This can be the case if only one meteorological
year is taken as a basis for verification of the emission reductions effects in 2010.

The relative standard deviation shows the deviation from the mean deposition
over four years. Therefore, the averaging effect is already included in this measure
of uncertainty.

For all sub-basins except GUR the uncertainty of computed wet deposition of
both oxidized and reduced nitrogen is much higher than the uncertainty of computed
dry deposition. In the extreme case of BES sub-basin, uncertainty of computed wet
deposition is several times higher than the uncertainty of computed dry deposition
for this sub-basin. The reason is a patchy and irregular pattern of precipitation fields,
both in space and time.

The largest uncertainty due to meteorological variability can be noticed for GUB
(Gulf of Bothnia) sub-basin and catchment with relatively low nitrogen deposition
and significant contribution of nitrogen from the long-range transport to the depo-
sition. On the other hand, for BES and KAT sub-basin uncertainty of computed dry
oxidized deposition is relatively small, because these sub-basins are located close to
the large emissions sources of nitrogen

The uncertainties of the depositions due to variable meteorology are rather large,
both for sub-basins and catchments of the Baltic Sea. However, uncertainties of
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nitrogen deposition to the catchments are in general lower than the uncertainties
of nitrogen deposition to sub-basins of the Baltic Sea. The reason is a larger area
of the catchment compared to the area of corresponding sub-basin and therefore
more likely compensation of different types of uncertainties for the catchments.

Taking into account that uncertainties in nitrogen deposition caused by changing
meteorology are larger than the expected emission reductions, one cannot expect a
proportional impact of emission reduction on the deposition for one specific year
2010. For example, 10% reduction of nitrogen emission in all EMEP sources can
give 6% increase of nitrogen deposition in the entire basin of the Baltic Sea in 2010,
if meteorological conditions are the same as in the year 2000. However, the uncer-
tainty due to variable meteorology is decreasing when more years are included in
the verification period for the effects of emission reductions.

9.5 Conclusions

The largest uncertainty due to meteorological variability in computed nitrogen depo-
sition for 2010 can be noticed for GUB (Gulf of Bothnia) sub-basin and catchment
with relatively low deposition fluxes.

The relative ranges and deviations of the depositions due to variable meteorology
are rather large compared to expected emission reductions, both for sub-basins and
catchments of the Baltic Sea. For the deposition of oxidized and reduced nitrogen
to sub-basins and to the entire basin of the Baltic Sea there is more uncertainty in
wet than in dry deposition. The uncertainty of nitrogen deposition to the catchments
are in general lower than the uncertainty of nitrogen deposition to sub-basins of the
Baltic Sea.

The main conclusion from the decision making perspective is that even signif-
icant efforts in reducing nitrogen emissions do not need to become immediately
visible in modelled and measured nitrogen depositions to the Baltic Sea due to
inter-annual variability of meteorological conditions. In order to notice significant
deposition changes caused by the emission reduction it is necessary to wait at least
several years. It is very important to take this type of uncertainty into account in
future policy actions concerning the improvement of the Baltic Sea environment
(http://www.helcom.fi/).
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Chapter 10
Planning Sustainable Agricultural
Development Under Risks

G. Fischer, T. Ermolieva, and L. Sun

Abstract In this paper we show that explicit treatment of risks and uncertainties
is an essential element in planning sustainable agricultural development. Introduc-
tion of risks and uncertainties in production models considerably alter strategies
for achieving robust outcomes. We discuss stochastic models that may assist to
derive optimal agricultural production allocation and expansion within environ-
mental and health risk indicators. Approaches are illustrated with the example of
spatially-explicit livestock production allocation in China to 2030.

10.1 Introduction

Global change, economic-demographic and urbanization growth, changing
consumption preferences alter the structure of agricultural production systems.
In particular, they promote industrial agriculture geared towards making use of
economies of scale to produce the highest output at the lowest cost. Although inten-
sification has shown many positive effects, there are significant disadvantages, risks,
and costs involved. Undesirable impacts of intensification include environmental
pollution, input-intensive mono-cropping, and the marginalization and decline of
smallholder farms, causing abandonment of land and migration of rural population
to cities. These are further exacerbated by various risks such as climate change and
variability, natural catastrophes, market distortions and instabilities.

Alone environmental impacts and health hazards associated with intensive agri-
cultural production have increased awareness and established the need to identify
pathways towards sustainable agriculture.

This paper aims to show that adequate accounting and treatment of risks and
uncertainties is a necessary condition for planning sustainable agricultural develop-
ment. Naturally that considerations of risks may considerably alter production and
consumption decisions. This fact is illustrated in Sect. 10.2 with a stylized model of
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two agricultural producers characterized by different levels of efficiency and expo-
sure to risks. The example captures, in a nutshell, the features of a geographically
detailed and dynamic model for agricultural production planning under risks and
uncertainties, as adopted for the analysis of livestock production development in
China to 2030 [12, 14].

Now, a growing share of livestock products in China is coming from industrial
and specialized enterprises associated with hazardous pollution of the atmosphere,
water and soil resources, which becomes a critical environmental issue [17,25]. Tra-
ditional livestock systems represented a natural farming cycle; livestock was kept on
grass areas or in confined places close to farmland. Primary sources of feed were
grass, feed from fodder crops and other crops, household wastes and crop residues.
In these systems, livestock waste and manure were considered valuable sources
of nutrients for crop production or for fuel. The manure was recycled efficiently,
causing minimal environmental degradation and pollution. With the introduction of
large-scale industrial livestock production, especially of pigs and poultry, this closed
cycle is collapsing. Intensive livestock production enterprises are located close to
meat markets, near urban areas, and in these locations there is much more livestock
concentrated than land can support for proper manure recycling.

Geographical allocation of animals and the levels of intensification at which live-
stock is kept, differently affect the occurrences and spread of livestock diseases. In a
sense, increasing specialization and intensification of livestock production is associ-
ated with newly emerging diseases (e.g., possibly SARS, avian flu) that can threaten
human health.

Concentration of intensive livestock production is an important cause of environ-
mental pollution and health hazards. When coinciding with intensive crop cultiva-
tion, the problem of pollution through excess nutrients from livestock operations is
further exacerbated by imbalanced fertilizer application. Over-supply of nutrients
may lead to toxic nitrate pollution in the water supply and may cause eutrophication
of surface water. The trend is alarming and in some locations, without appropri-
ate measures, it may turn irreversible. The analysis in [14] has shown that the
development of China livestock production sector cannot just continue along past
intensification trends. The goal of this paper is to discuss model-based approaches
to guide decisions regarding the inevitable and significant future expansion of live-
stock production with respect to economic conditions at locations accounting for
sustainability and risk indicators. Indicators of sustainability and risks are defined
by various interdependent factors including the spatial distribution of people and
incomes, the current levels of livestock production and intensification, and the con-
ditions and current use of land resources. Combinations of these factors are used
in proposed models to distinguish different locations by the degree of their risk
exposure in order to achieve robust solutions.

In Sect. 10.3 we introduce a stochastic spatially explicit and dynamic simu-
lation model used for planning livestock and crop production expansion coher-
ently with projected demand increases to 2030. It allows for spatio-temporal and
risk-adjusted analysis of production developments under alternative socio-
economic, demographic, and technological scenarios. This allows to address not
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only environmental and social concerns, but also investigate innovative policies
offering new viable opportunities to farmers, agricultural workers, consumers, and
markets. The approach has also been discussed in [13] with alternative scenario
settings.

The meaningful specification of risk indicators and constraints to define alter-
native allocation scenarios is often constrained by the paucity of data at required
resolutions. In this case, specific downscaling (disaggregating) and upscaling (aggre-
gating) procedures [11] provide a tool for estimation of dependencies between the
geographical factors, constraints, and economic-environmental policy responses. In
Sect. 10.3 we analyze the main features of these procedures for spatial production
allocation with respect to risks and suitability constraints in locations. Section 10.4
introduces a new stochastic optimization approach for planning production allo-
cation when some of the risks in the model of Sect. 10.3 are explicitly taken into
account by stochastic scenarios. In fact, the Sect. 10.3 and Sect. 10.4 distinguish two
types of uncertainties: endogenous uncertainties associated with behavioral princi-
ples regarding production expansion and exogenous uncertainties associated with
parameters of models. Section 10.5 describes alternative allocation scenarios and
presents selected numerical results. Section 10.6 concludes and indicates directions
for future work.

10.2 Cooperation and Co-existence for Risk Sharing

Over the last 20 years, China’s demand and production of livestock products has
increased remarkably due to rapid development of the national economy, urban-
ization, rising living standards, and population growth [5]. Increasing incomes and
changing consumption preferences have boosted production and have shifted the
composition of producers towards specialized enterprises with a number of advan-
tages: they are more feed efficient and profitable, flexible in terms of management,
may better adjust and comply to legislation, and, in general benefit from economies
of scale. In a sense, these trends follow the Ricardo’s assertion [24] that trading
nations gain from production specialization and intensification. Accordingly, we
may expect that production should be undertaken by the most efficient agent, with
intensified production on large farms. This is true only under idealized conditions
when risks are not accounted for.

In reality, agricultural production facilities may be exposed to various risks, but
also may cause different negative impacts. Depending on the location and inten-
sity, values of the facilities are interdependent subject to contingencies, and are
determined endogenously. For this reason, of particular interest are production
chains with large and small units to stabilize the aggregate production. Contrary
to Ricardo, the less efficient and intensive producer may provide the supply of pro-
duction and enhance market stability, say, if the producer’s risks are different and
weakly or even negatively correlated with others. Such diversification of producers
by scale and location hedges against economic and environmental risks, improves
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welfare and ensures continuous supply of agricultural products to markets. Explicit
accounting of risks may considerably alter the composition of production units and
their intensification levels in a chain.

Let us illustrate this with a stylized model of only two producers, i D 1; 2, which
in Sect. 10.4 will be extended to a multi-producer case. Let xi denote the production
level of i -th producer and assume that only one good is produced, e.g., meat; ci

is the cost per unit of produce. The product can also be imported from an external
source with price b per unit of produce. Assume c1 < c2 < b, i.e., the cheapest
source is the first producer. The production has to satisfy the exogenous inelastic
demand d of a given region.

In the absence of risks, the model is formulated as the minimization of the total
cost function:

c1x1 C c2x2 (10.1)

subject to
x1 C x2 D d;

x1 � 0; x2 � 0;
(10.2)

where x1, x2 are production capacities. The optimal solution to the problem is
x�

1 D d , x�
2 D 0, i.e., the production is undertaken by the more efficient producer,

which accords with Ricardo’s views.
In case of risk exposure, the endogenous supply (10.2) is expressed, for example,

as a linear function
a1x1 C a2x2 D d; (10.3)

where a1, a2 are contingencies or “supply” shocks to x1, x2, e.g., due to outbreaks
of diseases, weather risks, or other hazardous events. We assume that a1, a2 are
random variables 0 � ai � 1, which may reduce the supply from i D 1; 2. If
endogenous supply a1x1 C a2x2 falls short of demand d , the residual amount d �
a1x1 � a2x2 must be obtained from external sources at unit import cost b. The
planning of production capacities x1, x2 can be evaluated from the minimization of
total production costs and potential import cost, i.e., the minimization of the function

F.x/ D c1x1 C c2x2 C bEmaxf0; d � a1x1 � a2x2g;

where x1 � 0, x2 � 0 and the expected import cost when the demand d exceeds
the supply a1x1 C a2x2 is bEmaxf0; d � a1x1 � a2x2g. In this case, the role of a
less efficient producer for stabilizing supply is clearly visible.

Assume that only the efficient producer is at risk, that is a2 D 1. Let function
F.x/ have continuous derivatives, e.g., the cumulative distribution function of a1

has a continuous density function. It is easy to see that the optimal positive deci-
sions x�

1 > 0, x�
2 > 0 exist in the case when partial derivatives meet Fx1

.0; 0/ < 0,
Fx2

.0; 0/ < 0. We have Fx1
.0; 0/ D c1 � bEa1, Fx2

.0; 0/ D c2 � b and, perhaps
counter intuitively, the less efficient, but without risks producer 2 is active uncon-
ditionally (since c2 � b < 0). The cost efficient producer 1 is inactive in the case
c1 � bEa1 � 0, leaving production entirely to the higher-cost producer 2. Only in
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the case c1 � bEa1 < 0 both producers are active. Hence, in this example the less
cost-efficient producer is able to stabilize the aggregate production in the presence
of contingencies affecting the more cost-effective producer 1.

To derive the market share of the producer 2, take the derivative

Fx2
.x; x2/ D c2 � bP Œd > a1x C x2	

according to optimality conditions of stochastic minimax problems [8]. This means
that the optimal production level x�

2 > 0 of producer 2 is a quantile defined by the
equation P Œd > a1x

�
1 C x�

2 	 D c2=b, assuming x�
1 > 0 (otherwise x�

2 D d ).
It also depends on x�

1 and all conditions ensuring a positive share x�
1 of pro-

ducer 1. Although not at risk (a2 D 1), the optimal production level of producer
2 is defined by (10.3) through interdependencies among producers participating
in the same market with demand d . Let us now consider the case when both
producers are at risks, i.e., a1 ¤ 1, a2 ¤ 1. The existence of optimal positive
production of both producers follows from similar equations

Fx1
.0; 0/ D c1 � bEa1 < 0;

Fx2
.0; 0/ D c2 � bEa2 < 0:

The structure of optimal solution is similar to the case when only one producer is at
risk. In particular, there may be a situation where c2�bEa2 � 0, when producer 2 is
inactive, but the cost effective producer 1 is active now with the insurance provided
by the external source (import or borrowing).

Apart from exogenous risks, the production and the market are subject to endoge-
nous risks dependent on the level of x1, x2. Negative impacts of production increase
and intensification cause contamination of water, soil, air in the densely popu-
lated areas, which may incur uncertain, possibly highly non-linear costs, increasing
with increasing x1, x2. In this case, the cooperation and market sharing may be
unconditionally advantageous, as the following case illustrates.

Let us now consider a case when costs are increasing non-linear functions, for
the sake of simplicity, quadratic, c1x

2
1 Cc2x

2
2 , c1 < c2, and there are no production

distortions, i.e., a1 D a2 D 1. The problem is to minimize

c1x
2
1 C c2x

2
2

subject to the demand-supply constraints

x1 C x2 D d; x1 � 0; x2 � 0:

At least one producer must be active, say producer 1. It is easy to see from the
standard optimality condition that the optimal level is x�

1 D c1

c1Cc2
d . Therefore,

the optimal level for producer 2 is x�
2 D c2

c1Cc2
d . In other words, both x�

1 > 0,
x�

2 > 0, i.e., unconditional on the cost effectiveness of the producer 1, the increasing
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non-linear production costs require co-existence and cooperation of both produc-
ers. These examples emphasize that market shares are to a larger extent determined
by the production costs, the import price, and the contingencies of producers. In
fact, the less efficient but with lower risk, producer will likely have a higher share
than a more efficient, but with higher risk exposure, producer. For the sake of sim-
plicity, in the above examples the contingencies are characterized by a probability
distribution. In reality, the contingencies, e.g., livestock diseases, environmental pol-
lution, demand fluctuations, economic instabilities, have complex geographical and
temporal patterns of occurrences, are subject to spatial interactions. Their mutual
probability distribution functions may not be analytically tractable and thus require
stochastic simulation models as presented in Sect. 10.3 and downscaling proce-
dures allowing for estimation of required values based on all available auxiliary
statistics and model-derived results. Risk exposures are often characterized by cer-
tain standards commonly imposed as additional safety constraints on admissible
values of some indicators, e.g., constraints on ambient standards in the pollution
control.

10.3 Agricultural Planning Under Risks

10.3.1 A Simulation Model

The stochastic and dynamic livestock and crop production model developed by the
Land Use Change and Agriculture (LUC) program at the International Institute for
Applied Systems Analysis (IIASA) [10,12] integrates demographic, economic, agri-
cultural and environmental modeling components. The IIASA model is essentially
an accounting GIS-based model, which allows to incorporate inherent processes in
an endogenized manner.

The model is developed with the aim to assist in planning sustainable agricul-
tural developments combining various national, subnational and regional interacting
agricultural activities, production, processing, consumers. Together with reasonable
scales of biophysical modeling, this allows for production planning within lim-
ited resources and possibilities to improve or recover production potentials, against
uncertainties of weather, climate change, market situation or other risks such as the
contamination of land or pasture. Simplicity of model’s structure enables to incorpo-
rate individual and collective risks combined with proper equity, fairness and safety
constrains, which leads to welfare generating policies. Contrary to traditional lin-
ear programming [2] and general equilibrium approaches [19], the model allows
to deal with economies of scales, time dynamics and increasing returns. This phe-
nomenon is typical for practical problems of production and resource allocation,
however the discussion of these topics is beyond the scope of the paper. In con-
trast to general equilibrium and standard growth theory, the proposed risk-adjusted
approach permits to deal with issues involving externalities, inherent uncertainties,
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non-monetary values such as environmental degradation, non-marketable risks of
high consequences, social heterogeneities regarding various representative agents.

Allocation of production facilities have to reasonably confirm to the distribution
of current and future consumers including evaluation of the option make-vs.-buy
typically addressed in spatial production planning models [15, 18, 20]. This implies
the analysis of main production and demand driving forces such as population
growth, urbanizations, energy provision, infrastructure, markets and market access.
The discussed model can easily address regional “behavioral” aspects of produc-
tion planning if these are determined by criteria other than pure cost-benefit or risks
analysis. For example, rebalancing production allocation procedure in Sect. 10.3.3
allows to account for heterogeneous cultural traditions, complex interactions of
behavioral, socio-economic, cultural and technological factors [7, 26], or specific
fairness and equity considerations [23].

Within a project on “Policy Decision Support for Sustainable Adaptation of
China’s Agriculture to Globalization” (CHINAGRO [17]), the model included
specifics of China agricultural developments and has been applied for the spa-
tial analysis of future livestock sector expansions. Using alternative economic and
demographic projections [4, 16, 17, 21, 22], the model estimates per capita demand
increases and consumption of major agricultural products, e.g., cereals, meat, milk,
etc. Demand patterns differ between urban and rural areas, between geographical
regions, and vary with income. Thus, with increasing incomes higher quality low-
fat meat, e.g., poultry is preferred. In fact, evolution of consumption is modeled
as a function of group-specific per capita income increases by applying income
elasticities and distinguishing urban and rural consumers.

Agricultural supply is represented at county level, i.e., for about 2,430 spa-
tial units. Smallholders and specialized livestock farms adjust the livestock herd
structure and production in response to the demand increase and the changes of
consumption patterns. The model distinguishes the following livestock types: poul-
try, pigs, dairy, cattle, buffaloes, yaks, sheep and goats, and other large animals
(combining horses, donkeys, and camels). To examine the current situation and the
production intensification trends, modeling of livestock production considers three
management systems: traditional, specialized/industrial, and grazing.

In the environmental module, the environmental loads caused by intensive crop
and livestock production are evaluated against admissible environmental and health
thresholds (which can be proposed by stakeholders and environmental experts).
Indicators used for measuring environmental impacts and human health risk are:
the density of livestock, nutrients from manure and chemical fertilizers in excess
of a location’s nutrient uptake by crop production, urbanization share, density of
population, and others. Combinations of these and other factors (see Sect. 10.5)
reflect different degrees of socio-economic and environmental risk exposures and
can be used to guide sustainable production allocation. The model simulates differ-
ent paths of demand increase, which induces respective location-specific production
adjustments. In some locations, the environmental and health risk indicators may
already exceed admissible thresholds, which signals that further production growth
in these locations should not take place. This raises the question of how to adjust
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the composition and allocation of livestock production facilities in response to
increasing demand but without exacerbating environmental and health problems.
The detailed description of the model and the allocation procedure [12] is rather
lengthy. Therefore, in the following we provide only rather aggregate representation
of their main constraints.

10.3.2 A Simplified Production Model

When planning livestock development, the objective is to allocate the foreseeable
increases of demand for livestock products among the locations and the main pro-
duction systems in the best possible way while accounting for various risks. In the
following model the risks are treated as constraints restricting production expan-
sion. In Sect. 10.4 we introduce a stochastic model that allows to account for risks
and uncertainties in a more explicit manner.

Denote the expected national demand increase (to be satisfied by supply increase)
in livestock product i by di , i D 1;m. Let xijl be the unknown supply increase
in product i at location j and by management system l . In its simplest form, the
problem is to find xijl satisfying the following system of equations:

X
l;j

xijl D di ; (10.4)

xijl � 0 (10.5)

X
i

xijl � bjl ; l D 1;L; j D 1; n; i D 1;m; (10.6)

where bjl are thresholds aggregating environmental and health risks and imposing
limitations to expand production in system l and location j . Equation (10.6) restricts
prevalence of specific production systems. For example, the dominance of industrial
systems in a location inevitably leads to intensification of feeding operations, the
need in recycling facilities, etc. For simplicity of presentation, the constraint (10.6)
captures only production side. Apart from bjl , there may be additional limits on
xijl , xijl � rijl , which can be associated with legislation, for example, to restrict
production within a production belt, or to exclude from urban or protected areas, etc.
Thresholds bjl and rijl may either indicate that livestock in excess of these values
is strictly prohibited or it incurs penalties such as taxes or premiums, for mitigation
of the risks, say, livestock disease outbreaks or environmental pollution. Equations
(10.4)–(10.6) belong to the type of transportation problems. However, there may be
more general constraints of type

P
ij aijlxijl � di as in Sect. 10.2, 0 � aijl � 1,

which require extensions of the proposed approach.
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In general, there exist infinitely many solutions of (10.4)–(10.6). The aim is to
derive a solution that ensures appropriate balance between the efficiency and the
risks. We can distinguish two sources of uncertainties generating potential risks:
behavioral or endogenous uncertainties associated with allocation of new production
capacities and exogenous uncertainties related to parameters of the model. In this
section we consider only the first type of uncertainties. Section 10.4 addresses the
second type of constraints.

The information on the current production facilities, threshold values bjl , rijl ,
and costs are used to derive a prior probability qijl reflecting our belief that a
unit of demand di should be allocated to management system l in location j .
The use of priors is consistent with spatial economic theory (see discussion, e.g.,
in [7, 20, 26]). The likelihood qijl can be inversely proportional to production
costs and inherent risks rijl [6, 7]. In Sect. 10.3.3 we show how it is used in a
rebalancing procedure to determine the solution of (10.4)–(10.6) relying on behav-
ioral, in a sense, risk-averse and cost-minimizing principles defined by this prior as
in (10.10).

10.3.3 A Rebalancing Production–Allocation Algorithm

For simplicity of exposition, let us renumerate all pairs .l; j /, l D 1;L, j D 1; n by
k D 1;K. In this new notation, the problem is formulated as finding yik satisfying
constraints:

X
k

yik D di (10.7)

yik � 0; (10.8)

X
k

yik D bk; i D 1;m; k D 1;K (10.9)

consistent with a prior qik belief that a unit of demand for product i should be
supplied by activity k. For instance, it is reasonable to allocate more livestock to
locations with a larger demand increase, higher productivity, or better feed access.
Assume that this preference structure is expressed in prior qik,

P
k qik D 1 for all i .

In this case, the initial amount of production i allocated to k can be derived as qikdi .
But this may lead to violation of constraints (10.9). Sequential rebalancing [11]
proceeds as follows. Relying on prior probability qik, the expected initial allocation
of di to k is y0

ik
D qikdi , i D 1;m. However, this allocation may not satisfy

constraint
P

i y
0
ik

� bk , j D 1; n. Derive the relative imbalances ˇ0
k

D bk=
P

i y
0
ik

and update z0
ik

D y0
ik
ˇ0

k
, i D 1;m. Now the constraint

P
i yik � bk is satisfied,

k D 1; 2; : : :, but the estimate z0
ik

may cause imbalance for (10.7), i.e.,
P

k z0
ik

¤ di .
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Continue with calculating ˛0
i D di=

P
k z0

ik
, i D 1;m, and updating

y1
ik

D z0
ik
˛0

i , an so on. The estimate ys
ik

can be represented as

qs
ik D .qikˇ

s�1
k /=.

X
j

qikˇ
s�1
k /;

where i D 1;m, k D 1; 2; : : :.
Assume ys D ys

ik
has been calculated. Find ˇs

k
D bk=

P
i y

s
ik

and qsC1
ik

D
.qikˇ

s
j =
P

i qikˇ
s
j /, i D 1;m, k D 1; 2; : : :, and so on.

In this form the procedure can be viewed as a redistribution of required supply
di among producers k D 1; 2; : : : by applying sequentially adjusted qsC1

ik
, e.g., by

using a Bayesian type of rule for updating the prior distribution:

qsC1
ik

D qikˇ
s
k=
X

i

qikˇ
s
k ;

were q0
ik

D qik .
The update is done on an observation of imbalances of basic constraints rather

than observations of random variables. A rebalancing procedure, similar to the one
described above for Hitchcock–Koopmans transportation constraints (10.7)–(10.9),
was proposed by G.V. Sheleikovskii (see a proof and references in [3]) for estima-
tion of passenger flows between regions. A proof of its convergence to the optimal
solution maximizing the cross-entropy function

X
i;k

yikln
yik

qik

(10.10)

is given in [11] for rather general types of constraints. It should be noted that in
our model we use equality constraints (10.9). The general inequality constraints are
reduced to this model by introduction of a fictitious demand constraint.

10.4 Stochastic Production Allocation Model

The approach presented in Sect. 10.3 evaluates the increase of livestock produc-
tion relying on individual behavioral principles set by priors. There, the risks are
characterized in a simplified deterministic way by imposing certain standards as
additional “safety” constraints. In general, these constraints may depend on some
scenarios of potential future shocks. The behavioral uncertainty in Sect. 10.3 can
also be treated in a stochastic manner as allocation of random demand di .!/ among
points k D 1;K with respect to the prior qik , which is a topic of a separate paper.

Let us consider now a more general multi-producer model in a stochastic envi-
ronment analogous to the Example of Sect. 10.2. We may assume that there is a
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coordinating agency. The goal of this agency is to maximize the overall performance
of the production chain with large and small units to stabilize the aggregate produc-
tion and increase the facility values. Suppose that the agency has to determine levels
of livestock product i in locations k in order to meet stochastic demand di .!/, where
! D .!1; !2; : : :/ is a vector of all contingencies affecting demand and production.
Naturally to assume that the decision on production expansion has to be made before
the information on contingencies arrives. In this case, the total ex-ante production
may not exactly correspond to the real demand, i.e., we may face both oversupplies
and shortfalls. In other words, the amount of production yik , k D 1;K, which is
planned ex-ante to satisfy the demand di .!/, yi .!/ D P

aik.!/yik may underes-
timate (yi .!/ < di .!/) or overestimate (yi .!/ > di .!/) the real demand di .!/

under revealed contingencies and the safety constraints imposed by strict thresholds
bk in (10.9). The constraint (10.9) necessitates, in general, additional supply of ex-
ante production zi � 0 from external sources (say, through international trade). It
may also require the ex-post redistribution of the production from internal produc-
ers, k D 1;K, to eliminate arising shortfalls and oversupplies in locations. For now,
let us ignore these ex-post redistributional aspects assuming that the most significant
impacts are associated with ex-ante decisions yik and zi . In fact, the presented fur-
ther model can be easily extended to represent the ex-post adjustments of decisions
yik , zi , as well as temporal aspects of production planning.

Let cik be the unit production cost. In more general model formulation, cik may
also include the unit transportation cost for satisfying location-specific demand.
Then the model of production planning among the facilities can be formulated as
the minimization of the total cost function:

f .y; z/ D
X
i;k

cikyik C
mX

iD1

ei zi ;

subject to constraints (10.8), (10.9), and the following additional safety constraints

P Œ

KX
kD1

aik.!/yik C zi � di .!/	 � pi ; zi � 0; i D 1;m; (10.11)

where ei > 0, i D 1;m, denotes the unit import cost. A safety level pi , 0 < pi < 1,
defines (ensures) the stability of the supply-demand relations for all possible scenar-
ios (contingencies) !. The introduction of constraints of type (10.11) is a standard
approach for characterizing stability in case of the insurance business, operations
of nuclear power plants and other risky activities especially when involving catas-
trophic risks [9]. Safety constraints of type (10.11) are usually used in cases where
impacts of random interruptions can not be easily evaluated. In this case, the value
pi is selected such that an expected shortfall occurs only, say, once in 100 month,
i.e., pi D 0:01.

The main methodological challenge is concerned with the lack of convex-
ity of constraints (10.11). Yet, the remarkable fact is that the model defined by
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(10.8)–(10.11) can be effectively solved by linear programming methods due to the
following equivalent convex form of this model. Let us consider the minimization
of the expectation function

F.y; z/ D f .y; z/C
mX

iD1

˛iEmaxf0; di .!/ �
KX

kD1

aik.!/yik � zi g; (10.12)

subject to constraints (10.8), (10.9), and zi � 0, i D 1;m. The minimization of func-
tion F.y; z/ is a rather specific case of stochastic minimax models analyzed (both
optimality conditions and solution procedures) in [8]. In particular, if F.y; z/ has
continuous derivatives with respect to zi , e.g., the probability distribution function
of ! has continuous density function, then

@F

@zi

D ei � ˛iEI.di.!/ �
KX

kD1

aik.!/yik � zi � 0/

where I.� � 0/ is the indicator function: I.� � 0/ D 1, if � � 0, and I.� � 0/ D 0

otherwise. Therefore, we can rewrite @F
@zi

as

@F

@zi

D ei � ˛iP Œdi .!/ �
KX

kD1

aik.!/yik � zi � 0	; (10.13)

which allows to establish connections between the original model defined by (10.8)–
(10.11) and the minimization of convex function F.y; z/ defined by (10.12).

Assume .y�; z�/ minimizes F.y; z/ subject to constraints (10.8), (10.9), and
zi � 0, i D 1;m. Assume also that ei < ˛i , i D 1;m. Then from (10.13) it
follows that for all i with positive components z�

i > 0, i.e., when @F
@zi

D 0, the
optimal solution .y�; z�/ satisfies the following safety constraints

P Œdi .!/�
KX

kD1

aik.!/yik � zi � 0	 D ei=˛i : (10.14)

Moreover, for all i with z�
i D 0, i.e., when @F

@zi
� 0, the optimal .y�; z�/ satisfies the

following safety constraint

P Œdi .!/�
KX

kD1

aik.!/yik � 0	 � ei=˛i : (10.15)

If we choose ˛i as ei=˛i D 1 � pi , i.e., ˛i D ei=.1 � pi /, then (10.14)–(10.15)
become equivalent to the safety constraint (10.11) of the original model (10.8)–
(10.11). In other words, the minimization of convex function F.y; z/ defined by
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(10.12) subject to (10.8), (10.9), and zi � 0, i D 1;m, yields the optimal solu-
tion of the original model (10.8)–(10.11). Efficient computational procedures for
solving stochastic minimax problems with objective functions defined as in (10.12)
can be found in [8, 25]. In particular, the paper [25] discussed the applicability of
linear programming methods in cases where the original model defined by a gen-
eral probability distributions of ! can be sufficiently approximated by models with
discrete probability distributions. This paper establishes also important connections
between the minimization of (10.12)-type functions and Conditional-Value-at-Risk
risk measure.

The minimization of function (10.12) can also be solved by a stochastic quasi-
gradient method [8]. In applying this method to minimization of (10.12), the
differentiability of F.y/ and any assumption on probability distribution of ! is not
required. Also, the probability distribution of ! may only be given implicitly. For
instance, only observations of random di .!/ and aik.!/ may be available or only
a Monte Carlo procedure (pseudo-sampling simulation model such as described in
Sect. 10.3.1) is used to simulate supply and demand. In the following section we
illustrate some applications by using only the rebalancing algorithm described in
Sect. 10.3.3; elaboration of the outlined stochastic allocation algorithm is a topic for
future implementation.

10.5 Numerical Experiments

The model in Sect. 10.3 is used in the analysis of current and plausible future
livestock production allocation and intensification in China. Namely, in each time
period the simulation model generates levels and geographic distribution of demand
for livestock products coherent with urbanization processes [22], demographic
change [4] and expected growth of incomes [16, 17]. Production allocation and
intensification levels are projected from the base year data for the main livestock
types (pigs, poultry, sheep, goat, cattle) and management systems (grazing, indus-
trial/specialized, traditional) at the level of counties (about 2,500 administrative
units). For production allocation, we used the sequential rebalancing procedure
described in Sect. 10.3.3. Two scenarios of future production allocation correspond-
ing to different priors qik , i D 1;m, k D 1;K, are compared: (1) an intensification
scenario, when production is allocated proportionally to the geographical patterns
of demand increases, and (2) a risk-adjusted scenario that combines the preference
structure as defined by the geographical distribution of demand with indicators of
environmental pressure.

Intensification scenario. Currently, common practice is to allocate intensive live-
stock production in areas with good access to consumers, close to high demand and
high population density [1]. In many practical problems of large dimensionality,
to describe the “profitability” of a location it has been standard practice to use an
ad hoc but reasonable measure referred to as market access function. The typical
market access function measures the potential of location k as a weighted sum of
purchasing power of all other locations in some vicinity of the given k. The weights
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are defined either as a function of distance or as a function of other factors, say,
costs or losses. In these studies, each county is characterized by its market access
calculated as a weighted sum of demand for product i in nearby counties within
some vicinity. Values Q4ik, determine a profit-based prior qik , k D 1;K for allo-
cation of demand increase among production units in locations as it is described in
Sect. 10.3.3.

Risk-adjusted scenario. The objective of this scenario is to care for the balance
between profitability of the agricultural production, rural welfare, and the respect
of nature and the environment. Challenges of spatially-explicit planning for sustain-
ability are related to the choice of adequate location-specific indicators to guide rural
development within defined socio-economic and environmental objectives. While
information on economic and livelihood conditions at location may be available
from statistics and census data, estimation of agricultural pollution and health risks
(for example, related to livestock diseases) is a more challenging task.

The agricultural pollution falls into the category of non-point source pollution,
which is geographically disperse, and the likelihood of disease occurrences is deter-
mined by a combination of factors. Measurements of the pollution level, health
risks, and related impacts or losses are hardly possible as they depend on multiple
highly uncertain socio-economic and environmental factors: weather patterns, pop-
ulation density, level of development, agricultural inputs and intensification levels,
etc. In many practical situations when the target variable is impossible or impractical
to measure, it is possible to use context-specific proxies or even a set of prox-
ies that can considerably well represent the state of the non-measurable variable
(see, e.g., [13]).

For planning sustainable agricultural developments, the profit-driven prior of
the “intensification scenario” is adjusted with such variables as nutrients in excess
of crop uptakes, density of livestock biomass, etc., are used to characterize envi-
ronmental risks. Health norms and associated health risks are introduced by a
combination of urbanization share (share of urban population in total population)
and availability of non-residential area suitable for further production expansion
in each location. In general, allocation prior is defined by a compound probability
distribution function of relevant variables.

The intensification scenario implicitly minimizes the transportation costs as the
production concentrates in the proximity of large markets in urban areas with high
demand. In the alternative scenario, which is a compromise between the demand
driven production allocation and the considerations of health and environmental
risks, the production is shifted to more distant locations characterized by availability
of cultivated land, lower livestock and population density, which increases trans-
portation. However, the measure of goodness for the scenarios accounts not only
for the transportation cost but also includes environmental and health risk proxies.
Thus, the two scenarios are compared with respect to number of people in China’s
regions exposed to different categories of environmental risks.

Environmental risks are measured in terms of environmental pressure in relation
to the coincidence of three factors: density of confined livestock, human population
density, and availability of cultivated land. For this purpose some 2,434 counties
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Fig. 10.1 Environmental pressure from confined livestock production, 2000

were classified as follows into seven categories, namely: (a) No confined livestock,
i.e., counties in scarcely populated areas (desert or mountain/plateau) and with
very little confined livestock; (b) No environmental pressure, i.e., counties with
substantial crop production but with little confined livestock; (c) Slight environ-
mental pressure counties with low environmental pressure from confined livestock
production; (d) Moderate environmental pressure, i.e., counties with moderate envi-
ronmental pressure from confined livestock production; (e) Environmental pressure,
i.e., counties with substantial urbanization and environmental pressure from con-
fined livestock production; (f) High Environmental pressure, i.e., counties with
substantial urbanization and high environmental pressure from livestock produc-
tion, and (g) Extreme environmental pressure i.e., counties with high degree of
urbanization coinciding with high environmental pressure from confined livestock
production. Figure 10.1 presents the above classification of environmental pressure
for the year 2000. Figure 10.1 indicates that currently (i.e., year 2000) hot-spots
of environmental pressure are located mainly in provinces covering the North China
Plain, the Sichuan basin, and several locations along the coast of South China. Loca-
tions of livestock production concentrate around or in the vicinity of areas where the
livestock demand grows fast, e.g., highly populated and urban areas.

Figure 10.2 presents diagrams of the distribution of current population against the
mapped classes of severity of environmental pressures from livestock. The left dia-
gram shows absolute numbers, i.e., million people per class and region. The diagram
on the right gives shares of population within each region falling into respective
classes. For year 2000, the estimates suggest that about 20% of China’s population
lives in counties characterized as having high or extreme severity of environmental
pressure from intensive livestock production. In the “intensification” scenario, by
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Fig. 10.3 Relative (share of total population) distribution of population according to classes
of severity of environmental pressure from livestock, 2030: a “intensification” scenario,
b risk-adjusted scenario

2030 this population share increases to 36% (Fig. 10.3a), i.e., from one-fifth in 2000
to about one-third in 2030. Looking only at the highest pressure class, the South
region appears to have the largest number of people and the highest population share
in such unfavorable environmental pressure, about 38 million or 22% of population
in 2000 increasing to nearly 45 million or 17% in 2030. The region with the high-
est occurrence of people (both absolute and relative) in the two highest pressure
classes is the North region, with more than 40% of the population. In 2030, the esti-
mated share becomes 57%, followed by the South region with 27% population in
two highest pressure classes in 2000 and with 44% in 2030. Looking at the second
allocation scenario, the positive changes are quite visible (see Fig. 10.3b). The esti-
mate of people living in highest pressure class for South region changes from 45
to 42 million. Percentage of population in the two highest pressure classes for the
same region varies between scenarios as 43 for the bad and 41 for the good. For
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North region, 56.5% of total population will live in two highest pressure classes in
2030 in bad scenario and only 52.3 – in good, In North East, the highest pressure
classes change percentage from about 18 to less than 10. The intensification scenario
(1) implicitly minimizes the transportation costs as production concentrates in the
vicinity of urban areas with high demand. In the alternative scenario (2), the pro-
duction is shifted to more distant locations characterized by availability of cultivated
land, lower livestock and population density, but at the expense of additional trans-
portation. Environmental sustainability aspects of the two scenarios were compared
with respect to the share of people in China’s regions exposed to different sever-
ity classes of environmental risks. Environmental risks are measured in terms of
environmental pressure in relation to the coincidence of three factors: density of
confined livestock, human population density, and availability of cultivated land.
For year 2000, the estimates suggest that about 20% of China’s population lives in
counties characterized as having high or extreme severity of environmental pressure
from intensive livestock production. In the “intensification” scenario, by 2030 this
population share increases to 37%, while in the second, environmentally friendly
scenario, it stays below 30%. To finally compare the two scenarios, it is necessary
to “normalize” gains due to improved life conditions with expenses of additional
transportation.

10.6 Conclusions

This paper addresses some important aspects of agricultural production planning
under risks, uncertainties and incomplete information. When planning agricultural
developments, the objective is to allocate the foreseeable increases of demand in
the best possible way while accounting for various risks associated with production
and suitability criteria for profitability, transport, health and environmental impacts.
Models for production allocation under risks and uncertainties may have consid-
erable implications. In particular, the allocation of livestock production away from
urban peripheries where pressure is highest to regions where feed grains are in abun-
dance could decrease the income gaps between the regions. Similarly, establishment
of agricultural pollution regulations, e.g., taxation, at locations with high environ-
mental loads may change the balance of agricultural market attracting imports from
abroad.

In Sect. 10.3, the production allocation procedure is proposed for situations when
the available information is given in the form of aggregate values without provid-
ing necessary local perspectives. Therefore, the main issue is to downscale these
values to the local levels consistently with location specific behavioral principles
based on some priors. Yet, many practical situations may require more rigorous
probabilistic treatment of priors and safety constraints. Section 10.4 proposes an
allocation mechanism with more general treatment of uncertainties and risks based
on principles of stochastic optimization. This is a promising approach for a coordi-
nating agency aiming to improve the overall performance of the production chain.
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By diversifying large and small units the agency may stabilize the aggregate produc-
tion and increase “utility” of individual facilities. The application of this allocation
procedure is a topic for future research.
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Chapter 11
Dealing with Uncertainty in GHG
Inventories: How to Go About It?

Matthias Jonas, Thomas White, Gregg Marland, Daniel Lieberman,
Zbigniew Nahorski, and Sten Nilsson

Abstract The assessment of greenhouse gases emitted to and removed from the
atmosphere is high on both political and scientific agendas. Under the United
Nations Framework Convention on Climate Change, Parties to the Convention
publish annual or periodic national inventories of greenhouse gas emissions and
removals. Policymakers use these inventories to develop strategies and policies for
emission reductions and to track the progress of these policies. However, greenhouse
gas inventories (whether at the global, national, corporate, or other level) contain
uncertainty for a variety of reasons, and these uncertainties have important scientific
and policy implications. For scientific, political, and economic reasons it is impor-
tant to deal with the uncertainty of emissions estimates proactively. Proper treatment
of uncertainty affects everything from our understanding of the physical system to
the economics of mitigation strategies and the politics of mitigation agreements. A
comprehensive and consistent understanding of, and a framework for dealing with,
the uncertainty of emissions estimates should have a large impact on the functioning
and effectiveness of the Kyoto Protocol and its successor. This chapter attempts to
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pull together relevant fragments of knowledge, allowing us to get a better picture of
how to go about dealing with the uncertainty in greenhouse gas inventories.

11.1 Introduction

The assessment of greenhouse gases (GHGs) emitted to and removed from the atmo-
sphere is high on both political and scientific agendas. Under the United Nations
Framework Convention on Climate Change (UNFCCC), Parties to the Convention
(so-called Annex I countries) have published annual or periodic national invento-
ries of GHG emissions and removals since the mid 1990s. Policymakers use these
inventories to develop strategies and policies for emission reductions and to track
the progress of these policies. Where formal commitments to limit emissions exist,
regulatory agencies and corporations rely on inventories to establish compliance
records. Scientists, businesses, the public, and other interest groups use inventories
to better understand the sources and trends in emissions. Table 11.1 provides gen-
eral background information on the six GHGs, or groups of gases, considered under
the Kyoto Protocol and their global emissions as reported by the Intergovernmental
Panel on Climate Change (IPCC) in its assessment reports for the late 1990s and
beyond.

GHG inventories contain uncertainty for a variety of reasons – for example, the
lack of availability of sufficient and appropriate data and the techniques to process
them. Uncertainty has important scientific and policy implications. However, until
recently, relatively little attention has been devoted to how uncertainty in emissions
estimates is dealt with and how it might be reduced. Now this situation is chang-
ing, with uncertainty analysis increasingly being recognized as an important tool
for improving national, sectoral, and corporate inventories of GHG emissions and
removals [5] (see also [6] and [7]).

At present, Parties to the UNFCCC are encouraged, but not obliged, to include
with their periodic reports of in-country GHG emissions and removals, estimates
of the uncertainty associated with these emissions and removals; consistent with
the Intergovernmental Panel on Climate Change’s (IPCC) good practice guidance
reports [8,9]. Inventory uncertainty is monitored, but not regulated, under the Kyoto
Protocol [5].

We argue that it makes a big difference in the framing of policies whether or not
uncertainty is considered: reactively, because there is a need to do so; or proactively,
because difficulties are anticipated. We follow [7, p. 2–3] (see also [5]) who clearly
state that uncertainty estimates are not intended to dispute the validity of national
GHG inventory figures. Although the uncertainty of emissions estimates under-
scores the lack of accuracy that characterizes many source and sink categories, its
consideration can help to establish a more robust foundation on which to base policy.

According to the IPCC good practice guidance reports (notably, [8, p. 6.5]),
uncertainty analysis is intended to help “improve the accuracy of inventories in
the future and guide decisions on methodological choice.” Uncertainty analyses
function as indicators of opportunities for improvement in data measurement, data
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Table 11.1 The six GHGs, or groups of gases, considered under the Kyoto Protocol to the
UNFCCC [1, Annex A] and their global emissions as reported by the IPCC in its Third and Fourth
Assessment Reports for the late 1990s and beyond. The GWP (last column) describes the global
warming potential for a given GHG. It allows expressing the emissions of a non-CO2 GHG in
terms of CO2-equivalent, which is the amount of CO2 that causes the same global warming when
measured over a specified timescale (generally, 100 years). The relative uncertainty ranges within
which Annex I countries generally report the emissions of these GHGs are specified in Table 11.3

Kyoto gas Global emissions GWPa

[2, Table 4.1], [4, Tables 7.1, 7.6, 7.7] [3, Table TS.2]

Anthropogenic Natural
late 1990sb late 1990sb

2000–2005: 2000–2005:
Carbon dioxide (CO2) 7.2 ˙ 0.3 Pg C �3.1 ˙ 0.8 Pg Cc 1

26.4 Pg CO2-eq. 11.4 Pg CO2-eq.

1996–2001: 1996–2001:
Methane (CH4) 428 Tgd 168 Tge 21

9.0 Pg CO2-eq. 3.5 Pg CO2-eq. (25)

1990s: 1990s:
Nitrous oxide (N2O) 6.7 Tg Nf 11.0 Tg Ng 310

6.5 Pg CO2-eq. 10.7 Pg CO2-eq. (298)

Hydroflurocarbons (HFCs) See below None See below

Perfluorocarbons (PFCs) See below Negligible See below

Sulfur hexafluoride (SF6) �6 Gg Negligible 23,900
0.14 Pg CO2-eq. (22,800)

Important HFCs and PFCs:

HFC-23 (CHF3) �7 Gg None 11,700
0.08 Pg CO2-eq. (14,800)

HFC-134a(CH2FCF3) �25 Gg None 1,300
0.03 Pg CO2-eq. (1,430)

HFC-152a (CH3CHF2) �4 Gg None 140
0.56 Tg CO2-eq. (124)

PFC-14 (CF4) �15 Gg Negligible 6,500
0.10 Pg CO2-eq. (7,390)

PFC-116 (C2F6) �2 Gg None 9,200
0.02 Pg CO2-eq. (12,200)

a The net global warming potential (GWP) refers to a time horizon of 100 years. The GWPs stem
from the IPCC Second Assessment Report (Climate Change 1995) as these are used for reporting
under the UNFCCC. The most recent GWP updates for the IPCC Fourth Assessment Report (Cli-
mate Change 2007) are reported in addition (in parentheses)
b If not indicated otherwise
c Uptake: net atmosphere-to-land flux; and atmosphere-to-ocean flux
d Emissions: coal mining; gas, oil and industry; ruminants; rice agriculture; and biomass burning
e Emissions: wetlands and termites
f Emissions: fossil fuel combustion and industrial processes; agriculture; biomass and biofuel burn-
ing; human excreta; rivers, estuaries and coastal zones; and atmospheric deposition
g Emissions: soils under natural vegetation; oceans; and atmospheric chemistry
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collection, and calculation methodology. Only by identifying elements of high
uncertainty can methodological changes be introduced to address them. Currently,
most countries that perform uncertainty analyses do so for the express purpose of
improving their future estimates; and the rationale is generally the same at the cor-
porate and other levels. Estimating uncertainty helps to prioritize resources and to
take precautions against undesirable consequences. Depending on the intended pur-
pose of an inventory, however, this may not be the extent of the utility of uncertainty
analysis. Another rationale for performing uncertainty analysis is to provide a pol-
icy tool, a means to adjust inventories or analyze and compare emission changes
in order to determine compliance or the value of a transaction. While some experts
find the quality of uncertainty data associated with national inventories insufficient
to use for these purposes, others offer justification for conducting uncertainty analy-
ses to inform and enforce policy decisions. Some experts suggest revising the system
of accounting on which current reduction schemes are based, while others seek to
incorporate uncertainty measurements into emission and emission change analysis
procedures. The latter could offer policy makers enhanced knowledge and additional
insight on which to base GHG emission reduction measures.

We follow the proactive track in dealing with uncertainty. In Sect. 11.2 we look
into the question of why uncertainty matters in general. Sections 11.3 and 11.4
elaborate on Sect. 11.2. In Sect. 11.3 we provide an overview of the state-of-the-
art of analyzing emission changes in consideration of uncertainty. We envision this
analysis taking place in accordance with, not independent of, a dual-constrained
(bottom-up/top-down) verification framework in Sect. 11.4. We summarize our
findings in Sect. 11.5.

11.2 Does Uncertainty Matter?

Reference [5] (see also [7]) offers a number of reasons why the consideration of
uncertainty in GHG inventories is important:

� Understanding the basic science of GHG sources and sinks requires an under-
standing of the uncertainty in their estimates.

� Schemes to reduce human-induced global climate change rely on confidence that
inventories of GHG emissions allow the accurate and transparent assessment of
emissions and emission changes.

� Uncertainty is higher for some aspects of a GHG inventory than for others.
For example, past experience shows that, in general, methods used to estimate
nitrous oxide (N2O) emissions are more uncertain than those for methane (CH4)
and much more uncertain than those for carbon dioxide (CO2). Whether in
multi-gas, cross-sectoral, international comparisons, trading systems, or in com-
pliance mechanisms, approaches to uncertainty analysis need to be robust and
standardized across sectors and gases, as well as among countries.

Uncertainty analysis helps to understand uncertainties: better science helps to
reduce them. Better science needs support, encouragement and investment. Full car-
bon accounting (FCA) – or full accounting of emissions and removals, including all
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GHGs – in national GHG inventories is important for advancing the science. FCA
is a prerequisite for reducing uncertainties in our understanding of the global cli-
mate system. From a policy viewpoint, FCA could be encouraged by including it in
reporting emissions, but it might be separated from targets for reducing emissions.
Future climate agreements will become more robust if there is explicit account-
ing for the uncertainties associated with emission estimates. Hence, understanding
uncertainty matters in many ways.

11.3 State of the Art of Analyzing Uncertain Emission Changes

In this section we elaborate on Sect. 11.2 by looking into the state-of-the-art of ana-
lyzing changes in emissions and removals of GHGs in consideration of uncertainty.
From a physical (measurability) point of view, the uncertainty surrounding emission
changes becomes more important in relative terms the smaller are the changes in
the emissions, that is, the smaller the dynamics that they exhibit. Two options exist
to avoid situations of great uncertainty vs. small change: (1) allowing more time
so that greater emission changes can materialize; and (2) increasing measurability,
e.g., by focusing on GHG emissions that can be grasped with “sufficient” certainty
so that their changes are still “significant” in spite of the uncertainty. (Alternatively,
emissions that do not possess these characteristics should be treated differently, e.g.,
separately from single-point emission targets (see above), or only in connection with
targets that are defined as emission intervals or corridors.) Given that renegotiating
the commitment times under the Kyoto Protocol cannot happen, Option 1 is not con-
sidered further. Option 2 requires the application of techniques that allow analyzing
emission changes quantitatively (i.e., on an intra-technique basis) and qualitatively
(i.e., on an inter-technique basis). Any of these techniques can be applied to GHG
emissions individually, that is, they allow a detailed and thorough comparison of
agreed or realized changes in emissions.

While pursuing the analysis of uncertain emission changes (also termed emis-
sion signals), we typically refer to the country scale, the principal reporting unit
for reporting GHG emissions and removals under the Kyoto Protocol, but we could
also refer to any other spatio-thematic scale. Our main motivation for studying the
uncertainty of country-scale emissions estimates is the still unresolved issue of com-
pliance (see also [10]). For most countries the emission changes agreed on under the
Kyoto Protocol are of the same order of magnitude as, or smaller than, the uncer-
tainty that underlies their combined CO2 equivalent emissions estimates (compare
the right column of Table 11.2 with the second column of Table 11.3).1 Tech-
niques are not in place to analyze uncertain emission signals from various points

1 The issue of great uncertainty vs. small change also arises for small, intermediate, reduction
targets. For instance, the EU discusses annual reduction steps in the context of an overall (EU-
wide) GHG emission reduction of 20% by 2020 compared to 2005 [11, p. 7]. These steps follow a
linear reduction path and are small (<2% per year; not compounded).
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Table 11.2 Countries included in Annex B to the Kyoto Protocol (KP) and their emission limi-
tation and reduction commitments (commitment period for all countries: 2008–2012; for the ISO
Country Code for country abbreviations see below). The individual commitments have to be seen
in context, i.e., vis-à-vis the uncertainty that underlies the reporting of emissions at the country
scale (see Table 11.3). Sources: [14, Article 3.8, Annex B], [1, Decision 11/CP.4], [15], [16], [17,
National Inventory Submissions], [18, Sect. 2.b]

Country Annex B Base year(s) KP
group country for CO2, CH4, N2O commitment %

(for HFCs, PFCs, SF6)

1a See belowa 1990 (1995)
See belowb 1990 (1990)

1b RO 1989 (1989) 92
1c BG 1988 (1995)
1d SI 1986 (1995)

2 USc 1990 (1990) 93

3a JP 1990 (1995)
CA 1990 (1990) 94

3b PL 1988 (1995)
3c HU 1985–1987 (1995)

4 HR 1990 (1995) 95

5a RU 1990 (1995)
100

5b NZ, UA 1990 (1990)

6 NO 1990 (1990) 101
7 AU 1990 (1990) 108
8 IS 1990 (1990) 110

aCountry Group 1a: BE, CZ, DE, DK, EC (D EU-15; the EU-27 does not have a common Kyoto
target), EE, ES, FI, GR, IE, LT, LU, LV, MC, NL, PT, SE, UK. Member States of the EU-27 but
without individual Kyoto targets: CY, ML. Listed in the Convention’s Annex I but not included
in the Protocol’s Annex B: BY and TR (BY and TR were not Parties to the Convention when the
Protocol was adopted). BY requested becoming an Annex B country by amendment to the Kyoto
Protocol at CMP 2 in 2006. (CMP D Conference of the Parties serving as the Meeting of the Par-
ties to the Kyoto Protocol.) BY’s base years and emission reduction commitments are 1990 (1995)
and 92%, respectively
bCountry Group 1a: AT, CH, FR, IT, LI, SK
cCountry Group 2: The US has indicated its intention not to ratify the Kyoto Protocol. The US
reports all its emissions with reference to 1990. However, information on 1990 in its national
inventory submissions does not reflect or prejudge any decision that may be taken in relation to
the use of 1995 as base year for HFCs, PFCs and SF6 in accordance with Article 3.8 of the Kyoto
Protocol

Abbreviations: AT Austria, AU Australia, BE Belgium, BG Bulgaria, BY Belarus, CA Canada, CH
Switzerland, CY Cyprus, CZ Czech Republic, DE Germany, DK Denmark, EC European Com-
munity, EE Estonia, ES Spain, FI Finland, FR France, GR Greece, HR Croatia, HU Hungary, IE
Ireland, IS Iceland, IT Italy, JP Japan, LI Liechtenstein, LT Lithuania, LU Luxembourg, LV Latvia,
MT Malta, MC Monaco, NL Netherlands, NO Norway, NZ New Zealand, PL Poland, PT Portugal,
RO Romania, RU Russian Federation, SE Sweden, SI Slovenia, SK Slovak Republic, TR Turkey,
UA Ukraine, UK United Kingdom, US United States
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Table 11.3 Emissions and/or removals of GHGs, or combinations of GHGs, classified accord-
ing to their relative uncertainty ranges (reference: country scale). The bars of the arrows indicate
the dominant uncertainty range for these emissions and removals, while the tops of the arrows
point at the neighboring uncertainty ranges, which cannot be excluded but appear less frequently.
LULUCF stands for the direct human-induced land-use, land-use change, and forestry activities
stipulated by Articles 3.3 and 3.4 under the Kyoto Protocol [14]. The arrows are based on the total
uncertainties that are reported for the Member States of the EU-25 [19] and the expertise avail-
able at IIASA’s Forestry Program (cf. http://www.iiasa.ac.at/Research/FOR/unc bottomup.html)
and elsewhere (e.g., [20, Sects. 2.3.7, 2.4.1], [9, Sect. 5.2]). Source: [21, Table 1], modified

Class Relative uncertainty (%) Classification of emissions
for 95% confidence interval and/or removals

1 0–5 + CO2 from fossil fuel (plus cement)
2 5–10 m All Kyoto GHGs
3 10–20 m Plus LULUCF
4 20–40 +
5 >40 + CO2 net terrestrial (>80%)

of view, ranging from signal quality (defined adjustments, statistical significance,
detectability, etc.) to the way uncertainty is addressed (trend uncertainty or total
uncertainty). Any such technique, if implemented, could “make or break” com-
pliance, especially in cases where countries claim fulfillment of their reduction
commitments. As already mentioned above, inventory uncertainty is monitored, but
not regulated, under the Protocol. It remains to be seen whether the current status of
ignoring uncertainty and abstaining from specifying clear rules on how to go about
it will survive in the long term (see Compliance under the Kyoto Protocol in [12]) .

The analysis of emission signals in consideration of uncertainty can take three
forms involving a multitude of techniques: (1) preparatory, (2) midway, and (3)
retrospective signal analysis. Preparatory signal analysis allows generating useful
knowledge that one would ideally wish to have at hand before negotiating interna-
tional environmental agreements such as the Kyoto Protocol or its successors. For
instance, it is important to know beforehand how great the uncertainties could be,
depending on the desired level of confidence in the emission signal. What is the
signal one wishes to detect and what is the risk one is willing to tolerate in meeting
an agreed emission limitation or reduction commitment? To this end, it is gener-
ally assumed that (1) the emissions path between the base year and commitment
year/period is a straight line (this is only a boundary condition, not a restriction);
and (2) our knowledge of uncertainty in the commitment year/period will be as
good as today’s, in relative (qualitative) terms. Preparatory signal analysis allows
factoring in the change in uncertainty, which can be due to learning and/or can
result from structural changes in the emitters. However, researchers only begin to
grasp these two determinants and to discriminate between them [22]. Handling the
change in uncertainty is within reach but more data and research are needed. Being
able to estimate the change in uncertainty is important in setting appropriate emis-
sion reduction targets, but one must not forget that preparatory signal analysis has
not yet been applied in its simplest form to Kyoto commitments.

http://www.iiasa.ac.at/Research/FOR/unc_bottomup.html
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The state-of-the-art of preparatory signal analysis is well summarized by [23]
(see also [21,24–26]), who compare six of the most widely discussed techniques.2 In
addition, preparatory signal analysis also allows monitoring the success of a country
in reducing its emissions along a prescribed emissions target path between its base
year and commitment year/period. This positive feature opens up a range of policy-
relevant applications.3

Midway and retrospective signal analysis are less advanced than preparatory sig-
nal analysis. So far, midway signal analysis still focuses on emissions rather than
on emissions changes. Midway signal analysis is an attempt to assess information
on an emissions path at some point in time between base year and commitment.
It considers a signal’s path realized so far vis-à-vis a possible path toward the
agreed emission limitation or reduction commitment. In this process, the dynamical
moments (velocity, acceleration, etc.) of the historical and envisioned paths are com-
pared, and this indicates (first-order control) whether or not it is likely to achieve the
emission commitment. Midway signal analysis generally incorporates information
from emissions prior to the base year to determine the signal’s dynamical moments
more accurately. The techniques explored so far to grasp the dynamics of, mostly,
fossil-fuel CO2 emissions encompass: polynomial regressions [29]; integral trans-
forms [30]; and smoothing splines, parametric modeling and geometric Brownian
motion modeling [31]. A related technique based on the analysis of short-term vs.
long-term attainability and controllability has been followed by [32] and [33].

Retrospective signal analysis of emission changes becomes important when
countries seek to assess their actual achievements in the commitment year/period.
We distinguish between two fundamentally different approaches: static and dynamic.
The static approach is identical to the one taken under preparatory signal analy-
sis except that the agreed emission limitation or reduction commitment is replaced
by the actual emission achievement. The emission signal is evaluated in terms
of uncertainty, detectability or statistical significance, risk, etc. In contrast, the
dynamic approach additionally considers how the emission signal has actually
evolved between the base year and the commitment year/period, taking its dynamics
into account. Here, expertise gained under midway analysis can serve as a platform
as it also aims at evaluating full emission paths.

In their commensurability exercise, with its focus on six preparatory signal anal-
ysis techniques, Jonas and colleagues [23] concluded that a single best technique
does not, and most likely will not, exist.4 This is because the available techniques

2 It is noted that attempts exist to put one of these six techniques to analyze uncertain emission
changes, the verification time concept, on a stochastic basis (see Ermolieva et al., herein; and also
[27] and [28]). It is correct to say that this technique still undergoes scientific scrutiny and awaits
adjustment in order to operate in a preparatory mode.
3 See http://www.iiasa.ac.at/Research/FOR/unc overview.html for an overview on IIASA’s moni-
toring reports and the countries that are monitored.
4 For the authors’ study and numerical results see http://www.iiasa.ac.at/Research/FOR/unc
prep.html. Referring readers to this website facilitates easy replication for follow-up studies or,
as in this case, avoiding duplication.

http://www.iiasa.ac.at/Research/FOR/unc_overview.html
http://www.iiasa.ac.at/Research/FOR/unc_prep.html
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suffer from inconsistencies in dealing with uncertainty that are not scientific but that
are related to the way the Kyoto Protocol was designed. One technique, e.g., allows
a country with a smaller emission reduction commitment to gain an advantage over
a country with a greater emission reduction commitment;5 while another technique
forces countries a priori to realize detectable signals before they are permitted to
make economic use of their excess emission reductions.6 Jonas and colleagues [23]
stress that these “inconsistencies” are the consequence of the Kyoto policy pro-
cess running ahead of science, leaving us with the awkward problem of choosing
between bad or undesirable alternatives in applying preparatory signal analysis.
We can simply ignore uncertainty knowing that, e.g., emission markets will then
lack scientific credibility or we can give preference to one preparatory technique
over another knowing that none is ideal in satisfying the Protocol’s political cor-
nerstones. As two of the most important shortfalls on the side of policymaking the
authors [23] identify (1) the overall neglect of uncertainty confronting experts with
the finding that for most countries the agreed emission changes are of the same
order of magnitude as the uncertainty that underlies their combined CO2 equiva-
lent emissions (compare the right column of Table 11.2 with the second column of
Table 11.3); and (2) the existence of nonuniform emission limitation or reduction
commitments that were determined “off the cuff” (i.e., derived via horse-trading)
and did not result from rigorous scientific considerations.7 From a purely quanti-
tative point of view, the first shortfall is of greater relevance than the second one.

5 See, for instance, the so-called undershooting (Und) concept: Excel file available via numerical
results to [23] at http://www.iiasa.ac.at/Research/FOR/unc prep.html: Worksheet Undershoot-
ing 4:
column C D Kyoto commitments ıKP for country groups 1–8 (see also Table 11.2);
column E D the accepted risk ˛ that a country’s true emissions in the commitment year/period are
equal to, or greater than, the country’s true Kyoto target (risk ˛ can be grasped although true emis-
sions and targets derived from them are unknown by nature); and
columns F–N or U–AC (restricted to rows 14–16) D presumed relative uncertainty � of the coun-
try’s reported emissions.
The Und concept requires undershooting of the countries’ Kyoto targets in the commitment year in
order to handle and decrease risk ˛ (see columns F–N, rows � 17, for the required undershooting).
Varying ıKP while keeping the relative uncertainty � and the risk ˛ constant (e.g., at � D 15%
and ˛ D 0:3) exhibits that countries complying with a smaller ıKP are better off than countries
that must comply with a greater ıKP (see columns U–AC, rows � 17, for the modified emission
limitation or reduction target, which is the sum of the agreed target under the Kyoto Protocol plus
the required undershooting). Such a situation is not in line with the spirit of the Kyoto Protocol!
6 See, for instance, the so-called combined undershoot and verification time (Und&VT) concept:
Excel file available via numerical results to [23] at http://www.iiasa.ac.at/Research/FOR/unc
prep.html: Worksheet Und&VT 1: Fig. 1 therein. The Und&VT concept requires a priori detectable
emission reductions, not limitations. That is, it requires the Protocol’s emission limitation or reduc-
tion targets to be corrected for nondetectability through the introduction of an initial or obligatory
undershooting so that the countries’ emission signals become detectable before the countries are
permitted to make economic use of their excess emission reductions. This nullifies, de facto, the
politically agreed targets under the Kyoto Protocol!
7 The situation would be different if the nonuniformity of the emission limitation or reduction
commitments would be the outcome of a rigorously based process resulting in a straightforward

http://www.iiasa.ac.at/Research/FOR/unc_prep.html
http://www.iiasa.ac.at/Research/FOR/unc_prep.html
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However, it appears that the first shortfall will vanish soon as mankind is increas-
ingly under pressure to adopt and realize greater emission reductions in the mid to
long-term [36], [37, Decision 1/CP.13]. Notwithstanding, we would still be left with
the problem of which analysis technique to give preference to. This discussion has
not even started.

11.4 How to Deal with Uncertainty?

In this section we elaborate on Sect. 11.2 from a holistic point of view. Our starting
point is FCA (or more generally, full accounting of all emissions and removals of all
GHGs). We consider FCA a prerequisite for constraining and reducing uncertainties
in our understanding of the global climate system. A dual-constrained (verified)
full carbon analysis can compare the sum of Earth-based measurements of flows to
and from the atmosphere with atmosphere-based evaluation of exchanges with the
Earth. As specified by [5], a verified FCA, including all sources and sinks of both
the technosphere and terrestrial biosphere considered continuously over time, would
allow the research and inventory communities to:

� Present a real picture of emissions and removals at continental and smaller scales.
� Avoid ambiguities generated by such terms as “managed biosphere,” “base-line

activities,” and “additionality.” Elimination of splitting the terrestrial biosphere
into directly human-impacted (managed) and not directly human-impacted (nat-
ural) parts would be advantageous from a verification point of view as there is no
atmospheric measurement that can discriminate between the two [21, Sect. 3].

� Make available reliable and comprehensive estimates of uncertainties that cannot
be achieved using the current approach under the UNFCCC and Kyoto Protocol
[8, 9]. It is impossible to estimate the reliability of any system output if only
part of the system is considered. The tacit assumptions underlying the Protocol
are that man’s impact on nature, the not-accounted remainder under the Proto-
col, is irrelevant and inventory uncertainty only matters from a relative point of
view over space and time, not an absolute one. However, this approach is highly
problematic because biases (i.e., discrepancies between true and reported emis-
sions), typically resulting from partial accounting, are not uniform across space
and time. In addition, man’s impact on nature need not be constant or negligible.8

rule that applies equally to all countries as would be the case, for instance, under the so-called
contraction and convergence approach (e.g., [34, Sect. 2.3.2], [35]).

8 In their recent study [38, Table 1] show that, making use of global carbon budget data between
1959 and 2006, the efficiency of natural carbon sinks to remove atmospheric CO2 has declined by
about 2.5% per decade. Although this decline may look modest, it represents a mean net “source”
to the atmosphere of 0.13 PgC y�1 during 2000–2006. In comparison, a 5% reduction in the mean
global fossil emissions during the same time period yields a net “sink” of 0.38 PgC y�1 . Thus,
deteriorating natural carbon sinks as a result of climate change or man’s direct impact exhibit the
potential to offset efforts to reduce fossil fuel emissions. This shows that man’s impact on nature
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FCA is essential for good science. However, it would be for policymakers to
decide how FCA is used. FCA could be used for “crediting” in the sense of the
Kyoto Protocol (i.e., for compliance) or only for “accounting” and scientific under-
standing as required under the UNFCCC. Given that the treatment of the land use,
land-use change, and forestry (LULUCF) sector in general poses a number of char-
acteristic challenges (see box), we prefer FCA accounting under which, however, the
Kyoto compliance accounting as required under the Protocol would form a logical
and consistent subset.

Uncertainty in the LULUCF sector

Expressing uncertainties in the LULUCF sector can be challenging
because of:

� The complexities and scales of the systems being modeled.
� The fact that human activity in a given year can impact emissions and

removals in these systems over several years, not just the year in which
the activity took place.

� These systems being strongly affected by inter-annual, decadal, and long-
term variability in climate.

Knowledge of the temporal dynamics of systems – what has happened in
the past, and how actions in the present will affect emissions/removals in the
future – is important; gaps in this knowledge add to uncertainties about the
immediate impacts of human activities.

Approaches to estimating emissions and removals in the LULUCF sector
frequently involve the use of detailed data and computer models to simu-
late the complex functional relationships that exist in natural systems. But
a consequence of using more detailed methods is that the estimation of uncer-
tainty also comes more into play. However, despite conceptual and technical
challenges, powerful tools for combining different kinds of information from
multiple sources are becoming available and are increasingly being used by
modelers to reduce uncertainties in the LULUCF sector.

These tools allow modelers to increase their focus on model validation and
on reconciling results from alternative approaches. However, one key barrier
remains. Reporting under the UNFCCC and Kyoto Protocol provides only
a partial account of what is happening in the LULUCF sector. To close the
verification loop would require the adoption of FCA.

Despite improvements in approaches to estimating uncertainty in emis-
sions and removals in the LULUCF sector, some challenges remain. The
treatment of this sector in future policy regimes requires special consideration.

is indeed not negligible and stresses the need to look at the entire system, that is, to develop a FCA
system where emissions and removals and their trends are monitored in toto.
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FCA is expected to facilitate the reconciliation of two broad accounting appro-
aches: top-down and bottom-up accounting. Top-down accounting takes the point
of view of the atmosphere. It relies on observations of atmospheric CO2 con-
centrations, changes in concentrations, and atmospheric modeling to infer fluxes
from land and ocean sources. Bottom-up accounting takes the opposite perspec-
tive. It relies on observations of stock changes or fluxes at the Earth’s surface and
infers the change in the atmosphere. FCA – estimating all land and ocean-based
fluxes, whether human-induced or not – is necessary to reconcile the top-down and
bottom-up approaches.

While methods of both top-down and bottom-up accounting have improved in
recent years, both approaches still have areas of weakness. Investment in research
is needed to tackle these limitations, improve the FCA approach, and hence reduce
uncertainties (see also [39]).

Last, but not least, it must be kept in mind that verification of emission estimates
does not necessarily imply detection of emission signals (e.g., decreased emissions)
over time. It is the detection of emission signals that is needed to complement
the bottom-up/top-down accounting of GHGs and the prime goal of this research
community to close the existing gaps in the accounting.

Thus, from a policy perspective, there are pressing issues regarding how uncer-
tainty can be dealt with through uncertainty analysis techniques and improvements
to science. The implications for policymakers working to reduce human impacts on
the global climate include [5]:

� Uncertainty analysis helps to understand uncertainties: better science helps to
reduce uncertainties. Better science needs support, encouragement, and invest-
ment. FCA in national GHG inventories is important for advancing the science. It
could be included in reporting but separated from targets for reducing emissions.

� Uncertainty is inherently higher for some aspects of an inventory than for others.
For example, the LULUCF sector has higher uncertainties than the fossil fuel
sector and estimates of N2O emissions tend to be more uncertain than those of
CH4 and CO2. This raises the possibility that in designing future policy agree-
ments some components of a GHG inventory could be treated differently than
others.9

� Improving inventories requires one approach; improving emissions trading mech-
anisms another. Inventories will be improved by increasing their scope to include
FCA. In contrast, one option for improving emissions trading mechanisms would
be to reduce their scope. Currently, emissions trading mechanisms may include
estimation methodologies with varying degrees of uncertainty but they do not
explicitly consider uncertainty or treat it in a standardized fashion. There are two
options for improving this situation. The first option, as mentioned, is to reduce

9 This view of treating subsystems individually and differently runs counter to the approach typi-
cally taken. The tendency has been to treat subsystems collectively and equally and to dispose over
a wide range of options in order to minimize costs or maximize benefits resulting from the joint
emissions reduction of GHGs and air pollutants (e.g., [40], [41, (77)], [42]).
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the scope of emissions trading mechanisms – by excluding uncertain methodolo-
gies or more uncertain GHGs – to make them more manageable (see also [43]).
The second option is to retain the scope of emissions trading mechanisms but to
adopt a standardized approach to estimating uncertainty. But we could not guar-
antee that the latter approach would eventually withstand large biases resulting,
e.g., from a mismatch in the bottom-up vs. top-down accounting.

In the context of pricing uncertainty, it needs to be mentioned that uncertainty is
an inherent part of any emissions accounting and that it will play an important role
in both the scientific understanding of emissions and in their political treatment. At
present, however, uncertainty does not play a role in trading of emissions credits.
Ultimately, uncertainty can be borne by either the buyer or seller of any asset, and it
should be agreed in advance of any exchange how this is to be dealt with. Risky or
uncertain assets will be traded at a discount to the extent that the risk and uncertainty
are to be assumed by the buyer.

Literature on treating scientific uncertainty upfront in financial markets is already
emerging (e.g., [26, 44, 45]), but this has not yet been applied widely to GHG emis-
sions credits. For now it appears that buyers of emissions credits generally accept
credits without uncertainty and the seller is obligated to ensure that the credits are
fulfilled.

With the current system of trading in allowances and credits, neither buyers nor
sellers have much incentive to reduce the uncertainty associated with emissions
inventory or reduction estimates; to do so might impact the single-point emission
(or reduction) estimate, thus directly affecting the value of allowances or credits.
For example, a highly uncertain emission reduction estimate that is biased high
will tend to be worth more (claiming greater reductions), presupposing the mar-
ket’s willingness-to-pay, than the same reduction figured more accurately and with
greater uncertainty. This suggests the possibility that other, more complex, pric-
ing mechanisms than the current cap-and-trade system might exist and would be
better able to deal with uncertainty by, for example, monetizing (i.e., rewarding)
increased confidence. Such a system might also differentiate between different types
of emissions and/or reductions and their uncertainties.

11.5 Conclusions

We see a clear rationale for conducting and improving uncertainty analysis:

� Uncertainty analysis improves the monitoring of GHG emissions. Uncertainty
analysis helps to understand uncertainties and encourages better science that will
help to reduce uncertainty.

� Better science requires the adoption of FCA. More investment in research is
needed to reconcile the bottom-up and top-down accounting approaches that
are fundamental to FCA and that dual-constrain uncertainty. FCA may only be
used for “accounting” but with the Kyoto compliance accounting as a logical
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and consistent subset used for “crediting.” We anticipate that within a few years
scientists will overcome still existing bottom-up/top-down accounting gaps for
the Kyoto GHGs at the scale of continents. Scientists may even be able to down-
scale validated, and verified (dual-constrained), emissions estimates to the scale
of countries or groups of countries. That is, scientists will be able to verify (cor-
rect) politically driven (mis-)accounting reported annually bottom-up under the
Kyoto Protocol and its successor.

� Some GHG emissions and removals estimates are more uncertain than others.
Options exist to address this issue, and these could be incorporated in the design
of future policy regimes. These options also include (1) the option of not splitting
the terrestrial biosphere into a directly human-impacted (managed) and a not-
directly human-impacted (natural) part to avoid sacrificing bottom-up/top-down
verification; and (2) the option of not pooling subsystems, including sources
and sinks, with different relative uncertainties but treating them individually and
differently.

� We expect the treatment of scientific uncertainty in emission trading markets to
gain relevance. Neither buyers nor sellers of GHG emission credits have a strong
interest to let this issue go unresolved.

� The issue of compliance also goes unresolved and requires directing attention
to the appropriate treatment of emission changes in consideration of uncertainty.
Currently, signal analysis is still treated independently of bottom-up/top-down
verification, but scientists will eventually be able to make the two consistent and
to go hand-in-hand.
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Chapter 12
Uncertainty Analysis of Weather Controlled
Systems

K.J. Keesman and T. Doeswijk

Abstract The indoor climate of many storage facilities for agricultural produce is
controlled by mixing ambient air with the air flow through the store room. Hence,
the indoor climate is affected by the ambient weather conditions. Given hourly fluc-
tuating energy tariffs, weather forecasts over some days are required to effectively
anticipate. Hence, typically a real-time optimal control strategy results. As weather
forecasts are uncertain, predicted model outputs and related costs of the control
strategy become uncertain. Usually, a medium-range weather forecast for a period
of some days consists of an ensemble of forecasts. Hence, the uncertainty in the
weather forecast is known a priori. In addition to this, in past-performance studies
where weather forecasts and observed weather variables are given, an a posteriori
evaluation of the forecast errors can be made as well. The objective of this study
is to evaluate the uncertainty in the costs related to weather forecast errors and
uncertainty, given the control inputs. In a simulation case-study with real weather
forecasts and observed weather, it appeared that only slight cost increases can be
expected due to errors and uncertainties in weather forecasts if the optimal control
problem is calculated every 6–12 h in a receding horizon context.

12.1 Introduction

Indoor climate in greenhouses, office buildings and storage facilities for agricultural
produce are generally affected by outdoor weather conditions [2,9,13], for instance
by heat transfer through the boundaries, solar radiation and ventilation with outdoor
air. In addition to this, the indoor climate is also affected by the respiration and
evapotranspiration of living creatures and biological material, or by active heating
or cooling. Typically, in practice, indoor temperatures and relative humidities are
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controlled by feedback controllers with P or PI structure (see [14] for an overview)
using direct measurements of temperature and relative humidity. In this study, we
focus on indoor climate control that uses ambient air in the air flow through the
(store) room. Hence, optimal control strategies that are able to anticipate on future
changes of the weather conditions or on hourly-daily changes in energy tariffs allow,
in principle, a better cost-effective performance. Clearly, in such control strategies
weather forecasts become important and uncertainties in weather forecasts then lead
to uncertain predictions of the indoor climate. Moreover, the cost function related
to any kind of optimal control becomes subject to uncertainties and errors in the
weather forecasts. The sensitivity of the model outputs and the related costs there-
fore needs to be investigated. In what follows, we restrict ourselves to a so-called
receding horizon optimal control (RHOC) strategy in discrete-time. The basic idea
behind RHOC is that a finite-time optimization problem over the horizon H , with
or without inequality constraints, is solved, i.e.

u.k; k CH/ D arg min �.x.k CH//C
kCHX
�Dk

L.x.�/; u.�/; d.�// (12.1)

s:t: x.k C 1/ D f .x.k/; u.k/; d.k//; g.x.k/; u.k// � 0

x0 D x.k/

Subsequently, only the first l < H inputs are implemented and at k C l , given
an update of x0, the optimization problem is solved again, but now on the time
interval ŒkC l; kC lCH	. For both air conditioned buildings [7] and potato storage
facilities [8,10] it was shown that a good weather forecast reduces the cost function
almost as much as a perfect weather forecast. In these studies short term weather
forecasts (1–2 days ahead) were used. However, because of the slow dynamics of
products in storage facilities, knowledge of medium-range predictions of the indoor
climate may be profitable. Hence, this study focuses on the effect of errors and
uncertainties in medium-range (up to 10 days ahead) weather forecasts on the indoor
climate predictions, in real-time, and associated product temperature and costs.

Nowadays, the medium-range weather forecast [11] consists of an ensemble of
50 different weather forecasts. All 50 ensemble members have an equal probability
of occurring. Hence, the uncertainty, or variation, in the weather forecasts is known
a priori. This knowledge can then be used to evaluate a calculated optimal control
solution by calculating the differences in costs related to each of the ensemble mem-
bers. Next to this, with observed weather given, in a post-performance analysis the
optimal control solution can also be evaluated a posteriori.

The objective of the study is to evaluate the effect of errors and uncertainties in
the weather forecasts on the costs of the calculated optimal control problem of a
(potato) bulk storage facility.

This chapter is structured as follows: first a brief description of the bulk storage
model and the cost function is given. Next, some information about the weather
forecasts is provided. Then, open loop and closed loop evaluations using weather
forecasts and observations are given in subsequent sections. Finally, the results are
discussed and conclusions are drawn.
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12.2 Preliminaries

12.2.1 Bulk Storage Model

Models that describes the dynamics of the product in a bulk storage facility can be
found in, e.g. [6, 8, 9, 15–19]. The model developed in [9] was simplified to make it
suitable for use in an RHOC algorithm [10]. A brief description of this discrete-time
dynamic model is presented in this subsection. The model is given by

xT .k C 1/ D xT .k/C p1 C Œd1.k/ � xT .k/	�
p3 C p2p5u1.k/Œp7 C .1 � p7/u2.k/	

�
(12.2)

xCO2.k C 1/ D xCO2.k/C p1p4 C Œd2.k/ � xCO2.k/	�
p2u1.k/Œp7 C .1 � p7/u2.k/	C p6

�
(12.3)

where xT represents the product temperature, xCO2 the CO2 concentration in the
bulk, d1 D Twb;ext the ambient wet bulb temperature, d2 the ambient CO2 con-
centration, u1 D umix the fraction of ambient air in the air flow, u2 D uvent the
fraction of maximum possible internal ventilation, and p a vector containing phys-
ical and design parameters. Hence, the control input is defined by: u D Œu1; u2	

T .
The sample time used for this model is 1 h.

The temperature of the bulk can be measured and thus (12.2) is regularly updated.
The CO2-concentration, however, is difficult to measure in practice. The store room
is, therefore, basically controlled on the product temperature. In the model-based
RHOC strategy, the CO2-concentration is calculated using (12.3) without any mea-
surement correction. The CO2-concentration is taken into account via constraints
to avoid too high concentrations that lead to damage of the product. This approach
suffices, because of the fast dynamics of the CO2-concentration, when the room
is ventilated. That is, during ventilation the CO2-concentration quickly reaches
the known external CO2-concentration, so that large modeling errors are avoided.
Consequently, right after a period of ventilation, xCO2.k/ is equal to d2.k/.

12.2.2 Weather Forecasts

The medium-range weather forecasts have been provided by Weathernews Benelux.
These forecasts contain hourly forecasts of weather variables up to 10 days ahead.
The ensemble weather forecasts used in this paper consist of 50 ensemble members
with equal chance of occurring. In what follows, the ensemble mean is used as the
nominal weather forecast.

New weather forecasts and actual weather observations become available every
24 and 6 h, respectively. It has been shown in [3] that short-term weather forecasts
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(up to 36 h ahead) can be improved by using more frequent, local observations in
combination with Kalman filtering techniques. A similar method is used here to
correct the medium-range weather forecasts every 6 h.

12.2.3 Cost Function

To give some physical insight into the control objectives of the potato storage facil-
ity, the elements of the cost function are mentioned below. How the weighting
factors in the cost function are chosen is beyond the scope of this paper. In our
application, the following control objectives are to be fulfilled:

� The temperature of the bulk must be kept as close as possible to a pre-specified
reference temperature Tref (i.e. minimize jjxT .k/� Tref jj).

� The temperature must always be kept above a specified minimum temperature
Tmin (i.e. inequality constraint: xT .k/ > Tmin)

� The temperature may not decrease faster than a specified limit T� within 24 h
(i.e. inequality constraint: xT .k � 24/� xT .k/ < T�).

� The weight loss of the product due to evaporation must be as small as possible
(i.e. minimize

PH
kD0 f1.xT .k/; u.k/; d.k// with H the prediction horizon.

� The CO2-concentration must always be kept below a specified maximum
CO2;max (i.e. inequality constraint: xCO2 < CO2;max)

� The energy costs related to ventilation must be as small as possible (i.e. minimizePH
kD0 f2 .u2.k//).

12.2.4 Receding Horizon Optimal Control

Given the model (12.2)–(12.3) with corresponding initial states, a weather forecast
containing d1.k/ for k D 1; : : : ;H and assuming d2.k/ D 0:0314 to be constant,
control trajectories of u1 (fraction of ambient air in the air flow) and u2 (fraction of
maximum possible internal ventilation) can be calculated such that a cost function
on the time interval Œ0;H	 is minimized according to:

min
u
J D min

u
�.x.H//C

HX
kD0

L.x.k/; u.k/; EŒd.k/	/ (12.4)

where the expected value (denoted by EŒ�	) is taken because the weather fore-
cast is a stochastic variable. In our application of bulk storage in a store room
there are no final costs at the end of the prediction horizon, i.e. �.x.H// D 0.
From the preceding subsection we notice that L.�/ contains a weighted combination
of jjxT .k/ � Tref jj, f1.�/ and f2.�/. If this open-loop control problem is solved
repeatedly every l hours (with l < H ) given the updated (or measured) states
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and weather forecasts the control loop is closed. As mentioned before, this type
of control strategy is called receding horizon optimal control (RHOC).

In the following, the RHOC solution with the nominal weather forecast is taken
as the reference point for the uncertainty evaluation. For the evaluation a period
from 13 April to 2 June 2005 (almost 51 days) had be chosen. The medium-range
weather forecasts have been obtained for location “De Bilt, The Netherlands”. The
forecast horizon of the weather forecast also determines the maximum horizon of
the RHOC strategy (H D 217 h). In fact, one would expect a maximum horizon
of (10 � 24C 1) h. However, the medium-range forecasts are released with a delay
of 1 day and thus H D 241 � 24 D 217 h. During the evaluation period every
6 h a new optimal control trajectory was calculated (i.e. l D 6) with an updated
weather forecast, according to the procedure suggested in [3]. For each optimal con-
trol run the initial conditions of the states were set to the corresponding measured
values. In an RHOC framework the calculated optimal inputs for the pre-specified
control interval (l) of 6 h are implemented and recalculated when after 6 h new
information becomes available. Consequently, in our application the optimal con-
trol input trajectories are calculated over an interval of 217 h and updated every 6 h.
In total 203 optimal control trajectories, given the nominal weather forecasts, are
calculated (four times a day, almost 51 days). An example of a calculated control
trajectory with the accompanying predicted state and cost evolution is presented
in Fig. 12.1. The reference temperature (Tref ) in this case was 7ıC. Notice that
the calculated open loop optimal control inputs are in antiphase with the external
wet bulb temperature. As expected, the product temperature (Tp) follows the ven-
tilation pattern. Notice, furthermore, that with increasing temperature differences
between the product temperature and the external wet bulb temperature also the
costs increase accordingly.
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Fig. 12.1 Optimal control output starting from 1 May 2005. The sub-figures show respectively:
calculated optimal controls; predicted product temperature and external wet bulb temperature;
predicted cumulative costs
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12.3 Weather Forecast Uncertainty and Error Analysis

In this section, we investigate several possibilities to evaluate the weather fore-
casts errors and uncertainties on the costs. First, the change in costs is investigated
when observations of the weather are used instead of the nominal forecast. Hence,
this analysis, based on 203 control trajectories with associated costs, evaluates the
effect of errors in the weather forecasts on the costs. Second, the effect of individual
ensemble members on the costs is investigated. Thus, this type of analysis evaluates
the maximum effect of variation in the ensemble on the absolute costs.

12.3.1 Open Loop Evaluation

Let us start by evaluating the effect on the absolute costs when observed instead
of nominal forecasted weather data is used. Recall that the prediction horizon is
217 h, which defines the maximum length of the evaluation. However, in what fol-
lows the summation variable r is introduced to account for intermediate changes
in the costs. If now the model with fixed optimal control trajectories is ran again
but with observed weather (d1 and d2) instead of nominal forecasted weather data,
a change in costs is observed. In Fig. 12.2, 203 differences between calculated
(using forecasts) and realized (using observations) running costs, as a function of
the summation variable r , are presented. Herein, the running costs are defined by:

0 50 100 150 200 250
−60

−50

−40

−30

−20

−10

0

10

20

30

40

r

D 
R

Fig. 12.2 Difference in calculated absolute costs and realized costs for each of the 203 optimal
control runs
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R.r/ D
rX

kD0

L .x.k/; u.k/; d.k// for r D 1; : : : ;H (12.5)

For what follows, we define J � R.H/.
From Fig. 12.2, it can be seen that the total cost difference, as expected, can

be both positive and negative. This implies that, given the optimal control tra-
jectory based on forecasts, the realized weather can reduce the total costs more
than was expected from the forecasted weather. However, it does not mean that, if
the observed weather was used in the RHOC calculations (which is only possible
afterwards), the calculated optimal control trajectory generates minimal costs. Fur-
thermore, histograms derived from Fig. 12.2 for different r show that the mode is
around�R D 0, and that the frequency distributions are rather skewed with a “thin”
tail for�R negative.

Since the total absolute costs J change for every optimal control run, because
of changing initial states and changing weather forecasts after each 6 h, the relative
change in the costs, i.e. �Rrel D Robs�Rfct

Jobs
, is calculated as well and presented

in Fig. 12.3. In addition to the absolute or relative differences, we noticed that
the absolute costs R can change dramatically (not shown here) over the evalua-
tion period from 13 April to 2 June, because the outdoor temperature significantly
increases. Especially, the cost criterion term jjxk;T � Tref jj then increases. Rela-
tively to the costs at the beginning or the end of the prediction horizonH , however,
the change in costs does not seem to change that dramatically.

Using the observed weather to calculate the costs is a useful a posteriori tool,
since it evaluates the positive and negative costs when controlling a system under
expected disturbances. Nevertheless, it should be emphasized that the conclusions
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Fig. 12.3 Difference in calculated relative costs and realized costs, for r D 1; : : : ; H , for each of
the 203 optimal control runs
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Fig. 12.4 Difference in calculated absolute costs and maximum costs based on the ensemble
related to each of the 203 optimal control runs

certainly depend on the weather data and thus the type of weather. For a full analy-
sis of the posterior behavior, other periods over a couple of years should have been
evaluated, as well. However, such analysis was out of the scope of this study. To
evaluate the uncertainty of the costs a priori, however, other information about the
uncertainty of the weather forecast is needed. As mentioned before, the uncertainty
of the weather forecast is embedded within the ensemble (see Sect. 12.2.2). By cal-
culating the costs related to each of the ensemble members the worst case scenario
can be evaluated, i.e. the ensemble member for which the costs are highest of all
for r D H . In Fig. 12.4 the worst-case cost differences are presented, again as a
function of r with r D 1; : : : ;H . Since only the worst case differences, related to
the largest difference at r D H D 217, are presented, only 203 out of 50 � 203

runs are shown. It can be seen here that the worst-case scenarios always lead to
increased costs, as expected, and these costs are considerably larger than the real-
ized costs (Fig. 12.2). The question remains what the effect of a receding horizon
control strategy on the uncertainty in costs is. This question will be answered in the
next subsection.

12.3.2 Closed Loop Evaluation

In the specific RHOC implementation every 6 h, when actual weather data and
updated forecasts become available, the optimal control trajectories are recalculated
from (12.4) and implemented. Hence, only the control inputs for the first 6 h are
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Fig. 12.5 Difference in calculated costs and realized costs after 6 h for each of the 203 optimal
control runs

effectively used in the control strategy. This also implies that the uncertainties and
errors in the cost function after 6 h needs to be evaluated. In Fig. 12.5 the differ-
ences between calculated costs, after 6 h because of the updates and using nominal
weather, and actual costs based on observed weather are presented for each of the
203 control runs. Hence, this allows an a posteriori evaluation of the forecast errors.
The small differences in costs after 6 h can be clearly seen from this figure. Notice
that the small magnitude of the differences could also have been seen from Fig. 12.4.
If all the costs shown in Fig. 12.5 are summed the additional costs due to errors in
the nominal weather forecasts are known for the given period from 13 April to 2
June 2005.

From the a priori known weather forecast uncertainties, which can be directly
obtained from the ensemble predictions, the worst-case scenario can be calculated
as before. It appeared that the differences in calculated costs and maximum costs
after 6 h (not shown here) based on the ensemble related to each of the 203 optimal
control runs are very small, �R.r D 6/ < 0:2. However, the question remains
how �R will evolve when the control horizon ` is chosen larger. In Table 12.1
the maximum (relative) deviation in the cost function, obtained from the weather
forecast ensemble, is given for different control intervals (l).

Hence, for this case study it can be concluded that applying feedback every 6 h
will reduce the uncertainty in the calculated costs, due to weather forecast errors and
uncertainty, tremendously. It can also be seen from Table 12.1 that the difference in
costs up to 24 h remains relatively small. In other words, in case of a communi-
cation failure between the optimization algorithm and the control computer of less
than, e.g. 1 day no manual intervenience is required. However, it should be realized
that these statements are only valid for our specific application in the pre-specified
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Table 12.1 Additional costs
of the realized costs and the
worst-case scenarios for
weather forecast uncertainty

` †.�J /=J (%)

6 0.37
12 1.15
18 2.05
24 3.17
48 8.0

72 14.2

evaluation period. Nevertheless, as can be seen from Figs. 12.2–12.4, the weather
forecasts do not show much variation in the first 12 h. This phenomenon has been
observed for other periods, as well. Thus, for l � 12, we conclude that in general
the effect of the weather forecast uncertainty on the costs, as defined in (12.4), is
marginal. Hence, under the assumption that CO2 is never limiting, a control hori-
zon of l D 12 instead of 6 would suffice in practice. Clearly, the weather forecast
ensemble can be used for an a priori uncertainty evaluation on the costs. But we
would be more flexible if we could anticipate on the forecast uncertainty. This idea
will be further exploited in the next section.

12.4 Discussion

If in open loop the calculated costs based on the weather forecast and the actual
costs, given observed weather and realized controls, are compared, it is evident that
the costs can both increase and decrease. Not only the total costs are of impor-
tance but also the relative costs. During a long warm period the calculated costs will
increase significantly. The absolute increase or decrease due to uncertain weather
forecasts can then be quite large whereas the relative change may be reasonable. The
opposite may also occur, i.e. large relative change versus a low absolute change.

Prior knowledge about the uncertainty of the forthcoming weather is very useful
to study uncertainties in the near-future costs. From Figs. 12.2 and 12.4 it can be
seen that, for this specific case, the (expected) cost increase is in general much larger
for the a priori forecast uncertainty than for the a posteriori forecast error. Similar
conclusions can be drawn in the closed loop case, see Fig. 12.5. From these figures
it can be seen that the ensemble, indeed, is a useful tool to evaluate the uncertainty
of the cost function a priori.

Recall that in optimal control theory a cost function, like (12.4), is minimized
by adjusting the control inputs u, see, e.g. [12]. In case of the storage facility, gen-
uine optimal control trajectories could be calculated if the (near) future weather
would be exactly known in advance. However, future weather forecasts are never
exactly known. A common approach, as we introduced in the previous subsec-
tions, is to define a cost function on the basis of the nominal disturbance trajectory
(d 0, i.e. the nominal weather forecast), solve the optimization problem and evaluate
the uncertainties in the costs. Alternatively, an approach based on implicit formu-
lation of uncertainties in the cost function could have been chosen, such that an
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effective uncertainty reduction can be obtained. A classical example of this approach
is minimum variance control [1].

For instance, in the case of our storage facility, minimum variance control would
lead to u D 0, that is no ventilation of the store room, because the uncertainty in
the product temperature is directly related to the weather forecast. Clearly, the prod-
uct temperature uncertainty increases during ventilation. Hence, minimum variance
control is not an option in our case. Thus, future work should focus on appropriate
extensions of the cost function (12.4), for instance in line with [5] or [4].

12.5 Concluding Remarks

In post-harvest storage of agricultural produce, optimal control strategies can be
used to anticipate on future weather conditions. In the simulation case-study with
real weather forecasts and observed weather it appeared that there are only slight
cost increases due to uncertainty and errors in weather forecasts if the optimal con-
trol problem is calculated every 6 h within a RHOC framework. In our application,
even an increase of the control horizon to 24 h leads to a maximum increase of less
then 5%.

Acknowledgements We are indebted to Weathernews Benelux for providing the weather forecasts
and Agrotechnology and Food Innovations for providing the storage model and the accompanying
RHOC solutions. This research is part of the EETK01120 project “Weather in Control”.
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Chapter 13
Estimation of the Error in Carbon Dioxide
Column Abundances Retrieved
from GOSAT Data

Mitsuhiro Tomosada, Koji Kanefuji, Yukio Matsumoto, Hiroe Tsubaki,
and Tatsuya Yokota

Abstract In this chapter, the estimation of error in the method used to retrieve
carbon dioxide (CO2) column abundances obtained from the Greenhouse Gases
Observing Satellite (GOSAT) is presented. GOSAT will be the first satellite ded-
icated to primarily observe CO2 and methane (CH4), which are considered to be
major greenhouse gases, from space. The column abundances of CO2 and CH4

can also be retrieved using IMG data and SCIAMACY data. The retrieved CO2

and CH4 column abundances can be evaluated using spectral fitting residuals. On
the other hand, there are uncertainties in the retrieved column abundances due to
the error in the input parameters, such as the temperature profile and the water
vapor profile during spectral observation. The estimated error of the retrieved col-
umn abundances using IMG data and SCYAMACY data is not affected by the error
in input parameters. In this study, the retrieval error due to input parameters using
factorial experiments is described. Finally, some application results are given.

13.1 Introduction

Global environmental problems, such as global warming, desertification and ozone
depletion, have recently become major concerns. The Intergovernmental Panel on
Climate Change (IPCC) recently said that “it is extremely unlikely (<5%) that the
global pattern of warming during the past half century can be explained without
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external forcing, and very unlikely that it is due to known natural external causes
alone. Greenhouse gas forcing has very likely caused most of the observed global
warming over the last 50 years” [13]. Water vapor is the most important greenhouse
gas, followed by carbon dioxide (CO2). Methane (CH4), nitrous oxide (N2O), ozone
(O3), and several other gases present in the atmosphere in small amounts also con-
tribute to the greenhouse effect [13]. Gases such as CO2, CH4, N2O, and O3, which
are present in low concentrations in the atmosphere (<0.03% [21]) are referred to as
“trace gases”. Therefore, an understanding of the characteristics of CO2 on a global
scale is crucial to solving global environmental problems.

Observing trace gases that are distributed very sparsely across the Earth’s sur-
face is difficult. Despite the fact that oceans account for roughly two-thirds of the
Earth’s surface, there are very few observation stations located on the oceans. Thus,
it is important to develop methods that allow the observation of trace gases over
the Earth. Satellite remote sensing provides one of the most useful methods for
global atmospheric observations despite several limitations. Firstly, satellites can-
not record data if clouds obscure the sensor’s view. Secondly, observation time is
determined based on the local time when a satellite’s orbit is sun-synchronous polar
orbit. Thirdly, solar radiance and Earth irradiance at specific wavelengths change
due to the effects of trace gases. Since the trace gas contribution to the spectrum is
so small, it is extremely difficult to precisely detect the physical quantity of a trace
gas using satellite remote sensing from the measured spectrum. Furthermore, the
spectral difference occurs at very narrow wavelengths of the specific solar radiance
bands. Therefore, more advanced techniques are required to obtain spectral data
with high resolution and high sensitivity.

The Interferometric Monitor for Greenhouse gases (IMG) aboard the Advanced
Earth Observing Satellite (ADEOS), launched in August 1996, was the first high
resolution nadir infrared instrument allowing the simultaneous measurement from
space of a series of tropospheric trace gases: H2O, CO2, N2O, CH4, CFCs, O3,
and CO3 [1, 7]. IMG was designed to measure the terrestrial thermal radiation
in an infrared spectrum at a high resolution. The Scanning Imaging Absorption
Spectrometer for Atmosphere Cartography (SCIAMACY) onboard the European
Environmental Satellite (ENVISAT) observes the atmosphere with moderate spec-
tral resolution. An algorithm is currently being developed and refined primarily for
the retrieval of CH4, CO, CO2, H2O, N2O, and O2 columns using SCIAMACY data
[5]. In Japan, the Greenhouse Gases Observing Satellite (GOSAT) will be launched
in early 2009. In the US, the Orbiting Carbon Observatory (OCO) satellite will
also be launched in late 2008. GOSAT and OCO will also perform passive nadir
observations in the near-infrared spectral region, but they will be optimized for CO2

observations. It is expected that GOSAT and OCO will improve knowledge of CO2

surface fluxes. In the GOSAT project, a global map of CO2 and CH4 column abun-
dances will be distributed to users. Given the scope of these aims, it is important to
clarify the precision of the GOSAT’s CO2 column data. I. Aben quantifies the effect
of aerosols and thin cirrus clouds in the atmosphere, which is the largest error source
for CO2 measurements from space. This study presents a whole evaluation method.
Two types of error for the retrieved column abundance data are considered. Errors
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derived from the spectral fitting residuals (internal errors) are obtained analytically.
For the evaluation of the retrieved column abundance derived from the IMG data
and the SCIAMACY data, the error is primarily internal error. In this study, errors
derived from input parameters (external errors), which are used in the retrieval stage,
are analyzed by examining factorial experiments, which are mainly used for quality
control.

The structure of this paper is as follows. In Sect. 13.2, trace gas observations from
satellite sensors are introduced, and the role of GOSAT in trace gas measurement
is presented. The GOSAT mission is then described, and the previous error analy-
sis by satellite remote sensing is presented. In Sect. 13.3, an evaluation method of
GOSAT’s CO2 column abundance data is described in detail. Certain measurement
geometry and atmospheric conditions are set, and the retrieval precision results are
presented as one example. The results presented in this paper are not officially used
but are referred to as the basic concepts in the GOSAT project, since the retrieval
algorithm of the operational data processing is currently in the coding and tun-
ing stage. The practical retrieval precision shall be made public at a future date.
Section 13.4 concludes this paper.

13.2 Trace Gas Measurement by Satellite Remote Sensing

Trace gas measurement using satellite remote sensing is presented in Sect. 13.2.1,
and the role of GOSAT in trace gas measurement from space is explained in
Sect. 13.2.2. Lastly, the current evaluation methods of error in retrieved trace gas
amounts are presented in Sect. 13.2.3.

13.2.1 Observations of Trace Gases with Various Sensors

Passive sensors measure solar radiance directly from the sun or reflected from the
Earth. Both methods detect physical quantities of trace gases based on the dif-
ferences in the spectrum observed from the trace gases in the atmosphere. Solar
occultation is a technique that measures direct sunlight using limb observation of the
Earth from the satellite. Observing the spectrum reflected from the Earth’s surface is
called “down-looking observation”. It is necessary to use sensors with a high signal-
to-noise ratio (S/N) and high spectral resolution. Advances in sensor technology
combined with diffraction grating have allowed a Fourier Transform Spectrometer
(FTS) system to detect the physical quantities of trace gases. For example, solar
occultation sensors include the Improved Limb Atmospheric Spectrometer (ILAS)
onboard the ADEOS satellite and the Stratospheric Aerosol and Gas Experiment
(SAGE) and Halogen Occultation Experiment (HALOE) onboard the Upper Atmo-
sphere Research Satellite (UARS). Solar occultation observations detect trace gases
in the stratosphere at or above a height of 10 km. Below an altitude of 10 km, trace
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gas values are not observed precisely, and the horizontal resolution is quite low.
Moreover, since concentrations of CO2 in the stratosphere are lower than in the tro-
posphere, it is difficult to ascertain global CO2 distributions using solar occultation
technology.

Down-looking observations of trace gases are retrieved by both FTS and grating
sensors. The Infrared Interferometer Spectrometer (IRIS) onboard the NIMBUS-3
satellite launched at 1969 was the first FTS type sensor. The IRIS instrumentation
was a modified version of a classical Michelson Interferometer, and measures radi-
ance in narrow (5 cm�1) spectral intervals from 400 to 2,000 cm�1 (5–25�m) [9].
Two portions of the spectrum are used: 11 intervals each within the CO2 band at
667 cm�1 and the atmospheric window at 900 cm�1. However, when NIMBUS-
3 was launched, IRIS spectral resolution was lower than the width of trace gas
absorption. Thus, it was considered that nadir observation of the tropospheric con-
stituents was difficult, and that observation of greenhouse gases was not a significant
objective.

ENVISATwith SCIAMACHYwas launched in March 2002 in a sun-synchronous
polar orbit. SCIAMACHY is outfitted with a grating spectrometer for measuring
solar radiation reflected off the surface of the Earth, backscattered from the atmo-
sphere, transmitted through the atmosphere, or emitted from the atmosphere in
the ultraviolet, visible, and NIR spectral regions (240–1,750nm, 1,940–2,040nm,
2,265–2,380nm) at moderate spectral resolutions (0.2–1.4 nm) [6]. CH4, CO, CO2,
N2O, and O2 are retrieved from the SCIAMACHY near-infrared and visible spec-
tra [5]. The standard deviation of the dry air column averaged mixing ratio XCO2

within 1% latitude bands is ˙10 ppmv or ˙2.7% for measurements over land. The
spatial (horizontal) resolution of SCIAMACHY nadir measurements depends on the
orbital position and the spectral interval. The ground pixel (footprint) size is approx-
imately identical at each orbital position. For example, the footprint is 60 � 30 km2

for an integration time of 0.25 s, and 120 � 30 km2 for 0.5 s.
The IMG sensor is a Fourier Transform type infrared spectrometer (FTIR) that

was developed to measure greenhouse gases. The ADEOS satellite was in a near-
polar sun-synchronous orbit, a 41-day recurrent polar orbit. IMG was developed
for measuring greenhouse gases in the atmosphere, particularly in the troposphere,
and was designed to measure the terrestrial thermal radiation in the infrared spectral
region of 640–3,000 cm�1 at a high resolution of 0.1 cm�1 after reaching apodosis
[12]. The footprint size is 8 km � 8 km, and the main atmospheric constituents, H2O,
CO2, O3, N2O, CO, CH4, and HNO3 were retrieved. Error bars for the retrieved
CO2 at 1,000, 500, and 200 hPa, which are recognized as the 1-standard deviation
(1-sigma) for analysis, are 6.03%, 3.93%, and 3.09%, respectively [14].

13.2.2 GOSAT Mission

The GOSAT project is a joint project of the Japan Aerospace Exploration Agency
(JAXA), the Ministry of Environment (MOE), and the National Institute for Envi-
ronmental Studies (NIES) [8,22]. JAXA is responsible for the satellite, its instrument
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Table 13.1 Overview of GOSAT and orbit

Parameter Value

(a) Body
Size Main body: 3.7 m (hight) 
 1.8 m (width) 
 2.0 m (depth)
@@ Include solar paddle: 13.7 m
Weight 1,750 kg
Electric power 3.5 kW
Life span 5 years

(b) Orbit
Orbit Sun-synchronous polar orbit
Altitude 666 km
Inclination 98.05ı

Period of revolution 14.66 orbits/day
Equatorial crossing time Nominally 1 p.m. (˙15 min) local time (descending node)

Repear coverage 3 days

development, and its operation, while MOE is involved in instrument development,
and NIES is responsible for satellite data retrieval and data distribution. GOSAT
will be launched in early 2009. An overview of the GOSAT satellite and the orbit is
presented in Table 13.1.

Higher retrieval precisions are expected when the gas amount information is
retrieved from the optimal wavelength band for the gas. The GOSAT mission will
make the first global, space-based measurements of CO2 with the precision, reso-
lution, and coverage needed to characterize CO2 sources and sinks at the regional
scale. GOSAT carries two sensors: TANSO-FTS (Thermal And Near infrared Sen-
sor for carbon Observation – Fourier Transform Spectrometer) that obtains solar
radiance reflected from the ground surface; and TANSO-CAI (Thermal And Near
infrared Sensor for carbon Observation – Cloud and Aerosol Imager) that obtains
cloud and aerosol information of observed areas of TANSO-FTS. TANSO-FTS,
which detects the gas absorption spectra of the solar short wavelength infrared
(SWIR) reflected on the Earth’s surface, as well as of the thermal infrared (TIR) radi-
ated from the ground and the atmosphere. TANSO-FTS-SWIR data is obtained for
three spectral bands, 0.76, 1.6, and 2�m band with a 0.2 cm�1 resolution. Each band
spectrum is shown in Fig. 13.1. Polarization data for the two axes are also obtained
for each spectral band. The CO2 absorption bands near 1.6 and 2.0�m are quite
important because they provide a significant amount of information near the Earth’s
surface where changes in CO2 concentrations are most apparent. The 0.76�m band
is also important to detect ground surface pressure and cirrus cloud information.
If satellite observations are to improve over the existing ground network, monthly
averaged column data at a precision of 1% or better, for an 8ı � 10ı footprint are
needed [2]. The GOSAT mission was designed to observe CO2 density with 1% rel-
ative precision averaged in a certain period and with 10 km � 10 km footprint size
during the first commitment period of the Kyoto Protocol (2008–2012).
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Fig. 13.1 Three-spectral bands of the GOSAT TANSO-FTS-SWIR (b) and solar spectral radi-
ance (a)

NIES developed a GOSAT Data Handling Facility (DHF) for processing GOSAT
data in routine operation. After data reception and Level 1 processing by JAXA,
GOSAT data will be transferred to the DHF. TANSO-FTS data will provide infor-
mation for spectral analysis, while TANSO-CAI data will be used to generate cloud
and aerosol information. Later, these data will be combined to calculate CO2 and
CH4 column abundances at observation points with no or only thin clouds and
aerosol layers. Furthermore, an atmospheric transport model will be used with the
obtained distribution of CO2 column abundances to estimate global distributions of
CO2 fluxes, as well as to generate three-dimensional distributions of CO2 concentra-
tions. Retrieved CO2 column abundances will be distributed to users. It is important
for the users to know the precision of the retrieved column abundances. Therefore,
it is necessary to clarify the precision of the retrieved CO2 column abundance.

13.2.3 Previous Error Analysis

In this section, error analysis of the column abundances derived from SCIAMACHY
data and IMG data is introduced.

SCIAMACHY [4, 5]

An algorithm to retrieve trace gas vertical columns is first introduced. The Weighting
Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) is
based on fitting the logarithm of a linearized radiative transfer model Imod

i plus a low-
order polynomial Pi to the logarithm of the observed sun-normalized radiance Iobs

i ,
which is the ratio of the observed nadir radiance and the solar irradiance spectrum.
Index i refers to the detector pixel number i. Provided there exists an appropriate
spectra fitting window, Iobs

i , depends on the true but unknown vertical columns of
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the trace gases of interest (components of vector VT). The WFM-DOAS equation
can be written as follows:

ln Iobs
i .Vt/ � ln Imod

i . NV/C
JX

jD1

@ ln Imod
i

@Vj
jVj �. OVj � NVj/C Pi.am/

k RESi k2! min: (13.1)

The fit parameters are the desired trace gas vertical columns OV j and the polyno-
mial coefficients am. The errors of the retrieved columns have been calculated as
follows

� OVj
D
s
.Cx/jj �

X
i

RES2
i =.n� � m/; (13.2)

where (Cx)jj is the j-th diagonal element of the covariance matrix, n� is the number
of spectral points in the fitting window, and m is the number of linear fit parameters.

The errors derived from the error of input parameters are examined. A pre-
liminary version of the WFM-DOAS algorithm was implemented based on a fast
look-up table approach. The fast look-up table approach introduces quantifiable
errors [5], which are related to the (rather sparse) grid selected for the reference
spectra look-up table: solar zenith angle interpolation, scan angle correction, and
surface elevation (pressure). In addition, factors affecting the calculated model spec-
trum are surface albedo, surface pressure, aerosols, vertical CO2 profiles, water
vapor, and temperature. When varied alone, each of these parameters creates an
error in the column of typically less than 2% [2]. Although the effect of each param-
eter on the retrieved column abundance is evaluated, the total error on the retrieved
column abundance, which includes the error source written above, is not evalu-
ated. Furthermore, a modified retrieval algorithm called the (FSI)-WFM-DOAS was
developed. The (FSI)-WFM-DOAS algorithm generates a reference spectrum for
every single SCIAMACHY measurement to obtain the best linearization point for
retrieval. Analysis of the (FSI)-WFM-DOAS retrievals with respect to the ground-
based, FTIR instrumentation (located at Egbert, Canada) reveals that the overall
bias of the CO2 columns retrieved by the FSI algorithm is <4.0% with a monthly
precision of 1 � 1 gridded data close to 1.0% [3].

IMG [14]

The retrieval algorithm uses the maximum likelihood method to take into account
the statistical prior knowledge into the least squares method. An iterative calculation
is used, so that the estimator OX will converge to the global minimum point of the
error curve.

eT
yS�1

� ey C eT
xS�1

a ex; (13.3)

ey D .y � y0/ � K.X � X0/; (13.4)

ex D .X � X0/; (13.5)
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where y, which has as many rows as the number n� channel, is a vector of observa-
tions (radiance); X0 obtained from the analysis of climatological data is used as an
initial guess for OX; y0 is a vector of radiance associated with X0; K is the Jacobian
matrix for the n� channels and m estimation parameters; S� is the error covari-
ance matrix and includes the observed noise and forward model error; and Sa is the
covariance matrix of X0. In an iterative method, the k-th estimator OXk is used as the
linearization point for the next iteration. OXkC1 is calculated as follows:

X̂kC1 � X̂k D Ck.y � yk/C .I � CkKk/.X0 � X̂k/ (13.6)

Ck D .KT
k S�1

�;k Kk C S�1
a /�1KT

k S�1
�;k ; (13.7)

where Ck, Kk, and S�;k are calculated using OXk. Iteration can reduce the nonlinearity
effects, and the final estimation is obtained when sufficient convergence is achieved.
The covariance of estimation errors Sx is written as

Sx D .KTS�1
� K C S�1

a /�1: (13.8)

It should be noted that the evaluation of the retrieved column abundances using
SCIAMACHY data and IMG data are performed above. However, input parameters
may suffer when column abundances are retrieved. For example, the temperature
profile and water vapor amount profile in the atmosphere at the time of spectrum
observation affect the intensity of irradiance that is noted by the sensor. Therefore,
the temperature profile and water vapor amount should be known precisely in order
to retrieve CO2 column abundances. However, it is difficult to know these input
parameters. Therefore, it is better to consider that the retrieved column abundances
have an error due to the error of the input parameters. Thus, the precision of the
retrieved column abundances is included in this study.

13.3 Error Evaluation and Results

Section 13.3.1 introduces the retrieval algorithm used for this study, which is based
on the Rodgers method [20], while Sect. 13.3.2 provides a discussion of the error
evaluation method for this retrieval algorithm. Finally, Sect. 13.3.3 provides an
example of the observation scenario, such as measurement geometry and the results
of error evaluation. It should be noted that this retrieval algorithm may be modified
in the future.

13.3.1 Retrieval Method

CO2 and CH4 column abundances are retrieved separately. The retrieval method of
CH4 column abundances will be different from that of CO2 column abundances in
terms of the unknown and input parameters. This section focuses on the retrieval
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Fig. 13.2 Flow until a CO2 column abundances is retrieved

of CO2 column abundance. Figure 13.2 depicts the retrieval test flow until the CO2

column abundance is retrieved. In this study, the unknown parameters are CO2 den-
sity for each layer x, albedo of the observation region ˛s, cirrus cloud optical depth
at 0.55�m �c, and aerosol optical depth at 0.55�m �a. Clouds were assumed to be
thin cirrus. Since albedo varies according to wave number, albedos were estimated
at 5 wave number points in the band at even intervals used in the retrieval.

Input parameters are as follows. The radiance spectrum obtained by TANSO-
FTS is denoted as y. Input parameters related to measurement geometry are the
solar zenith angle �s, the satellite’s zenith angle �v, and azimuth angle between
the sun and satellite �. Cloud height hc is a parameter that provides information
about cloud conditions. Parameters related to atmospheric conditions are surface
pressure Ps, temperature profile T, and water vapor amount W. Aerosol parameters
are aerosol height distribution (ha) and aerosol type (Typea). In practice, represent-
ing aerosols is difficult due to the different optical characteristics derived from
varying aerosol compositions. Therefore, aerosols are expressed as typical rural
and urban aerosols. The relationship between unknown and input parameters is
represented by introducing the following function f with error eX

.x˛s�c�a/
T D f.y; � s; � v; �; hc;Ps;T; ha;W;Typea/C eX: (13.9)
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The quantities to be retrieved can be represented by the state vector X(D(x ˛s

�c �a)T). y is approximated by some forward model F(X). The relationship between
the radiance spectrum y and the state vector X is written with error covariance ey

y D F.X/C ey : (13.10)

A linear problem is one for which the forward model is linear: yDKX where
K=@F(X)/@X. Gaussian statistics usually provide a good approximation for the
errors in real measurement. The maximum posteriori approach is considered for
this nonlinear problem. The Bayesian solution for the linear problem can be easily
modified for an inverse problem in which the forward model is a general function of
the state vector X. The measurement error ey in (13.10) is assumed to be Gaussian,
and there is a prior estimate with a Gaussian error

�2 ln P.Xjy/ D Œy�F.X/	TS�1
� Œy � F.X/	C ŒX �X0	

TS�1
a ŒX �X0	Cc; (13.11)

where P(q) is expressed as a probability distribution function pdf of q, and c is
constant. As in the linear case, the task in the nonlinear case is to find a best estimate
OX and an error characteristic that describes pdf well enough for practical purposes.
The Gauss–Newton method gives

XkC1 D Xk C .S�1
a KT

k S�1
� Kk/

�1fKT
k S�1

� Œy � F.Xk/	 � S�1
a ŒXk � X0	g; (13.12)

where k is the iteration number, X0 is a prior of the state vector, Sa is the associated
covariance matrix of X0, and S� is the error covariance.

nl refers to the number of layers and vector x̂ (Dx̂1x̂2 . . . x̂nl)T) refers to the
retrieved CO2 density for all layers. CO2 column abundances Oycol is obtained from
Ox by [10].

Oycol D
Z ztop

0

Oxnadz; (13.13)

where z is referred to the altitude, ztop is the altitude at top layer, and na is the
number of density of air.

13.3.2 Error Evaluation

Since the CO2 column abundance evaluation method is the same as that for CH4

column abundance, the term “column abundance” in this section indicates both
CO2 and CH4 column abundance. The variance of the retrieved column abundances,
�2, is estimated, and the error bar is assumed to be provided by 1-sigma analysis,
�.D p

�2/. Internal and external errors are also considered. Internal error is cal-
culated from the residuals for spectral fitting using the Gauss–Newton approach in
(13.12). �2

int denotes the variance of retrieved column abundances due to internal
error. External error, which is the error of the retrieved column abundances due to
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the errors in the input parameters, is written as �2
ext . The variance of total error �2

is defined as the sum of �2
int and �2

ext . �
2 is given by

�2 D �2
int C �2

ext: (13.14)

Internal and external errors are calculated in the following section.

Internal Error

Column abundances Oycol are obtained numerically using the trapezoid rule to inte-
grate (13.13) as

Oycol.Ox/ D hT Ox; (13.15)

where

h D

0
BBB@

1=2na;1�z1

1=2na;2.�z1 C�z2/
:::

1=2na;nl�1�znl�1

1
CCCA ;

�zl expresses z(l+1)�z(l) for a certain layer l. The variance of the random variable
q is written as Var[q], and the variance of Oycol(Ox) is given by (13.15) as

VarŒ Oycol.Ox/	 D VarŒhT Ox	 D hTVarŒOx	h D �2
int; (13.16)

where Var[Ox] is given as

Var.Ox/ D .KT†�1K C S�1
a /�1: (13.17)

It is assumed that the elements of y are independent of each other, and† is given
by † D S� .  is written as

 D .y � F. OX//S�1
� .y � F. OX//

n� � m
; (13.18)

where n� is the number of channels in y when X is retrieved, and m is the number
of unknown parameters. Consequently, �2

int can be obtained by

�2
int D hT.

KTS�1
� K
 

C S�1
a /�1h: (13.19)

External Error

Next, the effects on retrieved CO2 column abundances derived from the errors
of input parameters are considered. External error was not reflected in the error
evaluations of the retrieved CO2 column abundances derived from SCIAMACHY
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and IMG. The levels of all factors in the experiment represent only a random subset
of the possible factor levels of interest [15]. Randomization is a procedure whereby
factor-level combinations are assigned to a test sequence in such a way that every
factor-level combination has an equal chance of being assigned to any experiment
unit or position in the test sequence. In a completely randomized design, all the
factor-level combinations in the experiment are randomly assigned to experimental
units. However, complete factorial experiments cannot always be conducted due to
economic, time, and other constraints. This paper makes use of an orthogonal array
to obtain fractional factorial experiments, since using orthogonal arrays is a widely-
accepted method used in industry, with �2

ext obtained from factorial experiments
using an orthogonal array. The model terms that represent random factor levels
are themselves random variables. When error factors are denoted by A;B; : : : , the
model can be expressed as follows:

Oycol D �.A;B; : : : /C ecol D �C ˛ C ˇ C � � � C ecol; (13.20)

where ecol (�N.0; �2
e )) represents random error effects, ˛, ˇ, : : : represent the

contribution to Oycol derived from factors A, B, : : : , respectively, and “�N(0,�2
e )”

indicates that the function has a normal distribution with mean 0 and variance �2
e .

All of the random variables for A, B, : : : are assumed to be statistically indepen-
dent. When the factor effects are all random, the response Oycol has a common normal
distribution with mean �(A,B,: : : ) and variance �2

ext

Oycol � N.�.A;B; : : : /; �2
ext/: (13.21)

�2
ext is obtained from the experimental results based on an orthogonal array. The

number of tests is represented by N, and �2
ext is obtained by

�2
ext D 1

N

NX
nD1

. Oycol,n � Nycol/
2; (13.22)

where Nycol is the mean of retrieved column abundances from N tests. That is,

Nycol D 1

N

NX
nD1

Oycol,n: (13.23)

13.3.3 Error Evaluation Results

Setting Parameters

Table 13.2 shows the measurement geometry and atmospheric conditions. The atmo-
sphere is represented using the US Standard model. It was assumed that there are
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Table 13.2 Measurement geometry and atmospheric condition during observation

Parameter Value

(a) Observation geometry Solar zenith angle 30.0ı

Satellite zenith angle 0ı (nadir observation)
Atmospheric model US Standard model
CO2 density 380 ppmv for all layers

(b) Atmospheric condition Cirrus height 10 km
Aerosol type Rural type aerosol
Aerosol optical depth 0.1

thin cirrus clouds with 0.2 optical depth at 0.55�m and at a middle height of 10 km,
and that aerosols are distributed uniformly from the Earth’s surface to an altitude of
3 km with 0.1 optical depth at 0.55�m. CO2 density is low at the higher altitude,
and it is difficult to retrieve CO2 density at such altitudes precisely. Therefore, the
number of layers nl is set to 15 from the Earth’s surface to 15 km at 1-km intervals.
It is assumed that the observation area on the Earth’s surface is covered with conifer
forests. These parameters are given as true values of the estimation parameters when
observation spectra are calculated by a radiative transfer code.

CO2 column abundances are retrieved from the 1.6�m band only to reduce the
amount of time required. The 1.6�m GOSAT spectrum y is calculated in the fol-
lowing manner. Solar incident radiance every 0.01 cm�1 from 6,180 to 6,380 cm�1

is calculated using the HSTAR (High resolution RSTAR [17, 18]) code, which
calculates the spectral radiance of a spectral band using the line-by-line method
according to cloud and aerosol conditions. Polarization bands are not used here,
and solar radiance multispectral scattering in the atmosphere is taken into consid-
eration. An optical filter function of the 1.6�m band of the sensor is applied to
the incident radiance data. Interfered radiance, called an interferogram, is obtained
from the FTS by calculating an inverse Fourier transformation. The spectrum is
obtained every 0.2 cm�1 using a Fourier transformation. Then, sensor noise corre-
sponding to S/N D 300 is added to the obtained spectrum, since the sensor efficiency
is S/N D 300. It is assumed that the sensor characteristic is known based on an exam-
ination before the satellite is launched. Essentially, this yields a maximum spectrum
ymax and standard deviation of noise �� obtained by ymax /300. Noise is assumed to
follow a normal distribution with mean value 0 and variance �2

� , and is calculated
for every 0.2 cm�1 of the spectrum.

Sa and S� in (13.12) is set as follows. Knowing Sa correctly is difficult in prac-
tice. In the case where the elements of Sa are small, retrieval precision greatly
depends on Sa. Therefore, this retrieval algorithm uses a larger Sa than that which
is normally practical. Sa variance terms are shown in Table 13.3. Covariance terms
of Sa are set to 0, and it is assumed that S� is derived only from sensor efficiency.
Then, all S� variance terms are set to �2

� , and S� covariance terms are set to 0.
The number of factors in the experiment to obtain �2

ext is set as follows. The nine
input parameters of (13.9) are candidate factors in the experiment. The direction of
the sun is calculated using either an “Astronomical Almanac [19]” or “Japanese
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Table 13.3 Sa variance terms

x (ppmv2)

Layer 1 2 3 4 5 6 7 8
Value 97.312 86.792 77.412 69.042 61.572 54.922 48.982 43.682

Layer 9 10 11 12 13 14 15
Value 38.962 34.752 30.992 27.642 24.652 21.99 2 19.612

˛s �c �a

No. 1 2 3 4 5 1 1
Value 12 12 12 12 12 0.22 0.22

Ephemeris [11]” with high precision. Satellite positions are also obtained quite
accurately from orbit information acquired by a global positioning system. Con-
sequently, errors of �s, �v, and � are not considered in this study, leaving six input
parameters, which, except for �s, �v, and �, are used as error factors. Table 13.4
shows the levels for each set error factor. Levels for each error factor are set as fol-
lows. Levels for each factor are set to the accuracies of each input parameter. Input
parameters of temperature profile T, water vapor profile W, and surface pressure Ps

are used as provided by six hourly (1.25ı � 1.25ı) Global Analysis data (GANAL)
from the Japan Meteorological Agency. It is assumed that the errors of GANAL data
for T and W are fewer than 2 K and 30% of W, respectively. Ps precision is assumed
to be 3 hPa, and Ps error is also assumed to be the error of the estimated surface
elevation of the observation area. “Temperature profile shift” levels are set to 0 K
(level 1), �2 K (level 2), and C2 K (level 3). CO2 column abundance retrievals for
each level are conducted by adding levels to the temperature profile of the GANAL
data for all layers. “Water vapor amount shift” levels are set to 0% (level 1), �30%
(level 2), and C30% (level 3) of the GANAL data. Retrievals for each level are car-
ried out by adding levels to the water vapor amount of the GANAL data similar to
the method for the “temperature profile shift”. Atmospheric pressures for each layer
from the surface to the top of the atmosphere are changed according to hydrostatic
equilibrium using information on temperature shift and water vapor shift for each
level. Furthermore, the shifts of atmospheric pressure at the surface are set to 0 hPa
(level 1), �3 hPa (level 2), and C3 hPa (level 3). Cases where aerosol height distribu-
tions differ from the practical distribution when the spectrum was obtained were also
considered with “aerosol height distribution” levels uniformly set to 3 km from the
surface (level 1), 2 km from the surface (level 2), and 4 km from the surface (level 3).
GOSAT is designed to estimate cirrus cloud height from the A-band of oxygen and
saturated absorption region of water vapor in the 2.0�m band before CO2 column
abundances are retrieved. Cloud top pressure changes based on cloud height, and it
is assumed the precision of the estimated cirrus height is ˙ 1 km. “Shift of cirrus
cloud height” levels are set to 0 km (level 0), �1 km (level 2), and +1 km (level 3).
Experiments for each level are conducted by adding the level to the cloud height
that is regarded as the estimated cirrus height. For the factors given above, there are
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Table 13.4 Trace gas observation sensors onboard satellite

Label Factor Level
1 2 3

A Cirrus height (km) hc 0 �1 C1
B Surface pressure (hPa) PS + 0 �3 + 3
C Temperature profile shift (K) T 0 �2 C2
D Aerosol height distribution (km) ha 0–3 0–2 0–4
E Water vapor amount shift (%) W 0 �30 C30
F Aerosol type Typea Rural Urban

Table 13.5 Orthgonal array L18

Text no. Level Text no. Level
A B C D E F A B C D E F

1 1 1 1 1 1 1 10 1 1 3 3 2 2
2 1 2 2 2 2 1 11 1 2 1 1 3 2
3 1 3 3 3 3 1 12 1 3 2 2 1 2
4 2 1 1 2 2 1 13 2 1 2 3 1 2
5 2 2 2 3 3 1 14 2 2 3 1 2 2
6 2 3 3 1 1 1 15 2 3 1 2 3 2
7 3 1 2 1 3 1 16 3 1 3 2 3 2
8 3 2 3 2 1 1 17 3 2 1 3 1 2
9 3 3 1 3 2 1 18 3 3 2 1 2 2

Table 13.6 Initial values of unknown parameters

Unknown parameter Value

CO2 density profile 370 ppmv for all layers
Surface albedo 0.3 for all spectral points
Cirrus optical depth 0.05
Aerosol optical depth 0.1

three levels. Since the surface of the observation area is covered by conifer forest,
“aerosol type” levels are set to rural type (level 0) and urban type (level 1), giving a
total number of two possible levels. A major difference between “rural” and “urban”
aerosols is the amount of black carbon particles. Table 13.5, “L18 (Latin square 18)
orthogonal array” presents the orthogonal array used to obtain �2

ext. The number of
tests N is 18. Initial values of estimation parameters are presented in Table 13.6.
CO2 column abundances are retrieved using (13.12). Since the solar Fraunhofer
line mask and the water vapor mask are applied to 0.2 cm�1 resolution spectrum,
the number of channels in y is 232 when CO2 column abundances are retrieved.
The iteration is conducted until the change of  is less than 10�5.
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Results

The evaluation results based on the input parameters are shown below. It is assumed
that T, W, and Ps of the GANAL data are obtained to the same accuracy as the
true values (US Standard values): the aerosols are distributed from the surface to
3 km; the estimated cloud height is 10 km; and the true CO2 column abundance,
which is not known in practical observation, is 7:109 � 1021 mol � cm�2. Retrieved
CO2 column abundance is 7:118� 1021 mol � cm�2, and the variance of the internal
error, �2

int, using (13.16) is 4:451 � 1038 mol � cm�2. The variance of the external
error is obtained by experiments following the orthogonal design table in Table 13.5.
Retrieved CO2 column abundances Oycol for each test are shown in Fig. 13.3. A mean
value of Oycol from 18 tests is 7:135� 1021 mol � cm�2, and �2

ext is 1:133� 1038 mol �
cm�2. The variance of total error is 5:584 � 1038 mol � cm�2, with an error bar of
2:363 � 1019 mol � cm�2. The CO2 column abundance is 7:118 � 1021 ˙ 0:024 �
1021 mol � cm�2.

True CO2 column abundances are covered by the error bars. The error ratio,
which is calculated by � � 100= Oycol, is 0.33%. It is conceivable that a precision of
less than 1% error was achieved for the retrieved CO2 column abundance in this
observation scenario. Since �2

ext, which is obtained by experiments using orthogonal
arrays, takes a long time to calculate, �2

ext will be obtained in advance. Therefore, it is
necessary to obtain �2

ext under several scenarios. GOSAT is designed to retrieve CO2

column abundance data by both nadir observation and observations in the cross-
track direction, so error evaluation needs to be conducted by altering solar zenith
angle, satellite zenith angle, and azimuth angle between the sun and satellite using
numerical simulation. Furthermore, in addition to rural and urban type aerosols,
there are other types of aerosols, such as yellow sand and sea spray type aerosols.
Therefore, it is necessary that retrieval precision is evaluated for different aerosol
conditions. GOSAT will also take spectrum measurements using sun glint from large
bodies of water.

Since the retrieval algorithm to be used in the DHF is currently being developed
and coded, it is important to know the contribution of input parameter precision
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Fig. 13.3 Retrieved CO2 column abundances for each test following orthogonal array
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Table 13.7 Initial values of unknown parameters

Level Factor S
1039 � V
1039 F-value � (%)

A Cirrus height 0.019 2 0.010 0.11 0.952
B Surface pressure 0.119 2 0.059 0.70 5.816
C Temperature profile shift 0.559 2 0.279 3.30 27.393
D Aerosol height distribution 0.213 2 0.107 1.26 10.449
E Water vapor amount shift 0.397 2 0.198 2.34 19.448
F Aerosol type 0.224 1 0.224 2.65 11.003

Error 0.509 6 0.085 24.938
Total 2.039 17 0.120

to the retrieved CO2 column abundances to improve the retrieval precision, that
is, it was assumed that the retrieval precision is improved by reducing the largest
factor’s contribution to the retrieved CO2 column abundances. Next, the magnitude
of contribution to the retrieved CO2 column abundance for each factor is calculated
derived based on an analysis of variance (ANOVA) using retrieved CO2 column
abundances shown in Fig. 13.3, and the results are presented in Table 13.7. S, �, V,
F-value, and � in Table 13.7 stand for sums of squares, degrees of freedom, mean
squares, F-value, and the rate of contribution (%), respectively. The sum of squares
for factor “Total” STotal is calculated by (13.22) �N. When Q represents factors A,
B, C, D, and E, which have three levels, the sums of squares SQ are

SQ D 6

3X
qD1

. Oycol,q � Nycol/
2; (13.24)

where q refers to the level, and Nycol,q is the mean value of Oycol when the level of
factor “Q” is q. When Q represents the factor F, which has two levels,

SQ D 9

2X
qD1

. Nycol,q � Nycol/
2: (13.25)

Furthermore, the “Error” factor of sum of squares SError is obtained by

SError D STotal � SA � SB � SC � SD � SE � SF: (13.26)

and V, F-value, and � of factor q are obtained by Sq/�, Vq/VError, and Sq/STotal,
respectively.

Based on Table 13.7, “Temperature profile shift” is the largest contributor, fol-
lowed by “water vapor amount shift”. On the other hand, “cirrus height” and
“surface pressure” are low contributors when the estimated cirrus height error and
the surface pressure shift are given within ˙1 km and ˙3 hPa. Therefore, these two
factors are not included in the error, and the number of factors can be reduced. Thus,
it can be concluded that ANOVA effectively examines the contribution of each error
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term to the retrieved CO2 column abundances. Prior to launch of the satellite, it is
necessary to conclusively determine the contribution of each of the error factors on
the retrieved CO2 column.

13.4 Conclusions

The Greenhouse Gases Observing Satellite (GOSAT), which has been slated to be
launched in early 2009, will be the world’s first satellite to collect data on the con-
centrations of carbon dioxide (CO2) and methane (CH4), two major greenhouse
gases, from space. GOSAT features an onboard down-looking FTS sensor. The data
collected will be distributed to users in the form of digital data and global maps of
CO2 and CH4 column abundances.

Clarifying the precision of the retrieved CO2 and CH4 column abundances for
GOSAT users is an important component in developing an understanding of global
warming mechanisms. This paper describes in detail an evaluation method to clarify
GOSAT data precision by setting a measurement scenario and performing a numer-
ical simulation to judge the precision of retrieved CO2 column abundance data. The
evaluation method presented considers two types of error: internal error derived
from spectral fitting residuals, and external error derived from the error of input
parameters when the column abundances are retrieved. Internal errors were calcu-
lated analytically, while the external errors, which are not considered in the error
estimation using IMG data and SCIAMACHY data, were obtained using factorial
experiments.

The following observation scenario provided the basis for this analysis. Cirrus
clouds and aerosols were present in the atmosphere and CO2 column abundance
data was retrieved using nadir observation. The spectra calculated were assumed to
be GOSAT-measured spectra. Eighteen experiments were conducted by changing
combinations of levels according to an orthogonal array, yielding 18 CO2 column
abundances obtained using numerical simulation. The precision of the CO2 column
abundances was evaluated, and the results were shown. Based on the above scenario,
less than 1% precision was demonstrated for the retrieved CO2 column abundances.
Analysis of variance was applied to determine the magnitude of the contribution to
the retrieved CO2 column abundances. In the future, the magnitude of contribution
will be examined for several measurement scenarios.
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